
Wayne State University

Wayne State University Dissertations

1-1-2014

Teak: A Novel Computational And Gui Software
Pipeline For Reconstructing Biological Networks,
Detecting Activated Biological Subnetworks, And
Querying Biological Networks.
Thair Judeh
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Judeh, Thair, "Teak: A Novel Computational And Gui Software Pipeline For Reconstructing Biological Networks, Detecting Activated
Biological Subnetworks, And Querying Biological Networks." (2014). Wayne State University Dissertations. Paper 965.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/965?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F965&utm_medium=PDF&utm_campaign=PDFCoverPages


TEAK: A NOVEL COMPUTATIONAL AND GUI SOFTWARE
PIPELINE FOR RECONSTRUCTING BIOLOGICAL NETWORKS,
DETECTING ACTIVATED BIOLOGICAL SUBNETWORKS, AND

QUERYING BIOLOGICAL NETWORKS.

by

THAIR B. JUDEH

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

2014

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date



c©COPYRIGHT BY

THAIR B. JUDEH

2014

All Rights Reserved



DEDICATION

To my MOTHER and FATHER

ii



ACKNOWLEDGEMENTS

I thank God who gave me the perseverance to complete this dissertation and to Whom

I owe all good in this life.

Furthermore, I thank my advisor Dr. Dongxiao Zhu for all of the good that

he has done for me. I extend an extra special thanks to Dr. Anuj Kumar, Dr. Thaer

Jayyousi, and Dr. Robert G. Reynolds with whom we shared an excellent and fruitful

collaboration as well as Dr. Xuewen Chen who was always ready to lend an ear when

needed. I also thank Dr. Lipi Acharya with whom I have collaborated with on a

variety of research projects. I also thank the Department of Computer Science at

Wayne State University for the generous funding they have provided in supporting

the research that Dr. Zhu and I undertook.

A special thanks is entitled to my family. I thank my mother who has always

sought to instill into my siblings and I a sense of responsibility. I thank my father who

sacrificed greatly to ensure the quality of the education that I received throughout

my life. Finally, I thank my beloved wife Honida who has constantly pushed me to

excel in my research and in life in general.

iii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1: Background and Introduction . . . . . . . . . . . . . . . . . 1

Chapter 2: A Survey of Network Reconstruction Algorithms . . . . . . . . . 7

2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Frequency Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 GSGS and GSSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Linear Path Augmentation (LPA) . . . . . . . . . . . . . . . . . . . . 14

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3: A Survey of Network Partitioning Algorithms . . . . . . . . . . 21

3.1 Kernighan-Lin Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Girvan-Newman Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Newman’s Eigenvector Method . . . . . . . . . . . . . . . . . . . . . 30

3.4 Infomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Clique Percolation Method . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4: Gene Set Cultural Algorithm (GSCA) . . . . . . . . . . . . . . 44

4.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 The Belief and Population Spaces . . . . . . . . . . . . . . . . . . . . 49

4.3 Heuristic Fitness Function Justification . . . . . . . . . . . . . . . . . 53

4.4 Simulated Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 5: Topology Enrichment Analysis frameworK (TEAK) . . . . . . . . 64

5.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Subpathway Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Subpathway Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Conclusions and Results . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 6: Query Structure Enrichment Analysis (QSEA) . . . . . . . . . . 80

6.1 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Edge and Vertex Betweenness . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Feedback Arc Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Shortest Paths and Transitive Closure . . . . . . . . . . . . . . . . . 94

6.5 Query Matching and Output . . . . . . . . . . . . . . . . . . . . . . . 94

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 7: Conclusions and Future Work . . . . . . . . . . . . . . . . . 99

Appendix A: List of Publications . . . . . . . . . . . . . . . . . . . . . 102

Appendix B: Copyrights. . . . . . . . . . . . . . . . . . . . . . . . . 104

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . 139

v



LIST OF FIGURES

Figure 1.1 Gene Expression Data and Gene Sets. . . . . . . . . . . . . . 3

Figure 1.2 Overall Dissertation Framework . . . . . . . . . . . . . . . . 5

Figure 2.1 Network Reconstruction from Gene Sets Problem Overview . 8

Figure 2.2 DAG Transpose Problem . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3 LPA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.1 Two Communities . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.2 Directed Versus Undirected Communities . . . . . . . . . . . 24

Figure 3.3 Zachary’s Karate Club . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.4 A Dendrogram from a Divisive Clustering Algorithm . . . . . 28

Figure 3.5 The Girvan-Newman Partitioning of Zachary’s Karate Club . 29

Figure 3.6 Limits of Directed Modularity . . . . . . . . . . . . . . . . . 35

Figure 3.7 Infomap’s Partitioning of Zachary’s Karate Club . . . . . . . 38

Figure 3.8 CPM’s Partitioning of Zachary’s Karate Club . . . . . . . . . 40

Figure 3.9 CPM Directed Cliques . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.10 CPMd Illustration . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.1 Cultural Algorithm Framework . . . . . . . . . . . . . . . . . 46

Figure 4.2 GSCA Algorithm Overview . . . . . . . . . . . . . . . . . . . 47

Figure 4.3 Domain Knowledge Usage . . . . . . . . . . . . . . . . . . . 51

Figure 4.4 E. coli Fitness results . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.5 Insilico Fitness results . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.6 GSCA/GSGS Comparison Plots . . . . . . . . . . . . . . . . 57

Figure 4.7 GSCA Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.8 Prior Knowledge Plots . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.9 GSCA Hughes’ Data Results . . . . . . . . . . . . . . . . . . 62

vi



Figure 5.1 TEAK Result . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.2 TEAK Framework . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 5.3 Illustration of Algorithm 5.1 . . . . . . . . . . . . . . . . . . 71

Figure 5.4 I-equivalences of Feed-forward Loops . . . . . . . . . . . . . . 74

Figure 6.1 QSEA Framework . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 6.2 Feedback Arc Set Removal Example . . . . . . . . . . . . . . 86

Figure 6.3 QSEA Performance- Cyclic Networks . . . . . . . . . . . . . 90

Figure 6.4 QSEA Performance- Acyclic Networks Made Cyclic . . . . . 91

Figure 6.5 QSEA Query Input . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 6.6 QSEA Query Result . . . . . . . . . . . . . . . . . . . . . . . 96

vii



LIST OF TABLES

Table 4.1 DREAM3 and DREAM4 Network Statistics . . . . . . . . . 54

Table 5.2 KGML Edge Directions . . . . . . . . . . . . . . . . . . . . . 68

Table 5.3 TEAK Linear Comparisons . . . . . . . . . . . . . . . . . . . 78

Table 5.4 TEAK Nonlinear Comparisons . . . . . . . . . . . . . . . . . 79

viii



1

Chapter 1: Background and Introduction1

The world of biological systems is a vast and complex system of regulation processes

and biomolecular interactions. An underlying goal for biologists is to arrive at a theory

that shines light on the complicated interaction patterns in living organisms. These

interaction patterns result in various biological phenomena where recognition of these

patterns can provide much needed insight into biomolecular activities. Capturing

these biomolecular activities, however, is a daunting task due to the complexity of

the systems at hand as well as a lacking of data needed to fully capture the underlying

biomolecular activities. Thus, three problems have recently received a considerable

amount of attention: (1) inferring biological pathway topologies from gene expression

data and gene sets, (2) decomposing different biological pathways into functional

units, and (3) querying pathways in search of support for biological hypotheses.

A revolution in the understanding of biomolecular interaction mechanisms has

occurred in large part due to the rapid and significant advances in high-throughput

technologies that include microarrays and second-generation sequencing technologies.

These technologies now enable a systematic study of biomolecular activities and pro-

vide a copious amount of genome-wide measurements. While these genome-wide

measurements continue to be accumulated into numerous databases by research labs

across the world, extracting biological insights from large-scale gene expression data

is a daunting task due to the curse of dimensionality. To overcome this task, many

computational and experimental models have been developed to group genes into

various sets based on either structural or functional similarity. This lead to the birth

of gene sets as a new source of data leading to the development of novel algorithms

1The content in this chapter is largely derived from original author text and contributions found
in [Judeh, 2011].
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that infer biological pathway topologies from gene sets. These two types of data, gene

expression data and gene sets, will now be examined in more detail.

First, gene expression data is represented as a matrix of numerical values.

Each row corresponds to a gene while each column corresponds to an experiment

or mutant. Each entry of the matrix corresponds to the gene expression level for

a given gene under a given experiment or mutant. Gene expression profiling has

thus allowed the simultaneous measurement of the expression levels of thousands of

genes. A systematic study of biomolecular interaction mechanisms is now possible

on a genomic scale. One typical example of gene expression data is microarray data.

For microarray data one may have a glass slide that is coated with oligonucleotides

corresponding to specific gene coding regions. The slide is then labeled and hybridized

with purified RNA. A laser is scanned on the washed microarray slide to obtain the

expression levels of the genes.

Ways to obtain genome-wide measurements have also grown. There are a wide

array of microarray platforms, and genome-wide measurements can be obtained via

conventional hybridization based microarray [Gunderson et al., 2004; Lockhart et al.,

1996; Schena et al., 1995] or deep sequencing experiments [Shendure and Ji, 2008;

Shendure et al., 2004]. Some representative microarray platforms include Agilent

Microarray, Affymetrix GeneChip, and Illumina BeadArray.

Gene sets, on the other hand, are defined as a group of genes that share

biological similarities. They are a rich source of data for reconstructing the topologies

of biological pathways as they tend to participate in the same biological process.

Gene sets are derived from a variety of sources including PubMed text, ChIP-chip,

co-localization along a chromosome, and gene expression data (Figure 1.1). There are

a variety of methods to rank gene sets including GSEA-P [Subramanian et al., 2007]

and GSA [Efron and Tibshirani, 2007]. A major advantage of working with gene sets
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Figure 1.1: Relationship between gene expression data and gene sets. Left: A sample
gene expression data matrix. Right: After data discretization, the gene expression
data matrix now consists of 0’s and 1’s. Each column in the discretized matrix
represents a gene set. For example, in the first column, the gene set consists of
{1, 2, 4, 5, 8}.

is their capability to incorporate with ease higher-order interaction patterns. They

are also more robust to noise than gene expression data and are capable of integrating

data from a variety of sources. Given the ways a gene set may be derived, one must

keep in mind the possibility that not all gene sets may represent network structures.

This may be due in part that some gene sets may only capture correlation between

the genes and not necessarily causality.

An important underlying assumption when trying to reconstruct a biological

pathway topology using gene sets or gene expression data is that these sets of data

were originally emitted from unobserved signaling pathways. There are various algo-

rithms based on this assumption that attempt to reconstruct the biological pathways

using gene sets and/or gene expression data.. First, a biological pathway is a graph

G(V,E) where V is the set of vertices or nodes. E is the set of edges. In the case of

biological pathways, a vertex v ε V may either be a gene or protein whereas an edge

e ε E joining two such vertices represents the biological properties connecting them.

The final underlying network may either be directed or undirected, and both types

of networks occur naturally in biological systems.
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For example, a signal transduction is a typical example of a directed network

in biological systems. According to the Central Dogma of Molecular Biology, DNA

encodes the genetic information of living organisms. DNA directs protein synthe-

sis via the formation of messenger RNA (mRNA) [Alberts et al., 2002]. A signal

transduction is thus the primary means that decodes DNA into mRNA and then into

protein synthesis. For a signal transduction to occur, cytokines or chemokines bind to

the transmembrane proteins which in turn activates a sequential activation of signal

molecules leading to a biological end-point. In this case, a directed edge represents

one event in a signal transduction activating another, and a signaling pathway is thus

composed of a web of gene regulatory wirings or different transduction events.

Undirected networks, on the other hand, are typically exemplified by Protein-

Protein Interaction (PPI) networks [Vert, 2008]. These networks have no self-loops,

and all vertices consist of proteins. An edge exists between two proteins if they can

physically interact.

Once a biological pathway has been reconstructed, one needs to examine it

at a finer level as it may be the case that only part of a biological pathway is in-

volved in a process of interest. Thus, decomposing different biological pathways into

subpathways may be needed. By retrieving the subpathways, one is able to predict

gene functionality and relevant subpathways for different phenotypes. For example, if

gene A is clustered with other genes responsible for apoptosis, one may infer that gene

A also plays a role in apoptosis. This leads to predicting a new gene functionality

for gene A that may have been previously unknown. As another example, one may

possess cancer molecular profiling data and then extract biological insights about the

subpathways most relevant to cancer.

Finally, given the existence of a vast amount of pathway databases including

Reactome [Croft et al., 2011] and KEGG [Kanehisa and Goto, 2000; Kanehisa et al.,
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Figure 1.2: The overall framework for this dissertation. Using the KEGG pathways
as an input source, three network problem domains were tackled. Starting from the
right, molecular profiling data may be discretized into gene sets. Using the KEGG
pathways as prior knowledge, condition specific networks may be reconstructed. In
particular, the Gene Set Cultural Algorithm (GSCA) was developed to solve this
problem. Furthermore, the KEGG pathways may be partitioned into smaller sub-
pathways or subnetworks. In conjunction with molecular profiling data, activated
subpathways may be returned as was done by the Topology Enrichment Analysis
frameworK (TEAK). Finally, query graphs that represent biological hypotheses may
be queried against the entire set of KEGG pathways to return a set of query hits as
was done by the Query Structure Enrichment Analysis (QSEA) algorithm.

2012], biologists may design hypotheses in the form of query graphs. These query

graphs may then be queried against the pathway databases to find support for a

biological hypothesis among the pathways. Figure 1.2 succinctly summarizes the

relationships amongst the various problem domains discussed in this dissertation.

To outline the remainder of this dissertation, the three problem domains will

now be examined in more detail. Chapters 2 and 3 will briefly present a survey of rele-

vant network reconstruction and network partitioning algorithms, respectively. Chap-

ter 4 will present the Gene Set Cultural Algorithm (GSCA). Chapter 5 will present

the Topology Enrichment Analysis frameworK (TEAK). Chapter 6 will present the
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Query Structure Enrichment Analysis (QSEA) algorithm. Finally, Chapter 7 will

conclude this dissertation with possible directions for future work. It should be

noted that the work presented throughout this dissertation is largely based and

derived from original author contributions in [Acharya et al., 2012a] (http://dx.

doi.org/10.1002/9781118346990.ch1), [Judeh et al., 2010], [Judeh, 2011] (http:

//scholarworks.uno.edu/td/463/), [Judeh et al., 2012] (http://dx.doi.org/10.

1145/2382936.2382997), [Judeh et al., 2013a] (http://dx.doi.org/10.1093/nar/

gks1299), [Judeh et al., 2013b] (http://dx.doi.org/10.1145/2506583.2506650),

and [Judeh et al., 2014].

http://dx.doi.org/10.1002/9781118346990.ch1
http://dx.doi.org/10.1002/9781118346990.ch1
http://scholarworks.uno.edu/td/463/
http://scholarworks.uno.edu/td/463/
http://dx.doi.org/10.1145/2382936.2382997
http://dx.doi.org/10.1145/2382936.2382997
http://dx.doi.org/10.1093/nar/gks1299
http://dx.doi.org/10.1093/nar/gks1299
http://dx.doi.org/10.1145/2506583.2506650
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Chapter 2: A Survey of Network Reconstruction Algorithms2

In the bioinformatics domain, network reconstruction algorithms may use gene ex-

pression data to reconstruct the underlying biological network. Previous approaches

to reconstruct biological networks from gene expression data include Boolean or Prob-

abilistic Boolean networks [Kaderali et al., 2009; Shmulevich et al., 2002], Bayesian

networks [Friedman et al., 2000; Segal et al., 2003], mutual inference based methods

[Margolin et al., 2006; Zoppoli et al., 2010], and ordinary differential equations [Bansal

et al., 2006; di Bernardo et al., 2005]. While these methods may be useful, they may

be unable to exploit signaling cascades illustrated in Figure 2.1. In Figure 2.1, the

underlying signaling pathway may have different components activated in response to

various biological conditions. Various components may be activated through linear

signaling cascade mechanisms. In one paradigm, a cell membrane receptor is bounded

by a growth factor. This in turn causes a signal to be transmitted to the nucleus,

which results in a change in gene expression levels [Li, 2005]. In particular, the linear

signaling cascades may be thought of as ordered sets of genes but are observed as

unordered sets of genes. Approaches that are specifically designed for gene sets may

then be of use.

Reconstructing networks from unordered gene sets or overlapping sets of occur-

rences has applications in different domains, including telecommunication networks

[Rabbat et al., 2005, 2008]. In particular, in the bioinformatics domain, previous

works for reconstructing signaling pathways from unordered gene sets include the

Gene Set Gibbs Sampler (GSGS) algorithm [Acharya et al., 2012b] and the Gene Set

Simulated Annealing algorithm (GSSA) [Acharya et al., 2012c]. These works focused

primarily on reconstructing signaling pathway topologies and assume that each in-

2The content in this chapter is largely derived from original author text and contributions found
in [Acharya et al., 2012a; Judeh et al., 2010; Judeh, 2011].
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Figure 2.1: 1) The underlying signaling pathway to be reconstructed. 2) A signaling
pathway may consist of several overlapping signaling transduction events that may
be represented using ordered and linear chains of genes. Signal transduction events
whose orders are known are denoted as ordered gene sets. 3) The indirect observed
measurements are available as input as unordered gene sets. 4) Using the unordered
gene sets in (3), the goal is to reconstruct the underlying network found in (1).
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dividual gene set corresponds to a linear signalling cascade of events. Given enough

overlapping gene sets, they sought to reconstruct the underlying signaling pathway

topology that produced the gene sets.

The remainder of this chapter will now be outlined. First, Bayesian networks

for reconstructing networks from gene expression data will be examined. Afterwards,

the Frequency Method will be examined, which reconstructs networks from sets of

co-occurrences (in their essence, co-occurrences may be though of as sets of nodes

or vertices analogous to gene sets). This will then be followed by the discussion of

three network reconstruction algorithms from gene sets, namely the Gene Set Gibbs

Sampler (GSGS) algorithm, the Gene Set Simulated Annealing (GSSA) algorithm,

and the Linear Path Augmentation (LPA) algorithm.

2.1 Bayesian Networks

A Bayesian network [Friedman et al., 2000; Needham et al., 2007] is a model that com-

bines a graphical model and probabilistic relationships between the vertices. From

a network structural view, a Bayesian network embodies the conditional dependen-

cies and independencies of its various vertices. It also efficiently encodes the joint

probability distribution of all the vertices in the graph. A Bayesian network is rep-

resented by a DAG (directed acyclic graph), which rules out Bayesian networks from

representing feed-back loops and other cyclic structures.

A Bayesian network consists of a pair (G,Θ) where G represents a DAG.

The |V | = n nodes of G are random variables X1, X2, ..., Xn that may represent

discrete or continuous random variables. Θ denotes the set of parameters for each of

the random variables and is needed to encode a random variable’s CPD (conditional

probability distribution) or CPT (conditional probability table) depending on whether
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it is discrete or continuous. More formally, one can define Θ as

Θxi|pa(xi) = P (xi|pa(xi)) (2.1)

∀ xi ε Xi given the set of parents of xi in G. Θ is often learned by assuming some

underlying distribution and using gene expression data to derive Θ. Using the fac-

torization definition, one can express the joint probability distribution as a product

of the conditional probabilities

P (x1, x2, ..., xn) =
n∏
i=1

P (xi|pa(xi)). (2.2)

Using Bayesian networks often consist of using a structure learning algorithm

that consists of two major components: searching for “good” structures and then

scoring them. It is necessary to employ a heuristic to search for structures since the

search space is super-exponential, which may make an exhaustive search implausible.

For these types of problems, a greedy algorithm is a natural choice where one begins

with either a full network or empty network. One then adds, deletes, or reverses an

edge until a local maximum is reached. One may also employ simulated annealing to

aid for the search of a global solution.

As will be seen in the TEAK chapter, it may be the case that the structures of

interest are already available. Thus, one may venture to say that scoring structures

may be more important than searching in the context above. An approximation may

be used such as the Bayesian Information Criterion (BIC) defined as ln p(D|θ̂G, G)−
d

2
lnN where D is the dataset, G is the structure, d is the number of parameters, and

N is the size of the dataset. θ̂S is an estimate of the model parameters. For large

enough N , one may use MLE.
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Thus, a Bayesian network is a good probabilistic modeling approach to learn

the structure of a biological pathway from gene expression data. They are also robust

against noisy data, which in turn prevents over-fitting of the data. Its main disad-

vantages lie in its computational complexity and its restriction to DAGs. Regardless,

Bayesian networks are still popular in many fields, and many implementations, such

as the Bayes Net Toolbox (BNT) [Murphy, 2001], exist that allow users to harness

their power.

2.2 Frequency Method

The Frequency Method [Rabbat et al., 2005] is a method to reconstruct directed

networks from sets of co-occurrences. It makes three important assumptions about the

sets of co-occurrences. First, it assumes that tree structures in the paths correspond

to the sets of co-occurrences. Another assumption is the availability of the source and

destination nodes or vertices of each set of co-occurrences, which may not necessarily

be known for biological systems. Finally, it is assumed that the directed edges used

to form a tree in each set of co-occurrence are already available, but their order is

unknown.

Using terminology similar to [Acharya et al., 2012a], let S be the set of source

nodes, D be the set of destination or target nodes, and E is the collection of all

directed edges of the graph. Each member m ε S ∪ D ∪ E can be associated with

a binary vector of length N , the number of sets of co-occurrences, where xm(i) = 1

indicates that m is involved with ith set of co-occurrences. By letting si be the fixed

beginning of the ith set of co-occurrences and di its destination, the order of vertices
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or nodes for the ith set of co-occurrences is found by satisfying

e∗ = argmax
eεE

λi(e) (2.3)

where λi(e) is defined as

λi(e) = xTsixe − x
T
di
xe (2.4)

∀ e ε E with xe(i) = 1. It should be noted that λi(e) is used to determine whether e

is closer to its source si than its destination di. The result of Equation 2.3 is that e∗

is placed closest to si. Thus, the edges are placed in proximity to si based on their λ

scores.

The Frequency Method leads to a unique solution in reconstructing a network

and is computationally efficient. A major drawback is the stringent assumptions made

by it such as knowing the source and destination genes of each set of co-occurrences.

Furthermore, if there exist multiple paths between a pair of vertices, the Frequency

Method may fail.

2.3 GSGS and GSSA

The GSGS algorithm [Acharya et al., 2012b] solved the problem illustrated in Figure

2.1 by using a Gibbs Sampler approach that inferred the order of gene sets based on

partially observed networks. Given U gene sets, GSGS first fixes the order of U − 1

gene sets, which initially may be a random starting point for the first iteration of the

algorithm. From these U − 1 ordered gene sets, the transition probability matrix Π

and the initial probability vector π are calculated. For the uth gene set that is not

fixed, the likelihoods of all of the permutations or possible orderings of the gene set

are calculated. The sum of the likelihoods are then normalized to 1, and the new
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order for the gene set is then found by randomly selecting a permutation where the

probability of selecting a permutation or order for a gene set is directly proportional

to its likelihood. The process is repeated for each gene set, i.e., fixing the orders of

U − 1 gene sets while permuting the order of the gene set under examination.

After each gene set’s order is updated in the aforementioned manner, one

iteration is completed for the GSGS algorithm. GSGS is than ran for a fixed amount

of iterations, the burn-in stage, in hopes of reaching the underlying joint distribution.

In the burn-in stage, samples that could be extracted from the iterations are discarded

as it is assumed that the underlying joint distribution has not been reached. Once

the burn-in stage is completed, it is assumed that the underlying joint distribution

of the gene sets corresponds to the true signaling pathway topology. A specified

number of samples are then drawn from the joint distribution, and each gene set is

given an ordering corresponding to the most frequent ordering seen in the samples

collected after the burn-in stage. The ordered gene sets are then combined to return a

reconstructed network. Given the nature of the algorithm, it should be noted that the

reconstructed network may possess cycles although the original underlying network

may have lacked cycles. Furthermore, for gene sets of longer length (≥ 13), significant

amounts of memory may be required.

GSSA [Acharya et al., 2012c], on the other hand, seeks to reach a point es-

timate network or topology that best fits the unordered gene sets as opposed to a

distribution of likely candidate networks. In addition to assuming that the gene sets

are linear, the GSSA algorithm also assumes that the end points for each gene set is

fixed and known. This process may be facilitated by using known pathways such as

KEGG [Kanehisa and Goto, 2000; Kanehisa et al., 2012] to place genes in different

layers by using the BFS-level algorithm [Yu and Gerstein, 2006], for example, as prior

knowledge. After randomly initializing the gene sets, a simulated annealing algorithm
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is used to explore the neighborhoods of the current network topology at each iteration

by minimizing the negative maximum log likelihood of the entire set of U gene sets by

calculating the transition probability matrix Π and the initial probability vector π in

a similar fashion to GSGS. To ensure a good balance between space exploration and

space exploitation, the algorithm may move to a candidate network topology that

fits the unordered gene sets more poorly than the current network topology. After

a specified number of iterations, the algorithm terminates and returns the network

with the lowest energy as the reconstructed network.

2.4 Linear Path Augmentation (LPA)3

LPA (Linear Path Augmentation) [Judeh et al., 2010] is a novel network reconstruc-

tion algorithm. The goal of LPA is to reconstruct an original biological network using

gene sets as the input. The underlying hypothesis of LPA is that gene sets correspond

to signal cascades and that the underlying network corresponds to a DAG (Directed

Acyclic Graph). With these assumptions LPA has a robust pipeline to reconstruct

biological pathways using gene sets as input. As for GSGS and GSSA, Figure 2.1

provides an overview of the problem that LPA attempts to solve.

Before proceeding to the details of LPA, the details of Algorithm 2.1 used

to simulate data will be examined. To be able to test a variety of algorithms, it is

necessary to be able to generate some linear paths from the original network, which

is accomplished by Algorithm 2.1. It is important to note that for a fully connected

DAG, there are
n−1∑
j=1

j−1∑
i=1

(
j

i

)
linear paths where n is the number of vertices in the

DAG. Thus, this algorithm is only feasible for very sparse pathways or matrices. For

3The content in this section is largely derived from original author text and contributions found
in [Judeh et al., 2010; Judeh, 2011].
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Figure 2.2: A network and its transpose. By running Algorithm 2.1 on both networks,
the same set of gene sets is produced. In essence, this states that without any prior
information a network and its transpose are both equal in terms of finding the final
network. This phenomenon is also applicable to some types of Bayesian networks.

dense pathways or matrices, other algorithms that randomly sample simple paths

may be needed.

One important note is that any network and its transpose can produce the

same set of linear paths. As such, algorithms that perform network reconstruction

from gene sets or sets of co-occurrences should account for this fact. At least for

biological networks, though, this problem is somewhat mitigated as biologists should

usually be able to easily determine the proper matrix. For example, biologists would

not label a transcription factor as a leaf node. Thus, from an algorithmic perspective,

some prior knowledge is necessary.

The LPA algorithm itself is a novel combination of a variety of techniques.

Its name, Linear Path Augmentation, is based on augmenting matrices with linear

paths. Based on the available knowledge, no other algorithm functions in a manner
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Algorithm 2.1: Graph to Unordered Gene Sets

1: Input: A directed graph G and a prune length L
2: Output: All unordered gene sets with lengths ≥ L.
3: Remove all self-loops from G
4: Convert the graph G into the set of adjacency lists A
5: Set the visit vector V of size |G| to false
6: for i = 1, ..., |G| do
7: if vertex i has no children then
8: continue
9: else

10: Add vertex vi to the Stack Q
11: Set V [vi] to true
12: while S is not empty do
13: Let the vertex n be the top element of Q
14: Remove every child c of n from the adjacency list A[n] that has

V [c] as true
15: if A[n] is not empty then
16: Pop a child c of node n from A[n]
17: Set V [c] to true
18: Add node c to Q

19: else
20: Append the contents of Q as a new information flow to the

final output
/* Backtracking from vertex n */

21: Reconstruct A[n] from the graph G
22: Pop the vertex n from Q
23: Set V [n] to false

24: end

25: end

26: end

27: end
28: Prune all information flows of length < L from the output.
29: Randomly permute both the orders of the information flows and the order of

genes in each information flow.
30: Return all of the remaining unordered gene sets as the final output.
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Figure 2.3: The LPA algorithm consists of five key stages. The first stage, prepro-
cessing, separates the gene sets into components. The second stage, sorting, places
the gene sets in order. The third stage, growth, searches for candidate networks. The
fourth stage, pruning, scores the candidate solutions and removes candidate solutions
with low score. The final and fifth stage, intersection, is needed in the absence of
prior data to reconcile any candidate solutions still left.

similar to it. In addition to its novelty, it is quite modular consisting of preprocessing,

sorting, growth, pruning, and intersection stages. This modularity allows for ease

of updating stages individually. An overview of the LPA algorithm is presented in

Figure 2.3.

The first stage for LPA is to preprocess the sets of gene sets. The idea behind

the preprocessing stage is to divide the gene sets into different connected components.

This process is relatively straightforward. If two gene sets A and B share at least

one node, they are placed in the same component. If gene set C shares at least one

node with either gene set A or B, it is also placed in the same component. If the

original network is a single connected component, than all gene sets will fall into one

component. Similarly, if the original network had k disconnected components, then
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there will be k sets of gene sets. This allows for a divide and conquer approach where

the next steps are run k times, once for each set of gene sets.

The second stage for LPA involves assigning an order for a set of gene sets.

The LPA algorithm is very sensitive to the order of the gene sets. The order of

the gene sets can actually determine whether the algorithm converges to a solution

and may have a direct affect on its computational complexity. The current approach

places the longest gene sets first. While this increases the computational complexity

of the algorithm, it makes it more likely to reach a good solution.

The growth stage is the third stage for LPA and is akin to the “searching” stage

of a structure learning algorithm. For the first iteration, assuming no prior knowledge

has been provided,
length(G1)!

2
networks are constructed where G1 is the first gene

set. Each network corresponds to one linear path from the
length(G1)!

2
possible

permutations. The quantity is divided by two as the reverse of the permutations are

automatically discarded (Figure 2.2). These networks are stored in a set of candidate

networks F 1
i . After the pruning stage, one now begins with the pruned F 1′

i . Each

network in F 1′

i is expanded using
length(G2)!

2
permutations for G2. However, to

reduce the search space, the topological sort order of each network is taken into

account. Thus, only permutations that do not violate its topological sort order are

added. For example, if a pathway P consists of the linear path 1 → 2 → 3 and the

new gene set is {2, 3, 4}, 3 → 2 → 4 will not be added as it violates the topological

sort order. {2 → 3 → 4, 2 → 4 → 3, ...}, on the other hand, are valid permutations,

and P will split into new networks accordingly. The new augmented networks are

then added to F 2
i while the networks in F 1′

i are discarded. The process repeats itself

until all gene sets are used.

The pruning stage is LPA’s fourth stage and is akin to the “scoring” stage of

a structure learning algorithm. This stage attempts to reduce even further the set of
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candidate solutions. An important part of this stage is that it uses all gene sets to

compute a score for each network. In its essence, this score measures how many gene

sets that the underlying network can support. In other words, if one were to run the

Algorithm 2.1 on the network, its score consists of the intersection of its unordered

linear paths with the gene sets.

The fifth and final stage for LPA is needed only when some candidate network

solutions still remain. Thus, the final network returned is the intersection of all re-

maining candidate network solutions. In the absence of prior knowledge, one must

choose between a network and its transpose. An ad hoc solution at the moment is to

choose the network whose sum of edges in the upper triangular matrix is larger. Nat-

urally, this process may fail when the upper triangular and lower triangular matrices

of the original network have an equal number of edges.

A post-processing step is the combination of the separate components, if any,

produced by the algorithm. At this stage, the presence of prior knowledge is necessary

as a network and its transpose are equally likely in the absence of prior knowledge.

After this step is finished, the final network is ready for presentation to the user.

Although the LPA algorithm has some interesting concepts, at this stage,

though, it needs a better sorting, growth, and pruning stages for it be computationally

feasible. Given its modular nature, though, it is hoped that finding improvements for

these stages will be an achievable task in the future.

2.5 Conclusions

In this chapter, a variety of methods for network reconstruction were briefly men-

tioned. For network reconstruction from gene expression data, Bayesian networks

were examined. For network reconstruction from gene sets, the Gene Set Gibbs Sam-
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pler algorithm, the Gene Set Simulated Annealing algorithm, and the Linear Path

Augmentation algorithm were examined. Given the robustness of gene sets in con-

solidating data across platforms as well as their robustness against noise, it is hoped

that great promise lies within gene set based methods.

In particular, due to the complexity of reconstructing networks either from

gene expression data or gene sets, the usage of prior knowledge may be necessary. As

such, methods that can exploit prior knowledge may be useful, especially since prior

knowledge is increasingly available in the form of pathway databases such as KEGG

and Reactome.
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Chapter 3: A Survey of Network Partitioning Algorithms4

It may be the case that a reconstructed network may be too broad of a representation

for a specific biological process of interest. As such, it may be prudent to decompose

or partition the network into smaller subnetworks, especially given that only a spe-

cific part of a biological pathway may be activated for a biological process. A finer

level of detail may be needed when examining the structure of biological pathways.

Thus, decomposing a biological pathway structure into subpathways is important as

subpathways may provide valuable insight into various biological processes.

In order to better address and examine subpathways, it is necessary to examine

a similar concept in social networks, namely communities. A community is a subgraph

of a given graph such that (1) the connections within the community from node to

node are strong and (2) the external connections between other communities are few

and weak. Figure 3.1 provides an illustration of the concept of communities. It

is hoped that via the study of communities the extraction of subpathways is more

accessible.

For detecting communities, there are two major approaches, namely graph

clustering and community detection algorithms [Newman, 2006]. The former type of

algorithms has its origins in computer science and other related fields. The latter

type of algorithms was originally used by sociologists. It now encompass algorithms

in applied mathematics, physics, and biology.

For traditional graph clustering algorithms, a user must specify the number

of clusters or partitions. A graph clustering algorithm will then return the specified

number of partitions regardless of whether the underlying graph is partitionable.

These algorithms were designed with specific applications in mind. Some applications

4The content in this chapter is largely derived from original author text and contributions found
in [Acharya et al., 2012a; Judeh, 2011].
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Figure 3.1: In the example illustrated above, the network displayed consists of two
communities shaded white and black, respectively. Both communities exhibit high
internal connections. Furthermore, there exists only a single edge connecting the two
communities. As seen in the example above, the external connections between the
two communities are few whereas the internal connections within the communities
are plentiful.

include improving the paging properties of programs and placing the components of

an electronic circuit onto printed circuit cards [Kernighan and Lin, 1970].

One may ask, “Why study graph clustering algorithms for biological path-

ways?” A major reason is that these algorithms may serve as an inspiration for

community detection algorithms. For example, the Laplacian matrix used in graph

clustering algorithms can be modified to perform eigenvector decomposition [New-

man, 2006]. Furthermore, in one particular example, namely Newman’s eigenvector

method [Newman, 2006], the Kernighan-Lin algorithm [Kernighan and Lin, 1970] was

an inspiration for a post-processing algorithm, namely Algorithm 3.1.

As far as community detection algorithms are concerned, the underlying as-

sumption behind these algorithms is that a network or graph can “naturally” be

divided into subpathways or communities. Thus, the subnetworks of a graph can be

viewed as a topological property of the graph. This underlying shift in views is a

major difference between community detection and graph clustering algorithms.

Before discussing some algorithms in detail, it may be helpful to first discuss

the nature of these algorithms. Previously, a good number of algorithms in this field

were designed for undirected networks and produce mutually exclusive partitions.
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Algorithm 3.1: Post-processing Community Optimization

1: Data: An undirected network G and initial guesses for X and Y
2: Result: The subnetworks X and Y such that some quality function F is

maximized.
3: repeat
4: for i = 1 : |V | do
5: Move a vertex v from either X to Y or vice-versa that maximizes F .
6: Remove vertex v from any further consideration.
7: Store the resulting partition of G as Pi
8: end
9: Select Pi that maximizes F .

10: Let X = Xi and Y = Yi obtained from Pi.

11: until no further improvement in F can be obtained.

Furthermore, extending an algorithm for undirected networks to directed networks

may not necessarily be a trivial task [Fortunato, 2010]. In some cases, an algorithm

designed for undirected networks was extended to directed networks by simply treat-

ing the directed networks as undirected networks. As seen in Figure 3.2, however,

this approach may not be adequate.

It is helpful to have some baseline gold standard networks to compare the

different algorithms. What constitutes a gold standard network is an area of research

in and of itself. To illustrate the performance of different algorithms, Zachary’s

karate club [Zachary, 1977] has often been used as a gold standard network. This

social network has its origins in the relationships among 34 karate club members.

A disagreement arose between the club’s administrator and the instructor with the

latter splintering off to form a new club as seen in Figure 3.3.

The remainder of this chapter will now be outlined. First, the Kernighan-Lin

algorithm [Kernighan and Lin, 1970] will be discussed to provide a flavor for graph

clustering algorithms. This discussion will be followed by an examination of the

Girvan-Newman Algorithm [Girvan and Newman, 2002; Newman and Girvan, 2004],
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Figure 3.2: An E. coli network from the DREAM3 Network Challenges [Marbach
et al., 2009]. (Left) Using the undirected version of InfoMap [Rosvall and Bergstrom,
2008], six communities were found when edge direction was ignored. (Right) When
taking into account edge direction and using the directed version of InfoMap, no
communities were found. In both cases, the appropriate version of InfoMap was run
for 100,000 iterations.

Figure 3.3: The True Partitioning of Zachary’s Karate Club.
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a popular community detection algorithm. Later on, Newman’s eigenvector method

[Newman, 2006] and Infomap [Rosvall and Bergstrom, 2008] will be examined. Finally,

the Clique Percolation Method (CPM) [Palla et al., 2005] will be discussed.

3.1 Kernighan-Lin Algorithm

Developed in the 1970s, the Kernighan-Lin algorithm is a well-known graph clustering

algorithm. Given its applicability, it may be used as a subroutine for other algorithms.

It was initially developed in order to divide electronic circuits on boards. Since the

connections between the various circuits were expensive, minimizing the number of

connections between the various circuits was a key goal. Formally, the Kernighan-

Lin algorithm is a heuristic method that sought to solve the following combinatorics

problem: provided a weighted graph G, divide the vertices in V into k partitions such

that no partition is larger than a user-specified m. The objective function is thus to

minimize the total weight of the edges connecting the k partitions.

Since the algorithm divides a network into two subnetworks, it may be applied

in a recursive fashion if more clusters are needed. To begin one has an undirected

graph G of size |V | = n1 + n2 where n1, n2 correspond to the size of the subnetworks

X,Y , respectively. Without loss of generality, assume that n1 ≤ n2. Let cij be the cost

from vertex i to vertex j. All cii equal zero, and the adjacency matrix representing

G is symmetrical. Thus, the goal of the Kernighan-Lin algorithm is to minimize the

cost C of the edges connecting the subnetworks X and Y , where for y ε Y and x ε X

is

C =
∑
X×Y

cxy. (3.1)
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For each node α ε A where A may be either X or Y , let

Dα =
∑
βεĀ

cαβ −
∑
α′εA

cαα′ (3.2)

where the first sum represents the intracluster costs between a vertex α and all other

vertices in the opposite cluster. The second sum represents the intercluster costs

between vertex α and all other vertices in its own cluster. Another important quantity

to note is the gain g for swapping two nodes between their respective clusters. Let

g = Dx +Dy − 2cxy. (3.3)

Algorithm 3.2: Kernighan-Lin Algorithm

1: Data: An undirected network G and initial guesses for X and Y
2: Result: The subnetworks X and Y such that Equation 3.1 is minimized.
3: repeat
4: Calculate D values ∀ x ε X, y ε Y .
5: Let Y ′ = Y , X ′ = X.
6: for i = 1 : n1 do
7: Select y ε Y ′ and x ε X ′ that maximizes gi.
8: Let y′i = y and x′i = x.
9: Remove the selected x and y from their respective clusters X ′ and Y ′.

10: Recalculate the D values for the remaining elements.

11: end

12: Select j to maximize Γ =

j∑
i=1

gi.

13: if Γ � 0 then
14: Swap the 1 to j x′i’s and y′i’s between X and Y .
15: end

16: until Γ ≤ 0

The complexity of the Kernighan-Lin algorithm (Algorithm 3.2) isO(|V |2log|V |).

It is sensitive to the initial guesses for the subnetworks X and Y and may perform
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poorly for a random initialization. As such, a different algorithm may be used to pro-

vide the initial guesses for the subnetworks, and the Kernighan-Lin algorithm is then

run upon the initial subnetworks. From a biological standpoint, the Kernighan-Lin

algorithm may not be very applicable as initial guesses for X and Y may be hard

to obtain, especially if prior knowledge is lacking. Furthermore, the Kernighan-Lin

algorithm imposes a minimum number of subpathways which may not be biologically

valid. Nevertheless, despite its origins as a graph clustering algorithm, the Kernighan-

Lin algorithm did provide the inspiration for a post-processing community detection

algorithm (Algorithm 3.1) developed by Newman [Newman, 2006].

3.2 Girvan-Newman Algorithm

The Girvan-Newman algorithm [Girvan and Newman, 2002] is one of the more popular

divisive clustering algorithm. Divisive clustering algorithms are machine-learning

algorithms that provide users with partitions of varying sizes. They are also a type of

hierarchical clustering algorithms of which a second type is agglomerative clustering.

A brief description of the two types of hierarchical clustering algorithms now follows.

First, agglomerative clustering focuses on building clusters from the bottom

up. One begins an agglomerative clustering algorithm with each vertex or node in its

own cluster. Based on a specified distance metric, the two most similar clusters or

partitions are combined into a single cluster. This process is recursively repeated until

all nodes belong to a single cluster. While these algorithms may be good at finding

the core of different communities, they are weak in finding the outer layers. They

have also been shown to produce inconsistent results for networks whose partitions

are known [Newman and Girvan, 2004].
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Figure 3.4: A dendrogram is produced as the output of a divisive clustering algo-
rithm. To determine the final number of communities, the dendrogram needs to be
cut. Where the dendrogram is cut is an area of research in and of itself. For this den-
drogram, the given cut line divides the network into two communities shaded white
and black, respectively.

On the other hand, divisive clustering algorithms use a top-down approach.

Initially, all nodes belong to a single partition and are recursively divided until each

node belongs to its own partition. These type of algorithms produce a dendrogram

as can be seen in Figure 3.4.

For the Girvan-Newman algorithm, it follows the spirit of divisive clustering

algorithms. Compared to previous approaches, the Girvan-Newman algorithm fo-

cuses on the “information flow” of the network as opposed to its structure. As such,

it focuses on highly significant edges that serve as “bridges” between different com-

munities. These edges tend to have a high value of “edge betweenness”, which is

an extension of vertex betweenness [Anthonisse, 1971; Freeman, 1977]. The authors

introduced three types of edge betweenness: random-walk betweenness, current-flow

betweenness, and shortest-path betweenness. In practice, shortest-path betweenness

is most used and will be the focus for this section. The major reasons for using
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Figure 3.5: For Zachary’s karate club, the Girvan-Newman algorithm [Girvan and
Newman, 2002] mislabeled a single node, namely node 3.

shortest-path betweenness is that it provides the best combination of performance

and accuracy [Newman and Girvan, 2004].

To calculate the shortest-path betweenness scores for all of the edges, one must

first calculate all shortest paths between all pairs of vertices. For any given edge

e, its betweenness score measures how many shortest paths possess it as an edge.

One may refer to [Newman and Girvan, 2004] for details on calculating shortest-

path betweenness scores for an O(|V ||E|) algorithm. Overall, the Girvan-Newman

algorithm displayed in Algorithm 3.3 has complexity O(|V ||E|2). A sample result of

the Girvan-Newman algorithm on Zachary’s karate club may be seen in Figure 3.5.

The Girvan-Newman algorithm returns a varying number of communities de-

pending on where the dendrogram is cut. Thus, one can have a myriad of resolutions

to view the resulting communities by cutting the dendrogram at various locations.

For the structure of biological pathways this allows a researcher to view a variety

of hypothesized subpathways. It may be the case, though, that a researcher is only

interested in the best partition amongst all available candidate partitions. Thus,
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Algorithm 3.3: Girvan-Newman Algorithm

1: Data: An unweighted and undirected network G
2: Result: A dendrogram representing the hierarchy of the different

communities. The place where the dendrogram is cut determines
the output communities.

3: Compute the shortest-path betweenness score ∀ edges e ε E.
4: for i = 1 : |E| do
5: Remove the edge e ε E that possesses the largest shortest-path

betweenness score from E.
6: For all edges affected by the removal of e, recalculate their shortest-path

betweenness scores.

7: end

determining where to cut the dendrogram is a significant issue and subject to more

research. Newman and Girvan attempted to address this limitation by introducing

the concept of modularity. If a graph G divides into k communities, the modularity

Q is defined as

Q =
∑
i

eii − ||e2|| (3.4)

where e is a k × k symmetric matrix where an entry eij measures the fraction of all

edges that link community i and community j. For more details on modularity, one

may refer to [Fortunato, 2010], [Newman and Girvan, 2004], and [Newman, 2006].

3.3 Newman’s Eigenvector Method

In the preceding section, Newman and Girvan [Newman and Girvan, 2004] introduced

a new quality function called modularity in which a quality function assigns a score to

a partitioning of a graph [Fortunato, 2010]. Whereas the Girvan-Newman algorithm

used modularity to determine where to cut the dendrogram, there are many methods

that optimize modularity directly including greedy techniques, simulated annealing,

extremal optimization, and spectral optimization [Fortunato, 2010].
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A major driving force behind modularity is that random graphs do not possess

community structure [Fortunato, 2010]. Newman and Girvan proposed a model in

which the original edges of the graph are randomly moved, but the overall expected

degree of each node matches its degree in the original graph. In other words, modu-

larity quantifies the difference of the number of edges falling within communities and

the expected number of edges for an equivalent random network [Newman, 2006].

Modularity can be either negative or positive. High positive values of modularity

indicate the presence of communities, and one can search for good divisions of a

network by looking for partitions that have a high value for modularity. There are

various modifications and formulas for modularity, but the focus for this section will

be the modularity introduced by Newman [Newman, 2006].

For Newman’s eigenvector method, Newman reformulates the problem by

defining modularity in terms of the spectral attributes of the given graph. The even-

tual algorithm is very similar to a classical graph clustering algorithm called Spectral

Bisection [Fortunato, 2010]. Suppose the graph G contains n vertices. Given a partic-

ular bipartition of the graph G, let si = 1 if vertex i belongs to the first community. If

vertex i belongs to the second community, then si = −1. Let Aij denote the elements

of the adjacency matrix of G. Normally, Aij is either 0 or 1, but it may vary for

graphs where multiple edges are present. Placing edges at random in the network

yields a number of expected edges kikj/2m between two vertices i and j, where ki

and kj are the degrees of their respective vertices. The number of undirected edges

in the network is m =
∑
ij

Aij/2. The modularity Q is then defined as

Q =
1

4m

∑
ij

(Aij −
kikj
2m

)sisj. (3.5)
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As evident from Equation 3.5, a single term in the summation of modularity

equals zero if vertices i and j belong to different communities. The modularity Q can

be written in condensed form as

Q =
1

4m
sT B s, (3.6)

where the column vector s has elements si. Here, B is a symmetric matrix called the

modularity matrix with entries equal to

Bij = Aij −
kikj
2m

. (3.7)

The modularity matrix B has special properties akin to the graph Laplacian [New-

man, 2006]. Each row and column sums to zero yielding an automatic eigenvector of

(1, 1, . . .) with eigenvalue 0. Modularity can now be rewritten as

Q =
1

4m

n∑
i=1

(uTi · s)2βi, (3.8)

where ui is a normalized eigenvector of B with eigenvalue βi. Let uM denote the

eigenvector with the largest eigenvalue βM . Modularity can thus be maximized by

choosing the values of s, where siε{−1, 1}, that maximize the dot product uTM ·s. This

occurs by setting si to 1 when the corresponding element uMi
� 0 and −1 otherwise.

Newman’s eigenvector method is as follows:

Additional communities can be found by recursively applying Algorithm 3.4

to the discovered communities after a modification to Q [Newman, 2006]. Using the

power method to find uM , Newman’s eigenvector method has complexity O
(
|V |2 log |V |

)
,

where |V | is the number of vertices in the graph [Fortunato, 2010]. Newman’s eigen-

vector method excels in its speed. Another useful property of Newman’s eigenvector
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Algorithm 3.4: Newman’s Eigenvector Method

1: Data: An undirected network G.
2: Result: Two partitions of graph G such that the modularity Q is

maximized.
3: Find the eigenvector uM corresponding to the largest eigenvalue βM of the

modularity matrix B.
4: Let si = 1 if uMi

� 0 and −1 otherwise.
5: Return two partitions X and Y . X consists of all nodes whose corresponding
si equal to 1. Y consists of all nodes whose corresponding si equal to −1.

method involves the values of uM . The value |uMi
| corresponds directly to the strength

of node i’s membership in its cluster. Newman’s eigenvector method also possesses a

built-in stopping criterion. For a given graph G, if there are no positive eigenvalues,

then G is a community in and of itself. Its major drawback is the same as spectral

bisection where the algorithm gives the best results for the initial bisection of the

graph [Fortunato, 2010]. Another major drawback involves the use of modularity as

a quality function.

Specifically, Fortunato [Fortunato, 2010] lists three major flaws for modularity.

First, there are random graphs that may have partitions with high modularity, which

undermines the very concept behind modularity. Second, modularity-based methods

may suffer from a resolution limit. In other words, meaningful communities that are

small with respect to the overall graph may be subsumed by larger communities.

Finally, it has been shown that there exists an exponential number of partitions that

have a high modularity, especially for networks possessing a strong hierarchical struc-

ture as most real networks do. Finding the global maximum may be computationally

intractable.

Leicht and Newman [Leicht and Newman, 2008] later on modified Newman’s

eigenvector method to make it applicable towards directed networks. Leicht and
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Newman first begin by modifying Equation 3.6 into

Q =
1

2m
sT B s. (3.9)

The modularity matrix B is tweaked to account for edge direction and is given by

Bij = Aij −
kini k

out
j

m
, (3.10)

where Aij is 1 in the presence of an edge from node j to node i and 0 otherwise. The

term koutj is the out-degree or the number of edges leaving node j, kini is the in-degree

or the number of edges entering node i and m is the total number of edges in the

adjacency matrix of the graph G.

The modularity matrix B as presented in Equation 3.10 is asymmetrical, which

may cause technical problems later on. To remedy this situation, the matrix B is

replaced in Equation 3.9 with the sum of B and its transpose ensuring symmetry.

Equation 3.9 now becomes

Q =
1

4m
sT (B +BT )s. (3.11)

The algorithm to partition the graph G is essentially the same as Algorithm

3.4 except that the modularity matrix B defined in Equation 3.7 has been replaced

with a symmetrical matrix B + BT , where the latter B is defined in Equation 3.10.

An advantage to this method is that essentially the underlying Newman’s eigenvector

method can be used unchanged except for some minor tweaks to account for edge

direction. However, the given definition of modularity to incorporate edge direction

is flawed. Kim et al. [Kim et al., 2010] illustrated the shortcoming of the new

definition for modularity as seen in Figure 3.6.
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Figure 3.6: The two networks illustrate the problem with the directed version of
modularity introduced by Leicht and Newman [Leicht and Newman, 2008]. The in-
degrees and out-degrees for nodes X and X ′ are the same. The same scenario holds
for Y and Y ′. The result is that the directed version of modularity is unable to
distinguish between the two given networks [Kim et al., 2010].

3.4 Infomap

The main idea behind Infomap [Rosvall and Bergstrom, 2008] is to identify the par-

titions of a graph using as minimal information as needed to provide a coarse-grain

description of the graph. Infomap uses a random walk to model information flow. A

community is defined as a set of nodes for which the random walker spends a consid-

erable time traversing between them. If the communities are well-defined, a random

walker does not traverse between different communities often. A two-level description

for a partition M is used where unique names are given to the communities within

M , but individual node names across different communities may be reused. It is akin

to map design where states have unique names but cities across different states may

have the same name. The names for the communities and nodes are generated using a

Huffman code. A good partitioning of the network thus consists of finding an optimal

coding for the network. The map equation simplifies the procedure by providing a

theoretical limit of how concisely a network may be described given a partitioning

of the network. Using the map equation, the actual codes for different partitions do

not have to be derived in order to choose the optimal amongst them. The objective
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becomes minimizing the MDL (minimum description length) of an infinite walk on

the network. In other words, the MDL consists of the Shannon entropy of the ran-

dom walk between communities and within communities [Fortunato, 2010]. The map

equation is as follows:

L(M) = qH(Q) +
m∑
i=1

piH(P i). (3.12)

In the above equation, m is the number of communities. q is defined as

q =
m∑
i=1

qi, (3.13)

where each qi is the probability per step that the random walker exits the ith com-

munity. H(Q) is the movement entropy between communities and is calculated as

H(Q) =
m∑
i=1

qi∑m
j=1 qj

log
qi∑m
j=1 qj

. (3.14)

The weight of the entropy of movements within the ith community, denoted by pi, is

defined as

pi = qi +
∑
αεi

pα. (3.15)

Each pα for node α in the ith community is the ergodic node visit frequency, i.e., the

average node visit frequencies for a random walk of infinite length. This is done using

the power method. The entropy of movements within the ith community is calculated

as

H(P i) =
qi

qi +
∑

βεi pβ
log

qi
qi +

∑
βεi pβ

+
∑
αεi

pα
qi +

∑
βεi pβ

log
pα

qi +
∑

βεi pβ
. (3.16)



37

Algorithm 3.5: Infomap

1: Data: An undirected network G.
2: Result: A partition M such that Equation 3.12 is minimized.
3: repeat
4: Assign each node into its own module.
5: Visit the modules in a random sequential order where at each module i,

combine module i to the neighboring module, if it exists, that reduces
Equation 3.12 the most.

6: until until no move reduces Equation 3.12

Algorithm 3.5 is the core of Infomap. There are two further subroutines that

improve upon the results of the main algorithm listed in [Rosvall and Bergstrom,

2010]. The three routines run for a user-specified number of iterations. The result

returned is the best partition found amongst all of the iterations. It is important

to note that while modularity focuses on the pairwise relationships between nodes,

Infomap focuses on the flow of information within a network [Fortunato, 2010]. This

underlying difference may often cause modularity-based methods and Infomap to

generate different partitions. The result of running the undirected version of Infomap

on Zachary’s karate club is displayed in Figure 3.7.

The extension of Infomap from the undirected case to the directed case is very

straightforward. In the directed version of Infomap, a “teleportation probability”

τ is introduced. With probability τ , the random walker jumps to a random node

anywhere in the graph. This modification changes the undirected random walker

into a directed “random surfer” akin to Google’s PageRank algorithm. The default

choice of 0.15 for τ is also akin to the damping factor d = 0.85 in Google’s PageRank

algorithm [Rosvall and Bergstrom, 2008]. While the map equation remains the same,

the exit probabilities qi where q =
m∑
i=1

qi and m equals the number of communities,

must be updated to include the contribution of τ . The underlying algorithm remains

the same.
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Figure 3.7: For Zachary’s karate club, Infomap [Rosvall and Bergstrom, 2008] mis-
labeled two nodes, namely nodes 3 and 10. Furthermore, the community in red was
subdivided into another community, colored in as green.

3.5 Clique Percolation Method

The Clique Percolation Method (CPM) [Palla et al., 2005] is a community detection

algorithm that allows for overlapping subpathways. This is an important feature,

especially for biological pathways where a node in a biological pathway may partic-

ipate in different biological processes. The building blocks of CPM are k-cliques. A

k-clique is a maximal subgraph of size k such that any two nodes in the k-clique pos-

sess an edge between them. Another important concept is adjacent k-cliques. Two

k-cliques are said to be adjacent if and only if they share k−1 nodes. Thus, a k-clique

community is the union of all adjacent k-cliques.

Concerning the algorithm itself, one key step is to find all of the maximal

cliques within a given network. While the authors introduced a methodology to find

maximal cliques, one may simply use the well-known Bron-Kerbosch algorithm [Bron

and Kerbosch, 1973] to find all of the maximal cliques in a network. Letting the

total number of cliques found be denoted as n, CPM also needs to build an n × n



39

clique-clique overlap matrix M . In this matrix M , each Mij denotes the number of

nodes shared between clique i and clique j. For details on CPM, one may refer to

Algorithm 3.6.

Algorithm 3.6: Clique Percolation Method

1: Data: An unweighted and undirected network G and the size k of the
k-clique communities to find.

2: Result: A set of k-clique communities.
3: For the graph G, find all of its maximal cliques.
4: Build an n× n clique-clique overlap matrix M .
5: Set all entries on the main diagonal of M less than k to zero.
6: Set all off-diagonal entries of M less than k − 1 to zero.
7: Return the k-clique communities consisting of the connected cliques whose

entries remain in M .

For biological pathways, one major advantage of CPM over other methods is

that it allows for overlapping communities or subpathways. More importantly, For-

tunato [Fortunato, 2010] has stated that CPM has the ability to distinguish between

graphs with community structure and random graphs. However, a major drawback

for CPM is that not all of the nodes on the periphery of the network may partici-

pate in a module making it somewhat similar to agglomerative clustering algorithms.

Furthermore, choosing a good value for k a priori is a nontrivial task. One poten-

tial solution to address this problem is to extract all possible k-clique communities

and then use a quality function like modularity to determine the best partition. CPM

also has issues from a complexity perspective as its complexity cannot be expressed in

closed form. At the very minimum, its complexity is in NP-complete since it involves

finding maximal cliques, which is known to be NP-complete. Figure 3.8 illustrates

the application of CPM on Zachary’s karate club.

One final note concerning the CPM algorithm is that it has a directed version

called CPMd [Palla et al., 2007]. One key concept is extending the notion of k-cliques
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Figure 3.8: Using CFinder [Adamcsek et al., 2006] Zachary’s karate club is divided
into three types of communities based on their k value. At the top left for k = 5,
only a single community is returned. At the top right for k = 4, three communities
are returned with two communities sharing two vertices. At the bottom for k = 3,
three communities are returned. As evident from the k values, lower values of k may
lead to larger but less strongly connected communities whereas higher values of k
may lead to smaller but more strongly connected communities. As evident from the
figure, the partitions returned by CPM differ from the partitions seen in Figures 3.3,
3.5, and 3.7, which in turn may suggest that certain algorithms are better suited for
certain types of networks over other algorithms.
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Figure 3.9: (Left) A directed acyclic graph and a directed 4-clique. The node labels
refer to the outdegree of each node. (Middle-Left) While a 4-clique, it is not a directed
4-clique due to the presence of a cycle. Furthermore, it is necessary that each node
has a unique outdegree in order for it to be a directed 4-clique. (Right) Using CFinder
[Adamcsek et al., 2006] the different 3-communities of the E. coli network in Figure
3.2 are found. Many nodes were left out of the final partitioning, which may prove
problematic for analyzing the structure of some biological pathways.

for undirected networks to directed k-clique for directed networks. In its simplest

form, a directed k-clique is simply a graph that has a subset of edges that produce

a k-clique and a directed acyclic graph. For a directed acyclic graph, the edges of a

directed k-clique always point from a node with a higher order to a node with a lower

order. Equivalently, all nodes within the specified k-clique have different orders. The

order of a node i within a k-clique is simply the sum of all edges leaving node i to

the other nodes within the given k-clique. In [Palla et al., 2007] a directed 4-clique

was shown as in Figure 3.9. Furthermore, an illustration of how CPMd works is

reproduced in Figure 3.10.

3.6 Conclusions

In this chapter, a variety of algorithms for network partitioning were reviewed. The

network partitioning algorithms were categorized as graph clustering algorithms and

community detection algorithms. Graph clustering algorithms are applicable to Very
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Figure 3.10: (1) The underlying network topology. (2) a is selected as the start node.
The in-neighbors of a are placed in a container above a. The out-neighbors are placed
in a container below a. (3) Select a new node from either container. In this case, b
is selected. d and f are removed because they are not neighbors of b. e is placed in
its own container as it is between a and b. (4) c is added. h is removed as it is not a
neighbor of c. (5) g is added. Since e is not a neighbor of g, e is removed [Palla et al.,
2007]. For graphs with cycles and a more detailed explanation of the algorithm, one
may refer to [Palla et al., 2007].

Large-Scale Integration (VLSI), distributing jobs on a parallel machine, and other

applications found in computer science. Community detection algorithms, on the

other hand, are more applicable to biological and social networks.

For graph clustering algorithms, the Kernighan-Lin algorithm was examined.

It has complexity O
(
|V |2 log |V |

)
. Although the Kernighan-Lin algorithm may not be

directly applicable to biological networks, its “descendant”, Algorithm 3.1, is directly

applicable as a post-processing step [Newman, 2006].

The first community algorithm presented was the Girvan-Newman algorithm

with complexity O
(
|V ||E|2

)
. The essence of the Girvan-Newman algorithm is that

edges between communities have high edge-betweenness scores. By focusing on edge-

betweenness, the Girvan-Newman algorithm focuses on the flow of the network as

opposed to the immediate connection between nodes. Its major drawback is the lack

of a proper criterion to determine the cut line of a dendrogram. Modularity was used

to remedy the situation, but as seen later on in the chapter, modularity itself has
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its own drawbacks. An interesting solution may be replacing modularity as a quality

function with the map equation introduced by Rosvall.

Next, Newman’s eigenvector method was examined. This method is quite

interesting as by defining modularity via Equation 3.6, the modularity matrix B

defined in Equation 3.7 takes the position of the graph Laplacian in the Spectral

Bisection algorithm. Newman’s eigenvector method is considered to be quite fast with

complexity O
(
|V |2 log |V |

)
. The method focuses on the degrees and connections of

immediate nodes as opposed to the flow of information in a given graph. A more useful

aspect is that the value of |uMi
| for a node i corresponds directly to its participation

strength in its community. The major drawback of Newman’s eigenvector method is

the same as Spectral Bisection method in which its core strength lies in finding the

initial bipartition of a graph. There are also drawbacks involved with the choice of

modularity as the quality function. Finally, extending Equation 3.6 to its directed

counterpart Equation 3.9 may not incorporate edge direction in an efficient manner.

Infomap was then examined, which utilizes information theory to compress

good partitions and describe them using the least amount of bits possible. While

modularity concentrates on the pairwise relationships between nodes, Infomap focuses

on the flow of information within a network similar to the original Girvan-Newman

algorithm.

Finally, the Clique Percolation method was examined. The Clique Percolation

method is suitable for partitioning biological networks as it allows for overlap between

different communities. It has some drawbacks as it may not place all nodes in a

community, especially leaf nodes. The complexity of the Clique Percolation method

cannot be expressed in closed form. Moreover, for the case of directed networks, the

definition for directed k-clique may seem a bit arbitrary.
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Chapter 4: Gene Set Cultural Algorithm (GSCA)5

Recently, a wave of publications has emerged incorporating pathway topologies into

the analysis of molecular profiling data sets and their derivatives including Paradigm

[Vaske et al., 2010], SubpathwayMiner [Li et al., 2009], and TEAK [Judeh et al.,

2013a]. These approaches and others often use existing pathway database resources

such as Reactome [Croft et al., 2011] and KEGG [Kanehisa and Goto, 2000; Kanehisa

et al., 2012], which are manually curated from the literature. Given the abundance of

gene expression data sets and their derived gene sets, novel algorithms that reliably

infer biological pathways topologies may be of use. Furthermore, reconstructing a

biological network may be an important piece for further analysis such as network

partitioning and network querying algorithms.

Gene Set Enrichment Analysis [Subramanian et al., 2005] and Gene Set Anal-

ysis [Efron and Tibshirani, 2007] are some of the many approaches currently available

that focus on the analysis of gene sets, which may be obtained via databases such as

the Molecular Signatures Database [Subramanian et al., 2005] or by discretizing time

series data [Li et al., 2010] and steady state data. Gene sets are more interpretable

as they correspond to lists of biological processes [Klema et al., 2011] and may be

thought of as derived sample features that succinctly summarize the original gene

expression data [Holec et al., 2009]. Furthermore, by using gene sets, data sets from

multiple platforms may be integrated [Holec et al., 2009]. These previous approaches,

however, may focus only on gene sets individually in relation to gene expression data

sets and may not necessarily focus on the interactions that various gene sets may

have with one another. In particular, for a set of highly overlapping gene sets, suffi-

cient information may be present that allows for the reconstruction of the underlying

5The content in this chapter is largely derived from original author text and contributions found
in [Judeh et al., 2013b, 2014].
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biological network that may have emitted the gene sets. By reconstructing the origi-

nal network, the information stored across the gene sets may be aggregated into one

central representation, and further analysis may then be conducted.

Prior knowledge may also be exploited and used to reduce the search space and

to improve the reconstructed networks. In the work of Liu and Zhao [Liu and Zhao,

2004], gene expression data was utilized to better delineate the pathway components

of the S. cerevisiae MAPK signaling pathway found in protein-protein interaction

data. In the work of Hashemikhabir et al [Hashemikhabir et al., 2012], the problem

of reconstructing a signaling pathway was framed as finding the minimum number

of operations to modify a reference pathway that bests corresponded to the input

RNAi data. For the Gene Set Cultural Algorithm (GSCA) , prior knowledge via the

KEGG pathways may be used to hierarchically order the genes using a topological

sort ordering.

4.1 Method Overview

At the heart of Gene Set Cultural Algorithm (GSCA) is Reynolds’ cultural algorithm

framework [Reynolds, 1979, 1994]. The cultural algorithm framework is an evolu-

tionary computational model consisting of three major components: the population

space, the belief space, and the communication protocol that allows the population

space to influence the belief space and vice-versa as illustrated in Figure 4.1. Fur-

thermore, newer versions of the cultural algorithm framework may exploit a total of

five sources of knowledge [Engelbrecht, 2007; Reynolds and Gawasmeh, 2012]. The

first knowledge source is situational knowledge, which is responsible for keeping track

of the most fit solutions found at each generation. Normative knowledge is then used

to provide guidelines and standards for individual behaviors. Domain knowledge is
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Figure 4.1: Reynolds’ cultural algorithm framework. Elements in the belief space
are used to influence the next generation in the population space. Elements in the
population are then perturbed, and their fitness is evaluated. Some elements in the
population are then selected to influence the belief space, which in turn may then
be adjusted. The process then repeats itself until conditions for terminating the
algorithm are met. Adapted from [Engelbrecht, 2007].

similar to situational knowledge except that it is not updated at the end of each gener-

ation. As such, prior knowledge may serve as domain knowledge. History knowledge

maintains information about changes within the search space and may be modeled

via the use of a tabu list [Glover et al., 1993]. Finally, topographical knowledge rep-

resents the population space as a multi-dimensional grid. Topographical knowledge

can thus be used to guide a search towards unexplored areas. GSCA is able to use

situational knowledge, domain knowledge, and history knowledge.

The overall framework of GSCA is presented in Figure 4.2 and Algorithm 4.1.

In addition to using the cultural algorithm framework, GSCA uses topological sort
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Figure 4.2: An overview of the Gene Set Cultural Algorithm (GSCA).

orderings to reconstruct a network from unordered linear gene sets. It also uses the

KEGG pathways as prior knowledge to reconstruct the latent networks. It should

be noted that GSCA makes an additional assumption that the unordered gene sets

originated from a directed acyclic graph. While this assumption may lead to loss of

representative power (for example, feedback loops cannot be represented by a directed

acyclic graph), it is not overly restrictive.

Briefly, a topological sort ordering is a partial linear ordering of a network’s

vertices or nodes such that all directed edges go from left to right [Cormen et al., 2009].

Searching over topological sort orderings has been successfully applied to Bayesian

networks [Teyssier and Koller, 2012] and is applicable for reconstructing networks

from gene sets if the original network was a directed acyclic graph. Once the true
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Algorithm 4.1: GSCA

1: Input: The unordered gene sets U , the number of search agents/ beliefs B,
the number of elites T , and the number of generations J .

2: Output: The directed acyclic graph G of the most fit belief.
3: Randomly initialize B beliefs of length N in the belief space.
4: Set the exploration status E of all beliefs to false.
5: Decompose the unordered gene sets U into a set of unique pairs R.
6: for j = 1, ..., J do
7: for i = 1, ..., B do
8: if Ei is true then
9: Continue

10: end
11: Let the set S be the empty set.
12: Sort U according to a belief Bi.
13: Add Bi to the set S.
14: Find the fitness of Bi.
15: Set the top belief BT as Bi.
16: for k = 1, ..., R do
17: Swap a pair of nodes in Bi specified by Rk to generate a new

belief Bik.
18: if fitness(Bik) > fitness(BT ) then
19: BT = Bik.
20: Empty S.
21: Add Bik to S.

22: else if fitness(Bik) = fitness(BT ) then
23: Add Bik to S.
24: end

25: end
26: With uniform probability, randomly select BT from S to replace Bi.
27: if BT = Bi then
28: Set Ei to true.
29: else
30: Bi = BT

31: end

32: end
33: Select the top T beliefs with best fitness values for the next generation.
34: Randomly generate B − T new beliefs to be added to the belief space.
35: Set the exploration status E of the new beliefs as false.

36: end
37: Repeat the steps of the Population Space.
38: Reconstruct the output graph G from the most fit belief.
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topological sort ordering is known, reconstructing the network becomes straightfor-

ward since a topological sort ordering contains the ordering information that has

been previously lost. Thus, by employing an additional assumption, the problem of

reconstructing a network from unordered gene sets may now be casted as finding a

topological sort ordering of the original network.

The major parameters for GSCA are the number of generations or iterations

J , the number of independent search agents/ beliefs B, and the number of elite beliefs

to retain T . Both J and B play a role in the algorithm’s complexity whereas T helps

to determine the number of random topological sort orderings to be introduced into

the population each generation. It should also be noted that T plays the role of the

size of the situational knowledge preserved at the end of each generation in GSCA

where a smaller value of T will lead to greater exploration as B − T new topological

sort orderings are introduced. However, a smaller value of T may also lead to lack

of exploitation of fit topological sort orderings. A balance between exploration and

exploitation is sought by fixing T to be B/2.

4.2 The Belief and Population Spaces

GSCA proceeds by dividing the unordered gene sets U into a set of unique pairs R.

R is bounded by O(N(N − 1)/2) where N is the number of unique nodes or genes

in U . Via the use of R, one is able to define a neighborhood for a topological sort

ordering by randomly swapping a pair of nodes in a topological sort ordering. For

example, if the unordered gene sets are {(1, 2, 3, 4), (2, 3, 4, 5)}, then R consists of

the pairs {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. If the topological

sort ordering is (1 → 2 → 3 → 4 → 5) and the pair from R is (1, 2), the topological

sort ordering is then changed to (2→ 1→ 3→ 4→ 5). Furthermore, by limiting the
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pair swaps to R, one may avoid swapping a pair of genes that are not present together

within at least a single gene set. Using the example above, (1, 5) will be considered

an invalid swap since 1 and 5 are not present together in at least one gene set.

GSCA then proceeds to initialize the belief space. The belief space is repre-

sented by B topological sort orderings, which are then transferred into B search agents

whose neighborhoods are explored. In the absence of prior knowledge, the belief space

is randomly initialized to B different topological sort orderings. If prior knowledge

were available from pathway databases such as KEGG, any cycles or strongly con-

nected components are first removed from the pathway. In particular, the heuristic

from Query Structure Enrichment Analysis (QSEA) [Judeh et al., 2012] is used. Af-

ter removing any applicable cycles, the transitive closure of the prior knowledge is

calculated and stored. A topological sort ordering based on prior knowledge is then

constructed by iteratively selecting one of the roots of the prior knowledge’s transi-

tive closure with uniform probability. Upon selecting a root, the root and all of its

edges are removed. The root is then added to the end of a topological sort ordering.

The process of repeatedly selecting a root with uniform probability and removing all

applicable edges is repeated until all edges are removed. By using this procedure, a

topological sort ordering that obeys prior knowledge is extracted and retrieved. A

simple example illustrating this procedure is illustrated in Figure 4.3.

At this point, GSCA enters its population space. In the population space, each

search agent/ belief Bi or topological sort ordering has its neighborhood explored by

applying a unique pair from R one at a time and swapping the corresponding nodes

in Bi. If a pair swap from R leads to neighboring belief that contradicts with prior

knowledge, the neighboring belief is discard. To achieve this goal, the transitive

closure of the prior knowledge matrix is calculated. For a neighbor of a Bi, it is first

reversed. Then all weak orders in the reversed belief are checked against the transitive
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Figure 4.3: An example graph (left) and its transitive closure (right). In the be-
ginning, the only root in the transitive closure is 1. 1 is added to the start of the
topological sort ordering. After removing 1 and all of its edges, the vertices 2 and
3 are roots. With uniform probability, one of them is selected to be added to the
topological sort ordering. Suppose 3 was added to yield the partially constructed
topological sort ordering (1 → 3). Then, 3 and all of its edges are removed. At
the next step, 2 is the root, so it is added to yield (1 → 3 → 2). After removing 2
and all of its edges, only 4 remains. After adding 4, the topological sort ordering is
(1 → 3 → 2 → 4). The algorithm terminates as no vertices remain in the graph. It
should be noted that using the aforementioned procedure, another valid topological
sort ordering, (1→ 2→ 3→ 4), can also be generated.

closure of the prior knowledge matrix. If any weak order from the reversed belief is

found to exist in the transitive closure of the prior knowledge, it is determined that

random belief goes against prior knowledge and is thus discarded.

For each belief Bi and its applicable neighbors, the fitness is calculated by sort-

ing the unordered gene sets U according to each topological sort order. A transition

matrix

M = [cxy]N×N (4.1)

is first reconstructed from the ordered gene sets where cxy is the count of node x

appearing directly before node y across all ordered gene sets. The matrix M is very
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similar to the transition probability matrix Π used by the GSGS and GSSA algorithms

except that its rows are not normalized to sums of 1. The rationale behind this action

is to preserve magnitude information found in the counts, which is otherwise lost if

M is transformed into a transition probability matrix.

After reconstructing M , a heuristic based on the Chu-Liu [Chu and Liu, 1965]

and Edmonds’ algorithms [Edmonds, 1967] is used. Briefly, the Chu-Liu and Ed-

monds’ algorithms allow one to find the maximum weighted arborescence of a directed

graph. An arborescence is a graph where for a root vertex x and its descendant y,

there is exactly one path from x to y. As such, an arborescence may take the form

of a directed rooted tree where all edges point away from a root x. Based on the

implementation used by GSCA, it also possible to generate a forest of directed trees.

It should be noted that the concept of arborescences for directed graphs is analogous

to the concept of spanning trees for undirected graphs. Since a reconstructed M cor-

responds to a directed acyclic graph, there is no need to check for cycles. The fitness

score FS is calculated as

FS =
ΣN
n=1(max(Mn·) +max(M·n))

|ME|
(4.2)

where Mn· corresponds to the nth row of M , M·n corresponds to the nth column of M ,

and |ME| corresponds to the number of edges or nonzero elements in M . As such,

Equation 4.2 can be interpreted as calculating the sum of the arborescences of M

and its transpose while dividing by the number of edges in M to favor more sparse

networks.

The searching in the population space thus influences the belief space where

a belief Bi or its neighbor with highest fitness score FS is promoted to the belief

space B to influence the next generation. At this stage, both history and domain



53

knowledge, if available, may be used to guide the choice of random topological sort

orderings. For the history knowledge component, a tabu list is used to keep track of

all beliefs or topological sort orderings last seen within a window of fixed size. The

use of the tabu list thus helps to avoid visiting recently explored beliefs and in turn

yields a more efficient search. Domain knowledge may be available through the use

of the KEGG pathways, for example. Thus, using both history knowledge in the

form of a tabu list and domain knowledge in the form of prior knowledge may better

guide the search for the underlying network. The belief space B is then exited after

introducing B − T random topological sort orderings to avoid being trapped in local

peaks.

GSCA concludes after J−1 generations or iterations have been reached. Since

GSCA begins with the belief space, the steps for the population space are undertaken

one more time. After entering the population space for the last time, the output graph

G may be reconstructed using a number of ways. For the purposes of this chapter,

the most fit belief Bi or topological sort ordering is used to order the unordered gene

sets U . After ordering U , one can simply trace the linear paths in U to add edges to

reconstruct the output graph G.

4.3 Heuristic Fitness Function Justification

The choice of Equation 4.2 is now justified. To test the performance of Equation 4.2,

four E. coli networks and five Insilico networks were extracted from GeneNetWeaver

[Schaffter et al., 2011] corresponding to gold standard networks from DREAM3 and

DREAM4 [Marbach et al., 2009, 2010; Prill et al., 2010]. Furthermore, it should be

noted that the heuristic for QSEA [Judeh et al., 2012] was used to preprocess and

remove feedback arc sets for the Insilico networks. After exhaustively generating all
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Table 4.1: DREAM3 and DREAM4 Network Statistics

Network |V |a |E|b Diameterc Maxd |U |e % Usedf

E. coli 1 27 33 4 5 125 100%
E. coli 2 30 35 3 4 34 100%
E. coli 3 48 53 4 5 141 100%
E. coli 4 42 47 3 5 114 100%
Insilicog1 82 107 5 7 150 41.10%
Insilico 2 93 178 6 7 150 28.90%
Insilico 3 98 173 10 17 150 3.56%
Insilico 4 97 176 9 14 150 3.02%
Insilico 5 93 171 9 11 150 5.33%
a the number of vertices in the network
b the number of edges in the network
c the network diameter
d the length of the longest gene set in the network
e the number of gene sets available for the network
f the percentage of the gene sets used for the network
g Feedback arcs sets were removed for all Insilico net-

works.

simple paths of the DREAM3 and DREAM4 gold standard networks, all gene sets

of length 2 were removed. The networks were then reconstructed from the pruned

gene sets. All gene sets for the E. coli networks were used whereas 150 gene sets

for the Insilico networks were randomly sampled. Some summary statistics of the

reconstructed networks are displayed in Table 4.1.

In Figures 4.4 and 4.5, 1, 000, 000 random topological sort orderings were gen-

erated (with replacement), and the gene sets were ordered according to a random

topological sort ordering and scored. The two score functions used include GSCA’s

Equation 4.2 as well as the log of the maximum likelihood function used by both

GSSA and GSGS. After sorting the gene sets according to a given topological sort

ordering, both the fitness score used by GSCA and the maximum likelihood score

were calculated for the underlying network topologies. The scores for GSCA were

scaled to (0, 1] by dividing by the maximum score for each network for each plot. The
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Figure 4.4: GSCA’s Equation 4.2 versus the log of the maximum likelihood function
used by both GSSA and GSGS for four E. coli networks from the DREAM3 and
DREAM4 initiatives [Marbach et al., 2009, 2010; Prill et al., 2010]. 1, 000, 000 random
topological sort orderings were generated for all networks. Equation 4.2 performs
similarly to the log of the maximum likelihood across all networks.

log of the maximum likelihood scores were scaled to [0, 1] by shifting the scores by the

maximal likelihood score to the right and by then dividing by the maximum score of

the shifted scores for each network for each plot. The fitness of random topological

sort orderings are represented as red dots whereas the fitness of the true topological

sort ordering is represented by a solid blue line.

For Equation 4.2, only the E. coli 2 network had 0.2959% of random topolog-

ical sort orderings dominating the true topological sort ordering whereas for all other

networks, none of the scores of the random topological sort orderings dominated the

scores of the true topological sort orderings. For the maximum likelihood function,

on the other hand, the number of random topological sort orderings dominating the

score of the true topological sort orderings were 0.7631%, 1.8777%, 0.3938%, 2.1189%,
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Figure 4.5: GSCA’s Equation 4.2 versus the log of the maximum likelihood function
used by both GSSA and GSGS for five Insilico networks from the DREAM3 and
DREAM4 initiatives [Marbach et al., 2009, 2010; Prill et al., 2010]. 1, 000, 000 random
topological sort orderings were generated for all networks. Equation 4.2 performs
similarly to the log of the maximum likelihood across all networks.

and 0.0001% for the E. coli 1, E. coli 2, E. coli 3, E. coli 4, and Insilico 2 networks,

respectively. As such, it may be inferred that when ample or sparse gene sets are

available, Equation 4.2 performs similarly to the maximum likelihood function.

Furthermore, one may note that GSCA’s score has a lower bound of 2*(the

number of nodes in the reconstructed network - 1) / (the number of transitions in the

gene sets). In the case of the E. coli 1 network, the network size is 27, and the number

of transitions in the gene sets is 349. As such, GSCA’s E. coli 1 score is bounded

below by 2*27/349 = 0.1490. One is subtracted from the total number of nodes since

there must be at least one root and one leaf for the reconstructed network to be a

DAG. In reality, the actual minimum score may be higher as the above assumes that
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Figure 4.6: A comparison of the performance of GSGS and GSCA. On the y-axis, the
F -score = 2 ∗ Sensitivity ∗ PPV/(Sensitivity + PPV ) is measured. On the x-axis,
snapshots of the performance of the GSGS and GSCA algorithm at varying number
of iterations or generations is presented. Overall, GSCA outperforms (the E. coli
networks) or performs similarly to the GSGS algorithm.

all edges in the reconstructed network have weight one and that each transition in

the gene sets translates into a unique edge.

4.4 Simulated Data Analysis

In Figure 4.6, the performances of GSGS and GSCA were compared. GSSA was

not used since knowing the end terminals of gene sets in conjunction with the DAG

assumption made by GSCA may be sufficient to reconstruct the underlying network in

the presence of ample gene sets. The primary parameters for GSGS are the number of

iterations for the burn-in stage and the number of samples to collect after the burn-in

stage is completed. Briefly, the burn-in stage is part of the Gene Set Gibbs Sampler
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Figure 4.7: The performance of the GSCA algorithm for three Insilico networks.
GSGS was unable to run due to insufficient memory on a workstation with 4 GB of
RAM.

algorithm that discards the results of the initial iterations as the joint distribution

of gene sets moves to what is hoped to be the true distribution. As for GSCA, the

relevant parameters are the number of generations J , the number of beliefs/search

agents B, and the number of elite beliefs to retain after each generation T .

For each network in Figure 4.6, GSGS and GSCA were run 10 times each on

randomly ordered gene sets of sizes described in Table 4.1. The parameters for the

GSGS algorithm were 5, 000 iterations each for both the burn-in state and for sample

collection for a total of 10, 000 iterations for each run. For the 5, 000 iterations of

sample collection, networks were reconstructed after the collection of 1, 000, 2, 000,

3, 000, 4, 000, and 5, 000 samples. For GSCA, it was run for a total of 5, 000 gener-

ations or iterations for each run. The number of search agents/ beliefs B was set to

10, and the number of elite solutions T preserved after each generation was set to 5.
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Figure 4.8: The use of prior knowledge for the nine DREAM3 and DREAM4 net-
works. On the y-axis, the F -score = 2 ∗ Sensitivity ∗ PPV/(Sensitivity + PPV )
is measured. On the x-axis, snapshots of the performance of the GSCA algorithm
at varying number of generations is presented. The lines in red represent no prior
knowledge. The lines in green represent 20% prior knowledge. The lines in pink
represent 40% prior knowledge. The lines in black represent 60% prior knowledge,
and the lines in blue represent 80% prior knowledge. As can be seen overall, prior
knowledge leads to an overall better performance for GSCA.

The size of the tabu list was set to 100, 000 beliefs. Similar to GSGS, 5, 000 genera-

tions were run, and the F -score = 2∗Sensitivity∗PPV/(Sensitivity+PPV ) for the

most fit belief was calculated after 1, 000, 2, 000, 3, 000, 4, 000, and 5, 000 generations.

Sensitivity is calculated as the number of true positives, i.e., the number of predicted

edges agreeing with true edges, divided by the total number of true edges. PPV or

the Positive Predictive Value is the number of true positives divided by the total

number of predicted edges. In particular, additional iterations for sample collection

do not lead to vastly improved results for the GSGS algorithm as illustrated in Figure

4.6. For the GSCA plots, a “learning curve” may be observed for the E. coli 1, 2,

and 4 networks. As seen in Figure 4.6, GSCA outperforms GSGS across all four E.
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coli networks and performs similarly for two Insilico networks. In addition, for three

Insilico networks, results were presented only for GSCA in Figure 4.7 as the memory

requirements for GSGS were cost prohibitive for a workstation with 4 GB of RAM.

Finally, the use of prior knowledge for the DREAM3 and DREAM4 networks

may be seen in Figure 4.8. Prior knowledge was obtained by randomly sampling

the specified percentage of edges from the networks presented in Table 4.1. On the

y-axis, the F -score = 2 ∗ Sensitivity ∗ PPV/(Sensitivity + PPV ) is measured. On

the x-axis, snapshots of the performance of the GSCA algorithm at varying number

of generations is presented. The lines in red represent no prior knowledge. The lines

in green represent 20% prior knowledge. The lines in purple represent 40% prior

knowledge. The lines in black represent 60% prior knowledge, and the lines in blue

represent 80% prior knowledge. As can be seen overall, prior knowledge leads to an

overall better performance for GSCA.

4.5 Real Data Analysis

For real data analysis, the well-studied compendium of 5,350 genes and 300 expression

profiles corresponding to diverse mutations and chemical treatments in the budding

yeast S. cerevisiae [Hughes et al., 2000] was used. Using the MTBA toolbox [Jayesh

Kumar Gupta], the Cheng and Church algorithm [Cheng and Church, 2000] was

used on the non-log scaled fold change data matrix to produce three biclusters. In

particular, the bicluster consisting of 4,826 genes and 274 samples was selected for

further analysis. Prior knowledge corresponding to the largest weakly connected

component of the KEGG Cell Cycle pathway was used. Genes present in the weakly

connected component were discretized as 1 if the absolute value of their log10 fold

change ratios were greater than or equal to log10(2) and 0 otherwise. After converting
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the discretized data into gene sets, 23 gene sets with lengths ranging from 2 to 6 were

extracted and in conjunction with the prior knowledge present in the KEGG Cell

Cycle weakly connected component, GSCA was run for 50,000 iterations. As seen in

Figure 4.9, GSCA preserves most of the weak order information found in the prior

knowledge.

4.6 Conclusions

In this chapter, the Gene Set Cultural Algorithm (GSCA) for reconstructing networks

from unordered sets of genes was presented. The primary focus of GSCA is to search

the space of topological sort orderings that may represent the underlying network from

which the gene sets may have originated. A simulation study of the performance of

the heuristic used as the fitness function algorithm for nine DREAM3 and DREAM4

networks was presented. Simulation studies for the performance of GSCA across

nine simulated sets of gene sets for the aforementioned networks from the DREAM

initiatives was also presented. Finally, a case study involving the use of 300 gene

expression profiles was presented. The network reconstructed using GSCA preserved

most of the weak order information found in the KEGG network utilized as prior

knowledge.

The approach presented here is useful since it robustly incorporates and ex-

ploits prior knowledge. Furthermore, each search agent/belief acts independently of

one another in the search space allowing for a rather straightforward extension to

threaded programming. The results produced by GSCA may also be thought of a

set of weak orders. From this angle, the output of GSCA may then be used by other

algorithms, such as the Bayesian based K2 algorithm, that rely upon a robust start-

ing point to produce good results. As such, future hybrid algorithms may examine
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Figure 4.9: Top: From KEGG the following S. cerevisiae Cell Cycle Path-
way was used. Bottom: The network reconstructed by GSCA using the prior
knowledge and the 23 out of the 300 S. cerevisiae samples from Hughes et al
[Hughes et al., 2000] comprising of 25 genes. GSCA preserves 17 weak order
pairs extracted from the prior knowledge in its reconstructed network. Namely,
it preserves the following: YDR451C to YAL040C, YAL040C to YGR109C,
YBL016W to YGR109C, YBR160W to YGR109C, YDR451C to YGR109C, YJL157C
to YGR109C, YLR182W to YGR109C, YBL016W to YJL157C, YAL040C to
YLR182W, YDR451C to YLR182W, YBL016W to YML027W, YBR160W to
YML027W, YJL157C to YML027W, YBL016W to YMR199W, YJL157C to
YMR199W, YBL016W to YPL256C, and YJL157C to YPL256C.
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the data both from the aspects of gene sets (column view of the data) as well as the

individual genes (row view of the data). Furthermore, future work may consist of

examining in detail the relationships between the number of generations J , the num-

ber of beliefs B, and the number of elite beliefs T in hopes of finding an automated

method of tuning the parameters based on the data set being used.
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Chapter 5: Topology Enrichment Analysis frameworK (TEAK)6

From an application perspective, network partitioning can be used to get a finer scale

of detail when combining gene expression data and existing pathways. Given the ex-

ponential growth of high-dimensional gene expression data, biologists need versatile

tools at their disposal to quickly extract important biological insights from their data

since the pace of data accumulation far exceeds the pace of analysis. Simultaneously,

many resources are now available describing the pathways of many different biological

processes including KEGG [Kanehisa and Goto, 2000; Kanehisa et al., 2012], Reac-

tome [Croft et al., 2011; Matthews et al., 2009], and Biocarta (www.biocarta.com).

The increasing availability of high-throughput gene expression data and high-fidelity

pathways has led to an evolution in bioinformatics analysis from the analysis of single

genes to gene sets and now to subpathways.

Before presenting the main approach for this chapter, it is prudent to review

some of the existing methods currently present in the literature. A classical approach

for analyzing high-dimensional gene expression data is to use an over representation

approach (ORA). Many methods exist [Khatri and Draghici, 2005] including Pathway

Processor [Grosu et al., 2002], PathMAPA [Pan et al., 2003], PathwayMiner [Pandey

et al., 2004], ArrayXPath [Chung et al., 2004], GenMAPP [Dahlquist et al., 2002],

and LVPP (Low Variance Pathway Predicator) [Zhu, 2009]. In an ORA approach,

one typically analyzes the number of differentially expressed genes within a pathway

gene set against the number of genes expected to be found by chance. While these

previous approaches are useful, they may fail to take into account the inherent regula-

tory relationships found in biological pathways among the different genes. Biological

pathways are effectively reduced to sets of gene sets using an ORA approach. In other

6The content in this chapter is largely derived from original author text and contributions found
in [Judeh et al., 2013a].
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Figure 5.1: TEAK result.
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words, a rich source of information, namely pathway topology, remains untapped and

unused.

More recent tools including SPIA [Tarca et al., 2009] and Paradigm [Vaske

et al., 2010] use pathway topologies. Whole pathways, however, may be too broad

to represent some biological processes that may instead be succinctly represented by

subpathways. One approach, SubpathwayMiner [Li et al., 2009], extracts k-clique sub-

pathways, i.e., the distance between any two nodes in a subpathway is not larger than

k. Another approach [Chen et al., 2011] focuses on extracting linear subpathways using

a depth-first search (DFS) algorithm. While the focus on subpathways is laudable,

the approaches mentioned may be limited since a hypergeometric test is used for

SubpathwayMiner and a Euclidean-based measure is used for the latter approach.

Such approaches may fail to fully capture the underlying topological information

present in biological pathways as permuting the structure of the subpathways using

either approach will yield the same results. Currently, frameworks that combine both

approaches have not been extensively studied.

The contribution of this chapter, the Topology Enrichment Analysis frame-

worK (TEAK), seeks to detect activated subpathways underlying biological processes.

TEAK uses an in-house developed graph traversal algorithm to extract all root to leaf

linear subpathways of a given pathway while it uses a tailor-made Clique Percolation

Method [Palla et al., 2005, 2007] for nonlinear subpathways. For subpathways acti-

vated under a specific context or condition, e.g., a single data matrix corresponding

to time series data or a set of samples corresponding to relevant mutants, TEAK de-

ploys the Bayesian Information Criterion [Schwarz, 1978] implemented in the Bayes

Net Toolbox (BNT) [Murphy, 2001] to fully capture the topological information and

regulatory relationships inherent in both linear and nonlinear subpathways. For dif-

ferential subpathways between case and control conditions, TEAK uses the Kullback-
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Figure 5.2: TEAK Overview. TEAK requires gene expression data using one of the
many label systems supported by KEGG including Entrez, NCBI-GI, and ORF (for S.
cerevisiae) as input. By default TEAK includes a set of subpathways for H. sapiens,
M. musculus, and S. cerevisiae. For other organisms, the extraction of subpathways
from the KEGG pathways needs to be done once or as needed. For context specific
data, TEAK uses the Bayesian Information Criterion to score the Gaussian Bayesian
network (GBN) fitted for each subpathway. For case-control data, TEAK first fits
two GBNs, a case network and a control network, for each subpathway. Via TEAK’s
GUI, a user can then display a subpathway highlighted in its parent pathway as seen
in Figure 5.1.

Leibler divergence of two Gaussian Bayesian networks (GBNs), i.e., a case subpathway

and a control subpathway, transformed into their multivariate Gaussian forms to score

each subpathway. TEAK thus provides an innovative view of the data from a fresh

angle allowing users to visualize a subpathway within its respective parent pathway

as illustrated in Figure 5.1.
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Edge Subtype(s) ECrel PPrel GErel Directed
compound * * NO
hidden compound * NO
1) activation and 2) inhibition * YES
1) expression and 2) repression * YES
indirect effect * * YES
state change * YES
1) binding/association and 2) dissociation * NO
missing interaction * * N/A
phosphorylation * YES
dephosphorylation * YES
glycosylation * YES
ubiquitination * YES
methylation * YES

Table 5.2: A reproduction of the edge subtypes table found in the KGML documenta-
tion at http://www.kegg.jp/kegg/xml/docs/ [Kanehisa and Goto, 2000; Kanehisa
et al., 2012]. From the KGML documentation, ECrel is defined as an “enzyme-enzyme
relation, indicating two enzymes catalyzing successive reaction steps.” PPrel is de-
fined as a “protein-protein interaction, such as binding and modification.” Finally,
GErel is defined as a “gene expression interaction, indicating relation of transcription
factor and target gene product.” For each edge subtype, TEAK uses the “Directed”
column to determine whether or not to treat the edge as directed or undirected.

5.1 Method Overview

Figure 5.2 outlines TEAK. Using the KEGG API [Kanehisa and Goto, 2000; Kanehisa

et al., 2012], TEAK first fetches all metabolic and nonmetabolic pathways for the

organism under study. TEAK extracts a subset of the KEGG pathways consisting of

gene products and/or complexes of gene products as nodes. For edges TEAK extracts

all KEGG enzyme-enzyme relations, protein-protein interactions, and gene expression

interactions to create a set of unweighted adjacency matrices to represent the KEGG

pathways (one may refer to Table 5.2 for more details). Post publication, support

has been extended to compound networks. This process, including the extraction of

linear and nonlinear subpathways, occurs only once per organism or as needed, and

http://www.kegg.jp/kegg/xml/docs/
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its results are pre-computed and included by default for H. sapiens, M. musculus, S.

cerevisiae, and many other model organisms.

5.2 Subpathway Extraction

Subpathways play a major role in biological processes since only part of a pathway

may be activated at a specific time given an underlying condition. Often times a

biological condition may be controlled by a specific subpathway, but the subpathway’s

contribution may be obscured by its parent pathway. As such, subpathway extraction

is an important component of TEAK. TEAK extracts two types of subpathways:

linear and nonlinear. Linear subpathways are represented by root to leaf linear paths

of a pathway whereas nonlinear subpathways are represented by a union of adjacent

and overlapping feed-forward loops. The underlying reasoning and procedures for

extracting subpathways of these types will now be examined.

Algorithm 5.1, based on the Algorithm 2.1, extracts root to leaf linear paths

or subpathways from the KEGG nonmetabolic pathways. An example is presented

in Figure 5.3. In this example, the following steps are taken: (1) At the beginning,

the visit status of all nodes are false, and the stack is empty. (2) 1 is visited since it

is a root and is added to the stack. (3) From the unvisited children of 1, 2 is selected

and is removed from 1’s adjacency list. 2’s visit status is set to true and is added

to the stack. (4) 3 is visited from 2, and its visit status is set to true. 3 is removed

from 2’s adjacency list and is added to the stack. Since 3 is a leaf node, output the

stack contents, i.e., 1 → 2 → 3, as a root to leaf linear path. (5) 3 has no unvisited

children. Backtrack to 2, pop 3 from the stack, and set its visit status to false. (6)

2 has no unvisited children. Backtrack to 1, reconstruct 2’s adjacency list, set 2’s

visit status to false, and pop 2 from the stack. (7) Visit 3 from 1, and remove 3 from
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Algorithm 5.1: Linear Subpathways

1: Input: An unweighted, directed graph G
2: Output: All root to leaf linear subpathways
3: Remove all self-loops from G
4: Convert the graph G into the set of adjacency lists A
5: Set the visit vector V of size |G| to false
6: Find the roots R and leaves L of graph G
7: for j = 1,...,|R| do
8: Add root rj to the Stack S
9: Set V [rj] to true

10: while S is not empty do
11: Let the node n be the top element of S
12: Remove every child c of n from the adjacency list A[n] that has V [c]

as true
13: if A[n] is not empty then
14: Pop a child c of node n from A[n]
15: Set V [c] to true
16: Add node c to S

17: else
18: if n is a member of L then
19: Append the contents of S as a new subpathway to the final

output

20: else
21: Reconstruct A[n] using the graph G
22: end
23: Pop a node from S
24: Set V [n] to false

25: end

26: end

27: end
28: Return all of the subpathways extracted as the final output
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Figure 5.3: Illustration of Algorithm 5.1 using a feed-forward loop.

1’s adjacency list. Set 3’s visit status to true, and add 3 to the stack. Since 3 is a

leaf node, output the stack contents, i.e., 1 → 3, as a root to leaf linear path. (8)

3 has no unvisited children. Backtrack to 1, pop 3 from the stack, and set 3’s visit

status to false. (9) 1 has no unvisited children. It is popped from the stack, has its

adjacency list reconstructed, and has its visit status set to false. Since there are no

other root nodes to visit, the algorithm terminates with the root to leaf linear paths

{1→ 2→ 3, 1→ 3}.

Before applying Algorithm 5.1, TEAK first converts a nonmetabolic KEGG

pathway consisting of many different genes or gene products and their links into an

unweighted, directed graph G where each node n in G represents either a single gene

or a gene complex. Standard concepts are used to represent the in degree, denoted as

kin, as the number of links to a node and out degree, denoted as kout, as the number
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of links leaving a node. A node r is a root if and only if rkin = 0 and rkout > 0 whereas

a node l is a leaf if and only if lkin > 0 and lkout = 0.

Root to leaf subpathways are important since they represent one of the possible

routes taken from the beginning of a pathway to its end. Furthermore, in terms of

signaling pathways, it is hypothesized that root to leaf subpathways effectively model

signal transduction events. In one type of signal transduction paradigms, a growth

factor binds to a cell membrane receptor that then propagates a signal via intracellular

signaling pathways to reach the nucleus and cause a change in gene expression [Li,

2005]. Signal transduction pathways regulate cell proliferation, survival, motility, and

differentiation [Li, 2005] and play vital roles in cancer [Bianco et al., 2006], mammalian

associative conditioning [Selcher et al., 2002], and cellular response to stress [Shinozaki

and Yamaguchi-Shinozaki, 1997]. For the KEGG signaling pathways, roots may be

growth factors. For example, the epidermal growth factor (EGF) is a root of the

MAPK Signaling Pathway.

Since root to leaf linear subpathways may not effectively model the underlying

biological condition under study for all of the KEGG pathways extracted, a different

type of subpathway is needed. In this case, the Clique Percolation Method (CPM)

[Palla et al., 2005, 2007] was tweaked. TEAK implements CPM with one notable

change in which feed-forward loops, which are directed cliques of size three, are found

instead of extracting all of the maximal cliques of a pathway. The focus on feed-

forward loops to the detriment of larger clique sizes is justified since the feed-forward

loop is one of the most common motifs in biological networks [Alon, 2007]. Never-

theless, Algorithm 3.6 shares many of the advantages found in the original CPM:

1) Genes may participate in multiple subpathways whereas most other approaches

extract mutually exclusive subpathways. Biologically, the former approach may be

more relevant as a gene may regulate multiple biological processes. 2) There exists
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no gene or link whose removal would disjoin a subpathway, i.e., no single cut-node or

cut-link exists in a subpathway.

Algorithm 5.2: Feed-Forward Subpathways

1: Input: An unweighted, directed graph G
2: Output: All feed-forward subpathways
3: Remove all self-loops from G

/* CPM uses maximal cliques. */

4: Find all of the feed-forward loops of G.
5: Build the clique-clique overlap matrix M [Palla et al., 2005].
6: Set all off-diagonal entries of matrix M less than two to zero.
7: Return the connected components remaining in M as the feed-forward

subpathways.

The algorithms for subpathway extraction and the Gaussian Bayesian networks

used by TEAK are only applicable to directed networks, i.e., the KEGG nonmetabolic

pathways. For the undirected networks extracted from the KEGG metabolic path-

ways, TEAK takes a slightly different approach. In order to extract directed linear

subpathways from an undirected pathway, TEAK first extracts the longest shortest

paths that are not contained within other shortest paths. For directionality TEAK

then selects one of two directed linear paths that most closely resemble root to leaf

linear subpathways. They may be obtained by fixing one terminal end of the shortest

path as a root and the other terminal end of the shortest path as a leaf as illustrated

in Figure 5.4. Since the pair of directed linear subpathways are I-equivalent, i.e., the

pair of directed linear subpathways can be represented by the same set of conditional

independence assertions [Koller and Friedman, 2009], either directed linear subpath-

way can serve as a “root to leaf” subpathway corresponding to the original shortest

path. Then, in order to extract directed nonlinear subpathways from an undirected

pathway, TEAK first extracts cliques of size 3. It then selects one of six I-equivalent

feed-forward loops corresponding to the clique as illustrated in Figure 5.4.
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Figure 5.4: Top: For the undirected linear graph 1↔ 2↔ 3, there are two possible
directed graphs starting at one of the two ends, namely 1 → 2 → 3 and 3 → 2 → 1.
Both linear graphs are I-equivalent, and the result holds in general for linear graphs of
arbitrary sizes. Bottom: The six possible feed-forward loops for a clique of size 3. All
six feed-forward loops are I-equivalent. As such, it does not matter which orientation
of the six directed feed-forward loop orientations are chosen for the undirected clique
of size 3.

Overall, the TEAK framework may be extended beyond the approaches listed

in Algorithms 5.1 and 5.2 for subpathway extraction. Other methods, such as the

Girvan-Newman algorithm [Girvan and Newman, 2002] and Infomap [Rosvall and

Bergstrom, 2008], may also be utilized with some modifications. Thus, TEAK is

sufficiently flexible to address the needs of a variety of users.

5.3 Subpathway Ranking

To rank the linear and nonlinear subpathways, TEAK first uses the Bayes Net Toolbox

(BNT) [Murphy, 2001] to fit a context specific Gaussian Bayesian network for each
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subpathway. Briefly, a Gaussian Bayesian network is a Bayesian network in which

all of its nodes are linear Gaussians. In other words, for a continuous node Y with

continuous parents X1, ..., Xk, the Conditional Probability Distribution of Y is

p(Y |x1, ..., xk) = N(β0 + β1x1 + ...+ βkxk;σ
2) (5.1)

where β0, ..., βk are the regression coefficients and σ2 is the variance [Koller and Fried-

man, 2009]. It should be noted that Bayesian networks are only applicable to DAGs

(Directed Acyclic Graphs). However, since all of the subpathways extracted by TEAK

are DAGs, this limitation is not applicable. The choice of Bayesian networks is jus-

tified since they have already been used to discover networks from gene expression

data [Friedman et al., 2000, 1999].

In general, using a Bayesian network consists of “search” and “score” parts,

i.e., searching for a good candidate network and then scoring it. These parts may

be implemented independently of one another, which is the case with TEAK. The

candidate networks are in effect the linear and nonlinear subpathways. For scoring

TEAK takes two approaches depending on whether context specific data or case-

control data is used.

For context specific data, TEAK fits a single Gaussian Bayesian network for

each subpathway and uses the Bayesian Information Criterion (BIC) [Schwarz, 1978]

implemented in BNT for scoring each Gaussian Bayesian network. Briefly, BNT

implements BIC as

ScoreBIC = logP (D|θ̂)− .5d logN (5.2)

where D corresponds to the gene expression data, θ̂ corresponds to the maximum

likelihood estimate of the parameters used to represent the linear Gaussian node, d
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is the number of parameters, and N is the number of samples in the gene expression

data. Since BIC is decomposable, i.e., each node’s score is calculated individually and

then summed to return the final score, each subpathway is normalized by its number

of nodes so that the scores are comparable.

Given that most researchers nowadays have case-control data, TEAK also

supports case-control data, i.e., two data matrices, by fitting two Gaussian Bayesian

networks, one for each data matrix. It then transforms each context specific Gaus-

sian Bayesian network into its equivalent multivariate Gaussian form (please refer

to the appendix of [Shachter and Kenley, 1989] for details and [Gmez et al., 2010;

Gmez-Villegas et al., 2007] for examples). TEAK calculates the Kullback-Leibler

(KL) divergence of the case multivariate Gaussian, q, from the control multivariate

Gaussian, p, as

KL(q||p) =
1

2
log
|Σp|
|Σq|

+
1

2
Tr(Σ−1

p Σq)

+
1

2
(µq − µp)TΣ−1

p (µq − µp)− k/2 (5.3)

where µ is the mean vector, Σ is the covariance matrix, |Σ| is the determinant of the

covariance matrix, Tr is the trace of a matrix, and k is the number of nodes (please

refer to the appendix of [Roberts and Penny, 2002] for some additional details).

After scoring is completed, the ranked subpathways are displayed in TEAK’s

GUI. In this case, the top-ranked nonlinear subpathway, illustrated in Figure 5.1,

was biologically validated in the results section. In particular, TEAK fetches the

subpathway highlighted in yellow within its respective parent pathway to be dis-

played in a user’s web browser using the KEGG API. In this case, the highlighted

Glycerophospholipid metabolism subpathway is the top ranked nonlinear subpathway.
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Furthermore, the Kumar lab has biologically validated that the SLC1 gene (part of

EC:2.3.1.51) is needed for yeast filamentous growth under nitrogen stress.

5.4 Conclusions and Results

TEAK (the BIC score function was used) was also compared against SPIA [Tarca

et al., 2009] and SubpathwayMiner[Li et al., 2009] on the differentially expressed

gene sets found by the Kumar Lab and presented in the main paper [Judeh et al.,

2013a]. Tables 5.3 and 5.4 present TEAK’s top 20 linear and nonlinear subpathway

results, respectively. In the top ranked nonlinear Glycerophospholipid metabolism

subpathway identified by TEAK alone, the SLC1 gene was validated by the Kumar

lab as necessary for filamentous growth under SLAD growth conditions.

TEAK, freely available at http://code.google.com/p/teak for Windows

and MAC, is an innovative approach to detect activated subpathways. First, TEAK

uses an in-house graph traversal algorithm to extract all root to leaf linear subpath-

ways of a given pathway. Its major contributions include fully accounting for the

topological information of subpathways and its ability to provide an interactive view

of the data in the KEGG pathways. Furthermore, TEAK’s GUI allows easy acces-

sibility for a diverse set of users, and it implements an efficient algorithm to extract

root-to-leaf linear subpathways where breadth-first and depth-first search algorithms

may fail. Compared to previous approaches, TEAK also does not use differential

gene expression analysis to determine modules of interest and is thus not sensitive to

threshold values. Finally, by integrating the computational TEAK with experimental

approaches, previously uncharacterized subpathways were discovered and experimen-

tally validated involving the yeast stress response to nitrogen starvation.

http://code.google.com/p/teak
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KEGG ID Name SPIA SubpathwayMiner
0970 Aminoacyl-tRNA biosynthesis NA No
0071 Fatty acid metabolism NA No
3013 RNA transport Yes NA
0290 Valine, leucine and isoleucine biosynthesis NA Yes
0480 Glutathione metabolism NA No
0480 Glutathione metabolism NA No
0480 Glutathione metabolism NA No
0290 Valine, leucine and isoleucine biosynthesis NA Yes
0600 Sphingolipid metabolism NA No
0240 Pyrimidine metabolism NA Yes
0480 Glutathione metabolism NA No
0450 Selenocompound metabolism NA No
0250 Alanine, aspartate and glutamate metabolism NA No
4111 Cell cycle - yeast NA No
0250 Alanine, aspartate and glutamate metabolism NA No
0564 Glycerophospholipid metabolism NA No
0513 Various types of N-glycan biosynthesis NA No
0230 Purine metabolism NA No
0620 Pyruvate metabolism NA No
0290 Valine, leucine and isoleucine biosynthesis NA Yes

Table 5.3: The top 20 linear subpathway results for TEAK. In the SPIA [Tarca et al.,
2009] and SubpathwayMiner [Li et al., 2009] columns, “No” means that the pathway
did not appear in a method’s top 20 results, “Yes” means that the pathway did appear
in a method’s top 20 results, and “NA” for not applicable indicates that the method
does not examine a given pathway. It needs to be noted that most of the S. cerevisiae
KEGG pathways are metabolic, which SPIA does not support.
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KEGG ID Name SPIA SubpathwayMiner
00564 Glycerophospholipid metabolism NA No
00500 Starch and sucrose metabolism NA Yes
00480 Glutathione metabolism NA No
00900 Terpenoid backbone biosynthesis NA No
00270 Cysteine and methionine metabolism NA No
00230 Purine metabolism NA No
00270 Cysteine and methionine metabolism NA No
00330 Arginine and proline metabolism NA No
00270 Cysteine and methionine metabolism NA No
00600 Sphingolipid metabolism NA No
00900 Terpenoid backbone biosynthesis NA No
00250 Alanine, aspartate and glutamate metabolism NA No
00030 Pentose phosphate pathway NA No
00500 Starch and sucrose metabolism NA Yes
00230 Purine metabolism NA No
00230 Purine metabolism NA No
00030 Pentose phosphate pathway NA No
00600 Sphingolipid metabolism NA No
00051 Fructose and mannose metabolism NA No
04011 MAPK signaling pathway - yeast Yes NA

Table 5.4: The top 20 nonlinear subpathway results for TEAK. In the SPIA [Tarca
et al., 2009] and SubpathwayMiner [Li et al., 2009] columns, “No” means that the
pathway did not appear in a method’s top 20 results, “Yes” means that the pathway
did appear in a method’s top 20 results, and “NA” for not applicable indicates that
the method does not examine a given pathway. It needs to be noted that most of the
S. cerevisiae KEGG pathways are metabolic, which SPIA does not support.
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Chapter 6: Query Structure Enrichment Analysis (QSEA)7

As biological pathway databases continually increase in size and availability, efficient

tools and techniques to query these databases are needed to mine useful biological

information. A plethora of existing techniques already allow for exact or approximate

query matching. Despite initial success, powerful techniques used for XML and RDF

query matching have yet to be sufficiently exploited for use in query matching in the

bioinformatics domain.

Many resources are now available that describe the pathways of different bio-

logical processes including KEGG [Kanehisa and Goto, 2000; Kanehisa et al., 2012],

Biocarta (http://www.biocarta.com), and Reactome [Croft et al., 2011; Matthews

et al., 2009]. These databases and others contain a wealth of biological information.

Since the number of overall databases and the number of pathways within a database

are continuously increasing, extracting meaningful biological insights may be too te-

dious to do manually. There is a need for various frameworks to at least partially

automate the process, and they can be divided into three major categories [Sharan

and Ideker, 2006].

First, network alignment is used to compare two or more networks of the same

type from different species. Some of its major goals include identifying functional or

conserved protein modules and network evolution analysis. Network alignment can

also be used to predict novel interactions that may exist in one species but are absent

in another.

Another category, network integration, focuses on combining different net-

works from the same species. These networks may be transcription regulatory net-

works, protein-protein interaction networks, signaling pathways, and metabolic net-

7The content in this chapter is largely derived from original author text and contributions found
in [Judeh et al., 2012].

http://www.biocarta.com
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works. Some major goals include the identification of conserved modules across sev-

eral networks, the relationships between different data types, and the prediction of

interactions.

Finally, network querying is used to find a subnetwork module or query across

a network or database of networks. Some of its major goals include knowledge transfer

across species and the identification of conserved or repeated instances of the query

across a network or database of networks. In particular, network querying holds great

promise to extract useful biological insights from the pathway databases on a large

scale and is the focus of this chapter.

Currently, there are a variety of different frameworks and tools that perform

network querying varying from techniques that only produce exact matches to tech-

niques that produce approximate matches. QPath [Shlomi et al., 2006], for example,

takes as input a linear query and outputs a linear subpathway. It allows for results

that do not contain all of the query proteins and also allows for the introduction of

non-query proteins as well. QNet [Dost et al., 2008] later on extended QPath by sup-

porting tree queries on subnetworks of bounded tree width. Both QPath and QNet

rely on the color coding scheme introduced by Alon et al. [Alon et al., 1995] to identify

subnetworks with a simple topology in an underlying network. Another framework,

SAGA [Tian et al., 2007], also performs an approximate matching of the query net-

work to the target network. It calculates a similarity distance between the two and

takes into account the structural similarity, the number of vertex mismatches, and

the number of gap vertices. For more details on current network querying techniques,

one may refer to [Fionda and Palopoli, 2011].

While the current techniques have proven useful and beneficial, there exist

other useful techniques in the XML/RDF querying domain that have yet to be fully

exploited to query biological pathways. In the XML/RDF querying domain, a great
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multitude of XML/RDF documents need to be queried both efficiently and accurately.

Many techniques in this domain inherently focus on hierarchical matching from which

the bioinformatics domain may greatly benefit from.

Starting with XML querying, historically the focus was on querying twigs, a

tree-like “network” where edges are either a direct parent-child relationship or an

ancestor-descendant relationship, i.e., reachability in the latter case. One popular

algorithm, TwigStack [Bruno et al., 2002], has two major stages. First, it computes

partial solutions for query root-to-leaf paths and compactly represents them using a

chain of linked stacks. In the second stage, TwigStack merges and joins the partial

results to compute twig query results. TwigStack, in conjunction with modified B-

trees, can match query twig patterns in sub-linear time.

Vanilla XML documents, however, are trees and do not allow for a robust range

of networks. Thus, for RDF documents, a more general and robust representation

would be a DAG (Directed Acyclic Graph). For example, TwigStackD [Chen et al.,

2005] is an extension of TwigStack that at its essence uses the transitive closure

to process twig queries. Unlike other approaches, though, TwigStackD does not

precompute the transitive closure or path indices for graphs. Instead, it represents a

DAG using a combination of interval encodings on the aforesaid DAG’s spanning tree.

It also uses a customized predecessor index to determine the reachability of vertices

based on the remaining edges not present in the spanning tree. Using this alternative

representation for DAGs, the transitive closure is derived losslessly. TwigStackD can

efficiently query twigs against DAGs with quadratic complexity in the average size of

query variable bindings and a linear space cost for the data.

Given the powerful techniques available in the XML/RDF domain, it is worth-

while to explore their use to query biological pathways. QSEA specifically used the

transitive closures of both query and queried graphs to focus more on the shared hier-
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archies between queries and pathways. The use of transitive closures allow us to focus

on DAGs and go beyond linear paths and trees as in QPath and QNet, respectively.

QSEA also allows for approximate solutions by allowing any number of unmapped

query vertices and absent ancestor-descendant edges from the initial query graph.

Finally, a robust heuristic to solve the feedback arc set problem was developed.

6.1 Method Overview

Figure 6.1 presents the QSEA framework. QSEA may be divided into a preprocessing

stage and a query processing stage. For the preprocessing stage, QSEA 1) uses the

KEGG API to extract all pathways P for the selected organism. 2) For each pathway

Pi, its edge and vertex betweenness are calculated. 3) For any pathway with cycles,

Algorithm 6.1 is used to heuristically remove a feedback arc set. For these pathways,

their edge and vertex betweenness are recalculated. 4) All shortest paths and the

transitive closure for each pathway are then calculated. 5) For each pathway the

shortest paths with largest mean edge and vertex betweenness are retained with

precedence given to edge betweenness. These steps occur only once or when an

organism needs to be updated.

For processing queries, QSEA does the following: 1) a user inputs a query

graph stored in a space delimited Simple Interaction Format (SIF) file that can also

be used by Cytoscape [Shannon et al., 2003]. 2) The user query graph is then mapped

to each pathway Pi. Both the number of unmapped query vertices and the number of

missing query hierarchical edges, i.e., ancestor-descendant relationships, are recorded

for use in sorting later on. 3) A set of results is constructed by using combinations

of all shortest paths between any two reachable query genes that are also reachable

in the target pathway. 4) Results are sorted by first maximizing the number of query
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Figure 6.1: The QSEA framework
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vertices found, then minimizing the number of missing hierarchical edges, and finally

minimizing the size of the result, i.e., the number of “gap” vertices introduced. 5)

The results are displayed in the QSEA GUI. Upon clicking a result, QSEA will use

the default web browser to fetch the KEGG pathway and highlight the query result

as illustrated in Figure 6.6.

6.2 Edge and Vertex Betweenness

QSEA treats each KEGG pathway as an unweighted, directed graph G(V,E) with

vertex set V and edge set E where the KEGG proteins are vertices and the rela-

tionships among the proteins form the edges. For each KEGG pathway, its edge and

vertex betweenness are calculated. Originally introduced by Anthonisse [Anthonisse,

1971] and Freeman [Freeman, 1977], vertex betweenness is a measure of centrality

that quantifies the number of shortest paths that pass through a given vertex. Fur-

thermore, if there are n shortest paths between any two vertices, then a vertex that

lies on one of their shortest path receives a contribution of
1

n
. In essence, vertices with

high betweenness scores are quite important as a good number of a graph’s shortest

paths pass through them. Their loss may significantly impact if not make impossible

the flow of information between various vertices.

Edge betweenness is an extension to vertex betweenness except that it applies

to edges instead of vertices. Similar to vertices with a high vertex betweenness,

an edge with a high edge betweenness has many shortest paths passing through it.

In fact, Newman and Girvan [Newman and Girvan, 2004] used edge betweenness

to divide a pathway into different communities or modules, and they provided an

efficient O(V E) algorithm as well. It should be noted that Brandes [Brandes, 2001]

has also presented an O(V E) algorithm for vertex betweenness that can be extended
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Figure 6.2: Top: An example of a strongly connected component. Its transitive
closure on the right is a fully connected graph. In this case, all DAG queries would
result in a query hit. Bottom: Removing the edge 1 → 2 produces a diamond
subgraph, which happens to be a common biological network motif [Alon, 2007].
Its transitive closure on the right possess a hierarchy of vertices unlike the original
subgraph.
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Algorithm 6.1: A heuristic to remove feedback arc sets

1: Input: An unweighted, directed graph G(V,E) with vertex set V and edge
set E

2: Output: The acyclic graph G(V,E − EFAS) where EFAS is a feedback arc
set

3: Remove all self-loops from G
4: Find all non-trivial strongly connected components S using Tarjan’s

algorithm [Tarjan, 1972]
5: Find edge and vertex betweenness EB and V B
6: Extract from G the adjacency lists A
/* Prioritizes exploring edges with high betweenness scores */

7: Sort A first according to EB and then V B in descending order
8: for i = 1,...,|S| do
9: Run SCC-DFS(Si)

10: end
11: Return G which is now acyclic. The set of edge sets ESi,j,FAS removed from

the strongly connected components form EFAS
/* Strongly Connected Component Depth-First Search */

12: SCC-DFS
13: Sort the vertices VSi

of Si in descending order of vertex betweenness
14: Extract from A the set of sorted adjacency lists Ai that represents Si
15: for j = 1,...,|Si| do
16: Begin a depth-first search at vertex VSi,j using Ai to prioritize the order

of vertices to visit. Remove all of the back edges found in the depth-first
search to obtain ESi,j,FAS.

17: end
18: Remove from E the set of edges ESi,j,FAS that minimizes first the number of

edges removed and then the edge betweenness of the edges removed

to edge betweenness, and it is this implementation that was used. In QSEA’s case,

edge and vertex betweenness are used to both guide a depth-first search (DFS) and

select shortest paths that are most significant.

6.3 Feedback Arc Set

For its hierarchical querying, QSEA relies on the transitive closure. Briefly, for any

directed graph G(V,E) with vertex set V and edge set E, its transitive closure TC
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Algorithm 6.2: Minimum feedback arc set removal

1: Input: An unweighted, directed graph G(V,E) with vertex set V and edge
set E

2: Output: The acyclic graph G(V,E − EMFAS) where EMFAS is the
minimum feedback arc set

3: Remove all self-loops from G
4: Find all non-trivial strongly connected components S using Tarjan’s

algorithm [Tarjan, 1972]
5: for i = 1,...,|S| do
6: Extract the subgraph Gi that represents Si
7: Set the number of edges to remove R to 0
8: while Gi is cyclic do
9: Increment R by 1

10: Find all combinations C of the edges ESi
choosing R edges at a time

11: for j = 1,...,|C| do
12: Reverse the set of edges Cj in Gi

13: if Gi is acyclic then
14: Break from the inner for loop
15: end
16: Undo the edge set reversal

17: end

18: end
19: Remove the last edge set Cj from E where Cj is a minimum feedback arc

set for Gi

20: end
21: Return G which is now acyclic. Collectively, all Cs previously removed form

EMFAS

is a concise representation of the reachability of the vertices in V . More specifically,

TC’s vertex set VTC equals V while its edge set ETC is a superset of E. Furthermore,

an edge (i, j) in ETC either denotes the presence of an edge (i, j) in E or the presence

of a series of edges in E that can be traversed to reach vertex j starting from vertex

i . The transitive closure may be calculated using the Floyd-Warshall algorithm in

O(|V |3) since the existence of a shortest path from vertex i to vertex j means that

j is reachable from i. The transitive closure may also be computed in O(|V |2.376).
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For more details on efficiently calculating the transitive closure, one may refer to

[Bang-Jensen and Gutin, 2009].

Furthermore, it should be noted that for DAGs, the transitive closure can

represent a hierarchy of vertices. It is this property that QSEA exploits to process

a query graph Q against a queried graph P since an exact query hit occurs if and

only if ETCQ
is a subset of ETCP

. In other words, one can also find a topological

sort ordering that is common to the transitive closures of the query graph Q and

queried graph P . Briefly, a topological sort ordering is a non-unique linear ordering

of a DAG’s vertices such that for any edge (i, j), i will always appear before j in

the linear ordering. As a result, since QSEA relies on the transitive closure for its

hierarchical querying, it is of particular importance that both Q and P are DAGs.

Otherwise, it is not possible to exploit a hierarchy of vertices in the presence of cycles

as illustrated in Figure 6.2. In Figure 6.2, the top subgraph is a strongly connected

component from the KEGG H. sapiens MAPK Signaling Pathway. Its transitive

closure is a fully connected graph. As a result, any query graph without self-loops

will satisfy the subset condition and will result in a query hit, which does not allow

for any discriminative biological insights. The diamond subgraph on the bottom of

Figure 6.2, on the other hand, is a DAG and possesses an meaningful hierarchy for

querying. In this case, only a subset of queries will result in a query hit.

To ensure that both the query graphs and queried graphs are DAGs, QSEA

uses two different approaches. For query graphs, the solution is to simply restrict all

queries to DAGs. For the queried KEGG pathways, however, such an option may

remove meaningful pathways. As such, QSEA uses a robust heuristic to remove cycles

from the pathways while preserving the overall directional flow of a pathway.

First, it is prudent to present some background on the underlying problem.

For a directed graph G(V,E), EFAS ⊂ E is a feedback arc set if the removal of EFAS
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Figure 6.3: The number of edges removed from 14 cyclic H. sapiens KEGG pathways.
QSEA equals or outperforms Graphviz 100% of the time.
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Figure 6.4: The number of edges removed from 121 acyclic H. sapiens KEGG path-
ways made cyclic by adding up to four edges. QSEA equals or outperforms Graphviz
98% of the time.
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makes G acyclic [Bang-Jensen and Gutin, 2009]. In particular, a minimum feedback

arc set EMFAS ⊂ E is the minimum number of edges whose reversal makes G acyclic

[Bang-Jensen and Gutin, 2009]. For arbitrary graphs, the problem is known to be

NP -hard, and the best known approximation has ratio O(log |V | log log |V |) [Even

et al., 1998].

Heuristically solving the feedback arc set is also a well known subproblem in

drawing directed graphs with minimal edge crossings. For example, Graphviz [Ellson

et al., 2002] uses a depth-first search (DFS) to heuristically eliminate some edges

to break cycles in order to rank the vertices. Briefly, DFS divides edges into tree

edges and non-tree edges consisting of forward edges, back edges, and cross edges

[Cormen et al., 2009]. Edges whose vertices are visited for the first time form the tree

edges of a depth-first forest. Forward edges are non-tree edges that directly connect

a vertex i with a descendant vertex j in a depth-first tree whereas back edges are the

opposite, i.e., they directly connect a descendant j with an ancestor i. Finally, any

other non-tree edge is classified as a cross edge.

It should be straightforward to observe that all back edges found by DFS form

a feedback arc set. As such, Graphviz takes one non-trivial strongly component,

i.e., a subgraph in which any two vertices are connected either directly or indirectly

through a number of intermediate vertices, and counts the number of times an edge

in the strongly connected component forms a back edge via a depth-first search. The

edge with maximal count is removed, and the process is repeated until no strongly

connected components remain [Gansner et al., 1993].

QSEA takes a similar approach to Graphviz with some major differences as

described in Algorithm 6.1. The most major difference is the use of vertex and edge

betweenness as presented in Section 6.2 to guide DFS when it chooses vertices to visit

and edges to explore. By using betweenness to guide DFS, QSEA greedily focuses on
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edges and vertices with high betweenness. This allows the forest of trees generated

by DFS to be extracted deterministically. More importantly, though, it is hoped that

the edges in cycles that become back edges have a low betweenness score, which in

turn may be of less importance for the overall pathway.

To compare the performance of QSEA and Graphviz, Algorithm 6.2, outlined

in [Ispolatov and Maslov, 2008], is used as a reference point as it is able to determine

a minimum feedback arc set for each strongly connected component. Algorithm 6.2

is able to find EMFAS via a näıve approach that checks all possible combinations

of edges for a given number of edges R. Given a non-trivial strongly component S

with edge set ES and R = |ES,MFAS|, Algorithm 6.2 has to check
R∑
e=1

(
|ES|
e

)
edge

combinations in G in order to find the minimum feedback arc set for S. This process

may be unfeasible for relatively small values of ES.

In Figures 6.3 and 6.4, the performances of QSEA (Algorithm 6.1), a näıve

approach (Algorithm 6.2), and Graphviz were compared. It should be noted that the

focus was solely on the size of the feedback arc sets removed and does not take into

account the actual edges removed by either algorithm. As illustrated in Figures 6.3

and 6.4, QSEA performs no worse than Graphviz and outperforms it in some cases.

One may also observe from Figures 6.3 and 6.4 that both heuristics perform

quite well in general and are able to remove a minimum feedback arc set for some

of the pathways selected. When they differ, though, QSEA removes less edges over-

all compared to Graphviz as indicated by their respective Euclidean distances from

Algorithm 6.2. Briefly, the Euclidean distance was calculated as

√√√√ n∑
i=1

(EMFASi
− EFASi

)2
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where EMFAS corresponds to the vector of minimum feedback arc set sizes removed by

Algorithm 6.2 and EFAS corresponds to the vector of feedback arc set sizes removed

by either QSEA or Graphviz.

6.4 Shortest Paths and Transitive Closure

After the feedback arc sets are removed and vertex and edge betweenness are recal-

culated, all shortest paths between any two vertices i and j are calculated. Since

there may be multiple shortest paths between any two vertices, only the shortest

paths with largest mean edge and vertex betweenness are kept while prioritizing edge

betweenness. One may hypothesize that these shortest paths play a more significant

role compared to other shortest paths as they capture a larger snapshot of the path-

way or graph at a global level. Regardless, there may still be multiple shortest paths

between any two vertices i and j. As such, QSEA will display all combinations of

shortest paths in the results when needed. The transitive closures for each pathway

are also calculated and stored.

6.5 Query Matching and Output

Once preprocessing is complete, QSEA is ready to take as input user query graphs

that follow a space-delimited Simple Interaction Format (SIF). Using the KEGG

API, QSEA is able to support a variety of labeling schemes including KEGG, NCBI

GeneID (Entrez), NCBI GI, and UniProt. In the SIF file, users can construct two

types of edges similar to TWIGs presented in the introduction. The first edge is a

direct parent-child edge in which vertex i connects directly to vertex j. The second

edge is an ancestor-descendant edge in which there may be from 0 to any number

of arbitrary vertices between i and j. Finally, it should be noted that a gene may
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Figure 6.5: Top: An example query file. A minus sign represents an ancestor-
descendant edge whereas an equal sign represents a direct parent-child edge. In
this case, there are only ancestor-descendant edges in the query. Middle: QSEA
transforms the query into its pathway specific form on the right for the KEGG S.
cerevisiae MAPK signaling pathway, which has two instances of SHO1 and three in-
stances of STE11. For ease of cross-referencing with the KEGG results in Figure 6.6,
gene names are used.
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Figure 6.6: The result of the query in Figure 6.5.



97

map to multiple locations in a KEGG pathway, which QSEA is able to handle as

illustrated in Figures 6.5 and 6.6.

For query matching QSEA is able to support both exact and approximate

query graph solutions. For this purpose, after QSEA maps a query Q onto a pathway

P to get QPi, QSEA makes note of the number of unmapped query vertices UVi

for each pathway Pi. QSEA then also calculates the transitive closure for QPi to

get QTCi. First, for direct edges mentioned previously, QSEA requires an exact

match. Otherwise, for ancestor-descendant edges, QSEA allows for any number of

mismatches. Thus, QSEA also takes into account the number of absent ancestor-

descendant edges AE. Once this process is complete, QSEA constructs a set of graphs

as results from all possible combinations of shortest paths between two vertices i and

j that are reachable both in Pi and QPi.

After processing all of the pathways and extracting their resulting graphs,

QSEA ranks them according to three criteria. First, it maximizes the presence of

query vertices. Then, it minimizes the number of absent ancestor-descendant edges.

Finally, it minimizes the size of the resulting graphs. Using these criteria, QSEA

prioritizes query results that possess all of the query vertices and edges with minimal

size.

An example of the query matching and output is presented in Figures 6.5

and 6.6. First, a SIF file is constructed consisting of two direct parent-child edges

and three ancestor-descendant edges. The SIF file is then processed into a graph

where each vertex uniquely represents a gene. After mapping the query graph to

its MAPK signaling pathway version, a query hit is found. The highlighted query

result is fetched from KEGG and displayed in a user’s default web browser. QSEA

is able to display simultaneously multiple instances of a gene all at once. All vertices

highlighted in yellow are part of the query result. Depending on the foreground color,
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red denotes a query vertex whereas blue denotes a “gap” vertex introduced to connect

the query vertices. It should be noted that due to the transition of the KEGG API

from a SOAP version to a REST version, individual nodes are no longer addressable.

As a result, STE7 and STE12 are visible as genes are now addressed as opposed to

individual nodes as in the SOAP version of QSEA.

6.6 Conclusions

In this chapter, the Query Structure Enrichment Analysis (QSEA) was presented.

QSEA’s contributions are two-fold. First, QSEA made use of XML/ RDF techniques

into biological pathway querying. Specifically, the use of the transitive closure allows

for focus on matching hierarchies between queries and their target pathways. Second,

QSEA introduced a robust heuristic to solve the feedback arc set problem which has

a promising performance. Our contributions are implemented in an easy-to-use GUI

software. Binaries for QSEA are freely available at http://code.google.com/p/

teak/ for Windows and MAC.

http://code.google.com/p/teak/
http://code.google.com/p/teak/
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Chapter 7: Conclusions and Future Work

Given the abundance of molecular profiling data sets and pathway resources, compu-

tational approaches that utilize and exploit both resources are of interest. From one

angle, network reconstruction from discretized molecular profiling data sets into gene

sets allows the exploitation of molecular profiling data sets from different studies and

different platforms. Community detection algorithms can be employed to partition

pathways into subpathways for a finer grain of analysis. Finally, hypothesis can be

queried against a database of pathways to discover shared modules across different

pathways. To this end, three computational approaches were presented to exploit the

relationships among these various types of data as presented in Figure 1.2.

First, the Gene Set Cultural Algorithm (GSCA) was presented that recon-

structed networks from discretized gene expression data sets. By using the KEGG

pathways as input, GSCA exploits prior knowledge to reduce the search space for the

reconstructed network. Furthermore, unlike previous approaches, GSCA explores the

search space of candidate networks in parallel allowing for a more robust capability

to escape local extrema or false peaks.

Second, the Topology Enrichment Analysis frameworK (TEAK) uses both lin-

earn and nonlinear algorithms to extract all root to leaf linear subpathways or simple

paths of a network. By incorporating gene expression data sets, these subpathways

can then be transformed into Bayesian networks and ranked accordingly. The results

were then returned to the user to be view in the user’s default web browser.

Finally, the Query Structure Enrichment Analysis (QSEA) approach allows

for the “fuzzy” or hierarchical querying of a query against the KEGG networks. By

employing a novel heuristic to remove feedback arc sets, the transitive closure was

employed for a robust matching. Furthermore, edge and vertex betweenness were
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utilized to highlight the paths within the network that may be the most important

due to their position in the network.

The work presented allows for many possible future avenues of research:

• Parallelization of Network Reconstruction Algorithms The current it-

eration of GSCA easily lends itself to parallelization. Each search agent inde-

pendently explores the search space and reconvenes together in the belief space

to determine the most fit beliefs to retain. Since the bottleneck for the par-

allelization process involves the belief space, the belief space can be extended

into a distributed algorithm where nodes communicate with one another the

fitness of their beliefs versus the fitness of the beliefs of their neighbors. After

exchanging of belief fitness values is complete, a node can then unilaterally de-

termine whether or not to continue exploring its current solution or to jump to

a random point in the search space.

• Dynamic Generation of Subpathways Currently, TEAK computes a priori

the subpathways to be examined. Since the subpathways examined by TEAK

are a subset of all possible simple paths that can be generated, the number of

subpathways for more complex networks may be computationally infeasible. As

such, novel algorithms that focus on calculating the scores of the subpathways

dynamically are needed to reduce the potential computational overhead.

• Incorporating Molecular Profiling Data into Queries QSEA currently

focuses only on the structure of the query versus the structures of the targets.

The method may become more robust and useful if gene expression data sets

were incorporated as an additional piece of information via the use of gene

expression data sets to return query hits most relevant to the gene expression

data set under examination.
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The culmination of this work is a software suite called TEAK, which is freely

available at htpp://code.google.com/p/teak.

htpp://code.google.com/p/teak
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changes. (You only need to modify the portion of the form that corresponds to the changes you wish to make.) 

5. If you are revising a pending submission, you may continue with the publication steps if appropriate. If you are 

revising a publised submission, be sure to click the option to Update the site to incorporate your changes to the 

web pages.  
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How can I submit a multi-part file, such as multiple chapters for a book? 

Combine all the sections together as one Microsoft Word file or PDF file and submit that. 

To make one PDF file from multiple files, open the first PDF file, then choose Document>Insert Pages from 

Acrobat's menus to insert the second file (indicate it should go after the last page of the first file), and repeat for all 

documents. The result will be one compound PDF file which may then be submitted. 

If you feel that the one large PDF file might be too large for some people to download, we suggest that you submit the 

consolidated file as the full text of the article, and then upload the separate chapters or sections of the document as 

Associated Files. These files will appear on the web page alongside the complete document. For more information 

about uploading associated files, see below. 
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Can I post related files (sound clips, data sets, etc.) alongside the published article? 

Yes. The bepress system refers to these supplementary items as Associated Files. You will be prompted to submit 

Associated Files when you upload your submissions. The name of the files you upload will appear on the web site 

along with your short description of it. Viewers must have the necessary software to open your files; that is not 

provided by the bepress system. 

Please be sure that there are no permissions issues related to use of the associated material. Sometimes, especially with 

images, you must write a letter seeking permission to use the material before it can be posted. 

Also note that where possible, items such as images, charts and tables that are referenced in the document (or otherwise 

an integral part of the document) should be included directly in the article itself and not posted just as associated files. 
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Can I post a reprint from a journal? 
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It depends on what the journal allows, which is usually specified in their agreement with the author. If it would not 

violate copyright to post the reprint on your repository site, you're welcome to do so. Permissions for many publishers 

can be found at SHERPA RoMEO. 
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A working paper in our repository site has been published in a slightly revised form in a journal. What should I do? 

Many journals do not have any restrictions on working papers that preceded an article, especially if substantial 

revisions were made. The faculty member should check his/her author agreement with the journal to confirm that there 

is no problem with leaving the working paper on the site. The repository would constitute noncommercial use. 

It is a good idea to include the citation to the published article on the cover page for the repository working paper. To 

add the citation: 

1. From your My Account page, click Submission Management. 

2. Choose the option at the top of the screen to view the Posted Submissions. 

3. Locate the paper in the list at the bottom of the screen, and click the title. 

4. Click Revise Submission, scroll to the bottom of the revision form to the Comments section, and enter your 

comment there. Click the button at the bottom of the page to submit the revision. 

5. Click the Update link to update the article so that the new comment is visible to readers. 

6. If you need to remove the full text from the site, click the Remove Submission link in the sidebar, and click the 

confirmation button to remove the submission and notify the author.  
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UNO SelectedWorks Faculty Pages FAQ 

What is SelectedWorks? 
SelectedWorks is a component of ScholarWorks@UNO that allows UNO faculty to establish a personal author page to 

highlight research and scholarly efforts. Elements of the page can include personal introductory paragraph, list of publications 

(full-text can be uploaded directly to your site or linked to in ScholarWorks or publisher site), curriculum vitae, contact 

information, areas of expertise, courses taught, honors/awards received, and links to other websites. The individual faculty 

member has direct control over the page and can update or revise content as frequently as they wish. 

What’s the difference between SelectedWorks and ScholarWorks? 
ScholarWorks is UNO’s institutional repository, an online archive of the research and scholarly output of the University. 

SelectedWorks are pages focusing on individual faculty members’ research interests and accomplishments. These pages are 

linked to from within ScholarWorks, but reside on a separate platform. 

What types of documents can I post on my site? 
The default document types for SelectedWorks are Articles, Books, Contributions to Books, Unpublished Papers, Popular 

Press, Presentations and Other. However, you will be able re-label any of these documents. For example, if you prefer to call 

Unpublished Papers "Working Papers" you can easily change this for your site. You can also organize your documents by 

subject, if you prefer. 

Am I allowed to post my article if a publisher holds the copyright? 
This will depend on the post-print policy of the publisher. Some publishers allow you to post any version of a paper on your 

personal site; others only allow certain versions, or do not allow any posting after publication. Contact the librarian for your 

department or the ScholarWorks Coordinator (scholarworks@uno.edu) for more information. 

Can I use my site as a bibliography for all my work even if I cannot post all my papers due to copyright concerns? 
Yes. SelectedWorks allows you to upload metadata and link directly to your paper on the publisher's site. Furthermore, in the 

advanced settings you can easily customize your citations so that they appear exactly how you want them to. 

How do I create my SelectedWorks page? 
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 Go to http://works.bepress.com and click on “Start Your Selected Works Site.” 

 Create a free account and sign in. (You’ll have to reply to the link in a confirmation email to activate your account). 

How do I assign someone else to post my papers on my site for me? 
Make sure you are logged into your SelectedWorks site. Click My Editors (found in the top navigational bar). Add the name 

and email address of the person that you would like to add and click Save Changes. Please note, your editors will be able to 

make any and all changes to your site (including uploading content and adding/revising personal information). 

Questions? 
Contact the librarian for your department or the ScholarWorks Coordinator (scholarworks@uno.edu) for more information. 

We are happy to help you with any aspect of the process. 
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Obtained from 
http://www.oxfordjournals.org/access_purchase/publication_rights.html 

Publication Rights Policies 

What is our policy? 

 

For the majority of journals
1
 published by Oxford University Press, we have a policy of acquiring a sole and exclusive licence 

for all published content, rather than asking authors to transfer ownership of their copyright, which has been common practice 

in the past. We believe this policy more carefully balances the interests of our authors with our need to maintain the viability 

and reputation of the journals through which our authors are accorded status, recognition and widespread distribution. In 

developing this policy we have been guided by the following principles:  

 As a university press and not-for-profit academic publisher, we rely heavily on the good relationships we have with our 

authors. Having a licensing policy which enables an author to be identified as the owner of the copyright in an article is 

one of the key ways of demonstrating how highly we value these relationships. 

 An exclusive licence enables the centralised and efficient management of permissions and licencing, ensuring the 

widest dissemination of the content through intermediaries; 

 Exclusive rights also enable OUP to take measures on behalf of our authors against infringement, inappropriate use of 

an article, libel or plagiarism; 

 At the same time, by maintaining exclusive rights, in all media for all published content, we can monitor and uphold 

the integrity of an article once refereed and accepted for publication to be maintained; 

Where to get a copy of the Licence to Publish 

OUP cannot publish your article until a completed licence form has been received. You should receive a form as soon as your 

article is accepted for publication.  

Footnotes to this section 

1. A small number of OUP Journals still have a policy of requesting a full Assignment of Copyright. If unclear about the policy 

of the Journal concerned, please contact the Editorial office to clarify. 

Government employees 

 If you are or were a UK Crown servant and the article has been written in that capacity, we have an arrangement with 

HMSO to enable us to publish it while acknowledging that it is Crown Copyright. Please inform the Editorial office or 

Oxford University Press at the time of acceptance or as soon as possible that the article is Crown Copyright, so that we 

can ensure the appropriate acknowledgement and copyright line are used, as required by our arrangement with HMSO. 

 If you are a US Government employee and the article has been written in that capacity, we acknowledge that the 

Licence to Publish applies only to the extent allowable by US law. 

Re-use of third party content as part of your Oxford Journals article 

 As part of your article, you may wish to reuse material sourced from third parties such as other publishers, authors, 

museums, art galleries etc. To assist with this process, we have a Permission Request form and accompanying 

Guidelines that specifies the rights required in order for third party material to be published as part of your Article. For 

a copy of this form, please email. 

 Responsibility for clearing these third party permissions must be borne by the Author, and this process completed as 

soon as possible - preferably before acceptance of the manuscript, but if not possible, before the Article reaches the 

Production stage of the process. 
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Rights retained by ALL Oxford Journal Authors 

 The right, after publication by Oxford Journals, to use all or part of the Article and abstract, for their own personal use, 

including their own classroom teaching purposes;  

 The right, after publication by Oxford Journals, to use all or part of the Article and abstract, in the preparation of 

derivative works, extension of the article into book-length or in other works, provided that a full acknowledgement is 

made to the original publication in the journal;  

 The right to include the article in full or in part in a thesis or dissertation, provided that this not published 

commercially; 

For the uses specified here, please note that there is no need for you to apply for written permission from Oxford University 

Press in advance. Please go ahead with the use ensuring that a full acknowledgment is made to the original source of the 

material including the journal name, volume, issue, page numbers, year of publication, title of article and to Oxford University 

Press and/or the learned society.  

 

The only exception to this is for the re-use of material for commercial purposes, as defined in the information available via the 

above url. Permission for this kind of re-use is required and can be obtained by using Rightslink:  

 

With Copyright Clearance Center’s Rightslink ® service it’s faster and easier than ever before to secure permission from OUP 

titles to be republished in a coursepack, book, CD-ROM/DVD, brochure or pamphlet, journal or magazine, newsletter, 

newspaper, make a photocopy, or translate.  

 Simply visit: www.oxfordjournals.org and locate your desired content. 

 Click on (Order Permissions) within the table of contents and/ or at the bottom article’s abstract to open the following 

page:  

 Select the way you would like to reuse the content  

 Create an account or login to your existing account 

 Accept the terms and conditions and permission is granted 

For questions about using the Rightslink service, please contact Customer Support via phone 877/622-5543 (toll free) or 

978/777-9929, or email Rightslink customer care.  

Preprint use of Oxford Journals content 

 For the majority of Oxford Journals, prior to acceptance for publication, authors retain the right to make a pre-print [A 

preprint is defined here as un-refereed author version of the article] version of the article available on your own 

personal website and/or that of your employer and/or in free public servers of preprints and/or articles in your subject 

area, provided that where possible.  

o You acknowledge that the article has been accepted for publication in [Journal Title] ©: [year] [owner as 

specified on the article] Published by Oxford University Press [on behalf of xxxxxx]. All rights reserved. 

o Once the article has been published, we do not require that preprint versions are removed from where they are 

available. However, we do ask that these are not updated or replaced with the finally published version. Once an 

article is published, a link could be provided to the final authoritative version on the Oxford Journals Web site. 

Where possible, the preprint notice should be amended to: 

o This is an electronic version of an article published in [include the complete citation information for the final 

version of the Article as published in the print edition of the Journal.] 

 Once an article is accepted for publication, an author may not make a pre-print available as above or replace an existing 

pre-print with the final published version. NBThere are some Oxford Journals such as the Journal of the National 

Cancer Institute, which do not permit any kind of preprint use. For clarification of the preprint policy for any journal 

please contact the Rights and New Business Development Department. 

Postprint use of Oxford Journals content:  

[A postprint is defined here as being the final draft author manuscript as accepted for publication, following peer review, BUT 

before it has undergone the copyediting and proof correction process].  
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We have detailed policies on the use of postprints for all of our journals. To view these for individual journals please refer to 

the author self archiving policies on journal homepages. If you require further information please contact the Rights and New 

Business Development Department.  

Other uses by authors should be authorized by Oxford Journals through the Rights and New Business Development 

Department.  

Additional Rights retained by the Author when publishing in an Oxford Open participating journal 

Please note that these rights only apply to content published in an Oxford Journal on an Open Access basis in exchange for 

payment of an author charge. For more details about how Oxford Open works please click here.  

The right to reproduce, disseminate or display articles published under this model for educational purposes, provided that:  

 the original authorship is properly and fully attributed; 

 the Journal and OUP are attributed as the original place of publication with the correct citation details given; 

 if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this 

must be clearly indicated 

 the right to deposit the postprint and/or URL or PDF of the finally published version of the article into an institutional 

or centrally organized repository, immediately upon publication 

Commercial Use of Open Access version 

For all articles published under a Creative Commons Attribution Licence (CC BY 3.0) or an Open Government Licence 

permission is not required to make any kind of commercial use of the material.  

 

For all articles published under a Creative Commons Non-Commercial Attribution Licence (CC BY NC 3.0) or a Non-

Commercial Government Licence permission is required for all commercial reuse. In order to request permission please 

contact the Rights and New Business Development department: you want to use and a brief description of the intended use.  

Commercial re-use guidelines for open access content  

Definition of commercial use: any re-use of material from the Open Access part of an Oxford Journal for the commercial gain 

of the user and/or their employing institution. In particular,  

 re-use by a non-author/third party/other publisher of parts of or all of an article or articles in another publication 

(journal or book) to be sold for commercial purposes. Permission to reproduce selected figures will generally be 

granted free of charge, although OUP reserves the right to levy a fee for the use of these and/or the full text of an 

article/articles 

 the proactive supply of multiple print or electronic copies of items taken from the Journal to third parties on a 

systematic basis for marketing purposes. Permission for this kind of reuse should be obtained from the publisher, who 

retains the right to levy an appropriate fee 

 re-use by an author of parts of or all of an article in other publications from commercial organizations. Permission for 

this kind of reuse should be obtained from the publisher. We would consider this to be commercial reuse but would not 

normally charge a permission fee if the author is involved. 

NB: Please note that any income generated from permissions granted for this kind of use will be returned directly to the journal 

itself in order to help minimise the costs of making content from it available on an Open Access basis.  

Permissions  

 All requests to reuse the article, in whole or in part, in another publication will be handled by Oxford Journals. Unless 

otherwise stated, any permission fees will be retained by the Journal concerned. Where possible, any requests to 

reproduce substantial parts of the article (including in other Oxford University Press publications) will be subject to 

your approval (which is deemed to be given if we have not heard from you within 4 weeks of the permission being 

granted). 
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 If copyright of the article is held by someone other than the Author, e.g. the Author's employer, Oxford Journals 

requires non-exclusive permission to administer any requests from third parties. Such requests will be handled in 

accordance with Notes 6 above. 

 The Journal is registered with the Copyright Licensing Agency (London) and the Copyright Clearance Center 

(Danvers, Massachusetts), and other Reproduction Rights Organizations. These are non-profit organizations which 

offer centralised licensing arrangements for photocopying on behalf of publishers such as Oxford University Press. 

 Please forward requests to re-use all or part or your article, or to use figures contained within it, to the Rights and New 

Business Development Department. 
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ACM Information for Authors 

ACM Author Rights 

ACM  exists to support the needs of the computing community. For over sixty years ACM has developed publications and 

publication policies to maximize the visibility, impact, and reach of the research it publishes to a global community of 

researchers, educators, students, and practitioners. ACM has achieved its high impact, high quality, widely-read portfolio of 

publications with: 

 Affordably priced publications 

 Liberal Author rights policies 

 Wide-spread, perpetual access to ACM publications via a leading-edge technology platform 

 Sustainability of the good work of ACM that benefits the profession 

Choose 

Authors have the option to choose the level of rights management they prefer. ACM offers three different options for 

authors to manage the publication rights to their work. 

 Authors who want ACM to manage the rights and permissions associated with their work, which includes 

defending against improper use by third parties, can use ACM’s traditional copyright transfer agreement. 

 Authors who prefer to retain copyright of their work can sign an exclusive licensing agreement, which gives 

ACM the right but not the obligation to defend the work against improper use by third parties. 

 Authors who wish to retain all rights to their work can choose ACM’s author-pays option, which allows for 

perpetual open access through the ACM Digital Library. Authors choosing the author-pays option can give 

ACM non-exclusive permission to publish, sign ACM’s exclusive licensing agreement or sign ACM’s 

traditional copyright transfer agreement. 

Post 

Authors can post the accepted, peer-reviewed version prepared by the author—known as the "pre-print"—to the 

following sites, with a DOI pointer to the Definitive Version in the ACM Digital Library. 

 On Author's own Home Page and 

 On Author's Institutional Repository and 

 In any repository legally mandated by the agency funding the research on which the work is based. 

 Prior to submission to ACM for peer-review, authors may post their original work in any informal, non-peer-

reviewed aggregation or collection. 

Distribute 
Authors can post an Author-Izer link enabling free downloads of the Definitive Version of the work permanently 

maintained in the ACM Digital Library 

 On the Author's own Home Page or 

 In the Author's Institutional Repository. 

Reuse 

Authors can reuse any portion of their own work in a new work of their own (and no fee is expected) as long as a 

citation and DOI pointer to the Version of Record in the ACM Digital Library are included. 
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 Contributing complete papers to any edited collection of reprints for which the author is not the editor, requires 

permission and usually a republication fee. 

Authors can include partial or complete papers of their own (and no fee is expected) in a dissertation as long as 

citations and DOI pointers to the Versions of Record in the ACM Digital Library are included. Authors can use any 

portion of their own work in presentations and in the classroom (and no fee is expected). 

 Commercially produced course-packs that are sold to students require permission and possibly a fee. 

Create 

ACM's copyright and publishing license include the right to make Derivative Works or new versions. For example, 

translations are "Derivative Works." By copyright or license, ACM may have its publications translated. However, 

ACM Authors continue to hold perpetual rights to revise their own works without seeking permission from ACM. 

 If the revision is minor, i.e., less than 25% of new substantive material, then the work should still have ACM's 

publishing notice, DOI pointer to the Definitive Version, and be labeled a "Minor Revision of" 

 If the revision is major, i.e., 25% or more of new substantive material, then ACM considers this a new work in 

which the author retains full copyright ownership (despite ACM's copyright or license in the original published 

article) and the author need only cite the work from which this new one is derived. 

Minor Revisions and Updates to works already published in the ACM Digital Library are welcomed with the approval 

of the appropriate Editor-in-Chief or Program Chair. 

Retain 

Authors retain all perpetual rights laid out in the ACM Author Rights and Publishing Policy, including, but not limited 

to: 

 Sole ownership and control of third-party permissions to use for artistic images intended for exploitation in 

other contexts 

 All patent and moral rights 

 Ownership and control of third-party permissions to use of software published by ACM 
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DETECTING ACTIVATED BIOLOGICAL SUBNETWORKS, AND
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As high-throughput gene expression data becomes cheaper and cheaper, re-

searchers are faced with a deluge of data from which biological insights need to be

extracted and mined since the rate of data accumulation far exceeds the rate of data

analysis. There is a need for computational frameworks to bridge the gap and assist

researchers in their tasks. The Topology Enrichment Analysis frameworK (TEAK)

is an open source GUI and software pipeline that seeks to be one of many tools that

fills in this gap and consists of three major modules. The first module, the Gene

Set Cultural Algorithm, de novo infers biological networks from gene sets using the

KEGG pathways as prior knowledge. The second and third modules query against

the KEGG pathways using molecular profiling data and query graphs, respectively.

In particular, the second module, also called TEAK, is a network partitioning module

that partitions the KEGG pathways into both linear and nonlinear subpathways. In

conjunction with molecular profiling data, the subpathways are ranked and displayed

to the user within the TEAK GUI. Using a public microarray yeast data set, pre-

viously unreported fitness defects for dpl1∆ and lag1∆ mutants under conditions of
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nitrogen limitation were found using TEAK. Finally, the third module, the Query

Structure Enrichment Analysis framework, is a network query module that allows re-

searchers to query their biological hypotheses in the form of Directed Acyclic Graphs

against the KEGG pathways.
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