
Wayne State University

Wayne State University Theses

1-1-2012

Truthful Mechanisms For Real-Time System
Scheduling In Competitive Environments
Anwar Mohammadi
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Mohammadi, Anwar, "Truthful Mechanisms For Real-Time System Scheduling In Competitive Environments" (2012). Wayne State
University Theses. Paper 239.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56688033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/239?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages

TRUTHFUL MECHANISMS FOR REAL-TIME SYSTEM SCHEDULING
IN COMPETITIVE ENVIRONMENTS

by

ANWAR MOHAMMADI

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2012

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

DEDICATION

To my father and mother with love.

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my gratefulness to my advisors, Dr. Nathan Fisher

and Dr. Grosu for their advice, support and help. Their invaluable help of constructive

comments and suggestions throughout my study and thesis works have contributed to

the success of this research.

I am also very grateful to Dr. Weisong Shi and Dr. Zaki Malik for serving on my

thesis committee. I also would like to thank all my colleagues in CoPaRTS group and

LAST group. A special thanks to Masud Ahmad and Pradeep Hettiarachchi for their

support and help during my study in CoPaRTS group. I also acknowledge the financial

support of the National Science Foundation (Grant No. CNS-116787).

Last but not least, I deeply acknowledge the love and support of my father, my mother

and all my brothers and sisters.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . vi

List of Figures . vii

Chapter 1 INTRODUCTION . 1

1.1 Related Work . 3

1.2 Our Contributions . 5

1.3 Organization . 6

Chapter 2 MODEL . 7

2.1 Implicit Deadline Sporadic Task Model . 7

2.2 Competitive Allocations . 8

2.2.1 Algorithm for Solving EDF-MAXVAL 9

2.3 Algorithm for Solving RM-MAXVAL . 11

2.4 Motivating Examples . 14

Chapter 3 MECHANISM DESIGN . 17

3.1 Mechanism . 17

3.2 Exact Mechanisms . 18

3.3 Frugality . 20

Chapter 4 APPROXIMATION MECHANISMS 25

4.1 Characterization of Truthful Approximation Mechanisms 25

4.2 Approximation Algorithms . 28

4.3 Truthful Approximation Mechanisms . 28

4.4 Frugality of Approximation Mechanisms . 31

4.5 Approximation Mechanisms with Reserve Prices 31

iv

Chapter 5 EXPERIMENTAL RESULTS . 34

5.1 Non-Truthful Type Declaration . 35

5.1.1 Results for EDF-based Mechanisms 36

5.1.2 Results for RM-based Mechanisms . 37

5.2 Payments and Frugality Ratios . 39

5.3 Execution Time . 41

Chapter 6 CONCLUSION . 43

Bibliography . 44

ABSTRACT . 48

AUTOBIOGRAPHICAL STATEMENT . 49

v

LIST OF TABLES

Table 2.1: Agents’ types example . 15
Table 2.2: Upper Bound on Total Utilization for RM Feasibility 16
Table 3.1: Example illustrating tightness of upper bound on the frugality ratio for

EDF-MAXVAL-VCG . 24
Table 3.2: Example illustrating tightness of upper bound on the frugality ratio for

RM-MAXVAL-VCG . 24
Table 5.1: Agents’ true parameters . 35
Table 5.2: Different type declarations by Agent 5 37
Table 5.3: The utilities of Agent 4 in each case for EDF 37
Table 5.4: Different type declarations by Agent 4 for RM 39

vi

LIST OF FIGURES

Figure 3.1: Computing payments . 23
Figure 5.1: Utilities and Payments for EDF . 37
Figure 5.2: Utilities and Payments for RM . 38
Figure 5.3: Payments vs. Values, Frugality and Execution Times of EDF 40
Figure 5.4: Payments vs. Values, Frugality and Execution Times of RM 41

vii

1

CHAPTER 1

INTRODUCTION

In a real-time system, several tasks with specific deadlines can co-execute on a hard-

ware platform. Each task has some characteristics and generates infinite jobs in a very

predictable manner. For example in a sporadic task system, different jobs are gener-

ated in a periodic manner and they have upper bounds upon their worst-case execution

requirement and associated deadlines. In implicit-deadline sporadic tasks system, the

deadline of jobs are equal to the time interval between to consecutive jobs of the task.

These tasks should be scheduled such that the timing requirements of all tasks are satis-

fied. Scheduling implicit-deadline sporadic task systems using static and dynamic priority

scheduling is well-understood for the traditional (non-competitive) setting. In this thesis,

we consider scheduling implicit-deadline sporadic task systems upon a preemptive single

processor platform in the presence of competition using the earliest-deadline-first (EDF)

and the rate-monotonic (RM) scheduling algorithms. In the competitive setting, a value

parameter is associated with each task that represents how much value is obtained by

successful execution of all jobs of that task. Under the assumption that the processor

cannot feasibly satisfy the temporal requirements of all the tasks, we are interested in

selecting a subset of these tasks so that the resulting subset is feasible and the sum of

the values of selected tasks is maximized.

For EDF scheduling, this problem is equivalent to the well known 0-1 knapsack prob-

lem in which the items’ weights are utilizations of the tasks and the items’ values are the

values of the tasks. There are pseudo-polynomial time and also fully polynomial-time

approximation scheme (FPTAS) algorithms that can solve this problem [31]. In the case

of RM setting, the aforementioned 0-1 knapsack algorithms are not immediately appli-

cable. We use the utilization-based feasibility test which is a sufficient condition and,

2

we propose a pseudo-polynomial algorithm which optimally solves the problem. We also

propose an approximation algorithm for the RM setting.

Using these algorithms to solve the problems are useful when we assume that the true

characteristics of each task are known. This assumption is not valid in competitive envi-

ronments such as cloud computing systems or shared real-time networks in which several

agents are competing for processor time upon a shared computational resource. The

agents may lie about their true task requirements and their value in order to maximize

their own obtained benefits from execution.

We consider the scheduling of sporadic tasks in a competitive environment in which

each task is owned by a separate agent. Each agent knows the characteristics of her own

task and reports a utilization and a value to the processor owner. Since each agent is

self-interested, she may report a utilization and value different from the true ones if she

knows that by doing this, her task will be selected to run on the processor. By considering

these self-interested agents, the problem is moved from the area of algorithm design to

that of mechanism design [21].

Mechanism design is the art of designing rules in a competitive environment to achieve

specific properties such as truthfulness and efficiency. The truthfulness property ensures

that the agents will always tell the truth and the efficiency property will provide a

maximized system-wide objective. Nisan and Ronen [27] were the first to consider the

use of mechanism design in computational settings. In recent years, mechanism design

has found many important applications in computer science such as network routing,

load balancing, auctioning and internet advertisements. Mechanism design has had a

spectacular commercial success. For example, Google and Yahoo! employ mechanism

design for internet advertisement auctions and their revenues from these auctions in 2005

were over $6 billion and $2.6 billion respectively [13].

Given the significant impact of mechanism design in a large spectrum of computer

3

science domains, it behooves us to understand the effects of competition on the design of

real-time open environments in which several independently-developed real-time appli-

cations may share the same computational platform. Furthermore, future real-time and

cyber-physical systems are likely to be open [1]. A lack of understanding of the effects

of competition on the temporal correctness of open systems will ultimately lead to an

inefficient allocation of resources.

Unfortunately, as we will see in the related work section, there is only one paper

that addresses real-time scheduling under competition. Furthermore, this prior paper

focuses on online scheduling of aperiodic jobs and not traditional hard-real-time recurring

tasks. As an initial starting point for our exploration of competitive real-time systems,

we consider the simple environment of implicit-deadline sporadic tasks to be scheduled

based on the EDF and RM algorithms. A mechanism will take the task characteristics

from each agent and decide which agents obtain the processor. The mechanism also

determines the amount that should be paid by the agents who obtained the processor.

We are interested in designing mechanisms that give incentives to the agents to report the

true characteristics of their tasks and thus, guarantee an efficient processor allocation.

1.1 Related Work

Sporadic real-time task scheduling upon a uniprocessor in non-competitive settings

has been studied extensively [20, 24]. For implicit-deadline sporadic tasks systems,

Lehoczky et al. [19] presented an exact feasibility test for static-priority scheduling algo-

rithms. Liu and Layland [20] presented a sufficient schedubility test for implicit-deadline

sporadic task systems based on rate-monotonic scheduling algorithm.

In a hard real-time system, only tasks that meet their deadlines are considered to be

successful. If it is not possible to guarantee the successful completion of all the tasks,

the goal is typically to optimize a performance metric. A common metric is to associate

a value with each task and quantify the “goodness” of an algorithm by the accumulated

4

values of successful tasks [7, 6, 10]. Aydin et al. [5] studied reward-based scheduling for

periodic tasks in which there is a reward associated with each task’s execution. Each task

is composed of a mandatory and an optional part. The mandatory part must meet the

task’s deadline, while a non-decreasing reward function is associated with the execution

of the optional part. The goal is to find a schedule that maximizes the weighted average

reward. All of these prior works assume that the task characteristics are publicly known,

and none of them considers a competitive setting, in which the task’s characteristics are

private to the agents and the agents compete for resources.

Nisan and Ronen [27] introduced the technique of algorithmic mechanism design for

computational problems in a competitive setting. They addressed the problem of mini-

mization of the make-span of tasks on parallel machines by designing a truthful approx-

imation mechanism for the problem. The field of mechanism design has been applied to

several computer science problems such as routing [14] and multicast transmission [15].

Aggarwal et al. [3] studied knapsack auctions for selling advertisements on Internet search

engines in which the size of objects are publicly known. Their work is related to our study,

in both cases the underlying optimization problem is the knapsack problem.

There are only a few works we are aware of that apply the field of game theory and

mechanism design to real-time systems. Sheikh et al. [29] used a game-theoretic com-

putational technique to solve the problem of scheduling strictly periodic tasks in a non-

competitive environment. Porter [28] studied the problem of online real-time scheduling

of jobs on a single processor in a competitive environment. In this work, the private type

of the agents consists of release time, job length, deadline, and value. However, none

of these prior works on scheduling considers traditional recurring tasks (e.g., sporadic

or periodic tasks) which are commonly found in real-time applications. The goal of our

thesis is to investigate competitive scheduling for recurring tasks by introducing, devel-

oping, and analyzing techniques of mechanism design for scheduling sporadic tasks on a

5

shared single processor platform.

1.2 Our Contributions

In this thesis, we employ the field of mechanism design for assigning a single processor

to real-time sporadic tasks. These are our contributions in this work:

• We employ the field of mechanism design for scheduling implicit-deadline sporadic

task systems upon a single processor in a competitive setting. To the best of our

knowledge, this is the first work that considers scheduling recurring tasks in a

competitive environment.

• We design truthful exact mechanisms based on the Vickrey-Clarke-Groves (VCG)

mechanism [32, 11, 16] that allocates the single processor to a subset of participat-

ing agents based on EDF and RM scheduling algorithms. These mechanisms use

dynamic programming algorithms to optimally select the agents who obtain the

processor.

• We evaluate multiple definitions of frugality and determine the most suitable defini-

tion for real-time scheduling of sporadic tasks. The frugality ratio of a mechanism

measures the amount of payment made by the agents compared to the agent’s

values.

• Since the allocation algorithms for the truthful exact mechanisms are computa-

tionally intractable, we provide truthful approximation mechanisms which use fully

polynomial-time approximation scheme algorithms to find a near-optimal allocation

and derive their frugality ratios.

• The total payments by the agents can be less than the cost of operating the system;

therefore, we design truthful mechanisms with reserve prices which guarantee a

minimum profit for the processor owner.

6

• We perform simulations to investigate the effects of non-truthful behavior of agents,

comparing payments to the reported values, determining the frugality ratios of the

mechanisms, and comparing the execution times of the mechanisms.

The results presented in this thesis were published in Proceedings of the 24th Eu-

romicro Conference on Real-Time Systems (ECRTS12) [22]. An extended version of this

paper is under review for IEEE Transactions on Computers [23].

1.3 Organization

The thesis is organized as follows. In Chapter 2, we discuss the problem of implicit-

deadline sporadic task scheduling in both non-competitive and competitive environments

and using dynamic and static-priority task scheduling algorithms. In Chapter 3, we

review the basic concepts of mechanism design and introduce truthful exact mechanisms

to solve the problems in competitive environments. We also discuss the frugality of the

mechanisms. In Chapter 4, we present truthful approximation mechanisms and derive

bounds on their frugality. In Chapter 5, we present and discuss experimental results.

7

CHAPTER 2

MODEL

In this chapter, we discuss the original problem of scheduling implicit-deadline spo-

radic task systems on a single processor and present previous results. We also define the

competitive version of the problem, where there is a value associated with each task. We

give examples that illustrate the need for mechanism design in competitive settings.

2.1 Implicit Deadline Sporadic Task Model

In a sporadic task system S = {Ti|i = 1, . . . , n}, each task Ti = (ei, di, pi) is char-

acterized by three parameters: (i) the worst-case execution time of each job, ei; (ii) the

relative deadline, di; and (iii) the minimum separation between successive job releases of

the task, pi. The utilization ui of task Ti, is defined as the ratio of the execution time of

the task to its period, ui = ei/pi. A sporadic task system is a finite collection of sporadic

tasks. The utilization of a sporadic task system S is defined as U(S) =
∑

Ti∈S
ui.

We consider the case of implicit-deadline sporadic task systems in which the relative

deadline of each job is equal to the minimum separation between successive jobs of the

task, (di = pi) for all tasks. We consider both dynamic-priority and static-priority task

scheduling. In the dynamic-priority scheduling of sporadic tasks, all the jobs generated

by a task may have different priorities, but in static priority-scheduling they the same

priority.

For the dynamic-priority scheduling, it has been shown that the earliest deadline first

scheduling algorithm (EDF) is an optimal algorithm for scheduling sporadic tasks in a

preemptive environment [20, 24]. In other words, if it is possible to preemptively schedule

a task system such that all the jobs meet their deadlines, then the EDF algorithm for

this task system will meet all deadlines as well. A necessary and sufficient condition [24]

8

for any implicit-deadline system S to be feasible upon a uniprocessor is U(S) ≤ 1.

For implicit-deadline sporadic task systems, the rate-monotonic (RM) algorithm, is

an optimal priority assignment in the static-priority scheduling. The RM algorithm

assigns priorities to the tasks in inverse proportion to their period parameters, i.e., task

Ti has higher priority than Tj ’s priority if pi < pj . It has been shown that ([20]), an

implicit-deadline sporadic task system S is static-priority feasible if

U(S) ≤ n(2
1

n − 1), (2.1)

where U(S) is its total utilization (the sum of utilizations of all tasks) and n is the

number of tasks (i.e., n = |S|). This is a sufficient condition but not necessary condition

for feasibility. In this thesis, we use this test to check the feasibility of a sporadic task

system.

2.2 Competitive Allocations

Consider an environment where each task Ti is owned by Agent i and each agent

competes for allocation of the processor to her task. Each agent declares a value she

wishes to pay if her task is selected to run on the processor. Each Agent i is characterized

by a type θi = (ui, vi), where ui is the utilization required to execute the task and vi is

the value derived by the agent from executing the task. Let N = {1, 2, . . . , n} be the set

of all agents. A set of agents is feasible if it is possible to schedule their tasks such that

they meet their deadlines, i.e., for dynamic-priority scheduling, the sum of utilizations

of selected agents should be less than or equal to 1 and for static-priority scheduling the

sum of utilizations of selected agents is at most k(2
1

k − 1), where k is the number of

selected agents. Our objective is to allocate the processor to a feasible subset O ⊆ N so

that the sum of the values of the agents in O is maximized. This is a common objective

in economics and is also referred to as social welfare. We formulate two problems of

9

maximizing the social welfare, one for EDF and one for RM as follows.

EDF-MAXVAL Problem: Given agent types θi = (ui, vi), i = 1, . . . , n

Maximize
∑n

i=1 vixi

subject to:
∑n

i=1 uixi ≤ 1

xi ∈ {0, 1}

(2.2)

RM-MAXVAL Problem: Given agent types θi = (ui, vi), i = 1, . . . , n

Maximize
∑n

i=1 vixi

subject to:
∑n

i=1 uixi ≤ (21/
∑

n

i=1
xi − 1)

∑n
i=1 xi

xi ∈ {0, 1}

(2.3)

where xi = 1, when Agent i is selected, and xi = 0, otherwise. The constraints ensure

that the set of selected tasks is feasible. We consider that the values (vi, i = 1, .., n) are

integers. The EDF-MAXVAL and RM-MAXVAL are natural formulations of the problem

of determining how to allocate a shared processor and still guarantee that admitted

tasks can meet their deadlines. Please note that EDF-MAXVAL and RM-MAXVAL

use, in their formulation, only ui and vi for each task Ti. We may ignore, for now the

particular values of ei, pi, and di. For any agent that is selected, we may successfully

accommodate, via EDF or RM, any pi and ei such that ui = ei/pi (given the implicit-

deadline assumption). In the following sections, we present two algorithms for solving

the EDF-MAXVAL and RM-MAXVAL problems.

2.2.1 Algorithm for Solving EDF-MAXVAL

The EDF-MAXVAL problem is the standard 0-1 knapsack problem and is NP-hard;

however, the problem does admit a pseudo-polynomial-time algorithm based on dynamic

programming [31]. We restate the dynamic programming approach in the following. Let

V be the maximum of the values of all tasks, i.e., V = maxni=1 vi. It is trivial that an

10

Algorithm 1 EDF-MAXVAL-DP: Allocation Algorithm

1: input: u1, . . . , un and v1, . . . , vn.
2: V = maxi vi;
3: for j = 1 to nV do
4: if v1 = j then
5: U(1, j) = u1

6: else
7: U(1, j) = ∞
8: end if
9: end for
10: for i = 1 to n− 1 do
11: for j = 1 to nV do
12: if vi+1 ≤ j then
13: U(i+ 1, j) = min {U(i, j), ui+1 + U(i, j − vi+1)}
14: else
15: U(i+ 1, j) = U(i, j)
16: end if
17: end for
18: end for
19: opt = max {v|U(n, v) ≤ 1}
20: O = the set of selected agents by looking backward at U(i, j).
21: output (opt,O)

upper bound on the maximum value that can be achieved by any solution is nV . For

each i ∈ {1, 2, . . . , n} and v ∈ {1, 2, . . . , nV }, let Si,v denote a subset of tasks {1, 2, . . . , i}

whose total value is exactly v and whose total utilization is minimized. Let U(i, v) denote

the utilization of the set Si,v (it is ∞ if no such set exists). Clearly, U(1, v) is known for

every v ∈ {1, . . . , nV }. The following recurrence computes all values U(i, v) in O(n2V)

time:

U(i+ 1, v) =











min{U(i, v), ui+1 + U(i, v − vi+1)} if vi+1 ≤ v,

U(i, v) otherwise.
(2.4)

The maximum value achievable by a set of tasks with total utilization bounded by

1 is max {v|U(n, v) ≤ 1}. The dynamic programming algorithm EDF-MAXVAL-DP is

11

given in Algorithm 1. We are computing the optimum aggregate value in lines 2-19.

In Line 20, we obtain the selected tasks. We can do this by just looking backward at

U(i, j) matrix. Let opt = max {v|U(n, v) ≤ 1}. If U(n, opt) = U(n − 1, opt) then we

did not select the n-th item, so we just recursively work backwards from U(n − 1, opt).

Otherwise, we select that item, output the n-th task and recursively work backwards

from U(n − 1, opt − vn). EDF-MAXVAL-DP determines the solution in O(n2V) time,

and thus, it is a pseudo-polynomial algorithm for EDF-MAXVAL.

2.3 Algorithm for Solving RM-MAXVAL

Now we propose a new dynamic programming algorithm for finding a feasible subset

which has the maximum total aggregate value for the RM settings. We use the utilization

bound feasibility test [20], i.e., a subset S ⊆ N is feasible if

U(S) ≤ |S|(21/|S| − 1)

The dynamic programming approach is as follow. Let V be the maximum of the

values of all tasks, i.e., V = maxni=1 vi. It is trivial that an upper bound on the maxi-

mum value that can be achieved by any solution is nV . For each i ∈ {1, 2, . . . , n} and

k ∈ {0, 1, . . . , n} and v ∈ {1, 2, . . . , nV }, let Si,k,v denote a subset of tasks {1, 2, . . . , i}

whose total value is exactly v and contains exactly k tasks, and whose total utilization

is minimized. Let U(i, k, v) denote the utilization of the set Si,k,v (it is ∞ if no such set

exists). Clearly, U(1, k, v) is known for every k ∈ {0, . . . , n} and v ∈ {1, . . . , nV } and is

U(1, k, v) =























0 if k = 0,

u1 if v = v1and k = 1,

∞ otherwise.

(2.5)

12

The following recurrence computes all values U(i, k, v) in O(n3V) time:

U(i+ 1, k, v) =











min{U(i, k, v), ui+1 + U(i, k − 1, v − vi+1)} if vi+1 ≤ v,

U(i, k, v) otherwise.
(2.6)

The maximum value achievable by a set of tasks is max{v|U(n, k, v) ≤ k(21/k−1), 1 ≤

k ≤ n}, where Sn,k,v is the task set associated with U(n, k, v). The dynamic programming

algorithm RM-MAXVAL-RMDP is given in Algorithm 2. We are computing the optimum

aggregate value in lines 2-24. In Line 25, we obtain the selected tasks. We can do this

by just looking backward at U(i, k, j) matrix as discussed in the previous section.

Now we prove that the algorithm is correct by using the following lemma:

Lemma 2.3.1 Let Ai be the set of agents {1, 2, ..., i}. U(i, k, v) is the minimum total

utilization that can be obtained by selecting exactly k agents in Ai with a total value equal

to v.

Proof The proof is by induction on i. It is easy to check that the statement is correct

for i = 1. For k = 0, U(1, k, v) = 0. If v = v1, then U(1, 1, v) = u1 and U(1, k, v) = ∞,

for k > 1. If v 6= v1, then U(1, k, v) = ∞, for every k > 0.

Now, assume that the statement holds for i, i.e., U(i, k, v) is the minimum total

utilization that can be obtained by a subset of k agents in Ai with total value equal

to v. We prove that the statement also holds for i + 1. In other words, we prove that

U(i + 1, k, v) is the minimum total utilization that can be obtained by a subset of k

agents in Ai+1 with total value equal to v. There are two possible cases: first, the set

with minimum utilization does not contain Agent i + 1, and, second it contains Agent

i + 1. In the first case, the minimum utilization is equal to U(i, k, v) and since this

is the minimum utilization (based on induction hypothesis), thus U(i + 1, k, v) is the

minimum utilization. In the second case, the minimum utilization is equal to the sum of

13

Algorithm 2 RM-MAXVAL-DP: Allocation Algorithm

1: input: u1, . . . , un and v1, . . . , vn.
2: V = maxi vi;
3: for i = 1 to n do
4: for j = 1 to nV do
5: U(i, 0, j) = 0
6: end for
7: end for
8: for j = 1 to nV do
9: for k = 1 to n do
10: if v1 = j then
11: U(1, k, j) = u1

12: else
13: U(1, k, j) = ∞
14: end if
15: end for
16: end for
17: for i = 1 to n− 1 do
18: for k = 1 to n− 1 do
19: for j = 1 to nV do
20: if vi+1 ≤ j then
21: U(i+ 1, k, j) =
22: min {U(i, k, j), ui+1 + U(i, k − 1, j − vi+1)}
23: else
24: U(i+ 1, k, j) = U(i, k, j)
25: end if
26: end for
27: end for
28: end for
29: opt = max {v|U(n, k, v) ≤ k(21/k − 1), 1 ≤ k ≤ n}
30: O = the set of selected agents by looking backward at U(i, k, j).
31: output (opt,O)

14

the utilization of agent i+1 and the minimum utilization that can be obtained by using

k − 1 agents of Ai with total value equal to v − vi+1. Since U(i, k − 1, v − vi+1) is the

minimum utilization of such subset (based on induction hypothesis), then U(i + 1, k, v)

is the minimum utilization and the proof is complete.

Theorem 2.3.2 Algorithm RM-MAXVAL-DP is correct.

Proof Suppose that the value obtained by the algorithm is v∗, corresponding to U(n, k∗, v∗).

Thus, we have

v∗ = max {v|U(n, k, v) ≤ k(21/k − 1), 1 ≤ k ≤ n} (2.7)

i.e., for each v > v∗, we have U(n, k, v) > k(21/k − 1). By using Lemma 2.3.1, U(n, k, v)

is the minimum total utilization that can be obtained by selecting k agents with total

value v. Therefore, any subset with total value greater than v∗ is infeasible, and v∗ is the

maximum achievable value.

The time complexity of RM-MAXVAL-DP algorithm is O(n3V) which is pseudo-

polynomial time.

2.4 Motivating Examples

In order to compute the optimal solution for the EDF-MAXVAL and RM-MAXVAL

problems, we rely upon the agents to report their true types. However, we now give

examples to show how a lying agent can affect the outcome of the algorithms. We first

provide an example for EDF-MAXVAL.

EDF Motivating Example Consider a competitive environment with five agents. The

utilizations and values of the tasks owned by these agents are shown in Table 2.1. Since

all these tasks cannot be scheduled to execute on a single processor using the EDF

scheduling algorithm, we want to assign the processor to the agents such that we obtain

the maximum social welfare. If each agent is truthful, EDF-MAXVAL-DP assigns the

15

Table 2.1: Agents’ types example
Agent 1 2 3 4 5
ui 0.1 0.2 0.4 0.6 0.7
vi 2 7 8 9 11

processor to Agents 1, 2 and 5, which results in a welfare of 20. However, if Agent 4

lies and reports a valuation of 20 and everyone else report their true values, Agents 3

and 4 would be selected, giving a suboptimal social welfare of 17. Now, assume that all

agents report their true types except Agent 5 who lies about her required utilization and

declares 0.8 instead of her true utilization of 0.7. In this case, Agents 2 and 5 would be

selected, resulting in a suboptimal social welfare of 18, and Agent 1 would not be selected

anymore.

RM Motivating Example Consider the competitive environment with the same agents

shown in Table 2.1. Again all the tasks can not be scheduled on a single processor based

on the RM algorithm. According to the RM utilization feasibility test, a set of agents

is feasible, if the sum of utilizations of these tasks is at most URM (n) = n(21/n − 1),

where n is the number of tasks. The values of URM (n) for n = 1, ..., 5 are shown in

Table 2.2. If each agent is truthful, RM-MAXVAL-DP assigns the processor to Agents

1, 2 and 3, which results in a welfare of 17 and a total utilization of 0.7 which is less

than URM (3) = 0.780. As in the previous case, let assume that Agent 4 declares 20 as

her value instead of her true value. In this case, Agents 2 and 4 would be selected and

the suboptimal social welfare is 16. Now, assume that Agent 2 lies about her required

utilization and declares 0.3. In this case, Agents 2 and 3 would be selected, resulting in

a suboptimal social welfare of 16 and Agent 1 would not be selected anymore.

The allocations obtained above by non-truthful declarations, are inefficient and the

processor is not allocated to the agents that value the execution the most. We are

interested in ways to control the competition so that it is always in an agents’ interest to

16

Table 2.2: Upper Bound on Total Utilization for RM Feasibility
n 1 2 3 4 5

URM (n) 1 0.828 0.780 0.757 0.743

declare their true types and achieve the optimal system welfare. In the following sections

we will design such mechanisms that give incentives to the agents to be truthful.

17

CHAPTER 3

MECHANISM DESIGN

The field of mechanism design deals with algorithmic problems in a competitive en-

vironment. In this chapter, we present the basic concepts of mechanism design and

introduce VCG-based mechanisms for the EDF-MAXVAL and RM-MAXVAL problems.

3.1 Mechanism

Mechanism. A mechanism is composed of an allocation algorithm A and a payment

scheme π. The allocation algorithm determines which agents obtain the processor and

the payment scheme calculates the payment of each agent.

We consider the problem of allocating processor time to a set of n agents. Each

agent owns a sporadic task and declares a type which characterizes the utilization of her

task and the value derived from running the task on the processor. Since the agent may

strategically declare a different type from her true type, we denote Agent i’s declared

utilization and value by ûi and v̂i, respectively, and denote the true utilization and value

by ui and vi. We denote the declared type of Agent i by θ̂i and the true type by θi.

A mechanism takes, as input, all declared types from agents and computes an alloca-

tion. The mechanism gives incentives to the agents to reveal their true types by charging

them some payment. The allocation and payments depend on the agent declarations

θ̂ = (θ̂1, . . . , θ̂n).

The allocation algorithm is given as input the vector θ̂ of agents’ types, and outputs

a subset A(θ̂) ⊆ N of winning agents, where N is the set of participating agents. Thus,

Agent i wins if i ∈ A(θ̂). The social welfare obtained by the algorithm is given by

∑

i∈A(θ̂) vi. The allocation algorithm attempts to maximize the social welfare.

18

The strategy of an agent is represented by her declared type and her goal is to

maximize her utility. We define Agent i’s utility as µi = vi − πi, where πi is the amount

Agent i is required to pay for having the task executed on the processor. If Agent i is not

selected to obtain the processor, then µi = 0. Agent i may strategically prefer to declare

a type different from her true type in order to increase her utility. We are interested in

a truthful mechanism where it is always in each agent’s best interest to declare her true

type.

Truthful Mechanism. A mechanism (A, π) is called truthful (or incentive compatible)

if for every declaration of the other agents θ̂−i (i.e., θ̂−i = (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂n)),

and every declaration θ̂′i of Agent i, we have: µi ≥ µ′
i, where µi and µ′

i are the utilities

obtained by Agent i when declaring θi and θ̂′i, respectively. This means that truthful

revelation is a dominant strategy; that is, agents maximize their utilities by reporting

their true types.

In the rest of thesis, we assume that the agents always report a utilization equal to or

greater than the actual utilization required by their tasks (i.e., ûi ≥ ui, i = 1, . . . , n). The

reason is that if the agent reports a utilization less than the actual utilization of her task

and wins the competition, her task cannot be executed on the processor, since it requires

higher utilization and will potentially miss a deadline. We assume that the system

employs a mechanism for temporally isolating tasks during execution and enforcing a

winning agent to execute only her requested utilization. Such mechanism is described

in [2]. In this mechanism, if a task needs more than its reported utilization, it may slow

down if it jeopardizes the schedulability of the other tasks.

3.2 Exact Mechanisms

Nisan and Ronen [27] showed that the truthfulness of a mechanism can be guaran-

teed by standard Vickrey-Clarke-Groves (VCG)-based mechanisms [11, 16, 32], if the

19

mechanism is able to compute the optimal solution.

VCG Mechanism. A mechanism composed of allocation algorithm A and payment

algorithm π is called a VCG mechanism if

• A(θ̂) is the allocation that maximizes the social welfare (i.e.,
∑

i∈A(θ̂) v̂i), and

• πi =
∑

j∈A(θ̂
−i)

v̂j −
∑

j∈A(θ̂),j 6=i v̂j

We define the VCG-based mechanism that solves the EDF-MAXVAL problem as follows.

EDF-MAXVAL-VCG Mechanism. The EDF-MAXVAL-VCG mechanism consists

of the allocation algorithm EDF-MAXVAL-DP and the payment defined by:

πV CG
i =

∑

j∈AEDF (θ̂
−i)

v̂j −
∑

j∈AEDF (θ̂),j 6=i

v̂j (3.1)

where AEDF is the allocation algorithm EDF-MAXVAL-DP.

We also define the VCG-based mechanism that solves the RM-MAXVAL problem as

follows.

RM-MAXVAL-VCG Mechanism. The RM-MAXVAL-VCG mechanism consists of

the allocation algorithm RM-MAXVAL-DP and the payment defined by:

πV CG
i =

∑

j∈ARM (θ̂
−i)

v̂j −
∑

j∈ARM (θ̂),j 6=i

v̂j (3.2)

where ARM is the allocation algorithm RM-MAXVAL-DP.

The first term in Equations 3.1 and 3.2, represents the optimal welfare obtained

when Agent i is excluded from the competition, and the second term represents the

sum of all values in the optimal set except Agent i’s value. EDF-MAXVAL-DP and

RM-MAXVAL-DP compute the optimum social welfare but they are not polynomially

20

computable. EDF-MAXVAL determines the winning agents in O(n2V) time and for

each wining agent it computes the payment using Equation 3.1 by solving an EDF-

MAXVAL problem with n − 1 agents. Hence, computing the payments needs at most

nO((n−1)2V) = O(n3V). Using the same analysis, the RM-MAXVAL-VCG mechanism

computes the allocations and payments in O(n4V). Thus, the EDF-MAXVAL-DP and

RM-MAXVAL-DP are pseudo-polynomial time mechanisms.

3.3 Frugality

In a truthful mechanism, the payment by an agent is less than her declared value.

Agents may have multiple choices and would like to pay lower amounts for obtaining

the processor; thus, from the agents’ perspective, lower payments are desirable. We

measure the total payment made by agents by the frugality ratio. In the following, we

identify an appropriate definition of frugality ratio and investigate the frugality of the

EDF-MAXVAL-VCG and RM-MAXVAL-VCG mechanisms.

The study of frugality in the context of mechanism design was initiated by Archer

and Tardos [4]. They investigated the frugality of path auctions in weighted directed

graphs and showed that the total payment of any truthful mechanism for path auctions

can be a linear factor of the second optimal disjoint path. However, there are other

different definitions for frugality in the literature. Talwar [30] defined the frugality ratio

of VCG mechanisms for set system problems. They defined the frugality ratio as the

worst possible ratio of the payment to the cost of the best rival solution. Karlin et al. [17]

argued that a natural choice for the frugality ratio is the overpayment of a mechanism

compared to the minimum payment by a non-truthful mechanism; hence, the frugality

ratio characterizes the cost of truthfulness. They proposed the Nash Equilibrium [26] as

the lower bound for the payments. They proved that the VCG mechanism has a frugality

ratio of 1 for monopoly-free matroid systems.

The question is: how should we measure the frugality in our competitive real-time

21

setting? A trivial way to define the frugality is to compare the total payments to the

mechanism to the sum of the winning agents’ declared values. We now argue that this

definition results in unstable behavior of the frugality ratio and it is not suitable for

characterizing frugality in our setting. In the EDF-MAXVAL-VCG mechanism, if a

winning agent raises her value, her payment will not change, thus, a good definition for

the frugality ratio should not depend on the declared values of the winning agents. For

example, let us assume that the frugality ratio is defined as the ratio of total payments to

the sum of the declared values of the winning agents. Consider the problem instance given

in Table 2.1. The EDF-MAXVAL-VCG mechanism allocates the processor to agents 1,

2, and 5. The payments of the winning Agents 1, 2, and 5 are 1, 2, and 9, respectively.

Thus, the frugality ratio is (1 + 2 + 9)/(4 + 5 + 11) = 0.6. Now, if we assume that the

declared value of Agent 5 is 100, the payments are still the same, and the frugality ratio is

12/109 which is less than 0.6. If Agent 5 declares a high value, the frugality ratio will be

close to zero. Thus, employing this definition, the frugality ratio can be changed easily

since it depends on the values of the winning agents despite the payments remaining

unchanged.

From the processor owner’s perspective, a drawback of a truthful mechanism is that

the payments can be even lower than the total value of the second optimal disjoint set,

which is the optimal set of agents obtained from solving the problem while excluding the

winning agents from the original problem. Thus, comparing the total payment to the

second disjoint optimum is a reasonable way to evaluate the frugality of the mechanism.

Let OPT ′
dis be the sum of the values of the agents in the second disjoint optimal set.

Recall that we assume that the set of tasks cannot be feasibly scheduled; thus OPT ′
dis is

well-defined. We use the definition of Talwar [30] who defined the frugality ratio as the

22

total payments divided by the second disjoint optimum value, i.e., the frugality ratio is

F =

n
∑

i=1

πi

OPT ′
dis

(3.3)

A frugality ratio less than one indicates that the total payments to the mechanism are

less than the social welfare the mechanism could get by selecting the second disjoint

optimal set of agents. A frugality ratio greater than one indicates that the mechanism

receives more payment than the total value of the resource according to the second

disjoint optimal set of agents.

We now compute an upper bound on the frugality ratio of the VCG mechanism for

a special class of set systems we call inclusive set systems. This class of set systems has

the property that every subset of a feasible set is also feasible. A formal definition of

inclusive set systems is as follows.

Inclusive Set System. Consider the set system (E, F) where E is the list of elements

and F ⊆ 2E is the set of all feasible subsets of E. (E, F) is inclusive if for each feasible

set S, all its subsets are also feasible, i.e., for all S ∈ F , S ′ ∈ F for all S ′ ⊆ S.

The implicit-deadline sporadic task system for EDF is inclusive, because if a set S is

feasible (U(S) ≤ 1), then each subset S ′ ⊆ S is also feasible (because U(S ′) ≤ 1). The

sporadic task system for RM is also inclusive. Suppose that set system S is feasible, i.e.,

U(S) ≤ |S|(21/|S|− 1). Since URM(n) = n(21/n − 1) is a decreasing function, thus for any

S ′ ⊆ S we have URM (|S ′|) ≥ URM (S). This with the fact that U(S ′) ≤ U(S), implies

that S ′ is feasible. Therefore, the implicit deadline sporadic task system for RM is also

inclusive.

We prove that the maximum frugality ratio of any VCG mechanism for inclusive set

systems is equal to the number of winning agents. Thus, the frugality ratios of EDF-

MAXVAL-VCG and RM-MAXVAL-VCG mechanisms are bounded.

23

S1

S2

S3

S−i

Sd
S∗

F

Figure 3.1: Computing payments

Theorem 3.3.1 The maximum frugality ratio of the VCG mechanism for inclusive set

systems is k, where k is the number of winning agents.

Proof Suppose N is the set of agents and F ⊆ 2N is the set of feasible sets. Assume

that S∗ ⊂ F is a set of winning agents with cardinality k and Sd is the second disjoint

optimum set. We denote by V (S), the sum of the values of all agents in set S, i.e.,

V (S) =
∑

i∈S vi.

Now we compute the VCG-payment by Agent i ∈ S∗ and show that it is not greater

than V (Sd). Let S−i be the optimum set by excluding Agent i, S1 = S∗\S−i, S2 = S∗∩S−i

and S3 = S−i \ S
∗ (Figure 3.1). From Equations 3.1 and 3.2, Agent i’s VCG payment is

πV CG
i = V (S−i)− V (S∗) + vi. We get,

πV CG
i = V (S2) + V (S3)− (V (S1) + V (S2)) + vi

= V (S3)− (V (S1)− vi)
(3.4)

Since i ∈ S1, we have V (S1) ≥ vi, this along with (3.4) implies that πV CG
i ≤ V (S3). S3

is feasible, because it is a subset of feasible set S−i. Since S3 is disjoint from S∗ and Sd

is the optimum disjoint feasible set, then we have V (S3) ≤ V (Sd), π
V CG
i ≤ V (Sd), for all

i, 1 ≤ i ≤ k. Thus,
∑

1≤i≤k π
V CG
i ≤ kV (Sd). Then, F ≤ k.

Now, we show that this bound is tight for EDF-MAXVAL-VCG and RM-MAXVAL-

VCG mechanisms by giving examples of a set of agents that achieves this bound. Consider

24

an environment of n agents as displayed in Table 3.1 which should be scheduled based

on EDF algorithm. The total payment is (n − 1)V ′ and the sum of the values of the

second disjoint optimum set is V ′. Hence, F = (n − 1)V ′/V ′ = n − 1. Thus, a larger

value of n results in a larger frugality ratio. For RM-MAXVAL-VCG, the example

shown in Table 3.2, illustrates the tightness of the bound. The total payment is again

(n − 1)V ′ and the sum of the values of the second disjoint optimum set is V ′. Hence,

F = (n− 1)V ′/V ′ = n− 1.

Table 3.1: Example illustrating tightness of upper bound on the frugality ratio for EDF-

MAXVAL-VCG

Agent a1 a2 . . . an−1 an

ûi
1

n−1
1

n−1
. . . 1

n−1
1

n−1

v̂i V V . . . V V ′ < V

Winner? Yes Yes . . . Yes No

πi V ′ V ′ . . . V ′ 0

Table 3.2: Example illustrating tightness of upper bound on the frugality ratio for RM-

MAXVAL-VCG

Agent a1 a2 . . . an−1 an

ûi 2
1

n−1 − 1 2
1

n−1 − 1 . . . 2
1

n−1 − 1 1

v̂i V V . . . V V ′ < V

Winner? Yes Yes . . . Yes No

πi V ′ V ′ . . . V ′ 0

The minimum frugality ratio is zero and it is obtained when all payments are zero.

If for each winning agent the optimum set by excluding that agent is a subset of the set

of winning agents, all payments will be zero.

25

CHAPTER 4

APPROXIMATION MECHANISMS

As mentioned in the previous chapters, the running times of EDF-MAXVAL-VCG

and RM-MAXVAL-VCG are not polynomial in the system input size. In this chapter, we

explore techniques for reducing the computational complexity by providing approximate

mechanisms instead of exact mechanisms. That is, the mechanisms are not guaran-

teed to obtain the optimal welfare, but near-optimal welfare. In Section 4.1, we present

the mechanism design concepts that will be employed in the design of our approximation

mechanisms for solving the EDF-MAXVAL and RM-MAXVAL problems. In Section 4.2,

we present approximation algorithms that solve the problems in non-competitive envi-

ronments. In Section 4.3, we discuss why we cannot use these approximation algorithms

for non-competitive environments as building blocks of truthful mechanisms, and design

monotonic approximation algorithms suitable for the competitive setting. In Section 4.4,

we give a new bound on the frugality ratio of these mechanisms as applied to our schedul-

ing problems.

4.1 Characterization of Truthful ApproximationMech-

anisms

Monotonicity of the allocation algorithm is a necessary condition for a mechanism

to be truthful [18]. An allocation algorithm is monotone when for any winning agent,

she also wins by increasing the value or decreasing the utilization while all other agents’

types are fixed. Before giving the formal definition of a monotone algorithm, we define

the comparison operator for agents’ types.

Agent-Type Partial Ordering. Type θ̂i = (ûi, v̂i) is greater than type θ̂′i = (û′
i, v̂

′
i) if

ûi < û′
i and v̂i > v̂′i. It is smaller if ûi > û′

i and v̂i < v̂′i. They are equal if ûi = û′
i and

26

v̂i = v̂′i. They are not comparable in any other situation. We denote greater, less and

equal operators by ≻, ≺ and =, respectively. We similarly define ’greater than or equal’

and ’less than or equal’ comparison operators.

Monotonicity. (Mu’alem and Nisan [25]) An allocation algorithm A is monotone if, for

every Agent i and every θ̂−i, if θ̂i is a winning declaration, then every higher declaration

θ̂′i � θ̂i is also winning. In other words, if Agent i wins by declaring ûi and v̂i, she also

wins by declaring û′
i ≤ ûi and v̂′i ≥ v̂i.

Lemma 4.1.1 (Critical Value) (Mu’alem and Nisan [25]) Let A be a monotone allo-

cation algorithm, then, for every θ̂−i there exists a unique value vci such that ∀θ̂i � (ûi, v
c
i),

θ̂i is a winning declaration, and ∀θ̂i ≺ (ûi, v
c
i), θ̂i is a losing declaration. We refer to this

single value as the critical value of Agent i.

Payment. The payment scheme πA associated with the monotone allocation algorithm

A that is based on the critical value is defined as follow:

πA
i =











vci if i wins,

0 otherwise.
(4.1)

where vci is the critical value of Agent i.

Theorem 4.1.2 (Truthfulness) (Mu’alem and Nisan [25]) An individually rational

mechanism (i.e., a mechanism where agents are guaranteed non-negative utility if they

report their true types) is truthful if and only if its allocation algorithm is monotone and

its payment scheme is based on the critical value.

Now, we present the definition of bitonicity which will be used later to design truthful

approximation mechanisms. Simply, an allocation algorithm is bitonic, if for any Agent

j, the social welfare does not increase with θ̂j when Agent j loses, and increase with θ̂j

when Agent j wins.

27

Bitonicity. (Mu’alem and Nisan [25]) An allocation algorithm is bitonic if it is mono-

tone, and for every agent j and any θ̂−j , the social welfare function is a non-increasing

function of θ̂j for vj < vcj (Agent j is losing), and a non-decreasing function of θ̂j for

vj ≥ vcj (Agent j is winning).

The bitonicity property helps us to obtain monotone allocation algorithms by com-

bining monotone allocation algorithms. The combination operators can be MAX and

the If-then-Else operators. We later use these operators to design approximate truthful

mechanisms. One of the most useful operators to combine two allocation algorithms is

the MAX operator which try both algorithms and picks the first one.

MAX Operator. (Mu’alem and Nisan [25]) Given two allocation algorithms A1 and

A2, the algorithm MAX(A1, A2)

• Run both algorithms A1 and A2.

• if ωA1
(θ̂) ≥ ωA2

(θ̂) return A1(θ̂), else return A2(θ̂), where ω is the social welfare

function.

General this algorithm is not guaranteed to be monotone even if both algorithms A1 and

A2 be monotone algorithms. the following theorem shows that if A1 and A2 be bitonic

algorithms, then MAX(A1, A2) is bitonic and monotone.

Theorem 4.1.3 (Mu’alem and Nisan [25]) If A1 and A2 be two bitonic algorithms, then

MAX(A1, A2) is also a bitonic algorithm.

In the next sections, we design truthful approximation mechanisms for EDF-MAXVAL

and RM-MAXVAL problems.

28

4.2 Approximation Algorithms

Algorithms EDF-MAXVAL-DP and RM-MAXVAL-DP are pseudo-polynomial al-

gorithms. In this section, we present approximation algorithms that solve the EDF-

MAXVAL and RM-MAXVAL problems. These algorithms are based on rounding the

values of tasks.

The EDF-MAXVAL problem can be approximately solved by using Algorithm 3 [31]

which rounds the ‘vi’s to admit only a polynomial number of different valuations and

then solve optimally by using the EDF-MAXVAL-DP algorithm. The running time of

the algorithm is O(n2⌊V α⌋) = O(n2⌊n/ǫ⌋) [31], which is polynomial in n and 1/ǫ. Thus,

the proposed algorithm is an FPTAS algorithm.

Algorithm 3 FPTAS Allocation Algorithm for EDF-MAXVAL
1: input: û1, . . . , ûn and v̂1, . . . , v̂n.
2: α := n

ǫv̂max
;

3: for all i set v′i = ⌊α · v̂i⌋;
4: return EDF-MAXVAL-DP (u1, . . . , un; v

′
1, . . . , v

′
n)

We use the same technique for solving the RM-MAXVAL problem by using the RM-

MAXVAL-DP algorithm. The algorithm is shown in Algorithm 4. We can prove that

this algorithm is FPTAS similar to the proof provided in [31]. The running time of the

algorithm is O(n3⌊V α⌋) = O(n3⌊n/ǫ⌋), which is polynomial in n and 1/ǫ.

Algorithm 4 FPTAS Allocation Algorithm for RM-MAXVAL
1: input: û1, . . . , ûn and v̂1, . . . , v̂n.
2: α := n

ǫv̂max
;

3: for all i set v′i = ⌊α · v̂i⌋;
4: return RM-MAXVAL-DP (u1, . . . , un; v

′
1, . . . , v

′
n)

4.3 Truthful Approximation Mechanisms

The FPTAS algorithms given in Algorithms 3 and 4 do not satisfy the required

monotonicity property, and, thus, cannot be used as allocation algorithms in truthful

29

Algorithm 5 EDF-MAXVAL-AA: Monotone FPTAS for EDF-MAXVAL
1: input: û1, . . . , ûn and v̂1, . . . , v̂n.
2: V := maxi v̂i, opt = 0, O = ∅
3: for j = 0 to log ((1 − ǫ)−1n) + 1 do

4: k := ⌈log (V)⌉ − j;
5: αk := n

ǫ·2k
;

6: for i = 1 to n do

7: v′i := min {v̂i, 2
k+1};

8: v′′i := ⌊αk · v
′
i⌋;

9: end for

10: (opt′,O′) = EDF-MAXVAL-DP (u1, . . . , un; v
′′
1 , . . . , v

′′
n)

11: if opt′ > opt then
12: O = O′ ;
13: opt = opt′;
14: end if

15: end for

16: output (opt, O);

mechanisms. They are not monotone because the rounding depends on the highest

valuation. Briest et al. [9] proposed general approximation techniques for utilitarian

mechanism design. A utilitarian mechanism aims to select an output that maximizes

the total welfare. They used the concept of bitonicity first introduced in [25]. Given

a monotone algorithm A, the property of bitonicity requires that the welfare does not

increase with vi when vi loses (vi < vci), and it does increase with vi when vi wins

(vi > vci). Briest et al. [9] showed that the algorithm that finds the maximum welfare

over the outputs of a set of bitonic algorithms is monotone. Algorithm 5 directly applies

the utilitarian mechanism design technique of Briest et al. [9] to obtain a solution for EDF-

MAXVAL problem by finding the maximum over the outputs of a bitonic algorithm (Lines

5-10), and thus, by using Theorem 4.1.3 it is monotone. The bitonicity of Lines 5-10 can

be proved by a similar argument provided in [9]. It is an FPTAS for EDF-MAXVAL and

hence it can be used as the allocation algorithm for a truthful approximation mechanism.

A similar algorithm can be provided for RM-MAXVAL problem. The only change

needed is in Line 10 which refers to RM-MAXVAL-DP. We refer to this algorithm (shown

30

Algorithm 6 RM-MAXVAL-AA: Monotone FPTAS for RM-MAXVAL
1: input: û1, . . . , ûn and v̂1, . . . , v̂n.
2: Same as Lines 2-9 in Algorithm 5
3: (opt′,O′) = RM-MAXVAL-DP (u1, . . . , un; v

′′
1 , . . . , v

′′
n)

4: Same as Lines 11-16 in Algorithm 5

Algorithm 7 PAY: Payment for winning Agent i
1: a = 0; b = vi;
2: while b− a > 1 do

3: vci = (a+ b)/2
4: if Agent i is winning by declaring vci then

5: b = vci
6: else

7: a = vci
8: end if

9: end while

10: vci = b;
11: return vci

in Algorithm 6) as RM-MAXVAL-AA.

The payments are based on the critical types of the winning agents. The payment of

winning Agent i is vci , where v
c
i is the critical value of Agent i, if i wins and zero if i loses.

Finding the critical value is done by a binary search over values less than the declared

value (Algorithm 7).

In the following, we design two truthful approximation mechanisms for solving the

EDF-MAXVAL and RM-MAXVAL problems as follows.

EDF-MAXVAL-APROX Mechanism. The EDF-MAXVAL-APROXmechanism con-

sists of the allocation algorithm EDF-MAXVAL-AA and the payment algorithm PAY.

RM-MAXVAL-APROX Mechanism. The RM-MAXVAL-APROX mechanism con-

sists of the allocation algorithm RM-MAXVAL-AA and the payment algorithm PAY.

31

4.4 Frugality of Approximation Mechanisms

In this section, we provide a bound on the frugality ratios of proposed approximation

mechanisms. Briest et al. [9] showed that, if A is a truthful (1 + ǫ)−approximation

mechanism it holds that

ǫ

1 + ǫ
(n + 2) ≤

πA

πV CG
≤ 1 + ǫ(n+ 2) (4.2)

where πA is the FPTAS mechanism total payment and πV CG is the VCG total payment.

Using Theorem 3.3.1, we can derive a formula for the upper bound on the frugality ratio

for any truthful FPTAS mechanism for any inclusive set system (which includes the

set systems associated with the implicit-deadline sporadic tasks based on EDF and RM

scheduling algorithms).

Theorem 4.4.1 The upper bound on frugality ratio for any truthful (1+ǫ)-approximation

mechanism A for inclusive set systems is (1+ǫ(n+2))k where k is the number of winning

agents.

Proof Using Equation 4.2, we get πA < (1 + ǫ(n + 2))πV CG. By Theorem 3.3.1, the

maximum frugality ratio is equal to k for inclusive set systems, so πV CG/V (Sd) is at most

k, where V (Sd) is the sum of the values in the second disjoint optimum set. Thus, we

have πV CG ≤ kV (Sd). So πA < (1+ǫ(n+2))kV (Sd) and F = πA/V (Sd) ≤ (1+ǫ(n+2))k.

4.5 Approximation Mechanisms with Reserve Prices

As we discussed, the payments calculated by the VCG and the approximate mech-

anisms, are less than the agents’ declared values and sometimes they can be zero. A

processing resource owner may introduce reserve prices to ensure that the costs of oper-

ating the system are recovered (e.g., energy costs to run the processor) and that a certain

minimum profit margin is achieved. In order to guarantee a minimum profit, we can de-

fine a reserve price per utility that is the lower bound on the sale price of the processor

32

for 100 percent of utilization. Let the reserve price for using the full utilization of the

processor be C. The reported value of Agent i should be at least ûiC, i.e., v̂i ≥ ûiC,

where (ûi, v̂i) is the declared type of Agent i. We define the reserve price mechanisms for

EDF-MAXVAL and RM-MAXVAL problems as follows.

EDF-MAXVAL-APROX-R. The EDF-MAXVAL-APROX-R mechanism consists of

the allocation algorithm EDF-MAXVAL-AA and the payment defined by:

πR
i = max{vci , ui ∗ C} i = 1, . . . , n (4.3)

RM-MAXVAL-APROX-R. The RM-MAXVAL-APROX-R mechanism consists of the

allocation algorithm RM-MAXVAL-AA and the payment defined by:

πR
i = max{vci , ui ∗ C} i = 1, . . . , n (4.4)

where vci is the critical value computed by PAY (Algorithm 4) and C is the reserve price.

We prove that the mechanisms with reserve prices are truthful.

Theorem 4.5.1 The EDF-MAXVAL-APROX-R and RM-MAXVAL-APROX-R mech-

anisms are truthful.

Proof Consider that Agent i is declaring a non-truthful type θ̂i = (ûi, v̂i) 6= θi = (ui, vi).

Let the utilities of Agent i by truthful and non-truthful type declarations be µi and µ̂i.

We consider the following possible cases and show that µ̂i ≤ µi in all cases.

1. Agent i wins by both declaring θ̂i and θi. Since the payments are independent from

agent’s declaration, the utilities in both cases are equal.

2. Agent i loses by both declaring θ̂i and θi. The utilities are zero in both cases.

3. Agent i loses by declaring θ̂i and wins by declaring θi. By the monotonicity property

33

of the allocation algorithm, we have v̂i < vci ≤ vi. This with the fact that vi ≥ ui∗C

implies that πR
i = max{vci , ui ∗ C} ≤ vi and hence µi = vi − πR

i ≥ 0 = µ̂i.

4. Agent i wins by declaring θ̂i and loses by declaring θi. By the monotonicity property

of the allocation algorithm, we have v̂i ≥ vci > vi. This with πR
i ≥ vci implies that

πR
i > vi, thus, µ̂i = vi − πR

i < 0 = µi.

We showed that truthful declaration is a dominant strategy and hence, the mechanism

is truthful.

Since each agent is at least paying C times her declared utilization, the minimum

total payment by all winning agents is C times the sum of the utilizations. Hence, the

lower bound on the frugality ratio of the approximation mechanism with reserve prices

is C · mini∈{1..n} ûi. The upper bound on the frugality ratio is the same as that of the

mechanism without reserve price.

34

CHAPTER 5

EXPERIMENTAL RESULTS

We perform a set of experiments to investigate the effects of non-truthful type dec-

larations, comparing payments to the reported values, determining the frugality ratios

of the mechanisms and also evaluating the execution time of the mechanisms. In Sec-

tion 5.1, we investigate the effect of non-truthful value declaration by an agent and show

how this affects the utility of her and other agents. In Section 5.2, we generate a set of

problem instances and investigate the frugality ratios and payments. In Section 5.3, we

evaluate the execution times of the exact and approximate mechanisms.

In order to generate the utilizations of the agents we used the UUniFast-Discard

method described in [12] with a discard limit equal to half the number of agents. UUniFast-

Discard (Algorithm 8) uses the UUniFast method [8] which takes as input the number

of agents and parameter U which is the target sum of the utilizations. UUniFast was

designed for generating a set of tasks with total utilization of at most 1. Since UU-

niFast may generate utilizations that are greater then 1 for U > 1, UUniFast-Discard

was designed to ensure that all generated individualized task utilizations are less than 1.

UUniFast-Discard takes as input the number of agents, total utilization and a limit for

discarding the number of generated utilizations. When a utilization generated by UUni-

Fast is greater than 1, UUniFast-Discard discards all the generated utilizations and starts

from the beginning. If the number of discarded values exceeds the limit, the method re-

ports failing. We set the target utilization U to 5 and the discard limit to half of the

number of agents. For the value generation we use a random uniform number genera-

tor to generate a vector of integers within [1, 1000]. Then, each value is computed by

multiplying the corresponding entry in this vector with its associated utilization. Us-

ing this approach the values are correlated with the utilizations. For the approximation

35

Algorithm 8 UUniFast-Discard Algorithm

1: input: n, U .
2: discarded=0, success = true, sumU = U
3: for i = 1 to n− 1 do
4: nextSumU = sumU × (rand)

1

n−i

5: vectU(i) = sumU − nextSumU;
6: if vectU(i) > 1 then
7: discarded=discarded+1
8: i = 1;
9: if discarded> n/2 then
10: success= false
11: end if
12: end if
13: sumU = nextSumU;
14: end for
15: vectU(n) = sumU
16: output (vectU, success)

Table 5.1: Agents’ true parameters
Agent 1 2 3 4 5 6 7 8 9 10
ui 0.10 0.15 0.20 0.24 0.30 0.12 0.13 0.17 0.22 0.25
vi 120 400 300 550 600 270 350 125 340 410

mechanism EDF-MAXVAL-APPROX we use ǫ = 0.1. We use the Microsoft Visual C++

environment on an 8-core Intel Core i7 (1.73GHz) machine to generate the problem in-

stances and implement the algorithms.

5.1 Non-Truthful Type Declaration

In this set of experiments, we investigate the effect of reporting non-truthful utiliza-

tions and values by an agent in EDF-MAXVAL-APROX and RM-MAXVAL-APROX

mechanisms. We show how this affects the utility of a lying agent and also those of the

other agents. We consider an environment composed of ten agents. The actual utilization

and values of these agents are shown in Table 5.1. In the following, we discuss the results

for both EDF-based and RM-based mechanism.

36

5.1.1 Results for EDF-based Mechanisms

We first investigate how a lying agent can affect the utilities and payments of other

agents for the EDF-based mechanisms. If all agents declare their true types, Agents 2,

4, 5, 6 and 7 win the competition and their payments will be 300, 420, 530, 150 and

150, respectively. As shown in Table 5.1, the true type of Agent 5 is θ5 = (0.30, 600).

We consider that Agent 5 is misreporting her type. This leads to six cases as shown in

Table 5.2. In Case I, Agent 5 is reporting her true value. In Case II, she is declaring a

value greater than her actual value while she is winning the competition. In Case III and

Case IV, a non-true value is reported by Agent 5 with the difference that she is winning

in Case III but losing in Case IV. In Case V and VI, she is reporting her actual value

but reporting utilizations greater than her actual utilization. In Case V, she is winning

but in Case VI she is losing.

In Figure 5.1(a), we show the utilities of Agent 5 in all these cases. By reporting the

true type, Agent 5 wins the competition and her utility is 70. The utility of Agent 5 is

less than or equal to 70 in all the other cases. This is expected, because our mechanism

is truthful and the maximum utility is obtained by truth telling. Since Agent 5 loses in

Cases IV and VI her utilities in these cases are zero. In all other cases, she wins and

obtains the same utility as in Case I, in which she reports her true type.

Now, we investigate how reporting non-true types affects the utilities of the other

agents. In Figure 5.1(b), we show the utilities of the Agents 1, 2, 4, 6, 7 and 10 in each

of the cases (Since Agents 3 and 9 are losing in all cases, they are not shown in the

figure). As we can see, utilities of other agents are changing in most cases. These results

show that lying by one agent has a significant effect on the outcome and utility of the

other agents. The reason is that, by non-true declaration of Agent 5, the allocations

may change and also the agents may have different critical values and hence different

payments. For example utilities of Agent 4 in each case is shown in Table 5.3. As we can

37

Table 5.2: Different type declarations by Agent 5
Case No θ̂5 Remark
I (0.30, 600) True type
II (0.30, 700) v̂5 > v5, û5 = u5

III (0.30, 550) v̂5 < v5, û5 = u5

IV (0.30, 400) v̂5 < v5, û5 = u5

V (0.35, 600) v̂5 = v5, û5 > u5

VI (0.40, 600) v̂5 = v5, û5 > u5

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

Payment

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

Payment
Utility

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

Payment
Utility

Agent 5’s actual value

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

No payment

and utility

Payment
Utility

Agent 5’s actual value

(a)

 0

 50

 100

 150

 200

 250

 300

I II III IV V VI

U
ti
lit

y

Case

Agent 1

 0

 50

 100

 150

 200

 250

 300

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2

 0

 50

 100

 150

 200

 250

 300

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2
Agent 4

 0

 50

 100

 150

 200

 250

 300

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2
Agent 4
Agent 6

 0

 50

 100

 150

 200

 250

 300

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2
Agent 4
Agent 6
Agent 7

 0

 50

 100

 150

 200

 250

 300

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2
Agent 4
Agent 6
Agent 7

Agent 10

(b)

Figure 5.1: Results for EDF-based mechanisms: (a) The utility and payment of Agent 5
in different cases; (b) The utilities of agents in different cases (The agents that are losing
in all cases are not shown in the figure).

see the utility of Agent 4, in Case IV in which Agent 5 is declaring a utilization greater

than her actual utilization is 210 while in Case I her utility is 130.

Table 5.3: The utilities of Agent 4 in each case for EDF
Case I II III IV V VI
Utility 130 130 130 210 140 180

5.1.2 Results for RM-based Mechanisms

Now, we investigate the effects of non-truthful type declaration on the mechanism for

the RM-based mechanisms. If all agents report their true types, Agents 1, 2, 4, 6 and 7

win the competition and their payments will be 70, 290, 480, 220 and 220, respectively.

As shown in Table 5.4, the true type of Agent 4 is θ4 = (0.24, 550). Consider that

38

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

Payment

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

Payment
Utility

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

Payment
Utility

Agent 4’s actual value

 0

 100

 200

 300

 400

 500

 600

 700

 800

I II III IV V VI

Case

No payment

and utility

Payment
Utility

Agent 4’s actual value

(a)

 0

 50

 100

 150

 200

I II III IV V VI

U
ti
lit

y

Case

Agent 1

 0

 50

 100

 150

 200

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2

 0

 50

 100

 150

 200

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2
Agent 6

 0

 50

 100

 150

 200

I II III IV V VI

U
ti
lit

y

Case

Agent 1
Agent 2
Agent 6
Agent 7

(b)

Figure 5.2: Results for RM-based mechanisms: (a) The utility and payment of Agent 4
in different cases; (b) The utilities of agents in different cases (The agents that are losing
in all cases are not shown in the figure).

Agent 4 is misreporting her type in different cases which are shown in Table 5.4. In

Case I, Agent 4 is reporting her true value. In Case II, she is declaring a value greater

than her actual value while she is winning the competition. In Case III and Case IV, a

non-true value is reported by Agent 4 with the difference that she is winning in Case III

but losing in Case IV. In Case V and VI, she is reporting her actual value but reporting

utilizations greater than her actual utilization. In Case V, she is winning but in Case VI

she is losing.

In Figure 5.2(a), we show the utilities of Agent 4 in all these cases. By reporting the

true type, Agent 4 wins the competition and her utility is 70. As we expected in the

EDF example, the utility of Agent 4 is less than or equal to 70 in all the other cases. In

Case V, the utility of Agent 4 is 20, which is less than her utility in Case I, that is 70. In

this case, Agents 2, 4, 7 and 9 are winning. Since the maximum utilization of a system

of 4 tasks to be schedulable by RM is less than the maximum utilization of a task system

of 5 tasks (Case I), thus we expect more payments by agents. Therefore we expect that

in Case V with 4 winning agents, the utility of Agent 4 is higher than the Case I with 5

winning agents.

39

Table 5.4: Different type declarations by Agent 4 for RM
Case No θ̂4 Remark
I (0.24, 550) True type
II (0.24, 600) v̂4 > v4, û4 = u4

III (0.24, 500) v̂4 < v4, û4 = u4

IV (0.30, 450) v̂4 < v4, û4 = u4

V (0.25, 550) v̂4 = v4, û4 > u4

VI (0.30, 550) v̂4 = v4, û4 > u4

Now, we investigate how reporting non-true types affects the utilities of the other

agents. In Figure 5.2(b), we show the utilities of the Agents 1, 2, 6 and 7 in each of

the cases (Since Agents 3, 5, 8, 9 and 10 are losing in all cases, they are not shown in

the figure). As we can see, utilities of other agents are changing in most cases. These

results show that lying by one agent has a significant effect on the outcome and utility of

the other agents. The reason is that, by non-true declaration of Agent 4, the allocations

may change and also the agents may have different critical values and hence different

payments. As we discussed in the previous paragraph, the utilities of all agents decreases

in Case V.

5.2 Payments and Frugality Ratios

Now we perform a set of experiments to illustrate the frugality ratio for both EDF-

MAXVAL-VCG and EDF-MAXVAL-APROX mechanisms. We calculate the frugality

ratio for problem instances with different number of agents ranging from 10 to 200. For

each problem size we generate 100 problem instances and calculate the frugality ratio for

each of them.

In Figure 5.3(a), we show the average payment of agents comparing to the average

declared values for the EDF-MAXVAL-APROX mechanism. The payments are small

compared to the declared values for cases with a small numbers of agents, which results

in lower revenue of the processor owner. We can see that as the number of agents is

increasing, the payments are being closer to the sum of the values and the processor

40

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

Number of agents

Declared value

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

Number of agents

Declared value
Payment

(a)

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 50 100 150 200

F
ru

g
a

lit
y
 r

a
ti
o

Number of agents

EDF-MAXVAL-VCG

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 50 100 150 200

F
ru

g
a

lit
y
 r

a
ti
o

Number of agents

EDF-MAXVAL-VCG
EDF-MAXVAL-APROX(e=0.1)

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 50 100 150 200

F
ru

g
a

lit
y
 r

a
ti
o

Number of agents

EDF-MAXVAL-VCG
EDF-MAXVAL-APROX(e=0.1)
EDF-MAXVAL-APROX(e=0.4)

(b)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

EDF-MAXVAL-VCG (n=20)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

EDF-MAXVAL-VCG (n=20)
EDF-MAXVAL-APROX (n=20, e=0.1)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

EDF-MAXVAL-VCG (n=20)
EDF-MAXVAL-APROX (n=20, e=0.1)
EDF-MAXVAL-APROX (n=20, e=0.4)

(c)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

EDF-MAXVAL-VCG (n=40)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

EDF-MAXVAL-VCG (n=40)
EDF-MAXVAL-APROX (n=40, e=0.1)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

EDF-MAXVAL-VCG (n=40)
EDF-MAXVAL-APROX (n=40, e=0.1)
EDF-MAXVAL-APROX (n=40, e=0.4)

(d)

Figure 5.3: Results for EDF-based mechanisms: (a) Payments vs. Values; (b) Frugality
ratio as a function of number of agents; (c) The execution times of EDF-MAXVAL-VCG
and EDF-MAXVAL-APROX for n = 20; (d) The execution times of EDF-MAXVAL-
VCG and EDF-MAXVAL-APROX for n = 40.

owner’s revenue increases.

In Figure 5.3(b), we show the frugality ratio of EDF-MAXVAL-VCG and EDF-

MAXVAL-APROX mechanisms as a function of the number of agents. The figure shows

that the frugality ratio of both mechanisms are very close. It also shows that in general

the frugality ratio grows with the number of agents. Participation of more agents in the

competition leads to higher frugality ratios and higher payments by agents compare to

their declared values. The average frugality over all problem instances is 1.1. Although

theoretically the frugality ratio can be as large as the number of the agents and also can

be as small as zero, we can see that in most cases it is between 1 and 1.2.

41

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

Number of agents

Declared value

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

Number of agents

Declared value
Payment

(a)

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 50 100 150 200

F
ru

g
a

lit
y
 r

a
ti
o

Number of agents

RM-MAXVAL-VCG

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 50 100 150 200

F
ru

g
a

lit
y
 r

a
ti
o

Number of agents

RM-MAXVAL-VCG
RM-MAXVAL-APROX(e=0.1)

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0 50 100 150 200

F
ru

g
a

lit
y
 r

a
ti
o

Number of agents

RM-MAXVAL-VCG
RM-MAXVAL-APROX(e=0.1)
RM-MAXVAL-APROX(e=0.4)

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

RM-MAXVAL-VCG (n=20)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

RM-MAXVAL-VCG (n=20)
RM-MAXVAL-APROX (n=20, e=0.1)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

RM-MAXVAL-VCG (n=20)
RM-MAXVAL-APROX (n=20, e=0.1)
RM-MAXVAL-APROX (n=20, e=0.4)

(c)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

RM-MAXVAL-VCG (n=40)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

RM-MAXVAL-VCG (n=40)
RM-MAXVAL-APROX (n=40, e=0.1)

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Maximum value of agents

RM-MAXVAL-VCG (n=40)
RM-MAXVAL-APROX (n=40, e=0.1)
RM-MAXVAL-APROX (n=40, e=0.4)

(d)

Figure 5.4: Results for RM-based mechanisms: (a) Payments vs. Values; (b) Frugality
ratio as a function of number of agents; (c) The execution times of RM-MAXVAL-VCG
and RM-MAXVAL-APROX for n = 20; (d) The execution times of RM-MAXVAL-VCG
and RM-MAXVAL-APROX for n = 40;

The results for RM-MAXVAL problem are shown in Figure 5.4(a) and Figure 5.4(b).

5.3 Execution Time

We now perform simulations to compare the execution time of the EDF-MAXVAL-

VCG and EDF-MAXVAL-APROX mechanisms. As we mentioned, the time complexity

of the EDF-MAXVAL-DP is O(n2V), where V is the maximum of the agents’ declared

values. Thus, the execution time of the EDF-MAXVAL-VCG mechanism is highly de-

pendent on V . In this set of experiments, we run the mechanisms for different values of

V . We fix the number of agents and for each V ∈ {10, 60, . . . , 1010}, we generate ten

42

problem instances and plot the average execution time. We perform the experiments

for n = 20 and n = 40. The utilization of the agents are generated using the same

method we discussed in Section 5.2. We use a uniform random number generator to

generate values in [1, V]. The execution times of both the EDF-MAXVAL-VCG and

EDF-MAXVAL-APROX mechanisms are displayed in Figure 5.3(c). The figure reveals

that the execution time of the approximation mechanism is lower than the execution time

of the exact VCG mechanism for V > n/ǫ. As the value of V increases, the performance

of the approximation mechanism improves compared to the exact VCG mechanism. For

small values of V , the performance of the exact mechanism is better. The reason is

that in the approximation algorithm EDF-MAXVAL-AA, we multiply each value by

n/(ǫ · V) = n/(0.1 · V) = 10n/V . So for V < 10n, EDF-MAXVAL-AA takes more

time to complete. However, in Figure 5.3(c), the approximation mechanism has better

performance for V > 200, when n = 20, and for V > 400 when n = 40.

We obtained similar results by comparing the RM-MAXVAL-VCG and RM-MAXVAL-

APROX mechanisms. The time complexity of the RM-MAXVAL-VCG is O(n3V), where

V is the maximum of the agents’ declared values. We performed the same set of experi-

ments as in the case of EDF-based mechanisms and the results are shown in Figure 5.4(c).

43

CHAPTER 6

CONCLUSION

Our main objective was to introduce the concept of designing real-time systems with

competition in mind. In this thesis, we explored the scheduling of implicit-deadline

sporadic task systems in a competitive environment in which each task is owned by a

selfish agent. Since each agent is self-interested and tries to maximize her own goals, we

used the mechanism design theory to design mechanisms to incentivize honest behavior

on the agents’ part. Since VCG Mechanism is the only exact mechanism that satisfies

the truthfulness property, we designed VCG-based mechanisms for solving the problems.

The VCG mechanisms are computationally intractable; thus, we designed truthful ap-

proximation mechanisms, which use fully-polynomial time approximation algorithms to

optimally allocate the processor to the agents. In this thesis we considered only single

deviations by the agents. As a future work, we will study the effect of collusion among

agents to lower their payments.

Our larger research goal is a comprehensive exploration of how competition affects

real-time resource allocation. Thus, for future work, we also plan to extend this initial

result to more complex real-time settings. As a next step, we would like to extend the

setting to exact mechanisms for uniprocessor fixed-priority scheduling that is non-trivial

and requires fundamentally new results not currently present in the mechanism design

literature. Our hope is that a thorough exploration of competition in real-time systems

will inform the design of future open and distributed real-time, embedded, and cyber-

physical systems.

44

BIBLIOGRAPHY

[1] Tarek Abdelzaher. Interdisciplinary foundations for open cyber-physical systems.

In Proc. of the 8th Intl. Conf. on Formal Modeling and Analysis of Timed Systems,

2010.

[2] Luca Abeni, Giorgio Buttazzo, Scuola Superiore, and S. Anna. Integrating multi-

media applications in hard real-time systems. In Proc. of the 19th IEEE Real-time

Systems Symp., pages 4–13, 1998.

[3] Gagan Aggarwal and Jason D. Hartline. Knapsack auctions. In Proc. of the 17th

ACM-SIAM Symp. on Discrete Algorithms, pages 1083–1092, 2006.

[4] Aaron Archer and Éva Tardos. Frugal path mechanisms. ACM Trans. Algorithms,

3:3:1–3:22, February 2007.

[5] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Optimal reward-based

scheduling for periodic real-time tasks. IEEE Transactions on Computers, 50(2):111

–130, February 2001.

[6] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,

and F. Wang. On the competitiveness of on-line real-time task scheduling. In Proc.

of the 12th IEEE Real-Time Systems Symp., pages 106 –115, December 1991.

[7] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha. On-line

scheduling in the presence of overload. In Proc. of the 32nd Symp. on Foundations

of Computer Science, pages 100–110, 1991.

[8] Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability

tests. Real-Time Syst., 30:129–154, May 2005.

45

[9] Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques

for utilitarian mechanism design. In Proc. of the 37th ACM Symp. on Theory of

Computing, pages 39–48, 2005.

[10] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling

Algorithms And Applications (Real-Time Systems Series). Springer-Verlag TELOS,

Santa Clara, CA, USA, 2004.

[11] Edward H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.

[12] R.I. Davis and A. Burns. Priority assignment for global fixed priority pre-emptive

scheduling in multiprocessor real-time systems. In Proc. of the 30th IEEE Real-Time

Systems Symp., pages 398 –409, December 2009.

[13] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertis-

ing and the generalized second-price auction: Selling billions of dollars worth of

keywords. American Econ. Rev., 97(1):242–259, 2007.

[14] Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, and Scott Shenker. A bgp-

based mechanism for lowest-cost routing. In Proc. of the 21st ACM Symp. on Prin-

ciples of Distributed Computing, pages 173–182, 2002.

[15] Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. Sharing the cost

of multicast transmissions. Journal of Computer and System Sciences, 63(1):21 –

41, 2001.

[16] Theodore Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

[17] A.R. Karlin and D. Kempe. Beyond VCG: frugality of truthful mechanisms. In

Proc. of the 46th IEEE Symp. on Foundations of Computer Science, pages 615 –

624, October 2005.

46

[18] Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham. Truth revelation in

approximately efficient combinatorial auctions. J. ACM, 49:577–602, September

2002.

[19] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: exact

characterization and average case behavior. In Proc. of Real Time Systems Sympo-

sium, pages 166 –171, 1989.

[20] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. J. ACM, 20:46–61, January 1973.

[21] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic

Theory. Oxford University Press, June 1995.

[22] A. Mohammadi, N. Fisher, and D. Grosu. Real-time competitive environments:

Truthful mechanisms for allocating a single processor to sporadic tasks. In Proc. of

24th Euromicro Conference on Real-Time Systems, pages 199 –208, july 2012.

[23] A. Mohammadi, N. Fisher, and D. Grosu. Truthful mechanisms for allocating a

single processor to sporadic tasks in competitive real-time environments. In IEEE

Transaction on Computers (submitted), 2012.

[24] A. K. Mok. Fundamental Design Problems of Distributed Systems for Hard Real-

Time Environments. PhD thesis, Massachusetts Institute of Technology, Cambridge,

Mass., 1983.

[25] Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted

combinatorial auctions: extended abstract. In Proc. of the 18th National Conference

on Artificial intelligence, pages 379–384, 2002.

[26] John Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–295,

1951.

47

[27] Noam Nisan and Amir Ronen. Algorithmic mechanism design. Games and Economic

Behavior, 35:166–196, 2001.

[28] Ryan Porter. Mechanism design for online real-time scheduling. In Proc. of the 5th

ACM Conference on Electronic Commerce, pages 61–70, 2004.

[29] A. Al Sheikh, O. Brun, P. E. Hladik, and B. J. Prabhu. A best-response algorithm

for multiprocessor periodic scheduling. In Proc. of the 23rd Euromicro Conference

on Real-Time Systems, pages 228–237, 2011.

[30] Kunal Talwar. The price of truth: Frugality in truthful mechanisms. In Proc. of the

20th Symp. on Theoretical Aspects of Computer Science, 2003.

[31] V.V. Vazirani. Approximation algorithms. Springer, 2001.

[32] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The

Journal of Finance, 16(1):pp. 8–37, 1961.

48

ABSTRACT

TRUTHFUL MECHANISMS FOR REAL-TIME SYSTEM SCHEDULING

IN COMPETITIVE ENVIRONMENTS

by

ANWAR MOHAMMADI

December 2012

Advisor: Dr. Nathan Fisher

Major: Computer Science

Degree: Master of Science

In a non-competitive environment, sporadic real-time task scheduling on a single

processor is well understood. In this thesis, we consider a competitive environment

comprising several real-time tasks vying for execution upon a shared single processor.

Each task obtains a value if the processor successfully schedules all its jobs. Our objective

is to select a feasible subset of these tasks to maximize the sum of values of selected tasks.

We consider both dynamic-priority and static-priority scheduling algorithms. There are

algorithms for solving these problems in non-competitive settings. However, we consider

these problems in an economic setting in which each task is owned by a selfish agent. Each

agent reports the characteristics of her own task to the processor owner. The processor

owner uses a mechanism to allocate the processor to a subset of agents and to determine

the payment of each agent. Since agents are selfish, they may try to manipulate the

mechanism to obtain the processor. We are interested in truthful mechanisms in which

it is always in agents’ best interest to report the true characteristics of their tasks. We

design exact and approximate truthful mechanisms for this competitive environment and

study their performance.

49

AUTOBIOGRAPHICAL STATEMENT

Anwar Mohammadi received his MS degree in Computer Science from Wayne State

University, Detroit, Michigan. He also received a MS degree in Computer Science from

Sharif University of Technology, Tehran, Iran and a B.Sc. degree in Computer Engineer-

ing from Amirkabir University of Technology, Tehran, Iran. At present he is working as

Graduate Research Assistant in the Compositional and Parallel Real-Time Systems (Co-

PaRTS) Laboratory in the Department of Computer Science at Wayne State University

under the supervision of Dr. Nathan Fisher and Dr. Daniel Grosu. His areas of research

interests include real-time systems, mechanism design and algorithmic game theory.

Before joining to the MS program at Wayne State Universiy, Anwar worked in Polfilm

Company, Tehran, Iran as IT manager and software developer. He developed a software

system for controlling the production process of the factory. He has also several software

developing experience in different software companies in Tehran, Iran.

Anwar is a student member of IEEE society. He can be reached at amohammadi

@wayne.edu.

	Wayne State University
	1-1-2012
	Truthful Mechanisms For Real-Time System Scheduling In Competitive Environments
	Anwar Mohammadi
	Recommended Citation

	executiontimeRM40.eps

