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Chapter 1

General Introduction







1.1. Chronic Disease Surveillance

1.1 Chronic Disease Surveillance

Non-communicable diseases (NCDs) such as cancer, diabetes, cardiovascu-
lar, and respiratory diseases are a 21st-century global pandemic. They affect
men and women equally and cause 60% to 70% of all human deaths world-
wide (WHO et al., 2014; Bennett et al [2018)). Often NCDs are chronic.
Hence, in many low-risk NCD diagnoses (e.g., localized prostate cancer, low-
risk dysplasia), immediate serious treatments like surgery, radiotherapy, etc.,
can induce side-effects and reduce a patient’s overall quality of life. A com-
mon alternative to immediate treatment is delaying it until the disease has
progressed, a curable non-terminal disease stage. In this regard, monitoring
patients for progression, with curative intent, is called surveillance.

The goal of surveillance is to timely detect progression, upon which
patients are typically removed and treated. However, the transition of a
patient’s disease state from low-risk to progressed disease is not directly
observable. Instead, auxiliary modalities such as biomarkers, physical ex-
aminations, medical imaging, biopsies, etc., are used to determine the dis-
ease state. Among these, the gold standard tests for confirming progres-
sion are typically invasive (e.g., biopsies). For timely observing the occur-
rence of progression, invasive tests are conducted repeatedly in surveillance.
For example, biopsies are the benchmark test for verifying progression in
surveillance of localized prostate cancer (Bokhorst et al., 2015). Similarly,
endoscopies are utilized in Barrett's esophagus (Choi and Hur, 2012) and
colonoscopies in colorectal cancer (Krist et al., 2007)) surveillance. Repeat
bronchoscopies, and core biopsies are also employed to detect allograft dete-
rioration in lung (McWilliams et al., 2008) and kidney transplant (Henderson
et al 2011) patients, respectively.

1.1.1 Invasive Test: Burden versus Benefit

Currently, repeated invasive tests are a necessary burden for patients. They
are indispensable for confirming progression, but they are also difficult to
perform, may cause pain, and can lead to severe complications (Loeb et al.|
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2013; Krist et al., [2007). Consequently, invasive tests are usually planned
with a considerable time gap between them. For example, in prostate cancer
surveillance, it is recommended to maintain a time difference of one year
between consecutive biopsies. However, a time gap between tests also leads
to a time delay in detecting progression (Figure . When tests are con-
ducted periodically, this delay can be reduced by scheduling tests frequently.
The argument for lowering delay is that detecting progression earlier may
provide a larger window of opportunity for curative treatment. Also, timely
treatment may also have an impact on the patient’s (quality-adjusted) life-
years remaining. Hence, a balance between the number and frequency of
tests (burden) and time delay in detecting progression (shorter is beneficial)
is of crucial importance for patients.

1.1.2 Schedules for Invasive Tests

The frequency of invasive tests varies across diseases and cohorts. However,
within a cohort, usually a constant frequency or fixed schedule (e.g., every
six months) is employed for all patients (Henderson et al., 2011} |Bokhorst
et al, [2015; Krist et al., [2007)). The primary drawback of a fixed schedule
is its one-size-fits-all assumption. Specifically, high-frequency tests promise
shorter delays in detecting progression at the cost of imposing an extra
burden on patients who progress slowly and /or patients who never experience
progression (e.g., due to comorbidities). The vice versa holds for infrequent
tests. Schedules with a skewed burden benefit ratio are also prone to patient
non-compliance (Bokhorst et al., [2015} |Le Clercq et al., [2015)). Reduced
compliance for invasive tests may lead to the original problem of delayed
detection of disease progression, and reduce the effectiveness of surveillance.

Several improvements have been proposed over one-size-fits-all fixed
schedules. The underlying methodology of these advances can be broadly
divided into three categories. Namely, sub-group specific fixed schedules,
schedules cost-optimized using Markov decision processes, and schedules
optimizing a specific utility function of the clinical parameters of interest.
Two commonly used terms across these three methodologies are personal-
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Figure 1.1: Trade-off between the test frequency and the time delay in
detecting disease progression: The true time of disease progression for the
patient in this figure is July 2008. More frequent tests in Panel A, lead to a
shorter time delay in detecting progression, than fewer tests in Panel B. Due
to the periodical nature of tests, the time of progression is always observed as
an interval. For example, between Jan 2004-Jan 2005 in Panel A and between
Jan 2004-Jan 2006 in Panel B.
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ized /individualized /tailored schedules, and optimal schedules. Loosely, per-
sonalization means a unique schedule for each patient in a study population.
Optimal refers to mathematical optimization of certain schedule-specific cri-
teria to automatically derive a schedule.

Sub-group specific fixed schedules These schedules are typically pre-
scribed based on observed patient data such as biomarkers, physical exami-
nations, medical imaging, or previous test results. For example, in Barrett's
esophagus patients observing low-risk dysplasia on a repeat endoscopy are
prescribed future endoscopies every six to twelve months, rather than the
standard once every three to five years (Choi and Hur, 2012). Sub-groups
are also formed based on multiple results. For example, in the world's largest
prostate cancer surveillance PRIAS, the time of biopsies is decided using ob-
served prostate-specific antigen (PSA) value, the average rate of change
of PSA, the size and shape of the tumor, and previous biopsy results (Fig-
ure. There are two main shortcomings of such heuristic schedules. First,
they often create sub-groups based on observed data without accounting for
ascertainment biases and measurement error. Second, as illustrated in Fig-
ure [I.2], instead of utilizing complete observed data, they typically use only
the latest observed value, that too after categorizing continuous ones.

Partially observable Markov decision processes or POMDPs have been
utilized in numerous optimal screening and surveillance test schedules for
chronic diseases (Steimle and Denton, 2017} Denton, [2018)), and especially
for nearly all types of cancers (Alagoz et al., 2010). A notable advantage of
POMDPs is that they find an optimal schedule from all schedules possible
over a set of follow-up visits. The criterion of optimality in POMDPs is the
weighted cumulative reward. A reward is a number that is chosen manually
for four possible outcomes (true-positive, false-positive, true-negative, and
false-negative) of a binary test/no test decision in a schedule. The weighted
cumulative reward of a schedule is the weighted sum of all rewards possible
with all sequential test decisions in a schedule. The weights are probabilities
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1. GENERAL INTRODUCTION

from a joint probability distribution of the disease state of the patient and
the auxiliary outcomes (e.g., biomarkers) that manifest this state. This joint
distribution is allowed to change over time.

In general, POMDP algorithms suffer from the curse of dimensionality
if continuous longitudinal outcomes or continuous time-space is used (Sun-
berg and Kochenderfer, 2018). However, a more substantial drawback of
POMDPs is their very flexible specification. Specifically, in a simple POMDP
with binary test/no test decisions, and binary disease state (low-risk, pro-
gressed), it can be shown that there exist infinite possible rewards result
in the same optimal schedule (Chapter . Typically POMDP rewards are
chosen based on survey results (Denton, 2018) and translated as quality-
adjusted life-years saved. However, with infinite optimal reward sets, any
reward set can be cherry-picked, including those that correspond to (improb-
able) thousands of quality-adjusted life-years saved. Last, to our knowledge,
POMDPs are not currently personalized. Since they exploit population-level
joint distributions of disease state (e.g., Kaplan-Meier curve) and auxiliary
outcomes, the resulting schedules are not personalized.

Schedules optimized for clinical parameters of interest An option
to the POMDP framework is optimizing a utility function of the clinical
parameters of interest directly (Bebu and Lachin, 2018; |Parmigiani, (1996)).
Examples of clinical parameters are, namely, the financial cost for treating
progression, reduction in lifespan due to delayed detection of progression,
cost of invasive tests, reduction in quality of life due to invasive tests. Others
have proposed optimizing test decision rules for the corresponding sensitivity
and specificities in detecting progression (Wang et al., 2019). Alternatively,
one may optimize information-theoretic measures such as Wasserstein dis-
tance (Hanin et al., 2001) or Kullback-Leibler divergence (Rizopoulos et al.,
2016) between the disease state probability distribution at the beginning of
surveillance and at a future time point.

In all of these approaches, the expected utility is calculated using the
probability distribution of the disease state of the patient. It is standard
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to use a time-varying disease state distribution. Although, this distribution
can be either discrete (e.g., a Markov model with low-risk, medium-risk,
progressed disease states) or continuous (e.g., Cox model).

1.1.3 Goal: Developing Personalized Schedules

The overall aim of this work was to develop personalized schedules that
better balance the overall burden and benefit of repeated invasive tests in
surveillance than one-size-fits-all fixed schedules. The subgoals and specific
research questions that we intend to answer in this work are as follows.

» To find a suitable statistical modeling framework to process observed
patient data.

» Evaluating the efficacy of different utility functions while planning tests
by optimizing clinical parameters of interest (e.g., time delay in detect-
ing progression).

» Evaluating the pros and cons of the widely used POMDP framework
for scheduling tests.

= How to schedule invasive tests based on a patient's risk of progression?

= On which criteria should patients chose a personalized schedule over
a fixed schedule and vice versa?

= Which factors (e.g., cohort, type of disease) affect the performance of
a personalized schedule?

= Can the same test scheduling framework be used across different co-
horts and diseases?

To answer our research questions and to develop personalized schedules,
the process we followed consisted of four steps. First, processing the ob-
served data of the patient. For example, directly using data via flowcharts
(Figure , using summary statistics, and statistical modeling of observed
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data, etc. Second, choosing the reward/utility/loss function and the corre-
sponding clinical parameters. Third, defining criteria and methodology for
comparing proposed personalized schedules with currently practiced sched-
ules. Fourth, implementing personalized schedules in a computer application
for practitioners.

Processing observed data In surveillance, observed data consists of base-
line patient characteristics, longitudinally measured outcomes, and previous
invasive test results. Since all of these manifest the underlying disease state
of the patient, they are usually correlated as well. To accommodate outcomes
of various types, we utilized the framework of joint models for time-to-event
and longitudinal data (Rizopoulos, 2012; [Tsiatis and Davidian, 2004). The
motivation of this choice was that joint models combine observed data into
a patient-specific cumulative-risk of progression over the entire follow-up pe-
riod. This risk profile manifests the underlying latent disease state of the
patient.

Choosing of reward/utility/loss function and clinical parameters of
interest Once a risk profile for progression is available, the next step is to
utilize it for optimizing clinical parameters of interest. Examples of these pa-
rameters are the time of disease progression, time delay in detecting disease
progression given a schedule (Figure , number and timing of tests in a
schedule, cumulative-risk of disease progression, sensitivity/specificity of an
invasive test and their derivatives such as Youden index and Flscore (Lépez-
Ratén et al.,[2014)). We optimized these parameters via both standard utility
functions such as squared loss, absolute loss, multilinear loss (Robert, 2007)),
and custom utility functions that are a linear sum of multiple clinical param-
eters of interest.

Comparing personalized versus fixed schedules There are no single
perfect criteria to compare schedules. Some important ones, though, are
how many patient deaths and/or progression to an advanced disease state

10
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(e.g., metastasis) are saved. Reliable data on such metrics are difficult to
obtain in low-grade diseases. This is because, in such diseases, the preva-
lence of death from disease can be quite low (e.g., almost zero in low-grade
prostate cancer active surveillance). Hence in this work, we used two other
criteria for comparing the performance of proposed personalized schedules
with existing fixed schedules; Specifically, the number and timing of invasive
tests (burden of tests) and time delay in the detecting progression (shorter is
beneficial). Our choice of these criteria is motivated by two reasons. First,
we argue that time delay in detection of progression is an easily-quantifiable
surrogate for important clinical aspects such as the window of opportunity for
curative treatment, risk of adverse downstream outcomes, quality-adjusted
remaining lifetime, and additional complications in treating a delayed pro-
gression. Similarly, the number and timing of tests manifest financial costs of
tests, risk of side-effects, and reduction in quality of life, etc. Second, both
the number of tests and time delay in detecting progression are easy to un-
derstand for both patients/doctors and can better facilitate shared decision
making of test schedules.

Computer application implementing personalized schedules While
there is no lack of existing methodologies for making invasive test schedules,
presenting them in a user-friendly computer/web/phone application may in-
crease their awareness and/or adoption. In this regard, we implemented
personalized schedules in a web-application for real patients of the seven
largest prostate cancer active surveillance programs. Also, we provide our
scheduling methodology as a generic R application programming interface
for surveillance of other diseases.

11



1. GENERAL INTRODUCTION

1.2 A Joint Model for Time-to-progression
and Longitudinal Data

The first step in developing personalized schedules is processing a patient’s
surveillance data. This data includes baseline patient features, longitudinally
measured outcomes of different types, and previous invasive test results.
There are several challenges in modeling such data. First, longitudinal out-
comes can be of different types (e.g., binary, continuous), are measured with
error, and possibly correlated with each other. Second, usually, longitudinal
measurements are not available after the patient is removed from surveil-
lance upon observing progression. Third, patients who observe progression
can have more adverse longitudinal data values. Fourth, time of progression
is interval-censored (Figure . Last, combining all this data to obtain
a patient’s personalized risk of progression. To overcome these challenges,
we utilize the framework of joint models for time-to-event and longitudinal
data (Rizopoulos, [2012; Tsiatis and Davidian, [2004)).

The primary component in joint models is patient-specific random ef-
fects (Laird and Ware, |1982). They represent the underlying state of dis-
ease, as well as act as the common source of correlation between different
outcomes (Figure of a patient. Each outcome has a separate sub-model.
Usually, mixed-effect sub-models are used for longitudinal outcomes, and a
relative risk sub-model is employed for time-to-progression data. The pa-
rameters of the different sub-models are estimated jointly. Given a patient's
data, the key output from the fitted joint model is a patient’s personalized
cumulative-risk of progression.

1.2.1 Cumulative-risk of Progression

Consider a joint model is fitted to a particular dataset. Given a new patient'’s
accumulated data, the fitted joint model can predict his cumulative-risk of
progression over his entire follow-up period starting from the time of his
last negative test. This risk profile manifests the transition of a patient's

12
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1. Time of Disease Progression
Model: Relative Risk (similar to Cox model)

Baseline features ' [ Time of last negative tesa

Fitted value Fitted velocity Fitted log odds
Continuous outcome Continuous outcome Binary outcome
A A o

Shared Patient-Specific
Random Effects

2. Continuous Longitudinal Data 3. Binary Longitudinal Data
Model: Linear Mixed Effects Model: Logistic Mixed Effects

[ Baseline features] [ Random effects] [ Baseline features] [ Random effects)

[Time of measuremena [Time of measurement]

Figure 1.3: Block diagram of a joint model for time-to-progression and lon-
gitudinal data. Typically mixed effect sub-models are utilized for longitudinally
measured data, and a relative-risk sub-model is employed for the interval-censored
time of progression. The outcomes in these sub-models are conditionally inde-
pendent of each other, given the common source of correlation patient-specific
random-effects (Laird and Ware, |1982). Different features of the longitudinal out-
comes such as their fitted value, rate of change, fitted log-odds can be included
in the relative-risk sub-model for predicting the risk of progression.

13
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disease state over time from low-risk to progressed. Hence, it can be used
to guide the timing of invasive tests. In this regard, we have not only used
the cumulative-risk to create personalized schedules but also for calculating a
patient’s expected time of progression. Although we estimate cumulative-risk
using joint models, such estimates can also be obtained via other methods
such as landmarking (Van Houwelingen|, 2007). In this regard, the scheduling
methodology that we propose in this thesis is generic for use with any model
that provides the cumulative-risk of progression.

1.3 Motivating Studies

1.3.1 PRIAS: Prostate Cancer Research International
Active Surveillance

Our first motivating study is PRIAS (Bul et al., [2013), the world's largest on-
going prostate cancer surveillance study for low- and very-low grade prostate
cancer patients. More than 100 medical centers from 17 countries con-
tributed to PRIAS, using a common protocol (https://www.prias-project.
org). In PRIAS the state of cancer is evaluated via PSA (ng/mL), a blood
test; digital rectal examinations (DRE), indicating the shape and size of the
tumor; repeat biopsy Gleason grade group (1 to 5), an invasive test; and
recently magnetic resonance imaging (MRI). Among these, the biopsy Glea-
son grade (Epstein et al., 2016)) is the strongest indicator of cancer-related
outcomes. Consequently, a trigger for treatment in PRIAS is observing an
increase in biopsy Gleason grade on repeat biopsy, also informally termed as
progression.

Current schedule of biomarkers and biopsies Upon inclusion in PRIAS,
PSA (ng/mL) was measured quarterly for the first two years of follow-up and
semiannually after that. The DRE was also measured semiannually. The
MRI data on tumor volume was very sparsely available in PRIAS. Hence, in
this work, we were unable to use it. Biopsies were scheduled at year one,

14
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Table 1.1: Summary of the PRIAS dataset. The primary event of interest is
cancer progression (increase in biopsy Gleason grade group from grade group 1 to 2
or higher). Abbreviations: PSA is prostate-specific antigen; DRE is digital rectal
examination, with level T1lc (Schroder et al., [1992)) indicating a clinically inap-
parent tumor which is not palpable or visible by imaging, whereas tumors with
DRE > Tlc are palpable; IQR is interquartile range; #PSA, #DRE, #biopsies are
the number of PSA, DRE, and biopsies conducted, respectively. Chapters[2]and
use the December 2016 version of the dataset, but Chapters [4] and [5] utilize the
updated April 2019 version.

Characteristic Dec 2016 Version  Apr 2019 Version
Total patients 5270 7813
Progression (primary event) 866 1134
Treatment 1488 2250
Watchful waiting 179 334
Lost to follow-up 72 203
Discontinued on request 8 46
Death (other) 61 95
Death (prostate cancer) 2 2
Total DRE measurements 25606 37326
Total PSA measurements 46015 67578
Total biopsies 11042 15686
Median age at diagnosis (years) 70 (IQR: 65-75) 66 (IQR: 61-71)
Median PSA (ng/mL) 5.6 (IQR: 4.0-7.5) 5.7 (IQR: 4.1-7.7)
DRE = Tlc (%) 23538/25606 (92%) 34883/37326 (94%)
Median maximum follow-up per 1.9 (IQR: 1.0-3.8) 1.8 (IQR: 0.9-4.0)
patient (years)

Median #PSA per patient 7 (IQR: 5-12) 6 (IQR: 4-12)
Median #DRE per patient 4 (IQR: 3-7) 4 (IQR: 2-7)
Median #biopsies per patient 2 (IQR: 1-3) 2 (IQR: 1-2)

15
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four, seven, and ten of follow-up. Additional yearly biopsies were scheduled
when PSA doubling time was between zero and ten years (Figure . The
PSA doubling time or PSA-DT is an indicator of the average rate of change
of PSA over follow-up. It is measured as the inverse of the slope of the
regression line through the base two logarithm of the observed PSA values.
Unlike PRIAS’s dynamically changing biopsy schedule, in the majority of
the prostate cancer surveillance studies worldwide, yearly biopsies are the
norm (Loeb et al., 2014; Nieboer et al., 2018).

1.3.2 Bio-SHiFT: The Role of Biomarkers and
Echocardiography in Prediction of Prognosis of
Chronic Heart Failure Patients

Our second motivating study is called Bio-SHiFT (van Boven et al. 2018),
a prospective ongoing study with currently 263 patients followed-up over a
period of 30 months. The goal of Bio-SHiFT is to evaluate the performance
of blood biomarkers in the prognosis of chronic heart failure. In this thesis,
we focused only on one such biomarker, called NT-proBNP (Bhalla et al.,
2004). Measuring NT-proBNP requires only a blood sample, and thus it
less burdensome than biopsies or endoscopies. However, when measured re-
peatedly for the prognosis of heart failure, the overall burden accumulates
over time. Currently, NT-proBNP is measured once every three months.
Since only 70 out of 263 patients had adverse heart failure related events
(cardiac death, cardiac transplantation, left ventricular assist device implan-
tation, or heart failure hospitalization), many patients may not require some
of the NT-proBNP measurements prescribed in the fixed schedule. Hence,
we aimed to reduce patient burden by providing them a personalized sched-
ule for measuring NT-proBNP. To this end, we used an existing scheduling
methodology (Rizopoulos et al., 2016). This approach balances information
gained from an extra NT-proBNP measurement and the risk of missing an
adverse event if NT-proBNP is not measured.

16
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Table 1.2: Summary of the Bio-SHiFT dataset. The primary study endpoint
(PE) was defined as the composite of cardiac death, cardiac transplantation, left
ventricular assist device implantation, or hospitalization for heart failure, whichever
occurred first. Abbreviations: NYHA is New York Heart Association Classifica-
tion (Bredy et al., [2018)); IQR is interquartile range.

Characteristic Value
Total patients 263
PE (primary endpoint) 70
Total NT-proBNP measurements 2022
Median NT-proBNP (pg/mL) 110.3 (IQR: 38.5-240.9)
Median age at inclusion (years) 67.9 (IQR: 58.9-75.8)
Median BMI at inclusion 26.5 (IQR: 24.4-30.1)
Median NYHA (assumed continuous) 2 (IQR: 1-3)
Gender = Female (%) 74/263 (28.1%)
Renal failure history = Yes (%) 136,/263 (51.7%)
Type-1l diabetes mellitus = Yes (%) 81/263 (30.8%)
Median maximum follow-up per patient (years) 2.1 (IQR: 1.2-2.4)
Median #NT-proBNP per patient 9 (IQR: 5-10)

1.4 Qutline of Thesis

The outline of the rest of this thesis is as follows. In Chapter [2| using
loss functions from Bayesian decision theory, we develop a methodology
for personalized biopsy decisions in prostate cancer active surveillance. In
Chapter [3 we extend the joint model proposed in Chapter [2] to account
for both PSA and DRE longitudinal outcomes. Also, we focus exclusively
on progression-risk based personalized biopsy decisions and conduct a more
realistic simulation study than Chapter [2| In Chapter [4, we generalize our
model for use surveillance across different chronic diseases and extend single
optimal biopsy decisions to full optimal biopsy schedules. To this end, we
define and utilize two measures of performance of a schedule. These are,
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1. GENERAL INTRODUCTION

namely, the expected number of invasive tests and the expected time delay in
detecting progression. We evaluate the POMDP framework in Chapter [4.E]
We also apply our model and methodology in a real-world scenario. Specif-
ically, in Chapter [5 we first externally validate a joint model fitted to the
PRIAS prostate cancer dataset in six largest cohorts of the Movember Foun-
dation’s Global Action Plan Prostate Cancer Active Surveillance (GAP3)
database. Then we implement the validated models and personalized sched-
ules in a web-application. Lastly, in Chapter [6] we demonstrate the use of
personalized schedules for planning biomarker measurements.
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Prostate Cancer Patients
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Abstract

Low-risk prostate cancer patients enrolled in active surveillance
(AS) programs commonly undergo biopsies on a frequent basis for ex-
amination of cancer progression. AS programs employ a fixed sched-
ule of biopsies for all patients. Such fixed and frequent schedules
may schedule unnecessary biopsies. Since biopsies are burdensome,
patients do not always comply with the schedule, which increases
the risk of delayed detection of cancer progression. Motivated by the
world'’s largest AS program, Prostate Cancer Research International
Active Surveillance (PRIAS), we present personalized schedules for
biopsies to counter these problems. Using joint models for time-to-
event and longitudinal data, our methods combine information from
historical prostate-specific antigen levels and repeat biopsy results of
a patient, to schedule the next biopsy. We also present methods to
compare personalized schedules with existing biopsy schedules.



2.1. Introduction

2.1 Introduction

Prostate cancer (PCa) is the second most frequently diagnosed cancer (14%
of all cancers) in males worldwide (Torre et al., 2015). The increase in
the diagnosis of low-grade PCa has been attributed to an increase in life
expectancy and an increase in the number of screening programs (Potosky
et al., [1995)). An issue of screening programs that has also been established
in other types of cancers (e.g., breast cancer) is over-diagnosis. To avoid
overtreatment, patients diagnosed with low-grade PCa are commonly advised
to join active surveillance (AS) programs. In order to delay serious treatments
such as surgery, chemotherapy, or radiotherapy, in AS PCa progression is
routinely examined via serum prostate-specific antigen (PSA) levels, digital
rectal examination, medical imaging, and biopsy, etc.

Biopsies are the most painful, prone to medical complications (Loeb et al |
2013) and yet also the most reliable PCa progression examination technique
used in AS. When a patient’s biopsy Gleason grading becomes larger than 6
(Gleason reclassification or GR), he is advised to switch from AS to active
treatment (Bokhorst et al., [2015). Hence the timing of biopsies has signifi-
cant medical implications. The world's largest AS program, Prostate Cancer
Research International Active Surveillance (PRIAS) conducts biopsies at year
one, year four, year seven and year ten of follow-up, and every five years
thereafter. However, it switches to a more frequent, annual biopsy schedule
for faster-progressing patients. These are patients with PSA doubling time
(PSA-DT) between 0 and 10 years, which is measured as the inverse of the
slope of the regression line through the base two logarithm of PSA values.
In contrast, many AS programs use annual schedule for all patients (Tosoian
et al., 2011} Welty et al., [2015)). Consequently, for slowly-progressing PCa
patients, many unnecessary biopsies are scheduled. Furthermore, patients
may not always comply with such schedules (Bokhorst et al., 2015)), which
can lead to delayed detection of PCa and reduce the effectiveness of AS.

This paper is motivated by the need to reduce the medical burden of re-
peat biopsies while simultaneously avoiding the late detection of PCa progres-
sion. To this end, we intend to develop personalized schedules for biopsies
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2. PERSONALIZED SCHEDULES

using historical PSA measurements and biopsy results of patients. Person-
alized schedules for screening have received much interest in the literature,
especially in the medical decision making context. For example, Markov deci-
sion process (MDP) models have been used to create personalized screening
schedules for diabetic retinopathy (Bebu and Lachin, 2018), breast can-
cer (Ayer et al| [2012)), cervical cancer (Akhavan-Tabatabaei et al., 2017)),
and colorectal cancer (Erenay et al. 2014). Another type of model called
a joint model for time-to-event and longitudinal data (Tsiatis and Davidian,
2004; Rizopoulos, 2012) has also been used to create personalized schedules
for the measurement of longitudinal biomarkers (Rizopoulos et al., 2016).
In the context of PCa, [Zhang et al| (2012) have used partially observable
MDP models to personalize the decision of (not) deferring a biopsy to the
next check-up time during the screening process. This decision is based on
the baseline characteristics as well as a discretized PSA level of the patient
at the current check-up time.

In comparison to the work referenced above, the schedules we propose in
this paper account for the latent between-patient heterogeneity. We achieve
this by using joint models, which are inherently patient-specific because they
utilize random effects. Secondly, joint models allow a continuous time scale
and utilize the entire history of PSA levels. Lastly, instead of making a binary
decision of (not) deferring a biopsy to the next pre-scheduled check-up time,
we schedule biopsies at a per-patient optimal future time. To this end, using
joint models, we first obtain a full specification of the joint distribution
of PSA levels and time of GR. We then use it to define a patient-specific
posterior predictive distribution of the time of GR, given the observed PSA
measurements and repeat biopsies up to the current check-up time. Using
the general framework of Bayesian decision theory, we propose a set of loss
functions that are minimized to find the optimal time of conducting a biopsy.
These loss functions yield us two categories of personalized schedules, those
based on the expected time of GR and those based on the risk of GR.
In addition, we analyze an approach where the two types of schedules are
combined. We also present methods to evaluate and compare the various
schedules for biopsies.
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The rest of the paper is organized as follows. Section briefly covers
the joint modeling framework. Section details the personalized schedul-
ing approaches we have proposed in this paper. In Section we discuss
methods for evaluation and selection of a schedule. In Section 2.5 we demon-
strate the personalized schedules by employing them for the patients from
the PRIAS program. Lastly, in Section [2.6] we present the results of a sim-
ulation study we conducted to compare personalized schedules with PRIAS
and annual schedule.

2.2 Joint Model for Time-to-Event and
Longitudinal Qutcomes

We start with a short introduction of the joint modeling framework we will
use in our following developments. Let 17" denote the true GR time for the i-
th patient and let S be the schedule of his biopsies. Let the vector of the
time of biopsies be denoted by T = {T}3, T3, . .. jﬁvf; Tg <TZ.Vj <k},
where NZ are the total number of biopsies conducted. Because biopsy
schedules are periodical, T)* cannot be observed directly and it is only known
to fall in an interval [; < T} < r;, where [; = TSV.LUTZ' = Tg\/s if GR is
observed, and [; = Tgv_s,n = oo if GR is not obseFved yet. Fur’éher let y,
denote the n; x 1 vector of PSA levels for the i-th patient. For a sample
of n patients the observed data is denoted by D,, = {l;,r;,y,;;i =1,...,n}.

The longitudinal outcome of interest, namely PSA level, is continuous in
nature and thus to model it the joint model utilizes a linear mixed effects

model (LMM) of the form:

yi(t) = my(t) + &;(t)
— 2T ()8 + 2T (O + elt).

where x;(t) and z;(t) denote the row vectors of the design matrix for fixed
and random effects, respectively. The fixed and random effects are denoted
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by B and b;, respectively. The random effects are assumed to be normally
distributed with mean zero and ¢ x ¢ covariance matrix D. The true and
unobserved, error free PSA level at time ¢ is denoted by m;(t). The error g;(t)
is assumed to be t-distributed with three degrees of freedom and scale o,
and is independent of the random effects b;.

To model the effect of PSA on hazard of GR, joint models utilize a relative
risk sub-model. The hazard of GR for patient ¢ at any time point ¢, denoted
by h;(t), depends on a function of subject specific linear predictor m;(t)
and/or the random effects:

Pri{t STy <t+ At|TF > t, My(t), w}
_>
= ho(t) exp [YTw; + f{M(t), b, a}], t>0,

where M;(t) = {m;(v),0 < v < t} denotes the history of the underlying
PSA levels up to time t. The vector of baseline covariates is denoted by w;,
and ~ are the corresponding parameters. The function f(-) parametrized by
vector a specifies the functional form of PSA levels (Brown, 2009; Rizopou-
los, 2012 Taylor et al., [2013} |Rizopoulos et al., 2014) that is used in the
linear predictor of the relative risk model. Some functional forms relevant to
the problem at hand are the following:

{ f{MZ(t)> b, a} = ami(t)>

f{Mz(t), bi, a} = almi(t) + Oéng(t), with m;(t) _ dwg;t(t).

These formulations of f(-) postulate that the hazard of GR at time ¢t may
be associated with the underlying level m;(t) of the PSA at ¢, or with both
the level and velocity m(t) of the PSA at t. Lastly, ho(t) is the baseline
hazard at time ¢, and is modeled flexibly using P-splines. More specifically:

Q
10g ho(t) = Vhoo + Y Vo Ba(t, V),

q=1

where B,(t,v) denotes the g¢-th basis function of a B-spline with knots
v = vy,...,0q and vector of spline coefficients 7;,. To avoid choosing the
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number and position of knots in the spline, a relatively high number of
knots (e.g., 15 to 20) are chosen and the corresponding B-spline regression
coefficients ~;,, are penalized using a differences penalty (Eilers and Marx,
1996). Parameter estimation using the Bayesian approach is presented in
Appendix [2.Al

2.3 Personalized Schedules for Repeat
Biopsies

We intend to use the joint model fitted to D,,, to create personalized sched-

ules of biopsies. To this end, let us assume that a schedule is to be created

for a new patient 7, who is not present in D,,. Let ¢ be the time of his latest

biopsy, and Y;(s) denote his historical PSA measurements up to time s. The
goal is to find the optimal time u > max(t, s) of the next biopsy.

2.3.1 Posterior Predictive Distribution for Time to GR

The information from Y;(s) and repeat biopsies is manifested by the posterior
predictive distribution g(7T7), given by (baseline covariates w); are not shown
for brevity hereafter):

9(T7) = p{Tf | T} > tayj(‘S)?Dn}
= [{T; 177 > £.3,(5),6}p(0 | D)o

- //p(T; | T7 > £,b,,0)p{b, | T > 1,;(s),0}p(6 | D,)db;d6.

The distribution g(77) depends on Y;(s) and D, via the posterior distri-
bution of random effects b; and posterior distribution of the vector of all
parameters 0, respectively.
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2.3.2 Loss Functions

To find the time u of the next biopsy, we use principles from statistical
decision theory in a Bayesian setting (Berger, [1985; |Robert, 2007). More
specifically, we propose to choose u by minimizing the posterior expected
loss Eg{L(T;‘,u)}, where the expectation is taken with respect to g(77).
The former is given by:

E{L(T7 0} = [ LT, wp{T5 | T > £,35(5), DaJaT;.

Various loss functions L(77,u) have been proposed in literature (Robert,
2007). The ones we utilize, and the corresponding motivations are presented
next.

Given the burden of biopsies, ideally only one biopsy performed at the
exact time of GR is sufficient. Hence, neither a time which overshoots the
true GR time Tj*, nor a time which undershoots it, is preferred. In this
regard, the squared loss function L(T},u) = (T} —u)* and the absolute loss

function L(T* ‘T* - u’ have the properties that the posterior expected
loss is symmetrlc on both sides of T* Secondly, both loss functions have
well known solutions available. The posterlor expected loss for the squared
loss function is given by:

B L(T} u)} = B,{(T] — )’}
= B,{(T})*} + u* — 2uE,(T}). (2.1)

The posterior expected loss in (2.1)) attains its minimum at u = E,(T}),
that is, the expected time of GR. The posterior expected loss for the absolute
loss function is given by:

E{L(T} 0} = (\T*—uD
_/ *)g(T) dT*+/ (uw—T)g(T7)AT?. (2.2)

The posterior expected loss in 1} attains its minimum at u = median,(77),
that is, the median time of GR. It can also be expressed as 7; (0.5 | ¢, s),
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where 77 '(+) is the inverse of dynamic survival probability m;(u | t,s) of
patient j (Rizopoulos, |2011)). It is given by:

mi(ult,s)= Pr{T;‘ >ul| Ty > t,yj(s),Dn}, u>t.

Even though E,(T7) or median,(7}) may be obvious choices from a
statistical perspective, from the viewpoint of doctors or patients, it could
be more intuitive to make the decision for the next biopsy by placing a
cutoff 1 — k, where 0 < x < 1, on the dynamic incidence/risk of GR.
This approach would be successful if x can sufficiently well differentiate
between patients who will obtain GR in a given period of time versus others.
This approach is also useful when patients are apprehensive about delaying
biopsies beyond a certain risk cutoff. Thus, a biopsy can be scheduled at
a time point u such that the dynamic risk of GR is higher than a certain
threshold 1 — k beyond u. To this end, the posterior expected loss for the
following multilinear loss function can be minimized to find the optimal w:

ko(T? —u), ke >0 ifTF >
Lk17k2 (Tj*’ u) — 2( 7 u)? 2 I j . u7

ki(u—Tj), ki >0 otherwise,
where k1, ko are constants parameterizing the loss function. The posterior ex-
pected loss Eg{Lkth (17, u)} obtains its minimum at u = 7rj_1{k:1/(k1 + ko) |

L, s} (Robert, 2007)). The choice of the two constants k; and k; is equivalent
to the choice of kK = ky/(k1 + k2).

In practice, for some patients, we may not have sufficient information to
estimate their PSA profile accurately. The resulting high variance of g(77)
could lead to a mean (or median) time of GR, which overshoots the true T
by a big margin. In such cases, the approach based on the dynamic risk
of GR with smaller risk thresholds is more risk-averse. It thus could be
more robust to large overshooting margins. This consideration leads us to a
hybrid approach, namely, to select u using the dynamic risk of GR based ap-
proach when the spread of g(77) is large, while using E,(7T’) or mediany(77)
when the spread of g(77) is small. What constitutes a large spread will be
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application-specific. In PRIAS, within the first ten years, the maximum pos-
sible delay in detection of GR is three years. Thus we propose that if the
difference between the 0.025 quantile of g(77), and E,(T) or median,(T7)
is more than three years, then proposals based on the dynamic risk of GR be
used instead.

2.3.3 Estimation

Since there is no closed form solution available for F,(T7), for its estimation
we utilize the following relationship between £, (77) and 7;(u | t,s):

By(T) =t + /:O (| ¢, 5)du. (2.3)

However, as mentioned earlier, selection of the optimal biopsy time based
on E,(T7) alone will not be practically useful when the vary(T7) is large,
which is given by:

var,(TY) = 2/:0 (u— t)m;(u | ¢, s)du — {/too m(u | t, s)du}Q. (2.4)

Since there is no closed form solution available for the integrals in ([2.3))
and , we approximate them using Gauss-Kronrod quadrature. The vari-
ance depends both on the last biopsy time ¢ and the PSA history Y;(s), as
demonstrated in Section 2.5.2

For schedules based on the dynamic risk of GR, the choice of threshold x
has important consequences because it dictates the timing of biopsies. Often
it may depend on the amount of risk that is acceptable to the patient (if
the maximum acceptable risk is 5%, x = 0.95). When x cannot be chosen
based on the input of the patients, we propose to automate its choice. More
specifically, given the time ¢ of the latest biopsy, we propose to choose a x for
which a binary classification accuracy measure (Lépez-Ratén et al., 2014),
discriminating between cases (patients who experience GR) and controls, is
maximized. In joint models, a patient j is predicted to be a case in the
time window At if 7;(t + At | ¢,s) < k, or a control if 7;(t + At | t,s) >
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k (Rizopoulos, [2016; Rizopoulos et al., 2017). We choose At to be one
year. This is because, in AS programs at any point in time, it is of interest
to identify and provide extra attention to patients who may obtain GR in
the next one year. As for the choice of the binary classification accuracy
measure, we chose F; score since it is in line with our goal to focus on
potential cases in time window At. The F; score combines both sensitivity
and positive predictive value (PPV) and is defined as:

TPR(t, At, s, k) PPV(t, At, s, k)
TPR(t, At, s, k) + PPV(t, At, s, k)’
TPR(t, At,s, k) = Pr{m(t+ At | t,5) <k |t < T} <t+ At}
PPV(t, At,s,k) = Pr{t < T} <t+ At | mi(t+ At | t,5) < K},

Fi(t,At,s,k) =2

where TPR(-) and PPV(:) denote time-dependent true positive rate (sensi-
tivity) and positive predictive value (precision), respectively. The estimation
for both is similar to the estimation of AUC(¢, At,s) given by |Rizopoulos
et al.[(2017). Since a high F; score is desired, the corresponding value of x
is argmax, Fq(t, At, s, k). We compute the latter using a grid search ap-
proach. That is, first, the F; score is computed using the available dataset
over a fine grid of x values between 0 and 1, and then x corresponding to
the highest F; score is chosen. Furthermore, in this paper, we use x chosen
only based on the F; score.

2.3.4 Algorithm

When a biopsy gets scheduled at a time u < T7, then GR is not detected
at u, and at least one more biopsy is required at an optimal time u™** >
max(u, s). This process is repeated until GR is detected. To aid in medical
decision making, we elucidate this process via an algorithm in Figure 2.1}
AS programs strongly advise that two biopsies have a gap of at least one
year. Thus, when u —t < 1, the algorithm postpones u to ¢ + 1 because it
is the time nearest to u, at which the one-year gap condition is satisfied.
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Enter Active Surveillance.
1. Measure baseline PSA and Gleason.
2. Reset s =t =0.

3. Reset u = uP’ = co.

(1) Update g(T7). (1) Set s = s™.
(2) Set u = new optimal . (2) Measure PSA at s.

Set u = uP’. Set uP! = u.
Yes
u > s"
No

Conduct biopsy at u.

(1) Set t = u. No
(2) Reset u = u?’ = oco.

Gleason > 6

Yes l

[ Remove patient from AS }

Figure 2.1: Algorithm for creating a personalized schedule for patient j.
The time of the latest biopsy is denoted by ¢. The time of the latest available
PSA measurement is denoted by s. The proposed personalized time of biopsy is
denoted by u. The time at which a repeat biopsy was proposed on the last visit
to the hospital is denoted by uP”. The time of the next visit for the measurement
of PSA is denoted by s™.
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2.4. Evaluation of Schedules

2.4 Evaluation of Schedules

In order to compare various schedules of biopsies, we require measures of
their efficacy. We propose to use two measures, namely the number of
biopsies (burden) st > 1 a schedule S conducts for the j-th patient to
detect GR, and the offset Of > 0 by which it overshoots TJ* The offset
O3 is defined as OF = Tﬁvjs — T, where TﬁVJS > T is the time at which

GR is detected. Our interest lies in the joint distribution p(NJS,Of) of the
number of biopsies and the offset. The least burdensome scenario is when
st =1 and O° = 0. Hence, realistically we should select a schedule with
a low mean number of biopsies E(N?) as well a low mean offset E(OY).
It is also desired that a schedule has a low variance for both the number of
biopsies var(N;') and offset var(Of) so that the schedule works similarly for
most patients.

2.4.1 Choosing a Schedule

Given the multiple schedules of biopsies, it is of clinical interest to choose a
suitable schedule. Using principles from compound optimal designs (Lauter,
1976]) we propose to choose a schedule S which minimizes a loss function
of the following form:

L(S) = 3> m Ry (N7), (2.5)

where R, (-) is a function of either N or O (for brevity, only N7 is used
in the equation above). Some examples of R, () are mean, median, vari-
ance and quantile function. Constants 7y,...,ngr, where 0 < 7, < 1 and
SR m. = 1, are weights to differentially weigh-in the contribution of each
of the R criteria. An example loss function is:

L(S) = ﬁlE(NJS) + UzE(OJS)- (2.6)

The choice of 77; and 1), is not easy, because the burden of a biopsy cannot be
compared to a unit increase in offset easily. To obviate this problem we utilize
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2. PERSONALIZED SCHEDULES

the equivalence between compound and constrained optimal designs (Cook
and Wong, 1994). More specifically, it can be shown that for any 7; and 7
there exists a constant C' > 0 for which minimization of the loss function
in is equivalent to minimization of the loss function subject to the
constraint that E(NJS) < C. That is, a schedule which conducts at most C'
biopsies on average and detects GR earliest should be chosen. The choice of
C could be based on the number of biopsies a patient is willing to undergo.
In the more generic case in (2.5]), a schedule can be chosen by minimizing
Rr(-) under the constraint R,.(-) < Cr;r=1,...,R—1.

2.5 Demonstration of Personalized Schedules

To demonstrate the personalized schedules, we apply them to the patients
enrolled in the PRIAS study. To this end, we divide the PRIAS dataset into
a training part (5264 patients) and a demonstration part (three patients).
We fit a joint model to the training dataset and then use it to create sched-
ules for the demonstration patients. We fit the joint model using the R
package JMbayes (Rizopoulos, 2016)), which uses the Bayesian approach
for parameter estimation.

2.5.1 Fitting the Joint Model to the PRIAS Dataset

For each of the PRIAS patients, we know their age at the time of inclusion
in AS, PSA history and the time interval in which GR is detected. For the
longitudinal analysis of PSA we use log,(PSA + 1) measurements instead
of the raw data (Lin et al., |2000; [Pearson et al., (1994). The longitudinal
sub-model of the joint model we fit is given by:

logy (PSA; + 1)(t) = o + B1(Age; — 70) + S2(Age; — 70)°
4
+ > Brr2Bi(t, K)

k=1
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2.5. Demonstration of Personalized Schedules

where By (t,KC) denotes the k-th basis function of a B-spline with three
internal knots at K = {0.1,0.5,4} years, and boundary knots at zero and
seven (0.99 quantile of the observed follow-up times) years. The spline for
the random effects consists of one internal knot at 0.1 years and boundary
knots at zero and seven years. For the relative risk sub-model the hazard
function we fit is given by:

hi(t) = ho(t) exp {11 (Age; — 70) + 12(Age; — T0)°
+ anmi(t) + azmi(t) (2.8)

where a1 and ay are measures of strength of the association between hazard
of GR and log,(PSA; + 1) value m;(t) and log,(PSA; + 1) velocity m/(t),
respectively.

From the fitted joint model, we found that log,(PSA + 1) velocity and
the age at the time of inclusion in AS were significantly associated with the
hazard of GR. For any patient, an increase in log,(PSA + 1) velocity from
-0.06 to 0.14 (first and third quartiles of the fitted velocities, respectively)
corresponds to a 2.05 fold increase in the hazard of GR. In terms of the
predictive performance, we found that the area under the receiver operating
characteristic curves (Rizopoulos et al., 2017) was 0.61, 0.65, and 0.59 at
year one, year two, and year three of follow-up, respectively. Parameter
estimates are presented in detail in Appendix [2.Al

In PRIAS, the interval I; < T* < r; in which GR is detected depends on
the PSA-DT of the patient. However, because the parameters are estimated
using a full likelihood approach (Tsiatis and Davidian, 2004), the joint model
gives valid estimates for all of the parameters, under the condition that
the model is correctly specified (Appendix . To this end, we performed
several sensitivity analyses in our model (e.g., changing the position of the
knots, etc.) to investigate the fit of the model and also the robustness of the
results. In all of our attempts, the same conclusions were reached, namely
that the velocity of the longitudinal outcome is more strongly associated
with the hazard of GR than the value.
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2. PERSONALIZED SCHEDULES

2.5.2 Personalized Schedules for a Demonstration
Patient

We now demonstrate the functioning of the personalized schedules for the
first demonstration patient. The fitted and observed log,(PSA + 1) profile,
time of latest biopsy and proposed biopsy times u for him are shown in
Figure[2.2 We can see that with a consistently decreasing PSA and negative
repeat biopsy between year 3 (Panel A of Figure and year 4.5 (Panel B
of Figure [2.2)), the proposed time of biopsy based on the dynamic risk of
GR has increased from 3.05 years (k = 0.94) to 14.73 years (x = 0.96) in
this period. The proposed time of biopsy based on the expected time of
GR has also increased from 14.53 years to 16.05 years. We can also see
in Figure that after each negative repeat biopsy, SD(T}) = /var,(T})
decreases sharply. Thus, if the expected time of GR based approach is used,
then the offset OJS will be smaller on average for biopsies scheduled after the
second repeat biopsy than those scheduled after the first repeat biopsy.

2.6 Simulation Study

In Section [2.5.2] we demonstrated that the personalized schedules, schedule
future biopsies according to the historical data of each patient. However, we
could not perform a full-scale comparison between personalized and PRIAS
schedules, because the true time of GR was not known for the PRIAS pa-
tients. To this end, we conducted a simulation study comparing personalized
schedules with PRIAS and annual schedule, whose details are presented next.

2.6.1 Simulation Setup

The population of AS patients in this simulation study is assumed to have
the same entrance criteria as that of PRIAS. The PSA and hazard of GR for
these patients follow a joint model of the form postulated in Section [2.5.1}]
with the only change that log, PSA levels are used as the outcome. The
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Figure 2.2: Demonstration of personalized schedules at two different visits.
Panels A and B show fitted (solid black line) versus observed log, (PSA+1) profile,
time of latest biopsy, and personalized time of biopsies for the first demonstration
patient. Types of personalized schedules: Exp. GR Time schedules a biopsy at
the expected time of GR (Gleason reclassification) and Dyn. Risk GR schedules a
biopsy when the dynamic risk of GR is higher than a certain threshold.
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. . Latest

0 1 2 3 4 5 6
(Start AS)

Follow-up time (years)

Figure 2.3: History of repeat biopsies and standard deviation
SDy(T}) = \/varg(T;) of the posterior predictive distribution of time of

Gleason reclassification (see Section [2.3.1]), over time, for the first demonstration
patient.
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2.6. Simulation Study

population joint model parameters are equal to the posterior mean of pa-
rameters estimated from the corresponding joint model fitted to the PRIAS
dataset. We intend to test the efficacy of different schedules for a popula-
tion which has patients with both faster as well as slowly-progressing PCa.
This rate of progression is not only manifested via PSA profiles but also via
the baseline hazard. We assume that there are three equal sized subgroups
GG, G5 and G5 of patients in the population, each with a baseline hazard
from a Weibull distribution, with the following shape and scale parameters
(k,A): (1.5,4), (3,5) and (4.5,6) for G,G2 and Gj, respectively. The
effect of these parameters is that the mean GR time is lowest in G (fast
PCa progression) and highest in G'3 (slow PCa progression).

From this population, we have sampled 500 datasets with 1000 patients
each. We generate a true GR time for each of the patients, and then sam-
ple a set of PSA measurements at the same time points as given in PRIAS
protocol (quarterly for the first two years of AS, semiannually thereafter).
We then split the dataset into a training (750 patients) and a test (250
patients) part, and generate a random and non-informative censoring time
for the training patients. We next fit a joint model of the specification given
in and to each of the 500 training datasets and obtain MCMC
samples from the 500 sets of the posterior distribution of the parameters.
Using these fitted joint models, we obtain the posterior predictive distribu-
tion of time of GR for each of the 500 x 250 test patients. This distribution
is further used to create personalized biopsy schedules for the test patients.
For every test patient we conduct hypothetical biopsies using the follow-
ing six types of schedules (abbreviated names in parenthesis): personalized
schedules based on expected time of GR (Exp. GR Time) and median time
of GR (Med. GR Time), personalized schedules based on dynamic risk of GR
(Dyn. Risk GR), a hybrid approach between median time of GR and dynamic
risk of GR (Hybrid), PRIAS schedule and the annual schedule. The biopsies
are conducted as per the algorithm in Figure [2.1]

To compare the aforementioned schedules we require estimates of the
various measures of efficacy described in Section [2.4] To this end, for sched-
ule S, we compute pooled estimates of mean offset E(O]S) and variance of

43
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offset var(O7'), as below (estimates for N3 are similar):

—

(0OS) — 22?1 nkE(Olf)

J 22@1 ny ’
var(09) = ok (ny, — Dvar(OF)
! Z(fl(”k —1) 7

—

where n; denotes the number of test patients, E(OF) = S0, OF/ny. is
i =2

the estimated mean and var(Oy) = Y1, {O,fl — E(O,f)} /(ny — 1) is the

estimated variance of the offset for the k-th simulation. The offset for the

I-th test patient of the k-th dataset is denoted by O3

2.6.2 Results

The pooled estimates of the aforementioned measures are summarized in
Table and Table . In addition, estimated values of E(O7) are plotted
against E(st) in Figure . The figure shows that across the schedules,
there is an inverse relationship between number E(Of) and E(N?). For
example, the annual schedule conducts, on average, 5.2 biopsies to detect
GR, which is the highest among all schedules. However, it has the least
average offset of 6 months as well. On the other hand, the schedule based
on the expected time of GR conducts only 1.9 biopsies on average to detect
GR, the least among all schedules, but it also has the highest average offset
of 15 months (similar for the median time of GR). Since the annual schedule
attempts to contain the offset within a year it has the least SD(Of) =

var(O7). However to achieve this, it conducts a wide range of number of

biopsies from patient to patient, i.e., highest SD(N7) = \/var(N7). In this
regard, schedules based on expected and median time of GR perform the
opposite of the annual schedule.

The PRIAS schedule conducts only 0.3 biopsies less than the annual
schedule, but with a higher SD(OJ.S), early detection is not always guaranteed.
In comparison, the dynamic risk of GR based schedule performs slightly better
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Figure 2.4: Estimated mean number of biopsies and offset (in months).
Biopsies are conducted until Gleason reclassification (GR) is detected. Offset is
the difference in time at which GR is detected and the true time of GR. Results
are based on the simulated (500 datasets) test patients. Types of personalized
schedules: Exp. GR Time (expected time of GR), Med. GR Time (median time of
GR), Dyn. Risk GR (schedules based on the dynamic risk of GR), Hybrid (a hybrid
approach between Med. GR Time and Dyn. Risk GR). Annual: yearly biopsies.
PRIAS: biopsies as per PRIAS protocol.
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Table 2.1: Estimated mean and standard deviation (SD), of the number of
biopsies NJS and offset Of. Offset (in months) is defined as difference in time at
which GR (Gleason reclassification) is detected and the true time of GR. Results
are based on all simulated (500 datasets) test patients. Types of personalized
schedules: Exp. GR Time (expected time of GR), Med. GR Time (median time
of GR), Dyn. Risk GR (schedules based on dynamic risk of GR), Hybrid (a hybrid
approach between Med. GR Time and Dyn. Risk GR). Annual: yearly biopsies.
PRIAS: biopsies as per PRIAS protocol.

Schedule E(N]S) E(Of) SD(NJS) SD(O]-S)
Annual 5.24 6.01 2.53 3.46
PRIAS 4.90 7.71 2.36 6.31
Dyn. Risk GR 4.69 6.66 2.19 4.38
Hybrid 3.75 9.70 1.71 7.25
Med. GR Time 2.06 13.88 1.41 11.80
Exp. GR Time 1.92 15.08 1.19 12.11

than the PRIAS schedule in all four criteria. The hybrid approach combines
the benefits of methods with low E(N;’) and SD(N?), and methods with
low E(OF) and SD(OY). It conducts 1.5 biopsies less than the annual
schedule on average, and with a £(O7) of 9.7 months, it detects GR within
a year since its occurrence. Moreover, it has both SD(N;') and SD(O7)
comparable to PRIAS.

The performance of each schedule differs for the three subgroups G, G5,
and (G3. The annual schedule remains the most consistent across subgroups
in terms of the offset, but it conducts two extra biopsies for the subgroup
G35 (slowly-progressing PCa) than G, (faster-progressing PCa). The perfor-
mance of schedule based on expected time of GR is the most consistent in
terms of the number of biopsies, but it detects GR a year later on average
in subgroup GGy than 5. For the dynamic risk of GR based schedule and
the hybrid schedule, the dynamics are similar to that of the annual schedule.
Unlike the latter two schedules, the PRIAS schedule not only conducts more
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Table 2.2: Subgroup Estimated mean and standard deviation (SD), of the
number of biopsies NJS and offset Of. Offset (in months) is defined as differ-
ence in time at which GR (Gleason reclassification) is detected and the true time
of GR. Results based on simulated (500 datasets) test patients, with Subgroup
(G1 and Subgroup G5 having the fastest, and slowest progressing cancer patients,
respectively. Types of personalized schedules: Exp. GR Time (expected time
of GR), Med. GR Time (median time of GR), Dyn. Risk GR (schedules based
on dynamic risk of GR), Hybrid (a hybrid approach between Med. GR Time and
Dyn. Risk GR). Annual: yearly biopsies. PRIAS: biopsies as per PRIAS protocol.

b) Hypothetical subgroup G

Schedule E(N?) E(O§) SD(N7) SD(07)
Annual 4.32 6.02 3.13 3.44
PRIAS 4.07 7.44 2.88 6.11
Dyn. Risk GR 3.85 6.75 2.69 4.44
Hybrid 325 10.25 2.16 8.07
Med. GR Time 1.84  20.66 1.76 14.62
Exp. GR Time 1.72 21.65 1.47 14.75
c) Hypothetical subgroup G
Schedule E(N?) E(O7) SD(N7) SD(O7)
Annual 5.18 5.98 2.13 3.47
PRIAS 4.85 7.70 2.00 6.29
Dyn. Risk GR 4.63 6.66 1.82 4.37
Hybrid 3.68 10.32 1.37 7.45
Med. GR Time 1.89  12.33 1.16 9.44
Exp. GR Time 1.77 1354 0.98 9.83
d) Hypothetical subgroup G3
Schedule E(N7) E(O7) SD(N?) SD(O%)
Annual 6.20 6.02 1.76 3.46
PRIAS 5.76 7.98 1.71 6.51
Dyn. Risk GR 5.58 6.58 1.56 4.33
Hybrid 4.32 8.55 1.26 5.91
Med. GR Time 2.45 8.70 1.15 6.32
Exp. GR Time 227  10.09 0.99 7.47
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biopsies in (3 than Gy but also detects GR later in G3 than Gj.

The choice of a suitable schedule using depends on the chosen mea-
sure for evaluation of schedules. In this regard, the schedules we compared
either have high SD(O7) and low SD(N7'), or vice versa (Table and Ta-
ble . Thus, applying a cutoff on E(O7) when SD(O) is high may not
be as fruitful (same for N7) as applying a cutoff on SD(O;’) or quantile(s) of
Of. For example, the schedule based on the dynamic risk of GR is suitable
if, on average, the least number of biopsies are to be conducted to detect
GR, while simultaneously making sure that at least 90% of the patients have
an average offset less than one year.

2.7 Discussion

In this paper, we presented personalized schedules based on joint models
for time-to-event and longitudinal data for the surveillance of PCa patients.
These schedules are dynamic, and at any given follow-up time, utilize a
patient’s historical PSA measurements and repeat biopsies conducted up to
that time. We proposed two types of personalized schedules, namely those
based on expected and median time of GR of a patient, and those based on
the dynamic risk of GR. We also proposed a combination (hybrid approach)
of these two approaches, which is useful in scenarios where the variance of
time of GR for a patient is high. We then proposed criteria for the evaluation
of various schedules and a method to select a suitable schedule.

We demonstrated the dynamic and personalized nature of our sched-
ules using the PRIAS dataset. We observed that a recent biopsy impacts
the schedules more than recent PSA measurements, which correlates with
biopsies being more reliable. Since true GR time is not known for PRIAS
patients, we conducted a simulation study to compare personalized sched-
ules with PRIAS and annual schedules. The latter two schedules are already
in practice. Hence it can be argued that the maximum possible offsets due
to these schedules (one and three years, respectively) are acceptable to doc-
tors. Thus, less frequent schedules with offset under one year may reduce
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Figure 2.5: Variation in the number of biopsies and biopsy offset (difference in
time at which Gleason reclassification / GR is detected and the true time of GR,
in months). Results are based on the simulated (500 datasets) test patients.
Biopsies are conducted until Gleason reclassification (GR) is detected. Types of
personalized schedules: Exp. GR Time (expected time of GR), Med. GR Time
(median time of GR), Dyn. Risk GR (schedules based on the dynamic risk of GR),
Hybrid (a hybrid approach between Med. GR Time and Dyn. Risk GR). Annual:
yearly biopsies. PRIAS: biopsies as per PRIAS protocol.
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the burden of biopsies while simultaneously being practical. For example,
for slowly-progressing patients in our simulation study, we observed that the
schedule based on the expected time of GR conducts on average two biop-
sies and has an average offset of 10 months. In comparison, the annual
schedule conducts six biopsies on average and gives an offset smaller by only
four months, making the personalized schedule a suitable alternative. For
high-risk patients, however, early detection (annual or PRIAS schedule) may
be necessary, given the rapidness of progression. When it is not known in
advance, if a patient will have a fast or slow-progression of PCa, the hybrid
approach may be used. It conducts one biopsy less than the annual sched-
ule in faster-progressing PCa patients and has an average offset of 10.25
months. For slowly-progressing PCa patients, it conducts two biopsies less
than the annual schedule and has an average offset of 8.55 months.

More personalized schedules can be added to the current set, using loss
functions that asymmetrically penalize overshooting/undershooting the tar-
get GR time. For dynamic risk of GR based schedules, more simulations are
required to compare data-driven x values (e.g., F; score), with k chosen us-
ing decision analytic approaches such as the net benefit measure (Vickers and
Elkin, [2006)), and with various fixed x values used by doctors in practice. In
general, the Gleason scores are susceptible to inter-observer variation (Carl-
son et al., 1998). Schedules that account for error in the measurement of
time of GR will be interesting to investigate further (Coley et al. 2017).
Lastly, there is potential for including diagnostic information from magnetic
resonance imaging (MRI) or DRE. When such information is not continuous,
our proposed methodology can be easily extended by utilizing the framework
of generalized linear mixed models.
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Appendix

2.A Parameter Estimation

We estimate parameters of the joint model using Markov chain Monte Carlo
(MCMC) methods under the Bayesian framework. Let @ denote the vector of
the parameters of the joint model. The joint model postulates that given the
random effects, time to GR and longitudinal responses taken over time are
all mutually independent. Under this assumption the posterior distribution
of the parameters is given by:

n

p(0,b | D,) o< [[ p(li,ri,y; | b, 0)p(b; | 0)p(0)

=1
x Hp(liﬂ'i | b;,0)p(y; | bi,0)p(b; | O)p(0),
=1
1
p(b; | 0) = exp(b! D7'b;),
16) (27)4det(D) (

where the likelihood contribution of longitudinal outcome conditional on
random effects is:

1 ||yi_Xi/B_ZibiH2>
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X, ={z;(ta)",... ,iBi(tmi)T}T,
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The likelihood contribution of the time to GR outcome is given by:

p(li, i | b;,0) = exp{ - /Oli hi(s | /\/li(s),wi)ds}
- exp{ - /Om- hi(s | Mi(s),wi)ds}. (2.9)

The integral in does not have a closed-form solution, and therefore we
use a 15-point Gauss-Kronrod quadrature rule to approximate it.

We use independent normal priors with zero mean and variance 100 for
the fixed effects 3, and inverse Gamma prior with shape and rate both equal
to 0.01 for the parameter o2. For the variance-covariance matrix D of the
random effects, we take inverse Wishart prior with an identity scale matrix
and degrees of freedom equal to ¢ (number of random effects). For the
relative risk model's parameters v and the association parameters o, we use
independent normal priors with zero mean and variance 100.

2.A.1 Parameter Estimates

The longitudinal evolution of log, (PSA+1) is modeled with non-linear terms.
Hence, the interpretation of the coefficients in this model is not straightfor-
ward. Instead of the parameter estimates, in Figure 2.6] we present the
fitted marginal evolution of log,(PSA + 1) over a period of 10 years for a
hypothetical patient who is included in AS at the age of 70 years.

For the relative risk sub-model, the parameter estimates in Table [2.3
show that log,(PSA + 1) velocity and the age at the time of inclusion in AS
are strongly associated with the hazard of GR. For any patient, an increase
in log,(PSA + 1) velocity from -0.061 to 0.136 (first and third quartiles of
the fitted velocities, respectively) corresponds to a 2.046 fold increase in the
hazard of GR. An increase in age at the time of inclusion in AS from 65 years
to 75 years (first and third quartiles of age in PRIAS dataset) corresponds
to a 1.428 fold increase in the hazard of GR.
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Figure 2.6: Fitted marginal evolution of log,(PSA + 1) measurements over a
period of 10 years with 95% credible interval, for a hypothetical patient who is
included in AS at the age of 70 years.
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Table 2.3: Parameters of the relative-risk sub-model: Estimated mean and
95% credible interval. Age is median centered.

Variable Mean Std. Dev  2.5% 97.5% P
(Age — 70) 0.036 0.006 0.024 0.047 <0.000
(Age — 70)2 0.001  0.001 -0.003 7.861 x10°  0.084
logy (PSA + 1) 0.084  0.080 -0.241 0.072  0.296
Slope(logy(PSA+1)) 3580  0.403 2815 4373 <0.000

2.B Ascertainment Bias: PSA Doubling
Time-Dependent Biopsies and
Competing Events

PSA dependent interval-censored time of upgrading: The true time
of upgrading T* is not known for any of the patients in PRIAS. To detect
upgrading, PRIAS uses a fixed schedule of biopsies wherein biopsies are con-
ducted at year one, year four, year seven and year ten of follow-up, and every
five years after that. However, PRIAS switches to a more frequent annual
biopsy schedule for faster-progressing patients. These are patients with PSA
doubling time (PSA-DT) between 0 and 10 years, which is measured as the
inverse of the slope of the regression line through the base two logarithm of
PSA values. Thus, the interval [; < T;* < r; in which upgrading is detected
depends on the observed PSA values.

Competing events: The primary event of interest in this paper is up-
grading observed via a positive biopsy. There are three types of competing
events, namely death, removal of patients from AS on the basis of their ob-
served DRE and PSA measurements, watchful-waiting, and loss to follow-up
of patients because of patient anxiety or unknown reasons.

The number of patients obtaining the event death is small compared to
the number of patients who obtain the primary event upgrading. Hence in
this paper, considering death as non-informative censoring may be viable.
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We also consider the loss to follow-up as non-informative censoring, which
may not always be true. This is especially the case when the reason for loss
to follow-up is unknown. However, when the reason for loss to follow-up
is patient anxiety, it is often on the basis of their observed results. Given
the large number of loss to follow-up patients, considering these patients as
censored is a limitation of our work. However, the problem of the unknown
reason for dropout is not specific to only our model. For the remaining
patients who are removed from AS on the basis of their observed longitudinal
data (e.g., treatment, watchful-waiting), in the next paragraph, we show that
the removal of these patients is non-informative about the parameters of the
model for the true time of upgrading.

Given the aforementioned issues of PSA dependent interval censoring
and removal of patients on the basis of their observed longitudinal data is
natural to question in this scenario if the parameters of the joint model
are affected by these two. However, because the parameters of the joint
model are estimated using a full likelihood approach (Tsiatis and Davidian,
2004), the joint model allows the schedule of biopsies, as well as censoring
to depend upon the observed PSA measurements (e.g., via PSA-DT), under
the condition that the model is correctly specified. To show this, consider
the following full general specification of the joint model that we use. Let
y, denote the observed PSA measurements for the i-th patient, and [;,r;
denote the two time points of the interval in which upgrading occurs for the
i-th patient. In addition, let 7} and V; denote the schedule of biopsies, and
the schedule PSA measurements, respectively. Let G} denote the time of
removal from AS without observing upgrading. Under the assumption that
TS, G, V; may depend upon only the observed data y;, the joint likelihood
of the various processes is given by:

p(ymliariaT;S?G:?Vi | 07710) :p(yialiari | 0) X p(T‘zS7G;k7Vl | y@»lb)

where, 1) is the vector of parameters for the processes T°, G, V;. From
this decomposition, we can see that even if the processes T°, G¥,V; may
be determined from vy, if we are interested in the parameters 6 of the
joint distribution of longitudinal and event outcomes, we can maximize the
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likelihood based on the first term and ignore the second term. In other words,
the second term will not carry information for 6. Lastly, since we use a full
likelihood approach with an interval censoring specification, the estimates
that we obtain are consistent and asymptotically unbiased (Gentleman and
Geyer, [1994)), despite the interval censoring observed.

We also demonstrate the validity of our argument via a simulated dataset
of 750 patients. The true event times 7} for these patients were generated
using parameters from a joint model fitted to the PRIAS dataset (with the
only change that log, PSA levels are used as the outcome). However, this
joint model did not include the association between the velocity of log PSA
values and the hazard of GR. That is, the hazard of GR h;(t) at any time
t was dependent only on the underlying log, PSA value m;(t) at that time.
Furthermore, for these patients, we used the schedule of PRIAS to generate
the interval [; < T7 < r; in which GR is detected. Thus the observed
data for i-th patient is {y;,l;,r;}. Our aim is to show that if there is
no association between h;(t) and velocity of log PSA value mj(t), then
even though the biopsy schedule depends on PSA-DT (which is a crude
measure of PSA velocity), a joint model fitted with both value and velocity
associations will have an insignificant velocity association. In the fitted joint
model, we found the value association (95% credible interval in brackets)
to be 0.182 [0.090, 0.274], and the velocity association to be -0.001 [-
0.295, 0.254]. That is, even though the schedule of biopsies depended upon
observed PSA values, it did not lead to a spurious velocity association.

2.C Source Code

The source code for fitting the joint model is available at https://raw.
githubusercontent.com/anirudhtomer/prias/master/src/chapter2_
biometricspaper/Gleason’20as’20event/log2psaplusl and plusptl.
R.

The code generating the simulation population is available at https://
github.com/anirudhtomer/prias/blob/master/src/chapter2_biometricspape
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2.C. Source Code

simulation_study/SimulateJM.R.

The code for scheduling biopsies using fixed schedules and utility func-
tions is available at https://github.com/anirudhtomer/prias/blob/
master/src/chapter2 biometricspaper/simulation_study/nbAndOffset.

R.

57


https://github.com/anirudhtomer/prias/blob/master/src/chapter2_biometricspaper/simulation_study/SimulateJM.R
https://github.com/anirudhtomer/prias/blob/master/src/chapter2_biometricspaper/simulation_study/SimulateJM.R
https://github.com/anirudhtomer/prias/blob/master/src/chapter2_biometricspaper/simulation_study/SimulateJM.R
https://github.com/anirudhtomer/prias/blob/master/src/chapter2_biometricspaper/simulation_study/nbAndOffset.R
https://github.com/anirudhtomer/prias/blob/master/src/chapter2_biometricspaper/simulation_study/nbAndOffset.R
https://github.com/anirudhtomer/prias/blob/master/src/chapter2_biometricspaper/simulation_study/nbAndOffset.R

2. PERSONALIZED SCHEDULES

2.4 References

Akhavan-Tabatabaei, R., Sanchez, D. M., and Yeung, T. G. (2017). A
Markov decision process model for cervical cancer screening policies in
Colombia. Medical Decision Making, 37(2):196-211.

Ayer, T., Alagoz, O., and Stout, N. K. (2012). A POMDP approach
to personalize mammography screening decisions. Operations Research,
60(5):1019-1034.

Bebu, I. and Lachin, J. M. (2018). Optimal screening schedules for dis-
ease progression with application to diabetic retinopathy. Biostatistics,
19(1):1-13.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis.
Springer Science & Business Media.

Bokhorst, L. P., Alberts, A. R., Rannikko, A., Valdagni, R., Pickles, T.,
Kakehi, Y., Bangma, C. H., Roobol, M. J., and PRIAS study group (2015).
Compliance rates with the Prostate Cancer Research International Active

Surveillance (PRIAS) protocol and disease reclassification in noncompliers.
European Urology, 68(5):814-821.

Brown, E. R. (2009). Assessing the association between trends in a biomarker
and risk of event with an application in pediatric HIV/AIDS. The Annals
of Applied Statistics, 3(3):1163-1182.

Carlson, G. D., Calvanese, C. B., Kahane, H., and Epstein, J. . (1998).
Accuracy of biopsy Gleason scores from a large uropathology laboratory:

use of a diagnostic protocol to minimize observer variability. Urology,
51(4):525-529.

Coley, R. Y., Zeger, S. L., Mamawala, M., Pienta, K. J., and Carter, H. B.
(2017). Prediction of the pathologic Gleason score to inform a personalized
management program for prostate cancer. European Urology, 72(1):135—
141.

58



2.4. References

Cook, R. D. and Wong, W. K. (1994). On the equivalence of constrained
and compound optimal designs. Journal of the American Statistical As-
sociation, 89(426):687-692.

Eilers, P. H. and Marx, B. D. (1996). Flexible smoothing with B-splines and
penalties. Statistical Science, 11(2):89-121.

Erenay, F. S., Alagoz, O., and Said, A. (2014). Optimizing colonoscopy
screening for colorectal cancer prevention and surveillance. Manufacturing
& Service Operations Management, 16(3):381-400.

Gentleman, R. and Geyer, C. J. (1994). Maximum likelihood for interval
censored data: Consistency and computation. Biometrika, 81(3):618-
623.

Lauter, E. (1976). Optimal multipurpose designs for regression models.
Mathematische Operationsforschung und Statistik, 7(1):51-68.

Lin, H., McCulloch, C. E., Turnbull, B. W., Slate, E. H., and Clark,
L. C. (2000). A latent class mixed model for analysing biomarker tra-
jectories with irregularly scheduled observations. Statistics in Medicine,
19(10):1303-1318.

Loeb, S., Vellekoop, A., Ahmed, H. U., Catto, J., Emberton, M., Nam, R,
Rosario, D. J., Scattoni, V., and Lotan, Y. (2013). Systematic review of
complications of prostate biopsy. European Urology, 64(6):876-892.

Lépez-Ratén, M., Rodn’guez—AIvarez, M. X., Cadarso-Suéarez, C., and Gude-
Sampedro, F. (2014). OptimalCutpoints: an R package for selecting opti-
mal cutpoints in diagnostic tests. Journal of Statistical Software, 61(8):1-
36.

Pearson, J. D., Morrell, C. H., Landis, P. K., Carter, H. B., and Brant, L. J.
(1994). Mixed-effects regression models for studying the natural history
of prostate disease. Statistics in Medicine, 13(5-7):587-601.

59



2. PERSONALIZED SCHEDULES

Potosky, A. L., Miller, B. A., Albertsen, P. C., and Kramer, B. S. (1995).
The role of increasing detection in the rising incidence of prostate cancer.
JAMA, 273(7):548-552.

Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint
models for longitudinal and time-to-event data. Biometrics, 67(3):819—
829.

Rizopoulos, D. (2012). Joint Models for Longitudinal and Time-to-Event
Data: With Applications in R. CRC Press.

Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for
longitudinal and time-to-event data using MCMC. Journal of Statistical
Software, 72(7):1-46.

Rizopoulos, D., Hatfield, L. A., Carlin, B. P., and Takkenberg, J. J. (2014).
Combining dynamic predictions from joint models for longitudinal and

time-to-event data using Bayesian model averaging. Journal of the Amer-
ican Statistical Association, 109(508):1385-1397.

Rizopoulos, D., Molenberghs, G., and Lesaffre, E. M. (2017). Dynamic
predictions with time-dependent covariates in survival analysis using joint
modeling and landmarking. Biometrical Journal, 59(6):1261-1276.

Rizopoulos, D., Taylor, J. M. G., Van Rosmalen, J., Steyerberg, E. W., and
Takkenberg, J. J. M. (2016). Personalized screening intervals for biomark-
ers using joint models for longitudinal and survival data. Biostatistics,
17(1):149-164.

Robert, C. (2007). The Bayesian choice: from decision-theoretic foundations
to computational implementation. Springer Science & Business Media.

Taylor, J. M., Park, Y., Ankerst, D. P., Proust-Lima, C., Williams, S., Kestin,
L., Bae, K., Pickles, T., and Sandler, H. (2013). Real-time individual

predictions of prostate cancer recurrence using joint models. Biometrics,
69(1):206-213.

60



2.4. References

Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and
Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal
for Clinicians, 65(2):87-108.

Tosoian, J. J., Trock, B. J., Landis, P., Feng, Z., Epstein, J. |., Partin, A. W.,
Walsh, P. C., and Carter, H. B. (2011). Active surveillance program for
prostate cancer: an update of the Johns Hopkins experience. Journal of
Clinical Oncology, 29(16):2185-2190.

Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and
time-to-event data: an overview. Statistica Sinica, 14(3):809-834.

Vickers, A. J. and Elkin, E. B. (2006). Decision curve analysis: a novel
method for evaluating prediction models. Medical Decision Making,
26(6):565-574.

Welty, C. J., Cowan, J. E., Nguyen, H., Shinohara, K., Perez, N., Greene,
K. L., Chan, J. M., Meng, M. V., Simko, J. P., Cooperberg, M. R.,
and Carroll, P. R. (2015). Extended followup and risk factors for disease
reclassification in a large active surveillance cohort for localized prostate
cancer. The Journal of Urology, 193(3):807-811.

Zhang, J., Denton, B. T., Balasubramanian, H., Shah, N. D., and Inman,
B. A. (2012). Optimization of prostate biopsy referral decisions. Manu-
facturing & Service Operations Management, 14(4):529-547.

61






Chapter 3

Personalized Decision Making
for Biopsies in Prostate Cancer
Active Surveillance Programs

This chapter is based on the paper

Tomer, A., Rizopoulos, D., Nieboer, D., Drost, F.J., Roobol, M.J., and

Steyerberg, E.W. (2019). Personalized decision making for biopsies in prostate
cancer active surveillance programs. Medical Decision Making, 39(5): 499-

508. doi: https://doi.org/10.1177/0272989X19861963

63


https://doi.org/10.1177/0272989X19861963

3.

PERSONALIZED DECISION MAKING

64

Abstract

Background. Low-risk prostate cancer patients enrolled in ac-
tive surveillance programs commonly undergo biopsies for examina-
tion of cancer progression. Biopsies are conducted as per a fixed
and frequent schedule (e.g., annual biopsies). Since biopsies are bur-
densome, patients do not always comply with the schedule, which
increases the risk of delayed detection of cancer progression.

Objective. Our aim is to better balance the number of biopsies
(burden) and the delay in detection of cancer progression (less is
beneficial), by personalizing the decision of conducting biopsies.

Data Sources. We use patient data of the world's largest active
surveillance program (PRIAS). It enrolled 5270 patients, had 866
cancer progressions, and an average of nine prostate-specific antigen
(PSA) and five digital rectal examination (DRE) measurements per
patient.

Methods. Using joint models for time-to-event and longitudi-
nal data, we model the historical DRE and PSA measurements, and
biopsy results of a patient at each follow-up visit. This results in
a visit and patient-specific cumulative-risk of cancer progression. If
this risk is above a certain threshold, we schedule a biopsy. We com-
pare this personalized approach with the currently practiced biopsy
schedules via an extensive and realistic simulation study, based on a
replica of the patients from the PRIAS program.

Results. The personalized approach saved a median of six biop-
sies (median: 4, IQR: 2-5), compared to the annual schedule (me-
dian: 10, IQR: 3-10). However, the delay in detection of progression
(years) is similar for the personalized (median: 0.7, IQR: 0.3-1.0) and
the annual schedule (median: 0.5, IQR: 0.3-0.8).

Conclusions. We conclude that personalized schedules provide
substantially better balance in the number of biopsies per detected
progression for men with low-risk prostate cancer.



3.1. Introduction

3.1 Introduction

Prostate cancer is the second most frequently diagnosed cancer in men world-
wide (Torre et al., 2015). In prostate cancer screening programs, many of the
diagnosed tumors are clinically insignificant/over-diagnosed (Etzioni et al.,
2002). To avoid further over-treatment, patients diagnosed with low-grade
prostate cancer are commonly advised to join active surveillance (AS) pro-
grams. In AS, invasive treatments such as surgery are delayed until cancer
progresses. Cancer progression is routinely monitored via serum prostate-
specific antigen (PSA) measurements, a protein biomarker; digital rectal
examination (DRE) measurements, a measure of the size and location of the
tumor; and biopsies.

While larger values for PSA and/or DRE, may indicate cancer progres-
sion, biopsies are the most reliable cancer progression examination technique
used in AS. When a patient's biopsy Gleason score becomes larger than 6
(positive biopsy, cancer progression detected), AS is stopped, and the pa-
tient is advised treatment (Bokhorst et al., |2015). However, biopsies are
invasive, painful, and prone to medical complications (Ehdaie et al., 2014;
Fujita et al.,[2009)). Hence, they are conducted intermittently until a positive
biopsy. Consequently, at the time of a positive biopsy, cancer progression
may be observed with a delay of unknown duration. This delay is defined as
the difference between the time of the positive biopsy and the unobserved
true time of cancer progression. Thus, the decision to conduct biopsies re-
quires a compromise between the burden of biopsy and the potential delay
in the detection of cancer progression.

In AS, a delay in the detection of cancer progression around 12 to 14
months is assumed to be unlikely to substantially increase the risk of ad-
verse downstream outcomes (Inoue et al., 2018; de Carvalho et al., 2017).
However, for biopsies, there is little consensus on the time gap between
them (Loeb et al., 2014} |Bruinsma et al., 2016; Nieboer et al., [2018)). Many
AS programs focus on minimizing the delay in the detection of cancer pro-
gression by scheduling biopsies annually for all patients. A drawback of an-
nual biopsies, and other currently practiced fixed/heuristic schedules (Loeb
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et al., 2014; Bruinsma et al., 2016 Nieboer et al| [2018)), is that they ig-
nore the large variation in the time of cancer progression of AS patients.
While they may work well for patients who progress early (fast progressing)
in AS, but for a large proportion of patients who do not progress, or progress
late (slow progressing) in AS, many unnecessary, burdensome biopsies are
scheduled. To mediate the burden between the fast and slow progressing
patients, the world’s largest AS program, Prostate Cancer Research Interna-
tional Active Surveillance, PRIAS, (Bokhorst et al., 2016)), schedules annual
biopsies only for patients with a low PSA doubling time (Bokhorst et al.|
2015). For everyone else, PRIAS schedules biopsies at following fixed follow-
up times: year one, four, seven, and ten, and every five years thereafter.
Despite this effort in PRIAS, patients may get scheduled for four to ten
biopsies over a period of ten years. Therefore, compliance for biopsies is low
in PRIAS (Bokhorst et al., [2015). This can lead to a delay in the detection
of cancer progression and reduce the effectiveness of AS.

We aim to better balance the number of biopsies (more are burdensome),
and the delay in the detection of cancer progression (less is beneficial), than
currently practiced schedules. We intend to achieve this by personalizing the
decision to conduct biopsies (see Figure [3.1)). These decisions are made at
a patient’s pre-scheduled follow-up visits for DRE and PSA measurements.
To develop the personalized decision-making methodology, we utilize the
data of the patients enrolled in the PRIAS study. We model this data and
develop the personalized approach using joint models for time-to-event and
longitudinal data (Tsiatis and Davidian, |2004; Rizopoulos, [2012)). In order
to compare the personalized approach with current schedules, we conduct
an extensive simulation study based on a replica of the patients from the
PRIAS program.
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Figure 3.1: The personalized decision-making problem: Available data of a
patient j, who had his latest negative biopsy at ¢ = 2.6 years. The shaded region
shows the time period in which the patient is at risk of cancer progression. His
current pre-scheduled follow-up visit for measurement of DRE and PSA is at s = 4
years. Using his entire history of DRE Yy;(s) and PSA )),;(s) measurements up
to the current visit s, and the time of the latest biopsy ¢, we intend to make a
decision on scheduling a biopsy at the current visit.
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3.2 Methods

3.2.1 Study Population

To develop our methodology, we use the data (see Table of prostate
cancer patients from the world's largest AS study called PRIAS (Bokhorst
et al., [2016). More than 100 medical centers from 17 countries worldwide
contribute to the collection of data, utilizing a common study protocol and a
web-based tool, both available at www.prias-project.org. We use data
collected over ten years, between December 2006 (beginning of PRIAS study)
and December 2016. The primary event of interest is cancer progression
detected upon a positive biopsy. The time of cancer progression is interval-
censored because biopsies are scheduled periodically. Biopsies are scheduled
as per the PRIAS protocol (see Section . There are three types of
competing events, namely death, removal of patients from AS based on their
observed DRE and PSA measurements, and loss to follow-up. We assume
these three types of events to be censored observations. However, our model
allows the removal of patients to depend on observed longitudinal data and
baseline covariates of the patient. Under the aforementioned assumption of
censoring, Figure [3.2| shows the cumulative-risk of cancer progression over
the study follow-up period.

For all patients, PSA measurements (ng/mL) are scheduled every three
months for the first two years and every six months thereafter. The DRE
measurements are scheduled every six months. We use the DRE measure-
ments as DRE = T1c versus DRE > Tlc. A DRE measurement equal to
Tlc (Schroder et al. 1992) indicates a clinically inapparent tumor that is
not palpable or visible by imaging. In contrast, tumors with DRE > Tlc are
palpable.

Data Accessibility: The PRIAS database is not openly accessible. How-
ever, access to the database can be requested based on a study proposal
approved by the PRIAS steering committee. The website of the PRIAS
program is www.prias-project.org.
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Figure 3.2: Estimated cumulative-risk of cancer progression in AS for pa-
tients in the Prostate Cancer Research International Active Surveillance (PRIAS)
dataset. Nearly 50% patients (slow progressing) do not progress in the ten year
follow-up period. Cumulative-risk is estimated using nonparametric maximum
likelihood estimation (Turnbull, 1976)), to account for interval censored cancer
progression times observed in the PRIAS dataset. Censoring includes death, re-
moval from AS on the basis of observed longitudinal data, and patient dropout.
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Table 3.1: Summary of the PRIAS dataset. The primary event of interest is
cancer progression. A DRE measurement equal to Tlc (Schroder et al., [1992)
indicates a clinically inapparent tumor which is not palpable or visible by imaging,
while tumors with DRE > T1c are palpable. IQR: interquartile range.

Data Value
Total patients 5270
Cancer progression (primary event) 866
Loss to follow-up (anxiety or unknown) 685
Removal on the basis of PSA and DRE 464
Death (unrelated to prostate cancer) 61
Death (related to prostate cancer) 2
Median Age (years) 70 (IQR: 65-75)
Total PSA measurements 46015
Median number of PSA measurements per patient 7 (IQR: 5-12)
Median PSA value (ng/mL) 5.6 (IQR: 4.0-7.5)
Total DRE measurements 25606
Median number of DRE measurements per patient 4 (IQR: 3-7)
DRE = T1c (%) 23538,/25606 (92%)

3.2.2 A Bivariate Joint Model for the Longitudinal
PSA, and DRE Measurements, and Time of

Cancer Progression

Let T7* denote the true cancer progression time of the i-th patient included
in PRIAS. Since biopsies are conducted periodically, T* is observed with in-
terval censoring [; < T < ;. When progression is observed for the patient
at his latest biopsy time r;, then [; denotes the time of the second latest
biopsy. Otherwise, I; denotes the time of the latest biopsy and r; = oo.
Let y,; and y,; denote his observed DRE and PSA longitudinal measure-
ments, respectively. The observed data of all n patients is denoted by

Dy = {li,7, Yai» Ypisi = 1,...,n}.
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Figure 3.3: lllustration of the joint model fitted to the PRIAS dataset.
Panel A: Observed DRE measurements and the fitted probability of obtaining
DRE > Tlc (3.1). Panel B: Observed and fitted logy(PSA + 1) values (3.2).

Panel C: Estimated logy(PSA + 1) velocity over time.

Panel D: Estimated

hazard of cancer progression ([3.3)). It depends on the fitted log odds of having a
DRE > Tlc, and the fitted log,(PSA + 1) value and velocity.
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In our joint model, the patient-specific DRE and PSA measurements over
time are modeled using a bivariate generalized linear mixed effects sub-model.
The sub-model for DRE is given by (see Panel A, Figure [3.3):

Iogit{Pr{ydi(t) > Tlc}} = Boa + bodi + (B1a + b1ai)t
+ Baa(Age; — T0) + Bsq(Age; — 70)? (3.1)

where, ¢ denotes the follow-up visit time, and Age; is the age of the i-th
patient at the time of inclusion in AS. We have centered the Age variable
around the median age of 70 years for better convergence during parameter
estimation. However, this does not change the interpretation of the param-
eters corresponding to the Age variable. The fixed effect parameters are
denoted by {foa, - - -, B34}, and {boa;, b14;} are the patient specific random
effects. With this definition, we assume that the patient-specific log odds of
obtaining a DRE measurement larger than T1lc remain linear over time.
The mixed effects sub-model for PSA is given by (see Panel B, Fig-

ure 3.3)):

logy {ypi(t) + 1} = myi(t) + epilt),

4
mpi (t) = ﬁOp + bOpi + Z(ka + bk‘pl)Bk(t7 IC)

k=1

+ Bsp(Age; — 70) + Bs,p(Age; — 70)%, (3.2)

where, m,;(t) denotes the measurement error free value of log,(PSA + 1)
transformed (Pearson et al., [1994; [Lin et al., 2000) measurements at time
t. We model it non-linearly over time using B-splines (De Boor, 1978).
To this end, our B-spline basis function By(t,/C) has 3 internal knots at
K ={0.1,0.7,4} years, and boundary knots at 0 and 5.42 years (95-th per-
centile of the observed follow-up times). This specification allows fitting the
log,(PSA + 1) levels in a piecewise manner for each patient separately. The
internal and boundary knots specify the different time periods (analogously
pieces) of this piecewise nonlinear curve. The fixed effect parameters are de-
noted by {Bop, - - -, Bep}, and {bopi, - . ., bapi } are the patient specific random
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effects. The error €,,(t) is assumed to be t-distributed with three degrees of
freedom (Figure and scale o, and is independent of the random effects.

To account for the correlation between the DRE and PSA measurements
of a patient, we link their corresponding random effects. More specifi-
cally, the complete vector of random effects b; = (boas, b1di, bopis - - -  bapi)”
is assumed to follow a multivariate normal distribution with mean zero and
variance-covariance matrix D.

To model the impact of DRE and PSA measurements on the risk of
cancer progression, our joint model uses a relative risk sub-model. More
specifically, the hazard of cancer progression h;(t) at a time ¢ is given by

(see Panel D, Figure [3.3):

ho(t) = ho(t) exp (vl(Agei —70) + 12(Age, — 70)?

ot ) (33)

where, 71,72 are the parameters for the effect of age. The parameter a1y
models the impact of log odds of obtaining a DRE > T1lc on the hazard of
cancer progression. The impact of PSA on the hazard of cancer progression
is modeled in two ways: a) the impact of the error free underlying PSA value
myi(t) (see Panel B, Figure[3.3), and b) the impact of the underlying PSA
velocity Om,,;(t) /0t (see Panel C, Figure[3.3). The corresponding parameters
are oy, and g, respectively. Lastly, ho(t) is the baseline hazard at time
t, and is modeled flexibly using P-splines (Eilers and Marx, |1996). More
specifically:

+ aldlogit[Pr{ydi(t) > Tlc}} + a1pymyi(t) + agp

Q
log ho(t) = Ynoo + D ThoaBa(t, V),

q=1
where B, (t,v) denotes the g¢-th basis function of a B-spline with knots
v = 1,...,0¢o and vector of spline coefficients 7,,. To avoid choosing
the number and position of knots in the spline, a relatively high number of
knots (e.g., 15 to 20) are chosen and the corresponding B-spline regression
coefficients -y, are penalized using a differences penalty (Eilers and Marx,
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1996).The detailed specification of the baseline hazard hy(t), and the joint
parameter estimation of the two sub-models using the Bayesian approach (R
package JMbayes) are presented in Appendix [3.Al

3.2.3 Personalized Decisions for Biopsy

Let us assume that a decision of conducting a biopsy is to be made for
a new patient j shown in Figure 3.1 at his current follow-up visit time
s. Let t < s be the time of his latest negative biopsy. Let Vy(s) and
Y,;(s) denote his observed DRE and PSA measurements up to the current
visit, respectively. From the observed measurements we want to extract the
underlying measurement error free trend of log,(PSA+1) values and velocity,
and the log odds of obtaining DRE > T1lc. We intend to combine them to
inform us when the cancer progression is to be expected, and to further
guide the decision making on whether to conduct a biopsy at the current
follow-up visit. The combined information is given by the following posterior
predictive distribution g(77) of his time of cancer progression T > ¢:

g(T7) = p{T; | T} > t, Vi(s), Vpi(s), Du}. (3.4)

The distribution g(77") is not only patient-specific, but also updates as extra
information is recorded at future follow-up visits.

A key ingredient in the decision of conducting a biopsy for patient j
at the current follow-up visit time s is the personalized cumulative-risk of
observing a cancer progression at time s (illustrated in Figure [3.4} and Fig-
ure . This risk can be derived from the posterior predictive distribution
9(T7) (Rizopoulos, 2011), and for s > t it is given by:

Ry(s | 1) = Pe{Ty < s | T} > t,Vii(s), Vpy(5), Dn . (3.5)
A simple and straightforward approach to decide upon conducting a biopsy

for patient j at the current follow-up visit would be to do so if his personalized
cumulative-risk of cancer progression at the visit is higher than a certain
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Figure 3.4: Personalized decision biopsy not recommended: Biopsy is recom-
mended only if the personalized cumulative-risk of cancer progression estimated
from the joint model fitted to the observed data of the j-th patient, is higher than
the example risk threshold for biopsy (k = 10%). The cumulative-risk of cancer
progression at the current visit time (s = 4 years) is 7.8%.
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Figure 3.5: Personalized decision of biopsy recommended: Biopsy is recom-
mended only if the personalized cumulative-risk of cancer progression estimated
from the joint model fitted to the observed data of the j-th patient, is higher than
the example risk threshold for biopsy (k = 10%). The cumulative-risk of cancer
progression at the current visit time (s = 5.3 years) is 13.5%.
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threshold 0 < k < 1. For example, as shown in Figure [3.4] and Figure [3.5]
biopsy at a visit may be scheduled if the personalized cumulative-risk is higher
than 10% (example risk threshold). This decision making process is iterated
over the follow-up period, incorporating on each subsequent visit the newly
observed data, until a positive biopsy is observed. Subsequently, an entire
personalized schedule of biopsies for each patient can be obtained.

The choice of the risk threshold dictates the schedule of biopsies and has
to be made on each subsequent follow-up visit of a patient. In this regard,
a straightforward approach is choosing a fixed risk threshold, such as 5%
or 10% risk, at all follow-up visits. Fixed risk thresholds may be chosen
by patients and/or doctors according to how they weigh the relative harms
of doing an unnecessary biopsy versus a missed cancer progression (e.g.,
10% threshold means a 1:9 ratio) if the biopsy is not conducted (Vickers
and Elkin, 2006). An alternative approach is that at each follow-up visit, a
unique threshold is chosen on the basis of its classification accuracy. More
specifically, given the time of latest biopsy ¢ of patient 7, and his current visit
time s we find a visit-specific biopsy threshold x, which gives the highest
cancer progression detection rate (true positive rate, or TPR) for the period
(t,s]. However, we also intend to balance for unnecessary biopsies (high
false-positive rate), or a low number of correct detections (high false-negative
rate) when the false positive rate is minimized. An approach to mitigating
these issues is to maximize the TPR and positive predictive value (PPV)
simultaneously. To this end, we utilize the F; score, which is a composite of
both TPR and PPV [estimated as in Rizopoulos et al.|(2017)] and is defined
as:

Pt s 5) = 2 TPR(t,s,x) PPV(t,s, k) ’
TPR(t, s, k) + PPV(t, s, k)
TPR(t,5,k) = Pr{R;(s | t) > k |t < T} < s},
PPV(t,s, 1) = Pr{t < T7 <s| Ri(s|t) > r}, (3.6)

where, TPR(t, s, k) and PPV(t, s, k) are the time-dependent true positive
rate and positive predictive value, respectively. These values are unique for
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each combination of the time period (t, s| and the risk threshold x that is
used to discriminate between the patients whose cancer progresses in this
time period versus the patients whose cancer does not progress. The same
holds true for the resulting F; score denoted by Fi(¢,s,x). The F; score
ranges between 0 and 1, where a value equal to 1 indicates perfect TPR and
PPV. Thus the highest F; score is desired in each time period (¢, s|. This
can be achieved by choosing a risk threshold , which maximizes Fy(¢, s, k).
That is, during a patient's visit at time s, given that his latest biopsy was
at the time t, the visit-specific risk threshold to decide a biopsy is given by
k = argmax, Fi(t, s, k). The criteria on which we evaluate the personalized
schedules based on fixed and visit-specific risk thresholds is the total number
of biopsies scheduled, and the delay in detection of cancer progression (details
in Results).

3.2.4 Simulation Study

Although the personalized decision-making approach is motivated by the
PRIAS study, it is not possible to evaluate it directly on the PRIAS dataset.
This is because the patients in PRIAS have already had their biopsies as
per the PRIAS protocol. In addition, the true time of cancer progression is
interval or right-censored for all patients, making it impossible to correctly
estimate the delay in the detection of cancer progression due to a particular
schedule. To this end, we conduct an extensive simulation study to find the
utility of personalized, PRIAS, and fixed/heuristic schedules. For a realistic
comparison, we simulate patient data from the joint model fitted to the
PRIAS dataset. The simulated population has the same ten year follow-up
period as the PRIAS study. In addition, the estimated relations between DRE
and PSA measurements, and the risk of cancer progression are retained in
the simulated population.

From this population, we first sample 500 datasets, each representing
a hypothetical AS program with 1000 patients in it. We generate a true
cancer progression time for each of the 500 x 1000 patients and then sample
a set of DRE and PSA measurements at the same follow-up visit times as
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given in PRIAS protocol. We then split each dataset into training (750
patients) and test (250 patients) parts, and generate a random and non-
informative censoring time for the training patients. We next fit a joint
model of the specification given in (3.1)), (3.2), and to each of the
500 training datasets and obtain MCMC samples from the 500 sets of the
posterior distribution of the parameters.

In each of the 500 hypothetical AS programs, we utilize the corresponding
fitted joint models to develop cancer progression risk profiles for each of the
500 x 250 test patients. We make the decision of biopsies for patients at
their pre-scheduled follow-up visits for DRE and PSA measurements (see
Section [3.2.1)), on the basis of their estimated personalized cumulative-risk
of cancer progression. These decisions are made iteratively until a positive
biopsy is observed. A recommended gap of one year between consecutive
biopsies (Bokhorst et al [2015) is also maintained. Subsequently, for each
patient, an entire personalized schedule of biopsies is obtained.

We evaluate and compare both personalized and currently practiced
schedules of biopsies in this simulation study. A comparison of the sched-
ules is based on the number of biopsies scheduled and the corresponding
delay in the detection of cancer progression. We evaluate the following cur-
rently practiced fixed /heuristic schedules: biopsy annually, biopsy every one
and a half years, biopsy every two years, and biopsy every three years. We
also evaluate the biopsy schedule of the PRIAS program (see Section .
For the personalized biopsy schedules, we evaluate schedules based on three
fixed risk thresholds: 5%, 10%, and 15%, corresponding to a missed cancer
progression being 19, 9, and 5.5 times more harmful than an unnecessary
biopsy (Vickers and Elkin, [2006)), respectively. We also implement a per-
sonalized schedule wherein for each patient, visit-specific risk thresholds are
chosen using F; score.
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3.3 Results

From the joint model fitted to the PRIAS dataset, we found that both
log,{PSA + 1} velocity, and log odds of having DRE > Tlc were signifi-
cantly associated with the hazard of cancer progression. For any patient,
an increase in log,{PSA + 1} velocity from -0.03 to 0.16 (first and third
quartiles of the fitted velocities, respectively) corresponds to a 1.94 fold in-
crease in the hazard of cancer progression. Whereas, an increase in odds
of DRE > T1lc from -6.650 to -4.356 (first and third quartiles of the fitted
log-odds, respectively) corresponds to a 1.40 fold increase in the hazard of
cancer progression. Detailed results pertaining to the fitted joint model are

presented in Appendix [3.A.1]

3.3.1 Comparison of Various Approaches for Biopsies

From the simulation study, we obtain the number of biopsies and the delay in
detection of cancer progression for each of the 500 x 250 test patients using
different schedules. Figure [3.6] shows that the personalized and PRIAS ap-
proaches fall in the region of a better balance between the median number of
biopsies and the median delay than fixed /heuristic schedules. Next evaluate
these schedules on the basis of both median and interquartile range (IQR)
of the number of biopsies and delay (see Figure . For brevity, only the
most widely used annual and PRIAS schedules, the proposed personalized
approach with fixed risk thresholds of 5% and 10%, and visit-specific thresh-
old chosen using F; score are discussed next (see Table for remaining).
Since patients have varying cancer progression speeds, the impact of each
schedule also varies with it. To highlight these differences, we divide results
for three types of patients, as per their time of cancer progression. They are
fast, intermediate, and slow progressing patients. Although such a division
may be imperfect and can only be done retrospectively in a simulation setting,
we show results for these three groups for illustration. Roughly 50% of the
patients did not obtain cancer progression in the ten year follow-up period
of the simulation study. We assume these patients to be slow progressing
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Figure 3.6: Burden-biopsy frontier: Median number of biopsies (X-axis), and
median delay in detection of cancer progression, in years (Y-axis), estimated
from the simulation study. Personalized schedules: Risk: 15%, Risk: 10%,
and Risk: 5% approaches, schedule a biopsy if the cumulative-risk of cancer pro-
gression at a visit is more than 15%, 10%, and 5%, respectively. Risk: F1 works
similarly, except that it utilizes a visit-specific threshold (see Section . The
green shaded region depicts the region of better balance in the median number of
biopsies and median delay than the currently practiced fixed/heuristic schedules.
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patients. We assume fast progressing patients are the ones with an initially
misdiagnosed state of cancer (Cooperberg et al., 2011) or high-risk patients
who choose AS instead of immediate treatment upon diagnosis. These are
roughly 30% of the population, having a cancer progression time less than
3.5 years. We label the remaining 20% patients as intermediate progressing
patients.

For fast progressing patients (Panel A, Figure , we note that the
personalized schedules with a fixed 10% risk threshold and visit-specific
threshold chosen using F; score, reduce one biopsy for 50% of the patients,
compared to PRIAS and annual schedule. Despite this, the delay (years)
is similar for the personalized schedule with fixed 10% risk threshold (me-
dian: 0.7, IQR: 0.3-1.0), and the commonly used annual (median: 0.6, IQR: 0.3—
0.9) and PRIAS (median: 0.7, IQR: 0.3-1.0) schedules.

For intermediate progressing patients (Panel A, Figure , we note that
the delay (years) due to personalized schedule with fixed 5% risk threshold
(median: 0.6, IQR: 0.3-0.9) is comparable to that of annual schedule (median
0.5, IQR: 0.2-0.7). However, it schedules fewer biopsies (median: 6, IQR: 5-
7) than the annual schedule (median: 7, IQR: 5-8). The delay (years) for
PRIAS (median: 0.7, IQR: 0.3-1.3) and personalized schedule with fixed 10%
risk (median: 0.7, IQR: 0.4-1.3) are similar, but the personalized approach
schedules one less biopsy for 50% of the patients. Although the approach
with the visit-specific risk threshold chosen using F; score schedules fewer
biopsies than the 10% fixed risk approach, it also has a higher delay.

The patients who are at the most advantage with the personalized sched-
ules are the slow progressing patients. These are a total of 50% patients
who did not progress during the entire study. Hence, the delay is not avail-
able for these patients (Panel C of Figure . For all of these patients,
the annual schedule leads to 10 (unnecessary) biopsies. The schedule of the
PRIAS program schedules a median of six biopsies (IQR: 4-8). In compar-
ison, the biopsies scheduled by the personalized schedules using fixed 10%
risk threshold (median: 4, IQR: 4-6) and visit-specific risk chosen using F;
score (median: 2, IQR: 2-4), are much fewer.

Overall, we observed that the personalized schedule which uses a 10% risk
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Figure 3.7: Variation in the number of biopsies, and the delay in detection of
cancer progression, in years, for various biopsy schedules. Panel A: simulated
patients with cancer progression times between 0 and 3.5 years (fast progress-
ing). Panel B: simulated patients with progression times between 3.5 and 10
years (intermediate progressing). Panel C: simulated patients who did not have
cancer progression in the ten years of follow-up (slow progressing). Personalized
schedules: Risk: 10% approach schedules a biopsy at a visit if the corresponding
cumulative-risk of cancer progression is more than 10%. Risk: 5% and Risk: F1
work similarly, except that a visit-specific threshold is used in the latter (see Sec-
tion[3.2.3). Annual: Yearly biopsies, and PRIAS: biopsies as per PRIAS protocol

(see Section .
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threshold at all follow-up visits is dominant over the PRIAS schedule, biennial
schedule of biopsies, and biopsies every one and a half years (see Table
for the latter two schedules). This personalized schedule not only schedules
fewer biopsies than the aforementioned currently practiced schedules, but
the delay in the detection of cancer progression is also either equal or less.
The personalized schedule, which uses the risk threshold chosen based on
classification accuracy (F; score) is dominant over the triennial schedule of
biopsies. The personalized schedule which uses a 5% risk threshold schedules
fewer biopsies than the annual schedule, while the delay is only trivially more
than the annual schedule.

3.4 Discussion

We proposed a methodology which better balances the number of biopsies,
and the delay in detection of cancer progression than the currently prac-
ticed biopsy schedules, for low-risk prostate cancer patients enrolled in active
surveillance (AS) programs. The proposed methodology combines a patient’s
observed DRE and PSA measurements, and the time of the latest biopsy,
into a personalized cancer progression risk function. If the cumulative-risk
of cancer progression at a follow-up visit is above a certain threshold, then a
biopsy is scheduled. We conducted an extensive simulation study, based on
a replica of the patients from the PRIAS program, to compare this person-
alized approach for biopsies with the currently practiced biopsy schedules.
We found personalized schedules to be dominant over many of the current
biopsy schedules (see Section [3.3).

The main reason for the better performance of personalized schedules
is that they account for the variation in cancer progression rate between
patients, and also over time within the same patient. In contrast, the exist-
ing fixed /heuristic schedules ignore that roughly 50% of the patients never
progress in the first ten years of follow-up (slow progressing patients) and do
not require biopsies. The fast progressing patients require early detection.
However, existing methods of identifying these patients, such as the use of
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PSA doubling time in PRIAS, inappropriately assume that PSA evolves lin-
early over time. Thus, they may not correctly identify such patients. The
personalized approach, however, models the PSA profiles non-linearly. Fur-
thermore, it appends information from PSA with information from DRE and
previous biopsy results and combines them into a single cancer progression
risk function. The risk function is a finer quantitative measure than individ-
ual data measurements observed for the patients. In comparison to decision
making with flowcharts, the risk as a single measure of a patient’s underlying
state of cancer may facilitate shared decision making for biopsies.

Existing work on reducing the burden of biopsies in AS primarily advo-
cates less frequent heuristic schedules (e.g., biopsies biennially instead of an-
nually) of biopsies (Inoue et al., [2018). To our knowledge, risk-based biopsy
schedules have barely been explored yet in AS (Nieboer et al., [2018; |Bruinsma
et al., 2016). The part of our results pertaining to the fixed/heuristic sched-
ules is comparable with corresponding results obtained in existing work (In-
oue et al., [2018), even though the AS cohorts are not the same. Thus,
we anticipate similar validity for the results pertaining to the personalized
schedules.

A limitation of the personalized approach is that the choice of risk thresh-
old is not straightforward, as different thresholds lead to different combina-
tions of the number of biopsies and the delay in the detection of cancer pro-
gression. An approach is to choose a risk threshold that leads to personalized
schedule dominant (e.g., 10% risk) over the currently practiced schedules,
for a given delay. Since personalized biopsy schedules are less burdensome,
they may lead to better compliance. A second limitation is that the results
that we presented are valid only in a ten year follow-up period, whereas
prostate cancer is a slowly progressing disease. Thus more detailed results,
especially for slow progressing patients, cannot be estimated. However, very
few AS cohorts have a longer follow-period than PRIAS (Bruinsma et al.,
2016). In a screening setting, often the ethno-racial background of the pa-
tient, as well as the history of cancer in first degree relatives, are checked.
Our model does not take into account either. The reason is that the history
of cancer in relatives been found to be predictive of cancer progression only
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in African-American patients (Goh et al| 2013} |Telang et al., 2017)). This is
also evident by the fact that PRIAS and many other surveillance programs do
not utilize this information in their biopsy protocols (Bokhorst et al., [2016;
Nieboer et al., 2018). In addition, patients who have a higher risk of an
aggressive form of cancer are usually not recommended active surveillance.
Hence the proposed model is relevant only for low-risk prostate cancer pa-
tients eligible for active surveillance. An exception is the active surveillance
patients who are old and/or have comorbid illnesses. Currently, such pa-
tients may be removed from active surveillance and are instead offered the
less intensive watchful waiting (Bokhorst et al., 2016) option. It is also pos-
sible to model watchful waiting as a competing risk in our model. However,
this falls outside the scope of the current work because cancer progression,
as detected via biopsy, is the standard trigger for treatment advice. Lastly,
our results are not valid when the patient data is missing not at random

(MNAR).

There are multiple ways to extend the personalized decision-making ap-
proach. For example, biopsy Gleason grading is susceptible to inter-observer
variation (Coley et al., [2017). Thus accounting for it in our model will be
interesting to investigate further. To improve the decision making method-
ology, future consequences of a biopsy can be accounted for in the model
by combining Markov decision processes with joint models for time-to-event
and longitudinal data. There is also a potential for including diagnostic in-
formation from magnetic resonance imaging (MRI), such as the volume of
the prostate tumor as a longitudinal measurement in our model. The re-
sulting predictions can be used to decide the time of the next MRI as well
as to make a decision of biopsy. The same holds true for the quality of life
measures as well. However, given the scarceness of both MRI and quality of
life measurements in the dataset, including them in the current model may
not be feasible. We intend further to validate our results in a multi-center
AS cohort and subsequently develop a web application to assist in making
shared decisions for biopsies.
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Appendix

3.A Parameter Estimation

We estimate the parameters of the joint model using Markov chain Monte
Carlo (MCMC) methods under the Bayesian framework. Let 6 denote the
vector of all of the parameters of the joint model. The joint model postulates
that given the random effects, the time to cancer progression, and the DRE
and PSA measurements taken over time are all mutually independent. Under
this assumption the posterior distribution of the parameters is given by:

n

=1
o< [Tp(li i | 6i,0)p(yy; | bi,0)p(y,, | bi, 0)p(b; | 8)p(8),
=1
1
p(b; | ) = exp(bl D7'b;),
(27)edet(D)
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where, the likelihood contribution of the DRE outcome, conditional on the
random effects is:

ngi €Xp {— Iogit{Pr(ydik > Tlc)}[(ydik = Tlc)]
P(Ya 1 6:;,0) = 1]
k=1 1+ exp {— Iogit{Pr(ydik > Tlc)}}

Y

where I(-) is an indicator function which takes the value 1 if the k-th re-
peated DRE measurement y4;, = T1c, and takes the value O otherwise. The
likelihood contribution of the PSA outcome, conditional on the random ef-
fects is:

1 Hyz_mzHZ
p(ypi | bzag) = Wexl)(_pozp ’

The likelihood contribution of the time to cancer progression outcome is
given by:

p(li, i | b;,0) = exp{ - /Oli hi(s)ds} - exp{ - /0” hi(s)ds}. (3.7)

The integral in does not have a closed-form solution, and therefore we
use a 15-point Gauss-Kronrod quadrature rule to approximate it.

We use independent normal priors with zero mean and variance 100 for
the fixed effects {5oq, - - -, B34, Bop, - - - » Bep}, and inverse Gamma prior with
shape and rate both equal to 0.01 for the parameter 2. For the variance-
covariance matrix D of the random effects we take inverse Wishart prior
with an identity scale matrix and degrees of freedom equal to 7 (number of
random effects). For the relative risk model's parameters {71,472} and the
association parameters {4, a1p, 2, }, we use independent normal priors

with zero mean and variance 100.

3.A.1 Parameter Estimates

The longitudinal evolution of log,(PSA+1) is modeled with non-linear terms,
and hence the interpretation of the coefficients in this model is not straight-
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forward. In the case of the evolution of DRE, the coefficients in the model
correspond to a patient with a random effect value equal to 0. That is, the
coefficients do not describe the marginal evolution of DRE over time. To
avoid these issues, instead of the parameter estimates, in Figure[3.8|and Fig-
ure[3.9 we present the fitted marginal evolution of probability of DRE > Tlc
and log,(PSA + 1), respectively, over a period of 10 years for a hypothetical
patient who is included in AS at the age of 70 years. In addition, we present
plots of observed versus fitted DRE and PSA profiles for nine randomly se-
lected PRIAS patients in Figure [3.10] and Figure [3.11] respectively. Lastly,
the quantile-quantile plot of subject-specific residuals in Figure [3.12] shows
that the assumption of t-distributed (df=3) errors is reasonably met by the
fitted model.

For the relative risk sub-model, the parameter estimates in Table|3.2|show
that both log,(PSA + 1) velocity, and the log odds of having DRE > Tlc
were significantly associated with the hazard of cancer progression. It is
important to note that since age, log,(PSA + 1) value and velocity, and
log odds of DRE > T1c are all measured on different scales, a comparison
between the corresponding parameter estimates is not easy. To this end,
in Table , we present the hazard (of cancer progression) ratio, for an
increase in the aforementioned variables from their first to the third quartile.
For example, an increase in log odds of DRE > Tlc, from -6.650 to -4.356
(fitted first and third quartiles) corresponds to a hazard ratio of 1.402. The
interpretation of the rest is similar.

3.A.2 Simulation Study Results

In the simulation study, we evaluate the following in-practice fixed /heuristic
approaches (lLoeb et al., [2014; Inoue et al., 2018) for biopsies: biopsy every
year, biopsy every one and a half years, biopsy every two years and biopsy
every three years. For the personalized biopsy approach, we evaluate three
fixed risk thresholds: 5%, 10%, and 15%, and a risk threshold was chosen
using F; score. Lastly, we also evaluate the PRIAS schedule of biopsies.
We compare all the aforementioned schedules on two criteria, namely the
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Figure 3.8: Fitted marginal evolution of the probability of obtaining a DRE
larger than Tlc, and the corresponding marginal log odds, with 95% credible
interval. These results are for a hypothetical AS patient who is included in AS at
the age of 70 years.
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Figure 3.9: Fitted marginal evolution of log,(PSA + 1) measurements over a
period of 10 years with 95% credible interval, for a hypothetical patient who is
included in AS at the age of 70 years.
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Figure 3.10: Observed DRE versus fitted probabilities of obtaining a DRE
measurement larger than Tlc, for nine randomly selected PRIAS patients. The
fitted profiles utilize information from the observed DRE measurements, PSA mea-
surements, and time of the latest biopsy. Observed DRE measurements plotted
against 0% probability are equal to Tlc. Observed DRE measurements plotted
against 100% probability are larger than Tlc.
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Figure 3.11: Fitted versus observed log,(PSA + 1) profiles for nine randomly
selected PRIAS patients. The fitted profiles utilize information from the observed
PSA measurements, DRE measurements, and time of the latest biopsy.
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Figure 3.12: Quantile-quantile plot of the subject-specific residuals from dif-
ferent joint models fitted to the PRIAS dataset. Panel A: model assuming a
t-distribution (df=3) for the error term ¢, Panel B: model assuming a normal

distribution for the error term ¢,,.
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Table 3.2: Parameters of the relative-risk sub-model: Estimated mean and
95% credible interval. Age is median centered.

Variable Mean Std. Dev  25% 97.5% P
(Age — 70) 0.012 0.006 0.000 0.022 0.045
(Age — 70)2 -0.001 0.001 -0.002 0.000 0.095
|ogit{Pr(DRE > Tlc)} 0.147 0.017 0.115 0.183 <0.001

Fitted log,(PSA + 1) value 0.104 0.078 -0.044 0.256  0.193
Fitted logy(PSA 4 1) velocity  3.396 0.564 2376 4.475 <0.001

Table 3.3: Hazard (of cancer progression) ratio and 95% credible interval
(CI), for an increase in the variables of relative risk sub-model, from their first
quartile (Qq) to their third quartile (Q3). Except for age, quartiles for all other
variables are based on their fitted values obtained from the joint model fitted to
the PRIAS dataset.

Variable Q Q3 Hazard ratio [95% ClI]

Age 65 75 1.129 [1.002, 1.251]
logit{Pr(DRE > T1c)} -6.650 -4.356  1.402 [1.301, 1.521]
logy(PSA+1) value 2336  3.053  1.079 [0.969, 1.201]
logy(PSA 4 1) velocity -0.032  0.161  1.938 [1.582, 2.372)

number of biopsies they schedule and the corresponding delay in detection of
cancer progression in years (time of positive biopsy - the true time of cancer
progression). The corresponding results, using 500 x 250 test patients are
presented in Table 3.4

3.B Source Code

The source code for fitting the joint model is available at https://github.

com/anirudhtomer/prias/blob/master/src/chapter3 mdmpaper/fittingModel
jmFit.R.
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Table 3.4: Simulation study results for all patients: Estimated first, second
(median), and third quartiles for number of biopsies (Q?b, QQb, ng) and for the

delay in detection of cancer progression (Q?elay, Qgelay, Qgelay), in years, for
various biopsy schedules. The delay is equal to the difference between the time
of the positive biopsy and the unobserved true time of progression. The results
in the table are obtained from test patients of our simulation study.

In-practice schedules‘Q'fb QQb ng Qijelay Qgelay Qgelay

Every year (annual) 3 10 10 0.3 0.5 0.8
Every 1.5 years 2 7 7 0.4 0.7 1.1
Every 2 years 2 5 5 0.6 1.1 1.5
Every 3 years 1 4 4 1.1 1.8 2.3
PRIAS 2 4 6 0.3 0.7 1.0
Personalized approach

Risk threshold: 5% 2 6 8 0.3 0.6 0.9
Risk threshold: 10% 2 4 5 0.3 0.7 1.0
Risk threshold: 15% 2 3 4 0.4 0.8 1.4
Risk using F; score 1 2 3 0.5 0.9 2.2

The code generating the simulation population is available at https://
github.com/anirudhtomer/prias/blob/master/src/chapter3 mdmpaper/
simulationStudy/controller.R.

The code for scheduling biopsies using fixed and risk based schedules is
available at https://github.com/anirudhtomer/prias/blob/master/
src/chapter3_mdmpaper/simulationStudy/schedules.R.
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TESTS

Abstract

Benchmark surveillance tests for diagnosing disease progression
(e.g., biopsies, endoscopies) in early-stage chronic non-communicable
diseases (e.g., cancer, lung diseases) are usually invasive. For detect-
ing progression timely, patients undergo invasive tests planned in a
fixed one-size-fits-all manner (e.g., annually). We present personal-
ized test schedules based on progression-risk, that aim to optimize
the number of tests (burden) and time delay in detecting progression
(shorter is beneficial) better than fixed schedules. Our motivation
comes from the problem of scheduling biopsies in prostate cancer
surveillance.

Using joint models for time-to-event and longitudinal data, we
consolidate patients’ longitudinal data (e.g., biomarkers) and results
of previous tests, into individualized future cumulative-risk of pro-
gression. We then create personalized schedules by planning tests on
future visits where the predicted cumulative-risk is above a thresh-
old (e.g., 5% risk). We update personalized schedules with data
gathered over follow-up. To find the optimal risk threshold, we mini-
mize a utility function of the expected number of tests (burden) and
expected time delay in detecting progression (shorter is beneficial)
for different thresholds. We estimate these two in a patient-specific
manner for following any schedule, by utilizing a patient’s predicted
risk profile. Patients/doctors can employ these quantities to compare
personalized and fixed schedules objectively.
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4.1 Introduction

Chronic non-communicable diseases (e.g., cancer, lung, cardiovascular dis-
eases) cause 60-70% of human deaths worldwide (WHO et al., 2014)). Often
patients diagnosed with an early-stage disease undergo surveillance tests to
detect disease progression timely. A progression is a non-terminal event, and
usually a trigger for treatment and/or removal from surveillance. Benchmark
tests used for confirming progression are usually invasive, e.g., biopsies in
prostate cancer surveillance (Bokhorst et al., [2015]), endoscopies in Barrett's
esophagus (Weusten et al., |2017)), colonoscopies in colorectal cancer (Krist
et al., 2007)), and bronchoscopies in post lung transplant (McWilliams et al.,
2008)) surveillance.

Invasive tests are repeated until progression is observed, typically as
per a one-size-fits-all fixed schedule, e.g., biannually, (Krist et al/| [2007;
McWilliams et al 2008; Bokhorst et al 2015). A time gap between tests
causes a time delay in detecting progression (Figure . A shorter delay in
detecting progression (benefit) can provide a larger window of opportunity
for curative treatment. However, with fixed schedules, this means conduct-
ing tests frequently. Frequent tests are burdensome as they may cause pain
and/or severe medical complications (Krist et al., 2007} |Loeb et al., 2013).
Consequently, patients may not always comply with frequent tests (Bokhorst
et al., 2015; |Le Clercq et al., 2015)). In general, because fixed schedules do
not differentiate between fast and slow/non-progressing patients, they im-
pose disproportionate burden/benefits across the patient population.

The goal of this work (Figure is to optimize the number of inva-
sive tests (burden) and the time delay in detecting progression (shorter is
beneficial) better than fixed schedules. Specifically, we intend to personal-
ize test schedules using patients’ clinical data accumulated over surveillance
follow-up. This data includes baseline characteristics, previous test results,
and longitudinal outcomes (e.g., biomarkers, medical imaging, physical ex-
amination). Many surveillance protocols currently personalize test schedules
using heuristic methods such as decision flowcharts (Bokhorst et al., [2015;
Weusten et al., [2017)). However, flowcharts discretize continuous outcomes,

103



4. PERSONALIZED SCHEDULES FOR BURDENSOME SURVEILLANCE
TESTS

A Annual tests, shorter delay

True time of

progression
5th test
Start 1st negative | 2nd negative J§ 3rd negative | 4th negative rogression
surveillance test test test test e
detected

4.

B Biannual tests, larger delay True time of

progression

: : 3rd test
Start 1st negative 2nd negative )
. progression
surveillance test test
detected

18 months delay
in| detecting progressipn

N N L )
N N N N N
yo“rL yb“q’ yo“q’ y&‘\(?’ yo‘\(L DR yo©

Time of test visits

Figure 4.1: Goal: Finding the optimal tradeoff between the number of in-
vasive tests (burden) and time delay in detecting progression (shorter is
beneficial). A progression is a non-terminal event in the surveillance of early-stage
chronic non-communicable diseases. The true time of progression for the patient
illustrated in this figure is July 2004. Since invasive tests are conducted repeatedly,
progression is interval-censored and always observed with a delay. Frequent period-
ical invasive tests in Panel A lead to a shorter time delay in detecting progression
than infrequent periodical invasive tests in Panel B. The interval-censored time
of progression is Jan 2004—Jan 2005 in Panel A and between Jan 2004—Jan 2006

in Panel B.
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often exploit only the last measurement, ignore the measurement error in
observed data, and plan only one test at a time. Alternatively, a complete
personalized schedule of tests can be obtained using partially observable
Markov decision processes or POMDPs (Alagoz et al., 2010; |Steimle and
Denton, 2017). Although POMDPs typically discretize continuous longi-
tudinal outcomes to avoid the curse of dimensionality. In scenarios such
as ours, where decisions (test/no test) and disease state (low-grade dis-
ease/progressed) are both binary, POMDPs may not be necessary either.
The reason is that such POMDPs give the same optimal schedule, which
can be alternatively obtained by just planning a test when the probability
of transition from non-progressed to progressed state is more than a certain
threshold (see Vickers and Elkin, 2006, Equation 1).

Personalized schedules can also be obtained by optimizing an explicit
utility function of the burden and/or benefit of a schedule. A challenge in
this approach is quantifying burden and benefit. For a single test decision,
Tomer et al|(2019a) quantify the burden and benefit as the time difference
by which the test undershoots (unnecessary test) or overshoots (delayed
detection) the true progression time of a patient, respectively. Whereas,
for a complete test schedule, |Bebu and Lachin| (2017)) quantify burden as
the number of tests planned (or their cost), and benefit as short time delay
in detecting progression. Although, unlike the number of tests, the costs
of time delay in detecting progression are not always quantifiable. For this
issue, Bebu and Lachin| (2017)), and Vickers and Elkin| (2006]) have proposed
scheduling tests when the risk of progression is above a threshold. Risk-based
methodologies has also been explored by Rizopoulos et al. (2015), and to
evaluate the choice of risk thresholds Wang et al.| (2019) and Tomer et al.
(2019b) use measures of diagnostic accuracy (e.g., false-positive rate, true
positive rate). However, a limitation of risk-based test decisions is that a
single decision does not inform patients about the clinical consequences of
continuing on surveillance. Also, measures of diagnostic accuracy are not
personalized criteria for choosing risk thresholds.

We improve upon the works referenced above in many ways. Instead
of a single risk-based test decision, we derive full risk-based test schedules
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that dynamically update with new clinical data over follow-up. Along with
each schedule, we provide patients the clinical consequences of following
it. Namely, the expected number of tests that will be required out of all
planned tests to detect progression and the expected time delay in detecting
progression. Unlike measures of diagnostic accuracy, we calculate these in a
personalized manner. Also, these two are easily-quantifiable surrogates for
important clinical aspects such as the window of opportunity for curative
treatment, risk of adverse outcomes due to delayed detection of progression,
financial costs of tests, risk of side-effects, and reduction in quality of life, etc.
Our methodology is as follows. We first develop a full specification of the
joint distribution of the patient-specific longitudinal outcomes and the time
of progression. To this end, we utilize joint models for time-to-event and lon-
gitudinal data (Tsiatis and Davidian, |2004; Rizopoulos, [2012)) because they
are inherently personalized. Specifically, joint models utilize patient-specific
random effects (McCulloch and Neuhaus, 2005)) to model longitudinal out-
comes without discretizing them. Subsequently, we input clinical data of a
new patient into the fitted model to obtain their predicted patient-specific
cumulative-risk of progression at future visits. We then create personalized
schedules by planning tests on future visits where this predicted cumulative-
risk is above a particular threshold (e.g., 5% risk). We automate the choice
of this threshold and the resulting schedule. In particular, we optimize a
utility function of the expected number of tests (burden) and time delay in
detecting progression (shorter is beneficial) for personalized schedules. We
estimate these two quantities for any given schedule in a patient-specific
manner using the patient’s predicted risk profile. Hence, patients/doctors
can compare the consequences of opting for personalized versus fixed sched-
ules objectively.

Our motivation comes from the problem of scheduling biopsies in the
world’s largest prostate cancer surveillance study, called Prostate Cancer Re-
search International Active Surveillance (Bokhorst et al., [2015), or PRIAS. It
has 7813 low/very-low grade cancer patients (1134 progressions, 104904 lon-
gitudinal measurements), many of whom are potentially over-diagnosed due
to prostate-specific antigen (PSA) based screening (Loeb et al., 2014a)). To
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reduce subsequent over-treatment, in surveillance, serious treatments (e.g.,
surgery, radiotherapy) are delayed until progression is observed. Surveillance
involves regular monitoring of a patient’s PSA (ng/mL), digital rectal exami-
nation or DRE (tumor shape/size), and biopsy Gleason grade group (Epstein
et al., 2016). Among these, a biopsy Gleason grade group > 2 is the ref-
erence test for confirming progression. Most often, biopsies are scheduled
annually (Loeb et al., 2014b)). However, such a frequent schedule can put
an unnecessary burden on patients with slow/non-progressing cancers and
cause non-compliance (Bokhorst et al., [2015]). Since prostate cancer has the
second-highest incidence among all cancers in males (Torre et al., 2015), in-
dividualized biopsy schedules can reduce the burden of biopsies in numerous
patients worldwide.

The remaining paper is as follows. Section introduces the joint mod-
eling framework. We describe the personalized scheduling methodology in
Section [4.3] and demonstrate them for prostate cancer surveillance patients
in Section [4.4] In Section [4.5] we compare personalized and fixed schedules
via a simulation study based on a joint model fitted to the PRIAS dataset.

4.2 Joint Model for Time-to-Progression and
Longitudinal Outcomes

Let 77 denote the true time of disease progression for the i-th patient.
Progression is always interval censored I; < T} < r; (Figure . Here, r;
and [; denote the time of the last and second last invasive tests, respec-
tively, when patients progress. In non-progressing patients, /; denotes the
time of the last test and r; = co. Assuming K types of longitudinal out-
comes, let y,,; denote the ny; x 1 longitudinal response vector of the k-th
outcome, k € {1,..., K}. The observed data of all n patients is given by

An:{l27rz7yll7"'yKZ;Z: 1,...,TL}.
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4.2.1 Longitudinal Sub-process

To model multiple longitudinal outcomes in a unified framework, a joint
model employs individual generalized linear mixed sub-models (McCulloch
and Neuhaus, [2005). Specifically, the conditional distribution of the k-th
outcome y,,; given a vector of patient-specific random effects by, is assumed
to belong to the exponential family, with linear predictor given by,

g [E{yki(t) | bki}} = mi(t) = 2,() By, + 21, ()b,

where gi(-) denotes a known one-to-one monotonic link function, y;(t) is
the value of the k-th longitudinal outcome for the i-th patient at time ¢, and
x1i(t) and zy;(t) are the time-dependent design vectors for the fixed 8, and
random effects by;, respectively. To model the correlation between different
longitudinal outcomes, we link their corresponding random effects. Specif-
ically, we assume that the vector of random effects b; = (by;,...,by;)"
follows a multivariate normal distribution with mean zero and variance-
covariance matrix W.

4.2.2 Survival Sub-process

In the survival sub-process, the hazard of progression h;(t) at a time ¢ is
assumed to depend on a function of patient and outcome-specific linear
predictors my;(t) and/or the random effects,

hi{t | Mi(t), wit)} = ho(t) exp |y w;(t)

-+ i fk{/\/lm(t),w,-(t),bki,ak”, t > O,
k=1

where ho(-) denotes the baseline hazard, My;(t) = {mg(s) | 0 < s < t}
is the history of the k-th longitudinal process up to ¢, and w;(t) is a vector
of exogenous, possibly time-varying covariates with regression coefficients
~. Functions fi(-), parameterized by vector of coefficients ay, specify the
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features of each longitudinal outcome that are included in the linear predictor
of the relative-risk model (Brown, |2009; Rizopoulos, 2012; Taylor et al.,
2013). Some examples, motivated by the literature (subscripts & dropped
for brevity), are,

fAMi(t), wi(t), by, ap = am;(t),
FIM(t), w;i(t), by, ap = aym(t) + aaml(t), with mi(t) = dm(t)

at
These formulations of f(-) postulate that the hazard of progression at time ¢
may depend on underlying level m;(t) of the longitudinal outcome at ¢, or on
both the level and velocity m/(t) (e.g., PSA value and velocity in prostate
cancer) of the outcome at ¢. Lastly, the baseline hazard h(t) is modeled
flexibly using P-splines (Eilers and Marx, 1996)). Lastly, ho(t) is the baseline
hazard at time ¢, and is modeled flexibly using P-splines (Eilers and Marx,
1996)). More specifically:

Q
10g ho(t) = Yhoo + Y YhoaBa(t, v),

q=1
where B,(t,v) denotes the g-th basis function of a B-spline with knots v =
v1, ..., 0o and vector of spline coefficients 7;,. To avoid choosing the num-
ber and position of knots in the spline, a relatively high number of knots
(e.g., 15 to 20) are chosen and the corresponding B-spline regression co-
efficients vy, are penalized using a differences penalty (Eilers and Marx,
1996)). The joint parameter estimation of the longitudinal and relative-risk
sub-models using the Bayesian approach are presented in Appendix 4.A]

4.3 Personalized Schedule of Invasive Tests
for Detecting Progression

4.3.1 Cumulative-risk of progression

Using the joint model fitted to the training data A,,, we aim to derive a per-
sonalized schedule of invasive tests for a new patient j with true progression
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time T]* To this end, our calculations exploit the cumulative-risk function.
Let ¢ < T be the time of the last conducted test at which progression
was not observed. Let {);(v),...,Vk;(v)} denote the history of observed
longitudinal data up to the current visit time v. The current visit can be
after the last negative test, i.e., v > t (e.g., PSA after negative biopsy in
prostate cancer). The cumulative-risk of progression for patient j at future
time wu is then given by,

Rj(u] t,v) = Pr{T; < u|T} >t Vy;(0), ... Vij(v), An}
://Pr(T;gu\Tpt,bj,e)

< p{b; | T7 >, 21;(v),..., Vi;(v), 0}
x p(0 | A,)db;d0, u > t. (4.1)

The cumulative-risk function R;(-) depends on patient-specific clinical data
and the training dataset, via the posterior distribution of the random effects
b; and posterior distribution of the vector of all parameters € of the fitted
joint model, respectively. This cumulative-risk function is dynamic, in the

sense that it automatically updates over time as more longitudinal data
become available (Figure [4.2)).

4.3.2 Personalized Test Decision Rule

We intend to exploit the cumulative-risk function R;(-) to develop a risk-
based personalized schedule of invasive tests for the j-th patient. Typically,
invasive tests are decided on the same visit times on which longitudinal data
(e.g., biomarkers) are measured. Let U = {uy,...,u} represent a schedule
of such visits (e.g., biannual PSA measurement in prostate cancer). Here,
u; = v is also the current visit time. The maximum future visit time wur,
can be chosen based on the available information in the training dataset A,,.
That is, tests for the new patient j are planned only up to a future visit time
uy, at which a sufficient number of events in A, are available for making
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Figure 4.2: Cumulative-risk of progression updated dynamically over follow-
up as more patient data is gathered. A single longitudinal outcome, namely,
a continuous biomarker of disease progression, is used for illustration. Pan-
els A, B and C: are ordered by the time of the current visit v (dashed vertical
black line) of a new patient. At each of these visits, we combine the accumulated
longitudinal data (shown in blue circles), and time of the last negative invasive
test ¢t (solid vertical green line) to obtain the updated cumulative-risk profile
R;(u | t,v) (dotted red line with 95% credible interval shaded) of the patient
defined in . All values are illustrative.
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reliable risk predictions (e.g., up to the 80% or 90% percentile of progression
times).

We propose to take the decision of conducting a test at a future visit
time u; € U if the cumulative-risk of progression at time w; exceeds a certain
risk threshold ~ (Figure . In particular, the test decision at time u; is
given by,

Q5(ur | t,v) = I{R;(ur | t1,0) > K}, 0< k<1, (4.2)

where I(-) is the indicator function, R;(w; | t;,v) is the cumulative-risk
of progression at the current decision time wu;, and t; < wu; is the time
of the last test conducted before u;. Thus, the future time at which a
test will be planned, depends on both the threshold « and the cumulative-
risk of the patient. Moreover, when a test gets planned at time uy, i.e.,
Q% (w | t;,v) = 1, then the cumulative-risk profile is updated before making
the next test decision at time u;, 1 (Figure . Specifically, the cumulative-
risk at time w;,1 is updated by setting the corresponding time of the last
test t;.1 = u;. This accounts for the possibility that progression may occur
after time u; < Tj* Hence, the time of last test ¢; is defined as,

t, ifl=1,
tl = Ur—1, if Z 2 and Qf(ul_l | tl_l,U) = 1,
tlfl, if [ Z 2 and Q;(ul,1 | tl,l,v) =0.

We should note that in all future test decisions, we use only the observed
longitudinal data up to the current visit time v, i.e., {1;(v), ..., Yk;(v)}.

4.3.3 Expected Number of Tests and Expected Time
Delay in Detecting Progression

To facilitate shared-decision making of invasive tests, we translate our pro-
posed decision rule, i.e., the choice of a specific risk threshold k, into two
clinically relevant quantities. First, the number of tests (burden) we expect
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Figure 4.3: Successive personalized test decisions based on patient-specific
cumulative-risk of progression (4.2). Time of current visit: v = 2.5 years
(dashed vertical black line). Time of the last test on which progression was
not observed: ¢ = 1.5 years. Longitudinal data up to current visit: Y;(v) is
a continuous biomarker (blue circles). Example risk threshold: x = 0.12 (12%).
Grid of future visits on which future tests are planned: U = {2.5,3.5,4.5,5.5,6.5}
years. The cumulative-risk profiles R;(v; | t;,v) employed in are shown with
dotted red lines (95% credible intervals shaded), and are updated each time a test
is planned (solid vertical green lines). Future test decisions Q;(u; | ¢;,v) defined
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6.5 | t5 = 4.5,v) = 0. All values are illustrative.
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to perform for patient j, and second, if the patient progresses, the time delay
(shorter is beneficial) expected in detecting progression. To calculate these
two quantities, we first suppose that patient j does not progress between his
last negative test at time ¢ and the maximum future visit time u;. Under this
assumption, the subset of future visit times in U on which a test is planned
using results into a personalized schedule of future tests (Figure [4.3),
given by:

{s1,-sn b = {w €U Qf(u | t,0) =1}, N; <L (4.3)

If patient j never progressed in the period [¢, uy ], as we initially supposed,
all Nj testsin {sy,..., sy, } will be conducted. However, fewer tests will be
performed if the patient did progress at some point 77" < uz. We formally
define the discrete random variable N denoting the number of performed
tests in conjunction with the true progression time 77" as,

1, if t< T']* < s1,
27 if s1<Tr < Sa,
A/}(Sj) = ’
Nj if SN;-1 <T‘j*§SNj,
where S5 = {si,...,sn;} is the schedule of planned future tests. The

expected number of future tests for patient j will be the expected value
E{/\/J(Sf)} given by the expression,

Nj
E{N}(Sj)} = n x Pr(s, 1 <T; < s, | T! <sn,), so=t,

n=1
where
Ri(sp | t,v) — Rj(sn—1 | t,v)
Rj(sn; | t,v) '

Pr(sn—1 <Tj < s, |T; <sn;) =

Similarly, we can define the expected time delay in detecting progression,
under the assumption that progression occurs before uy. Specifically, the
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random variable time delay is equal to the difference between the time of
the test at which progression is observed and the true time of progression
T}, and is given by,

81—]?(, ift<Tj*§51,
sy — 17, if s1 <T; < sy,

* H *
sy, — T3, if snyo1 < T} < sn;,

The expected time delay in detecting progression is the expected value of
Dj(Sf), given by the expression,

Nj
E{Dj(Sf)} = z_:l {sn—E(T]fk | sn_l,sn,v)}xPr(sn_l <T; < s, |T; <sp),

where E(T} | s,—1,5,,v) denotes the conditional expected time of progres-
sion for the scenario s,,_1 < T]* < s,, and is calculated as the area under the
corresponding survival curve,

Sn
E(,I}* ’ Sn—178n7v) = Sp—1 +/ Pr{j—}* 2 u | Sn—1 < 7}* S Sn
Sn—1

Vi (v), ..., Vij(v), An}du.

The personalized schedule in , and the corresponding personalized
expected number of tests and time delay, have the advantage of getting up-
dated with newly collected data over follow-up. Also, the expected number
of tests and time delay can be calculated for any schedule, fixed or personal-
ized. Hence, patients/doctors can use them to compare different schedules.
Although, a fair comparison of time delays between different schedules for
the same patient, requires a compulsory test at a common horizon time point
in all schedules.
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4.3.4 How to Select the Risk Threshold ~

The risk threshold  controls the timing and the total number of invasive
tests in the personalized schedule S7. Through the timing and the total
number of planned tests, x also indirectly affects the potential time delay
(Figure in detecting progression if a particular schedule is followed.
Hence, k should be chosen while balancing both the number of invasive tests
(burden) and the time delay in detecting progression (shorter is beneficial).

To facilitate the choice of x in practice, following our developments in
the previous section, we translate the different choices for threshold « into
the expected number of tests and time delay. In particular, for a patient
J having data available up to his current visit time v, we can construct a
bi-dimensional Euclidean space of his expected total number of tests (x-
axis) and expected time delay in detecting progression (y-axis), for different
personalized test schedules obtained by varying « in [0, 1], e.g., Figure .

The ideal schedule for j-th patient is the one in which only one test
is conducted, at exactly the true time of progression 7. In other words,
the time delay will be zero. If we weigh the expected number of tests and
time delay as equally important, then we can select as the optimal threshold
at current visit time v, the threshold x*(v) which minimizes the Euclidean
distance between the ideal schedule, i.e., point (1, 0) and the set of points
representing the different personalized schedules S¥ corresponding to various
Kk €[0,1], i.e.,

2

k*(v) = arg Minge,; \/ [E{Nj(s;)} - 1}2 + [E{Dj(Sﬂ)} - o] . (4.4)

In certain scenarios, patients/doctors may be apprehensive about undergo-
ing more than a maximum expected number of future tests, or having an
expected time delay higher than certain months. For such purposes, the Eu-
clidean distance in (|4.4)) can be optimized under constraints on the expected
number of tests or expected time delay (Figure . Doing so alleviates two
problems, namely, that the time delay and the number of tests have different
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units of measurement, and that in they are weighted equally (Cook and
Wong, 1994).

We considered shorter delays in detecting progression as the benefit of
repeated tests. However, it is also common to describe the benefit of test-
ing in terms of decision-theoretic measures such as quality-adjusted life-
years/expectancy (QALY/QALE) gained (Sassi, 2006). Optimizing
with QALE needs, setting the optimal point in a Euclidean space with QALE
as a dimension, and obtaining expected QALEs for different schedules. For
estimating the expected QALE in a personalized manner, a mathematical
definition of QALE in terms of time delay D; in detecting progression (de Car-
valho et al., [2017b)) is required.

4.4 Application of Personalized Schedules in
Prostate Cancer Surveillance

We next demonstrate personalized schedules for scheduling biopsies in prostate
cancer active surveillance. To this end, we use results from a joint model
fitted to the PRIAS dataset introduced in Section [£.1l The model definition
(Appendix utilized a linear mixed sub-model for biannually measured
PSA (continuous: log-transformed from ng/mL), and a logistic mixed sub-
model for biannually measured DRE (binary: tumor palpable or not). In the
survival sub-model, fitted PSA value, fitted instantaneous PSA velocity (de-
fined in Section [4.2.2)), and log-odds of having a DRE indicating a palpable
tumor, were included as time-dependent predictors. The model parameters
were estimated under the Bayesian framework using the R package JM-
bayes (Rizopoulos|, [2016]), and are presented in Appendix [4.B.1] We next
briefly present the key results relevant for personalized scheduling.

First, the cause-specific cumulative-risk of cancer progression at the max-
imum study period of ten years was 50% (Figure . This indicates that
many patients may not require all of the yearly biopsies they are usually
prescribed. Since personalized schedules are risk-based, their overall perfor-
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mance is dependent on the predictive accuracy and discrimination capacity of
the fitted model. In this regard, the model had a moderate time-dependent
area under the receiver operating characteristic curve or AUC (Rizopoulos
et al., 2017) over the follow-up period (between 0.61 and 0.68). The time-
dependent mean absolute prediction error or MAPE (Rizopoulos et al., 2017)
was moderate to large (between 0.08 and 0.24) and decreased rapidly after
year one of the follow-up. Thus, personalized schedules based on this model
may work better after year one with more follow-up data. Details on AUC
and MAPE are provided in Appendix [5.C.1]

4.4.1 Personalized Biopsy Schedules for a
Demonstration Prostate Cancer Patient

We utilized the joint model fitted to the PRIAS dataset to schedule biopsies
in a demonstration prostate cancer patient shown in Figure [4.5] The time
of his last negative biopsy was t = 3.5 years, and the time of the current
visit was v = 5 years. We made biopsy decisions over his future visits for
PSA measurement U = {u; = 5,us = 5.5,...,u;, = 10} years using four
different schedules. Two of the fixed schedules are annual biopsy schedule
and the PRIAS schedule. The PRIAS schedule has compulsory biopsies at
year one, four, seven, and ten of follow-up, and additional annual biopsies
if PSA doubling-time (Bokhorst et al., 2015) is high. Remaining two sched-
ules are personalized, namely, with a fixed threshold x = 10% risk, and an
automatically chosen current visit time v specific risk x*(v) (Section [4.3.4)).
Since the demonstration patient’s time of last negative biopsy ¢t = 3.5 is
after year one of follow-up, a time delay in detecting progression up to three
years may not lead to adverse downstream outcomes (de Carvalho et al.,
2017a)).

The cumulative-risk of progression of the demonstration patient increases
3% yearly on average, up to 19% at the maximum study period of ten years.
Hence, the patient may progress slowly. Consequently, risk-based person-
alized approaches plan fewer biopsies than the annual schedule (Panel B,
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Figure 4.5: Personalized schedules for a demonstration prostate cancer pa-
tient. Panel A: Current visit: v = 5 years. Last negative biopsy: ¢t = 3.5 years.
Longitudinal data: logy(PSA + 1) transformed (Tomer et al., 2019b) PSA (ob-
served: blue dots, fitted: dashed blue line), binary DRE (observed: blue triangles,
fitted probability: dotted blue line). Cumulative-risk profile: solid red line (95%
credible interval shaded). Panel B: ‘B’ indicates a planned biopsy. x = 10% and
k*(v) are personalized biopsy schedules using a risk threshold of 10%, and a visit
time v specific automatic threshold , respectively. PRIAS biopsy schedule
is defined in Section Panel C,D: For all schedules we calculate the ex-

ted number of tests and expected time delay in detecting progression if the
patient progresses before year ten. With a recommended minimum gap of one
year between biopsies, maximum possible number of tests are six.



4.5. Simulation Study

Figure . Also, the time delay in detecting progression for personalized
schedules (Panel D, Figure is below the safe limit of three years men-
tioned earlier. Thus, personalized schedules can be a suitable alternative to
the annual schedule.

4.5 Simulation Study

Although we evaluated personalized schedules for a demonstration patient,
we also intend to analyze and compare personalized and fixed schedules in
a full cohort. Our criteria for comparison of schedules are the total number
of invasive tests planned (burden), and the actual time delay in detecting
progression (shorter is beneficial) for each schedule. Due to the periodical
nature of schedules, the actual time delay in detecting progression cannot be
observed in real-world surveillance. Hence, instead, we compare personalized
versus fixed schedules via an extensive simulated randomized clinical trial
in which each hypothetical patient undergoes each schedule. To keep our
simulation study realistic, we employ the prostate cancer active surveillance
scenario. Specifically, our simulated population is generated using the joint
model fitted to the PRIAS cohort (Appendix [4.B.2).

4.5.1 Simulation Setup

From the simulation population, we first sample 500 datasets, each represent-
ing a hypothetical prostate cancer surveillance program with 1000 patients
in it. We generate a true cancer progression time for each of the 500 x 1000
patients, and then sample longitudinal DRE and PSA measurements bian-
nually (PRIAS protocol) for them. We split each dataset into training (750
patients) and test (250 patients) parts, and generate a random and non-
informative censoring time for the training patients. All training and test
patients also observe Type-| censoring at year ten of follow-up (current study
period of PRIAS). We next fit a joint model of the same specification as the
model fitted to PRIAS (Appendix[4.B.2)), to each of the 500 training datasets
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and retrieve MCMC samples from the 500 sets of the posterior distribution
of the parameters. In each of the 500 hypothetical surveillance programs,
we utilize the corresponding fitted joint models to obtain the cumulative-risk
of progression in each of the 500 x 250 test patients. These cumulative-risk
profiles are further used to create personalized biopsy schedules for the test
patients.

For each test patient, we conduct hypothetical biopsies using two fixed
(PRIAS and annual schedule) and three personalized biopsy schedules. Per-
sonalized schedules are based on, a fixed risk threshold x = 10%, an op-
timal current visit time v specific threshold x*(v) chosen via (4.4), and
an optimal threshold obtained under the constraint that expected time de-
lay in detecting progression is less than 0.75 years (9 months), denoted
k*{v | E(D) < 0.75}. The choice of 0.75 years delay constraint is arbitrary
and is only used to illustrate that applying the constraint limits the average
delay at 0.75 years. Successive personalized biopsy decisions are made only
on the standard PSA follow-up visits, utilizing clinical data accumulated only
until the corresponding current visit time . We maintain a minimum rec-
ommended gap of one year between consecutive prostate biopsies (Bokhorst
et al., 2015) as well. Biopsies are conducted until progression is detected, or
the maximum follow-up period at year ten (horizon) is reached. The actual
time delay in detecting progression is equal to the difference in time at which
progression is detected and the actual (simulated) time of progression of a
patient.

4.5.2 Simulation Results

In the simulation study, nearly 50% of the patients observed progression
during the ten year study period (progressing) and 50% did not (non-
progressing). While we can calculate the total number of biopsies scheduled
in all 500 x 250 test patients, the actual time delay in detecting progression
is available only for progressing patients. Hence, we show the simulation
results separately for progressing and non-progressing patients (Figure .
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Before discussing delay in detecting progression (Panel A, Figure ,
we note that mean delay up to 1.7 years in all patients (Inoue et al., 2018),
and up to three years in patients who progress after year one of follow-
up (de Carvalho et al., [2017a)), may not increase risks of adverse outcomes
later. In this regard, the annual biopsies guarantee a maximum delay of
one year in all patients. However, they also schedule the highest number of
biopsies (Median 3, Inter-quartile range or IQR: 1-6). Much fewer biopsies
are planned by the PRIAS schedule (Median 2, IQR: 1-4), but it also has
a higher time delay (Median 0.74, IQR: 0.38-1.00 years). The personalized
schedule based on optimal risk threshold x*(v) schedules fewer biopsies than
PRIAS and has a delay (Median 0.86, IQR: 0.46-1.26 years) slightly higher
than PRIAS. The expected delay for risk threshold optimized with a con-
straint on expected delay x*{v | E(D) < 0.75} is equal to 0.61 years, i.e.,
the constraint works as expected.

The simulated non-progressing patients (Panel B, Figure gained the
most with personalized schedules. The annual schedule plans 10 (unneces-
sary) biopsies for each such patient, and the PRIAS schedule plans a median
of 6 (IQR: 4-8) biopsies. In contrast, the personalized schedule based on
optimized risk threshold x*(v) plans fewer biopsies consistently (Median 6,
IQR: 6-7). The 10% threshold based schedule plans even fewer biopsies
(Median 5, IQR: 4-6).

4.6 Discussion

In this paper, we presented a methodology to create personalized schedules
for burdensome diagnostic tests used to detect disease progression in early-
stage chronic non-communicable disease surveillance. For this purpose, we
utilized joint models for time-to-event and longitudinal data. Our approach
first combines a patient’s clinical data (e.g., longitudinal biomarkers) and
previous invasive test results to estimate patient-specific cumulative-risk of
disease progression over their current and future follow-up visits. We then
plan future invasive tests whenever this cumulative-risk of progression is
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Figure 4.6: Number of biopsies and the time delay in detecting cancer pro-
gression for various biopsy schedules obtained via a simulation study. Mean is
indicated by the orange circle. Time delay (years) is calculated as (time of positive
biopsy - the actual simulated time of cancer progression). Biopsies are conducted
until cancer progression is detected. Panel A: simulated patients who obtained
cancer progression in the ten year study period (progressing). Panel B: simu-
lated patients who did not obtain cancer progression in the ten year study period
(non-progressing). Types of schedules: x = 10% and x*(v) schedule a biopsy
if the cumulative-risk of cancer progression at the current visit time v is more
than 10%, and an automatically chosen threshold (4.4)), respectively. Schedule
k*{v | E(D) < 0.75} is similar to x*(v) except that the euclidean distance in (4.4))
is minimized under the constraint that expected delay in detecting progression is at
most 9 months (0.75 years). Annual corresponds to a schedule of yearly biopsies,
134 PRIAS corresponds to biopsies as per PRIAS protocol (Section .



4.6. Discussion

predicted to be above a certain threshold. We select the risk threshold
automatically in a personalized manner, by optimizing a utility function of the
patient-specific consequences of choosing a particular risk threshold based
schedule. These consequences are, namely, the number of invasive tests
(burden) planned in a schedule, and the expected time delay in detection of
progression (shorter is beneficial) if the patient progresses. Last, we calculate
this expected time delay in a personalized manner for both personalized and
fixed schedules to assist patients/doctors in making a more informed decision
of choosing a test schedule.

Using joint models gives us certain advantages. First, since joint models
employ random-effects, the corresponding risk-based schedules are inherently
personalized. Second, to predict this patient-specific risk of progression, joint
models utilize all observed longitudinal measurements of a patient. Also, the
continuous longitudinal outcomes are not discretized, which is commonly a
case in Markov Decision Process and flowchart-based test schedules. Third,
personalized schedules update automatically with more patient data over
follow-up. Fourth, we calculated the expected number of tests (burden)
and expected time delay in detecting progression (shorter is beneficial) in a
patient-specific manner. Using our methodology, these can be calculated for
both personalized and fixed schedules. Thus, patients/doctors can compare
risk-based and fixed schedules and choose one according to their preferences
for the expected burden-benefit ratio. Last, although this work concerns
invasive test schedules in disease surveillance, the methodology is generic for
use under a screening setting as well.

Personalized schedules that we proposed require a risk threshold. We
optimized the threshold choice using a generic utility function based on the
expected number of biopsies and time delay in detecting progression. We
used only these two measures because they are easy to interpret but simulta-
neously critical for deciding the timing of invasive tests. Also, the time delay
in detecting progression is an easily-quantifiable surrogate for the window
of opportunity for curative treatment and additional benefits of observing
progression early. Practitioners may extend/modify our utility function by
adding to/replacing time delay with commonly used decision-theoretic mea-
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sures such as quality-adjusted life-years/expectancy (QALY/QALE).

We evaluated personalized schedules in a full cohort via a realistic simu-
lation of a randomized clinical trial for prostate cancer surveillance patients.
We observed that personalized schedules reduced many unnecessary biopsies
for non-progressing patients compared to the widely used annual schedule.
This happened at the cost of simultaneously having a slightly longer time
delay in detecting progression. Although, this delay should still be safe be-
cause it was almost equal to the delay of the world’s largest prostate cancer
active surveillance program PRIAS's schedule. The simulation study results
are by no means the performance-limit of the personalized schedules. In-
stead, models with higher predictive accuracy and discrimination capacity
than the PRIAS based model may lead to an even better balance between
the number of tests and the time delay in detecting progression. As for the
practical usability of the PRIAS based model in prostate cancer surveillance,
despite the moderate predictive performance, we expect this model's overall
impact to be positive. There are two reasons for this. First, the risk of
adverse outcomes because of personalized schedules is quite low because of
the low rate of metastases and prostate cancer specific mortality in prostate
cancer patients (Bokhorst et al., 2015). Second, studies (de Carvalho et al.,
2017a; Inoue et al., 2018) have suggested that after the confirmatory biopsy
at year one of follow-up, biopsies may be done as infrequently as every two
to three years, with limited adverse consequences. In other words, longer
delays in detecting progression may be acceptable after the first negative
biopsy.

There are certain limitations to this work. First, in practice, most co-
horts have a limited study period. Hence, the cumulative-risk profiles of
patients and resulting personalized schedules can only be created up to the
maximum study period. For this problem, the risk prediction model should
be updated with more follow-up data over time. The proposed joint model
assumed all events other than progression to be non-informative censoring.
Alternative models that account for competing risks may lead to better re-
sults as they estimate absolute and not the cause-specific risk of progression.
The detection of progression is susceptible to inter-observer variation, e.g.,
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pathologists may grade the same biopsy differently. Progression is sometimes
obscured due to sampling error, e.g., biopsy results vary based on location
and number of biopsy cores. Although models that account for inter-observer
variation (Balasubramanian and Lagakos, 2003) and sampling error (Coley
et al., 2017)) will provide better risk estimates, the methodology for obtained
personalized schedules can remain the same.

Acknowledgements The first and last authors would like to acknowledge
support by Nederlandse Organisatie voor Wetenschappelijk Onderzoek (the
national research council of the Netherlands) VIDI grant nr. 016.146.301,
and Erasmus University Medical Center funding. Part of this work was car-
ried out on the Dutch national e-infrastructure with the support of SURF
Cooperative. The authors also thank the Erasmus University Medical Cen-
ter's Cancer Computational Biology Center for giving access to their IT-
infrastructure and software that was used for the computations and data
analysis in this study. Last, we would like to thank the PRIAS consortium
for enabling this research project.

Appendix

4.A Parameter Estimation

We estimate the parameters of the joint model using Markov chain Monte
Carlo (MCMC) methods under the Bayesian framework. Let 6 denote the
vector of all of the parameters of the joint model. The joint model postulates
that given the random effects, the time to progression, and all of the longi-
tudinal measurements taken over time are all mutually independent. Under
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this assumption the posterior distribution of the parameters is given by:

n

p(6,b | D,) H Ly 76 Yris - - - Y | b3, @)p(bi | 0)p(0)

1:[ p(li, s | b;, 9)P(ym‘ ’ b, 9)P(bi | 9)19(9);
1
\/(2m)Widet(D)

H,’:]: i

p(b; | ) = exp(b; D™'b;),

where, the likelihood contribution of the k-th longitudinal outcome vector y,;
for the i-th patient, conditional on the random effects is:

N ijwijbi— wzbl
p(Yy: | bi,0) = Hexp [yk ij (Dk lk<;l;{ k]( k)}

— dj, (ykija W)] )

where ny; are the total number of longitudinal measurements of type k for
patient . The natural and dispersion parameters of the exponential family
are denoted by y;;(by; and ¢, respectively. In addition, cx(-), ax(-), di(-)
are known functions specifying the member of the exponential family. The
likelihood contribution of the time to progression outcome is given by:

pltrs 16,0) = exp [ [ hils | Mu(e)wi(0) s
~exp [— /0 hifs | Mi(t),wi(t)}ds} (4.5)

The integral in does not have a closed-form solution, and therefore we
use a 15-point Gauss-Kronrod quadrature rule to approximate it.

We use independent normal priors with zero mean and variance 100 for
the fixed effect parameters of the longitudinal model. For scale parameters
we inverse Gamma priors. For the variance-covariance matrix D of the
random effects we take inverse Wishart prior with an identity scale matrix
and degrees of freedom equal to the total number of random effects. For
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the relative risk model’s parameters < and the association parameters o, we
use independent normal priors with zero mean and variance 100. However,
when a becomes high dimensional (e.g., when several functional forms are
considered per longitudinal outcome), we opt for a global-local ridge-type
shrinkage prior, i.e., for the s-th element of @ we assume:

s ~ N(0,79,), 7' ~ Gamma(0.1,0.1), 1, ! ~ Gamma(1,0.01). (4.6)

The global smoothing parameter 7 has sufficiently mass near zero to ensure
shrinkage, while the local smoothing parameter v, allows individual coeffi-
cients to attain large values. Other options of shrinkage or variable-selection
priors could be used as well (Andrinopoulou and Rizopoulos, [2016)). Finally,
the penalized version of the B-spline approximation to the baseline hazard
is specified using the following hierarchical prior for v, (Lang and Brezger,
2004):

K Th
Py | ) o< 5 exp (= ol Ko ) (47)

where 7, is the smoothing parameter that takes a Gamma(1, 754) prior distri-
bution, with a hyper-prior 77,5 ~ Gamma(10~3,10~3), which ensures a proper
posterior distribution for 7, (Jullion and Lambert, 2007), K = AA, +
10751, with A, denoting the r-th difference penalty matrix, and p(K) de-
notes the rank of K.

4.B Joint Model for the PRIAS Dataset
Used in Simulation Study

In this work, we reused a joint model we previously fitted to the PRIAS
dataset (Tomer et al., 2019b, [2020). The PRIAS database is not openly
accessible. However, access to the database can be requested on the basis
of a study proposal approved by the PRIAS steering committee. The web-
site of the PRIAS program is www.prias-project.org. For the sake of
completeness and reproducibility of results, we have presented the PRIAS
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based model’s definition and parameter estimates below. Figure shows
the cumulative-risk of progression over the follow-up period.

4.B.1 Model Specification

Let 7} denote the true progression time of the i-th patient included in PRIAS.
Since biopsies are conducted periodically, 77" is observed with interval censor-
ing [; < T; < r;. When progression is observed for the patient at his latest
biopsy time 7;, then [; denotes the time of the second latest biopsy. Other-
wise, [; denotes the time of the latest biopsy and r; = co. Let y,; and y,,
denote his observed DRE (digital rectal examination) and PSA (prostate-
specific antigen) longitudinal measurements, respectively. The observed data
of all n patients is denoted by D,, = {li,m,ydi,ym;i =1,...,n}.

The patient-specific DRE and PSA measurements over time are modeled
using a bivariate generalized linear mixed effects sub-model. The sub-model
for DRE is given by:

Iogit[Pr{ydi(t) > Tlc}} = Boa + boai + (B1a + brai)t
+ Baa(Age; — 65) + Bsq(Age; — 65)* (4.8)

where, t denotes the follow-up visit time, and Age, is the age of the i-th
patient at the time of inclusion in AS. The fixed effect parameters are denoted
by {Bod, - -, B34}, and {boai, b1a4;} are the patient specific random effects.
With this definition, we assume that the patient-specific log odds of obtaining
a DRE measurement larger than Tlc (palpable tumor) remain linear over
time.

The mixed effects sub-model for PSA is given by:

log, {ypi(t) + 1} = My (t) + €pi(1),
3
mpi (t) = BOp + bOpi + Z(ka + bk:pz)Bk(t? IC)

k=1

+ 64p(Agei - 65) + 55p(Agei - 65)27 (49)
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Figure 4.7: Estimated cumulative-risk of cancer progression (Tomer et al.,
2020) for patients in the Prostate Cancer Research International Active Surveil-
lance (PRIAS) dataset. Nearly 50% patients (slow progressing) do not progress in
the ten year follow-up period. Cumulative-risk is estimated using nonparametric
maximum likelihood estimation (Turnbull, 1976]), to account for interval censored
progression times observed in the PRIAS dataset. Censoring includes death, re-
moval from surveillance on the basis of observed longitudinal data, and patient
dropout.
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where, m,;(t) denotes the underlying measurement error free value of the
log,(PSA + 1) transformed (Tomer et al., 2019b) measurements at time ¢.
We model it non-linearly over time using B-splines (De Boor, [1978). To
this end, the B-spline basis function By (¢, K) has two internal knots at K =
{0.75,2.12} years (33-rd and 66-th percentile of observed follow-up times),
and boundary knots at 0 and 6.4 years (95-th percentile of the observed
follow-up times). The fixed effect parameters are denoted by {8y, - - ., B5p}
and {bop;, . .., bsy } are the patient specific random effects. The error (%)
is assumed to be t-distributed with three degrees of freedom (Tomer et al.,
2019b) and scale o, and is independent of the random effects.

To account for the correlation between the DRE and PSA measurements
of a patient, link their corresponding random effects are linked. Specifi-
cally, the complete vector of random effects b; = (boai, b1di, bopis - - - » b3pi) -
is assumed to follow a multivariate normal distribution with mean zero and
variance-covariance matrix W'.

To model the impact of DRE and PSA measurements on the risk of
progression, the joint model uses a relative risk sub-model. More specifically,
the hazard of progression h;(t) at a time ¢ is given by:

ha(t) = ho(t) exp (%(Agei — 65) + 7o(Age, — 65)?

+ aldlogit[Pr{ydi(t) > Tlc}} + cipmypi(t) + agyp o ), (4.10)

where, 71,72 are the parameters for the effect of age. The parameter a4
models the impact of log odds of obtaining a DRE > T1lc on the hazard of
progression. The impact of PSA on the hazard of progression is modeled in
two ways: a) the impact of the error free underlying PSA value m,;(t), and
b) the impact of the underlying PSA velocity Om,,;(t)/0t. The corresponding
parameters are o, and ay, respectively. Lastly, ho(t) is the baseline hazard
at time t, and is modeled flexibly using P-splines (Eilers and Marx, 1996)).
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Table 4.1: Estimated variance-covariance matrix W of the random ef-
fects b = (bod, b1d, bop, b1p, b2p, b3p) from the joint model fitted to the PRIAS
dataset.

Random Effects bod b14 bop blp pr bgp
bod 9.233 -0.183 -0.213 0.082 0.058 0.023
b1d -0.183 1.259 0.091 0.079 0.145 0.109
bop -0.213 0.091 0.247 0.007 0.067 0.018
bip 0.082 0.079 0.007 0.248 0.264 0.189
bap 0.0568 0.145 0.067 0.264 0511 0.327
bsp 0.023 0.109 0.018 0.189 0.327 0.380

Table 4.2: Estimated mean and 95% credible interval for the parameters of the
longitudinal sub-model (4.8)) for the DRE outcome.

Variable Mean Std. Dev  25% 97.5%
(Intercept) -4.407 0.151 -4.716 -4.113
(Age — 65) 0.057 0.009 0.039 0.075

(Age—65)2 -0.002 0.001 -0.004 0.000
visitTimeYears -1.089 0.113 -1.292 -0.866

4.B.2 Parameter Estimates

The posterior parameter estimates for the PRIAS based joint model are
shown in Table (longitudinal sub-model for DRE outcome), Table
(longitudinal sub-model for PSA outcome) and Table (relative risk sub-
model). The parameter estimates for the variance-covariance matrix W
from the longitudinal sub-model are shown in the following Table [4.1}

For the relative risk sub-model ({4.10]), the parameter estimates in Ta-
ble show that both log,(PSA + 1) velocity, and the log odds of hav-
ing DRE > T1c were significantly associated with the hazard of progression.
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Table 4.3: Estimated mean and 95% credible interval for the parameters of the
longitudinal sub-model (4.9)) for the PSA outcome.

Variable Mean Std. Dev  25% 97.5%
(Intercept) 2.687 0.007 2.674 2.701
(Age — 65) 0.008 0.001 0.006 0.010
(Age — 65)2 0001 0.000 -0.001 0.000

Spline: [0.00, 0.75] years  0.199 0.009 0.181 0.217
Spline: [0.75, 2.12] years  0.293 0.012 0.269 0.316
Spline: [2.12, 6.4] years 0.379 0.014 0.352 0.406
o 0.144 0.001 0.142 0.145

Table 4.4: Estimated mean and 95% credible interval for the parameters of the
relative risk sub-model (4.10]) of the joint model fitted to the PRIAS dataset.

Variable Mean Std. Dev  25% 97.5%
(Age — 65) 0.034 0.005 0.025 0.043
(Age — 65)? 0.000  0.001 -0.001 0.001
|ogit{Pr(DRE > Tlc)} 0.047 0.014 0.018 0.073

Fitted log,(PSA + 1) value 0.024 0.076 -0.125 0.170
Fitted log,(PSA + 1) velocity 2.656 0.291 2.090 3.236

As described in Section [4.A] the baseline hazard of the joint model model
utilized a cubic P-spline. The knots of this P-spline were placed at the
following time points: 0.000, 0.000, 0.000, 0.000, 0.401, 0.801, 1.202,
1.603, 2.003, 2.404, 2.805, 3.205, 3.606, 4.007, 4.407, 4.808, 5.209, 12.542,
12.542, 12.542, 12.542 The parameters of the fitted spline function are given
in Table 425

Data of the demonstration patient in Figure [4.5]is available in Table [4.6]
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Table 4.5: Estimated parameters of the P-spline function utilized to model the
baseline hazard ho(t) in joint model fitted to the PRIAS dataset. Parameters are
named with the prefix ‘ps’ indicating P-spline parameter.

Variable Mean Std. Dev  2.5% 97.5%

psl -1.091 0.535 -2.286 -0.235
ps2 -2.113 0.271 -2.638 -1.591
ps3 -2.486 0.308 -3.095 -1.883
ps4 -2.083 0.311 -2.740 -1.483
psb -1.918 0.279 -2.460 -1.388
ps6 -2.620 0.265 -3.138 -2.140
ps’ -3.169 0.303 -3.796 -2.580
ps8 -3.416 0.340 -4.075 -2.823
ps9 -3.432 0.345 -4.103 -2.796
ps10 -3.223 0.352 -3.997 -2.573
psll -2.840 0.349 -3.577 -2.214
ps12 -2.481 0.350 -3.148 -1.762
psl3 -2.540 0.352 -3.206 -1.840
psl4 -2.841 0.321 -3.447 -2.212
pslb -3.046 0.381 -3.853 -2.328
psl6 -3.113 0.701 -4.533 -1.796
psl7 -3.195 1.232 -5.894 -0.978

4.C Risk Based Schedules Versus All
Possible Schedules

In Section [4.3.2) we let U = {uy,...,ur} represent a schedule of pre-fixed
future visits (e.g., biannual PSA measurement in prostate cancer) on which
we wanted to decide for conducting future invasive test. Since each test
decision is binary, given L visits in U, a total of 2© test schedules can be
created. Risk-based personalized schedules obtained via (4.2) constitute
a small subset of these 2 schedules. In search for an optimal schedule
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Table 4.6: Data of the demonstration patient in Figure . Age of the patient at
baseline was 60 years and time of last negative biopsy was 3.5 years. DRE: digital
rectal examination.

Visit time (years) PSA logy(PSA+1) DRE > Tlc

0.00 5.7 2,77 1
030 32 2.09 -
0.68 4.0 2.30 0
097 46 2.50 -
115 29 1.92 0
147 3.0 1.95 0
177 33 2.14 -
223 35 212 0
258 44 2.39 -
321 61 2.84 0
3.86 5.9 2.81 -
432 39 231 0
5.00 44 241

(Section [4.3.4)), we create a Euclidean space of all possible 2” schedules and
not just risk-based schedules (Figure [4.8)).

4.D Simulation Study Extended Results

In the simulation study, we evaluated the following biopsy schedules (Loeb
et al., 2014b; Inoue et al., 2018): biopsy every year (annual), biopsy accord-
ing to the PRIAS schedule (PRIAS), personalized biopsy schedules based on
two fixed risk thresholds, namely, x = 10%, and automatically chosen opti-
mal x*(v) (Section[4.3), and automatically chosen optimal x*{v | E(D) < 0.75}
with a constraint of 9 months (0.75 years) on expected delay in detecting
progression. Lastly, we added two more optimal schedules to this list. Specif-
ically, S*(v) denotes an optimal schedule among all possible schedules (Sec-
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Figure 4.8: Extension of Figure by optimizing the Euclidean dis-
tance (4.4) among all possible schedules. Let U = {uy,...,up} represent
a schedule of pre-fixed future visits (e.g., biannual PSA measurement in prostate
cancer) on which we wanted to decide for conducting future invasive test. Since
each test decision is binary, given L visits in U, a total of 2 test schedules can be
created (orange Rhombus). Risk-based personalized schedules obtained via (4.2))
and shown by black circles, constitute a small subset of these 2” schedules. Ideal
schedule of tests: point (1,0) shown as a blue square. It plans exactly one invasive
test at the true time of progression T’ of a patient. That is, zero time delay in
detecting progression. 137
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tion[4.C)), and S*{v | E(D) < 0.75} is extension of S*(v) with a constraint
of 9 months (0.75 years) on expected delay in detecting progression.

We compare all the aforementioned schedules on two criteria, namely
the number of biopsies they schedule and the corresponding time delay in
detection of cancer progression in years (time of positive biopsy - true time
of cancer progression). The corresponding results, using 500 x 250 test
patients are presented in Table [4.7] Since the simulated cohorts are based
on PRIAS, roughly only 50% of the patients progress in the ten year study
period. While we are able to calculate the total number of biopsies scheduled
in all 500 x 250 test patients, but the time delay in detection of progression
is available only for those patients who progress in ten years (progressing).
Hence, we show the simulation results separately for progressing and non-
progressing patients.

4.E Partially Observable Markov Decision
Processes

Partially observable Markov decision processes or POMDPs have been uti-
lized in numerous optimal screening and surveillance test schedules for chronic
diseases (Steimle and Denton| [2017)), and especially for nearly all types of
cancers (Alagoz et al., 2010). A notable advantage of POMDPs is that they
find an optimal schedule from all schedules possible over a set of follow-up
visits. In our case, this means all 2¥ possible schedules given visit sched-
ule U = {uy,...,ur}. To our knowledge, POMDPs and joint models have
not been integrated yet. Thus, our aim is to integrate them to make the
definition of POMDPs personalized, and then evaluate their strengths and
limitations. The components of our discrete-time space POMDP are as
follows (subscript j denotes the subject).

Decision epochs: The decision epoch u € U is the time at which we want
to take a decision of an invasive test. These are typically pre-fixed future
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Table 4.7: Simulation study results for all patients: Estimated mean (), me-
dian (Med), first quartile Q1, and third quartile Q3 for number of biopsies (nb) and
for the time delay (d) in detection of cancer progression in years, for various biopsy
schedules. The delay is equal to the difference between the time of the positive
biopsy and the simulated true time of progression. Types of schedules: x = 10%
and x*(v) schedule a biopsy if the cumulative-risk of cancer progression at a visit
is more than 10%, and an automatically chosen threshold, respectively. Sched-
ule *{v | E(D) < 0.75} is an extension of x*(v) with a constraint of 9 months
(0.75 years) on expected delay in detecting progression. S*(v) denotes an optimal
schedule among all possible schedules (Section4.C)), and S*{v | E(D) < 0.75} is
an extension of S*(v) with a constraint of 9 months (0.75 years) on expected de-
lay in detecting progression. Annual corresponds to a schedule of yearly biopsies,
and PRIAS corresponds to biopsies as per PRIAS protocol.

Progressing patients (50%)

Schedule QM b Med™® QP [ QF pd Medd Q
Annual 1 371 3 61029 055 057 0.82
PRIAS 1 2.88 2 41038 0.92 0.74 1.00
k= 10% 1 255 2 41045 100 085 1.33
K*(v) 1 246 2 31045 089 0.86 1.26
k*{v| E(D) <075} | 1  3.39 3 5[032 061 063 0.88
S*(v) 1 207 2 3|055 106 101 149
S*{v|E(D)<075} | 1 279 2 4]039 075 076 1.06
Non-progressing patients (50%)

Annual 10 10.00 0 0 - - - -
PRIAS 4  6.40 6 8 - - - -
k= 10% 4 491 5 6 - - - -
K*(v) 6 6.22 6 7 - - - -
k*{v| E(D) <075} | 8 8.68 9 9| - - -
S*(v) 5 6.49 5 6| - - -
S*{v|E(D)<0.75} | 7 722 71 - - -
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follow-up visits for biomarker measurements (Section |4.3.2)).

Actions: Two types actions can be taken at each decision epoch u, namely,
an invasive test I'T" or waiting until the next decision epoch W. The action
taken at time w is denoted by ¢(u) € {IT,W}. The history of all actions
taken until time w is Q(u) = {q(0),...q(u)}.

(Disease) States: At decision epoch u, the disease state of the patient is
denoted by s;(u) € S. The vector of all states S; = {P, NP, R}, where P
denotes that the patient has obtained disease progression (event of inter-
est), and NP denotes that patient has not obtained progression. Unlike
progression P and not progression NP, the third state R called removal
from surveillance, is observable. Removal of a patient from surveillance oc-
curs only after progression P has been observed. The state R is also an
absorbing state, and hence it always transitions to itself, irrespective of the
action taken.

In joint modeling terms, s;(u) = NP is equivalent to T > u (right-
censored), and s;(u) = P means u~ < T < u (interval-censored), where
u~ =max{v | s;(v) = NP,v < u} is the time of the last visit on which an
invasive test was conducted to confirm that the patient had not progressed.

Observations: We cannot observe the underlying disease states P and N P
unless we take the action invasive test I7". However, the disease state
is manifested by observable clinical data, e.g., PSA and DRE in prostate
cancer. Specifically, we can observe a K-tuple of clinical data y,(u) =
{y1;(u),...yx;(u)} on each decision epoch u to guide our actions. When
the patient is in state R (removed from surveillance) a special observation tu-
ple y;(u) = (¢, ..., ¢), denoting empty data, is observed. The observation
history at time w is given by V;(u) = {y,(0) ... y;(u)}.

Typically POMDPs make two assumptions about clinical observations.
First, that observations are categorical in nature. This is done to avoid the
curse of dimensionality. Second, at any time u — 1 the probability distri-
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bution of future observations p{y;(u) | s;(u)} is assumed independent of
the observation history. This means that probability distribution of future
observations adds unique information over observed data. Conversely, in the
joint modeling framework continuous observations are allowed, and proba-
bility distribution of future observation p{y,(u) | b;} depends entirely on
the patient-specific random effects b; that are estimated from the observed
data p{b; | s;(u),Y;(u —1)}. That is, the probability distribution of fu-
ture observations adds no extra value over observed data and current disease
state. Hence, hereafter we denote longitudinal data history as ); and do not
specify the time up to which it is observed.

Belief: The states P, NP cannot be observed directly. In this regard, our
belief regarding what state the patient is in, is given by the corresponding
probability of being in a certain state. The vector of these probabilities is
called the belief vector. It is given by,

m;(u) = {Pr{sj(u) =P|Y;,Qu— 1)},
Pr{s;(u) = NP | ¥}, Qu— 1)},
Pr{sj(u) =R|YV;,Q(u— 1)}}

The sum >, (es Pris;j(u) | V;,Q(u — 1)} = 1 of these probabilities is
always equal to one. Since the state R removed from surveillance can be
observed directly, Pr{s;(u) = R | Y;,Q;(u—1)} € {0,1}.

The belief vector is calculated on the basis of both the current observa-
tion, previous belief, latest action, and transition probabilities from previous
state to current state. To this end, POMDPs utilize the Bayes rule (Steimle
and Denton, 2017). In contrast, in joint modeling framework the disease
state distribution is estimated as random-effects, and subsequently the be-
lief is expressed as the probability distribution of the time to event outcome.
Specifically,
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Pr{s;j(u) = NP [ ¥;,Q(u— 1)} = Pr(T} > u | T} >u™,))),
Pr{sj(u) =P |, Qu—1)} =Pr(Ty <u|T] >u",;). (411)

Transition Probabilities: Patient’s disease state changes over follow-up,
and also with actions. For example, if an action g(u) = IT is taken when
the patient is in state s;(u) = P, then the state at next decision time u + 1
is removal from surveillance, i.e, s;(u+ 1) = R. However, if s;(u) = NP,
then invasive test action [T or waiting W do not change state. This is
because, disease transition from not progressed to progressed is a natural
process, and not altered by invasive tests. Transition from one state to
another happens with a certain probability. This probability can be obtained
from the joint model, as shown in Table [4.8]

Table 4.8: State transition matrix for a POMDP

Action: Invasive Test q(u) = IT

mi(u+1) ‘ sj(u) = NP sj(u) =P sj(u)=R
sjlu+1)=P 1=Pr(T; >u+1|T; >u,Yj) 0 0
sj(lu+1)= NP Pr(Ty >u+1[T; > u,V;) 0 0
sjlu+1)=R 0 1 1
Action: Waiting q(u) =W

mj(u+1) ‘ sj(u) = NP sj(u)=P sj(u)=R
sjlu+1)=P L=Pr(T; >u+1|T; >u,Y;) 1 0
sjlu+1)=NP Pr(Ty >u+1[T; > u,);) 0 0
sjlu+1)=R 0 0 1

The state transition matrix in Table 4.8 can also be seen as a belief
transition matrix. Specifically, given the current state s;(u) and history of
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actions ¢(u) we can obtain a new belief. For example, if s;(u) = NP, and
q(u) = IT then belief vector at next epoch u + 1 is given by:

m{u+ 1 s(0) = NPag(w) = IT} = [1=PHT} > 01| T > ),

Pr(T; >u+ 1T} >u,);),0
(4.12)

Reward: The criterion of optimality in POMDPs is the weighted cumula-
tive reward. A reward is a number that is chosen manually for four possible
outcomes (true-positive, false-positive, true-negative, and false-negative) of
a binary test/no test decision in a schedule. The weighted cumulative reward
of a schedule is the weighted sum of all rewards possible with all sequential
test decisions in a schedule. Let us assume the following immediate rewards
for action g(u), conditional on knowing the state of the patient and the data.
These are denoted by B{q(u) | s;(u)} and exemplified in Table [4.9] Since

Table 4.9: Reward matrix for a POMDP

| g =1IT a(u) =W

sj(u) = NP | a (unnecessary test) b (saved unnecessary test)
P c (correct test) d (skipped necessary test)
sj(u) =R 0 0

the state of the patient is unobservable, the weighted reward of an action at
time u is:

B{q(u) | mi(u)} = 3" Bla(u) | s;(u) = s}Pr{s;(u) = s | ¥;,Q(u - 1)}.

seS

The weights Pr{sj(u) =s5|Y;,Qu— 1)} are defined in (4.11)).
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Dynamic Programming Equations: The dynamic programming equa-
tions for our POMDP, starting from a belief 7;(u) at time u is given by
(condition on observed data );(u) and action history Q(u — 1) is dropped
for brevity, but assumed):

Vim)} = B{g () | mu)}+ 2> Pr{s;(u) = 5 | Yj(u), Q(u— 1)}
x Vm{u+1] s;(u) = 5,q"(u)}],
q"(u) = arg max {B{q(u) | Wj(u)} +p> Pr{sj(u) =5 | V;i(u), Qu— 1)}

q(uw)e{IT\W} seS
X Vmifu+ 1] 5;(u) = s,q(u)}}}

where 0 < p < 1 is the discount factor with the interpretation that it is
the probability of rewards at and after time u being useful, and future belief
mi{u+1]s;(u) =s,q(u)} is defined in (4.12).

4.E.1 Choice of Reward Function for POMDPs

Consider the scenario that patient has not been detected in progressed P
state yet. That is, there is zero probability of being the third state R called
removed from surveillance. In this scenario, the belief vector at any time w is
given by 7;(u) = (p,1 —p,0), where p = Pr{sj(u) =P | YV;(u), Qu— 1)}
is the probability that the patient is currently in state P. If we calculate the
weighted reward of a single action (that is not looking ahead in time), it is
given by,

B{q(u) :]T} =cxp+ax(l—p),
Blq(u) =W} =dxp+bx(1-p). (4.13)

The action invasive test 17" will be taken if reward of test is more than reward
of waiting, i.e., B{q(u) = IT} > B{q(u) = W} Thus using (4.13)), we
can say that if p > (b—a)/(c—d+b—a), then action IT will be taken. The
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4.F. Source Code

right hand side (b—a)/(c—d+b—a) is a constant. Infinite combinations of
rewards a, b, ¢, d can satisfy the condition p > (b—a)/(c—d+b—a). Typically
POMDP rewards are chosen based on survey results (Steimle and Denton,
2017) and translated as quality-adjusted life-years (QALY) saved. However,
the main concern is that with infinite optimal reward sets, any reward set can
be cherry-picked, including those that correspond to (improbable) thousands
of quality-adjusted life-years saved. Besides the estimates for QALYs are
usually not personalized before use in the model.

4.F Source Code

The source code for reproducing results of this chapter is available at https:
//github.com/anirudhtomer/PersonalizedSchedules.
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Chapter 5

Personalized Biopsy Schedules
Based on Risk of Gleason
Upgrading for Low-Risk
Prostate Cancer Active
Surveillance Patients

This chapter is based on the paper

Tomer, A., Nieboer, D., Roobol, M.J., Bjartell, A., Steyerberg, E.W., and
Rizopoulos, D. (2020), Personalized Biopsy Schedules Based on Risk of Glea-
son Upgrading for Low-Risk Prostate Cancer Active Surveillance Patients.
BJU International. Advance online publication. doi:10.1111/bju.15136
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Abstract

Objective: To develop a model and methodology for predicting
the risk of Gleason upgrading in prostate cancer active surveillance
(AS) patients, and using the predicted risks to create risk-based per-
sonalized biopsy schedules as an alternative to one-size-fits-all sched-
ules (e.g., annually). Furthermore, to assist patients and doctors
in making shared decisions of biopsy schedules, by providing them
quantitative estimates of the burden and benefit of opting for per-
sonalized versus any other schedule in AS. Last, to externally validate
our model and implement it along with personalized schedules in a
ready to use web-application.

Materials and Methods: Repeat prostate-specific antigen (PSA)
measurements, timing and results of previous biopsies, and age at
baseline from the world’s largest AS study, Prostate Cancer Research
International Active Surveillance or PRIAS (7813 patients, 1134 ex-
perienced upgrading). We fitted a Bayesian joint model for time-
to-event and longitudinal data to this dataset. We then validated
our model externally in the largest six AS cohorts of the Movember
Foundation's Global Action Plan (GAP3) database (> 20,000 pa-
tients, 27 centers worldwide). Using the model predicted upgrading-
risks, we scheduled biopsies whenever a patient’s upgrading-risk was
above a certain threshold. To assist patients/doctors in choice of this
threshold, and to compare the resulting personalized schedule with
currently practiced schedules, along with the timing and the total
number of biopsies (burden) planned, for each schedule we provided
them the time delay expected in detecting upgrading (shorter is bet-
ter).

Results: The cause-specific cumulative upgrading-risk at year
five of follow-up was 35% in PRIAS, and at most 50% in GAP3
cohorts. In the PRIAS based model, PSA velocity was a stronger
predictor of upgrading (Hazard Ratio: 2.47, 95%Cl: 1.93-2.99) than
PSA value (Hazard Ratio: 0.99, 95%Cl: 0.89-1.11). Our model had
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a moderate area under the receiver operating characteristic curve
(0.6-0.7) in validation cohorts. The prediction error was moderate
(0.1-0.2) in validation cohorts where the impact of PSA value and
velocity on upgrading-risk was similar to PRIAS, but large (0.2-0.3)
otherwise. Our model required recalibration of baseline upgrading-
risk in validation cohorts. We implemented the validated models
and the methodology for personalized schedules in a web-application
(http://tiny.cc/biopsy).

Conclusions: We successfully developed and validated a model
for predicting upgrading-risk, and providing risk-based personalized
biopsy decisions, in prostate cancer AS. Personalized prostate biop-
sies are a novel alternative to fixed one-size-fits-all schedules that
may help to reduce unnecessary prostate biopsies while maintain-
ing cancer control. The model and schedules made available via a
web-application enable shared decision making of biopsy schedules
by comparing fixed and personalized schedules on total biopsies and
expected time delay in detecting upgrading.

155


http://tiny.cc/biopsy

5. UPGRADING-RISK BASED PERSONALIZED BIOPSY SCHEDULES

5.1 Introduction

Patients with low- and very low-risk screening-detected localized prostate
cancer are recommended active surveillance (AS) usually, instead of imme-
diate radical treatment (Briganti et al., 2018). In AS, cancer progression is
monitored routinely via prostate-specific antigen (PSA), digital rectal exam-
ination (DRE), repeat biopsies, and recently, magnetic resonance imaging
(MRI). Among these, the strongest indicator of cancer-related outcomes is
the biopsy Gleason grade group (Epstein et al., 2016). When it increases
from group 1 (Gleason 3+3) to 2 (Gleason 3+4) or higher, it is called up-
grading (Bruinsma et al| [2017)). Upgrading is an important endpoint in AS
upon which patients are commonly advised curative treatment (Bul et al.|
2013).

Biopsies in AS are always conducted with a time gap between them.
Consequently, upgrading is always detected with a time delay (Figure
that cannot be measured directly. In this regard, to detect upgrading timely,
many patients are prescribed fixed and frequent biopsies, most often annu-
ally |Loeb et al. (2014). However, such one-size-fits-all schedules lead to
unnecessary biopsies in slow/non-progressing patients. Biopsies are invasive,
may be painful, and are prone to medical complications such as bleeding
and septicemia(lLoeb et al., [2013)). Thus, biopsy burden and patient non-
compliance to frequent biopsies (Bokhorst et al., 2015) have raised concerns
regarding the optimal biopsy schedule (Inoue et al., 2018; |Bratt et al., [2013)
in AS.

Except for the confirmatory biopsy at year one of AS (Bokhorst et al.|
2015)), opinions and practice regarding the timing of remaining biopsies lack
agreement (Nieboer et al [2018). Some AS programs utilize patients’ ob-
served PSA, DRE, previous biopsy Gleason grade, and lately, MRI results
to decide biopsies (Kasivisvanathan et al., [2020; Bul et al., |2013; [Nieboer
et al., 2018). In contrast, others discourage schedules based on clinical data
and MRI results (Chesnut et al., [2020; |Loeb et al., [2014)), and instead sup-
port periodical one-size-fits-all biopsy schedules. Furthermore, some suggest
replacing frequent periodical schedules with infrequent ones (e.g., bienni-
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A Biopsy every year True time of
Gleason grade = 2

Start AS 1st Biopsy 2nd Biopsy 3rd Biopsy 4th Biopsy
Gleason Gleason Gleason Gleason Gleason
grade 1 grade 1 grade 1 grade 1 grade = 2

6 months delay
in detecting upgrading

B Biopsy every 2 years True time of

Gleason grade = 2

Start AS 1st Biopsy 2nd Biopsy 3rd Biopsy
Gleason Gleason Gleason Gleason
grade 1 grade 1 grade 1 grade =2

18 months delay

Time of biopsy visits

Figure 5.1: Trade-off between the timing and number of biopsies (burden)
and time delay in detecting Gleason upgrading (shorter is better): The
true time of Gleason upgrading (increase in Gleason grade group from group 1
to 2 or higher) for the patient in this figure is July 2008. When biopsies are
scheduled annually (Panel A), upgrading is detected in January 2009 with a time
delay of six months, and a total of four biopsies are scheduled. When biopsies are
scheduled biennially (Panel B), upgrading is detected in January 2010 with a time
delay of 18 months, and a total of three biopsies are scheduled. Since biopsies
are conducted periodically, the time of upgrading is observed as an interval. For
example, between Jan 2008—Jan 2009 in Panel A and between Jan 2008—-Jan 2010
in Panel B. The phrase ‘Gleason grade group’ is shortened to ‘Gleason grade’ for
brevity.
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ally) (Inoue et al., 2018 |de Carvalho et al., [2017a). Each of these ap-
proaches has limitations. For example, one-size-fits-all schedules can lead to
many unnecessary biopsies because of differences in baseline upgrading-risk
across cohorts (Inoue et al., [2018). Whereas, since observed clinical data has
measurement error (e.g., PSA fluctuations), a flaw of using it directly is that
it may lead to poor decisions. Also, decisions based on clinical data typically
rely only on the latest data point and ignore previous repeated measure-
ments. A novel alternative that counters these drawbacks is first processing
patient data via a statistical model, and subsequently using model predicted
upgrading-risks to create personalized biopsy schedules (Nieboer et al., [2018)
(Figure . While, upgrading-risk calculators are not new (Coley et al.,
2017; Ankerst et al [2015; Partin et al., [1993; Makarov et al., 2007), not
all are personalized either. Besides, they do not specify how risk predictions
can be exploited to create a schedule.

This work is motivated by the problem of scheduling biopsies in AS. We
have two goals. First, we want to assist practitioners in using clinical data
in biopsy decisions in a statistically sound manner. To this end, we plan to
develop a robust, generalizable statistical model that provides reliable indi-
vidual upgrading-risk in AS. Subsequently, we will employ these predictions
to derive risk-based personalized biopsy schedules. Our second goal is to
enable shared decision making of biopsy schedules. We intend to achieve
this by allowing patients and doctors to compare the burden and benefit
(Figure of opting for personalized schedules versus periodical schedules
versus schedules based on clinical data. Specifically, we propose timing and
number of planned biopsies (more/frequent are burdensome), and the ex-
pected time delay in detecting upgrading (shorter is beneficial) for any given
schedule. While fulfilling our goals, we want to capture the maximum pos-
sible information from the available data. Hence, we will use all repeated
measurements of patients, previous biopsy results, baseline characteristics,
and keep our model flexible to accommodate future novel biomarkers. To
fit this model, we will utilize data of the world’s largest AS study, Prostate
Cancer Research International Active Surveillance (PRIAS). To evaluate our
model, we will externally validate it in the largest six AS cohorts from the
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A Should a biopsy be conducted at current visit?
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Figure 5.2: Motivation for upgrading-risk based personalized biopsy deci-
sions: To utilize patients’ complete longitudinal data and results from previous
biopsies in making biopsy decisions. For this purpose, we first process data us-
ing a statistical model and then utilize the patient-specific predictions for risk
of Gleason upgrading to schedule biopsies. For example, Patient A (Panel A)
and B (Panel B) had their latest biopsy at year one of follow-up (green vertical
line). Patient A's prostate-specific antigen (PSA) profile remained stable until his
current visit at year two, whereas patient B's profile has shown a rise. Conse-
quently, patient B's upgrading-risk at the current visit (year two) is higher than
that of patient A. This makes patient B a more suitable candidate for biopsy than
Patient A. Risk estimates in this figure are only illustrative.
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Movember Foundation's Global Action Plan (GAP3) database (Bruinsma
et al 2018). Last, we aim to implement the validated model and method-
ology in a web-application.

5.2 Patients and Methods

5.2.1 Study Cohort

For developing a statistical model to predict upgrading-risk, we used the
world’s largest AS dataset, Prostate Cancer International Active Surveillance
or PRIAS (Bul et al., 2013)), dated April 2019 (Table. In PRIAS, biopsies
were scheduled at year one, four, seven, ten, and additional yearly biopsies
were scheduled when PSA doubling time was between zero and ten years.
We selected all 7813 patients who had Gleason grade group 1 at inclusion in
AS. Our primary event of interest is an increase in this Gleason grade group
observed upon repeat biopsy, called upgrading (1134 patients). Upgrading is
a trigger for treatment advice in PRIAS. Some examples of treatment options
in active surveillance are radical prostatectomy, brachytherapy, definitive ra-
diation therapy, and other alternative local treatments such as cryosurgery,
High Intensity Focused Ultrasound, and External Beam Radiation Therapy.
Comprehensive details on treatment options and their side effects are avail-
able in EAU-ESTRO-SIOG guidelines on prostate cancer (Mottet et al.,
2017)). In PRIAS 2250 patients were provided treatment based on their PSA,
the number of biopsy cores with cancer, or anxiety/other reasons. However,
our reasons for focusing solely on upgrading are that upgrading is strongly
associated with cancer-related outcomes, and other treatment triggers vary
between cohorts (Nieboer et al., 2018)).

For externally validating our model's predictions, we selected the fol-
lowing largest (by the number of repeated measurements) six cohorts from
Movember Foundation's GAP3 database (Bruinsma et al., 2018) version 3.1,
covering nearly 73% of the GAP3 patients: the University of Toronto AS
(Toronto), Johns Hopkins AS (Hopkins), Memorial Sloan Kettering Cancer
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Table 5.1: Summary of the PRIAS dataset as of April 2019. The
primary event of interest is upgrading, that is, increase in Gleason grade
group from group 1 (Epstein et al| 2016) to 2 or higher. IQR: interquar-
tile range, PSA: prostate-specific antigen. Study protocol URL: https://www.
prias-project.org

Characteristic Value
Total patients 7813
Upgrading (primary event) 1134
Treatment 2250
Watchful waiting 334
Loss to follow-up 249
Death (unrelated to prostate cancer) 95
Death (related to prostate cancer) 2
Median age at diagnosis (years) 66 (IQR: 61-71)
Median maximum follow-up per patient (years) 1.8 (IQR: 0.9-4.0)
Total PSA measurements 67578
Median number of PSA measurements per patient 6 (IQR: 4-12)
Median PSA value (ng/mL) 5.7 (IQR: 4.1-7.7)
Total biopsies 15686
Median number of biopsies per patient 2 (IQR: 1-2)

Center AS (MSKCC), King's College London AS (KCL), Michigan Urological
Surgery Improvement Collaborative AS (MUSIC), and University of California
San Francisco AS (UCSF, version 3.2). Only patients with a Gleason grade
group 1 at the time of inclusion in these cohorts were selected. Summary
statistics are presented in Section [5.B]

Choice of predictors: In our model, we used all repeated PSA measure-
ments, the timing of the previous biopsy and Gleason grade, and age at
inclusion in AS. Other predictors such as prostate volume, MRI results can
also be important. MRI is utilized already for targeting biopsies, but regard-
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ing its use in deciding the time of biopsies, there are arguments both for
and against it (Kasivisvanathan et al., [2020; Chesnut et al., 2020; |Schoots
et al, 2015). MRI is still a recent addition in most AS protocols. Con-
sequently, repeated MRI data is very sparsely available in both PRIAS and
GAP3 databases to make a stable prediction model. Prostate volume data
is also sparsely available, especially in validation cohorts. Based on these
reasons, we did not include them in our model. However, the model we
propose next is extendable to include MRI and other novel biomarkers in the
future.

5.2.2 Statistical Model

Modeling an AS dataset such as PRIAS, posed certain challenges. First,
PSA was measured longitudinally, and over follow-up time it did not always
increase linearly. Consequently, we expect that PSA measurements of a
patient are more similar to each other than of another patient. In other
words, we need to accommodate the within-patient correlation for PSA.
Second, PSA was available only until a patient observed upgrading. Thus,
we also need to model the association between the Gleason grades and PSA
profiles of a patient, and handle missing PSA measurements after a patient
experienced upgrading. Third, since the PRIAS biopsy schedule uses PSA, a
patient’s observed time of upgrading was also dependent on their PSA. Thus,
the effect of PSA on the upgrading-risk need to be adjusted for the effect of
PSA on the biopsy schedule. Fourth, many patients obtained treatment and
watchful waiting before observing upgrading. Since we considered events
other than upgrading as censoring, the model needs to account for patients’
reasons for treatment or watchful waiting (e.g., age, treatment based on
observed data). A model that handles these challenges in a statistically sound
manner is the joint model for time-to-event and longitudinal data (Tomer
et al} 2019a} (Coley et al., 2017; |Rizopoulos| 2012).

Our joint model consisted of two sub-models. Namely, a linear mixed-
effects sub-model (Laird et al., 1982)) for longitudinally measured PSA (log-
transformed), and a relative-risk sub-model (similar to the Cox model) for
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the interval-censored time of upgrading. Patient age was used in both sub-
models. Results and timing of the previous negative biopsies were used only
in the risk sub-model. To account for PSA fluctuations (Nixon et al., 1997),
we assumed t-distributed PSA measurement errors. The correlation between
PSA measurements of the same patient was established using patient-specific
random-effects. We fitted a unique curve to the PSA measurements of each
patient (Panel A, Figure . Subsequently, we calculated the mathematical
derivative of the patient’s fitted PSA profile (5.2)), to obtain his follow-up
time specific instantaneous PSA velocity (Panel B, Figure[5.3)). This instan-
taneous velocity is a stronger predictor of upgrading than the widely used
average PSA velocity (Cooperberg et al., [2018)). We modeled the impact of
PSA on upgrading-risk by employing fitted PSA value and instantaneous ve-
locity as predictors in the risk sub-model (Panel C, Figure[5.3). We adjusted
the effect of PSA on upgrading-risk for the PSA dependent PRIAS biopsy
schedule by estimating parameters using a full likelihood method (proof in
Chapter. This approach also accommodates watchful waiting and treat-
ment protocols that are also based on patient data. Specifically, the param-
eters (Section of our two sub-models were estimated jointly under the
Bayesian paradigm using the R package JMbayes (Rizopoulos, 2016).

5.2.3 Risk Prediction and Model Validation

Our model provides predictions for upgrading-risk over the entire future
follow-up period of a patient (Panel C, Figure. However, we recommend
using predictions only after year one. This is because most AS programs
recommend a confirmatory biopsy at year one, especially to detect patients
who may be misdiagnosed as low-grade at inclusion in AS. The model also
automatically updates risk-predictions over follow-up as more patient data
becomes available (Figure [4.2). We validated our model internally in the
PRIAS cohort, and externally in the largest six GAP3 database cohorts. We
employed calibration plots (Royston and Altman, [2013; Steyerberg et al.,
2010) and follow-up time-dependent mean absolute risk prediction error or
MAPE (Rizopoulos et al., 2017) to graphically and quantitatively evaluate
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our model's risk prediction accuracy, respectively. We assessed our model's
ability to discriminate between patients who experience/do not experience
upgrading via the time-dependent area under the receiver operating charac-
teristic curve or AUC (Rizopoulos et al., 2017).

The aforementioned time-dependent AUC and MAPE (Rizopoulos et al.,
2017)) are temporal extensions of their standard versions (Steyerberg et al.,
2010) in a longitudinal setting. Specifically, at every six months of follow-up,
we calculated a unique AUC and MAPE for predicting upgrading-risk in the
subsequent one year (Appendix. For emulating a realistic situation, we
calculated the AUC and MAPE at each follow-up using only the validation
data available until that follow-up. Last, to resolve any potential model
miscalibration in validation cohorts, we aimed to recalibrate our model's
baseline hazard of upgrading (Appendix, individually for each cohort.

5.3 Results

The cause-specific cumulative upgrading-risk at year five of follow-up was
35% in PRIAS and at most 50% in validation cohorts (Panel B, Figure .
In the fitted PRIAS model, the adjusted hazard ratio (aHR) of upgrading for
an increase in patient age from 61 to 71 years (25-th to 75-th percentile) was
1.45 (95%Cl: 1.30-1.63). For an increase in fitted PSA value from 2.36 to
3.07 (25-th to 75-th percentile, log scale), the aHR was 0.99 (95%Cl: 0.89-
1.11). The strongest predictor of upgrading-risk was instantaneous PSA
velocity, with an increase from -0.09 to 0.31 (25-th to 75-th percentile),
giving an aHR of 2.47 (95%Cl: 1.93-2.99). The aHR for PSA value and
velocity was different in each GAP3 cohort (Table [5.7)).

The time-dependent AUC, calibration plot, and time-dependent MAPE
of our model are shown in Figure 5.4 and Figure [5.9] In all cohorts, time-
dependent AUC was moderate (0.6 to 0.7) over the whole follow-up period.
Time-dependent MAPE was moderate (0.1 to 0.2) in those cohorts where the
impact of PSA on upgrading-risk was similar to PRIAS (e.g., Hopkins cohort,
Table [5.7), and large (0.2 to 0.3) otherwise. Our model was miscalibrated
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for validation cohorts (Panel B, Figure , because cohorts had differences
in inclusion criteria (e.g., PSA density) and follow-up protocols (Bruinsma
et al 2018) which were not accounted in our model. Consequently, the
PRIAS based model’s fitted baseline hazard did not correspond to the base-
line hazard in validation cohorts. To solve this problem, we recalibrated the
baseline hazard of upgrading in validation cohorts (Figure . We com-
pared risk predictions from the recalibrated models, with predictions from
separately fitted cohort-specific joint models (Figure . The difference
in predictions was lowest in the Johns Hopkins cohort (impact of PSA on
upgrading-risk similar to PRIAS). Comprehensive results are in Appendix

and Appendix [5.C|

5.3.1 Personalized Biopsy Schedules

We employed the PRIAS based fitted model to create personalized biopsy
schedules for real PRIAS patients. Particularly, first using the model and pa-
tient's observed data, we predicted his cumulative upgrading-risk (Figure[5.5)
on all of his future follow-up visits (biannually in PRIAS). Subsequently,
we planned biopsies on those future visits where his conditional cumulative
upgrading-risk was more than a certain threshold (see Chapterfor math-
ematical details). The choice of this threshold dictates the timing of biopsies
in a risk-based personalized schedule. For example, personalized schedules
based on 5% and 10% risk thresholds are shown in Figure [5.5]

To facilitate the choice of a risk-threshold, and for comparing the conse-
quences of opting for a risk-based schedule versus any other schedule (e.g.,
annual, PRIAS), we predict expected time delay in detecting upgrading for
following a schedule. We are able to predict this delay for any schedule. For
example, in Panel C of Figure[5.5] the annual schedule has the least expected
delay. In contrast, a personalized schedule based on a 10% risk threshold has
a slightly larger expected delay, but it also schedules much fewer biopsies.
An important aspect of this delay is that it is personalized as well. That is,
even if two different patients are prescribed the same biopsy schedule, their
expected delays will be different. This is because delay is estimated using
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all available clinical data of the patient (Chapter . While the timing
and the total number of planned biopsies denote the burden of a schedule, a
shorter expected time delay in detecting upgrading can be a benefit. These
two, along with other measures such as a patient’s comorbidities, anxiety,
etc., can help to make an informed biopsy decision.

5.3.2 Web-Application

We implemented the PRIAS based model, recalibrated models for GAP3 co-
horts, and personalized schedules in a user-friendly web-application https:
//emcbiostatistics.shinyapps.io/prias_biopsy_recommender/. This
application works on both desktop and mobile devices. Patient data can be
entered in Microsoft Excel format. The maximum follow-up time up to
which predictions can be obtained depends on each cohort (Table . The
web-application supports personalized, annual, and PRIAS schedules. For
personalized schedules, users can control the choice of risk-threshold. The
web-application also compares the resulting risk-based schedule's timing of
biopsies, and expected time delay in detecting upgrading, with annual and
PRIAS schedules, to enable sharing biopsy decision making.

5.4 Discussion

We successfully developed and externally validated a statistical model for
predicting upgrading-risk (Bruinsma et al., 2017)) in prostate cancer AS, and
providing risk-based personalized biopsy decisions. Our work has four novel
features over earlier risk calculators (Coley et al., 2017} |Ankerst et al., 2015).
First, our model was fitted to the world’s largest AS dataset PRIAS and exter-
nally validated in the largest six cohorts of the Movember Foundation’s GAP3
database (Bruinsma et al., 2018). Second, the model predicts a patient’s
current and future upgrading-risk in a personalized manner. Third, using the
predicted risks, we created personalized biopsy schedules. We also calculated
the expected time delay in detecting upgrading (less is beneficial) for fol-
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lowing any schedule. Thus, patients/doctors can compare schedules before
making a choice. Fourth, we implemented our methodology in a user-friendly
web-application (https://emcbiostatistics.shinyapps.io/prias_biopsy_
recommender/)) for both PRIAS and validated cohorts.

Our model and methods can be useful for numerous patients from PRIAS
and the validated GAP3 cohorts (nearly 73% of all GAP3 patients). The
model utilizes all repeated PSA measurements, results of previous biopsies,
and baseline characteristics of a patient. We could not include MRI and
PSA density because of sparsely available data in both PRIAS and GAP3
databases. But, our model is extendable to include them in the near fu-
ture. The current discrimination ability of our model, exhibited by the time-
dependent AUC, was between 0.6 and 0.7 over-follow. While this is moder-
ate, it is also so because unlike the standard AUC (Steyerberg et al., 2010)
the time-dependent AUC is more conservative as it utilizes only the validation
data available until the time at which it is calculated. The same holds for the
time-dependent MAPE (mean absolute prediction error). Although, MAPE
varied much more between cohorts than AUC. In cohorts where the effect
size for the impact of PSA value and velocity on upgrading-risk was similar
to that for PRIAS (e.g., Hopkins cohort), MAPE was moderate. Otherwise,
MAPE was large (e.g., KCL and MUSIC cohorts). We required recalibration
of our model’s baseline hazard of upgrading for all validation cohorts.

The clinical implications of our work are as follows. First, the cause-
specific cumulative upgrading-risk at year five of follow-up was at most 50%
in all cohorts (Panel B, Figure . That is, many patients may not re-
quire some of the biopsies planned in the first five years of AS. Given the
non-compliance and burden of frequent biopsies (Bokhorst et al, [2015),
the availability of our methodology as a web-application may encourage pa-
tients/doctors to consider upgrading-risk based personalized schedules in-
stead. An additional advantage of personalized schedules is that they up-
date as more patient data becomes available over follow-up. Despite the
moderate predictive performance, we expect the overall impact of our model
to be positive. There are two reasons for this. First, the risk of adverse
outcomes because of the use of personalized schedules is quite low because
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of the low rate of metastases and prostate cancer specific mortality in AS
patients (Table . Second, studies (de Carvalho et al., [2017b} |Inoue
et al., 2018) have suggested that after the confirmatory biopsy at year one
of follow-up, biopsies may be done as infrequently as every two to three
years, with limited adverse consequences. In other words, longer delays in
detecting upgrading may be acceptable after the first negative biopsy. To
evaluate the potential harm of personalized schedules, we compared them
with fixed schedules in a realistic and extensive simulation study (Tomer
et al., 2019b). We concluded that personalized schedules plan, on average,
six fewer biopsies compared to annual schedule and two fewer biopsies than
the PRIAS schedule in slow/non-progressing AS patients, while maintain-
ing almost the same time delay in detecting upgrading as PRIAS schedule.
Personalized schedules with different risk thresholds indeed have different
performances across cohorts. Thus, to assist patients/doctors in choosing
between fixed schedules and personalized schedules based on different risk
thresholds, the web-application provides a patient-specific estimate of the
expected time delay in detecting upgrading, for both personalized and fixed
schedules. We hope that access to these estimates will objectively address
patient apprehensions regarding adverse outcomes in AS. Last, we note that
our web-application should only be used to decide biopsies after the compul-
sory confirmatory biopsy at year one of follow-up.

This work has certain limitations. Predictions for upgrading-risk and per-
sonalized schedules are available only for a currently limited, cohort-specific,
follow-up period (Table . This problem can be mitigated by refitting the
model with new follow-up data in the future. Recently, some cohorts started
utilizing MRI to explore the possibility of targeting visible lesions by biopsy.
Presently, the GAP3 database has limited PSA density and MRI follow-up
data available. Since PSA density is used as an entry criterion in some ac-
tive surveillance studies, including it as a predictor can improve the model.
Although, the current model can be extended to include both MRI and PSA
density data as predictors when they become available in future. We sched-
uled biopsies using cause-specific cumulative upgrading-risk, which ignores
competing events such as treatment based on the number of positive biopsy
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cores. Employing a competing-risk model may lead to improved personalized
schedules. Upgrading is susceptible to inter-observer variation too. Models
which account for this variation (Coley et al., [2017; |Balasubramanian and
Lagakos, 2003) will be interesting to investigate further. Even with an en-
hanced risk prediction model, the methodology for personalized scheduling
and calculation of expected time delay (Chapter need not change.
Last, our web-application only allows uploading patient data in Microsoft
Excel format. Connecting it with patient databases can increase usability.

5.5 Conclusions

We successfully developed a statistical model and methodology for predict-
ing upgrading-risk, and providing risk-based personalized biopsy decisions, in
prostate cancer AS. We externally validated our model, covering nearly 73%
patients from the Movember Foundations’ GAP3 database. The model made
available via a user-friendly web-application (https://emcbiostatistics.
shinyapps.io/prias_biopsy_recommender/) enables shared decision mak-
ing of biopsy schedules by comparing fixed and personalized schedules on to-
tal biopsies and expected time delay in detecting upgrading. Novel biomark-
ers and MRI data can be added as predictors in the model to improve pre-
dictions in the future. Recalibration of baseline upgrading-risk is advised for
cohorts not validated in this work.
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Appendix

5.A Model Specification

Let T denote the true time of upgrading (increase in biopsy Gleason grade
group from 1 to 2 or higher) for the i-th patient included in PRIAS. Since
biopsies are conducted periodically, T is observed with interval censoring
l; <T7 <r;. When upgrading is observed for the patient at his latest biopsy
time r;, then [; denotes the time of the second latest biopsy. Otherwise, [;
denotes the time of the latest biopsy and r; = co. Let y, denote his observed
PSA longitudinal measurements. The observed data of all n patients is
denoted by A, = {l;,r,y;;i=1,...,n}.

In our joint model, the patient-specific PSA measurements over time are
modeled using a linear mixed effects sub-model. It is given by (see Panel A,
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Figure 5.3):
log, {yi(t) + 1} =m;(t) +&(t),
: t—2 K—2
i(t) = Bo + boi + Y _(Bk + bii) B T
milt) = o+ b 30+ b B ()
+ Psage;, (5.1)

where, m;(t) denotes the measurement error free value of log,(PSA + 1)
transformed (Pearson et al., [1994; [Lin et al., 2000) measurements at time
t. We model it non-linearly over time using B-splines (De Boor, 1978)). To
this end, our B-spline basis function B{(t —2)/2, (I —2)/2} has three
internal knots at L = {0.5,1.3,3} years, which are the three quartiles of
the observed follow-up times. The boundary knots of the spline are at 0
and 6.3 years (95-th percentile of the observed follow-up times). We mean
centered (mean 2 years) and standardized (standard deviation 2 years) the
follow-up time ¢t and the knots of the B-spline IC during parameter estima-
tion for better convergence. The fixed effect parameters are denoted by
{Bo,...,Ps}, and {by;, ..., by} are the patient specific random effects. The
random effects follow a multivariate normal distribution with mean zero and
variance-covariance matrix W. The error ¢;(t) is assumed to be t-distributed
with three degrees of freedom and scale o, and is independent of the random
effects.

To model the impact of PSA measurements on the risk of upgrading, our
joint model uses a relative risk sub-model. More specifically, the hazard of
upgrading denoted as h;(t), and the cumulative-risk of upgrading denoted
as R;(t), at a time t are (see Panel C, Figure [5.3):

dm;(t) ) |

hi(t) = ho(t) exp (”yagei + aym;(t) + ay g

Ri(t) = exp{ - /Ot hi(s)ds}, (5.2)

where, v is the parameter for the effect of age. The impact of PSA on the
hazard of upgrading is modeled in two ways, namely the impact of the error
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free underlying PSA value m;(t) (see Panel A, Figure , and the impact
of the underlying PSA velocity dm;(t)/dt (see Panel B, Figure [5.3). The
corresponding parameters are «; and o, respectively. Lastly, ho(t) is the
baseline hazard at time t, and is modeled flexibly using P-splines (Eilers and
Marx, 1996). More specifically:

Q
log hO(t) = Yho,0 + Z ’Yho,qu(@ v)>

g=1
where B,(t,v) denotes the g¢-th basis function of a B-spline with knots
v = v1,...,09 and vector of spline coefficients 7;,. To avoid choosing
the number and position of knots in the spline, a relatively high number of
knots (e.g., 15 to 20) are chosen and the corresponding B-spline regression
coefficients ~;,, are penalized using a differences penalty (Eilers and Marx,
1996)).

5.B Full Results

Characteristics of the six validation cohorts from the GAP3 database (Bru-
insma et al., 2018) are shown in Table , Table , and Table . The
cause-specific cumulative upgrading-risk in these cohorts is shown in Fig-
ure b.6l

For the relative risk sub-model, the parameter estimates in Table
show that log,(PSA + 1) velocity and age of the patient were significantly
associated with the hazard of upgrading.

It is important to note that since age, and log,(PSA + 1) value and
velocity are all measured on different scales, a comparison between the cor-
responding parameter estimates is not easy. To this end, in Table 5.6, we
present the hazard ratio of upgrading, for an increase in the aforementioned
variables from their 25-th to the 75-th percentile. For example, an increase
in fitted log,(PSA + 1) velocity from -0.085 to 0.308 (fitted 25-th and 75-th
percentiles) corresponds to a hazard ratio of 2.433. The interpretation of
the rest is similar.
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Figure 5.6: Nonparametric estimate (Turnbull, [1976) of the cause-specific
cumulative upgrading-risk in the world’s largest AS cohort PRIAS, and largest
six AS cohorts from the GAP3 database (Bruinsma et al., 2018). Abbreviations
are Hopkins: Johns Hopkins Active Surveillance, PRIAS: Prostate Cancer In-
ternational Active Surveillance, Toronto: University of Toronto Active Surveil-
lance, MSKCC: Memorial Sloan Kettering Cancer Center Active Surveillance,
KCL: King's College London Active Surveillance, MUSIC: Michigan Urological
Surgery Improvement Collaborative AS, UCSF: University of California San Fran-
cisco Active Surveillance.
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Table 5.2: Summary of the Hopkins and Toronto validation cohorts from
the GAP3 database (Bruinsma et al., 2018). The primary event of interest is
upgrading, that is, increase in Gleason grade group from group 1 to 2 or higher.
#PSA: number of PSA, #biopsies: number of biopsies, IQR: interquartile range,
PSA: prostate-specific antigen. Full names of cohorts are Hopkins: Johns Hopkins
Active Surveillance, Toronto: University of Toronto Active Surveillance

Characteristic Hopkins Toronto
Total patients 1392 1046
Upgrading (primary event) 260 359
Median age (years) 62 (IQR: 66-69) 67 (IQR: 60-72)

Median maximum follow-up per 3 (IQR: 1.3-5.8) 4.5 (IQR: 1.9-8.4)
patient (years)

Total PSA measurements 11126 13984
Median #PSA per patient 6 (IQR: 4-11) 12 (IQR: 7-19)
Median PSA (ng/mL) 4.7 (IQR: 2.9-6.7) 6 (IQR: 3.7-9.0)
Total biopsies 1926 909
Median #biopsies per patient 1 (IQR: 1-2) 1 (IQR: 1-2)

5.C Risk Predictions for Upgrading

Let us assume a new patient 7, for whom we need to estimate the upgrading-
risk. Let his current follow-up visit time be v, latest time of biopsy be ¢,
observed vector PSA measurements be Y;(v). The combined information
from the observed data about the time of upgrading, is given by the following
posterior predictive distribution g(TJ*) of his time 77 of upgrading:

9(T;) = p{T; | T} > £,Y(0), A}
://p(T; | T; > 1,b,,0)p{b, | T; > t,;(0),0}p(6 | A,)db,d6.
The distribution g(7;°) depends not only depends on the observed data of the

patient 77" > ¢, Y;(v), but also depends on the information from the PRIAS
dataset A,,. To this the the posterior distribution of random effects b; and
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Table 5.3: Summary of the MSKCC and UCSF validation cohorts from the
GAP3 database (Bruinsma et al., 2018). The primary event of interest is
upgrading, that is, increase in Gleason grade group from group 1 to 2 or higher.
#PSA: number of PSA, #biopsies: number of biopsies, IQR: interquartile range,
PSA: prostate-specific antigen. Full names of cohorts are MSKCC: Memorial
Sloan Kettering Cancer Center Active Surveillance, UCSF: University of California
San Francisco Active Surveillance.

Characteristic MSKCC UCSF
Total patients 894 1397
Upgrading (primary event) 242 547
Median age (years) 63 (IQR: 57-68) 63 (IQR: 57-68)

Median maximum follow-up per 5.3 (IQR: 1.8-8.3) 3.6 (IQR: 1.5-7.2)
patient (years)

Total PSA measurements 10704 16093
Median #PSA per patient 11 (IQR: 5-17) 8 (IQR: 4-16)
Median PSA (ng/mL) 4.7 (IQR: 2.8-7.1) 5.0 (IQR: 3.4-7.2)
Total biopsies 1102 3512
Median #biopsies per patient 1 (IQR: 1-2) 2 (IQR: 2-3)

posterior distribution of the vector of all parameters 0 are utilized, respec-
tively. The distribution g(77) can be estimated as detailed in |Rizopoulos
et al.[(2017)). Since, many prostate cancer patients may not obtain upgrad-
ing in the current follow-up period of PRIAS, g(7) can only be estimated
for a currently limited follow-up period.

The cause-specific cumulative upgrading-risk can be derived from g(77)
as given in (Rizopoulos et al., 2017). It is given by:

Rj(u|t,v) = Pe{Ty > u| 17 > ,Y;(v), A}, u>t. (5.3)

The personalized risk profile of the patient updates as more data is gathered
over follow-up visits.
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Table 5.4: Summary of the MUSIC and KCL validation cohorts from the
GAP3 database (Bruinsma et al., 2018). The primary event of interest is
upgrading, that is, increase in Gleason grade group from group 1 to 2 or higher.
#PSA: number of PSA, #biopsies: number of biopsies, IQR: interquartile range,
PSA: prostate-specific antigen. Full names of cohorts are KCL: King's College
London Active Surveillance, MUSIC: Michigan Urological Surgery Improvement
Collaborative AS.

Characteristic MUSIC KCL
Total patients 2743 616
Upgrading (primary event) 385 198
Median age (years) 65 (IQR: 60-71) 63 (IQR: 58-68)

Median maximum follow-up per 1.2 (IQR: 0.6-2.2) 2.4 (IQR: 1.3-3.8)
patient (years)

Total PSA measurements 12087 2987
Median #PSA per patient 4 (IQR: 2-6) 4 (IQR: 2-6)
Median PSA (ng/mL) 5.1 (IQR: 3.4-7.1) 6 (IQR: 4-9)
Total biopsies 1032 484
Median #biopsies per patient 1 (IQR: 1-1) 1 (IQR: 1-1)

Table 5.5: Parameters of the relative risk sub-model: Estimated mean and
95% credible interval for the parameters of the relative-risk sub-model.

Variable Mean Std. Dev  25% 97.5% P
Age 0.037 0.006 0.025 0.049 <0.001
Fitted log,(PSA + 1) value -0.012 0.076 -0.164 0.135  0.856
Fitted logy(PSA 4 1) velocity — 2.266 0.299 1.613 2767 <0.001
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Table 5.6: Hazard ratio and 95% credible interval (Cl) for upgrading: Vari-
ables are on different scale and hence we compare an increase in the variables of
relative risk sub-model from their 25-th percentile (P25) to their 75-th percentile
(P75). Except for age, quartiles for all other variables are based on their fitted
values obtained from the joint model fitted to the PRIAS dataset.

Variable Pas P75 Hazard ratio [95% Cl]
Age 61 71  1.455 [1.285, 1.631]
Fitted log,(PSA + 1) value  2.360 3.078  0.991 [0.889, 1.102]
Fitted logy(PSA + 1) velocity -0.085 0.308 2.433 [1.883, 2.962]

Table 5.7: Parameters of the relative risk sub-model in validation cohorts.
We fitted separate joint models for each of the six GAP3 validation cohorts as
well. The specification of these joint models was same as that of the model
for PRIAS. Two important predictors in the relative-risk sub-model, namely, the
log,(PSA + 1) value and velocity have different impact on upgrading-risk across
the cohorts. Table shows the mean estimate of these parameters with 95% credible
interval in brackets. Strongest average effect of logy(PSA+1) velocity is in PRIAS
cohort, whereas the weakest is in MUSIC cohort. The strongest average effect of
logy(PSA + 1) value is in the Toronto cohort whereas the weakest is in PRIAS
cohort. Full names of cohorts are Hopkins: Johns Hopkins Active Surveillance,
PRIAS: Prostate Cancer International Active Surveillance, Toronto: University of
Toronto Active Surveillance, MSKCC: Memorial Sloan Kettering Cancer Center
Active Surveillance, KCL: King's College London Active Surveillance, MUSIC:
Michigan Urological Surgery Improvement Collaborative AS, UCSF: University of
California San Francisco Active Surveillance.

Cohort  Fitted log,(PSA + 1) value Fitted log,(PSA + 1) velocity

PRIAS ~0.012 [-0.164, 0.135] 2.266 [ 1.613, 2.767]
Hopkins 0.061 [-0.323, 0.329] 1.839 [ 0.761, 4.378]
MSKCC 0.336 [ 0.081, 0.583] 1.122 [ 0.421, 1.980]
Toronto 0.572 [ 0.347, 0.794] 0.943 [ 0.464, 1.554]
UCSF 0.498 [ 0.326, 0.673] 0.812 [ 0.280, 1.383]
MUSIC 0.441 [ 0.092, 0.767] 0.029 [-0.552, 0.512]
KCL 0.194 [-0.104, 0.540] 0.840 [-0.087, 1.665]
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5.C.1 Validation of Risk Predictions

We wanted to check the usefulness of our model for not only the PRIAS
patients but also for patients from other cohorts. To this end, we validated
our model in the PRIAS dataset (internal validation) and the largest six
cohorts from the GAP3 database (Bruinsma et al., 2018). These are the
University of Toronto AS (Toronto), Johns Hopkins AS (Hopkins), Memorial
Sloan Kettering Cancer Center AS (MSKCC), University of California San
Francisco Active Surveillance (UCSF), King's College London AS (KCL),
Michigan Urological Surgery Improvement Collaborative AS (MUSIC).
Calibration-in-the-large \We first assessed calibration-in-the-large (Steyer-

berg et al., 2010) of our model in the aforementioned cohorts. To this end,
we used our model to predict the cause-specific cumulative upgrading-risk
for each patient, given their PSA measurements and biopsy results. We
then averaged the resulting profiles of cause-specific cumulative upgrading-
risk. Subsequently, we compared the averaged cumulative-risk profile with
a non-parametric estimate (Turnbull, [1976) of the cause-specific cumulative
upgrading-risk in each of the cohorts. The results are shown in Panel A of
Figure [5.7] We can see that our model is miscalibrated in external cohorts,
although it is fine in the Hopkins cohort. To improve our model’s calibration
in all cohorts, we recalibrated the baseline hazard of the joint model fitted to
the PRIAS dataset, individually for each of the cohorts except the Hopkins
cohort. More specifically, given the data of an external cohort A€, where ¢
denotes the cohort, the recalibrated parameters ~f, (Section of the log
baseline hazard are given by:

n¢

p(Vh, | A6, 0) o [T p(I5,r{ | b5, 0)p(75,) (5.4)

i=1
where n¢ are the number of patients in the c-th cohort, and @ is the vector
of all parameters of the joint model fitted to the PRIAS dataset. The in-
terval in which upgrading is observed for the i-th patient is given by [¢, ¢,

with 7§ = oo for right-censored patients. The symbol b denotes patient-
specific random effects (Section [5.A)) in the c-th cohort. The random effects
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are obtained using the joint model fitted to the PRIAS dataset before re-
calibration. We re-evaluated the calibration-in-the-large of our model after
the recalibration of the baseline hazard individually for each cohort. The
improved calibration-in-the-large is shown in Panel B of Figure [5.7|

Recalibrated PRIAS Model Versus Individual Joint Models For
Each Cohort We wanted to check if our recalibrated PRIAS model per-
formed as good as a new joint model that could be fitted to the external
cohorts. To this end, we predicted cause-specific cumulative upgrading-risk
for each patient from each cohort using two sets of models, namely the recal-
ibrated PRIAS model for each cohort, and a new joint model fitted to each
cohort. The difference in predicted cause-specific cumulative upgrading-risk
from these models is shown in Figure 5.8l We can see that the difference
is smaller in those cohorts in which the effects of log,(PSA + 1) value and
velocity were similar to that of PRIAS (Table. For example, the Hopkins
cohort had parameter estimates similar to that of PRIAS, and consequently,
the difference in predicted risks for this cohort is smallest. The opposite of
this phenomenon holds for the MUSIC and KCL cohorts.

Validation of Dynamic Cumulative-Risk Predictions The cumulative-
risk predictions from the joint model are dynamic in nature. That is, they
update as more data becomes available over time. Consequently, the discrim-
ination and prediction error of the joint model also depend on the available
data. We assessed these two measures dynamically in the PRIAS cohort
(interval validation) and in the largest six external cohorts that are part of
the GAP3 database. For discrimination, we utilized the time-varying area
under the receiver operating characteristic curve or time-varying AUC (Ri-
zopoulos et al., 2017). For time-varying prediction error, we assessed the
mean absolute prediction error or MAPE (Rizopoulos et al., 2017). The
AUC indicates how well the model discriminates between patients who ex-
perience upgrading, and those do not. The MAPE indicates how accurately
the model predicts upgrading. Both AUC and MAPE are restricted to [0, 1].
However, it is preferred that AUC > 0.5 because an AUC < 0.5 indicates
that the model performs worse than random discrimination. ldeally, MAPE
should be 0.
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Figure 5.7: Calibration-in-the-large of our model:. In Panel A we can see that
our model is not well calibrated for use in KCL, MUSIC, Toronto and MSKCC.
In Panel B we can see that calibration of model predictions improved in KCL,
MUSIC, Toronto and MSKCC cohorts after recalibrating our model. Recalibration
was not necessary for Hopkins cohort. Full names of Cohorts are PRIAS: Prostate
Cancer International Active Surveillance, Toronto: University of Toronto Active
Surveillance, Hopkins: Johns Hopkins Active Surveillance, MSKCC: Memorial
Sloan Kettering Cancer Center Active Surveillance, KCL: King's College London
Active Surveillance, MUSIC: Michigan Urological Surgery Improvement Collabo-
rative Active Surveillance, UCSF: University of California San Francisco Active
Surveillance.
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Figure 5.8: Comparison of predictions from recalibrated PRIAS model with
individual joint models fitted to external cohorts: On Y-axis we show the
difference between predicted cause-specific cumulative upgrading-risk for individ-
ual patients using two models, namely the recalibrated PRIAS model for each
cohort, and individual joint model fitted to each cohort. The figure shows that
the difference is smaller in those cohorts in which the effects of log,(PSA + 1)
value and velocity were similar to that of PRIAS (Table 5.7). Full names of
Cohorts are PRIAS: Prostate Cancer International Active Surveillance, Toronto:
University of Toronto Active Surveillance, Hopkins: Johns Hopkins Active Surveil-
lance, MSKCC: Memorial Sloan Kettering Cancer Center Active Surveillance,
KCL: King's College London Active Surveillance, MUSIC: Michigan Urological
Surgery Improvement Collaborative Active Surveillance, UCSF: University of Cal-
ifornia San Francisco Active Surveillance.
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Table 5.8: Maximum follow-up period up to which we can reliably predict
upgrading-risk and create personalized schedules. In each cohort, this time
point is chosen such that there are at least 10 patients who experience upgrading
after this time point. Full names of Cohorts are PRIAS: Prostate Cancer Inter-
national Active Surveillance, Toronto: University of Toronto Active Surveillance,
Hopkins: Johns Hopkins Active Surveillance, MSKCC: Memorial Sloan Kettering
Cancer Center Active Surveillance, KCL: King's College London Active Surveil-
lance, MUSIC: Michigan Urological Surgery Improvement Collaborative Active
Surveillance, UCSF: University of California San Francisco Active Surveillance.

Cohort Maximum Prediction
Time (years)

PRIAS
KCL
MUSIC
Toronto
MSKCC
Hopkins
UCSF 8

TN 0N WO

We calculate AUC and MAPE in a time-dependent manner. More specif-
ically, given the time of latest biopsy ¢, and history of PSA measurements up
to time v, we calculate AUC and MAPE for a medically relevant time frame
(t,v], within which the occurrence of upgrading is of interest. In the case of
prostate cancer, at any point in time v, it is of interest to identify patients
who may have experienced upgrading in the last one year (v — 1,v|. That
is, we set t = v — 1. We then calculate AUC and MAPE at a gap of every
six months (follow-up schedule of PRIAS). That is, ve{1,1.5,...} years. To
obtain reliable estimates of AUC and MAPE, in each cohort, we restrict v to
a maximum time point vmax, such that there are at least ten patients who
experience upgrading after ymax. This maximum time point vmax differs
between cohorts, and is given in Table [5.8]

The results for estimates of AUC and MAPE are summarized in Fig-
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Table 5.9: Internal validation of predictions of upgrading in PRIAS cohort.
The area under the receiver operating characteristic curve or AUC (measure of dis-
crimination) and mean absolute prediction error or MAPE are calculated over the
follow-up period at a gap of 6 months. In addition bootstrapped 95% confidence
intervals (Cl) are also presented.

Follow-up period (years) AUC (95% CI) MAPE (95%Cl)
1.0 to 2.0 | 0.661 [0.647, 0.678] | 0.187 [0.183, 0.191]
1.5 to 2.5 | 0.647 [0.596, 0.688] | 0.129 [0.122, 0.140]
2.0 to 3.0 | 0.683 [0.642, 0.723] | 0.135 [0.125, 0.146]
2.5 to 3.5 | 0.692 [0.632, 0.748] | 0.118 [0.111, 0.128]
3.0 to 4.0 | 0.657 [0.603, 0.709] | 0.086 [0.080, 0.092]
3.5 to 4.5 | 0.623 [0.582, 0.660] | 0.111 [0.105, 0.116]
4.0 t0 5.0 | 0.619 [0.582, 0.654] | 0.126 [0.118, 0.131]
4.51t0 5.5 | 0.624 [0.537, 0.711] | 0.119 [0.103, 0.135]
5.0 to 6.0 | 0.639 [0.582, 0.696] | 0.121 [0.103, 0.138]

ure5.9) and in Table[5.9/to Table[5.15] Results are based on the recalibrated
PRIAS model for the GAP3 cohorts. The results show that AUC remains
more or less constant in all cohorts as more data becomes available for pa-
tients. The AUC obtains a moderate value, roughly between 0.5 and 0.7 for
all cohorts. On the other hand, MAPE reduces by a big margin after year one
of follow-up. This could be because of two reasons. Firstly, MAPE at year
one is based only on four PSA measurements gathered in the first year of
follow-up, whereas after year one number of PSA measurements increases.
Secondly, patients in year one consist of two sub-populations, namely pa-
tients with a correct Gleason grade group 1 at the time of inclusion in AS,
and patients who probably had Gleason grade group 2 at inclusion but were
misclassified by the urologist as Gleason grade group 1 patients. To remedy
this problem, a biopsy for all patients at year one is commonly recommended
in all AS programs (Bokhorst et al., 2015)).
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Figure 5.9: Validation of dynamic predictions of cause-specific cumulative
upgrading-risk. In Panel A area under the receiver operating characteristic
curve or AUC (measure of discrimination) is between 0.6 and 0.7. Panel B we
can see that the time dependent root mean squared prediction error or MAPE is
similar for PRIAS and Hopkins cohorts. The bootstrapped 95% confidence inter-
val for these estimates are presented in Table 5.9 to Table [5.14] Full names of
Cohorts are PRIAS: Prostate Cancer International Active Surveillance, Toronto:
University of Toronto Active Surveillance, Hopkins: Johns Hopkins Active Surveil-
lance, MSKCC: Memorial Sloan Kettering Cancer Center Active Surveillance,
KCL: King's College London Active Surveillance, MUSIC: Michigan Urological
Surgery Improvement Collaborative Active Surveillance, UCSF: University of Cal-
ifornia San Francisco Active Surveillance.
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Table 5.10: External validation of predictions of upgrading in University
of Toronto Active Surveillance cohort. The area under the receiver operating
characteristic curve or AUC (measure of discrimination) and mean absolute predic-
tion error or MAPE are calculated over the follow-up period at a gap of 6 months.

In addition bootstrapped 95% confidence intervals (Cl) are also presented.

Follow-up period (years)

AUC (95% CI)

MAPE (95%CI)

1.0to 2.0
1.5t0 25
2.0to 3.0
251t0 3.5
3.0to 4.0
35t04.5
40to 5.0
45to55
5.0 to 6.0
5.5t0 6.5
6.0to 7.0
6.5t0 7.5
7.0 to 8.0

0.667 [0.634, 0.712]
0.691 [0.651, 0.730]
0.706 [0.637, 0.762]
0.669 [0.586, 0.741]
0.725 [0.649, 0.806]
0.716 [0.642, 0.793]
0.640 [0.579, 0.717]
0.648 [0.579, 0.740]
0.691 [0.608, 0.793]
0.670 [0.543, 0.776]
0.700 [0.544, 0.851]
0.785 [0.640, 0.866]
0.688 [0.532, 0.786]

0.276 [0.259, 0.296]
0.231 [0.205, 0.254]
0.226 [0.196, 0.260]
0.224 [0.195, 0.258]
0.212 [0.184, 0.238]
0.227 [0.206, 0.258]
0.257 [0.222, 0.312]
0.283 [0.247, 0.326]
0.264 [0.232, 0.302]
0.263 [0.227, 0.307]
0.307 [0.258, 0.363]
0.313 [0.272, 0.360]
0.299 [0.249, 0.361]

5.D Source Code

The R code for fitting the joint model to the PRIAS dataset, is at https://
github.com/anirudhtomer/prias/tree/master/src/clinical_gap3. We
refer to this location as ‘R_HOME’ in the rest of this document. The PRIAS
dataset is not openly accessible. However, access to the database can be
requested via the contact links at https://www.prias-project.org.

The PRIAS dataset is in the so-called wide format and also requires
the removal of incorrect entries. This can be done via the R script R_HOME/
dataset _cleaning.R. This will lead to two R objects, namely ‘prias_final.id’
and ‘prias_long_final’. The ‘prias_final.id’ object contains information about
the time of upgrading for PRIAS patients. The ‘prias_long_final' object
contains longitudinal PSA measurements, the time of biopsies and results of
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Table 5.11: External validation of predictions of upgrading in University
of California San Francisco Active Surveillance cohort. The area under the
receiver operating characteristic curve or AUC (measure of discrimination) and
mean absolute prediction error or MAPE are calculated over the follow-up period
at a gap of 6 months. In addition bootstrapped 95% confidence intervals (Cl) are

also presented.

Follow-up period (years)

AUC (95% CI)

MAPE (95%Cl)

1.0 to 2.0
15to 25
2.0 to 3.0
251035
3.0to 4.0
3.5to 4.5
4.0t05.0
451t05b.5
5.0 to 6.0
5.5t0 6.5
6.0to 7.0
6.5t0 7.5
7.0 to 8.0
7.51t085

0.635 [0.595, 0.677]
0.667 [0.628, 0.715]
0.660 [0.600, 0.713]
0.678 [0.614, 0.757]
0.648 [0.574, 0.707]
0.586 [0.525, 0.638]
0.647 [0.590, 0.754]
0.667 [0.582, 0.773]
0.603 [0.496, 0.696]
0.671 [0.576, 0.786]
0.735 [0.663, 0.794]
0.675 [0.565, 0.769)]
0.620 [0.518, 0.740]
0.647 [0.538, 0.787]

0.273 [0.266, 0.281]
0.241 [0.224, 0.259)]
0.221 [0.205, 0.238]
0.197 [0.175, 0.214]
0.197 [0.179, 0.221]
0.202 [0.180, 0.229]
0.192 [0.168, 0.217]
0.184 [0.159, 0.220]
0.170 [0.144, 0.207]
0.173 [0.145, 0.202]
0.196 [0.166, 0.219]
0.202 [0.168, 0.231]
0.187 [0.144, 0.217]
0.183 [0.146, 0.222)

biopsies.

We use a joint model for time-to-event and longitudinal data to model the
evolution of PSA measurements over time, and to simultaneously model their
association with the risk of upgrading. The R package we use for this purpose
is called JMbayes (https://cran.r-project.org/web/packages/JMbayes/JMbayes.pdf).
The APl we use, however, is currently not hosted on CRAN, and can be found
here: https://github.com/anirudhtomer/JMbayes. The joint model
can be fitted via the script R_HOME/analysis.R. It takes roughly 6 hours
to run on an Intel Core-i5 machine with four cores and 8GB of RAM.

The graphs presented in the main manuscript, and the appendix can be
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Table 5.12: External validation of predictions of upgrading in Johns Hopkins
Active Surveillance cohort. The area under the receiver operating characteristic
curve or AUC (measure of discrimination) and mean absolute prediction error or
MAPE are calculated over the follow-up period at a gap of 6 months. In addition
bootstrapped 95% confidence intervals (Cl) are also presented.

Follow-up period (years)

AUC (95% CI)

MAPE (95%CI)

1.0to 2.0
1.5t0 25
2.0to 3.0
251t0 3.5
3.0to 4.0
35t04.5
40to 5.0
45to55
5.0 to 6.0
5.5t0 6.5
6.0to 7.0

0.672 [0.604, 0.744]
0.722 [0.652, 0.792]
0.717 [0.638, 0.777]
0.587 [0.493, 0.704]
0.613 [0.486, 0.742)
0.690 [0.594, 0.783]
0.666 [0.572, 0.754]
0.688 [0.519, 0.779]
0.735 [0.676, 0.820]
0.674 [0.581, 0.765]
0.597 [0.472, 0.712]

0.128 [0.115, 0.141]
0.095 [0.081, 0.111]
0.112 [0.100, 0.123]
0.144 [0.129, 0.154]
0.141 [0.126, 0.156]
0.115 [0.100, 0.133]
0.121 [0.104, 0.147]
0.137 [0.119, 0.161]
0.126 [0.102, 0.152]
0.143 [0.121, 0.172]
0.163 [0.126, 0.195]

generated by the scripts in R_HOME/plots/.
Validations can be done using the scripts R_HOME/validation/auc_

brier/auc_calculator.R, and R_HOME/validation/auc_brier/gof calculator.

R. For external validation access to GAP3 database is required.

Once a joint model is fitted to the PRIAS dataset, personalized schedules
of biopsies based on the risk of upgrading for new patients can be developed
as shown in the script R_HOME/plots/demo_schedule_supplementary.R

or directly using the script https://raw.githubusercontent.com/anirudhtomer/

prias/master/src/lastpaper/pers_schedule api.R.
Source code for the shiny web application which provides biopsy schedules
for patients can be found at R_HOME/shinyapp
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Table 5.13: External validation of predictions of upgrading in Memorial
Sloan Kettering Cancer Center Active Surveillance cohort. The area under
the receiver operating characteristic curve or AUC (measure of discrimination)
and mean absolute prediction error or MAPE are calculated over the follow-up
period at a gap of 6 months. In addition bootstrapped 95% confidence intervals

(Cl) are also presented.

Follow-up period (years)

AUC (95% Cl)

MAPE (95%CI)

1.0to 2.0
1.5t0 2.5
2.0to 3.0
251t0 35
3.0to 4.0
35t04.5
40to 5.0
45to55
5.0 to 6.0

0.599 [0.518, 0.671]
0.581 [0.504, 0.663]
0.671 [0.599, 0.741]
0.703 [0.610, 0.777]
0.629 [0.499, 0.706]
0.664 [0.589, 0.756]
0.747 [0.642, 0.841]
0.719 [0.597, 0.852]
0.698 [0.565, 0.792]

0.230 [0.207, 0.256]
0.198 [0.168, 0.235]
0.208 [0.182, 0.232]
0.218 [0.197, 0.246]
0.226 [0.194, 0.259)
0.225 [0.199, 0.262]
0.215 [0.188, 0.247]
0.194 [0.165, 0.232]
0.174 [0.136, 0.227]

Table 5.14: External validation of predictions of upgrading in King’'s College
London Active Surveillance cohort. The area under the receiver operating char-
acteristic curve or AUC (measure of discrimination) and mean absolute prediction
error or MAPE are calculated over the follow-up period at a gap of 6 months. In
addition bootstrapped 95% confidence intervals (Cl) are also presented.

Follow-up period (years) AUC (95% CI) MAPE (95%Cl)

1.0 to 2.0
1.5t0 2.5
2.0 to 3.0

0.683 [0.604, 0.753]
0.691 [0.621, 0.766]
0.689 [0.616, 0.785]

0.416 [0.396, 0.445]
0.271 [0.246, 0.297]
0.319 [0.282, 0.344]
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Table 5.15: External validation of predictions of upgrading in Michigan Uro-
logical Surgery Improvement Collaborative Active Surveillance cohort. The
area under the receiver operating characteristic curve or AUC (measure of dis-
crimination) and mean absolute prediction error or MAPE are calculated over the
follow-up period at a gap of 6 months. In addition bootstrapped 95% confidence
intervals (Cl) are also presented.

Follow-up period (years) AUC (95% Cl) MAPE (95%Cl)
1.0 to 2.0 | 0.599 [0.553, 0.632] | 0.331 [0.317, 0.348]
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Abstract

Aims. Personalized screening intervals for N-terminal pro-B-
type natriuretic peptide (NT-proBNP) measurement in patients with
chronic heart failure (CHF) could maximize information gain on in-
dividual patients’ disease progression, while minimizing the number
of necessary measurements. To improve prevention of clinical ad-
verse events, we compared personalized scheduling of NT-proBNP
measurements to fixed scheduling.

Methods. In 263 CHF patients from the Bio-SHiFT study, NT-
proBNP was measured trimonthly according to a predefined fixed
schedule. The primary endpoint (PE) comprised cardiac death, car-
diac transplantation, left ventricular assist device implantation or
heart failure hospitalization. We jointly modeled the repeated NT-
proBNP measurements and PE. Using this fitted joint model, for
each patient at each follow-up visit, we decided the optimal time
point of the next NT-proBNP measurement based on the patient's
individual NT-proBNP evolution. Personalized scheduling was com-
pared to fixed scheduling by means of a simulation study, based on
a replica of the Bio-SHiFT study population. Specifically, we com-
pared the schedules’ capability of identification of a high-risk interval
(time-window with high risk preceding the PE; identification of its
start enables appropriate timely intervention and prevention of PE
occurrence), and number of measurements needed.

Results. Compared to fixed scheduling, personalized scheduling
saved on average 2 measurements, while the start of the high-risk
interval was similar by both approaches [personalized, Median: 6.6,
IQR: 4.5-11.3; fixed, Median: 6.3, IQR: 4.2-10.3; months before oc-
currence of PE].

Conclusion. Personalized scheduling of NT-proBNP measure-
ments in CHF patients, as compared to fixed scheduling, shows sim-
ilar performance with regard to identification of impending adverse
events, but requires fewer NT-proBNP measurements.



6.1. Introduction

6.1 Introduction

Circulating biochemical markers (biomarkers) may reflect the deterioration
of patients with chronic heart failure (CHF) in an earlier stage than clinical
assessment does. Hence, these biomarkers carry the potential to improve
the risk stratification of patients with CHF and prevention of adverse clini-
cal events (Masson et al 2008; Gaggin and Januzzi Jr, 2013). In the past
decade, several trials on natriuretic peptide-guided therapy have been per-
formed in which serial natriuretic peptide measurements were used to titrate
medication (Khan et al., 2018; [Felker et al. 2017). However, these trials
have demonstrated inconclusive results. This may, in part, be explained by
the fact that they mostly used predefined screening intervals (i.e., predefined
time points) to assess biomarkers, as well as predefined target levels. Such
predefined screening intervals and target levels do not account for individual
temporal patterns of biomarkers, which may hamper their potential use for
therapy guidance.

Conversely, a personalized screening approach that individualizes screen-
ing intervals and target levels based on individual temporal biomarker pat-
terns may further improve risk assessment and therapy guidance. Such per-
sonalized screening intervals aim to maximize information gain on the indi-
vidual patients’ disease progression, while minimizing the necessary number
of measurements, and therewith costs and patient burden (Rizopoulos et al.,
2016). In order to establish such intervals and targets, a model should be ap-
plied that incorporates detailed data on individual temporal patterns. Joint
modeling is a statistical approach that takes into account full individual
temporal patterns of biomarkers and links these patterns to the occurrence
of adverse clinical events (Rizopoulos, 2016} Rizopoulos and Takkenberg,
2014). In the Role of Biomarkers and Echocardiography in Prediction of
Prognosis of Chronic Heart Failure Patients (Bio-SHiFT) study, we collected
a median of 9 [interquartile range (IQR): 5-10] blood samples per patient.
We demonstrated, by applying joint modeling, that individual temporal pat-
terns of serially measured CHF-related biomarkers are associated with the
prognosis of CHF patients (van Boven et al., 2018). Furthermore, we demon-
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strated that such a joint model when fitted on patients in Bio-SHiFT, could
be used to estimate the patient-specific risk of the adverse outcome at each
visit at the outpatient clinic. This risk is updated at each visit because it in-
corporates information on the patients’ prognosis as derived from the newly
available biomarker measurement (van Boven et al., [2018).

Subsequently, such a patient-specific risk profile, as derived from a joint
model, can be applied to establish personalized screening intervals for future
patients presenting at the outpatient clinic. This approach could contribute
to improved prevention of further adverse clinical events. However, the
benefits of this approach, over predefined screening intervals and targets,
have not yet been investigated in CHF. Thus, in the current investigation,
we aim to compare personalized scheduling to predefined fixed scheduling
of N-terminal pro-B-type natriuretic peptide (NT-proBNP) measurements in
individual CHF patients, in terms of the number of measurements performed
according to each schedule, as well as the amount of time that remains for

intervention before adverse outcome occurs. For this purpose, we use the
data of the Bio-SHIiFT study.

6.2 Methods

6.2.1 Study design and procedures

The design of the Bio-SHiF T study has been described in detail elsewhere (van
Boven et al., 2018). Briefly, CHF patients in clinically stable conditions were
recruited during their regular outpatient visits in the Erasmus MC, Rotter-
dam, The Netherlands, and Northwest Clinics, Alkmaar, The Netherlands.
Patients were eligible if CHF (with reduced or preserved ejection fraction)
was diagnosed > 3 months ago according to the guidelines of the European
Society of Cardiology (Members et al., [2012; Paulus et al., 2007} Dickstein
et al| [2008). Blood samples were taken on the day of inclusion and at
predefined trimonthly follow-up visits, which were scheduled to a maximum
follow-up duration of 30 months. Blood sampling and study procedures are
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further described in the Supplemental Materials. For the current investiga-
tion, we used 263 patients who were enrolled during the first inclusion period
between October 2011 and June 2013.

During follow-up, the occurrence of clinical events was recorded in the
electronic case report forms, and associated hospital records and discharge
letters were collected. Subsequently, a clinical event committee, blinded
to the biomarker-candidate results, reviewed hospital records and discharge
letters, and adjudicated the study endpoints. The primary study endpoint
(PE) was defined as the composite of cardiac death, cardiac transplantation,
left ventricular assist device implantation, or hospitalization for heart failure,
whichever occurred first.

The Bio-SHIFT study was approved by the medical ethics committee of
the Erasmus MC and was performed in accordance with the Declaration of
Helsinki. Written informed consent was obtained from all patients. The
Bio-SHIFT study is registered in ClinicalTrials.gov, number NCT01851538.

6.2.2 Statistical analysis

We utilized a joint model to estimate the association between longitudinally
measured NT-proBNP and clinical outcome (Rizopoulos, 2012; |Tsiatis and
Davidian, 2004)). A joint model combines a linear mixed-effect (LME) model
for longitudinally measured data with a Cox regression model for time-to-
event data. The association between these two types of data is modeled using
patient-specific random effects. The LME model uses these random-effects
to model the longitudinal temporal pattern of NT-proBNP measurements.
The Cox model uses these random-effects to model the impact of the under-
lying trajectory of NT-proBNP measurements on the risk of PE (Rizopoulos
et al., 2016; van Boven et al.,, 2018). The use of joint modeling is fur-
ther motivated in Supplemental Materials. We used logarithmically (base 2)
transformed NT-proBNP measurements in our joint model. Consequently,
we were able to obtain a hazard ratio (HR) along with a 95% confidence
interval (Cl) that estimated the risk of the PE associated with doubling of
NT-proBNP level at a given follow-up time (van Boven et al., 2018).
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The potential confounders that we used in our joint model were chosen
based on their independent association with the PE in multivariable Cox
regression models (NYHA class and diabetes mellitus) and existing literature
(age, gender, renal function, body mass index). Covariates were missing
in less than 3% of the patients. Multiple imputations (5 times) of these
covariates were performed in the multivariable analyses.

6.2.3 Scheduling personalized screening visits

The scheduling of personalized screening visits is based on the individual
patients’ longitudinal biomarker profile. A patient visiting the outpatient
clinic has longitudinal NT-proBNP measurements available until a certain
time point. From the aforementioned joint model, we can derive for each
individual patient the cumulative-risk of the PE at a particular follow-up time
point, using all of the previously measured NT-proBNP up until this time
point.

For determining the optimal time point for drawing the next blood sample
in a particular patient, we first need to establish the cumulative-risk of PE
occurring in a certain time window. The time point for drawing the next
blood sample should not be beyond the time point at which the PE occurs.
For this reason, we set a maximum limit on the time window based on the
cumulative-risk of the PE. Then, the time window is defined as the time
between the current measurement and the maximum possible time point of
drawing the next measurement. We aim to find the optimal time point to
draw the next blood sample within this time window. We also need to define
a risk threshold, which, if crossed within the time window, leads us to stop
the further scheduling of measurements since the patient apparently needs
appropriate action and/or increased surveillance, and therefore a different
protocol from that point onwards. For this investigation, we have selected
a risk threshold of 7.5% for the three months that follow, based on clinical
considerations. Thus, if the patients’ cumulative-risk of the PE exceeds 7.5%
within the following three months, we stop scheduling further measurements
in order to, for example, adjust therapy to avoid the occurrence of the PE. For
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the current investigation, we focus on the personalized screening schedules
themselves, as our primary aim is to enable timely intervention before the
occurrence of the PE. Hence, for now, we do not propose a specific therapy
to be used at the time point that the patients’ cumulative-risk of the PE
exceeds the risk threshold.

On the other hand, if the cumulative-risk of the PE remains less than
7.5% within the following three months, we would like to determine the
optimal time point at which to obtain the next NT-proBNP measurement.
The selection of this optimal time point is based on two aspects.5 First,
as stated, the cumulative-risk of PE in the time window should not exceed
7.5%. Second, obtaining an NT-proBNP measurement at this optimal time
point should provide us the maximum amount of information about the
future cumulative-risk of PE for this particular patient. Accordingly, we
perform personalized scheduling using the stepwise approach depicted in
Figure[0.1] Altogether, when applying this approach, patients with relatively
stable biomarker profiles will likely not exceed the predefined risk threshold
within a specified time window, and the calculations may suggest waiting for
a longer time period to perform the next biomarker measurement in these
patients. On the other hand, patients with worsening biomarker profiles are
more likely to exceed the predefined risk threshold within a specified time
window, and the calculations may suggest performing the next biomarker
measurement in the short term.

6.2.4 Simulation study

After constructing the joint model and defining the thresholds needed for
scheduling personalized screening visits, we proceeded to compare the per-
sonalized screening schedule to a fixed screening schedule. For the fixed
schedule, we chose trimonthly intervals, in accordance with the design of the
Bio-SHIiFT study and daily clinical practice. Since our existing data were
collected using this fixed screening schedule and hence no ‘real’ data on per-
sonalized screening intervals was available, the advantages of a personalized
screening design were assessed by means of a simulation study. We first sim-
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Figure 6.1: lllustration of personalized scheduling of biomarker measure-
ments. We plan NT-proBNP measurements until the cumulative-risk of PE (pri-
mary endpoint) at three months from the current visit is more than 10%. Panel A:
Example patient with longitudinal NT-proBNP measurements and fitted profile
(in blue). The time of the current visit, on which PE was not observed, is year
2. Using NT-proBNP and time of current visit data, we derive a personalized
cumulative-risk profile for the patient (in red). This risk profile reaches the 10%
level at year 3.2, and hence, we are allowed to schedule new measurements until
year 3.2. Panel B: We calculate the expected information gain in the patient's
prognosis if a new NT-proBNP measurement is done at a future time point be-
tween the current visit at year 2 and the time of the maximum acceptable risk of
10% at year 3.2. The time of maximum expected information gain, is year 2.8,
and hence, we schedule new NT-proBNP measurement at year 2.8.
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ulated a dataset containing 750 patients. These 750 simulated patients had
baseline characteristics and NT-proBNP profiles similar to the 263 patients
included in the Bio-SHiFT since we simulated using the joint model fitted to
the Bio-SHiFT data. We divided this data into training (700 patients), and
testing (50 patients) set. For the training patients, using the joint model
fitted to the Bio-SHIiFT data, we generated NT-proBNP measurements at
fixed follow-up time points. This schedule is similar to the schedule of the
Bio-SHIFT study. We also generated a true PE time for these patients, as
well as a random non-informative censoring time. Subsequently, we fitted
a new joint model for these patients and, then, used this model to develop
NT-proBNP measurement schedules for the test patients. To this end, in
the test patients, we only generated the true PE time. Using such a de-
sign ensured that the ‘new’ patients (n=50) are comparable to the ‘existing’
patients (n=700) on which the model is based; if we had used the ‘real’
patients (n=263 from the Bio-SHiFT study), this might not have been the
case.

Thus, for each of the 50 patients in the test set, we aimed to compare
the efficacy of scheduling NT-proBNP measurements according to a fixed
screening design and a personalized screening design. For the personalized
screening design, the first three simulated NT-proBNP measurements were
considered a given, in order to have a ‘run-in period’ for the patients’ longi-
tudinal profile of NT-proBNP, since if we have a longitudinal profile available
we can apply the aforementioned stepwise approach of personalized schedul-
ing. Apart from using the risk-threshold of 7.5% over a 3-month period, we
repeated the analysis using 5% and 10% risk thresholds. We did so because
5% is a lower cumulative-risk, and consequently, scheduling will stop earlier
than in case of a 7.5% risk threshold, which will give us more time to in-
tervene with respect to the true PE time. Conversely, 10% is a higher risk
percentage than 7.5%, and hence schedules based on the former will give us
less time.

The performance of the personalized and fixed screening schedules was
compared using two outcome measures, namely, the start of the high-risk
interval and the number of scheduled measurements. The high-risk interval
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was defined as the estimated intervention time minus the true event time
(in months) (Fig. 1D). Thus, the schedule that showed a high-risk interval
that was larger in absolute terms (i.e., more negative) was preferred, because
such a high-risk interval enables timely intervention. In addition, assuming
that the costs of NT-proBNP measurements and outpatient visits remained
the same during follow-up, we prefer a procedure that requires the fewest
possible repeated measurements (Supplemental Materials). All analyses were
performed with R statistical software using package JMBayes (Rizopoulos,
2016)).

6.3 Results

6.3.1 Baseline characteristics

The mean age of the patients was 66.7 years, and 71.9% were men (Ta-
ble [6.1)). Most patients were in NYHA class | or Il (73.8%). The median
baseline NT-proBNP value was 137.3 pmol/L (IQR: 51.7-272.6). A total
of 2022 NT-proBNP measurements were performed during follow-up before
the PE occurred. The PE occurred in 70 patients (26.6%). The median
maximum follow-up time was 2.1 (IQR: 1.2-2.4) years.

6.3.2 Association between temporal patterns of
NT-proBNP and the PE

Serially measured NT-proBNP was associated with the PE (univariable HR
per doubling of NT-proBNP: 2.13, 95%Cl: 1.81-2.53, p<0.001). After ad-
justment for age, gender, diabetes mellitus, NYHA class, body mass index,
and renal function, serially measured NT-proBNP remained independently
associated with the PE (adjusted HR per doubling of NT-proBNP: 2.20,
95%Cl :1.84-2.68, p<0.001). Two examples of dynamic risk assessment of
individual patients from the Bio-SHiFT dataset based on the joint model are
demonstrated in Supplemental Materials, Figure 1A-B.
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Table 6.1: Summary of the Bio-SHiFT dataset. The primary study endpoint
(PE) was defined as the composite of cardiac death, cardiac transplantation, left
ventricular assist device implantation, or hospitalization for heart failure, whichever
occurred first. Abbreviations: NYHA is New York Heart Association Classifica-
tion (Bredy et al., [2018)); IQR is interquartile range.

Characteristic Value
Total patients 263
PE (primary endpoint) 70
Total NT-proBNP measurements 2022
Median NT-proBNP (pg/mL) 110.3 (IQR: 38.5-240.9)
Median age at inclusion (years) 67.9 (IQR: 58.9-75.8)
Median BMI at inclusion 26.5 (IQR: 24.4-30.1)
Median NYHA (assumed continuous) 2 (IQR: 1-3)
Gender = Female (%) 74/263 (28.1%)
Renal failure history = Yes (%) 136,/263 (51.7%)
Type-1l diabetes mellitus = Yes (%) 81/263 (30.8%)
Median maximum follow-up per patient (years) 2.1 (IQR: 1.2-2.4)
Median #NT-proBNP per patient 9 (IQR: 5-10)

6.3.3 Fixed versus personalized screening schedule:
high-risk interval and number of measurements

The median follow-up time of the 750 patients in the simulated dataset
was 1.76 years (IQR: 1.42-2.24); mean (standard deviation) was 1.85 (0.63)
years and the maximum was 3.5 years. The personalized schedule used
fewer measurements as compared to the fixed (Panel A, Figure . The
personalized schedule used a median of 7 (IQR: 7-8) and the fixed schedule,
a median of 9 (IQR: 8-10) measurements. Corresponding cost estimates
are demonstrated in the Supplemental Materials. The start of the high-risk
intervals for the fixed and personalized screening schedules are depicted in
Figure 2B. The personalized and fixed schedules showed similar results, i.e.,
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the difference between the estimated intervention time compared to the ‘true’
event time was a median of 6.6 (IQR: 4.5-11.3) months for the personalized
and a median of 6.3 (IQR: 4.2-10.3) months for the fixed schedule (Panel B,
Figure . In both schedules, scheduling of new sampling moments was
stopped in order to undertake appropriate action, well in time before the
event occurred.

Results of the analyses using risk thresholds of consecutively 5% and 10%
over three months are depicted in the Supplemental Materials, Figure |6.3]
and Figure [6.4} respectively. Based on a risk threshold of 5% over three
months, the fixed and personalized screening schedules demonstrated similar
results for the high-risk interval. However, again, the personalized screen-
ing schedule used fewer measurements as compared to the fixed screening
schedule. The same was true for the risk threshold of 10%. In case of a risk
threshold of 5% over three months, we found that the start of the high-risk
interval was further away from the true event time as compared to a risk
threshold of 7.5% over three months. Conversely, in case of a risk threshold
of 10% over three months, the start of the high-risk interval was closer to the
true event time as compared to a risk threshold of 7.5% over three months.
These results comply with the increase in the risk threshold.

6.4 Discussion

This study aimed to optimally schedule NT-proBNP measurements for indi-
vidual patients with CHF while maximizing the gain in prognostic information
and reducing costs. Furthermore, to compare the efficacy of such personal-
ized scheduling with fixed scheduling. We found that over a median follow-up
time of 1.8 years, personalized scheduling required fewer NT-proBNP mea-
surements per patient as compared to fixed scheduling while demonstrating
similar performance regarding the prevention of adverse cardiac events. Since
personalized scheduling required fewer measurements, this approach is ex-
pected to reduce related health care costs as well as patient burden compared
to fixed scheduling.
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Figure 6.2: Total NT-proBNP measurements and high-risk interval
(months) preceding the primary endpoint (PE) for fixed (quarterly measure-
ments) and personalized schedules. Results are based on a realistic simulation
study of 263 test patients. NT-proBNP is measured as per personalized and fixed
schedules, until a patient’s cumulative-risk of obtaining PE in the subsequent three
months is above 7.5%. The boxplot for the number of measurements in Panel A
is made using data of all simulated patients. The boxplot for the high-risk interval
(the difference between the time at which NT-proBNP measurements are stopped
and the true simulated PE time) in Panel B, is based on only those patients who
observe PE. In Panel B a zero high-risk interval (dashed red line) indicates that
no time is available for intervention before occurrence of PE.
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The findings from our study carry important implications for future trials
on biomarker-guided therapy. Previous biomarker-guided trials have gener-
ally used predefined sampling intervals and target levels (Khan et al., 2018;
Felker et al., 2017). We show that, by using a personalized approach for
scheduling NT-proBNP, timely intervention is enabled while using fewer NT-
proBNP measurements as compared to a fixed schedule. Even though our
fixed schedule consisted of rather frequent (trimonthly) NT-pro-BNP mea-
surements, the high-risk interval identified by the personalized schedule was
similar. On top of this, the fixed schedule was outperformed by the per-
sonalized schedule in terms of the number of measurements needed per
patient to obtain this result. Maximizing information gain by estimating
prognosis in an individual and optimal manner, while minimizing healthcare
burden, may provide novel opportunities for timely adaptation of treatment.
Future trials on natriuretic peptide-guided therapy for chronic heart failure
may benefit from incorporating personalized screening intervals and person-
alized biomarker value targets; tailoring therapeutic interventions using this
approach may reveal benefits that could not be demonstrated by previous
trials, by nature of their design.

Previous studies on personalized scheduling of blood sampling moments
for measurements of biomarkers of disease are scarce, but this topic seems
to be gaining attention recently. Personalized scheduling has been applied
to patients undergoing aortic allograft root implantation (Rizopoulos et al.,
2016). Similarly to our study, this study used joint modeling. Aortic gradient
levels were measured according to a fixed screening schedule. The authors
demonstrated that personalized scheduling of aortic gradient assessments
required fewer measurements and also performed better regarding the pre-
vention of recurrent events as compared to fixed scheduling. Recently, per-
sonalized schedules for reducing the number of biopsies in low-risk prostate
cancer patients have also been developed (Tomer et al., 2019). Altogether,
these promising results in other disease areas concur with our conclusion
that personalized screening intervals carry the potential to improve patient
monitoring and to ultimately individualize and herewith improve treatment.
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6.4.1 Limitations

Several aspects of this study warrant consideration. First, we made sev-
eral assumptions when developing the model, defining the thresholds, and
setting up of the simulation study. However, in a sensitivity analysis, we
performed the simulation study for three different risk thresholds, and the
results remained essentially unchanged. Second, in our investigation, we per-
formed a so-called demonstration, meaning that the analysis was performed
on one ‘test’ set of 50 patients, and was not repeated. We performed a
demonstration because we aimed to provide a proof-of-concept here. A
study with multiple test sets should be performed to validate our findings
further. Although, it should be noted that such repeated estimations pose
a heavy computational burden. Third, we did not account for the costs of
implementation. Finally, while the concept of personalized screening inter-
vals we present here seems promising, whether it would actually lead to the
prevention of adverse events remains to be investigated in a clinical trial.

6.4.2 Conclusions

In conclusion, this study demonstrates for the first time that personalized
scheduling of NT-proBNP measurements in patients with CHF, as compared
to fixed scheduling, shows similar performance with regard to prevention of
recurrent events but requires fewer NT-proBNP measurements. If such per-
sonalized scheduling were to be applied in natriuretic peptide-guided therapy,
these benefits might translate into improved outcomes. Therefore, a clinical
trial incorporating personalized scheduling should be considered.
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Appendix
6.A Details: Materials and Methods

6.A.1 Study procedures and outcome measures

During their baseline and follow-up visits, all patients were evaluated by
research physicians, who collected information on CHF-related symptoms,
New York Heart Association (NYHA) class, and performed a physical ex-
amination. Information on CHF etiology, left ventricular ejection fraction,
cardiovascular risk factors, medical history, and treatment was retrieved pri-
marily from hospital records and was checked in case of ambiguities. History
of cardiovascular and other comorbidities was defined as clinical diagnosis
thereof reported in the hospital records.

6.A.2 Blood sampling and NT-proBNP measurement

Blood samples were processed and stored at a temperature of -80 degrees C
within 2 hours after blood collection. When applicable, samples were trans-
ported to the central laboratory (Erasmus MC, Rotterdam, the Netherlands)
under controlled conditions (at a temperature of -80 degrees C) until batch
analysis was performed. Accordingly, results of the biomarker assays were
not available to treating physicians at the time of the outpatient visits and
hence did not alter patient care. Plasma NT-proBNP was analyzed using an
Electrochemiluminescence immunoassay (Elecsys 2010; Roche Diagnostics,
Indianapolis, IN), which measures concentrations ranging from 5 to 35000

ng/L.
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6.A.3 Joint Modeling

We utilized a joint model to estimate the association between longitudinally
measured NT-proBNP and clinical outcomes. A joint model combines a lin-
ear mixed-effect (LME) model for longitudinally measured data with a Cox
regression model for time-to-event data. The use of joint modeling was mo-
tivated by the following considerations. In the Bio-SHiFT study, NT-proBNP
levels were measured trimonthly until the PE occurred, or until the patient
was censored. Thus, naturally, patients who experienced a PE had NT-
proBNP measurements available over a shorter time-course than those who
did not experience a PE; or in other words, further NT-proBNP measure-
ments could be considered as missing due to occurrence of the PE. However,
commonly used methods to model such longitudinal data, for example, lin-
ear mixed-effect (LME) models, assume that missing data is non-informative
with regard to a patient’s health status. In other words, they do not account
for the fact that patients with missing NT-proBNP values are more likely to
have higher NT-proBNP levels (if hypothetically, we would have been able
to observe them). This may lead to bias in the parameter estimates. In
addition, a classical time-dependent Cox regression may be used in order to
measure the impact of NT-proBNP on the PE. However, due to the afore-
mentioned issue, the time-dependent Cox model may also be biased. To
correctly estimate the effects, the parameters of these two types of models
are required to be estimated jointly. We did so by applying the joint model.

6.A.4 Costs

Based on the number of scheduled measurements by the personalized and
the fixed scheduling approach, we compared the cost estimates from the per-
spective of Erasmus MC as well as the perspective of society at large for both
scheduling approaches. Cost estimates from the perspective of the Erasmus
MC included costs of NT-proBNP sampling and measurement, as well as
visiting the Cardiology outpatient clinic, at this particular institution (Kan-
ters et al., |2017; [Hakkaart-van Roijen et al. 2015). Cost estimates from
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the perspective of society at large included average Dutch cost estimates of
NT-proBNP sampling and measurement and average Dutch cost estimates
of visiting a Cardiology outpatient clinic. Moreover, patients’ travel costs
and patients’ production losses associated with visiting the outpatient clinic
were included (Kanters et al., |2017; Hakkaart-van Roijen et al., 2015).

6.B Supplemental Results

6.B.1 Fixed versus personalized screening schedule:
costs

Costs are depicted in Table [0.2] From the perspective of the Erasmus MC,
the costs associated with a visit to the Cardiology outpatient clinic, including
blood sampling and NT-proBNP measurement, were €182.1 Thus, since
the personalized screening schedule required two visits less than the fixed
schedule (Figure , from the perspective of the Erasmus MC the costs
saved by personalized scheduling were on average €364 per patient, over a
mean follow-up of 1.76 years (€207 saved per patient per year).

From the perspective of society at large, costs for visiting the outpatient
clinic, blood sampling, and NT-proBNP measurement were €106.1 Travel
costs and production losses amounted to €6 and €33, respectively. Alto-
gether, costs per visit amounted to €145, with, on average, €290 saved per
patient by personalized scheduling versus fixed scheduling, again over a mean
follow-up of 1.76 years (€165 saved per patient per year).

In The Netherlands, the prevalence of CHF is estimated at 227,000 pa-
tients (www.nivel.nl/node/4309). In this context, personalized screening
could reduce the involved annual costs by approximately €37 million from
the perspective of society at large.
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Figure 6.3: Total NT-proBNP measurements and high-risk interval
(months) preceding the primary endpoint (PE) for fixed (quarterly measure-
ments) and personalized schedules. Results are based on a realistic simulation
study of 263 test patients. NT-proBNP is measured as per personalized and fixed
schedules, until a patient’s cumulative-risk of obtaining PE in the subsequent three
months is above 5%. The boxplot for the number of measurements in Panel A is
made using data of all simulated patients. The boxplot for the high-risk interval
(the difference between the time at which NT-proBNP measurements are stopped
and the true simulated PE time) in Panel B, is based on only those patients who
observe PE. In Panel B a zero high-risk interval (dashed red line) indicates that
no time is available for intervention before occurrence of PE.
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Figure 6.4: Total NT-proBNP measurements and high-risk interval
(months) preceding the primary endpoint (PE) for fixed (quarterly measure-
ments) and personalized schedules. Results are based on a realistic simulation
study of 263 test patients. NT-proBNP is measured as per personalized and fixed
schedules, until a patient’s cumulative-risk of obtaining PE in the subsequent three
months is above 10%. The boxplot for the number of measurements in Panel A is
made using data of all simulated patients. The boxplot for the high-risk interval
(the difference between the time at which NT-proBNP measurements are stopped
and the true simulated PE time) in Panel B, is based on only those patients who
observe PE. In Panel B a zero high-risk interval (dashed red line) indicates that
no time is available for intervention before occurrence of PE.
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Table 6.2: Cost estimates from the perspective of the Erasmus MC and
society at large. Abbreviations are, CHF: chronic heart failure; NL: The Nether-
lands; NT-proBNP: N-terminal pro-B-type natriuretic peptide.

Costs Erasmus MC (€) Society at large (€)
NT-proBNP measurement, per mea- 19 15
surement

Visit to outpatient clinic, per visit 163 91
Travel costs, per visit - 6
Production loss costs, per visit - 33
Total costs, per visit 182 145
Total costs for fixed schedule (median 1638 1305
of 9 measurements)

Total costs for personalized schedule 1274 1015
(median of 7 measurements)

Costs saved by personalized schedul- 364 290
ing, per patient

Annual costs saved by personalized - 37,455,000

scheduling (prevalence CHF in NL es-
timated at 227,000 patients)
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7.1. Background

7.1 Background

Low-risk chronic non-communicable disease (e.g., localized prostate cancer,
low-risk dysplasia) patients often undergo repeated invasive tests (biopsies,
endoscopies, etc.) for confirming disease progression. A progression is a
non-terminal event upon which patients usually undergo serious treatments,
e.g., surgery, radiotherapy. Typically, invasive tests are conducted routinely
according to a one-size-fits-all (e.g., yearly) fixed schedule (Bokhorst et al.,
2015; |Choi and Hur| 2012} [Krist et al.| [2007; McWilliams et al., [2008; [Hen-
derson et al |2011). Invasive tests are burdensome (lLoeb et al., 2013; Krist
et al., [2007)) but also indispensable for timely detection of disease progres-
sion. Specifically, frequent one-size-fits-all test schedules promise shorter
time delays in observing progression at the cost of imposing an extra bur-
den on patients who progress slowly. The vice versa holds for infrequent
tests. Our aim in this thesis was to balance better the number of tests
(burden) and time delay in detecting progression (shorter is beneficial) than
fixed schedules. To this end, we developed and applied statistical meth-
ods for scheduling invasive diagnostic tests (e.g., biopsies, endoscopies) in a
personalized manner.

To create personalized test schedules we first utilized a statistical model
to predict a patient’s cumulative-risk of progression over the whole follow-up
period based on his accumulated clinical data. This risk profile manifested
the transition of a patient’s disease state over time from low-risk to pro-
gressed. Hence, subsequently, we used it to guide the timing of future inva-
sive tests. Specifically, we derived personalized test schedules by optimizing
utility functions of clinical parameters of interest (Chapters[2] [3] and [4)) un-
der the estimated patient-specific cumulative-risk of progression. We also
employed the cumulative-risk of progression to assess the widely utilized ap-
proach of scheduling invasive tests using partially observable Markov decision
processes (Chapter . We then implemented personalized biopsy sched-
ules for real patients of the seven largest prostate cancer active surveillance
programs (Chapter [5)) in a web-application (https://emcbiostatistics.
shinyapps.io/prias_biopsy recommender/). The use of personalized
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schedules is not limited to invasive tests only. In this regard, we also ap-
plied them for planning the NT-proBNP biomarker (a simple blood test)
measurements in chronic heart failure patients (Chapter [6)).

7.2 Subgoals and Research Questions

7.2.1 Statistical Modeling Framework to Process
Observed Patient Data

We used the framework of joint models for time-to-event and longitudinal
data (Rizopoulos, 2012; Tsiatis and Davidian, 2004) to process a patient’s
data and predict his patient’s cumulative-risk of progression. We chose this
for three main reasons. First, joint models utilize patient-specific random-
effects and are hence inherently personalized. Second, they accommodate
outcomes of various types, including longitudinally measured, baseline pa-
tient data, and results from previous invasive tests. Third, they update
risk predictions automatically over follow-up as more patient data become
available.

There are some limitations of the joint models that we utilized. First, in
our model, we selected predictors based on existing hypotheses regarding the
clinical relevance of the predictors. However, such hypotheses can change
with time, e.g., PSA velocity (Vickers et al., 2014). An alternative is choos-
ing model predictors based on their predictive ability. Second, we ignored
competing-risk scenarios and estimated only cause-specific cumulative-risk
of progression. Third, our model did not account for the sampling error and
inter-observer variation in invasive test results. However, these limitations
apply only to the model, i.e., the scheduling methodology remains the same,
even if a better model is employed.
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7.2.2 Pros of Cons of Different Utility Functions

Utility functions: squared and absolute loss, Parameter of interest:
time of progression In Chapter 2] we optimized two commonly used loss
functions, namely, expected squared and absolute loss (Robert, [2007)) for
the time of progression to decide the time of the next invasive test. These
loss functions plan an invasive test at the estimated mean (square loss)
and median (absolute loss) time of progression of a patient. There are two
limitations to this method. First, due to the limited follow-up period of real-
world studies, only a restricted version of the mean time of progression can be
calculated, which has no straightforward interpretation. Second, depending
upon the standard deviation of the posterior predictive distribution of time of
progression, the difference between the actual and mean time of progression
can be substantial. Both mean and median time of progression may sound
suitable when interpreted as the central tendency of the distribution for time
of progression. However, they also represent the time at which a patient has
a 50% risk of progression, which may seem large clinically.

Utility function: multi-linear loss (risk-based tests), Parameter of in-
terest: time of progression Squared and absolute loss penalize equally
a planned invasive test that exceeds or falls short of the time of progres-
sion. However, patients may weigh these two scenarios unequally, especially
because multiple tests before the actual time of progression can be burden-
some. In this regard, a multi-linear loss function (Chapter [2)) can be used.
This loss function plans a test at a time point at which the patient’s risk
of progression is equal to a particular risk threshold. Smaller risk thresholds
plan a test earlier than higher risk thresholds. In other words, smaller risk
thresholds penalize exceeding the time progression more than falling short
of the time of progression.

The main caveat in such risk-based test decisions (Chapter [3) is the
choice of risk threshold. This threshold may be chosen by patients and/or
doctors according to how they weigh the relative harms of doing an unnec-
essary test versus a missed disease progression (e.g., 10% threshold means a
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1:9 ratio) if the test is not conducted (Vickers and Elkin, 2006). Threshold
choice can also be partly data-driven, e.g., based on the threshold’s estimated
sensitivity and specificity of diagnosing progression. In this regard, it is also
possible to choose risk thresholds using more sophisticated measures than
just sensitivity or specificity, e.g., Youden's index, F1 score (Lépez-Ratén
et al., 2014). However, a critical limitation of such measures is that they
may automatically select a risk threshold with clinically unsuitable sensitivity
and specificity. Also, typically such measures are difficult to interpret.

Utility function: Partially observable Markov decision process (POMDP)
value function In Chapter we explored the framework of POMDP to
schedule invasive tests. The choice of POMDP was motivated by its wide us-
age in numerous optimal screening and surveillance test schedules for chronic
diseases (Steimle and Denton| 2017; Denton| 2018), and especially for nearly
all types of cancers (Alagoz et al., [2010).

In general, POMDPs utilize estimates from previously conducted studies
or surveys to build a disease state transition model. In this work, we did not
have to rely on existing studies as we made a joint model for modeling the
patient’s disease state and the associated clinical data. We integrated joint
models with POMDPs by replacing the Bayes-rule based belief (risk of dis-
ease progression, see Equation update of POMDPs, with the dynamic
predictions (Rizopoulos et al., 2017) of cumulative-risk of progression from
joint models. This had the advantage that it also personalized the POMDP.
Concerning the use of clinical data, POMDPs assume that the probability
distribution of future longitudinal data adds extra information over observed
data. However, we estimated the posterior probability distribution of future
longitudinal data based on observed data using the joint model. Hence,
sampling a new observation from the future distribution and using it to up-
date belief adds no information. This was not our sole reason for ignoring
the posterior probability distribution of future longitudinal data. Another
was that POMDP algorithms suffer from the curse of dimensionality with
continuous longitudinal outcomes (Sunberg and Kochenderfer, 2018).
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We also observed a more substantial drawback of POMDPs lying in their
very flexible specification. Specifically, in a simple POMDP with binary
test/no test decisions, and binary disease state (low-risk, progressed), it can
be shown that there exist infinite possible rewards result in the same optimal
schedule (Chapter . Typically POMDP rewards are chosen based on
survey results (Denton, [2018)) and translated as quality-adjusted life-years
saved. However, with infinite optimal reward sets, any reward set can be
cherry-picked, including those that correspond to (improbable) thousands
of quality-adjusted life-years saved. Hence, POMDPs may find the most
optimal schedule, but to achieve that, the choice of suitable rewards is tough
in practice.

Utility function: Euclidean distance, Parameters of interest: ex-
pected number of tests and time delay in detecting progression
Motivated by the POMDP framework we improved over planning one fu-
ture test at a time (Chapter and , by replacing it with a whole schedule
of tests planned until a maximum future time point (e.g., end of the study
period) in Chapter . To this end, we made risk threshold based test deci-
sions iteratively at each future follow-up visit (e.g., future visits for biomarker
measurement) of the patient. An important question, in this case, is which
risk threshold yields the optimal schedule? To assist patients and doctors in
this endeavor, we proposed a utility function to find the optimal risk thresh-
old based schedule. The utility function was the Euclidean distance between
a risk-based schedule and a perfect schedule (one test planned at the exact
time of progression) in a bi-dimensional space of the expected number of
tests and time delay in detecting progression. While we included only risk-
based schedules in the Euclidean space, given L future visits of a patient,
the Euclidean distance can be used to find the optimal schedule among all
25 possible schedules.

The main advantage of this approach is that we directly minimize quan-
tities that manifest burden and benefit. Second, personalized schedules get
updated with newly collected data over follow-up. Third, Euclidean distance
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is easier to understand compared to squared loss or the recursive POMDP
value function. A drawback of our approach is that we are only able to
schedule tests up to a maximum horizon time. Another caveat is that a fair
comparison of time delays between different schedules for the same patient
requires a compulsory test at a common horizon time point in all schedules.

7.2.3 Criteria for Comparison of Schedules

An important question for patients and doctors is if personalized schedules
are any better than fixed schedules. Especially if personalized schedules
improve upon patient deaths and/or progression to an advanced disease state
(e.g., metastasis) compared to fixed schedules. However, to our knowledge,
currently, there are no running studies that compare personalized versus
fixed schedules. Also, reliable data on the number of patient deaths are
difficult to obtain in low-grade diseases. This is because, in such diseases,
the prevalence of death from disease can be quite low. For example, in the
PRIAS prostate cancer dataset, only two out of 7813 patients were reported
to die from prostate cancer.

In search of the criteria for comparison of schedules, in Chapter [4.3.4 we
proposed a method to calculate expected number of tests (burden) per sched-
ule and expected time delay in detecting progression (shorter is beneficial)
for any schedule, fixed or personalized. These two are easily-quantifiable sur-
rogates for important clinical aspects, such as the window of opportunity for
curative treatment, risk of adverse downstream outcomes, quality-adjusted
remaining lifetime, and additional complications in treating a delayed pro-
gression. Based on these two quantities, patients/doctors can compare any
schedule with any other and decide which schedule suits them best. Both
expected number of tests and expected time delay in detecting progression
are calculated in a personalized manner. That is, two patients may be pre-
scribed the exact same schedule of tests, but their expected time delay in
detecting progression and the expected number of tests will depend on their
disease progression risk profile.
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7.2.4 Factors Affecting Performance of Personalized
Schedules

We utilized the estimated cumulative-risk of disease progression for devel-
oping personalized schedules throughout this work. Thus, how accurately
this risk profile resembles the actual disease state dictates the performance
of the personalized schedules. In this regard, both the quality of the clinical
data and the accuracy of the model are important. For example, in the
prostate cancer surveillance scenario, we found that prostate-specific anti-
gen (PSA) and its derivatives, such as PSA velocity, were not very strong
predictors of progression (Chapter . Besides, the PSA measurement er-
ror was best modeled with a t-distribution with three degrees of freedom.
As a result, until a rise in PSA was evident via multiple observations and
the surge was sharp as well, the predicted risk profile remained almost the
same. Another effect of this was that once a negative result was obtained
on a biopsy, a patient’s predicted risk remained low until PSA consistently
showed a sharp rise. Consequently, our model discriminated poorly (Chap-
ter between patients who obtained progression versus patients who did
not obtain progression within a short time period of their last biopsy (e.g., an
year). Overall, while building a model for personalized schedules, the focus
should be on predictive ability of the model.

7.2.5 Reusing a Test Scheduling Framework Across
Different Cohorts and Diseases

The utility functions and methodology we developed in this work is generic
for scheduling tests in both screening and surveillance scenarios. It is also
not necessary to rely only on joint models. The proposed utility functions
only require an estimate of cumulative-risk of progression. While we focused
on balancing the number of tests and time delay in detecting progression,
users can extend the proposed methodology to include other aspects such
as quality-adjusted life years. Our methodology may work differently in cer-
tain diseases. For example, in Barrett's esophagus (Choi and Hur, 2012),
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longitudinal data (e.g., p53 and SOX2 protein expressions) is collected when
endoscopy (invasive test) is conducted. Consequently, risk predictions and
personalized schedules do not update unless a test is conducted. Based on
our findings from validation of the PRIAS (prostate cancer data introduced
in Chapter [1.3.1]) based model in external datasets (Chapter [5.C)), a model
may require recalibration (e.g., of baseline-risk) before reusing in other co-
horts. Alternatively, one may fit a new model to the new cohort before using
the model for personalized schedules.

7.3 Recommendations for Practice, and
Future Improvements

Based on the work done in this thesis, we have certain recommendation for
practitioners as well a list of improvements that may be researched in fu-
ture. We next provide these recommendations and improvements in each of
the four steps of creating invasive test schedules (defined in Chapter .
These are, namely, processing the observed data of the patient, choosing
the reward/utility/loss function and the corresponding clinical parameters,
comparing proposed personalized schedules with currently practiced sched-
ules, and implementing personalized schedules in a computer application for
practitioners.

7.3.1 Observed Data of the Patient

Our overall recommendation while developing a model for personalized sched-
ules is to focus on the predictive performance of the model. For example, in
the prostate cancer surveillance joint model, we used a limited set of predic-
tors (e.g., PSA value and velocity). However, this did not necessarily lead to
the model with the best prediction error, and/or capacity of discrimination
(e.g., the area under the receiver operating characteristic curve) between
patients who are progressing and non-progressing patients. In this regard,
although a joint model is a suitable candidate for modeling both longitudinal
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and time-to-event data, practitioners may also explore other models, and
strive to achieve the best predictions. In addition, there are four broad areas
of improvement in modeling observed data of the patient than the standard
joint model we used.

Sampling error In general invasive procedures such as biopsies are prone
to sampling error, especially when the site for sampling the tissues is not
chosen carefully. In this regard, |Coley et al.|(2017)) have proposed a joint
model that predicts the time of actual disease progression given the time of
observed progression. Actual progression means progression in the absence
of sampling error, e.g., progression based on complete tumor such as via
surgical removal, rather than biopsy samples.

Inter-observer variation Invasive test results are also prone to inter-
observer variation. Models that have been proposed (Balasubramanian and
Lagakos, 2003) to handle this problem require an estimate of the size and
direction of the inter-observation variation. However, if the inter-observer
variation for a test is inherently large, then overall model parameter estimates
for risk of progression may also inflate.

Recurrent cancer We did not consider the scenario of surveillance of
recurrent occurrence of progression (e.g., recurrent breast cancer). Al-
though, if a model predicts risk of progression while accounting for recurrent
events (Rizopoulos, 2012), the scheduling methodology that we proposed
may not change.

Competing-risks In this work, we assumed all competing events to be
non-informative censoring. However, treatment without progression or death
may occur in a substantial number of patients. This affects our methodol-
ogy in three ways. First, while creating risk-based schedules; second, during
the calculation of the expected number of tests given a schedule; and third,
in the calculation of expected time delay in detecting progression given a
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schedule. Among these, schedules based on cause-specific cumulative-risk
may be alternatively obtained using the cumulative-incidence function (An-
drinopoulou et al., 2017 [Putter et al., 2007). The expected number of
tests requires a model in which all events are combined to form a composite
event. This is because the occurrence of any of the competing events will
stop surveillance. On the other hand, time delay in detecting progression
may only be defined if progression occurs before any other competing event.

7.3.2 Choice of Reward/Utility Function

The majority of the scheduling methods we explored in this work optimized
the expected value of a utility function. Although, another key aspect is
the variance of the utility. This is because a schedule with sub-optimal
expected utility but lower utility variance may seem more trustworthy owing
to its consistency. For example, the squared loss has a high variance in
delay in detecting progression despite having expected delay equal to zero
(Chapter . Second, we relied on the number of invasive tests and time
delay in detecting disease progression as measures of burden and benefit
of scheduling an invasive test. However, it is also important to consider
patient anxiety, risk of complications, risk of non-compliance, and quality-
adjusted life-years (QALY). Among these, the reference measure in a cost-
utility analysis is QALY (Sassi, [2006)). Although it can be included in the
utility functions we proposed (Chapter[4)), the biggest challenge is calculating
QALYs correctly in different disease surveillance.

Optimizing the schedule of invasive tests and longitudinal outcomes
together In Chapters [2 to [5, we optimized the schedule of invasive tests,
whereas in Chapter [6] we optimized the schedule of the longitudinal outcome.
In diseases such as chronic heart failure (Chapter |§[) being able to measure
the longitudinal outcome also indicates the survival of the patient. This
is because if the patient obtains the event (cardiac failure), the longitudi-
nal outcome cannot be measured. Whereas in a disease such as Barrett's
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esophagus, longitudinal outcomes are also measured via endoscopy (inva-
sive). Hence, there is no need to optimize the schedule of invasive tests and
the longitudinal outcomes separately. Conversely, in prostate cancer active
surveillance, longitudinal outcomes can be measured even after patient ob-
tains progression because progression in prostate cancer active surveillance
is a non-terminal event. Hence, an interesting question is if we can optimize
both the schedule of invasive tests and multiple longitudinal measurements
together.

Optimizing the schedule of invasive tests and longitudinal outcomes to-
gether has the potential to reduce patient burden even further. However, it
has certain caveats too. For example, in Chapter [5, we observed that PSA
is not a strong indicator of progression. Thus, fewer PSA measurements will
mean increased variance of estimates of cumulative-risk of progression. On
the other hand, in diseases where the biomarker is a strong indicator of pro-
gression, measuring it less frequently may still provide reasonably accurate
estimates of progression. Hence, our overall recommendation while pursuing
this research problem is that for all longitudinal biomarkers, we first calcu-
late a quantitative estimate of their burden (both financial and medical) and
their predictive ability. Perhaps, optimal results can be obtained by employ-
ing a combination of, frequently measuring a cheaper but poor indicator of
progression with infrequently measuring an expensive but reliable indicator
of progression.

7.3.3 Simulation of Invasive Test Randomized Clinical
Trials

While simulating hypothetical patients, we ignored the correlation between
a patient’s baseline features, and the patient’s non-compliance to invasive
tests. Generating correlated predictors will make the simulation cohort more
realistic. Whereas, accounting for patient non-compliance to invasive tests
will correct the currently likely over-estimated benefit of personalized sched-
ules over fixed schedules.
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7.3.4 Linking Patient Databases with Web-interfaces
for Personalized Schedules

Risk-calculators for disease progression, including our web-application for
prostate cancer surveillance patients, are not difficult to create given the
current support for web-based technologies in the R framework. The larger
challenge is linking the risk calculators with patient databases. We recom-
mend the current industry standard of RESTful Web services (Rodriguez,
2008) for this purpose.

7.4 General Conclusion

In this work, we explored personalized schedules for invasive diagnostic tests
in chronic non-communicable disease surveillance. To detect disease progres-
sion timely, in surveillance, typically invasive tests are planned in a one-size-
fits-all manner, or flowcharts are used for test protocols. Neither of these
methods exploit patient data fully. In contrast, the proposed personalized
schedules rely on joint models for time-to-event and longitudinal data, which
utilize complete patient data, including baseline covariates, longitudinal out-
comes, and results of previous tests. The model building process is crucial
in obtaining effective personalized schedules. Specifically, a model that pre-
dicts progression with a low error and a high capacity for discrimination will
lead to personalized schedules that better balance the burden and benefit of
repeated tests.

Personalized schedules are not a panacea, and there is no single sched-
ule that is suitable for all patients. In this regard, our methodology for
estimating the expected number of tests and expected time delay in de-
tecting progression in a patient-specific manner for any schedule can assist
patients and doctors in shared decision making of an appropriate schedule.
It is also essential to implement personalized schedules in Internet and web-
applications, separately for each disease surveillance. Currently, we have
done so for prostate cancer active surveillance patients. We hope this work
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will motivate surveillance studies to investigate personalized schedules more,
e.g., via a randomized clinical trial.
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Summary

Low-grade chronic non-communicable disease (e.g., localized prostate can-
cer, low-grade dysplasia) patients often undergo repeated invasive tests
(biopsies, endoscopies, etc.) for confirming disease progression. A progres-
sion is a non-terminal event, and upon progression, patients usually undergo
serious treatments, e.g., surgery, radiotherapy. For detecting progression,
invasive tests are typically conducted as per a one-size-fits-all (e.g., yearly)
fixed schedule. Such invasive tests have two main features. First, they are
indispensable because they are the benchmark /reference criteria for diagnos-
ing progression. Second, they are burdensome for patients. Since invasive
tests can only be conducted with a time gap between them, there is always a
time delay in observing progression. In general, this delay is shorter when the
tests are planned frequently. However, this simultaneously leads to an extra
burden of biopsies on slow-progressing patients. The proportion of slow-
progressing patients can be moderate to large in low-grade diseases that are
the focus of our work. For the overall patient population, one-size-fits-all
infrequent tests are also not a solution because they may lead to a large
delay in patients who need early detection and care. Hence, our aim in this
thesis was to balance better the number of tests (burden) and time delay
in detecting progression (shorter is beneficial) in the whole patient popula-
tion than one-size-fits-all schedules. To this end, we developed and applied
statistical methods for scheduling invasive diagnostic tests (e.g., biopsies,
endoscopies) in a personalized manner.

For creating personalized test schedules, our first step was to develop
a statistical model. The purpose of this model was to use patients’ accu-
mulated clinical data to predict their cumulative-risk of progression over the
whole follow-up period. A risk profile manifests the transition of a patient's
disease state over time, from low-grade to progressed. Hence, subsequently,
we used the risk profile to guide the timing of future invasive tests. That is,
our second step was to obtain patient-specific test schedules using their es-
timated risk profiles. To this end, we optimized loss functions (e.g., squared
loss) of certain clinical parameters of interest (e.g., time delay in detecting
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progression). The various parameters we utilized are detailed in Chapters ,
[B) and [4 In each chapter, we optimized the loss functions with respect to
the estimated patient-specific cumulative-risk of progression.

The choice of loss functions and parameters lead to different types of test
schedules. For example, in Chapter , we chose three standard loss functions
from Bayesian decision theory. They were, namely, squared loss, absolute
loss, and multilinear loss. The parameter optimized via these loss functions
was the time difference between the time of the future test and the true
time of progression. Squared and absolute losses resulted in tests planned
at a patient’s estimated mean and median time of progression, respectively.
Whereas, multilinear loss planned the future test at a time point where
the patient's predicted risk of progression was equal to a certain threshold.
Squared and absolute loss functions aim to plan a test exactly at the true time
of progression so that progression is observed without any delay. However, in
doing so, they ignore the variance of the posterior predictive distribution of
the time of progression of a patient. Consequently, when squared/absolute
loss functions are applied repeatedly until progression is detected, they may
lead to very few tests but also a large time delay in detecting progression.
On the other hand, planning a test when the risk of progression is equal to a
certain threshold (multilinear loss), allows patients and doctors to weigh the
unnecessary tests versus time delay in detecting progression. Particularly,
choosing smaller risk thresholds means a patient is willing to undergo more
tests but does not want the time delay in detecting progression to be high.

In a risk threshold based approach, the key question is how to choose
an appropriate threshold? Typically, thresholds are chosen based on receiver
operating characteristic curve analysis or on how patients weigh the burden
of an unnecessary test against a large delay in detecting progression. To
further facilitate decision making for an appropriate threshold, we conducted
a realistic simulation randomized controlled trial with different risk thresholds
for the prostate cancer active surveillance scenario in Chapter [3]  While
the results of this simulation study are only applicable for the study cohort
(PRIAS prostate cancer surveillance) to which we fitted our dataset, certain
results are generalizable across all diseases. The most important of the
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results is that thresholds should not be chosen using measures of diagnostic
accuracy, such as Youden's J or F1 score. This is because they do not allow
controlling sensitivity and specificity of a threshold.

In Chapter 2| and Chapter [3] we only planned one future test at a time.
Later in Chapter[4} we extended our methodology to allow planning a full test
schedule at once. We also calculated new measures of efficacy of schedules
to assist patients and doctors in finding an optimal schedule. These measures
were the expected number of tests and the expected time delay in detecting
progression. We calculated these two in a personalized manner. Our choice
of these criteria is motivated by two reasons. First, we argue that time delay
in detection of progression is an easily-quantifiable surrogate for important
clinical aspects such as the window of opportunity for curative treatment,
risk of adverse downstream outcomes, quality-adjusted remaining lifetime,
and additional complications in treating a delayed progression. Similarly, the
number and timing of tests manifest financial costs of tests, risk of side-
effects, and reduction in quality of life, etc. Second, both the number of
tests and time delay in detecting progression are easy to understand for both
patients/doctors and can facilitate shared decision making of test schedules.

A personalized schedule is only as good as the predictive performance of
the underlying statistical model. In this regard, we externally validated the
model we proposed for prostate cancer active surveillance. For validation, we
employed the largest six cohorts of the Movember Foundations’ Global Action
Plan (GAP3) database (Chapter[5). We calculated the time-dependent mean
absolute prediction error and time-dependent area under the receiver operat-
ing characteristic curve (AUC) in each cohort. The results indicated that our
model had a moderate prediction error and moderate AUC. It is important
to note that our patient population had a very low risk of metastases and
mortality. Also, a PRIAS based simulation study has concluded that after the
first biopsy, future biopsies leading to a time delay in detecting progression up
to three years may lead to very limited adverse outcomes. Thus, even with a
moderate predictive performance of the model, personalized schedules based
on our model can be useful for our patients. Besides, patients can review
the expected time delay in detecting progression for different schedules to
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limit their risks. To assist them in comparing multiple schedules side by side,
we also implemented biopsy schedules for real patients of the validated co-
horts in a web-application (https://emcbiostatistics.shinyapps.io/
prias_biopsy_recommender/). The use of personalized schedules, how-
ever, is not limited to invasive tests only. We demonstrated this by planning
the NT-proBNP biomarker (a simple blood test) measurements in chronic
heart failure patients using an existing personalized methodology (Chap-

ter [6]).
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Patiénten met laaggradige chronische niet-overdraagbare ziektes (zoals gelokaliseerde
prostaatkanker en laaggradige dysplasie) krijgen vaak herhaalde invasieve
testen (biopsieén, endoscopieén, enz.) om de progressie van ziekte te kun-
nen detecteren. Progressie gaat vaak gepaard met zware behandelingen
met ernstige bijwerkingen, zoals chirurgie of radiotherapie. Om progressie te
kunnen vaststellen worden invasieve testen vaak routinematig uitgevoerd vol-
gens een vast (bijv. jaarlijks) schema dat voor alle patiénten gelijk is. Deze
invasieve testen zijn belastend, maar tegelijkertijd noodzakelijk voor het ti-
jdig detecteren van ziekteprogressie. Het frequent uitvoeren van invasieve
testen kan leiden tot een versnelde detectie van ziekteprogressie, maar het
is onnodig en belastend voor patiénten die slechts langzaam achteruitgaan.
Daarentegen hebben teststrategieén waarbij niet frequent wordt getest, het
nadeel dat de ziekteprogressie vertraagd wordt gedetecteerd. Het doel van
dit proefschrift was om met geindividualiseerde schema's een beter evenwicht
te vinden tussen het aantal testen enerzijds en de vertraging in de detectie
van progressie anderzijds, dan mogelijk zou zijn met vaste schema’s. Hier-
voor hebben we statistische methoden ontwikkeld en toegepast met als doel
om invasieve diagnostische testen (bijvoorbeeld biopsieén, endoscopieén) op
een gepersonaliseerde manier te kunnen plannen.

De eerste stap in het creéren van geindividualiseerde testschema’s was
het ontwikkelen van een statistisch model. Dit model hebben we gebruikt om
op basis van de verzamelde klinische data van een patiént, het cumulatieve
risico op progressie over de gehele follow-up periode te voorspellen. Zo'n
risicoprofiel voorspe It de progressie van de ziekte van een patiént over de
tijd, van laaggradig naar gevorderd. Dit risicoprofiel gebruikten we vervol-
gens als leidraad om de timing van toekomstige invasieve testen te bepalen.
De tweede stap was dus het creéren van een geindividualiseerd testschema
voor een patiént op basis van zijn geschatte risicoprofiel. Voor dit doeleinde
hebben we ‘doelfuncties’ (bijvoorbeeld een kwadratische functie) van rele-
vante klinische parameters (zoals de vertraging in detectie van ziektepro-
gressie) geoptimaliseerd.. De parameters die we hiervoor hebben gebruikt
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staan beschreven in Hoofdstukken [2] [3] en {4l In elk hoofdstuk hebben we
de doelfunctie geoptimaliseerd ten opzichte van het geschatte cumulatieve
risico op progressie, geindividualiseerd voor de patiént.

De gekozen doelfunctie en parameters heeft invlioed op het testschema.
In Hoofdstuk [2| bijvoorbeeld, hebben we gebruik gemaakt van drie stan-
daard doelfuncties uit de Bayesiaanse besliskunde, namelijk ‘squared loss’,
‘abslote loss', en ‘multilinear loss. Op basis van deze doelfuncties hebben
we het tijdsverschil tussen de toekomstige test en het echte moment van
progressie geoptimaliseerd. Het gebruik van ‘squared’ en ‘absolute loss’ re-
sulteerde in testen op respectievelijk het gemiddelde en het mediane tijdstip
van progressie, maar ‘multilinear loss’ resulteerde in het tijdstip waarop het
voorspelde risico van een patiént een bepaalde drempelwaarde heeft bereikt.
Het gebruik van ‘squared’ en ‘abslote loss’ resulteert in het testen op het
precieze moment van progressie, en leidt dus tot geen vertraging in het de-
tecteren hiervan. Echter, door gebruik te maken van deze functies wordt
geen rekening gehouden met de variantie van de ‘posterior predictive distri-
bution’ (posterior voorspelverdeling) van het tijdstip van progressie van een
patiént. Het herhaaldelijk toepassen van deze functies tot het moment van
progressie, betekent dat minder testen uitgevoerd worden maar dit kan ook
leiden tot een vertraging in het detecteren van progressie. Daarentegen biedt
het plannen van een test op het moment dat het risico van progressie een
bepaalde drempelwaarde heeft bereikt, artsen de mogelijkheid om een afweg-
ing te maken tussen het onnodig uitvoeren van testen en een vertraging in het
detecteren van progressie. Het kiezen van een lage drempelwaarde betekent
bijvoorbeeld dat een patiént ervoor kiest om veel testen te ondergaan en zo
weinig mogelijk risico te lopen dat progressie te laat wordt gedetecteerd.

Als gebruik wordt gemaakt van een dremelwaarde, is het de vraag hoe een
geschikte drempelwaarde gekozen dient te worden. Meestal worden drempel-
waardes gekozen op basis van ‘receiver operating characteristic curve' (ROC
analyse) of op basis van hoe voor patiénten de last van het uitvoeren van
een onnodige testen opweegt tegen het te laat detecteren van progressie.
Om de keuze van een geschikte drempelwaarde verder te vergemakkelijken,
hebben we in Hoofdstuk [3] een realistische gerandomiseerde, gecontroleerde
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simulatiestudie uitgevoerd met verschillende drempelwaardes voor het ac-
tieve surveillancescenario voor prostaatkanker. Hoewel de resultaten van dit
simulatieonderzoek alleen van toepassing zijn op het onderzoekscohort van
onze dataset, zijn bepaalde resultaten generaliseerbaar naar alle ziektes. De
belangrijkste uitkomst was dat drempelwaardes niet gekozen moeten worden
op basis van maatstaven voor diagnostische nauwkeurigheid, zoals Youden's
J of de F1 score, aangezien het voor dergelijke maatstaven niet mogelijk is
de gevoeligheid en specificiteit van een drempelwaarde te controleren.

In Hoofdstuk [2] en Hoofdstuk [3] hebben we maar één toekomstige test
tegelijk gepland. In Hoofdstuk |4 hebben we onze methode uitgebreid zodat
een volledig testschema in één keer gepland kan worden. Om patiénten en
artsen te assisteren bij het vinden van een optimaal schema, hebben we het
verwachte aantal testen en de verwachte vertraging in het detecteren van pro-
gressie voor bepaalde testschema’s berekend, beide geindividualiseerd voor
de specifieke patiént. Onze beweegredenen voor de keuze voor deze criteria
zijn als volgt. Ten eerste stellen we dat vertraging in het detecteren van
progressie een makkelijk te kwantificeren surrogaatuitkomst is voor belangri-
jke klinische aspecten zoals de kans op curatieve behandeling, het risico op
nadelige ‘downstream’ uitkomsten, de voor kwaliteit gecorrigeerde resterende
levensduur en aanvullende complicaties bij de behandeling van een progressie
die te laat wordt gedetecteerd. Ten tweede zijn de criteria (het aantal testen
en de vertraging in het detecteren van progressie) voor zowel patiénten als
artsen gemakkelijk te begrijpen, en ze kunnen een tussen arts en patiént
gedeelde besluitvorming van testschema'’s faciliteren.

Een geindividualiseerd schema is slechts zo goed als de voorspellende
waarde van het onderliggende statistische model. Om deze voorspellende
waarde te bepalen, hebben we het model dat we hebben voorgesteld voor ac-
tieve surveillance van prostaatkanker extern gevalideerd in de grootste zes co-
horten van de Movember Foundations Global Action Plan (GAP3) database
(Hoofdstuk [5)). We hebben voor elk cohort de tijdsafhankelijke gemiddelde
absolute voorspellingsfout en de tijdsafhankelijke oppervlakte onder de re-
ceiver operating characteristic (AUC) curve berekend. Ons model had een
redelijk lage voorspellingsfout en AUC. We hebben ook geindividualiseerde
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biopsieschema’s geimplementeerd voor echte patiénten van de gevalideerde
cohorten in een webapplicatie (https://emcbiostatistics.shinyapps.
io/prias_biopsy_recommender/). Het gebruik van geindividualiseerde
schema’s is echter niet beperkt tot invasieve testen. We hebben dit aange-
toond door het plannen van metingen van de biomarker NT-proBNP (een
eenvoudige bloedtest) voor patiénten met chronisch hartfalen op basis van
een bestaande geindividualiseerde methode (Hoofdstuk [6).
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