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Chapter 1

INTRODUCTION

The bulk magnetic susceptibility, χ, is a fundamental material property that indicates

how easy a substance can be magnetized under an external magnetic field. When a

biological sample or a person is placed inside an MRI system with a strong magnetic

field, different magnetic susceptibilities of tissues induce different local magnetic fields.

Given these magnetic field differences, MR signals from these tissues result in contrasts

between them. The induced field ∆B is associated with the MR phase image via φ =

−γ∆Bτ , where γ is the gyromagnetic ratio, τ is the time at which signal is detected, and

∆B is the induced magnetic field. The phase differences due to variations in magnetic

susceptibility among biological tissues provides a special contrast which is different from

the conventional T1, T2, and T?2 contrast. The magnetic susceptibilities of tissues can be

altered by many physiological/pathological mechanisms, for example, changes in tissue

iron/calcium deposition, changes in blood oxygen saturation, and deposition of iron in

the form of hemosiderin after a stroke. Many well-known neurological conditions such as

Alzheimers, Parkinsons, multiple sclerosis and also aging reveal significant changes in

iron/calcium depositions in cortical substructures [1, 2].

Susceptibility weighted imaging (SWI) utilizes susceptibility differences and enhances

objects in phase images [3]. It has proven to be an effective MR sequence in the study

of Alzheimers, Parkinsons, multiple sclerosis, aging, stroke, trauma, cerebral amyloid an-

giopathy (microbleeds), and Sturge Weber syndrome [1, 4, 5, 6]. However, SWI does

not have the ability for quantification. As a result, it cannot distinguish between calcified
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objects and hemorrhages, nor quantify the size changes of objects over time. To address

these issues, this PhD work will introduce a method called Complex Image Summation

around a Spherical or Cylindrical Object (CISSCO), which is effective for the magnetic

moment quantifications of small objects from MR images. This CISSCO method adds

complex signals of image voxels within a specified sphere or a long cylinder. The overall

signal is equated to an analytical formula and we can systematically solve the unknowns

in the equation. The unknowns include the effective proton density, volume of the object,

and effective magnetic moment of the object. The CISSCO method minimizes quantita-

tive errors due to three main problems in MRI: the partial volume effect, phase aliasing

effect, and dephasing effect [7]. An important feature of this method is that the desired

information can be extracted non-invasively from MRI without a priori information.

My PhD work has developed the 2D and 3D CISSCO method with numerical simula-

tions and phantom studies. In the 2D CISSCO method, I have also applied the method to

the susceptibility measurements of several cerebral veins in human images. In addition,

the uncertainties and limitations of the CISSCO method are also discussed in this PhD

work. The chapters in this dissertation are arranged as follows. Chapter two will give a

detailed overview of the 2D CISSCO method. Chapter three will give a detailed overview

of the 3D CISSCO method. Chapter four extends the 2D CISSCO method to susceptibil-

ity and size quantifications of long cylindrical objects at different orientations with signals

inside the objects. Chapter five applies the method in Chapter four for the quantification of

the susceptibilities of cerebral veins. Finally, chapter six will address current applications

and potential future directions of this method.

Chapter two, three, four, and five of my PhD dissertation have been already published
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in the peer-review journals. The content of chapter two has been published in [8]. The

content of chapter three has been published in [9]. The content of chapter four has been

published in [10]. The content of chapter five has been published in [11].



4

Chapter 2

QUANTIFYING EFFECTIVE MAGNETIC MOMENTS OF NARROW

CYLINDRICAL OBJECTS IN MRI

2.1 Introduction

Changes of blood oxygenation cause a change in the magnetic susceptibility of ve-

nous blood. This is the basis of functional magnetic resonance imaging (fMRI) (e.g.,

see [12]). For this reason, there has been a strong interest to quantify the magnetic sus-

ceptibility of venous blood. As a forward problem, researchers in MRI usually model a

blood vessel as an infinitely long cylinder and calculate its MR signal with a known sus-

ceptibility of the vessel obtained from ex vivo studies [13]. In order to avoid the partial

volume effect in MRI but to obtain accurate results, an ex vivo study usually analyzes the

phase information both inside and outside a cylindrical test tube whose diameter occupies

at least 10 image pixels [13]. If the wall thickness of the test tube can be neglected, this

approach can accurately recover the susceptibility difference between the materials inside

and outside the cylinder. On the other hand, the in vivo measurement of the blood sus-

ceptibility has also been performed on vessels with large enough diameters (e.g., [14]).

Nonetheless, the quantification of susceptibility of a cylindrical object with a small diam-

eter has been a challenging problem and has not yet been tackled. Until recently, we [7]

and Sedlacik et al. [15] have attempted to solve this inverse problem with two independent

approaches. The former requires a priori knowledge of the cylinder radius while the latter

fits several variables to MR images from multiple long echo times, which can become im-

practical in in vivo studies. In this chapter, we will demonstrate a general approach in the

quantification of the effective magnetic moments of narrow cylindrical objects from only
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one echo time of a gradient echo image. This new approach relies only on the known

imaging parameters but not on the object size, which is usually not known in advance.

From the magnetostatic theory [16], in the first order approximation, the magnetic mo-

ment per length of a long but narrow object is equal to that of an infinitely long cylinder.

This concept makes our approach described in this chapter more applicable to long ob-

jects whose cross sections may not be exactly a disk. Practically, our approach may be

applied to clinical MR images and industrial problems [17].

In this chapter, we will also show our improved method to identify the center of the

cylindrical object. This improved method is robust as we will prove mathematically. Uncer-

tainties of our methods including both the thermal noise from an object and the systematic

uncertainty due to discrete pixels will be studied from the error propagation method [18].

By minimizing the uncertainty due to the thermal noise, we will derive criteria of how to

effectively evaluate the magnetic moment of an object from images. Certain technical

procedures that have been discussed in detail in [7] will be briefly mentioned here but will

not be repeated. In the following sections, we will provide the general formulas but focus

on null-signal objects perpendicular to the MRI main field in our phantom studies. Results

from different imaging parameters will be shown. Objects with different orientations and

limitations of our approach will be discussed toward the end of this chapter.

2.2 Material and Methods

The basic concept of our method is to add the complex MR signal of each voxel

around a long cylindrical object of interest. As we model each object as an infinitely long

cylinder, we only need to examine signals on a plane whose normal is parallel to the

axis of the cylindrical object. The cross section of the cylinder on the plane is a disk of
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which the circumference is a circle. Thus, these terms will also be used in this chapter.

Theoretically, the MR signal around the infinitely long cylinder can be easily modeled.

The total signal within a co-axial cylinder can be formulated and can be compared to

the actual signal obtained from images, such that the effective magnetic moment can

be solved. However, as different types of noise exist in images and the actual center of

the object requires a subpixel determination, the challenge is to identify a set of robust

procedures to fully solve this problem.

2.2.1 MR Signal of a Cylindrical Object

Applying an external magnetic field on an infinitely long cylindrical object with an

absolute susceptibility χi embedded in an environment of susceptibility χo will induce a

magnetic field ∆B both inside and outside the object [16]. If the distortion of the object can

be neglected in images, after the correction of the Lorentzian sphere term and frequency

adjustment by the MR systems, the phase value of the complex MR signal from a gradient

echo sequence outside the cylinder is [12]

φout = −γ∆BTE = −γ∆χ

2

a2

ρ2
B0TE cos 2ψ sin2 θ (2.1)

where γ is the proton gyromagnetic ratio (2π · 42.58 MHz/T), TE is the echo time, ∆χ ≡

χi − χo, a is the radius of the cylindrical object, ρ is the perpendicular distance measured

from the axis of the cylinder, B0 is the main field of the MR system, ψ is the polar angle

associated with ρ, and θ is the angle between the main field direction and the axis of the

cylinder. Figure 2.1 shows the coordinate system used in Eq. 2.1.

In the context of this chapter, it is ∆χ that we wish to measure from experiments.
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Figure 2.1: A schematic drawing shows the coordinate systems used in Eq. 2.1. Note that
the axis of the cylinder is chosen to be parallel to the z-axis only for the derivation of Eq. 2.5.
After deriving Eq. 2.5, only angle θ is relevant for further discussions.

Thus, the term susceptibility in this chapter refers to ∆χ rather than the absolute suscep-

tibility of the object. In addition, we have adopted SI units. From Eq. 2.1, we define the

maximal (or minimal, depending on the sign of ∆χ) phase value g as

g ≡ 0.5γ∆χB0TE (2.2)

and the effective magnetic moment (or “magnetic moment, hereafter) as

p ≡ ga2 (2.3)
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Under the same consideration, the induced phase value inside the cylinder is [12]

φin = −γ∆χ

6
(3 cos2 θ − 1)B0TE =

g

3
(1− 3 cos2 θ) (2.4)

If we consider a pseudo cylinder with radius R that is co-axial with the cylindrical

object (see Fig. 2.2), for g 6= 0, the overall MR signal of the pseudo cylinder from a

gradient echo sequence is [7]

a

R

Figure 2.2: A schematic drawing shows the cross section of a cylindrical object with radius
a, enclosed by a co-axial pseudo cylinder whose radius is R. The total MR signal within the
pseudo cylinder can be formulated.

S = `ρ0

∫ R

a

dρ ρ

∫ 2π

0

dψ eiφout + π`a2ρ0,ce
i φin = π`ρ0p

∫ g

p/R2

dx

x2
J0(x sin2 θ) + π`a2ρ0,ce

i φin

(2.5)

where ` is an arbitrary length of the cylindrical object and can be the slice thickness of

the image, J0 is the zeroth order Bessel function, ρ0,c is the effective spin density of the

cylindrical object, and ρ0 is the effective spin density of the tissue around the object. Both

ρ0,c and ρ0 are constants but depend on imaging and tissue parameters such as relaxation

times. Although Eq. 2.5 is derived for an infinitely long cylinder, practically, it is the MR

signal per unit length of the pseudo cylinder (S/`) that is needed in our analysis. Thus,
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an image slice whose normal component is parallel to the cylinder axis should be used in

all quantifications. On that slice, the cross section of the cylindrical object appears as a

disk. The same is true for the co-axial pseudo cylinder. The orientation of the cylinder, θ,

can be estimated from the coordinates of the two ends of the cylindrical object in images.

Therefore, the unknowns in Eq. 2.5 are reduced to g, p, ρ0, and ρ0,c.

2.2.2 Determining the Center of the Cylindrical Object

Equation 2.5 is valid only when the center of the disk (i.e., the cross section of the

cylindrical object) is identical to the center of the pseudo disk. Thus the first step is to

identify the center of the disk. When a cylindrical object itself has no MR signal, i.e.,

ρ0,c = 0, we can identify the center of the object by minimizing the imaginary part of the

signal (Eq. 2.5) within the pseudo disk [7].

When a cylindrical object has a non-zero ρ0,c, even if the pseudo circle is replaced

by two pseudo concentric circles such that the imaginary part from the annular ring is

theoretically zero, the above approach still fails. This is because when the object has an

imaginary part of the MR signal, its point spread function leads to an additional imaginary

signal in each pixel outside the object. On the other hand, although the “subvoxel shift

approach by [15] is valid, it requires many Fourier transformations of an image and thus

longer computing time. We offer two alternate approaches below.

The first alternate approach is to maximize the real part of the signal from an annular

ring region where the disk is completely inside the smaller pseudo circle. Assume that the

annular ring region is formed by two pseudo circles with radii R1 and R2 and a < R1 < R2.

The center of the object is located at coordinates (x0, y0) with
√
x2

0 + y2
0 +a ≤ R1. The MR
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signal from the annular ring is

S = `ρ0

∫ R2

R1

dρ ρ

∫ 2π

0

dψ exp

{
−i ga

2

ρ2
cos 2ψ sin2 θ

}
(2.6)

where the relations between ρ, ρ, ψ, and ψ in the integrand are given by ρ cosψ = x0 +

ρ cosψ and ρ sinψ = y0 + ρ sinψ. One can analytically prove that at x0 = y0 = 0, ∂S
∂x0

=

∂S
∂y0

= 0, and ∂2S
∂x0∂y0

= 0. Appendix D proves that the real part of the signal is maximum at

x0 = y0 = 0 under certain conditions.

The second approach is to minimize the real part of the signal within one pseudo

circle with radius R. With the parameters defined above and with
√
x2

0 + y2
0 < a, the MR

signal of the pseudo disk is

S = `ρ0

∫ 2π

0

dψ

∫ R

r(ψ)

dρ ρ exp

{
−i ga

2

ρ2
cos 2ψ sin2 θ

}
+ π`a2ρ0,ce

i φin (2.7)

where the relations ρ cosψ = x0+ρ cosψ and ρ sinψ = y0+ρ sinψ still hold. In addition, r(ψ)

is the minimal value of ρ and satisfies r(ψ) cosψ = x0 +a cosψ and r(ψ) sinψ = y0 +a sinψ.

This leads to

(r(ψ) cosψx0)2 + (r(ψ) sinψy0)2 = a2 (2.8)

and

r(ψ) = (x0 cosψ + y0 sinψ) +
√

(x0 cosψ + y0 sinψ)2 + (a2x2
0y

2
0)

=
√
x2

0 + y2
0 cos(ψ − ψ0) +

√
a2(x2

0 + y2
0) sin2(ψ − ψ0) (2.9)
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where cosψ0 ≡ x0/
√
x2

0 + y2
0 and sinψ0 ≡ y0/

√
x2

0 + y2
0.

Again, one can analytically prove that at x0 = y0 = 0, ∂S
∂x0

= ∂S
∂y0

= 0, and ∂2S
∂x0∂y0

= 0.

Appendix E proves that the real part of the signal is minimum at x0 = y0 = 0.

All these approaches will fail when θ = 0. In this special case, no phase value is

outside the object (see Eq. 2.1). The MR signal becomes:

S = `ρ0(A− πa2) + π`a2ρ0,ce
−2i g/3 (2.10)

where A is an arbitrarily shaped area that encloses the disk. Only the size of the object

can be determined in this case.

2.2.3 Magnetic Moment of the Cylindrical Object

As shown in Fig. 2.3, if three arbitrary concentric circles with radii R1, R2, and R3 are

chosen, then three complex signals S1, S2, and S3 can be calculated from MR images as

described in [7]. In order to improve the accuracy of our approach, each image pixel is

further divided into 100 subpixels in the calculations of the complex signals Si [7]. From

Eq. 2.5, we obtain

(S1 − S2)

∫ p/R2
3

p/R2
2

dx

x2
J0(x sin2 θ) = (S2 − S3)

∫ p/R2
2

p/R2
1

dx

x2
J0(x sin2 θ) (2.11)

where the effective magnetic moment, p, becomes the only unknown in the equation.

Note that both ±p satisfy Eq. 2.11 but the correct sign of p may be determined from

MR phase images with the help of Eq. 2.1. From Eq. 2.1, it is clear that p sin2 θ/R2
i is the

maximal (or minimal) phase value at the circumference of the i-th circle (where i = 1, 2, 3).
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Therefore, if any Ri is chosen larger than the phase aliasing area, then |p sin2 θ/R2
i | will

be always less than π and the solution of |p sin2 θ| can be numerically searched between 0

and πR2
min with a Van Wijngaarden-Dekker-Brent method [19], where Rmin is the smallest

radius among three circles Ri. With the choices of |p sin2 θ/R2
i | in the following subsection,

the solution of p2 sin4 θ in Eq. 2.11 is unique. This is because
∫
dx/x2J0(x) can be well

approximated by −1/x − x/4 in our consideration, which leads to a monotonic function

of p2 sin4 θ in Eq. 2.11. For example, when |p sin2 θ/R2
1| is 0.5 and |p sin2 θ/R2

2| is 1, the

deviation between the exact integral and its approximation is 0.5%. When |p sin2 θ/R2
2| is

1 and |p sin2 θ/R2
3| varies from 2.5 to 3.0, the deviation increases monotonically from 7%

to 12%. Thus, the initial guess of |p sin2 θ| may be chosen as πR2
min/2. After p is solved,

the effective spin density ρ0 can be solved from the signal of an annular ring, e.g., S1−S2.

The above discussion is generally valid except when the angle θ is close to zero. At θ = 0,

no magnetic moment appears in the signal, which is given by Eq. 2.10.

(a) (b) (c) (d)
Figure 2.3: (a) Magnitude and (b) its associated phase image at an echo time of 5 ms show
an air cylinder in the gel phantom. (c) Magnitude and (d) phase image at an echo time
of 20 ms show the same air cylinder in the gel phantom. Although the actual radius of the
cylinder is 0.8 mm and the image resolution is 1 mm× 1 mm, cross sections of the cylinder
appear to be different in magnitude images and larger than actual sizes. Note the dipolar
phase aliasing patterns in the phase image (d). Circles are explained in the text.
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2.2.4 Uncertainty of the Magnetic Moment

It is important to study the uncertainty of the method when it is applied to actual

images. In addition, in order to determine the optimal choices of three radii for the quan-

tification of the magnetic moment, the study of the uncertainty can provide some insights.

Thermal noise due to the presence of an object and systematic noise due to discrete pix-

els in images always exist. They lead to the uncertainty of p. By defining p ≡ p sin2 θ and

rewriting Eq. 2.11, we can derive the uncertainty of p through error propagation [18]:

δp

p
=
δp

p
=

1

|D|

√
(δ(S2S3))2h2

12 + (δ(S1S2))2h2
23 (2.12)

where hij is defined as

hij ≡
∫ p/R2

j

p/R2
i

dx

x2
J0(x) (2.13)

with i, j = 1, 2, 3 and

D ≡ (S1S2)
J0(φ3)

φ3

+ (S2S3)
J0(φ1)

φ1

+ (S3S1)
J0(φ2)

φ2

= π`ρ0p

(
h12

J0(φ3)

φ3

+ h23
J0(φ1)

φ1

+ h31
J0(φ2)

φ2

)
(2.14)

Here φi ≡ p/R2
i is chosen to be between 0 and π for all i. In the derivation of Eq. 2.12, we

have already assumed that R3 < R2 < R1 such that the uncertainty from the annular ring

region between R2 and R3 is uncorrelated with the uncertainty from the area between

R1 and R2. The uncertainty from each annular ring consists of the thermal noise and

the systematic noise. Both noise sources are also uncorrelated. The former can be

approximated by σ`
√

∆x∆yπ|R2
iR

2
j | where σ is the standard deviation of the thermal noise
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in the image and ∆x∆y is the image in-plane resolution [7]. The systematic noise is

represented by εij calculated from δ(SiSj) ≡ εij|SiSj| when the thermal noise is neglected.

The uncertainty due to the systematic noise δ(SiSj) can be calculated if the center of the

cylindrical object, the radius of the object, and the susceptibility difference are all known.

Some examples were shown in [7, 20].

Equation 2.12 can be rewritten as

δp

p
=

√
∆x∆y
πpSNR2

(∣∣∣ 1
φ2

1
φ3

∣∣∣h2
12 +

∣∣∣ 1
φ1

1
φ2

∣∣∣h2
23

)
+ (ε212 + ε223)h2

12h
2
23∣∣∣h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2

∣∣∣ (2.15)

where SNR ≡ ρ0/σ is the signal to noise ratio of the magnitude image. In order to deter-

mine the optimal combination of φ1, φ2, and φ3, for simplicity, we assume ε12 = ε23 = 0 in

Eq. 2.15 and numerically search for the minimum of δp/p with 0 < φi ≤ π for i = 1, 2, 3.

2.2.5 Resolving the Susceptibility When the Object Has No Spin Density

The susceptibility can be calculated from the known effective magnetic moment, if

the radius of the object can be determined. Two approaches are considered to determine

the radius of the object when the object has no spin density. The first approach is to utilize

a spin echo sequence. The second approach is to perform a gradient echo sequence at

a short echo time.

If a spin echo sequence is used to image the cross section of the object, the MR

signal from an arbitrarily uniform area A that includes the object is:

SSE = ρ0,SE`(A− πa2) (2.16)
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where ρ0,SE is the effective spin density (a constant) of the spin echo images. We have

neglected the dephasing effect during the sampling time. With two arbitrary areas A1 and

A2 such that A2 is completely enclosed by A1, ρ0,SE and the cross section of the object

πa2 can be determined. The uncertainty of the cross section can be derived from the error

propagation method.

δ(πa2) =

√
∆x∆y

SNR

√
A2 +

(A2 − πa2)2

A1A2

(2.17)

Note that SNR in Eq. 2.17 refers to the signal to noise ratio of the spin echo image.

The noise between A2 and A1−A2 is uncorrelated. In order to minimize the uncertainty, it

is obvious from Eq. 2.17 that the area A1A2 should be chosen as large as possible before

heterogeneity is encountered in the images, while the area A2 should be chosen as small

as possible but larger than πa2. In fact, A2 has to be larger than the area of the distorted

object in the image so the cross section of the object can be estimated more accurately.

In the gradient echo approach, an additional pseudo circle with radius R may be used to

solve Eq. 2.5 as g becomes the only unknown after both p and ρ0 are found. However,

Fig. 2.4a demonstrates that the integral in Eq. 2.5 oscillates and quickly approaches an

asymptotic value when |g| or echo time increases (with a fixed p). This is due to the J0

function and 1/x2 in the integrand. In order to obtain a unique solution of g from Eq. 2.5,

the echo time TE needs to be chosen short enough such that |g| is at least less than 2.4,

which is the first root of the J0(x) function. However, in order to distinguish the solution

from the asymptotic value of the integral with the presence of noise in images, the value of

|g| may have to be much less than 2.4. The radius R also needs to be large enough such

that |p/R2| is much less than 2.4. We will show some examples in the Results section.
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(a) (b) (c) (d)
Figure 2.4: Demonstration of the theoretical signals due to long echo times. For simplicity,
no noise has been added in any of these simulations. (a) A plot of the integral in Eq. 2.5
as a function of g with ρ0` = 10 units, a = 1 mm, TE = 5 ms, ρ0,c = 0, and R = 3 mm, such
that p is 9.43 radian·mm2 and the true value of g is 9.43 radians. The actual MR signal S
is represented by a horizontal line. The intersections of the horizontal line and the curve
represent possible solutions of g. (b) Similar to (a), except that TE is reduced to 0.35 ms,
such that the true value of g is 0.66. (c) Normalized signals based on Eq. 2.5 as a function
of echo time. The solid black curve is plotted with the volume fraction 0.1 and susceptibility
0.95 ppm from [15]. The dashed green curve and the dashed red curve are simulated with
volume fraction 0.02 and 0.17, and susceptibility 4.75 and 0.57 ppm, respectively, such that
the product of the volume fraction and susceptibility is identical in all three curves. (d)
Similar to (c), but the black curve is simulated with volume fraction 0.3 and susceptibility
0.95 ppm. The dashed green curve and the red curve are simulated with volume fraction 0.1
and 0.43, and susceptibility 2.85 and 0.67 ppm, respectively.

2.2.6 Phantom Studies

Images from three different gel phantoms are analyzed in this chapter. The first set of

images come from the phantom images in [7]. A narrow but long air cylinder with a diame-

ter of roughly 1.6 mm appears in the images. Images acquired from a coronal 3D gradient

echo sequence (Fig. 2.3) and a spin echo sequence are available for our re-analyses.

The imaging parameters of the gradient echo sequence were: TE = 5 ms and 20 ms,

TR = 50 ms, flip angle = 15◦, read bandwidth = 390 Hz per pixel (Hz/pixel), resolution =

1 mm×1 mm×1 mm, and fields of view = 256 mm×128 mm×64 mm. The imaging pa-

rameters of the spin echo sequence were: TE = 8.4 ms, TR = 400 ms, read bandwidth =

130 Hz/pixel, resolution ≈ 0.55 mm×0.55 mm, fields of view = 140 mm×140 mm, slice

thickness = 1.5 mm, 18 slices, and slice spacing = 1.95 mm.

The second set of images is from a phantom that consisted of a hollow straw in the
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gel. As one end of the straw was sealed, the hollow straw created another air cylin-

der in the gel phantom. The diameter of the straw was 5.24 ± 0.01 mm. This phantom

was prepared with 107 g of the gel powder in 1200 ml distilled water. The straw was

placed vertically in the phantom when the gel was in its liquid form. Coronal images of

a multiple echo 3D gradient echo sequence and a spin echo sequence were acquired.

The imaging parameters of the gradient echo sequence were: TE = 5 ms, 10 ms, and

15 ms, TR = 25 ms, flip angle = 15◦, read bandwidth = 610 Hz/pixel for TE = 5 ms and

220 Hz/pixel for the other two echo times, resolution = 1 mm×1 mm×1 mm, and fields of

view = 256 mm×256 mm×96 mm. The imaging parameters of the spin echo sequence

were TE = 15 ms, TR = 550 ms, read bandwidths = 90 Hz/pixel and 590 Hz/pixel, resolu-

tion = 1 mm×1 mm, fields of view = 256 mm×256 mm, slice thickness = 2 mm, 20 slices,

and slice spacing = 2 mm. Both air cylinders were placed perpendicular to the main field

of the MR system. All images were acquired from a 1.5 T Siemens Sonata system. The

phase images of the first set images were filtered by a high pass filter size of 32 × 32 [1]

that has a minimal effect on our study here [7]. A high pass filter will also remove the eddy

current effects and the constant background phase in a given set of phase images. For

our second set of gradient echo images, we applied the line-by-line subtraction method,

in order to remove the unwanted background phase around the object of interest in phase

images. The line-by-line subtraction method was already described in [7]. This method

also had a minimal effect on our studies in the chapter.

The distortion of objects in images (Fig. 2.5) due to the susceptibility effect was

studied by varying the read bandwidth. These studies were preformed on another straw

phantom made on a different day. The read bandwidths of the gradient echo sequence
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at TE = 10 ms were varied from 70 Hz/pixel, 220 Hz/pixel, 350 Hz/pixel, to 700 Hz/pixel.

Other imaging parameters remained the same as those listed in the above paragraph.

(a) (b) (c) (d)
Figure 2.5: Gradient echo gel images of an empty straw perpendicular to the main field with
different read bandwidths are shown. The echo time of these images is 10 ms. (a) Magnitude
and (b) its associated phase image were acquired with a bandwidth of 70 Hz/pixel. Note the
distortion artifacts in both (a) and (b). (c) Magnitude and (d) phase image were acquired
with a bandwidth of 350 Hz/pixel. No obvious distortion is observed in (c) or (d).

2.2.7 Image Simulations

In order to calculate the correct systematic noise (or uncertainty) due to discrete pix-

els, both image parameters and measured magnetic moments are used. In addition, the

susceptibility difference between the air and gel is assumed to be 9.4 ppm [21]. The sim-

ulations and the addition of Gaussian noise were described in [7]. It is worth mentioning

again that proper rotations of data after Fourier transformation are required. This is due

to different definitions of the Fourier transformation in different computer software, but we

follow the definition provided in [12].

In all simulations, we assume that θ = π/2, ∆χ = 9.4 ppm, and B0 = 1.5 T. The image

resolution is set to 1 mm×1 mm (or 1 pixel×1 pixel). Other parameters are provided with

corresponding simulated result in the next Section.
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2.3 Results

2.3.1 Center of the Object

The one circle approach appears to be the easiest method in the identification of the

object center. The radius of the pseudo circle cannot be too small or too large. In the

former case, the thermal noise and discrete pixels will contribute significant uncertainty to

the process. We would recommend a radius of at least three pixels. In the latter case, the

overall MR signal will be dominated from the pixels without magnetic moment information

and become insensitive to identifying the center. Equation C.2 in Appendix C is consis-

tent with these considerations. Based on the phase images, a circle whose circumference

intersects with phase values around ±2 radians along the vertical and horizontal axes is

a reasonable choice while the phase of 2.6 radians would be the optimal choice. In the

approach of using two concentric circles, we suggest using radii that differ by at least

one pixel such that enough pixels are used in the analysis. Based on our experience in

simulation and phantom studies, the center of the object identified by any of our three pro-

cedures often differs from the actual center by 0.1 to 0.3 pixel. In addition, all the results

from the one circle approach agree with the theoretical criterion (Eq. C.2 in Appendix C).

We have also tried the approach by Sedlacik et al. [15] on some of our simulated images

and have identified the same centers determined by our one-circle method. However, as

the “subvoxel shift approach by [15] involves a 2D Fourier transformation of every possible

center, while our method only requires a sum of complex numbers from the neighboring

subpixels, our method takes less than half the computing time of their approach.
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2.3.2 Optimal Choice of the Radii Combination

Simulations of Eq. 2.15 reveal that the uncertainty of the magnetic moment will be

at a minimum when the three phase values are smallest, roughly 1 radian, and 2.5-3

radians. This result means that one circle should be chosen as large as possible while

the other two circles should be chosen when their radii are roughly the lengths from the

center of the object to the desired phase values. All circles should be outside the phase

aliasing region. Due to the left handed setting by MRI manufacturers, note that the signs

in all phase images of Fig. 2.3 are opposite to the signs in Eq. 2.1 (right handed system).

Practically, as the uncertainty in the phase image is inversely proportional to SNR in the

magnitude image [12], the radius of the largest circle can be chosen where the phase

value is not smaller than 0.1 radian. Furthermore, as the MR signal is discretized and the

center of the object may be different from the center of a pixel, the phase value measured

from MR images may not be exactly equal to any of the above desired phase values and

may not be symmetric around the object. In addition, phase values close to ±π radians

may not be available from the phase profiles due to the partial volume effect. Simulated

phase profiles shown in Fig. 2.6 reflect these practical problems. In any case, the phase

profiles are only used as references for choosing the radii of the three circles for the

measurements of the magnetic moment. It is not necessary to identify the exact phase

values for our measurements. In fact, any choice of three circles can lead to a solution of

the magnetic moment except that the uncertainty may be larger than desired (see below).

Nevertheless, in order to better estimate the uncertainty (Eq. 2.15) due to each radius

used in our analyses, we have averaged four radii and their corresponding phase values
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taken from a vertical and a horizontal phase profile through the center of the object.
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Figure 2.6: An infinitely long cylinder with radius 0.8 pixel is simulated without the thermal
noise. The center of the object is purposely shifted to the 128.9th pixel in simulations.
Our method identified a center that is only 0.1 pixel away from the simulated center. The
magnitude (a) and its associated phase profile (b) are simulated with an echo time of 5 ms.
The magnitude (c) and its phase profile (d) are simulated with a TE of 20 ms. Note the
asymmetric phase patterns in (b) and (d) and asymmetric dephasing profiles in (a) and (c).
These profiles agree very well with those obtained from actual gel phantom data. Also note
that each pixel contains only one complex signal, displayed as dots in these plots. The lines
connecting the dots have no special meaning.

2.3.3 Measurements of the Magnetic Moment

Table 2.1a lists the magnetic moments obtained from our previous data [7]. As the

radii of the three circles are chosen as described above, the uncertainties calculated from

Eq. 2.15 are less than 10%. As a comparison, when the radii of the largest circles are

reduced, the uncertainties of the measured magnetic moments are increased but are still

within 16% (Table 2.1b).

In theory, the effective magnetic moment is proportional to the echo time. The results

of the magnetic moment obtained from different echo times clearly show that relationship

within uncertainties in Table 2.1. With the known radius of the object 0.8 mm and an

assumed ∆χ = 9.4 ppm, the theoretical magnetic moments at TE = 5 ms and 20 ms are

6.04 radian·mm2 and 24.14 radian·mm2, respectively. That the magnetic moment at the

bottom slice is smaller than that at the top is likely due to the collapsing of the air cylinder

in the gel phantom.

Two slices of the second phantom (straw phantom) at three echo times are analyzed
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and their results are shown in Table 2.2. As the diameter of the straw is 5.24 ± 0.01 mm,

the theoretical magnetic moments at TE = 5 ms, 10 ms and 15 ms are 64.7 radian·mm2,

129.5 radian·mm2, and 194.2 radian·mm2, respectively. Even though the cross section of

the straw is slightly deformed during the solidification of the gel solution, the measured

magnetic moments are still in good agreement with the theoretical values and between

themselves at different echo times. However, when the calculated uncertainty is less than

1%, one will need to consider the inaccuracy due to pure numerical algorithms which can

be as large as 0.3% [7].

Table 2.3 shows magnetic moments of the straw at four different read bandwidths

from the same slice. All the measured magnetic moments agree with each other within

uncertainties. Therefore, our measurements of the magnetic moment from a gradient

echo sequence do not seem to be affected by the distortion effect even at a relatively low

bandwidth. The measured moments in both Tables 2.2 and 2.3 are slightly different from

the theoretical values as the presence of the gel powder used in the phantoms can shift

the susceptibility away from that of pure water. As we choose the radii outside the phase

aliasing regions, we also effectively avoid the distortion effect.

2.3.4 Estimations of Object Volumes from Spin Echo Images

When the object has no spin density, the cross section of the object and its uncer-

tainty are calculated based on Eq. 2.16 and Eq. 2.17. Three slices of the spin echo

images from our previous study are analyzed as they correspond to slice 10, 19, and

37 of the gradient echo images. The measured cross sections are shown in Table 2.4.

The result from slice 19 agrees well with the theoretical value of the object cross section,

2.01 mm2. In general, the results from Table 2.4 also indicate a collapse at the bottom of
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Slice 30 Slice 35
TE radii phases moment δ radii phases moment δ

(ms) (mm) (radian) p (mm) (radian) p
5 (6, 8, 13) (2.3, 0.9, 0.2) 64.0 1.4% (6, 9, 13) (2.1, 1.0, 0.3) 63.3 1.5%
10 (7, 9, 14) (2.4, 1.3, 0.5) 130 0.6% (7, 10, 14) (2.4, 1.2, 0.5) 128 0.6%
15 (9, 13, 16) (2.5, 1.2, 0.7) 191 0.9% (9, 13, 16) (2.4, 1.1, 0.7) 193 0.9%

Table 2.2: Effective magnetic moments of the air straw measured at two different slices. The
notation of each column is identical to that described in Table 2.1. The SNRs of images at
TE = 10 ms and 15 ms are 23:1. The SNR of images at TE = 5 ms is 15:1. The measured
cross sections of the straw and the theoretical values of the magnetic moments are shown in
the text.

Slice 10 at TE = 10 ms
BW (Hz/pixel) 70 220 350 700
p (radian·mm2) 125.1± 0.4 126.6± 0.6 124.7± 0.6 124.2± 1.0

Table 2.3: Study of the distortion effect in gradient echo images (Fig. 2.5). The theoretical
value is 129.5 radian·mm2. The results indicate that distortion has minimal effect to our
method.

the phantom and an enlargement of the object at the top of the phantom.

For the straw phantom, one slice of the spin echo images at two different read band-

widths is analyzed. The SNR is 33:1 for images acquired with bandwidth 90 Hz/pixel

and is 11:1 for images with bandwidth 590 Hz/pixel. The measured cross sections are

21.4 ± 0.3 mm2 and 22.2 ± 0.8 mm2 at bandwidth 90 Hz/pixel and 590 Hz/pixel, respec-

tively. In the former case, A1 = 1148 mm2 and A2 = 120 mm2, while in the latter case

A1 = 821 mm2 and A2 = 69 mm2. The theoretical value of the cross section is 21.6 mm2

if the cross section is a perfect disk. As the straw has slightly deformed inside the gel

phantom, its cross section may not be a perfect disk but has a smaller cross section than

that of the perfect disk, given the same circumference. These results show good agree-

ment between the measurements and the theoretical value within uncertainties predicted

by Eq. 2.17. The results also indicate that the geometric distortion does not significantly

affect the quantification.
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Slice A1 A2 Ameasured Apredicted
10 721 43 3.06± 0.74 2.31
19 725 39 2.75± 0.70 1.97
37 725 40 2.17± 0.71 1.59

Table 2.4: Three cross sections Ameasured of the narrow air cylinder are analyzed from the
spin echo images. The areas of A1 and A2 are shown in the number of pixels while the values
of Ameasured and Apredicted are shown in units of mm2. The uncertainties of the measured cross
sections (Ameasured) are calculated from Eq. 2.17. The predicted cross sections (Apredicted) are
calculated from the magnetic moments in Table 2.1a divided by the assumed susceptibility
difference 9.4 ppm. The uncertainties in this calculation are not listed. The SNR of the spin
echo images is 5:1.

2.3.5 Resolving Susceptibility from Gradient Echo Simulations with No Spin Density

of the Object

In addition to our efforts in the previous subsection, we also explore the possibility of

quantifying susceptibility from gradient echo images. We investigate this possibility with

simulations. If all variables and parameters are known, we can calculate the MR signal

in each case. Such an MR signal is a number and is displayed as a horizontal straight

line in Fig. 2.4a or 2.4b. On the other hand, if the magnetic moment p is known but

the susceptibility and object radius are not known, then we can simulate the MR signal

as a function of g, as shown as a curve in Fig. 2.4a or 2.4b. The intersections of the

curve and the line indicate the possible solutions of the susceptibility. The result shown

in Fig. 2.4a indicates that the minimal value of |∆χ| (with a fixed p) can be extracted at a

given echo time. In this example, the minimal value of |∆χ| is roughly 1.5 ppm, much less

than 9.4 ppm used for the image simulations. If the echo time is shortened, as shown in

Fig. 2.4b, then g or susceptibility is likely to be uniquely determined. If the thermal noise is

added as one arbitrary unit (compared to ρ0`, which is 10 units) and an image resolution is

assumed as 1 mm2, then the uncertainty of the signal S within a radiusR (3 mm) is roughly
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5.3 units (
√
πR2/

√
∆x∆y). This means that the signal S is within one standard deviation

of the asymptotic value shown in Fig. 2.4a when g is larger than roughly 3.5. On the

other hand, with a much shorter echo time (which may be impractical), the susceptibility

and radius of the object can be resolved from Eq. 2.5 and Fig. 2.4b. However, this result

implies that the spin echo approach presented in the above subsection seems better.

The examples shown in Fig. 2.4a and 2.4b indicate that one cannot accurately deter-

mine the susceptibility and object size through a curve fitting of data from long echo times,

where g becomes too large. If sufficient noise had been included in the simulations, both

Fig. 2.4c and 2.4d demonstrate that the volume fraction and susceptibility each can only

be roughly determined at orders of magnitude through curve fitting. However, when an

object has enough MR signal, the curve fitting method appears applicable to determine

the susceptibility and volume of the object [15]. This is because Eq. 2.4 only contains the

susceptibility information (i.e., g), rather than the magnetic moment (i.e., p).

2.4 Discussion

Three common problems in MRI have been overcome in our method of obtaining the

magnetic moment: partial volume effect, dephasing effect (signal loss shown in Fig. 2.6a

and 2.6c), and the phase aliasing effect (shown in Fig. 2.6d). In our examples, the partial

volume effect is overshadowed by the dephasing effect. These are practical reasons why

our method applied on small objects is much better than the conventional least squares

fitting method or the method of measuring the relaxation time T ∗2 . Some results of how

bad the least squares fitting method has performed are shown in [7].

As shown in Fig. 2.6, even when the object has no signal, the actual center of the

object may not be in the pixel with the lowest magnitude signal. This fact implies that the
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center of the object has to be determined based on the information outside the object,

as suggested by our procedures here or by Sedlacik et al. [15]. However, the approach

by [15] will take much longer time than ours.

After the center of the object is identified, two phase profiles through the object center

along the vertical and horizontal directions are used for the selections of the radii of three

circles. All three circles should be larger than the phase aliasing area around the object

but the smallest circle should be as small as possible (i.e., as close to the aliased phase

as possible). However, as shown in Fig. 2.6, the maximum phase value may not be

close to ±π radians but a choice of a slightly larger radius of the smallest circle does

not seem to increase the uncertainty much. Due to the discrete pixels, a function can

be used to interpolate the phase values such that more accurate phase values can be

used for the selections of three radii at non-integer pixels. For this purpose, we have

tried a linear function and a function based on Eq. 2.1 and we have found no difference

of which function to use. This is clearly supported by the fact that Eq. 2.11 does not

rely on the knowledge of phase values, which only serve as references of how to choose

the radii. The radii of non-integer pixels are an important feature in our method. For

example, if we consider two radii at 2.3 and 2.6 pixels, both radii refer to the same pixel

along the vertical and horizontal directions. However, as the signal inside a circle can

change even with a slight change of its radius, Eq. 2.11 offers a much more accurate way

to solve the magnetic moment. Practically, a uniform region may appear only around the

neighborhood of the object. Even with non-optimal choices of radii, our method appears

to be effective as most of the uncertainties listed in Table 2.1b are still within 10%.

The uncertainty δp/p derived from Eq. 2.15 is inversely proportional to SNR and
√
p



28

(or
√
TE). This is clearly shown in Table 2.1. Although Eq. 2.15 implies that the longer

the echo time, the smaller the uncertainty, it is important to remember that the SNR of

the material around the object will also reduce when the echo time increases. Thus, if the

echo time is longer than the relaxation time T2 of the surrounding material, the uncertainty

will likely increase.

The systematic uncertainty and the uncertainty due to the thermal noise in the mea-

surements of magnetic moments are comparable in most of our phantom studies. Al-

though all sources of uncertainties are considered uncorrelated in Eq. 2.15, actually, the

systematic uncertainties from two annular rings S1S2 and S2S3 may be partially correlated

as they share the same boundary (2πR2). However, we have neglected that correlation in

this research.

Given the uncertainties and magnetic moments shown in Table 2.1, the internal col-

lapsing of the air cylinder in the first phantom seems the only explanation. The mea-

surements of the cross sections from the spin echo images also support this finding (Ta-

ble 2.4). This collapsing is not obvious from the visual inspection of images. Assuming

∆χ = 9.4 ppm, the radius of the air cylinder appears to change from 0.8 mm (slice 19) to

0.67 mm (slice 46). With an image resolution of 1 mm×1 mm, such a subpixel change of

the object radius can be clearly distinguished from our magnetic moment measurements.

The presence of the object susceptibility can lead to distortion artifacts and dephas-

ing effects in images. They occur in all images but in the gradient echo images the de-

phasing effect at the echo dominates the artifacts unless the read bandwidth is very low.

A usual way to minimize the distortion artifacts is to increase the read bandwidth in a

sequence. However this change will lead to a lower SNR in images and thus a larger
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uncertainty (Eq. 2.15 and Table 2.4). Our phantom studies indicate that the geometric

distortion does not seem to affect the measurements of magnetic moment as shown in

Table 2.3. In the spin echo images, as the dephasing effect due to the susceptibility dif-

ference can be enhanced during the sampling period, the measured volume of the object

should be treated as the maximal volume. This is supported by the results shown in Ta-

ble 2.4. The geometric distortion also does not seem to affect the volume measurements

of the objects from the spin echo images.

Although the absolute susceptibility of gel is assumed as the same as the absolute

susceptibility of water, −9 ppm, in our analyses, the actual susceptibility of the gel may be

slightly different than that of water.

2.4.1 Resolving Susceptibility and Volume when the Object Has No Spin Density

Further examination of Eq. 2.17 indicates some interesting aspects and the limitation

of the spin echo approach. If the cross section of the object occupies more than one pixel

in the image, then the uncertainty estimated from Eq. 2.17 does not depend on the image

resolution but it depends on the fields of view. This is because SNR is proportional to√
LxLy∆x∆y where Lx and Ly are the fields of view along the two orthogonal directions.

However, if the cross section of the object is within one pixel, then the smallest A2 that

can be chosen is ∆x∆y. If the second term in Eq. 2.17 can be neglected, then the

uncertainty is proportional to
√

∆x∆y/
√
LxLy. This means that a spin echo image with a

high resolution can determine the size of the object more accurately, even at the expense

of a low SNR or a long imaging time. On the other hand, if the object is less than one

pixel after the image has been acquired, the uncertainty of Eq. 2.17 in this case becomes

∆x∆y/SNR. This means that if the volume fraction of the object in a pixel (πa2/(∆x∆y))
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is less than 1/SNR, the estimated uncertainty of the cross section is more than 100%.

Practically, a spin echo sequence is routinely performed in each clinical diagnosis.

As the magnetic moment can be determined from one gradient echo sequence described

in Section 2.2.3, knowing the radius of the object will automatically lead to the value of

susceptibility. The only exception is when θ = 0. In this special case, only the size of

the object can be determined. When a gradient echo image and a spin echo image are

analyzed, no registration of the images is required in our approach.

In the gradient echo approach, the susceptibility and volume cannot be resolved

individually when the susceptibility is larger than a certain value with a fixed magnetic

moment (see Fig. 2.4a). This is consistent with the theory of electromagnetism, as in

the far field the magnetic moment of an object is the leading term [16]. In general, our

experience shows that the gradient echo approach for determining object susceptibility

is not favorable, as the desired echo time to minimize distortions and signal losses may

need to be very short and thus require a very high read bandwidth. For this reason, the

spin echo approach is a better method.

2.5 Conclusion

Our method can accurately quantify the effective magnetic moment of a narrow cylin-

der from MR images. It has overcome three general problems in MRI and is applicable

to small objects in a locally uniform background. However, the application of our method

is not limited to small objects. The effective magnetic moment of an object can be ob-

tained from standard gradient echo images while the volume of the object may be derived

from typical spin echo images. We have demonstrated the feasibility of our approaches

through phantom studies. In addition, a phantom study has revealed that a subpixel
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change of the object volume can be distinguished from the change of magnetic moment

using our method in MRI.
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Chapter 3

MAGNETIC MOMENT QUANTIFICATIONS OF SMALL SPHERICAL

OBJECTS IN MRI

3.1 Introduction

Cerebral microbleeds and small calcifications appear as small dark round spots in

magnetic resonance (MR) magnitude images. They exist in elder populations or patients

with dementia (e.g., see [22]). Currently, except for number counting, there is no effective

method of quantifying these objects. Similarly, localized nanoparticles also appear as

dark round spots in images (e.g., see [23]). The least squares fit method is currently the

“best method of quantifying magnetic moments of nanoparticles [23]. However, a good fit

to the magnetic field distribution requires many voxels outside the nanoparticle dephasing

region. As the magnetic field outside an object decreases quickly, the least squares

fit method is only useful for an object with a very large magnetic moment. When the

magnetic moment of an object is not large enough, even in the 2D case, the least squares

fit method becomes inaccurate [7]. Recent quantitative susceptibility mapping (QSM)

techniques also cannot accurately measure the magnetic moments or susceptibilities of

small objects (e.g., see [24]). In fact, before one can reliably quantify susceptibility of a

small object from MRI, one must first quantify the magnetic moment of the object. This is

particularly true if we only use MR phase images to quantify the magnetic property of a

spherical object, as phase is proportional to the effective magnetic moment of the object

rather than the susceptibility alone. This makes the quantification of magnetic moment as

important as the quantification of susceptibility for small objects in MRI.

In this chapter, we demonstrate a new method in the quantification of effective mag-
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netic moments of spheres from MR images. This 3D method follows similar ideas de-

scribed in the 2D case [8] but its mathematical derivations are much more complicated.

The combination of this 3D method and the previous 2D cylindrical method is the CISSCO

(Complex Image Summation around a Spherical or a Cylindrical Object) method. The

CISSCO method relies only on the known imaging parameters and assumes that an ob-

ject of interest is a sphere or an infinitely long cylinder. From the magnetostatic theory [16],

in the first order approximation, the magnetic moment of a small object with an arbitrary

geometry is equal to that of a perfect sphere. This concept makes our 3D method de-

scribed in this chapter applicable to spherical-like objects such as microbleeds, nanopar-

ticles, and maybe industrial particles [17].

In the following sections, a procedure and its mathematical proof will be given to iden-

tify the center of the spherical object. Detailed procedures of magnetic moment quantifi-

cation will be presented. Uncertainties of quantified magnetic moments including both the

thermal noise from the object of interest and the systematic errors due to discrete pixels

will be studied from the error propagation method [18]. By minimizing the uncertainty due

to the thermal noise, we will derive the criteria of how to effectively evaluate the magnetic

moment of a given object in images. Effective magnetic moments of glass beads will

be measured by both MRI and a SQUID (superconducting quantum interference device)

based magnetometer. Results of simulations and phantom studies from different imag-

ing parameters will be compared and will be followed by discussions. Although we focus

on objects without MR signals in this chapter, the procedures of measuring the magnetic

moment are applicable to objects with signals (see Eq. 3.1 and Eq. 3.6 below).
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3.2 Methods

The basic concept of the CISSCO method is to add the complex MR signal of each

voxel around an object of interest. From the statement in the above introduction, this ob-

ject can be modeled as a perfect sphere. The overall signal from space within a concentric

sphere of the spherical object is given by [25]

S = ρ0

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ R

a

dr r2 e−ip(3 cos2 θ−1)/r3 + sc =
4π

9
√

3
ρ0a

3

∫ 2

−1

dxD(x)e−igx + sc

(3.1)

where p ≡ γ∆χB0TEa
3/3 and D(x) is proportional to the density-of-states

D(x) = 1
x2

(2− x)
√

1 + x when x ∈ (−1,−λ) or (2λ, 2)

= 1
x2

[
(2− x)

√
1 + x−

(
2− x

λ

)√
1 + x

λ

]
when x ∈ (−λ, 2λ)

= 0 otherwise

(3.2)

The effective spin density of the material outside the spherical object is modeled as a

constant ρ0, which depends on imaging and tissue parameters such as relaxation times.

The signal from the spherical object itself is sc and is a constant (real number) depending

on object volume and imaging parameters. The radius of the object is a. The effective

magnetic moment p (hereafter magnetic moment, unless otherwise specified) is defined

as ga3 and the extremum phase g is defined as γ∆χB0TE/3, where γ is the gyromagnetic

ratio 2π · 42.58 MHz/T, ∆χ is the magnetic susceptibility difference between the suscepti-

bility of the object and that of the surrounding material, B0 is the MRI main field strength,

and TE is the echo time. Hereafter the word susceptibility refers to ∆χ unless otherwise
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specified, as this is the variable that MRI measures. The azimuthal angle θ is measured

from the main field direction and is defined by the spherical coordinate. The distance r

is measured from the center of the object in the spherical coordinate. Lastly, λ ≡ (a/R)3

is the volume fraction where R is the user defined radius of a concentric sphere. If the

center of the object can be determined and thus the concentric sphere can be correctly

positioned, the unknowns in Eq. 3.1 to be solved are ρ0, ∆χ, a, and sc.

In principle, the theoretical signal S can be compared to the actual signal and those

unknowns may be quantified. However, as there are various types of noise to consider

and the center of the spherical object must also be determined, the biggest challenge is

to identify a set of robust procedures for accurate quantification of the magnetic moment

which is directly related to the susceptibility.

3.2.1 Numerical simulations

We conduct three sets of simulations. The first task is to validate Eq. 3.1 with numer-

ical simulations. We assign zero signal inside each spherical object but unity for ρ0 in this

first study. The radius of a simulated spherical object (a) has to be at least 32 grid points

in order to reduce the error within 0.3%, due to an imperfect spherical surface. The main

field B0 and the echo time TE are chosen to 1.5 T and 5 ms, respectively. The susceptibil-

ity difference ∆χ is changed from 10−3 ppm to 104 ppm by every order of magnitude. The

overall signal S within a given radius R can be calculated by replacing the 3D integrals

in Eq. 3.1 by the discrete sums of the complex signal at each grid point. On the other

hand, the complex signal S can also be calculated directly from the single integral, using

Eq. 3.2. If Eq. 3.1 is correct, both results should be equal to each other. Several values

of R are used in our simulations. For ∆χ ≤ 1 ppm, the value of R is chosen to be at least
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6 grid points larger than the radius a, in order to have sufficient signals included in S. For

∆χ > 1 ppm, the radius R varies but it should satisfy 0.1 ≤ p/R3 ≤ π. (See Section 3.3.3

for the reason of limiting p/R3 in this range.) The comparisons between the discrete sums

and integrals of signals from Eq. 3.1 provide us the numerical errors in our method.

The purpose of the second set of simulations is to properly model the discrete nature

of MRI data. This will allow us to study the systematic noise (or error) due to discrete

voxels in MRI. For this purpose, we simulate MR signals induced from a sphere with a

fixed radius of 32 points on 10243 grid points in the spatial domain but at different echo

times. Then we Fourier transform the simulated data into k-space based on the definition

used in MRI (e.g., see [26]), take the central 323 points in k-space, and inverse Fourier

transform the data back to the spatial domain. These processes mimic the digitized (or

discretized) MR signal and the reconstructed MR images, which display a spherical ob-

ject with an effective radius of one pixel and a field-of-view of 32 pixels. With a limited

computer memory, we first need to simulate and perform Fourier transformation of every

10242 points, store the data in the hard drive, and then repeat the process through the

third dimension. Other parameters used in simulations are B0 = 1.5 T, ρ0 = 10 units, and

∆χ = 10 ppm. Echo times 5 ms, 10 ms, 15 ms, and 20 ms are used in this set of simu-

lations. We also shift the centers of spherical objects in our simulations and study the

effects. For example, if we shift the center of an object by 8 points on the original 10243

grid, we effectively shift the object center by 0.25 pixel on the reconstructed 323 images.

The systematic noise (ε in Eq. 3.15 below) is calculated as the absolute difference

between the real part of the simulated signal (within a given R) and that of the theoretical

signal (from the integral of Eq. 3.1 with Eq. 3.2) divided by the real part of the theoretical
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signal. The object centers at different subpixel positions, g, and a are also inputs to our

simulations in order to calculate systematic errors.

The purpose of the third set of simulations aims to add the thermal noise onto the

above second set of images. The thermal noise is Gaussian distributed with a zero mean

and a standard deviation σ. The thermal noise is added onto the real and imaginary part

of the images and is generated by a random number generator [19]. The theoretical signal

to noise ratio (SNR) in images is defined by ρ0/σ. In our simulated images, we choose

an SNR of 10:1. This is achieved by assigning one unit to the standard deviation in the

Gaussian distributions (as ρ0 = 10 units). Example images without and with a shifted

object center are shown in Fig. 3.1.

Most of our simulations were performed on a personal computer with an Intel Pentium

4 Processor of 2.6 GHz and 2.56 GB memory. Some tests were carried out in higher

power computers. Although Mathematica, Matlab, C, and C++ programs were used in

simulations and following calculations, the C and C++ programs were the major utilities.

3.2.2 Calculations of signals from images

In order to improve the accuracy when adding MR signals from images within a

sphere of a given radius R, we have divided each voxel into 1000 subvoxels (i.e., a factor

of 10 along each direction). The MR signal in each subvoxel is 0.001 of the signal in

the original voxel. This procedure is applied throughout this chapter whenever the overall

complex signal within a radius R is calculated from either simulated or phantom images.

3.2.3 Identifying the center of a spherical object

Equation 3.1 is valid only when the center of the spherical object is identical to the

center of the concentric sphere with a radius R. Thus before the quantification of the
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(a) (b) (c) (d)
Figure 3.1: Examples of simulated images. Coronal views are displayed here. The SNR is
10:1 and echo time is 5 ms in these images. Radius of the object is 1 pixel. Other parameters
used in simulations are described in the text. (a) Magnitude and (b) its associated phase
image of a spherical object whose center is located at the corner of a voxel. In this case,
the center of the object is considered as unshifted. (c) Magnitude and (d) its associated
phase image of the same object whose center, however, has been shifted by roughly 0.3 pixel
along both the x-direction and the z-direction. Thus, the overall shift of the object center
is roughly 0.42 pixel. The phase pattern right around the object in (d) is clearly different
from that in (b).

magnetic moment, we need to identify the center of the object. We have considered three

possible procedures. One is to maximize the real part of the signal from a given spherical

shell around the object. Another is to minimize the real part of the signal within a given

sphere. The other is to identify the object center at which the sum of the phase values

of the complex signals within a given sphere is zero (given the (3 cos2 θ − 1)/r3 phase

distributions). The main idea in each procedure is to choose a sphere or a shell, move

the sphere or shell around the object, sum up the complex signals or phases within the

sphere or shell, and determine the object center when the minimal or maximal value of the

overall summed signals has occurred. Equivalently, in the following proofs, we consider a

fixed shell and a fixed sphere with their centers at the origin, but move the spherical object

around. When extremum occurs, the center of the object will coincide with the center of

the fixed shell or the center of the fixed sphere.

In the procedure of maximizing the real part of the shell signal, the object should be
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completely inside the inner sphere of the shell. Assume that the shell is formed by two

concentric spheres with radii R1 and R2 and a < R2 < R1. The center of the object is

assumed to be located at coordinates (x0, y0, z0) with
√
x2

0 + y2
0 + z2

0 + a ≡ r0 + a ≤ R2.

The MR signal from the shell is

S = ρ0

∫ R1

R2

dr r2

∫ 2π

0

dφ

∫ π

0

dθ sin θ exp
{
−i p
d3

(3 cos2 θ − 1)
}

(3.3)

where d2 = (r cosφ sin θ−x0)2+(r sinφ sin θ−y0)2+(r cos θ−z0)2 and d cos θ+z0 = r cos θ.

One can analytically derive that, at r0 = 0,
∂S

∂x0

=
∂S

∂y0

=
∂S

∂z0

= 0. Derivations of second

derivatives are provided in Appendix D.

The second approach is to minimize the real part of the signal within one sphere with

a radius R. With the parameters defined above and with r0 < a, the MR signal of the

concentric sphere is

S = ρ0

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ R

ρ(θ,φ)

dr r2 exp
{
−i p
d3

(3 cos2 θ − 1)
}

+ sc (3.4)

where ρ(θ, φ) satisfies (ρ cosφ sin θ − x0)2 + (ρ sinφ sin θ − y0)2 + (ρ cos θ − z0)2 = a2 and

ρ(θ, φ) = x0 cosφ sin θ + y0 sinφ sin θ + z0 cos θ

+
√

(x0 cosφ sin θ + y0 sinφ sin θ + z0 cos θ)2 + (a2 − x2
0 − y2

0 − z2
0) (3.5)

It is obvious that at r0 = 0, ρ(θ, φ) = a. Again, one can analytically prove that, at r0 = 0,

∂S

∂x0

=
∂S

∂y0

=
∂S

∂z0

= 0. Derivations of second derivatives are shown in Appendix E. How
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the radius R is chosen is further described in the Results section.

3.2.4 Quantification of the effective magnetic moment

The 3D integral form in Eq. 3.1 implies that the summed MR signal from an arbitrary

shell depends only on the moment p and spin density ρ0. If we choose a shell formed by

two concentric spheres with radii R1 > R2, then the MR signal of the shell is S1−S2, which

satisfies

9
√

3

4πρ0
(S1 − S2) = (3.6)

R3
1

∫ R3
1/R

3
2

1

dx

x2
(2eixp/R

3
1 + e−2ixp/R3

1) +

∫ 2

−1

dx

x2
[2− (2− x)

√
1 + x](R3

1e
−ixp/R3

1 −R3
2e
−ixp/R3

2)

where S1 and S2 are the MR complex signals calculated from their corresponding radii R1

and R2. In order to derive Eq. 3.6, the following identity is used so no singularity is created

in the integrands.

∫ 2λ

−λ

dx

x2

[
(2− x)

√
1 + x−

(
2− x

λ

)√
1 +

x

λ

]
e−igx =∫ 2λ

−λ

dx

x2

[
(2− x)

√
1 + x− 2

]
e−igx +

∫ 2λ

−λ

dx

x2

[
2−

(
2− x

λ

)√
1 +

x

λ

]
e−igx (3.7)

In theory, Eq. 3.6 itself seems sufficient to solve the two unknowns (p and ρ0) from

a complex shell signal. However, our experience reveals that a calculation utilizing only

the imaginary part of Eq. 3.6 can lead to an inaccurate determination of the effective

magnetic moment. This may be due to a lack of the first order imaginary term when

one expands Eq. 3.6 into a Taylor series in p. Thus we use three concentric spheres to

quantify the magnetic moment. Assume that the radii of the three arbitrary spheres satisfy
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R1 > R2 > R3. Their corresponding MR complex signals are S1, S2, and S3. We can solve

the magnitude of p from

Re(S1 − S2)Re(f23)−Re(S2 − S3)Re(f12) = 0 (3.8)

where we define Re(fij) as

Re(fij) ≡ Re

(
9
√

3

4πρ0

(Si − Sj)

)
with i, j = 1, 2, 3 (3.9)

and where Sis appearing in Eq. 3.8 are the complex signals directly taken from images,

but Eq. 3.9 is calculated using the theoretical formula in Eq. 3.6 or its alikeness. The

magnetic moment p is the only unknown in Eq. 3.8. Since we only use the real parts

in Eq. 3.8 to solve the magnetic moment, we can only determine |p|. After that, we can

compare the imaginary part of S1−S2 (or S2−S3) to the right hand side of Eq. 3.6 but with

p replaced by |p|. If the imaginary part of the signal is above the thermal noise (depending

on the choices of Ris) and if the Gibbs ringing effect due to the object can be neglected,

this comparison can determine the sign of p.

The optimal choices of the three radii will be determined when the uncertainty of p is

minimized and discussed in the next subsection. This can be done by rewriting Re(fij)

Re(fij) (3.10)

=
p

φi

∫ φj/φi

1

dx

x2
[2 cos(xφi) + cos(2xφi)]

+

∫ 2

−1

dx

x2
[2− (2− x)

√
1 + x]

[
p

φi
cos(xφi)−

p

φj
cos(xφj)

]
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where we define φi as

φi ≡ p/R3
i with i = 1, 2, 3 (3.11)

As each φi turns out to be a phase value on the equatorial plane of the object (see the

argument in the exponential function on the left hand side of Eq. 3.1), a choice of Ri

leads to a rough estimation of p. In order to avoid the dephasing and the phase aliasing

effect, we can choose R3 sufficiently large such that |p|/R3
3 is less than π. On the other

hand, we want to keep R1 small enough such that ρ0 within the radius R1 is approximately

a constant. These two considerations indicate that |p| is between 0 and πR3
3. The Van

Wijngaarden-Dekker-Brent method [19] can be used to numerically solve |p|. The mean

value theorem of integral calculus refers to that the root of a function is unique in a given

range when the derivative of the function is not zero in that entire range. As the derivative

of Eq. 3.8 with respect to p is the denominator D in Eq. 3.12 in uncertainty calculations,

for a meaningful result of p between 0 and πR3
3, the value of D cannot be zero. Thus the

solution of |p| from Eq. 3.8 is unique.

3.2.5 Uncertainties of the effective magnetic moment

As described earlier, the inevitable sources of uncertainties and errors are from the

thermal noise and systematic noise. These two noise sources are uncorrelated. We can

analytically formulate the overall uncertainty from Eq. 3.8 through the error propagation

method [18]. The basic concept is to calculate the first derivative of the real part of Eq. 3.6

and its counter part of Re(S2 − S3). The uncertainty of p, δp, in percentage is

δp

|p|
=

1

|D|

√
(δ[Re(S2 − S3)])2

(Re(f12))2

p2
+ (δ[Re(S1 − S2)])2

(Re(f23))2

p2
(3.12)
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where

D = Re(S1 − S2)Re
∂f23

∂p
−Re(S2 − S3)Re

∂f12

∂p
(3.13)

Re
∂fij
∂p

(3.14)

= −2

∫ φj/φi

1

dx

x
[sin(xφi) + sin(2xφi)]

+

∫ 2

−1

dx

x
[2− (2− x)

√
1 + x][sin(xφj)− sin(xφi)]

In the above derivation, we have assumed no correlation between S1−S2 and S2−S3.

Their variances are

(δ[Re(Si − Sj)])2 = [εijRe(Si − Sj)]2 +
4π

3
σ2(R3

i −R3
j )∆x∆y∆z (3.15)

where εij is the systematic error in percentage and is calculated by neglecting the thermal

noise (i.e., infinite SNR). The voxel volume is ∆x∆y∆z. If the systematic noise can be

neglected, Eq. 3.12 is proportional to
√

∆x∆y∆z/(SNR
√
|p|) and the rest only depends

on φi defined in Eq. 3.11. As we have limited each φi between 0 and π, for any given image

resolution, SNR, and the effective magnetic moment of the object, we can numerically

determine the minimal value of δp/|p| in Eq. 3.12 by varying φi. The optimal combination

of (φ1, φ2, φ3) provides a guidance of how to choose radii of the three concentric spheres.

Due to discrete voxels, precise values of radii are not required in our approach. In our

estimation of the uncertainty, we have assumed that the center of the object is correctly

identified, even though this is not completely true.
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3.2.6 Resolving the magnetic susceptibility and volume of the object individually

One way to determine susceptibility (or g) is to measure the volume of the object

from spin echo images and then calculate ∆χ (or g) from the magnetic moment, as g =

p/a3. However, this approach is valid only when the object has no spin density (sc = 0)

and if the dephasing effect due to ∆χ through sampling in the spin echo images can be

neglected. The latter condition may be satisfied by increasing the image resolution, but at

the expense of SNR and imaging time. Consider the real part of the MR signal SSE from

an arbitrarily uniform volume V that encloses the entire object on spin echo images

SSE = ρ0,SE(V − V0) ≡ ρ0,SE

(
V − 4π

3
a3

)
(3.16)

where ρ0,SE is the effective spin density (a constant) around the object in the spin echo

images. With two arbitrary volumes V1 and V2 such that V2 is completely enclosed by V1,

ρ0,SE and the volume of the object V0 = 4πa3/3 can be determined from

S1,SE = ρ0,SE(V1 − V0) = ρ0,SE(V1 − V2) + ρ0,SE(V2 − V0)

S2,SE = ρ0,SE(V2 − V0) (3.17)

which leads to

V0 = (S1,SEV2 − S2,SEV1)/(S1,SE − S2,SE) (3.18)

As the signals S1,SE − S2,SE and S2,SE are uncorrelated and their thermal noises are pro-

portional to the square root of number of voxels, the uncertainty of the object volume can
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be derived from the error propagation method [18]

δV0 =

√
∆v

SNRSE

√
V2 +

(V2 − V0)2

V1 − V2

(3.19)

where ∆v is the voxel volume of the spin echo images and SNRSE is the SNR in the

spin echo images. In order to minimize the uncertainty, it is obvious that the volume

V1− V2 should be chosen as large as possible before heterogeneity is encountered in the

images, while the volume V2 should be chosen as small as possible but still larger than

the object. In fact, in order to estimate the volume of the object more accurately, V2 has to

be larger than the volume covering both the distorted object and voxels due to its shifted

image intensity in the spin echo image. In our analyses, for simplicity, we have used the

magnitude part of the spin echo images rather than the real part.

3.2.7 Phantom studies

We prepared three gel phantoms with different sizes of spherical glass beads and

imaged them with a 1.5 T MR machine (Siemens Sonata) at different echo times for the

validation of our method. We measured the diameter of each glass bead ten times with

a vernier caliper. We mixed 107 g of gelatin powders into 1200 ml distilled water for each

phantom. After placing a glass bead on the top of a solidified gel layer in a container,

we poured more gelatin solution into the container. This process was repeated until two

or three beads were embedded in each gel phantom. The first phantom contained two

glass beads of diameters 3 mm and 5 mm and a hollow straw (see Fig. 3.2). The straw

served as a reference such that the absolute magnetic susceptibility of the gel was val-

idated as that of water, −9.05 ppm in SI units [8]. Coronal images of a multiple echo
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3D gradient echo sequence and of a 3D turbo spin echo sequence were acquired. The

imaging parameters of the gradient echo sequence for the first phantom were TE = 5 ms,

10 ms, 15 ms, and 20 ms, TR = 25 ms, flip angle 15◦, resolution 1 mm×1 mm×1 mm, field

of views 256 mm×256 mm×96 mm, and read bandwidth 610 Hz per pixel (Hz/pixel) for

TE = 5 ms and 220 Hz/pixel for the other three echo times. The scan time for the gradient

echo sequence was 615 sec. Imaging parameters of the 3D spin echo sequence were

TE = 71 ms, TR = 600 ms, flip angle of the refocusing pulse 160◦, turbo factor 25, reso-

lution 1 mm×1 mm×1 mm, field of views 256 mm×256 mm×96 mm, read bandwidths

610 Hz/pixel, actual phase encoding lines 275, actual partition encoding steps 112, and

the scan time was 740 sec for this spin echo sequence. The second phantom contained

(a) (b) (c) (d)
Figure 3.2: (a) The magnitude and (b) its associated phase image show a 5 mm glass bead in
the coronal view acquired at echo time 10 ms from a 1.5 T MR machine. (c) The magnitude
image and (d) its associated phase image show a 3 mm glass bead (pointed by the white
arrow) and the cross session of an air straw. The 1.5 T MRI machine adopts the right-
handed convention. Note the somewhat opposite phase patterns outside the bead and the
air straw. The main field direction is along the up-down direction of each image.

two beads of diameters 2 mm and 6 mm. The parameters of the gradient echo sequence

for the second phantom were identical to the above parameters, except that the number

of slices was 72 and the read bandwidth was 350 Hz/pixel for all four echoes. The use

of different read bandwidths was to test whether this imaging parameter would affect our

quantitative method. A circular polarized radiofrequency (rf) head coil was used to image

the first two phantoms.

In order to study the effect of the magnetic moment measurement due to heteroge-
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neous image intensity, we placed another set of 2 mm, 3 mm, and 5 mm beads in the third

gel phantom and imaged the phantom with an 8-channel rf coil. Imaging parameters of

the 3D gradient echo sequence were mostly the same as those stated above, except that

the number of slices was 64, the read bandwidth was 350 Hz/pixel for all four echoes,

and two averages were used for this scan. We acquired both the combined magnitude

images (using the sum-of-squares method for reconstruction) and original k-space data

from each channel. The magnetic moments quantified from single channel k-space data

were compared with the moments obtained from the combined magnitude images but

with phase images from single channels.

To remove the background field in phase images, we first chose a volume-of-interest

(VOI) within the phantom and around each bead. Manual phase unwrapping followed

by a 3D second order polynomial fitting were performed within each VOI. The dimension

of a VOI along each independent direction was about 3-4 times of the diameter of the

bead. In addition, each VOI also excluded certain voxels nearby each bead, as those

voxels contained measurable phase information from the bead itself. After the fit, we

subtracted the polynomial from the original phase images and thus removed the unwanted

background field around each bead.

3.2.8 Magnetic moment measurements by SQUID

Absolute magnetic moments of the 2 mm, 3 mm, 5 mm, and 6 mm glass beads from

the first two phantoms were also measured with a SQUID based magnetometer (Quantum

Design MPMS-5S), at fields between 0.5 T and 5.0 T in intervals of 0.5 T. At each field

strength, the magnetic moment of each bead was measured 10 times and the averaged

value and standard deviation of the magnetic moment were obtained. The measurements
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at 1.5 T were compared to results derived from our CISSCO method.

Except for the 2 mm glass bead, each bead was placed inside a straw that was

mounted to the magnetometer for measurements. The 2 mm bead was placed inside

a capsule and then was fixed inside the straw by a cotton ball. The magnetic moments

of the experimental setups without beads were also measured and were subtracted from

the measurements with beads. After the absolute magnetic moment of each bead was

measured, the absolute susceptibility was calculated from the magnetic moment divided

by 1.5 T and by the volume of each bead (V0 in Table 3.4). We compare the susceptibility

values between SQUID and MRI.

3.3 Results

3.3.1 Numerical simulations

In general, the numerical errors from simulations are small. The numerical error of the

real part of the complex signal in Eq. 3.1 is no more than 0.3%, while the numerical error

of the imaginary part of the complex signal in Eq. 3.1 is between 0.2% to 0.3%. These

results indicate that under infinite image resolution, our theoretical derivations agree well

with numerical calculations.

After the proper reconstruction of 323 images with different small spherical objects,

without adding the thermal noise, for most cases, we have found that the real part of the

total complex signal from either a sphere or a shell is within 3% of the theoretical value

given by Eq. 3.1 or Eq. 3.6. However, the imaginary part of the total signal or phase can

deviate from the theoretical value by 100%. Such a large error is due to the point spread

function of the object or due to the lack of the first order term of the magnetic moment.

As long as the real part is used in the quantification of the magnetic moment, such a
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large error due to the imaginary part or phase of the signal does not seem to lead to any

inaccurate quantification.

3.3.2 Identification of the object center

Among the three possible procedures of identifying the object center, we have found

that the sole use of the imaginary part of the MR signal does not lead to an accurate

determination. As a result, the phase approach fails. For the procedure of using a shell

to determine the object center, the second derivatives of the real part of the signal S with

respect to all directions have to be negative. However, from numerical evaluations of the

equations provided in Appendix D, this will occur only when φ1 and φ2 are certain values.

This result suggests that using a shell is not a robust procedure to determine the center

of the object. We also confirm that from our simulations.

The best procedure of identifying the object center is to use the one sphere approach.

When the real part of the signal is minimized by moving the sphere around the object, the

object center is determined. In this approach, the second derivatives of the real part

of the signal S with respect to all three directions have to be positive. From numerical

evaluations of the equations in Appendix E, these conditions can be satisfied when φR is

less than roughly 2.1 radians. On the other hand, the radiusR should not be chosen larger

than a radius whose φR is less than 0.1 radian, as such a choice can lead to insensitive

results of second derivatives. We suggest to choose a radius R with the corresponding

φR between 1 and 2 radians, if possible. As a rough value of φR can be estimated from

certain pixels on the equatorial plane in phase images, the magnetic moment p can also

be estimated from φRR
3. With the one sphere approach and the implementation of a

downhill simplex program from [19], it typically takes our Pentium 4 roughly 20 seconds
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to identify the center of an object with p < 30 radian ·pixel3.

From our numerical simulations, the identified center of each object is within 0.3 voxel

of the actual center, whether the thermal noise has been added into the images or not.

A 0.3 voxel deviation away from the actual center is relatively large and it occurs when

centers of objects have been purposely shifted by 0.4 voxel in either or all three directions.

However, even in those situations, the quantified magnetic moments of the objects are still

accurate (i.e., within the uncertainties estimated by Eq. 3.12).

3.3.3 Measurements of the magnetic moment: simulation results

We first want to determine the three optimal radii used for the quantification of the

magnetic moment. This can be found by minimizing the uncertainty of the magnetic mo-

ment in Eq. 3.12. By neglecting the systematic errors εij, we have found that (φ3, φ2,

φ1) are best in the range of (π-2.6, 1.0-0.7, ≤ 0.1) radians. A choice of R2 with a corre-

sponding phase value of φ2 ≈ 0.9 radian would provide a slightly lower uncertainty. Given

these phase ranges and Eq. 3.11, R1 may be chosen as roughly 3R3. Similarly, R2 may

be chosen as roughly 1.4R3 or 0.5R1. None of these three radii needs to be a multiple

integer of a pixel. The ranges of φis also imply that R1 can be chosen as large as possible

but should not be too large to include significant phase values from any nearby objects.

The radius R3 can be chosen as small as possible but larger than phase aliasing areas

around the object. We typically choose the three radii within these ranges of φi values.

However, in order to reduce systematic errors due to the Gibbs ringing effects, our studies

show that it is better to choose R3 at least half a pixel away from the surface of the object.

In addition, the difference between each Ri is better to be at least one pixel. These two

rules of choosing radii for moment measurements supersede the above selection rules.



51

We follow all these rules and list results in Tables 3.1 and 3.2. Nonetheless, if these two

rules are used, particularly for objects with small magnetic moments or phase values, it is

obvious that the above simple relations between the three radii for minimizing uncertainty

due to the thermal noise may not be met.

Quantified magnetic moments of simulated objects at four different echo times with

and without thermal noise added into images are shown in Table 3.1. The listed phase

values (third column) in Table 3.1 are measured from the equatorial plane of each object

at their corresponding radii (second column). Due to discretized MR voxels and averaged

MR complex signal within each voxel, a phase value measured from each voxel may not

agree with the actual phase value (p/R3). As given by the theory, the measured magnetic

moments appear to be proportional to the echo time TE. In all eight cases, the maximal

uncertainty (one standard deviation) of the measurement is no more than 6% of the actual

magnetic moment. The difference between the measured magnetic moment and the

actual moment for any case (except for one) is less than the uncertainty calculated from

Eq. 3.12.

3.3.4 Measurements of the magnetic moment: phantom results

Table 3.2 lists the quantified magnetic moments of four glass beads at four different

echo times. Most uncertainties calculated from Eq. 3.12 are less than 20%. Even though

in most cases the effective magnetic moments of glass beads are larger than those values

used in simulations, as φ3 in most cases are not close to the ideal value, the uncertainties

in Table 3.2 are usually larger than those shown in Table 3.1. While the exact magnetic

moment of each glass bead is not known in advance, Table 3.2 has shown that the mag-

netic moment of each bead is proportional to the echo time (and independent of the read
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TE radii phase pideal w/o thermal noise w/ thermal noise
(ms) (pixel) (radian) (rad ·pixel3) p δp/p (%) p δp/p (%)

5 (1.5, 2.5, 3.5) (1.56, 0.58, 0.16) 6.69 7.11 5.5 6.81 6.0
10 (1.8, 2.8, 4.0) (2.42, 1.26, 0.20) 13.4 13.5 2.5 13.4 3.2
15 (2.1, 3.1, 5.0) (1.78, 0.64, 0.16) 20.1 20.4 1.8 20.3 2.5
20 (2.4, 3.4, 5.0) (2.23, 0.89, 0.22) 26.8 26.9 1.1 26.8 2.0

Table 3.1: Magnetic moments quantified from simulated images at four different echo times
with and without simulated thermal noise. The first column lists the echo time. The second
column lists three radii used in Eq. 3.8 to solve p. The third column lists their correspond-
ing phase values directly measured from images. These values are different from p/R3

i , as
explained in the text. The fourth column lists pideal ≡ γ∆χB0TEa

3/3. The fifth and seventh
column list quantified p values. The sixth and eighth column list the uncertainty of p calcu-
lated from Eq. 3.12. The uncertainty in the sixth column only includes the discrete error, but
that in the eighth column includes both thermal and discrete noise. All quantified magnetic
moments except for one agree with ideal values within 5% of the ideal values. The differ-
ences between quantified values and ideal values are properly covered by the uncertainties
calculated from Eq. 3.12.

bandwidth) within estimated uncertainties. However, one exception occurs for the 6 mm

bead at TE = 5 and 20 ms. Our further investigations have ruled out most possibilities and

hence suggested that at TE = 5 ms, poor eddy current compensations result in residual

unwanted phase in the original phase images. At TE = 20 ms, as the phase induced from

the bead extends to the largest area, residual background phase from the phantom itself

has made some influences. In both cases, the second order polynomial fit did not seem to

completely remove the unwanted background phase in images. Fig. 3.3 shows the plot of

the quantified magnetic moments of four glass beads as a function of 0.5γ–B0TEV0, where

γ– is γ/2π, MHz/T. The slope of each fitted line is the magnetic susceptibility of the glass

bead. For the 6 mm glass bead, after excluding the magnetic moment at TE = 5 ms, the

slope of the fitted line, Fig. 3.3(d), is −1.76±0.05 and the intercept of this line is 2.90±2.75.

Results from the 8-channel coil are shown in Table 3.3. As the magnitude intensity

around the background of each bead does not vary too much, the results from the com-
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Diameter 2 mm Diameter 3 mm
TE radii p δ ε12 ε23 radii p δ ε12 ε23

(ms) (mm) (rad ·mm3) (%) (mm) (rad ·mm3) (%)
5 (1.5, 2.5, 3.5) −1.28 45 0.001 0.010 (2.0, 3.0, 4.0) −5.54 15 0.004 0.014
10 (1.5, 2.5, 3.5) −3.05 21 0.001 0.026 (2.0, 3.0, 4.0) −10.45 11 0.005 0.040
15 (1.5, 2.5, 3.5) −4.90 13 0.001 0.040 (2.0, 3.0, 4.0) −14.71 6 0.008 0.040
20 (1.5, 2.5, 3.5) −6.48 7 0.001 0.034 (2.0, 3.0, 4.5) −18.24 2 0.005 0.019

(a)

Diameter 5 mm Diameter 6 mm
TE radii p δ ε12 ε23 radii p δ ε12 ε23

(ms) (mm) (rad ·mm3) (%) (mm) (rad ·mm3) (%)
5 (3.0, 4.0, 5.0) −20.93 8 0.003 0.013 (3.5, 4.5, 6.0) −26.39 3 0.003 0.001
10 (3.0, 4.0, 5.8) −40.41 5 0.004 0.033 (3.5, 4.5, 6.7) −62.67 2 0.004 0.015
15 (3.0, 4.2, 6.7) −57.94 1 0.004 0.008 (3.5, 4.7, 7.7) −92.16 1 0.001 0.015
20 (3.1, 4.4, 7.4) −76.05 1 0.003 0.014 (3.5, 5.0, 8.6) −127.00 1 0.002 0.032

(b)

Table 3.2: Magnetic moments of glass beads 2 mm, 3 mm, 5 mm and 6 mm at four different
echo times were measured by the CISSCO method. The first column lists the echo time.
The second and seventh column list the values of three radii (in units of mm or pixel) used in
Eq. 3.8 to solve for each magnetic moment. The third and eighth column list quantified mag-
netic moments. The fourth and ninth column show the uncertainties of magnetic moments
(in percentage). The uncertainties are calculated from Eq. 3.12, including both thermal
noise and systematic noise. The fifth, sixth, tenth, and eleventh column list uncertainties of
systematic noise calculated from simulations. The SNR of the images at four different echo
times is about 13:1. Quantified magnetic moments per echo time for each bead agree with
each other within two standard deviations of the uncertainties, except for the 6 mm bead
measured at TE = 5 ms. Half of the overall estimated uncertainties are no more than 5%.

bined channel for each bead also agree with the results from the single channel. The

SNR used in Eq. 3.12 can take into account intensity variations in magnitude images and,

in the worst case, the SNR can be chosen as 1:1. The results from the 8-channel coil are

also consistent with those shown in Table 3.2, but we notice that for the 5 mm bead, the

magnetic moments in Table 3.3 are roughly 9% lower than those listed in Table 3.2. Mea-

suring the diameter of the second bead (used in the third phantom), we find a diameter of

4.98 ± 0.04 mm. While this value is still consistent with the diameter shown in Table 3.4,

this slight reduction of the diameter leads to a 3% reduction in volume and thus in the

magnetic moment measurements. The remaining 6% differences between the two sets of

measurements could be due to the susceptibility difference between the two 5 mm beads,
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(a) (b)

(c) (d)
Figure 3.3: The linear fit between the magnetic moment and 0.5γ–B0TEV0 is given in the
chart. (a) diameter 2 mm glass bead (b) diameter 3 mm glass bead (c) diameter 5 mm glass
bead and (d) diameter 6 mm glass bead

or due to the lack of quality assurance checks on the clinical MR machine, since the third

phantom was scanned several months behind the first two phantoms.

3.3.5 Estimations of object volumes

When an object such as a glass bead produces no signal in MRI, the volume of the

object and its uncertainty can be calculated from spin echo images, based on Eq. 3.18

and Eq. 3.19. With an SNR of 30:1 in the spin echo images, the measured volumes and

associated uncertainties are shown in Table 3.4. Table 3.4 also lists the mean diameter

and its associated standard deviation of each glass bead measured from a vernier scale.

The difference between the volume measured from spin echo images and that from the

vernier scale is within 5% for any glass bead.



55

Diameter 2 mm Diameter 3 mm Diameter 5 mm
TE pSS δp/p pch δp/p pSS δp/p pch δp/p pSS δp/p pch δp/p

(ms) (rad ·mm3) (%) (rad ·mm3) (%) (rad ·mm3) (%) (rad ·mm3) (%) (rad ·mm3) (%) (rad ·mm3) (%)
5 1.69 35 1.85 29 4.80 26 5.04 24 18.92 13 19.20 13
10 3.90 17 4.17 15 9.76 17 9.72 17 37.48 8 37.35 8
15 5.42 14 5.47 14 14.59 8 14.70 8 53.74 1 53.89 1
20 7.00 8 7.05 8 18.44 2 18.51 2 70.49 1 70.30 1

Table 3.3: Magnetic moments of glass beads 2 mm, 3 mm, and 5 mm at four different echo
times quantified from combined 8-channel images and from single channel images. For single
channel data, we use images reconstructed from k-space from one of the 8 channels. For
combined data, we use the same phase images as those from the single channel, but for the
magnitude part we use the multichannel (sum of squares) data. The first column lists the
echo time. The second, sixth, and tenth column are quantified magnetic moments from the
combined data. The fourth, eighth, and twelve column are the measured magnetic moments
from the single channel data. The column following each quantified magnetic moment lists
its associated uncertainty, which includes both thermal noise and systematic noise calculated
from Eq. 3.12. The SNR of images at all four echo times is about 15:1. Quantified magnetic
moments per echo time for each bead again agree with each other within two standard
deviations of the uncertainties. Measurements between two different coils for each bead also
have good agreements.

3.3.6 SQUID measurements

The results from SQUID measurements in general agree with those from the CISSCO

method. The absolute magnetic moments averaged from 10 SQUID measurements at

1.5 T are (−6.09±0.062)∗10−8 A·m2, (−1.97±0.0087)∗10−7 A·m2, (−8.06±0.27)∗10−7 A·m2,

and (−1.52±0.00068)∗10−6 A·m2, for the 2 mm, 3 mm, 5 mm, and 6 mm bead, respectively.

The absolute susceptibility of each glass bead is calculated from the absolute magnetic

moment and is listed in Table 3.5. Although the standard deviations of these magnetic

moments are small or negligible, the actual uncertainties from SQUID measurements

are large. For example, when the same beads were measured by SQUID on a different

day, the measured magnetic moments were roughly 16%, 17%, 6%, and 16% deviated

from the above values for the 2 mm, 3 mm, 5 mm, and 6 mm bead, respectively. These

deviations are likely due to environmental background noise caused by nearby electrical

circuits that is difficult to shield. In addition, the magnetic moment of the capsule and
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Diameters of V1 V2 V0 V0 Diff
glass beads (mm) (mm3) (mm3) (mm3) (mm3) %

2.06± 0.05 320 57 4.4± 0.3 4.6± 0.3 4.3
3.08± 0.02 440 63 15.2± 0.3 15.3± 0.3 0.6
5.03± 0.10 1536 199 67.3± 0.4 66.6± 4.0 1.0
6.02± 0.10 1678 378 109.0± 0.8 114.2± 5.7 4.5

Table 3.4: The volume estimations of glass beads imaged by a spin echo sequence. The first
column lists the diameters of glass beads measured by a vernier caliper. The second column
lists the pseudo volume V1. The third column lists the pseudo volume V2. The fourth column
shows the estimated volume V0 from spin echo images. The fifth column is the calculated
volume based on the first column. The sixth column is the difference in percentage between
V0 and V0. Accurate volume measurements of beads without MR signal can be obtained
from spin echo images.

cotton ball is roughly 9 times of the magnetic moment of the 2 mm bead. These facts

imply that the actual error of SQUID measurements is probably about 3 ∗ 10−8 A·m2. The

16% difference from the 6 mm bead may be due to whether the glass bead was mounted

slightly off the center of the magnetometer, as the bead was considered as an oversized

object for our SQUID-based magnetometer.

In order to compare SQUID results to MR results, we need to add the absolute sus-

ceptibility of water, χH2O = −9.05 ppm, to the susceptibility values measured from MRI.

This is because the susceptibility from MRI, ∆χ, is defined as χgb−χH2O, where χgb is the

absolute susceptibility of the glass bead. The calculated absolute susceptibility values of

glass beads from MRI are also listed in Table 3.5. They agree with those measurements

from SQUID within uncertainties.

3.4 Discussion

Our simulations and phantom studies have demonstrated that the CISSCO method

can accurately quantify magnetic moments of small objects. The word “small is mea-

sured relatively to an image resolution on a particular MRI machine. For this reason and
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Beads MRI MRI + water SQUID
2 mm −2.23± 0.32 ppm −11.3± 0.3 ppm −11.1± 0.7 ppm
3 mm −2.01± 0.13 ppm −11.1± 0.1 ppm −10.8± 0.2 ppm
5 mm −1.82± 0.11 ppm −10.9± 0.1 ppm −10.1± 0.7 ppm
6 mm −1.68± 0.09 ppm −10.7± 0.1 ppm −11.2± 0.6 ppm

Table 3.5: Comparisons of magnetic susceptibility measurements between MRI and SQUID.
The first column lists the diameters of glass beads. The second column lists calculated
susceptibilities (∆χ) from magnetic moments of glass beads obtained at TE = 15 ms in
Table 3.2 and from volumes V0 in Table 3.4. The uncertainties of susceptibility values were
calculated through the error propagation method. These are results from MRI. The third
column lists the absolute susceptibility value of each bead, by adding −9.05 ppm (which
is the absolute susceptibility of water) to each value shown in the second column. We
assume no uncertainty of the water susceptibility value. The fourth column lists measured
susceptibility of each bead from SQUID. Measurements between our CISSCO method from
MRI and SQUID agree within uncertainties. However, different sizes of beads seem to have
slightly different susceptibility values.

for fair comparison of results from different machines with different sequence parameters,

it is better to use radian ·pixel3 as the unit for CISSCO measurements. In the follow-

ing subsections, we will discuss certain issues related to the measurements of magnetic

moments, susceptibility quantifications, and the background phase removal methods.

3.4.1 Quantifications of magnetic moments

Choices of the three radii

For a small object with a high susceptibility value (or a long echo time or a high field

strength), the CISSCO method can reliably quantify a magnetic moment down to a few

radian ·pixel3, as indicated in Table 3.1. On the other hand, for a relatively large object

with a small susceptibility value (or a short echo time or a low field strength), the quantified

magnetic moment can have a large uncertainty. First, we note that the choices of three

concentric spheres with radii Ri will always lead to a solution from Eq. 3.8. However, due

to insufficient phase information around the object of interest, Ris may not be optimal
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values given at the beginning of Sec. 3.3.3 (when only the thermal noise is considered).

Furthermore, in order to reduce any significant systematic errors due to discrete image

pixels, R3 (the smallest radius of choice) should be at least half a pixel away from the

surface of the object and the radius between each Ri needs to be differed by one pixel.

The larger the Ri is, the smaller the systematic error is. The choices of non-optimal Ris

can lead to a larger uncertainty of the measured magnetic moment, due to the presence

of the thermal noise. Some of such results can be seen in Table 3.2. Generally speaking,

given the optimal ranges of Ris in Sec. 3.3.3, the phase value at the equatorial plane on

the surface of the object (i.e., |g| ≡ |p|/a3) is better to be at least 3 radians in order to

obtain accurate results. This can be challenging for MRI studies if ∆χ is too small.

Determination of the sign of a quantified magnetic moment

The phase term, −p(3 cos2 θ − 1)/r3, shown in Eq. 3.1 has a minus sign and this left-

handed definition follows the convention in [26]. On the other hand, many MRI vendors

(including ours) use the right-handed definition [27], which leads to a sign change in the

phase term. As a result, quantified magnetic moment or susceptibility can also have a

sign change. Thus, one should be careful about interpreting measurements from MR

images and determine whether an object of interest is paramagnetic or diamagnetic to

water. As an example, Fig. 3.2d shows phase distributions from a glass bead and from

an air straw (in a cylindrical shape). As the glass bead is diamagnetic to water but air

is paramagnetic to water, we see somewhat opposite phase patterns around those two

objects. (Note that the air straw has a cos 2ψ phase distributions outside the straw, as it is

a 2D object.)
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One may think to determine the magnetism of an object by visually examining phase

intensities appearing in images. This can be dangerous, as Fig. 3.1b and Fig. 3.1d clearly

show different phase intensities and patterns of the same object, especially for phase

values inside the object. A reliable way is to quantify the imaginary part of the sum from

the CISSCO method, as describe in the above text.

No major effect due to a slightly shifted center of the object

Solving the magnetic moment from Eq. 3.8 takes no more than one second of the

computer time. However, as stated above, it can take 20 seconds or longer on a Pentium

4 to determine the center of an object. In addition, the identified center may not be the

actual center, due to the presence of noise in images. This can happen when phase

values around the object are close to zero. As a result, the sum of the complex signal

does not differ much using either the identified center or one of its neighboring subpixels.

Visual inspections of the object centers are needed in those situations. As long as the

identified center of the object is close to the true center, the quantified magnetic moment

is also very close to its true value.

Comparisons between CISSCO and other methods

Due to discrete voxels, the phase outside the object of interest does not exactly follow

the 1/r3 decay. This is the main reason why the least squares fit is not able to accurately

determine the magnetic moment of a small object. The CISSCO method avoids this

problem by summing up MR signals of neighboring voxels. For comparison, the magnetic

moments measured by Bos et al. [23] using the least squares fit range from roughly
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21.6 radian ·pixel3 to 359 radian ·pixel3. Those moments are sufficiently large and can be

accurately quantified by CISSCO. For another comparison, recent work by Liu et al. [24]

shows that mean magnetic moments of glass beads have been underestimated by at

least 10%, using a susceptibility mapping method. Their mean magnetic moments of air

bubbles were even much worse. On the other hand, we accidentally discover a small

air bubble in images of the third phantom. The quantified volume of that air bubble is a

little bit under 1 mm3 and thus its uncertainty is over 20%. However, with this volume, the

quantified susceptibility is about −9.26 ppm, compared to the ideal −9.4 ppm.

3.4.2 Susceptibility quantifications

Different beads showing slightly different susceptibility values

As the 3D second order polynomial fit may not effectively remove the background

phase at the longest echo time for the 6 mm bead, which has widest phase distributions,

we use results from TE = 15 ms shown in Table 3.2 for the estimations of susceptibility

values listed in Table 3.5. We are surprised that susceptibility values from different beads

are slightly different, although those values still agree with each other within two standard

deviations of the uncertainty. Perhaps those differences are realistic, due to possibly

small contaminations during manufacturing processes, as we could imagine that different

beads were made from different dewar or machines. Nonetheless, comparing the results

of two different 5 mm beads shown in Table 3.2 and Table 3.3, and given the susceptibility

results from Table 3.5, these results suggest that the CISSCO method has the accuracy

to distinguish small changes between quantified magnetic moments.
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A reason why the susceptibility cannot be solved from Eq. 3.1

After solving the magnetic moment p, one may think to use Eq. 3.1 to further solve the

susceptibility of the object, when sc = 0. Unfortunately this is not realistic, as explained

here. With the help of Eq. 3.7, we can rewrite Eq. 3.1 to be

9
√

3

4πρ0R3
S = 2

∫ 1/λ

1

dx

x2
eiλgx +

∫ 1/λ

1

dx

x2
e−i2λgx (3.20)

+

∫ 2

−1

dx

x2

[
2− (2− x)

√
1 + x

]
e−iλgx + λ

∫ 2

−1

dx

x2

[
(2− x)

√
1 + x− 2

]
e−igx

Note that λg ≡ p/R3 and radius R is at our choice. If we consider a known p and a

fixed R, but consider λ → 0 (and thus g → ∞), Eq. 3.20 clearly shows that the signal S

quickly approaches to an asymptotic value. With the presence of noise in MR systems,

this derivation suggests that Eq. 3.1 can only allow us to determine an upper bound of the

object volume and thus the lower bound of the susceptibility (or g). For example, when a

nanoparticle is smaller than an imaging voxel, we may accurately determine its magnetic

moment with our CISSCO method, but are not able to determine its volume from Eq. 3.1.

3.4.3 Background phase removal methods

Problems of different methods

In this work, we use a 3D second order polynomial fit method to remove the back-

ground phase in phantom images. While such a polynomial fit is not perfect, at least it

will not overcorrect phase values induced from glass beads. We have also tried to use

a 32 × 32 high pass filter to remove the background field. When magnetic moments of

beads are not large, the results from the high pass filter are about the same as those
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shown in Table 3.2. However, when a magnetic moment is larger than 70 radian ·pixel3,

such a high pass filter size will significantly reduce the quantified result. If we reduce the

size of the high pass filter to, say, 16 × 16, such a high pass filter size cannot effectively

remove the background phase distributions induced from the geometry of the phantom

container at long echo times. Thus, for a uniform presentation of the scientific work here,

we have chosen the polynomial fit over the high pass filter. A recent SHARP (Sophisti-

cated Harmonic Artifact Reduction for Phase) method [28] is also not suitable for us, as

the theory behind that method requires only a spherical surface, but the method sums

up phase values within a spherical volume. If the volume has included an object or has

cut through an object, then the theory is violated. In addition, the spherical kernel used

in SHARP should be large enough in order to mimic a perfect sphere. However, such a

choice will remove pixels close to the boundary of the phantom container but we need

those pixels for phase induced from beads at long echo times.

Future work

In reality, even if we can completely remove the unwanted background field, an object

of interest can still be affected by the magnetic field produced from a nearby tissue. If we

can approximate that field as a local uniform field around the object, then the absolute

value of Eq. 3.6 may be used to solve p. The procedure of identifying the object center

will need to be modified as well. These should be considered before the CISSCO method

can be applied to in vivo images. On the other hand, a constant background phase

globally appearing in a uniform phantom can be usually removed by a high pass filter,

which does not appear to alter the susceptibility of a small object [7].
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3.5 Conclusion

We have developed and demonstrated that the CISSCO method can accurately

quantify magnetic moments of several small objects from standard 3D gradient echo MR

images. Our method has three advantages. First, we can reliably quantify the effective

magnetic moment as low as a few radian ·pixel3. This means that the radius of the object

can be much smaller than a pixel. Second, the uncertainty of each measurement from

CISSCO is reduced by summing up voxels around the object. The uncertainty can be

further reduced if the echo time can be increased without losing SNR. Third, as a result,

the quantified magnetic moment or susceptibility of the object can be accurate within 10%

and sometimes within 5% of the true value for practical applications and within reason-

able imaging time. We have demonstrated those results with simulations and phantom

studies. Our next goal is to apply the CISSCO method to in vivo small objects such as

microbleeds in the brain or nanoparticles labeling cells.
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Chapter 4

AN IMPROVED METHOD FOR SUSCEPTIBILITY AND RADIUS

QUANTIFICATION OF CYLINDRICAL OBJECTS FROM MRI

4.1 Introduction

The magnetic susceptibility of in-vivo objects can reveal the property of the objects

or physiological information. For example, the susceptibility of blood is affected by the

oxygen saturation level [29, 12, 13]. Therefore, measuring oxygen saturation may provide

important clinical diagnostic information. Several research groups [13, 14, 30, 15] have

tried to measure the susceptibility of blood. Lai et al. [14] and Langham et al. [30] have

quantified the susceptibility of blood in large veins by using the phase information inside

veins. On the other hand, Sedlacik et al. [15] has used a general fitting method to extract

the size of a vein, its magnetic susceptibility, and other variables, from a 20-echo gradient

echo MR sequence. As a result, the latter approach will require a much longer than

usual scan time. Recently, the susceptibility of veins has been quantified by quantitative

susceptibility mapping (QSM) techniques from different groups [31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 44]. In general, QSM techniques may be divided into two

major categories. One is an inverse method [33, 34, 35, 36, 37, 38, 39]. The other

is a constrained regularization approach [39, 40, 41, 42, 43, 44]. The inverse method

may underestimate susceptibility values in small objects (whose diameters are less than

4 pixels) [40, 35, 38]. The constrained regularization approach may underestimate or

overestimate the true susceptibility (as we will show later) and may take time to generate

just one set of susceptibility maps. In addition, the intrinsic uncertainty of QSM methods

has not been studied rigorously.
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In this paper, we introduce a method that requires only one or two echo times from a

standard gradient echo sequence for most in-vivo cylindrical objects and can quantify the

susceptibility and cross-sectional area of a narrow cylinder for most orientations (except

for the magic angle). For most biological tissues, as magnetic susceptibility of an object

is roughly known in advance, using one or two echoes can significantly reduce the pos-

sible solutions of susceptibility values and obtain a unique answer. Our previous work [8]

has demonstrated how to quantify the effective magnetic moment and susceptibility of a

narrow cylinder, with no MR signal inside the cylinder. This paper will focus on the quan-

tifications of susceptibility and cross-sectional area from any given cylindrical object with

an MR signal.

Our method relies on equations solved with known imaging parameters. In general,

we quantify the following unknowns in sequence: orientation θ, effective magnetic mo-

ment ℘, spin density outside the object ρ0, susceptibility ∆χ, radius of the object a, and

spin density of the object ρ0,c. We only need three concentric circles around a given cylin-

drical object for these quantifications. We will review the complex signal induced from a

cylinder in the next section. Section 4.2.2 shows how to systematically obtain the suscep-

tibility and object size from a cylindrical object at an arbitrary orientation, except for the

parallel (θ = 0◦) and magic angle (θ = 54.7◦) orientations. Section 4.2.3 explains how to

solve the susceptibility of an object when it is parallel to the main field. The magic angle

orientation will be discussed later in section 4.2.4. Uncertainties of susceptibility and other

unknowns will be studied through the error propagation method [18] in section 4.2.5, and

relevant formulas will be provided in F and G. Sections 4.2.6, 4.2.7, and 4.2.8 describe

procedures and post-processing steps of our simulations, phantom, and human studies.
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Our results and comparisons to two QSM methods will be shown in section 4.3. Factors

affecting the accuracy and precision of susceptibility quantifications based on our method

will be discussed in sections 4.4.1 and 4.4.3 . In addition, as multiple solutions of suscep-

tibility from our equations may occur, we comment on how to reduce possible solutions

in section 4.4.2. Finally, we will discuss the limitations of our method and future work in

section 4.4.4.

4.2 Methods and materials

4.2.1 MR signal of a cylindrical volume containing a coaxial object

As we have previously described the theoretical concept of this signal calculation

in [8], here we only summarize the concept and needed equations. We begin with the

phase value of the complex MR signal inside an infinitely long cylinder (or a finite cylinder

with a ratio of the height to the diameter being at least 5 to 1 [45]) from a gradient echo

sequence [12]

φin = −γ∆χ

6
(3 cos2 θ − 1)B0TE ≡

g

3
(1− 3 cos2 θ) (4.1)

where γ is the proton gyromagnetic ratio (2π · 42.58) MHz/T, ∆χ is the susceptibility differ-

ence between the regions inside and outside the object, θ is the angle between the main

field direction and the axis of the cylinder (see Fig. 4.1(a)), B0 is the main magnetic field,

TE is the echo time, and g ≡ 0.5γB0∆χTE. The orientation θ can be estimated manually

from a 3D data set based on the coordinates of the two end points of a cylindrical object.

The word susceptibility hereafter refers to ∆χ, unless it is otherwise explained. We have

adopted the SI units throughout the paper. The phase outside the cylindrical object is
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(a) (b)

Figure 4.1: (a) A cylinder has an orientation θ relative to the main field. (b) A schematic
drawing shows the cross section of a cylindrical object with radius a, enclosed by three
coaxial pseudo cylinders (or circles) whose radii are R1, R2, and R3. The MR signal within
each pseudo cylinder (or circle) is S1, S2, and S3, respectively.

given by

φout = −γ∆BTE = −γ∆χ

2

a2

ρ2
B0TE cos 2ψ sin2 θ (4.2)

where ρ is the perpendicular distance measured from the axis of the cylinder, and ψ is the

polar angle associated with ρ. A drawing depicting a cylindrical object and those angles

is displayed in Fig. 4.1(a).

Through choosing a coaxial pseudo-cylinder of radius R, which is around the cylindri-

cal object of interest with a radius of a (such that R > a shown in Fig. 4.1(b)), the overall

gradient echo signal within R from a slice perpendicular to the axis of the cylinder is given

by

S = `ρ0

∫ R

a

dρ ρ

∫ 2π

0

dψ eiφout + π`a2ρ0,ce
i φin (4.3)

= π`ρ0℘

∫ g′

℘/R2

dx

x2
J0(x) + π`a2ρ0,ce

i φin (4.4)

where ` is the slice thickness of the image or can be an arbitrary length of the cylindrical
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object, ρ0 is the effective spin density outside the object, ρ0,c is the effective spin density

inside the cylindrical object, ℘ is the effective magnetic moment defined by ℘ ≡ ga2 ·

sin2 θ ≡ g′a2, g′ is the maximal (or minimal) phase value at the surface of the object (see

Eq.(4.2)) and is defined by g′ ≡ g · sin2 θ, and J0 is the zeroth order Bessel function. The

word “effective” is dropped from this point on. Both ρ0,c and ρ0 are treated as unknown

constants in Eq.(4.4) and they depend on imaging parameters, actual spin densities, and

relaxation times T1 and T2.

4.2.2 Susceptibility quantification of a cylindrical object with MR signal

Equation(4.4) contains four independent unknowns: the magnetic moment, suscepti-

bility, and two spin densities (i.e., ρ0 and ρ0,c). We first choose one circle to determine the

center of the object. The center of the object as shown in Fig. 4.1(b) can be identified by

minimizing the real part of the overall signal from a circle enclosing the cross section of

the object (see section 3.1 of [8]). As the signals are added within the circle, this proce-

dure of finding the center of the object is minimally affected by the partial volume effect or

any subpixel shift of the center. After identifying the center of the object, we choose three

concentric circles to quantify the magnetic moment ℘. Figure 4.1(b) shows the schematic

drawing of the three radii (R1, R2, R3) for the magnetic moment quantification. The optimal

choices of those radii have been described in [8]. Briefly, from Eq.(4.4), we can derive

Re(S1 − S2)

∫ ℘/R2
3

℘/R2
2

dx

x2
J0(x) = Re(S2 − S3)

∫ ℘/R2
2

℘/R2
1

dx

x2
J0(x) (4.5)

where S1, S2, and S3 are calculated from complex sums of the signals (from images)

enclosed by R1, R2, and R3, respectively, and R1 > R2 > R3. In addition, Re(S) is the
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real part of the complex signal S. Note that ℘ is the only unknown in Eq.(4.5) to be

solved. On the other hand, both ±℘ satisfy Eq.(4.5). In order to improve the accuracy of

our measurements of those complex sums, each image pixel is further divided into 100

subpixels, as explained in [7].

After finding ℘, we can solve the spin density outside the object (ρ0) from two con-

centric circles in the following equation, derived from Eq.(4.4).

Re(S1 − S2) = π`ρ0℘

∫ ℘/R2
2

℘/R2
1

dx

x2
J0(x) (4.6)

Here we choose the annular region between R1 and R2, as this region contains more

pixels than those between R2 and R3.

We can now proceed to solve ∆χ. By eliminating π`a2ρ0,c in Eq.(4.4), the complex

signal S can be rewritten into one equation, in which susceptibility ∆χ is the only unknown.

Re(S) sinφin = Im(S) cosφin + π`ρ0℘ sinφin

∫ g′

℘/R2

dxJ0(x)/x2

= Im(S) cosφin + π`ρ0|℘| sinφin

∫ |g′|
|℘|/R2

dxJ0(x)/x2 (4.7)

where Im(S) is the imaginary part of the complex signal S. After the susceptibility is

solved from the Van Wijngaarden-Dekker-Brent method [19], the radius a of the object

can be calculated from
√
℘/g′. For our quantifications, we choose R = R3, which is the

innermost radius shown in Fig. 4.1(b), and its corresponding S = S3 for Eq.(4.7). The sign

of the susceptibility solved from Eq.(4.7) will indicate whether the object is paramagnetic

or diamagnetic relative to its surrounding environment, if the counterclockwise definition
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of the spin rotation [27] is used as in Eq.(4.1) and Eq.(4.2). If a vendor uses the clockwise

definition, then the susceptibility solved from Eq.(4.7) should be multiplied by a minus

sign. Afterward, Eq.(4.4) will allow us to solve ρ0,c. It is important to note that due to

the nonlinear nature of Eq.(4.7), multiple solutions of the susceptibility may exist. This

will depend on the value of g′ and this is further discussed in detail in section 4.4.2 and

Appendix H.

4.2.3 A cylindrical object parallel to the main field

To be more general, the descriptions in this subsection include orientations of objects

close to 0◦. These situations have little phase distributions outside those objects and the

above approach becomes unpractical, due to very small or nulled ℘. In addition, phase

inside a small object may be aliased and also affected by the Gibbs ringing. Thus, we

utilize the complex signals at two different echo times to solve for ∆χ. We then solve

for radius a. The details are described below. First, we quantify spin density outside the

cylinder of interest with two concentric circles at each echo time. When θ is close to 0◦,

we can assume that |g′| is less than 1 with some choices of TE. In the condition of |g′| < 1,

J0(x) can be well approximated by 1− x2/4 and Eq.(4.7) can be rewritten as

Re(Sn) sinφin,n = Im(Sn) cosφin,n + π`ρ0,n sinφin,n(R2 +
g′2n a

4

4R2
− a2 − g′2n a

2

4
) (4.8)

where the subscript n is referred to each variable obtained at the nth echo time TEn, as

those variables depend on the echo time. At each echo time, if we choose two different
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radii, Ra > a and Rb > a, then we can derive

Re(Sn,a)−Re(Sn,b) = π`ρ0,n(R2
a −R2

b)(1−
g′2n a

4

4R2
aR

2
b

) (4.9)

As |℘n|/R2 = |g′n|a2/R2 and is the maximal phase at radius R, with the presumptive |g′n| <

1, it will be easy enough to choose slightly large Ra and Rb such that both |g′n|a2/R2
a

and |g′n|a2/R2
b are less than 0.5. This will lead to (g′2n a

4)/(4R2
aR

2
b) < 1/16, which can be

neglected from Eq.(4.9). As a result, each ρ0,n can be estimated from Eq.(4.9).

Furthermore, if we choose the same R on images at two different echo times TE1 and

TE2, then Eq.(4.8) can be rewritten as

Re(S1) sinφin,1 = Im(S1) cosφin,1 + π`ρ0,1 sinφin,1(R2 +
g′21 a

4

4R2
− a2 − g′21 a

2

4
) (4.10)

Re(S2) sinφin,2 = Im(S2) cosφin,2 + π`ρ0,2 sinφin,2(R2 +
g′22 a

4

4R2
− a2 − g′22 a

2

4
) (4.11)

By multiplying Eq.(4.10) by ρ0,2 sinφin,2 and multiplying Eq.(4.11) by ρ0,1 sinφin,1, we obtain

(ρ0,2Re(S1)− ρ0,1Re(S2)) sin(φin,1) sin(φin,2) =

π`ρ0,1ρ0,2 sin(φin,1) sin(φin,2)
a2

4
(1− a2

R2
)(g′22 − g′21 )

+ρ0,2Im(S1) sin(φin,2) cos(φin,1)− ρ0,1Im(S2) sin(φin,1) cos(φin,2) (4.12)

Eq.(4.12) now contains only two unknowns: the radius of the object a and the magnetic

susceptibility ∆χ. When the orientation is close to 0◦, we may neglect the g′2 term in

Eq.(4.12) and ∆χ becomes the only unknown in the equation. As φin(TEn) ' −2gn/3,
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Eq.(4.12) becomes

[
ρ0,2Im(STE1

) + ρ0,1Im(STE2
)
]

sin

(
2(g1 − g2)

3

)
−
[
ρ0,2Im(STE1

)− ρ0,1Im(STE2
)
]

sin

(
2(g1 + g2)

3

)
=

[ρ0,2Re(STE1
)− ρ0,1Re(STE2

)]

[
cos

(
2(g1 − g2)

3

)
− cos

(
2(g1 + g2)

3

)]
(4.13)

After solving ∆χ, the cross-sectional area of the object, πa2, can be solved from Eq.(4.8)

and ρ0,c can be uniquely solved from the imaginary part Im(S) = π`a2ρ0,c sinφin of the

object signal.

The nature of trigonometric functions may lead to multiple solutions of ∆χ. However,

those solutions should be validated by checking whether they satisfy both Eq.(4.10) and

Eq.(4.11). In addition, as almost all biological tissues have |∆χ| ≤ 2 ppm [46], for B0 ≤ 3 T

and TE ≤ 11.7 ms, these values lead to |φin| ≤ 2π. If |g′| is small but not zero, then based

on discussions in H.2 and knowledge of the signs of Im(S) from summation and φin from

a direct measurement of phase images, the possible number of solutions of susceptibility

for a biological tissue with the stated MR parameters is no more than two. If g′ = 0, we

can either estimate the radius a of the object or neglect it in Eq.(4.8), and then follow a

similar approach described in H.1 to solve the susceptibility. In this scenario, the solved

φin is unique between 0 and 2π. If two or more solutions simultaneously satisfy Eq.(4.10)

and Eq.(4.11), then more echo times can be used to determine the actual solution of ∆χ.

More details are discussed in section 4.4.2.
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4.2.4 The magic angle orientation

When the orientation of a cylindrical object is close to the magic angle, phase in-

side the object is zero, and the second term (the complex term) in Eq.(4.4) becomes a

real number. In this orientation, the single echo approach is not applicable, as the sig-

nal inside the object does not produce an imaginary part. As a result, the uncertainty of

the susceptibility based on Eq.(L.1) becomes infinite. If we consider a double echo ap-

proach, with a short separation between two echoes such that ρ0,c does not vary too much

between the two echo times, the signal difference between two echo times is roughly

STE1
− STE2

≈ π`ρ0,1℘1

∫ g′1

℘1/R2

dx J0(x)/x2 − π`ρ0,2℘2

∫ g′2

℘2/R2

dx J0(x)/x2 (4.14)

where the subscripts 1 and 2 refer to the variables at the two echo times. As the magnetic

moment and spin density outside the cylinder at two different echo times can be solved [8],

Eq.(4.14) is again left with only one unknown, ∆χ, to be solved.

In order to evaluate the feasibility of this approach, we have simulated images with

a cylindrical object at the magic angle orientation and with imaging parameters given in

section 4.2.6.

4.2.5 Calculating uncertainties of susceptibility and other unknowns

The two major independent errors leading to uncertainties in susceptibility and other

measures available in this work are from the thermal (white) noise due to the presence

of the object and the systematic noise due to discrete pixels, partial volume, and Gibbs

ringing in images. We can derive the uncertainty of ∆χ based on Eq.(4.7) for most orien-
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tations or Eq.(4.12) for the parallel orientation, through the error propagation method [18].

Similarly, the uncertainties of object size and spin densities can be derived. These results

are given in Appendices F and G. All noise estimates in Appendices F and G, including

the orientation measurements, are uncorrelated. The minimization of uncertainties may

also reveal the optimal imaging parameters or radius selection.

The thermal noise within an area AR can be approximated by σ`
√

∆x∆yAR, where

σ is the standard deviation of the thermal noise in the images and ∆x and ∆y are the in-

plane resolutions [7]. The error due to the systematic noise can be calculated if the center

of the cylindrical object, the radius of the object, and the susceptibility difference are all

known. Simulations and results of the systematic error have been discussed in [7, 8].

4.2.6 Simulations

In our simulations, we assumed a ∆χ of 0.5 ppm and a main field of 3 T. We simu-

lated each cylindrical object and its induced magnetic field on a 4096 × 4096 matrix and

converted the matrix to 256 × 256. We added the white noise to the 256 × 256 matrix.

The detailed procedures were described in [7, 8]. We performed most of our simulations

and susceptibility quantifications on a Pentium 4 personal computer. The radius of each

cylindrical object on the 256 × 256 matrix was targeted to be one pixel. We simulated

objects at five orientations θ = 90◦, 70◦, 57◦ (magic angle), 40◦, and 0◦, and at three echo

times TE = 11, 17, and 20 ms. An effective spin density of 20 arbitrary units at TE = 0

with a transverse relaxation rate, R2 = 10 s−1, was used for the signal inside the cylinder

but 10 for the outside. The standard deviation of the thermal noise (σ) was set to be one

arbitrary unit such that the signal-to-noise ratio (SNR) outside the cylinder was 10:1. The

complex signal from the innermost circle (see Fig. 4.1(b)) was utilized for the susceptibility
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quantification.

Liu et al. [47] and Liu et al. [24] suggested that more precise susceptibility values may

be calculated from magnetic moments estimated from QSM. Thus, as a comparison be-

tween our method and QSM, we applied two QSM methods, susceptibility weighted imag-

ing and mapping (SWIM) [35] and morphology enabled dipole inversion (MEDI) [41], to

the same simulated images with the object at an orientation of 90◦. For SWIM and MEDI,

we duplicated each image 63 times in order to generate a 3D dataset for susceptibil-

ity quantification. We downloaded MEDI from http://weill.cornell.edu/mri/pages/qsm.html

and tested it with the susceptibility quantification of an infinitely long cylinder with a radius

of 16 pixels. The quantified susceptibility value perfectly matched with the input suscepti-

bility value in this particular simulation.

4.2.7 Phantom studies

We prepared a gelatin solution with 60 g of gelatin powder in 1200 ml distilled water.

We poured 800 ml of the gelatin solution into a rectangular plastic container, which has a

length of 15.0 cm, width of 10.0 cm, and height of 14.0 cm. This was the body of our gel

phantom. We prepared a gadolinium solution by adding 1.3 ml of the original Gd-DTPA

(Gadolinium-diethylenetriaminepentaceate) MRI contrast agent (which has a concentra-

tion of 0.5 M) into the remaining 400 ml of the gelatin solution. The total volume of the

gadolinium solution became 401.3 ml. We filled a 10.5 cm long empty straw with the

gadolinium solution. We sealed both ends of the straw after it was filled. We immersed

the filled straw completely into the middle of the gel phantom. A plastic stand holding up

the straw was at the straw’s bottom. The molar susceptibility of Gd-DTPA χM,Gd−DTPA is

4π × (0.027 ± 0.001) ppm/mM [13]. With water susceptibility roughly −9.05 ppm, the ab-
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solute volume susceptibility of the gadolinium solution was about −8.47 ± 0.05 ppm. The

susceptibility of interest, ∆χ, was therefore 0.58 ± 0.05 ppm. The diameter of the straw

was 4.92± 0.02 mm, measured by a Vernier caliber, and it led to a cross-sectional area of

19.0± 0.2 mm2.

We imaged the phantom with a conventional single-echo 3D spoiled gradient echo

(SPGR) sequence, in a 3 T clinical GE Discovery MR750 machine. We used a quadra-

ture head coil for all phantom studies. The imaging parameters were: TE = 11 ms, 17 ms,

and 20 ms, TR = 30 ms, flip angle = 20◦, read bandwidth = 244.14 Hz/pixel, resolution

= 1 mm×1 mm×1 mm, and fields of view = 256 mm×256 mm×28 mm. We manually

changed the echo time three times and acquired images from three echoes. The acqui-

sition time for each echo was about 4 minutes. We rotated the entire phantom including

the straw and scanned the phantom in four different orientations relative to the main field.

We aligned images such that they were roughly perpendicular to the straw. As a result,

the normal vector of the imaging plane with respect to the main field and the unit vector

of the straw relative to the normal vector of the images were used to further determine

the actual orientations of the straw with respect to the main field more accurately. The

information of unit vectors was listed at tag numbers (0020, 0032) and (0020, 0037) in the

DICOM header [48]. The actual orientations of the straw were determined to be roughly

90◦, 75.5◦, 28.2◦, and 0◦. We analyzed two different slices from each orientation and each

echo time, in order to check the consistency in our phantom studies.
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(a) (b)

Figure 4.2: (a) The magnitude and (b) its associated filtered phase image at echo time 20 ms
were acquired from a 3 T machine. The straw filled with a Gd-DPTA solution has a diameter
of 4.92 ± 0.02 mm. The straw was immersed in the gel phantom and was perpendicular to
the main field.

Steps to obtain susceptibility values

With the actual orientation of each straw measured from the procedures described

above, the steps to obtain quantified susceptibility ∆χ were as follows:

1. We collected and reconstructed the k-space data.

2. We manually unwrap the background phase in each phase image at each echo time

by adding proper multiples of 2π in each aliased phase region.

3. We removed the background phase around each straw in each image from the fol-

lowing procedures. We first selected a region of interest (ROI) with a matrix size

of 62 × 62 pixels centered around the straw of interest. We excluded pixels within

a radius between 8 and 10 pixels around the straw, depending on the extent of the

dipolar phase pattern. We then fit a second order polynomial in 2D to the phase

values of those remaining pixels in the ROI. The fitted polynomial from each im-

age of interest represented the background phase, which was subtracted from the

unwrapped phase image. A cleaned phase image was then obtained. On each
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cleaned phase image, the mean phase value from pixels inside the ROI but outside

the dipolar phase pattern of the straw was close to zero. An example of the magni-

tude and cleaned phase image of the Gd-DPTA doped straw is shown in Fig. 4.2(a)

and Fig. 4.2(b).

4. After these procedures, we identified the center of the object (i.e., straw) with the

searching algorithm described in [8].

5. With the known center of the object, we solved the magnetic moment of the object

with Eq.(4.5) and the spin density surrounding the object with Eq.(4.6).

6. With the known orientation of the object, we solved the susceptibility of the object

at each echo time with Eq.(4.7), for all orientations except for the parallel cases.

For the parallel orientation, we solved the susceptibility of the object with Eq.(4.12)

using two echo times.

To study the effect due to different straw sizes, we reduced the image resolutions of

cleaned images and then applied our method for susceptibility quantifications. For each

image of interest with the original size of 256×256, we Fourier transformed the magnitude

and cleaned phase images to k-space. Then we selected the central 128×128 or 100×100

points out of the 256 × 256 complex matrix in k-space. We inverse Fourier transformed

those smaller matrices back to the image domain and obtained images with lower reso-

lutions. As a result, the theoretical diameters of the straw became 2.46 ± 0.02 mm and

1.92± 0.02 mm, respectively. By doing this, we could evaluate our method in a consistent

way without introducing additional experimental errors (e.g., effects due to the wall of a

small straw).
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We also applied SWIM and MEDI on the same cleaned phase images of matrix

size 256 × 256 and 128 × 128 (but duplicated each image 63 times to generate a 3D

dataset) at the 90◦ orientation. After obtaining the susceptibility maps from SWIM and

MEDI, we calculated the mean and standard deviation of the susceptibility from four pixels

completely inside the straw and from the central image of each 3D set. In addition, we also

measured the background susceptibility values surrounding the straw. The susceptibility

values quantified from SWIM and MEDI are shown in Table 4.2.

4.2.8 Pilot in-vivo study

A set of 3D gradient echo images of a female volunteer acquired from a 4 T Bruker/Siemens

machine was available to us. The imaging parameters of the gradient echo sequence

were TE = 19.2 ms, TR = 26 ms, flip angle = 11◦, read bandwidth = 120 Hz/pixel, resolu-

tion = 0.5 mm×0.5 mm×0.51 mm, and field of view = 256 mm×176 mm

×45 mm. We analyzed a vein on the transverse plane, as shown in Fig. 4.3a and 4.3b.

The coronal and sagittal view of this vein is shown in Fig. 4.4. Fig. 4.4c shows a rea-

sonable dipolar pattern of the vein in the phase image and no other objects around this

vessel. We quantified the susceptibility with the same steps described in the previous

subsection, except that we removed the background phase with a 16× 16 high pass filter.

In addition to our method, we also applied SWIM to this in-vivo dataset and compared the

susceptibility values between the two methods.

4.3 Results

We summarize below the quantified susceptibility values, cross-sectional areas (A0),

and spin densities from simulations and phantom studies for different orientations and

echo times. In order to calculate the uncertainty of each measurement, we first need to
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(a) (b)
Figure 4.3: (a) Magnitude and (b) its associated phase image of a volunteer acquired from
a 3D gradient echo image at TE = 19.2 ms of 4 T. The vein whose susceptibility is analyzed
in this work is indicated by arrows.

(a) (b) (c)

(d) (e)
Figure 4.4: (a) Coronal view of the same vein (indicated by a white arrow) as shown in
Fig. 4.3. The direction of the main field is shown by the yellow arrow. The orientation of
this vein is 80◦ relative to the main field. The same vein (inside circles) is also displayed in
the (b) sagittal magnitude and (c) its associated phase image. (d) The enlarged magnitude
image of (b). (e) The enlarged phase image of (c).

estimate the uncertainties of the orientation and magnetic moment. The former is roughly

one degree in all of our phantom studies while the latter is given in a formula shown in [8].

4.3.1 Arbitrary orientations except for the parallel orientation: simulations and

phantom studies

Simulated images at 90◦, 70◦, and 40◦

As shown in Table 4.1, most measurements of the susceptibility from our approach

are close to the original input ∆χ of 0.5 ppm. The differences between all quantified
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susceptibilities and the actual value are no more than 16%. On the other hand, the

estimated uncertainties are sometimes larger due to smaller orientations and shorter echo

times. The actual cross-sectional area of each simulated cylinder is 3.14 pixel2 and the

actual spin densities are 17.9, 16.9, and 16.4 at TE = 11, 17, and 20 ms, respectively.

The cross-sectional areas and spin densities solved from our approach agree with these

true values to within 30%. Again, the estimated uncertainties can be even larger due to

uncertainties propagated from susceptibility quantifications. Due to the combination of

Gibbs ringing and finite sampling effects, the spin density values inside the objects have

been systematically underestimated, as shown in Table 4.1. On the other hand, the spin

densities outside the objects have been systematically overestimated.

Table 4.1: Quantified results from simulated images at three different echo times and three
orientations. The actual values are: ∆χ = 0.5 ppm, A0 = 3.14 pixel2, ρ0 = 10, and ρ0,c at
different echo times are given in the text. The first column lists the orientation. The second
column lists the echo time. The third column lists magnetic moment ℘ calculated from the
method in [8]. Numbers inside the parentheses are the theoretical ℘ values. The fourth
column lists ∆χ solved from Eq.(4.7). The chosen radius, R3, for solving ∆χ, is 1.5 pixel.
The fifth column lists the cross-sectional area of the cylinder. The sixth column lists the
effective spin density inside the object calculated from the imaginary part of Eq.(4.4). The
seventh column lists the effective spin density outside the object calculated from Eq.(4.6)

.

Angle TE ℘ ∆χ A0 ρ0,c ρ0

(degree) (ms) (rad·pixel2) ppm pixel2

90 11 2.21±0.49 (2.21) 0.54±0.18 2.90±0.98 20.3±4.3 9.86±0.20
17 3.42±0.31 (3.41) 0.50±0.06 3.14±0.41 18.4±2.0 9.83±0.20
20 4.01±0.16 (4.01) 0.49±0.04 3.14±0.35 17.9±1.8 9.84±0.15

70 11 1.95±0.51 (1.95) 0.57±0.28 2.78±1.39 20.9±6.3 9.87±0.20
17 3.01±0.45 (3.01) 0.52±0.11 3.02±0.63 19.0±3.0 9.84±0.20
20 3.51±0.28 (3.54) 0.52±0.09 3.02±0.57 18.4±2.6 9.85±0.20

40 11 0.70±1.75 (0.91) 0.52±1.56 2.32±13.9 20.1±124.6 9.77±0.22
17 1.55±0.67 (1.41) 0.42±0.34 4.08±4.49 13.4±13.4 9.90±0.20
20 1.82±0.56 (1.66) 0.44±0.25 3.94±3.23 12.9±9.5 9.91±0.20
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Applications of SWIM and MEDI to simulated images

The magnetic moments and susceptibility values quantified from SWIM are 3.84 rad·pixel2

(0.87 ppm), 2.87 rad·pixel2 (0.42 ppm), and 2.89 rad·pixel2 (0.36 ppm) at TE = 11, 17,

and 20 ms, respectively. The magnetic moments and susceptibility values quantified

from MEDI are 1.68 rad·pixel2 (0.38 ppm), 4.03 rad·pixel2 (0.59 ppm), and 5.30 rad·pixel2

(0.66 ppm) at TE = 11, 17, and 20 ms, respectively. These results are not self consistent

and they are at least 16% deviated away from the actual susceptibility value (0.5 ppm).

Simulated images at 54.7◦ (magic angle)

The quantified magnetic moments are 1.92±0.35 rad·pixel2, 2.58±0.23 rad·pixel2, and

2.98 ± 0.21 rad·pixel2, at echo times 11, 17, and 20 ms, respectively. The quantified mag-

netic susceptibility is 0.80±3.20 ppm obtained from TE = 11 ms and 17 ms using Eq.(4.14).

Similarly, the susceptibility value is 0.60± 0.25 ppm obtained from TE = 17 ms and 20 ms.

These results are quite different from the actual susceptibility 0.5 ppm. In addition, uncer-

tainties derived from the error propagation method are fairly large. In general, when no

phase value exists inside the object, eliminating the object signal as shown in Eq.(4.14)

leads to large uncertainties of quantified susceptibilities. One alternative solution to this

problem is to physically rotate the object by a certain angle even as small as 15◦, in order

to gain some signals of the imaginary part.
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Phantom studies at three resolutions (matrix sizes)

Most of the susceptibilities measured from our method agree well within 12% of the

theoretical value, 0.58 ± 0.05 ppm, for all orientations, different echo times, and image

resolutions. The results are listed in Tables 4.7, 4.8, and 4.9. However, the quantified

susceptibility values from the 100×100 matrix at angle 28.2◦ are not reliable. The measured

cross-sectional areas and the theoretical value agree within 16%, except for results from

the 28.2◦ orientation and from lower image resolutions. Some uncertainties are large due

to large uncertainties propagated from the magnetic moments.

Applications of SWIM and MEDI to phantom studies

The susceptibility values quantified from SWIM and MEDI for phantom studies are

listed in Table 4.2. For SWIM, we have assigned the suggested thresholding parameter

0.1 as well as other thresholding parameters 0.02 and 0.3 [35]. The susceptibility result

using the thresholding parameter 0.02 is 0.40 ppm, but the map contains severe streak

artifacts surrounding the straw filled with the gadolinium solution. The susceptibility result

using the thresholding parameter 0.3 is 0.23 ppm. For the MEDI method, we have as-

signed regularization parameters, 50, 100, 250, 400, and 1000 into the kernel. The mean

quantified susceptibility values from pixels inside the straw with different regularization

parameters are identical to those listed in Table 4.2. All quantified susceptibility values

from SWIM or MEDI are underestimated by at least 20% for the perpendicular orienta-

tion. For this reason, we do not quantify susceptibility values from SWIM or MEDI from

any other orientations, as we expect worse results for those situations. These phantom
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and simulated results indicate that current SWIM or MEDI may not accurately quantify

susceptibility from cylindrical objects with diameters of less than 5 pixels.

Table 4.2: Quantified magnetic susceptibilities of slice 16 at the 90◦ orientation from Ta-
ble 4.7 and Table 4.8, using SWIM and MEDI. For comparisons, results from our method
are listed again. The theoretical value of ∆χ is 0.58 ± 0.05 ppm. The first column lists the
orientation. The second column lists the echo time. The third and fourth column show
quantified susceptibility values from our approach. The fifth and sixth column show quanti-
fied susceptibility values from SWIM [35]. The seventh and eighth column show quantified
susceptibility values from MEDI [41]. The regularization parameters used in MEDI were
suggested in their MATLAB code. Optimal choices of those regularization parameters are
not known yet [49].

Our approach SWIMa MEDIb

Angle TE 256× 256 128× 128 256× 256 128× 128 256× 256 128× 128
(degree) (ms) ppm ppm ppm ppm ppm ppm

90 11 0.57± 0.02 0.57± 0.05 0.36± 0.02 0.31± 0.04 0.42± 0.01 0.39± 0.06
17 0.55± 0.01 0.59± 0.04 0.36± 0.08 0.27± 0.07 0.40± 0.11 0.36± 0.06
20 0.55± 0.01 0.54± 0.03 0.35± 0.07 0.30± 0.12 0.40± 0.09 0.36± 0.16

Comments: athresholding parameter = 0.1. bregularization parameter = 250.

4.3.2 Parallel orientation: simulations and phantom studies

Results of simulations and phantom studies for the parallel orientation are shown

in Tables 4.3, 4.4, 4.5, and 4.6. Each susceptibility was estimated from Eq.(4.13) with

complex signals calculated from two echo times. In Table 4.3, a combination of TE =

11 ms and 17 ms and TE = 17 ms and 20 ms were used for susceptibility quantifications.

In Table 4.4, a combination of TE = 11 ms and 17 ms and TE = 11 ms and 20 ms were used

for susceptibility quantifications. The reasons for choosing these echo time combinations

will be discussed in section 4.4.3. The cross-sectional area of the object, the spin density

around and outside the object, and the spin density inside the object were obtained at

each echo time. All quantified susceptibility values agree well with the theoretical values.

The differences between the quantified susceptibilities and the actual value in simulations

were less than 2% and the differences between the quantified cross-sectional areas and
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the actual value were less than 8%. In phantom studies, the differences between the

quantified susceptibilities and the theoretical value were less than 6%. The differences

between quantified cross-sectional areas and the actual value were within 16% for most

cases. At TE = 20 ms, the estimated uncertainties of cross-sectional areas were very

large. This will be discussed further in section 4.4.3.

Table 4.3: Quantified results from simulated images using two different echo times when the
object is parallel to the main field. The first column lists the echo time. The second column
lists ∆χ solved from Eq.(4.13). Numbers inside parentheses show the two echo times used
for calculating the susceptibility. The theoretical value of ∆χ is 0.5 ppm and the theoretical
cross-sectional area is 3.14 pixel2. The chosen radius, R, for solving Eq.(4.13) is 1.5 pixel.
The third column lists the cross-sectional area of the cylinder calculated from Eq.(4.8). The
fourth column lists the effective spin density inside the object calculated from the imaginary
part used in Eq.(4.8). The fifth column lists the quantified effective spin density outside the
object.
TE ∆χ A0 ρ0,c ρ0

(ms) ppm pixel2

11 0.51±0.03 (11/17) 2.90±0.38 19.0±2.7 9.90±0.20
17 2.90±1.33 18.5±11.8 9.89±0.20
20 0.51±0.06 (20/17) 2.90±3.76 14.4±21.8 9.89±0.20

Table 4.4: Quantified results from phantom images of the original image resolution at two
slices using two different echo times when the object is parallel to the main field. The
theoretical value of ∆χ is 0.58 ± 0.05 ppm and the cross-sectional area is 19.0 ± 0.2 mm2.
The first column lists the echo time. The second and the sixth column list ∆χ solved from
Eq.(4.13). The chosen radius, R, for solving Eq.(4.13) is 3.0 mm. The superscripts, a and b,
refer to the two echo times used for quantifying susceptibility values. The third and seventh
column list the cross-sectional area of the cylinder calculated from Eq.(4.8). The fourth and
eighth column list the effective spin density inside the object calculated from the imaginary
part used in Eq.(4.8). The fifth and ninth column list the effective spin density outside the
object.

Slice number 12 Slice number 16
TE ∆χ A0 ρ0,c ρ0 ∆χ A0 ρ0,c ρ0

(ms) ppm mm2 ppm mm2

11 21.7±0.4 2424±97 1355±14 21.6±0.4 2388±96 1338±13
17 0.56±0.01a 21.4±3.2 2332±560 1350±14 0.56±0.01a 22.1±3.3 2180±506 1329±13
20 0.56±0.01b 18.6±3.5 2808±842 1341±13 0.56±0.01b 22.4±4.3 2029±609 1320±13

Comments: aTE = 11 ms and 17 ms. bTE = 11 ms and 20 ms .
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Table 4.5: Quantified results from phantom images of the 128×128 matrix size reduced from
slices shown in Table 4.4. The meaning of each column has been explained in Table 4.4. The
chosen radius, R, for solving Eq.(4.13) is 2.0 mm in these cases. The theoretical cross-
sectional area is 4.75± 0.05 mm2.

Slice number 12 Slice number 16
TE ∆χ A0 ρ0,c ρ0 ∆χ A0 ρ0,c ρ0

(ms) ppm mm2 ppm mm2

11 4.55±0.32 10444±835 5095±51 4.52±0.32 10370±830 5000±50
17 0.55±0.02a 4.83±1.30 8729±2008 4764±48 0.55±0.01 4.68±1.26 8749±2012 4619±46
20 0.56±0.01b 3.53±1.73 12936±4916 4664±47 0.56±0.01 3.53±1.73 12240±4651 4517±45

Comments: aTE = 11 ms and 17 ms. bTE = 11 ms and 20 ms.

Table 4.6: Quantified results from phantom images of the 100×100 matrix size reduced from
slices shown in Table 4.4. The meaning of each column has been explained in Table 4.4. The
chosen radius, R, for solving Eq.(4.13) is 1.5 mm in these cases. The theoretical cross-
sectional area is 2.90± 0.03 mm2.

Slice number 12 Slice number 16
TE ∆χ A0 ρ0,c ρ0 ∆χ A0 ρ0,c ρ0

(ms) ppm mm2 ppm mm2

11 2.96±0.33 16241±1949 8971±88 3.02±0.33 15674±1881 8776±88
17 0.56±0.03a 2.96±1.80 15433±5093 8695±87 0.56±0.03 2.96±1.80 14933±4928 8529±85
20 0.56±0.01b 2.60±1.80 18198±8917 8631±86 0.56±0.01 2.84±1.96 15478±7584 8475±85

Comments: aTE = 11 ms and 17 ms. bTE = 11 ms and 20 ms.

4.3.3 Pilot in-vivo study

By using our method, the measured magnetic moment of the vein in Fig. 4.4 is

2.13 rad·pixel2, its susceptibility value is 0.43 ppm, and its cross-sectional area is 1.58 pixel2.

This susceptibility value agrees with the expected susceptibility 0.40 ppm, if we assume

an oxygenation level of 70%, a Hematocrit of 0.4, and a susceptibility difference between

the fully deoxygenated blood and fully oxygenated blood of 3.39 ppm [50]. As the signal

inside the measured vein is about 130 units and the noise of images is about 27 units,

the SNR of this vein is around 5 to 1. The SNR of the tissue outside the vein is about 8 to

1. On the other hand, the mean susceptibility value of this vein quantified from SWIM is

0.24 ppm. This pilot study demonstrates that our method will be feasible to clinical studies

in the future.
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4.4 Discussion

The magnetic moment, the signal of the object itself, and the orientation of the object

are the three major factors affecting the quantification of susceptibility in our method.

Understanding their uncertainties and roles in the equations sheds some light on how

one might improve the accuracy and precision of susceptibility quantifications.

4.4.1 Major factors affecting uncertainty for susceptibility quantification

Uncertainties of the measurements

The uncertainties of susceptibility and other variables are derived from the error prop-

agation method (see section 4.2.5). In order to reduce the uncertainty of a quantified

susceptibility, the B2 and C2 term in Eq.(L.1) indicate that the radius of R3 should not be

chosen too large. This is to ensure that Im(S3) is above the noise level. On the other

hand, R3 cannot be too small either, as Gibbs ringing or partial volume can affect each

measurement. We suggest R3 to be at least 0.5 pixel away from the surface of the object

but as small as possible. In addition, when |g′| is larger than 3 radians and R1 and R2

are optimally chosen, it seems that B2 and C2 are the dominant terms in the numerator

of Eq.(L.1).

If the susceptibility of an object is roughly known and the focus is to reduce the

uncertainty of the measurement, as sinφin appears in both denominator and numerator

of Eq.(L.1), it may be helpful to increase the echo time such that | sinφin| becomes unity.

If this is not feasible, then one can try to increase the echo time such that |g′| will be

between 2.4 and 5.5, with |g′| ≈ 3.5 being the optimal choice. This is because in this

case, J0(g′) becomes negative in the denominator of Eq.(L.1) and thus the uncertainty of
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susceptibility is reduced.

Signal inside the cylinder of interest

Eq.(L.1) indicates that increasing SNR inside the cylindrical object (SNR0,c ≡ ρ0,c/σ)

can reduce the uncertainty of quantified susceptibility. For a sufficiently long cylinder,

SNR can be increased by using a thicker slice for example. Increasing the number of

acquisitions is also an option, but at the expense of imaging time. In addition, a contrast

agent may be used to increase the SNR of the object (e.g., vein). However, the use of

contrast agent will mainly help to quantify the object radius more accurately but not to

quantify the susceptibility of the object. Nonetheless, a pre- and post-contrast in vivo

protocol may first allow the determination of the size of a vein from post-contrast images

and then calculate only the susceptibility of venous blood based on the magnetic moment

measured from pre-contrast images. This assumes that the size of the vein does not

change before and after the injection of the contrast agent.

Orientation dependence

When the orientation of a cylindrical object deviates from 90◦, but other factors remain

the same, the magnetic moment quantified from the object becomes smaller than that at

90◦ (see section 4.2.1). As a result, the uncertainty of the magnetic moment increases

and so does that of the susceptibility. Eq.(L.1) reflects on the above statement. In order

to reduce the uncertainty, one possibility is to increase the echo time and therefore the

magnetic moment will become larger. When the orientation of the object is close to 0◦, the

uncertainty of the estimated susceptibility can be very large (see Eq.(K.2)). This is why for
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the parallel orientation, a two-echo approach will be better. Eq.(L.1) also indicates that the

uncertainty of susceptibility approaches infinity when the orientation is close to the magic

angle. For all quantified susceptibility values, each complex signal from the innermost

radius, R3, is used in Eq.(4.7). As a result, the variables, δRe(S3), δIm(S3), and δ(Si−Sj)

for any i and j, are uncorrelated. The uncertainty of the susceptibility, Eq.(L.1), is derived

based on this condition. For any choice of a radius larger than R3 used in Eq.(4.7), some

variables will become correlated and uncertainty formulas need to be rederived.

For the uncertainty of orientation, δθ, low resolution images lead to a larger uncer-

tainty than that quantified from high resolution images. For example, when we convert

our phantom images to 4 mm isotropic resolution, on which our straw occupies only a few

pixels, the error of the orientation can be up to ±15◦.

Techniques for background field removal

For phantom images, we have tried the high pass filter, quadratic fitting, and sophis-

ticated harmonic artifact reduction for phase data (SHARP) [28] for removing background

fields. The quadratic fitting technique is more reliable than the other two techniques when

it is applied to our phantom images. High pass filter can remove the background field

cleanly at the 90◦ and 75.5◦ cases, but not completely remove the background fields at

the 28.2◦ orientation because of the geometry of the phantom container. SHARP, with a

kernel size of 6, also shows a similar problem. In addition, after the application of SHARP,

the phase values around the straw in the phantom are higher than expected, and the aver-

aged phase value in the background is about 0.1 rad, larger than the noise level in phase

images. Furthermore, when we apply SHARP and then our method, SWIM, and MEDI
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to the phantom images with the reduced matrix size of 128 × 128, the quantified suscep-

tibility values of our gadolinium straw become about 0.70 ppm, 0.48 ppm, and 0.55 ppm,

respectively.

For human images, given the problems of SHARP described above and the uneasy

application of the quadratic fitting technique, we chose to use the high pass filter for

removing the background fields. The background phase around the vein was between

0.01 and 0.03 rad after the high pass filter was applied to the in-vivo data.

4.4.2 The unique solution from Eq.(4.7)

As Eq.(4.7) is a nonlinear function of the magnetic susceptibility, multiple solutions

could exist. The number of possible solutions is discussed in the following two subsec-

tions. We overlap the range of g′ in this section such that some freedom of choices will be

allowed. More detailed mathematical descriptions are given in H.

|g′| > 1.4 leads to unique solution in one period

When the upper limit |g′| of the integral in Eq.(4.7) is larger than 1.4, with a lower limit,

|℘|/R2 ≤ 0.5, the upper limit |g′| can be replaced by infinity and the difference between

the actual integral and the approximation is less than 5%. This condition can be achieved

by choosing a sufficiently large R. As a result, φin in Eq.(4.7) can be uniquely determined

between 2nπ and 2(n + 1)π with n being an arbitrary integer (see Eq.H.2 in H.1). If we

choose B0 = 3 T and TE = 20 ms, the possible solutions of ∆χ between each adjacent

2π period will differ by at least 1 ppm. This means that susceptibilities of most biological

tissues can be uniquely determined with just one echo time.
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0 < |g′| ≤ 2 leads to multiple solutions

Here we summarize our findings, as the detail descriptions and derivations are given

in H.2. When |g′| is in this range, we need to examine the number of roots in Eq.(H.3)

and Eq.(H.4). As the signs of β ≡ (1 − 3 cos θ2)/3 and Im(S) are known from measure-

ments, the sign of βIm(S) is known even before we solve Eq.(H.3). Based on derivations

described in H.2, when the object orientation is larger than 24◦, at most two roots can be

solved from Eq.(H.3). However, if the orientation is less than 24◦, then multiple solutions

exist. Thus, in this scenario which includes the parallel orientation, we suggest solving

the susceptibility with the two-echo approach.

Unknown materials with large susceptibility

For unknown materials with susceptibility values more than 4 ppm, an echo time

shorter than 5 ms at 3 T will be needed in order to uniquely determine the susceptibil-

ity. However, this may be difficult to achieve and thus multiple echoes may be needed as

described below.

As any solution in the form of φin − 2nπ satisfies Eq.(H.1), the actual solution of

Eq.(4.7) may be determined from multiple echo gradient echo images. At least, the

number of possible solutions will be reduced. For example, consider that phase q1 ≡

φin,1 − 2n1π is solved from echo time TE,1 and q2 ≡ φin,2 − 2n2π is solved from echo time

TE,2. As φin,1 and φin,2 are proportional to TE,1 and TE,2, respectively, q1 and q2 satisfy the

following equation

q1TE,2 − q2TE,1
π

= 2(n2TE,1 − n1TE,2) (4.15)
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Obviously the left hand side of Eq.(4.15) is normally a real number but the right hand

side demands that the equation has to be equal to an even integer, if the two echo times

are chosen as integers in units of millisecond or sub-millisecond. This is only possible if

Eq.(4.15) is zero. Hence, Eq.(4.15) limits possible values of n1 and n2. As the magnetic

moment ℘ and Im(S) are first measured, the subsequently solved susceptibility values

|∆χ| will increase as |ni| increases. The solved object radius a will decrease but the solved

spin density inside the object, ρ0,c, will increase. However, since rough values of a and

ρ0,c can be estimated from the magnitude image, ranges of n1 and n2 are limited and ∆χ

is likely to be uniquely determined with only two echo times. Choosing prime numbers for

TE,1 and TE,2 in millisecond or sub-millisecond units (such as 5.9 ms or 10.9 ms) or using

more echoes can very effectively reduce the possible solutions of ∆χ. This is the main

reason why at least a double echo or a triple echo gradient echo sequence is preferred.

However, the presence of thermal noise and systematic error may introduce more pseudo

solutions.

4.4.3 Measurements and uncertainties from orientations close to 0◦

For objects with orientations close to 0◦, we may first estimate the value of a2 from

magnitude images. From Eq.(4.12), we can solve an initial value of ∆χ. Then the up-

dated radius of the object, a, can be calculated from either Eq.(4.10) or Eq.(4.11). The

susceptibility value ∆χ can be re-solved again from Eq.(4.12). As an iterative procedure,

we can repeat the process to reach convergent solutions for the radius of the object, a,

and its magnetic susceptibility, ∆χ.

The uncertainty of susceptibility given in Eq.(G.2) is affected by the SNR inside the

object of interest. When the ratio between SNR0,c,1 and SNR0,c,2 acquired from two echo
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times becomes large, the uncertainty of susceptibility will reduce. Thus, the echo spacing

between the two echo times is better to be large. This is how the echo time combinations

in the phantom experiments were selected (see comments in Table 4.4). In the simula-

tions, we purposely show that the susceptibility of the object can still be quantified from

the echo time combination of 17 ms and 20 ms (see Table 4.3), but with a larger uncer-

tainty. Both phase values inside the object acquired from two echo times should not be

concurrently multiples of π for susceptibility quantification, as Eq.(G.2) and Eq.(4.13) indi-

cate infinite uncertainty in this scenario. However, the uncertainty of the susceptibility can

still be reasonably small, when only either φin,1 or φin,2 is a multiple of π. Nonetheless, in

this situation, the uncertainties of quantified cross-sectional area and spin density inside

the object from that particular echo time will become very large (e.g., see Eq.(G.5) and

results at TE = 20 ms in Tables 4.3, 4.4, 4.5, and 4.6)). This is because when a φin,n is

close to multiples of π, the imaginary part of the signal is close to zero and it becomes

impractical to quantify the cross-sectional area and the spin density inside the object.

4.4.4 The limitations of our method and future work

Although our method is derived from the model of an infinitely long cylinder, such

a model is valid when the ratio of the height to the diameter of a finite cylinder is larger

than 5 to 1 [45]. In addition, the infinitely long cylinder model is also acceptable when any

section of a curved cylinder is less than 30◦ [51]. Thus, for the susceptibility quantification

of venous blood, our method is feasible to most in vivo medullary and pial veins, with

the acquisitions of isotropic 3D gradient echo data from two echo times. Nonetheless,

even with a perfect background phase removal procedure, local background phase due

to the presence of other neighboring tissues may exist. A large local background phase
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such as 0.8 rad may lead to an incorrect center of the object of interest and an incorrect

susceptibility value. Thus, our equations for the in vivo applications will require local

background field corrections after the removal of the global background phase. We are

currently revising the equations and engaging these studies.

In our current procedures, for reliable susceptibility quantifications, we suggest to

choose the innermost circle with a radius (R3) of at least 0.5 pixel from the boundary of

the object and the differences between any two of the three radii to be at least 1 pixel.

This leads to a total of at least 2.5 pixels away from the boundary of a given object. If

two or more cylindrical objects or vessels are close to each other, but have at least 5

pixels between their boundaries, then our method is still applicable to the susceptibility

quantification of each object. However the accuracy of quantified susceptibility may be

a concern. Our method also cannot accurately quantify the susceptibilities of two long

cylinders when their nearest boundaries are within 5 pixels, unless they are parallel to

the main field. In addition, section 4.4.1 points out low SNR of an object such as a vein

at a long echo time will increase the uncertainty (see Eq.(L.1) and Eq.(4.7)). Thus, the

steps of quantifying susceptibility and reducing uncertainty in the low SNR object are

more complex. Currently we are investigating this situation. In addition, the uncertainty of

quantified susceptibility values at the low orientation is large due to small g′. The two echo

approach for the low orientation may reduce the uncertainty. We are also investigating this

possibility to reduce the uncertainty of the quantified susceptibility.

4.5 Conclusion

Using a standard gradient echo sequence with one or two echo times, our method

can accurately quantify magnetic moment, susceptibility, radius, and spin density ρ0 and
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ρ0,c of a given cylindrical object at most orientations. The accuracy of quantified suscep-

tibility can be improved by the orientation close to 90◦, high SNR of the object, or a long

echo time within the clinical range. Our approach has overcome two problems in estimat-

ing susceptibility: phase aliasing and partial volume effects. We have demonstrated the

feasibility of this method through simulations, phantom, and in-vivo human studies. Our

method provides an alternate approach for accurate susceptibility and radius quantifica-

tions of narrow cylinders.



96

T
ab

le
4.

7:
Q

u
an

ti
fi
ed

re
su

lt
s

fr
om

p
h
an

to
m

im
ag

es
of

th
e

or
ig

in
al

im
ag

e
re

so
lu

ti
on

at
th

re
e

d
iff

er
en

t
ec

h
o

ti
m

es
an

d
th

re
e

or
ie

n
ta

ti
on

s.
T

w
o

d
iff

er
en

t
sl

ic
es

,
12

an
d

16
,

w
er

e
an

al
y
ze

d
.

T
h
e

th
eo

re
ti

ca
l

va
lu

e
of

∆
χ

is
0.

58
±

0.
05

p
p
m

an
d

th
e

ac
tu

al
cr

os
s-

se
ct

io
n
al

ar
ea

is
19
.0
±

0.
2

m
m

2
.

T
h
e

S
N

R
ar

ou
n
d

an
d

ou
ts

id
e

th
e

st
ra

w
fo

r
al

l
th

re
e

ec
h
o

ti
m

es
is

ab
ou

t
30

:1
.

T
h
e

S
N

R
va

lu
es

in
si

d
e

th
e

st
ra

w
at

th
re

e
ec

h
o

ti
m

es
,

11
,

17
,

an
d

20
m

s,
ar

e
ab

ou
t

48
:1

,
44

:1
,

an
d

42
:1

,
re

sp
ec

ti
ve

ly
.

T
h
e

fi
rs

t
co

lu
m

n
li
st

s
th

e
or

ie
n
ta

ti
on

.
T

h
e

se
co

n
d

co
lu

m
n

li
st

s
th

e
ec

h
o

ti
m

e.
T

h
e

th
ir

d
co

lu
m

n
sh

ow
s

th
e

th
eo

re
ti

ca
l
℘

.
T

h
e

fo
u
rt

h
an

d
n
in

th
co

lu
m

n
sh

ow
q
u
an

ti
fi
ed

℘
.

T
h
e

fi
ft

h
an

d
te

n
th

co
lu

m
n

li
st

∆
χ

so
lv

ed
fr

om
E

q
.(

4.
7)

.
T

h
e

si
x
th

an
d

el
ev

en
th

co
lu

m
n

sh
ow

th
e

cr
os

s-
se

ct
io

n
al

ar
ea

of
th

e
cy

li
n
d
er

.
T

h
e

se
ve

n
th

an
d

tw
el

ft
h

co
lu

m
n

li
st

th
e

eff
ec

ti
ve

sp
in

d
en

si
ty

in
si

d
e

th
e

ob
je

ct
ca

lc
u
la

te
d

fr
om

th
e

im
ag

in
ar

y
p
ar

t
of

E
q
.(

4.
4)

.
T

h
e

ei
gh

th
an

d
th

ir
te

en
th

co
lu

m
n

li
st

th
e

eff
ec

ti
ve

sp
in

d
en

si
ty

ou
ts

id
e

th
e

ob
je

ct
ca

lc
u
la

te
d

fr
om

E
q
.(

4.
6)

.

S
li

ce
n
u

m
b

er
12

S
li

ce
n
u

m
b

er
16

A
n

gl
e

T
E

℘
℘

∆
χ

A
0

ρ
0
,c
/
10

00
ρ
0

℘
∆
χ

A
0

ρ
0
,c
/1

0
00

ρ
0

(d
eg

re
e)

(m
s)

(r
ad
·m

m
2
)

(r
ad
·m

m
2
)

p
p

m
m

m
2

(r
a
d
·m

m
2
)

p
p

m
m

m
2

90
11

15
.4

14
.1
±

0
.7

0.
5
7
±

0.
0
2

17
.6
±

0.
5

2.
85
±

0
.0

6
1
23

5±
1
2

14
.5
±

0.
7

0.
57
±

0.
02

1
8.

2±
0
.5

2.
72
±

0
.0

5
1
24

6±
1
2

17
23

.9
21

.9
±

0.
5

0
.5

4
±

0
.0

1
1
9.

2
±

0
.4

2.
49
±

0.
02

12
18
±

12
22

.4
±

0.
4

0.
55
±

0.
01

19
.2
±

0.
2

2.
5
5
±

0.
03

12
24
±

1
2

2
0

28
.2

26
.3
±

0
.5

0.
54
±

0.
01

19
.0
±

0
.4

2.
37
±

0.
05

12
08
±

12
26

.2
±

0
.5

0.
5
5
±

0.
0
1

18
.7
±

0
.4

2.
40
±

0.
05

12
13
±

1
2

75
.5

11
1
4.

5
12

.9
±

0
.9

0.
58
±

0.
0
4

1
6.

9±
0
.8

2.
8
3±

0.
10

12
1
6±

12
1
3.

0
±

0.
9

0
.6

0
±

0
.0

4
16

.5
±

0.
8

2.
83
±

0.
11

12
32
±

1
2

1
7

22
.4

21
.3
±

0
.4

0.
54
±

0.
0
3

1
9.

3±
0
.6

2.
49
±

0.
10

12
03
±

12
21

.1
±

0
.4

0.
5
6
±

0.
0
4

18
.6
±

0
.6

2.
53
±

0.
10

12
13
±

1
2

20
26

.4
24

.6
±

0.
5

0
.5

4
±

0
.0

3
19

.0
±

0
.8

2.
38
±

0.
10

11
97
±

12
24

.5
±

0.
5

0.
56
±

0.
03

18
.2
±

0.
7

2.
36
±

0
.0

9
1
20

6±
1
2

2
8.

2
11

3.
45

3.
6
4
±

2
.8

7
0.

6
0
±

0
.2

7
1
9.

3±
38

.6
2.

63
±

5.
06

12
80
±

13
3
.2

2
±

3.
22

0
.6

5
±

0
.5

3
1
5.

8±
31

.5
3.

1
3±

7.
20

12
6
7±

1
3

17
5.

3
4

6.
25
±

3.
7
5

0.
55
±

0
.1

3
2
3.

4±
2
1.

5
2
.1

6±
2.

0
3

12
80
±

13
6.

11
±

3
.8

5
0.

57
±

0.
13

22
.6
±

20
.3

2.
36
±

2
.2

2
1
27

4±
1
3

20
6.

29
6
.6

5
±

3
.3

9
0.

5
7
±

0
.1

0
2
0.

4±
18

.0
2.

32
±

2.
23

12
68
±

13
6
.9

7
±

3.
07

0
.5

6
±

0
.1

0
2
1.

9±
19

.3
2.

1
3±

2.
04

12
7
4±

1
3



97

T
ab

le
4.

8:
Q

u
an

ti
fi
ed

re
su

lt
s

fr
om

p
h
an

to
m

im
ag

es
of

re
d
u
ce

d
12

8
×

12
8

m
at

ri
x

si
ze

at
th

re
e

d
iff

er
en

t
ec

h
o

ti
m

es
an

d
th

re
e

or
ie

n
ta

ti
on

s.
T

w
o

d
iff

er
en

t
sl

ic
es

,
12

an
d

16
,

w
er

e
ag

ai
n

an
al

y
ze

d
.

T
h
e

th
eo

re
ti

ca
l

va
lu

e
of

∆
χ

is
st

il
l

0.
58
±

0.
05

p
p
m

b
u
t

th
e

cr
os

s-
se

ct
io

n
al

ar
ea

b
ec

om
es

4.
75
±

0.
05

m
m

2
.

T
h
e

S
N

R
ar

ou
n
d

an
d

ou
ts

id
e

th
e

st
ra

w
fo

r
al

l
th

re
e

ec
h
o

ti
m

es
is

ab
ou

t
60

:1
.

T
h
e

S
N

R
va

lu
es

in
si

d
e

th
e

st
ra

w
at

th
re

e
ec

h
o

ti
m

es
,

11
,

17
,

an
d

20
m

s,
ar

e
ab

ou
t

96
:1

,
88

:1
,

an
d

84
:1

,
re

sp
ec

ti
ve

ly
.

T
h
e

m
ea

n
in

g
of

ea
ch

co
lu

m
n

h
as

b
ee

n
ex

p
la

in
ed

in
T

ab
le

4.
7. S
li

ce
n
u
m

b
er

12
S

li
ce

n
u

m
b

er
1
6

A
n

gl
e

T
E

℘
℘

∆
χ

A
0

ρ
0
,c
/1

00
0

ρ
0

℘
∆
χ

A
0

ρ
0
,c
/1

00
0

ρ
0

(d
eg

re
e)

(m
s)

(r
ad
·m

m
2
)

(r
ad
·m

m
2
)

p
p

m
m

m
2

(r
a
d
·m

m
2
)

p
p

m
m

m
2

90
11

3.
85

3
.3

0
±

0
.4

6
0
.5

5
±

0
.0

5
4
.3

0±
0.

43
1
1.

1±
0.

6
49

11
±

74
3.

27
±

0
.4

6
0.

57
±

0
.0

5
4
.0

1±
0.

40
11

.7
±

0.
6

49
4
8±

74
17

5
.9

8
5.

46
±

0
.4

4
0.

5
1
±

0.
0
4

4.
9
1±

0.
3
4

9.
1±

0.
4

4
86

0±
9
7

5.
69
±

0.
46

0
.5

9
±

0.
04

4.
45
±

0.
3
1

10
.4
±

0.
4

49
02
±

98
20

7.
0
5

6.
27
±

0
.4

4
0
.5

4
±

0
.0

3
4
.5

2±
0.

27
9.

1±
0
.5

48
2
5±

96
6
.4

1
±

0.
44

0.
54
±

0.
03

4.
68
±

0.
28

8.
9±

0.
4

4
84

2±
97

75
.5

11
3.

63
3.

14
±

0.
9
4

0
.5

5
±

0.
0
7

4
.3

0±
0
.6

9
10

.3
±

1.
2

48
80
±

73
3.

24
±

0.
9
7

0.
60
±

0.
0
7

4
.0

8±
0.

65
11

.0
±

1.
3

48
6
4±

7
3

17
5.

60
4
.9

2
±

0.
69

0.
5
4
±

0
.0

4
4.

45
±

0.
3
6

9.
7±

0.
6

4
79

2±
9
6

4.
94
±

0.
69

0.
55
±

0.
04

4.
45
±

0.
3
1

9
.9
±

0.
6

48
27
±

97
20

6.
60

5.
7
9
±

0.
4
6

0.
5
3
±

0
.0

3
4.

6
0±

0.
18

9.
0±

0
.4

47
7
3±

95
5
.9

3
±

0.
47

0.
5
5
±

0
.0

3
4.

52
±

0
.1

8
9.

5±
0.

4
48

09
±

96
28

.2
11

0.
8
6

1.
14
±

0.
9
7

0.
4
6
±

0.
3
5

7
.9

4±
16

7.
1
±

2
1

51
36
±

77
1
.0

8
±

0.
92

0.
5
2
±

0.
40

6.
61
±

13
8.

0
±

24
50

8
4
±

7
6

17
1.

34
1.

2
8
±

0
.7

0
0
.5

9
±

0
.3

7
4.

4
5±

13
1
0.

5
±

37
5
03

1
±

10
1

1.
52
±

0.
84

0.
56
±

0.
35

5.
56
±

1
7

8.
2
±

29
49

78
±

10
0

20
1
.5

7
1.

78
±

0.
80

0.
5
5
±

0.
10

5.
6
4±

7.
3
3

7.
7
±

10
50

0
2±

10
0

1.
83
±

0.
82

0.
56
±

0.
10

5.
7
3±

7.
44

7.
6±

9.
9

49
36
±

99



98

T
ab

le
4.

9:
Q

u
an

ti
fi
ed

re
su

lt
s

fr
om

p
h
an

to
m

im
ag

es
of

th
e

re
d
u
ce

d
10

0
×

10
0

m
at

ri
x

si
ze

at
th

re
e

d
iff

er
en

t
ec

h
o

ti
m

es
an

d
th

re
e

or
ie

n
ta

ti
on

s.
T

w
o

d
iff

er
en

t
sl

ic
es

,
12

an
d

16
,

w
er

e
an

al
y
ze

d
.

T
h
e

th
eo

re
ti

ca
l

va
lu

e
of

∆
χ

is
st

il
l

0.
58
±

0.
05

p
p
m

b
u
t

th
e

cr
os

s-
se

ct
io

n
al

ar
ea

b
ec

om
es

2.
90
±

0.
03

m
m

2
.

T
h
e

S
N

R
ou

ts
id

e
th

e
st

ra
w

fo
r

al
l

th
re

e
ec

h
o

ti
m

es
is

ab
ou

t
77

:1
.

T
h
e

S
N

R
va

lu
es

in
si

d
e

th
e

st
ra

w
at

th
re

e
ec

h
o

ti
m

es
,

11
,

17
,

an
d

20
m

s,
ar

e
ab

ou
t

12
3:

1,
11

3:
1,

an
d

10
8:

1,
re

sp
ec

ti
ve

ly
.

T
h
e

m
ea

n
in

g
of

ea
ch

co
lu

m
n

h
as

b
ee

n
ex

p
la

in
ed

in
T

ab
le

4.
7.

S
li

ce
n
u

m
b

er
12

S
li

ce
n
u

m
b

er
16

A
n

gl
e

T
E

℘
℘

∆
χ

A
0

ρ
0
,c
/
10

00
ρ
0

℘
∆
χ

A
0

ρ
0
,c
/1

00
0

ρ
0

(d
eg

re
e)

(m
s)

(r
ad
·m

m
2
)

(r
ad
·m

m
2
)

p
p

m
m

m
2

(r
a
d
·m

m
2
)

p
p

m
m

m
2

90
11

2.
35

1.
87
±

0.
54

0
.5

0
±

0
.1

4
2
.6

6±
0.

8
2

1
7.

2±
2.

7
79

53
±

11
9

2
.0

3
±

0.
51

0.
57
±

0.
1
7

2.
5
4±

0
.7

9
19

.1
±

3.
0

80
34
±

12
0

17
3.

64
3.

62
±

0.
43

0.
5
5
±

0.
05

3.
02
±

0
.3

0
17

.0
±

1.
2

77
95
±

15
6

3.
52
±

0.
4
6

0.
53
±

0
.0

5
3
.0

8±
0.

3
1

16
.2
±

1.
1

7
9
00
±

1
5
7

20
4.

30
3.

86
±

0.
5
4

0.
55
±

0.
0
6

2.
7
8±

0
.2

8
16

.0
±

1
.4

79
43
±

15
9

4.
08
±

0.
49

0.
5
4
±

0
.0

5
2
.9

5±
0.

3
0

1
5
.2
±

1
.4

7
94

7±
1
58

75
.5

11
2.

21
1.

9
9±

0.
98

0.
5
4
±

0.
24

2.
78
±

1
.4

2
18
±

8
79

2
1±

11
9

2.
03
±

0.
9
9

0.
61
±

0
.2

7
2
.5

4±
1.

3
0

20
±

6
7
92

1±
11

9
17

3.
42

3.
31
±

0.
86

0
.5

1
±

0
.1

2
3
.2

0±
0.

8
0

1
5.

4±
1.

8
77

83
±

15
6

3
.2

0
±

0.
83

0.
55
±

0.
1
3

2.
8
3±

0
.7

1
17

.0
±

2.
0

78
83
±

15
8

20
4.

03
3.

60
±

0.
86

0.
5
4
±

0.
12

2.
77
±

0
.6

7
15

.8
±

2.
2

77
57
±

15
5

3.
81
±

0.
9
1

0.
55
±

0
.1

3
2
.9

0±
0.

6
9

15
.4
±

2.
2

7
8
28
±

1
5
6

28
.2

11
0.

53
0.

5
7±

1.
14

0
.5

7
±

1
.1

4
3
.2

0±
19

.2
16
±

12
8

82
7
9±

1
24

0.
6
7
±

1
.3

4
0.

5
8
±

2
.3

2
3
.6

6±
2
2
.0

1
4±

1
13

82
75
±

12
4

17
0.

81
0.

87
±

0.
77

0
.5

7
±

0
.3

9
3
.1

4±
5.

9
7

15
±

2
3

82
79
±

16
6

0
.9

4
±

0.
84

0.
56
±

0.
3
9

3.
4
6±

6
.5

8
1
4±

2
1

81
8
0±

16
4

20
0.

96
1.

21
±

0.
39

0.
5
3
±

0.
13

4.
01
±

4
.4

1
11

.2
±

11
.2

82
7
0±

16
5

1.
14
±

0.
3
6

0.
55
±

0
.1

3
3
.6

6±
4.

0
3

12
.5
±

1
2.

5
8
15

6±
1
6
3



99

Chapter 5

SUSCEPTIBILITY AND SIZE QUANTIFICATION OF SMALL HUMAN VEINS

FROM AN MRI METHOD

5.1 Introduction

Measuring oxygen saturation can provide an important clinical diagnostic tool. Sus-

ceptibility of the venous blood is directly related to the oxygenation level of the blood,

(e.g., [29, 12]). Several groups have developed methods to quantify the susceptibility

of veins [13, 14, 52, 53, 15, 35, 38, 43, 44, 54, 55, 56]. Some researchers have mea-

sured the susceptibility of veins using complex images from multi-echo gradient echo

sequences [14, 15], while others have estimated venous susceptibility values only from

phase information [52, 53, 55, 56]. Sedlacik et. al. [15] has quantified the suscepti-

bilities and sizes of veins by fitting the oscillating signals from 20-echo gradient echo

images. The main disadavntage of their method is the long scan time. The susceptibil-

ities of veins have also been quantified using quantitative susceptibility mapping (QSM)

techniques [35, 38, 43, 44, 55]. However, the accuracy of quantified susceptibility of a

cylindrical object decreases when the size of the object decreases [35, 10], mainly due

to partial-voluming. We have developed an alternate method (CISSCO) of quantifying

magnetic moment, susceptibility, and the size of the narrow cylindrical object [7, 8, 10]

even if they are partial volumed. The results from CISSCO can differ from the expected

susceptibilities by 5% but other QSM methods can differ by 30% [10]. However, before

CISSCO can be used practically, the problems connected with local phase induced from

other tissues, low SNR of veins at long echo times, and little (or no) phase information

outside veins at low orientations must be dealt with.
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In this paper, we have improved our CISSCO method by using double echo gradient

echo images for the quantifications of venous susceptibilities and sizes. Practically, as

long as the ratio of the length to the diameter of a vein is at least 5:1, we can model

the middle portion of the vein as an infinitely long cylinder. Finally, based on uncertainty

analyses, we suggest imaging parameters and procedures for susceptibility and radius

quantifications of veins at 3 T.

5.2 Material and Methods

5.2.1 Theory: susceptibility quantification of a cylindrical object with an MR signal

A more complete description of our original CISSCO method for susceptibility quan-

tification of a cylindrical object with an MR signal has been presented in [10]. Here we

summarize the major points and equations. Our method adds up complex MR signals

around a cylindrical object of interest and equates that complex sum to equations contain-

ing the unknown susceptibility value and radius of the cylinder. We then systematically

solve the unknowns.

If the radius of a cylindrical object is a, the overall MR complex signal S within a

coaxial cylinder with radius R is

S = π`ρ0℘

∫ g′

℘/R2

dx

x2
J0(x) + π`a2ρ0,ce

i φin (5.1)

with

φin ≡ −γ
∆χ

6
(3 cos2 θ − 1)B0TE ≡

g

3
(1− 3 cos2 θ) (5.2)

where ` is the slice thickness of the image or can be an arbitrary length of the cylindrical

object, ρ0 is the effective spin density of the tissue outside the object, ρ0,c is the effective
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spin density inside the object, ℘ is the effective magnetic moment, which can be ex-

pressed by ℘ ≡ ga2 · sin2 θ ≡ g′a2, g′ ≡ g · sin2 θ is the extremum phase value at the surface

of the object, θ is the orientation of the cylinder (see Fig. 5.1a) and can be estimated from

images [10], g ≡ 0.5γB0∆χTE, γ is the proton gyromagnetic ratio (2π · 42.58 MHz/T), B0

is the main magnetic field, ∆χ is the susceptibility difference between the regions inside

and outside the object (hereafter, ∆χ refers to susceptibility), TE is the echo time, and

J0 is the zeroth order Bessel function. The complex signal S can be directly calculated

from images. Note that our effective magnetic moment ℘ is linearly proportional to TE

(a) (b)

Figure 5.1: (a) A cylinder has an orientation θ away from the main field. (b) A schematic
drawing shows the cross section of a cylindrical object with radius a, enclosed by four coaxial
pseudo cylinders whose radii are R3, R′3, R2, and R1. The MR signal within each pseudo
cylinder is S3, S ′3, S2, and S1, respectively.

and the word “effective” is dropped hereafter. Four unknowns in Eq.(5.1) are the radius,

susceptibility, and two spin densities (ρ0,c and ρ0). The two effective spin densities depend

on imaging parameters, actual spin densities, and relaxation times T1 and T2. Eq.(5.1) is

valid only when the image slice is perpendicular to the axis of the cylindrical object. We

have adopted SI units throughout this paper.

If we choose three coaxial cylinders with radii R1 > R2 > R3 around the cylinder of

interest in Fig. 5.1(b), with the use of Eq.(5.1), we can write down the following equation

with ℘ being the only unknown and solve it
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Re(S1 − S2)

∫ ℘/R2
2

℘/R2
3

dx

x2
J0(x) = Re(S2 − S3)

∫ ℘/R2
1

℘/R2
2

dx

x2
J0(x) (5.3)

Then we can solve for ρ0 from Re(S1 − S2) using Eq.(5.1).

After solving ℘ and ρ0, by eliminating π`a2ρ0,c in Eq.(5.1), the complex signal S can

be rewritten in terms of the the susceptibility ∆χ as

Re(S) sinφin = Im(S) cosφin + π`ρ0℘ sinφin

∫ g′

℘/R2

dxJ0(x)/x2 (5.4)

where Re(S) and Im(S) are the real part and the imaginary part of the complex signal

S, respectively. Both values are directly calculated from images. After solving for ∆χ, we

can solve radius a from
√
℘/g′ [10].

Solution of the measured susceptibility

In theory, Eq.(5.4) should lead to a solution of the measured susceptibility ∆χ. How-

ever, due to the presence of noise in images, it is possible that we cannot obtain a solu-

tion from Eq.(5.4). In other words, h(∆χ) defined in the following equation rewritten from

Eq.(5.4) is not zero.

h(∆χ) ≡ Re(S) sinφin − Im(S) cosφin − π`ρ0℘ sinφin

∫ g′

℘/R2

dxJ0(x)/x2 (5.5)
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In this situation, we can derive the uncertainty of Eq.(5.5) (see I)

δh(∆χ)max =

√
(σ`
√

∆x∆yπR2)2 + (δ℘)2

(
π`ρ0 sinφin

(
J0(℘/R2)

℘/R2
−
∫ g′

℘/R2

dx
J0(x)

x2

))2

(5.6)

where ∆x and ∆y are in-plane resolutions, σ is the standard deviation of the signal, and

δ℘ is the uncertainty of the magnetic moment. The goal is to estimate ∆χ, which is not

known yet. If we plot h(∆χ)± δh(∆χ) as a function of ∆χ and search for the range of ∆χ

when h(∆χ) ± δh(∆χ) = 0, then the center of the ∆χ range can be considered as the

measured ∆χ. In addition, half of the ∆χ range can also be considered as the uncertainty

of ∆χ.

Improved procedures for susceptibility quantification of objects at large orienta-

tions

When a cylindrical object with a large orientation relative to the main field has suffi-

cient phase values and SNRs both inside and outside, our above procedures can solve

the susceptibility and radius of the object from a single echo gradient echo image [10].

However, for susceptibility quantifications of veins, SNRs inside veins (i.e., ρ0,c/σ) can be

low at long echo times. The lower the SNR is inside a vein, the larger the uncertainty

of the measured susceptibility. For example, if the SNR inside a vein is lower than 3:1,

the uncertainty of the susceptibility can be higher than 50%. Using gradient echo images

from two echoes can reduce the uncertainty of the measured susceptibility. We can first

quantify the magnetic moment ℘ of a given vein using Eq.(5.3) from the longer echo time,

as the uncertainty of ℘ at the longer echo time is smaller [8]. Then we scale the mag-
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netic moment to the shorter echo time and solve the susceptibility of the same vein using

Eq.(5.4) at the shorter echo time. This is because at the shorter echo time, we have a

higher SNR inside the vein for more accurate susceptibility quantification. However, this

echo time cannot be too short, as we still need sufficient phase value and SNR inside the

vein.

Solving susceptibilities of objects at small orientations

This scenario and its mathematical derivations have been described in [10]. Briefly,

as little or no phase distributions are outside cylindrical objects at small orientations rel-

ative to the main field, it is very difficult to accurately quantify the magnetic moment. We

can bypass this problem with the following approach. Consider the expansion of Eq.(5.4)

Re(Sn) sinφin,n = Im(Sn) cosφin,n + π`ρ0,n sinφin,n(R2 +
g′2n a

4

4R2
− a2 − g′2n a

2

4
) (5.7)

where the subscript n is referred to each variable obtained at the nth echo time TEn.

Applying two coaxial cylinders to images acquired at each echo time, we can first solve

each ρ0,n. Then using images from different echo times, we can solve the susceptibility

and cross-sectional area of the object of interest from the following equation and Eq.(5.7)

through an iterative procedure

(ρ0,2Re(S1)− ρ0,1Re(S2)) sin(φin,1) sin(φin,2) =

π`ρ0,1ρ0,2 sin(φin,1) sin(φin,2)
a2

4
(1− a2

R2
)(g′22 − g′21 )

+ρ0,2Im(S1) sin(φin,2) cos(φin,1)− ρ0,1Im(S2) sin(φin,1) cos(φin,2) (5.8)
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Due to little phase outside the vein, we visually determined the center of the vein. The

slightly inaccurate determination of the center would not alter our quantified results later.

We selected two disk areas, A1 > A2, centering around the vein and we summed up the

overall complex signals U1 and U2 within the areas. Note that for biological tissues, the

susceptibility solved from Eq.(5.8) is unique [10]. After solving for ∆χ and πa2, ρ0,c can be

solved from the imaginary part Im(S) = π`a2ρ0,c sinφin of the image.

5.2.2 Revisions of our method due to the presence of a local uniform field

Even if we can precisely remove the background fields due to air/tissue interfaces,

susceptibility differences between tissues will still produce fields around the vein of inter-

est. Thus, we need to take this into account in our equations. As the phase induced by

other tissues in the local area around the vein of interest perhaps varies slowly, we may

approximate that phase to be a constant, φbkg. As a result, the complex signal S shown

in Eq.(5.1) becomes U = Seiφbkg . This local background phase does not affect the quan-

tification of magnetic moment. We will explain the reason in section 5.2.2. However, the

background field could affect the accuracy of searching the center of the object and will

definitely affect the susceptibility quantification. The following three subsections describe

the effects on the center determination and magnetic moment. We will also show how to

estimate this local background phase.

Identification of the center of the object

In our procedures, we first need to determine the center of a given object. We can

identify the center by minimizing the overall real part of the complex signal within a circle

enclosing the object [8]. This circle has a radius R and is chosen by us. With the existence
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of φbkg, this procedure may fail. However, from J, we have proved that if |φbkg| is less than

π/4 and if the maximal phase value at the boundary of the circle (|℘/R2|) is less than

2.63 radians, then our original procedure of finding the center of the object will still be

valid.

Magnetic moment quantification

With the existence of φbkg, the overall signal in an annular region becomes

Uj − Ui = ei φbkgπ`ρ0℘

∫ ℘/R2
i

℘/R2
j

dx

x2
J0(x) (5.9)

where the subscripts i and j refer to different coaxial cylinders or concentric circles. The

magnetic moment can again be solved by using Eq.(5.3). It should be clear that φbkg

cancels out in Eq.(5.3) and it does not change the solution of Eq.(5.3). Alternatively, we

can also replace Re(Uj − Ui) in Eq.(5.3) by |Uj − Ui|.

Local background phase estimation

Since the imaginary part of the overall signal within a coaxial cylinder only comes

from the object itself (see Eq.(5.1)), we can calculate φbkg from the annular region between

R2 and R3. From Eq.(5.9),

φbkg = tan−1 Im(U2 − U3)

Re(U2 − U3)
(5.10)

After estimating φbkg, we subtract φbkg from the phase image, and then calculate the com-

plex signal S. Next, we quantify the magnetic moment with Eq.(5.3) and other unknowns

including the susceptibility.
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If the orientation of an object is small, such that no sufficient phase distribution is

outside the object, we can still consider an annular region around the object and use

Eq.(5.10) to estimate φbkg. In this case, the signal symbol U represents the complex

signal summed around the object. In fact, the area that leads to the signal U does not

need to be a circular region. In addition, we do not need to identify the center of the object

in this case.

5.2.3 Simulations

All of our following simulations, except for those in the high pass filter studies, as-

sumed a main field of 3 T, ∆χ of 0.4 ppm, and radius of the object a = 1 pixel. In those

simulations, the orientation of the object was perpendicular to the main field, except for

two cases where the objects had relatively small orientations (10◦ and 30◦). We simulated

each cylindrical object on a 4096 × 4096 matrix and converted the matrix to 256 × 256

through Fourier transformation. We also added the Gaussian noise in images such that

ρ0/σ is 10:1 at TE = 0 ms, with an infinite T2. Similarly, ρ0,c/σ is 9:1 at TE = 0 ms, with

a T ?2 of the object to be 24 ms. Detailed descriptions of these procedures can be found

in [8, 10]. From ρ0,c at TE = 0 ms and the T ?2 value, with σ assigned to be unity, ρ0,c were

4.4, 3.3, and 2.6 at TE = 17 ms, 24 ms, and 30 ms, respectively. These were the echo

times selectively used in the following scenarios, except for the high pass filter studies.

Presence of the local background field

In order to validate our ideas presented in Section 5.2.2, in this subsection we pur-

posely added a local background phase of 0.1 radian into simulated images at TE = 24 ms.

We estimated the local background phase using Eq.(5.10). Then we quantified the mag-
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netic moment from Eq.(5.3), susceptibility value from Eq.(5.4), and other unknowns, with

and without the removal of the background phase.

Susceptibility quantification at large orientations

We simulated two sets of images at TE = 17 ms and TE = 30 ms for an object perpen-

dicular to the main field. The magnetic moment ℘ at TE = 30 ms was first quantified from

Eq.(5.3). We then scaled ℘ to the value at TE = 17 ms. From the images at TE = 17 ms,

we quantified the susceptibility.

Susceptibility quantification at low orientations

In this set of simulations, we simulated two objects. One object was simulated with an

orientation of 10◦ at TE = 17 ms and TE = 24 ms. The other object had an orientation of 30◦

but was simulated at two different echo time combinations, TE = 17 ms and TE = 24 ms,

and TE = 17 ms and TE = 30 ms. We quantified susceptibility, cross-sectional area, and

two spin densities of these three cases with Eq.(5.7) and Eq.(5.8).

Influence of the high pass filter

For this set of studies, we simulated cylindrical objects at B0 = 3 T, ∆χ = 0.4 ppm,

a = 1 pixel and 3 pixels, and TE = 10, 20, 30, 40, and 50 ms. Both perpendicular and

parallel orientation were simulated on 1024× 1024 matrices which were further converted

to 64× 64 matrices through Fourier transformations. No Gaussian noise or T2 decay were

included in any of these simulated images. We chose ρ0 = ρ0,c = 10.

We applied the homodyne high pass filter (16×16) to these simulated images. In order
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to study the high pass filter effect, we quantified and compared the magnetic moment

of each object at perpendicular orientation with and without the application of the high

pass filter. In addition, we also compared the phase value inside each object at both

orientations with and without the high pass filter. If the magnetic moment and phase

value inside each object do not change before and after the application of the high pass

filter, then we know the high pass filter has no influence onto our quantifications of the

magnetic moment and susceptibility. Given the convenient use of the high pass filter, we

chose the high pass filter in this work over other background phase removal methods.

Table 5.1: Simulated results of magnetic moments of cylindrical objects and phase values
inside objects, at different echo times. The radii of these objects were 1 pixel and 3 pixels.
The orientations of the objects were 90◦ and 0◦. Theoretical values, results without using
the high pass filter, and results using the high pass filter are listed. The first column lists the
radius a of the object. The second column lists TE. The third, sixth, and ninth column show
the magnetic moments ℘. The fourth, seventh, and tenth column list phase values inside
objects perpendicular to the field. The fifth, eighth, and eleventh column list phase values
inside objects parallel to the field. Uncertainties of these quantified results are not shown.

Theory No high pass filter High pass filter
a TE ℘ φ90 φ0 ℘ φ90 φ0 ℘ φ90 φ0

pixel ms rad·pixel2 rad rad rad·pixel2 rad rad rad·pixel2 rad rad
1 10 1.61 0.54 -1.07 1.79 0.39 -0.58 1.89 0.35 -0.52
1 20 3.21 1.07 -2.14 3.55 0.55 -1.45 3.54 0.55 -1.41
1 30 4.82 1.61 -3.21 5.16 1.45 -4.53 5.11 1.55 -4.56
1 40 6.42 2.14 -4.28 6.66 1.96 -4.89 6.53 1.95 -5.00
1 50 8.02 2.68 -5.35 8.26 2.32 -5.62 7.99 2.50 -5.30
3 10 14.4 0.54 -1.07 14.9 0.53 -1.05 14.7 0.34 -0.71
3 20 28.9 1.07 -2.14 29.2 1.08 -2.11 27.0 0.59 -1.60
3 30 43.3 1.61 -3.21 43.8 1.59 -3.26 36.1 0.54 -3.27
3 40 57.8 2.14 -4.28 58.2 2.16 -4.32 41.8 0.34 -4.80
3 50 72.2 2.68 -5.35 72.8 2.72 -5.36 45.3 0.10 -5.65

5.2.4 Re-examination of phantom images with an object at a low orientation

In our previous work [10], we applied the methods described in Sec. 5.2.1 to objects

at the parallel orientation. Here, we want to show that those methods are also applicable
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to objects at low orientations. Thus, we re-examined phantom images in [10] with a straw

oriented at 28.2◦ from the main field and filled by the Gadolinium solution with a theoretical

∆χ = 0.58 ± 0.05 ppm. The diameter of the straw was 4.92 ± 0.02 mm, which led to a

cross-sectional area of 19.0 ± 0.2 mm2. The images were acquired from a single-echo

3D gradient echo sequence on 3 T, repeated three times with three different echo times:

TE = 11 ms, 17 ms, and 20 ms. The image resolution was 1 mm isotropic. We quantified

susceptibilities and radii of the straw from two slices (number 12 and 16) for comparisons.

For each slice, we obtained quantified values from two sets of echo time combinations.

One set used TE = 11 ms and 17 ms and the other set used TE = 11 ms and 20 ms.

The background phase of those phantom images were already removed by a manual

phase unwrapping method and a 2D quadratic fitting program. Thus, we did not apply the

high pass filter to those images. An example of the magnitude and phase image of the

Gd-DTPA doped straw are shown in Fig. 5.2a and Fig. 5.2b.

(a) (b)

Figure 5.2: (a) The magnitude and (b) its associated filtered phase image at echo time 20 ms
acquired from a 3 T machine. The straw filled with Gd-DTPA solution had a diameter of
4.92± 0.02 mm. The straw was immersed in a gel phantom and had an orientation of 28.2◦

to the main field.

5.2.5 Uncertainties of susceptibility and other unknowns

The two major independent noise sources contributing uncertainties in our quantified

results are from the Gaussian noise and the systematic noise due to discrete pixels, partial
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volume effect, and Gibbs ringing in images. Uncertainties of quantified unknowns can be

derived from the error propagation method [18]. These have been discussed in the past

(e.g. [10]). However, if the choice of radius R ≡ R′3 used in Eq.(5.4) is larger than R3 (see

Fig. 5.1(b)), which is used to quantify the magnetic moment, then we need to rederive the

uncertainties of the measured susceptibility value, the cross-sectional area of the object,

and the spin density inside the object. In this scenario, as the annular region between R′3

and R3 overlaps with the annular region between R2 and R3, we must rewrite δ(S2−S3) in

terms of δ(S ′3−S3) and δ(S2−S ′3), where the signal S ′3 is the overall complex signal within

R′3. In K, we show the uncertainties of quantified variables when R2 > R′3 > R3.

In this work, we use a two-echo approach to solve susceptibilities of cylindrical ob-

jects. As we quantify magnetic moment and susceptibility from two different images, no

correlation is between measured results. We provide uncertainty formulas in L and M. For

cylindrical objects at low orientations, we derive uncertainties of the susceptibility and the

cross-sectional area (δ∆χ/∆χ and δA0/A0) by varying susceptibility and area in Eq.(5.7).

We treat δ∆χ/∆χ and δA0/A0 as two unknowns in a new set of linear equations derived

from the variations of Eq.(5.7). Then we solve δ∆χ/∆χ and δA0/A0 simultaneously from

this new set of linear equations. We evaluate these two uncertainties through the error

propagation method.

5.2.6 In vivo MR data collection and processing

We applied our methods to several isolated veins (see Figs. 5.3 and 5.4) from branches

of anterior, inferior, superior cerebral veins, and transverse sinus, which were from two

sets of existing MR images [35, 38]. A 3D gradient echo single-echo sequence with ve-

locity compensation in all three directions was used for the acquisitions of both datasets.
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One set of the images was acquired from a female volunteer at a 3.96 T Bruker machine.

A single channel birdcage head coil was used in this case. The imaging parameters

were: isotropic resolution 0.5 mm, TE = 11.6 ms and 19.2 ms, TR = 26.0 ms, flip angle =

11◦, read bandwidth = 120 Hz/pixel and field of view = 256 mm×176 mm×45 mm. The

k-space data were used for analyses. The scan was performed twice, but individually for

each echo time.

Figure 5.3: A set of 3D gradient echo images at TE = 17.3 ms from 2.89 T shows a vein,
whose susceptibility has been analyzed. (a) Magnitude and (b) its associated phase image
from a volunteer. (c) Sagittal view of the same vein as shown in (a) and (b). The orientation
of this vein is 80◦ ± 3◦ to the main field. The same vein is also displayed in the coronal (d)
magnitude and (e) its associated phase image.

The other set of images was acquired from a male volunteer at a 2.89 T Siemens

VERIO machine. A 12-channel head coil was used in this case. The imaging parameters

were: isotropic resolution 0.5 mm, TE = 14.3 ms and 17.3 ms, TR = 26 ms, flip angle = 15◦,

read bandwidth = 121 Hz/pixel, and field of view = 256 mm×184 mm×128 mm. Only

combined magnitude and phase images were saved for this scan. The images were also

acquired twice, one from each individual echo time.



113

Figure 5.4: A set of SWI images having minimal intensity projections (mIP) over 8 slices
at TE = 19.2 ms from 3.96 T shows a total of five well-separated veins. Quantified results of
those veins are listed in Table 5.6. The mIP images help to display the entire length of each
vein, which is not necessarily lying on the original transverse plane. Results of these veins
are given in the first 5 rows in Table 5.6.

With these two sets of existing images, we first displayed each vein of interest from

the transverse, coronal, and sagittal plane. Figure 5.3 shows an example. Then we es-

timated the direction and orientation of the vein from those three imaging planes. The

detailed procedure of estimating the orientation of a cylindrical object was given in [10].

We summarize other post-processing procedures in the flow chart in Fig. 5.5. For com-

parisons, we also solved for the susceptibility of the vein from Eq.(5.4) at the longer echo

time. In some cases, R′3 was chosen between R2 and R3.

5.3 Results

In this section, we present results of quantified magnetic moments, susceptibility

values, cross-sectional areas of cylindrical objects, and spin densities from simulations,

previous phantom images, and existing human data.
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5.3.1 Simulations

Presence of the local background field

With the assigned local background phase of 0.1 radian, we have estimated a local

background phase of 0.10 radian using radii 1.5 pixels and 2.5 pixels in Eq.(5.10). The

measured magnetic moments are the same with and without the correction of the local

background phase. However, the quantified susceptibility value and other parameters are

improved with the correction of the local background phase (see Table 5.2). This shows

that it is necessary to correct a small local background phase.

Table 5.2: Quantified results from simulated images at TE = 24 ms and with an orientation
of 90◦. The actual values are ℘ = 3.85 rad·pixel2, ∆χ = 0.4 ppm, A = 3.14 pixel2, ρ0 = 10.0,
and ρ0,c = 3.31. The second column lists the magnetic moment. The third column lists the
susceptibility value. The fourth column lists the cross-sectional area, A. The fifth column
lists the effective spin density inside the object. The sixth column lists the effective spin
density outside the object. The results at the third row are before the removal of the local
background phase. The results at the fourth row are after the removal of the local background
phase, which is calculated from Eq. (5.10).

℘ ∆χ A ρ0,c ρ0

unit rad·pixel2 ppm pixel2

Before 3.82 0.44 2.84 5.54 9.91
After 3.82 0.40 3.14 2.80 9.95

Susceptibility quantifications at large orientations

Using the quantified magnetic moment from TE = 30 ms scaled to that at TE = 17 ms

as an input to Eq.(5.4), the precision of the measured susceptibility at TE = 17 ms is im-

proved. The quantified magnetic moment at TE = 30 ms is 4.86±0.34 rad·pixel2, compared

to the input value of 4.82 rad·pixel2. Table 5.3 lists the magnetic moment directly quanti-

fied from TE = 17 ms or scaled from TE = 30 ms, and their associated susceptibilities and
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cross-sectional areas solved from Eq.(5.4).

Table 5.3: Quantified results from simulated images at TE = 17 ms and with an orientation
of 90◦. The theoretical values of input parameters are given in the caption of Table 5.2.
The second column lists the magnetic moment, ℘. The third column lists the susceptibility
value. The fourth column lists the cross-sectional area, A. The magnetic moment in the
third row was quantified directly from Eq.(5.9). The theoretical value of ℘ at TE =17 ms
is 2.73 rad·pixel2. The magnetic moment in the fourth row was scaled by the magnetic
moment, 4.86± 0.34 rad·pixel2, at TE=30 ms.

℘ ∆χ A
rad·pixel2 ppm pixel2

No scaled 2.63± 0.94 0.39± 0.12 3.08± 1.42
Scaled 2.75± 0.19 0.39± 0.07 3.25± 1.69

Susceptibility quantifications at low orientations

The results of measured susceptibility values agree with the theoretical value within

5%. The quantified cross-sectional areas of the objects agree with the input value within

8%. These results are shown in Table 5.4. We also find that this approach is suitable for

objects with orientations up to 40◦.

Table 5.4: Quantified results from simulated images using the low orientation method. The
first column lists the orientation. The second column lists TE. The third column lists
∆χ solved from Eq.(5.8). Numbers inside parentheses show the two echo times used for
calculating the susceptibility. The theoretical value of ∆χ is 0.4 ppm and the theoretical
cross-sectional area is 3.14 pixel2. The chosen radius, R, for solving Eq.(5.8) is 1.5 pixel. The
fourth column lists the cross-sectional area of the cylinder calculated from Eq.(5.7). The
fifth column lists the effective spin density inside the object calculated from the imaginary
part used in Eq.(5.7). The sixth column lists the quantified effective spin density outside
the object.

Angle TE ∆χ A ρ0,c ρ0

Degree ms ppm pixel2

10 17 0.41± 0.03 (17/24) 3.27± 0.78 4.2± 1.6 9.89± 0.20
24 3.14± 0.75 3.4± 1.6 9.89± 0.20

30 17 0.42± 0.13 (17/24) 3.14± 1.70 4.2± 1.7 9.89± 0.20
24 2.96± 1.60 4.5± 2.8 9.88± 0.20

30 17 0.42± 0.05 (17/30) 2.89± 0.84 4.2± 1.2 9.79± 0.20
30 2.96± 0.86 2.5± 1.1 9.76± 0.20
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Influence of the high pass filter

For cylindrical objects whose radii are 1 pixel, quantified magnetic moments and

phase values are almost the same with or without the application of the high pass filter

(see Table 5.1). It indicates that quantifications of small objects are not affected by the

high pass filter. Therefore, our in-vivo results are unlikely affected by the chosen size

of the high pass filter. We note that due to the partial volume effect, some measured

phase values inside objects can be much smaller than the actual phase values. However,

quantified susceptibility values using our method still agree well with input values.

For cylindrical objects whose radii are 3 pixels, quantified magnetic moments using

our method with or without the application of the high pass filter can become very different

when the echo time is 30 ms or longer (see Table 5.1). In addition, even at TE = 10 ms,

measured phase values (from central pixels completely inside each object) can already

be different with the use of the high pass filter. This shows that the high pass filter can

influence susceptibility quantification when an object is slightly large.

With the applications of the high pass filter, if a phantom or a brain does not occupy

the entire image, our further simulations show that the phase value inside a cylindrical

object can be further reduced. The reduction depends on the phantom size (or the brain

size), object size, object orientation, the original phase value inside the object, or the size

of the high pass filter. This was the reason why we cropped the human images before we

applied the high pass filter.
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5.3.2 Re-examination of the previous phantom images

Table 5.5 lists phantom results from an object at the low orientation (28.2◦). The differ-

ences between the quantified susceptibility values and the expected value (0.58 ppm) are

less than 10%. However, the differences between the measured cross-sectional areas

and the true value (19.0 ± 0.2 mm2) can be up to 30%. The uncertainties of these results

are about one third of those results quantified from the previous single echo approach

using Eq.(5.4) [10].

Table 5.5: Quantified results from phantom images with an image resolution of 1 mm
isotropic, using two different echo times when the object is parallel to the main field. Two
different slices have been analyzed. The theoretical value of ∆χ is 0.58± 0.05 ppm and the
cross-sectional area is 19.0± 0.2 mm2. The first column lists the echo time. The second and
the sixth column list ∆χ solved from Eq.(5.8). The chosen radius, R, for solving Eq.(5.8)
is 3.0 mm. The superscripts, a and b, refer to the two echo times used for quantifying the
susceptibility. The third and seventh column list the cross-sectional area of the cylinder
calculated from Eq.(5.7). The fourth and eighth column list the effective spin density inside
the object calculated from the imaginary part used in Eq.(5.7). The fifth and ninth column
list the effective spin density outside the object.

Slice number 12 Slice number 16
TE ∆χ Area ρ0,c ρ0 ∆χ Area ρ0,c ρ0

(ms) ppm mm2 ppm mm2

11 23.4± 3.7 2241± 130 1291± 13 23.2± 3.7 2239± 130 1263± 13
17 0.55± 0.03a 22.7± 2.3 2059± 160 1272± 13 0.56± 0.03a 22.7± 2.3 2021± 160 1257± 13
20 0.55± 0.02b 22.6± 2.9 1961± 120 1261± 13 0.54± 0.02b 24.8± 3.2 2137± 120 1262± 13

Comments: aTE = 11 ms and 17 ms. bTE = 11 ms and 20 ms .

5.3.3 Results from existing human images

Our quantified susceptibility values shown in Table 5.6a in general agree with values

(0.37-0.54 ppm) from other recent work [43, 55, 44]. However, our susceptibility values of

5 veins in different regions of each volunteer′s brain are close to each other. The typical

susceptibility value from a vein of a healthy person is about 0.41 ppm, if we assume an

oxygenation level of 70%, a Hemoticrit of 40%, and a susceptibility difference between

fully deoxygenated blood and oxygenated blood of 3.39 ppm [50]. From the measured
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cross-sectional area of each vein in Table 5.6a, we find that the diameters of analyzed

vein range from 1.2 to 3.0 pixels.

For comparisons, Table 5.6b lists the results of magnetic moments, susceptibility

values, cross-sectional areas, and other variables of veins quantified from the longer echo

time of each volunteer′s images. We find that in general the results of susceptibility values,

cross-sectional areas, and spin densities inside veins have larger uncertainties than those

results in Table 5.6a. The susceptibility values in highlighted grey areas in Table 5.6 were

estimated using Eq.(5.6).

For veins at low orientations, we have quantified two vessels with orientations of

20◦ ± 5◦ and 29◦ ± 3◦ at TE = 11.6 ms from 3.96 T images. As the volunteer moved

between the scans, at TE = 19.2 ms, the orientation of the latter vein changed from 29◦±3◦

to 16◦ ± 5◦, but the orientation of the former vein did not change. The susceptibility value

of the former vein is 0.46 ± 0.11 ppm and its cross-sectional area is 1.54 ± 1.23 pixel2.

The susceptibility value of the latter vein is 0.43 ± 0.03 ppm and its cross-sectional area

is 4.37 ± 1.18 pixel2. These two susceptibility values are in good agreement with those

shown in Table 5.6a.

We have also estimated susceptibility values of veins at low orientations from 2.89 T.

However, the quantified values are about 0.6 ppm. A closer examination reveals that

phase values inside those veins are much higher than the expected value at TE = 14.3 ms,

but are about the same as the expected values at TE = 17.3 ms if a susceptibility of

0.40 ppm is assumed. After we further examine the data, we believe that this problem is

due to the combination of multi-channel phase images.
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5.4 Discussion

Our averaged susceptibility values of veins from Table 5.6a for two volunteers imaged

at 3.96 T and 2.89 T are 0.46±0.02 ppm and 0.39±0.02 ppm, respectively. For the purpose

of comparing results below from other groups, the calculated standard deviations here

have neglected the uncertainty of the susceptibility of each vein. The standard deviation,

0.02 ppm, is smaller than those from other recent results. For example, the averaged

susceptibility values of veins in each volunteer for three volunteers in the work by [43]

are 0.54 ± 0.13 ppm, 0.49 ± 0.09 ppm, and 0.53 ± 0.09 ppm. Note that these averaged

susceptibility values are higher than our values. In addition, the averaged diameter of

quantified veins from [43] is 4.5 pixels, compared to a range of 1.2-3.0 pixels from our

images.

In the work by [44], the averaged susceptibility value of 48 veins from 8 volunteers

(7 of whom are male) is 0.37 ppm. The standard deviation of the susceptibility quantified

from 6 cortical veins of each volunteer is between 0.04 ppm and 0.08 ppm (see Fig. 5b

of [44]). In another work by [55], the averaged susceptibility value of small veins from 6

subjects is 0.45±0.02 ppm. The phase and the statistical method described in [55] require

subjects to breathe in PCO2 and PO2 independently at 7 T.

In our previous work [10], when the orientation of the cylindrical object is around the

magic angle (54.7◦), Eq.(5.4) cannot solve for the susceptibility of the object. However,

for the vein around the magic angle, we may quantify the susceptibility of this vein by

obtaining the magnetic moment in the typical gradient echo sequence and measuring the

size of this vein by applying the dark blood spin echo sequence.
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With uncertainty formulas given in the Appendices of this paper and in Appendix B

of [10], we can optimize imaging parameters by minimizing the uncertainties of suscep-

tibilities of small veins but keeping reasonable imaging time of a two-echo 3D gradient

echo sequence. The first consideration is the image resolution. If we are interested in

veins with diameters similar to those quantified in this work (at least 0.5 mm in diameter),

we can reduce the isotropic image resolution to 0.6 mm. Second, if our goal is to maintain

uncertainties of the susceptibility less than 35% from a 3 T machine, for most veins with a

diameter of at least two pixels, SNR at least 5.7 to 1 from the shorter echo time, and with

orientations either larger than 70◦ or smaller than 30◦, we can choose TE to be 17 ms and

24 ms. The choice of 24 ms is because this value is close to T ∗2 of the venous blood [57].

The choice of 17 ms is to have some time difference away from 24 ms, but TE = 17 ms is

still long enough such that we have sufficient phase values inside those veins of interest. If

we choose TR to be 28 ms and a transverse scan with a field of view of 256 mm×192 mm

and a slab coverage of 128 mm, the scan time will be about 32 minutes. If we choose TE

to be 17 ms and 30 ms and TR to be 35 ms, with other parameters being the same, the

scan time will be about 40 minutes. However, the uncertainties of the susceptibility for the

same veins will be reduced to 16%. This can be seen from results shown in Table 5.3

and Table 5.4. If a vein has a length to diameter ratio of more than 5:1, depending on

the length of the vein, it may be possible to average quantified susceptibility values from

several slices. This will further reduce the uncertainty of the measurement.

Another possible way to reduce the uncertainty of the measured susceptibility from

a vein at a large orientation is to inject the contrast agent (Gd-DTPA) into subjects. Here

we assume that the vessel size does not change before and after the injection. We can
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first determine the size of the vein from post-contrast images and then calculate the sus-

ceptibility of the same vein from pre-contrast images. Our simulations indicate that this

approach can lead to an uncertainty less than 15% with the above parameters of the vein

and with TE = 17 ms and 24 ms.

For the consideration of scan time, if a typical neuro protocol has covered the entire

brain with either T1-weighted or T2-weighted sequence, then we may use these suggested

parameters of the 3D gradient echo sequence to cover only a portion of the brain in which

susceptibilities of veins are interested to clinicians. If we just cover 64 slices, the scan time

will be less than 12 minutes. We may further reduce this scan time by enabling parallel

imaging.

5.5 Conclusion

With the improved procedures that take into account practical issues in MR imaging,

we have demonstrated that magnetic susceptibilities and cross-sectional areas of veins

at different orientations can be quantified with reasonable accuracy and precision. The

susceptibility values of different veins are almost the same for each volunteer, while the

susceptibility values differ between the two volunteers in this work. We have also shown

that our post processing procedures will not be affected by subject movements between

scans.
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Table 5.6: Magnetic susceptibility and 4 other unknowns of veins were measured from TE =
19.2 ms and 11.6 ms at 3.96 T and from TE = 17.3 ms and 14.3 ms at 2.89 T. The first column
lists the main field strength. The second column lists each vessel’s orientation. The third
column lists the magnetic moment of the vessel. Results from (a) show quantified magnetic
moments from the longer echo time but other quantified parameters from the shorter echo
time, by scaling the measured magnetic moments to values at the shorter echo time. On the
other hand, results from (b) show quantified values all from the longer echo time. The fourth
column lists ∆χ of the venous blood. The fifth column lists the cross-sectional area of each
vein. The sixth column lists the effective spin density inside each vein. The seventh column
lists the effective spin density outside each vein. The last vein in the tables has different
orientations, due to the movement of the volunteer between the two scans. The orientation
of this vein in (a) is from the shorter echo time, while the value in (b) is from the longer
echo time.
B0 Angle ℘ ∆χ A0 ρ0,c ρ0

(Degree) rad·pixel2 ppm pixel2

4 80± 3 1.29± 0.55 0.46± 0.37 1.50± 1.79 297± 217 279± 8
4 90± 1 2.01± 0.32 0.45± 0.16 2.27± 1.11 239± 98 292± 9
4 75± 3 2.57± 0.31 0.45± 0.12 3.14± 1.00 384± 104 334± 10
4 70± 3 1.22± 0.35 0.48± 0.34 1.45± 1.39 254± 163 323± 6
4 70± 3 1.35± 0.32 0.48± 0.31 1.63± 1.38 309± 185 261± 8
3 80± 3 2.67± 0.45 0.40± 0.19 3.94± 2.48 242± 87 306± 9
3 90± 1 2.30± 0.44 0.38± 0.22 3.46± 2.11 57± 30 303± 9
3 80± 3 2.03± 0.45 0.36± 0.22 3.33± 2.70 164± 64 354± 11
3 67± 3 3.07± 0.31 0.40± 0.20 5.15± 2.78 198± 63 227± 7
3 75± 3 1.59± 0.64 0.39± 0.34 2.49± 2.99 231± 136 338± 7

(a)

B0 Angle ℘ ∆χ A0 ρ0,c ρ0

(Degree) rad·pixel2 ppm pixel2

4 80± 3 2.13± 0.91 0.43± 0.39 1.58± 1.57 28± 24 227± 7
4 90± 1 3.32± 0.53 0.32± 0.13 3.20± 1.83 87± 54 244± 7
4 75± 3 4.26± 0.51 0.70± 0.30 2.01± 0.90 143± 112 299± 7
4 70± 3 2.02± 0.58 0.37± 0.21 1.91± 1.51 329± 194 281± 8
4 70± 3 2.23± 0.53 0.28± 0.15 2.90± 2.00 230± 108 210± 6
3 80± 3 3.23± 0.55 0.44± 0.09 3.53± 0.92 214± 58 283± 8
3 90± 1 2.78± 0.53 0.33± 0.17 3.94± 0.62 90± 36 286± 8
3 80± 3 2.46± 0.54 0.36± 0.19 3.27± 1.05 118± 67 344± 10
3 67± 3 3.72± 0.37 0.35± 0.21 5.90± 3.60 168± 54 220± 7
3 70± 3 1.82± 0.73 0.35± 0.38 2.78± 1.78 241± 203 318± 6

(b)
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Figure 5.5: The flow chart of in-vivo MR data post-processing procedures. The vein is
pointed by the yellow arrows at the center of (a), (b), and (c). The signals of this vein and
of the surrounding area in magnitude (a) and filtered phase images (c) have been used for
extracting the susceptibility and the cross-sectional area of the vein.
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Chapter 6

APPLICATION AND FUTURE DIRECTIONS

This series of work has shown accurate results in the susceptibility quantifications of

small objects such as veins, air bubbles, and glass beads. The CISSCO method has now

also been applied to cerebral microbleeds, calcified spots in the brain, and nanoparticles.

The latter can be used as therapeutic agents for treatments or cell labeling at the molecu-

lar level [58]. Currently, nanoparticles are quantified by the typical R2 and R?
2 method [59],

but the lack of MR signals leads to inaccurate results. The CISSCO method avoids low

MR signals of objects themselves, as it first obtains the magnetic moment of each object

based on field distributions around the object. When the 3D CISSCO method is applied

to localized clusters of nanoparticles which label cells in rat brains [60], the number of

labeled cells in each cluster can be calculated from CISSCO and other known informa-

tion such as the neural progenitor cellular iron uptake [61]. This ability of measuring the

number of cells opens the door for evaluating drug efficacies in the in vivo settings.

While the CISSCO method is developed with the assumptions that objects are spheres

or long cylinders, the method can be applied to objects that are not perfect spheres or long

cylinders. This is because the far field induced from an object can be always modeled

from a sphere with an equivalent magnetic moment. This basic physics concept allows

us to apply CISSCO to many in vivo objects. However, for accurate susceptibility quan-

tifications of in vivo objects, we must first establish standards from phantom studies. As

the magnetic susceptibility of a solution is proportional to its concentration, we have seen

some very accurate results from CISSCO applied to phantoms consisting of gadolinium,

ferritin, and nanoparticle solutions [62]. In general, the uncertainties from these phantom
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studies are less than 10%.

Although a quantified magnetic moment from the 2D CISSCO method will not be

affected by a constant but unknown background phase around the object, this is not true

for the 3D CISSCO method. Thus, the 3D CISSCO method requires further improvement

before it is applied to in vivo objects [60].

Related to susceptibility quantifications from MR images, it is also important to prop-

erly remove the background phase. Currently the most effective background removal

method is SHARP [28], but SHARP can still leave some background phase in the sur-

roundings of an object. Some efforts have been made recently [63] but more work toward

this direction is needed. Only with a proper background phase removal method, QSM

methods can really be applied to clinical domain and served as a diagnostic tool for health

conditions such as Alzheimers disease, vascular dementia, traumatic brain injuries, etc..
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Appendix A

MAXIMIZING THE REAL SIGNAL FROM AN ANNULAR RING TO

IDENTIFY THE OBJECT CENTER

We first define β ≡ ρ2 = (ρ cosψ − x0)2 + (ρ sinψ − y0)2 and α ≡ (ρ cosψ − x0)2 −

(ρ sinψ − y0)2 such that

cos 2ψ =
(ρ cosψ − x0)2 − (ρ sinψ − y0)2

ρ2
≡ α

β
(A.1)

We also define

f ≡ e−ip cos 2ψ/ρ2 = e−ipα/β
2

(A.2)

such that the MR signal S is

S = `ρ0

∫ R2

R1

dρ ρ

∫ 2π

0

dψf (A.3)

The first derivatives of f with respect to x0 and y0 are

∂f

∂x0

= −ipf 2

β3
(x0 − ρ cosψ)[3(ρ sinψ − y0)2 − (ρ cosψ − x0)2] (A.4)

∂f

∂y0

= ipf
2

β3
(y0 − ρ sinψ)[3(ρ cosψx0)2 − (ρ sinψy0)2] (A.5)

The second derivatives of f with respect to x0 and y0 at x0 = y0 = 0 are

∂2f

∂x2
0

∣∣∣∣
x0=y0=0

= −2p2f
1

ρ6
(1 + cos 6ψ)− 6ipf

1

ρ4
cos 4ψ (A.6)

∂2f

∂y2
0

∣∣∣∣
x0=y0=0

= −2p2f
1

ρ6
(1− cos 6ψ) + 6ipf

1

ρ4
cos 4ψ (A.7)
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As

∫ 2π

0

dψf = 2πJ0(p/ρ2) (A.8)∫ 2π

0

dψf · cos 4ψ = −2πJ2(p/ρ2) (A.9)∫ 2π

0

dψf · cos 6ψ = 2πiJ3(p/ρ2) (A.10)

it becomes clear that

Im
∂2S

∂x2
0

∣∣∣∣
x0=y0=0

= −Im ∂2S

∂y2
0

∣∣∣∣
x0=y0=0

(A.11)

and

Re
∂2S

∂x2
0

∣∣∣∣
x0=y0=0

= Re
∂2S

∂y2
0

∣∣∣∣
x0=y0=0

= 2π`ρ0

(
p

R2
2

J1

(
p

R2
2

)
− p

R2
1

J1

(
p

R2
1

))
(A.12)

As R2 > R1 and the maximum of xJ1(x) occurs at x ≈ 2.4, the first root of J0(x), proper

choices of R1 and R2 can lead to a negative value of Eq. A.12. Therefore, the object

center can be identified by maximizing the real part of the signal from an annular ring.
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Appendix B

MINIMIZING THE REAL SIGNAL OF A CIRCLE TO IDENTIFY THE

OBJECT CENTER

The calculations used in this Section require the results derived in the Appendix D

and Eq. 2.9. At x0 = y0 = 0, r(ψ) = a and the relevant MR signal is

S = `ρ0

∫ 2π

0

dψ

∫ R

a

dρ ρ f (B.1)

which is identical to Eq. A.3 if the upper and lower limits of the ρ integral are properly

replaced.

The second derivatives of Eq. 2.7 are the results derived from Appendix D with proper

changes of the integral limits, plus the following term:

∂2S

∂x2
0

∣∣∣∣
extra

=
∂

∂x0

(
∂S

∂x0

∣∣∣∣
extra

)
− `ρ0

∫ 2π

0

dψ r(ψ)
∂r(ψ)

∂x0

∂f

∂x0

∣∣∣∣
ρ=r(ψ)

(B.2)

where
∂S

∂x0

∣∣∣∣
extra

= −`ρ0

∫ 2π

0

dψ r(ψ)
∂r(ψ)

∂x0

f

∣∣∣∣
ρ=r(ψ)

(B.3)

The second derivative with respect to y0 has the identical format with x0 replaced by y0.

After tedious derivations, we obtain

Im
∂2S

∂x2
0

∣∣∣∣
x0=y0=0

= −Im ∂2S

∂y2
0

∣∣∣∣
x0=y0=0

(B.4)

and

Re
∂2S

∂x2
0

∣∣∣∣
x0=y0=0

= Re
∂2S

∂y2
0

∣∣∣∣
x0=y0=0

= 2π`ρ0

( p

R2

)
J1

( p

R2

)
> 0 (B.5)

when 0 < |p/R2| < 3.8, the second root of J1(x). That the result of Eq. J.2 only depends

on R rather than both R and a indicates that this procedure of finding the object center is

still valid even if the center of the circle R is outside the object. From a different point of

view, when an object (such as a nanoparticle) is very small, one can identify the center
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of the object by replacing the small object by a much larger object but with the identical

magnetic moment p. This is because when the value of |g| is larger than roughly 5, one

cannot unambiguously determine the volume of the object based on the gradient echo

signal (see Fig. 2.4a).
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Appendix C

ACCURACY OF THE OBJECT CENTER

Even though the center of the object can be determined by the method described in

the Appendix E, the center cannot be accurately located due to the presence of noise in

images. Consider the Taylor expansion of the MR signal

S(x0, y0) = S|x0=y0=0 +
1

2
x2

0

∂2S

∂x2
0

∣∣∣∣
x0=y0=0

+
1

2
y2

0

∂2S

∂y2
0

∣∣∣∣
x0=y0=0

+ (higher order terms) (C.1)

where the first order terms vanish, as described in the main text. The center of the object

cannot be accurately determined if the sum of the second order terms is less than the

noise term and even if the higher order terms are neglected. Using the result of Eq. J.2

and considering only the thermal noise, σ`
√

∆x∆yπR2, the following criterion can be

established

x2
0 + y2

0

∆x∆y
≤

√
πR2

∆x∆y

πSNR
(
p
R2

)
J1

(
p
R2

) =

√
p

∆x∆y

√
πSNR

(
p
R2

)3/2
J1

(
p
R2

) (C.2)

The maximum of x1.5J1(x) occurs at x ≈ 2.6 and the maximum is roughly 2. At x = 1.5

and 2, x1.5J1(x) = 1.02 and 1.63, respectively. With a given magnetic moment p in an

image, Eq. C.2 clearly defines how accurate the center can be determined.
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Appendix D

MAXIMIZING THE REAL PART OF THE SIGNAL FROM A SPHERICAL

SHELL TO IDENTIFY THE OBJECT CENTER

In order to calculate the derivatives of signal S in Eq. 3.3, we first calculate the deriva-

tives of its integrand. We define

f ≡ e−ip(3 cos2 θ−1)/d3 (D.1)

and we obtain

∂f

∂x0
= −3ipf

d7
[4(r cos θ − z0)2 − (r sin θ cosφ− x0)2 − (r sin θ sinφ− y0)2](r sin θ cosφ− x0)

∂f

∂y0
= −3ipf

d7
[4(r cos θ − z0)2 − (r sin θ cosφ− x0)2 − (r sin θ sinφ− y0)2](r sin θ sinφ− y0)

∂f

∂z0
= −3ipf

d7
[3(r sin θ cosφ− x0)2 + 3(r sin θ sinφ− y0)2 − 2(r cos θ − z0)2](z0 − r cos θ)

(D.2)

We can easily find that the first derivatives and the cross terms of the second derivatives

of S are all zero at r0 = 0. The remaining second derivatives at r0 = 0 are

∂2S

∂x20

∣∣∣∣
r0=0

= −6πpρ0

[
3p

∫ R1

R2

dr

r6

∫ 1

0

dx(5x2 − 1)2(1− x2)f0 − i
∫ R1

R2

dr

r3

∫ 1

0

dx(35x4 − 30x2 + 3)f0

]
∂2S

∂y20

∣∣∣∣
r0=0

=
∂2S

∂x20

∣∣∣∣
r0=0

∂2S

∂z20

∣∣∣∣
r0=0

= −12πpρ0

[
3p

∫ R1

R2

dr

r6

∫ 1

0

dx(3− 5x2)2x2f0 + i

∫ R1

R2

dr

r3

∫ 1

0

dx(35x4 − 30x2 + 3)f0

]
(D.3)

where f0 ≡ e−ip(3x
2−1)/r3. By changing the variable r to φ and defining φ ≡ p/r3, φ1 ≡ p/R3

1,

and φ2 ≡ p/R3
2, we can rewrite the above equations to

∂2S

∂x20

∣∣∣∣
r0=0

= −2πp1/3ρ0

[
3

∫ φ2

φ1

φ2/3dφ

∫ 1

0

dx(5x2 − 1)2(1− x2)fφ − i
∫ φ2

φ1

dφ

φ1/3

∫ 1

0

dx(35x4 − 30x2 + 3)fφ

]
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∂2S

∂z20

∣∣∣∣
r0=0

= −4πp1/3ρ0

[
3

∫ φ2

φ1

φ2/3dφ

∫ 1

0

dx(3− 5x2)2x2fφ + i

∫ φ2

φ1

dφ

φ1/3

∫ 1

0

dx(35x4 − 30x2 + 3)fφ

]
(D.4)

where fφ ≡ exp{−iφ(3x2 − 1)}. Only the real part of the above equations are invariant

when p is changed to −p. Thus, we only use the real part to identify the object center.
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Appendix E

MINIMIZING THE REAL PART OF THE SIGNAL WITHIN A SPHERE TO

IDENTIFY THE OBJECT CENTER

Following the derivation in the above Appendix D, the following first derivative is the

extra term that we need to include here in addition to Eq. D.2

∂S

∂w

∣∣∣∣
extra

= −ρ0

∫ 2π

0

dφ

∫ π

0

dθ sin θρ2f

∣∣∣∣
r=ρ(θ,φ)

∂ρ

∂w
(E.1)

where w is either x0, y0, or z0. At r0 = 0, one can show that the first derivatives and cross

terms of the second derivatives are all zero. The remaining second derivatives of Eq. 3.4

are the following terms plus the results from Eq. D.3

∂2S

∂x2
0

∣∣∣∣
extra,r0=0

= 2πρ0a

∫ 1

0

dx (3x2 − 1)fa + 6iπρ0
p

a2

∫ 1

0

dx (7x2 − 1)(1− x2)fa

∂2S

∂y2
0

∣∣∣∣
extra,r0=0

=
∂2S

∂x2
0

∣∣∣∣
extra,r0=0

∂2S

∂z2
0

∣∣∣∣
extra,r0=0

= −4πρ0a

∫ 1

0

dx (3x2 − 1)fa − 12iπρ0
p

a2

∫ 1

0

dx (5− 7x2)x2fa (E.2)

where fa ≡ exp{−iφa(3x2 − 1)} and φa ≡ p/a3. By defining φR ≡ p/R3, the final formulas

of the second derivatives are

∂2S

∂x20

∣∣∣∣
r0=0

= 2πρ0a

[∫ 1

0

dx (3x2 − 1)fa − 3φ1/3
a

∫ φa

φR

φ2/3dφ

∫ 1

0

dx(5x2 − 1)2(1− x2)fφ

+3iφa

∫ 1

0

dx (7x2 − 1)(1− x2)fa + iφ1/3
a

∫ φa

φR

dφ

φ1/3

∫ 1

0

dx(35x4 − 30x2 + 3)fφ

]
∂2S

∂y20

∣∣∣∣
r0=0

=
∂2S

∂x20

∣∣∣∣
r0=0

∂2S

∂z20

∣∣∣∣
r0=0

= −4πρ0a

[∫ 1

0

dx (3x2 − 1)fa + 3φ1/3
a

∫ φa

φR

φ2/3dφ

∫ 1

0

dx(3− 5x2)2x2fφ

+3iφa

∫ 1

0

dx (5− 7x2)x2fa + iφ1/3
a

∫ φa

φR

dφ

φ1/3

∫ 1

0

dx(35x4 − 30x2 + 3)fφ

]
(E.3)

Again, as only the real part of the above equations are invariant when p is changed to −p,

we only use the real part to identify the object center.
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Appendix F

UNCERTAINTY OF SUSCEPTIBILITY AT A GENERIC ORIENTATION:

MAGNETIC MOMENT AND SUSCEPTIBILITY ARE QUANTIFIED

FROM THE SAME IMAGE

In the evaluations of the following equations in this Appendix, positive magnetic mo-

ment value |℘| and positive susceptibility |∆χ| should be used.

When the susceptibility is quantified from S3, which is enclosed by a radius R3, the

uncertainty of the susceptibility is given by

δ∆χ

∆χ
=

√
δθ2A2 + ( δRe(S3)

π`σ
)2B2 + ( δIm(S3)

π`σ
)2C 2 + ( δ(S1−S2)

π`σ
)2D2 + ( δ(S2−S3)

π`σ
)2E 2

|℘/ sin θ2| |SNR0,c(1− 3 cos2 θ)/3− SNR0 sinφinJ0(g′)/g|
(F.1)

where SNR0 ≡ ρ0/σ and SNR0,c ≡ ρ0,c/σ

A = 2|℘|cos θ

sin θ

(
SNR0 sinφin

J0(g′)

g′
− SNR0,c

)
(F.2)

B = − sinφin

C = cosφin

D = sinφin

 h3

h12

+
h23

(
h3
h12

(J0(φ2)
φ2
− J0(φ1)

φ1
) + J0(φ3)

φ3

)
h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2



E = − sinφin

(
h3(J0(φ2)

φ2
− J0(φ1)

φ1
) + h12

J0(φ3)
φ3

)
h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2
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where h3 =
∫ |g′|
φ3

dx
x2
J0(x), and φi ≡ |℘|/R2

i , i = 1, 2 or 3

hij =

∫ φj

φi

dx

x2
J0(x)

δRe(S3)

π`σ
=

√
∆x∆yR2

3

π
+ ε2R(℘h3SNR0 + SNR0,c cosφin

℘

|g′|
)2

where εR is defined as the percentage change between the theoretical value of Re(S3)

and summed Re(S3) directly from images.

δIm(S3)

π`σ
=

√
∆x∆yR2

3

π
+ ε2I(SNR0,c sinφin

℘

|g′|
)2

where εI is defined as the percentage change between the theoretical value of Im(S3)

and summed Im(S3) directly from images.

δ(Si − Sj)
π`σ

=

√
∆x∆y

π

∣∣R2
i −R2

j

∣∣+ ε2ij(℘hijSNR0)2

where εij ≡ δ(Si−Sj)/(Si−Sj) for i, j = 1, 2, 3 and the index i or j refers to the circle within

which the complex signal is added. Similarly, εij should be interpreted as the percentage

change between the theoretical Si − Sj (which is a real number) and the real part of

summed Si − Sj directly from images.

The uncertainty of the spin density outside the object is calculated from S1 − S2 and

is given by
δρ0

ρ0

=
1

SNR0

√
(
F

℘
)2(
δ(S1 − S2)

π`σ
)2 + (

G

℘
)2(
δ(S3 − S2)

π`σ
)2

where

F

℘
=

1

℘h12

+

h23
h12

(
h12 + J0(φ2)

φ2
− J0(φ1)

φ1

)
℘
(
h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2

)
G

℘
=

−
(
h12 + J0(φ2)

φ2
− J0(φ1)

φ1

)
℘
(
h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2

)
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The cross-sectional area of a cylindrical object is defined as A0 ≡ πa2. Its uncertainty

is given by

δA0

A0

=

[
(
A

H
+ 2 cot θ)2δθ2 + (

B

H
)2(
δRe(S3)

π`σ
)2 + (

C

H
)2(
δIm(S3)

π`σ
)2

+(
h23

I
+
D

H
)2(
δ(S1 − S2)

π`σ
)2 + (

h12

I
− E

H
)2(
δ(S2 − S3)

π`σ
)2

]1/2

where

H =
∣∣℘/ sin θ2

∣∣ (SNR0,c(1− 3 cos2 θ)/3− SNR0 sinφinJ0(g′)/g
)

I = ℘SNR0

(
h12

J0(φ3)

φ3

+ h23
J0(φ1)

φ1

+ h31
J0(φ2)

φ2

)
The spin density inside the object is given by

δρ0,c

ρ0,c

=

[(
δIm(S3)

π`σ

)2(
1

a2 sinφinSNR0,c

+
C

H
(1− φin cotφin)

)2

+

(
δRe(S3)

π`σ

)2(
B

H
(1− φin cotφin)

)2

+

(
δ(S1 − S2)

π`σ

)2

J2 +

(
δ(S2 − S3)

π`σ

)2

K2

+ (δθ)2

(
A

H
(1− φin cotφin)− g sin 2θ cotφin + 2 cot θ

)2
]1/2

where

J =
D

H
(1− φin cotφin) +

h23

I

K =
E

H
(1− φin cotφin)− h12

I
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Appendix G

UNCERTAINTY OF SUSCEPTIBILITY FOR THE PARALLEL

ORIENTATION

In this Appendix, subscripts 1 and 2 in the following equations refer to the values

quantified from echo time TE1 and TE2, respectively. They should not be confused with

different radii used in the main text and the previous Appendix.

The uncertainty of the susceptibility is given by

δ∆χ

∆χ
=

[
δθ2(

A
H

)2 + (
B
H

)2

(
δρ0,1

ρ0,1

)2

+ (
C
H

)2

(
δρ0,2

ρ0,2

)2

+ (
D
H

)2

(
δRe(S1)

`ρ0,1

)2

(G.1)

+ (
E
H

)2

(
δRe(S2)

`ρ0,2

)2

+ (
F
H

)2

(
δIm(S1)

`ρ0,1

)2

+ (
G
H

)2

(
δIm(S2)

`ρ0,2

)2
]1/2

A = −I sin 2θ

B = tanφin,1

(
Im(S2)

`ρ0,2

− Re(S2)

`ρ0,2

tanφin,2

)

C = tanφin,2

(
Re(S1)

`ρ0,1

tanφin,1 −
Im(S1)

`ρ0,1

)

D = tanφin,1 tanφin,2

E = −D

F = − tanφin,2

G = tanφin,1
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H =
1

3
(1− 3 cos2 θ)I

I =

(
Re(S1)

`ρ0,1

− Re(S2)

`ρ0,2

)
(g1 · tanφin,2 + g2 · tanφin,1)

+
Im(S1)

`ρ0,1

(g1 tanφin,1 tanφin,2 − g2)− Im(S2)

`ρ0,2

(g2 tanφin,1 tanφin,2 − g1)

δRe(Sn)

`ρ0,n

=

√
∆x∆y

πR2

SNR2
0,n

+ ε2R

(
Re(Sn)

`ρ0,n

)2

(G.2)

δIm(Sn)

`ρ0,n

=

√
∆x∆y

πR2

SNR2
0,n

+ ε2I

(
Im(Sn)

`ρ0,n

)2

(G.3)

δρ0,n

ρ0,n

=

√
∆x∆y

π(R2
a −R2

b)SNR2
0,n

+ ε2ab

where εab is the percentage error between the theoretical spin density and the measured

spin density within the annular ring defined by radii Ra and Rb.

The uncertainty of the cross-sectional area quantified from each echo time is given

by

(
δA0

A0

)
TE1

=

[(
δIm(S1)

`ρ0,1

)2(KF
JH

+
cotφin,1

J

)2

+

(
δIm(S2)

`ρ0,2

)2(KG
JH

)2

(G.4)

+

(
δRe(S1)

`ρ0,1

)2(KD
JH
− 1

J

)2

+

(
δRe(S2)

`ρ0,2

)2(KE
JH

)2

+

(
δρ0,1

ρ0,1

)2(KB
JH

+
M
J

)2

+

(
δρ0,2

ρ0,2

)2(KC
JH

)2

+ δθ2

(
KA
JH

+
L
J

)2
]1/2
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and

(
δA0

A0

)
TE2

=

[(
δIm(S1)

`ρ0,1

)2(KF
JH

)2

+

(
δIm(S2)

`ρ0,2

)2(KG
JH

+
cotφin,2

J

)2

(G.5)

+

(
δRe(S1)

`ρ0,1

)2(KD
JH

)2

+

(
δRe(S2)

`ρ0,2

)2(KE
JH
− 1

J

)2

+

(
δρ0,1

ρ0,1

)2(KB
JH

)2

+

(
δρ0,2

ρ0,2

)2(KC
JH

+
M
J

)2

+ δθ2

(
KA
JH

+
L
J

)2
]1/2

where the subscript n used in the following definitions refers to each variable obtained at

the nth echo time TEn, as those variables depend on the echo time.

J = A0

(
1 +

g′2n
4
− g′2n a

2

2R2

)

K = −φin,n
Im(Sn)

`ρ0,n

csc2 φin,n − π(R2 − a2)
g′2n a

2

2R2

L = −gn
Im(Sn)

`ρ0,n

csc2 φin,n sin 2θ − π(R2 − a2)
g′2n a

2

R2
cot θ

M = π(R2 − a2)(1− g′2n a
2

4R2
)

If the cross-sectional area is averaged from two echo times, its uncertainty is given

by

δA0

A0

= N−1

[(
δRe(S1)

`ρ0,1

)2(
1 +

D
H
O
)2

+

(
δRe(S2)

`ρ0,2

)2(
1 +

E
H
O
)2

(G.6)

+

(
δIm(S2)

`ρ0,2

)2(
cotφin,2 −

G
H
O
)2

+

(
δIm(S1)

`ρ0,1

)2(
cotφin,1 −

F
H
O
)2

+

(
δρ0,1

ρ0,1

)2(
C cotφin,1 cotφin,2 −

B
H
O
)2

+

(
δρ0,2

`ρ0,2

)2(
B cotφin,1 cotφin,2 +

C
H
O
)2

+ (δθ)2 P2

]1/2
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where

N = 2A0

(
1 +

g′21 + g′22
8

− (g′21 + g′22 )a2

4R2

)

O =
Im(S1)

`ρ0,1

φin,1 csc2 φin,1 +
Im(S2)

`ρ0,2

φin,2 csc2 φin,2 + π(R2 − a2)
(g′21 + g′22 )a2

2R2

P = π(R2 − a2)
a2

R2

(
2

1− 3 cos2 θ

)(
g2

1 + g2
2

)
sin3 θ cos θ

The uncertainty of the spin density inside the object quantified from each echo time

is given by

δρ0,c,1
ρ0,c,1

=

[(
δρ0,1
ρ0,1

)2(M
J

+
B
H
Q
)2

+

(
δρ0,2
ρ0,2

)2(C
H
Q
)2

+

(
δRe(S1)

`ρ0,1

)2(
1

J
− D

H
Q
)2

+

(
δRe(S2)

`ρ0,2

)2(E
H
Q
)2

+

(
δIm(S1)

`ρ0,1

)2(
`ρ0,1
Im(S1)

− F
H
Q− cotφin,1

J

)2

+

(
δIm(S2)

`ρ0,2

)2(G
H
Q
)2

+ δθ2
(
A
H
Q +

L
J

+ g1 cotφin,1 sin 2θ

)2
]1/2

δρ0,c,2
ρ0,c,2

=

[(
δρ0,1
ρ0,1

)2(B
H
Q
)2

+

(
δρ0,2
ρ0,2

)2(M
J

+
C
H
Q
)2

+

(
δRe(S1)

`ρ0,1

)2(D
H
Q
)2

+

(
δRe(S2)

`ρ0,2

)2(
1

J
− E

H
Q
)2

+

(
δIm(S1)

`ρ0,1

)2( F
H
Q
)2

+

(
δIm(S2)

`ρ0,2

)2(
`ρ0,2
Im(S2)

− G
H
Q− cotφin,2

J

)2

+ δθ2
(
A
H
Q +

L
J

+ g2 cotφin,2 sin 2θ

)2
]1/2

Q =
K
J

+ φin,n cotφin,n

where the subscript n again refers to each variable measured at the nth echo time TEn.

If we use Eq.(G.6) to further estimate the uncertainty of spin density inside the object
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at each echo time, these two uncertainties are given by

δρ0,c,n

ρ0,c,n

=

[
δθ2R2 + (

δρ0,1

ρ0,1

)2(
B
H
S− C

N
T)2 + (

δρ0,2

ρ0,2

)2(
C
H
S +

B
N
T)2

+ (
δRe(S1)

`ρ0,1

)2(
1

N
+

D
H
S)2 + (

δRe(S2)

`ρ0,2

)2(
1

N
+

E
H
S)2

+ (
δIm(S1)

`ρ0,1

)2(
F
H
S + δn,1

`ρ0,1

Im(S1)
− cotφin,1

N
)2

+ (
δIm(S2)

`ρ0,2

)2(
G
H
S + δn,2

`ρ0,2

Im(S2)
− cotφin,2

N
)2

]1/2

where δn,1 and δn,2 are Kronecker delta functions. Again, the subscript n refers to each

variable measured at the nth echo time TEn.

R =
P
N

+ cotφin,n(
A
H
φin,n + gn sin 2θ)

S =
O
N
− φin,n cotφin,n

T = cotφin,1 cotφin,2
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Appendix H

THE UNIQUE SOLUTION OF Eq.(4.7)

In this section, g′ will be separated into two regimes, g′ > 1.4 and 0 < g′ < 2. As

J0(x)/x2 is an even function, Eq.(4.7) is invariant even if the sign of magnetic suscepti-

bility, ∆χ, is changed. Thus, we only consider the positive magnetic susceptibility in the

following discussions. This means that g, g′, and ℘ are also considered to be positive.

H.1 g′ ≥ 1.4

If ℘/R2 is no more than 0.5 radian, g′ can be replaced by infinity in Eq.(4.7). This re-

placement leads to less than 5% deviation from the original result of the integral. Eq.(4.7)

can be rewritten and easily solved.

Re(S) sinφin = Im(S) cosφin + π`ρ0℘ sinφin

∫ ∞
℘/R2

dxJ0(x)/x2 (H.1)

φin = tan−1 Im(S)

Re(S)− π`ρ0℘
∫∞
℘/R2 dx

J0(x)
x2

+ 2nπ (H.2)

where n is any integer. Note that it is 2nπ rather than nπ in the above solution, as the sign

of Im(S) is known in Eq.(H.1).

H.2 0 < g′ < 2

The phase inside the object φin can be rewritten as βg = βg′/α, with α ≡ sin θ2 and

β ≡ (1− 3 cos θ2)/3. Therefore, Eq.(4.7) can be rewritten as the following

f(g′) ≡ Im(S) cot(
β

α
g′) + π`ρ0℘

∫ g′

℘/R2

J0(x)

x2
dx−Re(S) (H.3)

The first derivative of f(g′) is

f ′(g′) = −β
α
Im(S) · csc2(

β

α
g′) + π`ρ0℘

J0(g′)

g′2

= csc2(
β

α
g′)

[
−β
α
Im(S) + (

β

α
)2π`ρ0℘J0(g′)sinc2φin

]
(H.4)

= csc2(
β

α
g′)

[
−β
α
Im(S) + k(φin)

]
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where k(φin) ≡ (β
α

)2π`ρ0℘J0(g′)sinc2φin.

Clearly, if βIm(S) < 0, then f ′(g′) will always be positive and therefore, by the mean

value theorem in calculus, only one root exists in f(g′) = 0. As βIm(S) is proportional to

β sin(φin) = β sin(βg) = |β| sin(|β|g) = |β| sin(|φin|), when βIm(S) < 0, this implies that

|φin| is between (2n− 1)π and 2nπ, with n being any positive integer.

On the other hand, when βIm(S) > 0, this implies that |φin| is between (2n− 2)π and

(2n− 1)π. When |φin| < π, Fig. H.1 indicates at most one solution from f ′(g′) = 0. Again,

by the mean value theorem, at most two solutions can exist in f(g′) = 0.

When βIm(S) > 0 and 2nπ < |φin| < (2n+1)π with n being a positive integer, Fig. H.1

or Eq.(H.4) indicates that up to two roots can be solved from f ′(g′) = 0 in each π range.

This means that at most three solutions can exist in every π range of f(g′) = 0. Given

0 < g′ = αg < 2 and φin ≡ βg in the current discussions, we can further derive that

0 < 1− cos2 θ = α <
2

3(nπ + 1)
(H.5)

and

− 2

3
< β < − 2nπ

3(nπ + 1)
(H.6)

When n ≥ 1, α is less than 0.161, β is less than −0.506, and the orientation of the object

is less than 24◦ from the main field.
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Figure H.1: A plot of k(φin) ≡ π`ρ0(β/α)2℘sinc2(φin)J0(g′) versus φin. The plot is generated
with θ = 90◦, α/β = 0.111, ℘ = 6.02, ρ0 = 10.0, ` = 1, g′ = 1.5, and Im(S) = 1000. k(φin)
is defined in Eq.(H.4). This function is monotonically decreased between 0 and π and starts
oscillating beyond π. The actual imaginary part of the signal is represented by a horizontal
line. The intersection of the horizontal line and the curve indicates the solution of f ′(g′).
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Appendix I

DERIVATION OF Eq.(5.6) FOR THE ESTIMATION OF SUSCEPTIBILITY

We estimate the uncertainty of Eq.(5.5) by deriving the variation of h(∆χ). As the

susceptibility has not been solved yet, we do not consider the variation of the susceptibility.

We also neglect the uncertainty of ρ0.

δh(∆χ) =

[δRe(S)] sinφin − [δIm(S)] cosφin − π`ρ0(δ℘) sinφin

∫ g′

℘/R2

dx
J0(x)

x2
+ π`ρ0(δ℘) sinφin

J0(℘/R2)

℘/R2

= sinφin

[
(±σ`

√
∆x∆yπR2)− (±σ`

√
∆x∆yπR2) cotφin + π`ρ0(δ℘)

(
J0(℘/R2)

℘/R2
−
∫ g′

℘/R2

dx
J0(x)

x2

)]

Here we only consider the thermal noise in δRe(S) and δIm(S). As δRe(S), δIm(S),

and δ℘ are uncorrelated with each other with the proper choices of R1, R2, and R3, the

uncertainty of h(∆χ) is

δh(∆χ)max =

√
(σ`
√

∆x∆yπR2)2 + (δ℘)2

(
π`ρ0 sinφin

(
J0(℘/R2)

℘/R2
−
∫ g′

℘/R2

dx
J0(x)

x2

))2

The uncertainty of magnetic moment, δ℘, is calculated from Eq.15 in [8]. The Gaussian

noise, σ, may be measured from the background of magnitude images.
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Appendix J

IDENTIFYING THE OBJECT CENTER WITH THE PRESENCE OF A

LOCAL UNIFORM FIELD

With an assumed constant local background phase, φbkg, the MR complex signal,

S, becomes Seiφbkg . With Eq.(B.1) from [8], which shows the second derivatives of the

original signal S within a radius R,

Im
∂2S

∂x2
0

∣∣∣∣
x0=y0=0

= −Im ∂2S

∂y2
0

∣∣∣∣
x0=y0=0

= −2π`ρ0

( ℘
R2

)
J2

( ℘
R2

)
(J.1)

and

Re
∂2S

∂x2
0

∣∣∣∣
x0=y0=0

= Re
∂2S

∂y2
0

∣∣∣∣
x0=y0=0

= 2π`ρ0

( ℘
R2

)
J1

( ℘
R2

)
(J.2)

the real parts of the second derivatives of Seiφbkg are

Re
∂2Seiφbkg

∂x2
0

|x0=y0=0 = 2π`ρ0
℘

R2

(
J1(

℘

R2
) cosφbkg + J2(

℘

R2
) sinφbkg

)
(J.3)

and

Re
∂2Seiφbkg

∂y2
0

|x0=y0=0 = 2π`ρ0
℘

R2

(
J1(

℘

R2
) cosφbkg − J2(

℘

R2
) sinφbkg

)
(J.4)

When 0 < |℘/R2| < 2.63, J1(|℘/R2|) > J2(|℘/R2|) > 0. In addition, when |φbkg| < π/4, we

have

2π`ρ0
℘

R2

(
J1(

℘

R2
) cosφbkg ± J2(

℘

R2
) sinφbkg

)
= 2π`ρ0

|℘|
R2

(
J1(
|℘|
R2

) cosφbkg ± J2(
℘

R2
) sinφbkg

)
> 0 (J.5)

As the real parts of second derivatives are positive, this proves that our searching algo-

rithm for the center of the object is still valid.
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Appendix K

UNCERTAINTY OF SUSCEPTIBILITY QUANTIFIED FROM THE SAME

IMAGE

These formulas are for magnetic moments and susceptibility values quantified from

the same image and for cylinders at large orientations. In addition, the area chosen for

quantifying the susceptibility, πR′23 , overlaps part of the area, π(R2
2 − R2

3) (see Fig. 5.1b).

The latter area is one of the annular regions for quantifying the magnetic moment. Be-

cause of this overlapping, we need to carefully separate these regions and ensure no

correlation between those regions. We only use these formulas in this paper for compar-

ison purpose, and we typically do not suggest having overlapping areas. As in theory,

Im(S ′3 − S3) is zero, we have neglected the uncertainty of Im(S ′3 − S3).

δ∆χ

∆χ
=

√
δθ2A2 + ( δRe(S3)

π`σ
)2B2 + ( δIm(S3)

π`σ
)2C 2 + ( δ(S1−S2)

π`σ
)2D2 + (

δ(S′
3−S3)

π`σ
)2E2 + (

δ(S2−S′
3)

π`σ
)2F 2

|℘/g′|
∣∣∣SNR0,cφin −SNR0J0(g′) sinφin

∣∣∣ (K.1)

where SNR0 ≡ ρ0/σ, σ is the standard deviation of the thermal noise in images, and

SNR0,c ≡ ρ0,c/σ.

A = 2 cot θ

∣∣∣∣℘g′
∣∣∣∣ (SNR0J0(g′) sinφin − g′SNR0,c) (K.2)

B = − sinφin

C = cosφin

D = sinφin

 h′3
h12

+
h23

(
h′3
h12

(J0(φ2)
φ2
− J0(φ1)

φ1
) +

J0(φ′3)

φ′3

)
h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2



E = − sinφin

 h′3(J0(φ2)
φ2
− J0(φ1)

φ1
) + h12

J0(φ′3)

φ′3

h12
J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2

+ 1
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F = − sinφin
h′3(J0(φ2)

φ2
− J0(φ1)

φ1
) + h12

J0(φ′3)

φ′3

h12
J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2

where h′3 =
∫ |g′|
φ′3

dx
x2
J0(x), φ′3 = |℘|/R′23 ,

φi ≡ |℘|/R2
i , i = 1, 2, or 3

hij =

∫ φj

φi

dx

x2
J0(x)

h3 =

∫ |g′|
φ3

dx

x2
J0(x)

δRe(S3)

π`σ
=

√
∆x∆yR2

3

π
+ ε2R(℘h3SNR0 + SNR0,c

℘

|g′|
cosφin)2

where εR is defined as the percentage difference between the theoretical Re(S3) and

measured Re(S3) directly summed from simulated images without the Gaussian noise.

δIm(S3)

π`σ
=

√
∆x∆yR2

3

π
+ ε2I(SNR0,c

℘

g′
sinφin)2

where εI is defined as the percentage difference between the theoretical Im(S3) and

measured Im(S3) directly summed from simulated images without the Gaussian noise.

δ(Si − Sj)
π`σ

=

√
∆x∆y

π

∣∣R2
i −R2

j

∣∣+ ε2ij(℘hijSNR0)2

where εij ≡ δ(Si−Sj)/(Si−Sj) for i, j = 1, 2, 3 and the index i or j refers to the circle within

which the complex signal is added. Similarly, εij should be interpreted as the percentage

difference between the theoretical Si − Sj (which is a real number) and the real part of

Si − Sj directly summed from images.

δρ0

ρ0

=
1

SNR0

√(
G

℘

)2(
δ(S1 − S2)

π`σ

)2

+

(
H

℘

)2(
δ(S2 − S3)

π`σ

)2

where
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G

℘
=

1

℘h12

+

h23
h12

(
h12 + J0(φ2)

φ2
− J0(φ1)

φ1

)
℘
(
h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2

)
H

℘
=

−
(
h12 + J0(φ2)

φ2
− J0(φ1)

φ1

)
℘
(
h12

J0(φ3)
φ3

+ h23
J0(φ1)
φ1

+ h31
J0(φ2)
φ2

)
As the cross-sectional area of the cylinder is defined as A0 ≡ πa2, the uncertainty of the

cross-sectional area is

δA0

A0
=

[(
A

I
+ 2 cot θ

)2

δθ2 +

(
B

I

)2(
δRe(S3)

π`σ

)2

+

(
C

I

)2(
δIm(S3)

π`σ

)2

+

(
h12

J
− F

I

)2(
δ(S2 − S′3)

π`σ

)2

+

(
h12

J
− E

I

)2(
δ(S′3 − S3)

π`σ

)2

+

(
h23

J
+
D

I

)2(
δ(S1 − S2)

π`σ

)2
]1/2

where

I = |℘/g′| (SNR0,cφin − SNR0J0(g′) sinφin)

J = |℘|SNR0

(
h12

J0(φ3)

φ3

+ h23
J0(φ1)

φ1

+ h31
J0(φ2)

φ2

)

δρ0,c

ρ0,c

=

[(
δIm(S3)

π`σ

)2(
1

a2 sinφinSNR0,c

+
C

I
(1− φin cotφin)

)2

+

(
δRe(S3)

π`σ

)2(
B

I
(1− φin cotφin)

)2

+

(
δ(S1 − S2)

π`σ

)2

K2 +

(
δ(S ′3 − S3)

π`σ

)2

L2 +

(
δ(S2 − S ′3)

π`σ

)2

M2

+ (δθ)2

(
A

I
(1− φin cotφin)− g sin 2θ cotφin + 2 cot θ

)2
]1/2

where

K =
D

I
(1− φin cotφin) +

h23

J
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L =
E

I
(1− φin cotφin)− h12

J

M =
F

I
(1− φin cotφin)− h12

J
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Appendix L

UNCERTAINTY OF SUSCEPTIBILITY QUANTIFIED FROM DIFFERENT

IMAGES

The formulas here are suitable for unknowns quantified from different images. In

addition, these formulas are particularly for cylinders with orientations larger than 30◦.

When the susceptibility is quantified from the shorter echo time with S3, which is enclosed

by the radius R3, the uncertainty of the susceptibility is

δ∆χ

∆χ
=

√
δθ2A2 + ( δRe(S3)

π`σ
)2B2 + ( δIm(S3)

π`σ
)2C 2 + ( δ℘

℘
)2D2 + ( δ(S1−S2)

π`σ
)2E 2

|I|
(L.1)

D = −|℘|SNR0

(
J0(φ3)

φ3

+
h3

h12

(
J0(φ2)

φ2

− J0(φ1)

φ1

))
sinφin

E =
h3

h12

sinφin

δρ0

ρ0

=
1

h12

[(
1

℘SNR0

)2(
δ(S1 − S2)

π`σ

)2

+

(
h12 +

J0(φ2)

φ2

− J0(φ1)

φ1

)2(
δ℘

℘

)2
]1/2

where the uncertainty of ρ0 here is quantified from the image acquired at the shorter echo

time, with the choice of two concentric circles, R1 and R2.

δA0

A0
=

[(
A

I
+ 2 cot θ

)2

δθ2 +

(
B

I

)2(
δRe(S3)

π`σ

)2

+

(
C

I

)2(
δIm(S3)

π`σ

)2

+

(
E

I

)2(
δ(S1 − S2)

π`σ

)2

+

(
1− D

I

)2(
δ℘

℘

)2
]1/2



152

δρ0,c

ρ0,c

=

[
O2(δθ)2 + P 2

(
δIm(S3)

π`σ

)2

+Q2

(
δRe(S3)

π`σ

)2

+R2

(
δ℘

℘

)2

+ S2

(
δ(S1 − S2)

π`σ

)]1/2

where

O =
A

I
(1− φin cotφin)− g sin 2θ cotφin + 2 cot θ

P = (1− φin cotφin)
C

I
+

1

a2SNR0,c sinφin

Q = (1− φin cotφin)
B

I

R = (1− φin cotφin)
D

I
− 1

S = (1− φin cotφin)
E

I
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Appendix M

UNCERTAINTY OF SUSCEPTIBILITY FOR CYLINDERS AT SMALL

ORIENTATIONS

We derive these uncertainties based on the variations of the susceptibility and cross-

sectional area of a cylindrical object from images acquired at two echo times (Eq. 5.7). In

this Appendix, subscripts 1 and 2 in the following equations refer to the values quantified

from echo time TE1 and TE2, respectively. If none of the phase values from either echo time

is close to multiples of π, then these equations below lead to smaller and more realistic

uncertainties than those given in the Appendix B of [10].

δ∆χ

∆χ
=

1

|E|

[
(B2F1)2

(
δRe(S1)

π`σ

)2

+ (B2G1)2

(
δIm(S1)

π`σ

)2

+ (B2D1)2

(
δρ0,1

ρ0,1

)2

+ (δθ1)2(B2C1)2 + (B1F2)2

(
δRe(S2)

π`σ

)2

+ (B1G2)2

(
δIm(S2)

π`σ

)2

+ (B1D2)2

(
δρ0,2

ρ0,2

)2

+ (δθ2)2(B1C2)2

]1/2

If the orientation of the object is measured only once from both echo times, the term

(δθ1)2(B2C1)2 + (δθ2)2(B1C2)2 should be replaced by (δθ)2(B2C1 − B1C2)2 in the above

uncertainty formula.

An = φin,nSNR0,c,n +
g′2n
2

(
1− a2

R2

)
SNR0,n sinφin,n

Bn =

(
1 +

g′2n
4
− g′2n a

2

2R2

)
SNR0,n sinφin,n

Cn = −a2gn sin 2θn

(
SNR0,c,n +

g′n
2

(
1− a2

R2

)
SNR0,n sinφin,n

)

Dn = (R2 − a2)

(
1− g′2n a

2

4R2

)
SNR0,n sinφin,n
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E = a2(B2A1 − B1A2)

Fn = − sinφin,n

Gn = cosφin,n

δRe(Sn)

π`σ
=

√
∆x∆yR2

π
+ ε2R

(
Re(Sn)

π`σ

)2

δIm(Sn)

π`σ
=

√
∆x∆yR2

π
+ ε2I

(
Im(Sn)

π`σ

)2

δρ0,n

ρ0,n

=

√
∆x∆y

π(R2
a −R2

b)SNR2
0,n

+ ε2ab

where εab is the percentage difference between the theoretical spin density and the mea-

sured spin density within the annular ring defined by radii Ra and Rb. The subscript n in

ρ0,n or φin,n refers to each variable obtained at the nth echo time TEn.

δA0

A0

=
1

|E|

[
(A1G2)2

(
δIm(S2)

π`σ

)2

+ (A2G1)2

(
δIm(S1)

π`σ

)2

+ (A2F1)2

(
δRe(S1)

π`σ

)2

+ (A1F2)2

(
δRe(S2)

π`σ

)2

+ (A2D1)2

(
δρ0,1

ρ0,1

)2

+ (A1D2)2

(
δρ0,2

ρ0,2

)2

+ (δθ1)2(A2C1)2 + (δθ2)2(A1C2)2

]1/2

If the orientation of the object is measured only once from both echo times, the term

(δθ1)2(A2C1)2 + (δθ2)2(A1C2)2 should be replaced by (δθ)2(A2C1 − A1C2)2 in the above

uncertainty formula.
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δρ0,c,n

ρ0,c,n

=

[
(δθ1)2H2 +

(
δρ0,1

ρ0,1

)2

I2 +

(
δRe(S1)

π`σ

)2

J2 +

(
δIm(S1)

π`σ

)2

K2

+ (δθ2)2L2 +

(
δρ0,2

ρ0,2

)2

M2 +

(
δRe(S2)

π`σ

)2

N2 +

(
δIm(S2)

π`σ

)2

O2

]1/2

If the orientation of the object is measured only once from both echo times, the term

(δθ1)2(H)2 + (δθ2)2(L)2 should be replaced by (δθ)2(H + L)2 in the above uncertainty for-

mula.

H = −δn,1g1 sin 2θ1 cotφin,1 + (A2 − B2φin,n cotφin,n)
C1

E

L = −δn,2g2 sin 2θ2 cotφin,2 − (A1 − B1φin,n cotφin,n)
C2

E

where δn,1 and δn,2 are Kronecker delta functions. The subscript n refers to each variable

measured at the nth echo time TEn.

I = D1

(
A2

E
− B2

E
φin,n cotφin,n

)

M = −D2

(
A1

E
− B1

E
φin,n cotφin,n

)

J = (A2 − B2φin,n cotφin,n)
F1

E

N = (−A1 + B1φin,n cotφin,n)
F2

E

K =
δn,1

a2SNRo,c,1 sinφin,1
+ (A2 − B2φin,n cotφin,n)

G1

E
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O =
δn,2

a2SNRo,c,2 sinφin,2
− (A1 − B1φin,n cotφin,n)

G2

E



157

REFERENCES

[1] E. M. Haacke, Y. Xu, Y.-C. N. Cheng, and J. Reichenbach, Magn. Reson. Med. 52,

612 (2004).

[2] E. M. Haacke et al., Magn. Reson. Imaging 23, 1 (2005).

[3] E. M. Haacke and J. Reichenbach, SUSCEPTIBILITY WEIGHTED IMAGING in MRI,

John Wiley & Sons, New York, 2010.

[4] E. M. Haacke et al., J. Magn. Reson. Imaging 26, 256 (2007).

[5] K. Tong et al., Ann. Neurol. 56, 36 (2004).

[6] Y. Ge et al., J. Magn. Reson. Imaging 29, 1190 (2009).

[7] Y.-C. N. Cheng et al., Magn. Reson. Imaging 25, 1171 (2007).

[8] Y.-C. N. Cheng, C.-Y. Hsieh, J. Neelavalli, and E. M. Haacke, Phys. Med. Biol. 54,

7025 (2009).

[9] Y.-C. N. Cheng et al., Magn. Reson. Imaging 33, 829 (2015).

[10] C.-Y. Hsieh, Y.-C. N. Cheng, J. Neelavalli, E. M. Haacke, and R. J. Stafford, Magn.

Reson. Imaging 33, 420 (2015).

[11] C.-Y. Hsieh, Y.-C. N. Cheng, H. Xie, J. Neelavalli, and E. M. Haacke, Magn. Reson.

Imaging 33, 1191 (2015).

[12] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkatesan, Magnetic Reso-

nance Imaging: Physical Principles and Sequence Design, John Wiley & Sons, New

York, 1999.

[13] R. M. Weisskoff and S. Kiihne, Magn. Reson. Med. 24, 375 (1992).

[14] S. Lai et al., Magn. Reson. Med. 30, 387 (1993).

[15] J. Sedlacik, A. Rauscher, and J. R. Reichenbach, Magn. Reson. Med. 58, 1035

(2007).

[16] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 1999.

[17] P. Robson and L. Hall, American Institute of Chemical Engineers 51, 1633 (2005).

[18] P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the

Physical Sciences, McGraw-Hill, New York, 1992.



158

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in C: The Art of Scientific Computing, John Wiley & Sons, New York, 1992.

[20] C.-Y. Hsieh, Y.-C. N. Cheng, J. Neelavalli, and E. M. Haacke, Proceedings of the

International Society for Magnetic Resonance in Medicine , 2596 (2007).

[21] L. DR, Handbook of Chemistry and Physics, 87th ed., CRC Press, New York, 2006–

2007.

[22] S. M. Greenberg et al., Lancet. Neurol. 8, 165 (2009).

[23] C. Bos, M. A. Viergever, and C. J. G. Bakker, Magn. Reson. Med. 50, 400 (2003).

[24] S. Liu, J. Neelavalli, Y.-C. N. Cheng, J. Tang, and E. Mark Haacke, Magnetic Reso-

nance in Medicine 69, 716 (2013).

[25] Y.-C. N. Cheng, E. M. Haacke, , and Y.-J. Yu, Magn. Reson. Imaging 19, 1017 (2001).

[26] E. M. Haacke, Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan,

Magnetic Resonance Imaging: Physical Principles and Sequence Design, John

Wiley & Sons, New York, second edition, 2014.

[27] G. Hagberg, E. Welch, and A. Greiser, Magnetic Resonance Imaging 28, 297 (2010).

[28] F. Schweser, A. Deistung, B. W. Lehr, and J. R. Reichenbach, NeuroImage 54, 2789

(2011).

[29] S. Ogawa et al., Biophys. J. 64, 803 (1993).

[30] M. C. Langham, J. F. Magland, C. L. Epstein, T. F. Floyd, and F. W. Wehrli, Magn.

Reson. Med. 62, 333 (2009).

[31] J. Marques and R. Bowtell, Concepts in Magnetic Resonance Part B: Magnetic

Resonance Engineering 25, 65 (2005).

[32] Y.-C. N. Cheng, J. Neelavalli, and E. M. Haacke, Phys. Med. Biol. 54, 1169 (2009).

[33] L. de Rochefort, R. Brown, M. R. Prince, and Y. Wang, Magnetic Resonance in

Medicine 60, 1003 (2008).

[34] T. Liu, P. Spincemaille, L. de Rochefort, B. Kressler, and Y. Wang, Magnetic Reso-

nance in Medicine 61, 196 (2009).



159

[35] E. M. Haacke, J. Tang, J. Neelavalli, and Y.-C. N. Cheng, J. Magn. Reson. Imaging

32, 663 (2010).

[36] W. Li, B. Wu, and C. Liu, NeuroImage 55, 1645 (2011).

[37] F. Schweser, K. Sommer, A. Deistung, and J. R. Reichenbach, NeuroImage 62, 2083

(2012).

[38] J. Tang et al., Magnetic Resonance in Medicine 69, 1396 (2013).

[39] S. Wharton and R. Bowtell, NeuroImage 53, 515 (2010).

[40] B. Kressler et al., IEEE T. MED. Imaging 29, 273 (2010).

[41] L. de Rochefort et al., Magnetic Resonance in Medicine 63, 194 (2010).

[42] B. Bilgic, A. Pfefferbaum, T. Rohlfing, E. V. Sullivan, and E. Adalsteinsson, NeuroIm-

age 59, 2625 (2012).

[43] A. P. Fan et al., Magnetic Resonance in Medicine 72, 149 (2014).

[44] B. Xu, T. Liu, P. Spincemaille, M. Prince, and Y. Wang, Magnetic Resonance in

Medicine 72, 438 (2014).

[45] C. Springer and Y. Xu, European Magnetic Resonance Forum, Blonay , 13 (1991).

[46] J. Schenck, Medical Physics 23, 815 (1996).

[47] T. Liu et al., Radiology 262, 269 (2012).

[48] D. NEMA, Digital Imaging and Communications in Medicine (DICOM) Part 3:Infor-

mation Object Definitions, National Electrical Manufacturers Association, Rosslyn,

2011, PS 3.3-2011.

[49] T. Liu, W. Xu, P. Spincemaille, A. Avestimehr, and Y. Wang, Medical Imaging, IEEE

Transactions on 31, 816 (2012).

[50] W. M. Spees, D. A. Yablonskiy, M. C. Oswood, and J. J. Ackerman, Magnetic Reso-

nance in Medicine 45, 533 (2001).

[51] C. Li et al., Magn. Reson.Med. 67, 808 (2012).

[52] M. A. Fernndez-Seara, A. Techawiboonwong, J. A. Detre, and F. W. Wehrli, Magnetic

Resonance in Medicine 55, 967 (2006).



160

[53] V. Jain, M. C. Langham, and F. W. Wehrli, J. Cereb Blood Flow Metab 30, 1598

(2010).

[54] L. C. Krishnamurthy, P. Liu, Y. Ge, and H. Lu, Magnetic Resonance in Medicine 71,

978 (2014).

[55] I. D. Driver et al., NeuroImage 101, 458 (2014).

[56] E. M. Haacke et al., Hum Brain Mapp 5, 341 (1997).

[57] Q. Yang et al., Journal of Magnetic Resonance Imaging 30, 357 (2009).

[58] L. L. Muldoon et al., Am. J. Neuroradiol. 27, 715 (2006).

[59] C. V. Bowen, X. Zhang, G. Saab, P. J. Gareau, and B. K. Rutt, Magn. Reson. Med.

48, 52 (2002).

[60] P. Kokeny et al., ISMRM 2015 Proceedings , 1722 (2015).

[61] P. RA et al., F1000Research 2, 1 (2013).

[62] H. Xie, Y. N. Cheng, C. Hsieh, P. Kokeny, and E. M. Haacke, ISMRM 2015 Proceed-

ings , 1724 (2015).

[63] S. Buch et al., Magnetic Resonance in Medicine 73, 2185 (2015).



161

ABSTRACT

QUANTIFYING MAGNETIC MOMENTS AND SUSCEPTIBILITIES OF SMALL
CYLINDRICAL AND SPHERICAL OBJECTS IN MRI

by

CHING-YI HSIEH

December 2015

Advisor: Professor Yu-Chung Norman Cheng

Major: Medical Physics

Degree: Doctor of Philosophy

Purpose: The purpose of this PhD work is to develop a method called Complex Im-

age Summation around a Spherical or Cylindrical Object (CISSCO) for accurate magnetic

moment and susceptibility quantifications of narrow cylindrical-like or small spherical-like

objects from magnetic resonance imaging (MRI). A typical 3D gradient echo sequence

with only one echo time is intended for our approach. For accurate susceptibility quan-

tifications of cylindrical objects at orientations relatively close to the main field, two echo

times are needed.

Methods: Our method is to sum over complex MR signals around an object of in-

terest and equates those sums to equations derived from the magnetostatic theory. With

those equations, our method is able to determine the center of the object with a subpixel

precision. Furthermore, those equations allow us to systematically solve the effective

magnetic moment, spin density around the object, susceptibility, and radius of the ob-

ject in sequence. The uncertainty of each quantified variable is calculated from the error

propagation method. For the object without an MR signal, a spin echo sequence can be

used to determine the volume of the object, and the susceptibility difference between the

object and its surrounding can be further calculated from the magnetic moment. Numer-

ical simulations, a variety of air straws, glass beads, and straws filled with gadolinium in

phantom studies with different MR imaging parameters on a 1.5 T or 3 T machine have
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been conducted to verify the method. In addition, magnetic moments and susceptibilities

of several cerebral veins have also been quantified from 3 T and 4 T human images.

Results: Quantified effective magnetic moments and susceptibility differences from

different imaging parameters all agree with each other within two standard deviations of

estimated uncertainties. Those results also agree with expected values within uncertain-

ties when available in the literature.

Conclusion: The CISSCO method is developed to accurately quantify the effective

magnetic moment and susceptibility of a given small object of interest. Most results are

accurate within 10% of true values and roughly half of the total results are accurate within

5% of true values using reasonable imaging parameters. The method is minimally af-

fected by the partial volume, dephasing, and phase aliasing effect.
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