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PREFACE

This dissertation is divided into two separate parts:

• Part I We study eigenfunctions of Laplacian on smooth manifolds, by

analyzing properties of high-energy states, we describe the nodal geom-

etry of these functions in terms of the estimates on the size of nodal sets

and the geometry of nodal domains.

• Part II We study Hardy-Littlewood-Sobolev inequalities on the Heisen-

berg group, by analyzing the sharp versions, we prove the existence of

maximizers and give upper bounds of sharp constants in all admissible

cases.

v



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Part I Nodal geometry of eigenfunctions on smooth manifolds

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.1 Background and major questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Notational index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Nodal set if nonempty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Local and global analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Local properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.2 Global properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 BMO estimates and geometry of nodal domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 A covering lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 In higher dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 In dimension two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

4 Hausdorff measure estimates of nodal sets: lower bounds . . . . . . . . . . . . . . . . . . . 35

4.1 Isoperimetric inequalities and polynomially decreasing lower bounds . . . . . . . . . . . . . 36

4.2 Local to global approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Direct global approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Further inverstigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



5 Hausdorff measure estimates of nodal sets: upper bounds . . . . . . . . . . . . . . . . . . 50

5.1 In dimension two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

5.2 A byproduct: more on BMO estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Part II Hardy-Littlewood-Sobolev inequalities on the Heisenberg group

6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Results on the Euclidean space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Structure of the Heisenberg group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Main questions on the Heisenberg group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

7 Sharp Hardy-Littlewood-Sobolev inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1 Existence of maximizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2 Upper bounds of sharp constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix A The sharpness of Conjecture 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



1

Part I

Nodal geometry of eigenfunctions on smooth manifolds

1 Introduction

1.1 Background and major questions

Let (M, g) be a n dimensional smooth, compact, and connected Riemannian manifold without

boundary, write the Laplace-Beltrami operator on M as

∆ = ∆g =
1
√
g

n∑
i,j=1

∂

∂xi

(
gij
√
g
∂

∂xj

)
.

Consider the partial differential equation (PDE) on M:

−∆u = λu, (1.1)

that is, u is an eigenfunction with eigenvalue λ. There are generally three directions of

studying (1.1):

(1) λ = 0, i.e., analysis of harmonic functions;

(2) λ is the principal eigenvalue, i.e., analysis of principal eigenfunction (ground state);

(3) λ → ∞, i.e., analysis of asymptotic behavior of eigenfunctions (limit of high-energy

states).

We concentrate on Case (3) from above, and there is a vast literature on analytical

results about the properties of eigenfunctions, which can be roughly categorized by their
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scopes: local or global. In Chapter 2, we mention the classical ones which we further use in

the following chapters (i.e. geometric estimates of nodal domains in Chapter 3 and Hausdorff

measure estimates of nodal sets in Chapters 4 and 5). We do not include the proofs for most

of the theorems therein and provide the reference instead.

In Chapter 3, we continue to investigate the properties of eigenfunctions: BMO (bounded

mean oscillation) estimates. It was developed by Donnelly and Fefferman [DF3], and further

improved by Chanillo and Muckenhoupt [CM], Lu [Lu1, Lu2]. We here provide the best

known results following this line. On the pass of improving these results, a δ-Besicovitch

cover lemma is used, (and in fact it is a natural acquisition cooperated with the mechanism,)

which is of independent interest. Our covering lemma improves the ones in [CM, Lu1, Lu2],

and is indeed very “near” its optimal version as we offer a conjecture in Appendix A.

Using there tools aforementioned, we describe the nodal geometry of eigenfunctions: Let

N = {p ∈ M : u(p) = 0} denotes the nodal set of u (where the function vanishes), and the

nodal domain be a connected component of M \ N . Therefore, all nodal domains can be

naturally grouped into positive and negative families. Our primary interest is to understand

the asymptotic geometric behavior of the nodal sets and nodal domains as λ→∞.

We first establish a local version of Courant’s nodal domain theorem in Chapter 3 using

the BMO estimates proved therein. Then, we switch our attention to one of the natural

questions concerning the size of N , whose first taste is provided in §1.3 as proving that

N 6= ∅. Yau [Y] conjectured that

Conjecture 1.1 (Yau).

c
√
λ ≤ Hn−1(N ) ≤ C

√
λ,
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in which the constants c and C depend only on M, and Hn−1 is the n − 1 dimensional

Hausdorff measure.

The equality is achieved by the eigenfunction

u(x) = sin(k1x1) sin(k2x2) · · · sin(knxn)

on the torus Tn = S1 × S1 × · · · × S1.

Conjecture 1.1 was verified by Donnelly and Fefferman [DF1] on analytic manifolds.

While on smooth manifolds, the known results are still far away from these optimal bounds.

The discussion on lower and upper bounds of Hn−1(N ) is expanded in Chapters 4 and 5,

respectively, and we shall begin with an approach which uses the BMO estimates in Chapter

3 to deduce polynomially decreasing lower bounds as a quick consequence of the isoperimetric

inequality.

1.2 Notational index

We list the frequently used notations in this note as follows.

• (M, g): a n dimensional smooth, compact, and connected Riemannian manifold (with-

out boundary) equipped with metric g.

• Sn−1: unit sphere in Rn.

• ∆ = ∆g: the Laplace-Beltrami operator on M.

• Hk: k dimensional Hausdorff measure for k ≥ 0. Particularly, Hn and Hn−1 denote

the volume and sphere measures, we also use | · | to represent the volume (or sphere)

measure.
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• B(p, r): the geodesic ball centered at p and of radius r. 2B denotes the concentric ball

with twice the radius of B’s.

•
ffl
B(p,r)

f and
ffl
∂B(p,r)

f : average integral of f in B(p, r) and on ∂B(p, r).

• Ω: an open and bounded domain in Rn or in M.

• 5if = ∂f/∂xi: i-th derivative of f .

• 5f : gradient of f , i.e., 5f = (51f, · · · ,5nf).

• S = {p ∈M : u(p) = | 5 u(p)| = 0}: the singular set of eigenfunction u, where both u

and its gradient vanish.

• q′: the conjugate index of the index 1 ≤ q ≤ ∞, that is,

1

q
+

1

q′
= 1.

• C and c: generic positive constants depending only on M, and we shall not pursue the

explicit dependence upon the geometry of M, we also use c1 = c1(c2) to describe the

particular dependence of c1 upon c2.

1.3 Nodal set is nonempty

In this section, we show N 6= ∅, some classical results about eigenfunctions on Rn shall also

be investigated.

A simple observation on S1

λ

˛
S1
u = −

˛
S1
u′′ = 0



5

shows that u must not be positive or negative, thus zero exists.

Let us switch directly to the rigorous proof, and first recall the boundary value problem
−∆w = λw, in Ω,

w = 0, on ∂Ω.

(1.2)

It can be showed that the set Σ of eigenvalues is at most countable. Next we state two

theorems about eigenvalues and eigenfunctions of (1.2) (cf. Theorems 1 and 2 in §6.5.1 of

[E]).

Theorem 1.2 (Eigenvalues and eigenfunctions). Each eigenvalue is real, and if we repeat

each eigenvalue according to its (finite) multiplicity, we have

Σ = {λk}∞k=1,

in which

0 < λ1 < λ2 ≤ λ3 ≤ · · ·,

and λk → ∞ as k → ∞. Furthermore, there exists an orthogonal basis {wk}∞k=1 of L2(Ω),

where wk ∈ H1
0 (Ω) is an eigenfunction corresponding to λk.

Remark.

(a) The main tool to prove Theorem 1.2 is Fredholm alternative, and it does not depend on

the structure of Rn, thus we can apply it to other settings with no difficulty.

(b) Here we have wk ∈ C∞(Ω), if we furthermore assume that ∂Ω is smooth, then wk ∈

C∞(Ω), for k = 1, 2, · · · .
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(c) We call λ1 and w1 the principal eigenvalue and eigenfunctioni.

Theorem 1.3 (Principal eigenvalue and eigenfunction). We have

λ1 = min{B[u, u]|u ∈ H1
0 (Ω), ‖u‖2 = 1},

in which B[u, v] = −
´

Ω
v∆u =

´
Ω
5u · 5v for u, v ∈ H1

0 (Ω). While w1 is positive in Ω, and

any weak solution of (1.2) when λ = λ1 is a multiple of w1.

Next we introduce a lemma about principal eigenvalues and eigenfunctions in balls.

Lemma 1.4 (Principal eigenvalue and eigenfunction on a ball). Let λ1 and w1 be principal

eigenvalue and eigenfunction on B(x, 1) ⊂ Rn, then w1 is radially symmetric and strictly

decreasing with respect to x.

We write w1 = w1(r) for 0 ≤ r ≤ 1, then R−2λ1 and w1(r/R) are principal eigenvalue

and eigenfunction of on B(x,R).

Proof of Lemma 1.4. To verify w1 is radially symmetric and strictly decreasing with respect

to x, we use moving plane method developed by Serrin [S] and Gidas, Ni and Nirenberg

[GNN]. (See also §9.5.2 in [E].) We are able to use it since it is assured that principal

eigenfunction is in C∞(B(x,R)) and positive on B(x,R). We omit the proof here since it is

a standard and direct application of moving plane method.

Thus, w1 = w1(r), and by computing the radial derivatives, we have

w′′1 +
n− 1

r
w′1 + λ1w1 = 0

iIn some literature (e.g. [CoMi]), λ1 is referred as the fist Dirichlet eigenvalue, and w1 as the first Dirichlet

eigenfunction.
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for 0 ≤ r ≤ 1 and w1(1) = 0 (the boundary condition in (1.2)). Given w̃1(r) = w1(r/R) for

0 ≤ r ≤ R, then, it is easy to check that

w̃′′1 +
n− 1

r
w̃′1 +

λ1

R2
w̃1 = 0,

and w̃1(R) = w1(1) = 0. By uniqueness of principal eigenvalue and eigenfunction, we con-

clude that R−2λ1 and w1(r/R) are principal eigenvalue and eigenfunction on B(x,R).

Now we can prove the existence of zeros (cf. Lemma 6.2.1 in [HL] and Lemma 1 in

[CoMi]).

Theorem 1.5 (Wavelength). u vanishes at some point in each ball of radius at most cλ−1/2.

Proof of Theorem 1.5. Given B(x, cλ−1/2) ⊂ Rn, we denote λ1 and w1 as principal eigenvalue

and eigenfunction on B(x, cλ−1/2), then λ1 ' c−2λ by Lemma 1.4.

Without loss of generality, assume u is positive on B(p, cλ−1/2), then v = w1/u assumes

an interior maximum since v = 0 on ∂B(x, cλ−1/2). At this interior maximum point,

5iv =
5iw1 − w15i u

u2
= 0,

and

∆v =
u∆w1 − w1∆u

u2
=

(λ− λ1)w1

u
≤ 0.

Thus, contradiction occurs when c is sufficiently large and the principal eigenvalue λ1 '

c−2λ < λ/2.

Remark. We fix the quantity rλ = O(λ−1/2), which is also called the “wavelength” of

eigenfunction, that is, u vanishes at some point in every ball with radius rλ. For technical

reasons, we may assume u vanishes at some point in the middle half or middle one-third of

the ball by choose rλ = 2cλ−1/2 or rλ = 3cλ−1/2.
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One can obtain the corresponding version of the above theorem on M by modifying the

proof: On a geodesic ball B ⊂M, λ1 = min
´
B
|5ψ|2/

´
B
|ψ2|, Bishop-Gromov volume com-

parison theorem together with the positive/negative assumption guarantee that u vanishes

at some point in a local scale rλ = O(λ−1/2) (cf. [CoMi]).

To further estimate the measure of nodal set of u, Hausdorff measure is the appropriate

and powerful tool to use. Here, we use [F] as a classical reference on geometric measure

theory.
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2 Local and global analysis

In this chapter, we discuss local and global properties of eigenfunctions, which provide most

of the tools used in further study of their nodal geometry in Chapters 3 and 4. We roughly

categorize them as follows.

(1) Local results, which often hold in a local scalei (dependent or independent on λ), includ-

ing

• doubling condition,

• growth estimate,

• vanishing order estimate,

• Bernstein’s estimates,

• local maximum principle,

• frequency functions and monotonicity formula, etc.

These methods apply to large classes of functions: harmonic functions, eigenfunctions,

polynomials, solutions to elliptic and parabolic PDEs, etc. Among the rich literature in

this area, there exists a well written survey [HL].

(2) Global results, including

• Dong-Sogge-Zelditch’s integral formula,

• Sogge’s Lp estimate,

iWe point out that local properties of eigenfunctions on a scale of rλ = O(λ−1/2) are of extreme impor-

tance, particularly, eigenfunctions resemble harmonic functions in this scale (as we see in Chapter 1).
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• global frequency functions, etc.

A good reference is [Z].

Next we present the ones from above which are used in our investigation.

2.1 Local properties

In this section, we review some local properties of eigenfunctions.

Theorem 2.1 (Doubling condition). There exists r1 depending only on M such that

 
B(p,2r)

u2 ≤ c
√
λ

 
B(p,r)

u2

for any p ∈M and r ∈ (0, r1].

A beautiful growth estimate was proved in Theorem 1(A) of [DF3], thus Theorem 2.1

follows as an evident consequence by iteration.

Theorem 2.2 (Growth estimate). With the same r1 as in Theorem 2.1,

ˆ
B(p,(1+λ−

1
2 )r)

u2 ≤ c

ˆ
B(p,r)

u2

for any p ∈M and r ∈ (0, r1].

A related vanishing order estimate is

Theorem 2.3 (Vanishing order estimate). With the same r1 as in Theorem 2.1,

max
B(p,R)

|u| ≤
(
cR

r

)c√λ
max
B(p,r)

|u|

for any p ∈M and 0 < r ≤ R ≤ r1.
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Remark. There are two approaches to get the above theorems: Donnelly and Fefferman

[DF1, DF2, DF3] used Carleman’s inequalities to give quantitative unique continuation re-

sults, and Lin [L] used the frequency function and monotonicity formula. See also [HL, Z]

for more discussion.

Theorem 2.4 (Bernstein’s estimates). With the same r1 as in Theorem 2.1,

(a) L2 Bernstein’s estimate(ˆ
B(p,r)

| 5 u|2
)1/2

≤ c
√
λ

r

(ˆ
B(p,r)

|u|2
)1/2

,

(b) L∞ Bernstein’s estimate, with K = n+2
4

,

max
B(p,r)

| 5 u| ≤ cλK

r
max
B(p,r)

|u|

for any p ∈M and r ∈ (0, r1].

Remark. It was conjectured by Donnelly and Fefferman [DF3] that in the L∞ Bernstein’s

estimate, K = 1/2, but it is still unknown, while Dong [D3] verified it in dimension two for

r ≤ cλ−1/4.

Next we mention the local maximum principle, which is a standard a priori estimate for

solutions to elliptic PDEs, see [LS].

Theorem 2.5 (Local maximum principle). There exists r2 depending only on M such that

sup
B(p,r)

u2 ≤ c

 
B(p,2r)

u2

for any p ∈M and r ∈ (0, r2].

A simple corollary states
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Corollary 2.6. Assume the same conditions as in Theorem 2.5, and δ > 0 is a small

number, we have

sup
B(p,r)

u2 ≤ c

δn

 
B(p,(1+δ)r)

u2

for any p ∈M and r ∈ (0, r2].

2.2 Global properties

The following two theorems involving the global estimates are of great importance.

Theorem 2.7 (Dong-Sogge-Zelditch’s integral formula).

λ

ˆ
M
|u|dHn = 2

ˆ
N
| 5 u|dHn−1. (2.1)

More generally, for f ∈ C2(M), we have

ˆ
M

[
(∆ + λ)f

]
|u|dHn = 2

ˆ
N
f | 5 u|dHn−1. (2.2)

Remark.

(i) (2.1) follows if we take f = 1 in (2.2).

(ii) (2.2) was proved by Dong [D1] for f = q−1/2, where

q = | 5 u|2 +
λu2

n
. (2.3)

See also Alt, Caffarelli, and Friedman [ACF] for its inspiration.

(iii) (2.2) was verified by Sogge and Zelditch [SZ] with two different proofs.
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Theorem 2.8 (Sogge’s Lp estimate).

‖u‖Lp(M)

‖u‖L2(M)

≤


cλ

n(p−2)−p
4p , if 2(n+1)

n−1
≤ p ≤ ∞,

cλ
(n−1)(p−2)

8p , if 2 ≤ p ≤ 2(n+1)
n−1

.

It was proved by Sogge [Sog]. A simple consequence on the lower bound of ‖u‖L1(M) is

Corollary 2.9. For normalized u, i.e., ‖u‖L2(M) = 1, we have

‖u‖L1(M) ≥ cλ
1−n
8 .

Proof of Corollary 2.9. Let 0 < θ < 1, wit from Hölder’s inequality,

1 =

ˆ
M
|u|2

≤
(ˆ

M
|u|
)θ (ˆ

M
|u|

2−θ
1−θ

)1−θ

≤ ‖u‖θL1(M)‖u‖2−θ

L
2−θ
1−θ (M)

≤ cθ(n− 1)

8
‖u‖θL1(M),

if we choose 2−θ
1−θ ≤

2(n+1)
n−1

, and the corollary is done by canceling terms.
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3 BMO estimates and geometry of nodal domains

In this chapter, we investigate the BMO estimates of eigenfunctionsi, from which we derive

some geometric estimates on nodal domains, i.e. the connected region of {u 6= 0}. The

material in this chapter has been published in [HaLu1]. For technical reasons, we separate

our discussion into higher dimensional and two dimensional cases.

3.1 A covering lemma

In this section, we discuss a δ-Besicovitch covering lemma on Rn which plays a crucial role

in the BMO estimates. Itself has independent interest as well.

Theorem 3.1 (δ-Besicovitch covering lemma). Given any finite collection of balls {Bα}α∈I

in Rn, let δ > 0 be small enough, then one can select a subcollection {B1, · · ·, BN} such that

⋃
α∈I

Bα ⊂
N⋃
i=1

(1 + δ)Bi, (3.1)

and
N∑
i=1

χBi(x) ≤ c(n)δ−
n
2 log

1

δ
(3.2)

for all x ∈ Rn, where c(n) depends on the dimension n, but is independent of δ and the given

collection of balls.

This covering lemma was introduced by Chanillo and Muckenhoupt [CM] with the right-

hand side of (3.2) replaced by cδ−n, and further sharpened by Lu [Lu1, Lu2] to cδ−n+ 1
2 log 1

δ
.

Therefore, one sees that Theorem 3.1 significantly improves these previous results.

iSee [G] for reference on BMO spaces.
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Though we do not know yet if the above theorem is the best possible result, we believe

that it is fairly sharp and close to the optimal one. Indeed, we conjecture the following

covering lemma.

Conjecture 3.2. The upper bound in (3.2) can be improved to c(n)δ−
n−1
2 , and it is sharp.

The sharpness of the above conjecture, if it is true, is demonstrated by an example in

Appendix A. However, we still do not have a proof that it is indeed true.

Let us give some definitions that are used to prove Theorem 3.1. Note that all the

collections of balls here are finite.

Definition 3.3 (δ-proper cover). Given δ ≥ 0, a subcollection of balls {B1, · · ·, BN} ⊂

{Bα}α∈I is called a δ-proper cover of {Bα}α∈I if

⋃
α∈I

Bα ⊂
N⋃
i=1

(1 + δ)Bi (3.3)

and

Bj 6⊂
N⋃

i=1,i 6=j

(1 + δ)Bi (3.4)

for every j = 1, · · · , N .

If C = {B1, · · ·, BN} ⊂ {Bα}α∈I satisfies (3.3), then it is called a δ-cover of {Bα}α∈I .

If S = {B1, · · ·, BN} ⊂ {Bα}α∈I satisfies (3.4), then it is called a δ-proper subcollection of

{Bα}α∈I .

Lemma 3.4. Given a collection of balls {Bα}α∈I , there exists δ0 > 0 such that for all

δ ∈ [0, δ0], there exists a δ-proper cover of {Bα}α∈I .

Proof of Lemma 3.4. We prove by induction on the cardinality of the collection of balls,

namely |I|.
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It is obvious that a collection of a single ball has a δ-proper cover for any δ ≥ 0. If this

lemma is true for every collection {Bα}α∈I with |I| ≤ k, we prove that it is also true for

{Bα}α∈I with |I| = k + 1.

Case 1: If ∃ C0 = {B1, · · ·, BN} 6⊂ {Bα}α∈I is a 0-cover of {Bα}α∈I (then 1 ≤ N ≤ k),

i.e., ⋃
α∈I

Bα ⊂
N⋃
i=1

Bi,

then by induction, ∃δ0 > 0, such that for ∀δ ∈ [0, δ0], there exists a δ-proper cover of C0,

which is then also a δ-proper cover of {Bα}α∈I .

Case 2: Assume that there is no 0-cover of {Bα}α∈I with |I| ≤ k. Let {Bα}α∈I =

{Bα1 , · · ·, Bαk+1
}. Then

Bαj 6⊂
k+1⋃

i=1,i 6=j

Bαi

for every j = 1, · · · , k + 1. Therefore, there exists a sufficiently small δj > 0 such that

Bαj 6⊂
k+1⋃

i=1,i 6=j

(1 + δj)Bαi .

Let δ0 = min(δ1, · · · , δk+1) > 0, we see that

Bαj 6⊂
k+1⋃

i=1,i 6=j

(1 + δ0)Bαi ⊂
k+1⋃

i=1,i 6=j

(1 + δj)Bi

for every j = 1, · · · , k + 1. Therefore, {Bα1 , · · ·, Bαk+1
} is the δ-proper subcollection of itself

for δ ∈ [0, δ0], and thus the δ-proper cover of itself for δ ∈ [0, δ0].

Lemma 3.5. Let δ > 0 be small enough, then given any collection of balls {Bα}α∈I and

S = {B1, · · ·, BN} ⊂ {Bα}α∈I is a δ-proper subcollection of {Bα}α∈I with r ≤ ri ≤ 2r for

i = 1, · · · , N , where r > 0. Then,

N∑
i=1

χBi(x) ≤ cδ−
n
2 (3.5)
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C j M j P j

Mi

for all x ∈ Rn, where c depends only on n.

Proof of Lemma 3.5. Let x0 ∈
⋂M
i=1Bi, M = M(x0). By a translation, we may suppose

x0 = 0. For x ∈ Rn, define Tr(x) = x/r, then {Tr(B1), ···, Tr(BM)} is a δ-proper subcollection

with the radius between 1 and 2. Without loss of generality, we may assume 1 ≤ ri ≤ 2 for

i = 1, · · · ,M .

Now 0 ∈
⋂M
i=1Bi and

Bj 6⊂
M⋃

i=1,i 6=j

(1 + δ)Bi,

which means ∀j = 1, · · · ,M , ∃Pj ∈ Bj and PjCi ≥ (1 + δ)ri, for all i = 1, · · · ,M and i 6= j,

in which Ci is the center of Bi. Thus, we have

|Ci| < 2, |Pi| < 4, for i = 1, · · · ,M.

Denote Mj as the midpoint of Cj and Pj:

|Mj| = |
Cj + Pj

2
| ≤ 4.
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Compute that

CjMi +MiPi ≥ CjPi ≥ (1 + δ)rj,

PjMi +MiCi ≥ PjCi ≥ (1 + δ)ri,

MiPi = MiCi ≤
1

2
ri.

Thus,

PjMi ≥ (1 + δ)ri −
1

2
ri > 0,

and

CjMi ≥ (1 + δ)rj −
1

2
ri > 0.

Observe that

CjMj
2

+MjMi
2 − 2 cos(π − θ) · CjMj ·MjMi = CjMi

2
, (3.6)

and

PjMj
2

+MjMi
2 − 2 cos θ · PjMj ·MjMi = PjMi

2
. (3.7)

Combining (3.6) and (3.7), and noticing that MjPj = MjCj ≤ 1
2
rj,

2MjMi
2

= CjMi
2

+ PjMi
2 − CjMj

2 − PjMj
2

≥
[
(1 + δ)ri −

1

2
ri

]2

+

[
(1 + δ)rj −

1

2
ri

]2

− 2

[
1

2
rj

]2

≥ (
1

2
+ δ)2r2

i + (1 + δ)r2
j +

1

4
r2
i − (1 + δ)rirj

≥ (
δ

2
+ δ2)r2

i +
δ

2
r2
j

≥ δ + δ2,

where in the above we have used the inequality that rirj ≤
r2i+r2j

2
, ri ≥ 1, and rj ≥ 1.



19

Then, we get

MjMi ≥
√
δ√
2
.

Hence, M(
√
δ)n ≤ (4

√
2)n, i.e., M ≤ 4n+ 1

4 δ−
n
2 , and (3.5) follows.

Now we will prove the main covering lemma: Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.4, there exists δ0 > 0 such that for all δ ∈ [0, δ0], there

exists {B1, ···, BN} ⊂ {Bα}α∈I as its δ-proper cover. Then, it clearly satisfies (3.1) of Theorem

3.1, we now prove (3.2).

Let x0 ∈
⋂M
i=1 Bi, M = M(x0). By a translation, we may suppose x0 = 0. Now 0 ∈⋂M

i=1Bi, and

Bj 6⊂
M⋃

i=1,i 6=j

(1 + δ)Bi.

Without loss of generality, we may assume r1 ≤ · · · ≤ rM , since 0 ∈ B1 ∩ BM and

B1 6⊂ (1 + δ)BM , we have 2r1 ≥ δrM , then let

K = K(0) = 2 + blog2

1

δ
c,

where b·c denotes the largest integer part, and let

Sj = {Bi|2j−1r1 ≤ ri < 2jr1}

for j = 1, · · · , K. We see that Sj is a δ-proper subcollection of {Bα}α∈I for j = 1, · · · , K,

and since 2Kr1 ≥ rM , we have

{B1, · · ·, BM} ⊂
K⋃
j=1

Sj.

Denote Kj = |Sj|, thus Kj ≤ 4nδ−
n
2 by Lemma 3.5. Then,

M =
K∑
j=1

Kj ≤ K4nδ−
n
2 ≤ cδ−

n
2 log

1

δ
,
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and (3.2) in Theorem 3.1 follows.

3.2 In higher dimensions

3.2.1 BMO estimate of log |u|

Theorem 3.6 (BMO estimate of log |u|). For n ≥ 3,

‖ log |u|‖BMO ≤ cλ
3n
4 (log λ)2.

An equivalent recording of Theorem 3.6 is

Theorem 3.7. For n ≥ 3, let E ⊂ B ⊂M, then

sup
B
|u| ≤

(
c|B|
|E|

)cλ 3n
4 (log λ)2

sup
E
|u|.

Remark. The BMO estimate of log |u| was first investigated by Donnelly and Fefferman

[DF3], and further developed by Chanillo and Muckenhoupt [CM], Lu [Lu1, Lu2], the author

and Lu [HaLu1], we list the results in this line as follows.

• λ
n(n+2)

4 (Donnelly and Fefferman [DF3])

• λn log λ (Chanillo and Muckenhoupt [CM])

• λn− 1
8 (log λ)2 (Lu [Lu2])

Our results further improve these ones. However, we still do not know what the optimal

bounds are.

Lemma 3.8 (Reverse Hölder’s inequality).(
1

|B|

ˆ
B

|u|
2n
n−2

)n−2
2n

≤ c
√
λ

(
1

|B|

ˆ
B

|u|2
)1/2

.
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Proof of Lemma 3.8. By the Poincaré’s inequality, for any ball B, we have

(
1

|B|

ˆ
B

|u− uB|
2n
n−2

)n−2
2n

≤ c|B|
1
n

(
1

|B|

ˆ
B

| 5 u|2
) 1

2

,

where uB = 1
|B|

´
B
u. Applying Hölder’s inequality and L2 Bernstein’s estimate in Lemma

2.4, we obtain (
1

|B|

ˆ
B

|u− uB|
2n
n−2

)n−2
2n

≤ c
√
λ

(
1

|B|

ˆ
B

|u|2
)1/2

.

By Minkowski’s inequality, Lemma 3.8 follows.

The following lemma is really the key to derive the BMO estimate in Theorem 3.6.

Lemma 3.9. Suppose n ≥ 3 and w > 0, and assume that for any ball B,

ˆ
(1+λ−

1
2 )B

w ≤ c1

ˆ
B

w, (3.8)

and (
1

|B|

ˆ
B

w
n
n−2

)n−2
n

≤ c2λ

|B|

ˆ
B

w. (3.9)

Then,

‖ logw‖BMO ≤ cλ
3n
4 (log λ)2,

in which c depends on the constants c1 and c2.

Remark. Substituting w by |u|2 in the above lemma, the BMO bound of log |u| in Theorem

3.6 follows since condition (3.8) is assured by the growth condition in Theorem 2.2, and

condition (3.9) is the reverse Hölder’s inequality in Lemma 3.8.

To show Lemma 3.9, we first need to show the following
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Lemma 3.10. Let w satisfy the hypothesis of Lemma 3.9, and k is an integer, let B be a

fixed ball, and E ⊂ B, then there exist c3 and c4 such that if

|E| ≥
[
1− c3λ

− 3n
4 (log λ)−1

]k
|B|,

then ˆ
E

w ≥
[
c4λ
−n

4 (log λ)−1
]k ˆ

B

w,

in which c3 = c3(c2) and c4 = c4(c1).

Proof of Lemma 3.10. The proof rests on an induction on k. We first want to show if |E| ≥

(1 − cλ−n2 )|B| for some appropriate c = c(c2), then
´
E
w ≥ 1

2

´
B
w. To show this, we first

note that |B \ E| ≤ cλ−
n
2 |B|. Thus, by Hölder’s inequality and (3.9),

ˆ
B\E

w ≤
(ˆ

B

w
n
n−2

)n−2
n

|B \ E|
2
n ≤ c2c

2
n

ˆ
B

w.

If we choose c such that c2c
2
n < 1

2
, then

ˆ
B\E

w ≤ 1

2

ˆ
B

w,

this implies ˆ
E

w >
1

2

ˆ
B

w.

Thus, if c3 ≤ c, and |E| ≥ (1 − c3λ
− 3n

4 (log λ)−1)|B|, then |E| ≥ (1 − cλ−
n
2 )|B|, and

therefore, ˆ
E

w ≥ 1

2

ˆ
B

w ≥ c4

[
λ−

n
4 (log λ)−1

]ˆ
B

w,

and we are done for the case k = 1.

Now we assume the statement is true for k − 1. We may assume |E| ≤ (1 − cλ−n2 )|B|,

otherwise, there is nothing to prove. Thus, for each density point x of E, we can select a ball
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Bx ⊂ B such that x ∈ Bx, and

|Bx ∩ E|
|Bx|

= 1− cλ−
n
2 .

Applying the cover lemma Theorem 3.1 when n ≥ 3 to the balls Bx with the choice

δ = λ−1/2, and without loss of generality, assume {Bx} is finite, thus there exists a finite

number of balls {Bi}Ni=1 such that

⋃
x

Bx ⊂
N⋃
i=1

(1 + λ−
1
2 )Bi,

and
N∑
i=1

χBi(x) ≤ cλ
n
4 log λ,

in which c is a constant independent of λ.

We then define

E1 =

[
N⋃
i=1

(1 + λ−
1
2 )Bi

]
∩B.

Then, E ⊂ E1 ⊂ B, and we shall show

|E| ≤
[
1− c3λ

− 3n
4 (log λ)−1

]
|E1|. (3.10)

Wit that

|E1| = |E|+ |

[
N⋃
i=1

(1 + λ−
1
2 )Bi

]
∩B \ E|

≥ |E|+ |

(
N⋃
i=1

Bi

)
∩B \ E|

= |E|+ |
N⋃
i=1

Bi \ E|

≥ |E|+ c(n)−1λ−
n
4 (log λ)−1

N∑
i

|Bi \ E|,
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where we used the overlapping condition in the covering lemma above. By our selection,

|Bi \ E| = cλ−
n
2 |Bi|,

and therefore,

|E1| ≥ |E|+ c(n)−1λ−
n
4 (log λ)−1

N∑
i

|Bi \ E|

= |E|+ c(n)−1cλ−
3n
4 (log λ)−1(1 + λ−

1
2 )−n

N∑
i

|(1 + λ−
1
2 )Bi|

≥ |E|+ c3λ
− 3n

4 (log λ)−1|E1|

by setting c−1c(1 + λ−1/2)−n = c3, note that c3 ≤ c and (3.10) follows. Thus,

|E1| ≥
[
1− c3λ

− 3n
4 (log λ)−1

]k−1

|B|,

and the proof is finished by induction if we can show

ˆ
E

w ≥ c4λ
−n

4 (log λ)−1

ˆ
E1

w. (3.11)

Using the growth property (3.8) as assumed in Lemma 3.9 and combining it with the

covering lemma in Theorem 3.1, we get

ˆ
E1

w ≤
N∑
i=1

ˆ
(1+λ−

1
2 )Bi

w ≤ c1

N∑
i=1

ˆ
Bi

w.

By the choice of each Bi: |Bx

⋂
E| = (1 − cλ−n2 )|Bx| and the induction assumption on

k = 1, one can show that ˆ
Bi∩E

w ≥ 1

2

ˆ
Bi

w,

which is ˆ
Bi

w ≤ 2

ˆ
Bi∩E

w,
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and therefore,

ˆ
E1

w ≤ 2c1

N∑
i=1

ˆ
Bi

w

= 2c1

N∑
i=1

ˆ
E

χBiw

= 2c1

ˆ
E

(
N∑
i=1

χBi)w

≤ c(n)c1λ
n
4 log λ

ˆ
E

w.

Therefore, (3.11) is proved for some c3 = c3(c2), c4 = c4(c1). This completes the proof of

Lemma 3.10.

Now with the help of Lemma 3.10, we are ready to show Lemma 3.9, which deduces

Theorem 3.6.

Proof of Lemma 3.9. Without loss of generality, we assume

1

|B|

ˆ
B

w = 1,

and it suffices to show that for t > 0,

|B ∩ {w > t}| ≤ t−cλ
− 3n

4 (log λ)−2|B|.

Write E = B ∩ {w < t}, select k such that

|E| ∼
[
1− c3λ

− 3n
4 (log λ)−1

]k
|B|,

then,

k ∼ cλ
3n
4 log λ log(|B|/|E|).
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Therefore, by Lemma 4.10 and normalization of w,

|B| =
ˆ
B

w ≤
(
c4λ

n
4 log λ

)k ˆ
E

w ≤
(
c4λ

n
4 log λ

)k
t|E|.

Hence,

|B|
|E|
≤
(
c4λ

n
4 log λ

)k
t ≤

(
|B|
|E|

)cλ 3n
4 (log λ)2

,

which implies

|B ∩ {w > t}| ≤ t−cλ
− 3n

4 (log λ)−2|B|.

Remark. The proof of Theorem 3.7 is similar to the one of Theorem 3.6, instead one use

L∞ norms, see [DF3] and [CM] for details.

3.2.2 Geometric estimate of nodal domains

In this subsection, we apply Theorems 3.6 and 3.7 in the previous subsection on the BMO

estimates of log |u| to obtain a geometric estimate of nodal domains locally.

Theorem 3.11 (Geometric estimate of nodal domains). For n ≥ 3, let B ⊂M be any ball,

and Ω ⊂ B be any of the connected components of {p ∈ B : u(p) 6= 0}. If Ω ∩ 1
2
B 6= ∅, then

|Ω| ≥ cλ−
3n2

4
−n

2 (log λ)−2n|B|.

Remark. We point out the results (replacing the coefficient on the right-hand side of the

inequality in Theorem 3.11):

• λ−
n2(n+2)+n

2 (Donnelly and Fefferman [DF3])

• λ−
n(4n+1)

2 (log λ)−2n (Chanillo and Muckenhoupt [CM])
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• λ−
n(8n+1)

4 (log λ)−4n (Lu [Lu2])

First, we impose a lemma from [DF3]:

Lemma 3.12. Suppose 0 < R < λ−1/2, Ω ⊂ B(p,R) ∩ {u > 0}, and p ∈ Ω with

|Ω|
|B(p,R)|

< ηn <
1

2
ηn0 <

1

2
.

Then, there is a positive number r such that

(1)

0 < r <
η

η0

R,

(2)

|Ω ∩B(p, r)|
B(p, r)

≥ ηn0 ,

(3)

sup
Ω∩B(p,r)

|u| ≤
( r
R

)c5/η
sup
B(p,R)

|u|.

Now we show a consequence of the above lemma with the help Theorem 3.7, by which

the geometric estimate of nodal domains in Theorem 4.11 follows easily.

Corollary 3.13. Assume the same conditions as in Lemma 3.12, then

|Ω|
|B(p,R)|

≥ cλ−
3n2

4 (log λ)−2n. (3.12)

Proof of Corollary 3.13. Assume the condition

|Ω|
|B(p,R)|

< ηn <
1

2
ηn0 <

1

2

holds. Then, we prove (3.12) contradiction from a suitable choice of η.
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By Theorem 3.7 and (2) in Lemma 3.12,

sup
B(p,r)

|u| ≤
[

c|B(p, r)|
|Ω ∩B(p, r)|

]cλ 3n
4 (log λ)2

sup
Ω∩B(p,r)

|u|

≤ (cη−n0 )cλ
3n
4 (log λ)2 sup

Ω∩B(p,r)

|u|

≤ (cη−n0 )cλ
3n
4 (log λ)2

( r
R

)c5/η
sup
B(p,R)

|u|.

However, from the vanishing order estimate in Theorem 2.3:

max
B(p,R)

|u| ≤
(
cR

r

)c√λ
max
B(p,r)

|u|,

which implies

(cη−n0 )cλ
3n
4 (log λ)2

(cr
R

)c5/η−c√λ
≥ 1,

if we assume further c5/η − c
√
λ ≥ 0, then by (1) in Lemma 3.12,

(cη−n0 )cλ
3n
4 (log λ)2

(
cη

η0

) c
η
−
√
λ

≥ 1.

Now we choose η = η2
0 and η0 = c6λ

− 3n
8 (log λ)−1. This choice forces c5/η − c

√
λ ≥ 0 and

also yields

(cη0)c5/η−c
√
λ−cnλ

3n
4 (log λ)2 ≥ 1.

This is a contradiction as cη0 < 1 for small c6. Therefore,

|Ω|
|B(p,R)|

≥ ηn = cλ−
3n2

4 (log λ)−2n.

Remark. The upper bound in (3.12) is λ−
n2(n+2)

2 in [DF3], λ−2n2
(log λ)−2n in [CM], and

λ−
n(8n−1)

4 (log λ)−4n in [Lu2].

Now we prove Theorem 3.11.
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Proof of Theorem 3.11. Given any B ⊂ M and Ω = B ∩ {u > 0}, let p ∈ Ω ∩ 1
2
B, write R0

as the radius of B and

R = min

{
1

2
λ−

1
2 ,

1

2
R0

}
,

Applying (3.12) in Corollary 3.13 for B(p,R), wit the fact that

Ω ∩B(p,R) ⊂ Ω ∩B,

therefore,

|Ω ∩B|
|B|

≥ |Ω ∩B(p,R)|
|B|

≥ cλ−
3n2

4 (log λ)−2n |B(p,R)|
|B|

≥ cλ−
3n2

4 (log λ)−2nR
n

Rn
0

≥ cλ−
3n2

4
−n

2 (log λ)−2n,

which completes the proof of Theorem 3.11.

3.3 In dimension two

In this section, we carry out the computation in dimension two of the following two theorems,

they are the analogues of Theorems 3.6 and 3.11, we present the proofs in order to get precise

estimates.

Theorem 3.14 (BMO estimate of log |u|). For n = 2,

‖ log |u|‖BMO ≤ cλ
3
2

+ε,

in which c = c(ε,M) depends only on ε and M.
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Theorem 3.15 (Geometric estimate of nodal domains). For n = 2, let B ⊂M be any ball,

and Ω ⊂ B be any of the connected components of {x ∈ B : u(x) 6= 0}. If Ω ∩ 1
2
B 6= ∅, then

for any given ε > 0,

|Ω| ≥ cλ−4−ε|B|,

in which c = c(ε,M) depends only on ε and M.

Lemma 3.16 (Reverse Hölder’s inequality). Let 1 ≤ q <∞, then

(
1

|B|

ˆ
B

|u|q
) 1

q

≤ c
√
λ

(
1

|B|

ˆ
B

|u|2
) 1

2

,

in which c depends only on q.

Proof of Lemma 3.15. By the Poincaré’s inequality, for any ball B, we have

(
1

|B|

ˆ
B

|u− uB|q
) 1

q

≤ c|B|
1
2

(
1

|B|

ˆ
B

| 5 u|p
) 1

p

,

where uB = 1
|B|

´
B
u, 1 < p < 2, 1/q = 1/p− 1/2, and c = c(p). Applying Hölder’s inequality

and L2 Bernstein’s estimate in Lemma 2.4, we obtain

(
1

|B|

ˆ
B

|u− uB|q
) 1

q

≤ c
√
λ

(
1

|B|

ˆ
B

|u|2
) 1

2

.

By Minkowski’s inequality, Lemma 3.16 follows for 2 < q < ∞, for the case 1 < q ≤ 2,

we can apply Hölder’s inequality again.

Theorem 3.14 follows from the following

Lemma 3.17. Suppose w > 0, q > 2, ε > 0, and (1 + ε)/q′ ≥ 1. Assume also that for any

ball B, ˆ
(1+λ−

1
2 )B

w ≤ c1

ˆ
B

w, (3.13)
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and (
1

|B|

ˆ
B

wq
) 1

q

≤ c2λ

|B|

ˆ
B

w. (3.14)

Then,

‖ logw‖BMO ≤ cλ
3
2

+ε,

in which c = c(c1, c2, ε) depends on c1, c2, and ε.

In order to prove Lemma 3.17, we need the following

Lemma 3.18. Let w, q, and 0 < ε < 1 satisfy the hypothesis of Lemma 3.17, k is an integer,

let B be a fixed ball, E ⊂ B, then there exist c3 and c4 such that if

|E| ≥
[
1− c3λ

− 3
2
−ε(log λ)−1

]k
|B|,

then ˆ
E

w ≥
[
c4λ
− 1

2 (log λ)−1
]k ˆ

B

w,

in which c3 = c3(c2) and c4 = c4(c1).

Proof of Lemma 3.18. We will use induction on k as done in §3.2 in higher dimensions. (See

also [Lu1] for the two dimension case). We first verify the lemma for k = 1. To do so, we claim

that if ε > 0, and |E| ≥ (1− cλ−1−ε)|B| for some appropriate c = c(c2), then
´
E
w ≥ 1

2

´
B
w.

To show this, we first note that |B \ E| ≤ cλ−1−ε|B|. If we choose q > 2 such that 1+ε
q′
≥ 1.

Thus, by Hölder’s inequality and (3.14),

ˆ
B\E

w ≤
(ˆ

B

wq
)1/q

|B \ E|1/q′

≤ c2c
1
q′ λ
− 1+ε

q′ +1

ˆ
B

w

≤ c2c
1
q′

ˆ
B

w.
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If we choose c such that c2c
1
q′ < 1

2
, then

ˆ
B\E

w ≤ 1

2

ˆ
B

w,

this implies ˆ
E

w >
1

2

ˆ
B

w.

Note that the choice of c is dependent on ε since c2 = c2(q), and q is dependent on ε.

Thus, if c3 ≤ c, and |E| ≥ (1− c3λ
− 3

2
−ε(log λ)−1)|B|, then

ˆ
E

w ≥ 1

2

ˆ
B

w ≥ c4

[
λ−

1
2 (log λ)−1

] ˆ
B

w,

and we are done for the case k = 1.

Now we assume the statement is true for k − 1. We may assume |E| ≤ (1− cλ−1−ε)|B|,

otherwise, there is nothing to prove. Thus, for each density point x of E, we can select a ball

Bx ⊂ B such that x ∈ Bx, and

|Bx ∩ E|
|Bx|

= 1− cλ−1−ε.

Applying the cover lemma Theorem 3.1 when n = 2 to the balls Bx with the choice

δ = λ−1/2, and without loss of generality, assume {Bx} is finite, thus there exist a finite

number of balls {Bi}Ni=1 such that

⋃
x

Bx ⊂
N⋃
i=1

(1 + λ−
1
2 )Bi,

and
N∑
i=1

χBi(x) ≤ cλ
1
4 log λ,

in which c is a constant independent of λ.
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We then define

E1 =

[
N⋃
i=1

(1 + λ−
1
2 )Bi

]
∩B.

Then, E ⊂ E1 ⊂ B, and similarly as we did in §3.2, we can show

|E| ≤
[
1− c3λ

− 3
2
−ε(log λ)−1

]
|E1|,

and ˆ
E

w ≥ c4λ
− 1

2 (log λ)−1

ˆ
E1

w

for some c3 = c3(c2) and c4 = c4(c1). This suffices to complete the proof.

Now we prove Theorem 3.14.

Proof of Theorem 3.14. Without loss of generality, we assume

1

|B|

ˆ
B

w = 1,

and it suffices to show that for t > 0,

|B ∩ {w < t}| ≤ tcλ
− 3

2−ε(log λ)−2|B|.

Write E = B ∩ {w < t}. Select k such that

|E| ∼
[
1− c3λ

− 3
2
−ε(log λ)−1

]k
|B|,

then,

k ∼ c
(
λ

3
2

+ε log λ
)

log(|B|/|E|).

Therefore, by Lemma 3.18 and the normalization of w, we have

|B| =
ˆ
B

w ≤
(
c−1

4 λ
1
2 log λ

)k ˆ
E

w ≤
(
c−1

4 λ
1
2 log λ

)k
t|E|.
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Thus,

|B|
|E|

≤ te
k log

(
c−1
4 λ

1
2 log λ

)

≤ t

(
|B|
|E|

)(cλ 3
2+ε log λ

)
log
(
c−1
4 λ

1
2 log λ

)

≤ t

(
|B|
|E|

)cλ 3
2+ε(log λ)2

.

That is,

|E| ≤ tcλ
− 3

2−ε(log λ)−2|B|.

Since ε is arbitrary, we can then have

|E| ≤ tcλ
− 3

2−ε|B|.

We omit the proof of Theorem 3.15 since it is similar to the one of Theorem 3.11.
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4 Hausdorff measure estimates of nodal sets: lower bounds

In this chapter, we discuss the lower bounds of Hn−1 measure estimates of nodal sets of

eigenfunctions, i.e., the left-hand side of Conjecture 1.1.

The conjecture was verified by Donnelly and Fefferman [DF1] on analytic manifolds.

The real analytic assumption is used in a crucial way: the eigenfunctions are analytically

continued to holomorphic functions with bounded growth, and then the problem is reduced

to a problem about polynomials.

The problem on smooth manifolds seems much more difficult, several sequences of findings

lie in this area, and we present these results as follows (omitting the constants):

• Two dimensional:
√
λ (Brüning [B], Yau [Y]) Optimal!

• λ
(1−n)(n+1)2

2 (Donnelly and Fefferman [DF3])

• λ
(1−n)(4n+1)

2 (log λ)2(1−n) (Chanillo and Muckenhoupt [CM])

• λ
(1−n)(8n+1)

4 (log λ)4(1−n) (Lu [Lu2])

• c−
√
λ (Han and Lin [HL])

• λ
(1−n)(3n+2)

4 (log λ)2(1−n) (H. and Lu [HaLu1])

• λ 7−3n
8 (Sogge and Zelditch [SZ])

• λ 3−n
4 (Colding and Minicozzi [CoMi], Hezari and Sogge [HeSo]) Best!

• λ 3−n
2
− 1

2n (Mangoubi [M])

• λ 1−n
2 (H. and Lu [HaLu2])
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• λ 17−5n
16 (Hezari and Wang [HW])

In which the lower bound cλ
3−n
4 by Colding and Minicozzi [CoMi] and Hezari and Sogge

[HeSo] is the best known so far. However, it is still far from the optimal bound.

4.1 Isoperimetric inequalities and polynomially decreasing lower

bounds

Let us begin by a remark [HaLu1] of a polynomially decreasing lower bound from the ge-

ometric estimate of nodal domains in Theorem 3.11: Choosing B = M such that Ω is a

connected component of {u > 0}, then

|Ω| ≥ cλ−
3n2

4
−n

2 (log λ)−2n.

Then, from isoperimetric inequality on M (See e.g. [O].)

|∂Ω| ≥ c|Ω|
n−1
n ,

we immediately derive that

Hn−1(N ) ≥ |∂Ω| ≥ cλ
(1−n)(3n+2)

4 (log λ)2(1−n).

One can similarly derive the lower bounds in [DF3, CM, Lu2] as showed in the beginning

of this chapter. Next we improve these results by introducing more delicate strategies.

Generally on smooth manifolds, there are two major directions of proving lower bounds

in Conjecture 1.1:

(1) local to global estimate,
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(2) direct global estimate.

In (1), one begins by examining the size of nodal set locally(with a local scale we shall

discuss in the following sections), then uses a covering to recover the size of N globally. This

idea was originated by Donnelly and Fefferman [DF1], and the major tool to get the local

Hn−1 lower bounds of N is the isoperimetric inequality. (See [F].)

Theorem 4.1 (Isoperimetric inequality). Given a ball B ⊂ Rn and a continuous function

f on B, denote B+ = B ∩ {f > 0}, and B− = B \B+, then

Hn−1(B ∩N ) ≥ c(n)
[
min{Hn(B+),Hn(B−)}

]n−1
n ,

in which N = {f = 0}.

Then, in every small ball, one of the following three cases occurs.

(a) Hn(B+) ∼ Hn(B−),

(b) Hn(B+)� Hn(B−),

(c) Hn(B+)� Hn(B−).

Remark. Following this line, excluding cases (b) and (c), one has the lower bound of

min{Hn(B+),Hn(B−)}/Hn(B), and therefore, the lower bound of Hn−1(B ∩ N ) follows

from the isoperimetric inequality in Theorem 4.1.

To demonstrate the idea in (1), we now first combine the isoperimetric inequality in

Theorem 3.1 together with geometric estimates of nodal domain in Corollary 3.13 to prove

a polynomially decreasing lower bound, which improves the one in [HaLu1].
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Theorem 4.2.

Hn−1(N ) ≥ cλ−
3n2−3n−2

4 (log λ)2(1−n).

Proof of Theorem 4.2. Choose a maximum family of disjoint balls B ⊂ M with radius

O(λ−1/2) > 3λ−1/2 such that u vanishes at some point in the middle one-third of every

ball, i.e. there exist p1, p2 ∈ 1
3
B such that u(p1) > 0 and u(p2) < 0. By taking R = λ−1/2 in

(3.12) of Corollary 3.13, we have

|B+(p1, R)| ≥ cλ−
3n2

4 (log λ)−2n|B(p1, R)|,

and

|B−(p2, R)| ≥ cλ−
3n2

4 (log λ)−2n|B(p2, R)|.

Observe that B+(p1, R) ⊂ B+ and B−(p2, R) ⊂ B−, therefore,

|B+| ≥ |B+(p1, R)| ≥ cλ−
n(3n+2)

4 (log λ)−2n,

and

|B−| ≥ |B−(p1, R)| ≥ cλ−
n(3n+2)

4 (log λ)−2n,

applying the isoperimetric inequality in Theorem 4.1, we arrive at

Hn−1(B ∩N ) ≥ cλ−
(n−1)(3n+2)

4 (log λ)2(1−n).

The theorem is proved by noting the number of such balls is O(λn/2).

Remark. Using the estimates in (3.12) of Corollary 3.13 in [DF3, CM, Lu2], one improves

the corresponding polynomially decreasing lower bounds to

• λ−n
3+n2−3n

2 (Donnelly and Fefferman [DF3])
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• λ−
n(4n−5)

2 (log λ)2(1−n) (Chanillo and Muckenhoupt [CM])

• λ− 8n2−11n+1
4 (log λ)4(1−n) (Lu [Lu2])

In (2), Dong-Sogge-Zelditch’s integral formula and Sogge’s Lp estimate play important

roles, and we shall investigate in §4.3.

4.2 Local to global approach

We begin this section by showing a exponentially decreasing lower bound, which is not better

that the one in Theorem 3.2. However, this detour is beneficial since an approach is developed

in the pass, and substantial improvement is to be made.

4.2.1 c−
√
λ–Hn−1 lower bound

First, we need a crucial lemma which shows the comparison between the integrals of |u| over

positive and negative domains. (See Lemma 5 in [CoMi], cf. also Lemma 6.2.2 in [HL] for a

simpler but more restrictive version.)

Lemma 4.3. There exists r3 > 0 depending only on M such that if r ∈ (0, r3], and u(p) = 0,

then ∣∣∣∣ˆ
B(p,r)

u

∣∣∣∣ ≤ 1

3

ˆ
B(p,r)

|u|, (4.1)

in which u+ = max{u, 0} and u− = u+ − u.

Remark. Note that ∣∣∣∣ˆ
B(p,r)

u

∣∣∣∣ =

∣∣∣∣ˆ
B(p,r)

u+ −
ˆ
B(p,r)

u−
∣∣∣∣ ,
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and ˆ
B(p,r)

|u| =
ˆ
B(p,r)

u+ +

ˆ
B(p,r)

u−,

thus,

ˆ
B(p,r)

u+ =
1

2

(ˆ
B(p,r)

|u| −
ˆ
B(p,r)

u− +

ˆ
B(p,r)

u+

)
≥

(ˆ
B(p,r)

|u| −
∣∣∣∣ˆ
B(p,r)

u

∣∣∣∣)
≥ 1

3

ˆ
B(p,r)

|u|,

similarly, ˆ
B(p,r)

u− ≥ 1

3

ˆ
B(p,r)

|u|,

and these imply

min

{ˆ
B(p,r)

u+,

ˆ
B(p,r)

u−
}
≥ 1

3

ˆ
B(p,r)

|u|.

Therefore, we see that Lemma 4.3 establishes the comparability of
´
B(p,r)

u+ and
´
B(p,r)

u−,

in order to pass this property toHn(B+(p, r)) andHn(B−(p, r)), we need the following lemma

(cf. Lemma 6.2.4 in [HL]).

Lemma 4.4. If there exist c1 and c2 positive such that

min

{ˆ
B(p,r)

u+,

ˆ
B(p,r)

u−
}
≥ c1

ˆ
B(p,r)

|u| (4.2)

and ˆ
B(p,r)

u2 ≤ c2

(ˆ
B(p,r)

|u|
)2

, (4.3)

then

Hn−1(B(p, r) ∩N ) ≥ c · c
1−n
n

2 ,

in which c = c(c1) depends on c1.
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Proof of Lemma 4.4. By Hölder’s inequality and (4.3), we have for any measurable set G ⊂

B(p, r),

(ˆ
G

|u|
)2

≤ Hn(G)

ˆ
G

u2 ≤ Hn(G)

ˆ
B(p,r)

u2 ≤ c2Hn(G)

(ˆ
B(p,r)

|u|
)2

,

therefore,

Hn(G) ≥ c−1
2

(´
G
|u|
)2(´

B(p,r)
|u|
)2 .

By (4.2) and taking G = B±(p, r), we get

min{Hn(B+(p, r)),Hn(B−(p, r))} ≥ c2
1c
−1
2 ,

together with the isoperimetric inequality in Theorem 4.1,

Hn−1(B(p, r) ∩N ) ≥ c
[
min{Hn(B+(p, r)),Hn(B−(p, r))}

]n−1
n ≥ c · c

1−n
n

2 .

Next we fix a local scale rλ = O(λ−1/2) (i.e., the “wavelength” in Theorem 1.5) such that

u vanishes at some point in the middle half of every ball with radius rλ, and c−
√
λ–Hn−1

lower bound of N follows easily from the doubling condition in Theorem 2.1 if we cover M

by these balls.

Theorem 4.5 (c−
√
λ–Hn−1 lower bound).

Hn−1(N ) ≥ c−
√
λ.

Proof of Theorem 4.5. We choose a maximum disjoint family of balls B with radius rλ in

M, then the number of these balls ∼ λn/2, and there exists p ∈ 1
2
B such that u(p) = 0. That

is, B(p, 1
2
rλ)’s are also mutually disjoint.
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Applying a priori estimate in Theorem 2.5,

sup
B(p, 1

2
rλ)

u2 ≤ c

 
B(p,rλ)

u2 ≤ c
√
λ

 
B(p, 1

2
rλ)

u2,

thus, (ˆ
B(p, 1

2
rλ)

u2

)2

≤ sup
B(p, 1

2
rλ)

u2

(ˆ
B(p, 1

2
rλ)

|u|

)2

≤ c
√
λ

 
B(p, 1

2
rλ)

u2

(ˆ
B(p, 1

2
rλ)

|u|

)2

,

and ˆ
B(p, 1

2
rλ)

u2 ≤ r−nλ c
√
λ

(ˆ
B(p, 1

2
rλ)

|u|

)2

.

By Lemma 4.4 with c1 = 1
3

from Lemma 4.3 and c2 = r−nλ c
√
λ = λ

n
2 c
√
λ from the above

inequality, we have

Hn−1(B(p,
1

2
rλ) ∩N ) ≥ c · c

1−n
n

2 = λ
1−n
2 c−

√
λ.

We complete the proof here by noticing the number of such balls ∼ λn/2.

4.2.2 λ
1−n
2 –Hn−1 lower bound

In this subsection, we choose a different local scale independent of λ cooperated with local

maximum principle in Corollary 2.6 to achieve local lower bound of nodal set. It coincides

with [HaLu2] in this subsection.

Theorem 4.6 (λ
1−n
2 –Hn−1 lower bound).

Hn−1(N ) ≥ cλ
1−n
2 .

Proof of Theorem 4.6. We fix a nodal point p (i.e., u(p) = 0) and 0 < R ≤ min{r1, r2, r3}

such that the growth estimate in Theorem 2.2, the local maximum principle in Corollary
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2.6, and (4.1) in Lemma 4.3 all hold. Then, in Lemma 4.4, we take c1 = 1
3
. For c2, we take

δ = λ−1/2, (ˆ
B(p,R)

u2

)2

≤ sup
B(p,R)

u2

(ˆ
B(p,R)

|u|
)2

≤c(λ−1/2R)−n
(ˆ

B(p,(1+λ−
1
2 )R)

u2

)(ˆ
B(p,R)

|u|
)2

≤c(λ−1/2R)−n
(ˆ

B(p,R)

u2

)(ˆ
B(p,R)

|u|
)2

,

where we applied Theorem 2.2 and Corollary 2.6. Thus,

ˆ
B(p,R)

u2 ≤ c(λ−1/2R)−n
(ˆ

B(p,R)

|u|
)2

.

Choosing c2 = c(λ−1/2R)−n = cλn/2 in Lemma 4.4, we deduce

Hn−1(B(p,R) ∩N ) ≥ c · c
1−n
n

2 = cλ
1−n
2 ,

which implies the global lower bound in Theorem 4.6.

Remark. The local scale R depends only on M. However, there is an intimate connection

between the results involving local scales R and rλ, it will be revealed in §4.2.3 cooperated

with an innovative tool invented by Colding and Minicozzi [CoMi], by which the best known

lower bound is deduced from Sogge’s Lp estimate.

4.2.3 λ
3−n
4 –Hn−1 lower bound

First, we normalize the eigenfunction, that is, ‖u‖L2(M) = 1. Then, we set the same local scale

rλ = O(λ−1/2) for which every ball with radius rλ vanishes at some point in the middle half,

one knows from Theorem 2.1 that doubling condition holds with an exponentially increasing
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(of λ) constant, (and therefore, the exponentially decreasing local lower bound follows as in

Theorem 4.5.) With a stronger doubling condition however, one can easily improve this local

result.

Corollary 4.7. Assume there exists d ≥ 1 such that the doubling condition

ˆ
B(p,2rλ)

u2 ≤ d

ˆ
B(p,rλ)

u2 (4.4)

holds for B(p, rλ), then

Hn−1(B(p, rλ) ∩N ) ≥ c(d)λ
1−n
2 , (4.5)

in which c(d) depends on d.

Remark. In analytic case, there are sufficiently many good balls (proportional to the volume

of M, and therefore, the number of such balls ∼ λn/2), the optimal lower bound follows by

a covering.

A simple observation shows that this local lower bound (4.5) coincides with the one in

Theorem 4.6, and the connection is proved by the following theorem.

Theorem 4.8. There is at least one d-good ball in B(p,R) if d is sufficiently large, where a

d-good ball satisfies (4.4).

Proof of Theorem 4.8. We cover B(p,R) by finite balls {Bj|Bj ⊂ B(p, (1 + λ−1/2)R)} with

radius rλ, and the overlapping is bounded by a constant C depending only on M since

rλ ∼ λ−1/2. Then, there exists a constant c such that

2Bj ⊂ B(p, (1 + cλ−
1
2 )R).
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Thus, if all balls are d-bad, that is,

ˆ
B

u2 ≤ d−1

ˆ
2B

u2, (4.6)

then, omitting the integrating function |u|2,

ˆ
B(p,R)

≤
ˆ
⋃
Bj

≤
∑
j

ˆ
Bj

≤ d−1
∑ ˆ

2Bj

≤ Cd−1

ˆ
⋃
j 2Bj

≤ Cd−1

ˆ
B(p,(1+cλ−

1
2 )R)

.

The contradiction comes from Theorem 2.2 that

ˆ
B(p,R)

u2 ∼
ˆ
B(p,(1+cλ−

1
2 )R)

u2

by choosing d large, which means there is at leat one d-good ball in B(p,R).

Remark. From proof of Theorem 4.8, we see that the L2 weight of u on the bad region (union

of bad balls) is relatively small comparing with the L2 weight on the good region (union of

good balls). However, existence of good balls in B(p,R) is independent of
´
B(p,R)

u2.

We end our analysis in this subsection by outlining Colding and Minicozzi’s proof [CoMi]

on estimating the number of disjoint good balls. Recall Sogge’s Lp estimate in Theorem 2.8,

Corollary 4.9. For Ω ⊂M,

‖u‖L2(Ω) ≤ |Ω|
p−2
2p ‖u‖Lp(Ω) ≤ |Ω|

p−2
2p ‖u‖Lp(M).

Particularly, if |Ω| = λ−s for s ≥ 0, choosing p = 2(n+1)
n−1

in Theorem 2.8, we have

‖u‖L2(Ω) ≤ λ
1

2(n+1)
(n−1

2
−2s),

which implies ‖u‖L2(Ω) → 0 if s > n−1
4

as λ→∞.
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Remark. The local Weyl law yields ‖u‖L∞(M) ≤ cλ
n−1
4 (i.e. p =∞ in Sogge’s Lp estiamtes),

thus,

‖u‖L2(Ω) ≤ λ
n−1
4
− s

2 ,

this implies ‖u‖L2(Ω) → 0 if s > n−1
2

, which is weaker than the result of Corollary 4.9. In

fact, the estimate when p = 2(n+1)
n−1

is sharpest among all p ≥ 2 and the one from Sobolev’s

inequality, see Remarks 1, 2, and 3 in [CoMi].

Since the L2 weight concentrates on the good region (union of good balls with controllable

overlap), that is, ‖u‖L2(G) ≥ c where G is the good region. Thus, |G| is at least λ
1−n
4 by

Corollary 4.9, and the number of d-good balls is at least λ
n+1
4 , and consequently the λ

3−n
4

lower bound follows. We refer the reader to [CoMi] for more details.

4.3 Direct global approach

In the second approach, Dong-Sogge-Zelditch’s integral formula in Theorem 2.7 and Sogge’s

Lp estimates in Theorem 2.8 play important roles.

One arrives at the lower bound of Hn−1(N ) from (2.1)

λ‖u‖L1(M) ≤ λ

ˆ
M
|u| dHn = 2

ˆ
N
| 5 u|dHn−1 ≤ 2Hn−1(N )‖ 5 u‖L∞(N ) (4.7)

if one has lower bound of ‖u‖L1(M) and upper bound of ‖ 5 u‖L∞(N ) for normalized u.

Accordingly,

‖ 5 u‖L∞(M) ≤ cλ
n+1
4

by local Weyl’s law, and from Corollary 2.9,

‖u‖L1(M) ≥ cλ
1−n
8 .
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λ
7−3n

8 lower bound follows by combing exponents (Sogge and Zeltitch [SZ]). The above

estimates of ‖u‖L1(M) and of ‖ 5 u‖L∞(N ) are sharp, which are achieved by zonal spherical

harmonics and highest weight spherical harmonic on S2. However, as pointed out by Sogge

and Zelditch [SZ] and proved by Herazi and Wang [HW], one replaces the right-hand side of

(4.7) with a bound involving Lp bound of 5u:

2
[
Hn−1(N )

] 2
3 ‖ 5 u‖L3(N ),

which can be estimated by plugging f = | 5 u|2 into (2.2) of Theorem 2.7,

ˆ
M

[
(∆ + λ)| 5 u|2

]
|u|dHn = 2

ˆ
N
| 5 u|3dHn−1 = 2‖ 5 u‖3

L3(N ).

A better lower bound of λ
17−5n

16 follows by further utilizing Bochner’s indentity for ∆|5u|2

on the left-hand side of above equation (Herazi and Wang [HW]). Recently, using this direct

global approach, the lower bound was pushed to λ
3−n
4 (the best know as first shown by

Colding and Minicozzi [CoMi], see §3.2.3) by Herazi and Sogge [HeSo] choosing a different

test function f = (1 +λu2 + |5 u|2)1/2. They also showed the sharpness of this bound if one

attacks the problem from this approach. (It is a “natural” lower bound!)

4.4 Further investigation

We outline some potential connections between these two approaches and possible improve-

ment on lower bound of Hn−1(N ) here.

(i) Can we better utilize the BMO estimates to get improved lower bounds?

(ii) As we see in §4.2, doubling condition is crucial for estimating size of nodal set locally,

so
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(A) how is it related with the local scale?

(B) Sogge’s Lp estimates give the best known lower bound on the number of good balls

(i.e., local balls satisfying good doubling condition), can we say anything on the

reverse side? That is, can doubling condition imply Lp bounds of eigenfunctions?

(iii) Theorem 4.8 indicates a rather loose existence result on the good balls: There is at

least one good ball in B(p,R), here R depends only on M, i.e., independent of the

distribution of |u|2 on M, which is the main obstacle for improving known results.

One probably have to cooperate with proper covering lemmas to further utilize this

advantage (since one only needs a good covering of M).

(iv) A modification of d-good balls as we take consideration of λ→∞:

ˆ
2B

u2 ≤ λε
ˆ
B

u2, (4.8)

for ε > 0, and we call a ball satisfies (4.8) is ε-good.

(v) Instead of balls, we consider good points and discuss with more details in the following.

Definition 4.10 (d-good point). p ∈M is d-good (or ε-good as in (4.8) above) if there exists

a d-good B ⊂M with radiusi R such that B 3 p.

One immediately see that if Ω = {p ∈M|p is d-good}, then Ω ⊂M is open, furthermore,

we derive from growth estimate in Theorem 2.2 as follows.

Proposition 4.11. If p0 is d-good, then p is cd-good for all p ∈ B(p0, λ
−1/2R).

iOne can consider different local scales, e.g. rλ = O(λ−1/2).
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Proof of Proposition 4.11. Since p0 is d-good, then there exists B(p1, R) ⊂ M such that

B(p1, R) 3 p0 and ˆ
B(p1,2R)

u2 ≤ d

ˆ
B(p1,R)

u2,

and for each p ∈ B(p0, λ
−1/2R), there exists p2 ∈ B(p1, λ

−1/2R) such that p ∈ B(p2, R), and

we have that facts that

B(p1, R) ⊂ B(p2, (1 + λ−
1
2 )R), and B(p2, 2R) ⊂ B(p1, 2(1 + λ−

1
2 )R),

and therefore, by growth estimate in Theorem 2.2,

ˆ
B(p2,2R)

≤
ˆ
B(p1,2(1+λ−

1
2 )R)

≤ c

ˆ
B(p1,2R)

≤ cd

ˆ
B(p1,R)

≤ cd

ˆ
B(p2,(1+λ−

1
2 )R)

≤ c2d

ˆ
B(p2,R)

,

which means B(p2, R) 3 p is cd-good, and thus, p is cd-good.
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5 Hausdorff measure estimates of nodal sets: upper

bounds

In this chapter, we discuss the upper bounds of Hn−1 measure estimates of nodal sets of

eigenfunctions, i.e., the right-hand side of Conjecture 1.1. As mentioned in Chapter 4 that it

was verified by Donnelly and Fefferman [DF1] on analytic manifolds, the known results on

smooth manifolds are

• Two dimensional: λ
3
4 (Donnelly and Fefferman [DF2], Dong [D1])

• Higher dimensional: λ
√
λ (Hardt and Simon [HS])

We also point out that Lin [Lin] further obtained an optimal upper bound estimate of

Hausdorff measures of nodal sets for solutions to second order elliptic equations with analytic

coefficients and parabolic equations with time independent analytic coefficients, sequential

works were done in this direction, and we refer to Han and Lin’s book [HL] for details.

Recall Dong-Sogge-Zelditch’s integral formula in Theorem 2.7:

ˆ
N
f | 5 u|dHn−1 =

1

2

ˆ
M

[
(∆ + λ)f

]
|u|dHn.

In [D1], in order to studyHn−1 estimates of nodal sets, a special case of the above integral

formula was proved:

Hn−1(N ) =
1

2

ˆ
M

∆|u|+ λ|u|
√
q

, (5.1)

in which q is given in (2.3):

q = | 5 u|2 +
λu2

n
.
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In fact, (5.1) is true for any Ω ⊂M with smooth boundary:

Hn−1(N ∩ Ω) =
1

2

ˆ
Ω

∆|u|+ λ|u|
√
q

≤ 1

4

ˆ
Ω

| 5 log q|+
√
nλ|Ω|+ |∂Ω|,

therefore, one proves the upper bounds in Conjecture 1.1 if one has

Conjecture 5.1 (Dong). ˆ
B(p,r)

| 5 log q| ≤ c
√
λrn−1.

5.1 In dimension two

In two dimensional case, the singular set S = {u = | 5 u| = 0} consists of isolated points

on Riemannian surfaces, then the nodal sets, as nodal lines, have more tractable structure,

Done [D1] further proved ˆ
B(p,r)

| 5 log q| ≤ c
√
λr + cλr3.

By choosing a covering of M of balls B with radius λ−1/4, one deduces

ˆ
B

| 5 log q| ≤ cλ
1
4 ,

which implies

Hn−1(N ∩B) ≤ cλ
1
4 ,

and

Hn−1(N ) ≤ cλ
3
4

by noting the cardinality of the covering ∼ λ1/2. However, we are still looking for generaliza-

tion in higher dimensional cases. See [DF2] for a different approach on Riemannian surfaces

and [HS] for λ
√
λ upper bounds in higher dimensions.
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5.2 A byproduct: more on BMO estimates

An interesting consequence of Conjecture 5.1 was proposed by Dong [D2]:

Conjecture 5.2 (Dong).

‖ log q‖BMO ≤ c
√
λ.

He [D2] proved it is true if the right-hand side is replaced by λn log λ in higher dimensions.

By using the argument concerning the BMO bound of log |u|, (The conditions (3.8) and (3.9)

in Lemma 3.9 also hold for w = q, see [D2].) we improve this results to

Theorem 5.3 (BMO estimates of log q).

‖ log q‖BMO ≤ cλ
3n
4 (log λ)2.

We omit the proof here, and it can be found in [HaLu1].

Remark. It is quite intriguing to think about the reverse of Conjecture 5.2: can this BMO

bound of log q (or its proof) in Theorem 5.3 imply polynomially increasing upper bounds of

Hn−1 estimates of nodal sets?
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Part II

Hardy-Littlewood-Sobolev inequalities on the

Heisenberg group

6 Introduction

We begin our investigation on Hardy-Littlewood-Sobolev inequalities on the Heisenberg

group and start by reviewing the history in this area.

6.1 Results on the Euclidean space

Recall the famous Hardy-Littlewood-Sobolev (shorted as HLS in the following context) in-

equality on RN : Let 1 < r, s <∞ and 0 < λ < N such that 1
r

+ 1
s

+ λ
N

= 2, then∣∣∣∣∣
ˆ ˆ

RN×RN

f(x)g(y)

|x− y|λ
dxdy

∣∣∣∣∣ ≤ C‖f‖r‖g‖s (6.1)

for any f ∈ Lr(RN) and g ∈ Ls(RN), where ‖ · ‖r and ‖ · ‖s are the Lr and Ls norms on RN ,

respectively, and 0 < C <∞ is a constant depending on r, λ, and N only.

This inequality was introduced by Hardy and Littlewood [HaLi1, HaLi2, HaLi3] on R1

and generalized by Sobolev [S] to RN . We denote by Cr,λ,N the sharp constant that we

can put into (6.1), finding and proving sharp constant Cr,λ,N and its maximizersi (functions

which, when inserted into (6.1), the equality holds with the smallest constant Cr,λ,N) have

driven a lot people’s attention. In Lieb’s paper [Li], existence of the maximizers was proved.

iThey are also referred as optimizers or extremals in some literature.
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Furthermore, when r = s = 2N/(2N − λ), he gave explicit formulae of sharp constants Cλ,n

and maximizers. Precisely,

Theorem 6.1. Let 1 < r, s <∞, 0 < λ < N , and 1
r

+ 1
s

+ λ
N

= 2, then there exists a sharp

constant Cp,λ,N , maximizers of f ∈ Lr(RN) and g ∈ Ls(RN) such that∣∣∣∣∣
ˆ ˆ

RN×RN

f(x)g(y)

|x− y|λ
dxdy

∣∣∣∣∣ = Cr,λ,N‖f‖r‖g‖s. (6.2)

If r = s = 2N/(2N − λ), then

Cr,λ,N = Cλ,N = πλ/N
Γ(N/2− λ/2)

Γ(N − λ/2)

(
Γ(N/2)

Γ(N)

)λ−N
N

.

In this case (6.2) holds if and only if f ≡ (const.)g and

f(x) =
c

(d+ |x− a|2)
2N−λ

2

(6.3)

for some c ∈ C, 0 6= d ∈ R, and a ∈ RN .

Remark.

(1) The proof of the above theorem can also be found in Lieb and Loss’s monograph [LL]

with more details, in which they also proved that the sharp constant Cr,λ,N satisfies

Cr,λ,N ≤
N

rs(N − λ)

(ωN−1

N

)λ/N [( λ/N

1− 1/r

) λ
N

+

(
λ/N

1− 1/s

) λ
N

]
, (6.4)

where ωN−1 is the area of unit sphere in RN , i.e., ωN−1 = 2πN/2/Γ(N/2). The original

proof by Lieb [Li] applies rearrangement methods, a new rearrangement-free proof was

provided by Frank and Lieb [FL1, FL3].

(2) The existence of maximizers were also proved by Lions (§2.1 in [Lio4]), which is an

application of the concentration compactness principle introduced by him in a series of
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papers [Lio1, Lio2, Lio3, Lio4]. See also §II.4 in [Str] about the application on sharp

Sobolev inequalities.

(3) The uniqueness of maximizers (6.3) was proposed by Lieb [Li] as an open problem, and

was answered by Chen, Li, and Ou [CLO2], in which they used moving plane method

for integral equations, (A different approach using moving sphere method for integral

equations has been done by Li [L].) a related work by Chen, Li, and Ou [CLO1] studied

the integral systems using the similar method. The formula of the maximizers (after

dilations and translations) assume

1

(1 + |x|2)
2N−λ

2

.

(4) We shall point out that (6.4) is not sharp, even when r = s, and neither sharp constant

Cr,λ,N nor maximizers are known yet when r 6= s.

In 1950s, Stein and Weiss [StWe] introduced the weighted HLS inequality, that is,∣∣∣∣∣
ˆ ˆ

RN×RN

f(x)g(y)

|x|α|x− y|λ|y|β
dxdy

∣∣∣∣∣ ≤ Cα,β,r,λ,N‖f‖r‖g‖s, (6.5)

where 1 < r, s < ∞, 0 < λ < N , and α + β ≥ 0 such that λ + α + β ≤ N , α < N/r′,

β < N/s′, and 1
r

+ 1
s

+ λ+α+β
N

= 2. The sharp constant in the weighted HLS inequality

(Stein-Weiss) inequality (6.5) is still unknown as far as we are aware of, even in the special

case when r = s. When λ = N − 2, the Euler-Lagrange system of (6.5) consists of two

Poisson’s equations. Chen and Li [CL] studied the integral systems in this case. Caristi,

D’Ambrosio and Mitidieri [CDM] also studied the integral systems (inequalities) associated

with the Stein-Weiss inequalities and nonexistence of solutions to such systems. Lieb [Li]

proved that the maximizers exist when λ+α+β < N , and do not exist when λ+α+β = N .
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6.2 Structure of the Heisenberg group

We move our attention to the Heisenberg group, and the n-dimensional Heisenberg group is

Hn = Cn × R with

• group structure:

uv = (z, t)(z′, t′) = (z + z′, t+ t′ + 2Im(z · z))

for any two points u = (z, t), v = (z′, t′) ∈ Hn, where z, z′ ∈ Cn, t, t′ ∈ R, and

z · z =
∑n

j=1 zjz
′
j.

• Haar measure: the Lebesgue measure du = dzdt, in which z = x+ iy with x, y ∈ Rn.

• Lie algebra: generated by the left invariant vector fields

T =
∂

∂t
, Xj =

∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
.

• dilation: δdu = δd(z, t) = (dz, d2t) for each real number d ∈ R.

• homogeneous norm: |u| = |(z, t)| = (|z|4 + t2)1/4, that is, |δdu| = |d||u|.

• d(u, v) := |u−1v| = |uv−1|: a left-invariant metrici.

• homogeneous dimension: Q = 2n + 2, that is, |Br(u)| ∼ rQ with Br(u) = {v ∈

Hn||u−1v| < r}.
iOne can easily verify that d is a quasi-metric, i.e.,

d(u1, u3) ≤ c(d(u1, u2) + d(u2, u3))

for some c ≥ 1. See, e.g. Section 4 in [N]. It was proved by Cygan [C] that it is indeed a metric, i.e., one can

take c = 1 in the above triangular inequality.
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6.3 Main questions on the Heisenberg group

In this section, we lay out the main questions concerning the analogous HLS and Stein-Weiss

inequalities on the Heisenberg group. The HLS inequality was announced by Stein [St] and

proved by Folland and Stein [FS] in terms of fractional integral (Proposition 8.7 and Lemma

15.3 in [FS]).

Theorem 6.2. Let 1 < r, s <∞, 0 < λ < Q, and 1
r

+ 1
s

+ λ
Q

= 2, then there exists a constant

C independent of f ∈ Lr(Hn) and g ∈ Ls(Hn), such that∣∣∣∣∣
ˆ ˆ

Hn×Hn

f(u)g(v)

|u−1v|λ
dudv

∣∣∣∣∣ ≤ C‖f‖r‖g‖s. (6.6)

Here u = (z, t) and v = (z′, t′), u−1 = (−z,−t), and without causing any confusion, we

denote ‖ · ‖r and ‖ · ‖s as the Lr and Ls norms on Hn.

Towards the sharp version of (6.6), Jerison and Lee [JL] provided sharp constant and

maximizer when λ = Q − 2 and p = q = 2Q/(2Q − λ) = 2Q/(Q + 2). Very recently, Frank

and Lieb [FL2] generalized their results to all 0 < λ < Q as the following theorem.

Theorem 6.3. Let 0 < λ < Q and r = 2Q/(2Q− λ), then for any f, g ∈ Lr(Hn),∣∣∣∣∣
ˆ ˆ

Hn×Hn

f(u)g(v)

|u−1v|λ
dudv

∣∣∣∣∣ ≤
(
πn+1

2n−1n!

) λ
Q n!Γ((Q− λ)/2)

Γ2((2Q− λ)/4)
‖f‖r‖g‖r,

with equality if and only if

f(u) = cH(d(a−1u)), g(v) = c′H(d(a−1v))

for some c, c′ ∈ C, d > 0, a ∈ Hn (unless f ≡ 0 or g ≡ 0), and

H =
1

[(1 + |z|2)2 + t2]
2Q−λ

4

.
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Their results also justified Branson, Fontana, and Morpurgo’s guess [BFM] about the

maximizer H. However, little about maximizers and sharp constants are known when r 6= s.

Some other related results concerning the sharp constants of Moser-Trudinger inequalities

on the Heisenberg group and Cn are [CoLu1, CoLu2].

Recently, by the author, Lu, and Zhu [HLZ], the weighted HLS inequalities on Hn were

studied, and two versions of them with different weights were given therein. We state the

theorems here and refer to [HLZ] for detailed analysis on these inequalities.

Theorem 6.4 (|u| weighted HLS inequality). For 1 < r, s <∞, 0 < λ < Q, and α+ β ≥ 0

such that λ+α+β ≤ Q, α < Q/r′, β < Q/s′, and 1
r

+ 1
s

+ λ+α+β
Q

= 2, there exists a positive

constant Cα,β,r,λ,n independent of the functions f and g such that∣∣∣∣∣
ˆ ˆ

Hn×Hn

f(u)g(v)

|u|α|u−1v|λ|v|β
dudv

∣∣∣∣∣ ≤ C‖f‖r‖g‖s.

Theorem 6.5 (|z| weighted HLS inequality). For 1 < r, s < ∞, 0 < λ < Q, and 0 ≤

α + β ≤ nλ such that λ+ α + β ≤ Q, α < 2n/r′, β < 2n/s′, and 1
r

+ 1
s

+ λ+α+β
Q

= 2,∣∣∣∣∣
ˆ ˆ

Hn×Hn

f(u)g(v)

|z|α|u−1v|λ|z′|β
dudv

∣∣∣∣∣ ≤ Cα,β,r,λ,n‖f‖r‖g‖s.

Here, u = (z, t) and v = (z′, t′).

In Chapter 7, we concentrate on the sharp version of HLS inequality (6.6), and show the

existence of maximizers in general cases of r and s, also a upper bound of sharp constant is

given, in which we use similar approach as in [LL].
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7 Sharp Hardy-Littlewood-Sobolev inequalities

In this chapter, we study the sharp version of HLS inequality in Theorem 6.2∣∣∣∣∣
ˆ ˆ

Hn×Hn

f(u)g(v)

|u−1v|λ
dudv

∣∣∣∣∣ ≤ C‖f‖r‖g‖s, (6.6)

and prove the following two theorems concerning its maximizers and sharp constants. The

material in this chapter has been published in [H].

A closed related inequality is about fractional integrals, by which we transfer our maxi-

mizing problem: Define for f ∈ Lp(Hn)

Iλ(f)(u) =

ˆ
Hn

f(v)

|u−1v|λ
dv,

for u ∈ Hn. Then, by using Hölder’s inequality, one can easily obtain the equivalent form of

the sharp version of (6.6) as

Cp,λ,n = sup
‖f‖p=1

‖Iλ(f)‖q <∞ (7.1)

under the condition that

1

q
=

1

p
− Q− λ

Q
. (7.2)

Theorem 7.1 (Existence of maximizers). Let {fj} be a maximizing sequence of problem

(7.1) and (7.2), then there exists {uj} ⊂ Hn and {dj} ⊂ (0,∞) such that the new maximizing

sequence {hj} defined by

hj(u) =
1

d
Q/p
j

fj

(
uju

dj

)
is relatively compact in Lp(Hn). In particular, there exists a maximum of (7.1) and (7.2).

Remark. Under a special case when p = 2Q/(2Q − λ) and q = 2Q/λ, we derive from the

above theorem a different approach to prove the existence of maximizers as shown in §4 of

[FL2].



60

Having confirmed existence of maximizers, furthermore, we give upper bounds for sharp

constants as follows.

Theorem 7.2 (Upper bounds of sharp constants). In (6.6), C can be chosen as

Q|B1(0)|
λ
Q

rs(Q− λ)

[(
λ/Q

1− 1/r

) λ
Q

+

(
λ/Q

1− 1/s

) λ
Q

]
,

in which B1(0) is the unit Heisenberg ball, that is, B1(0) ⊂ Hn = {u ∈ Hn||u| < 1} with

|B1(0)| as its volume. Precisely, from [CoLu1],

|B1(0)| = 2π
Q−2
2 Γ(1/2)Γ((Q+ 2)/4)

(Q− 2)Γ((Q− 2)/2)Γ((Q+ 4)/4)
.

7.1 Existence of maximizers

Let us first outline the difficulties to be faced: The loss of compactness is caused by a large

group of actions consisting of dilations and translations. One can use symmetrization to ex-

clude some actions and ensure the existence of maximizers on RN . However, symmetrization

can not be expected to work on Hn because of its dilation structure. Therefore, different

approach is needed to study the compactness here. It is worthwhile to remark now that in

the process we frequently extract to subsequences of the maximizing sequence as needed.

A crucial lemma that refines Fatou’s lemma is due to Brézis and Lieb [BL].

Lemma 7.3 (Brézis-Lieb lemma). Let 0 < p <∞, {fj} ⊂ Lp(Hn) satisfying ‖f‖p ≤ C and

fj → f a.e., then

lim
j→∞

ˆ
Hn

∣∣∣∣|fj(u)|p − |f(u)− fj(u)|p − |f(u)|p
∣∣∣∣du = 0.

Now suppose that we are given a maximizing sequence {fj} for (7.1) and (7.2), and

without loss of generality we assume that ‖fj‖p = 1, our goal is to generate {hj} as stated
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in Theorem 7.1. To recover from the loss of compactness from dilations and translations, we

first need the following concentration compactness lemma from [Lio1], we provide a proof

here for completeness.

Lemma 7.4. For simplicity, we denote by ρj = |fj|p as a nonnegative measure on Hn, thus

´
Hn ρj = 1. Then, there exists a subsequence of {ρj} (and we still denote as {ρj}) such that

one of the following holds.

1. For all R > 0, we have

lim
j→∞

(
sup
u∈Hn

ˆ
BR(u)

ρj

)
= 0.

2. There exists {uj} ⊂ Hn such that for each ε > 0 small enough, we can find R0 > 0

with ˆ
BR0

(uj)

ρj ≥ 1− ε

for all j ∈ N.

3. There exists 0 < k < 1 such that for each ε > 0 small enough, we can find R0 > 0

and {uj} ⊂ Hn such that given any R ≥ R0, there exist ρ1
j and ρ2

j as two nonnegative

measures satisfying

(a) ρ1
j + ρ2

j = ρj.

(b) supp(ρ1
j) ⊂ BR(uj) and supp(ρ2

j) ⊂ Bc
R(uj).

(c)

lim sup
j→∞

(∣∣∣∣k − ˆ
Hn
ρ1
j

∣∣∣∣+

∣∣∣∣(1− k)−
ˆ
Hn
ρ2
j

∣∣∣∣) ≤ ε.
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Proof of Lemma 7.4. We define the Levy concentration function for ρj on Hn as

Qj(R) = sup
u∈Hn

ˆ
BR(u)

ρj

for R ∈ [0,∞]. It is obvious that Qj ∈ BV[0,∞]i is nonnegative and nondecreasing with

Qj(0) = 0, and Qj(∞) = 1

for all j ∈ N. Therefore, we can find a nonnegative and nondecreasing function Q ∈ BV[0,∞]

such that by passing to a subsequence of {Qj} if necessary (and we still denote without

causing any confusion by {Qj})

lim
j→∞

Qj(R) = Q(R)

for all R ∈ [0,∞).

Now we write

k = lim
R→∞

Q(R),

and thus 0 ≤ k ≤ 1.

1. If k = 0, then easily we have

lim
j→∞

(
sup
u∈Hn

ˆ
BR(u)

ρj

)
= 0

for all R > 0.

2. If k = 1, then we first choose R1 > 0 such that Q(R1) > 3
4
, and for fixed 0 < ε < 1

4
, we

choose R2 such that Q(R2) > 1− ε
2
> 3

4
. Because

Qj(R) = sup
u∈Hn

ˆ
BR(u)

ρj,

iSee [Fo] for reference on BV (bounded variation) functions.
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we let uj, vj ∈ Hn satisfy ˆ
BR1

(uj)

ρj ≥ Qj(R1)− 1

j

and ˆ
BR2

(vj)

ρj ≥ Qj(R2)− 1

j

for all j ∈ N. We compute that

ˆ
BR1

(uj)

ρj +

ˆ
BR2

(vj)

ρj

≥ Qj(R1) +Qj(R2)− 2

j
+ o(1)

> 1

=

ˆ
Hn
ρj

for j large, which means that BR1(uj) ∩BR2(vj) 6= ∅. Therefore,

BR2(vj) ⊂ BR1+2R2(uj),

in which we use the fact that the quasi-metric defined as d(u, v) = |u−1v| on Hn is a

metric. Now compute that

ˆ
BR1+2R2

(uj)

ρj ≥ Qj(R2)− 1

j
≥ Q(R2) + o(1)− 1

j
≥ 1− ε

for j > j(ε). Furthermore, we select R3 such that

ˆ
BR3

(0)

ρj ≥ 1− ε

for j = 1, 2, ..., j(ε). Then, one arrives at the conclusion in (ii) by taking R0 = R1 +

2R2 +R3.
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3. If 0 < k < 1, then ∀ε > 0, choose R0 such that Q(R0) > k − ε
8
. For j > j(ε), we have

k − ε

4
< Qj(R0) < k +

ε

4
,

and therefore, there is {uj} such that

ˆ
BR0

(uj)

ρj > k − ε

2
.

Similarly, we can enlarge j(ε) if necessary to get a sequence {Rj} with Rj → ∞ such

that ˆ
BRj (uj)

ρj < k +
ε

2

for all j > j(ε).

For any given R ≥ R0, we may assume R ≤ Rj for all j ∈ N. This means that there

exists {uj} ⊂ Hn such that

k − ε

2
≤
ˆ
BR0

(uj)

ρj ≤
ˆ
BR(uj)

ρj ≤
ˆ
BRj (uj)

ρj ≤ k +
ε

2
.

Set

ρ1
j = ρjχBR(uj) and ρ2

j = ρjχBcR(uj),

thus,

∣∣∣∣k − ˆ
Hn
ρ1
j

∣∣∣∣+

∣∣∣∣(1− k)−
ˆ
Hn
ρ2
j

∣∣∣∣
=

∣∣∣∣∣k −
ˆ
BR(uj)

ρj

∣∣∣∣∣+

∣∣∣∣∣(1− k)−
ˆ
BcR(uj)

ρj

∣∣∣∣∣
≤ ε.
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Remark. Back to our maximizing problem, let {fj} ⊂ Lp(Hn) be a maximizing sequence of

(7.1) and (7.2) satisfying ‖fj‖ = 1, then with the help of dilations (as {dj} in Theorem 7.1),

we can always assume that

Qj(1) = sup
u∈Hn

ˆ
B1(u)

ρj =
1

2

as defined in the proof of Lemma 7.4 without affecting the maximizing problem since (7.1)

is dilation-invariant, therefore we are able to eliminate the case in (1). Next we prove that

the case in (3) can not happen, either, from which we only need to focus on the case in (2).

Proposition 7.5. Let {fj} ⊂ Lp(Hn) be a maximizing sequence of (7.1) and (7.2) satisfying

‖fj‖ = 1, then (3) in Lemma 7.4 can not occur.

Proof of Proposition 7.5. We argue by contradiction. If (3) in Lemma 7.4 occurs, then there

exist 0 < k < 1 and a subsequence of {fj} (which we still denote by {fj}) such that for each

ε > 0 small enough, we can find R0 > 0 and {uj} ⊂ Hn such that given any R ≥ R0,

‖fjχBR(0)‖pp = k +O(ε) and ‖fjχBcR(0)‖pp = 1− k +O(ε).

Without loss of generality, we may assume uj = 0 for all j ∈ Z since (7.1) is translation-

invariant. Thus, for any u ∈ Hn, let R = j|u| for j ≥ j(ε, |u|) such that j|u| > R0, we observe

that |u| ≤ 1
j
|v| for all v ∈ Bc

R(0), then

|u−1v| ≥ |v| − |u| ≥ j − 1

j
|v|,
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and therefore,

|Iλ(fj)(u)− Iλ(fjχBR(0))(u)|

= |Iλ(fjχBcR(0))(u)|

=

∣∣∣∣ˆ
Hn

(fjχBcR(0))(v)

|u−1v|λ
dv

∣∣∣∣
≤

[ˆ
BcR(0)

|fj(v)|pdv

]1/p [ˆ
BcR(0)

|u−1v|−λp′dv

]1/p′

≤ C

(
j

j − 1

)λ(ˆ ∞
j|u|

rQ−λp
′−1dr

)1/p′

≤ C

(
j

j − 1

)λ(
1

λp′ −Q

)1/p′ (
j|u|
)(Q−λp′)/p′

→ 0

as j → ∞. Here, C depends only on Hn, and the integral is finite because Q < λp′ from

(7.2):

1

q
=

1

p
− Q− λ

Q
> 0.

Now we apply the Brézis-Lieb lemma in Lemma 3 because Iλ(fj)→ Iλ(fjχBR(0)) a.e. and

get

‖Iλ(fj)‖qq = ‖Iλ(fjχBR(0))‖qq + ‖Iλ(fjχBcR(0))‖qq + o(1),

in which the left-hand side goes to Cq
p,λ,n since {fj} maximizes (7.1), while the right-hand
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side

‖Iλ(fjχBR(0))‖qq + ‖Iλ(fjχBcR(0))(u)‖qq + o(1)

≤ Cq
p,λ,n‖fjχBR(0)‖qp + Cq

p,λ,n‖fjχBcR(0)‖qp + o(1)

≤ Cq
p,λ,n(k +O(ε))

q
p + Cq

p,λ,n(1− k +O(ε))
q
p + o(1)

≤ Cq
p,λ,n

[
k
q
p + (1− k)

q
p

]
+O(ε) + o(1)

< Cq
p,λ,n,

if 0 < k < 1 for large j because q
p
> 1, and we conclude the contradiction.

We can now proceed under the scope of (2) in Lemma 7.4: There exists {uj} ⊂ Hn such

that for R large, we have ˆ
BR(uj)

|fj|p ≥ 1− ε(R).

Due to translations fj(v)→ fj(ujv), we use {fj} to denote the new maximizing sequence

satisfying ˆ
BR(0)

|fj|p ≥ 1− ε(R), (7.3)

and we derive the following corollary, in which the byproduct (7.4) serves as an important

ingredient in the proof of Theorem 7.1.

Corollary 7.6. Let {fj} ⊂ Lp(Hn) be a maximizing sequence of (7.1) and (7.2) satisfying

‖fj‖ = 1 and ˆ
BR(0)

|fj|p ≥ 1− ε(R),

we may assume that fj → f weakly in Lp(Hn) (by passing to a subsequence if necessary).

Then, by passing to a subsequence again if necessary,

Iλ(fj)→ Iλ(f) a.e..
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Proof of Corollary 7.6. We show that Iλ(fj) → Iλ(f) in measure to ensure the existence of

a pointwisely convergent subsequence of {fj}. Observe that for M > R,

‖Iλ(fj)χBcM (0)‖q

≤ ‖Iλ(fjχBR(0))χBcM (0)‖q + ‖Iλ(fjχBcR(0))χBcM (0)‖q

≤ ‖Iλ(fjχBR(0))χBcM (0)‖q + Cp,λ,n‖fjχBcR(0)‖p

≤ ‖Iλ(fjχBR(0))χBcM (0)‖q + ε(R),

in which we apply Minkowski’s integral inequality to estimate the first term, noticing that

|u−1v| ≥ |u| −R for |v| ≤ R < M ≤ |u|,

‖Iλ(fjχBR(0))χBcM (0)‖q

=

(ˆ
BcM (0)

|Iλ(fjχBR(0))(u)|qdu

)1/q

=

(ˆ
|u|≥M

∣∣∣∣ˆ
|v|≤R

fj(v)

|u−1v|λ
dv

∣∣∣∣q du)1/q

≤ ‖fjχBR(0)‖1

(ˆ
|u|≥M

1

(|u| −R)λq
du

)1/q

≤ C(R, p, n)(M −R)(Q−λq)/q

→ 0

for every fixed R as M →∞ since Q < λq from (7.1). Therefore, we have

‖Iλ(fj)χBcM (0)‖q ≤ ε(M), (7.4)

and that is,

‖Iλ(fj)− Iλ(fj)χBM (0)‖q ≤ ε(M).

Since fj → f weakly in Lp(Hn), we have

‖fχBcR(0)‖pp ≤ lim inf
j→∞

‖fjχBcR(0)‖pp ≤ ε(R).
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Similarly, one can derive for f ,

‖Iλ(f)− Iλ(f)χBM (0)‖q ≤ ε(M).

Therefore, given k > 0,

|{|Iλ(fj)(u)− Iλ(f)(u)| ≥ 15k|}|

≤ |{|Iλ(fj)(u)− Iλ(fj)(u)χBM (0)(u)| ≥ 5k}|+

|{|Iλ(fj)(u)χBM (0)(u)− Iλ(f)(u)χBM (0)(u)| ≥ 5k}|+

|{|Iλ(f)(u)χBM (0)(u)− Iλ(f)(u)| ≥ 5k}|

≤ 2

[
ε(M)

5k

]q
+ |{|Iλ(fj)(u)− Iλ(f)(u)| ≥ 5k} ∩BM(0)|. (7.5)

Thus, it remains to estimate the second term above. Denote

Iηλ(f)(u) =

ˆ
Bcη(u)

f(v)

|u−1v|λ
dv,

then

Iηλ(fjχBR(0))(u)→ Iηλ(fχBR(0))(u)

for all u ∈ Hn because

|u−1v|−λχBR(0)χBcη(u) ∈ Lp
′
(Hn)

for any fixed u ∈ Hn and η > 0. Therefore, Iηλ(fjχBR(0)) → Iηλ(fχBR(0)) locally in measure,

which means

∣∣{|Iηλ(fjχBR(0))(u)− Iηλ(fχBR(0))(u)| ≥ k} ∩BM(0)
∣∣ = o(1). (7.6)

On the other hand, we compute that for any fixed m ∈ (1, Q/λ) by applying Minkowski’s



70

integral inequality,

‖Iλ(fjχBR(0))− Iηλ(fjχBR(0))‖m

=

(ˆ
Hn

∣∣∣∣∣
ˆ
Bη(u)

fj(v)χBR(0)(v)

|u−1v|λ
dv

∣∣∣∣∣
m

du

)1/m

≤ ‖fjχBR(0)‖1

(ˆ
Bη(v)

1

|v−1u|λm
du

)1/m

≤ C(R, p, n)η(Q−λm)/m

→ 0

for every fixed R as η → 0 since Q > λm. That is,

‖Iλ(fjχBR(0))− Iηλ(fjχBR(0))‖m ≤ O(η). (7.7)

Similarly, we can derive the analogous statement for f ,

‖Iλ(fχBR(0))− Iηλ(fχBR(0))‖m ≤ O(η). (7.8)

Also notice that

‖Iλ(fj)− Iλ(fjχBR(0))‖q ≤ Cp,λ,n‖fχBcR(0)‖p ≤ ε(R) (7.9)

and

‖Iλ(f)− Iλ(fχBR(0))‖q ≤ Cp,λ,n‖fχBcR(0)‖p ≤ ε(R). (7.10)
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Now returning to the estimate in (7.5), combining (7.6)–(2.11), we have for any k > 0,

|{|Iλ(fj)(u)− Iλ(f)(u)| ≥ 5k} ∩BM(0)|

≤ |{|Iλ(fj)(u)− Iλ(fjχBR(0))(u)| ≥ k}|+ |{|Iλ(fjχBR(0))(u)− Iηλ(fjχBR(0))(u)| ≥ k}|+

|{|Iηλ(fjχBR(0))(u)− Iηλ(fχBR(0))(u)| ≥ k} ∩BM(0)|+

|{Iηλ(fχBR(0))(u)− Iλ(fχBR(0))(u)| ≥ k}|+ |{|Iλ(fjχBR(0))(u)− Iλ(f)(u)| ≥ k}|

≤ 2

[
ε(R)

k

]q
+ 2

[
O(η)

k

]m
+ o(1).

We can now conclude the convergence in measure of {fj} by properly choosing ε, R, M ,

and η.

Now we only need to verify the weak limit f in preceding corollary satisfies ‖f‖p = 1 to

complete Theorem 7.1. We borrow Lemma 2.1 in [Lio4] as follows to proceed.

Lemma 7.7. Let fj → f weakly in Lp(Hn) and Iλ(fj) → Iλ(f) weakly in Lq(Hn), assume

that (7.3) and (7.4) hold, and |fj|p → µ and |Iλ(fj)|q → ν weakly for two nonnegative

measures µ and ν in L1(Hn). Then, there exist two at most countable families (possibly

empty) {uj} ⊂ Hn and {kj} ⊂ (0,∞) such that

ν = |Iλ(f)|q +
∑
j

Cp,λ,nk
q/p
j δuj (7.11)

and

µ ≥ |f |p +
∑
j

kjδuj , (7.12)

in which δuj is the Dirac function at uj.

Remark. The original version of the above lemma is on RN , but it can be carried out as

what we did in the proof of Lemma 7.4 on Hn because the crucial ingredient as Lemma 1.2

in [Lio3] is valid in an arbitrary measure space. (See Remark 1.5 at the end of its proof.)
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With the help of Lemma 7.7, we now prove Theorem 7.1.

Proof of Theorem 7.1. We show that ‖f‖p = 1 by contradiction, then fj → f strongly in

Lp(Hn), which implies the theorem.

Observe that µ(Hn) = 1 and ν(Hn) = Cq
p,λ,n since |fj|p → µ and |Iλ(fj)|q → ν weakly in

L1(Hn). If ‖f‖pp = k < 1, then from (7.12),

∑
j

kj ≤ µ(Hn)− ‖f‖pp = 1− k,

therefore by (7.11),

ν(Hn) = ‖Iλ(f)‖qq +
∑
j

Cq
p,λ,nk

q/p
j

≤ Cq
p,λ,n‖f‖

q
p + Cq

p,λ,n

∑
j

k
q/p
j

≤ Cq
p,λ,nk

q/p + Cq
p,λ,n(

∑
j

kj)
q/p

≤ Cq
p,λ,nk

q/p + Cq
p,λ,n(1− k)q/p

< Cq
p,λ,n,

which contradicts with the fact that ν(Hn) = Cq
p,λ,n, and we complete Theorem 7.1.

7.2 Upper bounds of sharp constants

Theorem 7.2 is an analogue on Hn of §4.3 in [LL]. Without loss of generality, we assume

that both f and g are nonnegative with normalized norms ‖f‖r = ‖g‖s = 1. Denote χ as

the characteristic function, derive that

ˆ ∞
0

χ{f>a}(u)da =

ˆ f(u)

0

da = f(u),

ˆ ∞
0

χ{g>b}(u)db =

ˆ g(u)

0

db = g(u),
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and

λ

ˆ ∞
0

c−λ−1χ{|u|<c}(u)dc = λ

ˆ ∞
|u|

c−λ−1dc = |u|−λ.

Inserting the above quantities into the left hand side of (6.6), we obtain

I :=

ˆ ˆ
Hn×Hn

f(u)|u−1v|−λg(v)dudv (7.13)

= λ

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

ˆ
Hn

ˆ
Hn
c−λ−1χ{f>a}(u)χ{g>b}(v)

χ{|u−1v|<c}(u
−1v)dudvdadbdc.

≤ λ

ˆ ∞
0

ˆ ∞
0

ˆ ∞
0

c−λ−1I(a, b, c)dadbdc,

in which

α(a) =

ˆ
Hn
χ{f>a}(u)du,

β(b) =

ˆ
Hn
χ{g>b}(v)dv,

and

γ(c) =

ˆ
Hn
χ{|u−1v|<c}(u

−1v)du (or dv) = |Bc(u)| = |B1(0)|cQ,

where Bc(u) ⊂ Hn = {v ∈ Hn||u−1v| < c} and

I(a, b, c) :=
α(a)β(b)γ(c)

max{α(a), β(b), γ(c)}
. (7.14)

First we estimate the integral over c, and consider
´∞

0
c−λ−1I(a, b, c)dc in two cases.

Case A: α(a) ≥ β(b). In the view of (7.13), (7.14), and definition of α(a), β(b), and γ(c),
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we compute

ˆ ∞
0

c−λ−1I(a, b, c)dc

=

ˆ
γ(c)≤α(a)

c−λ−1β(b)γ(c)dc+

ˆ
γ(c)>α(a)

c−λ−1α(a)β(b)dc

= |B1(0)|β(b)

ˆ
γ(c)≤α(a)

cQ−λ−1dc+ α(a)β(b)

ˆ
γ(c)>α(a)

c−λ−1dc

= |B1(0)|β(b)

ˆ (α(a)/|B1(0)|)
1
Q

0

cQ−λ−1dc+ α(a)β(b)

ˆ ∞
(α(a)/|B1(0)|)

1
Q

c−λ−1dc

= |B1(0)|β(b)
(α(a)/|B1(0)|)

Q−λ
Q

Q− λ
+ α(a)β(b)

(α(a)/|B1(0)|)−
λ
Q

λ

=
Q|B1(0)|

λ
Q

λ(Q− λ)
α
Q−λ
Q (a)β(b).

Case B: α(a) < β(b). Similar to Case A, we have

ˆ ∞
0

c−λ−1I(a, b, c)dc =
Q|B1(0)|

λ
Q

λ(Q− λ)
α(a)β

Q−λ
Q (b).

Thus, we have estimated the integral over c, plugging Cases A and B into (7.13), we

obtain

I ≤ Q|B1(0)|
λ
Q

Q− λ

ˆ ∞
0

ˆ ∞
0

min{α
Q−λ
Q (a)β(b), α(a)β

Q−λ
Q (b)}dadb, (7.15)

and note that α(a) ≥ β(b) if and only if α(a)β
Q−λ
Q (b) ≥ α

Q−λ
Q (a)β(b).

To estimate the integral in (7.15) over a and b, we split into two parts,

ˆ ∞
0

ˆ ∞
0

min{α
Q−λ
Q (a)β(b), α(a)β

Q−λ
Q (b)}dadb

=

ˆ ∞
0

α(a)

ˆ a
p
q

0

β
Q−λ
Q (b)dbda+

ˆ ∞
0

α
Q−λ
Q (a)

ˆ ∞
a
p
q

β(b)dbda

:= I1 + I2,

in which we take t = (s − 1)(1 − λ/Q), and by Hölder’s inequality with indices Q/(Q − λ)
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and Q/λ,

ˆ a
r
s

0

β
Q−λ
Q (b)db

=

ˆ a
r
s

0

β
Q−λ
Q (b)btb−tdb

≤

[ˆ a
r
s

0

(
β
Q−λ
Q (b)btdb

) Q
Q−λ

]Q−λ
Q
[ˆ a

r
s

0

(b−t)
Q
λ db

] λ
Q

=

[ˆ a
r
s

0

β(b)bs−1db

]Q−λ
Q
(ˆ a

r
s

0

b−
tQ
λ db

) λ
Q

.

One can check that tQ < λ and(ˆ a
r
s

0

b−
tQ
λ db

) λ
Q

=

[
λ

Q− s(Q− λ)

] λ
Q

ar−1.

Recall for normalized f and g,

1 = ‖f‖rr = r

ˆ ∞
0

ar−1α(a)da

and

1 = ‖g‖ss = s

ˆ ∞
0

bs−1β(b)db.

Then,

I1 =

ˆ ∞
0

α(a)

ˆ a
r
s

0

β
Q−λ
Q (b)dbda

≤
(

λ

Q− s(Q− λ)

) λ
Q
ˆ ∞

0

α(a)ar−1

(ˆ a
r
s

0

β(b)bs−1db

)Q−λ
Q

da

=
1

r

(
λ

Q− s(Q− λ)

) λ
Q
(

1

s

)Q−λ
Q

=
1

rs

(
λ/Q

1− 1/r

) λ
Q

.
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To estimate I2, by Fubini’s theorem, it is easy to see

I2 =

ˆ ∞
0

α
Q−λ
Q (a)

ˆ ∞
a
r
s

β(b)dbda

=

ˆ ∞
0

β(b)

ˆ b
r
s

0

α
Q−λ
Q (a)dadb

≤ 1

rs

(
λ/Q

1− 1/s

) λ
Q

.

Thus, back to (7.15), we have

I ≤ Q|B1(0)|
λ
Q

Q− λ

ˆ ∞
0

ˆ ∞
0

min{α
Q−λ
Q (a)β(b), α(a)β

Q−λ
Q (b)}dadb

=
Q|B1(0)|

λ
Q

Q− λ
(I1 + I2)

≤ Q|B1(0)|
λ
Q

rs(Q− λ)

[(
λ/Q

1− 1/r

) λ
Q

+

(
λ/Q

1− 1/s

) λ
Q

]
.

Therefore, we complete the proof of Theorem 7.2 by noticing

|B1(0)| = 2π
Q−2
2 Γ(1/2)Γ((Q+ 2)/4)

(Q− 2)Γ((Q− 2)/2)Γ((Q+ 4)/4)

from [CoLu1].
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APPENDIX A:

THE SHARPNESS OF CONJECTURE 3.2

By an example here we show that if it is replaced by cδ−
n−1
2 in the right-hand side of

(3.1) in Theorem 3.1, then it is the sharp estimate.

Let S(x0, r) denote the boundary of the ball B(x0, r) in Rn. First, let us give two unit

balls centered at C1 and C2 such that C1, C2 ∈ S(O, 1
2
) ⊂ Rn, the sphere centered at the

origin O with radius 1/2 (as shown in the figure below).

C2

O C1 P1

Take P1 such that O, C1, and P1 are on the same line, and

OC1 = OC2 =
1

2
,

C1P1 = 1, C2P1 = 1 + δ.

Consider the plane formed by O, C1, C2, and P1, and let θ = ∠C1OC2, we have

cos θ =
OC2

2
+OP1

2 − C2P1
2

2OC2 ·OP1

∼ 1− θ2

2
,

θ ∼
√

8δ + 4δ2

3
∼ 2

√
2δ

3
,
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and

C1C2 ∼
1

2
θ ∼

√
2δ

3
.

We now consider the given family of unit balls {B1, · · ·, BN} with centers of lattices

Ci ∈ S(O, 1
2
) for i = 1, · · · , N of size

√
δ (roughly speaking), thus it satisfies

CiCj ≥
√
δ

for any two centers Ci and Cj.

Since CiCj ≥
√
δ >

√
2δ/3, ∃Pj ∈ Bj such that Pj /∈

⋃N
i=1,i 6=j(1 + δ)Bi for j = 1, · · · , N ,

and each ball must be selected such that the requirements in the covering lemma are satisfied.

Obviously,

N ∼ c(1/2)n−1

(
√
δ)n−1

∼ cδ−
n−1
2 ,

and
N∑
i=1

χBi(O) = N ∼ cδ−
n−1
2 .

In fact, the example in R2 is more illustrative:

Example 1. Consider a family of unit discs centered at

1

2
(cos θi, sin θi) ∈ S(O,

1

2
) ⊂ R2,

where θi = 2i
√
δ, i = 1, · · · , N = b π√

δ
c − 1. Then, for any two centers Ci and Cj, CiCj &

√
δ >

√
2δ/3 when δ is small enough, and each disc must be selected to satisfy the criterion

in the covering theorem. Thus,

N∑
i=1

χBi(O) = b π√
δ
c − 1 ∼ cδ−

1
2 .
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NODAL GEOMETRY OF EIGENFUNCTIONS ON SMOOTH MANIFOLDS

AND HARDY-LITTLEWOOD-SOBOLEV INEQUALITIES

ON THE HEISENBERG GROUP
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AUGUST 2012

Advisor: Dr. Guozhen Lu

Major: Mathematics

Degree: Doctor of Philosophy

Part I Let (M, g) be a n dimensional smooth, compact, and connected Riemannian

manifold without boundary, consider the partial differential equation (PDE) on M:

−∆u = λu,

in which ∆ is the Laplace-Beltrami operator. That is, u is an eigenfunction with eigenvalue

λ. We analyze the asymptotic behavior of eigenfunctions as λ→∞ (i.e., limit of high energy

states) in terms of the following aspects.

• Local and global properties of eigenfunctions, including several crucial estimates for

further investigation.

• BMO (bounded mean oscillation) estimates of eigenfunctions, and local geometric es-

timates of nodal domains (connected components of nonzero region).

• Write the nodal set of u as N = {u = 0}, estimate the size of N using Hausdorff

measure. Particularly, surrounding the conjecture that the n−1 dimensional Hausdorff

measure is comparable to
√
λ, we discuss separately on lower bounds and upper bounds.

• A covering lemma which is used in the above estimates, it is of independent interest,

and we also propose a conjecture concerning its sharp version.
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Part II Let Hn be the Heisenberg group with homogeneous dimension Q = 2n+ 2, we

study the Hardy-Littlewood-Sobolev (HLS) inequality on Hn:∣∣∣∣∣
ˆ ˆ

Hn×Hn

f(u)g(v)

|u−1v|λ
dudv

∣∣∣∣∣ ≤ C‖f‖r‖g‖s,

and particularly its sharp version. Weighted Hardy-Littlewood-Sobolev inequalities with dif-

ferent weights shall also be investigated, and we solve the following problems.

• Establish the existence results of maximizers.

• Provide a upper bound of sharp constants.
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