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The Central Dogma of Biology

The human genome (DNA) consists of 3 billion building blocks of A, C, G or T (1). Each person 
inherits two genome copies from their parents and uses these as a blueprint for every gene 
and protein your cells might require to functi on (2, 3). Variati ons in the genome between 
individuals may aff ect this blueprint and thus aff ect how our cells functi on (4, 5). Some of 
these variati ons contribute to the developments of diseases, and are subject of scienti fi c 
research to help us understand, prevent and treat these diseases. (6, 7). To understand how 
a genome variant contributes to a disease, we may investi gate how our cells use their DNA, 
something that is described by the central dogma of biology, and illustrated below (8). ###01### 

 
Figure 1. the central dogma of biology. From left  to right; DNA is copied (replicati on) to provide copies to new cells; 
genes in the DNA are transcribed (transcripti on) into RNA when the cell calls upon the functi on of this gene; RNA is 
translated (translati on) into protein, which is then available to perform whichever task in the cell that was needed.

When creati ng a new cell, an existi ng cell produces a copy of its genome by DNA replicati on 
(9). The cell then divides in two, and both cells conti nue with their own genome copies 
(10). Later, when one of these cells needs to perform a specifi c functi on, it can acti vate 
the genes needed for that functi on and construct the proteins required (2, 3). To do this, 
the cell recognizes and acti vates the part of the genome containing the required gene 
(11). It does this by removing chemical methyl molecules around that part of the genome, 
causing the DNA, which is normally wrapped in itself, to unravel and present the gene for 
processing (12, 13). This process is called DNA methylati on and can be studied by measuring 
the presence of these methyl-groups across the genome (13). Aft er the gene is accessible 
to further processing, a molecule called RNA polymerase copies the gene from the DNA 
to an RNA molecule, a process known as transcripti on or gene expression (14, 15). This 
process can be repeated when multi ple copies of the gene are required. When the gene is 
copied, the DNA folds back into itself (13). This process of methylati on and transcripti on can 
be repeated numerous ti mes, and multi ple genes can be transcribed at the same moment 
(14). Transcripti on can be studied by extracti ng and counti ng the RNA copies of each gene 
from a cell or group of cells (16). Although the transcripti on and methylati on processes are 
related, they can be studied separately and each add insights to the molecular workings 
of diseases (17, 18). Next, the RNA molecule is transported from the nucleus of the cell to 
the ribosomes where it is translated into a functi onal protein (19). This process is called 
translati on and is surrounded by a number of chemical changes to the RNA or protein 
molecule, called post-transcripti onal or post-translati onal modifi cati ons (20, 21). These 
modifi cati ons allow for producti on of multi ple forms of the protein from the same blueprint 
(22). Just like transcripti on, translati on can be studied by extracti ng all proteins in a cell or 
group of cells and measuring their abundance (23, 24). 
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Variants in the DNA are able to influence how a cell functions by interfering with any of the 
processes described above (25). The most straightforward example is when a DNA variant is 
located within the gene blueprint. When the gene with this variant is transcribed and translated, 
the end-product protein is slightly different than without the variant (26). These variants are 
called coding variations, as they directly impact the code of a protein. Because the code of the 
protein directly influences its function, these variants sometimes have large influence on the 
proteins function, and many disease-causing DNA variants were coding variants (27). Other 
variants on the DNA can interfere with the regulatory processes in the central dogma, for 
example by changing the binding site of the RNA polymerase in the genome. Such a variant 
does not change the code of the protein, but can alter the amount or folded of the protein 
that is produced (5, 28, 29). If the variant influences post-transcriptional or post-translation 
modifications it can also result in alternate or incorrectly folded protein (30). Finally, this 
regulatory system itself is regulated by proteins in complex networks of protein-protein 
interaction, both within a single cell and between cells (31, 32). These networks monitor the 
cell’s state and environment, and will signal to the cell which proteins need to be produced 
(33). This means that DNA variants in one gene may affect the production and function of 
other genes. These networks of interaction and activity are considered “dynamic” (as opposed 
to the more “static” genomic DNA) and are studied in the fields of genomics (methylomics, 
transcriptomics, proteomics and others) (3, 5, 29, 34). Finally, these networks are influenced 
by external factors, for example in age, gender, environment and lifestyle, but also by diseases. 
Thus, genetic, methylomic, transcriptomic or proteomic changes can contribute to or cause 
disease, but a disease itself also influences epigenetic, transcriptomic and proteomic changes.

Genomics and technology

In genomics, research developments are often driven by technological developments (35). 
Generally, technological improvements allow for more accurate or more simultaneous 
measurements, which are used to address research questions that couldn’t be studied 
before (36). Examples are equipment, such as the microscope or the computer, but also 
knowledge-based developments such as biostatistics or bioinformatics, permitting the 
implementation of new methods (37). 

The development that much increased the resolution with which we are able to look at the 
DNA sequence in the field of genetics was the ability to “sequence” DNA; determining the 
order or sequence of nucleotides in a DNA fragment. The first sequencing methods were 
developed around 1976; Sanger sequencing and Maxam-Gilbert sequencing (35, 38). Both 
methods relied on fragmentation of DNA, either by chemically cleaving fragment at specific 
bases (Maxam-Gilbert) or by randomly stopping DNA-replication at specific bases (Sanger). 
In both methods, random-length fragments are produced with a known last nucleotide. By 
size-separating these fragments using gel electrophoresis, they align according to size, and 
thus sequence, of the original fragment. This is shown for Sanger sequencing in figure 2 
(39). The method progressed and around 1987, several labs were able to produce a ~1000 
nucleotide sequence within a day. By sequencing multiple random DNA fragments of the 
same sample, and overlapping their results, larger DNA sequences could be constructed, 
this approach was labelled shotgun-sequencing (39). These developments sparked the 
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Human Genome Project, in 1990, in which large DNA fragments of the human genome 
were isolated and cloned into bacterial arti fi cial chromosomes, which could be cultured 
to produce large amounts of purifi ed DNA copies (1). These were then sequenced and 
ulti mately combined to produce the fi rst complete genome sequence in 2004 (1). During 
this project, nearly every step of the procedure was improved; using diff erent labelled 
nucleoti de terminators to allow single-tube reacti ons instead of four tubes per fragment; 
opti mizing DNA amplifi cati on methods to directly produce suffi  cient copies of input DNA 
fragments without need to bacterial cloning and cultures; bead-based purifi cati on methods 
to clean the input DNA; capillary electrophoresis to forego the need for cast gels; as well 
as other steps in automati on, quality control, etc (39). By 2001, several sequencing centers 
were able to sequence up to 10 million nucleoti des per day; four orders of magnitude more 
than just over a decade ago.

###02### 

  

Figure 2. fi gure adopted from publicati on “DNA sequencing at 40: past, present and future” by Jay Shendure 
et al (Nature, 19-Oct 2017; PMID 29019985). Schemati c representati ons of fi rst, second and third generati on 
sequencing. One main method is shown for each generati on; Sanger Sequencing, Sequencing by Synthesis and 
NanoPore Sequencing. 
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In parallel to the developments above, several groups investigated an alternative to the 
electrophoretic sequencing, which was considered a bottleneck in increasing the throughput 
of sequencing data further. This alternative was called massively parallel sequencing, which 
would quickly be known as next generation or second generation sequencing (39). In its most 
common application, adaptors are ligated to a large amount of random DNA fragments and 
these fragments are subsequently spread over a 2D surface spotted with fixed primers, to 
which the adaptors bind. This causes individual DNA fragments to be attached to a surface, 
allowing for millions of parallel sequencing reactions. Each DNA fragment is amplified 
through so-called bridge amplification, creating thousands of DNA copies, all constantly 
bound to surface, resulting in a “cluster” of identical copies of the original DNA fragment 
(39). Next, through so-called sequencing by synthesis (SBS), a single fluorescently labelled 
nucleotide is incorporated in each cluster. The fluorescent signal of several thousands of 
simultaneously incorporated nucleotides can be captured by high-density optical cameras. 
All reagents are then washed away, and the next nucleotide is incorporated. The camera’s 
record the sequence of fluorescent signal in each cluster after each cycle of incorporation. 
Depending on the number of cycles, longer fragments can be sequenced, currently up to 
~600nt. These next-generation sequencing devices can sequence millions of DNA fragments 
in a single experiment, causing the cost of sequencing per nucleotide to drop by another 
four orders of magnitude between 2007 and 2012 (39). By 2012, most sequencers were 
from the Illumina company, but other alternatives still exist, usually with slight variations to 
the described SBS chemistry. These second-generation sequencer can sequence a complete 
human genome in less than a day for fewer than one millionth the cost of the original human 
genome sequence (38).

Currently, the third generation of sequencing is inbound. The next step main development is 
live single molecule sequencing, foregoing the need to stop and detect incorporated bases. 
This development allows for faster sequencing, and of much larger DNA fragments (39). Two 
main methods currently exist; PacBio sequencing, which uses individual spotted polymerases 
that incorporate fluorescent nucleotides, the emitted signal at each incorporation can be 
detected in real-time; and NanoPore sequencing, which runs a single DNA fragment through 
an electrified pore, detecting the change in current when each nucleotide passes (39). 
Through these methods, individual DNA sequence of up to 100,000 nucleotides could be 
determined (39). However, currently limitations are a lower amount of parallel sequencing 
reactions compared to second generation sequencers, and a much higher error rate (1-10%, 
vs < 0.1% in second-generation sequencing) (40). Expected is that when these limitations 
are relieved, these third-generation machines will become more common. Already now, for 
specific applications they have become the devices of choice, for example to sequence DNA 
fragments of high complexity, or for single-RNA molecule sequencing (39).

Since completion of the first whole genome sequence hundreds of thousands of genomes 
have been sequenced (26). Each genome deviates on approximately 20 million nucleotides 
from the reference sequence (0.6% of the 3.3 billion nucleotides in the reference) (41). 
Across all collected genomes a total of 324 million DNA variants have been identified so far 
(41). About 15 million of these variants are common (present in 1% or more) in the human 
population (41). 
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Genomic studies

Genomic studies are used to research one or more of the genomic layers (geneti cs, 
methylomics, transcriptomics, proteomics). These studies can have diff erent designs 
depending on the research questi ons that must be answered. Also, a disti ncti on is usually 
made between geneti c studies and studies of dynamic genomics data (methylati on, 
expression and protein abundances). The main diff erence being that geneti c studies can be 
done on DNA derived from any ti ssue and at any point in ti me, as DNA almost doesn’t change 
with age or across ti ssues (2, 3, 42). In contrast, gene expression or protein abundance 
changes conti nuously and must be studied in a relevant ti ssue at a relevant ti me point in 
relati on to the disease (17). Below we discuss three commonly used study designs; family-
based, case-control and populati on studies.

Family-Based Studies
In such studies, families where multi ple relati ves suff er from a certain disease are 
investi gated, as shown below in fi gure 3. This design is specifi cally used in geneti c studies. 
Usually all the genes (whole exome sequencing; WES) or the complete genome (whole 
genome sequencing; WGS) is sequenced in multi ple family members, and all identi fi ed DNA 
variants per individual are annotated to the reference genome (43). DNA variants are studied 
whether they are present in all aff ected relati ves and absent in all unaff ected relati ves of the 
family (43). In additi on, for each variant we annotate their frequency in large datasets of 
healthy controls and the predicted impact on the functi on of the protein (27). For example, 
if a variant is never observed in healthy individuals and it is located in a gene where other 
geneti c variants have been shown to cause a similar disease, it might be more likely that this 
new variant causes the disease in the studied family (4, 27, 44, 45). Family studies perform 
well when the disease is clearly inherited across multi ple generati ons and multi ple family 
members have DNA available for sequencing. 

Case-Control Studies
In a case-control design for geneti c studies, DNA is extracted and genotyped for a set of 
unrelated cases and controls. Genotyping is usually done either for a candidate gene or 
region (by analyzing a single SNP or several SNPs in a gene-wide fashion) or genome-wide by 
applying SNP arrays or sequencing (WES or WGS). Every DNA variant is identi fi ed, annotated 
to the reference genome and compared between both groups. Variants occurring more 
frequently in the case group are stati sti cally “associated” to the disease, suggesti ng that 
carrying one of these variants increases that person’s risk of acquiring the disease (46, 47). 
The diff erence between the groups indicati ng by how much this risk increases. In contrast 
to family studies, these variants usually also occur in healthy individuals, and only a porti on 
of the cases in the study will carry that specifi c variant. In general, DNA variants with large 
deleterious eff ects are identi fi ed in families (as every carrier acquires a disease), whereas 
variants with smaller eff ects are identi fi ed through case-control studies. When performed 
in a genome-wide fashion, with either SNP arrays assessing >300k (tagging) SNPs or with 
WES or WGS, they are also referred to as genome-wide associati on studies (GWAS) (48). 
For dynamic genomic studies, the case-control design is the most common study design. In 
such studies, a ti ssue relevant to the disease is collected from a set of cases and controls 
and DNA methylati on, RNA expression or protein abundance is measured (34, 49). These 
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studies must be designed such that the only diff erence between the cases and controls 
is the disease of interest, as every other factor might also infl uence the dynamic genomic 
data (50). When this is correctly done, every methylated site, expressed gene or protein 
can be measured and compared between the case and control groups. When a site, gene 
or protein is signifi cantly diff erent between both groups this indicates an associati on to the 
disease process, similar to the DNA GWAS studies (51, 52). However in dynamic genomic 
data studies this does not necessarily indicate a causal associati on, as the disease itself may 
also infl uence these measurements. 

###03###

Figure 3. commonly used study designs in genomic research. Top-left ; a family-based study design, the family 
tree contains four generati ons. Aff ected family members are shown in black, unaff ected members by the white 
shapes. The clear inheritance across multi ple members in multi ple generati on suggest a causal geneti c variant. 
Top-right; a case-control study design. A number of cases (in black) and controls (in white). All parti cipants are 
tested, for example for a DNA variant, and all tested positi ve are indicated by the yellow shape. The fracti on of 
positi ve parti cipants is compared between groups. Bott om; a populati on study design. A populati on of individuals 
is portrayed over ti me from left  to right. People enter and exit the populati on. At any given ti me, we can test 
the populati on parti cipants and compare cases with controls as a case-control study (oft en called cross-secti onal 
design). We can also test parti cipants at the start and follow them over ti me, or test them multi ple ti mes over a ti me 
period (prospecti ve design). Prospecti ve, repeated testi ng is the only way to disentangle causal and consequenti al 
changes in dynamic genomic studies. 
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Populati on-based studies
Populati on-based studies are similar to case-control studies, but with a diff erent sampling 
strategy and an added ti me-component. In general, a populati on study follows a large 
number of randomly selected individuals over ti me (prospecti ve) as some develop a disease 
and others don’t (53). This allows for repeated measurements before and aft er the onset 
of disease, supporti ng investi gati on of changes in the ti me-frame of the disease. The study 
populati on can vary, some are random representati ons of the healthy populati on, but it 
can also be a populati on of pati ents (54). Adding the ti me-component is important for the 
cause-consequence questi on in dynamic genomic studies, although the required ti ssue 
specifi city can challenge repeated sampling of healthy study parti cipants.

Genomic studies are used to generate insight into diseases. For example, geneti c studies 
identi fy genes in which dysfuncti on causes or contributes to a disease (46, 47). Further 
investi gati on of these genes, their biological functi on and how that dysfuncti on exactly 
leads to disease helps understand why certain people get this disease and others do not. In 
additi on, furthering our understanding of the biology behind disease may help in identi fying 
methods to counter this dysfuncti on and developing treatments (55, 56). Dynamic genomic 
studies contribute much to this aspect, as they provide insight into the molecular and 
cellular state of the ti ssue in which the disease manifests (45, 57). In this thesis, two aspects 
of genomic studies are investi gated; 1) general methodological aspects of such studies, 
which can be applied to almost any disease and 2) applying these specifi c study designs and 
data types to investi gate Dementi a.

Dementi a

Dementi a is the collecti ve term for a collecti on of neurodegenerati ve diseases (58). Each 
disease is marked by progressive decline of one or more cogniti ve domains (e.g., memory, 
language). Globally 50 million people suff er from dementi a, about 70% being Alzheimer’s 
Disease (AD) (58, 59). Other common forms are Frontotemporal Dementi a (FTD), Dementi a 
with Lewy Bodies (DLB) and Vascular Dementi a (VD) (60, 61). The forms are broadly 
disti nguished by the main aff ected cogniti ve domain, for example memory in AD and 
language or behavior in FTD, oft en correlated to the region of the brain that is degenerati ng 
(62). The causes of dementi a are oft en not known, although geneti c factors play a strong 
causal role in most forms (56). In this thesis, we focus on AD and FTD, specifi cally the 
Semanti c Dementi a form (SD) of FTD.
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Figure 4. general characteristi cs of dementi a. Top; world overview of the burden of dementi a by country. Bott om-
left ; schemati c view of most common dementi a subtypes, further detailed for FTD subtypes based on pathology 
(Tau, TDP or FUS) and TDP-pathology subtypes (A, B or C). Semanti c Dementi a most commonly manifests as FTD-
TDP-Type C. Bott om-right; schemati c view of pathological progression in AD, shown for both amyloid pathology 
and for tau pathology. In short, amyloid pathology start corti cal and spreads to the rest of the brain. Tau pathology 
starts in the entorhinal cortex and spreads to the hippocampus and corti cal areas.

Pathological presentati on
Dementi a usually starts in a specifi c region in the brain and spreads to adjacent regions 
as the disease progresses, as illustrated in fi gure 4 for AD (63, 64). Aff ected brain regions 
typically undergo loss of neurons, resulti ng in so-called neurodegenerati on. Additi onal 
features are pathological protein aggregati ons in specifi c brain regions, cell types or 
cellular compartments (65). In additi on, these aggregati ons contain diff erent proteins, 
and are thus usually characterized by the main component(s) with which the aggregates 
are stained; amyloid (AD), tau (AD, FTD), TDP (FTD, ALS) or synuclein (PD, DLB) (63-66). 
Further classifi cati on can be done based on cellular subtype or compartment and spati al 
patt ern of pathological protein aggregates (66, 67). However, large pathological variati on 
between aff ected pati ents exists, and pathology oft en becomes of mixed type as the 
disease progresses (68). Post-mortem pathological classifi cati on is the golden standard way 
of classifying the type and subtype of dementi a in a pati ent. However, based on clinical 
presentati on and evaluati on of cerebral spinal fl uid (CSF) and imaging (MRI, PET) biomarkers 
clinical classifi cati on can be done during life (54). 
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One of the earliest and most severely aff ected brain regions in AD is the hippocampus, involved 
in memory formati on and retrieval (58). Typical AD pathology includes so-called intercellular 
plaques characterized by Amyloid-beta (AB-plaques) and intracellular neurofi brillary tangles 
characterized by hyperphosphorylated tau (NFTs) (62). This pathology spreads to the 
temporal and frontal lobes (language and behavior) and to enti re brain in later stages (55, 
65). FTD divides into clinical and pathological subtypes (66, 69). Typically, FTD pathology and 
neurodegenerati on starts in the frontal and/or temporal lobes and is characterized by either 
NFTs or TDP43-positi ve protein aggregates (TDP43-positi ve inclusions) (67, 68). Subtypes of 
TDP43 are based on locati on and form of TDP43-positi ve inclusions and dystrophic neurites 
(DN) (66). Type A has many neuronal cytoplasmic inclusions (NCI) and short DN. Type B has 
a moderate amount of NCI and few DN. Type C has few NCI but many long DN. Type D has 
many short DN and shows neuronal intranuclear inclusions (NII) (64, 69).

Clinical presentati on
The clinical subtypes of dementi a oft en correlate to the pathological subtypes. AD manifests 
as neurodegenerati on in the hippocampus and pati ents thus present with progressive 
memory loss (62, 70). Similarly, in FTD pati ents the temporal or frontal lobe degenerates 
and they thus present with symptoms in the language or behavior domains. Several clinical 
FTD subtypes are defi ned; behavioral variant FTD (bvFTD), semanti c variant FTD (svFTD), 
non-fl uent primary progressive aphasia (nfPPA), motor neuron disease (FTD-MND)  and a 
few other, rarer forms (61). 

In this thesis we investi gate one of the FTD subtypes; the semanti c variant primary progressive 
aphasia, oft en referred to as semanti c dementi a (SD) (71, 72). Clinical presentati on of SD 
starts with impairment of language comprehension and word fi nding diffi  culti es, disrupti ng 
the pati ent’s communicati on with others and oft en leading to social isolati on (61, 71). In 
later stages behavioral symptoms usually manifest, for example as compulsive behavior (61, 
71). Pathologically, SD manifests as localized unilateral atrophy of the temporal lobe, which 
in later stages also aff ects the other temporal lobe (73). Many DN, but few NCI are present in 
the temporal and frontal cortex and the pathology classifi es as TDP Type C (66). Additi onally, 
a large number of NCI are observed in the dentate gyrus region of the hippocampus. The 
hippocampus (memory) and temporal lobe (language) collaborate to perform speech 
processing (i.e., retrieving the memory that belongs to an object’s name), the main cogniti ve 
functi on disrupted in SD (71, 73). SD is clinically and pathologically relati vely homogeneous 
and the clinicopathological correlati on is relati vely high (73). Also, SD rarely occurs in familiar 
form and no geneti c variants causing SD have been described (61), unlike almost every other 
form of dementi a.

Geneti c studies in AD and FTD
Both AD and FTD are considered complex, multi factorial, diseases with a large heritable 
component, as shown in fi gure 5. Both diseases may take familial form, with a highly penetrant 
variant causing AD or FTD in every carrier (74). In parallel, geneti c risk factors in the overall 
populati on, where carriers have increased risk of acquiring AD or FTD but can also remain 
healthy. As shown in fi gure 5, the total proporti on of FTD that is caused by geneti c factors is 
esti mated on approximately 50% (46, 54, 61).  This is approximately 70% for AD (74). Combining 
familial variants and populati on risk factors, we esti mate that approximately half of the geneti c 
component of FTD has been identi fi ed, against approximately 10% for AD (46, 47, 74). 
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Figure 5. the esti mated total and currently identi fi ed heritable component of FTD and AD. For FTD, approximately 
half of all occurrence of disease is esti mated to be caused by geneti c factors, of which half again is identi fi ed. For 
AD, approximately 70% is esti mated to be geneti c, of which 10% is currently identi fi ed.

Family-based geneti c studies in AD and FTD have identi fi ed genes with highly penetrant 
disease-causing variants. For AD, familial variants in APP, PSEN1, PSEN2 and SORL1 make up 
about 1-2% of the esti mated geneti c components of the disease (75, 76). For FTD, variants in 
C9ORF72, GRN, MAPT, TARDBP, CHMP2B and VCP compose ~50% of the geneti c contributi on 
to the disease (54, 61, 77, 78). The variants in these genes are oft en highly penetrant (i.e., 
almost all carriers of the variant acquire the disease) (44, 54, 61). 

Populati on-based GWAS on AD and FTD have identi fi ed additi onal geneti c factors that 
increase the risk of acquiring disease. These geneti c factors are common in the populati on 
and individually have a lower penetrance, meaning that the risk is not increased by a large 
amount when carrying one such a variant, and individuals may carry the variant without 
acquiring the disease. However, such GWAS have also highlighted that the so-called “geneti c 
architecture” of complex diseases, such as AD and FTD, consists of many hundreds if not 
thousands of such common risk-variants. Collecti vely, such sets of common variants can 
explain a substanti al part of the geneti c variance of the disease. The trend in GWAS is 
therefore to perform reiterati ve meta-analyses of ever bigger GWAS datasets to identi fy the 
growing list of common risk variants which explain increasing amounts of explained geneti c 
variance. One of the most well-known common geneti c risk factors is the combinati on of 
two geneti c variants (rs7412 and rs429358) in the APOE gene, which are denoted as e2, e3 
or e4, where e3 is most common (79). Heterozygous carriers of the e4 combinati on (e3/
e4) have a 4-fold increased risk of developing AD, and homozygous carriers (e4/e4) have an 
11-fold increased risk (79, 80). However, homozygous carriers exist that never acquire the 
disease. For almost all other known geneti c risk factors, the increased risk is usually smaller 
than 1.5x (56, 74).

The largest populati on study for AD included 94,437 cases and identi fi ed geneti c risk factors 
in 25 genes (47, 74, 81) explaining approximately 31% of the geneti c variance for late-onset 
AD. For FTD the largest populati on study contained 3,526 FTD pati ents and 9,402 controls 
explaining only a modest amount of the geneti c variance (46). In this study, pati ents already 
carrying a variant in one of the known familial disease genes were excluded. Five additi onal 
genes were identi fi ed where geneti c variants increased the risk of FTD; RAB38, CTSC, HLA-
DRA, HLA-DRB5 and BTNL2 (46, 78). The change in AD or FTD disease risk of each separate 
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variant is low with odds rati os ranging from approximately 0.75 to 1.25, and the biological 
mechanism through which they contribute to the disease is largely unknown.

A large fracti on of the identi fi ed heritability in FTD stems from a limited number of genes in 
which many of the familiar cases carry a causal variant. In the Dutch FTD pati ent populati on, 
approximately 37% of pati ents with positi ve family history were identi fi ed with a geneti c 
variant. Most carried the expanded repeat in C9ORF72 (21%), 6% carried a pathogenic single 
nucleoti de variant or small inserti on or deleti on in MAPT, 4.5% in GRN, 3.5% in TARDBP and 
another 2.5% carried a likely causal variant in VCP, TBK1, PSEN1 or OPTN. In fi gure 6, we 
show the clinical and pathological FTD subtypes of these geneti c groups. ###06###

Figure 6. Clinical or pathological classifi cati on of 198 Dutch FTD pati ents, strati fi ed by the gene in which they carry a 
geneti c defect, when known. Both diagrams indicate on the right-side pati ents caused by geneti c defects in C9orf72, 
GRN, MAPT, TARDBP or pati ents with unknown geneti c or other causes. The left  side of the left  diagram displays the 
clinical presentati ons (left  fi gure); behavioral-variant FTD (bvFTD), semanti c-variant primary progressive aphasia 
(svPPA, also known as SD), non-fl uent-variant primary progressive aphasia (nfvPPA), FTD with motor neuron disease 
(FTD-MND) and other. The left -side of the diagram on the right indicates pathological categories; Tau pathology, 
TDP pathology type A, B or C, FUS pathology and other. The size of the group is represented by the size of the 
outer ring fragments. The size of the overlap between geneti c and clinical (left ) or pathological (right) groups is 
demonstrated by the size of the connecti ng bands. 

The clinical-geneti c diagram shows that the main clinical group; behavioral-variant FTD 
presents in all main geneti c groups. In contrast, semanti c-variant and non-fl uent-variant 
primary progressive aphasia present mostly in the group with unknown geneti c cause, 
although nfvPPA can also be caused by GRN geneti c variants. FTD-motor neuron disease is 
mostly caused by the c9orf72 expansion, and the TARDBP and unknown geneti c groups have 
the most mixed clinical presentati on. The pathological-geneti c fi gure show clear overlap 
for the main geneti c groups; C9ORF72 presents mostly with TDP-type-B, GRN with TDP-
type-A and MAPT with TAU pathology. Vice-versa, although each main pathological group 
sti ll contains pati ents with unknown geneti c cause, most pati ents with a specifi c pathology 
are caused by variants in the respecti ve gene. Overall, this overview demonstrates clear 
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genetic FTD subgroups with distinct pathological, and sometimes clinical, presentation. 
Nevertheless, in a relatively large groups of patients the suspected genetic defect has not 
been identified.

Dynamic genomic data studies in AD and FTD
For both AD and FTD, dynamic genomic studies have been performed comparing the 
methylation, expression or proteomic patterns in brain tissue of cases with controls. 
Most genomics studies for either AD or FTD so far have reported decreased activity of 
neurotransmitter signaling and energy metabolism and increased activity of stress response 
pathways and epigenetic regulation (51, 52, 57). Due to the dynamic nature of the data, it is 
difficult to determine which changes represent causal changes and which are consequence 
of the disease. However, these changes are generally observed in all neurodegenerative 
tissues and are considered mostly consequential changes, caused by degeneration of 
neurons and activation of glial cells to cope with the damage to the brain (57, 82). Most 
dynamic genomic datasets derived for AD or FTD use frozen brain tissues of post-mortem 
donors, obtained at the end of the disease.

Most dynamic genomic data studies for AD or FTD include a single brain region between 
cases and controls (12, 52). They statistically compare dynamic genomics data (e.g., each 
methylated CpG site, gene expression or protein abundances) between both groups, 
corrected for confounding factors as age and gender. The CpGs, genes or proteins that 
are significantly different between both groups are further investigated, for example by 
comparing to other dynamic genomic data studies. 

To translate these individual changes to biological and clinical disease insights, the CpGs, 
genes or proteins are often grouped into biological pathways based on their described 
functions (83-85). For example, all genes that are involved in response to stress. These 
changes in biological pathways are easier to interpret than single genes, and can make it 
easier to compare between different studies or diseases (57, 86). A challenge to this approach 
is that the gene function is not always known or completely described, and standardized 
methods to study dynamic genomics data in such a way are still lacking (87, 88).

In addition to studying a single brain region, several studies have collected data in a 
different design. For example, including cases with different severity of the disease (57, 82). 
By separately comparing severe and mildly affected cases to control samples it is possible 
to add some claims on the timeframe of the dynamic genomic data changes throughout 
the disease process, although not in the same individual. This design is informative, but 
challenged by the scarcity of early-stage post-mortem brain samples. Other studies collected 
data from multiple brain regions and are separately comparing these to control brains, 
followed by investigating the differences in comparison between each region (57). In this 
way, severely and mildly affected brain regions from the same individual can be compared, 
which also provides some insight into disease progression (57). A more novel approach is 
single-cell dynamic genomic data analysis. In these studies, individual cells are derived, 
measured and compared between brains of cases and of controls (89). These studies show 
further heterogeneity of cellular activity and function, even within the same brain region of 
one patient (89).
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A special dynamic genomic data study-type is a biomarker study. Here, dynamic genomic 
data is collected from the blood or CSF to identi fy biological markers identi fying/predicti ng 
the disease state. As blood or CSF can be extracted during life and at multi ple ti me points, it 
permits repeated measurements of pati ents as the disease progresses (90). The aim of these 
studies is not necessarily to investi gate the underlying biology, but to discover markers that 
can identi fy or strati fy pati ents as a tool in the diagnosti c procedure (91, 92).

Study populati ons in this thesis

Three datasets are studied in this thesis; the Rott erdam Study (RS), the FTD pati ents enrolled 
at the department of Neurology (Neurology) and the Dementi a pati ents and controls that 
donated their brain to the Netherlands Brain Bank (NHB). 

The Rott erdam Study cohort is a populati on-based cohort founded in 1990 to investi gate 
disease and disability in the elderly in the Netherlands (53). The cohort comprises ~15,000 
parti cipants that enrolled in 1990, 2000 or 2006. All parti cipants were at least 45 years 
at enrollment, and undergo extensive research-based measurements every fi ve years, 
including blood draws (53). Their medical records, measurements and DNA extracted from 
blood are available for researchers. 

The FTD cohort is collected over the last 30 years by the department of Neurology at the 
Erasmus Medical Center. This cohort includes ~700 FTD pati ents, and is representati ve 
for a clinical FTD populati on (61, 93). Extensive medical informati on is collected for these 
pati ents, with clinical measurements, MRI imaging, pathology (when available) and oft en 
multi ple blood and/or CSF draws (54, 61). We selected from this cohort the pati ents that 
were diagnosed with Semanti c Dementi a. Many pati ents in this cohort have donated their 
brains to scienti fi c research and are also present in the Dutch brain bank cohort.

The Dutch Brain Bank (NHB) cohort consists of neurological pati ents and non-demented 
controls that donated their brain to scienti fi c research (94). For all donors, post-mortem 
frozen ti ssue is available for dozens of brain regions, as well as a selected set of clinical and 
pathological parameters. The biobank can be mined for brain ti ssues of cases and controls 
of interest. Over the last 30 years, more than 4,000 brains have been collected by the NHB, 
including ~900 AD brains and ~200 FTD brains, and is one of the largest such biobanks 
worldwide (94).

Outline of the thesis
In this thesis, we investi gated applicati ons of next-generati on sequencing. Either in the form 
of best practi ces when using NGS data, or by applying NGS to answer research questi ons 
in the AD or FTD fi eld. In chapter 2.1, we describe the generati on of an exome sequencing 
populati on dataset and demonstrate how the majority of geneti c variants are populati on 
specifi c. We off er recommendati ons on the analysis and interpretati on of DNA based NGS 
data from such populati on-based datasets. This topic is conti nued in chapter 2.2 where 
we investi gate the occurrence and interpretati on of pathogenic variants in disease-causing 
genes in DNA NGS data. Then, in chapter 2.3 we perform a DNA study in several Alzheimer’s 
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Disease families and identify a candidate gene that might cause the disease in two of these 
families. In chapter 3.1 we move to dynamic genomic data by investigating the analysis 
methods used in RNA sequencing and/or DNA methylation studies. We compare commonly 
used methods and provide recommendations on their use. This topic is continued in chapter 
3.2, where we studied post-mortem gene expression in hippocampus of AD brains versus 
control brains. We demonstrate how such an RNA NGS dataset can be used to investigate 
the biology underlying AD, and how datasets can be compared on biological pathway level. 
In chapter 4.1 we combine multiple of these methods and perform a dynamic genomic 
study on DNA NGS data. We compare the DNA in the brain of semantic dementia patients 
with DNA from their blood and identify tissue-specific somatic DNA variants. In chapter 
5 we discuss the results obtained by the studies in this thesis, and how these contribute 
to the field of genomics and dementia. Finally, we outline the most recent and upcoming 
developments in the genomic field and how these will further research into dementia 
biology.
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Abstract

We have generated a next generation whole exome sequencing dataset of 2,628 participants 
of the population-based Rotterdam Study cohort, comprising 669,737 single nucleotide 
variants and 24,019 short insertions and deletions. Because of broad and deep longitudinal 
phenotyping of the Rotterdam Study, this dataset permits extensive interpretation of genetic 
variants on a range of clinically relevant outcomes, and is accessible as a control dataset. We 
show that next generation sequencing datasets yield a large degree of population specific 
variants, which are not captured by other available large sequencing efforts, being ExAC, 
ESP, 1000G, UK10K, GoNL, and DECODE. 

Keywords; Rotterdam Study, Next Generation Sequencing, Exome, Population Genetics, 
Rare Variation
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Introducti on

In the era of Next Generati on Sequencing (NGS), the use of large populati on datasets to 
approximate variant frequencies in control populati ons has become common practi ce. 
The fi rst large populati on-scale sequencing dataset was generated by the 1000 Genomes 
Project (1), where an integrated genome-wide map of geneti c variati on was established for 
2,504 individuals of European, American, African and Asian descent. Another approach 
was made by the NHLBI “Grand Opportunity” Exome Sequencing Project, in which a set 
of 6,500 European and African Americans samples was exome sequenced (2). The recent 
Exome Aggregati on Consorti um (ExAC) is now combining exome sequencing datasets from 
over 60,000 unrelated individuals from diff erent origins (3). From these large sequencing 
projects, it became apparent that many variants are populati on-specifi c (3). Therefore, 
several initi ati ves have generated more local datasets. The UK10K project (4) contains 4,000 
genomes from the UK, along with 6,000 exomes from individuals with selected extreme 
phenotypes. A collecti on of 3,000 Finnish exomes, showed that the Finnish populati on had 
more loss-of-functi on variants and gene knock-outs than non-Finish Europeans (5). GoNL (6), 
the Dutch reference genome project, provided a local geneti c map based on whole genome 
sequencing of 250 Dutch trios (7). Another local dataset is based on full genomes from 2,636 
Icelanders (8). In this isolated populati on, deleterious variants could reach higher frequencies 
than in other populati ons. These initi ati ves emphasize the importance of local geneti c maps 
to interpret clinical relevance of a potenti al disease-causing mutati on, and indicate the 
diff erences in available populati on datasets that should be considered when these are used 
in research or clinical practi ce.

Within the Rott erdam Study cohort, a prospecti ve populati on-based cohort study on 
individuals 45 years and older to investi gate determinants of disease and disability in the 
Dutch populati on (9), we have generated a set of 2,628 exomes for integrati ve geneti c studies 
of diverse phenotypes and to serve as local reference panel for clinical sequencing eff orts. 
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###07### 

 
Figure 1. Overview of sample selection and quality control. Out of 5,984 eligible samples, a final random set of 
2,628 exomes was generated. QC, quality control; SNP, single nucleotide polymorphism; SD, standard deviation; 
het/hom ratio, ratio between heterozygous and homozygous positions; Ti/Tv ratio, ratio between transitions and 
transversions.
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Methods

DNA samples were obtained from the Rott erdam Study, which is a prospecti ve populati on-
based cohort study established in 1990 studying the determinants of disease and disability 
in Dutch elderly individuals (9). Out of 5,984 eligible parti cipants from the RS-I cohort - based 
on the availability of height, weight, GWAS data and informed consent - 3,284 subjects were 
randomly selected, as shown in Fig 1. Baseline characteristi cs are provided in Supplementary 
Table 1.

Genomic DNA was prepared from whole blood and processed using the Illumina TruSeq 
DNA Library preparati on (Illumina, Inc., San Diego, CA), followed by exome capture using the 
Nimblegen SeqCap EZ V2 kit (Roche Nimblegen, Inc., Madison, WI). Paired-end 2 x 100bp 
sequencing was performed at 6 samples per lane on Illumina HiSeq2000 sequencer using 
Illumina TruSeq V3 chemistry.

Reads were demulti plexed and aligned to the human reference genome hg19 (UCSC, Genome 
Reference Consorti um GRCh37) using the Burrows-Wheeler alignment tool (BWA version 
0.7.3a (10)). Aft er indel realignment and base quality score recalibrati on using the Genome 
Analysis ToolKit (GATK version 2.7.4 (11)) and masking of duplicates (Picard Tools version 1.90 
(12)), gvcf fi les were generated using HaplotypeCaller v3.1.1 (GATK) and genotyped using 
GenotypeGVCFs v3.1.1 (GATK) (11). Raw genotype data was QC-ed and fi ltered as described 
in the Supplementary Informati on.

All detected variants were annotated based on RefSeq annotati on (NCBI Reference Sequence 
Database) using ANNOVAR (version 2014-07-14 (13)). The presence and allele frequencies 
of these variants in various databases: 1000G (v3) (1), ESP (v2) (2), ExAC (v0.3) (3), UK10K 
(v1407) (4), DECODE (v1501) (8) and the Genome of the Netherlands (v4) (6) were obtained 
and compared to our dataset.
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Results

2,628 samples passed technical and geneti c quality control and were included in the 
dataset (Fig. 1), with an average mean depth of coverage of 55x (range 20x to 185x, 
median coverage of 53x). A total of 669,737 single nucleoti de variants (SNVs) and 24,019 
short inserti ons or deleti ons (indels) were detected, this dataset was denoted Rott erdam 
Study Exome Sequencing set 2 (RSX2). Of all 669,737 SNVs detected in our RSX2 dataset, 
439,633 (66%) were exonic. Of these, 120,677 (27.4%) were not detected in any other public 
database (ExAC2.0, ESP6500, 1000G, UK10K, DECODE, and GoNL), as shown in Fig. 2. Most 
of these variants (120,179; 99.6%) were found at a minor allele frequency (MAF) below 
1% in our dataset, 65,324 were singletons (54%) and 19,870 were doubletons (17%). The 
largest overlap with a single dataset was with ExAC2.0 (71% of 439,633 SNVs), followed in 
descending order by ESP6500 (46%), 1000G (36%), UK10K (34%), GoNL (26%) and DECODE 
(22%).  
###08###

Figure 2. Overlap of RSX2 with other publically available datasets. Overlap was based on only RefSeq coding SNVs 
which were detected in at least 1 individual in RSX2 (439,633 SNVs total). The numbers in the Venn diagrams display 
the number of overlapping SNVs in thousands, the numbers between parenthesis are those SNVs with MAF below 
1% (386,341 total). A total of 318,586 SNVs were present in any of the 6 databases (72%). Each individual database 
yielded a smaller overlap, ranging from 311,017 (Exac, 71%) to 113,627 (GoNL, 26%). Almost all SNVs unique to 
RSX2 have a MAF < 1% in the RSX2 dataset (120,547; 99.6%).
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Discussion

From 439,633 detected coding variants, 120,179 were absent from all six other populati on 
databases. A porti on of this absence can be att ributed to various biological (ie; ethnical 
backgrounds, isolated populati ons or case-series) and technical (whole genome sequencing, 
exome capturing or fi ltering strategies and sequencing depth) diff erences, the remainder is 
most likely due to populati on specifi c variance.

The smallest overlap with DECODE is partly due to the lower sequencing depth and stronger 
fi ltering strategy in that dataset, resulti ng in fewer variants in general. In additi on, the 
geneti cally isolated status of the Icelandic populati on warrants fewer geneti c variability and 
smaller overlap with RSX2 (8). Despite originati ng from a similar populati on, the small overlap 
with the GoNL database is likely due to its small sample size, reducing power to detect rare 
variants (6). A larger overlap with UK10K was observed as a result of its large sample size and 
related populati on. The diff erences with the UK10K dataset are largely due to populati on-
specifi c diff erences and, the selecti on of individuals with extreme phenotype in UK10K (4). 
The 1000G dataset holds many more variants than RSX2, probably caused by whole genome 
sequencing coverage on coding regions inaccessible by whole exome sequencing, and by 
the presence of non-Caucasian individuals (1). Similarly, diff erence in populati ons and sample 
size leads to the ESP6500 dataset to be larger than RSX2, although the selecti on for various 
case-populati ons might also be of infl uence (2). Finally, the greatest dataset of ExAC2.0 
contains most variants, as a result of much larger sample size and the inclusion of many 
diff erent populati ons (3). 

Each dataset present in this comparison contained variants not present in any of the other 
datasets. These results suggest that, e.g., when fi ltering or interpreti ng geneti c variants in 
a WES analysis of a Mendelian disease pedigree, both smaller populati on-specifi c datasets 
(such as RSX2, GoNL, UK10K, and/or deCODE) as well as large aggregati on datasets (such 
as EXAC) contribute informati on and should be used jointly to fi lter. Additi onally, each 
database contributes variants not seen elsewhere, suggesti ng that as many databases as 
eligible should be considered in these types of analyses. When WES datasets are to be used 
as controls (e.g., in a case control comparison) note should be taken that some datasets such 
as UK10K, ESP and EXAC2.0, contain large collecti ons of case-series (2-4) and will not provide 
a good representati on of DNA sequence variants of any allele frequency spectrum in the 
normal populati on. Given their design and collecti on strategy, populati on-based datasets 
such as RSX2, deCODE and GoNL, might be bett er suited for this purpose, depending on the 
disease or trait studied and their esti mated prevalence in these databases.
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Abstract

Purpose: We studied the penetrance of pathogenically classified variants in an elderly 
Dutch population from the Rotterdam study for which deep phenotyping is available. We 
screened the 59 actionable genes for which reporting of “known” pathogenic variants was 
recommended by the ACMG, and demonstrate that determining what constitutes as a 
“known” pathogenic variant can be quite challenging.

Methods: We defined known pathogenic as classified pathogenic by both ClinVar and HGMD. 
In 2,628 individuals, we performed exome sequencing and identified known pathogenic 
variants. We investigated the clinical records of carriers and evaluated clinical events during 
25 years of follow-up for evidence of variant pathogenicity. 

Results: Out of 3,815 variants detected in the 59 ACMG genes, 17 variants were considered 
known pathogenic. For 14/17 variants the ClinVar classification had changed over time. Of 
24 confirmed carriers of these variants, in only three participants (13%) we observed at least 
one clinical event possibly caused by the variant. 

Conclusion: We show that the definition of “known pathogenic” is often unclear and 
should be approached carefully. Additionally variants marked as known pathogenic do not 
always have clinical impact on their carriers. Definition and classification of true (individual) 
expected pathogenic impact should be defined carefully.

Keywords: ACMG genes, clinical interpretation, pathogenic variants, exome sequencing, 
penetrance
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Introducti on

Whole Exome Sequencing (WES) is of great value to detect rare, disease-causing geneti c 
variants in aff ected individuals, and is applied in both diagnosti c as well as research setti  ngs. 
However, evaluati ng whether a variant causes the disease can be challenging, even when 
this variant is predicted as potenti ally pathogenic by bioinformati c tools and classifi ed 
as such in databases as HGMD and/or ClinVar. Increasingly, WES is being applied to large 
populati on-based setti  ngs with the potenti al to detect incidental or secondary fi ndings.

Given these developments, the ACMG-AMP (American College of Medical Geneti cs and 
Genomics and the Associati on for Molecular Pathology) has released a set of guidelines on 
interpretati on of geneti c variants for clinical interpretati on [1]. 

These guidelines include evidence like variant segregati on through the aff ected individuals’ 
family, previously described presence of other disease-causing variants in the same gene and 
knowledge of the functi onal mechanism of this gene in relati on to the disease. Variants are 
classifi ed in fi ve classes based on clinical relevance; 1. Benign, 2. Likely Benign, 3. Uncertain 
Signifi cance, 4. Likely Pathogenic, 5. Pathogenic [1] . Some databases, like ClinVar, directly 
follow this classifi cati on system [2]. Other databases use their own adaptati on of such a 
classifi cati on, such as HGMD [3].

In 2013, Green et al. published a list of 56 genes involving rare monogeneti c disorders for 
which preventi ve measures and/or treatments were available and recommended reporti ng 
to carriers of “incidental or secondary” fi ndings, in clinical exome and genome sequencing 
data, regardless the diagnosti c implicati on for which the sequencing was ordered [4]. This 
list was updated by Kalia et al. in 2016, removing one gene and adding four others to a 
total of 59 genes [5]. However, insuffi  cient knowledge on penetrance of many variants, also 
in the categories of known pathogenic (KP) or expected pathogenic (EP) variants makes 
interpretati on challenging.  Since then various studies have looked into the carrier status of 
pathogenic gene variants in larger and healthy populati ons and how pathogenicity scores 
are defi ned by diff erent databases [6-10].

Comparing interpretati ons of 99 variants of diff erent classifi cati ons based on the ACMG-
AMP guidelines of geneti c variants in a Mendelian disease family setti  ng showed a 71% to 
92% agreement between 9 clinical laboratories [7]. This indicates that clinical interpretati on 
of geneti c variants for the primary outcome (the Mendelian disease segregati ng in these 
families) yields similar conclusions for most pati ents in these diagnosti c laboratories. 
In regard to secondary fi ndings in sequencing datasets from non-family-based sources, 
investi gati ons of several large populati on-studies show that between 0.7% and 3.4% of their 
study populati on parti cipants carry a KP or EP variant [6, 8-10]. Several of these studies used 
the list of 56 genes initi ally reported by Green et al. [9, 10]. Other studies add additi onal 
genes considered to have a clear phenotype-genotype relati on by clinical geneti c specialists, 
like the 112-114 genes used by Dorschner et al. and Amendola et al. [6, 8]. Most studies 
reported KP and EP carriers, although Amendola et al. and Jurgens et al. report respecti vely 
0.7% and 0.9% carriers of only KP variants, suggesti ng almost 1% of the populati on carries 
a KP variant in the 56 ACMG genes [6, 9]. Yet, these studies lack an extensive clinical follow-
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up with information on health and disease status of the participants. And so, how many of 
these carriers of KP or EP variants actually have experienced clinically relevant phenotypes 
due to these variants is not yet clear.

Recent studies have shown that the occurrence of KP variants is higher in the healthy normal 
population than expected based on the frequency in the Mendelian disease patient-cohorts 
in which these variants have been originally identified. For example, Minikel et al. showed 
that the prevalence of missense variants in the dominant prion disease gene PRNP was 30-
fold higher in the general population than expected based on prion’s disease prevalence 
[11].  A similar observation was made for ASXL1 and other intellectual disability genes by 
Ropers et al. [12]. On a larger scale, Saleheen et al. showed that 1,317 genes were predicted 
to be completely knocked out in at least one of 10,503 adult Pakistani individuals, caused 
by the large rate of consanguinity in this population, but in many cases without obvious 
phenotype [13]. Similarly, Lek et al. showed that 3,230 genes in their Exome Aggregation 
Consortium database of 60,706 individuals harbored damaging variants without a currently 
established disease phenotype [14]. They also showed that each participant carried on 
average 54 variants that might be considered pathogenic by ClinVar or HGMD, often at higher 
than expected frequencies, even for homozygous variants in genes for recessive inheritance. 
Finally, Chen et al. identified 13 carriers of severe Mendelian pathogenic variants in a large 
cohort of nearly 600,000 participants [15], who did not show the expected phenotypes and 
were considered non-penetrant or resilient to these variants. Results like these show that 
many potentially pathogenic variants have a lower than expected penetrance in healthy 
populations and thus should be interpreted with caution.

In our study, we combined WES data with clinical information of 2,628 participants of 
the longitudinal Rotterdam Study. This is a prospective, population-based cohort study 
of elderly subjects 45 years and older, living in a suburb of Rotterdam since 1990, and of 
whom we have almost 30 years of follow-up information from clinical records and detailed 
physical examination every 4-5 years [16]. In the WES data we evaluated different variant 
classifications for the 59 ACMG genes, using and comparing ClinVar and HGMD to ascertain 
known pathogenic variants, and then retrospectively look into the clinical history of carriers 
to evaluate possible variant pathogenicity and penetrance. Additionally, we analyzed overall 
changes of variant classification over time in the different database versions of ClinVar, in 
particular for the identified known pathogenic variants observed in our study population.
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Methods

Details on collecti on and processing of exome sequencing data from the Rott erdam Study 
have been described previously [17]. In short, DNA of 2,628 parti cipants was sequenced to 
an average depth of 56x using NimbleGen SeqCap v2 capture and Illumina’s Hiseq2000. Data 
was processed using BWA, picard, samtools and GATK. Variants were called using GATKs 
HaplotypeCaller. Variants with a QD < 5 were fi ltered out. Variants in the 59 ACMG genes 
were extracted and annotated using Annovar, including Minor Allele Frequency’s from the 
Genome Aggregati on Database (GnomAD, Karczewski et al, 2019, unpublished data), CADD 
(Combined Annotati on Dependent Depleti on) scores and multi ple versions of the ClinVar 
database, including the most recently available version [2018-03-06] [2, 18]. Variants were 
annotated to HGMD (v17.3) by batch fi ltering in the HGMD professional database [3]. No 
additi onal fi ltering was performed based on CADD score or populati on MAF.

Identi fying Known Pathogenic variants
To identi fy KP variants in our dataset we uti lized the largest and most commonly used 
databases of clinical interpretati on of geneti c variants; NCBI’s Clinical variants database 
(ClinVar) and the Human Gene Mutati on Database (HGMD). We categorized the 
classifi cati ons from both databases for all variants detected in the 59 ACMG genes according 
to the 5 major classifi cati ons outlined in the ACMG-AMP guidelines, to be able to compare 
classifi cati ons in both databases [1]. Specifi c additi onal evidence criteria from ClinVar were 
not assessed at this point.

We added the category for absence from databases with a zero as follows: 0. absent 
from database, 1. benign, 2. likely/probable benign or likely/probably non-pathogenic, 3. 
unknown, untested or uncertain, 4. likely/probable pathogenic and 5. pathogenic. When 
multi ple classifi cati ons for the same variant were available in ClinVar, they were averaged 
(e.g., a 4-4-5 variant is classifi ed as class 4, while a 4- 5- 5 variant is classifi ed as 5). HGMD 
classifi cati ons were coded in a similar manner: 0. absent from database, 3. NA or Functi onal 
Polymorphism (FP), 4. Disease Polymorphism (DP), Disease Functi onal Polymorphism (DFP) 
or possible Disease Mutati ons (DM?), 5. Disease Mutati ons (DM). Classes 1 and 2 are not 
present in HGMD. Variants classifi ed as class 5 in both ClinVar and HGMD were considered KP 
variants. All KP variants were checked in the latest online ClinVar database (date; April-2020) 
to confi rm the pathogenic classifi cati on for the phenotype of which the gene was included 
in the ACMG recommendati ons. From this ti me point, the ClinVar star rati ng score was 
extracted for each variant, as well as the number of submissions, as indicated in Table 1.

Phenotypic validati on of carriers
Phenotypic events of all study parti cipants are collected weekly by automated linking of 
the general practi ti oners’ records and diagnoses made by medical specialists, as detailed in 
the supplemental methods. These events are compared to all medical records, lett ers from 
medical specialist and discharge reports. All events were confi rmed by trained research 
assistants. Parti cipants are interviewed about all events at their next study visit [19].
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For each KP variant carrier, the events and respective age at event were extracted. For each 
carrier of a KP variant with an event of interest, four clinicians evaluated the potential causal 
relationship between the variant and the event, giving consideration to the age at which the 
event occurred. Ties were broken by the first author. For events marked by a majority all 
occurrences of this event in the dataset were collected. For each event, the average age at 
event and the standard deviation were determined. The age at event of the KP carrier was 
expressed as a z-score, by calculating the number of standard deviations from the average 
event age across the 2,628 participants with WES data available.

Confirmation by Sanger Sequencing
All carriers of KP variants classified as class 5 by both ClinVar and HGMD were validated 
using Sanger sequencing. Primers were designed and produced by Baseclear B.V. (Leiden, 
The Netherlands). Optimal primer annealing temperature was determined using gradient 
PCR on control DNA samples. Sanger sequencing of variants in BRCA1/2 was performed at 
our department of Clinical Genetics, where these are routinely performed for diagnostic 
purposes. Sanger sequencing for the other variants was performed by Baseclear B.V. Results 
were checked manually to verify the variants. Primer sequences and Sanger results are 
available in supplemental results 1. Variants not confirmed by Sanger sequencing were 
retained as to not bias further interpretation (two variants in BRCA2), as is addressed in the 
discussion.

Ethics Statement
The Rotterdam Study has been approved by the Medical Ethics Committee of the ErasmusMC 
(registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare and Sport 
(Population Screening Act WBO, license number 1071272-159521-PG). This study has been 
entered into the Netherlands National Trial Register (www.trialregister.nl) and into the 
WHO International Clinical Trials Registry Platform (www.who.int/ictrp/network/primary/
en/) under shared catalogue number NTR6831. All participants provided written informed 
consent to participate in the study and to have their information obtained from treating 
physicians.
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Results

Identi fi cati on of known pathogenic variant carriers
Exome sequencing was performed on 2,628 Rott erdam Study (RS) parti cipants and aft er 
fi ltering and QC resulted in a total of 703,990 genomic variants, as was previously described 
[17]. Of these, 3,815 variants were located in one of the 59 ACMG genes [5]. All these 3,815 
variants were classifi ed using both the HGMD and ClinVar databases, resulti ng in 6 classes: 
0 (absent from database), 1 (benign), 2 (likely benign), 3 (uncertain), 4 (likely pathogenic) or 
5 (pathogenic) per database. 

###09### 

 
Figure 1. classifi cati on of clinically relevant variants in 2,628 Rott erdam study parti cipants in the 59 ACMG genes 
according to ClinVar version 2018 and HGMD. Classes are defi ned as per the ACMG-AMP guidelines; 1. Benign, 2. 
Likely benign, 3. Uncertain, 4. Likely pathogenic, 5. Pathogenic. Variants absent from the database are coded as 0. 
The classifi cati ons for HGMD were converted to:  NA (class 3), FP (class 3), DP (class 4), DFP (class 4), DM? (class 
4) and DM (class 5). For visualizati on purposes, the variants observed in autosomal recessive genes ATP7B and 
MUTYH are not shown. The numbers at the sides are sums for that respecti ve classifi cati on.
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The 3,815 variants were classified and grouped according to this system as indicated in Figure 
1, comparing their classification in both databases. The 119 variants in autosomal recessive 
genes MUTYH or ATP7B were excluded from this figure and analyzed separately. Of the 
resulting 3,696 variants, 935 variants (25%) were absent from both databases. An additional 
708 variants (19%) were present in HGMD but not in ClinVar and another 481 variants (13%) 
were present in ClinVar but not in HGMD. Thus, the remaining 1,691 variants (43%) were 
classified by both databases. Furthermore, HGMD classifies 183 of these variants (5%) as 
pathogenic (class 5) versus only 19 by ClinVar (0.5%). In total 17 variants are classified as 
pathogenic by both of the databases (0.5% of all variants), and are here defined as known 
pathogenic (KP) variants. In total, 24 participants were confirmed by Sanger validation to 
carry one of these 17 KP variants (0.9% of all participants). An additional 2 carriers of a single 
variant in BRCA2 were identified, but were found to be false positives by Sanger validation. 
These variants were retained as not to bias further interpretation, but carefully marked in 
subsequent tables. 

Additionally, 8 of the 119 variants in MUTHY and ATP7B were classified as pathogenic by 
both HGMD and ClinVar (not shown), but only as autosomal recessive inheritance, thus 
in homozygous state. In total 50 carriers were observed for any of these 8 variants, all in a 
heterozygous state. No compound heterozygosity was detected. Heterozygous variants in 
these genes were not considered as KP and thus they were not followed up further.

Variation in ClinVar clinical classification over time 
We have downloaded ClinVar database versions from the years 2014 until 2018. For HGMD 
the most recent online version was used (v17.3). Comparing the clinical classification for the 
3,815 ACMG variants identified in our study population between ClinVar database versions 
shows that classification largely changes over time, as shown in figure 2. Firstly, in 2014 only 
582 variants were present in ClinVar (16%), versus 2,052 in 2018 (56%), a 3.5-fold increase. 
This increase was most notable for variants of class 1; benign (3.7-fold increased), class 
2; likely benign (4.5-fold increased) and class 3; uncertain significance (3.3-fold increased). 
Whereas class 5; pathogenic remained almost unchanged (1.2-fold increase) and class 4; 
likely pathogenic decreased 4,1-fold decrease). The migration of classification for the 17 
known pathogenic variants (as classified in version 2018) is marked separately in figure 2. As 
shown, only between 5-7 of these 17 KP variants were classified as pathogenic at the same 
time at any given ClinVar version in the previous years. In fact, only 3 of the 17 KP variants 
remained at class 5 in all tested previous versions of ClinVar. The classification per variant per 
ClinVar version is indicated in table 1. All variants were confirmed pathogenic at the online 
version of ClinVar (dated April-2020). Five of the 17 variants received a three star score in 
ClinVar (reviewed by expert panel), 10 received a two star score (multiple submitters, no 
conflicting interpretation). A single variant received a one star score (multiple submitters, 
conflicting interpretation), and one variant received a zero star score (no assertation criteria 
provided). 
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Figure 2. A) Classifi cati on of all variants detected in one of the 59 ACMG genes in 2,628 parti cipants of the 
Rott erdam Study populati on according to ClinVar at diff erent ti me points: March-2014 (date 140303), March-2015 
(date 150330), March-2016 (date 160302), January-2017 (date 170130) and June-2018 (date 180603). Each variant 
is connected by a line between all fi ve versions. Marked in yellow are the 17 known pathogenic variants classifi ed 
as category 5 by the most recent versions of ClinVar (version 180603) and HGMD (version 17.3). B) the number of 
variants in each class of each ClinVar database version. C) the class at each database version for the 17 variants that 
were classifi ed as 5 in ClinVar in 2018 and by HGMD 17.3 (marked yellow in fi gure A). For visualizati on purposes, 
the variants observed in autosomal recessive genes ATP7B and MUTYH are not shown. 

Phenotypic evaluati on of known pathogenic carriers
We extracted 94 ICD10-coded clinical events for the 26 KP carriers, from 9,165 coded clinical 
events across our 2,628 study parti cipants, in additi on to the age at each event, shown in 
fi gure 3. In total 18 events (20%) in 10 diff erent individuals were marked by at least one 
clinical referee as possibly related to the KP variant. Nine events (10%) in 3 carriers (indicated 
with an asterisk in fi gure 3) were marked by at least three referees. 

Frequency of ICD10 events in enti re study populati on
Nine ICD10-coded clinical events in three carriers were considered linked to the detected 
variant. For each we calculated the prevalence and average age in the rest of the Rott erdam 
study populati on for which we have WES data available (n=2,628) [17]. The results for 
these nine events are shown in supplemental table 3. All events occurred commonly 
in this populati on; I20:angina pectoris (in 4.9% of the 2,628 parti cipants, average age of 
the event is 72±8), I21:myocardial infarcti on (10.5%, average age 79±8), I46:cardiac arrest 
(4.6%, average age 81±8), I48:atrial fi brillati on (19.8%, average age 77±10), I50:heart failure 
(24.9%, average age 80±8) and R99:death with cause unknown (6.3%, average age 87±7). 
For all events selected by the referees the age at event was earlier than the average age at 
event across the 2,628 parti cipants for which WES data was available, although all events 
fell within 1.5 standard deviati on. 
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Discussion

From 3,815 variants that we found in 59 reported ACMG genes in WES data of 2,628 
participants from the Rotterdam study, we confirmed 24 participants to carry a total of 17 
“known” pathogenic (KP) variants, comprising 0.9% of our study population. Two additional 
carriers of a single variant in BRCA2 were identified, but this variant proved false positive 
after Sanger validation, despite passing all exome sequencing QC and filtering criteria. 
Upon investigation, the variant was supported by a small number of reads and would have 
been filtered out in single-sample data processing (i.e., the fact of two putative carriers 
strengthened the variant quality in calling). Thus, this result indicates we should be careful 
in the way we handle and interpret this kind of data. Validation by Sanger sequencing in 
our case was required for a reliable result. This is in line with previous findings, were <2% 
of all variants identified through WES could not be confirmed, and variants of high clinical 
relevance should be confirmed beyond doubt [20, 21].

The proportion of 0.9% KP carriers is similar to what was found in previous studies [6, 8-10]. 
Upon investigation by four clinicians, 10 variant carriers (out of 26) were observed with at 
least one ICD10-coded clinical events deemed possibly related to their KP variant, according 
to at least one of the referees. Only in three carriers (13%), at least one clinical event was 
considered to be related to the identified variant by a majority of the referees. In all of these 
carriers it was difficult to determine if the ICD10-based clinical events were caused by these 
variants, as these events occur frequently in the population. As a result, no information was 
reported back to any of the carriers or their relatives. 
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Figure 3. 26 carriers of 17 KP variants, one shown on each line. The column “Sanger” denotes confi rmed (+) (24 
samples) or unconfi rmed (-) (2 samples) by Sanger sequencing. For each carriers their recorded clinical events are 
displayed in 5-year intervals. The events are coded using the ICD10 classifi cati on system. The last column denotes 
the primary disease for which the gene was included in the ACMG recommendati ons. Events marked with a “++” 
are evaluated by at least 3 of the 5 referees (3 of 4 clinicians or 2 clinicians and the fi rst author) as possibly explained 
by the variant for which the pati ent was a carrier. Those carriers are marked by an asterisk and shown in bold. 
Events marked with a single “+” were marked by only 1 or 2 referees. ICD10 codes in alphabeti cal order; Neoplasm 
of C18:colon, C19:rectosigmoid juncti on, C34:bronchus, C44:skin, C45:mesothelioma, C50:breast, C61:prostate, 
C66:ureter, C67:bladder. D47:other neoplasm of uncertain behavior. F00:Alzheimer’s disease, F01:Vascular 
dementi a, G20:Parkinson’s disease, G45:transient ischemic att ack. H25:cataract, H35:reti nopathy, H40:glaucoma. 
I20:angina pectoris, I21:myocardial infarcti on, I25:ischemic heart disease, I46:cardiac arrest, I48:atrial fi brillati on, 
I50:heart failure, I61:intercerebral hemorrhage, I63:cerebral infarct, I64:stroke, I80;deep vein thrombosis. 
J15;pneumonia, J44:chronic obstructi ve pulmonary disease, J96:respiratory failure. M96:postprocedural skeletal 
disorder. R99:death of unknown cause. Fractures of; S22:rib, S32:lumbar spine, S52:forearm, S62:wrist, S72:femur, 
S92:foot.

We consulted two main databases for clinical interpretati on; HGMD and ClinVar [2, 
3]. Comparing their clinical classifi cati on for the ACMG variants identi fi ed in our study 
populati on we observed disagreement in which variants are classifi ed as pathogenic. In total 
17 variants were categorized as class 5 by both databases, 19 in total by ClinVar and 183 in 
total by HGMD.

Of concern is a large porti on of classifi cati ons which diff er between both databases, such 
as the 59 variants classifi ed as class 4 or 5 (likely pathogenic or pathogenic) in HGMD and 
class 1 (benign) in ClinVar. These most likely stem from over-esti mati on of pathogenicity of 
HGMD, as has been described before [22, 23]. This disagreement illustrates the challenge 
of clinically interpreti ng geneti c variants, especially in a research setti  ng and how diff erent 
individuals, laboratories or databases might reach diff erent conclusions for the same variant. 
Even when restricti ng to variants classifi ed as class 5 in both databases, it appears that such 
variants can be carried without obvious phenotypic consequence. 

Additi onally, we investi gated the clinical classifi cati on within ClinVar in diff erent releases over 
fi ve years (from 2014-2018). We observe that the clinical interpretati on of many variants 
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has changed over time, where many variants moved towards class 1 (benign), 2 (likely 
benign) or 3 (uncertain significance).  Over this period various genomic variant resources 
have surfaced and impacted variant interpretation, including the gnomAD database which 
now contains data from 125,748 exomes and 15,708 whole genomes from population 
studies. Additionally the ACMG/AMP criteria were released during this time frame and 
has influenced how consistently labs were applying evidence. One example of this is the 
reclassification for BRCA1 and BRCA2 variants over time, most often “downgraded” [24, 
25]. Traditionally the classification of (pathogenic) variants was based on the ascertainment 
from the more severe Mendelian disorders. Now, with more data available from population 
studies reduced penetrance of variants is becoming clearer as is demonstrated by these kind 
of variants found in individuals without a Mendelian phenotype [11-14, 26]. By including 
information about penetrance in healthy populations, the changes in variant classification 
may stabilize over time. 

Although ClinVar contributes greatly to centralizing publicly available clinical genetic 
information, it does not contain local databases maintained by clinical genetic laboratories. 
This could result in classification differences of variants between laboratories, and may 
challenge research efforts to utilize clinical genetic classifications by the more conservative 
ACMG-AMP criteria. Thus, our definition of a KP variant may be less stringent than used 
by a clinical genetic laboratory. Furthermore, several of the variants we indicated as KP 
have limited information available in ClinVar. At the most recently checked online version 
(April-2020) two variants had a star classification of less than 2. Five additional variants had 
only one or two submissions in ClinVar at this time. These results demonstrate the need for 
additional clinical genetic information to completely classify such variants.  Nevertheless, we 
have attempted to retain the most likely true pathogenic variants as possible using publicly 
available information. We believe that most of these variants would retain their pathogenic 
classifications under ACMG-AMP evaluation in clinical genetic laboratories. However, it is 
possible that the percentage of carriers (0.9%) and fraction of expressivity in these carriers 
(13%) is lower than under complete clinical genetic evaluation.

For the clinical evaluation of our KP carriers we used the ICD10-coded records that report 
clinical events during standard clinical practice and during Rotterdam Study research 
participation. We collected 9,165 ICD10-coded events for 2,628 study participants, providing 
unique insight into the health state of such a typical elderly population. In 0.9% of this 
population we observed a KP variant, but only 13% of these carriers (0.13% of the whole 
study population) presented an ICD10-coded event that could be related to the variant. For 
none of them this effect was obvious. Due to these results, no events were reported back 
to any of these carriers, and thus we were not able to collect additional, more detailed, 
phenotypic information.

Our study demonstrated that the definition of a KP variant is ambiguous between 
databases, but also within different versions of the same database. This might lead to 
differences in reporting depending on the used evidence for classification. Specifically, 
information on the occurrence of KP variants in healthy populations is needed to correctly 
estimate the penetrance of such variants, and this information should be considered in the 
recommendations. Currently, several studies have demonstrated that approximately 1% of 
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the populati on carries a KP defi ned as such by diff erent databases. Our results based on a 
thorough clinical follow-up evaluati on in subjects 55 years and older linked only 0.13% of 
events to the presence of a KP variant. This suggest that KP variants are less likely to lead to 
a phenotype in their carriers, and that such reduced penetrance should be considered when 
reporti ng back results to carriers in populati on-based studies. Overall, our results indicate 
that reporti ng back of pathogenic ACMG variants should be approached carefully in these 
kind of studies.

Several causes for the reduced penetrance could play a role in our populati on. First, our 
study populati on is an elderly populati on, in which carriers reached late adulthood (55 years 
or older) despite carrying a potenti ally pathogenic variant [16]. Therefore, our populati on 
contains survival bias and the penetrance of some of these variants might be higher in 
younger populati ons. Additi onally, these parti cipants were investi gated in a research 
setti  ng, and despite the rigorous phenotype collecti on in the Rott erdam Study they may 
have exhibited subtle clues missed during examinati on, such as subclinical deviati ons or 
specifi c relevant family history, which is oft en used in ACMG-AMP evaluati on but could 
not be collected in this setti  ng. Conversely, this dataset is representati ve for many hospital 
populati ons in which (secondary) geneti c testi ng is most likely to occur [16]. Secondly, the 
expected penetrance is not standardly included in the classifi cati on of a pathogenic variants. 
Thus, variants in class 5 can have variable penetrance and those variants we observe in an 
elderly research populati on are likely those with lower penetrance. Considering penetrance 
on top of the fi ve-class system might facilitate more accurate interpretati on. Thirdly, such 
severely reduced penetrance of KP variants in populati on-based setti  ngs could indicate a 
strong infl uence of the genomic context of the functi onal eff ects of KP variants in such normal 
healthy populati on-dwelling subjects. While in Mendelian disease families the penetrance is 
usually substanti ally higher, also here penetrance can be variable and also here the genomic 
context might play a role due to the complex way in which diff erent inherited variants or 
modifi ers can infl uence the phenotype [27].

Conclusion
We show that the defi niti on of “known pathogenic” is oft en not clear and should be 
approached carefully. Variants marked as KP may have (severely) reduced penetrance. 
Defi niti on and classifi cati on of true (individual) expected pathogenic impact should include, 
for example, the use of multi ple data sources, the pathogenicity predicti on over ti me, and 
an assessment of the penetrance of the variant in healthy control populati ons.
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Abstract

Next generation sequencing has contributed to our understanding of the genetics of 
Alzheimer’s disease (AD), and has explained a substantial part of the missing heritability 
of familial AD. We sequenced 19 exomes from 8 Dutch families with a high AD burden, 
and identified EIF2AK3, encoding for protein kinase RNA-like endoplasmic reticulum kinase 
(PERK), as a candidate gene. Gene based burden analysis in a Dutch AD exome cohort 
containing 547 cases and 1070 controls showed a significant association of EIF2AK3 with 
AD (OR 1.84 [95% CI 1.07-3.17], p-value 0.03), mainly driven by the variant p.R240H. 
Genotyping of this variant in an additional cohort from the Rotterdam study showed a trend 
towards association with AD (p-value 0.1). Immunohistochemical staining with pPERK and 
peIF2α of three EIF2AK3 AD carriers showed an increase in hippocampal neuronal cells 
expressing these proteins compared to non-demented controls, but no difference was 
observed compared to AD non-carriers. This study suggests that rare variants in EIF2AK3 
may be associated with disease risk in AD.
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Introducti on

Alzheimer’s disease (AD) is the most common cause of dementi a, characterized by 
progressive decline in memory and other cogniti ve functi ons.1 Geneti c factors are strongly 
linked to AD, and in about 5% of cases an autosomal dominant mode of inheritance has 
been reported.2 In autosomal dominant forms of early-onset AD, mutati ons in β-amyloid 
precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2) have been found to 
be causati ve genes;3-7 this accounts for approximately 13% of early-onset AD.8 In late-onset 
AD, the ϵ4 allele of apolipoprotein E gene have been found to be the most common risk 
factor.9

Neuropathologically, the aggregati on of misfolded proteins is a major hallmark of many 
neurodegenerati ve disorders.10 The accumulati on of extracellular amyloid plaques and 
intracellular neurofi brillary tangles are the hallmarks of AD.11 Previous studies suggest that 
disrupted protein homeostasis in the endoplasmic reti culum (ER) and acti vati on of unfolded 
protein response (UPR) may be major drivers in AD pathogenesis.10, 12 The UPR is induced 
by three transmembrane proteins in the ER: protein kinase RNA-like endoplasmic reti culum 
kinase (PERK), Inositol Regulati ng Enzyme 1 (IRE1) and Acti vati ng Transcripti on Factor 6 
(ATF6).  Acti vati on of UPR lead to transient suppression of protein synthesis and increased 
expression of genes aimed to restore the homeostasis of the ER.10 Pharmacological and 
geneti c manipulati on of the UPR pathways in animal studies, in parti cularly the PERK 
pathway, has been reported to inhibit neurodegenerati on.13

Advances in next generati on sequencing technology have contributed substanti ally to our 
understanding of the geneti cs of AD. In recent years, studies using whole exome sequencing 
(WES) and whole genome sequencing reported the associati on of rare variants in PLD3, 
ABCA7, TREM2 and SORL1 with an increased risk in AD.14-18 Furthermore, a large exome 
micro-array study identi fi ed rare coding variants in PLCG2, ABI3 and TREM2, explaining a 
small part of missing heritability in AD.19 These studies indicate the existence of other rare 
variants related to the heritability of AD. 

In this paper, we performed WES in eight Dutch AD families with probable autosomal 
dominant inheritance, and identi fi ed Eukaryoti c Translati on Initi ati on Factor 2 Alpha Kinase 
3 (EIF2AK3), encoding for PERK, as a candidate AD risk gene in two of these families. Together 
with previous reports on an increased acti vati on of PERK in AD brain and the involvement 
of PERK in memory and learning,20 these fi ndings suggest the possible role of EIF2AK3 in the 
pathogenesis of AD.
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Methods

Subjects
Our discovery dataset included 19 AD patients from eight Dutch families with a high AD 
burden. Each family had at least two patients with AD suggestive of an autosomal dominant 
inheritance pattern, except one family with an uncertain mode of inheritance due to the 
early death of both parents. The mean age at disease onset in the families varied from 62.5 
to 71.3 years (Table 1). Non-demented first and second-degree family members of each 
family were also included if available. Using WES, all patients were screened negative for 
mutations in PSEN1, PSEN2 and APP; APP copy number mutations were also excluded. For 
WES, we included DNA samples of at least two patients with AD from each family. Non-
demented family members with a minimum age of 65 were used to test for segregation in 
their respective family.

Patients and family members were recruited after referral to the department of Neurology 
in the Erasmus Medical Center, or after visiting (nursing) homes. Diagnosis of probable 
AD was confirmed in all patients according to the National Institute of Neurological and 
Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association 
criteria for AD.21

To replicate the association of our candidate gene with AD, we used exome data available 
from 547 AD cases and 1070 controls from three different sites (the Rotterdam Study, 
Amsterdam Dementia Cohort (ADC-VUmc) and Alzheimer Centrum Erasmus MC (AC-EMC)) 
included from a Dutch AD exome dataset, previously described by Holstege et al.18 We then 
genotyped our candidate variant in 1055 AD cases and 6162 controls from the Rotterdam 
study;22 any individuals from the Rotterdam Study included in the exome data were excluded 
for genotyping.

Our study has been approved by the Medical Ethical Committee of Erasmus Medical 
Center, and written informed consent was obtained from all participants or their legal 
representatives.
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Table 1. Baseline characteristi cs of the families

Family Cases Controls WES cases Mean age at 
onset (range)

Mean age at last 
visits controls 

(range)

% female APOE fracti on 
ε2/ ε3/ ε4

NLAD 1 5 8 3 70.4 (60-89) 69.1 (65-77) 46.2 0.2/0.5/0.3

NLAD 2 2 2 2 62.5 (52-73) 69.0 (68-70) 50.0 0/0.25/0.75

NLAD 3 5 2 3 71.3 (68-77) 78.5 (71-86) 71.4 0/0/1

NLAD 4 5 1 2 62.8 (59-65) 66.7 (61-72) 57.1 0/0.12/0.88

NLAD 5 2 0 2 66.0 (NA) NA 0.0 0/0.75/0.25

NLAD 6 3 1 3 67.7 (64-70) 69.0 (NA) 75.0 0/0.67/0.33

NLAD 7 2 3 2 71.0 (66-76) 73.3 (69-78) 20.0 0/0/1

NLAD 8 2 4 2 64.5 (59-70) 71.4 (70-73) 50.0 0/1/0

Number of pati ents and controls included from each family. Cases are the total number of included pati ents with 
Alzheimer’s disease and pati ents with mild cogniti ve impairment. Controls contains the total number of included 
individuals without subjecti ve of objecti ve memory impairment during the last visit. Age at onset is the mean 
age of fi rst disease onset of all included cases, and the age at last visits is the mean age of all included controls. 
Age at onset and age at last visits in years. AD, Alzheimer’s disease; WES, individuals selected for whole exome 
sequencing; NA, not available

Whole exome sequencing analysis
Exomes of 19 AD pati ents from the discovery set, the Rott erdam Study cohort, and the 
AC-EMC cohort were captured using Nimblegen Seqcap EZ Exome Capture Kit v2. Exomes 
from the ADC-VUmc cohort were captured using the Nimblegen SeqCap EZ Exome capture 
kit v3. All data were generated at the Human Genomics Facility (HuGeF; www.glimdna.org) 
at Erasmus MC Rott erdam, the Netherlands. DNA from each sample was prepared with the 
Illumina TruSeq Paired-End Library Preparati on Kit, and 100 base-pair paired end reads were 
acquired by sequencing the libraries on a HiSeq 2000. For the Dutch exome dataset, we used 
the overlapping regions between capture kits during calling of the data. Sequencing reads 
were aligned to the hg19 human genome assembly using BWA-MEM (version 0.7.3a)23, 
and Picard Tools (version 1.9)24 were used to mark duplicates and to sort the alignments. 
Subsequently, Genome Analysis Toolkit (GATK) (version 3.3) was used to perform indel 
realignment and base quality score recalibrati on.25 Haplotype Caller from GATK was used 
to create gVCF fi les, and to call variants from these gVCF fi les. For the exome data from the 
eight families (discovery set), we used hard fi lters according to GATK best practi ces to fi lter 
out low quality variants. For the exome data from the three Dutch cohorts, we used Variant 
Quality Score Recalibrati on (VQSR) with >99% sensiti vity to fi lter out low-quality variants. 
Subsequently, Plink was used to calculate Principle component (PC), and outliers on the 
fi rst two PCs were removed.26 Related individuals with identi ty by decent value > 0.1 were 
also removed from the analysis set. All individuals in the WES data were checked for sex 
concordance using Plink 26. Variants from all datasets were annotated using ANNOVAR.27

In our discovery set, we used a family based analysis to identi fy candidate genes from the 
eight families. Each family was analyzed separately to identi fy the candidate variants in their 
respecti ve family. We focused on shared variants among the aff ected family members which 
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resulted in an amino acid change. Subsequently, variants with a frequency of 0.5% or lower 
in 1000 genomes, NHLBI Exome Sequencing Project (ESP), Exome Aggregation Consortium 
(ExAC), Genome of the Netherlands, and in-house WES data from the Rotterdam Study were 
selected (Supplementary Table 1).28-32 If the same variant or different variants in the same 
gene were identified in at least two families, these variants were selected as candidates for 
follow up and tested with Sanger sequencing for segregation in their respective families.

Sanger sequencing
We used Primer 3 33 to design primers for candidate variants. PCR amplification was performed 
using Qiagen Taq DNA polymerase (Qiagen, CA, USA). Direct sequencing of PCR products 
was performed using Big Dye Terminator chemistry ver. 3.1 (Applied Biosystems), and run 
on an ABI3130 genetic analyzer and an ABI3730xl genetic analyzer (Applied Biosystems, CA, 
USA). The sequences were analyzed with Sequencher software, version 4.5 (Genecodes, VA, 
USA) and Seqscape version 2.6 (Applied Biosystems, CA, USA).

Genotyping of rs147458427 variant in EIF2AK3
The variant rs147458427 (p.R240H) was genotyped using TaqMan SNP Genotyping Assays 
and genotypes of rs147458427 were determined using TaqMan Allelic discrimination. 
Signals were read with the Taqman 7900HT (Applied Biosystems Inc.) and analyzed using the 
Sequence Detection System 2.4 software (Applied Biosystems Inc.). To evaluate genotyping 
accuracy, all heterozygous calls were typed twice to confirm genotypes. Single variant 
association effects for AD association were calculated using R (version 3.2.3) “seqMeta” tool 
v.1.6.0 adjusting for gender. APOE status was added as covariate in the secondary analysis.

Statistical analysis of the candidate genes in the Dutch exome dataset
Single variant association effect for AD association was calculated using R (version 3.2.3) 
“seqMeta” tool v.1.6.0 adjusting for gender. Burden test was calculated for our top candidate 
gene in the family-based analysis using burdenMeta function in “seqMeta” tool v.1.6.0. Only 
variants with minor allele frequency (MAF) ≤ 1% in ExAC was included in the burden test, 
adjusting for gender. In the secondary analysis, we performed these analyses on our top 
candidate gene, adjusting for gender and APOE status.

Histology and immunohistochemistry
The Netherlands Brain Bank performed brain autopsy according to their Legal and Ethical 
Code of Conduct. Tissue blocks of three EIF2AK3 carriers (two from family NLAD 1 and one 
from family NLAD 4) were taken from all cortical areas, hippocampus, amygdala, basal ganglia, 
substantia nigra, pons, medulla oblongata, cerebellum, and cervical spinal cord. They were 
embedded in paraffin blocks and subjected to routine staining with haematoxylin and eosin, 
periodic acid-Schiff reaction and silver staining. Immunohistochemistry was performed 
with antibodies directed against phosphorylated pancreatic endoplasmic reticulum kinase 
(pPERK) (sc-32577, Santa Cruz biotechnology, CA, 1:12800) and phosphorylated eukaryotic 
initiation factor-2α (peIF2α) (SAB4504388, Sigma-Aldrich, St. Louis, MO, 1:100). We 
performed staining of pPERK and peIF2α on the frontal, temporal and hippocampal regions 
of our three pathological-confirmed AD EIF2AK3 carriers, three AD non-carriers, and three 
non-demented controls. Immunohistochemical staining of the neurons with pPERK and 
peIF2α were scored with a semi-quantitative method using a modified version of the scale 
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developed by Stutzbach et al and Hoozemans et al: Negati ve (-): no cells stained, rare (+): 
1–3 cells stained, ++: 4–20 cells stained or up to 10 percent of cells stained, +++: 20+ cells 
stained or 11 to 30 percent of cells stained, ++++: high density of stained cells (> 30 percent) 
in almost every fi eld of the secti on.34,35 In the frontal and temporal regions, the average 
number of positi ve stained cells per fi eld were counted in nine diff erent fi elds of the corti cal 
layer at 20x magnifi cati on. In the hippocampus, we used a diff erent scoring method as this 
region is oft en severely aff ected in AD with extensive neuronal loss. We counted the total 
number of neurons with a nucleus, as well as the number of these neurons containing pPERK 
or peIF2α staining to calculate the percentage of stained neurons. We focused on Cornu 
Ammonis 1 (CA1) and subiculum, as these contain the largest number of positi ve stained 
cells, and calculated the average percentage of stained cells per fi eld in three diff erent fi elds 
of CA1 and subiculum, each at 40x magnifi cati on. 

We used Mann-Whitney U test to examine the diff erence between AD EIF2AK3 carriers and 
non-carriers. All tests are two-sided signifi cant, and a p-value below 0.05 was assumed as 
being stati sti cally signifi cant.

Immunoblot analysis
Post-mortem fresh-frozen brain ti ssue of frontal cortex from three carriers of EIF2AK3
mutati ons (III:15 and III:18 from family NLAD 1 and III:7 from family NLAD 4, Supplementary 
Figure 1) and three AD cases were extracted from the frontal cortex with buff ers of increasing 
strength.36 Briefl y, grey matt er was extracted at 5 ml/g (volume/weight) with low salt buff er 
(10mM Tris, pH 7.5, 5mM EDTA, 1mM DTT, 10% sucrose, and a cocktail of protease inhibitors), 
high salt-Triton buff er (low salt + 1% TritonTM X-100 + 0.5M NaCl), myelin fl oatati on buff er 
(30% sucrose in low salt + 0.5M NaCl), and sarkosyl (SARK) buff er (1% N-lauroylsarcosine in 
low salt + 0.5M NaCl). The SARK insoluble material was extracted in 0.25 ml/g urea buff er (7M 
urea, 2M thiourea, 4% 3-[(3- cholamidopropyl) dimethylammonio]-1-propanesulphonate 
(CHAPS), 30mM Tris, pH 8.5). Proteins were resolved by 7.5% SDS-PAGE and transferred 
to PVDF membranes (Millipore). Following transfer, membranes were blocked with Tris 
buff ered saline containing 3% powdered milk and probed with the anti body p-PERK (sc-
32577, Santa Cruz). Primary anti bodies were detected with horseradish peroxidase-
conjugated anti -mouse or anti -rabbit IgG (Jackson ImmunoResearch), and signals were 
visualized by a chemiluminescent reacti on (Millipore) and the Chemiluminescence Imager 
Stella 3200 (Raytest).
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Results

Family based exome analysis of the discovery set
In our discovery analysis of 19 AD patients from eight families, we found an average of 91 (range 
26-136) candidate variants per family after filtering (Supplementary table 1). Combining the 
candidate variants of the eight families, we found 101 variants in 36 candidate genes, with 
some genes showing many variants shared among families (Supplementary Table 2). We 
excluded the MUC genes as potential candidate as these are reported as frequent hitters in 
many WES datasets.37 We selected the gene EIF2AK3, encoding for pancreatic endoplasmic 
reticulum kinase (PERK) as top candidate gene,7 based on its involvement in memory and 
learning, and on its neurodegenerative role in AD and other neurodegenerative diseases,12, 

38 

The first EIF2AK3 variant, p.R240H (rs147458427), was heterozygous in four affected 
individuals (including one with mild cognitive impairment) of family NLAD 1, and in one 
non-demented, 72-year old cousin of the proband (Supplementary Figure 1). This variant 
had a CADD score of 31 and a frequency of 8.00x10-04 in ExAC. The second EIF2AK3 variant, 
p.N286S (rs150474217), had a low CADD score of 0.002 and a frequency of 3.00x10-05 in 
ExAC, and was confirmed in four patients with AD from family NLAD 4 and in one non-
demented, 72-year old individual at last visit. One sibling with memory complaints and a 
normal Mini mental state examination score, did not carry the variant. Two of three patients 
with AD in family NLAD 4 carried homozygous APOE ε4; the third patient was heterozygous 
for APOE ε4. All patients were diagnosed with early onset AD. 

Sanger sequencing on the remaining variants in the 32 candidate genes shared among the 
eight families (MUC genes excluded) confirmed variants in 15 genes (Supplementary table 
2). Segregation analysis of the variants in these 15 genes in their respective family did not 
show perfect segregation for most variants; the segregation in some variants could not be 
tested due to limited samples from related individuals.

Evaluation of EIF2AK3 variants in Dutch cohorts
To determine the genetic association of EIF2AK3 in AD, we performed gene-based burden 
analysis of EIF2AK3 variants on the Dutch AD WES dataset. We detected 23 EIF2AK3 variants 
in this dataset (Figure 1 and Supplementary Table 3), of which 19 had an allele frequency 
<1% in ExAC; 17 of these rare variants were missense mutations. Burden test of all variants 
in EIF2AK3 with MAF <1% in ExAC showed an increased risk for AD (OR=1.84; 95%CI 1.07-
3.17, p=0.03). Single variant analysis showed more carriers of variant p.R240H in cases (OR = 
4.22; 95%CI 1.06 - 16.80, p=0.04), but the nominal significant did not sustain the Bonferroni 
correction (Supplementary Table 3). We then performed a second analysis with APOE as 
additional covariate showing the frequency of EIF2AK3-carriers with at least one copy APOE 
ε4 is 62% (16/26). The single variant analysis of p.R240H (OR=4.47, p=0.04) and the burden 
analysis (OR=1.9, p=0.025) were similar to the analysis without APOE as covariate. 

As the variant p.R240H showed a suggestive signal with a high CADD score, we genotyped 
this variant in an independent cohort from the Rotterdam study containing 1055 cases 
and 6162 controls. We found an increased frequency in AD cases compared to controls 
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(OR=3.03; 95%CI 0.78-11.48, p=0.10), and an associati on with AD aft er adjusti ng for APOE as 
additi onal covariate (OR=2.57; 95%CI 0.69-9.51, p=0.16), however, in both cases the results 
were not stati sti cally signifi cant.###12### 

 Figure 1. Schemati c representati on of EIF2AK3 gene and relati ve positi on of the EIF2AK3 variants found in the 
present study. The gene EIF2AK3 contains 1116 amino acids and is composed of a signal pepti de, a regulatory 
domain and a catalyti c domain. Variants highlighted in red are found in the family based analysis. 

Immunohistochemistry and immunoblot analysis
In our EIF2AK3 carriers, many neurons with positi ve staining for pPERK and peIF2α were 
seen in the hippocampus, as well as a low to moderate number of positi vely stained neurons 
in the frontal and temporal cortex (Table 2). The acti vated pPERK and peIF2α staining in 
neurons were punctate shaped and were located in the cytoplasm, as reported in previous 
studies (Figure 2A-F).34, 35 One carrier (III:18) from family 1 had severe neuronal loss in the 
CA regions and subiculum. Overall, the staining of peIF2α was more prominent than pPERK 
(Figure 2A,2D). All elderly non-demented controls showed a low to moderate degree of 
pPERK staining in the hippocampus. EIF2AK3 carriers had signifi cantly more positi ve staining 
than non-demented controls in the hippocampus (p=0.04) and temporal region (p=0.03). 
For peIF2α, a trend for more positi ve staining was only observed in the hippocampus of 
EIF2AK3 carriers compared to non-demented controls (p=0.07). We found no diff erence 
in all examined regions when comparing EIF2AK3 carriers with AD non-EIF2AK3 carriers; 
all EIF2AK3 carriers had Braak stages 6 with extensive tau pathology in the hippocampus, 
frontal, temporal and parietal corti ces. 

We used western blot analysis with a series of buff ers with increasing strength to solubilize 
proteins to investi gate biochemical alterati on of pPERK. One band of approximately 140 kDa 
in low salt, representi ng pPERK, was found in both EIF2AK3 mutati on carriers and AD cases. 
We found no diff erences in banding and solubility of pPERK between carriers of EIF2AK3 and 
AD non-EIF2AK3 carriers (Supplementary Figure 2). 
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Table 2. Scoring of inclusions for peIF2α and pPERK antibodies. 

peIF2α pPERK

ID
Braak 
stage

Age at 
death PMD Frontal Temporal Hippocampus Frontal Temporal Hippocampus

Carrier III:15 
(R240H) 6 83 5:30 - ++ ++++ - + +++

Carrier III:18 
(R240H) 6 91 4:20 + ++ +++ + + ++++

Carrier III:7 
(N286S) 6 70 6:20 + +++ ++++ + ++ ++++

 AD Non-
EIF2AK3 
carrier 1

5 95 7:00 + ++ ++++ - + +++

AD Non-
EIF2AK3 
carrier 2

5 62 4:40 + +++ ++++ - + +++

AD Non-
EIF2AK3 
carrier 3

5 71 5:50 + + ++++ - - +++

ND control 1 4 96 4:10 - ++ +++ - - ++

ND control 2 2 80 4:25 - ++ ++ - - ++

ND control 3 2 90 5:45 - + ++ - - +

Semiquantitative scoring of inclusions for peIF2α and pPERK for carriers with EIF2AK3 variants, Alzheimer’s disease 
non-EIF2AK3 controls and non-demented controls. -, negative; +, rare; ++, low density (up to 10%); +++, moderate 
density (11-30%); ++++, high density, >30%). AD, Alzheimer’s disease; ND, Non-demented; PMD, Post mortem 
delay
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###13### 

 

Figure 2. Immunohistochemical staining of pPERK and peIF2α in the AD cases with EIF2AK3 mutati ons. Acti vated 
pPERK and peIF2α was found in the hippocampus and temporal regions (A-F). High numbers of pPERK stained cells 
were observed in the cornu ammonis (A) and subiculum (B) of the hippocampus, and lesser numbers were found 
in the temporal cortex (C). Abundant neurons with peIF2α staining were also found in the hippocampus (D), and 
a moderate number of stained cells were found in the frontal cortex (E). Cytoplasmic peIF2α staining is punctate 
shaped (F), and is similar to the pPERK staining (B). Scale bars have been added to the fi gures.
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Discussion

This is the first study to investigate the role of rare variants in EIF2AK3 in patients with 
AD. We performed whole exome sequencing in eight Dutch families with a high burden of 
AD, and identified EIF2AK3 as a candidate gene in two families. Subsequently, gene based 
analysis in an independent Dutch WES cohort showed suggestive association of EIF2AK3 
with AD. These effects seemed to be mainly driven by variant p.R240H. Although pPERK and 
peIF2α staining was more prominent in EIF2AK3 carriers than in controls, it was similar to 
AD non-EIF2AK3 carriers. 

We identified two distinct variants in EIF2AK3 segregating with AD in two different families, 
although unaffected carriers found in each family suggested incomplete penetrance; 
however, they may still develop AD at an older age. The association of an EIF2AK3 variant 
with AD has been reported previously, wherein one SNP (rs7571971) in EIF2AK3 was 
associated with AD in APOE ε4 carriers, but not independent of APOE,39 however, to date, 
no studies have examined the association of rare variants in EIF2AK3 with the risk of AD. 
The gene burden test of EIF2AK3 in our Dutch AD exome dataset supported this association 
of rare variants with AD (p=0.03), in which it was mainly driven by the variant p.R240H with 
a CADD score of 31, but we were unable to confirm the association between p.R240H and 
AD in an additional cohort from the Rotterdam study, although there was a trend towards 
association with AD. A possible explanation for the lack of significance is the relatively small 
sample size for this rare variant. Notably, the high frequency of APOE ε4 carriers among the 
EIF2AK3 carriers in the two families and in the Dutch AD exome dataset further support 
an association of EIF2AK3 variant with AD in APOE ε4 carriers as indicated by Liu et al,39 
although similar results were found for the association tests with and without APOE as 
covariate. Studies with larger sample sizes are needed to examine the effects of rare variants 
in EIF2AK3 on the risk of developing AD.

The potential significance of EIF2AK3 variants in our families also lies in the fact that PERK 
is a transmembrane protein involved in learning, memory and unfolded protein response 
(UPR).20, 40 Our hypothesis was that variants in EIF2AK3 may enhance PERK signaling, 
resulting in increased phosphorylation of tau by glycogen synthase kinase 3β (GSK3β) and 
amyloidogenesis (by BACE1). Previous studies have indicated that PERK-eIF2α signaling is 
involved in the modulating of tau phosphorylation and APP processing in AD,35, 40, 41 but that it 
is also correlated with the level of tau pathology in Progressive Supranuclear Palsy and AD.34, 

35 pPERK immunoreactivity also colocalized with GSK3β in neuronal cells, which is involved in 
tau phosphorylation.35, 41 Treatment with a PERK-inhibitor (GSK2606414) in transgenic mice 
with frontotemporal lobar degeneration and overexpression of p.P301L mutation resulted in 
reduced GSK3β-levels and tau phosphorylation compared to transgenic mice without PERK 
inhibitor treatment.42 Moreover, PSEN1 (5XFAD) mutated mice with PERK haploinsufficiency 
had lower levels of Beta-secretase 1 (BACE1) than those with normal PERK levels, resulting 
in lower amyloid-beta peptides levels and plaque burden, as well as fewer memory deficits 
and cholinergic neurodegeneration.40 Reduced synaptic plasticity and spatial memory 
deficits were found in APP/PS1 AD model mice with PERK happloinsufficiency.43 Although 
these studies supported a role of PERK signaling in the pathogenesis of AD, functional 
experiments are needed to confirm the effect of EIF2AK3 variants. 
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The increase of PERK-eIF2α signaling in the EIF2AK3 carriers is supported by the more 
positi ve staining of pPERK and peIF2α compared to non-demented controls, indicati ng 
an increased acti vati on of UPR. This increased UPR has also been observed in AD and PSP 
pati ents in previous studies.34, 44 However, we did not fi nd any diff erences in pPERK and 
peIF2α staining between EIF2AK3 carriers and AD non-EIF2AK3 carriers, suggesti ng EIF2AK3
mutati on carriers might not induce more UPR acti vati on than other AD pati ents. A possible 
explanati on is that EIF2AK3 mutati on carriers may trigger UPR acti vati on early in the disease 
process, without the ability to observe this at the end stage AD. 

The main limitati on of our study is the family-based analysis used to identi fy the candidate 
genes; we only selected genes containing rare variants in at least two families for follow-up. 
We cannot rule out the possibility that other possible candidates in the families were missed. 
However, this method has previously been successfully used by Cruchaga et al, resulti ng in 
the identi fi cati on of the geneti c associati on of PLD3 with AD.14 Furthermore, EIF2AK3 was 
the only gene in our candidate list involved in the pathogenesis of AD. Another limitati on 
is the limited available samples of related cases and (old) non-demented controls in some 
families to analyze segregati on; some non-demented controls may sti ll develop dementi a at 
older age. Finally, the frequency of APOE ε4 is high in some families, and APOE ε4 segregates 
with the disease in some of them. This is also true for family 4, in which variant p.N285S 
was found; four pati ents and one individual with memory complaints carried at least one 
copy of APOE ε4. However, all four pati ents carrying p.N285S and APOE ε4 had early onset 
AD, indicati ng a possible additi onal eff ect of geneti c variati on in EIF2AK3 on the risk of AD 
among APOE ε4 carriers, as indicated in a previous study.39 Future analyses in larger case-
control studies are necessary to confi rm this associati on.

In conclusion, our study showed that rare variants in EIF2AK3 may be associated with an 
increased risk of AD based on segregati on among the pati ents with AD in two families and 
a gene-based analysis in the Dutch WES cohort. Immunohistochemistry confi rmed more 
acti vati on of UPR, characterized by increased pPERK and peIF2α in AD pati ents compared 
to non-demented controls, but not between EIF2AK3 carriers and AD non-carriers. Further 
studies are needed to investi gate the full contributi on of rare variants in EIF2AK3 in the 
development of AD.
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Abstract

Background: A large number of analysis strategies are available for DNA methylation (DNAm) 
array and RNA-seq datasets, but it is unclear which strategies are best to use. We compare 
commonly used strategies and report how they influence results in large cohort studies.

Results: We tested the associations of DNAm and RNA expression with age, BMI and 
smoking in four different cohorts (n=~2,900). By comparing strategies against the base 
model on the number and percentage of replicated CpGs for DNAm analyses or genes 
for RNA-seq analyses in a leave-one cohort out replication approach, we find the choice 
of normalization method and statistical test does not strongly influence the results for 
DNAm array data. However, adjusting for cell counts or hidden confounders substantially 
decreases the number of replicated CpGs for age and increases the number of replicated 
CpGs for BMI and smoking. For RNA-seq data, the choice of normalization method, gene 
expression inclusion threshold and statistical test does not strongly influence the results. 
Including five principal components or excluding correction of technical covariates or cell 
counts decreases the number of replicated genes.

Conclusions: Results were not influenced by normalization method or statistical test. 
However, the correction method for cell counts, technical covariates, principal components 
and/or hidden confounders does influence the results.
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Background

Epigenomics and transcriptomics are important tools to investi gate molecular mechanisms 
of disease eti ology. Unlike the genome, the epigenome and transcriptome are dynamic and 
diff er across ti ssues and over ti me [1-4]. 

Consequently, an epigenome-wide or transcriptome-wide associati on study (EWAS or 
TWAS, respecti vely) is infl uenced by more biological and technical factors than a genome-
wide associati on study (GWAS). As a result, EWAS and TWAS methods are less standardized 
and do not always present the same results. For example, EWASs comparing current 
smokers with never smokers resulted in diff erent signifi cant CpGs and diff erent numbers of 
signifi cant CpGs per study, independent of sample size [5-15]. Similarly, TWASs comparing 
current smokers with never smokers found diff erent numbers of associated genes [16-
19]. Although these studies took place in diff erent populati ons, they also used diff erent 
analyti cal strategies, which could explain part of the variati on in results.

For DNA methylati on (DNAm) array data, previous studies compared diff erent normalizati on 
methods [20-24]. Wu et al. concluded that most normalizati on methods performed 
similarly in associati on analyses when there was a strong associati on between CpGs and 
the exposure of interest [20]. To investi gate the performance of DNAm values, Du et al. 
compared the use of beta-values with M-values in two samples and concluded that M-values 
had bett er stati sti cal properti es, whereas beta-values were more biologically interpretable 
[25]. Furthermore, white blood cell (WBC) counts are oft en used as important confounder 
adjustments for EWASs in whole blood. Cell counts esti mated using the Houseman method 
[26] are commonly used when measured cell counts are not available. However, since the 
Houseman method is based on only six reference individuals [27], thorough investi gati on of 
this method based on large-scale DNAm data is needed. Lastly, principal components (PCs), 
surrogate variables (SVs) or unobserved covariates (also known as hidden confounders (HCs)) 
are commonly used methods to adjust for unmeasured hidden (technical or biological) 
confounders. Esti mati on of HCs using CATE has been suggested to outperform covariate 
adjustment using PCs or SVs [28, 29].

For RNA sequencing (RNA-seq) data, Li et al compared a range of normalizati on methods, 
and concluded that the commonly used opti ons (e.g. DESeq/edgeR) provided the highest 
accuracy at the cost of decreased sensiti vity compared to opti ons with more specifi c 
applicati ons [30]. When suffi  cient replicates (n > 4) per group were used, all methods 
performed similarly. Li et al also compared normalizati on methods and concluded that 
commonly used opti ons performed similarly, although some specifi c methods performed 
bett er for short (35bp) read lengths and/or when alignment quality was low [30]. Several 
studies focused on other aspects of the analysis procedure such as the gene database used 
for quanti fi cati ons (i.e. RefSeq, UCSC and Ensembl) or sequencing platf orm and fl owcell 
eff ect on results [31-33]. However, a comprehensive examinati on of multi ple steps and 
combinati ons of analysis opti ons is sti ll lacking.

Most of these previous studies focused on a specifi c aspect of the procedure using simulated 
data or small datasets. To provide a complete evaluati on of analysis strategies, we analyzed, 
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replicated and compared analysis strategies composed of commonly used normalization, 
correction and association options in four large population-based datasets of the BIOS 
project, which have both DNAm array and RNA-seq data available [34, 35]. Because of this 
design, we can replicate results across cohorts and evaluate analysis strategies based on their 
replication performance. Our evaluation will help researchers select the optimal strategy 
and reduce unnecessary variation across studies. In addition, information about strategy 
differences will be helpful when comparing studies where different analysis strategies are 
used.
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Results

Table 1 shows phenotypic characteristi cs for the four cohorts analyzed. To accommodate the 
diff erences in characteristi cs of the cohorts, cohorts were meta-analyzed. Figure 1 shows the 
various analysis strategies under evaluati on. We selected a base model for DNAm and RNA-
seq analysis comprised of one opti on in each category. Then, per category we swapped the 
opti on in the base model with an the alternati ves and evaluate the replicati on performance 
against the base model. The categories for DNAm were; A) DNAm value preprocessing, B) 
Stati sti cal test, C) Cell counts, D) Hidden confounders. The categories for RNA-seq were; A) 
Normalizati on method, B) Expression inclusion threshold, C) Stati sti cal test, D) Technical 
Covariates.

Table 1. characteristi cs of the four main cohorts at ti me of blood draw. All entries represent averages with standard 
deviati ons unless otherwise indicated. 

Phenotypes DNA methylati on RNA-seq

LL LLS NTR RS LL LLS NTR RS LL LLS NTR RS

n=761 n=790 n=1,866 n=768 n-741 n=712 n=735 n=762 n=740 n=579 n=882 n=628

Age 45 ± 13 58 ± 8 37 ± 14 68 ± 6 46 ± 13 59 ± 7 40 ± 15 68 ± 7 45 ± 13 59 ± 7 38 ± 15 69 ± 6

Sex (%male) 0.42 0.48 0.33 0.43 0.42 0.48 0.35 0.43 0.42 0.47 0.35 0.43

Smoking 
(%current)

0.15 0.11 0.19 0.10 0.15 0.12 0.19 0.10 0.15 0.13 0.18 0.09

BMI 25 ± 4 25 ± 4 24 ± 4 28 ± 4 25 ± 4 25 ± 3 25 ± 4 28 ± 4 25 ± 4 25 ± 3 25 ± 4 28 ± 4

Lymp
(%of cells)

34 ± 8 29 ± 7 35 ± 9 36 ± 8 35 ± 7 29 ± 7 35 ± 9 36 ± 8 34 ± 8 29 ± 7 35 ± 9 36 ± 8

Mono
(%of cells)

9 ± 2 5 ± 2 8 ± 3 7 ± 2 9 ± 2 6 ± 2 8 ± 3 7 ± 2 9 ± 2 6 ± 2 9 ± 3 7 ± 2

Gran
(%of cells)

57 ± 8 63 ± 7 56 ± 9 57 ± 8 57 ± 8 63 ± 7 57 ± 9 57 ± 9 57 ± 8 63 ± 7 56 ± 9 57 ± 8

Each analysis strategy was meta-analyzed across three cohorts and replicated in the fourth, 
in all four combinati ons (the so-called “leave-one-out method”). Both meta-analysis and 
replicati on were defi ned by Bonferroni correcti on (p< 0.05) for the number of CpGs/genes 
tested. Below, we fi rst describe the performance of the base model for methylati on and 
expression data. Then we describe, per category, how the various opti ons aff ected the 
number of replicated signals (as a measure of sensiti vity) and percentage of replicated 
signals (as a measure of true-positi ve rate in the discovery) and the overlap of signifi cant 
CpGs/genes between analysis strategies. All results are Bonferroni corrected.
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Figure 1a. Overview of DNA methylati on analysis steps and commonly used opti ons. We identi fi ed four steps in the 
procedure which oft en vary in literature; A) DNAm value preprocessing, B) Stati sti cal test, C) Cell count correcti on, 
D) Hidden confounder correcti on. We selected one combinati on of opti ons and then varied these a single step at 
the ti me. These models were applied to age, BMI and smoking. Each model was meta-analyzed in each combinati on 
of three discovery and one replicati on cohorts. Average replicati on rate and number of replicated genes of these 
four analyses were used to evaluate strategies. The base model is connected by the black line and includes Beta-
3IQR dataset, an LM model, measured cell counts correcti on, known technical confounder correcti on (TCs) (plate 
and row) and applying Bonferroni correcti on. HCs: hidden confounders, calculated aft er regressing out technical 
covariates (2), cell-counts (3) or both (4).
Figure 1b. Overview of gene expression analysis steps and commonly used opti ons. We identi fi ed four steps in 
the procedure which oft en vary in literature; A) Normalizati on, B) Expression, C) Tests and D) technical covariates. 
We selected one combinati on of opti ons and then varied these a single step at the ti me. These models were 
applied to age, BMI and smoking. Each model was meta-analyzed in each combinati on of three discovery and one 
replicati on cohorts. Average replicati on rate and number of replicated genes of these four analyses were used to 
evaluate strategies. The base model is connected by the black line; Voom normalizati on, including all genes, a LM 
for stati sti cal analysis, including technical covariates and cell-counts and applying Bonferroni correcti on.
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DNA methylati on strategy performance
The base model included using normalized beta values and removing outliers based on the 
three interquarti le range strategy (beta-3IQR), a linear model (LM), measured cell counts 
and technical covariates, as described in more detail in the methods. This resulted in an 
average of 30,275 signifi cantly replicated CpGs for age (range 4,621 - 59,087), 6 replicated 
CpGs for BMI (range 5 - 7) and 217 replicated CpGs for smoking (range 168 - 279). The 
corresponding replicati on rates were on average 40% for age (range 5% - 93%), 52% for BMI 
(range 23% - 86%) and 31% for smoking (range 20% - 47%). All summary results are shown 
in fi gure 2a, fi gure 3a and Additi onal fi le 3. Below we describe per category how diff erent 
opti ons infl uenced these results.

A. DNAm value preprocessing: For age, all normalizati on methods showed similar 
replicati on rates and slightly higher replicati on number compared to the base model. 
The same was observed for smoking, except that the RIN method performed more 
similar to the base model than the beta, M or M-3IQR methods. The replicated number 
and rate of CpGs were largely the same across methods. For BMI, given the small 
numbers of CpGs (e.g. 6 for the base model), it was diffi  cult to robustly compare results. 

B. Stati sti cal tests: Compared to the base model, a linear mixed model (LMM) reported a 
slightly higher number of replicated hits for age and smoking. The robust linear mixed 
model (RLMM) reported lower numbers of replicated CpGs for age and similar number 
of replicated CpGs for smoking. Replicati on rates were nearly identi cal to the LM base 
model for all exposures. The replicated CpGs were shared across methods.

C. Cell count adjustment: Without correcti on for cell counts, fewer replicated CpGs were 
found for age (83% compared to the number of replicated CpGs in the base model), 
but no diff erences were seen for BMI and smoking (Figure 2a). For age, adjusti ng for 
Houseman imputed cell counts substanti ally decreased the number of signifi cantly 
replicated CpGs; Houseman6 resulted in 18,368 CpGs for age (61% of the base model) 
and Houseman3 resulted in 10,678 CpGs for age (35% of the CPGs compared to the 
base model). The replicati on rate with Houseman6 was similar as compared to the base 
model, but Houseman3 resulted in a slightly lower replicati on rate as compared to the 
base model. For smoking, using Houseman imputed cell counts resulted in a slightly 
higher number of replicated CpGs; Houseman6 resulted in 243 CpGs (112% compared 
to the base model), while Houseman3 resulted in 259 CpGs (119% compared to the 
base model). When examining the overlap between the CpGs in the diff erent cell count 
adjustment strategies across all 4 cohorts (fi gure 3a) for smoking, we observed that a 
total of 652 CpGs were common for all cell count adjustment methods. In additi on, a 
relati vely large number of CpGs were only observed by Houseman6 and 3, respecti vely 
(312 and 220 CpGs). 
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Correcti on for Hidden Confounders (HCs): HCs were calculated in three additi onal models 
(model 1 being the base model); model 2) HCs independent of the described covariates, but 
not measured diff erenti al cell counts; model 3) HCs independent of the described covariates, 
but not known technical covariates; model 4) using HCs independent of the exposure of 
interest, age, sex, known technical covariates and measured diff erenti al cell counts. For age, 
adjusti ng for 5 HCs resulted in a decreased number of signifi cantly replicated CpGs: 7,509 in 
model 4 (25% compared to the base model), 6,054 in model 3 (20% compared to the base 
model) and 3,621 in model 2 (12% compared to the base model). In contrast, for BMI and 
smoking, these three HCs models showed an increase in number of signifi cantly replicated 
CpGs: 8, 9 and 10 for BMI and 297 (137% of the base model), 311 (143% of the base model) 
and 325 (150% of the base model) for smoking in models 4, 3 and 2, respecti vely. Thus, for 
age, a large number of CpGs were not detected when correcti ng for HCs, while for smoking 
and BMI, a number of CpGs were found only when using HCs correcti on. The replicati on 
rates were very similar across all models.

###15###
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Figure 2a. The number (x-axis) and percentage (y-axis) of replicated CpGs for age, BMI and smoking (shown in 
columns). Per row, each step of the analysis strategy is displayed. The yellow model is the reference model and 
remains the same in each column and row: Beta-3IQR dataset, standard linear model (LM), measured cell counts 
correcti on and known technical confounders (bisulfi te conversion plate and array row) correcti on (TCs). The circles 
are average Bonferroni-corrected replicati on results. The bars indicate the range of the four leave-one-out analyses. 
In each row, the other (non-yellow) colors represent alternati ve opti ons: A) Datatypes: Beta without exclusion of 
outliers in green, M-values in red, M-values with outlier exclusion using the 3IQR method in blue and RIN in purple. 
B) Stati sti cal models: linear mixed models (LMM) in green and robust linear mixed models (RLMM) in red. C) Cell 
count adjustment: Houseman6 in green, Houseman3 in red and none in blue (see methods for details) D) Hidden 
confounders (HCs) correcti on; Model 1 in purple, Model 2 in green and Model 3 in red (see methods for details).
Figure 2b. The number (x-axis) and percentage (y-axis) of replicated genes for age, BMI and smoking (shown in 
columns). Per row, each step of the analysis strategy is displayed. The yellow model is the reference model and 
remains the same in each column and row: Voom normalizati on, including all genes, standard linear model (LM), 
correcti ng for technical covariates (TC) and cell counts (CC). The circles are average Bonferroni-corrected replicati on 
results. The bars indicate the range of the four leave-one-out analyses. In each row, the other (non-yellow) colors 
represent alternati ve opti ons: A) Normalizati on methods: DESeq normalizati on in blue and edgeR in red. B) gene 
inclusion: removing very low-expressed genes (blue), low-expressed genes (red) or medium-expressed genes 
(green). C) Stati sti cal models: A limma linear model Fit in red (limma), a standard GLM in blue and the edgeR GLM 
adaptati on in green. D) Covariates: correcti ng solely for technical covariates (TC; blue) or cell-counts (CC; red) or 
replacing both for the fi rst 5 principal components (5PCs; green), the last opti on is by adding 5 hidden confounders 
(HCs) to the technical covariates and cell counts (5HCs; purple).
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RNA sequencing strategy performance
The base model (Voom normalization, no expression inclusion threshold, LM, technical 
covariates and measured cell counts) resulted on average in 842 significantly replicated 
genes for age (range 610 - 1082), 881 replicated genes for BMI (range 651 - 1029) and 354 
replicated genes for smoking (range 268 - 409). The corresponding mean replication rates 
were 54% for age (range 28% - 80%), 55% for BMI (range 30% - 74%) and 51% for smoking 
(range 30% - 69%). Below we describe per category how different options influenced these 
results, as available in Additional file 3 and shown in figures 2b and 3b.

A.	 Normalization method: The DESeq and edgeR normalization methods reported slightly 
lower number of replicated genes with the same replication rate compared to the base 
model (93% and 91% of the base model, respectively). The normalization method did 
not influence which genes were replicated. This pattern was observed for all three 
exposures.

B.	 Gene expression inclusion criteria: Including low (average CPM > 1 in 20% of samples) 
and higher expressed genes (1.low) or medium (average CPM > 1) and higher expressed 
genes (2.med) provided slightly more replicated genes for age (both 107% compared 
to the base model) at a similar replication rate. The most stringent threshold (3. hi) 
also resulted in a similar replication number (98% compared to the base model) and 
percentage (98% compared to the base model). Mostly the same genes were replicated 
regardless of the inclusion threshold.

C.	 Statistical tests: limma’s linear model fit (limma) test resulted in slightly more replicated 
genes, at the cost of a lower replication rate (lower specificity). The glmQLF test from 
edgeR showed a lower number of replicated genes. GLM showed nearly the same 
results as the base model. These findings were consistent across the exposures, with 
smaller differences for BMI.

D.	 Covariates: For age, correcting solely for technical covariates or cell-counts resulted 
in a large increase (119% compared to the base model) in replicated genes. For BMI 
and smoking, the number of replicated genes, as well as the replication rate decreased 
when removing these covariates. Correcting for five principal components instead of 
technical covariates or cell-counts decreased the number of replicated signals to 51%, 
53% and 46% of the base model for age, BMI and smoking, respectively. Similarly the 
replication rate decreased to 87%, 96% and 96% for age, BMI and smoking compared 
to the base model, respectively. Conversely, five hidden confounders added to the 
technical covariates and cell-counts in the base model increased the replication 
number to 100.4%, 114% and 101.4% compared to the base model for age, BMI and 
smoking, and increased the replication rate to 107%, 103% and 103% of the base model 
for age, BMI and smoking, respectively. In addition to finding fewer replicated genes 
after PC correction, the identified genes were not the same as the base model, and 
other methods did not observe these genes. Similarly when adding five HCs, many 
genes identified in the model with HCs were not observed in the other models, but the 
difference was smaller than for the model including PCs.
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FDR instead of Bonferroni correction
In addition to the comparisons described above, all analyses were also repeated using FDR 
correction in the discovery analysis instead of Bonferroni correction. All analyses using 
FDR showed a higher number of replicated CpGs and genes, at the cost of a much smaller 
replication rate. For example, for the base model for age, 30,275 CpGs and 842 genes 
were replicated at replication rates of 40% and 47%, respectively, when using Bonferroni 
correction. When using FDR correction, the number of CpGs increased by 18% and the 
replication rate decreased by 18%. Similarly, the number of genes increased by 98% and the 
replication rate decreased by 20%.

METAL or GWAMA for meta-analysis
As the GWAMA tool requires input that is not provided by some RNA expression statistical 
methods, we opted to use only METAL for the RNAseq analysis. For those RNAseq models 
where both could be run; the results were identical.

Evaluation using different p-value cut-offs
The results for additional p-value cutoffs (FDR, uncorrected <1x10-8 and uncorrected <0.05) 
are available in Additional files 2 and 3. Less stringent cutoffs led to an increase in absolute 
numbers of replicated signals but at a decreased relative replication rate for both DNAm and 
RNAseq. Most models responded similarly to this change and the respective performance 
between methods did not change.

For BMI and smoking in the DNAm analyses, the lowest threshold P < 0.05 showed fewer 
replicated CpGs as compared to the other three thresholds. This was caused by a 333-fold 
increase of significant CpGs in discovery meta-analysis for BMI and an 8.6-fold increase for 
smoking when we used lowest threshold in comparison to FDR threshold. In contrast, the 
discovery meta-analysis showed only a 1.12-fold increase of significant CpGs for age. As 
a result, the Bonferroni threshold for replication was strongly increased, and most of the 
previously replicated CpGs did not survive this threshold.

For the normalization options (A) and covariate correction options (D) in RNAseq analyses, 
the respective differences between the options were unchanged depending on p-value 
cutoff. For the gene inclusions thresholds (B), it showed that including only the most highly 
expressed genes yields a slightly higher replication rate using the uncorrected p-value 
threshold. For the statistical test comparison (C), using lower p-value thresholds (FDR and 
uncorrected) provided a more pronounced difference between the models.

Categorical analyses for age and BMI
For DNAm and RNAseq, when we used age/BMI as categorical instead of continuous 
exposures, the differences between methods remained largely the same. However, the 
categorical models consistently resulted in a lower number and percentage of significantly 
replicated CpGs/genes as compared to the continuous models. The only exception was in the 
hidden confounders (HCs) correction model for age, where the categorical models resulted 
in larger number of significantly replicated CpGs/genes as compared to continuous models.
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Discussion

We evaluated commonly used analysis strategies for populati on-based datasets for DNA 
methylati on and RNA sequencing in almost 3,000 parti cipants from four Dutch cohorts. For 
each step in the analysis procedure, we compared commonly used opti ons and reported 
their infl uence on the exposure of interest. These results will aid in comparing studies 
with diff erent analysis strategies and can help in the choice between alternati ve analysis 
strategies.

The four included cohorts diff ered on some important parameters (e.g.; age). As a combined 
dataset would not have easily been able to disti nguish true age-eff ects from batch eff ects 
between age-diff ering cohorts, we decided to run cohort-level analyses fi rst and then 
meta-analyze the datasets, as is commonly done in meta-analyses of ‘omics’ data [36]. As 
these exposure-diff erences will also result in diff erent power between cohorts for each 
exposure, we meta-analyzed each combinati on of three cohorts and replicated in the fourth 
[37]. Therefore, when a cohort of low power for a exposure performs poorly as replicati on 
cohort, while a powerful cohort for that exposure replicated many signals, these eff ects 
were averaged out and provided a reasonable aggregated performance of each strategy 
[38].

For DNA methylati on data, our evaluati on lead to the following considerati ons/
recommendati ons;

DNAm value preprocessing: There were no large diff erences between the diff erent 
methylati on values. We suggest to use beta-3IQR in order to avoid spurious fi ndings based 
on DNA methylati on outliers, but we do not expect another opti on to have a large infl uence 
on the results.

Stati sti cal tests: The theoreti cal advantage of using an RLMM over LM or LMM is considered 
to be that it is less sensiti ve to exposure and methylati on outliers and heteroscedasti city. 
However, LM, LMM and RLMM provided nearly identi cal results, and the analysis running 
ti me for RLMM is considerably longer. Therefore, LM or LMM approaches might be preferred 
as they are simple and widely used base-R functi ons.

Cell count adjustment: Beforehand we expected that diff erenti al cell counts are a major 
infl uence on DNA methylati on data measured from whole blood [27]. Indeed, we observed 
large infl uence of cell counts on age, but not on BMI or smoking. These results were in 
line with previous work which also found that adjusti ng or not adjusti ng for blood cell 
counts had no substanti al impact on EWASs of BMI and smoking [39]. For all exposures, 
we observed infl uence of Houseman6/3 cell counts on the analysis, with a larger deviati on 
from the measured cell counts (base model) for Houseman3 than Houseman6. Therefore, 
we recommend the adjustment for measured cell counts if available. If not, the Houseman6 
esti mated six cell counts could be used for exposures other than age.

Correcti on for HCs: Adjusti ng for 5 HCs substanti ally infl uenced the results. For age, adjusti ng 
for 5 HCs substanti ally decreased the number of replicated CpGs. For BMI and smoking, 
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adjusting for 5 HCs seemed to improve the results by improving the number of replicated 
CpGs. Therefore, for exposures other than age, adjusting for HCs is highly recommended in 
order to remove unknown variation from the data. 

For RNA expression data, our evaluation lead to the following considerations/
recommendations;

Normalization method: There was no large influence of normalization methods. The Voom 
method resulted in slightly more replicated genes and is recommended.

Gene expression inclusion threshold: The gene inclusion threshold displayed minimal 
influence on the results. To be complete, it is suggested to include and report all genes in 
the dataset.

Statistical method: In our datasets, the standard LM/GLM models performed similarly to the 
custom limma/edgeR methods. However, it is possible that datasets of smaller sample sizes 
(e.g. fewer than 20 samples) benefit more from the custom methods. For larger datasets, the 
standard, widely-used LM and GLM are easier to use and could provide easier compatibility 
with other applications (e.g. meta-analysis).

Covariates: In our results, correcting for PCs did not improve performance, and is not 
recommended when technical covariates and/or cell counts are available. In our datasets, 
the PCs correlated to the technical covariates, cell counts and in some occasions to the 
exposures (mostly age), this likely led to overcorrection when PCs where added on top of 
these covariates. Correcting for 5 hidden confounders on top of the base model improved 
the results for all exposures, and is recommended to use. When doing so, care should 
be taken that the hidden confounders are not correlated to the exposure of interest (or 
a confounder which is correlated to the exposure) which could remove true results. At 
current, adjusting for confounders using HCs is not standard practice in RNA-seq analysis, 
but should be implemented more widely based on these findings. Additionally, we did not 
use the Bacon package to correct for inflation of test statistics, as this is not yet widely used 
for RNAseq data. However, applying bacon correction on RNAseq data is becoming more 
common and should be considered in future RNAseq studies [29].

Evaluation using different p-value cut-offs
For all models, we observed a balance with more stringent p-value cutoffs resulting in fewer 
replicated signals, but a larger replication rate. In general, we recommend using Bonferroni 
corrected p-values with a cutoff of p < 0.05. The FDR corrected p-values can provide an 
alternative. Decreasing the p-value threshold stringency always leads to increased false 
positives and thus a lower replication rate. Using uncorrected p-value cutoffs (whether 
nominal 0.05 or a too conservative 1E-8) is not recommended. 

For DNAm, the differences between methods were similar for all thresholds, and the main 
conclusions did not change. For RNAseq, these results further show that the GLM and edgeR’s 
glmQLF models are more conservative (lower number but higher percentage of replicated 
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signals) while limma’s linear model fi t is more liberal (higher number but lower percentage 
of replicated signals) compared to the base model. The LM model is sti ll recommended.

Categorical analyses for age and BMI
To assess whether strategies are infl uenced by the conti nuous or categorical defi niti on of 
the exposure, we analyzed age and BMI both as conti nuous and categorical (i.e. highest 
versus lowest terti les) exposures of interest. All models responded similarly to the 
categorical exposure in comparison to the conti nuous exposure, showing lower number and 
percentage of replicated signals, indicati ng lower power for categorical exposures. For both 
DNAm and RNAseq analyses, we observed diff erences in performance between models 
only with HCs correcti on. The models with 5 HCs for age performed worse when we used 
age as a categorical variable with highest vs lowest terti les and excluded the middle terti le. 
Likely, these results indicate that HCs are insuffi  ciently adjusted for age when it is included 
as a categorical variable (compared to conti nuous). Overall, these results seem robust for 
categorical/conti nuous exposure defi niti ons, but do emphasize that HCs correcti on may be 
challenging when working with categorical exposures.. For conti nuous variables and most 
categorical variables (e.g. BMI terti les and smoking), using HCs performed best and is sti ll 
recommended.

Although most of the diff erences we observed between strategies were consistent across 
exposures and cohorts, these results might not be applicable to all other DNAm array or 
RNA-seq studies. For example, we have studied three exposures for which we could observe 
relati vely large diff erences in blood methylati on or expression, with the excepti on of BMI 
in methylati on. We observed diff erences in performance between exposures, for example 
when correcti ng for diff erent cell counts, HCs or PCs in age, or the low number of replicated 
CpGs for BMI. As such, a universally opti mal model could not be defi ned and performance of 
these diff erent strategies needs to be confi rmed for other exposures. However, performance 
diff erences between many strategies were consistent across exposures (specifi cally BMI and 
smoking), individual cohorts and DNAm/RNA-seq datasets, and will likely hold even in other 
exposures or datasets. 

In this study, we have compared multi ple analysis strategies on four cohorts and suggested 
a base model to reduce heterogeneity between studies. The most ideal validati on would 
be to re-analyze a number of published studies using this opti mal model and demonstrate 
a decrease in heterogeneity between results of previous analyses and those with the 
new model. However, to our knowledge, for none of the studies we investi gated this was 
possible, due to lack of publically available phenotypic informati on or lack of publically 
available individual level DNAm/RNAseq data. As it may not always be possible to share such 
data publicly, this further shows the need for more standardized DNAm/RNAseq methods, 
so results between studies can be compared more easily.

Similarly, we studied four relati vely large populati on-based studies. Results obtained from 
smaller studies, or other types of populati ons, for example pati ents or samples of extreme 
exposures, might yield diff erent results and require alternati ve strategies. These comparisons 
were beyond the scope of our study, which focused on commonly used strategies. Our results 
might be most generalizable to populati on-based DNAm and RNA-Seq studies. Finally, our 
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study lacked a gold standard, which will have limited our ability to distinguish strategies 
with many false positives from strategies with a high sensitivity. Despite these factors, we 
evaluated the consistent influences of analysis strategies and options, and reported analysis 
suggestions for both datatypes. We hope that these results will aid other researchers in 
selecting an appropriate analysis strategy and/or in evaluating the impact, a certain strategy 
might have had on the observed results.

Conclusions

Based on our findings, for DNA methylation studies we recommend to correct for measured 
cell counts when available and include additional hidden confounders (independent of cell-
counts and technical covariates) in the statistical model. We suggest using Beta-3IQR values 
and the LM statistical test for DNAm studies, although alternatives will yield similar results and 
can also be used. For RNA sequencing studies, we recommend using hidden confounders in 
addition to technical covariates and measured cell counts. The use of principal components 
is not recommended. We recommend using the Voom normalization method, and suggest 
to include all genes in the analysis (independent of expression level). Finally we suggest 
using a LM or GLM statistical model for large studies and a custom method like limma/
edgeR for smaller studies. Our results show a large difference in replication results between 
cohorts, and therefore using replication in DNAm or RNA-seq analysis is also recommend.
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Methods

Data generati on
Generati on of the BIOS gene expression dataset was described previously [34, 35]. In short, 
DNA and RNA were collected from 3,296 unrelated parti cipants of six Dutch populati ons 
as described below. Analyses were restricted to four large cohorts; LifeLines (LL), Leiden 
Longevity Study (LLS), Netherlands Twin Register (NTR) and Rott erdam Study (RS). We 
included 2,950 parti cipants with DNAm array data and 2,829 parti cipants with RNA-seq 
data. Characteristi cs for these cohorts are described in table 1.

DNA methylati on data
Whole blood was used to isolate genomic DNA. 500 ng of genomic DNA was bisulfi te 
converted using the EZ DNA Methylati on kit (Zymo Research, Irvine, CA, USA). Methylati on 
profi ling was then performed using Infi nium Illumina HumanMethylati on 450k arrays 
according to the manufacturer’s protocol. Quality control of the samples was performed 
using MethylAid [40]. Probes with either a high detecti on P value (> 0.01), low bead count (< 
3 beads), or low success rate (missing in > 5% of the samples) were set to missing. Samples 
were excluded from the analysis if they contained an excess of missing probes (> 5%). 
Imputati on was performed per cohort, subsequently, to impute the missing values [41]. The 
raw beta-values were normalized using functi onal normalizati on [22] as implemented in the 
minfi  package [42]. The normalized beta-values were log2 transformed to produce M-values 
[42].

RNA-seq data
Total RNA was derived from whole blood, depleted of globin transcripts using Ambion 
GLOBINclear and subsequently processed using the Illumina TruSeq v2 library preparati on 
kit. On average 40 million paired-end reads of 50bp were generated per parti cipant using 
illumina’s Hiseq 2000. Samples were demulti plexed using CASAVA and aligned to the hg19 
reference genome using STAR [43]. Alignments were sorted, read groups were added using 
picard [44] and gene expression was quanti fi ed using featureCounts [45]. We selected 
parti cipants for which all covariates were available (sex, age, BMI, smoking status and 
measured cell counts). Raw count matrices per cohort were used for analysis.

Base model and analysis
The main steps in epigenomic and transcriptomic analyses oft en vary between studies, as 
shown in fi gures 1a and fi gure 1b, respecti vely. First, we compiled a base model with a single 
opti on from each step in fi gure 1a and 1b. These opti ons were then replaced, one at a ti me, in 
the various analysis strategies. These strategies were applied to three exposures of interest 
(age, BMI and smoking status) in each cohort (LL, LLS, NTR and RS). Every combinati on of 
three discovery cohorts was meta-analyzed and replicated in the remaining cohort (leave-
one-out method). The average number and percentage of replicated CpGs/genes were 
calculated from these four results and were used to evaluate the performance of each 
strategy. Age, sex, measured percentages of WBC counts (granulocytes, lymphocytes and 
monocytes) and technical covariates specifi ed below, were included as covariates unless 
specifi ed otherwise. Replicati on analyses were always Bonferroni corrected. Meta-analyses 
was performed using GWAMA (DNAm array data) [46] or METAL (RNA-seq data) [47].
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DNA methylation array specific analysis strategies
The technical covariates used for each DNAm array analysis were bisulfite conversion plate 
and array row. All analyses were corrected for inflation and bias using the Bacon package 
[29], which estimates empirical null distribution using the Bayesian method. The following 
steps were investigated in detail (see figure 1a).

A.	 Methylation values: We investigated five types of DNAm values, namely (1) beta 
values, representing the percentage of methylation between 0 (unmethylated) and 
1 (methylated) [25]; (2) beta-3IQR values, where beta values of outlier samples per 
methylation CpG were removed (replaced with NAs) using the 3 interquartile range 
(IQR) strategy, i.e. any beta value below quartile (Q)1 – 3×IQR or above Q3 + 3×IQR 
was removed [48]; (3) M-values, calculated as the log2 ratio of the methylated probe 
intensity and unmethylated probe intensity [49]; (4) M-3IQR values, where M-values 
of outlier samples per methylation CpG were removed using the 3xIQR strategy as 
described above [48]; (5) RIN (rank-based inverse normal transformation) values, 
wherein beta-values for each sample were ranked and replaced with the corresponding 
standard normal quantiles in order to create a normal distribution [50]. We selected 
beta-3IQR values for the base model.

B.	 Statistical tests: We investigated three types of linear models: (1) Linear regression 
model (LM), (2) Linear regression mixed model (LMM) and (3) Robust linear regression 
mixed model (RLMM). We selected LM for the base model.

C.	 Cell count correction: (1) For the base model, we used the percentages of differential 
measured cell counts of granulocytes, lymphocytes and monocytes. This base model 
was compared with 3 other models: (2) a model without cell count correction, (3) a 
model adjusted for the cell subtypes imputed with the reference-based Houseman 
method [26], using the default percentage counts of all six imputed cell types; 
granulocytes, monocytes, NK cells, B cells, CD4+ and CD8+ T-lymphocytes. We refer 
to this as “Houseman6”, (4) a model adjusted for the same imputed cell counts, but 
using three instead of six cell types; granulocytes, monocytes and lymphocytes (sum of 
NK cells, B cells, CD4+ and CD8+ T-lymphocytes) in order to match with measured cell 
counts of the base model. We refer to this as “Houseman3”.

D.	 Hidden confounder (HCs) correction; (1) For the base model, we used known technical 
confounder correction (bisulfite conversion plate and array row). This base model was 
compared with three more models that were corrected for HCs calculated from the CATE 
package [28, 29]. These were calculated per cohort per exposure. (2) We calculated 5 
HCs independent of the exposure of interest (BMI or smoking), age, sex and known 
technical covariates. However, we did not regress out measured differential cell counts, 
and therefore we assume that the HCs reflect cell counts. This model contained age, sex, 
technical confounders and 5 HCs as covariates. (3) HCs were calculated by regressing 
out the exposure of interest, age, sex and also measured differential cell counts. In this 
case, we did not regress out known technical confounders and therefore these HCs 
are thought to reflect technical confounders. This model contained age, sex, measured 
differential cell counts and 5 HCs as covariates. (4) HCs were calculated by regressing out 
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not only the exposure of interest, age and sex, but also measured diff erenti al cell counts 
and known technical covariates. In this case, HCs can be regarded as any more potenti al 
hidden biological or technical confounders that might infl uence the data in additi on to 
the diff erenti al cell counts and technical confounders’ correcti on. This model contained 
age, sex, measured diff erenti al cell counts, known technical confounders and 5 HCs as 
covariates.

RNA sequencing specifi c analysis strategies
All RNA-seq strategies were corrected for technical covariates; sequencing batch (fl ow cell) 
and average GC percentage in the reads, in additi on to the biological covariates menti oned 
before. We compared the following steps in detail (see also fi gure 1b).

A. Normalizati on method; Three commonly used RNA-seq normalizati on methods; (1) 
Voom, (2) edgeR and (3) DESeq, were investi gated. The edgeR and DESeq methods 
adopted a Trimmed mean of M-values normalizati on (TMM) [51, 52]. Voom adopted 
edgeR’s normalizati on but fi rst raised zeros to a minimum value of 1 and performed a 
log transformati on [53]. We selected Voom for the base model.

B. Expression inclusion criteria; We varied the genes allott ed to normalizati on using four 
common inclusion CPM (counts per million) thresholds of gene expression. (1) All genes 
expressed at any level in at least one sample were included. (2) All genes with a CPM ≥ 
1 in ≥ 20% of the samples were included. (3) Genes with an average CPM ≥ 1 across all 
samples were included. (4) All genes with an average CPM ≥ 10 across all samples were 
included. In the base model, all genes were included (opti on 1).

C. Stati sti cal tests; We used four commonly used stati sti cal tests. (1) A default linear 
model (LM) [54]. (2) A default generalized linear model (GLM) with negati ve binomial 
distributi on. (3) The linear model fi tf uncti on of the limma package, which was a weighted 
linear model where genes with a large variance (e.g. genes with very low expression) 
had lower weights. (4) The edgeR’s generalized linear model fi t (glmQLF), which used 
a negati ve binomial distributi on followed by a log rati o likelihood (LR) test. Opti ons 3 
and 4 were RNA-seq specifi c hierarchical models that take into account diff erences in 
variance esti mates across genes. [51, 53]. Opti on 1 was included in the base model. 
Opti on 4 was also run on the Voom normalized dataset. Opti on 2 and 3 were run on 
the edgeR normalized dataset as the negati ve binomial distributi on did not apply aft er 
Voom’s log transformati on. 

D. Technical correcti on; We used fi ve commonly used approaches to correct for technical 
factors. (1) We included technical covariates (GC percentage and fl ow cell) and 
measured cell-counts. (2) Corrected only for technical covariates. (3) Corrected only for 
cell-counts. (4) Replaced technical covariates and cell-counts by the fi rst fi ve principal 
components PCs, calculated per cohort using the prcomp functi on in R). (5) Added fi ve 
hidden confounders to the technical covariates and cell counts. Hidden confounders 
were calculated per cohort per exposure, and were adjusted for the respecti ve exposure, 
age, sex, technical covariates and cell-counts. 
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Evaluating strategy performance
In each analysis, three of the four cohorts were meta-analyzed in the discovery and the fourth 
cohort was used for replication. We repeated for each combination of three discovery and 
one replication cohort. The number of significantly replicated CpGs/genes were obtained 
for each repetition, as well as the percentage of CpGs/genes from discovery that reached 
replication (replication rate). For both the number and percentage of replicated signals, 
the average of the four combinations was calculated and used to evaluate performance 
of each strategy. We compared each strategy to the base model and looked for consistent 
differences in replication number or percentage across exposures.

Categorical analyses for age and BMI
In order to investigate whether an optimal analysis strategy is dependent on whether the 
independent variable is continuous or categorical, we expanded our association analyses 
on age and BMI by converting them into tertiles. We used the highest and lowest tertiles 
to define the categories. The results of these categorical analyses were compared with the 
results of the continuous analyses where age and BMI were used as continuous measures. 
For DNAm, we did not analyze BMI into categorical exposure because the numbers of 
significantly replicated CpGs were already small for the continuous models (average of 
<12 CpGs) when a Bonferroni threshold was used for multiple testing. This made it difficult 
to draw conclusions when comparing different methods within continuous models, and 
therefore would have made it even more difficult to compare results between categorical 
models.

Evaluation using different p-value cut-offs
For all the comparisons mentioned, both discovery and replication results were Bonferroni 
corrected. In addition to using the Bonferroni threshold for the discovery results, we 
applied three other thresholds to evaluate the robustness of the approaches: (1) Benjamini-
Hochberg FDR threshold (FDR p-value <0.05) (2) highest threshold (uncorrected p-value 
threshold <1x10-8) and (3) lowest threshold (uncorrected p-value threshold <0.05). 
Differences between models were compared between p-value thresholds to establish that 
the models show similar (respective) results independent of p-value thresholds.

In addition, for each strategy, we performed a meta-analysis of all four cohorts for DNA 
methylation and RNA expression. Overlaps in CpGs/genes between all strategies per step 
were determined using Venn diagrams to ascertain if the same CpGs/genes were identified 
between strategies [55]. 



SEQUENCING RNA BLOOD & BRAIN 95

3

Declarati ons

Author’s Contributi ons
Authors JvR and PM performed all analyses and wrote the manuscript. The BIOS datasets 
were generated and QC’ed by the BIOS Consorti um, as is described in detail here; htt p://
www.bbmri.nl/acquisiti on-use-analyze/bios/, including details on contributi ons of all 
consorti um members. JvR, PM, AC, JF, JvD, RJ, LF, PH, BH and JvM contributed to analysis 
and interpretati on through regular calls and revisions of the manuscript.

Competi ng Interests
The authors have no competi ng interests to report.

Funding
This work was parti ally funded by BBMRI-NL, a research infrastructure fi nanced by the 
Netherlands Organizati on for Scienti fi c Research (NWO project 184.021.007).

Ethics Approval
Each biobank received ethical approval for their populati on study. No additi onal ethical 
approval was required.

Data Availability
The datasets from BIOS are available from the European Genome-Phenome Archive 
by accession number EGAS00001001077 (htt ps://www.ebi.ac.uk/ega/studies/
EGAS00001001077). Alternati ve opti on to access the data are available through the BIOS 
website; htt ps://www.bbmri.nl/acquisiti on-use-analyze/bios/ [35].



96	 CHAPTER 3

References

1.	 Heyn, H., et al., Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A, 
2012. 109(26): p. 10522-7.

2.	 Lokk, K., et al., DNA methylome profiling of human tissues identifies global and tissue-specific 
methylation patterns. Genome Biol, 2014. 15(4): p. r54.

3.	 Consortium, G.T., et al., Genetic effects on gene expression across human tissues. Nature, 2017. 
550(7675): p. 204-213.

4.	 Peters, M.J., et al., The transcriptional landscape of age in human peripheral blood. Nat Commun, 
2015. 6: p. 8570.

5.	 Joehanes, R., et al., Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet, 2016. 9(5): 
p. 436-447.

6.	 Breitling, L.P., et al., Tobacco-smoking-related differential DNA methylation: 27K discovery and 
replication. Am J Hum Genet, 2011. 88(4): p. 450-7.

7.	 Breitling, L.P., et al., Smoking, F2RL3 methylation, and prognosis in stable coronary heart disease. 
Eur Heart J, 2012. 33(22): p. 2841-8.

8.	 Wan, E.S., et al., Smoking-Associated Site-Specific Differential Methylation in Buccal Mucosa in the 
COPDGene Study. Am J Respir Cell Mol Biol, 2015. 53(2): p. 246-54.

9.	 Zeilinger, S., et al., Tobacco smoking leads to extensive genome-wide changes in DNA methylation. 
PLoS One, 2013. 8(5): p. e63812.

10.	 Shenker, N.S., et al., DNA methylation as a long-term biomarker of exposure to tobacco smoke. 
Epidemiology, 2013. 24(5): p. 712-6.

11.	 Shenker, N.S., et al., Epigenome-wide association study in the European Prospective Investigation 
into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum 
Mol Genet, 2013. 22(5): p. 843-51.

12.	 Guida, F., et al., Dynamics of smoking-induced genome-wide methylation changes with time since 
smoking cessation. Hum Mol Genet, 2015. 24(8): p. 2349-59.

13.	 Qiu, W., et al., The impact of genetic variation and cigarette smoke on DNA methylation in current 
and former smokers from the COPDGene study. Epigenetics, 2015. 10(11): p. 1064-73.

14.	 Gao, X., et al., DNA methylation changes of whole blood cells in response to active smoking 
exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics, 2015. 7: p. 
113.

15.	 Wan, E.S., et al., Cigarette smoking behaviors and time since quitting are associated with 
differential DNA methylation across the human genome. Hum Mol Genet, 2012. 21(13): p. 3073-
82.

16.	 Huan, T., et al., A whole-blood transcriptome meta-analysis identifies gene expression signatures 
of cigarette smoking. Hum Mol Genet, 2016. 25(21): p. 4611-4623.

17.	 Vink, J.M., et al., Differential gene expression patterns between smokers and non-smokers: cause 
or consequence? Addict Biol, 2017. 22(2): p. 550-560.

18.	 Beineke, P., et al., A whole blood gene expression-based signature for smoking status. BMC Med 
Genomics, 2012. 5: p. 58.

19.	 Verdugo, R.A., et al., Graphical modeling of gene expression in monocytes suggests molecular 
mechanisms explaining increased atherosclerosis in smokers. PLoS One, 2013. 8(1): p. e50888.

20.	 Wu, M.C., et al., A systematic assessment of normalization approaches for the Infinium 450K 
methylation platform. Epigenetics, 2014. 9(2): p. 318-29.



SEQUENCING RNA BLOOD & BRAIN 97

3

21. Wang, T., et al., A systemati c study of normalizati on methods for Infi nium 450K methylati on data 
using whole-genome bisulfi te sequencing data. Epigeneti cs, 2015. 10(7): p. 662-9.

22. Forti n, J.P., et al., Functi onal normalizati on of 450k methylati on array data improves replicati on in 
large cancer studies. Genome Biol, 2014. 15(12): p. 503.

23. Pidsley, R., et al., A data-driven approach to preprocessing Illumina 450K methylati on array data.
BMC Genomics, 2013. 14: p. 293.

24. Marabita, F., et al., An evaluati on of analysis pipelines for DNA methylati on profi ling using the 
Illumina HumanMethylati on450 BeadChip platf orm. Epigeneti cs, 2013. 8(3): p. 333-46.

25. Du, P., et al., Comparison of Beta-value and M-value methods for quanti fying methylati on levels 
by microarray analysis. BMC Bioinformati cs, 2010. 11: p. 587.

26. Houseman, E.A., et al., DNA methylati on arrays as surrogate measures of cell mixture distributi on.
BMC Bioinformati cs, 2012. 13: p. 86.

27. Reinius, L.E., et al., Diff erenti al DNA methylati on in purifi ed human blood cells: implicati ons for cell 
lineage and studies on disease suscepti bility. PLoS One, 2012. 7(7): p. e41361.

28. Wang, J., et al., Confounder adjustment in multi ple hypothesis testi ng. . arXiv:1508.04178, 2015.
29. van Iterson, M., et al., Controlling bias and infl ati on in epigenome- and transcriptome-wide 

associati on studies using the empirical null distributi on. Genome Biol, 2017. 18(1): p. 19.
30. Li, P., et al., Comparing the normalizati on methods for the diff erenti al analysis of Illumina high-

throughput RNA-Seq data. BMC Bioinformati cs, 2015. 16: p. 347.
31. Zhao, S. and B. Zhang, A comprehensive evaluati on of ensembl, RefSeq, and UCSC annotati ons in 

the context of RNA-seq read mapping and gene quanti fi cati on. BMC Genomics, 2015. 16: p. 97.
32. Bullard, J.H., et al., Evaluati on of stati sti cal methods for normalizati on and diff erenti al expression 

in mRNA-Seq experiments. BMC Bioinformati cs, 2010. 11: p. 94.
33. Robles, J.A., et al., Effi  cient experimental design and analysis strategies for the detecti on of 

diff erenti al expression using RNA-Sequencing. BMC Genomics, 2012. 13: p. 484.
34. Zhernakova, D.V., et al., Identi fi cati on of context-dependent expression quanti tati ve trait loci in 

whole blood. Nat Genet, 2017. 49(1): p. 139-145.
35. Bonder, M.J., et al., Disease variants alter transcripti on factor levels and methylati on of their 

binding sites. Nat Genet, 2017. 49(1): p. 131-138.
36. Copetti  , M., et al., Advances in meta-analysis: examples from internal medicine to neurology.

Neuroepidemiology, 2014. 42(1): p. 59-67.
37. George, N.I., et al., An Iterati ve Leave-One-Out Approach to Outlier Detecti on in RNA-Seq Data.

PLoS One, 2015. 10(6): p. e0125224.
38. Evangelou, E. and J.P. Ioannidis, Meta-analysis methods for genome-wide associati on studies and 

beyond. Nat Rev Genet, 2013. 14(6): p. 379-89.
39. Heiss, J.A. and H. Brenner, Impact of confounding by leukocyte compositi on on associati ons of 

leukocyte DNA methylati on with common risk factors. Epigenomics, 2017. 9(5): p. 659-668.
40. van Iterson, M., et al., MethylAid: visual and interacti ve quality control of large Illumina 450k 

datasets. Bioinformati cs, 2014. 30(23): p. 3435-7.
41. Hasti e, T.T., R.; Narasimhan, B.; Chu, G., impute: impute: Imputati on for microarray data. R 

package version 1.56.0. . 2018.
42. Aryee, M.J., et al., Minfi : a fl exible and comprehensive Bioconductor package for the analysis of 

Infi nium DNA methylati on microarrays. Bioinformati cs, 2014. 30(10): p. 1363-9.
43. Dobin, A. and T.R. Gingeras, Opti mizing RNA-Seq Mapping with STAR. Methods Mol Biol, 2016. 

1415: p. 245-62.
44. Picard, Picard Toolkit. 2018.



98	 CHAPTER 3

45.	 Liao, Y., G.K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics, 2014. 30(7): p. 923-30.

46.	 Magi, R. and A.P. Morris, GWAMA: software for genome-wide association meta-analysis. BMC 
Bioinformatics, 2010. 11: p. 288.

47.	 Willer, C.J., Y. Li, and G.R. Abecasis, METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics, 2010. 26(17): p. 2190-1.

48.	 Upton, G. and I. Cook, Understanding Statistics. 1997.
49.	 Wood, A.R., et al., Defining the role of common variation in the genomic and biological architecture 

of adult human height. Nat Genet, 2014. 46(11): p. 1173-86.
50.	 Beasley, T.M., S. Erickson, and D.B. Allison, Rank-based inverse normal transformations are 

increasingly used, but are they merited? Behav Genet, 2009. 39(5): p. 580-95.
51.	 Robinson, M.D., D.J. McCarthy, and G.K. Smyth, edgeR: a Bioconductor package for differential 

expression analysis of digital gene expression data. Bioinformatics, 2010. 26(1): p. 139-40.
52.	 Anders, S. and W. Huber, Differential expression analysis for sequence count data. Genome Biol, 

2010. 11(10): p. R106.
53.	 Law, C.W., et al., voom: Precision weights unlock linear model analysis tools for RNA-seq read 

counts. Genome Biol, 2014. 15(2): p. R29.
54.	 Core Team, R., R: A Language and Environment for Statistical Computing. R Core Team; Vienna 

2015., 2015.
55.	 Heberle, H., et al., InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. 

BMC Bioinformatics, 2015. 16: p. 169.



Published on October 29th 2018 in Neurobiology of Aging (IF=4.4).
PMID: 30497016, doi: 10.1016/j.neurobiolaging.2018.10.023

Jeroen G.J. van Rooij1,2, Lieke H.H. Meeter1, Shami Melhem1, Diana A.T. Nijholt1, 
Tsz Hang Wong1, Netherlands Brain Bank3, Annemieke Rozemuller4, Andre G. 
Uitterlinden2, Joyce C. van Meurs2,†, John C. van Swieten1,†

1 Department of Neurology, Erasmus Medical Center, Rotterdam, the Netherlands
2 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the 
Netherlands
3 Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
4 Department of Pathology, VU University Medical Center, Amsterdam, the 
Netherlands
†These authors contributed equally 

Hippocampal transcriptome
profiling combined with protein-
protein interaction analysis
elucidates Alzheimer’s Disease 
pathways and genes

Chapter 3.2



100	 CHAPTER 3

Abstract

Transcriptomics in Alzheimer’s disease (AD) brains compared to healthy controls provides 
crucial information about disease pathophysiology. We performed whole transcriptome 
sequencing on hippocampus of 20 AD cases and 10 age- and sex-matched cognitively healthy 
controls. We grouped 735 of 2,716 differentially expressed genes in 33 modules based 
on protein-protein interaction (PPI) data. Enrichment analysis of these modules showed 
involvement in signal transduction, transport, response to stimulus and several metabolic 
pathways. 16 modules interacted with previously described AD disease genes. 48% of the 
differentially expressed genes replicated in another dataset, as well as 64% of enriched 
biological processes. Clustering genes by PPI data before gene set enrichment identifies 
specific biological processes involved in AD, providing additional details to traditional 
gene set enrichment analysis. Additional data, like large gene co-expression networks and 
unbiased annotation databases are needed to gather complete and robust networks and 
provide more insight in AD biology.
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Introducti on

Alzheimer’s Disease (AD) is a neurodegenerati ve disorder with progressive loss of memory 
and other cogniti ve domains, currently aff ecti ng over 40 million individuals worldwide 
(Prince, et al., 2013,Scheltens, et al., 2016). Previous studies have shown neurodegenerati ve changes in the 
hippocampus an esti mated 15-20 years before symptom onset (Boyle, et al., 2013,Karran, et al., 2011,Murray, 

et al., 2011). The main pathological features are amyloid plaques and tau tangles in variable 
severity and localizati on throughout the brain (Braak and Braak, 1995,Holtzman, et al., 2016,Jellinger, 2008,Selkoe and 

Hardy, 2016,Thal, et al., 2014,Tomiyama, 2010). Several geneti c loci with an eff ect on incidence and age at onset 
have been identi fi ed, although their exact pathophysiological mechanisms remain largely 
unknown (Bekris, et al., 2010,Lambert, et al., 2013).

In the last decade, transcriptomic studies on post-mortem AD brain ti ssue have been 
performed to further our understanding of AD biology (Kavanagh, et al., 2013,Sutherland, et al., 2011). 
However, large heterogeneity in study design (i.e.; choice of brain region, case defi niti on, 
laboratory protocol, quanti fi cati on method, analysis procedure and mode of reporti ng) limit 
our ability to compare results clearly across studies. Most transcriptomic studies determine 
diff erenti ally expressed genes between cases and controls in an aff ected brain region and 
report top genes and enriched pathways (Ashburner, et al., 2000,Gene Ontology, 2015,Ogata, et al., 1999). Although 
genes and pathways vary between studies, usually a decrease in synapti c transmission, 
mitochondrial functi on and cytoskeleton biology are reported, while pathways involved 
in immune response, infl ammati on and apoptosis are upregulated in AD (Liang, et al., 2008,Ray and 

Zhang, 2010,Sekar, et al., 2015,Twine, et al., 2011). Recently, protein-protein interacti on networks, multi ple-
omics data analysis or gene co-expression network analysis are uti lized to provide more 
extensive and robust insights in these results (Chi, et al., 2016,C. Humphries, et al., 2015,C.E. Humphries, et al., 2015,Kong, 

et al., 2015,Kong, et al., 2014). Most notably, a large study by Wang et al investi gated gene expression 
levels through microarrays in more than a thousand brain samples, spread across 19 regions 
in 125 individuals, including 17 hippocampus controls and 38 cases of varying (braak and 
CERAD) stages (Wang, et al., 2016). Comparing co-expression modules between individuals of 
varying AD stages they identi fi ed dysregulated networks and functi ons, and suggested that 
some of those originated from early disease stages and might refl ect causal mechanisms. 
Analyti cal tools like PPI and co-expression networking permit us to mine deeper into complex 
transcriptomic data, and to study genes as part of a larger network, rather than as individual 
enti ti es. This allows interpretati on of the AD transcriptome in its enti re complexity, and will 
ulti mately aid in understanding how individual genes, risk factors and pathways interplay to 
a complex disease phenotype.

We compared whole transcriptome sequencing of 20 AD cases with 10 age- and sex-matched 
cogniti vely healthy controls. We report all diff erenti ally expressed genes and replicate these 
in a second independent dataset (van der Brug H, 2017). We show that the identi fi ed pathways are 
usually represented in AD expression literature (Chi, et al., 2016,C.E. Humphries, et al., 2015,Liang, et al., 2008,Ray and 

Zhang, 2010,Sekar, et al., 2015,Twine, et al., 2011,Wang, et al., 2016)

Then, we implement protein-protein interacti on data and gene network clustering, we 
identi fy subsets of functi onally annotated gene modules, representi ng components of 
those commonly detected pathways (van Dongen and Abreu-Goodger, 2012,von Mering, et al., 2003). We chose this 
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approach as the AD network is large and traditional enrichment analysis only uncovers the 
main involved biological processes. By extracting specific subsets of genes this network 
can be studied in more detail. We replicate these modules in a second study and use the 
modules to reconstruct the AD transcriptome.  Finally, we investigate which modules interact 
with known AD risk genes and which genes are the strongest interactors in the network (Van 

Cauwenberghe, et al., 2016). 

Our results indicate that using PPI and networking analysis provides a detailed overview 
of the biological processes underlying AD, and provide insight into gene and pathway 
contributions to AD biology.
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Methods

Subject selecti on
20 AD brains were selected from the Netherlands Brain Bank (Braak and Braak, 1995,Mirra, et al., 1991), 
equally divided into homozygous carriers with and without ApoE4 (10 e44, 9 e33 and 1 
e32 carrier). These AD cases were matched for age and gender with brains from 10 non-
demented cogniti vely healthy controls (6 e33 and 4 e32 carriers, Table 1).

Table 1. Study sample characteristi cs. An asterisk denotes stati sti cally signifi cant diff erence compared to controls. 
All values represent means with standard deviati ons unless otherwise indicated. “Cases_QC” indicates metrics 
aft er removing two outlier cases.

Controls Cases Cases_QC

Number 10 20 18

Gender (%Male) 50% 30% 44%

Age (±SD) 76 ± 12 75 ± 7 75 ± 7

Braak 1.5 ± 1.3 5.5 ± 0.5* 5.6 ± 0.5*

amyloid 0.9 ± 1.1 2.9 ± 0.3* 2.9 ± 0.3*

pmd 551 ± 297 348 ± 108* 329 ± 98*

pH 6.6 ± 0.3 6.3 ± 0.3* 6.3 ± 0.3*

brain weight 1319 ± 240 1045 ± 119* 1035 ± 113*

apoe (32/33/44)  4/6/0  1/9/10* 1/8/9*

RNA collecti on
The hippocampus of all brains were secti oned in 8 - 10 30 um secti ons using a cryostat 
(Thermo Fischer HM560 at -20C). The dentate gyrus and cornu amonis were macro-dissected 
from the hippocampus ti ssue and dissolved in lysis buff er of the Qiagen AllPrep DNA/RNA/
miRNA Universal kit (Qiagen; Cat No. 80224). Samples were never thawed before reaching 
the lysis buff er. Total RNA was isolated using the manufacturers protocol.

Sequencing
Library prep was performed using Illumina’s TruSeq RNAseq library prep, using the 
manufacturers protocol, including polyA-tail selecti on and acousti c shearing. Sequencing 
was performed at the Human Genomics facility (HUGE-F, www.glimdna.org) on a HiSeq2000 
at 2x50bp, with all samples randomly assigned to a maximum of 4 per lane.

Data processing
Demulti plexing was performed using CASAVA (v1.8.2), followed by adaptor pruning using 
trim-o-mati c (v0.33) and genome alignment to hg19 using STAR (v2.3.0) (Bolger, et al., 2014,Dobin, et 

al., 2013). Then, read sorti ng, pairing and reordering was performed using picard (v1.90), and 
read and alignment quality control (QC) was performed using fastQC (v0.11.3). Transcript 
quanti fi cati on (counts) was performed using featurecounts (v1.4.3) against all 57,820 gene 
features in GENCODE (version date; 2013-12-05) (Harrow, et al., 2012,Liao, et al., 2014).
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Data analysis
Counts were normalized using the edgeR (v3.8.6) trimmed mean of M-values (TMM) 
method to counts per million (CPM) values, and all low-abundant features were omitted 
(<1 CPM in 75% of samples). Principal components (PCs) were calculated using “prcomp” in 
R, and then plotted to visually identify sample outliers. Statistical analysis was performed 
per gene using the exacTest function in edgeR, reporting FDR corrected p-values and 2log 
fold changes. The statistical analysis was adjusted for age, gender and the first 2 principal 
components to correct for cell composition differences (McCarthy, et al., 2012,Robinson, et al., 2010). We 
combined FDR-corrected p-values and log fold changes to a separate differential expression 
score (DE score); ((-log10(pFDR))/10)*((SQRT(logFC*logFC))/3)= DE score, with a maximum 
score of 1 per category, and retained genes with a DE score ≥ 0.10 for further analysis (scores 
shown in Supplemental Table 1).

Protein-protein interaction (PPI) modules
We downloaded the STRING human protein interaction database (v10) and extracted all 
experimental, co-expression or database interactions scored ≥500 (von Mering, et al., 2003). This 
interaction network was imported to Cytoscape (v3.4.0) and subjected to the Markov 
Clustering Algorithm (MCL, inflation factor 2.0) to identify gene modules (Morris, et al., 2011,Smoot, 

et al., 2011). In short; MCL clusters graphical data to retain sets of genes (modules) with more 
interaction within the module than to the rest of the network, while retaining as much of the 
original network as possible (Enright, et al., 2002,van Dongen and Abreu-Goodger, 2012). MCL revolves around one 
main parameter; the inflation factor, which determines the module sizes. We ran MCL with 
various inflation factors, aiming for modules no larger than 100 genes (to separate biological 
processes by module) but not smaller than 10 (to allow module enrichment analysis) 
(Subramanian, et al., 2005). The final module enrichment analysis was done with inflation factor 2.0. 
Each gene can only be assigned to a single module. Per gene, we calculated an overall gene 
contribution score by multiplying the DE score and absolute number of interactions.

Replication of DE genes and modules
We identified 3 possible replication datasets on GEO , with an RNA-Seq expression matrix 
of AD brain tissue and non-demented controls (GSE53697, GSE67333, GSE95587) (Magistri, et 

al., 2015,Plouhinec, et al., 2014,van der Brug H, 2017). Since GSE53697 focusses on different tissue (Dorsolateral 
Prefrontal Cortex) and GSE67333 was small in sample size (n=8), we used dataset GE95587 
for further replication of our discovery findings. Each dataset was analyzed as described for 
the discovery set; normalizing in edgeR, correcting for age, gender and 2 PCs, resulting in 
FDR corrected p-values per gene per dataset. For each gene DE scores were calculated, and 
a network was based on PPI data and subsequent modules where clustered and annotated 
using MCL and webgestalt.

Gene set enrichment
Gene set enrichments were performed using Webgestalt (v27-1-17) against KEGG pathways 
and GO-terms(Gene Ontology, 2001,Ogata, et al., 1999). For GO enrichment the “noRedundant” terms were 
used. All enrichments were FDR (Benjamini-Hochberg) corrected, using a threshold of 
p<0.05 for statistical significance. Different background gene lists were used depending on 
the specific analysis, as shown in figure 1 For the modules identified by MCL clustering, the 
first three enriched Gene Ontology Biological Process (GOBP) terms were extracted and 
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mapped back on the Gene Ontology family tree (shown in supplementary fi gure 3) (Ashburner, 

et al., 2000,Carbon, et al., 2009) Based on the tree the modules are grouped to GO Biological Processes 
(denoted as branches), and annotated by their specifi c (sub-)terms.

Mapping known AD genes
We selected a list of 27 known geneti c risk factors known to be involved in AD, compiled 
from all known AD GWAS loci (i.e. BIN1, SORL1) and AD Mendelian causal genes (i.e. APP, 
PSEN1) as reviewed recently  (Lambert, et al., 2013,Van Cauwenberghe, et al., 2016). All interacti ons between 
these genes and the modules were extracted from STRING (independent of DE score of the 
AD gene), disti nguishing between experimental and database interacti ons, using a cutoff  of 
≥500. All AD gene - module connecti on of at least two interacti ons were reported.
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RESULTS

Study sample characteristics
The demographic data of the AD group did not differ from the control group, with a mean age 
of death of 75, and 30% male (table 1). Mean brain weight was lower (1045 grams) in the AD 
than in the control group (1319 grams). Braak and CERAD stage was higher in the AD group 
than the control group (5.5 and 2.9 versus 1.5 and 0.9, respectively). Post-mortem delay was 
significantly shorter for cases, 348 versus 551 minutes and brain pH was lower (6.3 versus 
6.6) in AD cases. All sequencing quality and alignment QC metrics were similar between 
groups, with an average of 48,772,000 reads per sample. QC by PCA showed two outliers, 
which could not be resolved using PCs and other correction factors in the statistical model. 
These two cases showed significant upregulation in approximately 150 genes compared to 
both the 10 controls and the other 18 cases. The highest upregulated gene was TTR, which is 
highly expressed in the choroid plexus. Presence of the choroid plexus was confirmed using 
routine staining and both cases were excluded from further analysis.

Generating protein-protein interaction (PPI) modules of differentially expressed 
genes
Using a differential expression score (DE score) of ≥0.1, 2,716 genes (19% of 14,564 detected 
genes) were selected for analysis, as shown in figure 2. 1,671 were downregulated (62%), 
1,045 upregulated. In total 8,676 interactions occurred in this dataset, representing 
1,610 genes (59%). STRING interactions were either based on “database” (5,467, 63%), 
“experimental” (2,915, 34%) or “co-expression” (294, 3%). The network was clustered 
into 33 gene modules, ranging from 10 - 90 genes per module as shown in table 2. 735 
genes (46%) were assigned to one or more module(s), with 87% (7,514) of all interactions 
contained within these modules. Figure 3 shows the various modules and how the remaining 
23% of interactions is distributed between modules. The expression table, gene-module 
assignments and interaction lists can be found in the supplements.
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Table 2. A) Overview of 33 gene modules, number of genes and interacti ons, the dominant interacti on type 
(db=STRING-database, exp=STRING-experimental, coe=STRING-coexpression), strongly centralized genes (Hub 
genes, defi ned as being involved in at least 30% of all interacti ons within the module) and the amount of interacti ons 
to other modules. The nine columns “organic substance metabolic process” to “other biological processes” 
represent the main biological processes for each identi fi ed gene ontology branch. Per module, the branch(es) in 
which the three most enriched terms are located are shown, each plus sign representi ng an enriched biological 
process in that branch. The last columns indicate how many replicati on modules overlap with each discovery 
modules, and what the highest percentage of overlap with a single module is. B) Overview of AD expression studies 
reporti ng enriched pathways or GO biological processes in their main tables. Crosses indicate enrichment of terms 
in this parti cular branch.
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M2 52 181 85% db 136 + + + 8 12%

M3 39 107 81% db CREBBP 157 + ++ 6 18%

M4 35 62 69% exp HDAC1 62 ++ + 2 34%

M5 32 334 90% db 15 + + + 1 34%

M6 31 223 96% db 43 + ++ 1 48%

M7 30 177 70% db 71 + + + 2 23%

M8 29 56 79% exp CALM1 34 + ++ 2 31%

M9 27 90 59% db 47 + + + 0 -

M10 26 113 85% db 116 + + + 1 35%

M11 21 55 78% db 102 + + + 2 29%

M12 22 83 51% db RPA2 71 +++ 2 23%

M13 20 41 61% exp YWHAB, 
YWHAZ 77 3 30%

M14 19 41 78% db ACTN2 58 + + + 1 5%

M15 19 50 58% db PPP2CA, 
PPP2R1A 69 ++ + 1 10%

M16 18 52 73% db VAMP2 83 +++ 0 -

M17 17 29 52% db MAPK1 104 ++ + 1 41%

M18 18 42 55% exp NFKB1, 
RELA 103 + + + 2 50%

M19 17 64 77% coe MRTO4 24 ++ + 1 24%

M20 17 117 98% db 15 + ++ 1 88%

M21 15 109 61% db 47 ++ + 1 60%

M22 15 103 55% db 31 ++ + 1 60%

M23 14 69 97% db 24 + + 1 50%

M24 13 35 97% db 17 + ++ 0 -

M25 13 27 56% exp PRKCA, 
PRKCB 92 + 1 8%
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M26 12 57 51% exp 51 ++           +     0 -

M27 12 21 67% db CDK5 35                 + 2 42%

M28 11 31 100% db ENTPD3 9 +       ++         1 45%

M29 11 37 78% db TUBA4A 25                   1 45%

M30 10 17 53% coe GAPDH 36         +   ++     2 40%

M31 10 12 58% db FOS 19                   1 10%

M32 10 62 45% db
ATP5A1, 
ATP5B, 
ATP5C1

12     ++   +         0 -

M33 10 22 50% db SMARCA4, 
SMARCC1 22 +         +       1 10%

Table 2b. Replication of Gene Ontology Biological Process Branches in AD expression literature
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Ray et al, 2010 X X X X X X

Liang et al, 2008 X X X X X X X X

Sekar et al, 2015 X X X X X X

Twine et al, 2011 X X X X X X X X

Chi et al, 2016 X X X

(JAD) Humphries et al, 2015 X X X X

Wang et al, 2016 X X X X X X X

Functional enrichment of GO-Terms and KEGG pathways
Functional enrichment analysis was split in three steps, as shown in figure 1. i) The 2,716 
DE genes were compared to all 14,564 detected genes, to assess AD-specific enriched 
terms and pathways. The first of 143 significant GO Biological Process terms where: 
“neurotransmitter transport”, “modulation of synaptic transmission” and “regulation of 
transmembrane transport”. ii) The 735 modulated genes were compared to 2,716 DE genes, 
to assess further AD-specific enrichment or gene bias by the PPI analysis. The first of 66 
significant biological process terms were “G-protein coupled receptor signaling pathways”, 
“circulatory system process” and “regulation of transmembrane transport”. iii) Enrichment 
of each individual module to all 735 modulated genes, to identify module-specific biological 
processes within the case-control landscape. This resulted in a range of 0 - 76 significant 
GO-terms per module. An overview of all enrichment results are displayed in supplementary 
table 2.
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###17###

Figure 1. Flowchart of data analysis. A) extracti ng diff erenti ally expressed genes from all genes, followed by PPI 
analysis and module clustering. E1; gene set enrichment analysis of 2,716 DE genes versus all 14,564 detected 
genes (background). E2; gene set enrichment analysis of 735 modulated genes compared to all 2,716 DE genes. 
B) Gene modules are evaluated based on technical properti es, interacti on with known genes and functi onal 
annotati on. Novel high-contributi ng genes are determined from these evaluati ons. Known AD genes are described 
in relati on to these modules. E3; gene set enrichment analysis of each module compared to 735 modulated genes. 
C) Similar values are obtained for the replicati on cohort, resulti ng in 2,490 DE genes, of which 653 are clustered into 
37 modules. Replicati on is based on overlapping DE genes and overlapping modules.

Replicati on
The replicati on dataset GSE53697 consisted of fusiform gyrus ti ssue from 84 AD cases 
and 33 controls. Of 2,716 DE genes in discovery, 2,098 were replicated (FDR < 0.05, 77%), 
containing 1,311 of the discovery DE genes (DE > 0.1, 48% replicati on rate), as shown in 
fi gure 2. GSE95587 all DE genes (2,490) were clustered into 37 modules, representi ng 653 
genes. Of 97 signifi cantly enriched GOBP terms in 2,716 discovery DE genes, 62 terms are 
replicated (FDR < 0.05, 64%) in the 2,490 replicati on DE genes.
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###18###

Figure 2. Volcano plot of 14,564 analyzed protein-coding genes. Each dot is a gene, those dark-grey pass the 0.1 DE 
score threshold. Upper score limits (set to maximum of 1) are displayed by dott ed lines. The solid line displays the 
default FDR corrected ≥0.05 threshold. The Venn diagram displays the number of overlapping DE genes between 
the discovery and replicati on cohorts.

Annotati on of gene modules
A total of 23 of the 33 discovery modules (70%) are predominantly (>50%) made up of 
database-based interacti ons, though 32 of 33 modules (97%) combine experimental with 
database-driven evidence (table 2). 10 modules (30%) consist mostly (>50% of interacti ons) 
of up-regulated genes, though 30 modules (91%) contain both up- and down-regulated 
genes. All separately clustered modules are displayed similarly in supplementary fi gure 2. 
The fi rst three GOBP terms of all discovery and replicati on modules are mapped to the GO 
tree, as shown in supplementary fi gure 3. 
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###19### 

 
Figure 3. Protein-protein interacti on network of 1,610 diff erenti ally expressed genes. Circles represent gene 
modules, connecti ons represent interacti ons between modules.  The width of the connecti ons determine the 
amount of interacti ons.

The tree was divided in eight main branches; “Organic substance metabolic process”, “Signal 
Transducti on”, “Transport”, “Regulati on of biological process”, “Cellular metabolic process”, 
“Cellular component organizati on”, “Other metabolic processes” and “Response to 
sti mulus”. The remaining terms are grouped under 9th branch; “Other biological processes”. 
Table 2 shows per module in which branch its three GOBP terms are located, the branches 
are detailed in supplementary fi gure 4. In total 84 GOBP terms of discovery are mapped to 
the GOBP tree, 38 of these replicated as a top three term for a replicati on module (45%). 
The replicati on modules are represented by 90 terms on the GOBP tree. Of the 735 genes 
in 33 discovery modules, 263 genes replicated into a replicati on module (36%), as shown in 
fi gure 4.
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###20###

Figure 4. Per branch, the overlap of genes between discovery and replicati on modules. Connecti ons between 
modules represent overlapping genes, the width indicates the amount of overlap.
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Figure 5 shows Branch 3; “Transport” in more detail. The tree shows the annotated discovery 
and replicati on modules. For example, the fi rst term of module 5 (M5_1) and replicati on 
module 18 (R18_1) are both “potassium ion transport”. The plot shows that these modules 
have 11 genes in common, driving this enrichment in both. R18 has another two genes 
involved in potassium ion transport, which are not in any discovery module. Similarly, M5 
holds another 19 genes involved in this term, not represented by any of the replicati on 
modules. This shows that although the term is represented by a module in both datasets, 
the underlying genes overlap only parti ally. 

###21###

Figure 5. Overview of Branch 4; Transport, and all discovery and replicati on modules annotated to this branch. Gray 
circles represent GOBP terms, blue circles are discovery modules, red circles are discovery modules. Connecti ons 
are parent-children GOBP relati onships or signifi cant enrichments of modules to GOBP terms. The circular plot 
shows overlapping genes between gene modules in this branch, the width indicati ng the number of overlapping 
genes. The other branches are displayed in supplementary fi gure 4.
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A second example, M14, M16 and R27 map to “exocytosis”.  Only a single gene overlaps 
M14 and R27, while respectively 8, 14 and 4 genes in these modules are involved with 
“exocytosis”. Analyzing figure 5 further shows that some modules are nearly identical. I.e.; 
M20 and R7 or M21 and R24, while other modules are unique to either dataset, like M9, 
M16 and R8. Figures for the other 8 branches are displayed in supplementary figure 4. The 
module overlap plots are displayed per branch in figure 4.

Interaction with AD genes
Of the 27 AD genes, 25 were expressed and analyzed, as shown in table 3. Three genes 
(11%) showed a DE-score of ≥ 0.1 and are included in the complete interaction network; 
CD2AP (score 0.18), MEF2C (-0.29) and PTK2B (-0.50), none of these were assigned to a 
module. In replication dataset GSE95587 MEF2C and PTK2B are replicated (DE score of -0.39 
and -0.13, respectively).  In total 233 interactions between DE-genes and known AD genes 
were present, 166 of these are database-driven (71%), 55 are experimental (24%), 12 were 
both database and experimental (5%) and none were based on co-expression. 16 of 33 
modules held at least 2 database- or 2 experimental-driven interactions with an AD gene, in 
five of these both interaction types were present. These include PTK2B with module 7 (16 
database and 2 experimental interactions) and module 10 (2 database and 3 experimental 
interactions), MAPT with module 2 (3 database and 4 experimental interactions), BIN1 
with module 9 (2 database and 5 experimental interactions) and PICALM with module 9 (2 
database and 2 experimental interactions). The largest number of interactions were present 
between module 1 and APP (61 database interactions). Module 9 and module 15 were 
connected to most AD genes; BIN1, HLA-DRB1, HLA-DRB5 and PICALM to module 9 and 
BIN1, MEF2C, PICALM and MAPT to module 13. Inversely, APP was connected to the most 
modules among the AD genes; 1, 11, 14, 17, 18 and 23. Nine genes did not interact with any 
module; CASS4, CD33, CR1, FERMT2, MS4A6A, RIN3, SLC24A4, SORL1 and ZCWPW1.

Identifying high-contributing genes
To identify the most relevant genes in each module, we calculated an “contribution” score 
multiplying the number of interactions and DE score for each gene. This contribution ranged 
from 0 to 60, with an average of 2.9. Within the modules, the average score is 4.5, compared 
to 1.5 for all 875 unmodulated genes. 110 genes scored ≥10.0. In table 4, the ten most 
contributing modulated and unmodulated gene are shown. Of note is that PTK2B is one 
of the known AD genes, ranking 48th according to the contribution score but not assigned 
to a single module in discovery. The ten highest-contributing unmodulated genes were all 
replicated and reach similar high rank in the replication network (range 13-181). Four of 
these ten genes were assigned to a module in the replication, as shown in table 4.
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Discussion

Our study identi fi ed 33 DE-modules representi ng 735 diff erenti ally expressed genes in 
AD post-mortem hippocampus. We here report a fi rst list of relevant pathways and high-
contributi ng genes, as well as details on how such a network can be constructed and 
interpreted. These modules represent specifi c biologically relevant components of 9 
main GOBP branches involved in AD pathophysiology.. These modules and branches are 
investi gated to provide insight and structure to AD biology. Our results also suggest that 
individual genes or modules should be considered in the larger network, as many interact 
with one another. Finally, we show that 48% of DE genes replicate, compared to 64% of 
enriched biological processes, suggesti ng that replicati on based on biological processes is 
more robust than individual genes.

AD transcripti onal changes and replicati on
We observed 2,716 DE genes in hippocampus AD cases versus controls. Gene set 
enrichment analyses revealed 97 signifi cantly enriched biological processes, the main one 
being “neurotransmitt er transport”. Our replicati on dataset GSE95587 held 84 cases and 33 
controls of the fusiform gyrus, 2,490 genes showed diff erenti al expression, including 1,311 
(48%) of the DE genes from discovery  (Brett schneider, et al., 2015,Chang, et al., 2016). Of 97 biological processes, 
62 replicated, showing high similarity between both studies, despite being separate ti ssues. 
The higher replicati on rate of enriched biological processes suggests that diff erent genes 
can reach DE in diff erent studies, but represent the same biological process. 36% of genes 
assigned to a module in discovery also gain a module in replicati on, compared to 45% of 
gene module enriched biological processes. This further suggests more robust replicati on 
in biological processes compared to individual genes. However, the replicati on rate for both 
genes and biological processes has decreased, likely as not all genes are included in the 
PPI database (41% of 2,716 DE genes did not have any interacti on) or lost in the clustering 
method.

Gene modules and Gene Ontology Branches
Enrichment of the discovery and replicati on gene modules provided a GOBP tree with 
diff erenti ally expressed terms. These could be assigned to 8 main branches and  one “other” 
branch, as shown in supplementary fi gure 3. These branches are oft en observed in literature 
of AD expression studies, as shown in table 2 (Chi, et al., 2016,C.E. Humphries, et al., 2015,Liang, et al., 2008,Ray and 

Zhang, 2010,Sekar, et al., 2015,Twine, et al., 2011,Wang, et al., 2016). In the same table we can see that most modules 
partake in multi ple branches, suggesti ng that these branches are not independent. Similarly, 
some modules are retained from discovery to replicati on as nearly the same set of genes 
(ie; M1, M20 or M21). Most modules however, share only a part of their genes with one or 
two replicati on modules, as described for potassium ion transport modules M5 and R18, 
or exocytosis modules M14, M16 and R27 (Musunuri, et al., 2016,Vitvitsky, et al., 2012).This suggests that for 
most biological processes, a small set of core genes will replicate while others vary between 
studies. However, enrichment of the main biological process is maintained, and a module 
can be assigned to represent this process in each study. This shows that overlap on enriched 
biological processes or terms, or enrichment on fi rstly obtained gene modules, is more 
robust than directly comparing genes. 
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Finally, a small number of modules is not represented in the replication cohort. These are 
M9 (first term; “receptor-mediated endocytosis”), M16 (“exocytosis”), M24 (“glycerolipid 
metabolic process”) and M32 (“mitochondrial transport”). The terms for M16 and M32 are 
detected in replication modules (but by other genes). It might possibly be that the brain 
region (hippocampus vs fusiform gyrus) of these specific patients differs on endo/exocytosis 
and lipid metabolism, or else these are random variations between studies (Di Paolo and Kim, 2011,Kelly 

and Ferreira, 2007,Musunuri, et al., 2016).

As shown in table 2, enrichment in most of these branches is reported in other AD 
transcriptomic studies. Not always the exact same terms are observed in each study, possibly 
as a result of some technical variation per dataset, methods used (ie; micro-arrays or RNA-
Seq) or biological differences between cases or brain region studied. As these branches and 
terms are detected in most studies, it suggest these belong to a general regulatory network 
of neurodegeneration, relatively robust across samples and brain regions.

Summary of AD-involved GOBP Branches
Branch 1; Organic substance metabolic process. This branch represents 10 modules and 13 
replication modules. Most terms revolve around “DNA metabolic process”, including DNA 
repair and metabolism. RNA transcription, translation and post-translational modification 
processes are also included in this branch. Most modules overlap only partially, suggesting a 
large variation or turnover of genes in this branch (Bucholtz and Demuth, 2013,Lillenes, et al., 2016).

Branch 2; Signal Transduction. This branch contains 7 modules and 11 replication modules. 
Some of the largest modules are in this branch, including modules 1 of both datasets 
(about 50% overlap), both representing g-protein coupled receptors. Most terms In this 
branch represent transmembrane neurotransmitter genes. Overlap between discovery and 
replication modules is high, suggesting these genes work in larger complexes and therefore 
often co-express together. The clear distinction in various subsets of protein-coupled 
receptors also indicates clear and complete annotations for these genes, with well-defined 
functional classes (Kandimalla and Reddy, 2017,Rajmohan and Reddy, 2017).

Branch 3; Transport. As described, the transport branch splits into ion transport (further 
to cation and anion transport) and a subset of vesicle mediated transport (endo and 
exocytosis) which is more dominant in the discovery dataset. Transport contains 8 discovery 
and  replication modules (Kelly and Ferreira, 2007,Musunuri, et al., 2016).

Branch 4; Regulation of biological processes. Many of the modules in this branch come 
from second or third enriched terms. There is large overlap between of this branch to other 
branches. For example, modules M5 and R18 were involved in potassium ion transport in 
branch 3, and are here both in “regulation of transmembrane transport”, both enrichments 
are driven by largely the same genes. This sporadic overlap is also represented in any, 
small overlaps between the 7 discovery and 10 replication modules. Finally, all modules 
in this branch also have annotations in other branches, suggesting this branch is largely 
complimentary to the others.



SEQUENCING RNA BLOOD & BRAIN 121

3

Branch 5; Cellular metabolic process. This branch contains 6 discovery and 7 replicati on 
modules. The only overlap is between M28 and R26 and M30 and R30, although these 
modules are not enriched for the same terms. Many of the terms involve nucleoside 
phosphate metabolic processes or RNA processing and suggest a role similar to branch1; 
organic substance metabolic process (Ansoleaga, et al., 2015).

Branch 6; Cellular component organizati on. This branch contains several enrichment on 
cellular structure and functi on. For example mitochondrion functi on or axon development, 
but also microtubule and acti n organizati on (Cabrales Fontela, et al., 2017,Yan, et al., 2013). We again observe 
M5 and R18 sharing a small overlap on term “protein complex oligomerizati on”. Furthermore 
M10 and M23 seem to combine into R4, involved in extracellular structure organizati on. This 
branch holds 8 discovery and 9 replicati on modules with few overlaps.

Branch 7; Other metabolic processes. A small branch with only 5 discovery and 5 replicati on 
modules. It contains terms like lipid metabolism, methylati on and nitrogen compound 
metabolism. Only two overlaps between M23 and R4 and between M30 and R30, both of 
which have been seen on the other branches (Di Paolo and Kim, 2011,Liu and Zhang, 2014).

Branch 8; Response to sti mulus. Although oft en observed in AD literature, this branch only 
contains M3 and M17 with no overlap, M18 with large overlap to R23, and R32 (again no 
overlap). These modules represent various subsets of response to stress or other sti muli. 
M3 represents part of the infl ammati on/immune response oft en reported in AD (Rozpedek, et al., 

2015).

Branch 9; other biological processes. This last branch contains 9 discovery and 9 replicati on 
modules and holds all remaining GOBP enrichments. The terms range across various 
processes and provide small overlaps between modules. Some terms overlap with other 
branches, like microtubule-based movement or cytokine producti on. 

Interacti ons with AD genes
Of 27 AD geneti c risk factor genes, only three were diff erenti ally expressed in our dataset, 
of which two replicated (MEF2C and PTK2B). Lack of associati on for the other genes, 
suggests their roles might be earlier in the disease process, where the geneti c mutati ons 
might infl uence onset of the disease. Nevertheless, several modules hold interacti ons with 
these AD genes, suggesti ng overlap in biological functi on. 10 AD genes interacted at least 
twice with a gene module, as shown in table 3. HLA-DRB1, HA-DRB5, BIN1 and PICALM
interact with M9 and are involved in endocytosis (HLA-DRB1, HLA-DRB5, BIN1, PICALM) 
and microtubule-based movement (BIN1) (Baig, et al., 2010,Zhou, et al., 2014). ABCA7 and MAPT interact 
with M2, involved in ion transport and signaling. APP interacts with M1, both are involved 
in signal transducti on (Cheng, et al., 2014,Cirrito, et al., 2008). PTK2B is diff erenti ally expressed in both 
discovery and replicati on (DE -0.50 and -0.13, respecti vely) and interacts with M7, M10 and 
M25 (Beecham, et al., 2014,Han, et al., 2017). M7 and M10 are involved in cell surface receptor signaling and 
M25 in protein modifi cati on, PTK2B is also associated to those biological processes. CELF1
interacts with M8 into RNA processing and protein modifi cati on and CLU interacts with M14 
into exocytosis and acti n-based fi lament organizati on. These interacti ons suggest a role for 
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some of these genes in the later stages of AD, and do not represent the typical associations 
of these genes in a causal inference (Lambert, et al., 2013,Van Cauwenberghe, et al., 2016).

Predicting high-contributing genes
An overall contribution-score was calculated per gene to identify those with large contribution 
to the AD network; genes with many interactions and large differential expression in AD, see 
table 4. These genes have potential to mediate large portions of AD biology, and disruptions 
in their functions might lead to more widespread consequences than in other genes. They 
are relevant candidates for Mendelian or GWAS genetic studies, either by directly playing 
on the biological mechanisms, or by mediating defects in other genes, for example AD risk 
loci. Several high-contributing genes are not assigned to a module, suggesting that genes 
with ties to multiple gene groups (i.e.; involved in various different processes with distinct 
gene groups) cannot clearly be assigned to a single module by the clustering algorithm, and 
end up unassigned as a result. An example of this is the known AD risk gene PKT2B, which 
is differentially expressed and interacts with 48 other DE genes, but cannot be assigned to 
a single module. Therefore, examining contribution and connectivity separately from the 
module assignment is relevant and adds importance to the overall interpretation of the 
expression data.

Limitations on PPI + MCL method
Although extracting gene modules of specific GO Biological Processes provides extra 
information to traditional enrichment analysis, a number of factors can be improved to make 
this method more efficient. Firstly, the PPI networks are comprised of existing databases (von 

Mering, et al., 2003). The use of external data in a Bayesian-kind of approach is useful, but generates 
bias to well-known genes and biological processes (Gillis, et al., 2014,Schaefer, et al., 2015). At the same 
time, genes without a currently known function tend to be downplayed. For example, 
genes unknown in STRING or GOBP will be largely ignored in this analysis. Completing these 
databases, and adding additional unbiased datasets to use as reference will allow for more 
complete networks and modules, as well as more robust ones. Furthermore, there are no 
clear guidelines on protein interaction cutoffs parameters, MCL clustering thresholds or 
consensus on functionally annotating a gene module. As network properties will change 
between studies (i.e.; network density and size), it will be challenging to determine a 
golden standard. Nevertheless some consensus is emerging; 1. prioritizing or limiting to 
experimental interactions types, or not using text-mining based types (Szklarczyk, et al., 2017,von Mering, 

et al., 2003); 2. altering the MCL inflation factor to generated modules of 10-100 genes and not 
much smaller or larger (Subramanian, et al., 2005,van Dongen and Abreu-Goodger, 2012). 3. replicating in additional 
studies, preferably on a functional annotation level as Gene Ontology (Ashburner, et al., 2000,Gene 

Ontology, 2015). With improving interaction databases, the quality and type of an interaction 
can be used as weights in the clustering analysis. In future studies also the DE score and 
direction of effect could be taken into account during clustering, which wasn’t done here as 
effect estimates can vary widely between individual studies. 
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Limitati ons and strengths of this study
This study was designed as a cross-secti onal case-control analysis, making it hard to 
disti nguish between AD-specifi c causal expression diff erences versus changes caused by 
neurodegenerati on. Due to the late stage of disease in these samples, many of the observed 
diff erences are likely caused by neurodegenerati on. Despite correcti on by PCs, some 
diff erences between cases and controls are likely caused by diff erent cell-type compositi ons; 
fewer neurons in cases compared to controls as an eff ect of AD. Our sample size of 20 cases 
and 10 controls is not opti mal to robustly detect all deviati ons in AD, having more cases 
than controls also leads to more down- than up-regulated genes, biasing the results towards 
downregulated pathways. 

Our method provides an overview of dysregulated pathways in AD, while maintaining 
resoluti on to investi gate individual gene contributi ons to specifi c pathways and the whole 
network in general. We show that the PPI and MCL clustering approach identi fi es clearly 
defi ned functi onal gene modules, which can be combined into a whole AD transcriptomic 
overview. With more and bett er input datasets, like large-scale gene co-expression data 
and unbiased gene annotati on databases, as well as other brain regions and earlier disease 
stages in AD, this method can aid in constructi ng a complete transcriptomic AD network and 
in interpreti ng the impact of a single gene’s loss of functi on by mutati on or other relevant 
risk factors.
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Abstract

The etiology of late-onset neurodegenerative diseases is largely unknown. Here we 
investigated whether de novo somatic variants for semantic dementia can be detected, 
thereby arguing for a more general role of somatic variants in neurodegenerative disease. 
Semantic dementia is characterized by a non-familial occurrence, early onset (< 65 years), 
focal temporal atrophy and TDP-43 pathology. To test whether somatic variants in neural 
progenitor cells during brain development might lead to semantic dementia, we compared 
deep exome sequencing data of DNA derived from brain and blood of 16 semantic dementia 
cases. Somatic variants observed in brain tissue and absent in blood were validated using 
amplicon sequencing and digital PCR. We identified two variants in exon one of the TARDBP 
gene (L41F and R42H) at low level (1-3%) in cortical regions and in dentate gyrus in two 
semantic dementia brains, respectively. The pathogenicity of both variants is supported by 
demonstrating impaired splicing regulation of TDP-43 and by altered subcellular localization 
of the mutant TDP-43 protein. These findings indicate that somatic variants may cause 
semantic dementia as a non-hereditary neurodegenerative disease, which might be 
exemplary for other late-onset neurodegenerative disorders.

Keywords; semantic dementia; somatic variants; TARDBP; TDP-43
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Introducti on

Multi factorial eti ology, including geneti c and environmental factors, has been invoked to 
explain most late-onset neurodegenerati ve diseases. Only a small percentage of cases 
with autosomal dominant inheritance is caused by germline variants in specifi c genes, for 
example PSEN1 and APP variants in Alzheimer’s disease, MAPT and GRN in frontotemporal 
dementi a and C9orf72 and TARDBP in both amyotrophic lateral sclerosis and frontotemporal 
dementi a (Ferrari et al., 2019; Greaves and Rohrer, 2019; Clarimon et al., 2020). There is 
an increasing interest in the potenti al pathogenic role of de novo variants in pati ents with 
neurodegenerati ve diseases with a negati ve family history (Leija-Salazar et al., 2018; Lodato 
and Walsh, 2019). A few cases with de novo germline variants have been identi fi ed in early-
onset Alzheimer’s disease (Nicolas et al., 2018). For neurodevelopmental diseases, low-level 
(≤ 20% of cells) somati c variants in mTOR, AKT3 and CCND arising from the ventricular or 
subventricular zone have been identi fi ed by deep sequencing of candidate genes in aff ected 
brain ti ssue (Lee et al., 2012; Lin et al., 2012; Veltman and Brunner, 2012; Miller et al., 
2013; Poduri et al., 2013; Hu et al., 2014; Jamuar et al., 2014; Kovacs et al., 2014; Mirzaa
et al., 2014; Rogalski et al., 2014; Bushman et al., 2015; Lim et al., 2015; Lodato et al., 
2015; Sala Frigerio et al., 2015; Wiseman et al., 2015; Hoekstra et al., 2016; Kim et al., 
2016; Takata et al., 2016). The hypothesis is that post-zygoti c variants (aft er ferti lizati on) or 
late-somati c variants during brain development might explain the sporadic presentati on of 
neurodegenerati ve diseases with a negati ve family history. 

The most ideal approach to determine the role of late-somati c variants in neurodegenerati ve 
diseases would be the comparison between blood- and brain-derived DNA within the same 
pati ents. However, brain ti ssue for DNA isolati on was oft en not available during life, and DNA 
derived from blood was oft en not collected during life in deceased pati ents. Recent brain-
derived DNA studies without matched DNA samples from blood have tried to detect somati c 
variants in Alzheimer’s and Parkinson’s disease (Beck et al., 2004; Lin et al., 2012; Proukakis
et al., 2014; Bushman et al., 2015; Lodato et al., 2015; Sala Frigerio et al., 2015; Wiseman
et al., 2015; Coxhead et al., 2016; Hoekstra et al., 2016; Lee et al., 2018; Lodato et al., 2018; 
Mokretar et al., 2018; Nicolas et al., 2018; Park et al., 2019; Wei et al., 2019). A higher 
number of low-level mosaic variants in causati ve genes (APP, SNCA) in DNA of Alzheimer’s 
disease or Parkinson’s disease brains compared to controls (Lee et al., 2018; Mokretar
et al., 2018). Only the study by Park et al. performing deep sequencing of hippocampal 
formati on and matched blood ti ssues found an enrichment of somati c DNA variati on in the 
Tau signaling pathway in Alzheimer’s disease pati ents compared to controls (Park et al., 
2019). Specifi cally, a single carrier of a somati c variant in PIN1 was suggested as potenti al 
causal factor in the respecti ve Alzheimer’s disease pati ent (Park et al., 2019). 

In the present study, we uniquely investi gated the presence of low-level somati c variants 
in the temporal cortex and dentate gyrus of brains of semanti c dementi a pati ents, which 
were absent in their blood-derived DNA. Semanti c dementi a is a well-defi ned clinical and 
pathological subtype of frontotemporal dementi a, mostly occurring before the age of 65 
(Hodges et al., 1992; Irish et al., 2012; Mesulam et al., 2014). The disease is characterized by 
a very circumscribed asymmetric atrophy of the anterior temporal cortex, suggesti ng a very 
local disease process (Mummery et al., 2000; Kumfor et al., 2016). Severe neuronal loss with 
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pathological TDP-43 protein accumulation in neurites and neurons in the temporal cortex and 
dentate gyrus of the hippocampus are the defining salient and consistent neuropathological 
features of semantic dementia, most commonly classified as FTD-TDP type C (Davies et al., 
2005; Mackenzie et al., 2011; Leyton et al., 2016; Neumann and Mackenzie, 2019). Semantic 
dementia has a sporadic, non-familial occurrence, and a current lack of mechanistic insight 
in the disease process precludes a therapeutic strategy. We performed deep exome 
sequencing (310x-658x) of middle temporal gyrus and dentate gyrus tissue of semantic 
dementia patients with pathologically confirmed FTD-TDP type C, and compared data with 
blood DNA samples of the same patients. We identified somatic TARDBP variants in the 
brains of two semantic dementia patients that were absent in blood. These variants were 
validated using custom amplicon panel sequencing and digital droplet PCR. In addition, we 
confirmed the disruptive effects of these TARDBP variants by demonstrating altered cellular 
distribution of the mutant TDP-43 proteins. Our results indicate that somatic variants in 
TARDBP contribute to semantic dementia pathogenesis. 
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Methods

Pati ent ti ssue DNA collecti on
For the present study, we used fresh-frozen brain samples from 16 semanti c dementi a 
pati ents with confi rmed FTD-TDP type C pathology, obtained from the Netherlands Brain 
Bank (table 1) (Mackenzie and Neumann, 2017). Informed consent was obtained from 
all pati ents for brain autopsy and the use of ti ssue and clinical informati on for research 
purposes. DNA was extracted from fresh frozen brain samples of middle temporal gyrus 
(n=14) and from the dentate gyrus (n=13). From all cases, DNA from blood was available, 
obtained during life in 12 pati ents from the Dutch frontotemporal dementi a study and 
extracted from blood obtained at the ti me of autopsy in the remaining four cases (Seelaar 
et al., 2008; Seelaar et al., 2011).  The average age at death was 69 (range 62-74), 50% of 
pati ents were female. Medical records and neuroimaging (either CT or MRI) were collected 
and reviewed, if available. For 14 pati ents the left  hemisphere of the brain was fresh-frozen 
for research, versus the right hemisphere for two pati ents. 

Table1. Pati ent characteristi cs. Contains clinical and pathological informati on on the pati ents examined in this 
study. Pathological diagnosis, as extracted from the reports from the Netherlands Brain Bank. The most aff ected 
side of the brain is reported according following post-mortem pathological examinati on. Brain ti ssue side: the 
side of the brain fresh frozen and used in this study. Dominant side yes/no; whether the side studied was the one 
most aff ected according to neuroimaging (NA = not applicable, as both sides were equally aff ected). MTG and DG 
indicate whether the middle temporal gyrus and dentate gyrus were available and included in the study.

Pati ent Sex
Age at 
onset

Disease 
durati on

Dominant side 
pathology

Brain ti ssue 
side

Dominant 
side MTG DG

SD01 F 60 10 both left no yes no

SD02 M 48 14 left left yes no yes

SD03 F 60 8 both left NA yes no

SD04 F 45 20 both left NA yes yes

SD05 M 56 10 both left no yes yes

SD06 M 51 12 both left no yes yes

SD07 F 53 11 both left no no yes

SD08 M 57 12 left left yes yes yes

SD09 F 63 11 both left NA yes yes

SD10 M 55 13 left right no yes yes

SD11 M 51 15 both left no yes yes

SD12 F 60 12 both left no yes yes

SD13 F 63 9 left right no yes yes

SD14 M 57 15 both right no yes yes

SD15 F 66 8 left left yes yes no

SD16 M 61 13 both left yes yes yes
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Whole exome sequencing
Blood-derived DNA of 16 patients and brain-derived DNA from middle temporal gyrus 
(n=14) and/or dentate gyrus (n=13) of semantic dementia brains (n=16) was captured using 
Nimblegen’s SeqCap or MedExome library prep kits and sequenced to an average depth of 
139x, 496x and 395x respectively. Reads were mapped to the hg19 reference genome using 
BWA and processed using picard and GATK, following best practices. Candidate variants 
were called using thresholds to detect variants present in the brain (>5 reads), but absent 
in blood (≤1 read). The next three filtering steps for candidate variants were; 1) a custom 
signal to noise filter (S2N ≥5) as described in the supplementary methods, 2) a minor allele 
frequency less than 0.01% in the ExAC database and 3) a CADD score above 10. 

Validation amplicon panel sequencing
We validated a selection of candidate variants (present in brain, absent in blood) to 
confirm true-positive variants, and two candidate genes (GRN and TARDBP) to exclude false 
negatives, by amplicon panel sequencing of the same DNA samples used in the discovery 
whole exome sequencing. All candidate variants in these targets were included in a custom 
amplicon panel (SWIFT, product code SW CP-ER6161) and sequenced to an average depth 
of 1,601x on a MiSeq v3 with 600 cycles. A second round of amplicon panel sequencing was 
carried out for further classification of somatic variants of interest in DNA from additional 
cortex regions (middle frontal gyrus, superior parietal lobe) and cerebellum of two semantic 
dementia brains, and in DNA from middle temporal gyrus of 66 non-demented control 
brains from the Netherlands Brain Bank. Data analysis of the panel was done similarly to the 
discovery. Candidate somatic variants were validated when; 1) read depth in the validation 
was at least 100, 2) the variant allele count was at least 20 in DNA of the brain, 3) the variant 
allele frequency was at least 1% in DNA of the brain, 4) variant allele frequency was absent 
in blood of the same patient. 

Validation of TARDBP variants
We performed additional validation using digital droplet PCR of two TARDBP somatic 
variant carriers. In short, custom LNA FAM+HEX probes for each variant were designed and 
optimized by TATAA Biocenter (Göteborg, Sweden). Synthetic DNA fragments (gBlockTM) 
with these variants were generated to serve as positive controls and as a dilution ladder 
for technical evaluation of the assay. Negative controls were water and DNA of middle 
temporal gyrus from two unrelated non-demented controls. Each assay was tested on five 
brain regions of the carrier (medial temporal gyrus, medial frontal gyrus, superior parietal 
gyrus, dentate gyrus and cerebellum), blood and the two negative controls. Droplets were 
generated using Bio-Rad’s Droplet Generation Oil for Probes (cat#1863005) in combination 
with the qPCR Droplet PCR supermix (no dUTP, Bio-Rad cat#1863024) on a Bio-Rad QX200 
Droplet Generator. The PCR plate was measured using the QX200 Droplet Reader (Bio-Rad) 
and analyzed with the Quantasoft Analysis Pro software (Bio-Rad). Reactions with less than 
10.000 accepted droplets were not utilized in the analysis. Sensitivity rates of the assays 
were established using 0.1%, 1.0% and 2.5% spiked positive control gBlockTM mutation 
fragments and subsequently used to estimated variant allele frequencies by the ratio of 
FAM-positive droplets over HEX-positive droplets.
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Germline variants in blood and brain 
To exclude (de novo) germline variants in twelve FTD (CHMP2B, DPP6, FUS, GRN, MAPT, 
OPTN, SQSTM1, TARDBP, TBK1, TREM2, UNC13A and VCP) candidate genes we performed 
regular germline variant calling using GATK’s Haplotypecaller using best practi ces (van Rooij
et al., 2017; Ferrari et al., 2019; Greaves and Rohrer, 2019; Clarimon et al., 2020). Variants 
were annotated using annovar and were manually evaluated based on exonic functi on, 
CADD score, frequency in GnomAD, variant allele frequency and presence in the other 
ti ssues of the same pati ent. 

Functi onal analysis of somati c TARDBP variants 
The functi onal impact of both somati c TARDBP variants on the TDP-43 protein was assessed 
by a previously published add-back splicing assay and by immuno-fl uorescent microscopy 
of TDP-43 in HeLa cells (D’Ambrogio et al., 2009). In short; the splicing assay contains a 
minigene construct containing CFTR exon 9 carrying a mutati on (C155T) in an exonic splicing 
enhancer sequence in order to have an approximately 50% of in- or out-splicing of exon 
9. Using wild type TDP-43 as positi ve control, and complete loss-of-functi on F4L mutated 
TDP-43 as negati ve control, the relati ve impact of L41F and R42H on TDP-43 functi on could 
be ascertained. To obtain p-values, an unpaired t-test was carried out using GraphPad 
soft ware (GraphPad Soft ware, La Jolla California, USA). For the immunofl uorescence assays, 
Hela cells were transfected with wild type TDP-43 or with TDP-43 carrying variants L41F or 
R42H. Nuclei were located by chromati c staining of DAPI, and co-localizati on of TDP-43 is 
identi fi ed by FLAG-TDP-43 protein, as published previously (Mompean et al., 2017). FLAG 
TDP-43 staining was quanti fi ed using regions of interest for nuclear and cytoplasmic signal 
using Fiji_ImageJ soft ware. The percentage of nuclear and cytoplasmic fl uorescent signal 
was measured for nine cells each for the wild type, L41F and R42H TDP-43 expressing cells. 
Stati sti cal tests were performed using 2 way-ANOVA in GraphPad for nuclear-cytoplasmic 
TDP-43 localizati on within each cell-line, as well as between the wild type and the L41F or 
R42H TDP-43 transfected cells.

Cell-type specifi city of somati c R42H TARDBP variant
For the R42H TARDBP variant carrier, we performed Fluorescence-Acti vated Nuclear 
Sorti ng (FANS) on the frontal lobe and parietal lobe, then isolated DNA from the nuclei 
with QIAamp DNA Micro Kit (QIAGEN, Germany). Using NeuN and Olig2 as cell surface 
markers, we separated neurons (NeuN-positi ve) and oligodendrocytes (Olig2-positi ve) from 
microglia, astrocytes and any other nuclei (Double negati ve). Parietal cortex ti ssue from a 
dementi a pati ent unrelated to this study was similarly sorted and used as negati ve control. 
Each resulti ng DNA sample was amplicon sequenced and analyzed using the described 
procedures.
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Results

Deep whole exome sequencing 
All DNA samples from middle temporal gyrus (n=14), dentate gyrus (n=13) and blood (n=16) 
were sequenced to an average depth of 496 (range 429-658), 395 (range 310-520) and 139 
(range 72-229), respectively.

Exclusion of causal germline variants 
Germline variant analysis in the whole exome sequencing data of all semantic dementia 
patients did not result in known pathogenic variants in any of the 12 known frontotemporal 
dementia genes. One patient was identified as germline carrier of the V90A variant in 
TARDBP, which was also reported in controls and thus considered of uncertain significance 
(supplemental table 1) (Borroni et al., 2010; Lattante et al., 2013; Caroppo et al., 2016).

Discovery and validation of somatic variants in semantic dementia brains
After signal to noise, minor allele frequency and CADD score filtering we retained on average 
172 variants for dentate gyrus and 57 for middle temporal gyrus per patient (figure 1 and 
supplemental figure 1). We detected variants in 1,450 genes from the dentate gyrus and/
or middle temporal gyrus of at least one semantic dementia patient and absent in blood. To 
confirm true-positive variants, we selected a set of 305 variants for validation in a panel of 
amplicon sequencing based on one of the two following criteria: 1) somatic variants present 
in at least five brains (resulting in 252 variants in a total of 128 genes), or 2) variants in 
candidate genes involved in neurodevelopmental or neurodegenerative diseases (resulting 
in 53 variants in 51 genes present in 1-4 brains). Amongst the 51 candidate genes fulfilling 
the second criterion were single variant carriers in TARDBP (R42H) and in GRN. 

We identified a total of eight true-positive variants in the panel of amplicon sequencing 
(≥100x depth in both brain and blood, variant observed ≥ 20 times in the brain, variant allele 
frequency of ≥ 1% in brain and ≤ 1% in blood). Seven of those were previously detected with 
exome sequencing, whereas the eighth variant was not detected in exome sequencing but 
identified though rescreening of the TARDBP gene in the amplicon sequencing data (table 
2). The nonsynonymous variant (R42H) in TARDBP; chr1:11073909-G/A with a CADD score 
of 20 was the most significantly replicated variant (271 out of 18,990 sequenced fragments 
in middle temporal gyrus, and none out of 5,126 fragments in blood) and completely absent 
from gnomad (variant allele frequency of 1.4% in the middle temporal gyrus of a single 
semantic dementia brain).
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###22### 

 
Figure 1. fl owchart of data fi ltering and analysis. Starti ng from top-left ; raw somati c variant calling using blood 
and dentate gyrus (DG) or medial temporal gyrus (MTG) deep exome sequencing data (WES), signal to noise fi lter 
(S2N), minor allele frequency fi lter (MAF), CADD score fi lter, annotati ng and grouping per gene, resulti ng in the 
genes aff ected in each SD pati ent. On the right side; grouping genes aff ecti ng multi ple pati ents (>5) or aff ecti ng 
candidate genes in fewer pati ents (1-4) to be included in the validati on amplicon panel. To excluded false negati ve 
fi ndings in the WES data in FTD-TDP known germline causal genes GRN and TARDBP, all exons in these genes were 
included in the validati on panel. The fi rst validati on round was performed on the same ti ssues as the discovery WES 
to confi rm true positi ve variants from the WES, or identi fy false negati ve fi ndings in GRN or TARDBP. The second 
round of validati on further classifi ed true positi ve variants in additi onal brain ti ssues and non-demented controls.
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A second non-synonymous variant in the same exon; chr1:11073905-C/T (L41F) in the 
TARDBP gene was detected in the dentate gyrus of another pati ent with variant allele 
frequency of 2.0% in the amplicon panel sequencing data (152 out of 7,533 fragments, 
p=2.8E-47, OR=47, 95% CI=[18-175] compared to blood). This variant with a CADD score of 
28 was also absent from the populati on databases, and was not observed in blood-derived 
DNA or any of other brain regions of the same pati ent (fi gure 2). Both variants observed in 
a single pati ent each were taken forward for further validati on by digital PCR and functi onal 
testi ng, as germline variants in TARDBP are known to cause frontotemporal dementi a and/
or amyotrophic lateral sclerosis with TDP-43 pathology (Borroni et al., 2010; Latt ante et al., 
2013; Caroppo et al., 2016).

###23###

Figure 2. allele frequencies for L41F and R42H in all tested amplicon panel samples. Each column is a sample, the 
ti ssues represented by color; blood (BL, blue), cerebellum (CER, green), dentate gyrus (DG, red), hippocampus 
(HIP, orange), middle temporal gyrus (MTG, purple), middle frontal gyrus (MFG, salmon) and superior parietal lobe 
(LPS, pink). The verti cal axis shows the variant allele frequency in that respecti ve ti ssue, with lines representi ng the 
0.25% and 0.50% thresholds. The ti ssues with highest VAF are labelled with the pati ent identi fi er and respecti ve 
ti ssue. 
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Validation of TARDBP variant R42H by amplicon sequencing, digital droplet PCR
After confirming presence of this variant in middle temporal gyrus (271 fragments out of 
18,990, p=8.9E-29) and absence in 5,123 sequenced fragments from blood, we validated 
this variant in other cortical regions of the same brain. We observed this variant with similar 
frequency in the parietal lobe (1.2%, 12 out of 973 fragments, p=2.3E-10), in the frontal lobe 
(0.5%, 11 out of 2,122 fragments, p=1.3E-6), and at lower frequency in the hippocampus 
(0.3%, 8 out of 3021 fragments, p=3.6E-4) and cerebellum (0.1%, 3 out of 2881 fragments, 
p=4.7E-2), although the variant allele frequency observed in hippocampus and cerebellum 
were within the range observed in the other samples, as shown in figure 2a. The variant 
was not observed among temporal cortex samples of 66 non-demented controls (0.03%, 
total 28 fragments out of 106,635, likely representing random sequencing errors). The R42H 
variant was then sequenced in only neuronal nuclei (NeuN-positive), oligodendrocyte nuclei 
(Olig2-positive) or the nuclear fraction containing, amongst others, astrocytes and microglia 
(and other NeuN/Olig2 double negative CNS cell nuclei) in both frontal and parietal lobe of 
the R42H carrier to an average depth of 3579x. The R42H variant was detected in 2.4% of 
the neurons in the parietal lobe and 1.1% in the frontal lobe (74 and 42 fragments out of 
3093 and 3806 in total, respectively. These frequencies were doubled compared the bulk 
parietal and frontal tissue (1.2% and 0.5%, respectively). The variant was not observed in 
the control sample (<0.1%) and at 3-4 times lower frequencies in the oligodendrocytes or 
double negative nuclear fraction (<0.5% in the parietal lobe and <0.4% in the frontal lobe, 
respectively).

Validation using digital droplet PCR confirmed the amplicon sequencing results, as shown 
by the allelic discrimination plots (figure 3). The variant was observed in 242 droplets out 
of 13,048 non-empty droplets (variant allele frequency=1.9%) in the temporal lobe which 
was significantly  higher than the negative controls; blood of the same patient (variant allele 
frequency=0.1%, 1 out of 809 droplets, p=1.1E-5) and temporal lobe of 2 non-demented 
control (variant allele frequency=0.04%, 3 out of 7,698 droplets, p=1.5E-44). Similarly, the 
variant was observed at significantly higher levels compared to the controls in the frontal 
lobe (variant allele frequency=1.3%, 126 droplets out of 9,549, p=6.7E-4 and p=1.1E-28) and 
parietal lobe (variant allele frequency=0.6%, 21 out of 3,697 droplets, p=0.16 and p=3.5E-8) 
and cerebellum (variant allele frequency=0.1%, 13 out of 9,231 droplets p=1.0 and p=0.04).
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###24###

Figure 3. allelic discriminati on plots of the digital droplet PCR for the R42H TARDBP somati c variant. Each marker 
represents a single droplet and its respecti ve wild type (horizontal axis) and variant (verti cal axis) signal intensity. 
Five diff erent ti ssues of the carrier are tested; blood, middle temporal gyrus (MTG), middle frontal gyrus (MFG), 
lateral parietal lobe (LPS), cerebellum (CER) and a negati ve control of water is shown. The gray droplets are 
considered empty, green droplets are wild type only, orange is both wild type and variant alleles, and in blue are 
droplets harboring only the variant allele. 
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Validation of TARDBP variant L41F by amplicon sequencing, digital droplet PCR
The second TARDBP somatic variant in the same exon was detected in the dentate gyrus 
with a variant allele frequency of 2.0% in the amplicon panel sequencing data (152 out of 
7,533 fragments, p=2.8E-47) compared to blood (figure 2b). The variant was not observed 
among temporal cortex samples of 66 non-demented controls (0.04%, total 39 fragments 
out of 106,632, likely representing random sequencing errors). Validation with digital droplet 
PCR confirmed absence of the variant in blood, cerebellum, frontal lobe, temporal lobe and 
parietal lobe. Due to the low quantity of DNA from laser-capture microdissection-derived 
dentate gyrus, this tissue could not be tested using dPCR. This may have also influenced the 
WES result, in which many PCR duplicates were observed for the dentate gyrus data. We 
did not find any other somatic variants in the TARDBP gene in any of the other semantic 
dementia brains (average coverage across the gene of 1,116) and also not in middle temporal 
gyrus of non-demented control samples (average coverage of 103x across the gene).

Clinicopathological description of the two cases with somatic TARDBP variants
Both patients carrying the TARDDP L41F or R42H somatic variant developed progressive 
problems with word finding and language comprehension, and visual agnosia at the age 
of 55 and 57, respectively. Compulsive-obsessive behavior, loss of initiative and emotional 
lability were salient features in both patients, similar to the other 14 patients. Profound left-
sided temporal atrophy was observed by neuroimaging (CT, MRI) two and three years after 
onset in both TARDBP carriers, in contrast to asymmetric but bilateral atrophy in the other 
semantic dementia patients (figure 4). Neuropathological examination after death (68 and 
72 years respectively) showed severe anterior temporal atrophy, left more pronounced than 
right in the L41F carrier and more symmetrical in R42H. Microscopically, neuropathological 
changes were consistent with TDP-pathology type C, with severe neuron loss, gliosis in the 
temporal cortex with long thick threads and round cytoplasmic inclusions in granular cells 
of the hippocampus. For the L41F carrier, DNA of the middle temporal gyrus from the right 
hemisphere was available in the Netherlands Brain Bank and used for all DNA analyses, for 
the carrier of the R42H variant this was the middle temporal gyrus of the left hemisphere.
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###25### 

 

  Figure 4. Axial T1-weighted MRI of the SD pati ent carrying somati c variant R42H, showing profound left  sided 
temporal atrophy three years aft er disease onset. Pathological examinati on 15 years aft er disease onset showed 
atrophy of both temporal poles. The middle picture is from a pati ent without a somati c variant (four years aft er 
onset) showing atrophy of both temporal lobes. The right picture is a pati ent with the germline (p.I383V) TARDBP
variant, showing a similar atrophy patt ern bilaterally (four years aft er onset).

Functi onal analysis of TARDBP variants
TARDBP is a protein involved in RNA splicing (Buratti   and Baralle, 2001; D’Ambrogio et al., 
2009). Therefore, the impact of both TARDBP variants on the acti vity and localizati on TDP-
43 was established in two assays; splicing regulati on and cellular localizati on. The splicing 
assay contains a minigene construct containing CFTR exon 9 carrying a mutati on (C155T) in 
an exonic splicing enhancer sequence in order to have an approximately 50% of in- or out-
splicing of exon 9. The splicing is mediated by TDP-43 binding to the UG-repeat sequences 
near the 3’ start site. Thus, when the functi on of TDP-43 is lost upon targeted siRNA 
treatment, a decrease to approximately 20% of exon 9 skipping is observed. Exon 9 skipping 
is then rescued by adding back wild type TDP-43 (WT) whose transcript has been made 
resistant to siRNA treatment. As negati ve control, we used a construct containing a TDP-
43 that carries variant F4L, which is also resistant to the siRNA treatment but cannot bind 
RNA (Buratti   and Baralle, 2001). In the presence of these positi ve and negati ve controls, the 
impact of uncharacterized TDP-43 variants can then be evaluated by comparing the amount 
of exon 9 skipping of each expressed variant. Both variants signifi cantly decreased exon 9 
skipping compared to wild type TDP-43, as shown in fi gure 5. 
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###26###

Figure 5. From left  to right, the fi rst two lanes show the baseline measurement with both splicing in and out of 
exon 9 in the absence (-) or presence of TDP-43 siRNA (+). Lane 3 shows that additi on of si-resistant wild type TDP-
43 can rescue the splicing functi onality (WT) but this cannot be achieved by a TDP-43 carrying the F4L mutati on 
that does not allow the protein to bind RNA (lane 4). Lanes 5 and 6 show the results obtained aft er the additi on of 
mutated TDP-43 carrying the predicted damaging variants (R42H and L41F). In the Western blots below, we show 
equal expression of the fl agged-TDP-43 WT and mutants (pFlag-TDP-43s) following knock down of the endogenous 
protein (end. TDP-43). Tubulin was used as an internal control. The upper fi gure shows the gel, the lower fi gure 
quanti fi es the rati o of CFTR exon 9 inclusion. The SD and p-values are reported for three independent experiments.  
Unpaired t-test was performed for stati sti cal analysis (*, P<0.05).

Splicing impairment was stronger for the L41F variant than for the R42H variant, in accordance 
with the predicted impact with CADD scores of 28 and 20, respecti vely. The impact on TDP-
43 functi on was smaller for both variants compared to the siRNA-resistant TDP-43 variant 
F4L, which blocks RNA binding completely. Immunofl uorescent staining demonstrated 
signifi cantly altered localizati on of the R42H mutant TDP-43 protein compared to wild 
type TDP-43 (fi gure 6). In the wild type cells, 78% of the fl uorescent signal was nuclear 
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(n=9), versus 71% for the L41F cells (p = 0.54) and 52% for the R42H cells (p = 0.0004). 
Only in the R42H TDP-43 expressing cells was TDP-43 no longer signifi cantly localized in 
nuclei compared to cytoplasm. Region of interest measurements and stati sti cal results are 
supplied in supplemental table 2.

###27###

Figure 6. Impact of TARDBP variants on the localizati on of fl agged-TDP-43 wild type and mutant proteins 
overexpressed in Hela cells. The overexpressed proteins were visualized using anti -fl ag polyclonal anti body in a 
100nm/pixel fi eld. Scale bar = 10 nm. The fi rst row shows wild type fl ag TDP-43, followed by fl agged TDP-43s 
carrying both variants; L41F and R42H. The fi rst column shows DAPI staining to indicate the chromati n in the 
nucleus in blue. The second column shows TDP-43 stained in red with a fl ag-specifi c anti body. The last column 
overlaps both fi gures, demonstrati ng TDP-43 localizati on in the nucleus for WT TDP-43, whilst localizing also in 
the cytoplasm for both TDP43 with variant R42H and L41F. In the bar plots below, fl uorescent TDP-43 signal is 
quanti fi ed in the nucleus and cytoplasm for nine cells of each line. The average rati o of nuclear and cytosolic signal 
is plott ed and compared between groups. P-values cutoff s are <0.0001 (****) or 0.0001 < 0.001 (***) as calculated 
by 2-way ANOVAs between the groups illustrated.
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Discussion

The present study identified the occurrence of two low-level pathogenic somatic variants in 
the TARDBP gene in brains of patients with semantic dementia. These two variants in the first 
exon of the gene are absent from public databases and significantly affect TDP-43 function 
and localization. Moreover, the temporal lobe atrophy observed by MRI neuroimaging three 
years after onset in one of the two somatic TARDBP variant carriers resembled classical 
frontotemporal dementia due to germline TARDBP variants. 

The observed low level (1-3%) of TARDBP somatic variants in brain-derived DNA was in 
accordance with the hypothesis that somatic variants occurred in one or more clones of 
neurons acquired in a single neural progenitor cells during brain development. Subsequently, 
the pathophysiological process arising from neurons carrying the somatic variants would 
then result in focal neurodegeneration later in life. The low percentage may further be 
attributed to by selective loss of neurons that carried the somatic variants in the affected 
brain region. The presence of somatic variants shared by (a) clone(s) of neurons in the 
temporal cortex or dentate gyrus was in contrast to recent studies, which investigated 
post-mitotic somatic mosaicism (pathogenic single-nucleotide variants and somatic copy-
number variations) of known germline disease genes in individual cells (Lee et al., 2018; 
Lodato et al., 2018; Mokretar et al., 2018). Such post-mitotic somatic variants increased 
with age in the latter studies and were found in significantly higher number in Alzheimer’s 
disease or Parkinson’s disease brains compared to controls (Lee et al., 2018; Lodato et al., 
2018; Mokretar et al., 2018). Although these somatic DNA variations for age-associated 
brain diseases were potential interesting, their causal role could not be determined for sure 
(Lodato et al., 2018). 

Post-mitotic variants are a less likely cause for semantic dementia patients as the disease 
occurs at a relatively young onset age (< 65 years) and its prevalence does not increase with 
age (Hodges et al., 2010; Landin-Romero et al., 2016). Therefore, our sequencing of DNA 
from bulk tissue, aiming to identify variants shared by neurons, and estimating their variant-
allele-frequencies resembled the study of Park et al. in which somatic variants were found 
per brain region (hippocampal formation) in both Alzheimer’s disease patients and controls 
(Park et al., 2019).

The presence of single somatic variants (R42H and L41F) in the TARDBP gene in several 
neocortical regions (temporal, frontal and parietal) or dentate gyrus strongly points to the 
initial occurrence of somatic mosaicism in a single neural progenitor cell (Zilles et al., 2013; 
Palomero-Gallagher and Zilles, 2019). Somatic variants in neurons arising from the ventricular 
or subventricular zone have also been shown in childhood or adult neurological diseases (Lee 
et al., 2012; Lim et al., 2015). By using blood-derived DNA from the same patients as control 
tissue, we could exclude somatic variants occurring from non-ectodermal lineages (Leija-
Salazar et al., 2018). Somatic TARDBP variants could be excluded from 66 non-demented 
controls by using temporal cortex-derived DNA. As the specific somatic variant (R42H) was 
absent in both hippocampus and cerebellum of the same patient, the variant must have 
occurred in neural progenitor cells of the lateral segment of the pallium, which develops 
into the neocortex (Zilles et al., 2013; Palomero-Gallagher and Zilles, 2019). The variant was 
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enriched (twice as frequent compared to bulk cells) in the neuronal subpopulati on of the 
parietal and frontal lobes, further suggesti ng the neural origin. A low signal (less than 20% 
of signal in the neuronal fracti on) of the variant in the other nuclear fracti ons is a likely due 
to some residual neuronal nuclei present in the  NeuN-negati ve fracti on. Based on these 
results, we esti mate that the R42H variant is present in 5.6%, 4.8% and 2.2% of the neurons 
in the temporal, parietal and frontal lobes, respecti vely. The second variant (L41F) was only 
detected in the hippocampus, suggesti ng that it occurred in neural progenitor cells of the 
medial segment of the pallium. The asymmetric onset of the disease pathology in these 
cases did not necessarily require the occurrence of the somati c variants aft er developmental 
separati on of both hemispheres, as germline variants have also been associated with other 
asymmetric neurodegenerati ve disease processes (Sti les and Jernigan, 2010; Caroppo et al., 
2016; Gonzalez-Sanchez et al., 2018). Although of interest, due to the collecti on procedure 
in the Netherlands Brain Bank, freezing only one hemisphere, the occurrence of absence 
of the variants in the other hemisphere could not be tested. The similarity in clinical and 
pathological phenotype (i.e., severe temporal atrophy, TDP-43 positi ve inclusions) between 
the somati c TARDBP variant carriers and germline TARDBP variant carriers supports the 
potenti al pathogenicity of these variants (Caroppo et al., 2016; Gonzalez-Sanchez et al., 
2018).  

Both TARDBP variants identi fi ed (L41F and R42H) are located in the fi rst exon of TARDBP and 
are non-synonymous changes predicted to impact the N-terminal domain of the protein 
with CADD scores of 28 and 20 respecti vely (Chang et al., 2012; Zhang et al., 2013; Sasaguri
et al., 2016). Both variants are absent in human germline populati on databases ExAC and 
gnomAD; in fact, only eight germline variants in the fi rst exon of TARDBP (amino acid 1-79) 
are described in the gnomAD database (120.000 parti cipants), all extremely rare (<0.003%, 
20 carriers across all eight variants combined). Our fi ndings, identi fying somati c variants in 
the N-terminal domain (amino acid 41 and 42) of TARDBP, are in contrast with all germline 
TARDBP gene variants for familial amyotrophic lateral sclerosis, and occasionally for familial 
frontotemporal dementi a, reported in the glycine-rich region (GRR domain) between amino 
acids 262 and 414 of the TDP-43 protein (Barmada and Finkbeiner, 2010; Borroni et al., 
2010; Latt ante et al., 2013; Caroppo et al., 2016; Wang et al., 2016).

Our functi onal assays convincingly demonstrate a disrupti ve eff ect of both variants on 
normal TARDBP protein functi on. The impact on TDP-43 acti vity via CFTR minigene splicing 
was stronger for L41F than for R42H, with approximately 75% and 40% decrease of TDP-43 
acti vity compared to wild type (D’Ambrogio et al., 2009; Mompean et al., 2017). Also, the 
redistributi on of mutant TDP-43 in HeLa cells, from mostly nuclear in unaff ected control to 
both cytoplasmic and nuclear for the R42H variants, supports the cellular pathogenicity. 
Together, both assays suggest that a correctly folded N-terminal domain of TDP-43 is 
required for nuclear localizati on and functi on, and that neurons carrying these somati c 
variants have dysfuncti onal TDP-43 and redistributi on of TDP-43 protein to the cytoplasm as 
observed in frontotemporal dementi a and amyotrophic lateral sclerosis brains (Chang et al., 
2012; Ihara et al., 2013; Zhang et al., 2013; Qin et al., 2014; Romano et al., 2015; Sasaguri
et al., 2016; Mompean et al., 2017; Weskamp and Barmada, 2018). The resulti ng impact 
on TDP-43 functi on in shutt ling RNA from the nucleus to the cytoplasm might lead to the 
protein aggregates observed in semanti c dementi a brains and subsequent pathogenicity for 
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the cells and tissue in which the variants are present (Barmada and Finkbeiner, 2010; Igaz 
et al., 2011). 

It is unclear how dysfunction of a small percentage of affected neurons (2-6%, double the 
variant allele frequency) would lead or contribute to extensive degeneration of the temporal 
lobe and widespread pathology (10-15% of neurons) in the dentate gyrus. Potentially, 
neuronal dysfunction within one brain region can accumulate until neuron-neuron signaling 
is sufficiently impaired to functionally disrupt the entire region. Another consideration is 
that the current study consider mosaicism in bulk DNA of all neurons in the temporal lobe 
and/or dentate gyrus, whereas many subtypes of neurons exist in these regions, leaving the 
possibility that the small number of affected neurons in these patients are enriched for a 
specific neuronal subtype. In Alzheimer’s disease, for instance, a selective loss of parvalbumin-
positive GABAergic interneurons (~3% of the total neuronal population) has been observed 
(Brady and Mufson, 1997), and the selective dysfunction of these neurons has been causally 
linked to global brain network changes and progressive amyloid pathology (Verret et al., 
2012; Iaccarino et al., 2016; Hijazi et al., 2019), indicating that small populations of affected 
neurons can indeed contribute to more widespread neurodegenerative processes. The 
challenges in interpreting selective neuronal dysfunction in the context of widespread 
neurodegeneration are exemplary of the overall discussion on how neurodegeneration 
starts and progresses (often differently between patients) throughout the brain, regardless 
of initial cause of the disease. Further work is needed to fully understand these processes 
and place the contribution of developmental and post-mitotic somatic DNA variation in 
the context of disrupted brain function. Cell-specific studies of semantic dementia brains 
carrying these somatic TARDBP variants may determine in which neuronal subtypes the 
somatic variants were present.

An important question that remains is why somatic variants were not found in all 14 brains 
with semantic dementia. There are several potential explanations, some of which include 
limitations of this study. 1) The bioinformatic filtering steps (absent in blood, CADD score 
> 10) may have been too stringent and removed potentially causing somatic variants, 
2) pathogenic non-coding variants may have been not detected by the present exome 
sequencing, and low-level copy number variants missed by the present approach, 3) causal 
somatic variants may have become undetectable (disappeared) due to neuron loss in medial 
temporal gyrus during the neurodegenerative process, 4) the disease may have originated 
from causal somatic variants that were only present in the temporal cortex or dentate gyrus 
opposite to the side of the examined fresh-frozen brain samples, even though we expected 
that somatic variants occurred prior to the hemisphere separation in brain development, 5) 
multifactorial genetic or non-genetic factors may be responsible for most of the semantic 
dementia cases. Finally, we may have overlooked relevant variant in the WES data by first 
focusing on shared variants or damaging variants in candidate genes, which may be less 
likely true variants. Additionally, the low-level (<0.5%) error rate of the sequencing requires 
stringent filtering which may exclude variants that could be detected through panel 
sequencing, and further investigation of the data may uncover additional relevant variants, 
as was observed for the L41F variant. Pathogenicity of the remaining six variants confirmed 
by panel sequencing validation must be validated by future studies.
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An interesti ng issue is whether somati c variants present in TDP-43 related genes may 
trigger dysregulati on in the TDP-43 pathway. In analogy to this, Park et al reported a 
signifi cant enrichment of somati c variants in the PI3K-AKT, MAPK and AMPK pathways in 
Alzheimer’s disease brains versus control brains (Park et al., 2019). Using a KEGG pathway 
overrepresentati on analysis, they hypothesized that multi ple disease-causing somati c 
variants converge onto pathways that potenti ally aff ect tau phosphorylati on. In our view, the 
next step would be to perform amplicon panel sequencing of a set of FTD-TDP related genes 
on both semanti c dementi a brains and controls in order to detect potenti al additi onal causal 
somati c variants in the TDP-43 pathway. Moreover, investi gati ng other series of SD brains 
may support our fi ndings, and may give a bett er esti mati on of their frequency in semanti c 
dementi a. Finally, the present fi ndings raise the questi on whether somati c variants may be 
causati ve in other types of frontotemporal dementi a, for example somati c variants in MAPT
causing sporadic Pick’s disease. Overall, it seems warranted to carry out such targeted deep 
sequencing in all well-defi ned dementi a subtypes.  

Finally, although our unbiased deep sequencing approach yielded a substanti al number of 
false-positi ve variants, despite extensive eff orts to identi fy the most likely true variants, 
it also resulted in the detecti on of true-positi ve variants in a well-known candidate gene 
causati ve for frontotemporal dementi a with TDP-43 pathology. In our view, future studies 
may choose between two alternati ve approaches: 1) targeted deep sequencing of bulk ti ssue 
of a large number of candidate genes in one way or another related to the pathophysiology, 
or 2) single-cell whole genome sequencing generati ng more reliable data on true-positi ve 
variants. 

In conclusion, low-level somati c pathogenic variants in the TARDBP gene are an underlying 
geneti c cause of non-familial semanti c dementi a. This phenomenon needs investi gati on 
in other cases of semanti c dementi a, as well as in other early-onset neurodegenerati ve 
diseases, for example non-familial frontotemporal dementi a with tau pathology. Moreover, 
in other neurodegenerati ve diseases, such as Alzheimer’s disease or Parkinson’s disease, 
somati c variants may also play a causal or contributi ng role, and deserve further investi gati on. 
Further investi gati on of somati c variants in known disease genes is warranted, specifi cally in 
pati ents without positi ve family history and with clearly defi ned focal neurodegenerati on. 
Our fi ndings have implicati ons for understanding of neurodegenerati ve disease and the 
specifi c role of germline versus somati c variants therein. Also, negati ve germline variant 
testi ng might be insuffi  cient for some diseases, and may require DNA from the appropriate 
ti ssue instead to detect somati c variants in order to determine disease causes. Finally, 
studying the properti es of somati c disease-causing geneti c variants may reveal novel 
underlying disease processes and point towards new therapeuti c strategies.
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Introducti on

The introducti on of next-generati on sequencing around the year 2005 led to an explosion of 
genomic data (1-3). With further decreasing costs and increasing familiarity with sequencing, 
the list of applicati ons grows (2-5). Next-generati on sequencing (mostly whole exome 
sequencing; WES) is now commonplace in clinical practi ce, and geneti c testi ng (mostly 
with array technology) made its way into society through direct-to-consumer companies 
(6-9). The number of DNA sequenced samples worldwide runs into the millions, permitti  ng 
insight into the frequencies of common and rare variants in all genes throughout the human 
populati on at a resoluti on which was previously unavailable (1, 10-13). This shift  to “bigger 
data” increases the strain on data handling and analysis (14). This strain will further increase 
with the applicati on of dynamic data (i.e.; data changing over ti ssues or ti me) measures in 
cells or ti ssues, such as transcriptome or methylome sequencing, potenti ally multi plying 
the number of meaningful datasets generated per individual (15, 16). In this chapter, 
developments in NGS methodology and the applicati on on neurodegenerati ve disorders 
over the last 5 years are discussed and how the work in this thesis has contributed. Finally, 
expected developments over the next 5-10 years will be discussed, and how these may 
further change the directi on of the fi eld of genomics in medicine.

Novel geneti c fi ndings in dementi a
One of the fi rst applicati ons of next-generati on sequencing was found in family studies, 
driven by the many years of successful linkage analysis of Mendelian disorders (based 
on co-segregati on of the disease with DNA markers). Rather than having to select and 
test the correct candidate genes beforehand, requiring prior knowledge, family-based 
sequencing have yielded dozens of potenti ally clinically relevant variants per family based 
on co-segregati on (17-20). This has requested a shift  in analysis method; instead of looking 
for a specifi c geneti c variant (hypothesis driven testi ng), the analysis starts unbiased and 
evaluates all identi fi ed geneti c variants or all geneti c variants in linkage regions and their 
potenti al to cause the disease (17, 18, 20). Overall, this approach aids identi fi cati on of novel 
disease-causing genes, which in turn provides insight into the biology behind the disease  
(17, 18, 20). 

Over the last 5-10 years, work by the author and co-authors has uti lized NGS in families with 
dementi a to identi fy novel, causal geneti c variants (17-20). Previous work by Wong et al.
identi fi ed a variant in the PRKAR1B gene causing a unique neuropathological phenotype in 
one large family with dementi a/parkinsonism (17). The variant was absent from populati on 
control databases and from disease control groups, and the neuropathology was hallmarked 
by intermediate neurofi lament neuronal inclusions stained positi ve for the PRKAR1B protein 
(17). Similar work combining WES of eight families burdened with Alzheimer’s Disease (AD) 
(represented in this thesis in chapter 2.3) identi fi ed rare variants in the EIF2AK3 gene as 
the cause in two families (18). Further analysis in a large group of unrelated AD pati ents 
demonstrated increased burden of rare EIF2AK3 variants, suggesti ng a geneti c contributi on 
of EIF2AK3 to AD also outside these families (18). Using WES data of a large group of 
unrelated pati ents, rare variants in the SORL1 gene were also found to be more abundant in 
cases than in controls (19). Extensive analysis of these variants demonstrated an increased 
risk for AD, low frequency in the control populati on and higher predicted damaging scores 
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in certain domains of the gene (19). Additionally, Mol et al. identified a causal variant in 
the STUB1 gene in a single large family with ataxia, parkinsonism and cognitive decline. 
Although variants in this gene were previously in recessively associated with spinocerebellar 
ataxia, the STUB1 variant in our family supported a dominant mode of inheritance as genetic 
cause of the  disease (21). 

In total, in 25% of patients with frontotemporal dementia (FTD) and 10% of patients with 
AD the causal genetic variants are known. This leaves an estimated 25% of genetically 
unresolved FTD and 60% of unresolved AD. This difference seems reflected also by the 
presentation of each disease; FTD seems more often familial and nearly all identified genetic 
causes are mendelian pathogenic variants. In contrast, only 1-2% of AD is caused by known 
familial factors in APP, PSEN1, PSEN2 and SORL1, whereas genetic risk factors seem to play a 
larger role, such as the APOE e4 locus. By studying families or series of cases with dementia 
but without known gene defect, additional genetic defects that might cause FTD or AD 
can be identified. Knowing in which genes these variants contribute to neurodegeneration 
yields biological insights (22, 23). Specifically, these results point towards pathways in which 
dysfunction causes neurodegenerative disease susceptibility, hinting towards underlying 
causal biology (22, 23). These small insights contribute to the understanding of the disease’s 
biology and ultimately aid in preventing, halting or treating the disease.

Sharing data and collaborating with other research groups is the essential next step to solve 
genetic causes in many families with fewer cases or even only a single proband to study. 
Of specific note are large-scale studies combining multiple existing sequencing datasets. 
One large collaboration by Janssen et al. combined PD datasets and demonstrated that rare 
variants in lysosomal storage genes increase PD risk (24, 25). In addition to this finding, 
this was also one of the first large studies to group genes by function in a gene burden 
analysis (24, 25). A similar large effort by Pottier et al. used whole genome sequencing 
(WGS) to identify novel rare variants in DPP6, UNC13A and HLA-DQA2 that increase risk for 
FTD (26, 27). A large collaboration driven by Holstege et al. aims to combine all European 
AD sequencing datasets (19). These collaborations are well-suited to identify genetic risk 
factors of incomplete penetrance, which are often missed by family-based studies. They 
also request the use of standardized workflows and facilitate replication between research 
groups. For example, the burden testing approach, coupled by pathway- or otherwise 
biological- gene grouping, will allow further ascertainment of the rare variant contribution 
for these diseases. This in turn sheds light on the underlying biology, as we learn which 
dysfunctions appears to contribute to the disease. This understanding is needed for the next 
step; interfering with the disease process and slow or prevent the disease course.

Population DNA sequencing demonstrates incomplete penetrance
One application of NGS is the generation of large-scale sequencing databases of many 
unaffected and unrelated individuals (10, 28, 29). Of particular interest in this context is 
applying NGS in longitudinal population-based cohort studies with very rich phenotype 
data on health and disease. One such dataset was generated in the Rotterdam Study, as is 
detailed in chapter 2.1. A main addition of these datasets is that it allows to investigate how 
many healthy individuals are also carriers of variants in disease-causing genes. This helps 
to determine the likelihood that when a person is identified as carrier of a specific gene 
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defect, it actually results in the disease associated with that gene (30). This likelihood can 
be denoted as the prevalence of disease among all variant carriers in (part of) that gene, 
a property dubbed the penetrance of a geneti c variant. In general, variants with higher 
penetrance are more likely to be pathogenic or disease-causing. So far, pathogenicity of a 
geneti c variant was mostly determined on the frequency of the variant in cases, combined 
with interpretati on of the expected molecular impact of the variant on the gene’s functi on 
(31). Collecti ons of “proven” pathogenic variants are recorded in clinical geneti c databases 
by each hospital, and eff orts are ongoing to centralize this informati on, for example in the 
ClinVar database. Predicti ons of the expected impact of a variant on the gene are now 
automated through tools like SIFT, PolyPhen or CADD. Yet, identi fying a variant as being truly 
pathogenic is non-trivial and can be done based on several criteria (2, 31). 

Chapter 2.1 of this thesis describes the generati on of one of these populati on-based 
sequencing databases (32). Furthermore, in chapter 2.3 this database of WES in 2,628 
subjects of the Rott erdam Study is analyzed by screening 59 specifi c genes for pathogenic 
variants. These 59 genes are recommended by the American College of Medical Geneti cs 
(ACMG) for screening as a secondary result of clinical WES, as variants therein are proven 
to cause specifi c diseases and those diseases can be treated or prevented. This study 
demonstrates that 1% of the Rott erdam Study populati on (n=26) carries potenti ally disease-
causing variants in one of these 59 genes, according to the publicly available clinical geneti c 
database ClinVar and HGMD. Under the recommendati ons of the ACMG, carriers of these 
“acti onable” variants are eligible to receive geneti c counseling with informati on on this 
geneti c fi nding and may be subjected to screening or additi onal clinical follow-up. However, 
we demonstrated that only 13% of these carriers have experienced symptoms that might 
be related to their variant. Thus, 87% of carriers appeared unaff ected, suggesti ng that the 
penetrance of these variants is relati vely low. This could mean that the clinical reporti ng 
of such variants to their carriers might place burden on those pati ents which is not always 
warranted. This observati on is supported by similar data coming out of several collaborati ons 
investi gati ng the penetrance of variants in specifi c disease-causing genes. One of the fi rst 
of these studies was performed by Minikel et al. and regarded variants in the PRNP gene 
and their penetrance in causing prion’s disease (33). The authors collected over 60,000 
populati on controls to demonstrate that the prevalence of “pathogenic” PRNP variants 
was 30x higher than the prevalence of prion’s disease (33), again indicati ng a much lower 
penetrance as expected for many of such variants. They investi gated each PRNP variant and 
provided penetrance esti mates ranging from 0.1% to 100% per variant on the lifeti me risk 
of prion’s disease. The populati on database generated by this eff ort (the Exome Aggregati on 
Consorti um; ExAC) is open access for other researchers to inspect variant prevalence of 
their variant/gene of interest (29). A similar observati on was made for ASXL1 and other 
intellectual disability genes by Ropers et al (34). Over the last years, the database generated 
in chapter 2.1 of WES data in the Rott erdam Study was used for various eff orts to assess 
associati on of variants or genes with disease, for example to validate the relati on of variants 
in the SOLR1 or EIF2AK3 genes with AD (32). 

Similarly, the penetrance of pathogenic variants for neurodegenerati ve diseases has been re-
evaluated recently. For example, van der Lee et al. used six large datasets to investi gate the 
associati on of previously reported pathogenic variants in PLD3 with AD (35). However, this 
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association between PLD3 and AD could not be replicated in these cohorts. The same was 
true for the role of variants in TMEM230 in causing PD, which could not be replicated by Giri 
et al. (36). These efforts help distinguish true findings from false positives, and availability of 
large-scale sequencing datasets is necessary to perform these validation studies.

Transcriptome sequencing growing in utility
One approach following the sequencing of DNA is the sequencing of RNA, so-called 
transcriptomics. Transcriptomic studies often complement genetic studies, by investigating 
how the transcriptome changes in patients and how disease-causing genes play a role 
(37-39). As the transcriptome is “dynamic”, i.e.; the measured gene expression values 
change over time, tissues or disease status, this type of data is called dynamic data. The 
requirement to extract RNA from disease- affected tissue creates challenges for large-scale 
studies, for example because the tissue cannot be safely sampled, the sampling is invasive 
or labor-intensive or because when the patient is identified, the affected tissue is already 
too far damaged. Concurrently, the approach of RNA collection and analysis varies between 
studies (40), partly due to different research questions requiring alternate approaches, 
and the lack of standardized methods (40). These factors challenge reproducible analysis 
of dynamic sequencing data, which is true also for dynamic genomics data generated with 
other methods such as DNA methylation data by arrays. Therefore, efforts aiming to provide 
standardized analysis will facilitate larger-scale studies in producing more robust results (41).

In chapter 3.1, commonly used analysis methods for RNA-sequencing and DNA methylation 
arrays are compared. The results showed that some analysis options yield highly similar 
results across different datasets, while other options strongly influence the results (40). 
These methodology-induced changes may confound any actual biological changes that 
are of interest in any given study. These benchmarking efforts helps in standardizing our 
analysis of dynamic data, allowing for more robust analysis pipelines, as exist for genetic 
data (42, 43). Perhaps the most relevant observation in this effort were the large differences 
in results between the four cohorts studied, even when methods were as harmonized as 
possible. This observation illustrates the requirement for replication and validation when 
analyzing dynamic genomic data, perhaps even more so than for genetic studies. The study 
in chapter 3.2 applies transcriptome sequencing on hippocampus tissue from AD patients 
and compares this with hippocampus of age- and sex-matched non-demented controls (44). 
The results show, in accordance with previous scientific literature, an enormous shift in the 
transcriptome in the brains of AD patients compared to controls (45-47). Most of these 
changes are probably the consequence of neurodegenerative processes, in line with other 
neurodegenerative studies examining dynamic data (45-47). Unfortunately, our data did not 
show altered expression of most of the genes  in which genetic variants cause AD (48). As the 
genetic risk variants for AD must preclude the disease, this result could suggest that whichever 
biological dysfunction(s) these variants caused took place earlier in the disease process and 
were no longer detectable at the end-stage of disease. Another option is that these genes 
play their role in other tissues than we studied, or that the effect cannot be observed on 
the RNA expression level. Because transcriptome data is dynamic (i.e.; changes over time, 
tissues and disease status), the fact that the disease itself affects the dynamic genomic data 
is a common challenge faced by dynamic data studies; the difficulty to separate cause from 
consequence (44-47). This challenge is worse when tissues are derived in later stages of the 
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disease or when the impact of the disease is larger on the ti ssue in which it occurs. Therefore, 
this issue is specifi cally complicated in neurodegenerati ve diseases, as nearly all accessible 
brain ti ssues are derived post-mortem, aft er many years of neurodegenerati on (49). This 
issue complicates the interpretati on of the study results, and therefore our understanding 
of neurodegenerati ve disease biology. This in turn challenges the identi fi cati on of treatment 
opti ons capable of acti ng on causal pathways of the disease. Part of these challenges can 
be addressed by studying cell and animal models of earlier phases of AD, which permits to 
test interacti ons or specifi c hypotheses in live cells, and correlate these fi ndings to post-
mortem human dynamic genomic studies, hopefully illuminati ng enough pieces to uncover 
the whole puzzle. A few specifi c applicati ons of dynamic genomic data might further our 
understanding of neurodegenerati ve disease. Firstly, we currently do not understand 
the causal mode of acti on of geneti c variants in many of the identi fi ed genes. Combining 
dynamic genomic data of cellular models with and without these variants with protein-
protein interacti on modeling derived from post-mortem human dynamic genomic studies 
might create biological insight into the causal changes underlying the disease. The next step 
could be to carefully target these processes in cellular or animal models and see if this 
alleviates the disease onset or progression, ulti mately leading to some form of interventi on. 
Secondly, dynamic genomic data from either post-mortem brain or fl uid (blood, CSF) studies 
might be used to understand heterogeneity between neurodegenerati ve pati ents, providing 
insight into the extensive clinical and pathological range with which pati ents may present. 
When a interventi on or treatment strategy becomes available, these molecular subtypes 
would be useful to evaluate which pati ents might benefi t from such a treatment. Already 
such dynamic genomic studies from post-mortem human brain ti ssue are being performed 
to map and understand the molecular diff erences between pati ents (with similar clinical or 
pathological presentati on) with diff erent geneti c causes, and these fi ndings are relayed to 
understand the impact and functi on of the causal gene, as well as to point towards other 
likely candidate genes for further geneti c screening.

Somati c DNA sequencing reveals further complexity
Tissue-specifi c DNA sequencing is a novel NGS development, aimed at identi fying somati c 
DNA variants (50-52). The clinical and biological study and relevance of somati c DNA 
variants has long been limited to the fi eld of cancer, where they lead to clonal outgrowth 
of tumor cells (53). However, recent evidence showed that germline de-novo (present 
in germline of off spring, but not parents) variants causing specifi c diseases, for example 
intellectual disability (54). De-novo variants are acquired as somati c variants in one of the 
reproducti ve cell lineages of the parents (oocytes and sperm) and transmitt ed as a de-novo 
germline variant in the off spring (54). These de-novo variants are then present in all ti ssues 
of the off spring, as these cells are further derived from these germline cells with this new 
variant. From then onward, this variant can no longer be disti nguished from other inherited 
germline variants, and can in turn be transmitt ed to next generati ons. If a somati c variant 
arises later in the development, for example when a cell divides during development of 
the brain, this variant will be present only in the subsequent cells, and thus only in that 
ti ssue, for example a specifi c lobe of the brain (54). Theoreti cally, one could carry geneti c 
variants known to cause neurodegenerati ve disease, but only in subsets of cells in our brain 
(55, 56). Such a “somati c” variant could nevertheless cause a neurodegenerati ve disease, 
whilst escaping detecti on in blood-based germline DNA sequencing (55, 56). This variant 
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would also not be transmitted to offspring, thus prohibiting familial aggregation and escape 
detection as a typical Mendelian disease. In addition, the moment at which the somatic 
variant was acquired during brain development determined the amount of cells and tissues 
affected and may subsequently influence its clinical and pathological presentation (50, 56). 

In chapter 4 of this thesis, the contribution of somatic variants in the brain of Semantic 
Dementia (SD) patients was investigated. SD is hallmarked by local atrophy of the temporal 
lobe and pathology stained positive for the TDP-43 protein, which is also seen in other 
forms of FTD (55-63). However, the atrophy is uniquely localized and the specific type of 
TDP-43 pathology is unique to SD brains (58, 59). Most importantly, no genetic variants are 
known to cause SD, and familial aggregation is rare (57, 63). Thus, these characteristics of 
SD (non-heritable, focal onset, relatively homogeneous pathological presentation) meet the 
expected features for a somatic variant as cause of the disease. Although somatic genetic 
variants have been shown to cause neurodevelopmental disorders, our study was one of the 
first to suggest and study such a cause for neurodegenerative disorders. The novelty in this 
approach is that genetic variants can contribute to disease in a different way than usually 
studied, and that tissue-specific DNA variations must also be considered when investigating 
disease genetics. Several lines of evidence indicate that we indeed identified such somatic 
variants in one gene underlying SD. First, sequencing DNA of the medial temporal lobe 
and/or dentate gyrus brain regions of 16 patients and comparing it to sequenced DNA of 
blood of the same patients, revealed somatic brain variants in the TARDBP gene in two SD 
patients. Secondly, germline variants in this gene, albeit in a different domain, are described 
to cause ALS or behavioral-variant FTD (64). Thirdly, functional assays demonstrated that 
both variants disrupt the function and localization of TARDBP’s protein and unique TDP-
43 pathology has been identified for SD (65-67). That we did not identify similar somatic 
variants in the other patients might mean that additional variants are to be found, or that 
somatic variants are the cause only in a subset of patients. This study is one of the first to 
investigate somatic variants in a neurodegenerative disorder, and the first to demonstrate 
variants in a known neurodegenerative disease-causing gene somatically in the brains of 
patients. In addition to identifying the possible cause for these two SD patients, upcoming 
research like this illustrates a paradigm shift, outside the field of cancer, were the genomic 
DNA sequence itself can no longer be seen as a stable information entity, Genomic DNA thus 
falls in the category of dynamic data next to, for example, epigenetic modifications such as 
DNA methylation.
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Future directi ons

The discussion in these paragraphs looks ahead to future directi ons in sequencing-based 
methods and applicati ons and how these may lead to applicati ons in a clinical setti  ng. NGS 
has found many diverse applicati ons in biology and medicine, ranging from cancer genome 
sequencing to family-based analysis in Mendelian disease, RNA and single cell sequencing, 
down to microbiome sequencing and archeological genome sequencing. Much eff ort so-far 
has been spent on generati ng NGS data on pati ents with Mendelian disorders, in an att empt 
to understand the cause of their disease. NGS-based applicati ons will likely also develop into 
tools that might be useful in predicti ng and subsequently preventi ng diseases, in the form of 
personalized medicine. For example, by early geneti c screening for breast cancer mutati ons, 
breast cancer polygenic risk and geneti c variants causing adverse drug responses or food 
intolerance. Regarding the topics discussed in this thesis, three specifi c expected clinically-
oriented developments will be discussed; individualized preventi ve genome sequencing, 
dynamic genomic data sequencing of pati ents, and somati c variant sequencing.

Individualized preventi ve genome sequencing
In parallel to the conti nuous growth of geneti c knowledge from scienti fi c research, a growth 
in the expectati on from society in the applicati on of geneti c informati on can also be observed. 
Individuals appreciate the benefi t of DNA testi ng in disease preventi on, evaluati ng lifestyle 
factors and other medically useable informati on (pharmacogenomics, blood typing, etc.) (6, 
8, 68-70). This originates from an individual’s desire to be autonomous and take initi ati ve 
regarding their own health (care) (71-73). This development refl ects that geneti c research 
yields directly relevant clinical results, and that this output is recognized outside of a research 
setti  ng  (72-74). As the costs of sequencing conti nues to decrease and our ability to handle 
large volumes of data improves, a point will be reached where pre-empti vely sequencing 
and storing the genome sequence of every (consenti ng) adult becomes commonplace 
(73, 75, 76). An individual’s genome can be uti lized for personalized clinical trajectories. 
For example, one can strati fy individuals (early on) by increased or decreased geneti c 
risk in populati on screening programs, and/or one can test for suscepti bility of treatable/
preventable diseases and schedule regular clinical check-ins, accompanied by advise on diet 
or other modifi able lifestyle factors based on geneti c suscepti bility for traits as obesity or 
addicti on, one can opti mize therapeuti c treatment based on geneti c variants infl uencing 
drug metabolism, or one can bett er select subjects most suitable for organ transplant and 
bett er monitor rejecti on (6, 8, 9, 69, 71, 73, 74). These developments have many aspects to 
be discussed between the related groups; pati ents, doctors, counsellors, policy makers etc., 
but are likely to shift  our approach from indicati on-driven health care (when disease has 
occurred already) to data-driven health care (to prevent or delay diseases from occurring). 
While many recognize socio-economic and health-economic advantages of this shift , the 
interest and preference of the individual pati ent and citi zen should weigh heavily (71, 72, 
77). Currently, pre-empti ve genome sequencing moves towards the clinic, in the form of 
clinical trials. Two well-known trials are MedSeq and BabySeq, in which parti cipants are 
randomized to receive standard care with or without extensive geneti c screening and 
return of possibly relevant results (73, 78). The fi rst results show that sequencing uncovers 
previously unknown disease risk and can permit early disease detecti on (79, 80). However, 
clinically relevant variants are also observed in parti cipants without apparent phenotype, 
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and screening may be counter-productive in those participants (79, 80). Additional 
(laboratory) tests are often needed to validate pathogenicity in variant carriers, which may 
be invasive and/or expensive. Additionally, the patient might experience concern due to their 
genetic results, possibly unwarranted if not all reported carriers experience a pathogenic 
consequence (79-81). These first studies show promise, but also that more investigation is 
required to optimize the workflow of pre-emptive clinical genetic testing.

Dynamic genomic data of patients
Dynamic genomic data can involve assessing one’s DNA methylation profile, one’s RNA 
expression profile, proteomics profile, mitochondrial profile, metabolomics profile etc. 
Such an individualized genomics analysis has not yet been implemented in the clinic, partly 
caused by the requirement of collecting specific tissue, which is invasive, and in part because 
the causal relation between these profiles and the disease is often not clearly established 
(82-84). Therefore, for tissues that are easy to collect, such as blood or cerebral spinal 
fluid, dynamic genomic data profiles (so far mostly proteomic profiles) have been utilized 
as disease biomarkers, to identify patients in which disease has already manifested (85-
87). Improvements to this development should allow for earlier disease detection, perhaps 
permitting to halt disease progression in early stages, as well as stratification of subtypes of 
patients, for example patients that might be responsive to certain treatment from those in 
which the treatment is unlikely to be beneficial. In general, such biomarkers are developed 
by measuring and comparing all proteins, genes or other dynamic genomic data units in 
cases versus controls. From these results the most predictive genes are determined, which 
are then translated into a targeted assay for clinical use (85-87). Although this approach has 
been successful, the most efficacious prediction models are those that retain all measurable 
information, using advanced clustering algorithms or classification through machine learning 
(88-91). Specifically, machine-learning based methods are highly suitable for classification 
of patients based on large datasets. Such methods would require an initial large dataset (n 
depending on the disease at study, and the required precision of prediction, but containing 
at least 100 samples per prediction group). Further developments in the field of dynamic 
genomics data collection and analyses might permit the collection of complete dynamic 
genomics profiles more robustly and quickly, which could then replace or complement the 
targeted assays currently used (82, 84). The added benefit of using an untargeted method 
is that it can re-evaluate each gene and its weights in disease prediction over time, and 
adjust the biomarker without the need to redesign a targeted assay. Thus, the performance 
of such an untargeted biomarker assay could improve over time, as data on more patients 
becomes available for evaluation of the assay. Improvements include increased accuracy 
in predicting cases from controls, but may also be extended to further classifications, such 
as prediction of response to treatment or prediction of subclasses of patients. The first 
applications of these assays are probably in blood-derived dynamic population datasets, of 
which data already exist. In such datasets the methodological challenges can be addressed 
and validated by prediction of several diseases measurable and common in these datasets, 
for example diabetes or coronary heart disease. Main challenges to be addressed include the 
replicability of such dynamic genomic biomarkers in multiple patient populations through 
replication and clinical validation of predictive parameters such as sensitivity and specificity. 
Further technical developments in the processing of blood samples would be permit creation 
of more specific biomarkers. For example, by isolating only brain-derived cells from whole 
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blood and inferring changes in those individual cells back to brain-phenotypes. Similar to 
personalized genome or exome sequencing, pilots to use (recurrent) dynamic genomic data 
as biomarker are ongoing. In one main example, the integrati ve personal omics profi le (iPOP) 
project, a single individual received recurrent multi -omics profi ling throughout a period of 
400 days (92). This included transcriptome sequencing, but also proteomics, metabolomics 
and auto-anti body screening. The multi ple omics datasets provided insights in the onset 
and progression of two separate infecti ons and a diagnosis of type-2-diabetes. Matching of 
genome sequencing of this person with transcriptome sequencing data uncovered extensive 
allele-specifi c expression, which varied throughout healthy and disease states. This proof-
of-principle project demonstrates recurrent dynamic genomic measurements of a single 
individual to provide insight into health status, and prompted clinical and lifestyle trajectory 
changes in the subject (92).

Somati c DNA variant sequencing in pati ents
Most of our current DNA screening is done on blood, to test for the presence of germline 
variants. This means that for most diseases, somati c variants are generally not tested. For 
some pati ents, their disease could be caused by somati c variants that have arisen during 
development of the diseased ti ssue. Evidence for the clinical relevance of these somati c 
variants outside the fi eld of cancer is growing, mostly in developmental disorders, but also 
in age-related disorders (93-95). Although it is largely unclear for how many pati ents, and 
for which diseases, somati c DNA variants play a causal role, research projects sequencing 
ti ssues of pati ents will provide insight into the scope of these somati c variants in disease. (50-
52, 96-99). For at least some diseases, it can be expected that somati c variant testi ng will be 
added to the clinical geneti c testi ng, by immediately sequencing DNA of the relevant ti ssue. 
Ease of access to the diseased ti ssue will determine the fi rst diseases in which this type of 
testi ng might occur, for example in blood hematopoieti c disorders or disorders in which 
treatment includes removal of aff ected scarred, fi broti c or degenerati ve ti ssue, for example 
in treatment of certain cardiac disorders. For diseases in which the aff ected ti ssue is diffi  cult 
to ascertain, such as neurodegenerati ve disorders, targeted tests for somati c variants could 
be developed. For example, by extracti ng cell-free DNA or brain-derived vesicles from blood 
or CSF and testi ng for specifi c somati c variants, such as the TARDBP variants identi fi ed in this 
thesis. Signifi cant strides would need to be made in technological developments before such 
tests could be realized. However, for some diseases it might be highly relevant to identi fy the 
underlying geneti c cause of the disease, for example when treatment opti ons are specifi c to 
a geneti c defect. If, for example, a treatment was developed to remedy haploinsuffi  ciency 
of GRN or the expanded C9ORF72 repeat, it would be relevant to know if a pati ent carried 
these defects somati cally, and could sti ll benefi t from such treatment even in the case of a 
negati ve germline geneti c test based on blood-derived DNA.

A further extension in this directi on of testi ng is the development of single-cell based geneti c 
and genomic methods. These might provide us with insights into the contributi on of a specifi c 
form of somati c variants; post-mitoti c somati c DNA variants. Especially in post-mitoti c cells, 
such as neurons, this class of somati c variants conti nues to accumulate over ti me. Recently, 
the term “genosenium” was introduced, referring to this accumulati on of somati c variants in 
our cells as a source of ageing, which can be studied by single cell sequencing (50). With the 
number of somati c variants per cell going in to the thousands over an individual’s lifespan, 
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it seems almost impossible that these do not influence the function and health of cells and 
tissues (50, 96). In diseases where somatic variants contribute significantly, we may need to 
adjust our DNA screening to the relevant tissues and age, when possible, effectively turning 
genome sequence DNA variation into another dynamic datatype. Over the next years more 
insight into the portion of disease caused by somatic variants can be expected, and for 
diseases where the relevant tissue is relatively easy to collect, tissue-specific DNA screening 
may arise.

Conclusions

In summary, the ability to generate large quantity of genetic and dynamic genomic data is 
growing. With this abundance of data, novel applications and research questions become 
available and uncover insight into genetics and diseases. However, more data and higher 
resolution also increases the risk of false findings, and it can be challenging to understand 
the limits of a dataset in providing answers. Therefore, it becomes even more important 
to use robust data collection, cleaning and analysis strategies, as well as proper validation 
and replication. Clinically, the application of genetic and dynamic genomics data holds 
great potential, but must also be utilized with appropriate reservation to prevent overly 
data-driven conclusions. In a time where major developments occur constantly, and these 
developments tend to cross disciplinary boundaries, close communication between clinical 
and research efforts is required to guide their implementation as efficiently as possible.
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 6.1. Summary

Sequencing is used to determine the order (sequence) of nucleoti des in genomic fragments 
(DNA or RNA). Initi ally used to study specifi c DNA fragments, for example a gene associated 
with a specifi c disease, advancements in technology permit whole genome or transcriptome 
sequencing in a single experiment. This improvement permits novel applicati ons of geneti c 
informati on. For example, genome sequencing can be used in a clinical setti  ng, to test for 
risk of certain diseases, and then screen for or prevent these diseases. Simultaneously, 
such an untargeted approach increases unexpected fi ndings, which should be approached 
carefully. In general, collecti ng and analyzing more data, requires more careful and criti cal 
handling of that data. In this thesis, we discuss several applicati ons and considerati ons of 
next-generati on sequencing; the method of collecti ng large amounts of sequencing data in 
a single experiment.

First, in chapter 2 we speak about the use of sequencing to detect germline (inherited from 
the parents) geneti c variants. Generally, we isolate DNA from the blood of a person, and 
extract from it all fragments that code for genes, which make up approximately 1.5% of 
the whole human genome. Using a next-generati on sequencing device, we determine the 
sequence of millions of these fragments, map where they belong on the whole genome 
sequence and look for deviati ons compared to the so-called “reference genome”, a 
representati on of the average human genome sequence. This results in a list of ~25,000 
coding geneti c variants per person, which can be shared between many persons (common 
variants) or present in only a single or a few carriers (rare variants). Chapter 2.1 described 
this process for a populati on of 2,628 samples from the Rott erdam Study cohort, a local 
populati on-study which investi gates disease and disability among the elderly in the 
Netherlands. This chapter describes the steps taken to generate this informati on per-person 
and how to combine this data for many persons. It also reports on how to evaluate if the data 
generated for a person is “good”, i.e., all variants present in that person’s genes are detected 
without observing many false fi ndings. This report provides practi cal guidelines to help the 
generati on of similar datasets by other researchers. Additi onally, in chapter 2.1 this dataset 
of coding variants in Dutch individuals was compared to other similar populati on-level 
datasets. The results showed that each dataset harbored many geneti c variants that were 
absent in all other populati ons. These are almost exclusively rare variants only observed 
in one or a few persons with uncertain biological and clinical relevance. In chapter 2.2 this 
topic conti nues by att empti ng to identi fy the most clinically relevant geneti c variants in the 
dataset described in chapter 2.1. This manuscript applies recent recommendati ons from 
the geneti cs fi eld to investi gate disease causing or so-called “pathogenic” variants in a set 
of 59 predetermined genes, for which we know that pathogenic variants cause preventable 
diseases. Within the 2,628 parti cipants of the Rott erdam Study, 24 carried a variant that 
fulfi lled the recommended criteria to be reported to their carriers for further testi ng. Due to 
the design of this study, we had access to life-long clinical informati on of these carriers, and 
observed that at most three carriers experienced a disease that could be caused by their 
pathogenic variant. The study concludes that when testi ng in such an unbiased manner, we 
will identi fy many seemingly pathogenic variants that will not result in disease, and thus 
this practi ce should be considered carefully. In chapter 2.3 the same method is used to 
identi fy novel pathogenic variants in Dutch families suff ering from Alzheimer’s Disease (AD). 
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By sequencing the genes of 19 AD patients from 8 families and comparing the identified 
genetic variants, first between family members, then between families, variants in the 
EIF2AK3 gene were identified as the most likely cause of disease in two AD families. Follow-
up analyses of this specific gene, including in the Rotterdam Study dataset described in the 
previous chapters, demonstrated that rare variants in this gene were more often observed 
in AD cases versus non-demented controls. Thus, this study identified a novel gene in which 
genetic variants cause AD.

Next, in chapter 3 the sequencing method is used to study the transcriptome. A transcript 
is a gene that is copied of the genome in order to produce it’s corresponding protein. 
The transcript is in so-called RNA form, which can be reverted to it’s DNA sequence and 
sequenced as a DNA fragment. RNA sequencing has an additional complexity, as multiple 
transcripts of the same gene can be present in the same cell, if that cell has need of multiple 
copies of the respective protein. Thus, the amount of RNA fragments for each gene indicate 
the gene’s activity in that cell or tissue (when many cells are taken). This also means that 
RNA-sequencing of blood or brain of the same person will yield different results. First, in 
chapter 3.1 RNA-sequencing is used on RNA fragments extracted from blood of participants 
from the Rotterdam Study and three other similar population studies, for a total of 2,800 
participants. Within this dataset, a large number of different methods to analyze RNA-
Sequencing, and another similar datatype; DNA-methylation array, data were applied to 
determine their relative influences on the results. Each analysis aimed to determine which 
genes were associated with increased age, smoking status and/or increased BMI, as these 
are phenotypes with large suspected impact on the transcriptome (or methylome) which 
might be detected in blood. These results show that a large number of analysis options do 
not have a large influence on the interpretation of results, but some have, such as correction 
for so-called principal components, and this should  be considered when interpreting 
the results of such a study. Next, in chapter 3.2 the transcriptome was sequenced in 
hippocampus brain tissues from patients with Alzheimer’s Disease and non-demented age- 
and sex-matched controls. For this study, the hippocampus was selected as it is responsible 
for memory formation and retrieval, the main cognitive domain affected in AD. These 
results showed enormous differences in gene activity between the cases and the controls, 
with more than 40% of all detected genes affected, spanning more than a hundred different 
biological pathways.

Finally, in chapter 4.1 both approaches from chapters 2 and 3 are combined, by sequencing 
the DNA from the disease-relevant tissue and investigating DNA variants which are present in 
the brain tissue of dementia patients, but not in their blood. These so-called somatic variants 
occur during cell division by incomplete DNA replication or later in life due to DNA damage. 
As they are not present in DNA from the blood, regular testing for pathogenic variants, such 
as described in chapter 2, will not identify such variants. In this chapter, a series of sixteen 
Semantic Dementia patients, a neurodegenerative disease with homogeneous clinical and 
pathological presentation but without any known familial occurrence, was studied for 
somatic brain variants. In two of the sixteen patients, DNA from the brain revealed possibly 
pathogenic somatic variants in the TARDBP gene, in which germline variants detected in 
blood are already known to cause neurodegenerative diseases ALS and FTD, with similar but 
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disti nct pathological presentati on. This study demonstrated for the fi rst ti me that somati c 
variants in a neurodegenerati ve disease gene can also cause dementi a.

Finally, chapter 5 discussed in more detail the above fi ndings and their context in other 
similar research conducted in the last years, including those in which the author of this thesis 
parti cipated. In this chapter an outline for the expected future directi ons and considerati ons 
of sequencing in research and clinical practi ce is discussed.
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6.3. Por� olio

Courses and Training Year ECTS

SNPs and Human Diseases 2011 1.4

Study Design 2012 4.3

Analysis of microarray and RNA SEQ expression data 2013 2.0

Biostati sti cal Methods II: Classical Regression Models 2013 4.3

Family Based Geneti c Analysis 2013 1.4

Bayesian Stati sti cs 2015 1.4

Geneti c-epidemiology Research Methods 2015 5.1

Psychiatric Epidemiology 2015 1.1

Repeated Measurements in Clinical Studies 2015 1.4

Advances in Genome-Wide Associati on Studies 2016 1.4

Course on R 2016 1.4

Epidemiology of Infecti ous Diseases 2016 1.4

Microscopic Image Analysis: From Theory to Practi ce 2016 0.8

Photoshop and Illustrator for PhD-students and other researchers 2016 0.3

Programming with Python 2016 1.0

Psychopharmacology 2016 1.4

Quality of Life Measurements 2016 0.9

Advanced Topics in Clinical Trials 2017 1.9

Advanced Topics in Decision-making in Medicine 2017 2.4

Diagnosti c Research 2017 1.4

Medical Demography 2017 1.1

Research Integrity 2017 0.3

remaining courses to complete master in geneti c epidemiology 2013-2018 17.2

research training to complete master in geneti c epidemiology 2017-2018 73.6

Total 128
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Conferences/Symposia - Speaker Year ECTS

1000 Genomes User Meeting - Ann Arbor (abstract) 2012 1.0

ADES User meetings - Cardiff (invited) 2015 1.0

ADES User meetings - Lille (invited) 2016 1.0

Alzheimercafé wetenschap en dementie - Rotterdam (invited) 2019 1.0

CHARGE International Meetings - Houston (abstract) 2020 1.0

CHARGE International Meetings - Los Angeles (abstract) 2014 1.0

CHARGE International Meetings - Rotterdam (abstract) 2013 1.0

Clinical Oncogenetics Refereeravond - Rotterdam (invited) 2019 1.0

Dutch Society of Human Genetics - Veldhoven (abstract) 2019 1.0

Erasmus Mini Symposium GOALL - Rotterdam (invited) 2019 1.0

Erasmus Mini Symposium GOALL - Rotterdam (invited) 2020 1.0

ERGO Exome Dataset Release Mini Symposium - Rotterdam (invited) 2013 1.0

ERGO RNA Dataset Release Mini Symposium - Rotterdam (invited) 2017 1.0

ESHG Meetings - Berlin (digital, abstract) 2020 1.0

Internal Medicine Science Days - Antwerp (abstract) 2015 1.0

Transcriptome Sequencing Mini Symposium - Utrecht (invited) 2014 1.0

RIVM Sequencing Symposium - Bilthoven (invited) 2012 1.0

Conferences/Symposia - Poster Year ECTS

Alzheimer Association International Conference - Toronto 2016 1.0

American Society of Human Genetics - Houston 2019 1.0

CHARGE International Meetings - Boston 2012 1.0

CHARGE International Meetings - Charlottesville 2016 1.0

CHARGE International Meetings - Rotterdam 2018 1.0

CHARGE International Meetings - St. Louis 2019 1.0

ESHG Meetings - Glasgow 2015 1.0

ESHG Meetings - Götenburg 2019 1.0

ESHG Meetings - Kopenhagen 2017 1.0

ESHG Meetings - Milaan 2018 1.0

Internal Medicine Science Days - Antwerp 2012-2016 2012 4.0

Internal Medicine Science Days - Sint Michielsgestel 2018-2020 2018 3.0

International Consortium for FTD - Munchen 2016 1.0

Total   35
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Teaching - Courses Year ECTS

NIHES - Erasmus Summer Program 2013-2019 2013 1.0

NIHES - Next Generati on Sequencing Course 2012-2020 2012 4.5

Avans University Breda - Supervisor Minor Bioinformati cs 2012-2016 2012 2.0

MOLMED - SNP Course 2012 - 2019 2012 1.5

Teaching - Students Year ECTS

Avans University Breda - Dennis Schmitz 2013 2.0

Avans University Breda - Mariëlla Klein 2013 2.0

Avans University Breda - Robert Nooijens 2013 1.0

University Leiden - Annelies Smouter 2013 1.0

Avans University Breda - Joost Verlouw 2015 2.0

Avans University Breda - Tom de Laat 2015 2.0

Avans University Breda - Theo de Vet 2015 2.0

University Utrecht - Coco Versluijs 2017 2.0

University of Geneva - Merel van der Thiel 2017 1.0

Avans University Breda - Michiel van Berkel 2019 1.0

Technical University Delft  - Simone Smits 2019 2.0

University Amsterdam - Robin Groenenboom 2020 1.0

Erasmus University Rott erdam - Merel Mol (PhD-student) 2018 8.0

Erasmus University Rott erdam - Bahar Sedaghati k-hayat (PhD-student) 2019 5.0

Erasmus University Rott erdam - Vivi Zhou (PhD-student) 2019 3.0

Total 44
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6.6. Abbreviati ons

AB  amyloid beta
AD  Alzheimer’s Disease
bvFTD  behavioral variant FTD
CBS  corti cal basal syndrome
CpG  adjacent CG on the genome, can be methylated
CSF  cerebral spinal fl uid
DLB  Dementi a with Lewy-Bodies
DN  dystrophic neurites, form of TDP pathology
DNA  deoxyribonucleic acid
FTD  FrontoTemporal Dementi a
FUS  fused-in sarcoma protein, product of FUS
GWAS  genome-wide associati on study
MND  motor neuron disease
MRI  magneti c resonance imaging
NCI  neuronal cytoplasmic inclusions, form of TDP pathology
nfPPA  non-fl uent primary progressive aphasia
NFT  neurofi brillary tangle, form of tau pathology
NGS  next generati on sequencing
NII  neuronal intranuclear inclusions, form of TDP pathology
NHB  Netherlands brain bank
PCR  polymerase chain reacti on
PD  Parkinson’s Disease
PET  positron emission tomography
PSP  progressive supranuclear palsy
RNA  ribonucleic acid
RS  Rott erdam study
SD  semanti c dementi a
svFTD  semanti c variant FTD
TAU  tau protein, product of MAPT
TDP43  tar-dna binding protein, product of TARDBP
VD  vascular dementi a
WES  whole exome sequencing
WGS  whole genome sequencing
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