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1

CHAPTER 1

INTRODUCTION

1.1 Inteference: a key challenge of wireless networks

With a succesful commercialization of IEEE802.11 standard, wireless networks have be-

come a tight-knit of our daily life. Besides Wireless Local Area Network(LANs), different

types of wireless networks have been designed and deployed. For example, there are Wire-

less Sensor Networks [5], Wireless Mesh Networks [6], Wireless Multimedia Networks [4].

Recently, the development of networked embeded sensing and control expands the application

territories of wireless networks into the field of mission-critical applications such as indus-

trial monitoring and control [18]. This is evidenced by the recent industry standards such as

WirelessHART [70] and ISA SP100.11a [63] which target wireless networked sensing and

instrumentation. In supporting real-time, mission-critical tasks, these wireless networks are

required to ensure real-time, reliable data delivery. Nonetheless, wireless communication is

subject to various dynamics and uncertainties. Due to the broadcast nature of wireless commu-

nication, in particular, concurrent transmissions may interfere with one another and introduce

co-channel interference. Co-channel interference not only reduces the reliability and through-

put of wireless networks, it also increases the variability and uncertainty in data communication

[64, 80, 77].

Therefore, effectively scheduling concurrent transmissions to control co-channel interfer-

ence has become critical for enabling reliable, predictable wireless communication. A basis

of interference control is the interference model which predicts whether a set of concurrent

transmissions may interfere with one another. Two commonly used models are the physical

interference model and the protocol interference model [25]. In the physical model, a set of

concurrent transmissions are regarded as not interfering with one another if the resulting signal-
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to-interference-plus-noise-ratio (SINR) at every receiver is no less than a threshold value γ0;

in the protocol model, a transmission is regarded as not being interfered by an interferer if the

interferer is at least K times the transmitter-receiver distance away from the receiver1. For

simplicity, we also call the physical model the SINR model and the protocol model the ratio-

K model in this paper, and we regard scheduling based on the SINR model and the ratio-K

model SINR-based scheduling and ratio-K-based scheduling respectively. The SINR model is

a high fidelity model in general, but the interference relations defined by it are non-local and

combinatorial. This is because whether one transmission interferes with another is modeled as

explicitly depending on all the other transmissions in the network. Accordingly, SINR-based

scheduling usually requires network-wide coordination. Since the coordination delay slows

down protocol convergence [11, 73] and increases uncertainty [74], it is difficult to use the

SINR model in distributed protocol design. This is especially the case when network traffic

pattern and environmental conditions are dynamic and potentially unpredictable.

Unlike the SINR model, the ratio-K model defines local, pair-wise/non-combinatorial in-

terference relations where interference is regarded as existent only between nodes in a local

neighborhood. Accordingly, the ratio-K model is suitable for distributed protocol design since

ratio-K-based scheduling only requires coordination among nodes in their local neighborhood.

The locality of ratio-K-based scheduling can also enable agile protocol adaptation for address-

ing the challenges of unpredictable traffic pattern and environmental dynamics. Nonetheless,

the ratio-K model is an approximate model in nature, and it does not ensure reliable data deliv-

ery in general. For instance, the RTS-CTS-based channel access control can only enable a data

delivery ratio of ∼50% in our field wireless sensor networks [7, 76]; via testbed-based mea-

surement study of event-detection sensor networks, Choi et al. have also shown that CSMA-

and RTS-CTS-based channel access control mechanisms may only enable a data delivery ratio

of 16.9% and 36.8% respectively [19]. To enable the design of distributed MAC protocols for

1We replace the original notation of (1 + ∆) [25] with K for simplicity. Also note that the commonly used

K-hop model [54] is a special case of the protocol model in geometric graphs.
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agile, predictable interference control, an open question is whether it is possible to develop an

interference model that has both the locality of the ratio-K model and the high fidelity of the

SINR model.

1.2 Contribution of this dissertation

To answer that question, we propose the physical-ratio-K (PRK) interference model as

a reliability-oriented instantiation of the ratio-K model, where the link-specific choice of K

adapts to network and environmental conditions as well as application QoS requirements to

ensure certain minimum reliability of every link. Given that the ratio-K model is local and can

enable agile, distributed protocols, we explore the possibility of extending the ratio-K model to

preserve its locality while addressing the low performance issue of ratio-K-based scheduling.

To this end, we first study the behavior of ratio-K-based scheduling, and a summary of our

findings are as follows:

• We analyze, for both grid and random networks, how network traffic load, link length,

node distribution density, and wireless signal attenuation affect the effective instantiation

of the ratio-K model. We find that, as traffic load increases and wireless signal attenu-

ation decreases, the optimal K for maximizing network throughput and the minimum K

for satisfying certain link reliability tends to increase. As link length increases, the mini-

mum K for satisfying certain link reliability also tends to increase, but the optimal K for

maximizing network throughput can both increase and decrease. We also find that fixing

K to a constant number, as in most existing studies [14, 40, 44], can lead to significant

performance loss when network and environmental settings change. For instance, devia-

tion from the optimal K by up to 1 can cause up to 68% throughput loss, and fixing K to 2

may lead to a link reliability less than 80%. These findings suggest that it is important to

choose the right K when studying ratio-K-based scheduling, otherwise the performance

evaluation will be biased.
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• We also find that there is inherent tradeoff between reliability and throughput when in-

stantiating the ratio-K model. Maximum network throughput is usually achieved not at

the minimum K for ensuring certain link reliability, but at a smaller K. For instance,
√
2

is the optimal K for maximizing throughput in many scenarios, but, with non-negligible

probability,
√
2 is unable to guarantee an 80% link reliability. Moreover, as K increases

from the minimum one required for satisfying certain link reliability, network throughput

tends to decrease, especially when link reliability requirement is high.

The above analytical results give us insight into the behavior of ratio-K-based scheduling

in uniform grid and random networks with a wide range of system configurations (on factors

such as traffic load, link length, and wireless signal attenuation). We have verified these insight

through simulation as well as measurement study in both the NetEye and the MoteLab wire-

less sensor network testbeds which reflect real-world properties such as non-uniform network

settings.

On the other hand, the interference among the transmissions, when scheduling them for a

same time slot, limits the number of concurrent transmissions in the slot. Optimal interference-

oriented scheduling in wireless networks has been shown to be NP-complete in general [23,

54], and the research community has proposed different polynomial-time approximation algo-

rithms accordingly. Most approximation algorithms are greedy in nature, and two representa-

tives are Longest-Queue-First (LQF) [35, 30, 9] and GreedyPhysical [10, 66]. When schedul-

ing concurrent transmissions for a time slot, LQF greedily adds to the slot non-interfering links

in a decreasing order of their senders’ queue lengths; GreedyPhysical selects non-interfering

links for the slot in a decreasing order of their interference numbers, where the interference

number of a link ℓ is defined as the number of other links that do not share any end-node with ℓ

but can be interfered by ℓ. Different from the greedy algorithms, Goussevskaia et al. proposed

the algorithm LengthDiversity [23]. In LengthDiversity, the links of a network are grouped into

different classes based on their lengths. Links in different classes are scheduled independent
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of one another, and links in the same class are scheduled using virtual-grid-based coloring.

In approximation algorithms where links are added to a time slot in a sequential manner un-

til reaching the interference limit,2 the order in which links are added determines the accumula-

tion of interference at the receivers and thus affects the number of concurrent links schedulable

in the slot (see Section 3.3 for an example). Nonetheless, existing scheduling algorithms either

do not take this ordering effect into account (e.g., in LQF) or do not explicitly optimize for the

ordering effect (e.g., in GreedyPhysical and LengthDiversity). Thus the open questions are: 1)

how to explicitly optimize the ordering of link addition in wireless scheduling? and 2) how

does link ordering affect the throughput and delay of data delivery?

To address these open questions for insight into wireless scheduling, we formulate the

concept of interference budget that, given a set of scheduled transmissions in a time slot, char-

acterizes the additional interference power that can be tolerated by all the receivers without

violating the application requirement on link reliability. Then, by modeling the scheduling

problem as a knapsack problem, we propose the scheduling algorithm iOrder that optimizes

link ordering by considering both interference budget and queue length in scheduling. When

constructing the schedule for a time slot, iOrder first picks a link with the maximum number

of queued packets; then iOrder adds links to the slot one at a time in a way that maximizes the

interference budget at each step; this process repeats until no additional link can be added to the

slot without violating the application requirement on link reliability. To understand the impact

of link ordering on scheduling, we first analytically prove the approximation ratio of iOrder

in Poisson random networks, then we comparatively study the performance of iOrder and ex-

isting algorithms via simulation and testbed-based measurement. We observe that optimizing

link ordering can improve the performance of existing algorithms by a significant.

2For example, the SINR at some receiver falls below a minimum threshold.
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1.3 Organization of this dissertation

The rest of this paper is organized as follows. We first analysis the performance of the

Ratio-K model and compare its peformance of different instantiation with the SINR model in

Chapter 2. Based on the analytical result, we propose our model, the PRK model. With the

insight of controlling interference locally from the PRK model, we explore a similar method

to handle the interference globally in the network link scheduling problem. The effort of this

study leads to the result of iOrder and we will discuss it in detail in Chapter 3. In Chapter 4,

we will explore the potential of using PRK model in milt-channel scheduling. In the end, we

will conclude our work and the future work in Chapter 5.
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CHAPTER 2

PRK INTERFERENCE MODEL

2.1 Preliminaries

Here we present the wireless channel and radio model used in the analytical part of the

work.

Channel model When a wireless signal propagates, it is subject to the impact of diffraction,

reflection, and scattering. These effects affect the power of the signal in two different ways:

first, the signal power decays exponentially with respect to distance traveled; second, for a

given distance d, the signal strength is random and log-normally distributed around the mean

distance-dependent value [58].

To characterize signal attenuation in wireless networks, we use the log-normal path loss

model [50] which is widely adopted in protocol design and analysis. This model could be

used for large and small coverage systems [52]. Moreover, empirical studies have shown that

the log-normal model provides more accurate multipath channel models than the well-known

Nakagami and Rayleigh models for indoor environment [48].

By this model, the power Pr (in dBm) of the received signal at a node distance d away from

the transmitter is computed as follows:

Pr = Pt − PL(d0)− 10αlog10
d

d0
+N(0, σ2) (2.1)

where Pt is the transmission power, PL(d0) is the power decay at the reference distance d0,

α is the path loss exponent, N(0, σ) is a Gaussian random variable with mean 0 and variance

σ. In our study, we use different instantiations of α and σ to represent different wireless
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environments.

Radio model. The reception capability of a radio can be characterized by the bit error

rate (BER) and the packet delivery rate (PDR) in decoding signals with specific signal-to-

interference-plus-noise-ratios (SINR). Focusing on wireless sensing and control networks, we

base our study mainly on the commonly-used, IEEE 802.15.4-compatible CC2420 radios; For

CC1000 radios, Zuniga et al. have derived the formula for computing the expected PDR for

a given distribution of SINR values at a receiver [75]. Since CC2420 radios are compatible

with the IEEE 802.15.4 standard and tend to be more popular than CC1000 today, the analysis

of this paper is based on the CC2420 radio. For CC2420 radio, the BER for a SINR of γ is

computed as follows [2]:

BER(γ) =
8

15
× 1

16
×

16∑

k=2

(−1)k
(
k

16

)
e(20×γ×( 1

k
−1)) (2.2)

Accordingly, the PDR for a SINR of γ is computed as follows:

PDR(γ, f) = (1− BER(γ))8f (2.3)

where f is the packet length (in units of bytes) including overhead such as packet header.

Remark. For analytical tractability, the aforementioned models do not capture all the real-world

phenomena such as the irregularity in wireless communication [79]. But the analysis based

on these models gives us insight into the behaviors of wireless interference models, and the

analytical results have also been verified through testbed-based measurement which captures

complex real-world phenomena as we discuss in Section 2.7.

To compute the expected PDR for a CC2420 receiver at a specific location, we first derive

the PDR-SINR relation for CC2420 radios, then we compute the expected PDR based on the

distribution of SINR values at the receiver using the method of [81].

Interference model. We consider the ratio-K and SINR interference models. In the ratio-K
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model, a concurrent transmitter ni does not interfere with the transmission from ns to nr if and

only if the following holds:

d(ni, nr) ≥ K × d(ns, nr) (2.4)

where d(ni, nr) is the distance between ni and nr, and d(ns, nr) is the distance between ns

and nr. In the SINR model, a set of concurrent transmitters Si does not interfere with the

transmission from ns to nr if and only if the following holds:

P (ns, nr)

N0 +
∑

ni∈Si
P (ni, nr)

≥ γ0 (2.5)

where N0 is the background noise power, P (ns, nr) is the strength of signals reaching nr from

ns, P (ni, nr) is the strength of signals reaching nr from ni, and γ0 is a SINR threshold chosen

to satisfy certain requirement on PDR.

Network and environment model. For mathematical tractability in our study, we only focus

on grid networks and Poisson random networks (where nodes are distributed in a Poisson

manner spatially), and we assume that signal attenuation follows the geometric rule as shown

in Equation 3.1. As we will show in Section 2.2, however, the insight gained from our study

also shed light on system analysis and protocol design in non-uniform networks where node

distribution and signal attenuation may not be uniform. Thus, we expect that the observations

of this paper be of generic interest to different wireless networks even though we focus on

uniform networks for in this paper.

2.2 Instantiation of the ratio-K model

To explore effective methods of instantiating the ratio-K model, we first analyze the per-

formance of ratio-K-based scheduling, then we numerically study how system properties and

design objectives affect the effective instantiation of the ratio-K model.

Performance of ratio-K-based scheduling
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Here we analyze network throughput and link reliability in ratio-K-based scheduling when

the ratio-K model is instantiated with different Ks. Focusing on link-layer behavior, we con-

sider the optimization objective of maximizing channel spatial reuse (i.e., maximizing the

number of concurrent transmissions) in ratio-K-based scheduling. In Sections 2.2 and 2.4

accordingly, by network throughput, we mean network spatial throughput as defined by For-

mula (2.6); in our measurement study in Section 2.7, we consider end-to-end throughput which

directly reflects network-wide behavior.

Towards characterizing the computational complexity of ratio-K-based scheduling in gen-

eral, we first prove that the ratio-K-based scheduling is NP-hard as follows:1

Proposition 1. The problem of maximizing the number of interference-free concurrent trans-

missions is NP-hard when the interference model is the ratio-K model. �

Proof. We consider the case when K > 1, as is usually the case in practice. Then, the NP-

hardness of ratio-K-based scheduling with maximum spatial reuse can be proved through a

polynomial time reduction from the 3-CNF-SAT problem to ratio-K-based scheduling. The

proof is the same as the proof for Theorem 2 of [55] (which shows the NP-hardness of the

Maximum Weighted K-Valid Matching problems) except for the following changes to the re-

duction:

• Instead of an abstract graph, the graph G is embedded onto a 2D plane where each node

has a fixed location in the plane.

• For the subgraph corresponding to the s-th (s = 1..m) clause of the 3-CNF boolean

formula, locate the nodes such that the links (vsi,f , v
s
i,b)(i = 1..3) are orthogonal to the

links (vsi,f , v
s
i+1,f )(i = 1, 2) and that links (vs1,f , v

s
2,f ) and (vs2,f , v

s
3,f ) are along the same

line. In addition, make the lengths of the links (vsi,f , v
s
i,b)(i = 1..3) and (vsi,f , v

s
i+1,f )(i =

1, 2) to be of one unit.

1Even though the NP-hardness of K-hop-interference-model-based scheduling has been proved [54], the NP-

hardness of ratio-K-based scheduling has not been analyzed yet.
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• Place all the subgraphs on the plane (e.g., in a big circle) such that every link connecting

two subgraphs is at least K(K > 1) units long.

Based on this new reduction method for constructing the graph G, the rest of the proof for

Theorem 2 of [55] is applicable to our proof here without any change.

We consider both grid and Poisson random networks in our analysis, but, given the NP-

hardness of general ratio-K-based scheduling, we only consider the following special cases of

the problem for computational tractability and for deriving closed-form formula for scheduling

performance:

• To avoid the complication introduced by boundary effects in small, finite networks, we

only consider infinite sized networks. (Note that infinite sized networks also approximate

large networks such as those envisioned for industrial control in large oil fields.)

• For grid networks, we only consider cases where the data transmission links are of equal

length ℓ and ℓ is a multiple of grid hop length. We also assume a uniform traffic pattern

where all the transmissions follow the same direction along the grid-line, which enables

the maximum degree of spatial reuse in grid networks (see Appendix II for the proof).

• For 2D Poisson random networks, we assume that nodes are distributed with an average

density of λ nodes per unit area. The traffic pattern is such that the average link length

is ℓ; each transmitter T sends packets to a receiver R such that the distance between T

and R is the closest to ℓ, and if multiple such receivers exist, T randomly picks one as its

receiver.

• For both grid and random networks, we assume that each transmitter has data packets

buffered for transmission with probability β at any moment in time.

The analytical results derived based on the above assumptions give us insight into the behavior
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of ratio-K-based scheduling in uniform grid and random networks with a wide range of system

configurations (on factors such as traffic load, link length, and wireless signal attenuation); the

analytical insight has been verified through testbed-based measurement and simulation where

finite networks and non-uniform traffic patterns are considered without the above assumptions.

We will present the measurement results in Section 2.7, and, the detail simulation results in

Section 2.3

In data transmission scheduling, we consider both reliable reception of data at receivers

and reliable reception of link-layer acknowledgments at transmitters. Let the length of a link

L be ℓ, and T and R be the transmitter and receiver of L respectively. Then ratio-K-based

scheduling defines two circular exclusion regions centered at T and R respectively, each with

a radius Kℓ, such that no other node in the exclusion regions can transmit concurrently with

T . We regard the union of the transmitter- and receiver-side exclusion regions as the exclusion

region of link L, and we denote it by ER(L,K). For instance, Figure 2.1 shows the exclusion

Figure 2.1: Example: scheduling based on the ratio-2 model in grid networks
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region of link L in a grid network when K = 2. For convenience, we also use ER(L,K) to

denote the set of nodes within the exclusion region, not including those on the boundary.

Given the uniform network and traffic conditions we consider and based on the concept of

spatial throughput [60], we define as follows the throughput Tnet of an infinite network:2

Tnet = EL[
TL

|ER(L,K)| ] (2.6)

where L is an arbitrary link in the network, TL is the throughput along link L, and |ER(L,K)|

is the number of nodes in L’s exclusion region.3 Denoting the length of L as ℓ, TL is such that

its time average can be computed as

Et[TL] = (BW × β × PDR)× ℓ (2.7)

where BW is the radio transmission rate in terms of number of packets per unit time, β is the

probability that a node has data packets buffered for transmission at any moment in time, and

PDR is the packet delivery reliability over L. Note that, by the above definitions, the unit for TL

is “packet-distance-product per unit time”, and the unit for Tnet is “packet-distance-product per

unit time per node”. Tnet characterizes the average throughput from every node to its one-hop

neighbors in the network; even though Tnet only indirectly reflects the achievable multi-hop

throughput, our testbed-based measurement study in Section 2.7 will show that the insight

gained in the analysis applies to the case of multi-hop convergecast. Also note that Tnet is of

direct interest to the applications of inter-vehicle sensing and control, where one typical traffic

pattern is single-hop communication between neighboring vehicles.

Grid networks. The interference incurred at a receiver depends on the spatial distribution

2Focusing on link-layer behavior, Sections 2.2 and 2.4 adopt this notion of network throughput; in our mea-

surement study in Section 2.7, we consider end-to-end throughput which directly reflects network-wide behavior.
3We consider the expected value of TL

|ER(L,K)| to account for non-deterministic factors such as probabilistic

packet transmissions and probabilistic node distribution in random networks.
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of concurrent transmitters, which depends on the specific K used in ratio-K-based scheduling.

For clarity of presentation, we only present the case of K = 2 as shown in Figure 2.1, and we

relegate the discussion of other Ks to Section 2.3

In what follows, we prove the fact, that

Proposition 2. the uniform traffic pattern where all the transmissions follow the same direction

along the grid-line enables the maximum degree of spatial reuse in grid networks

Proof. For convenience, we call same-direction schedules the schedules generated for the traf-

fic pattern where all the transmissions follow the same direction along the grid-line, and we call

different-direction schedules the schedules generated for the traffic pattern where transmissions

follow different directions and different grid-lines. To achieve the maximal spatial reuse, we

must minimize the average area shared by a link. Given a ratio-K model, we find the mini-

mum area-per-link in optimal same-direction schedules and different-direction schedules, and

we denote them by Amin(k) and A′
min(k) respectively. We will prove that Amin(k) > A′

min(k)

for all the cases we study.

Given an infinite grid network, we pick one node as the origin to set up the coordinate

system. So the coordinate of any node in grid networks, say (x, y), is such that x, y ∈ Z. As

discussed in Section 2.2, here we only consider cases where link length ℓ is a multiple of grid

hop length. For simplicity of presentation in the following discussion, we also set the unit of

variables as multiples of ℓ.

Suppose that the coordinates of a end-node of a link and one of its closest interferers are

(x, y), (x′, y′) respectively. In grid networks, the following holds:





|x− x′| = a

|y − y′| = b

√
a2 + b2 = k
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where a, b ∈ Z
+ and K is the parameter of the ratio-K model. The values of a and b in different

ratio-K models are shown in Table 2.1.

Table 2.1: a and b in ratio-K model
K (a, b) K (a, b)√
2 (1, 1) 2 (0, 2)√
5 (1, 2)

√
8 (2, 2)

3 (0, 3)
√
10 (1, 3)√

13 (2, 3) 4 (0, 4)√
18 (3, 3)

√
20 (2, 4)

5 (0, 5)/(3,4)
√
26 (1, 5)√

29 (2, 5)
√
32 (4, 4)√

34 (3, 5)
√
6 (0, 6)

For same-direction transmissions, there are four possible patterns of tightest spatial reuse,

as shown in Figures 2.2, 2.3, 2.4, 2.5. Denote these patterns of patter I , II , III , and IV

respectively. The average area-per-link for each spatial reuse pattern is shown in Equations 2.8,

2.9, 2.10, and 2.11 below:

AI(a, b) = (a+ 1)(a+ b) + b(b− a), if a > 0, (2.8)

AII(a, b) = 2b× (a+ 1), if 2b >
√
a2 + b2, 2a+ 1 >

√
a2 + b2 (2.9)

AIII(a, b) = 2a× (b+ 1), if 2a >
√
a2 + b2, 2b+ 1 >

√
a2 + b2 (2.10)

AIV (a, b) = b× (b+ 1), if a = 0 (2.11)

To achieve the highest spatial reuse for same-direction transmissions, we define a set of

candidate schedule types Scha,b = {i|(a, b) satisfies the requirement of schedule pattern i, i ∈

I, II, III, IV }. So the average area-per-link is Amin = min{Ai, i ∈ Scha,b}.
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For different-direction transmissions, there are also find four types of tightest schedules,

namely as V , V I , V II , V III as shown in Figures 2.6, 2.7, 2.8, and 2.9. The average area-per-

link for each spatial reuse pattern is shown in Equations 2.12, 2.13, 2.14, 2.15.

Similar to the case of same-direction transmissions, we define Sch′
a,b = {i|(a, b) satisfies

the requirement of schedule pattern i, i ∈ V, V I, V II, V III}. So the average area-per-link is

A′
min = min{Aj, j ∈ Sch′

a,b}.

AV (a, b) =
(a+ b+ 1)2 + (b− a)2

2
, if a > 0, (2.12)

AV I(a, b) =
(2a+ 1)(2b+ 1)

2
, if 2a ≥

√
a2 + b2, 2b ≥

√
a2 + b2 (2.13)

AV II(a, b) =
b(3b+ a+ 2)

2
, if a > 0, b = a+ 1 (2.14)

AV III(a, b) = (2b+ 1)(b+ 1), if a = 0 (2.15)

We compute Amin and A′
min for different ratio-K instantiations, and Table 2.2 shows the

results. We see that same-direction schedules always has smaller area-per-link than the cor-

responding different-direction schedules do. This implies that same-direction traffic pattern

enables the maximum degree of spatial reuse.

Done.

For the transmission along an arbitrary link L as shown in Figure 2.1, six nodes (i.e., A

- F ) on the boundary of the exclusion region of L can be involved, either as a transmitter

or a receiver, in concurrent transmissions to generate the tightest tessellation of concurrent

transmissions and to enable maximum spatial reuse. In a tightest tessellation of concurrent

transmissions in ratio-2-based scheduling, this pattern of 4 concurrent transmissions/receptions
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Table 2.2: Amin and A′
min in ratio-K based scheduling

K Amin(k) A′
min(k)√

2 4 4.5

2 6 7.5√
5 8 8.5√
8 12 12.5

3 12 14√
10 12 14.5√
13 16 17.5

4 20 22.5√
18 24 24.5√
20 24 26.5

5 30 33√
26 32 32.5√
29 36 36.5√
32 40 40.5√
34 36 38.5

6 42 45.5

around L applies to every other transmission in the network, thus we can derive the set Si of

concurrent transmitters that serve as interferers to the transmission along L. If we define a

coordinate system where the coordinates of R and T are (0, 0) and (0, ℓ) respectively, then

Si = {(2mℓ, (3n+ 1)ℓ) : m ∈ Z, n ∈ Z,m2 + n2 6= 0} (2.16)

where Si is identified by the locations of the nodes in it, and Z is the set of all integers. In

Figure 2.1, for instance, transmitter C’s location is (2ℓ, ℓ) and the corresponding m and n are

1 and 0 respectively. Then,

Proposition 3. When K = 2, the expected total interference I at a receiver R in an infinite
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grid network is as follows:

I =
∑

ni∈Si
Ii = Pt × β ×∑ni∈Si

d(ni, R)−α = Pt × β×

ℓ−α ×
(∑∞

m=1(
2

((2m)2+1)α/2 +
1

(3m+1)α/2 +
1

(3m−1)α/2 )+

2×∑∞
m=1

∑∞
n=1

(
1

[(2m)2+(3n+1)2]α/2 +
1

[(2m)2+(3n−1)2]α/2

))
(2.17)

where Ii is the interference introduced by concurrent transmitter ni, Pt is the transmission

power, d(ni, R) is the distance from ni to R, β is the node transmission probability, and α is

the wireless path loss exponent. I is finite as long as α > 2. �

Proof. When K = 2,

Si = {(2mℓ, (3n+ 1)ℓ) : m ∈ Z, n ∈ Z,m2 + n2 6= 0}

Thus I is the sum of the expected interference introduced by each concurrent transmitter ni in

Si. Based on the link model discussed in Section 3.2, we have

I =
∑

ni∈Si
Ii

= Pt × β ×∑ni∈Si
d(ni, R)−α

= Pt × β × ℓ−α×(∑
m

∑
n(

1
[(2m)2+(3n+1)2]

) α/2

)
(2.18)

After some simple derivations, Equation 2.18 becomes equal to Equation 2.17.

When α > 2, the following holds:

∞∑

m=1

1

((2m)2 + 1)α/2
<

∞∑

m=1

1

mα/2

The right hand side of the above inequality is a type of p-series where p = α
2

, and it converges

when p > 1. Accordingly,
∑∞

m=1
1

((2m)2+1)α/2 converges when α > 2. Using similar approach,
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we can prove that the other items of Equation 2.17 converges if α > 2. Therefore, I converges

and is finite as long as α > 2.

Note that, in grid networks, the total interference I is a function of link length ℓ but not

the node distribution density (e.g., as characterized by the grid-hop length ℓ
n

for some positive

integer n).

Using Equation 2.17, we can compute the interference and thus the SINR at R, based on

which we can compute link reliability and network throughput for the case of K = 2. Similar

approaches can be used to derive I for other Ks; interested readers can find the details in

Appendix-I.

Random networks. In ratio-K-based scheduling for maximizing spatial reuse in Poisson

random networks, the spatial distribution of concurrent transmitters can be modeled as a vari-

ant of the Matern hard-core process [59]. More specifically, it can be specified by a dependent

thinning process as follows. Let’s denote the stationary Poisson process corresponding to the

random network as Φ. We mark each node X of Φ with a random number m(X) uniformly

distributed over (0, 1); a link L with transmitter T and receiver R is marked with a number

m(L) = m(T )+m(R)
2

. We define the links incident to a node X as the set of links whose trans-

mitter or receiver is X , and we denote it by L(X); we also denote the link whose transmitter is

X by L(X). Then, the dependent thinning process retains a transmitter X ∈ Φ if the mark of

L(X) is the smallest among those of all the links incident to some node within the exclusion

region ER(L(X), K) of link L(X). That is, the thinned process of concurrent transmitters is

defined as follows:

Φt = {X ∈ Φ : m(L(X)) < m(L),

∀L ∈ ∪Y ∈ER(L(X),K)L(Y )}
(2.19)

Then, the thinned process Φt can be approximated by a spatial Poisson process [59], and we

derive its density λt as follows:
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Proposition 4. The density of the thinned process Φt of concurrent transmitters computes as

follows:

λt =
1− exp(−λc)

c
(2.20)

where c = C(ℓ,K)+(C(ℓ,K+1)−C(ℓ,K))
∫ ℓ

0

2arccos( ℓ
2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ
dℓ′, C(ℓ,K) and C(ℓ,K+

1) is the area of the exclusion region ER(L,K) and ER(L,K + 1) of a ℓ-long link L respec-

tively.

Proof. From the results in Section 5.4 of [59], the intensity λt of Φt is given by

λt = ptλ

where pt is the Palm retaining probability of a ’typical point’ of Φ. pt is given by

pt =

∫ 1

0

r(t)dt =
1− exp(λc)

λc
(2.21)

where r(t) = exp(−λct), with c = C(ℓ,K)+(C(ℓ,K+1)−C(ℓ,K))
∫ ℓ

0

2arccos( ℓ
2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ
dℓ′,

is the retaining probability of a node T whose associated link L(T ) has a mark t (i.e., m(L(T )) =

t).

The equation for r(t) follows from the observation that the point process

{X ∈ Φ : m(X) < t}

is simply a t-thinning of the Poisson process Φ, hence itself is a Poisson process of intensity

λt. Therefore, r(t) is the probability that an exclusion region ER(L,K + 1) of a ℓ-long link

contains no node who has an associated link with mark less than t, that is, containing no nodes

of the t-thinned process.

In computing r(t), the reason why c equals C(ℓ,K)+(C(ℓ,K+1)−C(ℓ,K))
∫ ℓ

0

2arccos( ℓ
2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ
dℓ′
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instead of C(ℓ,K) is because ∪Y ∈ER(L(X),K)L(Y ) may well contain links whose transmitter is

in ER(L,K + 1) but not in ER(L,K).

For a transmitter T ′ ∈ ER(L,K + 1) \ ER(L,K) that is Kℓ + ℓ′ (0 < ℓ′ ≤ ℓ) from

the transmitter T of link L as shown in Figure 2.10, the probability that T ′ transmits to a

Figure 2.10: Probability that a transmitter T ′ ∈ ER(L,K + 1) \ ER(L,K)

node in ER(L,K) is 2α
360

since the receiver of T ′ is at any direction around T ′ with equal

probability. Since (Kℓ)2 = ℓ2 + (Kℓ + ℓ′)2 − 2ℓ(Kℓ + ℓ′)cosα, α = arccos( ℓ
2+ℓ′2+2Kℓℓ′

2ℓ(Kℓ+ℓ′)
).

Therefore, the probability that an arbitrary transmitter in ER(L,K + 1) \ ER(L,K) has

its receiver in ER(L,K) is
∫ ℓ

0
2α
360

1
ℓ
dℓ′
∫ ℓ

0

2arccos( ℓ
2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ
dℓ′, and the expected number of

nodes in ER(L,K + 1) \ ER(L,K) whose receivers are in ER(L,K) is λ(C(ℓ,K + 1) −

C(ℓ,K))
∫ ℓ

0

2arccos( ℓ
2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ
dℓ′. Thus we have the formula for c.

Then we can compute the total interference I at an arbitrary receiver R as follows:

Proposition 5. With ratio-K-based scheduling, the expected total interference I at a receiver

R in an infinite Poisson random network is as follows:

I =
2πλtPtβ

(α− 2)
(Kℓ)2−α (2.22)

where λt is given by Equation 2.20, Pt is the transmission power, β is the node transmission

probability, α is the wireless path loss exponent, and ℓ is the link length. �
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Proof. In [68], the authors derived as follows, for an arbitrary receiver, the total interference

from nodes more than r distance away from the receiver when β = 1 and interferers are Poisson

distributed with density λ:

m(λ) =
2πλPt

(α− 2)
r2−α (2.23)

Accordingly, for an arbitrary transmission probability β, the total interference is

m(λ, β) =
2πλPtβ

(α− 2)
r2−α (2.24)

Based on the analysis earlier in this section, the set of concurrent transmitters in the tightest

ratio-K-based scheduling are Poisson distributed with density λt as shown in Equation 2.20.

The concurrent transmitters are also more than Kℓ distance away from the receiver. Therefore,

we can see from Equation 2.24 that I can be computed as follows:

I = m(λt, β) =
2πλtPtβ

(α− 2)
(Kℓ)2−α (2.25)

Q.E.D.

2.3 Analysis of the interference in grid networks

we analyze, for the tightest tessellation of concurrent transmissions in grid networks, the

receiver-side interference when different ratio-K models are used. The key to this analysis is

to identify the spatial distribution of concurrent transmitters (i.e., interferers), based on which

the interference introduced by each interferer can be derived from the distance between the

interferer and the receiver. Accordingly, we use a coordinate system where the receiver R is

located at the origin and its transmitter is located at location (0,1) (i.e., we treat the link length

l from R to its transmitter as the unit of distance). So the distance between R and an interferer

ni at location (x, y) is
√
x2 + y2. Then, our main task is to identify the coordinates of all

the interferers when different ratio-K models are used for the scheduling in grid networks. In
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what follows, we analyze the coordinates of interferers in scheduling based on different ratio-K

models.

When K =
√
2, Figure 2.11 shows the spatial distribution of concurrent transmissions.

Given a link L, we can find four nodes, say A, B, C and D, on the boundary of the exclusion

region of link L such that each is involved in a concurrent transmission (either as a sender or

as a receiver).

Figure 2.11: Concurrent transmissions when K =
√
2

By symmetry, we can expand this spatial distribution of concurrent transmissions to the

rest of the network, and thus the coordinates of interferers are





x = 2n+Q

y = 4m+ 1 + 2Q

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 + Q 6= 0. So the receiver-side interference when

K =
√
2 is as follows:

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(2n)2+(4m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(2n+1)2+(4m+3)2]α/2

)
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For other Ks, we can derive interferers’ coordinates in a similar fashion. For conciseness,

we ignore the detailed derivation here and only give the results as follows.

Figure 2.12: Concurrent transmissions when K =
√
5

When K =
√
5, the spatial distribution of concurrent transmission are shown in Figure 2.12

and the coordinates of interferers are





x = 4n+ 2Q

y = 4m+ 1 + 2Q

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(4n)2+(4m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(4n+2)2+(4m+3)2]α/2

)

When K =
√
8, the spatial distribution of concurrent transmission are shown in Figure 2.13

and the coordinates of interferers are
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Figure 2.13: Concurrent transmissions when K =
√
8





x = 4n+ 2Q

y = 6m+ 1 + 3Q

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(4n)2+(6m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(4n+2)2+(6m+4)2]α/2

)

When K = 3, the spatial distribution of concurrent transmission are shown in Figure 2.14

and the coordinates of interferers are





x = 3n

y = 4m+ 1
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Figure 2.14: Concurrent transmissions when K = 3

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(3n)2+(4m+1)2]α/2

)

When K =
√
10, the spatial distribution of concurrent transmission are shown in Fig-

ure 2.15 and interferers are divided into 7 groups, denoted as G1, G2, . . . , G7, and we let

I =
∑7

i=1 Ii, where Ii is the interference from nodes of group Gi. The coordinates of nodes in

G1 are 



x = 7n

y = 14m+ 1

where m,n ∈ Z and m2 + n2 6= 0. And I1 is given by

I1 = Pt × β × ℓ−α ×∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(7n)2+(14m+1)2]α/2
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Figure 2.15: Concurrent transmissions when K =
√
10

The coordinates of nodes in G2





x = 7n+ 4

y = 14m− 1

where m,n ∈ Z and m2 + n2 6= 0. And I2 is given by

I2 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+4)2+(14m−1)2]α/2

The coordinates of nodes in G3





x = 7n+ 1

y = 14m− 3

where m,n ∈ Z and m2 + n2 6= 0. And I3 is given by

I3 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+1)2+(14m−3)2]α/2
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The coordinates of nodes in G4





x = 7n+ 5

y = 14m− 5

where m,n ∈ Z and m2 + n2 6= 0. And I4 is given by

I4 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+5)2+(14m−5)2]α/2

The coordinates of nodes in G5





x = 7n+ 2

y = 14m− 7

where m,n ∈ Z and m2 + n2 6= 0. And I5 is given by

I5 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+2)2+(14m−7)2]α/2

The coordinates of nodes in G6





x = 7n+ 6

y = 14m− 9

where m,n ∈ Z and m2 + n2 6= 0. And I6 is given by

I6 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+6)2+(14m−9)2]α/2
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The coordinates of nodes in G7





x = 7n+ 3

y = 14m− 11

where m,n ∈ Z and m2 + n2 6= 0. And I7 is given by

I7 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+3)2+(14m−11)2]α/2

When K =
√
13, the spatial distribution of concurrent transmission are shown in Fig-

ure 2.16 and the coordinates of interferers are

Figure 2.16: Concurrent transmissions when K =
√
13





x = 4n+ 2Q

y = 8m+ 4Q+ 1
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where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=∞

1
[(4n)2+(8m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(4n+2)2+(8m+5)2]α/2

)

When K = 4, the spatial distribution of concurrent transmission are shown in Figure 2.17

and the coordinates of interferers are

Figure 2.17: Concurrent transmissions when K = 4





x = 6n

y = 5m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(7m+1)2]α/2

)

When K =
√
18, the spatial distribution of concurrent transmission are shown in Fig-
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ure 2.18 and the coordinates of interferers are

Figure 2.18: Concurrent transmissions when K =
√
18





x = 6n+ 3Q

y = 7m+ 3Q+ 1

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(7m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(6n+3)2+(7m+4)2]α/2

)

When K =
√
20, the spatial distribution of concurrent transmission are shown in Fig-

ure 2.19 and the coordinates of interferers are





x = 8n+ 4Q

y = 6m+ 3Q+ 1
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Figure 2.19: Concurrent transmissions when K =
√
20

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(8n)2+(6m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(8n+4)2+(6m+4)2]α/2

)

When K = 5, the spatial distribution of concurrent transmission are shown in Figure 2.20

and the coordinates of interferers are





x = 5n

y = 6m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(5n)2+(6m+1)2]α/2

)

When K =
√
26, the spatial distribution of concurrent transmission are shown in Fig-
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Figure 2.20: Concurrent transmissions when K = 5

ure 2.21 and the coordinates of interferers are

Figure 2.21: Concurrent transmissions when K =
√
26
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x = 5n+m

y = −2n+ 6m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(5n+m)2+(−2n+6m+1)2]α/2

)

When K =
√
29, the spatial distribution of concurrent transmission are shown in Fig-

ure 2.22 and the coordinates of interferers are

Figure 2.22: Concurrent transmissions when K =
√
29





x = 5n+ 2m

y = 3n− 6m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(5n+2m)2+(3n−6m+1)2]α/2

)
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When K =
√
32, the spatial distribution of concurrent transmission are shown in Fig-

ure 2.23 and the coordinates of interferers are

Figure 2.23: Concurrent transmissions when K =
√
32





x = 8n+ 4Q

y = 10m+ 5Q+ 1

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(8n)2+(10m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(8n+4)2+(10m+6)2]α/2

)

When K =
√
34, the spatial distribution of concurrent transmission are shown in Fig-

ure 2.24 and the coordinates of interferers are





x = 6n+ 3Q

y = 12m+ 5Q+ 1
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Figure 2.24: Concurrent transmissions when K =
√
34

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(12m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(6n+3)2+(12m+6)2]α/2

)

When K = 6, the spatial distribution of concurrent transmission are shown in Figure 2.25

and the coordinates of interferers are





x = 6n

y = 7m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(
∑∞

m=−∞
m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(7m+1)2]α/2

)
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Figure 2.25: Concurrent transmissions when K = 6

Figure 2.26: K =
√
2
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2.4 Optimality of PRK-based scheduling

While detailed study of distributed protocol design using the PRK model is a part of our fu-

ture work, we analyze in this section the optimality of PRK-based scheduling as compared with

SINR-based scheduling to gain insight into the potential effectiveness of PRK-based schedul-

ing.4 For ensuring data delivery reliability in wireless networked sensing and control, we con-

duct our comparative analysis on the condition that the link reliability in PRK- and SINR-based

scheduling be the same.

2.4.1 Throughput loss in PRK-based scheduling

Similar to Section 2.2, our analysis here considers infinite sized grid and Poisson random

networks with uniform traffic patterns. We will verify the analytical insight in Sections 2.7 and

3.6 through testbed-based measurement and simulation where finite networks and non-uniform

traffic patterns are considered.

To satisfy a certain link reliability requirement and thus a certain packet-delivery-rate

(PDR) for data and acknowledgment (ACK) reception along a link L, we need to make sure

that the SINR at the receiver R and the transmitter T is above a certain threshold γ0 and γ′
0

respectively. For a given received signal strength Pr and background noise N0 at R, this re-

quirement translates into a requirement on controlling the maximum interference It at R to be

Pr

γ0
− N0. Similarly, we can derive the maximum tolerable interference I ′t at T .5 To control

interference, we need to silence the transmission of some nodes in the network, and, to maxi-

mize channel spatial reuse (i.e., maximizing the number of concurrent transmitters), we need

to minimize the number of silenced transmitters. To this end, we have

Proposition 6. To minimize the number of nodes silenced for ensuring certain minimum SINR

4Here we do not perform detailed comparative study between PRK- and ratio-K-based scheduling because

it is obvious from Section 2.2 that, by adapting to network and environmental conditions as well as application

requirements, PRK-based scheduling will perform better than ratio-K-based scheduling.
5I ′t may or may not equal to It depending on the ACK mechanism and the wireless radios. Accordingly, the

exclusion regions around the sender and the receiver of a transmission may or may not be the same in PRK-based

scheduling.
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at the receiver R (or the transmitter T ) in both PRK- and SINR-based scheduling, nodes s-

closer to R (or T ) rather than those s-farther away should be silenced first. �

Proof. The PRK model silences the nodes within an exclusion region around the receiver (or

the transmitter), so the proposition holds for the PRK model. For the SINR model, we prove

the proposition by contradiction. Suppose the receiver R has two potential interferers A and B

nearby. The s-distances from A and B to receiver R are dA and dB respectively, with dA < dB .

If not silenced, the interference that node A generates is greater than that generated by B. To

ensure that the total interference incurred to R does not exceed the threshold It, therefore,

the number of nodes that have to be silenced when B but not A is silenced is no less than

the number of nodes that have to be silenced when A but not B is silenced. Thus, silencing

B instead of A does not ensure the minimization of the number of silenced nodes, which

contradicts the objective of minimizing the number of silenced nodes. The same argument

applies to the transmitter T . Thus the proposition holds for the SINR-based scheduling.

Therefore, the set S of nodes silenced by the data reception at receiver R are the |S| number

of nodes s-closest to R, where |S| denotes the cardinality of set S . We denote the set of

nodes silenced by R in SINR- and PRK-based scheduling as Ssinr and Sprk respectively. For

a tolerable interference It at R, we let Isinr and Iprk be the actual interference incurred at

R in SINR- and PRK-based scheduling respectively. Similarly, for correct ACK reception at

the transmitter T in SINR- and PRK-based scheduling, we denote the set of silenced nodes

as S ′
sinr and S ′

prk respectively, and, for a tolerable interference I ′t at T , we let I ′sinr and I ′prk

be the actual interference incurred at T respectively. We also define Ssinr = Ssinr ∪ S ′
sinr and

Sprk = Sprk∪S ′
prk to represent the set of silenced nodes around link L in SINR- and PRK-based

scheduling respectively. Then,

Proposition 7. Given the tolerable interference It and I ′t at the receiver R and the transmitter

T respectively, Ssinr ⊆ Sprk, Iprk ≤ Isinr ≤ It, and I ′prk ≤ I ′sinr ≤ I ′t. �
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Proof. Let the longest s-distance from a node in Ssinr to R be dsinr. By the definition of the

PRK and the SINR models and Proposition 6, all the nodes in Ssinr and Sprk are within dsinr

s-distance away from the receiver R. The difference between the PRK model and the SINR

model is that, by the definition of the PRK model (see Inequality 2.29), all the nodes that are

dsinr s-distance away from R have to be silenced in the PRK model as long as at least one of

them has to be silenced; whereas in the SINR model, we only need to silence the minimum

number of nodes dsinr s-distance away from R to ensure that the SINR at R is at least γ0. For

example, in Figure 2.27, there are four nodes dsinr s-distance away from R. While the SINR

Figure 2.27: Difference in PRK- and SINR-based scheduling: receiver oriented view

model may only need to silence node A to guarantee the SINR threshold It, the PRK model

will silence all the four nodes dsinr away. Therefore, Ssinr ⊆ Sprk. Since Ssinr ⊆ Sprk,

Iprk ≤ Isinr. SINR-based scheduling will ensure that Isinr ≤ It. Thus, Iprk ≤ Isinr ≤ It holds.

Similar argument applies to the transmitter T . Thus, S ′
sinr ⊆ S ′

prk, and I ′prk ≤ I ′sinr ≤ I ′t.

Since Ssinr ⊆ Sprk and S ′
sinr ⊆ S ′

prk, Ssinr ⊆ Sprk.

Now, we are ready to derive the upper bound on the throughput loss in PRK-based schedul-

ing as compared with SINR-based scheduling. By Formulas 2.6 and 2.7, the throughput of

PRK- and SINR-based scheduling, denoted by Tprk and Tsinr respectively, can be computed as

follows:

Tprk =
TR,prk

|Sprk|
Tsinr =

TR,sinr

|Ssinr|

where TR,prk and TR,sinr are the link throughput to R in PRK- and SINR-based schedul-
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ing respectively. From Proposition 7, we know that the average link reliability in SINR-

based scheduling is no higher than that in PRK-based scheduling (since the actual interfer-

ence incurred in SINR-based scheduling is no less than that in PRK-based scheduling). Thus,

TR,sinr ≤ TR,prk. Then, we can define the throughput loss Tloss in PRK-based scheduling as

Tloss =
Tsinr−Tprk

Tsinr
=

TR,sinr
|Ssinr |

−TR,prk
|Sprk|

TR,sinr
|Ssinr |

≤
TR,sinr
|Ssinr |

−TR,sinr
|Sprk|

TR,sinr
|Ssinr |

=
|Sprk|−|Ssinr |

|Sprk|

(2.26)

Let nb be the node in Ssinr that is s-farthest away from the receiver R, P0 be the power of

signals that reach R from nb, and Nb be the number of nodes in the network whose s-distance to

R is sd(nb, R). Similarly, let n′
b be the node in S ′

sinr that is s-farthest away from the transmitter

T , P ′
0 be the power of signals that reach T from n′

b, and N ′
b be the number of nodes whose

s-distance to T is sd(n′
b, T ). Then,

Proposition 8. The expected Tloss is less than or equal to 1
|Sprk|(min{ It−Iprk

P0×β
, Nb}+min{ I′t−I′prk

P ′
0×β

, N ′
b}).

�

Proof. Let dist(nb, R) be the s-distance from nb to R, and dist(n′
b, T ) be the s-distance from

n′
b to T . Then from the proof of Proposition 7, we know that the s-distance d from every node

in Sprk \ Ssinr to R is dist(nb, R) since the PRK model silences all the nodes on the boundary

of the exclusion region around R. Similarly, the s-distance d′ from every node in S ′
prk \ S ′

sinr

to T is dist(n′
b, T ).

Given the interference tolerance It and I ′t at R and T respectively, the set of silenced nodes

Sprk is fixed for a tightest tessellation of concurrent transmitters in a specific network and

environmental setting. To understand the upper bound on Tloss, we need to understand the

upper bound on (|Sprk| − |Ssinr|) (see Inequality 2.26). By the definition of Sprk and Ssinr, we

know that |Sprk| − |Ssinr| ≤ (|Sprk| − |Ssinr|) + (|S ′
prk| − |S ′

sinr|). To upper bound (|Sprk| −

|Ssinr|), we analyze in what follows the upper bound on (|Sprk|− |Ssinr|) and (|S ′
prk|− |S ′

sinr|).
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We first derive the upper bound on (|Sprk| − |Ssinr|). Since all the nodes in Sprk \ Ssinr are

on the boundary of the exclusion region around R and are dist(nb, R) s-distance away from R,

each such node introduces an expected interference of P0 × β at receiver R. To ensure that the

expected interference at R is no more than It (a.k.a., the SINR at R is above γ0), one necessary

condition is that the expected interference introduced by nodes in Sprk\Ssinr should be no more

than It − Iprk, that is, the number of nodes in Sprk \ Ssinr should be no more than
It−Iprk
P0×β

. Note

that this upper bound is usually not tight and not a sufficient condition because the interference

at R tends to exceed It if the interferences from nodes in Sprk \ Ssinr reaches It − Iprk. This

is because, if we add, for every area of the same size of the exclusion region around R,
It−Iprk
P0×β

more transmitters on average in SINR-based scheduling than in PRK-based scheduling, the

interference at R will exceed It − Iprk when the area covered by the network is larger than

the exclusion region around R (which is usually the case). Therefore, an upper bound on the

number of nodes in Sprk \ Ssinr is
It−Iprk
P0×β

. In addition, the number of nodes on the boundary of

the exclusion region around R is no more than Nb, thus (|Sprk| − |Ssinr|) ≤ min{ It−Iprk
P0×β

, Nb}.

Similarly, we can derive that (|S ′
prk| − |S ′

sinr|) ≤ min{ I′t−I′prk
P ′
0×β

, N ′
b}. Putting the above

analysis together, the expected Tloss is no more than 1
|Sprk|(

It−Iprk
P0×β

+
I′t−I′prk
P ′
0×β

).

Proposition 8 enables us to compute the upper bound, denoted by Tlb, on the throughput loss

in PRK-based scheduling. For convenience, we let ∆X = min{ It−Iprk
P0×β

, Nb}+min{ I′t−I′prk
P ′
0×β

, N ′
b},

and thus Tlb = ∆X
|Sprk| . Note that ∆X represents an upper bound on |Sprk \ Ssinr|, that is, the

average number of nodes per exclusion region that are silenced in PRK-based scheduling but

not in SINR-based scheduling. In the next subsection, we numerically analyze the properties

of ∆X and Tlb.

2.5 Numerical analysis

Using Formulas 2.6 and 2.7, the CC2420 radio model described in Section 3.2, and the

formulas for computing interference (e.g., Formulas 2.17 and 2.22), we numerically analyze
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the impact of parameter K on the network throughput and link reliability in ratio-K-based

scheduling, and we analyze the impact that different network and environmental settings have

on the effective choice of parameter K.

2.5.1 Methodology

To examine the impact of wireless attenuation in different environments, we consider the

set {2.1, 2.6, 3, 3.3, 3.6, 3.8, 4, 4.5, 5} of wireless path loss exponents αs, which represent a

wide range of real-world environments [57]; we also set the shadowing variance σ2 based on

measurement data from [57]. For the grid networks and Poisson random networks, we vary

their parameters such as traffic load, link length, and node distribution density to examine the

impact of network properties. Traffic load is controlled by the transmission probability β,

and we consider the set {0.05, 0.1, 0.15, . . . , 1} of βs. Link length is chosen so that the link

reliability varies from 1% to 100% in the absence of interference. More specifically, for each

specific path loss exponent α, we choose a link length ℓ0 corresponding to an interference-free

packet delivery rate (PDR) of 1%, and another link length ℓ1 corresponding to a signal-to-

noise-ratio (SNR) of 5dB more than the minimum SNR for ensuring 100% interference-free

PDR; then we take 60 sample link lengths that are uniformly distributed between ℓ0 and ℓ1.

(Note that the transmission power level is set at -25dBm in our study.) For each average link

length ℓ in random networks, we select a set of node distribution densities λs so that the average

number of nodes in a circular area of radius ℓ is 5, 10, 15, 20, 30, and 40 respectively.

For convenience, we regard each setting of network and environment parameters as a system

configuration hereafter. Thus our study examines 75,600 different system configurations, and

the boxplots, medians, and distributions to be presented in the rest of the paper are mostly

based on the distribution of the corresponding metrics across different system configurations.

For each system configuration, we analyze the network performance when the ratio-K model

is instantiated with different Ks. The set of Ks we consider are {
√
2, 2,

√
5,

√
8, 3,

√
10,
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√
13, 4,

√
18,

√
20, 5,

√
26,

√
29,

√
34, 6}6 for grid networks, and {1, 1.5, 2, 2.5, . . . , 10}

for Poisson random networks. Using the numerical results on network throughput and link

reliability in these 75,600 system configurations, we analyze 1) the impact of different factors

on the best ratio-K model instantiation, 2) the sensitivity of model instantiation, and 3) the

tradeoff between reliability and throughput in instantiating the ratio-K model.

2.5.2 Impact of different factors on best K

In this section, we analyze how different network and environment properties affect the

optimal K that maximizes network throughput and the minimum K for ensuring certain link

packet delivery rate (PDR). For random networks, we find that node distribution density λ does

not affect the choice of K (even though it has some impact on interfering signal strength and

SINR); thus, for the sake of space, here we only present the data for cases where λ is such that

the average number of nodes in a circular area of radius ℓ is 15.

Throughput maximization: grid networks. For each system configuration we study, we

compute the optimal K that maximizes network throughput. For different path loss exponents

α’s, Figure 2.28 shows the boxplot (and thus the distribution) of the optimal Ks across different
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Figure 2.28: Optimal K for different α’s: grid network

6These Ks are chosen in a continuous manner in the sense that, given a receiver, the inner area enclosed by the

boundaries of the exclusion regions associated with every two closest Ks does not contain any node.We find that,

for ratio-K-based scheduling in grid networks, increasing K after K is already greater than 5 can only increase

link reliability but not network throughput. Thus 6 is large enough to serve as the largest K in our study.
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system configurations. We see that, in general, the optimal K decreases as α increases. This

is because larger α makes interfering signals weaker and thus a transmission can tolerate in-

terference from more concurrent transmitters, which reduces the required K. We also note that

√
2 is the optimal K with high probability when α ≥ 3.3. Due to the limitation of space, here

we only discuss in detail the cases of α being 3.3 and 4.5. Note that 3.3 and 4.5 are typical path

loss exponents for indoor and outdoor environments respectively [57].

Figure 2.29 shows the distribution of the optimal K when α = 3.3. There are 3 distinct
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Figure 2.29: Distribution of optimal K when α = 3.3: grid network.

optimal Ks in this case, that is,
√
2, 2, and

√
5. We see that the optimal K tends to increase as

traffic load increases. When traffic load is less than 0.35, link length does not affect the optimal

K which is
√
2 all the time. When traffic load is greater than 0.4, the pattern is more complex,

and both traffic load and link length affect the optimal K. The largest optimal K is
√
5 which

occurs when the normalized link length is around 0.6 and the traffic load is high (e.g., ≥ 0.4).

The distribution of K =
√
5 has a U-shape. When links are long, the reason why the optimal

K can be small (i.e.,
√
2) even for high traffic load is because concurrent transmitters are well

separated in space due to long link length.

Figure 2.30 shows the distribution of the optimal K when α = 4.5. The general patterns

are similar to those for α = 3.3, but there are only two distinct optimal Ks in this case, i.e.,
√
2

and 2. Comparing with the case of α being 3.3, we see that traffic load has less and less impact

on the optimal K as α increases. This is because, as α increases, signal power decreases
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Figure 2.30: Distribution of optimal K when α = 4.5: grid network

significantly, and thus interfering traffic has less and less impact on receiver-side SINR and

throughput.

Throughput maximization: random networks. For different path loss exponent α’s in

random networks, Figure 2.31 shows the boxplot of the optimal Ks across different system
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Figure 2.31: Optimal K for different α’s: random network

configurations, and Figures 2.32 and 2.33 show the distribution of the optimal Ks for α = 3.3

and α = 4.5 respectively. We see that, in random networks, the optimal K has a similar distri-

bution pattern as in grid networks. But the optimal Ks in random networks tend to be greater

than those in grid networks. This is because, in random networks, the spatial orientations of

data transmissions are random (which increases average interference to nodes) instead of in the

same direction, and the density of concurrent transmitters tends to be greater than that in grid
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Figure 2.32: Distribution of optimal K when α = 3.3: random network
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Figure 2.33: Distribution of optimal K when α = 4.5: random network

networks.

PDR assurance: grid networks. For each system configuration we study, we compute

the minimum K for ensuring certain link packet delivery rate (PDR). For different PDR re-

quirements, Figure 2.34 shows the boxplot of the minimum Ks across different system con-

figurations. We see that, in general, the required minimum K increases as PDR requirement

increases, and
√
2 and 2 are two Ks that are used with high probability. For a PDR require-

ment of 80%, Figure 2.35 shows the distribution of the minimum required K for α = 3.3 and

α = 4.5. We see that the minimum required K tends to increase as traffic load increases,

link length increases, and wireless signal attenuation decreases. We also see that the mini-

mum required K changes in a manner different from that for the optimal K of maximizing

throughput: when link length increases, the minimum required K for PDR assurance increases

monotonically, whereas the optimal K for throughput maximization may decrease or may in-
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Figure 2.34: Minimum K for ensuring link PDR: grid network

crease depending on network properties as shown in Figures 2.29 and 2.32. This implies that

different Ks will be chosen depending on objectives, and we will examine this issue in detail

in Section 2.5.4.

PDR assurance: random networks. For random networks, Figure 2.36 shows the minimum

Ks for different PDR requirements, and Figure 2.37 shows the distribution of the minimum

required K for α = 3.3 and α = 4.5. We see that the patterns here are similar to those for grid

networks. One subtle difference is that the minimum required Ks in random networks tend to

be greater than those in grid networks, because, in random networks, the spatial orientations of

data transmissions are random (which increases average interference to nodes), and the density

of concurrent transmitters tends to be greater than that in grid networks.

2.5.3 Sensitivity of ratio-K-based scheduling

In Section 2.5.2, we see that both the optimal K for maximizing network throughput and

the minimum K for satisfying certain link reliability requirement depend on network and en-

vironmental characteristics such as traffic load and wireless signal attenuation. To understand

the impact of choosing a constant K for the ratio-K model, we analyze in this section the

sensitivity of network throughput and link reliability to changing network and environmental
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Figure 2.35: Distribution of minimum K in grid network
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Figure 2.36: Minimum K for ensuring link PDR: random network
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dynamics.

Throughput: grid networks. Given that the optimal K for maximizing network throughput

changes with network and environmental properties, using any constant K in ratio-K-based

scheduling may lead to throughput loss since the chosen K may not always be optimal. To

quantify the impact of not adapting K to network and environmental dynamics, we compute,

for each system configuration, the loss in network throughput when using a K that is ∆K

away from the optimal K, denoted by Kopt, for this system configuration. For different ∆K’s,

Figure 2.38
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Figure 2.38: Throughput loss in grid networks when using K = Kopt +∆K

shows the boxplot7 of throughput loss across different system configurations, where the

loss is defined as the reduction in throughput divided by the optimal throughput. We see that,

in general, throughput loss increases as |∆K| increases. If the used K differs from the optimal

one by up to 1, throughput loss can be up to 68%, which is non-negligible.

To understand the impact of choosing a fixed K, Figure 2.39(a) shows, for different fixed

Ks, the possible throughput loss across different system configurations, and Figure 2.39(b)

shows, for K=2, the throughput loss when the optimal K is K−∆K (where ∆K is rounded to

the precision of 0.1). We see that the throughput loss can be significant. For instance, fixing

7Note that, for clarity of presentation, we group data by the rounded ∆K instead of ∆K directly because there

are too many ∆K’s to present individually in a single figure.
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Figure 2.39: Possible throughput loss by choosing a constant K: grid networks

K to 2 can lead to a throughput loss of up to 86.73% and a median loss of 23.68%.

Therefore, using a constant K across different network and environmental settings may well

lead to significant loss in network throughput, and, to avoid biased evaluation against ratio-K-

based scheduling, we need to take this into account in both protocol design and performance

analysis.

Throughput: random networks. Figure 2.40 shows, for different fixed ∆K’s, the boxplot of

throughput loss across different system configurations. Same as in grid networks, throughput

loss increases as |∆K| increases. If the used K differs from the optimal one by up to 1,

throughput loss can be up to 98%, which is quite large.
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Figure 2.40: Throughput loss in random networks when using K = Kopt +∆K.

To understand the impact of choosing a specific constant K, Figure 2.41(a) shows the pos-
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Figure 2.41: Possible throughput loss by choosing a constant K: random networks
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sible throughput loss for using different Ks, and Figure 2.39(b) shows, for K=2, the throughput

loss when the optimal K is K −∆K (where ∆K is rounded to the precision of 0.1). Same as

in grid networks, using a constant K across different network and environmental settings may

well lead to significant loss in network throughput, and we need to take this into account in

both protocol design and performance analysis.

Reliability: grid networks. To understand the impact of using a constant K on link

reliability, we consider system configurations where a proper choice of K can ensure a link

reliability of at least 20%, 40%, 60%, 80%, and 100%. Due to the limitation of space, here we

only present the data for configurations where a link reliability of at least 80% can be achieved

by choosing a proper K. (Similar phenomena as what we will present have been observed for

other configurations too.) Figure 2.42(a) shows, for using different Ks, the boxplot of the

PDR (i.e., packet delivery rate) gain across different system configurations, where the PDR

gain is defined as PDRk−0.8
0.8

and PDRk is the PDR resulting from using a specific constant K

in a system configuration; Figure 2.42(b)-(c) show, for K = 2 and
√
2 respectively, the PDR

gain when the optimal K is K − ∆K (where ∆K is rounded to the precision of 0.1 and 1

respectively).

We see that Ks less than or equal to 2 tend not to be a good constant number for ensuring

reliable data delivery (e.g., 80% link PDR): a constatnt K of 2 is unable to guarantee 80% link

reliability with non-negligible probability; a constant K of
√
2 is mostly unlikely to guarantee

80% reliability, even though
√
2 is the optimal K for maximizing throughput in a wide variety

of system configurations we study. On the other hand, using larger Ks (e.g., 4) can improve

link reliability, but this usually comes at the cost of reduced network throughput due to reduced

spatial reuse of channel resources, This can be seen from Figures 2.38 and 2.39(a), and we

will study this tradeoff between reliability and throughput in detail next in Section 2.5.4.

Reliability: random networks. Figure 2.43(a) shows, for using different Ks, the boxplot of

PDR (i.e., packet delivery rate) gain in different system configurations, where the PDR gain is
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Figure 2.42: Impact of using a constant K in grid networks
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Figure 2.43: Impact of using a constant K in random networks
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defined as PDRk−0.8
0.8

and PDRk is the PDR resulting from using a specific constant K in a system

configuration; Figure 2.43(b)-(c) show, for K = 2 and
√
2 respectively, the PDR gain when the

optimal K is K − ∆K (where ∆K is rounded to the precision of 0.1 and 1 respectively).

Same as in grid networks, Ks less than or equal to 2 tend not to be a good constant number for

ensuring reliable data delivery (e.g., 80% link PDR); using larger Ks (e.g., 4) tend to improve

link reliability, but this usually come at the cost of reduced network throughput due to reduced

spatial reuse.

2.5.4 Tradeoff between reliability and throughput

Section 2.5.3 has alluded to the inherent tradeoff between link reliability and network

throughput in instantiating the ratio-K model. In what follows, we examine the issue in de-

tail for grid and random networks.8 For each link reliability requirement (e.g., 80%) and each

system configuration that can ensure the reliability by using certain minimum K = K0, we

compute the performance gain in packet delivery rate (PDR) and throughput when changing K

to K ′ = (K0 +∆K) for various ∆K’s. The performance gain is defined as
XK′−X0

X0
, where X0

is the PDR (or throughput) when K = K0 and XK′ is the PDR (or throughput) when K = K ′.

Grid networks. Figure 2.44 shows the median performance gains for system configurations

where a certain minimum PDR can be ensured, and we observe the following: 1) maximum

network throughput is usually not achieved at the minimum K for ensuring certain link reli-

ability but at a smaller K; 2) as K increases from the minimum one for ensuring certain link

reliability, network throughput tends to decrease with high probability even though link relia-

bility does improve; 3) as PDR requirement increases, moreover, the probability of improving

throughput by increasing K from the minimum one of ensuring the PDR requirement further

decreases, in addition to being small all the time.

Random networks. Figure 2.45 shows the median performance gains for system config-

8We numerically study the tradeoff because it is difficult to derive the closed-form formula for the relationship

between link reliability and network throughput in general.
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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(e) PDR req. = 100%

Figure 2.44: ∆k vs. performance gain: grid networks
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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Figure 2.45: ∆k vs. performance gain: random networks
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urations where certain minimum PDR can be ensured. Unlike in grid networks, we see that,

for scenarios of low PDR requirements (e.g., less than 60%), reduction of K from the min-

imum one for ensuring certain PDR may lead to reduction in median throughput. This is

because, in these scenarios, reduction in K may lead to sharp decrease in PDR as shown in

Figure 2.45(a)-(c). For scenarios of high PDR requirements (e.g., 80%), trends similar to those

of grid networks have been observed.

Implications. These findings suggest that we should use, in protocol design, the minimum

K that ensures the required link reliability, since this helps avoid throughput reduction while

ensuring enough reliability at the same time. In general, the minimum link reliability required

is application dependent, and it relates to the question of how to balance properties such as

throughput, reliability, delay, and energy efficiency. In low-power wireless sensing and control

networks such as those for industrial sensing and control, however, it is usually desirable to

have high link reliability for the following reasons: 1) reliable data delivery itself is usually

important for mission-critical sensing and control; 2) higher reliability implies less variability

and better predictability in data delivery performance (e.g., timeliness); this is because, given

a link reliability p, the coefficient-of-variation of packet transmission status (i.e., success or

failure) is
√

1−p
p

which decreases as p increases; 3) higher reliability implies fewer number of

packet retransmissions and thus less energy consumption. Given that, for high reliability re-

quirement, the probability of throughput loss is high when we increase K beyond the minimum

one required for ensuring reliability, PDR requirement can serve as a good basis for a node to

choose the right K to use.

Choosing the minimum K that ensures the required link reliability also tends to help reduce

data delivery delay. Here we analyze the single-hop transmission delays when we need to

ensure a link layer data delivery reliability of p0. To ensure a link layer frame delivery reliability

of p0 when the delivery rate of each transmission is p, a frame may have to be retransmitted.
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The maximum number of transmissions, denoted by x0, can be computed as follows:

x0 = argmin
x≥1

(1− p)x ≤ 1− p0 < (1− p)x−1 (2.27)

=





1 if p = 1

⌈ ln(1−p0)
ln(1−p)

⌉ if 0 < p < 1

(2.28)

Then, when a frame is to be delivered by the link layer, the frame will be transmitted/retransmitted

until it is successfully received by the receiver or the frame has been transmitted for x0 number

of times.

In what follows, we analyze the expected transmission delay when link scheduling is based

on TDMA and CSMA respectively.

TDMA Delay. When TDMA scheme is applied, a node will compete with Nex number

of nodes in its exclusive region. We assume that the TDMA scheme is fair to all the nodes

within the exclusive region. We also assume that each node will only transmit one packet each

time it gains the channel and each packet transmission takes one slot time. Then a transmitter

has to wait Nex

2
slots for the first transmission attempt on average, and Nex − 1 for every re-

transmission attempt after that. Thus, the expectation of a single packet transmission delay,

denoted as Td,tdma, is

E[Td,tdma]

=E[t1] · p+ E[t2] · p(1− p) + ...+ E[tx0−1] · p(1− p)x0−1

+ E[tx0 ] · (1− p)x0−1

=
N

2
+ (N − 1)

{
1− p

p
+

[
2x0 − 1− 1

p

]
· (1− p)x0−1

}
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where E[tk] =
Nex

2
+ (k − 1)(Nex − 1), 1 ≤ k ≤ x0

Note that the unit of time is a time slot.

CSMA delay. According to [72], the expected delay between any two transmission can be

computed as

E[Tn] =
L− (L− 1)(1− pc)

n

npc(1− pc)n−1
· δ

where n is the number of nodes in the exclusive region, L is the length of packet in the number

of time slots (L = 13 in our study), and δ is the duration of a time slot which is 320 microsec-

onds. pc is the channel access probability, which is close to the value of 1
16.5

= 0.606 [72].

Notice that E[T ] includes the idle time, collision time and the packet transmission time.

So the expected delay Dcsma when the link quality is p can be computed as

E[Dcsma] =E[Tn] · p+ 2E[Tn] · p(1− p) + ...

+ x0 · E[Tn] · p(1− p)x0−1 + x0 · E[Tn] · (1− p)x0

=E[Tn] ·
(1 + (1− p)x0

p
+ 2x0(1− p).x0−1

)

Simulation Result. Figures 2.46, 2.47, 2.48, and 2.49 show the median delay change and its

95% confidence interval in grid and Poisson networks and when the channel access is through

TDMA or CSMA. We see that the transmission delay varies significantly when K varies by

∆K from the minimum K ′ that ensures a certain link reliability. For Poisson networks with

TDMA channel access control (see Figure 2.47(d)), for instance, the median delay gain can be

167% when ∆K = −1. We also observe that choosing the minimum K ′ that ensures the re-

quired link reliability also helps reduce data delivery delay. As K increases from K ′, the delay

increases because the number of nodes in a link’s exclusion region increases, which introduces

larger contention delay in channel access. As K decreases from K ′, the contention delay de-

creases, but the overall delay still increases because retransmissions are required to ensure the
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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Figure 2.46: ∆k vs. performance gain: TDMA, grid networks
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(a) PDR req. = 20%
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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Figure 2.47: ∆k vs. performance gain: TDMA, Poisson networks
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(a) PDR req. = 20%
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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Figure 2.48: ∆k vs. performance gain: CSMA, grid networks
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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Figure 2.49: ∆k vs. performance gain: CSMA, Poisson networks
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same link-layer data delivery reliability as what is enabled by K ′ without retransmission.

As K increases from K ′, the delay increases because the number of nodes in a link’s ex-

clusion region increases, which introduces larger contention delay in channel access. As K

decreases from K ′, the contention delay decreases, but the overall delay still tends to increase

because retransmissions are required to ensure the same link-layer data delivery reliability as

what is enabled by K ′ without retransmission. Similar phenomena are observed for random

networks and contention-based channel access control mechanisms [17]. Given that the per-

formance (e.g., convergence rate) of networked control usually decreases dramatically with

increasing network delay, it is important to ensure small network delay in mission-critical

sensing and control, which further emphasizes the need for high link reliability.

2.6 Summary and the PRK interference model

Through detailed study with different configurations of grid and random networks, we find

that both network throughput and link reliability are sensitive to the choice of K in instantiating

the ratio-K model. Thus it is important to take this into account in protocol design, for instance,

by adapting K to network and environmental dynamics.

We also observe that there is inherent tradeoff between link reliability and network through-

put. In ratio-K-based scheduling, therefore, it is desirable to use the minimum K that ensures

the required link reliability, since this tends to avoid throughput loss caused by using any unnec-

essarily large K. This observation suggests that link reliability requirement can serve as a good

basis for each node to choose the right K to use in ratio-K-based scheduling. Accordingly, we

propose the physical-ratio-K (PRK) interference model as a link-reliability-based instantiation

of the ratio-K model as follows: “Given a transmission from node ns to node nr, a concurrent

transmitter ni does not interfere with the reception at nr if and only if the following holds:

P (ni, nr) <
P (ns, nr)

Kns,nr,Tpdr

(2.29)
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where P (ni, nr) and P (ns, nr) is the strength of signals reaching nr from ni and ns respec-

tively, and Kns,nr ,Tpdr
is chosen such that the probability of nr successfully receiving packets

from ns is at least Tpdr in the presence of interference from all concurrent transmitters.” It is

usually difficult to derive closed-form formula for computing the parameter Kns,nr,Tpdr
in gen-

eral. But K is amenable to online, distributed instantiation, because link reliability is a locally

measurable metric and can even be identified through real-time, data-driven, passive measure-

ment [77]. In particular, the problem of identifying parameter Kns,nr,Tpdr
can be modeled as

a classical “regulation control” problem [28], where the “reference input” is the required link

reliability Tpdr, the “control input” is the parameter Kns,nr,Tpdr
, and the “feedback” is the cur-

rent link reliability from ns to nr. Because the adaptation of K is local and the signal strength

between nearby nodes is a pairwise, locally measurable metric too, we expect the PRK model

to be a good basis for designing distributed MAC protocols. Since our focus in this paper is

understanding the behavior of ratio-K-based scheduling instead of protocol design, we relegate

the study of distributed, PRK-based medium access control to our future work. But we will

study the potential performance of PRK-based medium access control in Section 2.4.

Based on the above discussion, we see that the PRK model has the locality of the ratio-K

model. The PRK model also has the high fidelity of the SINR model, since it is based on

link reliability which captures the properties and constraints of wireless communication. Even

though the parameter Kns,nr,Tpdr
of the PRK model depends on interference from all concurrent

transmitters in the network as in the SINR model, the PRK model is simpler than the SINR

model in terms of distributed protocol design. This is because, unlike the SINR model which

explicitly characterizes interference from each concurrent transmitter in the whole network,

interference is modeled implicitly in the PRK model through locally measurable link reliability

without worrying about who the concurrent transmitters are. Thus, the PRK model enables

a receiver to locally adapt the parameter K for satisfying its local link reliability requirement

without explicit network-wide coordination.
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We define the PRK model based on signal strength instead of geographic distance so that

the model is more generically applicable, for instance, to scenarios where transmission power

varies across nodes [44] or signal attenuation is non-uniform such as in our measurement study

of Section 2.7. Note that the selection of Kns,nr,Tpdr
is based on each link of a receiver nr such

that the model can also be applied to cases where different links of a receiver vary significantly,

for instance, in their senders’ transmission powers. To relate the PRK model to the ratio-K

model and to facilitate discussions in Sections 2.4 and 2.7, we define the concept s-distance

as follows: the s-distance from a node T to another node R, denoted by sd(T,R), is 1
P (T,R)

where P (T,R) is the strength of signals reaching R from T . If sd(T1, R) > sd(T2, R), then

T1 is regarded as s-farther away from R than T2 is, and T2 is regarded as s-closer to R than T1

is. Given a K ′ = Kns,nr ,Tpdr
, the PRK model defines an exclusion region ER(nr, K

′) around

the receiver nr such that a node nj is in ER(nr, K
′) if and only if sd(nj, nr) < R(ns, nr, K

′),

where R(ns, nr, K
′) = K′

P (ns,nr)
is called the s-radius of the exclusion region ER(nr, K

′).

2.7 Measurement study of PRK- and SINR-based schedul-

ing

Our analytical results show that the PRK model serves well as the basis of instantiating the

ratio-K model in different network and environmental settings and that PRK-based scheduling

achieves a spatial throughput close to what is possible in SINR-based scheduling. To cor-

roborate these results, we experimentally compare the performance of PRK- and SINR-based

scheduling using the NetEye wireless sensor network testbed [1] at Wayne State University and

the MoteLab testbed [69] at Harvard University, and we also experimentally verify the tradeoff

between reliability and throughput in both PRK- and SINR-based scheduling. To reflect the im-

pact of link-layer behavior on network-wide behavior, we also consider end-to-end throughput

in this section. The purposes of this measurement evaluation are to verify the analytical insight

and to correct the misconceptions about the potential performance of ratio-K-based scheduling,
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thus our evaluation will be based on the centralized scheduling algorithm Longest-Queue-First

(LQF) that has been used to compare different wireless interference models by Maheshwari

et al. [40]. Distributed protocol design via the PRK model is a part of our future work.

2.7.1 Methodology

We use both the NetEye and the MoteLab testbeds so that we can evaluate PRK- and SINR-

based scheduling in different network and environmental settings. In what follows, we first

describe properties of the two testbeds, then we discuss the traffic patterns and the scheduling

objectives studies here.

NetEye testbed. NetEye [1] is deployed in an indoor office as shown in Figure 2.50. We

Figure 2.50: NetEye wireless sensor network testbed

use a 10× 12 grid of TelosB motes in NetEye, where every two closest neighboring motes are

separated by 2 feet. Each of these TelosB motes is equipped with a 3dB signal attenuator and

a 2.45GHz monopole antenna. In our measurement study, we set the radio transmission power

to be -25dBm (a.k.a. power level 3 in TinyOS) such that multihop networks can be created. In

addition to grid networks, the 10 × 12 grid enables us to experiment with random networks,

where a random network is generated out of the 10 × 12 grid by removing each mote of the

grid with certain probability.

Part of the input to PRK- and SINR-based scheduling algorithms (to be discussed in Sec-
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tion 2.7.2) are radio model, background noise at every node, and strength of signals from any

one node to every other node. To collect these information about the 10× 12 grid in NetEye,

we perform the following experiment: let the 120 motes take turns to be a transmitter one at

a time; when a mote is a transmitter, it broadcasts 600 128-byte packets with a transmission

power of -25dBm and an inter-packet interval of 100ms (note: each packet transmission takes

∼4ms); while a mote is transmitting packets, every other mote keeps sampling its radio RSSI

once every 2ms whether or not it can receive packets from the transmitter, and, if a mote can re-

ceive packets from the transmitter, it logs the received packets. Using the data collected in this

experiment, we can derive the background noise power at each node,9 the strength of signals

from any node to every other node, and the packet delivery rate (PDR) from any node to every

other node as well as the associated SINR. These data also enable us to derive the empirical

radio model for the TelosB motes in NetEye, and the radio model shows the relation between

PDR and SINR. We will use this radio model in our scheduling algorithms for two purposes:

1) to choose the SINR threshold for satisfying certain link reliability, and 2) to compute the ex-

pected PDR for a given SINR at a receiver. For the transmission power of -25dBm, Figure 2.51

shows the boxplot of PDR for links of different length, and Figure 2.52 shows the histogram

of background noise power in NetEye. We see that there is a high degree of variability in

PDR for links of equal length and in background noise power. Thus the testbed enables us to

do experiments in non-uniform settings.

MoteLab testbed. MoteLab is deployed at three floors of the EECS building of Harvard as

shown in Figure 3.13. Our experiments use all of the 101 operational Tmote Sky motes, with

32, 39, and 30 motes distributed at the first, second, and third floors respectively. We use a

transmission power of −1dBm (a.k.a. power level 27) to generate a well-connected multi-hop

networks.

Using a method similar to that for NetEye, we have characterized the empirical radio model,

9It is derived from RSSI readings in the absence of packet transmission.
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Figure 2.51: PDR vs. link length in NetEye when transmission power is -25dBm

background noise at every node, and strength of signals from any node to every other node

in MoteLab. Figure 2.54 shows the histograms of the PDRs of all the wireless links, and

Figure 2.55 shows the histogram of background noise power in MoteLab. We see that there

is a high degree of variability in link PDRs and background noise power. Thus the testbed

enables us to do experiments in non-uniform settings too.

Traffic patterns. To generate the traffic load for scheduling, we consider convergecast in

wireless sensor networks where data packets generated by all the nodes need to be delivered to

a base station node.

For NetEye, we consider convergecast in both grid and random networks. For grid network,

we let the node at one corner serve as the base station to which the remaining nodes of the

10×12 grid deliver their packets (mostly via multi-hop paths); we generate the random network

out of the 10× 12 grid by removing a mote in the grid with 30% probability, and then we let a
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Figure 2.53: MoteLab testbed
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mote closest to a corner of the original grid be the base station (with ties broken randomly). In

both the grid and random networks, an approximate routing tree is built by letting each mote

choose as its parent the mote having the minimum ETX (i.e., expected transmission count)

value to the base station among all the motes within 6 feet distance. Given a routing tree, we

generate the traffic load as follows: each node generates a packet with 50% probability, and

then the number of packets that need to be delivered across a link is the number of packets

generated in the subtree rooted at the transmitter of the link. Then the traffic load is used as

the input to PRK- and SINR-based scheduling. (Note that this traffic load can simulate event

detection and may also be repeated to simulate periodic data collection in sensor networks.)

For MoteLab, we let mote #115 at the center of the second floor be the base station to which

the remaining 100 motes deliver their packets (mostly via multi-hop paths). Then the routing

tree and network traffic are generated in the same manner as in NetEye.

Scheduling objectives. When scheduling the aforementioned traffic load, we consider three

different scheduling objectives: 1) Obj-5: to guarantee a 5dB minimum SINR at transmitters

and receivers (with throughput maximization as a second-order objective), which corresponds

to a link PDR of ∼88% and ∼97% in NetEye and MoteLab respectively; 2) Obj-8: to guarantee

an 8dB minimum SINR at transmitters and receivers, which corresponds to a link PDR of

∼95% and ∼98% in NetEye and MoteLab respectively; and 3) Obj-T: to maximize network

throughput. When comparing PRK- and SINR-based scheduling for different objectives and

networks, we consider both link PDR and network throughput.

Overall, we have 12 different experiment configurations, where each configuration spec-

ifies a scheduling objective, a topology, and an interference model. A schedule is gener-

ated by our scheduling algorithms for each system configuration, where the schedule S =

{S1, S2, . . . , Sτ}, with Sj being a set of links scheduled in j-th time slot and τ being the sched-

ule length. Experiment with each schedule is repeated 10 times to gain statistical insight. To

experiment with a schedule in NetEye, we select a mote not in the 10× 12 grid to be the com-
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mander that broadcasts the schedule, slot by slot, to the motes involved (as either a transmitter

or a receiver) in each slot such that the links in the same lot are synchronized to transmit at

the same time; each slot is repeated 30 times before moving onto the next slot so that we can

get 30 samples on the transmission status (i.e., success or failure) along each link of the slot to

understand the behavior of each slot.

In the next subsection, we describe the scheduling algorithms used in our evaluation.

2.7.2 Scheduling algorithms

Optimal SINR- and ratio-K-based scheduling are NP-complete in general [14, 54], thus we

use the greedy, approximate scheduling framework, denoted by Longest-Queue-First (LQF)

[30, 35, 9],10 that has been used to compare different wireless interference models in lit-

erature [40]. In addition to interference model, LQF takes as input the link demand vec-

tor f = (f1, f2, . . . , fL) for L number of links, where the demand fi for the i-th link is

the number of packets to be transmitted across the link. The output of LQF is a schedule

S = {S1, S2, . . . , Sτ}, where Sj is a set of links scheduled in the j-th time slot. LQF works as

follows to generate the output schedule:

1. Order and rename links such that f1 ≥ f2 ≥ . . . ≥ fL.

2. Set i = 1, S = ∅, τ = 0. (Note: initial schedule is empty.)

3. Schedule link i in the very first available time slot to which link i can be added based on

certain scheduling objective (e.g., guaranteeing certain minimum link reliability or max-

imizing network throughput) and interference model. If no such slot exists, increment

τ and schedule link i in the newly created slot. (Note: incrementing τ is equivalent to

creating a new empty slot at the end of the current schedule.)

10Note that the LQF scheduling framework has been shown to achieve close-to-optimal throughput in many

practical scenarios [30, 35] and has been a research focus in recent years. Besides LQF, we have also experimented

with other scheduling algorithms such as the commonly-used GreedyPhysical [10, 66] and the recently proposed

iOrder [15] algorithm. Similar phenomena have been observed for different algorithms, and here we only present

the results based on LQF for conciseness; interested readers can find the results based on GreedyPhysical and

iOrder in Appendix IV.
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4. Repeat step 3 fi times.

5. Increment i. Go back to step 3 until i > L.

For scheduling based on the SINR model, we can use LQF without any modification [40,

39], and we only need to instantiate LQF in the following manner: at step 3, link i can be added

to a slot j if 1) the SINR at all the receivers and senders of the slot is above certain threshold

γ0 when the scheduling objective is to guarantee certain minimum link reliability, or 2) if

adding link i can increase the expected throughput in slot j when the scheduling objective is to

maximize network throughput only. For convenience, we denote this SINR-based scheduling

algorithm LQFsinr.

For PRK-based scheduling, we need to extend LQF to accommodate the special properties

of the PRK model. Given two links l and l′, we define the s-distance from l to l′, denoted

by sd(l, l′), as minn∈{l.t,l.r},n′∈{l′.t,l′.r} sd(n, n
′) where l.t and l′.t are the transmitter of l and l′

respectively and l.r and l′.r are the receiver of l and l′ respectively. Accordingly, for any three

links l, l′, and l′′, l′′ is regarded s-closer to l′ than l is if sd(l′′, l′) < sd(l, l′). Then, for every

link i′ in a slot Sj in PRK-based scheduling, the s-radius of the exclusion region of i′ in Sj

is less than minl∈Sj ,l 6=i′ sd(l, i
′). When link i cannot be added to any of the existing slots in

step 3 of LQF, link i (more precisely, the transmitter and/or the receiver of i) may be within

the exclusion region of another link already scheduled. When the scheduling objective is to

ensure certain minimum link reliability, link i is within the exclusion region of another link

i′ in a slot Sj if 1) there is no other link i′′ ∈ Sj that is s-closer to i′ than i is, and 2) the

SINR at the transmitter or receiver of i′ becomes less than certain threshold γ0 (to violate the

link reliability requirement) if we add i to Sj . When the scheduling objective is to maximize

network throughput, link i is regarded as within the exclusion region of link i′ in Sj if 1) there

is no other link i′′ ∈ Sj that is s-closer to i′ than i is, and 2) the local throughput of i′ decreases

if we add i to Sj , where the local throughput of i′ is defined as Ti′ (see Formula 2.7) divided by

the number of nodes in the exclusion region of i′. If i is within the exclusion region of i′, we
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say that the exclusion region of i′ covers i.

Let S ′ be the set of existing slots when link i is being scheduled in step 3 of LQF but

cannot be added into any one of S ′. Had S ′ only include one slot Sj (j = 1, 2, . . . , |S ′|), then

according to the definition of the PRK model, for every link i′ ∈ Sj whose exclusion region

covers i, we should remove from Sj every link i′′ ∈ Sj , if any, with sd(i′′, i′) = sd(i, i′) so that

the exclusion region of i′ is well defined in Sj according to the PRK model; this is because, in

the PRK model, all the concurrent transmitters of certain s-distance to a transmitter or receiver

R, denoted by S0, are regarded as interferers to R and need to be silenced as long as any node in

S0 has to be silenced for ensuring certain ACK or packet reception reliability at R; we denote

all such removed links as L(Sj, i), and note that L(Sj, i) may be empty. To make the exclusion

region of every link in every slot of S ′ well defined while minimizing the number of links that

have to be removed from the existing slots (for the purpose of high throughput), we need to

find the slot Sj′ such that |L(Sj′ , i)| ≤ |L(Sj, i)| for all j = 1, 2, . . . , |S ′|; then we regard link

i as being silenced by some link i′ ∈ Sj′ , which entails the generation of a new slot for i. We

denote L(Sj′ , i) as L(i); to conform to the PRK model, we need to reschedule every link in

L(i), if non-empty, in step 3 of LQF. Therefore, the PRK-based instantiation of LQF becomes

as follows, which is the same as LQFsinr except for the italicized part of step 3:

1. Order and rename links such that f1 ≥ f2 ≥ . . . ≥ fL.

2. Set i = 1, S = ∅, τ = 0.

3. Schedule link i in the very first available time slot to which link i can be added based

on certain scheduling objective and PRK interference model. If no such slot exists,

increment τ and schedule link i in the newly created slot; additionally, remove L(i), if

non-empty, from an existing slot and reschedule them using step 3.

4. Repeat step 3 fi times.

5. Increment i. Go back to step 3 until i > L.
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For convenience, we denote this algorithm as LQFprk.

2.7.3 Experimental results

In what follows, we present the measurement results for NetEye and MoteLab respectively.

NetEye testbed. Using the scheduling algorithms LQFprk and LQFsinr, we have measured

the performance of PRK- and SINR-based scheduling using the methodology discussed in

Section 2.7.1. Figures 2.56 and 2.57 show the PDR and end-to-end throughput of PRK- and

SINR-based scheduling in the grid network and the random network respectively, with the er-

ror bars representing the 95% confidence intervals (which are very small) of the corresponding

metrics. The PDR is defined as the number of successfully delivered packets divided by the

number of packets transmitted in a schedule; the end-to-end throughput is defined as the num-

ber of successfully delivered packets divided by the schedule length (i.e., number of slots used

in a schedule).11 Note that the throughput is not that high because of the limited concurrency

allowed in the testbed which is in turn due to the wide transitional region of wireless commu-

nication as can be seen from Figure 2.51. For instance, Table 2.3 shows the probability of

# of Concurrent Links 1 2 3

Probability 0.46 0.51 0.03

Table 2.3: Probability of concurrent links in a slot: random network, PRK, Obj-8

having different number of concurrent links in a slot in PRK-based scheduling for the random

network and the Obj-8 objective.

We see that, in agreement with our analytical insight, there is inherent tradeoff between re-

liability and throughput in both PRK- and SINR-based scheduling. As the scheduling objective

moves from Obj-8 to Obj-5 and to Obj-T, for instance, the throughput in PRK- and SINR-based

scheduling keeps increasing, but the PDR keeps decreasing accordingly.

We also see that the performance of PRK-based scheduling is very close to that of SINR-

11We have also comparatively studied the PDRs of individual links as well as the spatial throughput in PRK-

and SINR-based scheduling, and we observe similar phenomena as shown in Figures 2.56(a) and 2.57(a). Thus

we only present data on end-to-end behavior here.
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Figure 2.56: PDR and throughput in the grid network
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Figure 2.57: PDR and throughput in the random network



86

based scheduling, thus the PRK model is able to address the drawbacks of the ratio-K model as

observed in [40]. The PDRs of PRK- and SINR-based scheduling are above the required link

reliability for objectives Obj-8 and Obj-5 except for cases that we will discuss in the next para-

graph. The PDR in PRK-based scheduling is slightly lower than that in SINR-based schedul-

ing, and, due to reliability-throughput tradeoff, the throughput tends to be slightly higher in

PRK-based scheduling. The reason why PRK-based scheduling tends to have slightly lower

PDR and higher throughput is because PRK schedules are slightly shorter (e.g., by 3-4 slots

less) than SINR schedules, and this is enabled by the fact that silencing/removing links closer-

by in the PRK model allows more concurrently transmitting remote links (as discussed in

Proposition 6). Note that LQF is one of the best known algorithms for SINR-based scheduling

[30, 35]; the reason why SINR-based scheduling has slightly lower throughput than PRK-based

scheduling is because of the reliability-throughput tradeoff in interference-oriented scheduling

and not because of the bad performance of LQF itself.

Note that the measured PDRs of the PRK and SINR schedules slightly differ, sometimes

higher and sometimes lower, from the PDRs predicted via the radio model and the required

SINR threshold when we run the scheduling algorithms LQFprk and LQFsinr. This is because

1) wireless link properties (e.g., attenuation) change over time, and the schedule generated

based on historical trace data may well behave differently as network condition changes, 2) the

radio model itself evolves over time [53], and 3) the generated schedule may not be the tightest

tessellation of concurrent transmitters, and the SINR at receivers of a schedule may well be

greater than the required minimum SINR threshold as shown in Figure 2.58. Therefore, it is

important to adapt to in-situ network and environment conditions in scheduling. It is expected

that the locality and high fidelity of the PRK model will enable new approaches to distributed,

interference-oriented MAC protocol design, and we will study this issue in our future work.

Together with the above factors, the fact that LQFsinr and LQFprk are approximate algo-

rithms and do not guarantee the optimality of the resulting schedules also explains why PRK
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Figure 2.58: Histogram of receiver-side SINRs in a PRK schedule

schedules have slightly lower PDRs and higher throughput than SINR schedules even though

the latter should have higher PDRs based on the analysis of Section 2.4. For instance, both PRK

and SINR schedules ensure the minimum SINR threshold at receivers, but the actual SINRs at

the receivers of SINR schedules are higher than those in PRK schedules; thus PDRs are higher

in SINR schedules, and the reliability-throughput tradeoff leads to slightly lower throughput in

SINR-based scheduling.

MoteLab testbed. Even though the network, traffic, and environmental settings are differ-

ent for NetEye- and MoteLab-based measurement studies, we observe similar phenomena in

MoteLab as those in NetEye. For instance, Figure 2.59 shows the PDR and throughput for

PRK- and SINR-based scheduling in MoteLab. The figure shows the tradeoff between link

reliability and network throughput in scheduling; it also shows that PRK-based scheduling en-

ables a throughput similar to what is feasible in SINR-based scheduling while ensuring the
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Figure 2.59: PDR and throughput in MoteLab
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required link reliability.

2.8 Discussion

In this section, we examine the ratio-K and the PRK models via simulation with finite

TelosB networks. We also analyze the interference modeling issues for UWB networks.

2.8.1 Simulation with finite networks

Given a set of concurrent transmissions in a finite network, the interference at different

receivers may be different depending on their positions in the network. Therefore, the link

reliability tends to vary across different links, and the throughput defined by Formula 2.6 be-

comes a local metric representing only the local spatial throughput around the neighborhood

of a link. Accordingly, the minimum K required to satisfy certain link reliability, denoted by

Kmin, and the optimal K to maximize the local spatial throughput, denoted by Kopt, tends to

vary across different links of the network. Usually, interference at the center of a network

tends to be greater than that at network boundary, thus Kmin and Kopt for links at network

center tend to be different from those for links at network boundary. For convenience, we call

this phenomenon the boundary effect, which does not exist in the uniform, infinite networks

studied in Sections 2.2 and 2.4. To understand whether the observations in Sections 2.2 and

2.4 apply to finite networks, we study the issues of boundary effect, ratio-K instantiation, and

the optimality of the PRK model in finite networks using Matlab simulation.

We consider the same system configurations studied in Section 2.5.1 except for the fol-

lowing changes: 1) to understand boundary effect, we add another network parameter N to

denote network size (i.e., number of nodes in a network), and the set of Ns we consider are

{64, 144, 256, 400, 576, 784, 1024, 12961600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184,

5776, 6400, 7056}; 2) to reduce simulation time, we only consider the 5 link lengths of {1m, 2m,

6m, 10m, 14m} and the 10 node transmission probabilities (i.e., β) of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1}. Given a link L in a system configuration and the parameter K of the ratio-K

model, we simulate ratio-K-based scheduling by starting at L, and gradually add concurrent
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transmission links, one at a time, that are s-closest to the set of already scheduled links and

whose addition does not violate the ratio-K model; this process continues until no more con-

current transmission link can be added without violating the ratio-K model, then we compute

the reliability and local spatial throughput around L based on the resulting schedule. In our

simulation study, we focus on the reliability and the local spatial throughput of a link Lc at the

center of the network and another link Lb that is s-farthest away from Lc. We use the same

set of Ks as in Section 2.5.1 to examine the impact of different ratio-K instantiations. The

observations in grid and random networks are similar, thus we only present the data for grid

networks here.

Boundary effect. Let Kmin and K ′
min be the minimum K for satisfying certain link reliability

at link Lc and Lb respectively, and let Kopt and K ′
opt be the optimal K for maximizing the local

spatial throughput of Lc and Lb respectively. Then we characterize the boundary effect with

∆Kmin = Kmin −K ′
min and ∆Kopt = Kopt −K ′

opt.

In general, ∆Kmin is non-negligible, but it tends to decrease as path loss exponent α in-

creases and node transmission probability β decreases. For instance, Tables 2.4 and 2.5 show

β [0.1, 0.2] 0.3 0.4 [0.5,0.7] 0.8 [0.9, 1]

N = 64 0 0 0 0.59 0.59 0.59

N = 144 0 0 0.59 0.59 0.59 0.82

N = 256 0 0 0.59 0.59 0.82 0.82

N = 400 0 0 0.59 0.59 0.82 0.82

N ≥ 576 0 0.59 0.59 0.59 0.82 0.82

Table 2.4: Median ∆Kmin in grid networks when α = 3.3 and PDR req. = 80%

β [0.1, 0.6] [0.7, 1]

N = 64 0 0

N ≥ 144 0 0.59

Table 2.5: Median ∆Kmin in grid networks when α = 4.5 and PDR req. = 80%

the median ∆Kmins for different configurations of grid networks when PDR req. = 80%, α =

3.3 or 4.5 respectively. We see that when node transmission probability is not too high (e.g.,
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<0.3), ∆Kmin is almost always 0.

Compared with ∆Kmin, ∆Kopt tends to be smaller since the Ks used for maximizing

throughput tends to be small (e.g.,
√
2). For instance, ∆Kopt is 0 for ∼99% of the scenar-

ios we study when α ≥ 3.3; When α < 3.3, ∆Kopt may not be 0, but the throughput difference

between using Kopt and K ′
opt is very small and tends to be negligible.

Therefore, while boundary effect does affect how the ratio-K model should be instantiated

in different parts of a network, its severity depends on traffic load. When traffic is not too heavy

(such as in low-rate, real-time sensing and control), the boundary effect may be negligible;

when traffic load is high, the locality of the PRK model may help find the right K to use

through distributed, local coordination among nodes. Detailed study of this issue is a part of

our future work.

Verification of analytical results. Figures 2.60 and 2.61 show the sensitivity of network
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Figure 2.60: Throughput loss in finite grid networks when using K = Kopt +∆K

throughput and PDR to ratio-K instantiation, Figure 2.62 shows the tradeoff between reliability

and throughput in ratio-K-based scheduling, and Figure 2.63 shows the throughput loss in

PRK-based scheduling as compared with SINR-based scheduling. We see that observations
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Figure 2.61: Impact of using a constant K in finite grid networks
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Figure 2.63: Throughput loss in the PRK model: finite grid networks

in infinite networks carry over to finite networks despite the potential boundary effect in finite

networks.

2.8.2 Ultra-wideband networks

To understand whether the observations for IEEE 802.15.4 networks carry over to other

wireless networks. We analyze the interference modeling issues in IEEE 802.15.4a-based ultra-

wideband (UWB) networks. When analyzing UWB networks, we use the same methods as

those in Sections 2.2 and 2.4, and we consider the same set of system configurations as in

Section 2.5.1 except for the following: 1) we replace the CC2420 radio model with the IEEE

802.15.4a DS-UWB radio model used in [78], 2) we use the typical channel models for UWB

networks as specified in [3]. The observations in grid and random networks are similar, thus

we only present the data for grid networks here.

Figures 2.64 and 2.65 show the sensitivity of network throughput and PDR to ratio-K

instantiation, Figure 2.66 shows the tradeoff between reliability and throughput in ratio-K-

based scheduling, and Figure 2.67 shows the throughput loss in PRK-based scheduling as

compared with SINR-based scheduling. We see that the observations for TelosB networks
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Figure 2.64: Throughput loss in UWB grid networks when using K = Kopt +∆K

−5 −4 −3 −2 −1 0 1 2 3 4 5
−100

0

100

200

300

400

P
os

si
bl

e 
P

D
R

 g
ai

n 
(%

)

round(∆k)

Figure 2.65: Impact of using a constant K in UWB grid networks
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Figure 2.66: ∆K vs. performance gain in UWB grid networks: PDR req. = 80%
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Figure 2.67: Throughput loss in the PRK model: UWB grid networks
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apply to UWB networks too, even though the specific optimal K for maximizing throughput

and the minimum K for satisfying certain link reliability in UWB networks tend to be less than

those in TelosB networks due to the higher interference tolerance capability of UWB radios.

2.9 Related work

The seminal work of Gupta and Kumar [25] used both the ratio-K and the SINR models in

analyzing the capacity of wireless networks. Since the paper did not focus on MAC protocol

design, it did not study the impacts of different factors on the optimal ratio-K model, the

tradeoff between reliability and throughput, and the optimality of the correctly instantiated

ratio-K model.

Maheshwari et al. [40] and Moscibroda et al. [44] have studied the benefits of SINR-based

scheduling as compared with ratio-K-based scheduling. Without studying the impact of dif-

ferent factors and the tradeoff between reliability and throughput in ratio-K-based scheduling,

however, these work did not study how to best use the ratio-K model. Focusing on wireless

sensing and control networks and based on comprehensive study of the behavior of ratio-K-

based scheduling (in particular, the tradeoff between reliability and throughput), we propose

the PRK interference model as a basis of adapting K to network and environmental dynamics

in ratio-K-based scheduling. We have also studied the optimality of PRK-based scheduling

through analysis, simulation, and testbed-based measurement.

Most closely related to our work is Shi et al. [56] who, in parallel with our study, exam-

ined the effectiveness of the protocol interference model for frequency scheduling (together

with routing and power control). Having not focused on distributed protocol design, how-

ever, Shi et al. left it as a challenging open problem on how to efficiently choose optimal K

in instantiating the ratio-K model, and the optimal K was searched by solving a series of cen-

tralized optimization problems in [56]. Through detailed study on the sensitivity of and the

inherent tradeoff between throughput and reliability in ratio-K-based scheduling, we discover

the simple, distributed, link reliability-based approach to instantiating the ratio-K model, and
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we propose the PRK model which has both the locality of the ratio-K model and the high

fidelity of the SINR model. Orthogonal to the focus of Shi et al. [56], our work also exam-

ines the effectiveness of ratio-K-based scheduling from the perspective of time scheduling and

distributed protocol design, studies why PRK/ratio-K-based scheduling can be very close to

the performance of SINR-based scheduling, examines the issue in wireless sensing and con-

trol networks with a wide range of system configurations (on factors such as traffic load, link

length, and wireless signal attenuation), and corroborates the analytical and simulation results

with testbed-based measurement.

Other approximate interference models such as hop-based model [51] and range-based

model [66] have also been used in the literature, but they are either similar or inferior to the

ratio-K model [40]. Therefore, we did not study those approximate models in this paper. Katz

et al. [33] studied the feasibility of local interference model, where only nodes in a local neigh-

borhood (with diameter ρ) need to coordinate with one another to ensure minimum SINR at

each receiver. But they did not study the impact of various factors on the optimal ρ, nor did

they study how to correctly instantiate ρ in dynamic, potentially unpredictable network and

environmental settings. Sharma et al. [54] and Wang et al. [66] studied TDMA scheduling

based on the ratio-K model. But Wang et al. [66] only considered the case where K is 1, and

Sharma et al. [54] did not exam the impact of traffic load and node distribution on the optimal

K. The simulation study of optimal K in [54] is also based on approximate instead of optimal

scheduling.

Spatial reuse control based on the concept of exclusion region has been studied too [43, 67,

34, 38, 21, 49]. Nonetheless, the issue of the optimal Ks in different scenarios and the com-

parison between ratio-K- and SINR-based scheduling were not studied in these work. Menon

et al. [43] also used the Matern Hard-core Process to analyze the distribution of interferers in

a random field; but their work did not consider the impact of traffic load on optimal spatial

reuse, only focused on the exclusion region around the receiver (but not the sender), and did
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not study how the tradeoff between reliability and throughput affects optimal spatial reuse. The

analysis in [67] and [34] used the honey-grid model which assumes the existence of a node at

every point in space. The impact of traffic load on optimal spatial reuse was not studied in

[67], only the exclusion region around the receiver (and not the sender) is considered in [34]

for controlling transmission power and carrier sensing threshold. Only the case of single in-

terferer is considered in [38] and [49] for controlling parameters such as carrier sensing range

and transmission power. Only the case of K = 1 is considered in [21] for transmission power

control.

Das et al. [20] showed that additive interference from multiple interferers significantly af-

fect link properties, especially for links of medium-to-high quality. Maheshwari et al. [41] and

Son et al. [58] studied the additivity of interfering signals (i.e., whether the aggregate signal

strength of multiple interfering signals is the sum of the strength of the individual signals) for

TelosB and MICA2 motes respectively, and it was found that measurement errors may affect

the conclusions.

Several studies [22, 27] recently proposed mechanisms for interference cancellation where

a single receiver could simultaneously receive packets from multiple senders. These results

challenge the traditional paradigm where a receiver can only receive one packet at a time, and

they suggest new ways of interference management. Nonetheless, interference still needs to

be controlled due to the constraints of these interference cancellation mechanisms [37]. For

instance, ZigZag decoding [22] works the best when the number of interferers is small (e.g.,

less than 6). How to schedule transmissions to take advantage of interference cancellation is

an interesting problem to study, and there has been some recent effort on this [37]. But the

detailed study of this issue is beyond the scope of this paper.

2.10 Concluding remarks

Through detailed analysis of how different network and environmental factors, such as traf-

fic load and wireless signal attenuation, affect the optimal instantiation of the ratio-K model,
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we showed that the performance of ratio-K-based scheduling is highly sensitive to the choice

of K and that it is important to take this into account in both protocol design and performance

evaluation. We then comparatively studied the performance of PRK- and SINR-based schedul-

ing and showed that, if correctly instantiated via the PRK model, ratio-K-based scheduling can

achieve a close-to-optimal performance. Our findings on PRK-based scheduling and the inher-

ent tradeoff between reliability and throughput suggest that the ratio-K model can be effectively

instantiated through link-reliability-based adaptation of K, which is amenable to distributed, lo-

cal implementation too. These findings showed the feasibility of integrating the high fidelity

of the SINR model with the locality of the ratio-K model, and suggested new approaches to

MAC protocol design in dynamic, unpredictable network and environmental settings. Thus

these findings opened up new opportunities and perspectives on interference-oriented protocol

design and analysis in wireless sensing and control networks

In the immediate following chapter, we studied the benefits of the interference control in

network link scheduling, based on the insight of the PRK model that it always silenced the

”close” node. The effort of this study leads to the result of iOrder.
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CHAPTER 3

IORDER SCHEDULING

3.1 Background

With the development of networked embedded sensing and control, wireless networks are

increasingly applied to mission-critical applications such as industrial monitoring and control

[18]. This is evidenced by the recent industry standards such as WirelessHART [70] and ISA

SP100.11a [63] which target wireless networked sensing and instrumentation. In supporting

real-time, mission-critical tasks, these wireless networks are required to ensure real-time, re-

liable data delivery. In data-intensive sensing such as in camera sensor networks, it is also

necessary to enable high-throughput data delivery. Nonetheless, wireless communication is

subject to various dynamics and uncertainties. Due to the broadcast nature of wireless commu-

nication, in particular, concurrent transmissions may interfere with one another and introduce

co-channel interference. Co-channel interference not only reduces the reliability and through-

put of wireless networks, it also increases the variability and uncertainty in data communication

[77]. Therefore, effectively scheduling concurrent transmissions to control co-channel inter-

ference has become critical for enabling reliable, predictable wireless communication.

Optimal interference-oriented scheduling in wireless networks has been shown to be NP-

complete in general [23, 54], and the research community has proposed different polynomial-

time approximation algorithms accordingly. Most approximation algorithms are greedy in

nature, and two representatives are Longest-Queue-First (LQF) [35, 30, 9] and GreedyPhys-

ical [10, 66]. When scheduling concurrent transmissions for a time slot, LQF greedily adds

to the slot non-interfering links in a decreasing order of their senders’ queue lengths; Greedy-

Physical selects non-interfering links for the slot in a decreasing order of their interference

numbers, where the interference number of a link ℓ is defined as the number of other links that
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do not share any end-node with ℓ but can be interfered by ℓ. Different from the greedy algo-

rithms, Goussevskaia et al. proposed the algorithm LengthDiversity [23]. In LengthDiversity,

the links of a network are grouped into different classes based on their lengths. Links in differ-

ent classes are scheduled independent of one another, and links in the same class are scheduled

using virtual-grid-based coloring. LengthDiversity chooses the link lengths and the size of

virtual-grids so that the resulting schedule ensures a certain minimum signal-to-interference-

plus-noise-ratio (SINR) at each receiver.

When scheduling transmissions for a time slot, it is usually the interference among the

transmissions that limits the number of concurrent transmissions in the slot. In approximation

algorithms where links are added to a time slot in a sequential manner until reaching the inter-

ference limit,1 the order in which links are added determines the accumulation of interference

at the receivers and thus affects the number of concurrent links schedulable in the slot (see

Section 3.3 for an example). Nonetheless, existing scheduling algorithms either do not take

this ordering effect into account (e.g., in LQF) or do not explicitly optimize for the ordering

effect (e.g., in GreedyPhysical and LengthDiversity). Thus the open questions are: 1) how to

explicitly optimize the ordering of link addition in wireless scheduling? and 2) how does link

ordering affect the throughput and delay of data delivery?

To address these open questions for insight into wireless scheduling, we formulate the

concept of interference budget that, given a set of scheduled transmissions in a time slot, char-

acterizes the additional interference power that can be tolerated by all the receivers without

violating the application requirement on link reliability. Then, by modeling the scheduling

problem as a knapsack problem, we propose the scheduling algorithm iOrder that optimizes

link ordering by considering both interference budget and queue length in scheduling. When

constructing the schedule for a time slot, iOrder first picks a link with the maximum number

of queued packets; then iOrder adds links to the slot one at a time in a way that maximizes the

1For example, the SINR at some receiver falls below a minimum threshold.
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interference budget at each step; this process repeats until no additional link can be added to

the slot without violating the application requirement on link reliability.

To understand the impact of link ordering on scheduling, we first analytically prove the

approximation ratio of iOrder in Poisson random networks, then we comparatively study the

performance of iOrder and existing algorithms via simulation and testbed-based measurement.

We observe that optimizing link ordering can improve the performance of existing algorithms

by a significant margin in the case of both backlogged and online traffic, for instance, dou-

bling the throughput and reducing the latency of LQF by a factor up to 24, and improving

the throughput of LengthDiversity by a factor up to 19.6. Thus our study demonstrates the

importance of explicitly optimizing link ordering in wireless scheduling, which opens up new

avenues for future research and for optimizing wireless network performance. Our detailed

simulation study also discover the surprisingly low performance of LengthDiversity despite its

good asymptotic approximation ratio. We find that this is due to the large constant factor hid-

den in the analysis of LengthDiversity [23]. Therefore, it is important to examine the constant

factors when analyzing wireless scheduling algorithms.

As a first step towards addressing the limiting impact of interference on wireless schedul-

ing, our objective in this paper is to characterize the benefits of optimizing link ordering in

TDMA scheduling, and we do not focus on distributed algorithm design. Nonetheless, our

scheduling algorithm iOrder is amenable to distributed implementation, and we discuss poten-

tial approaches in Section 3.6; we also discuss in Section 3.6 the scenarios when centralized

TDMA scheduling is also applicable without having to resort to distributed implementation.

The rest of the paper is organized as follows. We present the system models and prob-

lem definition in Section 3.2. We present algorithm iOrder in Section 3.3. Then we perform

detailed simulation and measurement study of iOrder and existing algorithms in Sections 3.4

and 3.5 respectively. We discuss potential distributed approaches to implementing iOrder in

Section 3.6. We present related work in Section 3.7 and concluding remarks in Section 5.
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3.2 Preliminaries

Here we present the wireless channel and radio models used in the analytical and simulation

parts of this paper, and we define the problem of wireless TDMA scheduling.

3.2.1 Wireless channel and radio models

Channel model. To characterize signal attenuation in wireless networks, we use the log-

normal path loss model [50] which is widely adopted in protocol design and analysis. By

this model, the power Pr (in dBm) of the received signal at a node distance d away from the

transmitter is computed as

Pr = Ptx − PL(d0)− 10αlog10
d

d0
+N(0, σ2) (3.1)

where Ptx is the transmission power, PL(d0) is the power decay at the reference distance d0,

α is the path loss exponent, N(0, σ) is a Gaussian random variable with mean 0 and variance

σ. In our study, we assume that all the nodes use the same transmission power, and we use

different instantiations of α and σ to represent different wireless environments.

Radio model. The reception capability of a radio can be characterized by the bit error

rate (BER) and the packet delivery rate (PDR) in decoding signals with specific signal-to-

interference-plus-noise-ratios (SINR). Our study considers the CC2420 radios [61], which are

compatible with the IEEE 802.15.4 standard and are widely used in wireless sensor network

platforms such as TelosB and Tmote Sky motes. For CC2420 radio, the BER for a SINR of γ

is computed as follows [2]:

BER(γ) =
8

15
× 1

16
×

16∑

k=2

(−1)k
(
k

16

)
e(20×γ×( 1

k
−1)) (3.2)

Accordingly, the PDR for a SINR of γ is computed as follows:

PDR(γ, f) = (1− BER(γ))8f (3.3)
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where f is the packet length (in units of bytes) including overhead such as packet header.

Remarks. The aforementioned models are among the most general models commonly used

in the literature, even though they do not capture all the real-world phenomena such as the

irregularity of wireless communication [79]. We use these models in our analysis and simula-

tion to gain insight into wireless scheduling, and then we verify the analytical and simulation

results through testbed-based measurement which captures complex real-world phenomena as

we discuss in Section 3.5.

3.2.2 Problem definition

We consider wireless networks where, for the purpose of reliable data delivery, the schedul-

ing is required to ensure a minimum signal-to-interference-plus-noise-ratio (SINR) γt for all

the receivers involved in any transmission. Note that reliable data delivery is important not

only for reliability but also for predictable data delivery latency in mission-critical networks

[16].

We consider a network G(V,E) where V is the set of nodes, and E is the set of directed

links {〈Ti, Ri〉 : i = 1, 2, . . . , |E|}; each link ℓi = 〈Ti, Ri〉 is such that, when node Ti transmits,

the signal-to-noise-ratio (SNR) at receiver Ri is no less than γt in the absence of interference.

We assume a time-slotted system where a node can finish transmitting a packet in each time

slot. We define a slot-schedule Sj for a time slot j as the set of concurrent transmitting links

in slot j. Given a link ℓi and a slot-schedule Sj , we define the indicator variable I(ℓi ∈ Sj)

whose value is 1 if ℓi ∈ Sj , and 0 otherwise. A slot-schedule Sj is valid if, in the presence of

the concurrent transmissions of the schedule, the SINRs at all the receivers of the schedule is

no less than γt and there is no primary interference between the concurrent transmissions.2 γt

can be chosen based on the desired packet delivery rate (PDR) and formula (3.3). To ensure

a high PDR (e.g., close to 100%), we use a SINR threshold γt = 5dB in most places of

this paper unless specified otherwise. A schedule S consists of a sequence of slot-schedules

2There is primary interference between two links ℓi and ℓj if ℓi and ℓj share any common end-node.
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Sj, j = 1, 2, . . ., and S is valid if Sj is valid for every time slot j.

We consider two types of traffic models: backlogged traffic and online traffic. In the case

of backlogged traffic, every transmitter Ti has Li (Li ≥ 0) number of queued packets to be

delivered to the receiver Ri. In the case of online traffic, packets arrive at each transmitter Ti

over time and need to be delivered to the receiver Ri.

For backlogged traffic, we define the following backlog-scheduling problem:

Problem Pbl: Given Li queued packets at each transmitter Ti (i = 1, . . . , |E|), find a valid

schedule Sbl = {S1,S2, . . .} such that
∑

Sj∈Sbl I(ℓi ∈ Sj) = Li for every i and that |Sbl| ≤ |S′|

for every other valid schedule S
′ with

∑
Sj′∈S′ I(ℓi ∈ Sj′) = Li for every i.

For online traffic, we define the following slot-scheduling problem such that scheduling

online traffic becomes solving the slot scheduling problem for each time slot:

Problem Ps: Given a link ℓi ∈ E, find a valid slot-schedule Sℓi such that ℓi ∈ Sℓi , and

|Sℓi | ≥ |S ′| for every other valid slot-schedule S ′ with ℓi ∈ S ′.

Note that, by combining the backlog and online traffic models, we can model hybrid traffic

patterns where there is both backlog and online traffic; but, to be concise, we skip the detailed

discussion on hybrid traffic models in this paper.

3.3 Algorithm iOrder

In what follows, we first demonstrate the drawbacks of existing scheduling algorithms by

examining their behavior in solving an example slot-scheduling problem, then we present our

algorithm iOrder and analyze its approximation ratio and time complexity.

3.3.1 A motivating example

We consider a simple convergecast network as shown in Figure 3.1, where every node has

a CC2420 radio and uses a transmission power of −25dBm (a.k.a. power level 3 [61]), and

each link is 3.06 meters long. The environment is a typical indoor environment with path loss

exponent α = 3.5, reference distance d0 = 1 meter, and PL(d0) = 55dBm; the mean back-
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Figure 3.1: A simple network

ground noise power is −105dBm. This network setup ensures, in the absence of concurrent

transmissions, a signal-to-noise ratio (SNR) of 8dB for every receiver of a transmitting link.

We consider a state of the network where the number of queued packets, denoted by Li, for

each link ℓi (i = 1, 2, . . . , 11) satisfies the following:

L1 > Lk, 2 ≤ k ≤ 11

L2k > L2k+2, 1 ≤ k ≤ 3

L2k = L2k+1, 1 ≤ k ≤ 4

L8 > L10 > L11

We consider the slot-scheduling problem P
′
s where we want to find a largest valid schedule

that includes link ℓ1 and ensures a minimum SINR γt of 6dB at all the receivers. For conve-

nience, we define the hop distance between two links ℓi and ℓj (i 6= j) as the number of links

in the shortest path connecting any end-node of ℓi to any end-node of ℓj . With the network

setup and minimum SINR requirement of 6dB, any two links whose hop distance is 0 or 1 can
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interfere with each other, but any two links whose hop distance is no less than 2 do not interfere

with each other in the absence of other concurrent transmissions. For instance, if links ℓ1 and ℓ4

transmit together, the SINR at the receiver of ℓ4 is 0.64dB which is below the SINR threshold

of 6dB; on the other hand, if ℓ1 and ℓ6 transmit together in the absence of other transmissions,

the SINR at the receiver of ℓ1 and ℓ6 is 7.75dB and 6.08dB respectively, thus ℓ1 and ℓ6 do not

interfere with each other in this case.

For problem P
′
s, an optimal solution Sopt is {ℓ1, ℓ11, ℓ9} where the SINR at the receiver of

ℓ1, ℓ11, and ℓ9 is 7.81dB, 7.71dB, and 7.28dB respectively. That is, three concurrent links can

be scheduled together for P′
s. In what follows, we examine how the existing algorithms LQF

[35], GreedyPhysical [10], and LengthDiversity [23] will behave for problem P
′
s.

LQF. When constructing a slot-schedule Sgms, LQF selects links in a decreasing order of the

number of packets queued at their senders. Therefore, LQF will consider links ℓ6 or ℓ7 first.

Without loss of generality, we assume that LQF picks ℓ6 at random. As discussed earlier, ℓ1

and ℓ6 can transmit concurrently in the absence of other transmitters. Once ℓ6 is added into the

slot-schedule, however, no other link can be added without making the SINR at the receiver of

ℓ6 lower than 6dB (which is the minimum SINR allowed by problem P
′
s). For instance, if we

also add ℓ9 to the slot-schedule {ℓ1, ℓ6}, the SINR for the receiver of ℓ6 will become 5.98dB.

Therefore, LQF will generate the slot-schedule Sgms = {ℓ1, ℓ6}, which is one link less than the

optimal slot-schedule Sopt = {ℓ1, ℓ11, ℓ9} in concurrency.

GreedyPhysical. When constructing a slot-schedule Sgp, GreedyPhysical selects links in a

decreasing order of their interference number. Among all the links at least 2-hop away from

ℓ1, ℓ6 has the largest interference number. Thus GreedyPhysical first selects ℓ6 to add to the

partial slot-schedule {ℓ1}, after which no more links can be added (similar to the case in LQF).

Therefore, Sgp = {ℓ1, ℓ6}, which is one link less than the optimal slot-schedule Sopt in concur-

rency.

LengthDiversity. LengthDiversity divides the network links into different classes and then
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schedule the individual link classes independent of one another. The k-th class Ck (k = 0, 1, ...)

consists of links whose length is in the range [2k, 2k+1). When scheduling links of a class Ck,

LengthDiversity first partitions the deployment area of those links into a square grid where

each cell has a side length µ2k, with µ = 4

(
8γt · α−1

α−2

) 1
α

; it then 4-color the cells so that

no neighboring cells have the same color and only the links whose receivers are inside the

cells of the same color can transmit concurrently. For the example problem P
′
s, µ = 12.4

meters. Therefore, only one link is allowed to transmit at a time in LengthDiversity, and the

slot-schedule for P′
s is Sld = {ℓ1}, which is two links less than the optimal slot-schedule Sopt

in concurrency.

Goussevskaia et al. [23] proved an approximation ratio δld = Cldg(L) = O(g(L)) for

LengthDiversity, where g(L) is the logarithm of the largest ratio between the lengths of any

two links in the network, and the constant factor Cld =
4(2(

√
2µ+1))α

γt
. Note that LengthDiversity

does not consider the inner structure within cells in scheduling and the constants µ and Cld are

usually large (see Table 3.1), which lead to its low performance as shown in the above example

and in Section 3.4.

µ Cld

α γt = 5dB γt = 8dB γt = 5dB γt = 8dB
2.5 22.6 29.8 4.5e+4 4.4e+4

3.5 11.7 14.1 3.2e+5 3.1e+5

4.5 8.8 10.3 3.5e+6 3.3e+6

Table 3.1: Constants µ and Cld in LengthDiversity

3.3.2 Scheduling for maximal interference budget

From Section 3.3.1, we see that interference is a major factor for limiting the number of

concurrent transmissions in a time slot. Existing algorithms LQF, GreedyPhysical, and Length-

Diversity do not explicitly consider or minimize interference accumulation during scheduling,

thus leading to performance loss. To understand the impact of considering interference ac-

cumulation in scheduling, we propose the algorithm iOrder that tries to minimize interference

accumulation and maximize the additional interference that can be tolerated by all the receivers
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of a time slot without violating application requirement on link reliability. To this end, we first

define the interference budget of a valid slot-schedule Sℓi , denoted by Ib(Sℓi), as the maximum

extra interference that can be tolerated by all the receivers of Sℓi without invalidating Sℓi . For-

mally, let Pℓj be the strength of the signal from the sender to the receiver of link ℓj , Pnoise,ℓj

be the background noise power at the receiver of ℓj , and Iℓk,ℓj be the strength of the signal

reaching the receiver of ℓj from the sender of ℓk. Then the maximum extra interference that

can be tolerated by the receiver of a link ℓj ∈ Sℓi , denoted by Ib(ℓj), satisfies

Pℓj

Pnoise,ℓj +
∑

ℓk∈Sℓi
,ℓk 6=ℓj

Iℓk,ℓj + Ib(ℓj)
= γt.

Thus

Ib(ℓj) =
Pℓj

γt
− Pnoise,ℓj −

∑

ℓk∈Sℓi
,ℓk 6=ℓj

Iℓk,ℓj .

Therefore,

Ib(Sℓi) = minℓj∈Sℓi
Ib(ℓj)

= minℓj∈Sℓi
(
Pℓj

γt
− Pnoise,ℓj −

∑
ℓk∈Sℓi

,ℓk 6=ℓj
Iℓk,ℓj).

(3.4)

Then, for the slot-scheduling problem Ps, we can add to the schedule Sℓi one link at a time,

and pick the link that maximizes the interference budget of the extended schedule each time a

link is to be added. We denote this algorithm as iOrder-slot and present it in Algorithm 1. This

Algorithm 1 iOrder-slot(ℓi, E)

Require: starting link ℓi, a set E of links where ℓi /∈ E
Ensure: a valid slot-schedule Sℓi such that ℓi ∈ Sℓi

1: Sℓi = {ℓi}, E ′ = E;

2: Compute the set of schedulable links: Ec = {ℓk : ℓk ∈ E ′,Sℓi ∪ {ℓk} is a valid schedule};

3: while Ec 6= ∅ do

4: ℓj = argmaxℓk∈Ec
Ib(Sℓi ∪ ℓk);

5: Sℓi = Sℓi ∪ ℓj , E
′ = E ′ \ {ℓj};

6: Ec = {ℓk : ℓk ∈ E ′,Sℓi ∪ {ℓk} is a valid schedule};

7: end while

8: Return schedule Sℓi .
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algorithm design is similar to approximation algorithms to the knapsack problem [29] in the

sense that the interference budget serves as the constraint on the total amount of interference

and thus the total number of links allowed for a time slot.

For online traffic, we can apply iOrder-slot to generate a schedule for every time slot. As

we will show in Section 3.4, the choice of the starting link ℓi does not significantly affect

the size/optimality of the resulting schedule Sℓi . For the purpose of stabilizing queueing in

the network, therefore, we can choose a link with the maximum number of queued packets

as the starting link. We denote this algorithm for online traffic as iOrder-ol and present it in

Algorithm 2.

Algorithm 2 iOrder-ol(m, Em)

Require: a set Em of non-empty links where each link ℓi has Li queued packets at the begin-

ning of the m-th time slot

Ensure: a valid slot-schedule Sm for the m-th time slot

1: ℓj = argmaxℓk∈Em
Lk;

2: Return iOrder-slot(ℓj , Em \ {ℓj}).

For backlogged traffic, we can also apply iOrder-slot to generate the schedule for each time

slot in an iterative manner until all the packet transmissions are scheduled. For stabilizing

packet queues, we select the link with the maximum number of remaining packets to be sched-

uled as the starting link for each time slot. We denote this algorithm for backlogged traffic as

iOrder-bl and present it in Algorithm 3.

In what follows, we use the general term iOrder to refer to any of the algorithms iOrder-slot,

iOrder-ol, or iOrder-bl; the context will clarify which one we refer to exactly.

Now let’s revisit the example problem P
′
s discussed in Section 3.3.1. iOrder will first se-

lect link ℓ11 to add to the schedule {ℓ1}, and the resulting SINR at the receiver of ℓ1 and

ℓ11 is 7.93dB and 7.81dB respectively, both of which are more than 1dB above the required

γt = 6dB. Accordingly, iOrder can add a third link ℓ9 to the slot-schedule {ℓ1, ℓ11} while

still maintaining its validity. In the end, iOrder generates an optimal schedule {ℓ1, ℓ11, ℓ9} for

problem P
′
s, and the resulting SINR at the receiver of ℓ1, ℓ11, and ℓ9 is 7.81dB, 7.71dB, and
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Algorithm 3 iOrder-bl(E)

Require: a set E of non-empty links where each link ℓi has Li queued packets

Ensure: a valid schedule SE for transmitting all the queued packets

1: SE = ∅, E ′ = E;

2: while E ′ 6= ∅ do

3: ℓj = argmaxℓk∈E′ Lk;

4: Sℓj = iOrder-slot(ℓj , E
′ \ {ℓj});

5: SE = SE ∪ {Sℓj};

6: for all ℓk ∈ Sℓj do

7: Lk = Lk − 1;

8: if Lk = 0 then

9: E ′ = E ′ \ {ℓk};

10: end if

11: end for

12: end while

13: Return SE .

7.28dB respectively. Thus iOrder outperforms existing algorithms for this example problem

P
′
s.

Approximation ratio. Given that iOrder-slot is a basic element of the iOrder algorithm family

(i.e., iOrder-slot, iOrder-ol, iOrder-bl), we analyze the optimality of iOrder-slot in solving the

slot-scheduling problem Ps, which will also shed light on the potential effectiveness of iOrder-

ol and iOrder-bl. As in the literature [10], we consider the following Poisson network G: n

nodes are uniformly distributed on a 2D plane at random with a density of λ nodes per unit

area; for connectivity of the network, the transmission range r0(n) = 2
√

log(n)
πλ

for every node,

and that the transmission power Ptx(n) =
(γt+γb)Pnoise(r0(n))

α

G0
such that the signal-to-noise-ratio

(SNR) is γt + γb at receivers in the absence of interference, where Pnoise is the background

noise power, α is the path loss exponent of the wireless channel, and G0 is the signal power

gain at a reference distance d0. Then we have

Theorem 1. For network G, the approximation ratio δ(n) of algorithm iOrder is no more than

PtxG0(π + 2π
α−2

(1− ( n
πλ
)
2−α
2 ))Uopt

Ibπ(rci(n))2
, (3.5)
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where Uopt = min{1 + Ib(rci(n))
α

PtxG0
, π(rci(n))

2λ}, Ib = γb
γt
Pnoise, rci(n) = r0(n)(

n
lnn

)
1
2
− 1

Γ(α)+ǫ ,

Γ(α) = 1
2
+

√
9α2−20α+4
2(α−2)

, and ǫ is any arbitrarily small positive number.

Proof. For convenience, we denote the optimal scheduling algorithm as OPT. To characterize

the approximation ratio of iOrder, we consider an arbitrary link 〈nt, nr〉 (with nr being the

receiver) in a large network G, and compare the maximum single-slot schedule that includes

〈nt, nr〉 in iOrder and OPT. According to [10], there exists a “close-in” region Rci of radius

rci(n) that is centered at nr such that interference outside the region converges to 0 as n → 0.

Thus we focus on the number of concurrent transmitters in Rci that are allowed in the schedules

of iOrder and OPT.

In the schedule So that is generated by OPT, let Ib be the largest interference power that can

be introduced to receiver nr by all the transmitters other than nt such that the SINR at nr is no

less than the required threshold γt. Then

PtxG0(r0(n))
−α

Pnoise + Ib
= γt

Thus

Ib =
PtxG0(r0(n))

−α

γt
− Pnoise

Since Ptx(n) =
(γt+γb)Pnoise(r0(n))

α

G0
,

Ib =
γb
γt
Pnoise (3.6)

The expected number of concurrent transmitters in So, denoted by Nopt, is maximized if all the

transmitters except nt (called interferers hereafter) is on the boundary of the close-in region

Rci. In this case, the interference power Pci introduced by each of the interferer is such that

Pci =
PtxG0

(rci(n))α
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Thus the total number of interferers N ′
opt is such that

N ′
opt ≤

Ib
Pci

=
Ib(rci(n))

α

PtxG0

Thus Nopt = 1+N ′
opt ≤ 1+ Ib(rci(n))

α

PtxG0
. Since the total expected number of nodes in region Rci

is π(rci(n))
2λ, thus Nopt ≤ π(rci(n))

2λ. Therefore,

Nopt ≤ min{1 + Ib(rci(n))
α

PtxG0

, π(rci(n))
2λ} (3.7)

In the schedule S ′
i generated by iOrder for the Poisson network G, concurrent transmitters

are uniformly distributed in region Rci. This is because, in the process of generating S ′
i in a

uniform geometric network G, iOrder will pick a transmitter that is of the maximum minimum

distance to the receivers of all the links already scheduled in S ′
i. In a large network, this

selection process will lead to a set of statistically uniformly distributed transmitters. From

the results of Che et al. [16] on the spatial distribution of concurrent transmitters, the spatial

process of transmitters in S ′
i can be approximated by a thinning process Φ of G [59] where a

typical node in G is retained in Φ with some probability p, and the set of transmitters in region

Rci are the nodes of Φ that lie in Rci. That is, the set of transmitters in schedule S ′
i can be

approximated as a spatial Poisson process Φ with density pλ, and the schedule Si that iOrder

generates for region Rci consists of the nodes of Φ that lie in Rci. According to [26] and given

that the radius of G is
√

n
πλ

, the interference I ′b that is incurred to receiver nr can be calculated

as

I ′b = PtxG0pλ(π +
2π

α− 2
(1− (

n

πλ
)
2−α
2 ))

Since network G is large, I ′b ≈ Ib. Thus

p ≈ Ib

PtxG0λ(π + 2π
α−2

(1− ( n
πλ
)
2−α
2 ))
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δ̂(n) n=50 n=100 n=200

α=2.5 6.6 6.3 11.2

α=3.5 11.1 11.7 11.5

α=4.5 15 16.9 18.1

Table 3.2: δ̂(n): upper bound on the approximation ratio of iOrder

δ̂(n) n=50 n=100 n=200

α=2.5 50 79.2 118.4

α=3.5 32.8 45 60.8

α=4.5 27.4 36.2 47

Table 3.3: δ̃(n): approximation ratio of GreedyPhysical

(Note that the path loss exponent α ≥ 2, thus 0 ≤ p ≤ 1.) Therefore, the expected number

of transmitters, denoted by NiOrder, in the schedule Si of iOrder for region Rci is calculated as

follows:

NiOrder ≈ pλπ(rci(n))
2 =

Ibπ(rci(n))
2

PtxG0(π + 2π
α−2

(1− ( n
πλ
)
2−α
2 ))

(3.8)

Therefore, the approximation ratio δ(n) of iOrder calculates as follows:

δ(n) =
Nopt

NiOrder

≤ PtxG0(π+
2π

α−2
(1−( n

πλ
)
2−α
2 ))min{1+ Ib(rci(n))α

PtxG0
,π(rci(n))

2λ}
Ibπ(rci(n))2

(3.9)

We use δ̂(n) to denote the upper bound of δ(n) as shown in Formula (3.5). For a setting

of λ = 3, γt = 5dB, γb = 3dB, Pnoise = −95dBm, G0 = 1, and ǫ = 0.1, Table 3.2 shows

the upper bounds for the approximation ratios of iOrder with different network size n and

wireless path loss exponent α. We see that the approximation ratio of iOrder tends to be small,

especially in small networks. Note also that our approved approximation ratio of iOrder is

orders-of-magnitude smaller than the proved approximation ratio of LengthDiversity as shown

in Table 3.1. The proved approximation ratio of GreedyPhysical [10] in the SINR model is

δ̃(n) = min{πλ(rci(n))2, n} (with rci(n) defined in Theorem 1); Table 3.3 shows δ̃(n), from

which we see that the approximation ratio of GreedyPhysical is significantly greater than that
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of iOrder too. The approximation ratio of LQF also tends to be large because, in the worst

case, only two concurrent transmissions are allowed in the whole network when the two most

queued transmitters are close to one another and can transmit concurrently. To corroborate

these analytical results in a wide range of scenarios, we next study the performance of iOrder

and the existing algorithms through simulation and testbed-based measurement in Section 3.4

and Section 3.5 respectively.

Time complexity. Assuming the basic operation in computing time complexity is comput-

ing the SINR at a receiver in the presence of concurrent transmissions, it is not difficult to

find that the time complexity for algorithm iOrder-slot is O(|E|3). Accordingly, the time com-

plexity for iOrder-ol is O(|Em|3), similar to that of iOrder-slot. To compute the time com-

plexity for iOrder-bl, we can replace each link ℓi (having Li queued packets) with Li virtual

links ℓi,1, . . . , ℓi,Li
, each of which has only one queued packet. Then the system will consist

of
∑

ℓi∈E Li number of virtual links. The time complexity for the lines 3-11 of iOrder-bl is

dominated by that of line 4 (i.e., iOrder-slot), thus their time complexity is O((
∑

ℓi∈E Li)
3).

Accordingly, it is easy to see that the time complexity for iOrder-bl is O((
∑

ℓi∈E Li)
4).

3.4 Simulation

To gain insight into the impact of link ordering on wireless scheduling, we comparatively

study different scheduling algorithms via simulation. We first discuss the simulation method-

ology and then the simulation results. The insight gained through this simulation study will be

verified via testbed-based measurement in Section 3.5.

3.4.1 Simulation methodology

We have built a custom simulation package using Matlab. To understand the potential im-

pact that the environmental and network settings have on the behavior of different algorithms,

we use networks of different scales and different wireless channel parameters. More specifi-

cally, we consider the set {2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6} of wireless path loss exponents αs, which
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(b) 7× 7 networks
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(c) 9× 9 networks
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(d) 11× 11 networks

Figure 3.2: Network throughput in different algorithms

represent a wide range of real-world environments [57]; we also set the shadowing variance σ

based on measurement data from [57]. We consider 2D Poisson networks with the node distri-

bution density λ = 1 node/m2 and the background noise power Pnoise = −95dBm. Given an

environmental setting (i.e., specific values for α and σ), we set the transmission power Ptx of

all the nodes such that every node has, on average, 10 neighbors to which the signal-to-noise-

ratio (SNR) is above the threshold γt = 5dB in the absence of interference. Then we choose

the average link length r0 such that receivers r0 distant from their transmitters have a SNR of

γt + γb. We set γt as 5dB to ensure 100% link reliability during scheduling. We call γb the

starting SINR budget, and γb = 1dB in this paper unless mentioned otherwise;

We consider networks that are deployed in squares with side lengths kr0, where k =

5, 7, 9, 11. For convenience, we denote the network deployed in a square of side length kr0

as a k × k network. For k = 5, 7, 9, 11, the average number of nodes in a k × k network is

70, 140, 237, and 346 respectively in our simulation.

Given an average link length r0, we consider one-hop unicast where the receiver nr of a

node nt is the node whose distance to nt is the closest to r0, with ties broken at random. (We

will study multi-hop convergecast in Section 3.5.) For each node, we consider the case of

backlogged traffic as well as online traffic. In the backlogged traffic pattern, each node has

m number of packets queued for transmission, where m is a Poisson random variable with

mean being 30. In the online traffic pattern, packets arrive at each node in a Poisson manner

with an average rate of 0.15 packet/time-slot,3 and we assume packet arrivals happen at the

3The average arrive rate of 0.15 packet/slot is chosen so that it does not exceed the capacity of many of the
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very beginning of the individual time slots. Backlogged traffic represents the case where nodes

need to upload stored data, and network throughput (i.e., total number of packets delivered per

time slot in the network) is an important performance metric. Online traffic can represent the

case of real-time sensing and control, and packet delivery latency as well as queue length are

important performance metrics. When simulating online traffic, we assume that packet queues

are managed in a FIFO manner. We set the queue size to be large enough (e.g., 20) to avoid

queue overflow.

Using the above experiment design, we evaluate the performance of LengthDiversity, Greedy-

Physical, LQF, and iOrder.For each scheduling algorithm and each configuration of environ-

mental, network, and traffic parameters, we repeat the experiment 20 times such that we can

analyze the variability and confidence intervals of performance metrics. (Note that, since we

have analyzed the approximation ratios of the above algorithms in Section 3.3, here we do not

numerically compute the performance of optimal scheduling due to its NP-completeness [23]

and the intractable computation time for large networks.)

3.4.2 Simulation results

In what follows, we first discuss the results for backlogged traffic and then for online traffic.

The data presented in most of the figures include the medians and their 95%confidence intervals

of the corresponding metrics (e.g., throughput and delay).

3.4.3 Backlogged traffic

For networks of different scales and different wireless path losses, Figure 3.2 shows the net-

work throughput of different scheduling algorithms. We see that, except for LengthDiversity,

there is a clear throughput increase in all the algorithms as network size or path loss exponent

increases. This is because larger network size or path loss exponent implies higher degree of

spatial reuse possible in scheduling. Among all the algorithms, iOrder always performs better

than the other algorithms. For instance, iOrder may double the throughput of LQF in large

networks we study.
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Figure 3.3: Throughput increase in iOrder

networks (e.g., 11 × 11 network) with small path loss exponents (e.g., 2.5 or 3), and iOrder

may improve the throughput of LengthDiversity by a factor up to 19.6. Among the existing al-

gorithms, LQF performs better than GreedyPhysical and LengthDiversity. One reason for this

is because LQF is based on queue length whose stochastic temporal behavior prevents LQF

from getting stuck at low-performance slot-schedules. Surprisingly, the throughput of Length-

Diversity is very low (even compared with other existing protocols) despite its good asymptotic

approximation ratio. For instance, LengthDiversity only allows for one transmission per slot

in 5 × 5 networks and at most 3 concurrent transmissions per slot in 11 × 11 networks. As

discussed in Section 3.3.1, this is due to the large µ value in LengthDiversity that schedules

transmissions based on virtual grids of cell side lengths µ2k (k = 0, 1, . . .).

Since LQF performs better than GreedyPhysical and LengthDiversity, we only focus on the

comparative study of iOrder and LQF hereafter. To gain insight into the impact of link ordering

on wireless scheduling in different settings, Figure 3.3 shows the throughput increase in iOrder,

as compared with LQF, in networks of different scales and different path loss exponents. We
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Figure 3.4: Time series of slot SINR
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see that the throughput increase (and thus the importance of optimal link ordering) drops as

the path loss exponent α increases. This is because, when adding a new link to a partial slot-

schedule, the interference between the new link and the existing links of the slot-schedule

decreases as α increases, which makes the interference budget less sensitive to the different

choices of new link addition and thus the benefit of optimal ordering/choice of link addition

less significant. For a typical 11 × 11 network with α = 2.5 and α = 6 respectively, for

instance, Figures 3.4(a) and 3.4(b) show how the slot SINR evolves in LQF and iOrder as

new links are added to the schedule of a typical slot, where the slot SINR is defined as the

minimum SINR at all the receivers of a slot. We see that, with smaller α, the slot SINR in

iOrder decreases much slower than that in LQF. Despite the impact of α, we observe that the

throughput enhancement as a result of optimized link ordering in iOrder is still significant

(e.g., up to 115%) for typical indoor and outdoor environments where α is usually less than

4.5 [57]. We also see that the throughput enhancement in iOrder increases with network size.

This is because larger networks give more opportunity of spatial reuse and thus more room

for optimization. For instance, Figures 3.4(a) and 3.4(c) show that, for the same extra SINR

budget in iOrder, more concurrent links can be scheduled in larger networks since they provide

more schedulable candidates.

Figures 3.2 and 3.3 show that the trend how network size affect algorithm performance is

monotonic. For conciseness, therefore, we only present data for 5 × 5 and 11 × 11 networks

hereafter.

SINR budget. The starting SINR budget γb determines the interference that can be tolerated

during scheduling without violating application requirement on link reliability. Thus it tends

to affect allowable concurrent transmissions. In general, we can control γb in two ways: 1)

control the link length r0 (e.g., in routing), and 2) control the transmission power Ptx (e.g., in

power control). To increase γb, for instance, we can decrease r0 or increase Ptx. To understand

the potential impact that γb may have on the relative goodness between LQF and iOrder as well
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as the importance of link ordering, we comparatively study the performance of LQF and iOrder

when γb = 1dB, 3dB, and 5dB respectively.

Figure 3.5 shows, when γb is controlled by changing r0, the throughput increase in iOrder as

compared with LQF. We see that the enhancement in iOrder does not change much at the 95%

confidence level. After examining the scheduling data in LQF and iOrder, we find that this is

mostly due to the fact that controlling γb by changing r0 does not have statistically significant

impact on the throughput of LQF and iOrder (as shown in Figure 3.6), which is due to the
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Figure 3.5: Impact of SINR budget γb: control by r0
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Figure 3.6: Network throughput in 11× 11 networks when γb is controlled by r0
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Figure 3.7: Impact of SINR budget γb: control by Ptx

fact that nodes’ transmission power Ptx do not change and thus the interference field does not

change significantly. One implication of this fact is that, in routing, a node does not need to

intentionally choose shorter links for the purpose of controlling transmission concurrency.

Figure 3.7 shows, when γb is controlled by changing Ptx, the throughput increase in iOrder

as compared with LQF. We see that, as γb increases, the throughput increase in iOrder does not

change much at the 95% confidence level. This is again due to the fact that the actual through-

put does not change with statistical significance in PRK and iOrder (as shown in Figure 3.8).
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Note that this result holds even for very large γb’s (e.g., 10dB and 100dB). The reason for
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Figure 3.8: Network throughput in 11× 11 network when γb is controlled by Ptx

this is that, given the same set of concurrent transmitters, increasing their transmission power

by the same factor does not lead to significant change of the SINR at the receivers (since the

background noise power is usually small compared with the power of the data and interfer-

ence signal). One implication of this fact is that, in power control, a node does not need to

intentionally use higher power level for the purpose of controlling transmission concurrency.

iOrder & starting link location. For the purpose of stabilizing packet queueing, iOrder
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chooses the link with the highest queue length as the first link of a slot-schedule. It is possible

that this is not optimal since the location of the starting link of a slot-schedule may affect

the total number of the links that can be scheduled for the slot. To characterize the potential

impact of starting link location, we study the performance of three variants of iOrder with

different strategies on choosing the starting link of a slot-schedule: iOrder-C that chooses the

link closest to the geometric center of the network deployment area as the starting link, iOrder-

B that chooses the link farthest away from the network geometric center as the starting link,

and iOrder-M that chooses as the starting link the link closest to the middle point between the

network geometric center and the point in the deployment area that is farthest from the center.

Figure 3.9 shows the performance of these variants of iOrder. We see that iOrder-C tends to

enable the lowest throughput, and iOrder-B tends to enable the highest throughput. But the

differences between the throughput of these algorithms tend to be small and, in many cases,

not statistically significant. This observation can help facilitate distributed implementation of

iOrder since we may choose not to worry about starting link location in iOrder scheduling. We

will explore this direction in our future work.

3.4.4 Online traffic

For online traffic, we measure the delivery latency of a packet as the interval between the

packet arrival time at a node and the moment when the node finishes transmitting the packet.

Figure 3.10 shows the delivery latency in LQF and iOrder for different network and wireless

path loss settings. We see that, in both LQF and iOrder, the median latency decreases with

increasing path loss exponent α. This is because, when α increases, the network throughput

increases as a result of increased spatial reuse, and thus the median waiting/queueing time

for each packet decreases. Compared with LQF, iOrder reduces packet delivery latency sig-

nificantly, for instance, by a factor up to 24 in 11 × 11 networks with α = 3.5 (as in some

typical indoor environments [57]). This shows that iOrder can better support applications such

as real-time sensing and control.
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Figure 3.9: Impact of starting link location on the throughput of iOrder

To gain insight into the queueing behavior which will also help explain packet delivery

latency in LQF and iOrder, we examine the evolution of queue length (i.e., number of queued

packets at nodes) in LQF and iOrder. Figures 3.11 and 3.12 show, for a typical indoor and

outdoor environment respectively, how the queue length evolves over time (measured in time

slot number) in LQF and iOrder. We see that iOrder usually has much smaller queue length

than LQF does, which, together with the fact that iOrder has higher throughput than LQF,

explains why the packet delivery latency is much smaller in iOrder (as shown in Figure 3.10).
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Figure 3.10: Packet delivery latency
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Figure 3.11: Time series of queue length: α = 3.5

We also see that the average arrival rate of 0.15 packets/per-node/time-slot is below nodes’

service rate in iOrder, thus the queue length of iOrder is bounded and small; on the other hand,

0.15 packet/per-node/time-slot is above nodes’ service rate in LQF for most cases except the

5 × 5 networks with α = 4.5, which leads to the ever increasing queue length and thus long

packet delivery latency. Note that, for 5× 5 networks, the cross-node variation in queue length

tends to be more in iOrder than in LQF. This is expected since, unlike LQF which focuses

on balancing queue length across nodes, iOrder focuses more on improving spatial reuse and
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Figure 3.12: Time series of queue length: α = 4.5

concurrency in scheduling. Nonetheless, the maximum queue length in iOrder is still small

(e.g., less than 20) and can be implemented even in resource constrained platforms such as

TelosB motes.

3.5 Testbed measurement

Our simulation results show that, by optimizing link ordering in scheduling, iOrder outper-

forms existing scheduling algorithms. To corroborate these results, we experimentally compare

the performance of iOrder and LQF using the MoteLab testbed [69].
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3.5.1 Measurement methodology

We use the MoteLab wireless sensor network testbed at Harvard University [69]. MoteLab

is deployed at three floors of the EECS building of Harvard as shown in Figure 3.13. In our

experiments, we use all of the 101 operational Tmote Sky motes, with 32, 39, and 30 motes

distributed at the first, second, and third floors respectively. We use two radio transmission

powers 0dBm and −3dBm (a.k.a. power level 31 and 23 respectively) to generate networks of

different connectivity.

Part of the input to iOrder and LQF are the radio model, background noise at every node,

and strength of signals from any node to every other node. To collect these information for

(a) First floor

(b) Second floor

(c) Third floor

Figure 3.13: MoteLab testbed
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MoteLab, we perform the following experiment: let the 101 motes take turns to be a trans-

mitter one at a time; when a mote is a transmitter, it broadcasts 600 128-byte packets with an

inter-packet interval of 100ms (note: each packet transmission takes ∼4ms); while a mote is

transmitting packets, every other mote keeps sampling its radio RSSI once every 2ms whether

or not it can receive packets from the transmitter, and, if a mote can receive packets from the

transmitter, it logs the received packets. We execute the above experiment for both the trans-

mission power of 0dBm and −3dBm. Using the data collected in these experiments, we can

derive the background noise power at each node, the strength of signals from any node to every

other node when the transmission power is 0dBm or −3dBm, and the packet delivery rate

(PDR) from any node to every other node as well as the associated SINR. These data also en-

able us to derive the empirical radio model for the Tmote Sky motes in MoteLab. Figure 3.14

shows the measured radio model, as represented by the relation between packet delivery rate

(PDR) and SINR at a receiver, for a typical mote in MoteLab. We will use this radio model in

our scheduling algorithms for two purposes: 1) to choose the SINR threshold for satisfying a

certain link reliability, and 2) to compute the expected PDR for a given SINR at a receiver.

Figure 3.15 shows the histograms of the PDRs of all the wireless links in MoteLab when the
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Figure 3.14: PDR vs. SINR for the CC2420 radio in MoteLab
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transmission power is 0dBm and −3dBm, and Figure 3.16 shows the histogram of background

noise power in MoteLab. We see that there is a high degree of spatial variability in link PDRs

and background noise power. Thus the testbed enables us to do experiments in non-uniform
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Figure 3.15: Histogram of link PDRs in MoteLab
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settings.

To generate the traffic load for scheduling, we consider convergecast where data packets

generated by all the nodes need to be delivered to a base station node. More specifically, we

let mote #115 at the center of the second floor be the base station to which the remaining 100

motes deliver their packets (mostly via multi-hop paths). Then we build the routing tree by

identifying, for each non-base-station mote, a reliable minimum-hop path to the base station

where each link of the path has a receiver-side SNR of no less than γt + γb in the absence of

interference. Similar to simulation, we set γt and γb as 5dB and 1dB respectively. Figure 3.17

shows the histogram of the routing hop length when different transmission power is used. We

see that the maximum hop count is 5 and 9 when the transmission power is 0dBm and −3dBm

respectively.

Given a routing tree, we generate the traffic load as follows: each mote generates 30 pack-

ets, and then the number of packets that need to be delivered across a link is the number of

packets generated in the subtree rooted at the transmitter of the link. Then the traffic load is

used as the input to iOrder and LQF to generate the transmission schedule. Experiment with

each schedule is repeated 10 times to gain statistical insight. To experiment with a schedule
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Figure 3.16: Histogram of background noise power in MoteLab
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Figure 3.17: Histogram of routing hop length

in MoteLab, we use the TinyOS Flooding Time Synchronization Protocol (FTSP) [42] to syn-

chronize transmissions such that the links in the same time lot of the schedule transmit at the

same time; each slot is repeated 30 times before moving onto the next slot so that we can get

30 samples on the transmission status (i.e., success or failure) along each link of the slot to

understand the behavior of each slot.
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3.5.2 Measurement results

Figure 3.18(a) shows the network-wide throughput (measured in the total number of pack-

ets delivered per time slot) in LQF and iOrder when different transmission powers and thus

different routing trees are used. We see that iOrder consistently outperforms LQF, by 22.6%

and 28.9% when the transmission power is 0dBm and −3dBm respectively. Given that Mote-

Lab is housed in an indoor environment where the path loss exponent α ≈ 3.5 and that the

size (i.e., 101 motes) of our measurement network is between those of the 5 × 5 and 7 × 7
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simulation networks (which have 70 and 140 nodes respectively), the MoteLab-based mea-

surement data very much agrees with the simulation data shown in Figure 3.3, thus validating

the simulation results. When the transmission power decreases from 0dBm to −3dBm, the di-

ameter of the network connectivity graph and the depth of the routing tree increases (as shown

in Figure 3.17), and thus the opportunity of optimizing spatial reuse increases. Therefore,

the throughput enhancement increases from 22.6% to 28.9% when the transmission power de-

creases.

The intention of setting γt as 5dB is to ensure a ∼100% link reliability in scheduling.

To verify the correctness of our schedule, Figure 3.18(b) presents the actual link PDRs dur-

ing experiments. We see that the links are very reliable and have a mean PDR of ∼98%,

which implies that the TDMA scheduling is able to ensure the required link reliability. From

Figures 3.18(a) and 3.18(b), we also see that iOrder improves network throughput without

sacrificing link reliability.

3.6 Discussion: distributed implementation

As a first step towards addressing the limiting impact of interference on wireless schedul-

ing, our objective in this paper is to characterize the impact of link ordering on the throughput

of TDMA scheduling, thus we have focused on centralized TDMA scheduling. In terms of

implementation, even though distributed scheduling algorithms are preferred in general, cen-

tralized scheduling has also found its use in settings of slowly-varying network and traffic

conditions. In wireless networked sensing for oil field instrumentation, for instance, the wire-

less link properties tend to be slowly-varying only, and the monitoring nodes generate packets

at fixed, pre-specified frequencies; in these cases, centralized TDMA scheduling (possibly to-

gether with frequency scheduling) has been employed in both engineering practice [62] and

industry standards such as WirelessHART [70]. That said, for cases where distributed schedul-

ing is more desirable, the scheduling algorithm iOrder can be implemented in a distributed

manner, and we discuss the potential approaches as follows.
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To implement iOrder in a distributed manner, we need to design mechanisms that gener-

ate transmission schedules similar to those in iOrder; more specifically, we need to generate

the effect of interference-budget- and queue-length-based scheduling of iOrder. The effect of

interference-budget-based scheduling is that the SINRs at the receivers of a slot-schedule are

close to the required threshold γt. This fact lends iOrder to distributed implementation via

the physical-ratio-K (PRK) interference model [16], because PRK-based scheduling makes the

SINRs at the receivers close to the desired threshold γt. The PRK model also integrates the

high-fidelity of the physical interference model with the locality of the protocol interference

model, thus PRK-based scheduling enables reliable, high-throughput communication while

only requiring coordination among nodes close-by (i.e., no global information is needed in

PRK-based scheduling) [16].

For the effect of centralized, queue-length-based scheduling, Le et al. [35] and Ni et al.

[47] have recently developed distributed, queue-length-based priority scheduling mechanisms

that, only with localized, asynchronous coordination among neighboring nodes, achieve a per-

formance close to the centralized, queue-length-based scheduling. In iOrder, the link with the

highest queue length is selected as the first link of a slot-schedule, but, as we have discussed

in Section 3.4.2, the number of links that can be scheduled for a time slot is insensitive to the

location of the first link picked for the slot.

From the above observations, we believe that iOrder can be implemented in a distributed

manner by leveraging the PRK model [16] and the distributed queue-length-based priority

scheduling [35, 47], and we will investigate this in detail in our future work.

3.7 Related work

As a basis of wireless scheduling, different interference models have been studied exten-

sively [40, 44, 14, 56]. It was found that the physical interference model (a.k.a. the SINR

model) is more accurate than the basic protocol interference model and can enable higher

scheduling performance in general [40, 44]. For distributed protocol design, we also discov-
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ered that it is possible to effectively instantiate the protocol interference model via local feed-

back control [16]. Focusing on gaining insight into the impact of link ordering on wireless

scheduling instead of distributed protocol design, we employ the physical model in this paper

for the sake of its high accuracy.

Different interference-oriented TDMA scheduling algorithms have been proposed in the

literature. They include LQF and its variants [35, 30, 36, 54, 8, 9], GreedyPhysical and its

variants [10, 66], as well as LengthDiversity [23]. The throughput and delay performance

[36, 32, 46] as well as the distributed implementation [36, 24, 31] of these algorithms have also

been studied, and scheduling based on dominant interferers has been considered by Badia et al.

[8]. Nonetheless, these work have not focused on the impact of link ordering on interference-

limited scheduling; the analysis of these algorithms has also mostly focused on the asymptotic

behavior without characterizing the impact of potentially large constants in the analysis. Our

study fills this gap by proposing the algorithm iOrder for optimizing link ordering in wireless

scheduling and by examining the detailed behavior of different protocols through analysis,

simulation, and testbed-based measurement.

Interference-oriented distributed scheduling has also been well studied [12, 73, 11, 80, 53,

13, 65], but the existing work has mostly focused on contention resolution and collision avoid-

ance without explicitly optimizing network-wide spatial reuse. Yang et al. [71] have studied

how to induce spatial clustering for the purpose of improving spatial reuse in densely deployed

spread-spectrum networks. Spatial clustering may not be generically applicable since it is most

useful only when network deployment is dense and the spreading factor of the spread spectrum

radios is large (e.g., a spreading factor of 512 was considered in [71]). The performance of spa-

tial clustering has only been compared with the traditional CSMA/CA random access schemes

too.

Scheduling has also been considered together with transmission power control in wireless

networks [23, 45] where nodes adapt their transmission power to further increase network
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capacity and to reduce delay. Focusing on characterizing the limiting impact of interference on

wireless scheduling, we have assumed fixed transmission power in this paper. How to leverage

controllable transmission power in addressing the limiting impact of interference on scheduling

will be an interesting topic to pursue, but detailed study of this is beyond the scope of this paper.

Several studies [22, 27] recently proposed mechanisms for interference cancellation where

a single receiver could simultaneously receive packets from multiple senders. These results

challenge the traditional paradigm where a receiver can only receive one packet at a time, and

they suggest new ways of interference management. Nonetheless, interference still needs to

be controlled due to the constraints of these interference cancellation mechanisms [37]. For

instance, ZigZag decoding [22] works the best when the number of interferers is small (e.g.,

less than 6). How to schedule transmissions to take advantage of interference cancellation is

an interesting problem to study, and there has been some recent effort on this [37]. But the

detailed study of this issue is beyond the scope of this paper.

3.8 Concluding remarks

Co-channel interference control is important for the reliability and predictability of wire-

less networks. Towards understanding the importance of explicitly addressing the limiting

impact of interference on wireless scheduling, we have formulated the notion of interference

budget to characterize a schedule’s tolerance of additional interference, and we have designed

the algorithm iOrder that schedules links in a decreasing order of the enabled interference

budget. Through analysis, simulation, and testbed-based measurement, we have demonstrated

the benefits of explicitly addressing the limiting impact of interference by showing the sig-

nificantly better performance of iOrder as compared with the well-known algorithms such as

LQF, GreedyPhysical, and LengthDiversity. By discovering and understanding the surpris-

ingly low performance of LengthDiversity, our study has also demonstrated the importance of

examining the constant factors involved in asymptotic analysis. As a side result, our study has

characterized the relative goodness of the existing algorithms, which is of independent inter-
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est. The findings of this paper shed new insight into the behavior of wireless scheduling and,

via algorithm iOrder, constructively shows the benefit of optimizing link ordering to address

the limiting impact of interference. Therefore, the findings of this paper open up new avenues

for future research and for optimizing wireless network performance; one of the future direc-

tions is to investigate mechanisms for realizing iOrder (or interference budget optimization in

general) in a distributed manner.
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CHAPTER 4

PRK MODEL IN MULTI-CHANNEL

4.1 Preliminaries

With successful commercialization of IEEE802.11 WiFi standard, more devices are ex-

pected to function in these 2.4GHz and 5GHz ISM(Industrial, scientific and medical) radio

bands. In order to avoid and decrease co-channel interference, one method is to use differ-

ent orthogonal channels in scheduling. It can also greatly increase the network throughput

in multi-hop wireless mess network. In this section, we want to use our PRK model in milt-

channel scheduling and see its potential for multi-channel distributed MAC protocols. More

specifically, we want to understand the impact of available channel number on the performance

of PRK model, since the number of channels available in practice is usually limited due to both

economical and policy reasons We will study the performance gain of PRK model with differ-

ent number of channels that can be used for wireless scheduling. We hope that our study in this

section will shed light into the work of designing multi-channel PRK scheduling.

4.2 Problem definition

In order to get a more representative result, we consider a 2D Poisson networks, where

nodes are distributed with an average density λ node per unit area. The traffic pattern is such

that the average link length is ℓ; each transmitter T sends packets to a receiver R such that

the distance between T and R is the closest to ℓ, and if multiple such receivers exist, T ran-

domly picks one as its receiver. We assume that each transmitter has data packets buffered for

transmission with probability β at any moment in time.

Given a single link and its exclusive region, there are two ways to use the multi-channel

option. First, we can use the multi-channel option to enable the nodes’ transmission within the

exclusive region; Second, we can use the multi-channel option for the nodes outside or on the
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boundary of the exclusive region. We notice that the first method will have little change of the

total interference level at the receiver, as this method will not affect the link distribution in a

Poisson distribution. It will only create channel overlaps in a 2D space. However, the second

method will affect the co-channel interference level at the receiver side, thus affect in choice

of K in our PRK model. So our study will focus on the second method.

Based on the analysis above, we can compute the total interference I at an arbitrary receiver

R as follows:

Proposition 9. With ratio-K-based scheduling, the expected total interference I at a receiver

R in an infinite Poisson random network is as follows:

I =
2πλtPtβ

C(α− 2)
(Kℓ)2−α (4.1)

where λt is given by Equation 2.20, Pt is the transmission power, β is the node transmission

probability, α is the wireless path loss exponent, C is the number of available channels and ℓ

is the link length. �

Proof. From the analysis in single channel Poisson network, we know that the total interference

at an arbitrary receiver R is

I =
2πλtPtβ

(α− 2)
(Kℓ)2−α

as we assume that each link can pick their channel individually and with an equal probabil-

ity, the interference then can be computed as

I =
2πλtPtβ

C(α− 2)
(Kℓ)2−α

Q.E.D.
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4.3 Numerical analysis

Using the radio model describe in 2.1 and Formula 4.1, we numerically analyze the impact

of multiple channels on model. Given a certain channel number, we want to understand how

much the link quality (PDR) will change. We also want to see how the value of minimum K

will change because of multi-channel scheduling. Because the PRK model uses the minimum

K that ensures a certain link quality requirement. This will help us understand the performance

of PRK model in the multi-channel scheduling and shed light into its potential in helping the

multi-channel protocol design.

4.3.1 methodology

We exam a wide range of system configuration for our ratio-K model. To examine the im-

pact of wireless attenuation in different environments, we consider the set {2.1, 2.6, 3, 3.3, 3.6,

3.8, 4, 4.5, 5} of wireless path loss exponents αs, which represent a wide range of real-world

environments [57]; we also set the shadowing variance σ2 based on measurement data from

[57]. We vary their parameters such as traffic load, link length, and node distribution density

to examine the impact of network properties. Link length is chosen so that the link reliability

varies from 1% to 100% in the absence of interference. More specifically, for each specific

path loss exponent α, we choose a link length ℓ0 corresponding to an interference-free packet

delivery rate (PDR) of 1%, and another link length ℓ1 corresponding to a signal-to-noise-ratio

(SNR) of 5dB more than the minimum SNR for ensuring 100% interference-free PDR; then

we take 60 sample link lengths that are uniformly distributed between ℓ0 and ℓ1. (Note that

the transmission power level is set at -25dBm in our study.) For each average link length ℓ in

random networks, we select a set of node distribution densities λs so that the average number

of nodes in a circular area of radius ℓ is 5, 10, 15, 20, 30, and 40 respectively. The number of

channels considered are {1, 2, 3, . . . , 32}. We find that in our set up C = 32 or larger will not

have significant increase in link quality.

we regard each setting of network and environment parameters as a system configuration
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hereafter. Thus our study examines 68,040 different system configurations, and the boxplots,

medians, and distributions to be presented in the rest of the section are mostly based on the

distribution of the corresponding metrics across different system configurations. For each sys-

tem configuration, we analyze the network performance when the ratio-K model is instantiated

with different Ks. The set of Ks we consider are {1, 1.5, 2, 2.5, . . . , 10} for Poisson random

networks. K = 10 is is large enough to serve as the largest K in our study.

Using the numerical results on network throughput and link reliability in these 68,040 sys-

tem configurations, we analyze 1) how the PDR will change as a result of using multiple

channels. and 2) the relation between the minimum K that ensure a certain link reliability will

change and the number of channels used in the transmission.

4.4 Simulation result

To understand the impact of the channel number on the link quality, we define ∆PDR(c)

as

∆PDR(c) = PDR(c)− PDR(1)

where ∆PDR(c) is the link PDR when the available channel number used in scheduling

is c. So ∆PDR(c) describes the benefit of multi-channel scheduling comparing to the single

channel case.

PDR gain In order to show potential PDR gain, we choose the link with the PDR < 10%

when only one channel is available in the network, and compare it to the PDRs when different

channel numbers are used.The results are presented in Figure 4.1. We can see that the channel

number has a positive impact on the link quality. As more channels are used in the network,

the link quality keep increasing until it reaches almost 100% PDR.

Second, for both indoor and outdoor environment, the link quality improvement will be

very small when there are only 2 or 3 channels to choose from. For example, when the channel
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Figure 4.1: PDR gain when different number of channels are used
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number is 2, the median link quality improvement is only 6.8% for indoor environment and 2%

for outdoor environment.This implicates that we cannot expect that a MAC protocol with 2 or

3 channels can improve the link quality significantly.

Third, the number of channels needed to maintain a relative good link quality (e.g. 80%

PDR) does not have to be very large. if we regard 80% PDR as a relative good link quality, it

is about 70% PDR increase in Figure 4.1. For indoor environment, the channel needed to have

a median 80% PDR is 10. For outdoor environment, the channel number is 15. The channel

number difference may contradict to our expectation. In a single channel setup, the number of

channels needed to maintain a certain PDR is less in an outdoor environment. This is because

that the signal attenuates faster in the outdoor environment and the interference accumulates

much slower in a outdoor environment. However, in a multi-channel setup, as the aggregate

interference has less impact on the link quality in the outdoor environment, the advantage of

spatial reuse from the use of multiple channel will be also less in the outdoor environment. So

the number of the channel required in outdoor environment is bigger.

Fourth, we find that if the channel number in scheduling is more than a certain number, its

benefit on the PDR will be very small. For example, when channel number is bigger than a

certain number (e.g. 15 for indoor environment and 17 for outdoor environment, respectively),

the PDR improvement is very lmited. This is because the link quality for most of cases is

already or very close to 100%. From this result, we know that more channels to be used in

scheduling does not always guarantee a better link quality in practice. 15 - 20 channels will

be fair enough to handle most of indoor and outdoor environment. This could be a helpful

guideline for us in the network planning.

We also look at PDR gain when the link quality is different with respect to the number of

available channels. From Figure 4.2 and 4.3, we can see that when PDR gain is higher when

the single channel link quality is lower. The channel number does not improve the link quality

when it is greater than 4. More importantly, we know that, from the figure, the multi-channel
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Figure 4.2: the PDR gain of different link PDR in indoor environment
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scheduling will help a lot when the original link quality is very low.

Minimum K in multi-channel In the single channel PRK study, we find that the minimum

K to ensure a certain PDR does not always fall into the number 2 or 3. Sometimes it is as large

as to 9 or 10. The drawbacks of a large K value are two folds at least. First, when a larger

number K is used in the network, there will be fewer concurrent transmissions and the network

throughput will be low. Second, a big K value means that a bigger exclusive region is required.

In order to suppress the transmission of the far-away nodes in the exclusive region, it requires

either to use larger transmission power to improve the delivery of the singaling message, or

more complex schemes to synchronize the nodes in the exclusive region. Neither is good for

a distributed protocol. Based on the reasons above, we want to understand how the choice of

multiple channels will help to decrease the value of minimum K that ensures a certain PDR.

We choose certain system configurations in which a larger ratio-K is needed in a single

channel setup and see how does the minimum K is changed as the number of channels used

in the network increases. We choose the PDR requirements to be 0.6, 0.7, 0.8 and 0.9, which

should cover the most common requirement. We present the result in the indoor(alpha = 3.5)

and outdoor(alpha=.45) environment.

From the Figure 4.6, we can see that the help of multiple channels on the mimim K is

significant. Moreover, the value of minimum K drops very fast when the channel number

changes from 1 to 2. For example, in both the indoor and outdoor environment, the minimum K

for 80% PDR requirement drops from 10 to 4. That 60% decrease implicates a great reduction

in the exclusive region and more possible concurrent transmissions.

Second, the minimum K drops to 2 when the channel number increases to 7, for both indoor

and outdoor environment, for all the PDR requirement in the figures. It suggest that we do not

need a large number of channels to decrease the number K to 2. It also implicates that with

a choice of a multiple channels, the schemes for exchanging controlling message within the

exclusive region will be much easier and more reliable than a single channel case.
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Figure 4.3: the PDR gain of different link PDR in outdoor environment
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Third, this result also tells us that the minimum K does not decrease further after the number

of channel reaches a certain number. For example, for 80% PDR requirement in a indoor

environment, the minimum K does not further decrease when the number of channel is between

11 and 25. The same scenario is found in the outdoor environment in figure 4.4(b). This implies

that the larger number of channel to use in scheduling does not always lead to a reduction of

minimum K and the exclusive region. We should carefully choose the number of channels used

in the network, considering the value of the channel resource.

We also look at the minimum K for all the indoor and outdoor cases and show the result

in figure 4.6. We can tell that the minimum K will decreases as the channel number increases

for both type of environments. The minimum K will be not greater than 2 when the channel

number is 2. More over, the minimum K decrease to 1 when the channel number is greater

than 12, even for 90% PDR requirement.

4.5 Concluding remarks

In this section, we study the potential of using PRK model in multi-channel scheduling.

We first formulate the interference in Poisson network using PRK model under the condition

that multiple transmission channels can be used. Through the simulation under a wide range

of system configurations, the potential of using PRK model with multi-channel scheduling is

carefully studied. Our results show that the channel number in scheduling has a great impact on

the link quality. A scheduling with 2 or 3 channels cannot improve the link quality significantly.

On the other side, the number of channels needed by ratio-K model to have a relative good link

quality(e.g. 80% PDR) does not have to been very large. In our setup, the number is 10 for

indoor environment and 15 for outdoor environment. If the channel number is greater than that,

it will not have significant PDR improvement for most of the system configurations. 10 - 15 is

our recommendation to use ratio-K model in multi-channel MAC protocols.

We also study how the minimum K will change if multiple channels are used in the schedul-

ing. Our results shows that the benefits of multiple channels on the minimum K is significant,
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especially for the cases that a large value minimum K is required. Moreover, we find that

the minimum K drops to 2 when channel number increases to 7, for both indoor and outdoor

environment. This good message suggests that ratio-K models can perform very well in a

multi-channel scheduling and be a good model for distributed protocol design. We also find

that the minimum K does not further decrease when the channel number increases from 11 to

25. This result implies that the larger number of channel to use in scheduling does not always

lead to a reduction of minimum K and the exclusive region
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Interference model is the basis of MAC protocol design in wireless networks, and it di-

rectly affects the efficiency and predictability of wireless messaging. To enable the design of

distributed MAC protocols for agile, predictable interference control, this thesis tries to answer

the open question: whether it is possible to develop an interference model that has both the

locality of the ratio-K model and the high fidelity of the SINR model.

Given that the ratio-K model is local and can enable agile, distributed protocols, we explore

the possibility of extending the ratio-K model to preserve its locality while addressing the low

performance issue of ratio-K-based scheduling. To this end, we first study the behavior of ratio-

K-based scheduling, and analyze how network traffic load, link length, and wireless signal

attenuation affect the effective instantiation of the ratio-K model. We find that fixing K to a

constant number, as in most existing studies [14, 40, 44], can lead to significant performance

loss when network and environmental settings change. For instance, deviation from the optimal

K by up to 1 can cause up to 68% throughput loss, and fixing K to 2 may lead to a link

reliability less than 80%.

These findings suggest that, when designing and evaluating ratio-K-based scheduling algo-

rithms, it is important to choose the right parameter K according to network and environmental

conditions. We also find that there is inherent tradeoff between reliability and throughput when

instantiating the ratio-K model. Maximum network throughput is usually achieved not at the

minimum K for ensuring certain link reliability, but at a smaller K. For instance,
√
2 is the

optimal K for maximizing throughput in many scenarios, but, with non-negligible probability,

√
2 is unable to guarantee an 80% link reliability.
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Our findings (in particular, those on the reliability-throughput tradeoff in ratio-K-based

scheduling) suggest that, in wireless networked sensing and control where high link reliability

is critical not only for reliable data delivery but also for small latency and latency jitter, we can

use link reliability requirement as the basis of instantiating the ratio-K model. Based on that,

we propose the physical-ratio-K (PRK) interference model as a reliability-oriented instantiation

of the ratio-K model, where the link-specific choice of K adapts to network and environmental

conditions as well as application QoS requirements to ensure certain minimum reliability of

every link. Through simulations and testbed experiments, we find that, for a given requirement

on link reliability, PRK-based scheduling achieves a network spatial throughput very close to

what is enabled by SINR-based scheduling, for instance, at least 95% in many scenarios we

study. Moreover, as link reliability requirement increases, the throughput loss in PRK-based

scheduling further decreases.

During the research in ratio-K based scheduling, we notice one interesting thing: the inter-

ference among the transmissions, when scheduling them for a same time slot, limits the number

of concurrent transmissions in the slot. Optimal interference-oriented scheduling in wireless

networks has been shown to be NP-complete in general [23, 54], and the research community

has proposed different polynomial-time approximation algorithms accordingly. Most approxi-

mation algorithms are greedy in nature, and two representatives are Longest-Queue-First (LQF)

[35, 30, 9] and GreedyPhysical [10, 66]. In approximation algorithms where links are added

to a time slot in a sequential manner until reaching the interference limit,1 the order in which

links are added determines the accumulation of interference at the receivers and thus affects

the number of concurrent links schedulable in the slot. Nonetheless, existing scheduling algo-

rithms either do not take this ordering effect into account (e.g., in LQF) or do not explicitly

optimize for the ordering effect (e.g., in GreedyPhysical and LengthDiversity). Thus we try to

answer those open questions are: 1) how to explicitly optimize the ordering of link addition

1For example, the SINR at some receiver falls below a minimum threshold.
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in wireless scheduling? and 2) how does link ordering affect the throughput and delay of data

delivery?

To address these open questions for insight into wireless scheduling, we formulate the

concept of interference budget that, given a set of scheduled transmissions in a time slot, char-

acterizes the additional interference power that can be tolerated by all the receivers without

violating the application requirement on link reliability. Then, by modeling the scheduling

problem as a knapsack problem, we propose the scheduling algorithm iOrder that optimizes

link ordering by considering both interference budget and queue length in scheduling. When

constructing the schedule for a time slot, iOrder first picks a link with the maximum number

of queued packets; then iOrder adds links to the slot one at a time in a way that maximizes the

interference budget at each step; this process repeats until no additional link can be added to

the slot without violating the application requirement on link reliability.

To understand the impact of link ordering on scheduling, we first analytically prove the

approximation ratio of iOrder in Poisson random networks, then we comparatively study the

performance of iOrder and existing algorithms via simulation and testbed-based measurement.

We observe that optimizing link ordering can improve the performance of existing algorithms

by a significant margin in the case of both backlogged and online traffic, for instance, dou-

bling the throughput and reducing the latency of LQF by a factor up to 24, and improving

the throughput of LengthDiversity by a factor up to 19.6. Thus our study demonstrates the

importance of explicitly optimizing link ordering in wireless scheduling, which opens up new

avenues for future research and for optimizing wireless network performance. Our detailed

simulation study also discover the surprisingly low performance of LengthDiversity despite its

good asymptotic approximation ratio. We find that this is due to the large constant factor hid-

den in the analysis of LengthDiversity [23]. Therefore, it is important to examine the constant

factors when analyzing wireless scheduling algorithms.
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5.2 future work

PRK model is proposed to bridge the gap between the protocol model and the physical

interference model. Our work showed that the performance of ratio-K-based scheduling is

highly sensitive to the choice of K. If correctly instantiated via the PRK model, ratio-K-based

scheduling can achieve a close-to-optimal performance. It is important to take this into account

in both protocol design and performance evaluation. These findings showed the feasibility of

integrating the high fidelity of the SINR model with the locality of the ratio-K model, and

suggested new approaches to MAC protocol design in dynamic, unpredictable network and

environmental settings. For example, if we can let the receiving of each link locally choose K,

the MAC protocol will be able to satisfy application-specific link reliability requirement. So

one extension to PRK work is to implement protocols that can enable link-specific, local search

of K via feedback on packet delivery reliability, since link reliability is locally measurable

metric. This also addresses the challenge of how to efficiently adapt K according to dynamic,

potentially unpredictable network and environmental settings, which has been recognized as

an open problem by Shi et al. [56] who studied the ratio-K model in parallel with our work

here.

By utilizing the orthogonal channels, the interference among the multiple concurrent trans-

missions could be greatly reduced. One of the key challenge to design distributed PRK pro-

tocols is to ensure the signaling message correctly received by all the nodes in the exclusive

region, especially when the value of K is large. In our multi-channel PRK study, our result

show that the minimum K to ensure a certain link quality will be greatly reduced. This is

a very promising message for designing multi-channel PRK-based protocols. So one of the

future work is to use the PRK model in multi-channel scheduling and design multi-channel

distributed protocols that uses PRK model in the wireless networks.
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With the successful commercialization of IEEE802.11 standard, wireless networks have

become a tight-knit of our daily life. As wireless networks are increasingly applied to real-

time and mission-critical tasks, how to ensuring real-time, reliable data delivery emerges as

an important problem. However, wireless communication is subject to various dynamics and

uncertainties due to the broadcast nature of wireless signal. In particular, co-channel interfer-

ence not only reduces the reliability and throughput of wireless networks, it also increases the

variability and uncertainty in data communication [64, 80, 77].

A basis of interference control is the interference model which predicts whether a set of

concurrent transmissions may interfere with one another. Two commonly used models, the

SINR model and the radio-K model, are thoroughly studied in our work. To address the

limitations of those models, we propose the physical-ratio-K(PRK) interference model as a

reliability-oriented instantiation of the ratio-K model, where the link-specific choice of K

adapts to network and environmental conditions as well as application QoS requirements to

ensure certain minimum reliability of every link.

On the other hand, the interference among the transmissions, limits the number of con-

current transmissions. We formulate the concept of interference budget that, given a set of

scheduled transmissions in a time slot, characterizes the additional interference power that can
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be tolerated by all the receivers without violating the application requirement on link reliability.

We propose the scheduling algorithm iOrder that optimizes link ordering by considering both

interference budget and queue length in scheduling. Through both simulation and real-world

experiments, we observe that optimizing link ordering can improve the performance of existing

algorithms by a significant.

Based on the strong preliminary research result on interference modeling and control, we

will extend our method into distributed protocol designs. One future work will focus on im-

plementing the PRK model in distributed protocols. We will also explore the benefits of using

multiple channels in the interference control.
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