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CHAPTER 1: INTRODUCTION 

 The kidneys, located in the posterior wall of the body, perform many functions that the 

body relies upon to survive.  Such processes include waste excretion, chemical balance (e.g. 

electrolyte and acid-base balance, Calcium-Phosphate metabolism), regulation of blood pressure, 

in addition to fluid balance [44].  The kidneys’ complex structure contains a plethora of tissue 

layers and permeable membranes and vessels in a way where filtration, absorption, and secretion 

are some of the main objectives the kidneys are used for.  Blood circulation through the kidneys 

as well as excretion of waste products from it through urine is essentially the paths that allow for 

the aforementioned functions to occur [44].  The anatomy of the kidneys (figure 1.0) include 

complex parts such as the nephrons and glomerulus within the cortex, as well as the medulla, 

pyramid, pelvis, and ureter that allows waste-carrying urine to flow on to the bladder to be 

excreted from the body [44].  The nephrons provide the structural and functional units of the 

kidneys where the aforementioned processes allow urine formation to occur [44].  Any 

disruption or abnormalities in any of these processes can show signs of damage or failure to the 

kidneys [44]. 

 The circulation of blood flow through the kidneys is where the reabsorption, secretion, 

and excretion occurs [44].  Since these steps take place within the nephron via afferent and 

efferent arterioles, reabsorption of certain products (e.g. water, salts, sugars) can return to 

circulation within the body [44].  Secretion can occur to return certain components such as acids, 

minerals, urea, and byproducts of drugs in order to return to the renal tubule to be excreted in 

urine while other components reach circulation via the veins [44].  The glomerular capillaries are 

porous, allowing fluids that contain those byproducts mentioned previously (and proteins if there 

are underlying issues) [44].  The Bowman’s Capsule that contains the glomeruli, essentially 
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carrying the glomerular filtrate, occurs at a rate (glomerular filtration rate) affected by blood 

pressure [44].  Membranes inside the capsule filters the entering plasma so that certain molecules 

such as water and solutes can pass through, whereas, larger molecules like proteins could 

problematic and cause for concern [44].  Surface area available for filtration is adjustable due to 

blood pressure changes [44].  Normal GFR is designated between 120-125 mL/min in normal, 

adult kidneys, and rates below that range could be problematic considering normal amounts of 

filtrate are not being processed [44]. 

 Filtration in the remaining renal tubules (e.g. proximal, loop of Henle, distal) is 

responsible for secreting and reabsorbing certain contents in order to maintain a chemical 

balance within the blood affected by blood pressure [44].  This entails the reabsorption of 

molecules such as sodium ions, hydrogen ions, phosphates, bicarbonate, and water, as well as the 

secretion of urea, ammonia, and other toxic substances to be excreted in urine [44].  These two 

features allow the kidneys to help maintain fluid balance, electrolyte balance, control blood pH, 

eliminate nitrogenous wastes, as well as disposal of certain drugs and metabolites [44].  Keeping 

blood pH intact is necessary considering environmental conditions due to pre-existing conditions 

(e.g. diabetes, severe chloride depletion, lactic acid buildup) can either severely raise or lower 

those levels resulting in acidosis (low pH) and alkalosis (high pH) [44].  Waste management is 

especially important considering buildup of substances, such as urea, can affect kidney function 

in terms of a negative impact on GFR [44], [12]. 

 Kidney failure is a progressive and debilitating disease that affects many Americans.  

Numerous factors negatively affect the kidneys’ ability to function as they work to filter 

byproducts of multiple origins (e.g. metabolic wastes, drugs, fluid balance).  The repeated abuses 

often overload the kidneys, reduce their efficacy, and may result in their failure altogether [1].  
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Certain conditions such as metabolic syndrome, hypertension, and diabetes, are recurrent with 

chronic kidney disease (CKD) with the latter being the most prevalent of causative factors [2].  

Over time, the kidneys can stop functioning during CKD which can eventually lead to what is 

known as end stage renal disease (ESRD) [1].  Prevalence of ESRD has risen in the United States 

from 1980 until 2010. The adjusted rate of these prevalent cases has risen in 2010 to 1,763 per 

million populations, up 21 percent higher than 10 years prior (Figure 1.1).  

Among the ESRD population, approximately 400,000 people within that group are 

seeking dialysis treatment, including 33% that are African American [2]. ESRD continues to be 

the highest for African Americans compared to other ethnicities [2], [3].  However, between 

mortality and survivability, certain factors show the African American dialysis patients have a 

greater survival rate than whites (e.g. body mass, lipid profiles) [2].   

CKD is characterized by a decrease in kidney function over a given period of time [1].  

The rate at which blood flows into the kidneys must be determined using the Modification of 

Diet in Renal Disease (MDRD) formula [4] resulting in assigning a numerical value.  Again, this 

rate is known as the glomerular filtration rate (GFR), the rate at which blood flows into the 

vessels of the kidneys (glomeruli) through filters so that byproducts are separated and excreted 

out through urine [1]. The GFR levels (between 15 and 90 mL/min/1.72m2) that define the stages 

of CKD are also seen in Figure 1.2 [5]. ESRD occurs after stage 5, when there is an irreversible 

loss of function and renal replacement therapy is required [1].  As this is examined further, 

reabsorption and secretion steps involving the filtrate through the glomeruli and tubules can 

drastically reduce or not occur at all due to failed kidneys [44].  Eventually, the inability to form 

urine would be a clear indication of problematic situation among the kidneys where waste 

products cannot be eliminated which are returned to the blood [44].  The overlaying effect would 
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contribute to a negative impact on homeostasis involving factors such as electrolyte balance, 

blood pH, and fluid balance, as aforementioned. 

Aside from kidney transplantation, alternative forms of treatment modalities are 

peritoneal dialysis and hemodialysis.  With peritoneal dialysis, the use of blood vessels in the 

abdominal lining, or peritoneum, fills in the kidneys aided by a dialysate [4].  This dialysate is 

essentially a cleansing fluid that aids in the filtration of waste products as fluid passes through 

the peritoneal space [4] that is delivered via a surgically implanted catheter inside the abdomen.  

Hemodialysis requires the use of a dialysis machine that functions as an artificial kidney, or 

dialyzer, to filter the metabolic waste products, salts, and fluids from the blood [6].  This requires 

access to the blood vessels by way of a minor surgical procedure via the patients arm in what 

appears to be two incisions: one for removal and cleansing of the blood and the other to return 

the cleaned blood back into the patient’s system [4], [6].   

Based on current research, causes of CKD and ESRD stem from multiple factors: drug 

use, hypertension, and diabetes.  Drug use can lead to nephrotoxic effects on intra-glomerular 

blood flow, cell injury via cytotoxicity, and crystal induced obstruction of the vessels [7].  

During hypertension, high blood pressure forces the heart to work harder over time, thereby 

damaging blood vessels throughout the body, including blood vessels within the kidneys [8].  

Those inflicted with diabetes have higher levels of blood sugar that causes the kidney filters to 

become overloaded due to the extra work, eventually failing [8].  Early signs of diabetes induced 

kidney failure is detected when protein is found in urine [8]. 

 ESRD has an impact on morbidity and mortality of the patients as evidenced by 

increasing risk of hospitalizations and long term complications, including cardiovascular disease, 

malnutrition, and chronic inflammation [9].  The risk for cardiac events in the ESRD population 
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that receive treatment is approximately 3.5 to 50 times higher than the general population [9].  

The determinants of cardiovascular disease in this population include family history, 

hypertension, diabetes mellitus, dyslipidemia, and obesity [9].   

Co-morbidities lead to an increased mortality risk in the general population, though the 

effects of these conditions react differently for those on chronic hemodialysis.  Ikizler et al. noted 

that traditional risk factors towards mortality in the ESRD population appear to be disregarded 

when compared to the normal, healthy population. For example, low serum cholesterol usually 

associated with decreased risk of mortality in the general population is shown to be associated 

with higher rates of cardiovascular morbidity in the ESRD population [9].   High body mass 

synonymous with increased mortality in the general population has been shown to be protective 

in the ESRD population [9].  Researchers have been forced to explore nontraditional risk factors 

attributing to morbidity within the ESRD population.  These factors which include anemia, 

disturbance in mineral metabolism, oxidative stress, chronic inflammation, and uremic 

malnutrition [9].  Chronic inflammation, oxidative stress, and malnutrition are especially 

important in the clinical outcomes of the ESRD population [9] since they can affect body 

composition.  Interestingly, oxidative stress can increase inflammation within the body, which is 

caused by a buildup of toxins and decreased antioxidant intake stemming from malnutrition [9].  

Inflammation can cause an increase in resting energy expenditure (REE) [10].  Gradually the 

body is forced to rely on its own protein stores to attenuate the energy deficit (net protein 

catabolism), thereby causing a breakdown of muscle/lean body mass [9], [11] (Figure 1.4). Since 

the body has low energy intake and increased energy expenditure, it would rely on its own stores 

to make up that deficit which forces the body to waste away, resulting in a net protein catabolic 

state known as Protein Energy Wasting (PEW) [10].   
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The process of inflammation has been found to be associated with vascular disease in the 

general and dialysis populations [12], [13].  It had been found that specific cytokines such as 

interleukins are known to induce anorexia or a decrease/suppression in appetite [9], [12].  Toxins 

such as advanced glycation end products (AGE), that result from glycation reactions during 

glomerular filtration, builds up and therefore lowers defenses against oxidative injury [12].  

These AGE also activate mononuclear cells such as lymphocytes that triggers an inflammatory 

response [12], also inducing appetite suppression.  It is possible appetite suppression occurs by a 

decrease in the hormones, leptin and ghrelin [11], that are responsible for controlling the 

patient’s appetite. As a consequence, a decreased intake of energy and nutrients (including 

antioxidants) results [12], [13].  Cytokine and toxin buildup, coupled with a decrease in 

antioxidant intake, resulting in oxidative stress which further increases inflammation within the 

body [9].  

Other sources of inflammation emanate from dialytic factors.  Back filtration allows 

molecules such as endotoxins transported via dialysis fluid to end up in the blood due to high-

flux dialyzers [14].  This triggers an immune response.  Bio-incompatibility of dialysis 

membranes increases inflammatory factors within the dialysis patients through activation of 

mononuclear cells and white blood cells which are both adaptive responses the body has during 

an immune reaction, in addition to the activation of acute-phase responses (e.g. stimulation of 

cytokines, interleukins) [12].   

Co-morbid conditions induce inflammation in ESRD patients. Infections are common 

among hemodialysis patients because they pose a risk due to impaired immunity or vascular 

access [12].  Sources of infections stem from septicemia in diabetic patients due to low albumin 

levels, imperfection among dialysis grafts, and overlooked skin lesions due to diabetic 
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neuropathy of all which trigger an immune response [12] thereby increasing the rate of 

inflammation within the body[12], [13].  Moreover, uncontrolled blood glucose can give rise to 

non-enzymatic reactions of proteins (during the increase of AGE products) [12] can also trigger 

an immune response.  During CVD, pro inflammatory cytokines are highly associated with this 

and can further increase oxidative stress in addition to inflammation within the body [12], [15].  

Malnutrition is common in cases of CKD. Several researchers have reported on the 

prevalence of wasting among patients who have ESRD, especially those on hemodialysis [11].  

Conversely, uremia is characterized by a buildup of waste products within the bloodstream [4].  

Based on previous findings, this buildup of waste products stemming from ESRD complications 

is one of the main causative factors that primarily contribute to (uremic) malnutrition since it can 

affect nutrient intake due to inflammation. This wasting phenomenon had been defined as a 

consequence due to insufficiency of food intake with an increase in energy expenditure, resulting 

in a negative energy balance which ultimately causes the body to waste away [11].     

  CVD is a clinical outcome that is common in ESRD patients due to the increase in 

mortality risk [15].  The ESRD patients are also at risk for hospitalization due to poor nutritional 

status and inflammation stemming from dialysis and co-morbid related issues [15].  Malnutrition 

and inflammation play a role in mortality since they impact nutritional and inflammatory 

markers that link CVD with ESRD.  This may suggest that ESRD patients should be encouraged 

to control aforementioned complications in order to sustain health maintenance. 
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Figure 1.0: (a) Kidney anatomy; (b) Path of blood flow through renal blood vessels; 

(c) Three major renal processes within the nephron	
  

	
  

	
  

(a)      (b) 

 

 

(c) 

 

[Adapted from http://www.interactive-biology.com/3254/the-anatomy-of-the-kidney and Marieb Human 
Anatomy and Physiology, 9th Edition, 2012] 
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 Tubular secretion. Tubular secretion (“selectively adding 
to the waste container”) is the process of selectively mov-
ing substances from the blood into the filtrate. Like tubular 
reabsorption, it occurs along the length of the tubule and 
collecting duct.

The kidneys process an enormous volume of blood each day. 
Of the approximately 1200 ml of blood that passes through the 
glomeruli each minute, some 650 ml is plasma, and about one-
fifth of this (120–125 ml) is forced into the glomerular capsules 
as filtrate. This is equivalent to filtering your entire plasma vol-
ume more than 60 times each day! Considering the magnitude 
of their task, it is not surprising that the kidneys (which account 
for only 1% of body weight) consume 20–25% of all oxygen 
used by the body at rest.

Filtrate and urine are quite different. Filtrate contains every-
thing found in blood plasma except proteins. Urine contains 
unneeded substances such as excess salts and metabolic wastes. 
The kidneys process about 180 L (47 gallons!) of blood-derived 
fluid daily. Of this amount, less than 1% (1.5 L) typically leaves 
the body as urine; the rest returns to the circulation.

The JGC includes three populations of cells that help regulate 
the rate of filtrate formation and systemic blood pressure.
■ The macula densa (mak!u-lah den!sah; “dense spot”) is 

a group of tall, closely packed cells in the ascending limb 
of the nephron loop that lies adjacent to the granular cells 
(Figure 25.8). The macula densa cells are chemoreceptors 
that monitor the NaCl content of the filtrate entering the 
distal convoluted tubule.

■ Granular cells [also called juxtaglomerular (JG) cells] are in 
the arteriolar walls. They are enlarged smooth muscle cells 
with prominent secretory granules containing the enzyme 
renin (see p. 621). Granular cells act as mechanoreceptors 
that sense the blood pressure in the afferent arteriole.

■ Extraglomerular mesangial cells lie between the arteriole and 
tubule cells, and are interconnected by gap junctions. These 
cells may pass regulatory signals between macula densa and 
granular cells.

We discuss the physiological role of the JGC in the next section.

 Check Your Understanding

 4. Name the tubular components of a nephron in the order that 
filtrate passes through them.

 5. What are the structural differences between juxtamedullary 
and cortical nephrons?

 6. What type of capillaries are the glomerular capillaries? What 
is their function?

For answers, see Appendix H.

Kidney Physiology:  
Mechanisms of Urine Formation
If you had to design a system to chemically balance and cleanse 
the blood, how would you do it? Conceptually, it’s really very 
simple. The body solves this problem in the following way. First, 
it “dumps” cell- and protein-free blood into a separate “waste 
container.” From this container, it reclaims everything the body 
needs to keep (which is almost everything filtered). Finally,  
the kidney selectively adds specific things to the container, fine-
tuning the body’s chemical balance. Anything left in the con-
tainer becomes urine. This is basically how nephrons work.

Urine formation and the adjustment of blood composition 
involve three processes (Figure 25.9):

 Glomerular filtration. Glomerular filtration (“dumping into 
the waste container”) takes place in the renal corpuscle and 
produces a cell- and protein-free filtrate.

 Tubular reabsorption. Tubular reabsorption (“reclaiming 
what the body needs to keep”) is the process of selectively 
moving substances from the filtrate back into the blood. It 
takes place in the renal tubules and collecting ducts. Tu-
bular reabsorption reclaims almost everything filtered—all 
of the glucose and amino acids, and some 99% of the wa-
ter, salt, and other components. Anything that is not reab-
sorbed becomes urine.

Cortical
radiate
artery

Afferent arteriole
Glomerular
capillaries

Efferent arteriole

Glomerular capsule

Renal tubule and 
collecting duct
containing filtrate

Peritubular
capillary

To cortical radiate vein

1

2

3

Urine

Glomerular filtration

Tubular reabsorption

Tubular secretion

1

2

3

Three major
renal processes:

Figure 25.9 A schematic, uncoiled nephron showing the 
three major renal processes that adjust plasma composition. 
Each kidney actually has more than a million nephrons acting in 
parallel.

1

2

3
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Figure 1.1: Adjusted Prevalent Rates of ESRD and the Annual Percent Change. 

 

 

 

 

 

 

Note: The adjusted rate of prevalent cases of end-stage renal disease rose 2010 to 1,763 per million 
population, about 21 percent higher than that seen in 2000.  The symbols represent the percent changed 
from the previous year’s rate. 

 

 

 

 

 

 

Adjusted	
  Prevalent	
  Rates	
  of	
  ESRD	
  
and	
  Annual	
  Percent	
  Change 



	
  

	
  

10	
  

Figure 1.2: Stages of glomerular filtration rate (GFR) 

 

Note: units for GFR are expressed in ml/min/1.73 m2; adapted from United States Renal Data System 
2012 
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Figure 1.3: GFR categories in Chronic Kidney Disease 

 

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate. 

Note: Relative to young adult level.  In the absence of evidence of kidney damage, neither GFR category 
G1 nor G2 fulfill the criteria for CKD.  Adapted from KDOQI Guidelines, 2012: International Society of 
Nephrology 
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Figure 1.4: Causative factors and outcomes of kidney disease and co-morbidities. 
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CHAPTER 2: BACKGROUND AND RATIONALE OF THE STUDY 

Renal disease is associated with a range of complex alterations to metabolic functions, 

which has an effect on physiological attributes [16].  These issues (e.g. diabetes, infections, toxin 

buildup) had been previously shown to be pro-inflammatory [9]. It was later noted that 

inflammation negatively affected the body which lead to malnutrition and eventually PEW from 

the combination of malnutrition and increased energy expenditure [9]. 

Methods of intervention are aimed at reducing mortality and morbidity stemming from 

CVD in the ESRD population.  Previous research has established that causative factors subjected 

the body to inflammation and oxidative stress [9], [12].  Dietary intervention was thus aimed at 

combatting the complications that were attributed to inflammation and oxidative stress.  These 

interventions explored anti-inflammatories and antioxidants as possible forms of diet therapy.   

A study by Kaysen et al. [12] noted that chronic inflammation among ESRD population 

increases pro-inflammatory biomarkers (i.e. interleukins) that are known to induce anorexia 

(appetite loss) by suppression of nutrient intake.  Thus an ESRD patient with inadequate nutrient 

intake is not consuming foods that have a high content of anti-inflammatories or antioxidants.  

The low nutrient intake is not enough to offset the damage caused by ESRD complications. 

Both anti-inflammatories and antioxidants work by attenuating the buildup of markers 

responsible for oxidative stress and inflammation stemming from CVD and dialysis related 

factors.  Under a high prevalence of oxidative stress stemming from an imbalance of an oxidant-

to-antioxidant ratio, this increases the amount of oxidative damage [9]. Additionally, uremic 

conditions from toxin buildup in the blood also give rise to this imbalance [4]. Interestingly, 

serum albumin has anti-oxidant capabilities based on the fact that it is a free radical scavenger 
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and a toxic compound-binding agent, which are figures prominently in uremic environments 

[17].  This coincides with dialysis patients having a deficit in serum albumin [9].  In the presence 

of CVD, pro-inflammatory cytokines are secreted which are an indicatior of rising inflammation 

in ESRD patients [18] (responsible for decrease nutrient intake and the eventual PEW).  The 

anti-inflammatory would thus be aimed at lowering the increase in cytokines [9], [18].   

One possibility in the hemodialysis population involved administering Omega-3 

supplements (due to their cardio-protective properties) [19].  Dietary sources of omega-3 PUFAs 

are anti-inflammatory and also offer benefits for improving lipid profiles, decreasing oxidative 

stress, and blood pressure [20].  Thus a combination of protein and Omega-3 supplementation 

was evaluated (against a placebo) for its ability to improve inflammation and nutritional status 

(the omega-3 as the anti-inflammatory and the protein supplement to attenuate the loss of protein 

stores).    However, despite a marginal improvement in triglycerides, serum albumin levels were 

unaffected while no changes were observed in the normalized protein nitrogen appearance values 

and body mass index values [19].   

More research is needed to combat complications associated with ESRD including 

malnutrition and PEW since they lead to increased mortality risk. Omega 3 and protein 

supplementation has been examined, however, the results are not conclusive [19]. Vitamin E 

exists in two forms that differ from each other chemically and in terms of their biological activity 

[21].  The two forms tocopherols (TP) and tocotrienols (T3), vary according to the characteristics 

of the side chain [21].  Most documented studies on vitamin E refer to TP, which is commonly 

used in research and sold commercially as supplements [21]. Tocotrienols are more potent than 

TP in terms of biological activity: antioxidant capabilities are more potent than TP and their anti-

inflammatory effects were found to inhibit the secretion of biomarkers such as IL-6 [21], [22]. 
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Tocotrienols are part of the vitamin E family [23], [24].  As shown in figure 2.1, they are 

molecularly similar to TP and contain a chromanol ring, a hydroxyl group that has the ability to 

donate a hydrogen atom [25] and a farnesyl tail, which is hydrophobic.  The only difference 

between the two forms is the side chain on the T3 contains 3 double bonds at carbon number 

three, seven, and eleven, giving them a bent configuration [26].   T3 molecules have four 

isoforms: alpha, beta, gamma, and delta, which are determined by methyl group placement on 

the chromanol ring an vary in biological activity [23].  Tocotrienols circulate with the aid of a 

transfer protein [21], [27].  Though it has affinity for alpha-TP, they are still detected within 

plasma at very low concentrations [21], [27].  Postprandial studies of T3 reveal that in plasma 

delta-T3 peaked at approximately four hours and alpha/beta was at five hours after oral intake 

[28].  Size and mass of T3 are an average of 736.3 angstroms and 410.6 g/mol, considerably less 

than TP [25].  

 Tocotrienols are found in a vast array of foods, although the concentration is low 

compared to TP.  Currently, majority of supplements containing vitamin E are primarily TP [24].  

Tocotrienols are abundant in rice bran, wheat germ, oats, and palm fruit [24].  In fact, the oil 

extracted from palm oil has the highest concentration of T3 compared to other plant based 

sources [24].  Figure 2.2 summarizes the quantity of T3 listed from plant based sources [24].	
  

Limited studies have discussed the benefits of T3 [29].  Although T3 may not be 

abundant based on low transfer protein affinity, the concentration is small enough for beneficial 

effects [26]. Beneficial effects of T3 spans across a multitude of attributes, however, anti-oxidant 

and anti-inflammatory properties are most notable.  The molecular structure of the T3, 

specifically the chromanol ring, contains a hydroxyl group that donates the hydrogen ion to 

scavenge reactive oxygen species and free radicals, a prominent effect of its anti-oxidant 
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capabilities [26].  T3 also induces other enzymes such as superoxide dismutase or glutathione 

peroxidase that takes up free radicals generated by environmental damage or oxidative stress 

[29].   

Benefits of T3 are still under investigation.  So far, T3 has been shown to be cardio-

protective and anti-cancer.  In some studies, T3 was detected among low density lipoproteins 

(LDL) while in transit and later found to prevent oxidation of those molecules [26].  Other 

cardio-protective attributes include T3’s ability to inhibit HMG-CoA reductase while 

suppressing inflammation [29] thereby reducing the patient’s LDL cholesterol.   With regards to 

cancer, a rat study showed that mammary carcinogenisis was prevented by way of blocking 

chemically induced tumorigenesis of the mammary glands [26].  It noted that T3 suppressed 

cells’ proliferation and perhaps induced apoptosis within the tumors [29]. 

The complications that stem from ESRD, dialytic factors, and co-morbidities subjects the 

body to inflammation, toxin buildup, and oxidative stress that ultimately leads to decreased 

nutrient intake, malnutrition and an eventual PEW [9].  It appears that T3 may be able to 

counteract the inflammation and oxidative stress based on its anti-inflammatory properties. An 

increase in pro-inflammatory cytokines may be inhibited, radicals produced during oxidative 

injury would be scavenged, and the oxidant-antioxidant ratio would improve to boost the overall 

antioxidant defense mechanisms.   Therefore, an ESRD patient on hemodialysis would lower 

their mortality risk based on the stabilization or inhibition of complications associated with the 

aforementioned factors. 

 

Figure 2.1: Molecule of Vitamin E 
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Adapted from: National Center for Biotechnology Information at the National Institutes of Health. 
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Figure 2.2: Quantity of tocotrienols listed from plant based sources. 

 
 

Adapted from www.tocotrienols.org 
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CHAPTER 3: OBJECTIVE 

 The primary objective of this study was to evaluate the nutritional status of the 

hemodialysis patients and to see if intervention with T3 supplements had any effect on their 

status.  This was viewed based on probable change to the patients’ anthropometric measurements 

and biochemical profiles.  Complications of nutritional status such as PEW, the depletion of 

body mass, can be accounted for in BMI since that is a measure of lean body mass [9].  It had 

been established that reduced kidney function, dialytic factors, and co-morbidities raise 

inflammation which increases energy expenditure while depleting the body stores due to 

inadequate nutrient intake [9]. The effects of inflammation cause a decrease in appetite, thereby a 

decrease in nutrient intake resulting in a protein catabolic state of PEW since there was nothing 

to attenuate an increase in energy expenditure [9], [11]. 

 The nutritional status of the patients on hemodialysis required a diet assessment so that 

the recall tracked the nutrient intake.  Another value to the diet recall allowed the detection of T3 

intake from foods consumed based on previous research.  The supplementation of T3 was also 

taken into account so that the total intake was determined.  Another aspect the research was 

analyzing the biochemical profile of serum albumin.  Albumin’s role is used to assess protein 

status, also known as visceral protein concentration [9].  Other biochemical profiles required to 

assess inflammatory status relies on the cytokine or interleukin concentrations [9].    

There have been a limited number of studies that evaluate the effects of dietary 

intervention as seen in the Kuhlmann et al. that discussed anti-inflammatory 

diet/supplementation and reducing CVD risk.  With respect to hemodialysis studies, we know 

that mortality risk is reflected in the presence of vascular disease [30] and an increase in PEW 

due to malnutrition and inflammation [10], ultimately encompassing CVD [9].    
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A connection had been established which states that PEW and mortality is reflected in 

serum albumin concentrations, as discussed by Jadeja et al.  Diagnosis is often reflected in a 

comparison between nutritional requirements in CKD such as total caloric and protein 

requirement in accordance with the National Kidney Foundation’s Kidney Dialysis Outcome 

Quality Initiative (KDOQI) guidelines (between 0.6-1.2 grams of protein/kg body weight 

depending on CKD stage and 30-35 kcal/kg body wt).  There are no official recommendations on 

supplementation because the studies recommend the importance of protein and energy 

consumption while putting some emphasis on consumption of micronutrients such as 

antioxidants, vitamins, and certain minerals.  The object is to attenuate the loss in protein stores 

due to renal disease and complications associated with dialytic factors co-morbidities. 

 Under the main outcome measures, the use of clinical profiles was required.  This 

entailed a recording of nutrient data so that nutrient consumption was determined, in addition to 

tocotrienol consumption via food intake.  Nutritional focused physical findings were also 

required such as anthropometric measurements of BMI and body weight that provided a visible 

outcome to nutritional problems.  Finally, biochemical profiles were analyzed from blood 

samples which allowed the researchers to determine serum albumin to asses visceral protein 

concentrations (must be around 4 g/dL according to KDOQI guidelines) [9] which is a good 

predictor for mortality [3].  These are non-traditional factors whereas traditional risk factors for 

mortality tend to be opposite in ESRD patients (low serum cholesterol as a high risk factor for 

mortality) [9] and modifiable factors may not be applicable to the ESRD population compared to 

the normal population [9]. 
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CHAPTER 4: MATERIALS AND METHODS 
 
 This project involved a collaborative effort of both Wayne State University Nutrition and 

Food Science and the Great Lakes Dialysis Center in Detroit, Michigan.  The study’s patients 

received routine hemodialysis treatment 4 days a week from the Great Lakes Dialysis Center.   

 The study conducted was parallel designed, randomized, and placebo controlled.  The 

parallel design consisted of two groups within this dialysis participant study that were randomly 

given two different types of treatment.  This clinical trial approach allowed the researchers to 

analyze and evaluate the outcomes of both types of treatment. 

 Under this study design, nutritional intervention of the groups were given either placebo 

or supplement capsules that were administered to the patients for dialysis and non-dialysis days.  

The key objective for the dialysis days was that it allowed the researchers to have a direct 

observation of treatment, making it easier to monitor the patients’ compliance when taking the 

capsules.  On the non-dialysis days, the patients were provided capsule organizers where each 

container had a compartment for each day of the week.  These patients were grouped according 

to dialysis treatment: Sunday, Tuesday, Thursday, and Saturday; and Monday, Wednesday, 

Friday, and Sunday. 

The supplements (Carotino, Johor Darul Takzim, Malaysia) were provided to both groups 

within the study population consisted of a placebo capsule and the tocotrienol rich fraction (TRF) 

capsule.  The two groups were designated Placebo and TRF based on the supplements that were 

administered.  The placebo capsule contents consisted of wheat germ oil that is 0.24 miligrams 

of tocotrienols and 0.44 milligrams of tocopherols.  The TRF capsule contents consisted of Palm 

fruit oil that contained 90 milligrams of tocotrienols and 20 milligrams of tocopherols, for a total 

of 110 milligrams of vitamin E.  To ensure compliance, the patients under directly observed 
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treatment were provided with two capsules during dialysis days three times a week.  A weekly 

organizer was provided with capsules to be taken on non-dialysis days during the two main 

meals.  The containers were returned each week and then refilled. 

 Another aspect of the study design was the 24-hour dietary recall performed by the 

registered dietitian.  Each patient gave a recall at both baseline and then at week 16.  The 

Nutritionist Pro software (First Databank, Chicago, IL) was used at the Wayne State University 

labs to complete the analysis after manually transcribing the hand-written recalls into the 

program.  Estimations of portion size and quantity were recorded at the dialysis center and later 

transcribed by the Wayne State lab graduate research students.  This kept track of the nutrient 

(macro and micro) and energy intake for all the participants.  The total calories consumed during 

both time points, especially at week sixteen, gave an indication of whether or not the patients 

were consuming enough energy based on the recommended values. The macronutrients (i.e. fats, 

carbohydrates, protein) and the micronutrients (i.e. vitamins, minerals) were provided so that 

percentages of the diets were calculated in terms of composition.  The data was then analyzed 

further utilizing statistical analysis software SPSS.  It manipulated the data in order to determine 

food intake behavior based on group mean differences that used independent t-tests, chi-square 

tests for categorical data, and Pearson’s correlation coefficients for correlation tests between two 

variables while significant P-values are <.05. 

 The 24-hour diet recall contained a very important aspect of the study since it was 

necessary that some foods consumed by the patients had naturally occurring tocotrienols.  

Previous research conducted by various institutions had determined the content of tocotrienols 

contained in processed foods.  The tocotrienols are naturally found in oils, grains, and some 

animal products like eggs.  The Wayne State nutrition labs pooled the data from the various 
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resources and created a database to determine the tocotrienol content of the foods [38-43].  Data 

was provided in milligrams of tocotrienols per kilogram (or 100 grams) of the food item.  This 

was calculated according to the actual weight of the patients’ food that determined the 

approximate amount of tocotrienols consumed.   

 Laboratory analysis of blood samples was performed for the patients at baseline and 

week 16 which obtained the biochemical profiles of both serum albumin and IL-6.  Serum 

albumin was analyzed at an external laboratory via standard automated laboratory techniques 

(Bromocresol Green assay, Satellite Laboratory Services, Redwood City, CA). IL-6 was 

measured via the ELISA method per manufacturer protocol (Thermo Scientific, Cat No. 

EH2IL6).  In addition to blood sample collection, medical professionals at the dialysis center 

recorded anthropometric measurements such as weight and BMI at the dialysis clinic.    

 In summary, the methods involved with the study for laboratory analysis at week zero 

and week sixteen were as follows: blood collection for serum albumin and IL-6 content that was 

analyzed for protein content and inflammatory markers; clinical profiles (i.e. body weight, BMI) 

that allowed the researchers to determine any fluctuations that may have indicated a decline 

(stemming from protein energy wasting); dietary analysis based on 24-hour diet recall was 

manually input into the Nutritionist Pro software and tocotrienols were calculated using external 

databases to analyze the nutrient intake (both macro and micro nutrients).  Information on total 

calories, protein, and tocotrienols provided some insight into the possibility of malnutrition. 
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CHAPTER 5: RESULTS 

 Tables 5.1 through 5.10 depict the patients’ clinical characteristics and nutrient intake 

data for baseline and week 16.  The baseline values were recorded at the beginning of the study.  

At the end of the study, a comparison of the data between the two time points was made. The 

goal of the TRF supplements administered in comparison to a placebo was to observe a possible 

difference in the nutrient, clinical, and biochemical profiles of the patients’ data. 

 Table 5.2 depicts the clinical characteristics of the study population.  The BMI intervals, 

in accordance with the Center for Disease Control (CDC), are expressed in terms of kg body 

wt/m2.  The intervals are as follows: underweight (<18.9), normal (19-24.9), overweight (25-

29.9), obese (30-34.9), very obese (35-39.9), and morbidly obese (40<).  The average BMI for 

the study population was approximately 29.5 ± 8.1, which is overweight under CDC guidelines 

and an average of the placebo and TRF groups (28.7 ± 8.2 and 30.2 ± 8.1, respectively).  

Between the two groups, there was no difference throughout the range.  In terms of distribution, 

majority of the patients were in the 19 to 29.9 BMI level. This distribution did not change at the 

end of the study, as the values were the same; majority of patients fell into the 19-24.9 and 25-

29.9 ranges.  Furthermore, there was no significance at either time point. 

The next two measurements in table 5.2 were the biochemical profiles of serum albumin 

and IL-6.  Serum albumin levels read at an overall average of 3.9 ± 0.3 g/dL.  There was no 

difference between the placebo and TRF groups at both times. Moreover, nothing was significant 

after the t-tests were ran.  The three distribution levels were determined by the SPSS software 

based on frequencies of levels for the patients.  The KDOQI guidelines state that an approximate 

value of 4.0 g/dL represents a normal value for the dialysis population, and a significant drop 

indicates a decline in protein status further adding to the risk of mortality.  It may appear that the 
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distribution started off with the majority of patients at 3.8 or less at week zero, but week 16 had 

most of them in the 3.9-4.1 range.  The placebo group in week 16 had only three people move up 

into the 3.9-4.1 and 4.2 groups, however, no change in distribution.  The remaining patients were 

removed from the study since denoted by the reduction in population from 40 to 36.  Since the t-

test proved no significance, again, these values did not change.   

Biomarkers of inflammatory status, such as IL-6, can be viewed in table 5.2.  At the 

beginning of the study, the average for the patients was at 6.9 ± 6.7 pg/mL.  This translated into 

around 7.9 ± 7.9 pg/mL for the placebo and 5.8 ± 5.1 pg/mL for the TRF groups.  There was no 

variation at baseline between the groups considering their averages were about 2 pg/mL apart 

and that there was no significant difference determined by the t-tests. At the end of the study, 

these values did not change and still had no significant difference between the groups.   

The remaining tables, 5.3-5.10, provide information on nutrient intake and possible 

relationships among individual macro and micronutrients in addition to the biochemical and 

anthropometric profiles.  In table 5.3, the average energy and macronutrient intake was provided 

for baseline and week 16 time points based on mean comparisons.  As expected, baseline values 

should have no significant difference since nutrient data was acquired from the patients before 

the supplementation was administered. The average for all patients measured at 2013 ± 727 kcals 

per day.  This accounts for 2097 ± 848 for the placebo and 1932 ± 585 for the TRF groups.  

However, there was no significant difference.  This translates into a low kcal/kg body weight 

measurement at 25 ± 12 kcal/kg body wt for the average.  Again, the two groups had no 

significant difference following the t-test even though the placebo group consumed 

approximately 27 ±14 kcal/kg body wt and the TRF consumed 23 ± 9. In addition, these 

averages are below the KDOQI recommendation of 35 kcal/kg body weight except for the 
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patients.  Over all, these averages that fall below the recommendations suggest there is presence 

of under-nutrition in terms of total calories. At week 16, the average intake was approximately 

1807 ± 481 kcal/day.  However between the groups, there was no significant difference and 

overall no change in comparison to the baseline values.  

In table 5.3, protein consumption was tracked but the values did not come up significant.  

Even though the baseline average of 94 ± 52 g which is 96 ± 68 g for the placebo and 91 ± 31 g 

for the TRF groups.  With a p-value of 0.074, it had a tendency to be significant based on the p 

value that is greater than .05 but less than .1.  Per the KDOQI guidelines (1.2 g/kg body wt), only 

the placebo group managed to reach that value at about 1.24 ± 0.77 g/kg body wt.  This makes 

the overall consumption falls below to the amount of 1.16 ±.62 g/kg body wt when TRF is 

factored in as it only had 1.08 ± .42 g/kg body wt.  A relatively large standard deviation like this 

may explain why the range of protein consumption per bodyweight varies so much.  This pattern 

remained the same at week 16, no change in numbers and there was no significant difference 

between the groups.  Overall consumption was 90 ± 51 g, which is 83 ± 33 g for placebo and 95 

± 62 g for TRF. 

The next macronutrient on table 5.3, carbohydrates, had no significant difference between 

the two groups at both time points.  Carbohydrate intake for all groups was evaluated at roughly 

219 g ± 104 g (220 ± 103 g for placebo and 218 ± 107 g for TRF) at baseline and 202 ± 75 g 

(198 ± 65 g for placebo and 206 ± 83 g for TRF) at week 16.  

Cholesterol intake, on table 5.3, was valued at an average of 431 ± 335 mg, placebo (448 

± 274 mg) and TRF (415 ± 388 mg) groups did not differ because there was no significant 

difference.  There were unchanged values at week 16 indicated by an average of 397 ± 436 mg 

(353 ± 247 mg for placebo and 433 ± 544 mg for TRF) with no significance based on the t-tests.  
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Among the remaining lipids, total fat intake for the patients was 89 ± 48 g, which 

comprises of 99 ± 57 g for the placebo and 80 ± 36 g for the TRF groups, with a p value of 

0.084.   The difference between the groups had a tendency to be significant since the p-value is 

between .05 and .1.  At week 16, total fat intake was at an average of 75 ± 30 g, &1 ± 24 g for 

the placebo and 79 ± 34 g for the TRF group, but no significant difference.  Saturated fat intake 

fluctuated around 31 ± 26 g at baseline (36 ± 18 g for placebo and 29 ± 31 g for TRF), but was 

not significant.  At week 16, there was no change since the average was 26 ± 23 g (21± 8 for 

placebo and 30 ± 30 g for TRF), but they had a tendency to be significant since the t-test’s p 

value was 0.076. MUFAs, with a significance of .05, was detected at an intake of 31 g ± 20 

overall, which is roughly 36 g  ± 24 for the placebo and a lower intake of 27 g ±15 for the TRF 

group.  Week 16 intake had an average of 24 ± 13 g overall, 23 ± 10 g for placebo, and 25 ± 15 g 

for TRF, which had a tendency to be significant (p-value = .067) but again no change.  PUFA 

intake was the lowest intake for both groups with 18 ± 13 g overall, 19 ± 15 g for the placebo 

group, and 17 ± 11 for the TRF group, all with no significant difference.  The week 16 values 

were at an average of 15 ± 12 g (15 ± 11 g for placebo and 16 ± 13 g for TRF) with no 

significant difference.  

The next table, 5.4, presents the average intake for the remaining nutrients evaluated for 

the study population. Sodium intake at baseline was at an average of 3019 ± 1845 mg for all, 

which is 2961 ± 2000 mg for placebo and 2074 ± 1705 mg for TRF, but no significant 

difference.  Week 16 sodium intake values does not show a change based on the average of 3352 

± 1628 mg for all, 3256 ± 1531 mg for placebo, and 3429 ± 1720 mg for TRF, with no 

significant difference.  These values are above the recommended intake of 2 g per day [31].  
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The intake for potassium (see table 5.4) was also not significant.  The baseline values are 

at an average of 2371 ± 2334 mg, 2295 ± 1115 mg for placebo, and 2371 ± 2333 mg for TRF, 

but no significant difference.  For week 16, intake was at an average of 2015 ± 919 mg, 1962 ± 

961 mg for placebo, and 2058 ± 894 mg for TRF, with no significant difference.  Moreover, 

potassium intake was well within the recommended intake of 2-3 g/day [31].   

Vitamin A intake, well above recommendations [31], was determined at in average intake 

of 7371 ± 19372 mg, which is 5524 ± 7415 mg for placebo and 9172 ± 26273 mg for TRF at 

baseline.  The reason for high standard deviation is that one of the patients consumed a high 

amount of vitamin A by eating 16 ounces of liver in one day after reviewing their diet recall.  

Moreover, these differences were not significant.  At week 16, average intake was 6015 ± 9645 

mg, 6377 ± 12115 mg for placebo, and 5718 ± 7193 mg for TRF.  Again, there was no 

significant difference.   

Vitamin C intake (See Table 5.4), a water-soluble vitamin, is at risk for severe depletion 

during the dialysis process.  It is recommended that there should be an intake 60-100 mg/day to 

attenuate this loss [31].  At baseline, the average intake was 99 ± 84 mg, which was about 90 ± 

81 mg for placebo and 108 ± 86 mg for TRF.  This had a tendency to be significant based on the 

fact that the p value (0.064) is between .05 and .1.  At week 16, average intake was 90 ± 105 mg, 

102 ± 112 mg for placebo, and 80 ± 98 mg for TRF with no significant difference.   

Vitamin E-TP (see table 5.4) (tocopherol) intake had no significant difference at baseline 

or week 16.  The average baseline intake was recorded at approximately 10 ± 10 mg, 9 ± 9 mg 

for placebo, and 10 ± 10 mg for TRF.  At week 16, average intake was 6 ± 4 mg, 5 ± 3 mg for 

placebo, and 6 ± 5 mg for TRF.   
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The intake of Total T3s (table 5.4) at baseline was taken before the study began and was 

detected at an average of 2 ± 4 mg, 2 ± 4 mg for placebo, and 3 ± 4 mg for TRF with no 

significant difference.  In week 16, interestingly, the values included supplement intake and were 

significant with a p-Value of <.0001.  The average intake was 92  ± 91 mg, 2 ± 1 mg for placebo, 

182 ± 3 mg for TRF.  Dietary T3 intake at week 16 was at an average of 2 ± 2 mg, 2 ± 1 mg for 

placebo, and 2 ± 3 mg for TRF.   

Another nutrient evaluated in the diet recalls was phosphorous (see table 5.4).  Average 

baseline intake was 1173 ± 589 mg, 1159 ± 601 mg for placebo, and 1186 ± 585 mg for TRF, 

with no significant difference.  At week 16, average intake was 996 ± 469 mg, 953 ± 431 mg for 

placebo, and 1031 ± 500 mg for TRF.  These values appear to be at the recommended level [31].   

The remaining nutrient intake, calcium, iron, and dietary fiber, are displayed on table 5.4 

and neither one of them had any significant differences at baseline or week 16.  Their 

relationships can also be viewed on tables 5.6-5.10 for any (significant) correlations.  After 

analyzing both the mean values of the nutritional intakes for both time points, there appears to be 

little or no difference at all.  This applies to the overall values as well as for the placebo and T3 

groups.  

Table 5.5 depicts the baseline and week 16 macronutrient correlation coefficients.  This 

data would hold the behavior of certain macronutrient intake patterns in comparison with other 

macronutrients.  The correlation coefficients that are displayed indicate that the relationship 

between the two nutrients is significant.   

Total calories have positively correlated with all the macronutrients at baseline and 

continued their relationship with all except Saturated Fat and PUFA.  Saturated Fat and PUFA 
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intake did not have any correlation with Total Calories because the relationship was not 

significant.  Further examination of protein intake did show a (positive) correlation with all 

nutrients except saturated fat and PUFA (at week 16 only) because they were not significant.   

Carbohydrates only had positive correlation with total calories and protein at both baseline and 

week 16.  Total fat intake positively correlated with all the nutrients displayed in table 5.5 except 

carbohydrates at baseline and week 16.  Cholesterol also positively correlated at baseline and 

week 16 with all nutrients except carbohydrates and saturated fat, but only at baseline with 

PUFA.  Saturated fat only positively correlated with Total Calories at baseline only, with Fat at 

baseline and week 16, but only with MUFA and PUFA at baseline.  MUFA had positive 

correlation Total Calories, Protein, Fat, Cholesterol, and PUFA at baseline and week 16.  MUFA 

did correlate with Saturated Fat only at baseline.  PUFA correlated with Total calories, protein, 

Cholesterol, and Saturated Fat at baseline only, and with Fat and MUFA at both baseline and 

week 16. 

Table 5.6 displays the baseline and week 16 micronutrient correlation coefficients 

between Total Calories, Sodium, Potassium, Vitamin A, Vitamin C, Calcium, Iron, Vitamin E 

(tocopherols), Phosphorous, Dietary fiber, dietary Vitamin E-T3, and Total T3 (dietary + 

supplement).  Total T3 at baseline only consists of dietary sources of T3 because supplements 

were not administered when the first diet recall was recorded.  According to this data, Total 

Calories positively correlated with Sodium, Potassium, Calcium, Iron, Vitamin E-TP, 

Phosphorous, and Dietary Fiber at baseline and week 16.  Total calories also correlated with 

Vitamin C only at week 16.  The remaining nutrients had no correlation with Total Calories since 

they were not significant.  Sodium and Phosphorous had a positive correlation at baseline and 

week 16, but with Potassium, Calcium, Iron, and Dietary Fiber at week 16 only.  Potassium 
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positively correlated with Vitamin C, Calcium, Iron, Phosphorous, and Dietary Fiber at baseline 

and week 16.  Vitamin A positively correlated with Iron and Phosphorous at baseline and with 

Dietary Fiber at week 16.  Vitamin C also had positive correlation Iron, Vitamin E-TP, 

Phosphorous, and Dietary Fiber at baseline only.  Calcium had additional positive correlation 

with Iron, Phosphorous, and Dietary Fiber at both baseline and week 16.  Iron positively 

correlated with Phosphorous and Dietary fiber at baseline and week 16, but only with Vitamin E-

TP at baseline, in addition to the other relationships previously discussed.  Vitamin E-TP also 

had positive correlation with Phosphorous at baseline and with Dietary Fiber at week 16.  

Phosphorous additionally had positive correlation with Dietary Fiber at baseline and week 16 

and with Vitamin E-T3 at baseline only.  Dietary Fiber, in addition to other nutrients, positively 

correlated with Vitamin E-T3 at baseline and week 16.  Vitamin E-T3 did not have any further 

relationships with nutrients other than what had been mentioned previously because there was no 

significance.  This applies to all the nutrients within Table 5.6, no presence of a correlation 

coefficient means that there was no significance between the two nutrient comparisons. 

Table 5.7 contains the baseline and week 16 correlation coefficients between Total 

Calories and Protein with anthropometric and biochemical profiles.  Based on the data provided 

on the nutrient intakes, anthropometric, and biochemical profiles, serum albumin did not have 

any interaction with any nutrient intake or biomarker.  While further examining relationships IL-

6 had with nutrients and biomarkers, there was a positive correlation only with dietary T3 which 

suggests IL-6 occurrence is higher with an increased intake of dietary T3.  At the end of the 

study, IL-6 had no correlation with any nutrient or biomarker because they were not significant.   

BMI had a positive relationship with protein intake, Triglyceride levels, and a negative 

relationship with HDL cholesterol.  The latter two are in conjunction with previous literature on 
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the kidney disease population stating that high BMI is associated with higher triglycerides or 

lower HDL cholesterol [32].  At week 16, BMI continued to have a negative correlation with 

HDL cholesterol, agreeing with BMI-HDL relationship in previously established literature.   

The following biomarkers were analyzed based on informational purposes to see if there 

is any conjunction with lipid profile data.  Total Cholesterol (serum) only had positive 

correlation with Triglycerides at week 16, and LDL Cholesterol at both baseline and week 16.  

This claim is agreeable with previous literature [32].  Triglycerides negatively correlated with 

HDL cholesterol at baseline and week 16, in addition to, LDL cholesterol at week 16 only.  HDL 

cholesterol also had a negative correlation with LDL cholesterol at week 16, which is already 

established in prior literature [32]. 

Table 5.8 depicts the interaction between macronutrients and biochemical profiles at 

baseline and week 16.  Based on the data provided, there was no correlation between the 

nutrients and the biochemical profiles.  However, there is an additional correlation test 

comparing Dietary Fiber with the other nutrient intakes and it was shown that it had positively 

correlated with Total Calories and Carbohydrates at baseline and week 16, but negatively 

correlated with (dietary) Cholesterol.  The latter may suggest that those consuming fiber rich 

foods may consume less dietary cholesterol, or vice-versa. 

Table 5.9 contains data on the baseline and week 16 interactions between Vitamin E, 

biochemical, and anthropometric correlations.  The relationship between the biochemical and 

anthropometric profiles had already been discussed in table 5.7. Vitamin E-T3 and Total-T3 both 

had positive correlation with IL-6 at baseline.   
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The final table, 5.10, contained data that depicts the baseline and week 16 correlation 

between T3 and macronutrients.  Correlation among the macronutrients had already been 

discussed in table 5.5.  Between Vitamin E-T3 and the macronutrients, there was negative 

correlation with Cholesterol intake at baseline and positive correlation with Saturated Fat at 

week 16.   
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Table 5.1: Demographics and clinical characteristics of the study population. 

 

Note: All values are presented as mean ± Standard Deviation except for gender and ethnicity.   
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Table 5.2: Baseline and week 16 anthropometric and biochemical profile data. 

 

 
1. Values in accordance with the Center or Disease Control, kg body weight/(height in meters)2  
2. KDOQI guidelines state that serum albumin equal to or greater than the lower limit of normal range (approx. 

4.0 g/dL for the Bromcresol Green Method) is the outcome goal 
Note: all values are presented as mean ± standard deviation.  P values derived using independent t-test for IL-6; BMI 
and serum albumin using χ²  for categorical variables for each time point.  *All non-significant unless denoted by a 
p-value otherwise.  Overall there was no change in values from baseline to week 16.  The distributions of BMI and 
Serum Albumin also remained the same due.  It is suggested that caloric intake is the main cause do to the 
unlikelihood of increased physical activity.  Additionally, there could be limitations to the study based on the fact 
that the 24-hour diet recalls were collected and evaluated at 2 time points and therefore unable to assess dietary 
activity between the 16 weeks.  E.g.: the decline of 3 participants in 16 weeks from the 19-24.9 range could be 
attributed to patient disqualification since one is not accounted for if 2 patients experienced an increase in BMI. 
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Table 5.3: Baseline and week 16 macronutrient data.  

 

Note: All values are presented as mean ± standard deviation.  P-values derived using independent t-tests for each 
time point.  Protein intake at baseline along with saturated fat and MUFA at week 16, have a tendency to be 
significant.  Normally this suggests that the p-Value is greater than 0.05 or less than 0.1. 

* All non-significant unless denoted by a p-value otherwise. 
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Table 5.4: Baseline and week 16 micronutrient data.  

 

1. alpha-tocopherol 
2. Combined tocotrienols from food + supplements for week 16 only. 
Note:  all values are presented as mean ± standard deviation.  P-values derived using independent t-test between the 
two groups for each time point. 

Vitamin C intake at baseline has a tendency to be significant. 

* All non-significant unless denoted by a p-value 
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Table 5.5: Baseline and week 16 macronutrient correlation coefficients. 

 

Note: Week 16 values are bold face and italicized.  E.g., total calories and protein is significant with a 
correlation coefficient value of 0.671.  Only those with correlation values between the two variables are 
displayed.  Those with blank fields are not significant and therefore have no correlative relationship. 

 

 

 

 

 

 

 

 

 

 



	
  

	
  

39	
  

Table 5.6: Baseline and week 16 micronutrient correlation coefficients. 

 

1. Vitamin E-T3 is dietary sourced T3 
2. Total T3 is a combination of dietary sourced T3 and supplements. 
Note: Week 16 are in bold face point and italicized.  E.g., total calories and sodium is significant with a correlation 
coefficient value of 0.567.  Only those with correlation values between the two variables are displayed.  Those with 
blank fields are not significant and therefore have no correlative relationship. 
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Table 5.7: Baseline and week 16 anthropometric and biochemical profile correlation coefficients. 

 

Note: Week 16 values are in bold face point and italicized.  E.g., total calories and protein is significant with a 
correlation coefficient value of 0.671.  Only those with correlation values between the two variables are displayed.  
Those with blank fields are not significant and therefore have no correlative relationship.   Other notable attributes: 
this suggests that BMI increases when triglycerides increase and decreases with HDL cholesterol increases.  
Triglycerides decrease with HDL cholesterol increase and HDL cholesterol increase entails an LDL cholesterol 
decrease due to cholesteryl ester transfer protein (CETP) activity.  These statements are all in accordance that were 
established in previous findings.  
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Table 5.8: Baseline and week 16 macronutrient and biochemical profile correlation coefficients. 

 

Note: Week 16 values are in bold face point and italicized.  E.g., total calories and protein is significant with a 
correlation coefficient value of 0.671.  Only those with correlation values between the two variables are displayed.  
Those with blank fields are not significant and therefore have no correlative relationship. 
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Table 5.9: Baseline and week 16 Vitamin E, biochemical, and anthropometric correlation coefficients. 

 

1. Vitamin E-T3 is dietary sourced T3. 
2. Total T3 is a combination of dietary sourced T3 and supplements. 
Note: Week 16 values are in bold face point and italicized.  E.g., total T3 and Vitamin E-T3 is significant with a 
correlation coefficient value of 1.000.  Only those with correlation values between the two variables are displayed.  
Those with blank fields are not significant and therefore have no correlative relationship. 
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Table 5.10: Baseline and week 16 Vitamin E and macronutrient correlation coefficients. 

 

1. Vitamin E-T3 is dietary sourced T3. 
2. Total T3 is a combination of dietary sourced T3 and supplements. 
Note: Week 16 values are in bold face point and italicized.  Only those with correlation values between the two 
variables are displayed.  Those with blank fields are not significant and therefore have no correlative relationship. 
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CHAPTER 6: DISCUSSION 

 The focus of this study is to analyze the nutritional status of patients with ESRD 

undergoing hemodialysis.  Specifically, to study the effect of a prescribed vitamin E supplement 

on complications of ESRD of these patients. ESRD is the result of CKD after a gradual loss in 

kidney function as the rate at which blood flows through the glomeruli to filter out byproducts, 

falls to less than 15 mL/min/1.73m2[1].  A buildup of waste products in the blood damages the 

blood vessels (also known as nephropathy).  This causes the kidneys to fail, which makes 

hemodialysis as a form of renal replacement therapy necessary.  Prevalence of ESRD has been 

on the rise since the 1980s according to the USRDS.  ESRD afflicts a certain number of 

Americans, especially African Americans who constitute 33% of the 400,000 patients seeking 

dialysis treatment. ESRD continues to be the highest for African Americans compared to other 

ethnicities [2], [3].  However, between mortality and survivability, certain factors show the 

African American dialysis patients have a greater survival rate than Caucasian patients [1](e.g. 

body mass, lipid profiles) [2].   

 Based on current research, causes of CKD and ESRD stem from multiple factors.  Drug 

use can affect intra-glomerular blood flow, lead to cell injury via cytotoxicity, and cause crystal 

induced obstruction of the vessels [7].  During hypertension, high blood pressure forces the heart 

to work harder over time, thereby damaging blood vessels throughout the body, including blood 

vessels within the kidneys [8].  Those inflicted with diabetes have higher levels of blood sugar 

that causes the kidney filters to become overloaded due to the extra work, eventually failing [8].  

Early signs of diabetes induced kidney failure is detected by protein found in urine [8].  As a 

result, ESRD has an impact on morbidity and mortality of the patients as evidenced by increasing 

risk of hospitalizations and long term complications, including cardiovascular disease, 
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malnutrition, and chronic inflammation [9].  The risk for cardiac events is higher in this 

population, thereby contributing to their risk of mortality [9]. 

 Researchers have been forced to explore nontraditional risk factors contributing to 

morbidity within the ESRD population.  Ikizler et al. noted that traditional risk factors towards 

mortality in the ESRD population appear to be contrary to effects in the normal, healthy 

population. For example, low serum cholesterol is protective in the general population but 

opposite in the ESRD population, and high body mass which is normally a risk factor in the 

general population is protective for those with ESRD [9].  Other risk factors contributing to 

morbidity in ESRD patients include anemia, disturbance in mineral metabolism, oxidative stress, 

chronic inflammation, and uremic malnutrition [9].  Chronic inflammation, oxidative stress, and 

malnutrition are especially important in the clinical outcomes of the ESRD population [9] since 

they can affect body composition. 

 One of the major issues that is associated with dialytic and ESRD related conditions, is 

the amount of inflammation the body endures.  Inflammation can stem from multiple origins, 

including vascular disease [12], [13], dialytic factors (e.g. incompatible dialyzer membranes, 

reduced kidney function), and co-morbidities (e.g. infections) [9].  Other sources of 

inflammation can result from uremic toxin buildup [4].  Interestingly, oxidative stress too can 

increase inflammation within the body, which is caused by a buildup of toxins and decreased 

antioxidant intake stemming from malnutrition [9].  It has been found that specific cytokines 

such as interleukins (IL-6) were found to be present during inflammation in addition to the 

accumulation of AGE products [9], [12].  This eventually lowers antioxidant defenses (e.g. 

serum albumin [9], [17]) against oxidative injury in addition to the suppression of appetite 
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(anorexia), which causes a decrease in nutrient intake (malnutrition), especially antioxidant 

intake [9], [13].  Additionally, inflammation has also has been found to increase REE [9].   

 Malnutrition and chronic inflammation have been found to be direct results of 

multifaceted effects of dialytic and co-morbid conditions.  This ultimately leads to strong clinical 

outcomes and increased mortality risk [11], [12]. Ikizler et al. provided a systemic approach to 

the effects and root causes surrounding malnutrition and inflammation discussed in figure 1.4. 

These inflammatory responses to ESRD complications were found to have caused a reduction in 

appetite and further increased energy expenditure denoted by an increase in REE [9].  This 

becomes a net catabolic protein state in which the body is forced to rely on its own protein stores 

for energy, resulting in a loss of body mass, also known as PEW [11], [10].   

 CVD is a common clinical outcome in ESRD patients due to the increase in mortality risk 

[15].  The ESRD patients are also at risk for hospitalization due to poor nutritional status and 

inflammation stemming from dialysis and co-morbid related issues [15].  Malnutrition and 

inflammation play a role in mortality since they impact nutritional and inflammatory markers 

that link CVD with ESRD.  This may suggest that ESRD patients should be encouraged to 

control aforementioned health complications in order to sustain health maintenance. 

 The objective of this project was to evaluate nutritional status of hemodialysis patients 

while undergoing an intervention of T3 supplements.  The effects can be viewed through 

probable changes to the patient’s anthropometric (BMI) and biochemical profiles (serum 

albumin, IL-6).  The anti-inflammatory characteristic of T3 is a key component by way of 

attenuating the effects of damage brought forth by inflammation where it may combat the rise in 

inflammatory markers.  Additionally, many improvements have been made on the oxidant-

antioxidant ratio, attenuation to the loss of serum albumin, as well as the possible defense 
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towards prevention of inflammation.  Many components of inflammation stem from decreased 

renal function, dialytic factors, and co-morbidities (i.e. diabetes, CVD, infections) [13], [12], [9].  

Moreover, the properties of T3 could potentially attenuate the loss of albumin as an antioxidant 

defense mechanism, thereby restoring the oxidant-to-antioxidant ratio to a normal level.  

Additionally, the immune response is a form of an acute phase response that triggers the 

stimulation of cytokines and interleukins, which can reduce antioxidant levels [12], thereby 

inducing oxidative damage.  Tocotrienols allow the hydroxyl group that donates a hydrogen ion 

to later scavenge reactive oxygen species and free radicals, which is one of its prominent  anti-

oxidant capabilities [26].  Another antioxidant property of T3  is the  induction of other enzymes, 

such as superoxide dismutase or glutathione peroxidase, that take up free radicals generated by 

environmental damage or oxidative stress [29].  

 Records of dietary intake and blood samples were taken and evaluated at two time points: 

baseline (Week 0) and Week 16.  Changes in biomarkers and nutritional status were observed.  

Nutritional status is based on both macro and micro nutrient intake and compared to the NKF’s 

KDOQI guidelines.   

 As mentioned before, anthropometric measures were observed at the beginning and the 

end of the study.  This allowed the researchers to see whether nutritional status had any impact 

on the measurements while T3 supplements were prescribed.  It appears that no change was 

detected in the patients’ BMI.  There was no change in the average BMI values of both study 

groups (roughly 30 kg/m2, 29 kg/m2 for placebo, and 30 kg/m2 for TRF), as well as in the 

distribution (the majority of patients were in the 19-24.9 and 25-29.9 ranges) at both time points. 

Moreover, it appears that the decrease in patients from the second interval may be partly due to 

the reduction in patients from the study.  One will also notice that the number of participants is 
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lower in week 16 compared to baseline.  BMI did have a positive correlation with protein intake 

at week zero, considering the relationship between protein and body mass and how the body 

requires protein intake to build muscle.  At the end of the study, there was no significance 

between BMI and protein, suggesting that there is no correlation at all.  In other words, there was 

no change in the data and no way to determine if PEW among the patients is present due to the 

unchanged BMI values compared to nutrient (energy and protein) values at the end of the study.  

There were additional results pertaining to BMI’s relationships.  During the correlation 

tests, BMI negatively correlated with HDL cholesterol (table 5.7) suggesting that high BMI 

entails low HDL cholesterol, which agrees with previously established literature [33].  Other 

notable observations, which agreed with current literature, were the positive correlation between 

BMI and triglycerides, positive correlation between total cholesterol and triglycerides, negative 

correlation between HDL cholesterol and triglycerides, and the positive correlation between LDL 

cholesterol and total cholesterol [33]. 

 The biochemical profiles of serum albumin and IL-6 were observed to indicate possible 

changes in nutritional and inflammatory status [9], respectively.  Any decrease in serum albumin 

or increase in IL-6 could raise mortality risk [5], [3], [9].  It is reported that no changes were 

detected in serum albumin or IL-6.  Most patients remained in the <3.8 g/dL and 3.9-4.2 g/dL 

ranges at both time points.  There was not any relationship between serum albumin and the 

individual nutrients when correlation tests were run.  Moreover, IL-6 values were insignificant at  

an average of 6.9 pg/mL (7.9 pg/mL for placebo and 5.8 pg/mL for TRF).  These values did not 

change at week 16 indicating no effect on inflammatory markers.  There was some slight positive 

correlation with food-sourced T3, however, the study was to determine the effect of total T3 

administered to the patients and therefore this was disregarded. At the end of the study there was 
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no significant change due to any of the nutrients.  This may not be enough to state whether or not 

mortality risk has been affected in favor of lessening the risk or that there is a basis for IL-6 

induced protein energy wasting [8]. 

 One of the main points the study was trying to investigate was whether there was a 

presence of malnutrition detected in the nutrient intake of the patients.  Interestingly, since the 

nutrient data was recorded at two time points starting at week zero and then week 16, the 

numbers should have indicated malnutrition based on the comparison with the United States 

Renal Data System (USRDS) data or other cohort hemodialysis studies.   

The values for total calories consumed per kilogram of body weight were 27 kcal/kg 

body weight versus USRDS recommended 35 kcal/kg body weight.  One can see that these 

values fell below the USRDS recommendations.  This remained unchanged at the end of the 

study as well.  It does not appear that the T3 supplements have had an effect on nutrient intake or 

appetite considering energy intake has remained the same at both time points.  Moreover, the 

numbers may also appear lower; p-values were not significant, and therefore no significant 

difference existed between the caloric intakes between the two groups.  These values that 

represent the study population are inadequate, meaning that population size or compliance may 

have played a factor in the t-test results.  

After analyzing the protein intake, it appears that there was no change in intake over the 

course of the 16-week study.  It started off approximately 18-19% of the meals, but remained the 

same (from an overall of 94 ± 52 g to 90 ± 51 g) at the end of the study.  After analyzing the 

consumption patterns, it increased along with the consumption of other nutrients such as 

carbohydrates, fat, cholesterol and MUFA. There was no significant difference between the 

groups at both time points and the protein consumed by body weight also was unchanged.  NKF 



	
  

	
  

50	
  

KDOQI guidelines recommend hemodialysis patients consume more than 1.2 g/kg body wt, 

which only the placebo group (1.24 ± 0.77 g/kg body wt) has at both time points.  The patients in 

the TRF groups were consuming less than that recommended amount and are at risk for protein-

calorie malnutrition and hypoalbuminemia [10].  It was recommended that HD patients consume 

protein that comprises ≥15% of the diet, which the study population appears to have achieved.  

However, the total energy intake does not reflect the individual protein intake.  There may have 

been inaccuracies with the diet recall, issues with the population size, or non-significance of the 

values may have produced these results. 

Carbohydrate was the nutrient that comprised 42-45% of the diet.  As this was between 

baseline and week 16, not much difference between the.  It should be about 50-60% of the diet 

[31], which the study population was not able to meet.  This could also explain why the caloric 

density intake is below the KDOQI recommended 35 g/kg body weight.  Average fiber intake 

was around 13 mg at baseline and week 16.  Both groups did not meet the recommended intake 

of an estimated 20-25 mg [31].  As suggested by previous literature, the problem with a low fiber 

intake is that it can negatively affect lipid levels [31].  One interesting point that appears to stand 

out is the fact that baseline fiber intake decreased as cholesterol intake increased after analyzing 

the correlations in table 5.8.  This suggests that the inverse relationship could be explained by the 

lipid lowering effect fiber has during consumption that is suggested in previous literature.  

However, cholesterol intake was higher than expectations thereby suggesting the opposite and 

setting the patients up for heart disease.  The food choices many patients made were comprised 

of refined or simple carbohydrates instead of complex variety such as fiber.   

Lipid intake in this study population reflects a diet that promotes an increased heart 

disease risk.  Cholesterol intake of the patients exceeded the American Heart Association (AHA) 
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recommendation of <300 mg/day.    This intake may subject the patients to hyperlipidemia 

according to the AHA, and given their current health state, the risk for mortality is greater.  The 

high cholesterol intake is mainly due to the frequency of egg consumption as seen on the diet 

recalls.  When it comes to Total Fat intake, the patients consumed a diet that is comprised of 36-

40% of it.  Moreover, Saturated fat comprised 14% of the diet and unsaturated fat was about 

22% (MUFA-14%, PUFA-8%) at baseline.  At week 16, the diets were 13% saturated fat and 

19% unsaturated fat (MUFA-12%, PUFA-7%).  Interestingly, MUFA and Saturated fat had a 

tendency to be significant since the p-value was between 0.05 and 0.1.  The values may have a 

tendency to reflect the intake in both groups and a slight difference.  However, there may have 

been factors that caused the statistical analysis test to come up non-significant (e.g. inaccurate 

diet recall), which is why certain nutrients that are not accounted for in the total caloric intake.  

According to AHA, the study population did not meet their recommendations.  The 

patients exceeded the recommended intakes for total fat and saturated fat [31] thereby increasing 

their risk for heart disease.  This could be viewed in the correlation studies (see table 5.5) on how 

total fat and saturated fat positively correlated with Total Calories.  This means that the intake of 

both increased while there was an increase of Total calories. 

  Along with macronutrient intake, micronutrients were tracked as some are held in high 

importance to the ESRD population (e.g. sodium, potassium, phosphorous, Vitamin A, Vitamin 

C).  The majority of micronutrient consumption in the study did not change from baseline to 

week 16.  Towards the end of the study, there was no significant difference between the groups.   

When sodium intake was detected at averages around 3000 mg per day, it exceeded the 

recommendations of <2000 mg [31]. It appears to be cumbersome for the patients since sources 

of sodium are primarily dietary-based or found in dialysate [34]. Potassium intake remained at 
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around 2000 mg at baseline and week 16, therefore exhibiting no change.  Both groups’ values 

had no significant differences.  When it was compared to other dialysis studies, it exceeds their 

recommended ranges as well [31].  Tracking its behavior with other nutrients, potassium 

increased with increases in Total Calories, sodium intake (week 16 only), vitamin C, calcium, 

iron, phosphorous, and fiber.  Sodium intake increased along with the following nutrients (table 

5.6): Total Calories and Phosphorous at both time points, and with Potassium, Calcium, Iron, and 

Fiber at week 16.  Based on these observations, the foods frequently consumed contained these 

common nutrients.   Since t-tests did not prove significance, it may explain why these 

micronutrient intakes are not consistent with caloric intake.  Moreover, the results of other 

studies have shown high potassium intake associated with increased death or survival hazards 

[35].  It can be in part due to issues like hyperkalemia caused arrhythmia [31].  High sodium 

intake concurrent with hypertension in normal population is more problematic in the kidney 

disease population since CVD is associated with complications leading to greater mortality [34].  

Based on these numbers, the study population managed to keep potassium intake under control.  

However, the validity of the results may be questionable considering the study limitations which 

is viewed in the t-tests. 

Phosphorous intake is of high importance to the ESRD population.  Patients are 

encouraged to consume low amounts through diet and take binders since it is also affects calcium 

levels within the body [36].  Other important attributes in the CKD population is the awareness 

of soft tissue calcification associated with CVD risk [36].  Baseline and week 16 intake was 

between 950-1200 mg.  The t-tests proved that there was no significant difference between the 

groups at both time points.  Phosphorous did correlate with the majority of micronutrients, 

including dietary-based T3 at baseline only.  The reason for these numbers is that various foods 
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consumed by the patients contained large amounts of phosphorous (e.g. beef, chicken, processed 

foods, condensed soups).  These foods have common nutrients such as phosphorous, which may 

be why it had correlated with the intake of other micronutrients.  The intake of phosphorous have 

been above recommendations at baseline and below them at week 16 [31].  Because there was no 

significance, it would be difficult to make that observation on their diet behavior being affected 

by their state of health.   

The vitamins that were analyzed hold relevancy to the dialysis population.  Some of these 

micronutrients are fat soluble (e.g. Vitamin A, E) and water soluble (e.g. Vitamin C).  The water 

soluble vitamins are easily depleted during dialysis [37].  The vitamins that had been analyzed 

are all antioxidants and knowing the intakes of each would provide insight into a patient’s 

antioxidant status.  

Average intake of Vitamin C at baseline and week 16 was about 80-110 mg, which 

happens to be within the recommended amount of 60-100 mg [31].  This may not be enough due 

to potential reduction in levels during the dialysis process [37], and therefore requires 

supplementation.  Vitamin C is protective for heart disease because of its antioxidant attributes.  

Even though it may appear that Vitamin C had a tendency to be significant at baseline, it is 

important to note that the time of this diet recall was taken before supplementation and should 

not be different at all.  Week 16 values had no significant difference between the groups meaning 

that the unchanged values carried over throughout the study.   

Vitamin A is another form of anti-oxidant whose levels did not necessarily change in the 

16 weeks.  The average intake at baseline was around 7400 mg but there was no significant 

difference between the two groups.  At week 16, even though intake was about 6000 mg, there 

still was no difference between the groups.  One other interesting point is that one of the patients 
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consumed 16 ounces of liver, rich in vitamin A, which explains the unusually high standard 

deviation in the baseline TRF group.  Based on this study population, it appears as shown in 

previous studies that excessive intake of vitamin A does not benefit patients since it has a pro-

oxidant effect [31].   

Some of these vitamins appear to surpass the recommendations, however, no significance 

may question the validity of their values due to the study’s limitations and how they may not 

match with the values concurrent with a dialysis population.  This may also explain, for example, 

why Vitamin C correlated with micronutrients at certain time points, or why Vitamin A 

correlated with few nutrients in question.  Vitamin A’s intakes were unusually high given that 

overall energy intake was low.  Again, it would be difficult to argue this assumption considering 

these values were not significant.   

The final vitamin, E, has been taken into account due to antioxidant capabilities.  Both 

tocopherols and T3 were tracked.  Tocopherol intake was around 10 mg at baseline and 6 mg at 

week 16.  There were no significant differences at either time and the data tables also show that 

there was not any variation based on those t-test evaluations (which also applied to previous 

nutrient evaluations).  Only baseline values have met recommended levels, however, there is not 

enough justification for the use of tocopherols in the prevention of coronary artery disease [31] 

according to the AHA.  When the study population’s T3 intake was analyzed, primarily dietary 

based at baseline, was marginal since they are between 2-3 mg with no significant difference.  At 

week 16, one of the groups received supplementation in addition to dietary-based T3 and that is 

why there was a large variation of 2-182 mg, which may have explained the significance 

between the two groups.  It is important to note that tocopherols and T3 share the same transport 

protein when in circulation in the body [26] for which tocopherols have a higher affinity.  
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Unfortunately, there was not enough evidence based on average intakes and non-significance to 

detect a change in the intake of other nutrients due to overlying causes as aforementioned.  Also, 

the intake at week 16 is primarily sourced from supplements for the TRF group.  Other notable 

inquiries in the results were that T3 and dietary cholesterol at baseline had a negative correlation, 

which means that T3 intake involved a decrease in cholesterol intake.  This may be due to T3 

rich foods being more prevalent in reference to cholesterol rich foods within the diet.  T3 also 

increased with saturated fat at week 16, meaning that saturated fat-rich foods may also have 

either contained T3s or were eaten frequently with separate T3-containing foods.  One interesting 

point would be the positive correlation between T3 intake and IL-6 at baseline only.  It may be 

that the patients consuming T3-rich foods have a higher incidence of IL-6.  Il-6 being a 

biochemical marker for inflammation should be decreased after supplementation, however, this 

did not happen based on no correlation with T3 intake at week 16.  It may be easy to rule out 

T3’s ineffectiveness, but the non-significance in baseline values for other nutrients may require 

more information or testing. 

  As one can observe here, the study population has less than required energy and protein 

intake, whereas the micronutrient intake varies.  Some are below while certain micronutrients are 

above recommended levels.  This may also explain why the study population’s diet was not 

consistent with heart healthy as compared to similar dialysis studies [31]: fat and carbohydrate 

intake was not optimal.  In addition to the macronutrients, sodium levels were high enough to put 

the patients in a hypertensive state.  Basically, no discernible effect was detected in terms of 

nutrient intake after supplement treatment.  Additionally, it could be due to the quality of 

analysis based on t-tests or correlations that make no detectable pattern.  It would be difficult to 

identify signs of malnutrition since the week 16 data did not exhibit significant difference 
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between the two groups.    Perhaps it is advisable to disregard the fact that T3 may have played a 

role in nutrient intake behavior since almost every nutrient average had no significant difference 

between the groups at the conclusion of the study. 

Other notable issues that arose during the data analysis of the food intake were a 

possibility of inconsistencies with the actual diet recalls.  It could be that the diet recalls may 

contain some inaccuracy since they are solely based on the patients’ memory.  Portion size may 

have been exaggerated or that estimation of servings during transcription into the Nutritionist Pro 

software may not be accurate.  This could have had some influence on the patient’s diet 

composition.  Moreover, many foods recorded from patients were not found in the Nutritionist 

Pro’s central database and alternatives were used in place of some food items.   

The data that was collected on T3 intake through food was pooled from external 

resources and their accuracy is questionable.  In other words, the data analysis run by SPSS that 

gave non-significant results could have been affected by the diet recall or transcription 

inaccuracy.  This can affect the t-tests and correlations, leading to the conclusion that there was 

no change in nutrient data detected when T3 supplements were administered.  Other notable 

inquiries would be study limitations.  Diet recalls were limited to two times and only at the start 

and conclusion of the study.  

 One cannot conclude that T3s are ineffective against stabilizing the complications 

attributed to ESRD.  One observation showed total calories correlated with some nutrients at 

week zero but less at week 16.  This produces mixed results and would not be easy to provide 

any direct conclusion that T3s had any effect.  A future study may want to test with an increased 

dose of T3 to compare with previous results and how nutritional behavior may react with a larger 
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dose so that optimal levels can be investigated.  That, along with a larger population size, would 

entail a smaller margin of error.  

As one would address the study’s limitations, the logistical issues concerning data 

collection would require the researchers to take a more detailed account.  Addressing issues with 

the effectiveness of a 24-hour diet recall could justify providing patients with their own food 

diaries so that they can record their meals immediately after consumption.  This would ensure 

more accurate reporting of portion size.  To address the discrepancy between energy and nutrient 

intake, it may be beneficial for patients to receive more extensive nutritional counseling, in order 

to ensure compliance with recommended intakes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  

	
  

58	
  

REFERENCES 

1.	
   Tamarkin,	
   D.A.	
   Glomerular	
   Filtration.	
   2011;	
   Available	
   from:	
  

http://faculty.stcc.edu/AandP/AP/AP2pages/Units24to26/urinary/filtrati.htm.	
  

2.	
   Streja,	
   E.,	
   et	
   al.,	
   Role	
   of	
   nutritional	
   status	
   and	
   inflammation	
   in	
   higher	
   survival	
   of	
   African	
  

American	
  and	
  Hispanic	
  hemodialysis	
  patients.	
  Am	
  J	
  Kidney	
  Dis,	
  2011.	
  57(6):	
  p.	
  883-­‐93.	
  

3.	
   Noori,	
   N.,	
   et	
   al.,	
   Racial	
   and	
   ethnic	
   differences	
   in	
   mortality	
   of	
   hemodialysis	
   patients:	
   role	
   of	
  

dietary	
  and	
  nutritional	
  status	
  and	
  inflammation.	
  Am	
  J	
  Nephrol,	
  2011.	
  33(2):	
  p.	
  157-­‐67.	
  

4.	
   National-­‐Kidney-­‐Foundation.	
   Chronic	
   Kidney	
   Disease.	
   2013;	
   Available	
   from:	
  

http://www.kidney.org,	
  http://www.renal.org.	
  

5.	
   Initiative,	
  K.D.O.Q.	
  KDOQI	
  Clinical	
  Practice	
  Guidelines	
  and	
  Clinical	
  Practice	
  Recommendations	
  for	
  

Diabetes	
   and	
   Chronic	
   Kidney	
   Disease.	
   2007;	
   Available	
   from:	
  

http://www.kidney.org/professionals/kdoqi/guideline_diabetes/guide5.htm.	
  

6.	
   Sherman,	
   R.A.	
   Treatment	
   Methods	
   for	
   Kidney	
   Failure:	
   Hemodialysis.	
   National	
   Kidney	
   and	
  

Urologic	
   Diseases	
   Information	
   Clearinghouse	
   (NKUDIC)	
   2013;	
   Available	
   from:	
  

http://kidney.niddk.nih.gov/kudiseases/pubs/hemodialysis/?control=Pubs.	
  

7.	
   Naughton,	
  C.A.,	
  Drug-­‐induced	
  nephrotoxicity.	
  Am	
  Fam	
  Physician,	
  2008.	
  78(6):	
  p.	
  743-­‐50.	
  

8.	
   Anonymous.	
   National	
   Kidney	
   and	
   Urologic	
   Diseases	
   Information	
   Clearinghouse.	
   2013	
   	
   [cited	
  

2013	
  April	
  1,	
  2013];	
  Available	
  from:	
  http://kidney.niddk.nih.gov/kudiseases/a-­‐z.aspx.	
  

9.	
   Ikizler,	
  T.A.,	
  Role	
  of	
  nutrition	
  for	
  cardiovascular	
  risk	
  reduction	
  in	
  chronic	
  kidney	
  disease	
  patients.	
  

Adv	
  Chronic	
  Kidney	
  Dis,	
  2004.	
  11(2):	
  p.	
  162-­‐71.	
  

10.	
   Jadeja,	
  Y.P.	
  and	
  V.	
  Kher,	
  Protein	
  energy	
  wasting	
  in	
  chronic	
  kidney	
  disease:	
  An	
  update	
  with	
  focus	
  

on	
   nutritional	
   interventions	
   to	
   improve	
   outcomes.	
   Indian	
   J	
   Endocrinol	
   Metab,	
   2012.	
   16(2):	
   p.	
  

246-­‐51.	
  



	
  

	
  

59	
  

11.	
   Mak,	
  R.H.,	
  et	
  al.,	
  Wasting	
  in	
  chronic	
  kidney	
  disease.	
  J	
  Cachexia	
  Sarcopenia	
  Muscle,	
  2011.	
  2(1):	
  p.	
  

9-­‐25.	
  

12.	
   Kaysen,	
  G.A.,	
  The	
  microinflammatory	
  state	
  in	
  uremia:	
  causes	
  and	
  potential	
  consequences.	
  J	
  Am	
  

Soc	
  Nephrol,	
  2001.	
  12(7):	
  p.	
  1549-­‐57.	
  

13.	
   Kaysen,	
  G.A.,	
  Inflammation	
  and	
  oxidative	
  stress	
  in	
  end-­‐stage	
  renal	
  disease.	
  Adv	
  Nephrol	
  Necker	
  

Hosp,	
  2000.	
  30:	
  p.	
  201-­‐14.	
  

14.	
   Gambro-­‐Americas.	
   Living	
   With	
   Kidney	
   Disease:	
   Treatment	
   Options.	
   2013;	
   Available	
   from:	
  

http://www.gambro.com/en/global/Patient-­‐information/Living-­‐with-­‐kidney-­‐disease/Treatment-­‐

options/Hemodialysis/.	
  

15.	
   Stenvinkel,	
   P.,	
   Inflammation	
   in	
   end-­‐stage	
   renal	
   failure:	
   could	
   it	
   be	
   treated?	
   Nephrol	
   Dial	
  

Transplant,	
  2002.	
  17	
  Suppl	
  8:	
  p.	
  33-­‐8;	
  discussion	
  40.	
  

16.	
   Slee,	
  A.D.,	
  Exploring	
  metabolic	
  dysfunction	
  in	
  chronic	
  kidney	
  disease.	
  Nutr	
  Metab	
  (Lond),	
  2012.	
  

9(1):	
  p.	
  36.	
  

17.	
   Bonanni,	
  A.,	
  et	
  al.,	
  Protein-­‐energy	
  wasting	
  and	
  mortality	
  in	
  chronic	
  kidney	
  disease.	
  Int	
  J	
  Environ	
  

Res	
  Public	
  Health,	
  2011.	
  8(5):	
  p.	
  1631-­‐54.	
  

18.	
   Caglar,	
  K.,	
  R.M.	
  Hakim,	
  and	
  T.A.	
  Ikizler,	
  Approaches	
  to	
  the	
  reversal	
  of	
  malnutrition,	
  inflammation,	
  

and	
  atherosclerosis	
  in	
  end-­‐stage	
  renal	
  disease.	
  Nutr	
  Rev,	
  2002.	
  60(11):	
  p.	
  378-­‐87.	
  

19.	
   Daud,	
   Z.A.,	
   et	
   al.,	
   Effects	
   of	
   protein	
   and	
   omega-­‐3	
   supplementation,	
   provided	
   during	
   regular	
  

dialysis	
   sessions,	
  on	
  nutritional	
  and	
   inflammatory	
   indices	
   in	
  hemodialysis	
  patients.	
  Vasc	
  Health	
  

Risk	
  Manag,	
  2012.	
  8:	
  p.	
  187-­‐95.	
  

20.	
   Noori,	
  N.,	
  et	
  al.,	
  Dietary	
  omega-­‐3	
  fatty	
  acid,	
  ratio	
  of	
  omega-­‐6	
  to	
  omega-­‐3	
  intake,	
  inflammation,	
  

and	
  survival	
  in	
  long-­‐term	
  hemodialysis	
  patients.	
  Am	
  J	
  Kidney	
  Dis,	
  2011.	
  58(2):	
  p.	
  248-­‐56.	
  

21.	
   Patel,	
  V.,	
  et	
  al.,	
  Oral	
  tocotrienols	
  are	
  transported	
  to	
  human	
  tissues	
  and	
  delay	
  the	
  progression	
  of	
  

the	
  model	
  for	
  end-­‐stage	
  liver	
  disease	
  score	
  in	
  patients.	
  J	
  Nutr,	
  2012.	
  142(3):	
  p.	
  513-­‐9.	
  



	
  

	
  

60	
  

22.	
   Prasad,	
  K.,	
  Tocotrienols	
  and	
  cardiovascular	
  health.	
  Curr	
  Pharm	
  Des,	
  2011.	
  17(21):	
  p.	
  2147-­‐54.	
  

23.	
   National-­‐Institutes-­‐of-­‐Health.	
   Dietary	
   Supplement	
   Fact	
   Sheet:	
   Vitamin	
   E.	
   Office	
   of	
   Dietary	
  

Supplements-­‐National	
   Institutes	
   of	
   Health	
   2011;	
   Available	
   from:	
  

http://ods.od.nih.gov/factsheets/VitaminE-­‐HealthProfessional/.	
  

24.	
   Inc.,	
  C.	
  Tocotrienols.	
  2013;	
  Available	
  from:	
  http://www.tocotrienol.org/.	
  

25.	
   Anonymous.	
   Tocotrienol	
   Structure.	
   2013	
   	
   [cited	
   2013	
   February	
   1,	
   2013];	
   Available	
   from:	
  

http://www.ncbi.nlm.nih.gov/pccompound/?term=tocotrienol.	
  

26.	
   Tan,	
   B.,	
   R.R.	
   Watson,	
   and	
   V.R.	
   Preedy,	
   Tocotrienols	
   :	
   vitamin	
   E	
   beyond	
   tocopherols.	
   2nd	
   ed.	
  

2013,	
  Boca	
  Raton:	
  CRC	
  Press.	
  p.	
  

27.	
   Khanna,	
  S.,	
  et	
  al.,	
  Delivery	
  of	
  orally	
  supplemented	
  alpha-­‐tocotrienol	
   to	
  vital	
  organs	
  of	
   rats	
  and	
  

tocopherol-­‐transport	
  protein	
  deficient	
  mice.	
  Free	
  Radic	
  Biol	
  Med,	
  2005.	
  39(10):	
  p.	
  1310-­‐9.	
  

28.	
   Fairus,	
  S.,	
  et	
  al.,	
  Alpha-­‐tocotrienol	
  is	
  the	
  most	
  abundant	
  tocotrienol	
  isomer	
  circulated	
  in	
  plasma	
  

and	
  lipoproteins	
  after	
  postprandial	
  tocotrienol-­‐rich	
  vitamin	
  E	
  supplementation.	
  Nutr	
  J,	
  2012.	
  11:	
  

p.	
  5.	
  

29.	
   Aggarwal,	
  B.B.,	
  et	
  al.,	
  Tocotrienols,	
  the	
  vitamin	
  E	
  of	
  the	
  21st	
  century:	
  its	
  potential	
  against	
  cancer	
  

and	
  other	
  chronic	
  diseases.	
  Biochem	
  Pharmacol,	
  2010.	
  80(11):	
  p.	
  1613-­‐31.	
  

30.	
   Sharma,	
   R.,	
   D.	
   Pellerin,	
   and	
   S.J.	
   Brecker,	
   Cardiovascular	
   disease	
   in	
   end	
   stage	
   renal	
   disease.	
  

Minerva	
  Urol	
  Nefrol,	
  2006.	
  58(2):	
  p.	
  117-­‐31.	
  

31.	
   Khoueiry,	
  G.,	
  et	
  al.,	
  Dietary	
  intake	
  in	
  hemodialysis	
  patients	
  does	
  not	
  reflect	
  a	
  heart	
  healthy	
  diet.	
  J	
  

Ren	
  Nutr,	
  2011.	
  21(6):	
  p.	
  438-­‐47.	
  

32.	
   Lo,	
   J.C.,	
   et	
   al.,	
  GFR,	
  body	
  mass	
   index,	
   and	
   low	
  high-­‐density	
   lipoprotein	
   concentration	
   in	
  adults	
  

with	
  and	
  without	
  CKD.	
  Am	
  J	
  Kidney	
  Dis,	
  2007.	
  50(4):	
  p.	
  552-­‐8.	
  

33.	
   Brown,	
  C.D.,	
  et	
  al.,	
  Body	
  mass	
  index	
  and	
  the	
  prevalence	
  of	
  hypertension	
  and	
  dyslipidemia.	
  Obes	
  

Res,	
  2000.	
  8(9):	
  p.	
  605-­‐19.	
  



	
  

	
  

61	
  

34.	
   Mc	
   Causland,	
   F.R.,	
   S.S.	
   Waikar,	
   and	
   S.M.	
   Brunelli,	
   Increased	
   dietary	
   sodium	
   is	
   independently	
  

associated	
   with	
   greater	
   mortality	
   among	
   prevalent	
   hemodialysis	
   patients.	
   Kidney	
   Int,	
   2012.	
  

82(2):	
  p.	
  204-­‐11.	
  

35.	
   Noori,	
  N.,	
  et	
  al.,	
  Dietary	
  potassium	
  intake	
  and	
  mortality	
  in	
  long-­‐term	
  hemodialysis	
  patients.	
  Am	
  J	
  

Kidney	
  Dis,	
  2010.	
  56(2):	
  p.	
  338-­‐47.	
  

36.	
   Kalantar-­‐Zadeh,	
   K.,	
   Patient	
   education	
   for	
   phosphorus	
   management	
   in	
   chronic	
   kidney	
   disease.	
  

Patient	
  Prefer	
  Adherence,	
  2013.	
  7:	
  p.	
  379-­‐90.	
  

37.	
   Guo,	
  C.H.,	
  Micronutrient	
  Metabolism	
  in	
  Hemodialysis	
  Patients.	
  InTech,	
  2011:	
  p.	
  32.	
  

38.	
   Franke,	
  A.	
  A.,	
  Tocopherol	
  and	
  tocotrienol	
  levels	
  of	
  foods	
  consumed	
  in	
  Hawaii,	
  J	
  Agric	
  Food	
  

Chem.	
  2007	
  Feb	
  7;	
  55(3):769-­‐78.	
  

39.	
  	
   Chatterjee,	
  D.,	
  Tocopherol	
  and	
  Tocotrienol	
  Content	
  of	
  Fast	
  Foods	
  and	
  Pizzas,	
  University	
  of	
  

Georgia:	
  ©	
  2005	
  

40.	
   Chun,	
  J.,	
  Tocopherol	
  and	
  tocotrienol	
  contents	
  of	
  raw	
  and	
  processed	
  fruits	
  and	
  

vegetables	
  in	
  the	
  United	
  States	
  diet,	
  Journal	
  of	
  Food	
  Composition	
  and	
  Analysis	
  19	
  (2006)	
  196–

204	
  
41.	
   Piironen,	
  V.,	
  Tocopherols	
  and	
  Tocotrienols	
  in	
  Finnish	
  Foods:	
  Vegetables,	
  Fruits,	
  and	
  

Berries,	
  J.	
  Agric.	
  Food	
  Chem.	
  1986,	
  34	
  I	
  742-­‐746	
  

42.	
  	
  	
   Sookwong,	
  P.,	
  Tocotrienol	
  Content	
  in	
  Hen	
  Eggs:	
  Its	
  Fortification	
  by	
  Supplementing	
  the	
  Feed	
  with	
  

Rice	
  Bran	
  Scum	
  Oil,	
  J.	
  Agric.	
  Food	
  Chem.	
  1986,	
  34	
  I	
  742-­‐746	
  

43.	
   Gallaher,	
  Daniel	
  D.,	
  Potential	
  Health	
  Benefits	
  of	
  Wild	
  Rice	
  and	
  Wild	
  Rice	
  Products:	
  Literature	
  

Review.,	
  University	
  of	
  Minnesota:	
  July	
  2012	
  

44.	
  	
   Marieb,	
  Elaine	
  N.,	
  Human	
  Anatomy	
  and	
  Physiology.	
  	
  Pearson,	
  2013.	
  	
  25:	
  p.	
  955-­‐982 

 

  



	
  

	
  

62	
  

ABSTRACT 

NUTRITIONAL STATUS IN A COHORT OF HEMODIALYSIS PATIENTS 
RECEIVING TOCOTRIENOL SUPPLEMENTATION 

by 

RAJEEV SHAHANI 

December 2013 

Advisor: Dr. Pramod Khosla 

Major: Nutrition and Food Science 

Degree: Master of Science 

 

Kidney disease is defined by a loss of kidney function over time [1].  It is expressed in 

terms of glomerular filtration rate at five stages calculated by the MDRD formula [5].  The fifth 

stage (<15 mL/min/1.73m2) is designed as end stage renal disease requiring renal replacement 

therapy in the form of hemodialysis [5].  This requires the use of an artificial kidney (dialyzer) to 

filter out by-products from the blood for excretion [8].   The issue arises when toxin 

accumulation due to decreased renal function, dialytic factors such as incompatible dialyzer 

membranes reacting with blood, and co-morbid conditions such as infection or diabetes mellitus 

[3].  This increases inflammation within the body, leading to a negative nutrient/energy balance, 

resulting in a loss of body mass thereby increasing the mortality risk [10].  Tocotrienols (T3), a 

more potent and underutilized form of Vitamin E, are being administered to attenuate this 

increase in inflammation via supplementation in addition to food intake.  A cohort of 

hemodialysis patients was analyzed in order to study this issue.  The nutritional status was 

assessed utilizing three measures: examining nutrient intake profiles (while supplementation was 

taken into consideration), obtaining anthropometric findings of body mass index, and analyzing 

biochemical profiles of serum albumin and pro-inflammatory markers (i.e. IL-6).  This data was 
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obtained via a randomized, double blind, placebo-controlled study of 81 dialysis patients.  At 

two times over the course of 16 weeks, blood collection for serum albumin and inflammatory 

markers was analyzed and dietary intake was assessed using 24-hour diet recalls and Nutritionist 

Pro software.  Statistical analyses of paired t-tests and correlation studies revealed no significant 

differences between the two groups later showing no noticeable effect of T3 supplementation.  

Reasoning may be multifactorial such as underestimation of food intake, transcription of diet 

recalls may not be truly representative, or T3 supplements may not have had an effect on the 

nutritional statuses.  It may be beneficial for patients to receive more extensive nutritional 

counseling as opposed to nutritional supplementation to ensure compliancy with recommended 

intakes. 
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