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CHAPTER 1

INTRODUCTION

With the already high demand of big data processing growing rapidly and continu-

ously in recent years, traditional CPUs are no longer keeping pace with the workload for

two major reasons: first, the bottleneck of processing speed on a single core and second,

the huge demand for power. By solving these two problems, general purpose computation

on graphics processing units (GPGPU) achieves high performance from multi-core com-

puting. Because of its significantly lower cost, GPGPU computing has become popular

and more accessible than other parallel systems.

Nowadays, GPU is a big family consisting of a great variety of processors with different

architectures. In this thesis, we focus only on Fermi architecture and Kepler architecture,

which are manufactured by NVIDIA. NVIDIA developed an exclusive parallel computing

platform and programming model called Compute Unified Device Architecture (CUDA).

In CUDA, there is an elementary unit called a warp. A warp is like a SIMD (Single

Instruction Multiple Data) machine, which can only execute one instruction with multiple

data at one time. It is also a bundle of 32 threads with which to capture respective

data from on-chip or off-chip memory. On the GPU, there is a basic unit for integer

and floating-point arithmetic functions called a core. The number of cores integrated

on the GPU is determined by the compute capability of the device. With this basic

understanding of a warp, two of Fermi’s properties are clear. One, it is necessary to

create tasks in the main function (it is run on the CPU) and dispatch them to the warps

on the device (GPU). The other property is that the most efficient circumstance can be

achieved when all the cores are kept busy. In other words, applications that can run

well on the GPU are data parallel. High performance requires the data to be divided

into pieces and operated on by the cores piece by piece, so there should be no data
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dependency.

1.1 Thesis Objective

The main objective of this thesis is studying the differences between the CUDA Fermi

and Kepler architectures, new features of the CUDA Kepler architecture, and optimiza-

tion methods in order to get the best performance. The main research goals are as

follows:

• Develop a deep appreciation of CUDA architecture to find out the performance

bottlenecks in the code.

• Study the existing parallel code of the Gibbs Ensemble example used to simulate

molecular systems and realized under the Fermi architecture in order to understand

the algorithm and determine which parts can be accelerated.

• Optimize the accelerated code to make full use of the Kepler architecture.

• Compare the running time of the Fermi CUDA code and the Kepler CUDA code.

1.2 Thesis Motivation

The Fermi architecture provides significantly better performance than older GPUs [3]

but has some hardware constraints that reduce the performance. One is that warps are

twice as large as any block of functional units, which is where the shader clock comes

in. Therefore, with Fermi, a warp would be split up and executed over 2 cycles of the

shader clock. The other limitation is that a GPU function can only be invoked from a

CPU function, which means all the results that are needed before starting the next GPU

function have to be returned to the CPU when a GPU function is finished. These two

restrictions result in two kinds of latency on data processing corresponding to the issues

above. The first type of latency is caused by shared memory, which is used to share
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data among the threads. The second type of latency is caused by the data transmission

between CPU and GPU.

These two limitations are performance bottlenecks caused by the architecture, so they

cannot be improved under Fermi. However, the situation may be different on the Kepler

architecture. As the next generation of the CUDA family, Kepler has some exclusive

hardware features that differ from Fermi. It is possible that with improved architecture,

the bottlenecks may be resolved. To determine how any of the changes on Kepler archi-

tecture can be used to improve performance, deep research on the Kepler architecture is

required.

1.3 Thesis Organization

To accomplish the goals of this thesis, the second chapter gives a brief introduction

to the Kepler architecture to illustrate the hardware changes. An introduction to the

relevant features of Kepler as well as what benefits these features can contribute will

also be discussed in chapter 2. In chapter 3, the molecular simulation example will be

analyzed together with a succinct explanation of the Gibbs Ensemble. Chapter 4, the

core of this thesis, describes my research contributions from this experiment. As the last

part of the experiment, chapter 5 contains all the results and makes the performance

comparisons to show the speedup. The conclusion in chapter 6 summarizes the progress

and highlights where further improvements can be sought.
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CHAPTER 2

TECHNICAL BACKGROUND

The Fermi architecture is the penultimate NVIDIA architecture. It is the first com-

putational GPU in the world which embeds all the experience gained from the previous

vision and experience [3]. The utilization of the Third Generation Streaming Multipro-

cessor (SM) is the key architectural highlight of Fermi (shown in Figure 2.1). Thirty-two

CUDA cores and a dual warp scheduler are integrated into each SM to process data

and simultaneously schedule and dispatch instructions from two independent warps. 64

KB of RAM with a configurable partitioning between the shared memory and the L1

cache is also implemented to reduce data transmission overhead and support efficient

data sharing.

Figure 2.1: Fermi Streaming Multiprocessor [3]
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Kepler is the successor of Fermi. The first Kepler processor was announced by

NVIDIA in March 2012. Compared with the Fermi architecture, Kepler has some sig-

nificant improvements in architecture. Figure 2.2 shows the difference in the streaming

multiprocessor.

Figure 2.2: Comparison of SM/SMX [5]

The streaming multiprocessor is redefined and also renamed SMX on Kepler. In the

Kepler GK110 GPU, a SMX has 192 cores, which is four to six times more than Fermi

(Fermi 2.0 has 32 processors per SM; Fermi 2.1 has 48); there are two more warp sched-

ulers and also more ALUs as well [5]. With the expansion of operating resources, much

higher performance can be achieved without question. Figure 2.3 shows the structure of

the SMX.

2.1 Introduction to Kepler K20c

The NVIDIA Tesla K20c card is a sub-product of the Tesla K20 equipped with a cool-

ing part. The K20 is based on one GK110 GPU, which integrates 2496 cores in total (find

more details from Figure 2.4). NVIDIA Tesla GPUs are designed for high-performance

computing; they deliver the best performance and power efficiency for seismic process-

ing, financial computing, computational chemistry and physics, data analytics, image

processing, and weather modeling [4].
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Figure 2.3: Kepler Streaming Multiprocessor [5]

2.2 Two Specific Features of K20c

The GK110 architecture has some new features to gain more parallelism and higher

performance. In this thesis, two new features, dynamic parallelism and the warp shuffle

function, will be introduced as new strategies to improve the performance of the applica-

tion compared to what is possible with the Fermi architecture as mentioned in the first

chapter.

Dynamic Parallelism

Dynamic parallelism simplifies GPU programming by allowing a CUDA kernel func-

tion to create and synchronize nested kernel functions, which means a GPU can dynami-

cally spawn new threads on its own without returning to the CPU. Figure 2.5 shows how

dynamic parallelism works.

Dynamic parallelism is not only a powerful tool to make kernels run more parallel but

also very easy to realize. The programmer simply launches a kernel function directly from

a running kernel. The launching kernel function is called the parent, and the function
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Figure 2.4: Device Query of K20c shows all its technical specifications

launched from the parent is called the child. A parent can spawn multiple children, and a

children function can even have its own children. Thus, a multilevel nested calling stack

is allowed.

A simple “Hello World!” example is shown in Figure 2.6. In this example, the main

function launched on the CPU launches parentKernel; Next parentKernel launches child-

Kernel first and then prints out “World!”. However, parentKernel waits for the comple-

tion of childKernel first and then prints out“World!” only after “Hello ” is printed by

childKernel.

Warp Shuffle Function
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Figure 2.5: Dynamic Parallelism [6]

The warp shuffle function is designed to reduce the overhead of transferring values

among threads and the use of the shared memory. Threads within the same warp can

share registers with each other by using this function. The warp shuffle function is

different from the fetching data from the shared memory. Since threads can directly access

the registers of other threads, we avoid the higher delay of accessing shared memory,

including any serialization due to multiple threads accessing the same shared memory

bank. The programmer can use the functions listed in Figure 2.7 to access registers from

the source thread by the caller’s thread. There are two restrictions: first, a warp shuffle

function can only be used between two threads within the same warp. Second, a warp

shuffle function can only exchange 4 bytes of data each time. When 8-byte quantities

need to be exchanged, the process must be broken into two separate invocations of a

warp shuffle function.

In Figure 2.7, the functions are int type and float type. The type of the function

is related to the size of the data. An invocation of a function like double shfl() is

not allowed because a double occupies 8 bytes, which is beyond the capability of any

warp shuffle function. To make the function easy to describe, threads within a warp
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Figure 2.6: Code example of Dynamic Parallelism [6]

are referred to as lanes, and the lane where the required data comes from is called the

source lane. The ID of the source lane is only given to shfl(). It is a direct data copy

function, which returns the required value held by a source lane. For the other three

functions, it is a little different as the source lane does not have to be explicitly specified.

In shfl up(), the source lane ID is calculated by subtracting the variable delta from the

caller’s lane ID (the lane where the function is invoked). Conversely, in shfl down(),

the source lane is calculated by adding delta to the caller’s lane ID. As indicated by

the name, shfl xor() calculates the source lane ID by performing a bitwise XOR of the

caller’s lane ID with the variable laneMask. In the latter three functions, there is a width

variable that determines the boundary that the source lane should be in. If the source

lane is outside the boundary, the function just returns the value of the caller’s lane. As
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Figure 2.7: Warp Shuffle functions

a result, the value of the width has to be smaller or equal to the warp size and it must

be a power of 2.

In the example shown in Figure 2.8, a shfl up() is used to collect data from the lanes

with lower IDs. The value of the width is 8. Therefore, the source lane ID cannot be

lower than the caller’s ID, which is 8. Since the value of delta is i, which could be 1, 2,

and 4 as these are all within the scope of 8, this function is safe, and the caller lane is

able to collect data from source lanes properly.

Figure 2.8: Code example of Warp Shuffle Function [6]
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2.3 Advantages of Kepler K20c

In my research, following are three main advantages that I obtained from Kepler K20c.

First, with more resources, it is easy to get much better performance than running on

Fermi. The execution time is reduced significantly. Second, the interaction between CPU

and GPU can be reduced by using Dynamic Parallelism. It is a good strategy to eliminate

the latency from the data transmission between the host and the device. Third, proper

use of the warp shuffle can eliminate the latency from data transmission between threads;

however, it is not applicable to all conditions. In some specific scenarios, performance

suffers when using the warp shuffle.
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CHAPTER 3

RELATED WORK

Currently, due to highly accurate results and high-performance computation, com-

puter simulations are considered by researchers to be important substitutes for lab ex-

periments. This chapter presents an overview of the related simulation methods that

have been used to create a molecular system. In a typical molecular system, it is normal

to evaluate a high density environment with millions of particles that need to be calcu-

lated. By realizing the benefits of GPUs, the running time can be reduced significantly

by hundreds or even thousands of times under a reasonable power usage.

3.1 Monte Carlo Simulation

Monte Carlo simulation is one of the two most popular approaches that researchers

would like to use to study atomistic systems. The other method is Molecular Dynamics,

for which there are already several existing codes, and some have been reorganized to

support GPU executions, such as NAMD [17]. The existing codes of Molecular Dynamics

attract much interest but, in some cases, cannot meet the needs of many biomolecular

systems [8]. Conversely, Monte Carlo simulation with the Markov Chain has a big advan-

tage compared with molecular dynamics because it allows the study of open systems [1]

due to the fluctuation property that Molecule Dynamics does not support.

Monte Carlo is usually used to predict the interactions among molecules and reflect the

local movements of molecules. Monte Carlo methods are a broad class of computational

algorithms that rely on generating random samples repeatedly, and they are especially

efficient for simulation. The computational cost is really the chief limitation to regular

serial computing, which could lead to lengthy execution times if we suppose there are

one million particles that need one million iterations per particle. However, it is not
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an unrealistic problem size for high performance parallel computing. In previous work,

our research group created a model system and evaluated it on GPUs [9, 10, 15]. Monte

Carlo simulation is used to randomly change the current configuration of the system and

sequence all the configurations following the distribution of the random numbers. By

generating millions of random configurations, the desirable properties can be retained

and accumulated to get other characteristics of the system, like potential, pressure, etc.

3.2 Lennard-Jones Potential

The Lennard-Jones potential is a mathematical model that calculates the interaction

between a pair of molecules [11]. The expression is

VLJ = 4ε

[(σ
r

)12

−
(σ
r

)6
]

where ε is the depth of the region surrounding a local minimum of potential energy, σ

is the distance between the particle and the position where its potential is zero, and

r is the distance between particles [18]. These parameters are optimized to reproduce

experimental data. The Lennard-Jones potential is used as a function to simulate the

potential between two molecules on a computer. It is widely used by researchers because

of its straightforward calculation and high-accuracy especially for inert gas molecules

though it is more expensive than Ising or hard sphere models because the interactions

between particles within a certain cutoff radius must be calculated [8].

3.3 Gibbs Ensemble

In statistics, the Gibbs ensemble is a Markov Chain Monte Carlo algorithm which

is used to obtain a sequence of configurations based on random variables in a specified

distribution.

For research purposes, the Gibbs ensemble simulation is necessary in order to model

a system for calculating vapor-liquid phase coexistence, which is conducted by running
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one simulation with two boxes [1, 11]. To evaluate this kind of modeled system, the

Monte Carlo simulation, as the crucial method, is taken to randomly change the status

of the particles with applied potential. The limitation of the algorithm, which is also my

motivation to do the research, is that the computational cost of a dense system could be

enormous and the execution time for a large system could be weeks or even months. For

this problem, the GPU is the best choice to cut costs and speed up the execution.

An existing GPU code for the Monte Carlo simulation of the Gibbs ensemble was

developed in previous work by our research group and was able to achieve some better

performance compared with the CPU code [15]. In this research, I enhanced the GPU

code to transform the algorithm to run on the NVIDIA Tesla K20c to take advantage of

the new features of Dynamic Parallelism and Warp Shuffle.

3.4 Monte Carlo Simulation on Gibbs Ensemble

In the system, there are some variables that need to be set: box volumes, particle

numbers of each box, temperature, and chemical potential. Also, some other variables

need to be calculated: system energy, system potential, and pressure [16]. For a Gibbs

ensemble simulation, there are some variables that are fixed like the total number of

particles and the total volume of the system, but others are independent.

The Gibbs ensemble simulation modeled system contains two boxes with particles

inside. There are three kinds of movements, explained below, occurring with fixed prob-

abilities that are chosen at the beginning. Each of these movements has its own accep-

tance requirements; the acceptance conditions actually depend on a random exponential

function [16].
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1. Particle Displacement: In this move, the system randomly selects a box to conduct

the displacement and randomly picks a particle as well. Then it attempts to move

the particle to other locations within the same box.

Figure 3.1: The illustration of particle movement inside a box

2. Volume Swap: This move is for both boxes. The sizes of these two boxes would be

changed by an equal value but in the opposite direction. An equal and opposite

random change in the volume is shown below. The volume swap is a high-cost

movement because it would change the positions of all the particles in the box,

which requires the energy of all the particles in each box to be recomputed.

Figure 3.2: The illustration of volume swap; when the size of one box is increased, the
size of the other box is decreased.
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3. Particle Transfer: The system transfers a randomly selected particle in a randomly

chosen box to the other box. In the destination box, a random position is selected

to contain the incoming particle. It can be regarded as removing a random particle

from one of the two boxes, and adding this particle to a random position of the

other box.

Figure 3.3: An illustration of particle transfer, moving one particle from the source box
to the destination box.

If the displacement is accepted, the new configuration, which is based on this change,

will replace the old system configuration and be used for the next configuration. If it is

not accepted, the new configuration is abandoned and the old retained.

3.5 Method to Implement GEMC

The implementation of the Gibbs ensemble is shown in Figure 3.4. The main loop in

Figure 3.4 controls the number of the samples, which should be chosen to be big enough to

achieve the desired degree of accuracy. The three movement functions are inside the main

loop, but only one movement can be simulated in each iteration. The movement which

is to be simulated is determined according to the random value ”R” in each iteration.

To generate high-quality pseudorandom integers, the Mersenne twister [14] was used in

my research. It is the most widely used pseudorandom number generator for these types

of simulations, in part because the Mersenne twister has an extremely long periodicity.
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Figure 3.4: The implementation of the Gibbs Ensemble simulation [8].

At least two memory copy operations are needed per iteration to provide the data

that are required by these three functions and also to transfer the generated data back.

Although the cost of a single memory copy is tiny, the total cost of transferring the data

is still considerable because of the enormous loop.
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CHAPTER 4

RESEARCH CONTRIBUTION

The ideal condition of a SIMD-based task executed via massively parallel program-

ming actually is to process the independent data in parallel while utilizing reasonable

computational resources. In theory, a program with a higher ratio of occupied threads,

which is called the occupancy, could achieve better performance [12]. A higher occu-

pancy cannot only reduce the workload of each thread but also hide the memory latency.

However, this is not a hard and fast rule; pursuing a higher occupancy or the highest one

sometimes makes the performance worse. Once all the memory latency has been hidden,

increasing the occupancy further may degrade the performance due to other factors [2].

Therefore, I need to trade off the performances with different parameters, which can give

me different versions of the same kernel to consider the most appropriate occupancy for

the program.

In my research on achieving the best performance with the NVIDIA Tesla K20c, the

speedup is not only from the extra computational resources contributed by the K20c

but also from the reduction of some delay existing in the old code. Running all device

functions in parallel and shifting data using no shared memory or less shared memory

are two approaches, corresponding to Dynamic Parallelism and Warp Shuffle, to achieve

significant performance improvement.

4.1 Warp Shuffle Function

The Warp Shuffle operation is a new warp-level intrinsic, which is introduced in the

Kepler architecture [7]. The Warp Shuffle operation allows threads within the same warp

to exchange data with each other directly without transferring data to the shared memory

(transferring the data to the global memory is so much slower that there is no need to
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compare it with the shuffle operation and transferring data to shared memory).

4.1.1 Use of Shuffle Function

In the old code (Figure 4.1), which is implemented under the Fermi architecture, a

different implementation is required. To transfer the data from one thread to another,

whether or not they are in the same warp, it is necessary to copy the data to the shared

memory first; then, the destination thread loads the data from the shared memory.

Although going through the shared memory is not an expensive action for threads, there

are still two steps that need to be done: store and load. Now, with the Warp Shuffle

function, it can be cut down to a single step. The threads exchange data directly, and

the shared memory can also be released from storing transferred data. Therefore, the

new shuffle operation is more efficient in data transferring. Nevertheless, we still need

shared memory for the data exchange among threads that are in the same block but are

not in the same warp. The Warp Shuffle operation only works on the warp level. As a

result, trading off the usage of shared memory and the shuffle operation is important for

optimizing performance.

Figure 4.1: Data exchange with shared memory only

In Figure 4.1, “cEnergy” and “cVirial” are two arrays stored in shared memory, and

the corresponding value of each thread is stored in the arrays by using the thread ID

to identify its address. To sum two threads, I have to first store the value held by each

thread to the shared array before the exchange and then load the value when the exchange

happens.

How about Warp Shuffle functions? The shuffle functions consist of four basic oper-

ations: shfl, shfl up, shuf down, and shfl xor. As illustrated in Figure 4.2, I use

shfl down here to add the latter thread to the prior one with an offset number which is
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the interval of these two threads.

Figure 4.2: Data exchange with Warp Shuffle function

One challenge is that the Warp Shuffle function can only transfer the data with a size

no more than 4 bytes. Therefore, it is not possible to transfer a double-precision value via

Warp Shuffle directly. Because the shuffle function is based on the registers, the size of

the transferred data cannot be more than one register. The register’s size for the Kepler

GK110 architecture is 32 bits [5]. Therefore, if I want to transfer a double-precision value

from one thread to another via a Warp Shuffle function, I have to divide the data equally

into two segments, and there will be two registers that each handle one segment, but

not the scheme that one register handles both segments with a time division. This is

because CUDA’s implementation of double precision arithmetic requires that each double

variable uses two registers [6]. Hence, in Figure 4.2, the transferred data is divided into

ival[0] and ival[1].

Figure 4.3: Union type

In my research, I use a union to achieve the data separation. As shown in Figure 4.3,

I use two int type variables, which are 4 bytes each, to hold the two equal segments of a

double type. It does not matter if the structure of the double variable would be changed
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when it is separated into two int variables. This does not affect the result because the

two int variables are only used to transfer the data but don’t execute any arithmetic.

4.1.2 Data Merging

In my research, since it is necessary to add up the energy of all particles to compute

the total energy and each thread in the program processes just one particle in the box,

I need to merge the data processed by all threads into a single sum.

To avoid data conflict and finish the entire merging process in a reasonable time, our

group carried out a solution which is summing all the data in several steps; in other

words, it means performing a parallel reduction operation. To create the reduction, we

created one offset, which is half of the number of the total threads and added the data

processed by the second half of the threads to the data on the first part. In this way,

there is no data conflict because we only added one to another, and no other operations

like read or write were performed. Then, we divided the offset by 2 and re-sized the scale

of the threads to do the data addition on the newly merged data. We continued doing

the same operation in each reduction round until the scale of the threads is reduced to

one. By doing so, the data are merged in log2 n steps. If we simply added all the data

together, n iterations will be needed to complete the reduction because only two threads

can add their data together each time to ensure correctness.

This method is also applicable to the Warp Shuffle operation. The difference from

the new operation is that the merging process can be treated as two cases and completed

by using either shared memory or the Warp Shuffle operation.

4.1.3 Reasonable Use of Shuffle Function

Therefore, another challenge of using Warp Shuffle functions is trading off the usage

of shuffle functions and shared memory. The shuffle functions can only work on the warp

level, and there could be multiple warps in a block. This results in two different strategies

for thread merging.
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These two strategies could have significantly different performances because of the

different impact they make on the program’s parallelism. When there is a large amount

of data to be merged into one subtotal, the parallelism and the hidden latency are the

most important factors. The general idea is first loading the data into the shared memory,

and then merging the data which are loaded by threads step-by-step with a reasonable

offset. Therefore, Warp Shuffle functions can be used either at the beginning of the

merging process, which is to combine all the threads within the same warp to one specified

thread, or at the end of the merging process when all the data have been reduced to the

point where the number of remaining values is the same as the size of a warp. Figures

4.5 and 4.6 display examples of these two different merge movements.

In the example shown in Figure 4.5, there are two warps: 0 and 1. At the beginning

of this merging method, I combine the data values of the threads in one warp with the

corresponding data values in the threads of the other warp. When there are more than

two warps, if I keep merging the values of all the warps to the first warp, it will cause

an access conflict when multiple threads add the values they hold to the corresponding

thread value in a specified warp simultaneously. To avoid this condition, I adjust the

offset at each iteration and set it to half the total number of threads (see Figure 4.4).



23

Figure 4.4: Example of merge iteration

At each iteration, I only merge the values stored in the lower half of the warps to the

upper half to insure only one access per thread each time. Once the results of all the

warps have been merged to one warp, just like the second half of Figure 4.5, I use Warp

Shuffle functions to merge the thread values in that warp to one thread, and this thread

will hold the sum.

Figure 4.5: Merging thread values starting in shared memory

A drawback to this method is that the shuffle functions are used much less than shared

memory, so the data summation process still relies principally on the shared memory.

Especially, when there are many warps in a block and a high occupancy is needed, the

whole implementation would still waste time on this step.
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Figure 4.6: Merging thread values starting with the shuffle function

The second strategy, displayed in Figure 4.6, shows the opposite idea. First, I merge

the data values of all threads in each warp to one specified thread, usually the first thread

in the warp, by using Warp Shuffle functions. After that, each warp contains the partial

sum in one thread, which means the shuffle function can no longer be used and shared

memory is needed for the remaining merging process.

Comparing the second strategy to the first one, I can use many more shuffle functions

in the second one to minimize dependence on the shared memory, especially when there

are plenty of warps in the same block. Consequently, implementing the data transfers in

the second method should be more efficient due to the higher usage of shuffle functions.

Nevertheless, increasing the use of the shuffle functions does not necessarily equate to

better performance. A high usage of shuffle functions also reduces the program’s paral-

lelism significantly. As shown in Figure 4.6, after merging the partial sums of each warp

to their first threads, the number of threads that would still perform tasks reduces to

one over thirty-two of the original amount. With many fewer threads like this situation,

the running threads are no longer able to totally hide the memory latency. Therefore,

the memory latency would become the main bottleneck, which is more serious than the
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Table 4.1: Performance comparison of two Warp Shuffle implementing methods.

System Size
(particles)

Approach 1
(seconds)

Approach 2
(seconds)

1024 54.946 54.543
2048 59.153 59.167
4096 67.568 67.922
8192 80.844 82.388
16384 125.836 128.24
32768 248.891 255.036
65536 665.288 678.603
131072 2251.97 2290.32
262144 8033.6 8134.39

additional overhead of accessing shared memory.

These two methods actually are two extremes. Based on the collected data in Table

4.1, their performances are close to each other, but the second implementation is slightly

slower. It proves that memory latency may appear when there is a significant decrease

in the number of threads, and totally hiding the memory latency should be the first

objective when optimizing performance. Therefore, the first method is the option I use

in my research.

4.2 Dynamic Parallelism

Dynamic Parallelism is also a new feature of the Kepler GK110 architecture [5]. The

attractive part of Dynamic Parallelism is that the kernels are now able to spawn new

kernels just inside of themselves. This single change provides a wide variety of possibilities

for programmers to implement their tasks and gain benefits from them.
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4.2.1 Data Transfers

According to the function of Dynamic Parallelism, there is the possibility that all

the kernels except the one that has to be invoked from the host could be called from

the device directly. This attribute makes it possible to eliminate the intermediate data

transfers between the device and host.

In my research, there is a scenario that some of the parameters of the latter kernel

functions rely on the results of the prior kernels. This may result in a great demand for

global synchronizations of the results. Unfortunately, the synchronization for the entire

device is really expensive. Utilizing Dynamic Parallelism can also help me eliminate most

of these global synchronizations.

In our group’s earlier work, which was on the Fermi architecture, the data had to be

copied back to the host after each finished kernel, and it was also necessary to transfer the

data to the device before the next kernel function was called. Otherwise, it was impossible

for the latter kernel functions to get the updated results. Conversely, it is different on the

GK110 architecture. All these data transactions can be removed if Dynamic Parallelism

is used. Because all the kernels can be called by a specific kernel with only one thread,

the data need to be transferred to this parent kernel at the beginning of the program,

and they will be kept on the device through out the whole progress of the kernel, which

is also the execution of all child kernels as well. Therefore, once the initialization of the

data is done and the initial data have been copied to the device, all the kernel functions

can obtain the data directly from the device, and the data can also be updated directly

in the global memory. The process is shown in Figure 4.7.

This improvement is a benefit of the new attribute that the spawned kernel functions

can retrieve the formal parameters of the parent kernel function so that they could

process these variables and update them directly to the global memory of the device.

The old Fermi architecture, without Dynamic Parallelism, cannot support the spawned
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kernel functions, and all the kernel functions are treated individually right from the host

function so that they all use their own parameters which are separate from each other.

Figure 4.7: The implementations of data transfers on the (1) Fermi and (2) Kepler GK110

The implementation in Figure 4.7 (1) is the method used in the previous work.

The data has to be copied back to the host after each of the kernel functions (de-

vice function). The other one, shown in Figure 4.7 (2), uses Dynamic Parallelism. The

special device function is the only kernel function that is called from the host, and all

other kernel functions are called from the GPU. There is no need to copy data, but it

might be necessary to add a synchronization after each inner kernel function.

Getting rid of the intermediate data transfers can absolutely improve performance;

however, there is also a side effect that this implementation may require global syn-

chronizations after each of the spawned kernel functions. In Figure 4.7 (2), one global

synchronization per kernel function is inserted to insure that the results of the function

have been updated to the global memory before they are required by the next function.

What is worse is the high overhead of global synchronization can significantly lower the

performance that was optimized by removing data transfers. Therefore, in my research,

the main challenge of Dynamic Parallelism minimizes the use of the global synchroniza-
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tion while retaining the speedup saved from data transfers.

4.2.2 Global Synchronization

Global synchronizations are needed after each of the kernel functions because both

of the kernel’s formal parameters, the number of threads per block and the number

of blocks per grid specified in the <<< ... >>> syntax, depend on the results of the

previous kernel call. As in Figure 4.8, it is the initialization of the block size and the

grid size of the Particle Displacement function that introduces a synchronization prob-

lem. The variable Box1Params.NumberParticlesInBox is stored in the global memory

and can be retrieved by all the kernels on the device. Therefore, the block size here

may be incorrect if it is used for the latter kernel functions before the new calculated

Box1Params.NumberParticlesInBox is updated.

Figure 4.8: Example of initialization of block size and grid size.

To avoid this kind of race condition, I found that there are two different prototypes

which could help. By looking at Figure 4.8, one is assigning a constant value to the

block size to keep it unchangeable. Another much different solution is I still keep the

parameter changeable; however, I don’t change it before the invocation of the kernel

function. Instead, I change the block size at the end of the last kernel, which means the

block size and the grid size are updated to the global memory inside the running kernel

so that when the next kernel is called, all these parameters are guaranteed to be updated

earlier, and no race condition is possible.

It is obvious that assigning a constant value to the block size could help. The

value of the variable Box1Params.NumberParticlesInBox will change only when a Par-

ticle Transfer move is accepted because when it is accepted, there is a particle that
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is transferred to another box and the number of particles in the boxes will change.

However, with the constant block size and grid size, no matter how much the variable

Box1NumberParticlesInBox changes, will not affect the value of these two parameters.

In a small Gibbs ensemble system, if the size of a system is smaller than 1024, which is

the upper bound of the block size, the size is also the reasonable constant value for the

block size because it is fixed and always larger than the number of particles in either of

the two boxes. For the large system, the block size can be simply set to 1024.

Assigning a constant value to the parameters is effective, but it is not efficient. The

constant value used for the parameters should always be greater than or equal to what

it needed. This restriction causes the drawback that the threads with an ID greater

than the actual block size are idle throughout the entire function. This wastes resources,

which can degrade performance.

The second option allows the kernel call to specify the actual block size and grid

size of the kernel functions. It is based on a different strategy. Comparing the original

realization in Figure 4.8 and the first option mentioned above, it is clear that there is one

point in common that both block size and grid size are initialized before the functions are

called. In this case, programmers should always watch for potential asynchronous errors,

and the asynchronous errors can only be hidden but cannot be removed completely. As

a result, to remove the asynchronous errors completely, the block size and the grid size

can no longer be initialized before the kernels are called.

From the definition of streams [6], all the kernel functions in the same stream are

definitely executed in a sequence. The point here is that the next kernel function will not

be called until the current function is finished completely. This same requirement applies

to the data processing inside the kernel. If there are any data processing operations, they

must be done before the next function is called. Therefore, the data must be saved to

the global memory before they are used by other kernel functions. In the Gibbs ensemble
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system, when simulating the three movements, the only change to the block size and the

grid size happens when a Particle Transfer movement is accepted. Therefore, I only need

to recalculate block size and grid size inside this function with the updated parameters

if the movement is accepted. The limitation here is that the kernel functions should be

in the same stream, but there is also good news that all the spawned kernel functions

which have the same parent are in the same stream. In my research, the main functions

to model those three movements are all spawned by the same parent. Figure 4.9 gives

the pseudo-code of my implementation.

Figure 4.9: Recalculate the parameters inside the kernel function

In Figure 4.9, the three displacement functions are called from their parent function,

and they are all initialized with a block size and a grid size at the beginning, which

depend on the number of particles in each box. When the Particle Transfer move is

accepted, the global parameter of the number of particles in each box will be changed,
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and this will also causes the changes on both the block size and the grid size. They will

also be updated in the global memory before the next kernel functions are called. In this

way, it is not necessary to add any global synchronizations after each of the functions,

and there is no need to spend any time on circumventing the asynchronous errors either.

4.3 Performance Trade-Off

As discussed earlier, thread occupancy and the memory usage of each thread have

noticeable effects on the performance. It is similar to the comparison between thin threads

and fat threads [12]. Either of these extreme cases, like highest occupancy or redundant

memory per thread, may potentially ruin the performance. It is also important that the

number of threads allocated to a function should be an integral multiple of 32, which is

the size of a warp.

With the GK110 architecture, the NVIDIA Kepler K20c card supports 65536 registers

and 2048 threads in each multiprocessor. Therefore, when the occupancy is 100 percent,

in other words, all 2048 threads are activated, there are 32 registers allocated to each

thread. The limitation of this condition is from threads and registers because they are

all fully loaded. Making the resources fully loaded is ideal to optimize concurrency, but

it is not the only factor. Therefore, it is not strange that the performance of the Particle

Transfer function in this condition is not the best. The result of comparing the use of

32 registers with other numbers of registers shows that a thread with 32 or even fewer

registers is much less efficient, and it takes longer to finish one of the parallel tasks.

To find the ideal number of registers, first of all, it is recommended to compare all

the possibilities with the same amount of threads. The compiler makes the compar-

ison easier since it could adjust the number of registers for each thread to the most

appropriate one even if the programmer gives a bad value. The bad value refers to the

inappropriate number of registers set to each thread, from which the program could gain

little improvement for each individual thread but lose a lot on occupancy. For exam-
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ple, in the condition of 5 warps per block and 45 registers per thread, the compiler is

able to invoke 9 blocks. However, if the number of registers is set to 46, the compiler

will only be able to invoke 8 blocks. To give the compiler more opportunities to adjust

the appropriate number of registers, it is advised to use launch bounds (block size,

maximum grid size). With this instruction, a programmer could set the total number of

threads in each SMX, and the number of registers in each thread will be calculated by

the compiler. Visual Studio provides another option: a maximum number can be set in

the property of the project. However, it makes the compiler inflexible and forfeits the

ability to adjust the bad parameter value. The second restriction on register allocation

is from the shared memory, which makes the trade off considerations more complex. In

the Kepler GK 110 architecture, the maximum use of the shared memory is 48K and can

be achieved with the instruction, cudaFuncCachePreferShared. In my research, a 256

bytes memory is set to each kernel primitively, and each thread needs 32 bytes for the

execution. Therefore, the shared memory limits the number of threads in each block and

the number of blocks in each SMX. Consequently, when the quantitative restriction on

the number of threads is ignored because full use of the threads results in low efficiency,

the performance is limited mainly by the use of registers and shared memory, and the

best performance can be gained when both are optimized at the same time so that all the

registers and all the shared memory are both used. Optimizing either register or shared

memory separately will result in the inefficient use of the other one. Theoretically, the

use of registers per thread and the number of threads per block can be restricted by the

following two formulas.

32 × n× σ × ε 6 65536 (4.1)

256 × σ + 32 × 32 × n× σ 6 49152 (4.2)

where n equals the number of warps in each block, σ is the number of blocks per SMX,



33

and ε is the number of registers in each thread. The first 32 in the second formula is the

usage of the shared memory by each thread, and both the second 32 and the 32 in the

first formula are the size of a warp.

From these two formulas, it is possible to treat different sizes of warps separately

and find out the most appropriate use of registers respectively. The theoretical result is

shown in Table 4.2.

Table 4.2: The value of σ and ε have been rounded down to the nearest integer.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
σ 2 3 3 3 3 4 4 5 5 6 7 9 11 14 21 38
ε 64 45 48 52 56 46 51 45 51 48 48 45 46 48 48 53

The practical performance may not completely follow the theoretical value because

of some unknown preliminary occupancy on registers. Sometimes, the compiler cannot

allocate the exact number of registers, listed in Table 4.2, to each thread. It may slightly

reduce the value to find the most appropriate setting. However, the practical result is

still the most efficient as will be discussed in the next section.
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CHAPTER 5

EXPERIMENTAL RESULTS

Since all the changes are made on the existing CUDA code, the results are stated

in terms of the speed-up which compares the Kepler architecture implementation to the

existing one.

Due to the lack of performance analysis tools on Linux, the experiment is implemented

on Windows 7. A free tool called Nsight, which is provided by NVIDIA, can be embedded

to Microsoft Visual Studio 2010. With the ability of nested analysis, Nsight simplifies the

performance diagnostics, since all the performance restrictions of each kernel function,

including the spawned functions, are visible to programmers. Hence, programmers can

tradeoff the performance accordingly.

5.1 The Performance of Original CUDA Code

To make the comparison more precise and objective, it is necessary to trade off the

performance of the original CUDA code to reach the best. Because it is mainly restricted

by the usage of registers, the best performance can be easily identified by setting different

block sizes. As illustrated in Table 5.1, the experiments are made on a system with the

size of 32768 particles. A system size of 32768 particles is big enough to utilize all the

resources of the K20c, and it is not so big that the execution time is unreasonable for

running many different configurations. Therefore, running the experiments with 32768

particles is time saving and accurate. The best performance of the original CUDA code

with the size of 32768 particles is achieved when the maximum block size is 128.
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Table 5.1: The performance comparison of the original CUDA code.
Block Size (parti-
cles)

512 480 448 416 384 352 320 288

CBMC with size
of 32768 particles
(seconds)

299.413 299.959 303.224 345.404 295.716 297.265 318.741 294.808

Block Size (parti-
cles)

256 224 192 160 128 96 64 32

CBMC with size
of 32768 particles
(seconds)

291.349 294.949 291.199 288.64 286.994 288.246 361.942 602.059

5.2 The performance of Warp Shuffle Function

As it is described above, Warp Shuffle, as a new method to transfer data, is a widely

applicable operation. As a result, the Warp Shuffle functions can also be added to the

original code and contribute to the enhancing the performance. The performance of

the Warp Shuffle function is compared to the performance of the original CUDA code

in Table 5.2. The comparison between the original CBMC code and the Warp Shuffle

code allows one conclusion: the Warp Shuffle function can contribute performance to all

systems, and the larger the system is, the more significantly the speedup that can be

achieved.

On the other hand, the self performance trade-off on the Warp Shuffle code also

mainly focuses on the use of registers because it uses limited shared memory and the

code structure is almost the same as the CBMC code. Therefore, the best performance

(listed in Table 5.3) of the Warp Shuffle code is also achieved with the block size of

128. In Table 5.3, the performances of the Warp Shuffle code with block size of 512 is

much slower for the larger system sizes because it allows fewer registers per thread, which

reduces the performance of each thread.
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Table 5.2: Comparison between the best performance of CBMC code and Warp Shuffle
code.

System Size
(particles)

CBMC
(seconds)

Warp
Shuffle
(seconds)

1024 57.181 54.946
2048 61.739 59.153
4096 72.244 67.569
8192 87.85 80.844
16384 141.06 125.836
32768 286.944 248.891
65536 808.161 665.288
131072 2868.72 2251.97
262144 10613.8 8033.6

5.3 The Performance of Dynamic Parallelism

Same as the Warp Shuffle code, several experiments are made to determine the best

performance of the Dynamic Parallelism code. It is different from the CBMC code and

Warp Shuffle code because the change made to eliminate the global synchronizations

also makes the Particle Transfer function require more shared memory than the Particle

Displacement function and Volume Swap function. Hence, the shared memory is another

restriction to the Particle Transfer function in the Dynamic Parallelism code. Since there

are no other changes, a block size of 128 is still the best size for the other functions. In

addition, shown by the comparison in Table 5.4, a block size of 160 is the best for the

Particle Transfer function.

The Dynamic Parallelism code is also more competitive at the performances which is

shown in Table 5.5. Comparing the Dynamic Parallelism code to the original code, there

is a decent speedup.

Since the performance improvement of eliminating data transfers is limited and con-
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Table 5.3: The performance of the Warp Shuffle code with two block sizes.

System Size
(particles)

block size =
128 (seconds)

block size =
512 (seconds)

1024 54.946 55.12
2048 59.153 59.85
4096 67.569 65.59
8192 80.844 86.68
16384 125.836 152.89
32768 248.891 280.312
65536 665.288 959.17
131072 2251.97 3202.03
262144 8033.6 11039.4

Table 5.4: The performance comparison of the Dynamic Parallelism code.
Block Size
(particles)

512 480 448 416 384 352 320 288

Dynamic
Parallelism
with system
size of 32768
particles
(seconds)

255.884 250.672 250.242 255.125 255.457 250.422 251.81 250.372

Block Size
(particles)

256 224 192 160 128 96 64 32

Dynamic
Parallelism
with system
size of 32768
particles
(seconds)

251.897 250.212 250.528 250.201 250.773 250.913 255.196 264.358
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Table 5.5: The best performance of the CBMC code and the Dynamic Parallelism code.

System Size
(particles)

CBMC
(seconds)

Dynamic
Parallelism
(seconds)

1024 57.181 42.444
2048 61.739 47.349
4096 72.244 58.576
8192 87.85 73.731
16384 141.06 121.094
32768 286.944 251.588
65536 808.161 670.104
131072 2868.72 2263.95
262144 10613.8 7999.83

stant, the elimination of global synchronizations is the key factor that can make a big

difference in the performance. Figure 5.1 displays the comparison between the Dynamic

Parallelism code before eliminating global synchronizations and the code after the change.

Figure 5.1: The Dynamic Parallelism code after the elimination of the global synchro-
nization achieves decent performance improvements.
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5.4 The Performance of the Combined Code

The comparison of the Warp Shuffle code and the Dynamic Parallelism code is shown

in Figure 5.2. The line chart shows that the performances of these two functions are

pretty close to each other.

Figure 5.2: The two lines overlap each other.

The performance of the combined code, which includes both Warp Shuffle and Dy-

namic Parallelism, is shown in Table 5.6 and achieves a slight improvement over either

of these two respective codes.

The execution time of the combined code gives a good but not a surprisingly good

result. It does not save twice what Warp Shuffle and Dynamic Parallelism separately do

as what is expected, but instead performs only modestly better on the optimization. This

performance degradation may be caused by the nonideal block size of the Particle Transfer
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Table 5.6: The comparison between the performances of the combined code and the
CBMC code.

System Size
(particles)

CBMC
(seconds)

Warp
Shuffle
(seconds)

Dynamic
Parallelism
(seconds)

Combined
Code
(seconds)

1024 57.181 54.946 42.444 38.837
2048 61.739 59.153 47.349 43.638
4096 72.244 67.569 58.576 54.543
8192 87.85 80.844 73.731 69.504
16384 141.06 125.836 121.094 115.927
32768 286.944 248.891 251.588 248.872
65536 808.161 665.288 670.104 652.693
131072 2868.72 2251.97 2263.95 2206.48
262144 10613.8 8033.6 7999.83 7793.19

function. All three kernel functions can achieve improvements from Warp Shuffle, so to

get the best performance from the Warp Shuffle, the block size of the Particle Transfer

function should be 128. However, to make full use of Dynamic Parallelism, the block size

has to be increased to 160, which could reduce the performance. There may also be some

other unknown restrictions or conflicts happening during the execution, which requires

further research.

Assume that the running times of the CBMC code are the basis numbers, which

are set to 1. After comparing the optimized codes to the CBMC code, the ratio of the

execution times for these optimized codes are shown in Figure 5.3. The histograms show

a range of improvements from approximate 17% to 33%. For large systems, which are

over 64K in size, the combined code achieves an average improvement of 20%.

The ratios in Figure 5.3, reflect the efficiency of the optimized code. It is interesting

that the accelerated codes get good results from the smallest system; however, the per-

formance keeps decreasing until the system size is increased to 32768 particles; after the
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Figure 5.3: Comparison of the execution time of four different codes.

valley, the performance improves and remains stable. In addition, Dynamic Parallelism

is more efficient than Warp Shuffle in the systems where the sizes are smaller than 32768

particles. However, they achieve very similar performance when the system sizes are

larger than that.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

I utilized some of the new features of Kepler GK110 architecture that can contribute

to the code optimization. The result I got about Warp Shuffle functions proves the power

of using registers; it conforms to the memory hierarchy of the GPU [6]. However, NVIDIA

positions the feature of Dynamic Parallelism unilaterally. It doesn’t claim the benefits

that Dynamic Parallelism could make to code optimization. The Dynamic Parallelism

cannot speed up the code directly, but it can still make contributions to simplifying and

optimizing the construction. Except for the main features that are mentioned above,

I also utilized some other techniques that can make some small improvements as well.

Loop unrolling on the simple loops with no divergence inside can release the compiler

from unrolling the loops and improve the performance. Expanding the workload that is

assigned to each of the threads in the function should also be considered. The workload

extension gives the light threads a reasonable amount of extra work to make the thread

calling worthwhile.

In this thesis, I evaluated some extreme configurations to trade off the performance.

It is kind of inefficient and not that accurate. To achieve better performance, this job

could be done by using auto-tuning [13]. Programmers can simply design a template that

can change the value of all the parameters automatically to find the best configuration.

From the final result, it still does not seem to achieve the best performance. The time

that the combined code saves does not equal the total time that is saved by both Warp

Shuffle and Dynamic Parallelism alone. Intuitively, it seems likely that further research

will achieve additional speedups.
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The main purpose of implementing the code on Kepler architecture is to speed up

the GPU code, which is from the previous work done by our group, by using the new

functions of NVIDIA CUDA’s Kepler architecture. Therefore, this thesis specifically

focuses on the latest architecture.

To get benefits from the Kepler architecture, the primary work is to convert the code

and make it adapt to the new features: Warp Shuffle and Dynamic Parallelism. The new

code changes the way to transfer data and generate new kernel functions. In addition,

another challenge is to trade off the use of resources on each thread to get the best

performance.

The new code has different performance with different work sizes. Generally, the

speedup is between 17% and 33%, and better performance is achieved in larger systems.

This is a reasonable performance for the improvement with only two new features. The

main contribution of this thesis is that the detailed evaluation of these two Kepler ar-

chitectural features provide guidance to other researchers on the potential performance

benefits of modifying their code. Therefore, they can make appropriate modifications

and achieve reasonable speedup according to the structure of their codes.
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