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CHAPTER 1: INTRODUCTION 

 This paper details a system that researchers can use to design and implement 

experiments involving the Alpena-Amberley ridge and similar environments. Given data 

describing the rate of change of various factors within an environment, the system provides 

automatic design of the changed environment for all desired intervals within a given time 

period. This allows researchers to design and perform experiments where environmental 

change is a crucial factor without having to manually redesign the environment whenever it 

changes. Additionally, many helpful tools and functionalities for designing and implementing 

experiments are provided, such as the ability to easily move forward or backward one or 

multiple intervals and navigate through time in other ways. Various intelligent agents pre-

loaded with AI algorithms are also included (i.e., herds of AI caribou, as well as hunting blinds 

whose placement is governed by cultural algorithms). 

1.1 Platform  
 
 The system was created using Thomas Palazzolo’s “Land Bridge GUI” program, 

developed using Microsoft Visual C# 2008 and Microsoft XNA 3.1, as a basis. This is a program 

created by Palazzolo to model the Alpena-Amberley Land Bridge, a land formation currently 

under Lake Huron that was above lake level for most of the time between about 9793 BCE to 

about 6343 BCE. 

1.2 Overview of this Paper 
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 The rest of this chapter (Chapter 1) provides a very general overview of our entire 

system, including functionalities that won't be used in our featured experiment per se, but are 

nonetheless useful to researchers in implementing their own tests and experiments with the 

system. Chapter 2 discusses the previous work that has been done concerning the Alpena-

Amberley ridge. Early work by geologists, Dr. John O'Shea's seminal work, and simulation 

systems created by computer scientists since then are all discussed. Chapter 3 goes into further 

detail about the Alpena-Amberley Land Bridge itself and discusses the purpose and objectives 

of our simulation system. Chapter 4 provides the high and low level design of our cultural 

algorithm system, whose aim it is to provide tools to help the process of finding hunting blinds 

and other artifacts under Lake Huron. It also includes pseudocode implementations for the 

most crucial portions of the system. Chapter 5 provides the overview and framework of our 

main experiment. Chapter 6 demonstrates both a proof-of-concept and a full run of our system 

and provides results as well as a statistical analysis. Chapter 7 provides concluding remarks. 

1.3 System Overview 

General Overview 
 
 Immediately when the program is run, the system first generates a 3D simulation world 

and a 2D map of that world from raw text files containing height information. Included as well 

is a text file containing a list of (year, water level) ordered pairs. Each of these ordered pairs 

contains a year in the interval of 9793 to 6343 BCE, and the corresponding water level of Lake 

Huron for that year (taken from [1]). The system automatically interpolates the water levels for 

years not explicitly contained in, or entered from, the 2007 Lewis data. 
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 The system has two basic modes. The first is the standard simulation, and the second is 

hunting blind placement simulation. The standard simulation is activated by pressing the 

“Start/End Sim” button. When active, it runs through the period of 9793 to 6343 BCE. 

Environmental changes over time are visible in both the 3D simulation world and the 2D hash 

map thereof. At any time, the standard simulation may be paused, and a herd of caribou may 

be generated and given a start point and an end point. (The caribou are currently equipped 

with a version of the A* path planning algorithm, and will use this to find their way from start to 

end.) 

 The second mode, hunting blind placement simulation, runs from a user or 

programmer-defined starting year to a user or programmer defined ending year, and in this 

mode stops every X years (where X can be determined by the programmer or user). For each 

run, the system creates a herd of caribou which finds its way from the left edge of the current 

map to the right edge of the current map. Again, the caribou use the A* path-planning 

algorithm to find their way. Since the shore closest to the water tends to have the most 

vegetation, the system automatically chooses start and end points for the caribou that are close 

to water so that the caribou tend to travel the path with the most possible vegetation. After 

start and end points are chosen, the system uses a cultural algorithm to determine the best 

locations to place hunting blinds. Once the hunting blinds are placed, the caribou actually travel 

from the start to the end point using the A* algorithm. During the run, the hunting blinds are 

scored based on various factors, and these scores help determine the placement of the hunting 

blinds in the next generation.  
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  Once the caribou have reached the ending point, the system takes a screenshot of the 

hashmap representation of the environment and saves it to a jpeg file. The process repeats 

until the last simulation year has ended. The resulting screenshots can be used as frames to 

make a video of the changes in caribou migration patterns and hunting blind placement for 

either the entire Alpena-Amberley land bridge over its entire existence, or a part of it within a 

certain portion of the time that it existed. 

Figure 1: Screenshot of the Land Bridge System in Action 
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CHAPTER 2: LAND BRIDGE PREVIOUS WORK 

2.1 Pre-2009 Work and O'Shea's 2009 Huron Expedition 
 
 The fact that the Alpena-Amberley ridge was at one point an isthmus connecting what is 

today northern Michigan and southern Ontario across Lake Huron is not itself new knowledge. 

Since at least the 1980's, the models of various respected geologists have shown it as an 

uninterrupted land corridor with two lakes on either side during part of the melt phase of the 

Laurentide ice sheet [2] [3]. However in 2009, under the leadership of Prof. John O'Shea, the 

University of Michigan launched an expedition to explore the bottom of Lake Huron using 

underwater autonomous vehicles (UAV's) launched from surface boats. During the expedition, 

the research team found what were later conjectured to be the remains of prehistoric hunting 

blinds and caribou drive lanes [4]. When the results were published, there was an immediate 

resurgence of interest within the research community concerning the land bridge, including the 

AI community who were interested in modeling the behavior of the caribou and hunters that 

roamed the land bridge in prehistoric times.  

2.2 Kevin Vitale's Work 
 
 One of the first computer models of caribou behavior on the land bridge was 

implemented by Kevin Vitale in 2009, discussed in his paper "Learning Group Behavior in Games 

Using Cultural Algorithms and the Land Bridge Simulation Example" [5]. Vitale's program uses a 

cultural algorithm simply to teach caribou (represented as yellow triangles) how to successfully 

migrate as a herd across the land bridge. 
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Figure 2: Kevin Vitale's System 

 
 Vitale's cultural algorithm controls only the "wander behavior" of the caribou, that being 

defined as the deviation at any given time from the predetermined path from start point to end 

point. The wander behavior is determined by three values: The wander target position, the 

wander circle radius, and the projection distance. Vitale's pseudocode for his wander behavior 

mechanism is given below: 
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getSteering(&outputForce) 
{ 
ΔX = current_X_Target * jitterValue 
ΔZ = current_Z_Target * jitterValue 
newWanderTarget = (ΔX, ΔZ) 
newWanderTarget *= wanderRadius 
newWanderTarget.X += wanderDistance 
newWanderTarget.Z += wanderDistance 
output.angle = SetOrientationTowardsTarget(newWanderTarget) 
output.linearForce += wanderTarget * maxSpeed 
} 
 

 
Figure 3: Schemata of Vitale's Wander Mechanism 
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 The diagram above details how Vitale's wander behavior mechanism works. The point c 

is the wander target position, which is always located on the wander circle C, having radius A. B 

is the projection distance (the distance between the center of the circle and the caribou's 

current position, labeled a on the diagram). A fourth parameter, the jitter value, determines the 

change in the wander target position every time the getSteering function is fired. Of the four 

critical parameters, only the initial wander target position and the jitter value are determined 

by the cultural algorithm. The latter two, the wander circle radius and projection distance are 

simply hard coded into the program. 

 Not surprisingly, Vitale ultimately found that parameter values producing caribou that 

wandered very little were the most successful in getting the largest number of caribou safely 

across the land bridge. 

2.3 "Serious Game Modeling Of Caribou Behavior Across Lake Huron Using  
 
Cultural Algorithms And Influence Maps" 
 
 The next major computer program for modeling caribou behavior on the Alpena-

Amberley land bridge was written by James Fogarty and detailed in his 2011 paper "Serious 

Game Modeling Of Caribou Behavior Across Lake Huron Using Cultural Algorithms And 

Influence Maps" [6]. 

Influence Map 
 
 As a resource for its cultural algorithm, Fogarty's program uses an influence map in 

which each square is given a score resulting from the availability of food therein, the dangers 

previous generations have encountered therein, and the difficulty of the square's terrain (peaks 
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and valleys are considered "difficult terrain", as opposed to level ground which is considered 

"easy terrain".  

A* Algorithm 
 
 In Fogarty's program, the land bridge map is divided up into square cells. The program 

uses the A* algorithm to create a path from a given start square to a given finish square. 

The A* algorithm itself is Dijkstra's algorithm with a heuristic (provided by the algorithm user) 

included. Dijkstra's algorithm is a search algorithm for graphs that finds the shortest path 

through a given graph from a given initial vertex to a given terminal vertex. It, and A* which 

derives from it, always find the shortest path, provided at least one valid path exists [7]. 

"Shortest" in this context means not merely the path containing the least number of vertices, 

but the path containing the smallest sum of vertex weights.  

 Fogarty's influence map provides a weight for each of his map squares (which can be 

thought of as graph vertices), and is calculated from the factors described in the Influence Map 

subsection. His A* algorithm generates a shortest path across the land bridge based on these 

weights. 

 When Fogarty's A* algorithm actually generates the path, it shows up as a series of blue 

diamonds on the program's display, as shown in the following figure: 
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Figure 4: Fogarty's System 

2.4 "Path Planning in Reality Games Using Cultural Algorithm: The Land  
 
Bridge Example" 
 
 Jin Jin, in his work entitled "Path Planning in Reality Games Using Cultural Algorithm: 

The Land Bridge Example", provided another variant of the A* algorithm for calculating caribou 

paths similar to Fogarty's. Jin's A* variant returns the least-total-value path from a start vertex 

to a terminal vertex. It uses terrain difficulty value, food value, and distance value as the terms 

which determine the raw value of an individual square [8]. The total value is determined by 

these three terms multiplied by a terrain weight, a food weight, and a distance weight, 

respectively. These weights can be either baked into the program (as they were in the June 
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2012 version of Jin's program within Palazzolo's framework), or they can be determined using a 

cultural algorithm. 

Geometry Value 
 
 In Jin's A* variant, the geometry value of a given vertex is determined by the terrain that 

the vertex is located on, whether it be rocks, grass, sand, water, or another terrain type. 

"Easier" terrains have lower geometry values than terrain types deemed "harder". (Note that 

the mid-June 2012 version of Jin's program effectively contained only two terrain types: water 

and non-water. Water squares were given a geometry value of 255, whereas non-water squares 

were given a geometry value of 0. 

Distance Value 
 
 In Jin's A* variant, the "distance value" of a given square is the Euclidean distance from 

that square to the terminal square. The higher this Euclidean distance, the higher the distance 

value of the square. 

Food Value 
 
 In Jin's A* variant, "food value" in a given square is the same as the vegetation value in 

that square, which is ultimately determined by Palazzolo's program which provides the 

framework for both Jin's program and ours. Generally speaking, Palazzolo's program assigns 

higher vegetation values to squares which are closer to water, and lower vegetation values to 

squares which are further inland. Unlike the previous two terms, the higher the food value, the 

more desirable the square. 
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Total Value of a Square 
 
 In Jin's A* variant, as it was in the June 2012 version of Palazzolo's program, the total 

value of a square is given by the following equation: 

𝑉𝑠 = 𝑊𝑔 ∙ 𝑔𝑠 + 𝑊𝑑 ∙ 𝑑𝑠 −  𝑊𝑓 ∙ 𝑓𝑠 
Equation 1: Total Value of a Square in Jin's A* Variant 

 
 In this equation, 𝑉𝑠 is the overall value of the square, Wg, Wd, and Wf are the geometry, 

distance, and food weighs, respectively, and gs, ds, and fs are the square's geometry, distance, 

and food values, respectively. 

Finding the Minimal Value-Sum Path 
 
 Again, Jin's program finds the path from a given start point to a given end point which 

has the minimal combined value of all squares within that path. In other words, it finds the path 

P out of all possible paths which minimizes the following function. 

 
Equation 2: Total Value of a Path P in Jin's A* Variant 

Learning Curve Diagram 
 
 Below is the learning curve diagram for a sample run of Jin's program using his cultural  

algorithm. 
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Figure 5: Jin's CA Learning Curve (Total Score vs. Generation) [8] 
 

Figure 6: The Terrain Upon Which Jin Performed His Experiment [8] 
 

 Unfortunately, most of Jin's work did not make it into Palazzolo's program by the time 

the author of this piece commenced the main portion of the coding work required here. 

Therefore our work uses the A* algorithm included in Palazzolo's program as of June 2012 to 

 
 



14 
 

calculate caribou paths. However, Jin's work is still important to mention here because it uses 

such a similar approach to the one used in this work. 

2.5 "Cultural Algorithms in Dynamic Environments" 

 Introduction and System Overview 
 
 In 2000, Saleh Saleem devised a semi-dynamic CA system somewhat similar to the one 

we are about to introduce. Saleem's system consists of an environment containing a number of 

cones. The objective for his CA is to find the x and y coordinates containing the top of the tallest 

cone in an environment containing multiple cones. However, Saleem's system gives his CA only 

a certain number of generations to reach the goal before the environment changes, i.e., the 

cones are moved to new locations. 

 
Figure 7: Snapshot of Saleem's Experimental Environment [9] 
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Experimental Setup 
 
 In Saleem's main experiments, there are two cones, the first with a fixed height of 9.5 

and a fixed slope of 7.5, the second whose slope may vary between 2 and 7 and whose height 

may vary between 3 and 6. The x and y coordinates of the centers of both cones may vary 

randomly within the interval [-1, 1], although the first cone always starts out with its center at 

(x, y) = (0.15, 0.20) before the first instance of environmental change.  

Experimental Results 
 
 Saleem performed various experiments with his system, the most interesting of which 

involved the comparison of his CA against a self-adaptive, population-only, non-cultural 

evolutionary program (EP) in a situation where the environment changed every five 

generations. Saleem provides the results of this experiment in the following graph of shift 

magnitude vs. best value. Note that the absolute best value is 9.5, recalling that the first cone's 

height is fixed at 9.5 and the second cone's height must be between 3 and 6. Saleem 

demonstrates that his algorithm which contains a cultural component performs much better at 

the task of finding the top of the tallest cone than the competing algorithm which has no 

cultural component. 
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Figure 8: Avg Best Value with Environmental Change Every 5 Gens (CA vs. EP)  [9] 

Conclusion 
 
 Saleem's system is certainly valuable prior work on testing how cultural algorithms deal 

with a changing environment. Still, we would contend that Saleem's system, while valuable as 

pioneering work, is only partially dynamic and not fully dynamic. This is because in his system, 

the environment does not change every single generation. Rather, his CA is given a certain 

number of generations in which the environment remains static (5 generations was the 

smallest number he used in any of his experiments) in which the CA attempts to reach peak 

fitness. It is only after those generations have concluded that the environment changes [9]. In 

our system, as is the case in the natural world, the environment is never static. Our CA is forced 

to truly learn "on-the-fly", in other words to continually adapt to an environment that never 

ceases to change, not even for a single generation. 
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CHAPTER 3: OBJECTIVES AND HISTORICAL OVERVIEW 
 

We now provide the overall objectives, motivations, and background for our own work. 

Although our system may be used as a tool to simulate any natural environment that changes 

over time, the immediate motivation for its creation is the study of the Alpena-Amberley Land 

Bridge. Although simulation tools already exist to simulate parts of the Alpena-Amberley Land 

Bridge during a specific instant in time, no tool existed before now that could simulate the 

entire Land Bridge over the entire time period that it existed. To accomplish this, it was 

necessary to draw upon the body of Paleolithic-Era geological research concerning the Great 

Lakes system in general and Lake Huron in particular. 

3.1 Choke Points 
 

First of all, the Alpena-Amberley Ridge has two low points that serve as “choke points”. 

When the lower of these, shown on the map as “Choke Pt 1”, becomes covered with water, the 

Alpena-Amberley ridge is not a Land Bridge, but at best two peninsulas with a strait between 

them. (Choke Point 1 is about 57.5m below today’s Lake Huron level, or about 118.5m above 

today’s sea level.) When the other choke point, shown on the map as “Choke Pt 2”, becomes 

covered with water, the Alpena-Amberley ridge is at best two peninsulas with one island in the 

middle of them, the island separated from the peninsulas by two straits. (Choke Point 2 is about 

52.5m below current Lake Huron level, or about 123.5m above current sea level.) 
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Figure 9: NOAA Bathymetry Map of the Great Lakes Basin [10] 

3.2 Dyke Model 
 

According to [2], at some point (which [2] conjectures was shortly after 11,000 years 

ago), a glacial “plug” separating the Great Lakes from the North Bay Outlet leading to the 

Atlantic Ocean melted. As most of the water in the Great Lakes was at a significantly higher 

elevation than the North Bay Outlet, most of it flowed out through the Outlet into the ocean 

when the glacial “plug” blocking it melted. 

From [1], we know that [2]’s estimate for the time of the melting of the “plug” is 

probably too late. However, [2]’s  diagrams are still the most useful out of any in the literature 

 
 



19 
 

for understanding the sequence of events that led to the Alpena-Amberley Land Bridge’s 

formation.  

We can see very clearly from Dyke that during Early Stanley, the water was at its lowest 

point, the land bridge was at its greatest extent, and thus provided the best opportunity for 

caribou to use the land bridge as a crossing point, and therefore for hunters to hunt on the land 

bridge. Eventually, however, the point was reached where the elevation of the North Bay 

Outlet was higher than the lake level of the Great Lakes System. This point was reached 

because of the rise of the North Bay Outlet’s elevation due to undergoing a reversal of 

elevation depression from the weight of the prior glacial ice. At that point, water began flowing 

back into the Great Lakes System through the North Bay Outlet. The water continued its 

remorseless rise until the land bridge was no longer crossable, and eventually submerged 

entirely [2]. Eventually, it the water level tapered off at about 176m above sea level, which is 

where it is today. 
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Figure 10: Prehistoric Michigan and the Surrounding Area [2] 
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3.3 Lewis Lake Level Reconstruction 
 
 For our experiments, we use the Lewis reconstruction of prehistoric lake levels [1]. It 

should be noted that according to Lewis, there may have been three brief “reversals”, one at 

~8,593 BCE, one at ~7,783 BCE, and the last at ~6,997 BCE, during which the Land Bridge was 

temporarily submerged, only to re-emerge shortly thereafter [11]. We include these reversals 

in our model.  Nevertheless, we can infer from Lewis's results that in about 6343 BCE, the two 

land bridge “choke points” mentioned before became submerged, never to be above lake level 

again. Although certain portions of the Alpena-Amberley ridge did remain above water longer, 

it was never to be a full land bridge again after about 6343 BCE [1]. 

 

 
Figure 11: Prehistoric Great Lakes Water Levels According to C.F.M. Lewis [1] 
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3.1 Hunting Blinds 
 
 Hunting blinds of the type found on the Alpena-Amberley ridge are semi-permanent or 

permanent structures made of several large stones that form a rough circle enclosing a 

particular space. Their most obvious purpose was to keep the animals from seeing the hunters, 

so that the animals would not know to avoid the hunters and thus would wander into spear or 

atlatl range where they could be killed. However, it is curious that the hunters chose stone 

rather than wood or large mounds of dirt to build these blinds. The latter materials are not only 

also opaque and thus keep the animals from prematurely seeing the hunters just as well as the 

stones, they are lighter and thus would seem easier to use in building a hunting blind. It is quite 

possible that some of the hunters did use these materials on some occasions, but only the 

stone blinds have survived millennia of being underwater. Still, it is undeniable that some 

hunters chose to use large stones in lieu of lighter materials. A probable reason is that, 

although a temporary blind built of wood or dirt could last for a short hunt, but would be 

washed away should a flash flood hit the land bridge. Today, flash floods are a relatively 

common occurrence in certain parts of Michigan which are adjacent to the various large lakes. 

They occur when the wind blows the lake water so hard that a column of water actually leaves 

the lake and washes over the plain. In addition to this, meltwater pulses at various stages of the 

collapse of the ice sheet may have been yet another source of flash floods back in the 

prehistoric era. Since the Alpena-Amberley land bridge has never been very high above lake 

level, even when lake level was at its lowest, there is no doubt that the land bridge experienced 

many flash floods which would destroy the temporary blinds made of dirt or wood, but would 

leave the permanent ones. Permanent stone hunting blinds would thus seem to be reserved for 
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the most important and strategic locations, places where the hunters thought that the caribou 

always passed by, at least at certain times of the year. 
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CHAPTER 4: CULTURAL ALGORITHMS AND SYSTEM DESIGN 

 It is very rare to find anything manmade as old as the prehistoric hunting blind and 

caribou drive lane remnants under Lake Huron that Dr. O'Shea's team found back in 2009. The 

research community is lucky to have found these few scattered remnants, yet they are not 

numerous enough for us to directly create a straightforward model of prehistoric hunting blind 

placement from their locations alone. We must thus do the next best thing, which is to use 

machine intelligence to simulate the prehistoric hunters' human intelligence and thus their 

ability to decide where and when to place the blinds. 

 Given that humans are tribal creatures with the ability not just to individually acquire 

but to share knowledge among groups, this situation calls for a technique that reflects not just 

an individual but a tribal ability to accumulate knowledge and store it for use in future 

situations. In the 1970s, such a technique was developed by Dr. Robert Reynolds called cultural 

algorithms. In creating cultural algorithms, Dr. Reynolds drew an analogy between group 

learning, the process of Darwinian natural selection in biology, and the tendency of group 

knowledge acquired in the past to influence current decisions by individual members of groups. 

[12] 

4.1 Structure and General Algorithm 
 

 Cultural algorithms contain a population space which is influenced by a belief space. 

Population space is defined as a set of solutions to the problem which have the ability to evolve 

from generation to generation. The belief space can be defined as the collected set of 

experiential knowledge, which has the ability to be influenced by individuals within the 
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population space according to their varying degrees of success, and which has the ability to 

influence subsequent generations of individuals within the population space. 

 The following is a general statement of a generic cultural algorithm: 

 1. The population space and belief space are initialized. 

 2. Population members are evaluated through a fitness function, and the population is 

 ranked. 

 3a. The population members ranked highest are allowed to influence the belief space. 

 3b. In some cultural algorithms, the population members ranked lowest are also allowed 

 to influence the belief space by providing various forms of negative information to it 

 about their solutions. 

 4. The best solutions are allowed to reproduce and create children. Operators are 

 applied to at least some of the children which make them into mutated variants of their 

 parents. 

 5. The belief space influences the children's genomes and/or their behavior in the 

 problem space. 

 6. Steps 2 through 5 are repeated until a stop condition is reached. 

 A visualization of this process can be found in the following diagram: 
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Figure 12: Schemata of Cultural Algorithms [8] 

 

4.2 Belief Space Knowledge Types 
 
 Generally, researchers who use cultural algorithms divide knowledge into five different 

types, usually described as follows: [13]. 

Normative Knowledge 
 
 Normative knowledge is a set of variable ranges that either are initially expected to 

produce good fitness values for experimental agents or are known to have produced good 

scores in the past [14].  
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Domain Knowledge 
 
 Domain knowledge concerns the overall shape of the search space itself [14]. The 

purpose of domain knowledge is to deduce the shape of the search space. Once the shape is 

known, it often becomes much easier to find optimal values. This knowledge source is crucial 

when the task of the CA is to find extrema within a solid or hypersolid. 

Topographical Knowledge 
 
 According to [14], topographical knowledge was first devised as a knowledge source in 

[15]. Topographical knowledge is knowledge concerning the regional features of the search 

space itself.  It was used in [15] in order to exclude different parts of the search space as either 

totally infeasible or only partially feasible. Most subsequent uses of topographical knowledge 

take a similar approach, as being able to ignore whole ranges of infeasible solutions both 

reduces the opportunity for error and cuts down on search time.  

Historical (Temporal) Knowledge 
 
 Historical knowledge (also called temporal knowledge) concerns important events that 

happened during the search and the general state of the search space at a specific point in 

time. It can contain a record of good (and bad) solutions that happened in the past so that 

future agents can go toward (or avoid) those solutions. 

Situational Knowledge 
 
 Situational knowledge concerns positive and negative exemplars. Solutions that score 

high are considered positive exemplars, and cultural algorithms can take this into account and 

 
 



28 
 

look for similar solutions that might be even better. In contrast, solutions that score low are 

considered negative exemplars, and cultural algorithms can take that into account and steer 

clear of similar solutions, so as to avoid wasting time with them. 

 In our problem, spatial and temporal knowledge are valued above other forms of 

knowledge. This is because our research problem format, unlike those of previous land bridge 

computer models, contains the additional difficulty that the environment changes with every 

year as the water level either rises or falls. Furthermore, the environmental change is nowhere 

near constant from year to year. In some years the change is very little, in others it is 

significantly more, in still others it is completely drastic (such as the entire land bridge being 

flooded or almost flooded). What is more, the purpose of our algorithm is not necessarily to 

find optimal solutions per se, but rather to simulate the actual human intelligence of the 

prehistoric hunters, given human imperfection plus all the difficulties that they would have 

encountered in planning each year considering the unpredictably changing environment. A 

system constructed properly in this way will enable archaeologists on Great Lakes expeditions 

to successfully use it to discover the actual locations of hunting blinds and other artifacts, as 

the range of locations that the system provides will reflect the choices of the actual prehistoric 

hunters.  

In order to achieve this, there are several crucial assumptions that we must incorporate into 

our system: 

 The first is that the prehistoric stone circles found under Lake Huron by O'Shea's team 

are indeed hunting blinds and had a similar role in the hunt to those used by modern-day 

hunter-gatherers in their hunts today. In other words, we assume that hunters used them as 
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structures to hide behind so that the animals would not see them, and would thus not deviate 

from their route bur rather get close enough for the hunters to make a successful kill. Although 

it is nearly impossible to say for certain what any prehistoric structure truly was, we feel that 

this is a fair assumption because the structures look so similar to hunting blinds used by 

modern-day hunter-gatherers, and it is difficult to conceive what else the structures might have 

been. 

 The second assumption is that not only were the hunters (like all humans) unable to see 

into the future, they didn't even have complete knowledge of present conditions everywhere 

on the land bridge. This was especially true towards the beginning, when the hunters first 

arrived upon the land bridge. At best, they knew how well current hunts had fared, they could 

speculate about what might have happened had they chosen neighboring areas to place their 

hunting blinds instead, and they could accumulate and remember this knowledge for future 

hunts. 

4.3 High-Level Design 

Overall Simulation 
 
 For simplicity's sake, we divide the 3,450 year time period in question up into one-year 

long "runs", and we will assume that the caribou migrate across the land bridge once per year. 

We will assume also that the hunting blinds are set up once per year, in anticipation of the 

caribou migration, and that they are not moved during the year once they have been set up. As 

described in previous sections, our system has the ability to update the terrain based on 

environmental change over time. To simulate the fact that the hunters cannot exactly predict 

how the environment is going to change, for each year/run we will first have the hunters 
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choose locations for their hunting blinds at the beginning of the year (using certain weights 

provided by GA chromosomes, to be discussed later). Then we will use our system to update 

the terrain for that year, and then the caribou will migrate through. Each hunting blind will then 

be scored by an objective function containing several factors which together are a fair 

determinant of hunt success or lack thereof. Each hunting blind will then update the belief 

space with the values of these factors for its specific location (and, reflecting the assumption of 

local knowledge but non-omniscience discussed in the last subsection, the belief space will be 

updated with the values of these factors for each square within a Moore radius of the hunting 

blind as well). After this, the chromosomes for each hunting blind will undergo various 

mutation operations which will produce a new batch of chromosomes (this procedure biased, 

of course, towards the chromosomes that produced the best blinds in the generation that just 

finished). Each chromosome will encode a "weight" for each important factor in hunting blind 

placement. The value of the weight for a certain factor determines how important the hunters 

controlling that blind consider that factor compared to other factors. Actual blind placement is 

determined by looking at each square in the belief space and choosing the square with the 

"best" values for each factor based on the weights encoded in the hunting blind's chromosome. 

Once the blinds are placed, yet another year/run will begin (as described before), and this 

process will continue until a certain terminal condition is reached. As discussed in a previous 

chapter, 6343 BCE is when the land bridge becomes two peninsulas separated by a strait due to 

rising water levels and never reconnects again. This seems the most logical choice for our 

terminal condition (although the system's design of course allows the user to manually choose 

an alternate end year if desired). 
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Evaluating Hunting Blind Success and Failure 
 
 At this point, we need to consider precisely what factors make a certain hunting blind 

successful or unsuccessful. One obvious factor is how close the hunting blind is to the path of 

the prey. Obviously a hunter throwing his spear or atlatl at prey that is close by is much more 

apt to hit the prey than if he were throwing it from farther away.  

 Another factor is the difference between the altitude of the blind and the altitude of the 

caribou. If the hunting blind is higher (vertically) than the caribou, a hunter throwing at the 

caribou from that blind has the advantage that gravity is working for him. In other words, a 

projectile thrown from that spot at the caribou below will travel faster (due to gravity) than an 

equivalent projectile thrown at another caribou at the same vertical level as the blind. Thus in 

the first case, the projectile will travel faster increasing not only the likelihood of actually hitting 

a moving caribou, but also the damage done to the caribou, and thus the likelihood that the 

caribou will be hit but still get away is decreased. Similarly, a hunter trying to hit a caribou 

above him has gravity working against him. Projectiles that he throws are more likely to miss, 

and what hits he makes are more likely not to result in killing or at least halting the caribou. 

A third factor is closeness to the nearest hunting blind. This is because hunting parties crowded 

too close together tend to interfere (unwittingly) with each other's success in the hunt. For 

example, when one hunting party makes a kill and goes to collect their kill, the herd usually 

reacts either by trying to move away, or sometimes even begins to panic. If the herd does 

panic, it is okay for the first hunting party because they have already made their kill, and all that 

is left is to haul it in and dress it, and then carry it back home. Even one kill was considered a 

very successful hunt. Caribou are quite large; a good-sized buck is apt to weigh over 300 lbs. 
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Also, prehistoric humans used all the parts of their kills without waste, including the eyes and 

other organs, so just one kill of a decent-sized buck provided fur for clothing, bones for tools, 

and could feed a small band for at least a week. However, the second hunting band, which has 

yet to make a kill, now must deal with a panicked herd or at least a herd which is wary of the 

spot where their fellow caribou died. This makes it much less likely that the second hunting 

band will have a successful hunt. Of course on other days, the second group will make a kill first 

and it will be the first group which will be in the disadvantaged position. Overall, both groups 

will have less kills on average per year than if they had been spaced farther apart. Even worse, 

overcrowded hunting parties have an increased risk of accidentally killing each other while 

trying to kill caribou or other game. Obviously the farther parties are spaced apart, the less 

likelihood there is of a tragic accident. 

 Closeness to water is a factor which, although it does not directly impact the quality of 

the hunting blind location, would still impact the hunters' decision where to place the blind. 

Locations that are close to water are more likely to be flooded during the course of the year, 

and an underwater hunting blind is of course useless.  

Caribou and Hunting Blind Models and Their Behavior 
 
 Conveniently, Palazzolo has already created caribou and hunting blind models for his 3D 

Land Bridge platform which we are using, and Jin has provided the caribou with a variant of the 

A* algorithm which plots a path from start to end point while trying to maximize the amount of 

vegetation eaten. (Palazzolo has also provided an algorithm that creates vegetation for the 

map). Currently, the caribou do not automatically migrate across the environment. The user 

must manually choose a start and end point for them, i.e., there is currently no algorithm which 

 
 



33 
 

automatically chooses a starting and ending point for a migration path across the map from 

edge to edge. This fact can be worked around, however by noting that the most vegetation-rich 

areas are always adjacent to water, and that the caribou always tend to seek out the most 

vegetation-rich areas while trying to minimize distance traveled. Thus if for each run/year we 

choose points adjacent to water on either edge of the map for our caribou start and end points 

(a process which can be easily automated), Jin's A* algorithm variant will, for each of our 

runs/years, generate the caribou migration path across the map that has the best balance 

between food availability and shortness of path length. 

Final Products 
 
At this time, we need to consider what information ought the system to collect from each 

run/year of the simulation, and how should it present that information to interested scientists 

when the simulation is finished. Recalling our main motivation, we want to analyze how the 

land bridge environment, including caribou migration patterns and human hunter patterns, 

changed over time, and we want to show archaeologists where they ought to look for new 

hunting blinds (as well as other significant paleoindian artifacts that they may also be able to 

find among them). 

 For the first objective, the best course of action seems to be to produce a video, about 5 

minutes in length, displaying the changes in environment, caribou migration patterns, and 

hunting blind placement, over the entire 4,350 year period. Luckily, the 3D Land Bridge 

platform already contains a minimap which shows the general terrain plus caribou migration 

path. We can use that as a basis for producing still frames which we can later combine into a 

full video. All that is needed is to have the minimap also show hunting blind locations, and also 
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include the year along with numerical information about the environment (such as the water 

level) somewhere else in the frame. Fortunately, the Microsoft XNA framework allows us to 

create screenshots of image portions of a running graphical program (and send them to an 

external file), and there are ways to add text within said screenshots as well. Unfortunately, the 

framework does not provide us with a way to combine said screenshots/frames into a video 

that can be run outside of XNA. However, if we instruct our system to make the filename of 

each frame the simulation year for which it was taken, then it will be very easy to place all the 

frame files in order using "File Explorer" type programs (natively available in all major operating 

systems), and then drop them into "Windows Movie Maker" type software (available either 

natively or for purchase in most major operating systems). The process of making the video 

with the software from the frames should take only a few minutes. 

 To fulfill the second objective, we need to produce a single map-grid of the land bridge 

area displaying in each tile the total number of hunting blinds that ever existed in that square 

during our simulation, in other words, a hunting blind heatmap. Although it really is almost 

impossible to say what the absolute probability of finding a hunting blind in any given location 

is, a heatmap will help us to produce relative probabilities, in other words to show the locations 

where a blind is more likely to be with respect to other locations. This sort of information is best 

displayed by shading tiles different colors relative to other tiles rather than placing probability 

numbers within tiles, so the former is what we will do. Archaeologists can use the map as an 

expedition aid to help decide which areas to go looking and which areas to spend less time in or 

ignore altogether. 
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4.4 Implementation 

Pseudocode 
 
 The pseudocode for the main portion of the simulation is as follows: 
 
//Initialization Steps 
nCaribou = 99 /*No. of caribou that cross Land Bridge each generation is 99.*/ 
nHuntingBlinds = 50 /*No. of blinds (i.e., population for the GA) is 50.*/ 
 
beliefSpace.Initialize() 
/*The belief space is an influence map with a tile corresponding to each of the regular map tiles. 
Each belief space tile contains four parameters, each corresponding with one of the four factors 
described in the high-level algorithm (closeness to caribou, height above caribou, distance from 
nearest other hunting blind, and closeness to water). Discussed in further detail in later 
sections.)*/ 
 
populationSpace.Initialize(numHuntingBlinds) 
/*This function initializes each hunting blind's chromosome, setting each binary bit within to a 
random value of 0 or 1. In this cultural algorithm, each hunting blind's chromosome consists of 
16 binary bits, which are divided into 4 sets of 4 bits each. Each of these sets denotes a decimal 
integer which corresponds to one of the four weights that belong to this hunting blind and help 
to determine its actions in response to what it believes about the environment. The four 
weights, in turn, relate to the distance from a given square the closest caribou approach, the 
height of a given square above (or below) the closest caribou, the distance from a given square 
to the closest other hunting blind, and the distance from a given square to the nearest tile 
covered by water. (The weights themselves and the weight function process are more fully 
discussed in the next subsection, entitled "Weight Function.)*/ 
 
//Main Loop 
/*A logical starting point is 9793 BCE, when Land Bridge is first traversable because glacier 
covering it has receded, but user can start sim at later points as well if desired.*/ 
do  
 
HBLocations = Simulation.GetHBLocs(population.genes, beliefSpace, WeightFunction) 
/*Determines the locations for the hunting blinds for this generation. If this is the first 
generation, locations are random. If not, locations are determined by a weight function which 
takes the hunting blind genes as an argument and is applied to each tile in the belief space in 
order to determine what the hunting blind buliders think is the most desirable spot for building 
the blind. (This is discussed in further depth in the "Weight Function" subsection.)*/ 
 
Simulation.PlaceHuntingBlinds(population, HBLocations) 
/*Places the hunting blinds in the locations determined by the previous function.*/ 
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Simulation.Run() 
 
population.ComputeActualScores() 
/*Computes a score for each blind based on each of the 3 important factors that determine 
success or failure described in the high-level design: distance to caribou, height above (or below) 
caribou, and closeness to the nearest other hunting blind. Any underwater blind, however, 
automatically receives a score of negative infinity representing its uselessness despite all other 
factors. (Here, high scores are considered good, while low scores are considered bad.)*/ 
 
population.SortByActualScores() 
 
beliefSpace.Update()  
/*Updates belief space tile parameters with the hunting blind score parameters (plus closeness 
to water) for the tiles on which the hunting blinds were situated, and also for all tiles within a 
Moore radius of the blinds (representing the hunters' ability to speculate about what might have 
happened if they had chosen a slightly different location for their blind, as described in the high-
level design.*/  
 
population.genes.Mutate () 
/*Only the top four scoring hunting blinds are allowed to reproduce. All hunting blinds that 
scored below the top four become mutated versions of the top four in the next generation. 
Additionally, the top four themselves are not mutated at all. Granted, this is a very elitist 
approach, but ultimately it is one that works in this particular situation.*/ 
 
population.genes.Crossover() 
/*A random point is chosen and each chromosome is divided into two parts with the random 
point as the pivot. All of the first portions of all of the chromosomes are placed into one list, and 
all of the second portions of all of the chromosomes are placed into another list. Each partial 
chromosome from the first list is randomly combined with a partial chromosome with the 
second list. This completes the creation of the new chromosomes for the next generation. Every 
chromosome is subject to crossover except for the best-scoring one.*/ 
 
year = year + 1 
generationNum = generationNum +1 
map.Update() //Updates the water level and the rest of the environment for the next year. 
 
until(end sim)  
/*A logical end point is 6343 BCE, when Land Bridge is permanently split by relentless water rise, 
but user can end sim at earlier points as well if desired.*/ 
 
//End of Pseudocode 

Weight Function 
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 For each new generation, each hunting blind is placed within the tile containing the 

highest value of the "weight function", which is applied to each "known" tile in the belief space. 

The value of the weight function W at belief-space tile T is calculated as follows: 

W(T) = -W1B1 + W2B2 + W3B3 + W4B4 | (W1, W2, W3, W4 ≥ 0) 
Equation 3: Weight Function 

 
 In the weight function, B1 is T's value for the hunting blind's distance to the closest 

caribou approach, B2 is T's value for the hunting blind's height above (or below) the closest 

caribou approach, B3 is T's value for the distance to the closest other hunting blind, and B4 is T's 

value for the distance to the closest underwater point. Recalling our high-level design, we can 

see how the weight function is crafted so that a tile is deemed less desirable if it is far from the 

closest caribou, but more desirable if it has a high vantage point above the closest caribou, is 

far from the nearest other hunting blind, and/or is far from water. Exactly how much more or 

less desirable is determined by W1 through W4, which are the weights for each of the B's, 

respectively. Their values are determined by the hunting blind's chromosomes. It is through 

these four W-values that the chromosomes determine how important the hunting blind's 

builders consider each of the key factors, which together with their beliefs about the values of 

each key factor (represented by the B-values), ultimately determines the choice of blind 

construction location for the given generation. 

"Compute Actual Scores" Function 
 
 The actual score of a hunting blind H for the round is computed by the following 

function: 
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F(H) = -C1A1 + C2A2 + C3A3 (if H is above water), OR 
F(H) = -∞ (if H is underwater) 

Equation 4: "Compute Actual Scores" Function (Fitness Function) 
 
 In this function, A1 is the distance between H and the closest caribou approach point, A2 

is H's height above (or below) the closest caribou approach point, and A3 is H's distance from 

the nearest hunting blind. Recalling the high-level design, each of these A's represents one of 

the crucial factors which determine the success or failure of a hunting party using a particular 

blind. C1, C2, and C3 are constants which reflect how important each of the three factors are 

compared to one another1. The objective is to maximize F(H); the highest scores are considered 

the best whereas the lowest are considered the worst. Generally, the score becomes lower if 

the closest caribou was very far away from the blind, but higher if the blind has a high vantage 

point above the closest caribou and/or if it is far from the nearest other blind. Underwater 

hunting blinds of course receive the worst possible scores. The genes of the highest-scoring 

hunting blinds receive the reward of being favored in the reproduction process for creating the 

next generation, while those of the lowest-scoring hunting blinds are punished by being kept 

out of the reproduction process. 

Future Work on Weight Function 
 
 On the land bridge, building a hunting blind close to water was indeed often a bad 

choice due to the threat of a rapid water rise inundating the blind (spoiling a significant amount 

of work), and as mentioned before our current weight function reflects this. However, this need 

1 In the proof-of-concept run (to be discussed in the upcoming chapters), C1 was -100, C2 was 60, and C3 was 30. In 
the full run (also to be discussed in the upcoming chapters), C1 was -30, C2 was 50, and C3 was 8. 
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not always be the case, as locations close to water often have quite bountiful vegetation, 

especially given that Lake Huron is (and was) a freshwater lake, and this vegetation can 

certainly attract many caribou. Thus, at times when the lake level is generally receding rather 

than rising, it may be wise for hunters to place blinds close to the water to take advantage of 

likely caribou paths along the vegetation-rich shoreline. Reflecting this, in future versions we 

will provide the hunters with the ability to make an "educated guess" about whether the water 

level is rising or falling. (The mechanism for making such guess is still under design). If the 

hunters feel it is falling, then in the weight function we will allow them to make the value for 

W4 negative, thus making the factor W4B4 positive and thus making locations close to water 

generally more desirable than locations far from water (rather than the reverse, which is usual).  

In other words, that group of hunters will be taking the chance (usually a good one, but not 

always) of believing that the water level will continue to fall or stay stable, and thus believing 

that the closer a blind location is to water, the more opportunity to reap the benefits of the 

caribou that come with ample waterfront vegetation, rather than merely risking hunting blind 

inundation (usually true, but not always). The addition of this functionality should make the 

overall simulation even more accurate. 
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CHAPTER 5: EXPERIMENTAL FRAMEWORK 
 
 In April 2012, the team working on Palazzolo's Land Bridge Simulation provided 400 

component maps which together comprise an entire map of Area 1 of the Alpena-Amberley 

Land Bridge, the portion currently under the most intense archaeological study. Each of these 

component maps has 999,995 data points in it (giving a total of 399,998,000 points in all). The 

team created the component maps using a tool on the NOAA website which generates 

bathymetry maps for the region, and then interpolating in even more points.  

 Luckily, Thomas Palazzolo's land bridge program, which serves as the basis for this 

system, has the ability to combine points to make a simulation manageable on an ordinary 

mass-market computer. 

 The most prudent course of action seemed to be to first design a "proof-of-concept" 

simulation, then to do a full simulation involving the entirety of Area 1. The following portion of 

Area 1 of the land bridge (designated by the red square in the following picture) is quite an 

interesting spot, and is what we have chosen for our proof-of-concept. Our proof-of-concept 

area stretches from 378000E to 378995E, and from 4971005N to 4972000N.  
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Figure 13: Relevant Portion of Area 1 of Alpena-Amberley Land Bridge 

Even with this reduced landscape, given the constraints of computer memory and 

computation time, we have to reduce the number of points from 1000 x 1000 to 250 x 250. This 

compromises accuracy somewhat, but not to an intolerable degree. 
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CHAPTER 6: RESULTS 

In this chapter are included numerous screenshots showing various milestones of the 

algorithm's development of intelligent behavior, as well as the algorithm's response to various 

difficult situations produced by environmental change. First we will show the results of the 

proof-of concept simulation, then the full simulation. 

6.1 Proof of Concept 

Parameters 

In the proof of concept, we use a population of 50 hunting blinds and a caribou 

population of 99, and we do just one run over the full period from 9793 BCE to 6343 BCE. 

9443 BCE 

Although the land bridge itself initially becomes crossable in 9793 BCE, not all portions 

are crossable at that exact time, and many don't become crossable until later. Our proof-of-

concept area happens to be such a portion. 9443 BCE is the first time that there is a viable path 

across it, i.e., a land path from the left to the right edge of the map that is not blocked by water. 

Since this is our "zeroeth" generation, the placement of the hunting blinds is completely 

random. Note that in this and in all other snapshots of selected years, the white curve and black 

dots represent the caribou path and hunting blind locations during the given year, respectively. 

The highest-scoring hunting blind has its numerical coordinate location and its score listed, and 

is designated by an orange rectangular overlay around the black dot indicating its location. 



43 

Figure 14: 9443 BCE (Proof of Concept Run) 

9436 BCE 

As one can plainly see, the algorithm is somewhat "stupid" just 7 generations into the 

simulation. When it first starts out, it has an especially hard time dealing with the fact that the 

caribou path changes rapidly in response to the rapidly changing waterline and vegetation 
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patterns. Also it has not yet learned that clustering many hunting blinds close together is bad 

and that it ought to avoid doing this, hence the upside-down L-shaped cluster of hunting blinds 

toward the bottom center right. 

Figure 15: 9436 BCE (Proof of Concept Run) 
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9393 BCE 

50 generations into the simulation, we can see that the algorithm is still rather stupid. It 

still has not figured out that clustering hunting blinds super close together is a bad idea. Despite 

this, here we do see the first signs of intelligent behavior.  Notice how the region of the graph 

that the hunting blinds are clustering in is quite high elevationwise (shown by the fact that the 

map in this region is a light green). As mentioned in the design chapter, having an elevated 

venue above the caribou does earn points, although the blinds would earn more were they more 

spaced out and closer to the caribou. 
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Figure 16: 9393 BCE (Proof of Concept Run) 

9293 BCE 

Now we are seeing more signs of intelligence. The hunting blinds have mostly 

discovered that clustering together is bad, and are starting to discover that moving closer 
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towards the caribou is a good idea. Notice how the hunting blinds that are moving closer to the 

caribou have retained the knowledge that having a high vantage point over the caribou is a 

good idea, and are thus using the hill on the right edge if the screen to move closer rather than 

the roughly U-shaped valley. Other hunting blinds have  started venturing over to the lower left 

corner which contains the highest peak on the entire map. 
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Figure 17: 9293 BCE (Proof of Concept Run) 

9193 BCE 

Now the AI behavior is becoming truly intelligent. One group of hunting blinds is sticking 

with the prior strategy of seeking out the highest points of the left ridge, while another is trying 
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to get as close as possible to the actual caribou path. A few are trying a "hybrid strategy" of 

using locations still on the ridge although somewhat lower, but closer to the caribou path. 

Notice also how that by this point, the algorithm has completely figured out that it's a bad idea 

to cluster hunting blinds right next to one another, so it's no longer doing this at all. 

Figure 18: 9193 BCE (Proof of Concept Run) 
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8643 BCE 

Now the algorithm has to deal with another difficult challenge: rapid rise of the water 

level. This means that not only does the caribou path change by moving rapidly closer to the 

south edge, many formerly reliable locations are quickly becoming submerged and therefore 

unusable. The algorithm is responding to the situation by having the hunting blinds flock to the 

safe high ground toward the lower right edge of the map. (Indeed, this is the highest ground on 

the entire map.) 
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Figure 19: 8643 BCE (Proof of Concept Run) 

8493 BCE 

Some of the hunting blinds have now decided to take a risk despite the rising water and 

situate themselves close to the water -- and the caribou -- for a chance at a higher score. 
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However, it seems that a bunch of them all decided to do this at once and chose adjacent spots, 

which will cost them points. 

Figure 20: 8493 BCE (Proof of Concept Run) 
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7948 BCE 

The water level is still rising. Less and less land is available for hunting blind placement 

with each new generation.  Most of the hunting blinds are sticking to the high ground, with a 

few risking total inundation for the sake of outscoring the ones who are taking the "safe" 

strategy. 
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Figure 21: 7948 BCE (Proof of Concept Run) 
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7794 BCE 

The water is now rising extremely rapidly, and soon this portion of the land bridge will 

be uncrossable. This is the last year that the caribou attempt to make a crossing. With the 

exception of one straggler, the hunting blinds have all situated themselves on the highest, 

safest ground, located in the bottom-right portion of the map. 
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Figure 22: 7794 BCE (Proof of Concept Run) 

7791 BCE 

Although the Alpena-Amberley Land Bridge itself is crossable until 6343 BCE (as 

discussed in a previous chapter), not all portions are crossable for that long a time. Our proof-

 
 



57 

of-concept location is one such portion. Due to rising water levels leaving no viable path, 7791 

BCE is the third year in a row that the caribou have not even attempted to cross through our 

proof-of-concept area, and conditions here will only get worse as time continues to pass. We 

therefore end the proof-of-concept simulation here. 

Figure 23: 7791 BCE (Proof of Concept Run) 
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Heatmap for Proof-of-Concept 

As mentioned in a previous chapter, the heatmap shows the number of hunting blinds in a 

certain square relative to other squares. The larger a dot, the more hunting blinds that were found 

within that particular location over the 3,450 year period. Looking at the heatmap, we see that it 

is roughly L-shaped with a slight bulge toward where the "bend" of the caribou path was when 

the water level was low. The lower portion, and especially the lower right portion, of the "L" is 

the darkest because these portions were above water longer than anywhere else.  

Figure 24: Heatmap (Proof of Concept Run) 
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6.2 Full Experiment 

In January 2013, the author of this work was informed that there was interest in actual 

corroboration of Dr. O'Shea's findings with results generated by this model. At that point, the 

author of this work began devising a full experiment to be run over the entirety of Area 1. Once 

that experiment had been set up and was ready to be run (in early February, 2013), the author 

asked the team for the actual coordinates of Dr. O'Shea's team's hunting blind findings. Upon 

hearing the author's request, Thomas Palazzolo provided the author with (4964407.461 

Northing, 0381773.819 Easting) as the exact coordinates of the "Funnel Drive Structure", a 

structure which contains 2 to 3 hunting blinds arrayed in a strategic fashion. 

The full experiment consists of 16 simulation runs over all of Area 1 over the whole of 

the 9793 BCE to 6343 BCE period. Our objective now is to check our results against the Funnel 

Drive Structure's location. As we've already visually demonstrated the evolutionary process in 

the proof-of-concept section, for the sake of space we are going to show slides for only a few 

individual years of the first run before displaying the overall results of the experiment. 
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Figure 25: Area 1 Map with Coordinates (Map for Full Run) 

Parameters and New Rules 

Due to the fact that we were doing 16 runs for the full experiment, and because of the 

huge amount of time it takes to run one full 3,450 year simulation with one-year intervals, we 

are going to use five-year intervals for the full simulation. This means one full simulation now 
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encompasses 690 generations rather than 3,450. To further reduce memory usage and 

computation time, we are condensing all the map points into a 200 x 200 grid (40,000 points in 

total) rather than the 250 x 250 grid (62,500 points in total) that we used in the proof of 

concept. 

Also, after seeing the results of the proof-of-concept run, we decided to implement the 

additional rule that the hunting blinds cannot be directly adjacent to one another. Any two 

hunting blinds must now have at least one empty square between them. This seems a 

reasonable measure to prevent the severe clumping that we saw during some of the earlier 

years during the proof of concept run, where large numbers of blinds would form a solid 

"block" around a desirable area. Although a severe score penalty for being too close to another 

hunting blind did eventually convince them not to clump directly adjacent to one another 

anymore, the fact still is that such close clumping would never occur in real life, which is why it 

is being completely disallowed for the main experiment. Note that all other aspects of the 

regular "closeness" penalty still apply, a hunting blind that is only just a few (but more than 

one) squares away from another, although this is still allowed, still receives a hefty penalty for 

being too close to another blind, and the blinds eventually figure out that they must keep a 

reasonably healthy distance between themselves, just as they did during the proof-of-concept 

run. 

Also, we decided to implement a "forgetting" ability for the belief space. If a belief space 

square has not met the requirements for an update for a certain number of generations 

(excepting generations when the land bridge is flooded) either by having a hunting blind 

directly in it or somewhere within the proper Moore radius of a hunting blind, then that 
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square's knowledge gets completely forgotten. (In our full experiment, we set this forgetting 

threshold to 10 generations with no update.) This had the effect of preventing stragglers from 

choosing squares with obsolete knowledge, and generally it made the algorithm learn faster. 

Also, we decided to change the fourth term of the weight function, the "water fear" 

factor, to be logarithmic. This is because if a hunting blind is already very close to water, the risk 

of being swamped by rising water is much greater than if the hunting blind is quite far away. In 

other words, the net benefit of moving, say, 50 feet away from rising water when one is 

currently only 10 feet away from the water is much greater than moving 50 feet away when 

one is already miles away. In the former case, the benefit is crucial, in the latter, it is nugatory. 

The new weight function for a given tile T is thus: 

W(T) = W1B1 - W2B2 - W3B3 - Log10(W4B4) | (W1, W2, W3, W4 ≥ 0) 
Equation 5: Modified Weight Function Used in Full Experiment 

Overall, we have found that this change seems to have made the algorithm a lot smarter 

and quicker to learn.  

Finally, for the full experiment, the population number of hunting blinds is 50, and the 

number of caribou per generation is 48. We will now show a variety of year frames from Run 1 

of 16 to demonstrate our full experiment in action. 

9793 BCE 

9793 BCE is when the glacier initially recedes from the land bridge and reveals it as a 

crossable path. In each of these frames, as before, the white curve designates the caribou path, 

the black dots designate the AI hunting blinds, and an orange rectangle surrounds the highest-

scoring hunting blind. Since this is the full run with the full map, a purple rectangle now 
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designates where Dr. O'Shea found the Funnel Drive Structure. As with the proof-of-concept 

run, during the first generation, hunting blinds are simply placed in random non-water squares.  

Figure 26: 9793 BCE (Full Run) 

9743 BCE 



64 

As mentioned before, the algorithm learns much quicker this time around. After just 10 

generations (50 years), it has learned to have the hunting blinds tightly track the caribou trail. 

However, it has not yet learned to keep the hunting blinds at a healthy distance from one 

another, and hence many of the hunting blinds are still losing a lot of points from being too 

close to another.  
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Figure 27: 9743 BCE (Full Run) 

9693 BCE 

Now the hunting blinds have learned to space out adequately from one another, as well 

as to stay close to where the caribou path is most likely to be. You can see a few also seeking 

out high ground in order to gain extra points for having a vantage point above the caribou. 
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Most of the results from the individual generations from here on out look more or less similar 

to this picture.  

Figure 28: 9693 BCE (Full Run) 

9363 BCE 
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When the simulated hunting blinds choose the spot where Dr. O'Shea found the Funnel 

Drive Structure, it is almost always during the Early Stanley and Mid Stanley lowstand periods, 

which run from about 9423 to 7993 BCE. That is when the water level is the lowest, and the 

caribou path responds by running very close to where the Funnel Drive Structure was found. 

The actual caribou path seldom actually runs through the spot, but there is a Y-shaped hill very 

near it, and the hunting blinds often choose this area in order to gain a vantage point above the 

caribou. Also, the hunting blinds are trying to space themselves out adequately to gain points 

for doing that, so as a consequence, a hunting blind will often choose the exact spot where Dr. 

O'Shea actually found one during the Early and Mid Stanley lowstand periods. Already we can 

see that four of them have chosen the hill just a few generations into the Early and Mid Stanley 

periods. 
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Figure 29: 9363 BCE (Full Run) 

7393 BCE 

We are now thoroughly out of the Early and Mid Stanley phases and well into Mid-Late 

Stanley. The frame for this year is typical of how the algorithm acts during Mid-Late Stanley, 

when lake levels are quite high. The caribou path is now significantly far to the southwest of the 
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spot where Dr. O'Shea found the Funnel Drive Structure, so the AI hunting blinds now no longer 

have any incentive to go near that spot again (they would lose a huge number of points if they 

actually did so at this time). 

Figure 30: 7393 BCE (Full Run) 
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6353 BCE 

We are now reaching the "final hours" of the Late Stanley phase, and therefore of the 

land bridge, since the flooding at the end of the Late Stanley period, unlike earlier instances of 

flooding, will be permanent. A good deal of the land area has been submerged already, and the 

land bridge as a whole is destined to enter the "island phase" in about 10 years (two 

generations). Once this happens, caribou will no longer be able to use the Alpena-Amberley 

Land Bridge as a crossing point, and it will thus cease to be an attractive caribou hunting 

location. Eventually, even the "island" left in the center will disappear beneath the rising lake. 
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Figure 31: 6353 BCE 

Learning Curve 

To demonstrate our CA's learning process, we now provide a learning curve for Run 1/8. 
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Figure 32: Learning Curve for Our CA 

Figure 33: Learning Curve (10-Generation Moving Avg.) 

The learning curve seen here is unlike most other CA learning curves, however there are 

important reasons for that, the most important being that our objectives are not static. Caribou 

paths, and most importantly water levels, are subject to sudden and unpredictable change. 

What had been an excellent hunting spot for a few or even many generations may not be so 

good, or may be completely unavailable, the next generation. In addition, the four major 

catastrophic water rises which befall the land bridge are major hampers on learning because 
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they create significant periods in which the caribou do not even attempt to cross the land 

bridge, creating a major disruption for the hunters. Nevertheless, we can see that the algorithm 

is indeed learning. Notice how the 10-generation moving average reaches its overall peak 

during Mid Stanley, even though the water level is lower (and hence more hunting spots are 

available) during Early Stanley. Notice how even the Late Stanley peak for the 10-generation 

moving average is higher than for the Early Stanley period, even though the water level is 

significantly higher in Late Stanley than Early Stanley. It is only during Mid-Late Stanley, when 

the water level is extremely high and there are many fewer good hunting spots available than in 

the other periods, that the peak fails to exceed that of the Early Stanley period. 

Final Results 

To fully demonstrate the final results, we have created another program which outputs 

different kinds of heatmaps, including one that shows the average number of hunting blinds in 

a square over the 16 simulation runs vs. the 690 generations (3,450 years) that the land bridge 

is crossable. The program also places a square cyan overlay around the location where Dr. 

O'Shea found the Funnel Drive Structure (4964407.461N, 0381773.819E are the exact 

coordinates, which are rounded very slightly to 4964400N, 0381800E in our model due to the 

way the grid system works in ours and Palazzolo's programs and computer memory 

constraints). This heatmap is shown below. 
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Figure 34: Full Sim Heatmap: Avg Hits for Each Square Over 16 Runs vs. 690 Gens (3,450 yrs) 

Color 16-run avg # of generations that this square contained a hunting blind as a percent of 
690 generations = 3,450 years (i.e., the simulation period). 

Red 5%-10% 
Orange 3%-5% 
Yellow 2%-3% 

Table 1: Map Key For Full Sim Heatmap 
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For the sake of convenience, we will also show close-ups of each of the four map 

quadrants. 

Figure 35: Heatmap Quadrant 1 
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Figure 36: Heatmap Quadrant 2 
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Figure 37: Heatmap Quadrant 3 
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Figure 38: Heatmap Quadrant 4 

As one can see from the heatmap, the cyan rectangle, denoting the location where Dr. 

O'Shea's expedition found the Funnel Drive Structure, is overtop a square that is colored 

orange, meaning that a hunting blind was in that square an average of 3-5% of the time (actual 

percentage: 3.804%, or 26.25 hits on average per run). Although this seems like a tiny 
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percentage, it really is much more significant than it appears at first glance, as the vast majority 

of squares did not make it past the 2% threshold, the lowest threshold for receiving a color at 

all on the map. Looking at the squares that did receive colors, it is clear that they form a 

somewhat jagged "hockey stick" pattern. This makes sense, since the most crucial factor for 

gaining a high score in the cultural algorithm was being stationed close to the caribou. 

Generally, the caribou took an easy, straight diagonal path across Area 1, but often had to 

modify their path to avoid a low-lying valley in the southeast portion of Area 1 which would 

often fill up with water, blocking any path straight through, hence the caribou path is mostly a 

hockey stick itself. As the hunting blinds are closely tracking the caribou, they generally form 

this same shape on average. Where the hunting blind "hockey stick" is jagged, it is usually 

because of the influence of the other factors included in the cultural algorithm design: hunting 

blinds often choose hills and open space away from other hunting blinds even if they aren't 

immediately adjacent to the direct path of the caribou, as long as they are still somewhat close, 

to take advantage of the point rewards provided for having a vantage point above the caribou 

and not being too close to another hunting blind. Therefore, especially where there are hills, 

one can see deviations from a strict hockey stick shape. 

Model Validation and Statistical Analysis 

Unfortunately, given that the Alpena-Amberley Land Bridge research project 

spearheaded by Dr. O'Shea is still in a very early phase, and given that there are no other 

validated models of this kind to compare this one against, there is very little actual validation of 

the model that can be done, other than to confirm that its behavior is consistent with its high 

level design (a task that the previous portion of this chapter has basically accomplished). 
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Although a full and formal statistical validation of this model's effectiveness in predicting 

locations of actual hunting blinds would be ideal, the fact that very few hunting blinds have 

been actually found to date unfortunately makes it impossible at this early stage to perform 

such a validation.  We are, however, determined to get a small start. Given that we have the 

coordinates of the Funnel Drive Structure (which contains 2 to 3 hunting blinds) from Thomas 

Palazzolo, we can design a statistical test where our model is matched against another in the 

task of predicting the existence of a hunting blind in the Funnel Drive Structure's location. If a 

formal statistical test confirms that our model is more likely to predict a hunting blind in the 

Funnel Drive Structure's actual location, it will be an encouraging result despite the fact that it 

falls short of a truly full validation. Once again, no other such model exists at this point, 

however we can easily create one that simply places hunting blinds in random land squares 

every generation. 

Formal statements of the models and statistical hypotheses are as follows: 

M0: "Each generation, hunting blinds are placed in random land locations." 

M1: "Each generation, hunting blinds are placed according to the cultural algorithm 
described in this paper". 

H0: "M1 predicts the existence of a hunting blind in the location that Dr. O'Shea actually 
found the Funnel Drive Structure blinds no more often than M0". 

H1: "M1 predicts the existence of a hunting blind in the location that Dr. O'Shea actually 
found the Funnel Drive Structure blinds more often than M0". 

Heatmap for M0 ("Random" Model) 
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We now instruct our system to predict hunting blinds in random land locations and 

produce 16 runs using that setup in order to create our dataset for M0 (our "random" model). 

We then provide a heatmap for M0 similar to the one we provided for M1 in Figure 34. 

Figure 39: Heatmap for "Random" Model 

The small cyan square outline marks where Dr. O'Shea found the Funnel Drive Structure. 
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The map key for M0's heatmap is as follows: 

Color 8-run avg # of generations that this square contained a hunting blind as a percent of 
690 generations = 3,450 years (the period that the land bridge was crossable). 

Blue Less than 2%, but greater than 0% 
Table 2: Map Key for Model M0's Heatmap 

For M0's heatmap, we had to provide a new color, blue, since none of the squares met 

even the lowest threshold for a color (2%) according to the key for our heatmap for M1. As one 

can plainly see, almost every square has some hits in it, albeit an extremely low percentage of 

hits. This is exactly what we would expect from a model which simply predicts hits randomly. 

Testing Our Statistical Hypotheses 

To test our alternative hypothesis (H1) against our null hypothesis (H0), we will use the 

Mann-Whitney rank-sum test. This test is very powerful because it can handle low sample sizes 

and makes no assumptions about the shape of the sample distribution. Essentially, the Mann-

Whitney test gives each experimental unit in each of the two categories a rank based on its 

value and uses the sum of the ranks to determine whether one category's values are 

statistically greater than the other's. In our particular case, the two categories are the two 

models, and an experimental unit is defined as the number of generations that a hunting blind 

was predicted during a given run by a given model within the location that Dr. O'Shea actually 

found the Funnel Drive Structure. Our test will be a one-tailed test, given that all we are 

interested in knowing is whether M1 is better at predicting the existence of the Funnel Drive 

Structure than M0. Lastly, we wish to confirm this at an α-level of 0.05. In other words, we want 

to be 95% confident that M1 predicts the existence of a hunting blind in the spot where Dr. 

O'Shea actually found the Funnel Drive Structure more often than M0. 
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We proceed by first listing out the categories and values of the experimental units, and 

then determining the ranks of these values. In the Mann-Whitney ranking procedure, higher 

values get higher-numbered ranks, whereas lower values get lower-numbered ranks. In the 

case of a tie, all tied units receive a rank which is the average of the ranks that they would 

otherwise have received. 

Run # M0 unit value M1 unit value M0 unit value rank M1 unit value rank 
1 1 0 12.5 4.5 
2 0 0 4.5 4.5 
3 2 1 19 12.5 
4 0 2 4.5 19 
5 2 52 19 30 
6 1 101 12.5 32 
7 3 37 22.5 29 
8 0 17 4.5 26 
9 1 26 12.5 27 
10 2 0 19 4.5 
11 1 0 12.5 4.5 
12 2 1 19 12.5 
13 3 73 22.5 31 
14 1 4 12.5 24 
15 1 6 12.5 25 
16 0 29 4.5 28 
Sum 20 349 214 314 

Table 3: Mann-Whitney Test Values and Ranks 

We then find the U-value, which is computed through the formula 

𝑈 = 𝑛0𝑛1 +  𝑛1 �
𝑛1 +  1

2
� −  �𝑅𝑛1 

Equation 6: Mann-Whitney Formula for Calculating U-Value 

In the above formula, 𝑛0 and  𝑛1 are the number of experimental units in the M0 and 

M1 categories, respectively, and  ∑𝑅𝑛1 is the sum total of the ranks of all the units in the M1

category. 
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Plugging the proper values into the formula, we have 

𝑈 = 16 ∙ 16 +  16 �
16 + 1

2
� −  314 = 78 

Equation 7: Mann-Whitney U-Value Calculation 

Given that ours is a one-tailed test and we wish to test our hypotheses at an α-value of 

0.05, the critical U value is 83 in our particular case [16]. In order to reject H0 and accept H1, 

our U value needs to be less than the critical U value. Since 78 < 83, we are indeed able to reject 

H0 and conclude that the model described in this paper predicts the location of a hunting blind 

in the location where Dr. O'Shea actually found the Funnel Drive Structure blinds significantly 

more often than a model which predicts hunting blinds in random squares for each generation. 
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CHAPTER 7: CONCLUSION 

 As far as we are aware, our cultural algorithm system is the first in the world to provide 

a solution to a problem where the objective is non-static and changes unpredictably ("How do 

hunters hunt caribou when their paths change unpredictably from year to year due to changing 

environmental conditions, and when the feasible solution space changes unpredictably from 

year to year due to changing water levels?") We have successfully produced a platform to 

simulate such unpredictable environmental change, and our algorithm has produced results 

that are reasonable and in line with what we would expect from common sense.  

 It should be noted once again that our core method is by no means limited to just 

prehistoric hunting blinds. Given a set of rules about where any type of artifact can generally be 

found with respect to various conditions and features within its environment, our cultural 

algorithm system can incorporate those rules, our time engine can simulate the changing 

environment during the relevant period, and heatmaps of object locations over the time period 

according to the simulation can be produced, just as was the case in the hunting blind 

experiment featured in this paper. As also mentioned before, even these existing results of this 

experiment regarding hunting blind locations may be useful in finding other kinds of artifacts 

(e.g., inukshuks and drive lanes), that would logically seem to be located near hunting blinds. 

 Once our colleagues are finished producing a truly full set of Land Bridge maps, the next 

step in our research will be to run our system over the entire Alpena-Amberley Land Bridge in 

order to produce a probability map encompassing the entire land bridge that archaeologists can 

use to decide which areas they should spend their time in searching for hunting blinds and 

other related artifacts, and which to ignore. 
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APPENDIX: 40 MOST OFTEN PREDICTED HUNTING BLIND SITES 
 
 Below is a table followed by a map of the 40 sites that were predicted most often on 

average by our model over the 16 simulation runs of the full experiment. (Note that X and Y 

map coordinates are from 0 to 199.) 

16-run avg # of 
generations that this 
square contained a 
hunting blind 

16-run avg # of generations that this 
square contained a hunting blind as a 
percent of 690 generations = 3,450 
years (i.e., the simulation period). 

X Y Easting Northing 

36.25 0.052536 11 12 373100 4972800 
36.25 0.052536 35 36 375500 4970400 

32.8125 0.047554 25 27 374500 4971300 
32.4375 0.047011 32 41 375200 4969900 

31.5 0.045652 37 46 375700 4969400 
31.4375 0.045562 23 31 374300 4970900 

31.375 0.045471 29 33 374900 4970700 
31.0625 0.045018 30 41 375000 4969900 

30.875 0.044746 41 43 376100 4969700 
29.6875 0.043025 29 29 374900 4971100 
29.5625 0.042844 10 20 373000 4972000 
29.5625 0.042844 49 49 376900 4969100 

29.375 0.042572 17 28 373700 4971200 
29.0625 0.04212 16 18 373600 4972200 

28.875 0.041848 42 24 376200 4971600 
27.9375 0.040489 110 105 383000 4963500 
27.5625 0.039946 28 29 374800 4971100 
27.4375 0.039764 8 26 372800 4971400 
26.9375 0.03904 55 50 377500 4969000 

25.375 0.036775 18 37 373800 4970300 
24.875 0.036051 34 55 375400 4968500 
24.875 0.036051 76 84 379600 4965600 

24.6875 0.035779 94 96 381400 4964400 
24.625 0.035688 15 25 373500 4971500 

23.8125 0.034511 67 65 378700 4967500 
23.625 0.034239 89 100 380900 4964000 

23.5 0.034058 38 45 375800 4969500 
23.4375 0.033967 86 84 380600 4965600 
23.3125 0.033786 19 22 373900 4971800 

23.125 0.033514 92 93 381200 4964700 
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22.875 0.033152 28 28 374800 4971200 
22.875 0.033152 104 99 382400 4964100 
22.375 0.032428 31 33 375100 4970700 

22.1875 0.032156 42 52 376200 4968800 
22.0625 0.031975 90 98 381000 4964200 
21.9375 0.031793 97 95 381700 4964500 

21.875 0.031703 67 67 378700 4967300 
21.8125 0.031612 47 56 376700 4968400 
21.8125 0.031612 94 102 381400 4963800 
21.8125 0.031612 98 96 381800 4964400 

Table 4: Most Highly Predicted Hunting Blind Sites 
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Figure 40: 40 Highest Scoring Locations Map 

 

Color 
16-run avg # of generations that square a hunting blind as a % of 690 generations = 
3450 years (i.e., the simulation period). 

Brown 10% or over 
Red 5%-10% 
Orange 3%-5% 
Yellow 2%-3% 

Table 5: Key for 40 Highest Scoring Locations Map 
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 On the map, the 40 best locations have black square outlines, except for the location in 

which the Funnel Drive Structure was actually found by Dr. O'Shea's team. This made the list at 

40th out of 40, however its outline is light blue (for easy identification). For convenience, we 

also provide a close-up of the map portion containing the 20 best-scoring locations. 

Figure 41: 40 Highest Scoring Locations Map Closeup 
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ABSTRACT 
 

ANALYZING ENVIRONMENTAL CHANGE AND PREHISTORIC HUNTER 
BEHAVIOR THROUGH A 3D TIME-LAPSED MODEL WITH LEVEL AUTO-

GENERATION AND CULTURAL ALGORITHMS 
 

by 
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Advisor: Dr. Robert Reynolds 

Major: Computer Science 

Degree: Master of Science 

 This paper describes a system containing two portions whose purpose it is to help 

further the Alpena-Amberley Land Bridge research project and similar archaeological research. 

The first portion is a "time engine" which one can utilize to navigate through time in order to 

see how environmental conditions evolved as time passed, or to run experiments during a 

desired time period. The second portion is a hunting blind cultural algorithm, which is built on 

top of the time engine as well as Palazzolo's program. In this portion, the AI hunting blinds react 

to the goals that they are trying to achieve, and the goals themselves change as the 

environment changes over time. When the cultural algorithm is finished, the system also 

produces a frequency heatmap showing how often the system predicted a hunting blind within 

each location throughout the entire time period. Archaeologists can use this to determine 

which places in the area would be most worthy of sending an expedition. 
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