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CHAPTER I 

                                Review of the Liter ature 

 

1.1 Protein folding   

Proteins are the most abundant biological macromolecules within a cell and 

carry out vital functions. The sequence of amino acids in a protein defines its 

primary structure. However, the linear chain of amino acids only becomes a 

functional protein when it folds into its three-dimensional form. 

 

1.1.1 Protein sequence and protein structures 

 All proteins are polymers of amino acids (8). Each protein polymer – also 

known as a polypeptide – consists of a sequence of 20 different L-α-amino acids, 

also referred to as residues (9). To be able to perform their biological function(s), 

proteins fold into one or more specific spatial conformations, driven by a number 

of non-covalent interactions such as hydrogen bonding, ionic interactions, Van 

der Waals forces, and hydrophobic packing (10, 11). 

 Proteins have four structural levels. The primary structure refers to the 

amino acid sequence of the polypeptide chain, which is held together by covalent 

bonds (peptide bonds). The secondary structure refers to highly regular local 

sub-structures. Two main types of secondary structures are the α-helix and the 

β-sheet. These secondary structures have a regular geometry, being constrained 

to specific values of the dihedral angles φ and ψ on the Ramachandran plot. The 

tertiary structure refers to three-dimensional structure of a single protein 
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molecule. The α-helices and β-sheets are folded into a compact globular 

structure driven by the non-specific hydrophobic interactions and is stable only 

when the parts of a protein domain are locked into place by specific tertiary 

interactions, such as salt bridges, hydrogen bonds, and the tight packing of side 

chains. Quaternary structure is a larger assembly of several protein molecules 

(subunits). These quaternary protein subunit assemblies are stabilized by the 

same non-covalent interactions as the tertiary structure. 

 

1.1.2 Protein folding 

Protein folding occurs through an intermediate form, known as secondary 

structure. The most common secondary structure elements are the rod-like α-

helix and the plate-like β-pleated sheet. They are stabilized by non-covalent 

interactions. Then, in turn, these secondary structural elements further interact, 

fold, and coil to produce the tertiary structure that contains functional regions 

(domains). 

Although it is possible to deduce the primary structure of a protein from a 

gene sequence, the tertiary structure or the quaternary structure of a protein 

cannot be predicted just by its primary amino acid sequence. Meanwhile, inside 

the cell, the folding rate is significantly high, in a second time-scale (12). 

Therefore, to understand how a protein sequence folds into its functional 

structure inside of the cell becomes one of the most important tasks for 

biochemists.   
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One of most popular models for protein folding is the hydrophobic collapse 

model. This model proposes that, since the hydrophobic effect is the major 

driving force for protein folding, formation of a hydrophobic residue cluster that 

repels water must be the first step of folding. The polypeptide chain tends to 

collapse to a compact state. Then the rate-limiting steps in folding can be the 

reorganization of inter-residue interactions within a more-or-less disordered 

collapsed state (13). This process involves complex kinetics. Some molecules 

may form in the initial stages of folding between contacting residues, which 

allows rapid formation of native structure. Others may generate folding 

intermediates, which eventually will be reorganized to form the native 

conformation. 

 

1.1.3. Protein misfolding diseases 

Protein folding in vivo is of remarkably high fidelity, but sometimes defects 

can occur resulting in protein misfolding. In the 1990s, scientists started to 

understand that protein misfolding is involved in the development of many 

diseases (Table 1-1). Protein folding diseases can be divided into two groups. In 

the first group, excessive quantities of misfolded proteins aggregate forming 

amlyoid plaques, a hallmark of amyloidoses, such as Alzheimer’s and 

Creutzfeldt–Jakob diseases (14). In the other group, genetic mutations lead to 

incomplete folding of a protein, which affects its function. This might, for instance, 

happen to the tumor suppressor p53, the loss of function of which results in 

cancer (14). 
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Table 1-1: Representative protein folding diseases (15) 

Disease Protein 
Site of 
folding 

Hypercholesterolaemia Low-density lipoprotein receptor ER 
Cystic fibrosis Cystic fibrosis transmembrane regulator ER 
Phenylketonuria Phenylalanine hydroxylase Cytosol 
Huntington's disease Huntingtin Cytosol 
Marfan syndrome Fibrillin ER 
Osteogenesis imperfecta Procollagen ER 
Sickle cell anaemia Haemoglobin Cytosol 
α1-Antitrypsin deficiency α1-Antitrypsin ER 
Scurvy Collagen ER 
Alzheimer's disease Amyloid α-peptide/tau ER 
Parkinson's disease  α-synuclein Cytosol 
Scrapie/Creutzfeld-Jakob 
disease Prion protein ER 
Familial amyloidoses Transthyretin/Lysozyme ER 
Retinitis pigmentosa Rhodopsin ER 
Cataracts Crystallins Cytosol 
Cancer p53 Cytosol 

 

The common characteristic of all amyloidoses is the collection of plaques 

(amyloids) of insoluble protein in the extracellular tissue, which cannot be 

degraded by proteases. Their structures are highly ordered and give them 

crystal-like properties. Beta-pleated sheet of identical proteins are densely 

packed and form long filaments (fibrils). About 20 different proteins can associate 

with different diseases with unique features (16). The plaques can be transported 

through the bloodstream to different tissues forming amyloid deposites, 

systemically. However, the localized amyloids are more important for clinical 

research because they mainly affect the central nervus system, causing 

neurodegenerative diseases.  
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The general mechanism of amyloid formation reveals that polypeptide 

chains can adopt multiple conformational states and interconvert between them 

on a wide range of time scales. The network of equilibria, which link several of 

the most important states, is schematically illustrated in Figure 1-1. Through 

partially folded intermediates, the protein can compact into a monomer or 

associate to form oligomers or higher aggregates. Oligomers may be functional, 

such as actin, myosin and microtubules. The majority of these proteins will be 

degraded, usually under carefully controlled conditions and as a part of normal 

biochemical processes, with their amino acids often being recycled. However, 

partially folded or unfolded intermediates may enable aggregation (Figure1-1). 

Some of these initial aggregates simply dissociate, while others may reorganize 

to form stable oligomers, initiating amyloid structures (15).   

Transmissible spongiform encephalopathies (TSEs), which include mad 

cow disease (bovine spongiform encephalopathy, BSE) and Creutzfeld Jakob 

disease (CJD) in humans, are special forms of amyloidoses in which the victim’s 

brain degenerates to a structure that looks like a porous sponge. These 

conditions seem to occur when normal protein particles called prions misfold. 

The normal prion is also called PrPc, a component of the membrane of healthy 

nerve cells. When it is properly folded, it remains soluble and degradable. 

However, when it is misfolded in a particular way, it can take on an infectious, 

incorrectly folded three-dimensional form (PrPsc) (17, 18). The infectious prion 

can be transmitted in the diet and trigger a domino effect in healthy prion, forcing 

it to adopt its incorrectly folded form. 
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Figure 1 -1: A schematic representation of the protein conformational states that are 

in interconversion. The transition from β-structured aggregates to amyloid fibrils can 

occur by addition of either monomers or protofibrils (depending on protein) to 

preformed β-aggregates. Many of the various states of proteins are utilized 

functionally by biology, including unfolded proteins and amyloid fibrils, but 

conformational diseases will occur when such regulatory systems fail, just as 

metabolic diseases occur when the regulation of chemical processes becomes 

impaired (6). 
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 Another group of protein folding diseases is caused by lack of a correctly 

folded protein. Protein p53 occupies an important position in the cancer 

resistance network. Normally, the p53 system is switched off or in stand-by 

mode. But when the cells become stressed or damaged, p53 is activated to 

prevent genetic mutations, which can cause tumor formation marked by 

uncontrolled division and proliferation of cells. Mutations of p53 gene lead to 

misfolding of p53 and allow abnormal cell growth in an uncontrolled manner (19). 

This type of mutation in p53 is thought to occur in 50% of all cases of cancer and 

as many as 95% of all cases of lung cancer (20). 

 

1.1.4. The endoplasmic reticulum-associated folding  (ERAF) and the quality 

control (QC) system inside mammalian cells  

The endoplasmic reticulum (ER) is a large, membranous organelle that is 

in physical contact with almost all other organelles inside the cells, including the 

nucleus, Golgi and plasma membrane (21, 22). In the ER, once the primary 

sequence of a nascent protein has been assembled and released from the ER-

associated ribosome through the Sec61 channel, it has to undergo 

posttranslational modification to become fully functional. The main 

posttranslational modifications are the formation of disulfide bonds, conformation 

folding, and protein glycosylation. While folding or assembling, intermediates 

expose their hydrophobic surfaces, unpaired cysteines or immature glycans. 

Very high concentrations of chaperone proteins in the lumen of the ER, such as 

oxidoreductases, interact with the intermediates and promote their folding. These 
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chaperone proteins work in concert and form complexes, which efficiently 

process proteins and ensure their proper folding.  

 

1.1.4.1. ER chaperones and folding enzymes (foldase s) 

About 333 proteins of the ER protein folding machinery are known.  These 

include the lectins, N-glycan processing enzymes, protein disulfide isomerases, 

prolyl cis-trans isomerases, and the molecular chaperones (23). Table 1-2 gives 

a brief list of these proteins. ER-resident foldases such as lectins (calnexin and 

calreticulin) and the general ER-chaperone BiP play key roles in regulating ER-

associated folding (ERAF) and degradation (ERAD) of proteins and will be 

discussed in detail below. 

The canonical ER lectins are the type 1 membrane protein calnexin and 

the closely related ER luminal protein calreticulin. They are two prominent ER 

chaperones, calcium requiring and involved in processing Glc1Man9 N-glycans, 

which are attached to nitrogen (N) residues on nascent proteins. The N- glycans 

are generated by the action of glucosidase II on the Glc2Man9 glycan after 

processing of Glc3Man9 by glucosidase I, or by UGGT1 mediated addition of 

glucose moiety (Figure 1-2). They serve a wide array of functions including 

stabilizing proteins against denaturation, enhancing solubility, orienting proteins 

within membranes, adding structural rigidity, regulating protein turnover, and 

mediating pathogen interactions (24). 
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Table 1-2: Principal ER chaperones and foldases ( 12). 

Family Main members Functions 

HSP70 Bip/GRP78 Chaperone 

HSP90 Endoplasmin/GRP94 Chaperone 

HSP40 ERdj1-ERdj7 Co-chaperone 

Lectin Calnexin, Calreticulin Glycoprotein quality control 

 EDEMs 1,2,3 Glycoprotein degradation 

 OS-9, XTPB-3 Glycoprotein degradation 

Glycan processing 
enzymes UGGT Folding sensor 

 ER glucosidases I, II Trims off glucose from N-glycan 

 ER mannosidases Removes terminal mannoses 

Peptidyl-prolyl 
isomerases 

Cyclophilin B, 
FKBP13/23/65 Isomerize peptide bonds 

Ero1 Ero1α, Ero1β Oxidation for disulfide bonds 

Oxidoreductases 
PDI, ERp72, ERp57, plus 
many others 

Disulfide bond formation and 
isomerization 

 

BiP is an abundant ER chaperone.  BiP contains an N-terminal ATPase 

domain, stimulated by ER resident J-domain co-chaperones, of which there are 

seven (ERdj1-7) (25). When BiP binds to ATP, it adopts an open conformation. 

ATP hydrolysis causes BiP to adopt a conformation with higher affinity for 

substrate binding. The ADP-bound closed state of BiP can be re-opened, with 

the help of the nucleotide exchange factors GRP170 and Sil1. BiP is usually the 

first chaperone to bind the nascent chain to facilitate translocation of the nascent 

chain into the ER lumen (Figure 1-2). ERdj1 and 2 regulate the nascent chain 

binding.  BiP is also found in a multi-protein complex that includes several protein 

disulfide isomerases and peptidyl-prolyl cis-trans isomerases such as protein 
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disulfide isomerase (PDI) and peptidyl-prolyl cis-trans isomerases (PPIs), 

respectively (26). The association of chaperones with foldases in protein 

complexes was proposed to direct their activities towards the nascent 

polypeptide chain (27). 

PDI is the primary oxidant of cysteine thiols in the ER, and one of the most 

abundant ER proteins. The expression of PDI is rapidly induced under different 

ER stresses (28), indicating a crucial role for PDI in protein folding quality control. 

Under different microenvironments of reduction potential, it can make (oxidize), 

break (reduce), and re-arrange (isomerize) disulfide bonds.  

PPIs, also called rotamases, catalyze the slow isomerization of Xaa-

proline peptide bonds that are found in both cis and trans in folded protein. 

Proline isomerization has been identified as a rate-limiting step (29). Correction 

of Xaa-proline bond orientation happens when a protein has reached an almost 

completely folded conformation (30, 31). 

 

1.1.4.2. The ER folding machinery 

Proteins destined for the secretary pathway and eventually the plasma 

membrane, have an extra intrinsic signal sequence on the N-terminus that is 

exposed as the protein begins to emerge from the ribosome. The signal 

sequence is first recognized and bound to a signal recognition particle (SRP), 

such as SRP54. SRP binds to translating ribosome and the emerging signal 

sequence with high affinity (32). Once the SRP binds to the ribosome and 
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recognizes the signal sequence, the complex is then transported to the ER 

membrane where it binds to the SRP receptor (SR) (33). The SRP/SR complex 

positions the ribosome over a translocon and the protein being translated enters 

the lumen of the ER as it is being translated (32, 33). The translocon is a 

complex that is composed of the microtubule tethering protein Climp63, the 

oligosaccharyltransferase complex (OST), and glucosidase I (GlucI) (34).  

Upon entering the ER lumen, proteins without N-X-S/T consensus, the N-

glycosylation site, directly undergo the folding process facilitated by BiP, PDI, 

and PPI. However, most secreted proteins are first tagged with N-glycan 

(Glc3Man9GlcNAc2) at N-X-S/T consensus. It has been proposed that the 

glycosyl moieties act as a sophisticated quality control tag for protein folding 

inside the ER. The enzymes glucosidases I and II cleave terminal glucose (Glc) 

residues from newly synthesized N-Glycan. The Glc1Man9 N-glycans are 

recognized by the chaperones calnexin and calreticulin. Calnexin and calreticulin 

with the bound protein disulfide isomerases ERp57 establishes a calnexin cycle 

to accelerate the folding of Glc1Man9 N-glycan protein (35). When the glucose 

residue is cleaved, calnexin and calreticulin are released from the protein. If the 

protein is folded into its proper conformation upon release of the lectins, it is 

sorted into COPII vesicles by cargo recruiting lectins ERGIC53, VIP36, and VIPL 

that reside in the ER to Golgi intermediate compartment, called ERGIC (Figure 1-

2).  

Additional candidate protein has been proposed for cargo sorting. One 

such candidate is the p24 family of type I ER membrane proteins that is highly 
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conserved in eukaryotes (36). They are abundant constituents of the ER and 

COPII vesicles and their C-termini binds to COPII coat proteins (SEC23). 

 

1.1.4.3. ER quality control system   

The integrated process of protein folding and targeted protein degradation 

are known as the ER quality control (QC) system (37). In this system, all proteins 

are subjected to a “primary” quality control check that monitors their 

conformation. A secondary quality control mechanism relies on the intrinsic 

signal of proteins and facilitates their transport, such as the process to send 

misfolded proteins for ER-associated degradation (ERAD). The unfolded proteins 

are retained in the ER. In order to promote a renewed cycle of folding, unfolded 

glycoprotein can be recognized by UDP-glucose:glycoprotein-glucosyltransferase 

(UGGT1) in the calnexin cycle. UGGT1 adds one glucose moiety from UDP-

glucose to the unfolded proteins, which bear high content of mannose (Man9) in 

their N-glycans. By rebinding with calnexin and calreticulin, the misfolded 

proteins re-enter the calnexin cycle and undergo further folding catalyzed by 

ERp57 (38) (Figure 1-2).  

Despite the presence of chaperones, some proteins persistently fail to be 

folded and processed properly, which can lead to the formation of non-

functioning protein aggregates. A 1, 2-mannosidase I will cleave a mannose 

residue (Man) from the oligosaccharides of these proteins (39). This leads to the 

recognition by the ER degradation-enhancing 1, 2-mannosidases-like protein 

(EDEM). Then the glycoproteins are targeted for degradation by ER-associated 



                                                                               13 

 

 
 

degradation (ERAD) or the ubiquitin- proteasome system through the disposal 

pathway (40) (37). 

 

1.1.4.4.  ER associated degradation (ERAD) 

ERAD is a process by which misfolded ER proteins are detected and prevented 

from progressing along the secretary pathway by ER-resident factors and 

directed to the translocon for retrotranslocation (or dislocation) into the cytosol, 

where they undergo ubiquitin- and proteasome-dependent degradation (41).  

Acting as “mannose timer”, EDEM (ER degradation-enhancing α-mannosidase-

like protein) is responsible for removing the glycoproteins, which could not be 

productively folded, from the calnexin cycle. Futile recycling of terminally 

misfolded proteins is prevented by EDEM, most likely EDEM3, which 

successively cleaves mannose moieties from the glycan, eventually removing the 

mannose that is normally re-glucosylated by UGGT. In complex with the protein 

disulfide isomerase ERdj5 and BiP (42), EDEM produces Man7 N-glycan with a 

terminal α 1,6-linked mannose, providing the targeting signal for ERAD (43). The 

formation of the Man7 N-glycan is a key step in directing glycoprotein substrates 

for ERAD. The lectin OS9 and the related XTP3-B recognize the Man7 N-glycan 

and bring them to form complex with ubiquitin protein ligase, the Hrd1 E3/SEL1L 

protein, and with the ER HSP90 homolog GRP94 and BiP, which help sequester 

the misfolded protein away from other interactions until retrotranslocation (44). 

Eventually, the misfolded proteins are retrotranslocated, ubiquitinated, and 

degraded by the proteasome.  
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Figure 1-2:  ER quality control of newly synthesized  glycoproteins ( 45).  
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1.1.5. The unfolded protein response (UPR) 

Accumulation of misfolded proteins in the ER triggers the unfolded protein 

response (UPR) that signals compensatory mechanisms to keep ER 

Nascent chains enter the ER lumen through the Sec61 complex and are core 

glycosylated by the oligosaccharyltransferase (OST). The two terminal glucose 

residues are rapidly trimmed by sequential action of the glucosidase I and II (step 1). 

Mono-glucosylated N-glycans mediate the initial association of the folding 

polypeptides with the ER lectin chaperones calnexin and/or calreticulin, resulting in 

the exposure to the glycoprotein-dedicated oxidoreductase ERp57. It is likely that 

most glycopolypeptides are released from calnexin/calreticulin/ERp57 in a native, 

transport competent state (step 2). They are rapidly deglucosylated and partially 

demannosylated (step 3) and eventually sequestered in transport vesicles for export 

from the ER (step 4). For a fraction of newly synthesized glycoproteins, folding is not 

completed in a single round of association with calnexin/calreticulin (step 2a). The 

folding intermediate released from the lectin chaperones is deglucosylated (step 3a), 

but its forward transport is inhibited by GT1. GT1 adds back a glucose residue (step 

4a) only to glycoproteins with nearly native conformation. This second chance of 

binding to calnexin/calreticulin facilitates additional folding attempts which likely 

consists disulfide reshuffling. Glycopolypeptides released from calnexin and 

displaying major folding defects are ignored by GT1 (step 3b). Rather, they attract 

BiP, which are extensively demannosylated and dislocated across the ER membrane 

for proteasome-mediated degradation (step 4b). 
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homeostasis, including up-regulation of ER chaperones and down-regulation of 

protein translation (46, 47) (Figure 1-3).  

The UPR is a highly conserved intracellular pathway that was originally 

discovered in yeast. The proximal sensor of ER stress in yeast is the inositol 

requiring enzyme-1 (Ire1). Ire 1 contains a unique endoribonuclease activity in its 

cytosolic domain, which carries out the unconventional splicing of Hac1 mRNA 

(48). Hac1 mRNA is found constitutively in the cytosol, where its native 

nucleotide sequence is inefficiently recognized and translated. In response to ER 

stress, this transmembrane protein is dimerized and trans-autophosphorylated to 

be activated (49). The activated endoribonuclease on Ire1 splices out a specific 

intron causing a frame-shift in the Hac1 nucleotide sequence. The new 

nucleotide sequence is recognized and efficiently translated into the transcription 

factor Hac1p (48). Hac1p subsequently enters the nucleus and induces the 

genes which aid in folding and degradation of unfolded/misfolded proteins. 

Although there are α- and β-alleles of both IRE1 and ATF6 in the 

mammalian genome, only IRE1 α is expressed in all tissues and only ATF6 α 

signals the UPR. IRE1 α is selectively expressed in intestinal epithelial cells and 

it is not known which genes are regulated by ATF6 α. IRE1 activation elicits an 

endoribonuclease function that induces non-conventional splicing of Xbp1 

mRNA. Splicing of Xbp1 mRNA, the only known splicing substrate of IRE1, 

removes a 26-base intron that alters the translation reading frame to produce a 

highly active bZiP transcription factor that activates genes encoding ER protein 

chaperones, lipid biosynthetic enzymes, and ERAD functions (50-52). Upon 
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release from BiP, ATF6 traffics to the Golgi complex where it is cleaved by the 

S1P and S2P processing enzymes to produce a cytosolic fragment that activates 

transcription of genes providing complementary and overlapping functions with 

those activated by XBP1 which restores productive ER protein folding and 

increases ERAD. Indeed, cells deleted in either Ire1 α, Xbp1 or Atf6 α are 

defective in ERAD (53, 54). 

The UPR plays an important role in functions to regulate a cell’s folding 

capability in response to developmental demands or physiological changes. 

Especially, in cell types with a high secretary load or an ER compartment that is 

uniquely susceptible to stress, the UPR becomes vital for cell survival and 

function (50, 55). In response to the ER stress, UPR proteins act in a coordinated 

fashion to initially decrease general protein translation and subsequently 

increase transcription of genes that encode proteins that aid in both protein 

folding and degradation. Therefore, pathological conditions interfering with ER 

homeostasis and resulting in prolonged activation of the UPR could lead to 

various diseases (56, 57). 
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Figure 1-3: Signaling the unfolded protein response  (UPR) (58). 

The UPR in mammalian cells is far more complex than that in yeast and appears to 

act both at the level of transcriptional as well as translational regulation (3). 

Mammalian cells have three ER membrane bound proximal sensors. They are the 

mammalian homologue of yeast IRE1, protein kinase R like ER protein kinase 

(PERK), and activating transcription factor 6 (ATF6) (Figure 1-3) (4, 5). The three 

UPR sensors are maintained in an inactive state through interaction with the protein 

chaperone BiP. It is proposed that as unfolded proteins accumulate, bind, and 

sequester BiP, they promote BiP dissociation from PERK, IRE1, and ATF6 (1, 7). BiP 

release from IRE1 and PERK permits their homodimerization, trans-

autophosphorylation, and activation. Activated PERK phosphorylates the α-subunit 



                                                                               19 

 

 
 

 

1.2.    Protein expression and refolding technologi es 

Biomedical and structural biology studies of proteins require large quantities 

of purified proteins. Over the past several decades, protein expression systems 

(Escherichia coli, baculovirus-mediated insect cell, Saccharomyces cerevisiae 

and several mammalian based systems) have been developed for large-scale 

recombinant protein expression. Each of these systems has its strength and 

weakness (yield, proper folding, post-translational modifications, etc).  

 

1.2.1.   Prokaryotic expression system  

Escherichia coli is the simplest and by far the most widely used organism 

for protein expression.  Our lab also developed a very high yield bacterial protein 

expression system that produce nearly gram quantity of pure recombinant 

proteins from one liter of bacterial culture (59). Many recombinant proteins have 

been successfully produced in bacteria; however, reports note that ectopically 

expressed proteins especially those that are cystein-rich, have basic isoelectric 

points (pI), and that are less than 10 kDa or greater than 50 kDa have overall 

reduced success rates in traditional purifaction schemes (60).  Other factors such 

of the translation initiation factor 2 (eIF2 ), leading to rapid and transient inhibition of 

protein synthesis (1). eIF2 is a heterotrimeric GTPase required to bring initiator 

methionyl tRNA to the ribosome for AUG initiation codon selection (2). 



                                                                               20 

 

 
 

as improper folding, protein aggregation (inclusion body formation), and lack of 

proper eukaryotic post-translational modifications (PTMs) of the ectopically 

expressed proteins could potentially affect their conformation, stability, and 

function.  All of these possible limiting factors reduce the usefullness of bacterial 

protein expression systems, especially for eukaryotic proteins where the success 

rates are typically lower (61-64). 

 

1.2.2. Eukaryotic expression system 

The yeast strain, Saccharomyces cerevisiae is an expression system that 

has the advantage that can produce proteins in a more native eukarytoic 

environment but with reduced yield, a common drawback of eukarytoic 

expression systems.  Another drawback is the S. cerevisiae glycosylation 

pattern, which is very different from its mammalian counterpart, and commonly 

involves hypermannosilation that potentially affects the proper folding and activity 

of heterologously expressed mammalian proteins. 

Insect cell is another common recombinant protein production system. 

Appreciated advantages of insect cells are the robust and relatively inexpensive 

cell culture and the fact that most eukaryotic PTMs are executed properly (65). 

However, the baculovirus expression system requires multi-step process to make 

the viruses and the need to maintain high virus titers which sometimes can be 

quite challenging (66). Furthermore, the protein expression yield of this insect cell 

system is low. 
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For expressing physiological proteins, including therapeutic proteins, 

mammalian cell lines, such as CHO or HEK293, are widely used because they 

offer a cellular environment closer to the native condition. However, the yield of 

this system is quite low. The expression levels of purified recombinant protein are 

usually in the microgram quantity (67) and expression cost of mammalian cell 

protein expression is quite high. This expression system weighs the fidelity of 

PTMs, correct folding and processing in mammalian cells against their slow 

doubling rates, potentially inefficient transfection, overall lower productivity and 

their dependence on expensive reagents, such as serum (68).  

 

1.2.3. Protein refolding in vitro  

Protein studies and protein therapeutics need large quantities of properly 

folded and biologically functional proteins. Genetic engineering allows rapid and 

reliable production of heterologous proteins via recombinant methods, in 

particular, bacterial expression methods. These methods are used to induce cells 

to overexpress a target protein. Overexpressed proteins, however, often form 

“inclusion bodies”, the macroscopic aggregates in cells, especially for the 

prokaryotic expression system. Therefore, the ultimate success of 

overexpression strategies sometimes depends on the refolding rate of properly 

folded native states of aggregated proteins in the bacterial inclusion body. 

Therefore, protein refolding in vitro is important. 
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The first milestone to explore protein refolding in vitro emerged when 

Christian Anfinsen and his colleagues in the 1960s demonstrated that simply 

removing denaturant is sufficient for a fully denatured protein to refold (69). This 

work demonstrated that all the driving forces and guiding information are 

embedded in the primary amino acid sequence of a protein and no external 

template is required. Also, this study showed, just like other processes in nature, 

protein folding needs energy, a process following the universal thermodynamics 

law. Intrinsic protein refolding steps include secondary structure formation, long-

range tertiary contacts, interaction of hydrophobic groups, interaction of hydrogen 

bond donor/acceptor, side-chain packing, and other processes. Conformational 

entropy and several major interactions, such as the hydrophobic effect, hydrogen 

bonds, electrostatic interactions, and van del Waals forces, contribute to protein 

refolding.  

Conformational entropy is the major energy term opposing protein folding 

because entropy is a measure of the degree of randomness or disorder in a 

system. As the folding reaction proceeds, the conformational entropy eventually 

decreases as the unfolded state of protein has the highest conformational 

entropy, whereas the folded protein has the lowest conformational entropy. The 

loss of entropy starts to be compensated by the favorable hydrophobic and other 

interactions.  

Based on the theory, a protein always folds into the conformations, which 

achieve the lowest possible energy. An energy landscape of protein folding 

(Figure 1-4) provides a statistical description of the folding process. It proposes 
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that proteins fold in an ordered way and the whole structure ensemble process is 

an energy-biased folding pathway (70-72). However, this funneled energy 

landscape theory fails to provide clues as to the guidance to the folding reaction 

happening inside living cells. Even though the folding reaction can proceed 

through a multitude of distinct routes to reach the lowest energy native state as 

described in the energy landscape theory (73-77), proteins do not find their 

native conformation from an endless number of potential three-dimensional 

probabilities that it could randomly fold into. The protein folding process in living 

organisms occurs in a second time scale (78). Localized interactions with 

molecular chaperones and enzymes inside of cells guide and speed up the 

folding process.  

 

Figure 1-4: The energy landscape depiction of prote in folding ( 72) .  
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1.2.4. In vitro protein refolding techniques  

 Protein misfolding frequently happens when expressing recombinant 

proteins in a foreign cell as well as inside mammalian cells under certain 

physiological conditions. Experimental approaches have been developed to 

refold aggregated proteins into their biologically active forms. The following 

briefly summarizes these protein refolding techniques: 

 

1.2.4.1.  Direct dilution 

 The simplist of these procedures is the direct dilution method.  Diluting the 

protein reduces intermolecular interactions, denaturants, etc. that could 

contribute to protein aggregation.  However, a major drawback of this technique 

is that the protein is highly diluted and needs to be concentrated.  Concentrating 

may contribute to the reaggregation of the protein.   

 

1.2.4.2.  Dialysis 

 Similar to the direct dilution technique, dialysis can remove potential 

denaturants allowing the unfolded protein to achieve its native conformation. In 

contrast to the direct dilution method, the change from denaturing to native buffer 

conditions occurs gradually allowing the protein to slowly reach its native state.  

However, through this process the unfolded protein may pass through several 

different folding intermediates, some of which are unproductive and even could 
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protentiate protein-protein interactions promoting aggregation (79).  As the 

protein concentration remains relatively stable during this procedure, a potential 

benefit; however, may contribute to promoting the aggregation and thus making 

protein aggregation a frequent problem of dialysis as compared to the direct 

dilution method. Additionally, refolding yields can be negatively affected by non-

specific adsorption of protein to the membrane. However, for some proteins and 

with the appropriate denaturant removal rates, adapted to the requirements of 

the target protein, high refolding yields at high protein concentrations can be 

obtained (80). 

 

1.2.4.3.  Chromatographic methods for protein refol ding 

1.2.4.3.1.  Protein refolding based on size exclusio n chromatography 

 Similar to both the direct dilution method and dialysis, buffer exchange for 

denaturant removal can also be carried out using size exclusion chromatography 

(SEC). SEC has several major advantages.  The denaturant can be gradually 

removed through use of a concentration gradiant allowing the denatured protein 

to refold.  As with dialysis, protein aggregation can be a problem.  However, the 

power of SEC allows enrichment of the properly folded protein over the mis-

folded/aggregated intermediates by taking advantage of the mobility differences 

based on size, shape, etc. of the target versus the folding intermediates.  

Additionally, SEC also allows concomitent concentration and purification of the 

folded protein.  However, reduced yield of the folded protein, due to aggregation, 
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could occur.  Also, the success of SEC depends on the properties of the 

chromatographic resin to allow efficient separation of the renatured target protein 

from different folding intermediates, misfolded protein, and aggregates that might 

form during the refolding process (81). 

 

1.2.4.3.2.  Assisted protein refolding using affini ty chromotography 

 In this technique, the unfolded protein is attached to a solid support 

(matrix material of the column) through a variety of methods such as ‘tagging’ the 

protein (eg. Histidine tag) or using ion-exchange or hydrophobic chromotography  

based methods if the biochemical properties of the protein are known. Proteins 

containing artificially engineered peptide tags such as the hexahistidine tag can 

bind to immobilized metal ions.  After binding, the matrix-protein complex is 

brought to refolding conditions by replacing the denaturing buffer condition with a 

native one. Finally, the refolded protein can be detached from the matrix, e.g. in 

the case hexahistidine-tagged proteins by elution with EDTA or imidazole or by 

buffers with high ionic strength in the case of proteins bound by ionic interactions 

(82). Due to the selective binding, matrix-assisted refolding can combine the 

renaturation of the target protein along with its purification (83).  However, 

copurification of the aggregated/mis-folded proteins side-by-side with the 

refolded protein could occur and may become representative.  If predominant, 

these aggregated/misfolded proteins could interfere in strutural studies and thus 

need to be removed and the purification can be accomplished with SEC. 
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1.2.4.3.3.  Refolding using hydrophobic interaction  chromatography 

 Hydrophobic interaction chromatography (HIC) has also been successfully 

used for protein refolding with concomitant removal of contaminating proteins 

during the renaturation process (84). Unfolded proteins are applied to the column 

at high salt concentrations and refolded and eluted with a decreasing salt 

gradient.  It has been proposed that refolding is facilitated during HIC because 

unfolded proteins adsorb at high salt concentrations to the hydrophobic matrix 

and, thus, are not prone to aggregation. Additionally, hydrophobic regions of the 

protein that adsorb to the HIC matrix form micro domains around which native 

structure elements can form. During migration through the column, the protein 

will pass through several steps of adsorption and desorption, controlled by the 

salt concentration and hydrophobicity of the intermediate(s), resulting finally in 

the formation of the native structure (85). 

 

1.2.4.4.  Physical conditions and chemical additive s that influence protein 

folding  

 Several physical variables, such as temperature, pressure, and solution 

phases, can impact protein folding.  Temperature has general effects on the rate 

of protein folding.  In general, higher temperatures increasing the rate of folding 

but also the propensity towards aggregation whereas lower temperatures reduce 

the folding rate and can increase the amount of properly folded proteins (86).  

For example, growing bacteria at temperatures slightly lower than 37°C during 
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the protein induction phase can reduce inclusion body formation (and hence 

aggregation) for some proteins (87). 

 Another physical property affecting protein folding is pressure.  Protein 

aggregation can actually be reversed by increasing pressure up to 3 kbar.  

However, above 5 kbar the benefit may be lost as a loss in secondary structure 

may occur (88).  Slowly reducing the pressure back to ambient condition may aid 

the folding process (89, 90).  

At some point, in vivo, some proteins, such as integral membrane 

proteins, come into direct contact with or are transported through lipid 

membranes (91).  Detergents and phospholipids, in the form of micelles and 

liposomes can aid protein refolding in vitro by mimicking the effect of a bilayered 

membrane.  Such methods can solubilize purified membrane proteins enabling 

their proper folding.  Interestingly, in an alternative approach, denatured 

hydrophilic proteins can be forced to fold as independent units in a reverse 

micelle-type system.  Once transferred to this solution, the protein tries to avoid 

the organic phase. After reaching the hydrophilic core of the reversed micelle, 

proteins can refold as a single molecule (92).  Both the micelle and reverse 

micelle approaches aid protein folding of integral membrane and hydrophlic 

proteins, respectively, mainly be preventing unwanted intermolecular protein-

protein interactions that can lead to aggregation.  
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1.2.4.5.  In vitro approaches to fold proteins containing disulfide l inkages  

 Folding proteins that harbor disulfide bonds require special considerations.  

Reducing agents such as dithiothreitol or β-mercaptoethanol must be added in 

order to break the incorrect disulfide linkages.  Slowly removing the reducing 

reagent, such as during dialysis or direct dilution, can enable the protein to 

sample several different disulfied linked states until the most stable one (native) 

is found.  Although this method works well for proteins with few disulfide bounds, 

proteins with multiple cysteine residues require special considerations as 

incorrect stable interactions are more likely to occur.  For example, the ligand-

binding domain of apolipoprotein E receptor 2, which has 42 cysteine residues, is 

extremely difficult to refold in vitro (93).  Similar to the in vivo environment, 

approaches utilizing protein chaperones to aid in the folding of multiple disulfide 

linked proteins has found some promise in folding these difficult proteins.  Protein 

disulfide isomerase (PDI) is a folding catalyst that assists disulfide bond 

formation in vivo and has found success for aiding disulfide bond formation 

during in vitro protein folding. Although PDIs significantly increase the refolding 

rate, much of the protein may still not be properly folded (albeit much improved) 

resulting in reduced recovery of the properly folded protein.  Additionally, residual 

concentrations of chaotropic agents in the refolding buffer, especially 

guanidinium hydrochloride, drastically reduce PDI activity and hence the protein 

yield (94, 95). 

Although attempts have been made to mimic the in vivo environment to 

enable protein folding in vitro, the in vivo environment is still ideal.  
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Overexpressing proteins in bacteria and refolding the proteins in vitro may 

produce greater yields; however, some eukaryotic proteins cannot be refolded 

with this approach.  Alternatively, in an eukaryotic environment, these proteins 

can be properly folded (aided by the eukaryotic folding machinery, 1.1.3.) but at a 

dramatically reduced yield.  For this reason, our lab has created a novel protein 

delivery method that takes advantage of the high yield of the bacterial and the 

high fidelity of the eukaryotic expression systems to refold difficult proteins, such 

as the ligand-binding domain of apolipoprotein E receptor 2, to their native 

structure. 

 

1.3.    Protein delivery technology 

Protein delivery techniques deliver biologically active proteins inside live 

cells for cell biology studies and therapeutical applications. The most popular 

means to deliver proteins into cells include electroporation, microinjection, the 

construction of viral fusion proteins, and the use of cationic liposome.  

Electroporation was initially used to introduce foreign DNA into eukaryotic 

and bacterial cells (96). Scientists later found that  proteins could also be 

introduced into cells using the same method (97-99). Cells are electroporated in 

a buffered solution harboring the purified protein of interest. High-voltage electric 

pulses result in the formation of small pores in the cell membrane. Proteins enter 

the cell via these small pores or during the process of membrane reorganization 

as the pores close and the cells return to their normal state. The efficiency of 
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delivery depends upon the strength of the applied electrical field, the length of the 

pulses, temperature, and the composition of the buffered medium. Although this 

method is successful with a variety of cell types, it has a few major drawbacks.  

The overall yield of the protein after repurification from the transduced cells is 

often negligible and the process can be damaging, causing cell death. 

Another method used in the delievery of macromolecules (protein or nucleic 

acid) into live cells is microinjection.  Microinjection was originally used to 

introduce DNA directly into the nucleus of a cell where it can integrate directly 

into the host cell genome, creating an established cell line bearing the gene of 

interest (100). Proteins, such as antibodies and mutant proteins, can also be 

directly delivered into cells via microinjection inorder to determine their cellular 

effects (101, 102). This method has the advantage of directly introducing proteins 

into specific cellular compartments; thereby, bypassing and preventing exposure 

of the delivered protein to extreme microenvironments found within various 

cellular compartments, such as the low-pH endosome. However, microinjection 

requires extensive training and specialized equipment, which is normally not 

available in most laboratories. 

Several viral proteins or peptides have the ability to travel through cell 

membranes independent of classical receptor- or endocytosis-mediated 

pathways.  Membrane fusion proteins, such as the HIV-1 TAT proteins, the 

herpes simplex virus 1 (HSV-1) DNA-binding protein VP22, and the Drosophila 

Antennapedia (Antp) homeotic transcription factor, have the ability to penetrate 

through the plasma membrane and into cells (103). The small protein 
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transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), 

from these proteins can be fused to other proteins of interest to aid their delivery 

into cells (103). Sequence alignment of the PTD shows a high basic amino acid 

content (Lys and Arg), which may facilitate interaction of PTD with negatively 

charged lipids on the cell surface. The advantage of this method is that protein 

entry is rapid and works with many cell lines (104). However, the drawback to all 

of the PTD-mediated protein delivery systems is that the transduction domain 

must be covalently attached to the protein being delivered.  Thus, it is necessary 

to design special vectors and limit the size of the cargo protein because of the 

relatively large PTDs. Also, denaturation or inactivation of proteins was observed 

after PTD fusion, especially for TAT.  Reduced yield after re-purification of the 

PTD protein fusion can also be a major problem since degredation can occur if 

the PTD-fused protein is misfolded, thus significantly reducing the delivery 

efficiency. Furthermore, the PTD-based protein delivery method does not have a 

targeting capability and cannot specifically delivery a protein into the desired 

intracellular compartment, raising concern about the physiological relevance of 

the delivered proteins (104). 

Liposomes are known for their ability as vehicles to deliver macromolecules 

into cells (105, 106). Cationic liposome can spontaneously and efficiently form 

complexes with negatively charged cargo, facilitating the delivery. This strategy 

has been successfully applied to protein delivery (107). But the physical 

characteristics of the cargo, such as the electric charges and hydrophobicity, can 
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influence the extent of the interaction between the cargo and the cationic 

liposome and ultimately impact the delivery efficiency. 

Our lab recently developed an innovative protein delivery technology, based 

on the QQ-reagent, a polyethylenimine (PEI)–based cocktail, with a unique 

formulation of lipids and enhancers (Figure 1-5).  It is compatible with most types 

of cell culture media and non-covalently binds the protein cargo of interest. This 

protein delivery technology is rapid and straightforward.  The protein of interest 

can be produced by highly efficient E. coli expression systems and purified under 

denaturing conditions from inclusion bodies.  The QQ-cocktails can efficiently 

dissolve the target proteins in delivery buffer that contains urea and modify them 

for protein delivery. Another important advantage of QQ-protein delivery 

technique is that it can deliver labeled protein inside mammalian cells, which 

makes in vivo NMR and fluorescence studies potentially possible. More 

importantly, the QQ-protein delivery technique has several novel features that 

significantly distinguishes it from all the other protein delivery techniques 

currently available (Figure 1-5) The novel features of the QQ-protein delivery 

technique ensure the physiological relevance of the delivered proteins, which is 

indistinguishable from the endogenous proteins. Thus, the QQ-protein delivery 

technique can have many applications in cell biology. 
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Figure 1-5: The technical flow-chart of the QQ- pro tein delivery system. 

 

1.3.1. The QQ-reagent 

        Dr. Qianqin Li in our lab recently develoed a very efficient QQ- protein 

delivery system (the following data on QQ- reagents were done by Dr. Qianqian 

LI). In this protein delivery system, the QQ- reagent plays the key role. It is a 

cocktail of polyethylenimine (PEI) with unique combinations of lipids and 

enhancers. Table 1-3 shows examples of different formulations of the QQ-

reagent. The mechanism of protein delivery by QQ-reagent is unclear. However, 
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PEI is well known for its efficient binding to negatively charged DNA and 

mediating the transfection of eukaryotic cells (108). PEI is highly basic harboring 

many amino groups. The amino groups are protonated at neutral pH and non-

covalently bind negatively charged macromolecules to form a cationic complex. 

The cell surface is normally negatively charged due to the presence of 

glycoproteins, proteoglycans, and sulfated proteoglycans (109-111).  These 

features can mediate interactions between the cell membrane and the cationic 

complex and promote uptake of the QQ-modified proteins (112, 113). The lipid 

composites and enhancers facilitate the solubility of the delivered proteins, such 

as membrane proteins, and help the formation of delivery vesicles, greatly 

enhancing the delivery efficiency of QQ-reagent protein delivery system.  

Table 1-3: Recipes for different QQ reagents from t he stock solution of 

cation reagents, lipids and enhancers (Courtesy of Dr. Qianqian Li).  
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A concentration of 50 ug/ml of the QQ modified protein is optimal for 

relatively high protein delivery efficiency. A mixture of QQ modified protein, 

serum-free medium, and protease inhibitor is incubated with the mammalian 

cells, which have been seeded for 2-5 days to reach 80-90% confluency, for 0.5-

4 hours, application dependent. The cells are extensively washed to remove the 

undelivered protein.  With complete growth medium, the cells are ready for 

further experimentation. 

 

1.3.2.   High protein delivery efficiency  

QQ-protein delivery has been tested using different proteins, covering a 

wide range of molecular weights, isoelectric points (pIs), and solubility, including  

two membrane proteins. Table 1-4 lists the 17 proteins, their properties, and their 

protein delivery efficiency using QQ-protein delivery.  

a.   2 kDa, 8 kDa, 12 kDa, 25 kDa and 60 kDa represent the different molecular 

weights of PEI. 

b.   Total volume is 5 ml when preparing the QQ reagents. We also dissolve the 

protein at a concentration of 0.2-8.0 mg/ml, depending on protein solubility and the 

purpose of the studies. 

c.  In our hand, 2 kDa produces the least cellular toxicity whereas 60K produces the 

most cellular toxicity. 
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Table 1-4: Proteins, their properties, and protein delivery efficiency using 

QQ-reagent protein delivery system (Courtesy of Dr. Qianqian Li). 

 

 Figure 1-6 shows the SDS-PAGE (Left panel) and Western blots (right 

panel) of QQ-modified receptor-associated protein (RAP) that was delivered into 

Hela cells. RAP is an ER resident molecular chaperone of the LDLR family 

members, including apoER2 and VLDLR. RAP binds tightly to the receptors at 

neutral pH, acting as a universal antagonist of the ligand binding domains. It also 

escorts the LDLR family members in the early stage of secretary pathway in the 

ER, reducing premature ligand binding and receptor aggregation. Detailed 

background information will be given in Chapter II.  For now, RAP will be used as 
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an example to demonstrate the efficient protein delivery of the QQ-reagent.  The 

grey arrow shows the protein band of bacterially expressed RAP, while the black 

arrow shows the protein band of RAP in the Hela cell lysate after protein delivery 

(Figure 1-6). Compared with the control Hela cell lysates (without protein 

delivery) (lane 1), an additional band of roughly 40 kDa was observed in the Hela 

cell lystes (lanes 2 and 3) of cells preincubated with QQ-modified RAP.  The 

Western blot (Right panel) confirms that this band corresponds to RAP (compare 

lane 1 (control) to lane 2).  In addition, the band intensity of lane 2 was estimated 

to be at least twice as strong as that of lane 3, where 0.25 mg/ml of purified 

bacterially expressed RAP was loaded. This suggests that at least 0.5 mg/ml of 

the QQ-delivered RAP was recovered, demonstrating the efficiency by the QQ-

reagent. 

 

Figure 1-6: High protein delivery efficiency of QQ- reagent modified proteins  

(Courtesy of Dr. Qianqian Li). 
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1.3.3. Protection of the QQ-delivered proteins from  intracellular protease   

degradation 

 In order to see the stability of QQ-modified protein inside of mammalian 

cells, MESD, a 195-residue specific protein chaperone for the LDLR family (114) 

(115), was QQ-modified and tested for stability against protease degradation by 

adding protease cocktail into MESD solution (Figure 1-7), which is either 

modified without (lanes 1-4) or with (lanes 7-10) the QQ-reagent.  As compared 

to without protease treatment (lane 5), the protein modified with the QQ-reagent 

(lanes 7-10) showed significantly less degredation as compared to the absence 

of the QQ-modification (lanes 1-4).  These results suggest that the QQ-reagent 

can protect MESD from protease degradation and theoretically from intracellular-

mediated degradation.  Basically, the QQ-reagent may protect the modified 

protein from degradation upon entering into the cell; however, the underlying 

Left: A 10% SDS-PAGE quantitatively showing high efficiency of the QQ-delivered 

RAP. Lane 1: Hela cell lysate without RAP delivery. Lane 2: 5 ul Hela cell lysate with 

RAP delivery for 1 hour. Lane 3: 10 ul Hela cell lysate with RAP delivery for 1 hour. 

Lanes 4-7: 60, 120, 250 and 500 ug/ml of RAP (20 ul). Right: A Western blot using an 

anti-RAP antibody. Lane 1: Hela cell lysate without RAP delivery. Lane 2: 5 ul Hela 

cell lysate with RAP delivery. Lane 3: 0.25 mg/ml bacterial expressed RAP in 5-ul. 

Gray arrow: the bacterial expressed RAP. Black arrow: the HeLa cell loaded RAP. 
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mechanism is not well understood.  This may enable the protein to refold and to 

obtain high yields of repurified protein.    

 

Figure 1-7: QQ-reagent protects MESD from the prote ase-mediated 

degradation in vitro (Courtesy of Dr. Qianqian Li).   

 

 

1.3.4. Targeting capability of the QQ-protein deliv ery technique 

 In order to visualize the trafficking of delivered proteins, in this  case 

MESD, a resident ER protein, inside mammalian cells and to detect their final 

location, a small red fluorophore (ArrayIt Red640, Molecular Weight = 799.8 kDa) 

Lane 1-4: MESD without QQ-modification. Lane 7-10: the QQ-modified MESD. While 

reacting with 1.4 mU/ml protease cocktail for 0 hour (Lane 1 and Lane 7), 1 hour 

(Lane 2 and Lane 8), 2 hours (Lane 3 and Lane 9), 4 hours (Lane 4 and Lane 10), 

QQ -modified MESD showed relatively higher stability than the unmodified one. Lane 

5: MESD without reacting with protease cocktail. Lane 6: The QQ-reagent.  
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was linked to MESD. The labeled MESD is modified with QQ-reagent and 

delivered inside of Hela cells.  After 2 hrs post-delivery, MESD is predominantly 

localized to the perinuclear areas, which are potentially the ER (Figure 1-8A). To 

further confirm that this perinuclear localization of MESD was , in fact, to the ER, 

a co-localization experiment was performed. Transient transfection of a GFP-ER 

marker (green) cDNA into BSC-1 cells is conducted following the published 

protocol (116, 117). After 72 hrs, the transfected cells were incubated with QQ-

modified MESD labeled with ArrayIt Red640 (red). After 2 hrs following protein 

delivery, the cells were subjected to fluorescence imaging, showing a merge of 

both the red and green chanels, along with the light microscopy image (Figure 1-

8a). Yellow fluorescence was detected around the perinulear locations, indicating 

MESD was indeed localized to the ER. 

The QQ-reagent was also able to correctly direct the membrane protein 

peripheral myelin protein 22 (PMP22) and the transcription factor Oct4 to their 

appropriate intracellular compartments, the plasma membrane and the nucleus, 

respectivley.  PMP-22 was labeled with the ArrayIt Red640 (red) and delivered 

into Hela cells using QQ-protein delivery. Fluorescence imaging of a Hela cell 

shows that a majority of the red fluorescence signals are localized to the plasma 

membrane (Figure 1-8B and b).  To study intracellular location of the QQ-

delivered Oct4, the bacterially expressed Oct4 was labeled with a small 

fluorophore DyLight 488 (green), QQ-modified, and delievered into human 

fibroblast cells. Fluorescence imaging data showed that the delivered Oct4 is 
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predominantly localized to the nucleus, as it colocalized with the DNA stain, DAPI 

(blue) (Figure 1-8 C and c).  

Taking together, these results show that QQ-reagent delievered proteins 

within the cell as evidenced by the correct in situ residential location of the QQ-

modified MESD, PMP22, and Oct4 to the ER, the plasma membrane, and the 

nucleus, respectivley; otherwise, they would not be localized as such.  This data 

also suggests that the QQ-reagent does not influence the trafficing of these 

proteins.  Also, since these proteins were directed to their correct in situ cellular 

compartments argues that these proteins are likely to be properly folded; 

however, further experiments are needed to confirm this point.  Overall, the QQ-

reagent shows promise as a protein delievery system that can sucessfully 

deliever proteins into cells. 

 

Figure 1-8 : Targeting capability of the QQ protein delivery tec hnique 

(Courtesy of Dr. Qianqian Li). 
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1.4. An efficient bacterial expression system that produces gram quantity 

of pure recombinant proteins   

The gram-negative bacterium E. coli offers a means for rapid, high yield, 

and economical production of recombinant proteins. However, high-level 

production of functional eukaryotic proteins in E. coli may not be a routine matter, 

sometimes it is quite challenging. Techniques to optimize heterologous protein 

overproduction in E. coli have been explored for host strain selection, plasmid 

copy numbers, promoter selection, mRNA stability, and codon usage, 

significantly enhancing the yields of the foreign eukaryotic proteins. Our lab has 

(A) Fluorescence confocal image of the intracellular location of ArrayIt Red640 

labeled MESD (red), merging with the light microscopy image of the same HeLa cell. 

The arrows showed the perinulear localization of delivered MESD.  (a) Fluorescence 

confocal image of the co-localization of GFP-ER marker (green) and ArrayIt Red640 

(red) labeled MESD in BSC-1 cells, after QQ-protein delivery.  (B) Fluorescence 

confocal image of a typical HeLa cells after PMP22 transduction. PMP22 was labeled 

with ArrayIt Red640 (red) fluorophore. The arrow showed the plasma membrane 

location of PMP22.  (b) A merging fluorescence confocal image of both Rhodamine 

and CFP channels for the same HeLa cell.  (C) Fluorescence confocal image of 

human fibroblast cell transducted with DyLight 488 (green) labeled Oct4. The arrows 

showed its nucleus localization.  (c) A merging fluorescence confocal image of both 

DyLight 488 (green) labeled Oct4 and nucleus staining DAPI (blue) for the same 

fibroblast cell. 
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been working on optimizations of bacterial expression conditions and media with 

a focus on achieving very high cell density for high-level production of eukaryotic 

proteins. Two high-cell-density bacterial expression methods have been 

explored, including an autoinduction introduced by Studier (118) recently and a 

high-cell-density IPTG-induction method developed in our lab, to achieve a cell-

density OD600 of 10–20 in the normal laboratory setting using a regular incubator 

shaker. Several practical protocols have been implemented with these high-cell-

density expression methods to ensure a very high yield of recombinant protein 

production. With these methods and protocols, a yield of 14–25 mg of NMR 

triple-labeled proteins and 17–34 mg of unlabeled proteins from a 50-mL cell 

culture is routinely achieved for all seven proteins tested. Such a high protein 

yield used the same DNA constructs, bacterial strains, and a regular incubator 

shaker and no fermentor is necessary. More importantly, these methods permit 

for consistently production of such a high yield of recombinant proteins using E. 

coli expression (59). 

 One of the major challenges to achieve high yield protein production is to 

achieve a high cell density bacterial expression under routine laboratory setting 

using a regular incubator shaker. A hybrid bacterial expression method has been 

developed in our lab that utilizes rich medium to achieve a high cell density 

before IPTG induction, while maintaining the advantage of the tightly controlled 

induction by IPTG in minimal medium (59).  This hybrid expression method 

allows us to reach a high cell density with a final OD600 that is 5 to 10 fold higher 

than that of the regular IPTG induction method.  
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 High cell density culture systems, especially under the non-fermentation, 

laboratory conditions, often cause a low or even no protein production with a high 

cell density culture, since bacterial cells experience stress at a high cell density 

using a regular incubator shaker which does not control the O2 level, pH and 

nutrients of the expression medium. To solve this problem, several protocols 

have been developed to ensure stability of plasmids inside bacterial cells during 

high cell-density bacterial expression. These protocols include: (1) Proper 

starting culture; (2) double colony selection; and (3) optimized time course and 

temperature after IPTG-induction (59). In addition, cell areation and medium pH 

during high cell-density expression are also optimized. With these protocols, a 

gram/liter pure recombinant protein is achieved using our bacterial expression 

method. 

 

1.5.    Summary of literature review 

 Protein folding promotes a protein’s native conformation and biological 

function. Misfolding can cause severe protein misfolding diseases, such as 

Alzheimer’s disease, diabetes, cancer, and prion diseases. To study the protein 

folding mechanism, techniques including X-ray crystallography and nuclear 

magnetic resonance spectroscopy (NMR) are critical; however, large quantities 

of properly folded and biologically functional proteins are required. The present 

large-scale heterologous protein expression systems using E.coli, yeast, insect, 

or mammalian cell lines have inherited weaknesses, often causing protein 

misfolding.  In vitro protein refolding techniques are the other option to obtain 
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properly folded and biologically active proteins at relatively high speed and low 

cost. But the efficiency of in vitro protein refolding is greatly affected by the 

aggregation and misfolding reactions happening in the same refolding system. 

Therefore, a more simple and cost-effective protein refolding technique is 

needed. 

Our lab recently developed a novel QQ- protein delivery technique. By 

using the highly efficient QQ-protein delivery technique, we can deliver large 

quantities of bacterially expressed proteins inside of mammalian cells. The QQ-

reagent non-covalently attaches to the delivered protein, efficiently transports the 

protein across the cell membrane, helps the delivered protein to evade 

degredation, and targets the delivered protein to its in situ cellular location.  

Our lab has also developed a highly efficient recombinant protein 

expression method in an E. coli protein expression system. This method bases 

on a hybrid high cell-density IPTG-induction bacterial expression with several 

practical protocols to ensure high-yield production of protein.  This novel bacterial 

expression method allows us to routinely obtain nearly gram quantity of pure 

recombinant proteins from a one-liter bacterial culture. 

 The ER is the cellular machinery of protein translation and protein folding. 

High density of folding chaperones and enzymes exist in the ER, efficiently 

assisting protein refolding. Simultaneously, the stringent quality control (QC) 

system can guarantee only correctly folded proteins are sent to their final 

destinations. By using our developed recombinant protein expression method 
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and QQ-protein delivery technique, we can deliver large quantity of recombinant 

proteins inside of mammalian cells. The ER protein folding machinery may be 

able to refold them with the help of foldases and chaperones. The folded protein 

can be repurified from the cells.  The quality and quantity of purified refolded 

protein can meet the need of many applications, such as structural biology and 

protein therapeutics. 

 

1.6.    Research goals 

 The goal of my dissertation reseach was to develop an in vivo protein 

refolding technique that allows efficient refolding of bacterially expressed proteins 

using the intracellular folding machinery of mammalian cells. The QQ-protein 

delivery technique allows us to deliver the bacterially expressed proteins into the 

ER, where the protein folding machinery of the cell may properly refold the QQ-

delivered proteins efficiently by recruiting chaperones and foldases. The ER 

quality control system ensures that only the properly refolded, bacterially 

expressed proteins will achieve maturity with the misfolded proteins being 

degraded. Thus, this in vivo protein refolding technique may provide an efficient 

strategy to refold large quantity of bacterially expressed proteins that are possibly 

misfolded.  

In particular, this technique may be specifically useful for the efficient 

refolding of secreted proteins, since these proteins will be targeted for secretion 

into the cell culture medium once they are properly folded and posttranslationally 
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modified. Therefore, purification of the refolded proteins will be easy to achieve if 

we use serum-free cell culture medium. In addition, by properly designing the 

protein sequences, we can target protein domains and critical segments of an 

intact protein causing them to be secreted by the cell. Thus, we can take 

advantage of these domains and critical protein segments to allow secretion of 

the protein of interest, which will be already somewhat pure as it is seperated 

from the rest of the cellular millue, making it rather straightforward to efficiently 

refold and purify them in large quantity. Finally, this in vivo protein refolding 

technique may also have the capability to generate properly posttranslationally 

modified proteins inside the ER and Golgi, sites where some posttranslational 

modifications can occur. 

 To develop this in vivo protein refolding technique, two protein domains: 

beta- propeller/EGF domain I of LDL receptor- related protein 6 (BP1-LRP6) and 

the ligand-binding domains of apolipoprotein E receptor 2 (LBD-apoER2), will be 

tested. BP1-LRP6 and LBD-apoER2 are protein domains of two large receptors 

of the low-density lipoprotein receptor (LDLR)-family, with molecular weight of 

34-36 kDa. Both proteins have large numbers of cysteins that form complex 

intracellular disulfide bonds, which are important for their structural rigidity as well 

as their biological function. In particular, LBD-apoER2 contain 298-residues that 

has 42-cysteines, forming 21 intracellular disulfide bonds. This protein domain 

also contains 7 Ca2+-binding sites. Refolding this protein domain is quite 

challenging. Thus, these two protein domains are very good candidates to test 

this in vivo protein refolding technique.  
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Chapter II 

Refolding of the Ligand-Binding Domain of Apolipopr otein E  
receptor 2 (LBD-apoER2) inside mammalian cells 

 

2.1. Introduction   

The aim of this project is to develop and optimize an in vivo protein 

refolding technology that can be used to efficiently refold bacterially expressed 

and potentially misfolded proteins using the ER folding machinery of mammalian 

cells. Previously, our lab demonstrated that the misfolded proteins can be 

delivered into mammalian cells using QQ-protein delivery and these delivered 

protein can be refolded inside of cells. The refolded proteins display biological 

functions and followed the same intracellular trafficking pathways (119). These 

observations provide the solid foundation for this in vivo protein refolding 

technology. 

However, this in vivo protein refolding technique was in its early stage and 

needed to be optimized so that it can be used to efficiently refold large quantities 

of misfolded proteins and to produce properly folded, biologically functional 

proteins. In addition, our optimization also focuses on proteins with complex 

folding since the refolding of these kind of proteins are very challenging and in 

most cases, the in vitro protein refolding techniques cannot be used to properly 

refold these proteins. Our rationale is to utilize the intracellular folding machinery 

of mammalian cells to efficiently refold these challenging proteins. Indeed, cells 

have developed an efficient folding machinery and quality control systems, 
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ensuring that only the proper folded proteins can escape the ER-associated 

degradation system to reach their intracellular destinations or to be secreted 

outside of the cells for function.   

The QQ-protein delivery technique developed in our lab ensures that we 

can efficiently deliver bacterially expressed proteins into the ER for refolding. 

This solved a major problem for this project, since the QQ-protein delivery 

provides us with the targeting capability to specifically and efficiently deliver the 

proteins of interest inside the ER, such that these proteins have a chance for 

refolding. The QQ-reagents are designed to non-covalently bind to the target 

proteins and are hence reversible, enabling the unmodified protein, to have an 

opportunity to be refolded by the ER resident machinery. 

Our lab has been working on low-density lipoprotein receptor (LDLR) 

family for several years.  We are particularly interested in two domains of the 

LDLR family: the ligand-binding domain and the YWTD β-propeller domain, since 

these two domains are the two essential domains for biological functions of this 

protein family. In order to perform research on these proteins, we first used 

bacteria to prepare recombinant domains using the high cell-density bacterial 

expression method recently developed by our lab (59). We found that although 

our bacterial expression method produced large quantities of recombinant 

proteins, these bacterially expressed domains were misfolded and not 

biologically active. This is not surprising since both of the domains contain many 

cysteines that form multiple intramolecular disulfide bonds. In addition, these 
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domains also contain many Ca2+-binding sites. These structural features make it 

very challenging to properly fold these domains. 

However, these two domains of LDLR family provide good candidate 

proteins for us to optimize our in vivo refolding technology. In this chapter, I will 

focus on the refolding technique aimed at refolding the ligand-binding domain of 

apolipoprotein E receptor 2 (LBD-apoER2), an LDLR family member. I optimized 

several different parameters in an attempt to properly fold LBD-apoER2 

including: the best QQ-reagent/LBD-apoER2 ratio for efficient delivery into the 

ER, different cell culture conditions to facilitate refolding, and purification 

procedure to isolate the protein after refolding. Through finding the best 

conditions of this in vivo protein refolding technique, I was able to obtain properly 

refolded LBD-apoER2.  Although the refolding efficiency of the QQ-delivered 

LBD-apoER2 was only up to 20%,  successive rounds of delievery enabled me to 

get large quantitites of protein that I later purified.  Most important of all, I was 

also able to demonstrate that the purified LBD-apoER2 could bind to the ligands 

of apoER2, suggesting that I obtained biologically active and hence properly 

folded protein using this in vivo protein refolding technique. 

 

2.1.1.  LDL receptor superfamily 

Lipoprotein particles mediate the transport of lipophilic molecules in both 

the peripheral circulation system and within the central nerve system (CNS) to 

maintain lipid homeostasis. These particles are typically spherical complexes of 
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lipids and apolipoproteins. They can be recognized by the low-density lipoprotein 

(LDL) receptors located on the cell surface for uptake.  

The low-density lipoprotein receptor (LDLR) superfamily consists of over 

ten known endocytic receptors, all of which share homology with the LDL 

receptor. Most of these receptors are multifunctional, binding and endocytosing 

many structurally and functionally distinct ligands. Together with the LDL 

receptor, these receptors form the LDLR superfamily, primarily owing to their 

structural homology, as well as functional redundancies.  

 

 

Figure 2-1: Domain organization of human LDLR family  members ( 120).  
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Figure 2-1 shows the domain organization of human LDLR-family. All the 

members of the LDL receptor superfamily are composed of five major domains --

- complement-like ligand binding repeats, epidermal growth factor (EGF) –like 

repeats, YWTD β-propeller repeats, a transmembrane domain, and a short 

cytoplasmic tail (121). A primary feature of this family is the presence of cysteine-

rich ligand-binding repeats, which form the ligand-binding domain (122-124). 

These ligand-binding repeats, each of which is about 40 amino acids in length 

and contains six cysteine residues, are also found in a number of complement 

components and are therefore also referred to as complement-type repeats (CR) 

or the LDL receptor type-A (LA) repeats.  

The complex structures of LDLR superfamily members indicate that 

biosynthesis of these receptors must require the assistance of molecular 

chaperones. Indeed, studies with LRP, megalin, and VLDLR have shown that 

RAP serves as a specialized chaperone to assist LDLR superfamily members to 

fold correctly and then traffic safely within the early secretary pathway (125, 126). 

 

Domains characteristic for the LDLR family are discussed in detail in the text. All 

family members have a type I topology (i.e., N-terminus in the ER lumen or the extra-

cellular space and the C-terminus in the cytosol) with the exception of LRP4. The 

cytosolic domains contain one or multiple copies of NPXY, YXXL and di-leucine 

based sequences that mediate internalization and intracellular sorting. 
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2.1.2.  LDL receptor superfamily - structures 

Extensive structural studies have been performed on individual domains of 

LDL-receptor. For the ligand-binding domain, four ligand binding repeat 

structures have been individually solved; only one is by X-ray crystallography, the 

other three are by NMR (127). For example, repeat 1 consists of a beta-hairpin 

structure, followed by a series of a beta turns with many of the side chains of the 

acidic residues, including the highly conserved Ser-Asp-Glu motif, clustered on 

one face of the module (Figure 2-2) (128, 129). Other ligand binding repeats 

display a similar structure with subtle changes (127). The EGF precursor 

homology repeat consists of 392 amino acids; there are three cysteine-rich 

repeats (A, B and C), two at the N-terminus, and one at the C-terminus of YWTD 

β-propeller repeats. In the middle, the YWTD repeats form a six-bladed β-

propeller (Figure 2-2) (130). 

 In 2002, Rudenko et al. determined the crystal structure of the LDL 

receptor domain I and II, residues 1-699, at pH 5.3 corresponding to the ligand-

released state (131) (Figure 2-3). Two histidines (H562, H586) in the β-propeller 

point to repeats 4 and 5, and H190 from repeat 5 protrudes to the β-propeller 

blades. Mutation of the three histidines did not affect the LDL-binding ability, but 

LDL receptor loses its ability to release the bound ligand (132). It was 

hypothesized that within the low pH of the endosome, the ligand-binding domain 

of the receptor dissociates from its ligand, and transforms from its open state to 

the closed state. Repeats 4 and 5 bend to contact the EGF precursor domain via 

their calcium-binding loop (131), and the ligand binding domain flexibility for the  
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Figure 2-2:  Domain organization of the LDL receptor and regions within the 

extracellular domain for which structural informati on has been obtained ( 133).  

The O-linked sugar domain is thought to act mainly as a hydrophilic buffer zone that 

keeps bound lipoprotein particles away from the lipid bilayer of the plasma 

membrane. The NPxY motif in the cytoplasmic tail of the LDL receptor is required for 

clustering and internalization. Boxed references next to structural representations 

indicate the cited publication from which the respective structure has been 

reproduced.  
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Figure 2-3: The crystal structure of LDL receptor r esidue 1-699 at pH 5.3 ( 131). 

 

 

(A) Cα trace of LDL-R monomer. Modules are colored according to their boundaries 

with the ligand-binding domain containing R2 (residues 44 to 85), R3 (85 to 124), R4 

(124 to 170), R5 (170 to 212), R6 (212 to 254), R7 (254 to 294), and the EGF 

precursor homology domain containing A (294 to 332), B (332 to 377), β propeller 

(377 to 643), and C (643 to 693). Regions of poor backbone connectivity are dashed. 

Calcium ions are indicated as red spheres, and disulfide bonds and carbohydrates on 

Asn135 and Asn251 are shown in gray as ball and stick (sulphur atoms, yellow; oxygen, 

red; nitrogen, blue; and carbon, gray). (B) The view is rotated 90° from that of (A). 
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open-closed state transformation is provided by the linker regions between seven 

repeats instead of the connection of two domain (132). 

 

2.1.3. LDLR superfamily – functions    

 The function that is most commonly associated with this evolutionarily 

ancient family is cholesterol homeostasis. In humans, excess cholesterol in the 

blood is captured by low-density lipoprotein (LDL) and removed in the liver by the 

endocytosis of the LDL receptor (122, 124, 134). Recent evidence indicates that 

the members of the LDL receptor gene family are active in the cell signalling 

pathways between specialized cells in many, if not all, multicellular organisms 

(135, 136).  

 Endocytosis is the process by which cells absorb molecules (such as 

proteins) by engulfing them. The LDLR family plays a critical role in mediating 

this important cellular process (Figure 2-4). The first step of endocytosis is for 

molecules or ligands to bind to LDL receptors exposed at the cell surface. These 

transmembrane proteins have the ligand-binding domain that recognizes and 

binds to the ligands. The portion of the plasma membrane with bound ligand is 

internalized by endocytosis. A drop in the pH (from ~7 to ~5) causes the LDL to 

separate from its receptor. The vesicle then pinches apart into two smaller 

vesicles: one containing free ligands such as LDLs; the other containing now-

empty receptors. The vesicle with the LDLs fuses with a lysosome to form a 

secondary lysosome. The enzymes of the lysosome then release free cholesterol  
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Figure 2-4: LDLR biosynthesis and transport ( 137).  

 

 

into the cytosol. The vesicle with unoccupied receptors returns to and fuses with 

the plasma membrane, turning inside out as it does so (exocytosis). In this way 

Briefly, LDLR is synthesized by the ER-associated ribosome and is folded inside the 

rough ER and post-translationally modified inside ER and Golgi. The properly folded 

and post-translationally modified LDLR translocates on the cell surface for function. 

Upon binding to LDLR, the LDL-LDLR complex is endocytosed inside the cells via 

clathrin-coated vesicles, which then travels to endosome. The low pH inside 

endosome releases the LDL from LDLR. The released LDLR is recycled back to the 

cell membrane for function, where the LDL is transported to lysosome for 

degradation.  
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the LDL receptors are returned to the cell surface for reuse. Various members of 

the LDLR family display functional similarities (122, 124, 134). 

 One ligand, apolipoprotein E (apoE)-containing lipoprotein, binds most of 

the receptors in the family, suggesting a role in lipid metabolism. Also, most 

members of the LDLR family bind a 39 kDa receptor-associated protein (RAP) 

(138). RAP is an endoplasmic reticulum (ER)-resident chaperone that functions 

in receptor folding and trafficking along the early secretary pathway (125, 138, 

139). Upon binding to the receptors following their translation, RAP promotes 

proper folding and disulfide bond formation for members of the LDLR family. In 

addition, RAP universally antagonizes the ligands binding to the receptors. 

Because this later feature of RAP is believed to be important for escorting the 

receptors and preventing pre-mature ligand binding during their exocytic 

trafficking, the recombinant form of RAP has been extensively used in structural 

and functional studies into the biology of the LDLR family members (138).  

 Recently, several independent studies have also demonstrated roles for 

LDLR family members in cellular signaling (135, 136). For example, cellular 

signaling through the VLDLR and/or apoER2 is important for the Reelin/disabled 

pathway, which participates in neuronal cell migration during embryonic 

development (140). In addition, LRP6 has been shown to be required for the Wnt 

signaling pathway during embryonic development (141-143). Furthermore, a set 

of cytoplasmic adaptor and scaffold proteins containing PID or PDZ domains, 

including mammalian Disabled-1 (mDab1), mDab2, FE65, JNK-interacting 
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protein JIP-1 and JIP-2, PSD-95, CAPON, and SEMCAP-1, binds to the 

cytoplasmic tails of members of the LDLR family (136, 140, 144-146). 

 Members of the LDLR play roles in the pathogenesis of human diseases. 

A classic example is mutation of the LDLR itself in the forms of familiar 

hypercholesterolemia (FH) (147). The crucial role of the LDLR in cholesterol 

homeostasis is indicated by the more than 1500 human mutations that have 

been found in patients with familial hypercholesterolemia (FH) (148, 149). LRP5 

and LRP6 are required for activation of the canonical Wnt signaling pathway for 

cell proliferation and differentiation. Loss of Lrp5 is associated with delayed 

mammary gland development and Wnt1 induced tumorigenesis. Functional 

mutations in the Wnt co-receptor LRP5 also lead to osteoporosis-pseudoglioma, 

while gain of function mutations lead to high bone mass disorders (150-153). 

VLDLR and ApoER2 are obligate components of Reelin signaling pathway 

essential for neuronal migration during development (154, 155). ApoER2 

immunoreactivity in human hippocampus is present exclusively in neurons and is 

increased in Alzheimers Disease (AD) (156). The c-Jun N-terminal kinase (JNK) 

pathway may transduce Aβ neurotoxicity, and apoER2 binds JNK-interacting 

proteins, thus suggesting a possible involvement of apoER2 in AD 

pathophysiology (145). 

 

2.1.4.    ApoER2 

 ApoER2 (apolipoprotein E receptor 2, also called LRP8, is a member of 

the LDLR family (157). It is located on chromosome 1p34 and contains 19 exons, 
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which span a genomic region of about 60 kb (157). ApoER2 is predominantly 

expressed in brain and placenta (158). However, alternative splicing of the 

apoER2 gene transcripts can give rise to different varieties of the apoER2 

proteins from species to species or even from tissue to tissue within the same 

organism.  

 ApoER2 consists of five domains that resemble those of the LDLR and the 

very low-density lipoprotein (VLDL) receptor (157). Expression of apoER2 in 293 

cells demonstrated that it is endocytosis competent (159). However, direct 

comparison of the cytoplasmic domains of LRP, LDLR, VLDLR, and apoER2 

overexpressed in CHO cells suggested a role in signaling rather than in 

endocytosis (160). Studies have shown that apoER2 participates in transmitting 

the extracellular Reelin signal to intracellular signaling processes initiated by 

Disabled-1 (Dab1) (161). Reelin is an extracellular protein essential for the 

development of laminated cortical brain structures in vertebrates (154). Upon 

high-affinity binding to Reelin at the ligand-binding domain, apoER2 transmits the 

Reelin signal to its intracellular domain and this signal underlies learning and 

memory in the adult brain. ApoER2 appears to be the dominant Reelin receptor, 

at least in the forebrain. 

 Later studies showed Reelin binds with high affinity to both apoER2 and 

VLDLR (155, 161, 162), while Dab1 binds to the cytoplasmic NPxY motif of both 

receptors through a PTB domain (144, 146). Importantly, all of the mice deficient 

in both apoER2 and VLDL, or their ligand Reelin, or the adaptor protein Dab1 

show markedly high levels of hyperphosphorylated tau protein, which are found 
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to accompany the formation of the neurofibrillary tangles that are one of the 

pathological hallmarks of Alzheimers Disease (AD) (163). ApoER2 knockout 

mice display disturbed neuronal organization in the hippocampus (164). ApoER2 

immunoreactivity in human hippocampus is present exclusively in neurons and is 

increased in AD (156). The c-Jun N-terminal kinase (JNK) pathway may 

transduce Aβ neurotoxicity, and apoER2 binds JNK-interacting proteins, thus 

suggesting a possible involvement of apoER2 in AD pathophysiology (145). 

 

2.1.5.   Receptor-Associated Protein (RAP) 

 The complex structure of LDL receptors is highlighted by the presence of 

clusters of cysteine-rich, ligand-binding repeats (165, 166). Recent studies have 

shown that, under physiological condition, a 39 kDa receptor-associated protein 

(RAP) RAP serves as a molecular chaperone to assist the lipoprotein receptor 

folding and inhibit pre-mature ligand binding through LDL receptor secretary 

pathway (125, 126). Human RAP is comprised of 323 amino acids. RAP has a 

classical ER-signal sequence, a carboxyl-terminal tetrapeptide (HNEL) that is 

similar to the ER-retention consensus sequence (KDEL) (165, 166). The 

intracellular distribution of RAP was analyzed and quantified, showing 

localization primarily within the ER (70%) and the Golgi network (24%) (167). 

 The most dramatic effect  RAP is the inhibition of binding and/or uptake 

of all other known LRP ligands (168-173). This ability of RAP distinguishes this 

protein from other LRP ligands, which seldom inhibit one another’s binding or 
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uptake. In addition to LRP, RAP also binds to other members of the LDLR 

superfamily and inhibits ligand interactions. Studies have shown that RAP 

exhibits high-affinity binding (KD~1-10 nM) for LRP, megalin, the VLDLR, 

apoER2/LRP8 and LRP11/sorLA-1 (174). But relatively lower binding affinity 

(KD~250 nM) was found for the LDLR (175-179). 

 RAP dissociates from the receptors at the lower pH environment of the 

Golgi, which is consistant with its requirement of binding to LRP and Ca2+ at 

neutral pH (169). Because of the N-terminal KDEL-like consensus, after 

dissociating from receptors in the Golgi, RAP will be recycled back to the ER by 

COPI coated vesicles (Figure 2-5) (139). All these special properties of RAP 

define a novel class of molecular chaperones that selectively protect endocytic 

receptors from ER associated degradation (ERAD).  RAP protects receptors 

such as, the LDLR superfamily, by associating with the ligand binding domain of 

the members of receptors early in the secretary pathway, reducing their ligand 

binding capacity thereby preventing premature ligand-binding induced 

aggregation, and their subsequent degradation in the ER.  Figure 2-5 depicts 

how RAP escorts receptors trafficking from the ER to the Golgi apparatus. 

 

2.1.6.     Challenge of refolding LBD-apoER2 

 It is still unclear how individual domains of LDLR family folds into a 

functional receptor. Disulfide bond formation and calcium incorporation are two 
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dominant characteristics of ligand-binding domain of LDLR (LBD-LDLR) folding in 

the ER. The newly synthesized LBD-LDLR polypeptide chains include seven 

 

Figure 2-5: ER export and retrieval cycle of RAP- R ole in LRP secretion ( 126). 

LDL receptor-related proteins (LRP) are type I membrane proteins that undergo 

cotranslational folding during translocation into the ER. Association with RAP 

prevents premature ligand (Lig) binding in the ER. After transition into Golgi 

compartments, RAP undergoes a conformational change, which is initiated by the 

low-pH-induced charge reversal of histidines (Histidine switch). This partial unfolding 

of RAP may also facilitate its interaction with the KDEL receptor, which mediates the 

retrieval of RAP to the ER. The mildly acidic environment of the Golgi further 

suppresses ligand interaction in the absence RAP, thereby ensuring proper sorting 

and secretion of LRP and cosecreted ligands. 
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ligand binding repeats that were demonstrated to be folded rapidly into compact 

structures, containing non-native disulfide bonds linking distant regions of the 

protein (180, 181). With time, the aid of molecular chaperones, and foldases in 

the ER, the non-native disulfide bonds are reshuffled, allowing extension of the 

molecule. Ultimately, in the native conformation, disulfide bonds only exist 

between cysteine residues within individual ligand binding repeats (131). General 

chaperones recognize and interact with unfolded, partially folded or misfolded 

proteins due to common features such as exposed stretches of hydrophobic 

amino acid residues, thereby preventing aggregation. The relatively oxidizing 

environment of the ER may support disulfide bond formation, but the actual redox 

reactions are catalyzed by oxidoreductases of the protein disulfide isomerase 

(PDI) family (182-184).  

 Incorporation of calcium ions is the second major characteristic of LBD-

LDLR folding. These domains also have very high-affinity calcium binding sites. 

NMR studies on the folding of repeat R5 demonstrated a strict correlation 

between native disulfide bond formation and calcium binding (185). In the 

absence of disulfide bonds, the calcium binding capacity is negligible. When the 

distal disulfide bonds (non-native disulfide bonds) between cysteines II and V, 

and IV and VI are formed, calcium will bind, but maximum affinity requires a 

native structure.  

 Specialized chaperones, RAP and MESD/Boca may facilitate folding of 

different domains of LDLR relatives. Whereas RAP improved the folding of the 
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ligand binding domain of LDLR family (125, 186), MESD/Boca mainly act on 

LDLR containing EGF-like repeats and YWTD β-propeller structures (115, 187).  

 The total seven ligand-binding repeats in the LBD-aopER2 contains 42 

cysteines that form 21 disulfide bonds. Each ligand binding repeat in the ligand 

binding domain (LBD) has three disulfide bonds. In addition, each ligand-binding 

repeat also contains a Ca2+-binding site. Because of the complex array of the 

disulfide bonding formation and Ca2+-binding within the LBD-aopER2, it is 

impossible to refold the protein in vitro into the native conformation, especially 

without the help of molecular chaperones and folding enzymes. Therefore, 

refolding bacterially expressed LBD-apoER2 becomes extremely challenging. To 

our knowledge, only one report claimed successful refolding of the bacterially 

expressed recombinant LBD-LDLR in vitro by dialyzing the protein under redox 

conditions (188).  We made several attempts to refold the structurally similar 

LBD-apoER2 under this published condition but found that this in vitro refolding 

condition could not successfully refold LBD-apoER2 into its native conformation. 

 This problem drove us to explore other methods to refold bacterially 

expressed recombinant LBD-apoER2. We found that our in vivo protein folding 

technology is able to properly refold bacterially expressed apoER2 inside 

mammalian cells. We further optimized this in vivo protein refolding technique 

and achieved up to 20% refolding efficiency. This allows us to prepare milligram 

quantity of properly refolded LBD-apoER2 that is biologically functional. This is 

the main focus of this chapter.   
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2.1.7.   A novel in vivo protein refolding technique 

Our lab recently developed a novel in vivo protein refolding approach to 

efficiently refold large quantities of bacterially expressed proteins into their 

properly folded and biologically functional conformations. This technique is based 

on the fact that the mammalian cells have comprehensive protein folding 

machinery to assist complex protein folding.  

Protein folding in mammalian cells occurs in the ER, an extremely macro-

molecularly crowded environment harboring lots of folding enzymes and 

molecular chaperones (188). Most chaperones, such as the Hsp70s, can 

recognize and bind to hydrophobic residues and/or unstructured backbone 

regions of non-native proteins, not only to block intermolecular aggregation but 

also to prevent or reverse intramolecular misfolding. Folding enzymes, such as 

disulphide isomerases and peptidyl–prolyl isomerases, can catalyze rate-limiting 

steps in protein folding (12).  

Not only does the ER provide a unique folding environment, but it also 

exerts crucial quality control functions (188). Certain chaperones of the Hsp100 

family even have the ability to unfold non-native proteins or to disrupt small 

protein aggregates by an ATP-dependent mechanism. The ATP-dependent 

unfolding is a prerequisite for the proteolytic degradation of misfolded proteins 

(37, 38). Proteins that fail to fold or assemble are not allowed to proceed further 

downstream (to the Golgi). Instead, they undergo ER-associated degradation 

(ERAD).  



                                                                               68 

 

 
 

 

Figure 2-6: The technical flow chart of the novel in vivo protein refolding 

technique developed by our lab.   
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Our refolding method takes advantage of this comprehensive protein 

folding machinery inside mammalian cells by using our highly efficient QQ-

protein delivery technique and the high-yield bacteria expression method. As 

shown in Figure 2-6, first, a very high yield of bacterially expressed proteins is 

achieved by our advanced bacterial expression system. We purify bacterially 

expressed recombinant proteins by affinity chromatography. If the purified 

proteins are not properly folded and functional, we perform the in vivo protein 

refolding procedure.  By using QQ-reagent to non-covalently modify the 

bacterially expressed proteins, we deliver QQ-modified proteins to mammalian 

cells for in vivo protein refolding and post-translational modification. The properly 

refolded protein will be sent to its targeted intracellular compartments or will be 

secreted into the cell culture medium, depending on its intrinsic signal. We then 

lyse the cells or collect the culture medium to purify the properly refolded protein. 

Our biophysical studies and function assay data suggest that the purified 

refolded proteins adopt proper conformations and are biologically functional. 

 

 

The target protein is first expressed in E.coli and then is subjected to affinity column 

purification. The bacterial expressed protein is misfolded. The QQ-reagent modifies 

the bacterial expressed protein and delivers it inside of mammalian cells for protein 

refolding and post-translational modification. Properly folded protein will be purified to 

obtain functional proteins.  
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2.2.     Material and methods 

2.2.1.     Strain, plasmid and media 

 E.coli stain ER2556 [genotype: F − λ − fhuA2 [lon] ompT lacZ::T7 geneI 

gal sulA11 ∆(mcrC-mrr)11::IS10 R(mcr-73::miniTn10)2 R(zgb-210::Tn10) 1 

(TetS) endA1 [dcm]; New England Biolabs] was used for molecular cloning. E. 

coli strain BL21(DE3) [F- ompT hsdSB (rB-mB-) gal dcm (DE3 [lacI lacUV5-T7 

gene1 ind1 Sam7 nin5; New England Biolabs] was used for protein expression 

and purification. LBD-apoER2 with an N-terminal 6-histidine tag was constructed 

using a pET30a-sHT bacterial expression vector which is engineered from 

pET30a (+) (Novagen). 

 

2.2.2. DNA manipulation 

 The original long his-tag of the pET30a (+) vector (Novagen) was 

replaced by a short his-tag containing six histidine plus two serine residues by 

mutagenesis. Mutagenesis was carried out using the QuickChangeTM site-

directed mutagenesis kit (Stratagene, CA). The mutations were confirmed by 

DNA sequencing.  

 LBD-apoER2 was subcloned into the engineered pET30a-sHT vector. The 

confirmed positive DNA constructs were first transformed into E.coli ER2566 

competent cells for plasmid DNA replication and glycerol stock purposes and 

then were transformed into BL21(DE3) cells for protein expression. 
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2.2.3. Protein expression and purification 

Protein expression was carried out using E.coli. BL21 (DE3) cells. A 10-15 

ml overnight culture in a rich medium, such as 2x YT, was made from a glycerol 

stock. Next morning, the overnight culture was diluted into the LB medium with a 

ratio 1:100. The culture was gown in LB medium with 30 ug/ml kanamycin at 37 

°C until it reached an OD 600 of 0.8-1.0. The cells were spun down and re-incubate 

into a minimal M9 medium (kanamycin, 30 ug/ml) at 1:1 volume ratio. The culture 

was continued at 20 °C for one hour. A sample of the cu lture was taken to check 

its OD600 to confirm the continuous growth of cells under lower temperature and 

the minimal M9 medium. Then expression of the recombinant LBD-apER2 was 

induced by IPTG (0.5 mM, final concentration). The culture continued overnight 

at 20 °C.  

The cells were harvested by centrifuge next morning. The cell pellet was 

re-suspended in the binding buffer (10 g/ml cells, 20 mM Tris-HCl, 500 mM NaCl, 

2.5 mM imidazole, 6 M urea at pH 8.0) of His tag affinity purification system and 

sonicated on ice. To separate the cell pellet from the supernatant, the cell pellet 

was centrifuged. The pellet was again re-suspended in the binding buffer with 6 

M urea and sonicated on ice. This procedure was repeated three times to ensure 

that all bacterially expressed LBD-apoER2 in the inclusion bodies was solubilized 

in the buffer system. All supernatant fractions were combined and applied on a 

His�Bind® resin column (Novagen). The column was washed with a large amount 

of binding buffer with 6 M urea and the washing buffer containing 20-30 mM 

imidazole for 100-500 ml. The purified recombinant LBD-apoER2 was eluted 
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from the column using the elution buffer with 1.0 M imidazole and 6 M urea. The 

eluted protein was extensively dialyzed against 10 mM ammonium bicarbonate. 

After dialysis, the protein solution was lyophilized and the pure LBD-apoER2 

protein powder was obtained, which was weighed and stored at -20°C for future 

experiments. 

 

2.2.4  Isotope-labeled protein expression and purif ication 

High cell-density expression method (59) was used to greatly improve 

isotope labeled protein yield at the same time to reduce the costs. The 

transformed cells were inoculated into LB medium for overnight cultures, which 

was then diluted by 100 volume folds into the LB medium at the next morning 

and cultured at 37 °C in the presence of kanamycin (30 ug/ml). When the OD600 

reached around 1.5-2.0, we switched the cell culture to isotope-labeled M9 

minimal medium by gently spinning down cells and re-suspended the cell pellet 

into the medium. Isotope-labeling is achieved by expressing LBD-apoER2 in this 

special isotope-labeled M9 minimal medium, in which NH4Cl is replaced by 0.1% 

15NH4Cl and glucose is replaced by 0.2% 13C-glucose and H2O is replaced by 

D2O for 2H/13C/15N triple-labeled samples, respectively. After switching the 

medium, the cells were cultured for another 1.0-1.5 hours for growth recovery 

and medium exchange at 37 °C. Then 0.8 mM IPTG was ad ded to induce protein 

production. The cell culture was incubated in 20 °C for  overnight expression. The 

cells were harvested next morning. Protein purification was carried out as same 

as unlabeled protein described above. The dialyzed protein solution was 
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lyophilized to get the pure isotope-labeled LBD-apoER2 protein powder. The 

protein powder was weighed and was stored at -20 °C fo r future experiments. 

 

2.2.5       Cell culture 

 HeLa CLL-2 cells were cultured in Dulbecco minimum essential medium 

(DMEM) containing 8% fetal bovine serum (FBS). The cells were maintained at 

37°C in humidified air containing 5% CO 2.  For protein delivery, HeLa CLL-2 cells 

were incubated to reach 80% confluence (about 6x106 cells). 

 

2.2.6. Protein delivery time course 

 5 mg of bacterially expressed LBD-apoER2 was modified using 4 ml of 

QQ-reagent for overnight at 4°C with gental shaking. QQ-reagent contains 15  

mg/ml PEI (1300kDa) at pH8.0. Modified LBD-apoER2 was centrifuged at 5000 

rpm for 5 minutes to remove precipitation. Then the modified LBD-apoER2 was 

mixed with serum-free DMEM to reach the total volume of 50 ml and the final 

protein concentration of 0.1 mg/ml and QQ-reagent at 1.2 mg/ml. 10 flasks (75 

cm2) of 80% confluent HeLa cells were incubated with the protein delivery 

medium and protease inhibitor for 10 hours. Each hour, triplicate samples of the 

protein delivery medium were taken. After 10 hours of incubation with the protein 

delivery medium, the protein delivery medium was removed and HeLa cells were 

gently washed with PBS buffer, three times. Then fresh serum-free DMEM 
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medium was added for another 12 hours. After 12 hours, samples of the medium 

were taken (in triplicate).  All the samples were analyzed further. 

 

2.2.7.  DNA transfection and fluorescence spectrosc opy 

The ER-GFP marker DNA (15 ul, 0.5 mg/ml) or Golgi-CFP marker DNA 

(20 ul, 0.5 mg/ml) was mixed with Escort lipid for 2 hours (20 ul, 0.5 mg/ml). The 

mixture was added into 200 ul DMEM cell culture medium and incubated for 20 

minutes at room temperature. This DMEM medium was then mixed with 1 ml 

DMEM containing HeLa cells and 5% FBS and incubated for 3 hrs. The cells 

were washed several times and incubated in a DMEM medium with 10% FBS for 

72 hours before fluorescence imaging. 

The fluorescence spectroscopy was carried out using a PTI QuantaMaster 

QM-7/2003 spectrofluorometer at room temperature, with an excitation at 250 

nm. To deconvolute fluorescence spectra, we carried out synchronous 

fluorescence spectroscopy using a program provided by PTI. In particular, the 

excitation was between 250-500 nm and emission spectra were collected in both 

300-550 and 500-750 nm. 

 

2.2.8.  Detect functional LBD-apoER2 in the time co urse media by Western 

blotting and ligand-blotting assay 

 



                                                                               75 

 

 
 

2.2.8.1.  Western- blotting 

The recombinant LBD-apoER2 contains His-tag. Equal amount of the time 

course medium samples were subjected to SDS-PAGE under reducing 

conditions. Following transferring to the PVDF membrane, successive incubation 

with mouse anti-His tag monoclonal antibody (Sigma) and horseradish 

peroxidase (HRP)-conjugated secondary antibodies (Amersham Life Science) 

were carried out according to the manufacturer’s specifications. The 

immunoreactive proteins were then detected using the enhanced 

chemiluminescence (ECL) system. 

 

2.2.8.2.  The ligand-blotting assay 

 The ligand-blotting assay can detect and quantify the properly refolded 

LBD-apoER2, while the bacterially expressed LBD-apoER2, which is in non-

native conformation, should give a negative signal. The working principle of the 

ligand-blotting assay lies in the fact that the ligand-binding domain of apoER2 is 

fully functional on nitrocellulose under a physiological relative condition. If LBD-

apoER2 is subjected to such procedure, the immobilized LBD-apoER2 can then 

be visualized and/or quantified following incubation with ligands that can be 

detected by standard Western blotting procedures.  

 The ligand used is the 39 kDa receptor-associated protein (RAP), which 

constitutes a non-lipoprotein ligand with high-affinity (KD~1-10 nM) for the ligand-

binding domain of all known members of the LDL receptor gene family (174). 

RAP is a chaperone for the LDL receptor family members. It associates with the 
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members of the LDLR by binding to newly synthesized and properly folded the 

ligand-binding domain of the receptors, preventing premature ligand-binding 

induced aggregation and subsequent degradation in the ER (125). RAP also 

escorts the receptors trafficking from the ER to the Golgi apparatus. In the ligand-

blotting assay of LBD-apoER2, the advantage of using RAP is the high binding 

affinity between RAP and folded LBD-apoER2 that it is sufficient and easy for the 

detection by standard methods such as western blotting via the His tag of RAP. 

And the insensitivity of RAP to detergents, but not lipoproteins, allows detergent-

containing washes to facilitate cleaner backgrounds. 

Another advantage of the ligand-blotting assay is the whole procedure can 

be conducted under a physiological condition and there is no denaturants to 

disrupt the protein-protein interaction. Traditional far western blot assays need to 

go through steps such as SDS-PAGE gel and transferring step. Fractionating 

protein samples on an SDS-PAGE gel may cause the denaturation of protein 

samples. Transferring protein samples from the gel onto a solid support 

membrane such as PVDF or nitric cellulose membrane is assisted by the transfer 

buffer, which contains denaturant methanol and a relatively high voltage. The 

methanol in the transfer buffer and the heat produced while transferring may also 

denature the protein. These procedures may disrupt protein-protein interaction 

between the properly folded LBD-apoER2 and RAP by denaturing and produce 

false-negative results. Therefore, we skip the SDS-PAGE gel running step and 

the transferring step. We directly dot the PBS solution of LBD-apoER2 onto a 

nitric cellulose membrane (dot blot) and incubate with the probe RAP. Then we 
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apply standard Western blotting procedure to detect the bound RAP and 

indirectly detect our properly refolded LBD-apoER2 in the protein samples 

(Figure 2-7).  

 

 

Figure 2-7: Ligand-blotting assay.  

 

Three ul of samples was dot-blotted onto nitrocellulose membrane. After 

being dried for 30 minutes, the membrane was blocked in 3% non-fat milk PBS 

solution at room temperature for 1 hour with gentle agitation. For probing 

purposes, a 2 mg/ml RAP PBS solution was diluted in 10 ml 3% non-fat milk PBS 

solution to reach the final concentration of 20 ug/ml. After decanting the blocking 

buffer, the membrane reacted with RAP for 2 hours at room temperature. The 

membrane was then washed five times with 20 ml 1x PBS per 5 minutes at room 

temperature. The rabbit anti-RAP (Abnova) antibody was diluted in 3% non-fat 

milk PBS solution at the ration of 1:1000. The membrane was probed with rabbit 

anti-RAP antibody for 1 hour at room temperature with gentle agitation.  The 

membrane was washed as described above. Next, the rabbit anti-RAP-antigen 
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complexes were detected with goat anti-rabbit IgG (HRP-conjugate) (1:10,000), 

followed by ECL detection. A replicated membrane probed with the secondary 

antibody alone did not display any signals (data not shown).  Represenative data 

sets are shown.  For presentation purposes, the squares containing each dot blot 

were arranged in a single column or a row for figures although they were derived 

from the same dot blot. 

 

2.2.9. Refolding of LBD-apoER2 inside of HeLa cells  

 Five mg of bacterially expressed LBD-apoER2 was modified using 4 ml of 

QQ-reagent for overnight at 4 °C with gentle shaking.  Modified LBD-apoER2 was 

centrifuged at 5000 rpm for 5 minutes to remove precipitation. Then the modified 

LBD-apoER2 was mixed with serum-free DMEM to reach the final volume and 

concentration of 50 ml and 0.1 mg/ml of the LBD-apoER2 and 1.2 mg/ml of the 

QQ-reagent, respectively. Ten flasks (75 cm2) of 80% confluent HeLa cells were 

incubated with the protein delivery medium and protease inhibitor for 3-4 hours. 

After protein delivery, the protein delivery medium was removed and HeLa cells 

were gently washed three times with PBS. Then fresh serum-free DMEM 

medium was added for overnight (around 12 hours). The next morning, the 

overnight incubation serum-free DMEM medium, with the secreted and properly 

refolded LBD-apoER2 from HeLa cells, was collected and subjected to 

purification.   
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2.2.10. Purification of the refolded LBD-apoER2 fro m Hela cells 

  Protein purification of the folded LBD-apoER2 secreated from the HeLa 

cells was performed under native conditions without the use of denaturing 

reagents such as 6 M urea. The folded LBD-apoER2A was diluted into binding 

buffer that contained a high NaCl concentration (1M) to increase its solubility and 

to decrease the non-specific binding of other proteins to the nickel chelating 

column during purification. 

 The collected overnight incubation DMEM medium was 3-fold diluted with 

binding buffer (20 mM Tris-HCl, 1M NaCl and 10 mM imidazole at pH 8.0) and 

then loaded onto a His-bind resin column.  The column was washed with another 

100 ml of binding buffer followed by 100 ml of washing buffer (20 mM Tris-HCl, 

1M NaCl and 20 mM imidazole at pH 8.0). The refolded LBD-apoER2 was finally 

eluted using 100 mM imidazole in a 200 ml volume. The eluate was dialyzed 

against 10 mM ammonium bicarbonate to remove imidazole and salts. After 

extensive dialysis, the elution was lyophilized. The pure refolded LBD-apoER2 

powder was weighed and stored at -20 °C. 

 

2.2.11. Detection of refolded LBD-apoER2 by western -blotting 

The refolded LBD-apoER2 protein powder was subjected to western 

blotting using an anti-His tag antibody (Sigma) and anti-apoER2 antibody 

(Abnova). Equal amount of the refolded LBD-apoER2 and bacterially expressed 

LBD-apoER2 were loaded onto SDS-PAGE gels. Samples were run on the gels 
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under both non-reducing and reducing conditions and then transferred to PVDF 

membranes; duplicate membranes were prepared.  One PVDF membrane was 

incubated with mouse anti-His tag monoclonal antibody  and the other membrane 

was incubated with mouse anti-apoER2 antibody. Both were then probed with 

HRP-conjugated secondary antibodies (Amersham Life Science) according to the 

manufacturer’s specification. The immunoreactive proteins were detected by 

ECL. 

 

2.2.12.  Detection of the biological function of th e refolded LBD-apoER2 by 

the ligand-blotting assay 

 The refolded and the bacterially expressed LBD-apoER2 protein powder 

were first dissolved in PBS buffer individually. Three ul of each were dotted onto 

the nitric cellulose membrane with RAP as the positive control. After drying the 

membrane for 30 minutes, the membrane was subjected to the ligand-blotting 

assay (see section 2.2.8.2. for details). 

 

2.3. Results  

2.3.1. Bacterial expression and purification of the  recombinant LBD-

apoER2  

 Using our high-yield E.coli protein expression system, large amount of 

recombinant LBD-apoER2 was produced. However, the recombinant LBD-

apoER2 includes 42 cysteines. In the E.coli protein expression systems, these 
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cysteines cannot form proper disulfide bonds as seen in the native conformation 

of LBD-apoER2. They randomly form non-native intramolecular or intermolecular 

disulfide bonds. Most of the time, dimer, trimer or even higher oligomers were 

formed. Large amount of aggregates formed inclusion bodies inside E.coli. We 

used high concentrations of denaturant, such as 6 M urea, to extract the 

expressed recombinant LBD-apoER2. Due to the complicated conformations of 

the bacterially expressed recombinant LBD-apoER2, we normally could not 

detect the expected protein band at its molecular weight of 34 kDa on a 12% 

SDS-PAGE gel. Instead, we frequently detected a slower mobility protein band of 

approximately 50 kDa. This protein band was found only in the whole cell lysates 

of IPTG induced bacterial cells with absence of the reducing reagent, DTT 

(Figure 2-8 left panel, compare lanes 1 and 2).  This suggested that this slower 

mobility band may be the LBD-apoER2. We performed Western blotting to 

confirm that the identity of this protein band (data not shown). 

 The bacterially expressed LBD-apoER2 protein powder was dissolved in 

PBS buffer at the concentration of 0.1 mg/ml. Unexpectedly, the band around 50 

kDa seen in the whole cell lysates induced with IPTG (Figure 2-8 left panel, lane 

1) was no longer detected, instead a diffuse band between 30 kDa and 40 kDa 

was now observed (right panel of Figure 2-8, lane 1). Changing the buffer 

condition or the drying step (lyophilization) could have affected the 

folding/disulfide linkages, thus affecting the mobility.  Though the band was 

running around its expected molecular weight of 34 kDa, it does not mean the 
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bacterially expressed LBD-apoER2 was properly folded. The band was diffuse, 

suggesting it represents alternative folded states of the protein.  Adding DTT  

 

Figure 2-8: Expression and purification of bacteria lly expressed LBD-apoER2.  

The left panel is the 12% SDS-PAGE stained with Coomassie blue, showing IPTG 

induced expression of LBD-ApoER2 in E. coli. Whole cell lysates (without DTT) 

induced with (lane 1) or without (lane 2) IPTG are shown.  A protein molecular weight 

marker, lane M, was loaded with the 20 and 50 kDa bands pointed out with arrows for 

reference.  The right panel is a Coomassie blue stained, 12% SDS-PAGE showing 

the eluted fraction from nickel chelating column that contains the purified LBD-

ApoER2. Lane 1, the eluted fraction without DTT, showing a diffuse protein band at 

34 kDa. Lane 2, the eluted fraction containing 10 mM DTT.  The 30, 40, and 50 kDa 

bands of the molecular weight marker (lane M) are indicated for reference. 
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Figure 2-9 : Expression and purification of isotope-labelled, ba cterially expressed 

LBD-apoER2.  

 

(100 mM) resulted in a single band of greater than 50 kDa (Figure 2-8, right 

panel, lane 2).  DTT could have released the unstable disulfied bonds (diffuse 

character) in the protein and linearized the peptide chains, resulting in greatly 

The left panel is the 12% SDS-PAGE showing IPTG induced expression of isotope 

labeled LBD-apoER2 in the minimal medium containing 15NH4Cl, 13C- glucose and  

D2O. Lane 1, E. coli cell lysates following induction of protein expression. Lane 2, the 

E. coli cell lysates without IPTG induced expression as negative control. The right 

panel is the 12% SDS-PAGE showing the purification using His•Bind column. Lane 1, 

the 1st soluble fraction of inclusion bodies in 6 M urea. Lane 2, the 2nd soluble fraction 

of inclusion bodies in 6 M urea. Lane 3, the flow-through of the lysates after loading 

onto the nickel chelating column. Lane 4, the flow-through of binding buffer wash. 

Lane 5, the flow-through of washing buffer wash. Lane 6, the eluted fraction. Lane 7, 

the eluted fraction in a reaction mixture containing 10 mM DTT. 
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reduced mobility observed (Figure 2-8, Right panel, lane 2).  We repeatedly 

found this characteristic of LBD-apoER2 in the SDS-PAGEs. Therefore, this 

mobility character of LBD-apoER2 with or without DTT on SDS-PAGE provided 

evidence for the bacterially expressed LBD-apoER2.  

 The recombinant LBD-apoER2 in the inclusion bodies of E.coli was very 

difficult to dissolve in the normal nickel chelating purification buffers. Six M urea 

was applied throughout the whole protein purification procedure and was 

removed through dialysis.  A high yield of purified recombinant LBD-apoER2 was 

obtained after the lyophilizing step (50 mg/liter).  In order to perform NMR studies 

of LBD-apoER2, we also prepared isotope labeled LBD-apoER2 (Figure 2-9). 

The protein produced the same character as in the unlabled protein (compare 

Figures 2-8, right panel, lanes 1 and 2 to Figure 2-9, Right panel, lanes 6 and 7).  

The yield of isotope labeled protein was lower than unlabeled protein; however, 

by using the high-yield protein expression system in E.coli, 60.04 mg of isotope 

labeled LBD-apoER2 was obtained for further experiments. 

 

2.3.2. Highly efficient protein delivery by QQ-reag ent 

 To refold bacterially expressed LBD-apoER2 inside HeLa cells, we 

delivered the bacterially expressed LBD-apoER2 into HeLa cells for in vivo 

refolding in the ER. Using QQ-protein delivery, we can deliver different proteins. 

However, due to the different biochemical properties of different proteins, an 

optimization step is necessary for an individual protein for efficient protein 

delivery.   
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Figure 2-10: A Coomassie stained 12% SDS-PAGE showi ng a time course of the 

QQ-protein delivery of LBD-apoER2 into HeLa cells.  

 

Bacterially expressed LBD-apoER2 was modified using QQ-reagent at the 

concentration of 0.1 mg/ml. HeLa cells were incubated with the protein delivery 

medium. Aliquots of the cell culture medium were taken at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

and 10 hours and then the protein delivery medium was exchanged for fresh serum-

free DMEM medium for another 12 hours incubation. The protein samples run under 

reducing conditions are shown. Lanes 1-11 were the samples from 0 to 10 hours 

incubation. Lane 12, serum-free DMEM medium sample after another 12 hours 

incubation. Lane 13, the bacterial expressed LBD-apoER2 served as  a positive 

control and positional control for the QQ-modified protein before delievery and is 

essential the same as lane 1 except that the protein in lane 13 is not modified with 

QQ-reagent.  
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 We found that at the concentration of 0.1 mg/ml, the QQ-modified LBD-

apoER2 could be delivered efficiently while HeLa cells maintained their healthy 

morphology. Higher concentrations were also tried. But either higher 

concentration of QQ-modified LBD-apoER2 or higher content of QQ reagent in 

the delivery medium introduced higher cellular toxicity, causing the rapid 

appearance of membrane blebs on the surface of most HeLa cells and 

subsequent apoptosis (data not shown). 

 The QQ-modified LBD-ApoER2 was delievered into Hela cells and 

samples of the cell culture medium containing both the remaining undelivered 

protein as well as secreted protein was collected hourly over  a 10 hour peroid.  

All samples were subjected to SDS-PAGE. Under reducing conditions, focused 

and sharp protein bands of LBD-apoER2 were detectable on SDS-PAGE (Figure 

2-10). The results showed that the protein band (red arrow) density of QQ-

modified LBD-apoER2 was decreased after 3 hours (Figure 2-10, lanes 1-4), 

while a new faint band of faster mobility gradually appeared in the later time 

points (Figure 2-10, lanes 3-11). The slower mobility band that gradually 

dissipates is the original modified protein while the faster mobility band is likely 

the secreted LBD-ApoER2.  After an additional 12-hour incubation with a regular 

cell culture medium that did not harbor modified protein,  neither band could be 

detected and were likely beyond the limit of sensitivity for this method (Figure 2-

10, lane 12). 

  This result demonstrated that 3 or 4 hours were the optimal protein 

delivery time for LBD-apoER2, as during this time the original protein band was  
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hardly detectable (Figure 2-10, lanes 4 and 5), suggesting that it has been taken 

up by the cell. This slower mobility band was replaced by the faster one at 4 hrs 

and thereafter (Figure 2-10 lanes 5-11) suggesting it to be the secreted protein.  

After an additional 12 hours of incuation, the secreted protein could not be 

detected. 

 After protein delivery, the properly refolded LBD-apoER2 should be 

secreted into the medium in the later time point including overnight incubation. 

The LBD-apoER2 only includes the ligand-binding domain of apoER2 with the 

trans-membrane domain removed. Without the transmembrane and cytosolic 

domains of apoER2, this mini-receptor will be secreted into the culture medium. 

We thought that the new lower faint band observed in the later time points was 

the refolded LBD-apoER2.  

 

Figure 2-11: Western-blotting to detect His-tagged LBD-apoER2 during the same 

time course of QQ-delivery of LBD-apoER2.  

An anti his-tag antibody was used. Lanes 1- 11 were the samples from 0 to 10 hours. 

Lane 12, serum-free DMEM medium sample after another 12 hours of incubation. 

Lane 13, the bacterially expressed LBD-apoER2 as a positive control. Lane 14, RAP 

full length without His-tag as a negative control.  
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 To confirm the result of this time course, all the medium samples were 

subjected to Western blotting using an anti His-tag antibody with bacterially 

expressed LBD-apoER2 as a positive control and non-His-tagged RAP as a 

negative control (Figure 2-11). The result showed the same pattern of QQ-

modified LBD-apoER2 in the delivery medium as the SDS-PAGE shown in 

Figure 2-10. At 3 or 4 hours, the density of LBD-apoER2 protein bands was 

sharply decreased and gradually disappeared by 10 hours after protein delivery 

(Figure 2-11, lanes 4-11). However, the secreated LBD-apoER2 in the later time 

points could not be detected by these Western blotting conditions (compare the 

trend of the faster mobility band in Figure 2-10 to Figure 2-11).  This may be due 

to different conformations adopted by the refolded protein, whereby the His tag 

could be buried and inaccessible to the anti His-tag antibody. Our ligand-blotting 

data confirmed this suggestion (see 2.3.3). Up to this point, our data indicate that 

the QQ-modified LBD-apoER2 was efficiently delivered into HeLa cells and that 

the optimal LBD-apoER2 delivery time was 3 or 4 hours. 

 

2.3.3. The LBD-apoER2 reaches to the ER after QQ-pr otein delivery.  

 Bacterially expressed LBD-apoER2 is misfolded, forming a mixture of 

different oligomers (Figure 2-12, panel A, lane1), which are inactive for ligand-

binding. We designed specific experiments based on the following 

considerations: 1) The refolding process of LBD-apoER2 happens in the ER 

(189). 2) The refolding may occur in two steps: monomer formation and refolding.  



                                                                               89 

 

 
 

 

Figure 2-12:  A:  A Western blot of LBD-apoER2 using a 12% SDS-PAGE a nd an 

anti-His-tag antibody. 

 

Braakman et al previously suggested that the newly synthesized 

endogenous LDLR folded in a coordinated, non-vectorial pathway that included 

non-native disulfide bond formation and reshuffling (189). In our case, once the 

 Lane 1: bacterial expressed LBD-apoER2 without DTT. Lane 2: the refolded LBD-

apoER2 from HeLa cells. Lane 3: bacterial expressed LBD-apoER2 with 20 mM DTT. 

Co-localization experiments:  B, fluorescence image of CFP channel (blue). C, 

fluorescence image of rhodamine channel (red). D, fluorescence image of FITC 

channel (green). E, Merge of the fluorescence images from all three channels with 

the light microscopy image (Courtesy of Dr. Qianqian Li).  
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bacterially expressed LBD-apoER2 is delivered into cells, the folding machinery 

has to break up the oligomers to form a monomer for refolding. The correctly 

refolded LBD-apoER2 should traffic from the ER to the Golgi, and eventually 

secrete into the cell culture medium via the plasma membrane. 

We transfected HeLa cells with both CFP-Golgi and GFP-ER marker 

DNAs and incubated the transfected cells for 72 hours before protein delivery. 

The transfected DNA labels the ER with green and the Golgi with blue 

fluorescence (116).  We also labeled LBD-apoER2 with DyLight 649 and 

delivered this red fluorescence labeled protein into the transfected cells. The 

cells were washed and incubated in a regular cell culture medium for another 6 

hours and subjected to fluorescence imaging (Figure 2-12, panel B,C,D,E). 

Clearly, a merge of CFP (Panel B, Golgi location) with FITC (Panel D, ER 

location) and rhodamine channels (Panel C, LBD-apoER2 intracellular location) 

shows merging fluorescence (Panel E), demonstrating that the delivered LBD-

apoER2 is in the ER and Golgi for refolding. 

 

2.3.4.    Optimizing the in vivo protein refolding protocol for LBD-apoER2 

 Our time course data suggested that the bacterially expressed LBD-

apoER2 was efficiently delivered into the HeLa cells. The delivered, bacterially 

expressed LBD-apoER2 should be inside the ER for refolding, which takes time. 

The properly refolded LBD-apoER2 should follow the secretary pathway for 

secretion into the serum-free medium, while the persistent unfolded LBD-apoER2 

would be degraded by the ERAD, since the transmembrane domain of LBD-
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apoER2 was removed. This raised an important question as to when was the 

best time point to re-purify the properly refolded LBD-apoER2 from the cell 

culture medium for the highest yield of refolding.  

 

Figure 2-13: Ligand-blotting assay to detect RAP bi nding to the functional LBD-

apoER2 after refolding.  

  

 We addressed this question using a ligand-blotting assay with these time 

course samples. Ligand-blotting can be used to specifically detect properly folded 

LBD-apoER2 due to its binding to RAP. While the bacterially expressed LBD-

apoER2 is delivered into HeLa cells, their protein folding machinery will try to 

refold the delivered LBD-apoER2, and the properly refolded protein will be 

secreted from the cells. This is a continuous process. Our ligand-blotting assay 

Three ul of the medium were spotted onto a nitrocellulose membrane. The blot was 

incubated with 20 ug/ml full-length RAP after blocking. The bound RAP was probed 

by rabbit anti-RAP antibody followed by goat anti-rabbit IgG. Lanes 1-11 were the 

time points of 0 to 10 hours. Lane 12, serum-free DMEM medium sample after 

another 12 hours incubation. Lane 13, 0.1 mg/ml bacterial expressed LBD-apoER2 

as a negative control. Lane 14, RAP full-length as a positive control.  



                                                                               92 

 

 
 

result (Figure 2-13) showed that the refolded LBD-apoER2 was indeed secreted 

into the medium and gradually accumulated in the medium. At 0-3 hours, nearly 

no positive dot-blot signals were observed (lanes 1-4), which was confirmed by 

the negative control of Lane 13, the bacterially expressed LBD-apoER without in 

vivo refolding. As time proceeded, significant intensity of the dot-blot signals were 

observed at 4-7 hours (lanes 5-8). At 8-hours, the strongest signal was observed 

which was maintained all the way to 10-hours (lanes 9-11). In addition, strong 

dot-blot signals were also observed in the medium of another overnight cell 

culture (lane 12). This data indicated that the cell culture medium during this time 

course contained the secreted and properly refolded LBD-apoER2 and the 

refolded LBD-apoER2 reached the highest concentration at 8-hour after QQ-

delivery. In addition, the amount of the refolded protein was continuously 

accumulated in the cell culture medium during an overnight cell culture with QQ-

protein delivery. 

 Although the refolded LBD-apoER2 could not be detected in the 

Coomassie stained gel after an additional overnight incubation (Figure 2-10 lane 

12), the dot blot clearly demonstrated that the refolded protein was indeed 

present in the overnight medium (Figure 2-13, lane 12).  As the overnight 

medium did not harbor any QQ-modified protein, coupled with the lack of signal 

from the undelivered bacterially expressed protein (Figure 2-13, lane 13), the 

similar trend between the fast mobility band (Figure 2-10, lanes 3-11) and the 

RAP dot blot (Figure 2-13) strongly argue that the faster mobility band observed 
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(Figure 2-10) is likely the functional and refolded LBD-apoER2, being responsible 

for the RAP binding (Figure 2-13). 

 We quantified the ligand-blotting data using the Kodak 1D image analysis 

software. As shown in Figure 2-14, the amount of the refolded LBD-apoER2 kept 

increasing until the 8 hours time point where it reached its peak. After 8 hours, 

the amount of the refolded LBD-apoER2 in the incubation medium remained 

constant. 

 

Figure 2-14: The bar graph of signals quantified fr om the ligand-blotting assay 

(Figure 2-13), showing the accumulation of the secr eted and refolded LBD-apoER2 

in the serum-free medium.  
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 Since this in vivo refolding is a complicated process, containing protein 

refolding, ERAD degradation of consistently misfolded protein, and secretion of 

the folded protein, it is difficult to identify the best timing to obtain the highest 

yield of the refolded protein. However, our data clearly indicated that the 

secretion of the refolded LBD-apoER2 peaked at 8 hours after protein delivery. 

Eight to 10 hours incubation time for in vivo refolding was the optimal condition. 

 

2.3.5.  Refolded LBD-apoER2 was secreted into cultu re medium. 

For LBD-apoER2 in vivo refolding, our optimal experimental condition 

was 4-hour QQ-protein delivery, followed by an additional 8-10 hours for protein 

refolding and secretion (Figure 2-15). Under this condition, most bacterial 

recombinant LBD-apoER2 was delivered inside HeLa cells by the QQ-protein 

delivery. The delivered LBD-apoER2 was refolded by the ER refolding machinery 

and most refolded LBD-apoER2 was secreted into the cell culture medium. We 

focused on cell culture medium to take advantage of the secreted LBD-apoER2 

since it should be properly refolded and relatively more pure as compared to the 

LBD-apoER2 inside HeLa cells that might contain mixed population of refolded 

and misfolded LBD-apoER2. 

To confirm this, medium samples at different time points were taken 

during protein refolding, and HeLa cells were also lysed afterwards. All samples 

were subjected to a SDS-PAGE with or without DTT. HeLa cells were also 

incubated with the protein delivery medium that only contained QQ-reagent  
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Figure 2-15: 12% SDS-PAGEs, showing the in vivo protein refolding.   

HeLa cells were incubated with the protein delivery medium for 4 hours. The protein 

delivery medium was exchanged to fresh serum-free DMEM medium without QQ-

LBD-apoER2 and cultured for another 10 hours.  The samples were subjected to 

SDS-PAGE analyses without (left) and with (right) DTT. Lane 1, the HeLa cell lysates 

after 4-hour protein delivery and 10-hour protein refolding. Lane 2, the control HeLa 

cell lysates without protein-delivery. Lane 3, the protein delivery medium with 0.1 

mg/ml bacterial expressed LBD-ApoER2 before adding HeLa cells. Lane 4, the 

protein delivery medium after 4 hours post protein delivery. Lane 5, the culture 

medium after 10 hours of protein refolding. Lane 6, the cell culture medium with QQ-

reagent without adding HeLa cells as a negative control. Lane 7, the control HeLa cell 

culture medium with the QQ-reagent only after 4 hour culture. Lane 8, the serum-free 

DMEM medium after another 10 hour with the control HeLa cells. The blue arrow 

head indicates a secretion protein from HeLa cells.  The faint yet properly refolded 

LBD-ApoER2 band that is secreated into the medium is noted by a red arrow.  
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under the same experimental condition. The cell culture medium of this control 

experiment were also taken as a negative control. 

Consistent with our previous data, LBD-apoER2 was not detectable in the 

HeLa cell lysates (lane 1) and was only detectable in the cell culture medium 

(lane 5) (Figure 2-15). This result confirmed the suggestion that protein refolding 

did not lead to the accumulation of the LBD-apoER2 inside HeLa cells. Instead, 

the properly refolded LBD-apoER2 was secreted into the cell culture medium. In 

addition, our data indicated that the QQ-protein delivery method efficiently sent 

the LBD-apoER2 inside HeLa cells since the LBD-apoER2 band intensity was 

significantly decreased (lane 4). Accordingly, Lane 5 showed detectable refolded 

LBD-apoER2 after 10-hour cell culture (red arrow). The higher molecular weight 

bands shown on the gels (lanes 4, 5, 7, and 8, Blue Arrow Head) came from a 

HeLa cell secretary protein, which persistently existed in the medium during in 

vivo protein refolding. This result was confirmed by the negative controls on the 

SDS-PAGE gels (lanes 6-8). 

  

2.3.6.    The yield of refolded LBD-apoER2 

 The incubation medium (serum-free) was collected after refolding and 

the properly refolded LBD-apoER2 was subjected to protein purification using the 

nickel chelating column. Our results showed that the biochemical properties of 

the properly folded LBD-apoER2 were different from the bacterially expressed 

protein. The solubility of the folded LBD-apoER2 was lower and the binding 
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capability to the nickel chelating column was decreased. This is consistent with 

the possibility that the his-tag may be partially occluded in the refolded protein 

and could be responsible for the lack of signal in the Western (Figure 2-11) and 

the decreased binding observed despite the his-tag being present.  This forced 

us to optimize the purification protocol for the refolded LBD-apoER2. Three main 

modifications were carried out: (1) the volume of purification buffer was increased 

to reduce the refolded LBD-apoER2 concentration and to decrease potential 

possibility of precipitation; (2) high concentrations of NaCl in the purification 

buffer were included in order to avoid non-specific protein binding to the His•Bind 

column and to increase the solubility of the refolded LBD-apoER2; (3) decreased 

concentrations of imidazole in the elution buffer because we found that high 

concentrations of imidazole would cause irreversible aggregation and 

precipitation of the refolded LBD-apoER2 during dialysis. The lower 

concentration of imidazole was sufficient to elute the refolded protein due to the 

weaker interaction with the column resin.  

 Even though we optimized protein delivery, protein refolding, and protein 

purification conditions throughout this in vivo protein refolding technique for LBD-

apoER2, the final yield of the purified refolded LBD-apoER2 remained low. We 

obtained a yield less than 10% of the refolded LBD-apoER2 compared to the 

imput amount (QQ modified, bacterially expressed protein used for delivery) as 

shown in Table 2-1.  

 This is not surprising since LBD-apoER2 contain 21 disulfide bonds and 

7 Ca2+-binding sites. The folding of this protein is challenging. It has been 
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demonstrated by others that only 30% of the newly synthesized LDLR was 

properly folded and the rest proteins were degraded by ERAD due to misfolding 

(189). Our data confirmed this result for our refolding, since we could only 

recover less than 10% of the bacterially expressed LBD-apoER2 (Table 2-1). 

This suggested that most of the QQ-delivered LBD-apoER2 was degraded due to 

the limits of the ER folding capability. We re-purified the bacterially expressed 

LBD-apoER2 from the protein delivery medium after 4 hours of delivery.  The re-

purified bacterially expressed LBD-apoER2 protein could be re-used in the next 

round of in vivo protein refolding experiments to increase the refolding efficiency. 

Those consistently misfolded LBD-apoER2 were subjected to ERAD degradation 

due to ER quality control system. Another possible reason for this low yield was 

the purification due to the reduced affinity of the refolded LBD-apoER2 for the 

His-tag resin. After refolding, LBD-apoER2 underwent conformation changes that 

might make the his-tag buried and not available to bind to his-tag resin, causing a 

low yield of the refolded LBD-apoER2.  

Table 2-1: Three representative yields of refolded LBD-apoER2. 
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2.3.7.    The refolded LBD-apoER2 is biologically f unctional 

 To further confirm the purified refolded LBD-apoER2 powder is properly 

folded and biologically functional, we dissolved the protein powder in PBS buffer 

with 1 mM CaCl2 and performed Western blot and ligand blotting. As shown in  

Figure 2-16 A-C, with (lanes 3 and 4) or without reducing reagent DTT (lanes 1 

and 2), the refolded LBD-apoER2 (lanes 1 and 3) showed the same mobility as 

the bacterially expressed one (lanes 2 and 4) on the 12% SDS-PAGE gel (Panel 

A). Western blotting (Panel B and C) showed positive signals for the refolded 

LBD-apoER2 as well as the bacterially expressed one, identifying the protein 

powder was LBD-apoER2. Interestingly, the LBD-ApoER2 antibody only 

recognized the protein when it was under reducing conditions (panel B, lanes 3 

and 4) suggesting that the epitope is hidden in the refolded (lane 1) or misfolded 

proteins (lane 2).  However, the His tag remained accessible as its was detected 

in all lanes (panel C).  Likely, the properly refolded LBD-ApoER2 was not 

detected in Figure 2-11 due to its trace amount but was clearly detected here 

(Figure 2-16, panel C).  Ligand-blotting assay (panel D) of the refolded LBD-

apoER2 protein powder showed a positive signal, similar to the RAP dot-blot as 

the positive control. However, the bacterially expressed LBD-apoER2 protein 

powder showed a negative signal. This result confirmed that the refolded LBD-

ApoER2 powder displayed a proper conformation that bound to RAP. Thus, the 

refolded LBD-apoER2 protein powder is biologically functional unlike the 

bacterially expressed one. 
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Figure 2-16: SDS-PAGE, Western blots using anti-apo ER2 and anti his-tag 

antibodies and ligand blotting of the refolded LBD- apoER2 protein powder.   

 

 

 

Panel A: a 12% SDS-PAGE stained with Coomassie blue. Panel B: A Western blot 

using anti-apoER2 antibody. Panel C: A Western blot using anti His tag antibody. In 

all three panels, Lane 1, the refolded LBD-apoER2 powder. Lane 2, bacterial LBD-

apoER2 powder. Lane 3, bacterial LBD-apoER2 powder with 10 mM DTT. Lane 4, 

the refolded LBD-apoER2 powder with 10 mM DTT. Panel D: Ligand-blotting to 

detect the binding of RAP to the functional LBD-apoER2. The bound RAP was 

probed by anti-RAP antibody.  
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2.4. Discussion   

 Proteins have to adopt the correct three-dimensional structures in order 

to be functional. Obtaining the native fold of a protein sometimes is not a simple 

task, especially when the protein is expressed in E. coli to meet the need of large 

quantity of properly folded proteins for structural study or for therapeutics. Many 

proteins precipitate in the form of inclusion bodies when synthesized in E. coli. In 

vitro experimental approaches have been developed to refold the aggregated 

proteins into their biologically active forms. The main refolding strategies are 

chromatographic methods and refolding in free solution. New techniques 

employing additives that aid in protein refolding, such as chaperone proteins, 

may become more widely used. However, these new methods require rigorous 

testing for refolding of not only simple model proteins such as RNase A, but also 

for proteins with complex folding.  New techniques of protein refolding are 

needed to increase the robustness of refolding processes and to decrease the 

costs for broader applications.  

 Our lab recently developed a novel in vivo protein refolding technique. 

Different from other in vitro protein refolding techniques, this protein refolding 

technique enables protein refolding inside of mammalian cells and is facilitated 

by folding chaperones and enzymes in the ER and the Golgi. The ER quality 

control system ensures that only properly refolded proteins continue intracellular 

trafficking whereas the persistent unfolded protein is degraded by ERAD or UPR 

(Figure 1-2 and 1-3). Properly folded and biologically functional proteins follow 

the same intracellular trafficking pathway as endogenous ones. Additionally, the 
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refolded protein can be purified from mammalian cells or the culture medium 

depending on the design and properties of the refolded proteins.  

 This in vivo protein refolding technique is based on a highly efficient 

recombinant protein expression method in E. coli and the QQ-protein delivery 

technique, which were recently developed in our lab. Specially, the unique QQ- 

reagent can non-covalently attach to the bacterially expressed proteins, protect 

the proteins from degradation, and efficiently deliver them inside of mammalian 

cells. The delivered proteins traffic to the ER and Golgi and undergo efficiently 

protein refolding by the ER folding machinery. Thus, this in vivo protein refolding 

technique utilizes ER protein folding machinery and quality control system to 

efficiently refold proteins and to ensure that the misfolded proteins will be 

degraded, thus, providing a novel protein refolding technique that is currently 

unavailable for the scientific community. 

 ApoER2 is one of the primary members of LDL receptor family, playing 

an important role in lipid metabolism in the brain and neurodegenerative 

diseases such as Alzheimer’s disease. Like its homologue - LDL receptor, 

apoER2 has five major motifs: complement-like binding repeats/the LDL receptor 

type-A repeats, epidermal growth factor (EGF)-like repeats, YWTD repeats, a 

transmembrane domain and a short cytoplasmic tail (Figure 2-1). Studies 

showed that the seven complement-like repeats form a ligand-binding domain, 

mainly responsible for binding to the ligands such as apoE, RAP and Reelin 

(161, 174, 190). Even though no structural information of apoER2 has been 

reported, structure studies on other LDL receptor family members like LDL 



                                                                               103 

 

 
 

receptor and LRPs have shown that the each ligand binding repeat in the ligand-

binding domain contains six cysteines, forming three disulfide bonds per repeat 

(190). The negatively charged amino acids (Asp/Glu) at the C-terminus of each 

repeats are considered to be important for the ligand binding function, partially 

complementary to the positively charged residues on apoE or RAP (190). Also, 

these acidic residues form an important calcium coordination site, which is highly 

conserved. Calcium was reported to be important for receptor folding, stabilizing 

the secondary structure and ligand binding (191). Thus, the ligand-binding 

domain of LDLR family has a complex folding and refolding of this complex 

structure is very challenging.  

 We undertook this challenge and explored efficient refolding of the 

human LBD-apoER2 using this in vivo protein refolding technology. We believe 

that this is one of the ultimate measures for this in vivo protein refolding 

technology and the successful refolding of LBD-apoER2 will be a good testimony 

of the enabling capability of this technology. We subcloned the ligand-binding 

domain of apoER2  (LBD-apoER2) into a high-level expression vector which was 

expressed in E. coli using our high cell-density expression method to produce 

gram quantity pure recombinant LBD-apoER2 (59). We then optimized the in vivo 

protein refolding conditions specific for the efficient refolding of LBD-apoER2. We 

showed that QQ-modified bacterially expressed LBD-apoER2 could be efficiently 

delivered inside HeLa cells in 3 to 4 hours at 0.1 mg/ml concentration (Figures 2-

10). Once the delivered LBD-apoER2 reaches the ER (Figure 2-12), the protein 

folding process begins. The bacterially expressed LBD-apoER2 undergoes 
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protein refolding process, which is facilitated by chaperones and folding enzymes 

in the ER. The quality of refolded protein is monitored by the QC system in the 

ER. Persistent unfolded LBD-apoER2 is degraded by ERAD or UPR. The 

properly folded LBD-apoER2 follows the same secretary pathway as 

endogenous counterpart and is secreted into the cell culture medium if it is a 

secretion protein.  

 Because LBD-apoER2 only includes the ligand-binding domain with the 

transmembrane and cytosolic domains removed, this mini-receptor will not locate 

on the cell membrane as the full-length apoER2. Instead, LBD-apoER2 will be 

secreted into the culture medium once they are properly refolded. Our data of a 

time course of refolding indicated that the refolded LBD-apoER2 was gradually 

accumulated in the culture medium with the peak of accumulation at 8-10-hours 

after protein delivery. After reaching the peak, the level of the refolded LBD-

ApoER2 in the medium remained the same during this 10-hour time course. 

Thus, our data suggested that the refolding of the QQ-delivered LBD-apoER2 

might be nearly completed by the ER folding machinery under our experimental 

condition. This allowed us to optimize the in vivo protein refolding protocol for 

LBD-apoER2 by QQ-protein delivery for 4-hours, followed by additional 8-10-

hours of protein refolding in the regular cell culture medium for the best yield of 

the refolded LBD-apoER2. 

 Purification of the refolded LBD-apoER2 from the cell culture medium 

turned out to be a challenging task since the refolded LBD-apoER2 seemed to 

significantly reduce its binding capability to His-tag resin, thus causing a major 
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trouble to purify them. However, this is one of the key steps for the final yield of 

the refolded LBD-apoER2 protein. We had to optimize our standard purification 

protocol by increasing the sample loading volume and NaCl concentration in the 

loading and washing medium and reducing the imidazole concentration in the 

elution buffer. These modifications greatly improved binding capability of the 

refolded LBD-apoER2 to His tag resin that significantly enhanced the purity and 

yield of the refolded LBD-apoER2.  

 We probed the function of the refolded LBD-apoER2 by a ligand-blotting 

assay using RAP as the ligand and an anti-RAP antibody. RAP acts as a 

specialized chaperone inside the ER and binds to properly folded and functional 

ligand-binding domains of the LDLR family including apoER2 with nM binding 

affinity (174). No denaturing reagents or detergents were used in this ligand-

blotting assay. However, 1 mM calcium ion was added since calcium was critical 

for RAP-binding to LBD-apoER2. The pH was adjusted to 7.2 to mimic the pH 

inside the ER. Our data clearly demonstrated that the properly refolded LBD-

ApoER2 was biologically active for RAP binding, confirming the efficiency of this 

novel in vivo protein refolding technology.  

 This in vivo protein refolding technique is unique compared to the other 

in vitro protein refolding techniques. It takes advantage of the efficiency of the ER 

folding machinery of mammalian cells. By providing a physiological environment, 

the bacterially expressed misfolded LBD-apoER2 was efficiently refolded by the 

ER folding chaperones and enzymes. In addition, the refolding quality of LBD-

apoER2 is closely monitored by the quality control system in the ER. Only the 
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properly refolded protein can be further subjected to post-translational 

modifications and eventually secreted into cell culture medium. In contrast, the 

persistent unfolded LBD-apoER2 is degraded by ER-associated degradation or 

unfolded protein response mechanism in the ER.  

 This was confirmed by the previous data of my colleague Dr. Qianqian Li, 

who delivered the bacterially expressed MESD inside mammalian cells (data not 

shown). After purification, she found two major glycosylation forms of MESD in 

addition to the native MESD protein. The glycosylation patterns were the same 

as those of the endogenous MESD. This is an important achievement since 

properly posttranslationally modified and refolded proteins are important to the 

biological activity of a protein, which is especially critical towards the production 

of therapeutic proteins for human disease therapies. Our results suggest that we 

have successfully achieved this goal for refolding of LBD-apoER2. 
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Chapter III 

Refolding of the beta-propeller/epidermal growth fa ctor-like (EGF) domain I 
of low-density lipoprotein (LDL) receptor-related p rotein 6 (BP1-LRP6) 

inside of mammalian cells 

 

3.1.   Introduction 

3.1.1. LRP5/6 are members of the low-density lipopr otein receptor (LDLR) 

family with unique structural arrangements 

The LDLR family contains more than 14 members of cell surface 

receptors. Although the members in this family performs diverse functions, they 

share common structural domains: 1) ligand-binding domain of the complement-

type (CR)repeats, 2) epidermal growth factor (EGF) -like repeats, 3) YWTD 

(Tyr−Trp−Thr−Asp) β-propeller domains, 4) a transmembrane domain, and 5) 

one or more endocytic motifs within their cytoplasmic domains (Figure 2-1) (192). 

LDL receptor-related protein 5 (LRP5) and LRP6 are structurally diverse from the 

other LDLR family members. Rather than having large clusters of ligand binding 

CR repeats in the extracellular region, LRP5/6 contain only three ligand binding 

CR repeats that are next to the transmembrane region (Figure 2-1). Instead, the 

YWTD β-propeller/EGF (BP) modules occupy most of the extracellular domain 

and play important functional roles. Ligands of other LDLR members typically 

bind to clusters of ligand-binding CR repeats, whereas all identified ligands for 

LRP5/6 bind to the YWTD β-propeller/EGF (BP) modules (192). Evidence 

implicating YWTD domains in protein−protein interactions has emerged from 

several studies. LRP6 from xenopus along with its homologs in mice and the fly 
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(Drosophila) binds to the developmental signaling protein Wnt, implicated as a 

co-receptor in Wnt signaling (141-143). 

The LDLR family members play important roles in diverse physiologic 

progresses, including lipoprotein metabolism, protease regulation, calcium 

homeostasis, cell migration, and embryonic development (193). For example, 

VLDLR and ApoER2 mediate Reelin signaling in neuronal cell migration during 

embryonic development (140), and LRP1 participates in PDGF-mediated 

signaling (194). However, LRP5 and 6 were identified as indispensible co-

receptors of the canonical Wnt/β-caternin pathway and function primarily in Wnt 

signaling pathway (141, 142).  

 

3.1.2. LRP5/6 are essential receptors for the canon ical Wnt signaling 

pathway 

The discovery of the common evolutionary origin of the Drosophila 

segment polarity gene Wingless and the murine proto-oncogene Int-1 laid the 

foundation for the canonical Wnt signaling pathway (195). The name Wnt was 

coined as a combination of Wg (Wingless) and Int. The Wnt signaling pathway 

plays a critical role in orchestrating proper tissue development in embryos and 

tissue maintenance in adults (196-198). It has been shown that Wnt activates at 

least three intracellular signaling pathways including the Wnt/β-catenin (canonical 

Wnt pathway), planar cell polarity (PCP), and Ca2+pathway (Figure 3-1) (199). In 

the PCP pathway, Wnt activates small G protein including Rho and Rac through 
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Dishevelled (Dsh), thereby activating Rho-associated kinase (ROCK) and JNK 

(200). The PCP pathway is involved in the regulation of tissue polarity, cell 

migration, and cytoskeletal arrangement. Furthermore, Wnt increases the 

intracellular Ca2+ concentration probably by activating protein kinase C (PKC) 

and Ca2+/calmodulin-dependent protein kinase. The Wnt/Ca2+ pathway regulates 

cell adhesion and cell movement during gastrulation (201).  

The canonical Wnt pathway, which regulates the ability of the β-catenin 

protein to drive activation of specific target genes, is better characterized. In the 

absence of a Wnt signal, β-catenin is actively degraded in the cell by the actions 

of a multiple-protein complex called the “destruction complex”. Within the 

complex the Axin and adenomatous polyposis coli (APC) form a scaffold that 

facilitates β-catenin phosphorylation by casein-kinase I α (CK1 α) and glycogen 

synthase kinase (GSK3 β). The phosphorylated β-catenin is subsequently 

recognized and ubiquitinylated, resulting in its proteasomal degradation (Figure 

3-2) (202). However, in the presence of Wnt signals, β-catenin can be 

accumulated and be translocated to the nucleus, where it interacts with the T-cell 

factor/lymphoid enhancing factor (TCF/LEF) family of transcription factors, 

leading to the transcription of Wnt target genes (202). The Wnt/ β-catenin 

signaling pathway directs a specific set of genes that strictly control temporal and 

special regulation of cell proliferation, differentiation, survival, and movements 

(197, 198). Therefore, aberrant activation of this pathway can lead to tumor 

formation. 
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Figure 3-1: A schematic representation of the Wnt s ignal transduction cascade 

(199).   

 

 

(b) For non-canonical or planar cell polarity (PCP) signaling, Wnt signaling is 

transduced through Frizzled independent of LPR5/6. Utilizing the PDZ and DEP 

domains of Dsh, this pathway mediates cytoskeletal changes through activation of the 

small GTPases Rho and Rac. (c) For the Wnt-Ca2+ pathway, Wnt signaling via 

Frizzled mediates activation of heterotrimeric G-proteins, which engage Dsh, 

phospholipase C (PLC; not shown), calcium-calmodulin kinase 2 (CamK2), and 

protein kinase C (PKC). This pathway also uses the PDZ and DEP domains of Dsh to 

modulate cell adhesion and motility. Note that for the PCP and Ca2+ pathways Dsh is 

proposed to function at the membrane, whereas for canonical signaling Dsh has been 

proposed to function in the cytoplasm  
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LRP5 and LRP6 exhibit overlapping, as well as distinct, tissue- and cell-

type-specific expression patterns (192, 203). Mice deficient in Lrp6 gene are 

embryonic lethal; the mutant embryos exhibit developmental defects that 

resemble the phenotypes observed for individual Wnt ligand mutants, including 

mid/hindbrain defects, posterior truncation, and abnormal limb patterning (141). 

In contrast, LRP5 knock out (KO) mice are viable and fertile, although they 

exhibit low bone mass and eye vascularization defects (152). Interestingly, it has 

been shown that overexpression of LRP6 confers significantly stronger Wnt 

signaling activity than LRP5 in Xenopus and mammalian cells (142, 192). Thus, it 

is possible that LRP5 and LRP6 exhibit functional redundancy, most likely by 

acting with different efficiencies in a context-dependent manner. The features of 

LRP5-KO mice recapitulate human osteoporosis-pseudoglioma syndrome, 

whereas gain-of-function mutations in Lrp5 affects the homeostatic balance of 

osteoblasts and osteoclasts after birth, which leads to high bone mass (152, 

204). Recently, LRP6 mutations and polymorphisms were found to be associated 

with various human diseases, including coronary artery disease, Alzheimer’s 

disease, hyperlipidemia, and osteoporosis (192, 205). These studies indicate a 

possible predominant role of LRP5 in bone development and maintenance and a 

broader role of LRP6 in pathophysiology. 
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Figure 3-2: A simplified classical view of Wnt/ β-catenin signaling ( 192).  

 

(A) Without Wnt, the scaffolding protein Axin assembles a protein complex that 

contains Apc, Gsk3, Ck1, and β-catenin. In this complex, β-catenin is sequentially 

phosphorylated by Ck1 and Gsk3. Phosphorylated β-catenin is recognized by β-Trcp, 

which is a component of an ubiquitin-ligase complex that conjugates β-catenin with 

ubiquitin. Poly-ubiquitinated β-catenin is degraded by the proteosome. TCF/LEF-

associated co-repressors, such as Groucho, and Axin-associated Diversin, PP2A and 

other proteins are omitted for simplicity. (B) In the presence of Wnt, β-catenin 

phosphorylation and degradation is inhibited. Accumulated β-catenin forms a nuclear 

complex with the DNA-bound TCF/LEF transcription factor, and together they activate 

Wnt-responsive genes. This signaling cascade is perhaps initiated by a Wnt-induced 

Fz-Lrp5/Lrp6 co-receptor complex, which recruits Axin to the plasma membrane 

through Lrp5/Lrp6-Axin association. Fz-associated Dishevelled (Dvl) protein may bind 

Axin and inhibit Axin-Gsk3 phosphorylation of β-catenin, either directly or indirectly  
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3.1.3. The YWTD β-propeller/EGF (BP) domain of LDL receptors and the  

molecular chaperone MESD 

 The number and arrangement of different LDLR domains varies greatly 

among different members of LDLR family; in humans, sizes range 5-fold from the 

smallest LDLR (95 kDa) to the largest LRP2 (522 kDa) (206, 207). Such large 

and complex proteins challenge structural studies. However, a crystal structure of 

LDL receptor YWTD β-propeller/EGF (BP) domain was solved as shown in 

Figure 3-3. 

The YWTD repeat is folded into a six-bladed β-propeller domain. Each β-

propeller consists of  six blades arranged radially about a central axis (Figure 3-

3). Along this axis is a central channel, 8−9 Å in diameter, filled with water 

molecules that form hydrogen bonds with backbone and side chain from the β-

strands lining the channel. Each blade of the propeller has four antiparallel β-

strands that are offset from the YWTD repeats.  The “first” strand of the sixth 

blade is a C-terminal strand that follows the fifth blade to complete circularization 

via Dvl-associated proteins. Lrp5/Lrp6-Axin binding may also promote Axin 

degradation. Either or both of these events can lead to β-catenin accumulation. This 

description represents one of several possibilities. The composition of the Axin 

complex upon Wnt stimulation is not well defined. Gsk3-binding protein (GBP/Frat), 

and nuclear β-catenin-associated Legless/Bcl9 and Pygopus are omitted for 

simplicity.  
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of the steroidal YWTD β propeller domain. The YWTD β propeller is followed by 

an EGF-like domain (E3) that packs against the propeller to create a continuous 

hydrophobic core in the mature protein (130). The linker connecting the propeller 

to E3 packs tightly against the base of the propeller and contacts predominantly 

hydrophobic side chains in the 1−2 loops of blades two and three, situating E3 in 

contact with the second and third blades of the propeller. The large interface area 

between the YWTD domain and the C-terminal EGF modulesuggest that other 

members of the LDLR family will share this organization, including the BP 

domain of LRP-6.  

 

Figure 3-3: Ribbon representation of the YWTD domai n and adjacent C-

terminal EGF-like module (E3) of the LDL receptor, colored to point out the 

six YWTD repeats of the six-bladed propeller ( 130).  

 

For LDLR and LRPs, at least two private chaperones, the LRP-receptor-

associated protein (RAP) and the Boca/Mesd chaperone, are dedicated to the 
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folding and maturation of these multi-domain proteins as they transit through the 

secreatory pathway to the cell surface (114, 115). RAP binds the cysteine-rich 

ligand-binding modules of LDLR family members, preventing premature 

association with their respective ligands. Also, RAP escorts fully folded LDLR 

family members from the ER to the Golgi, where the lower pH triggers RAP to 

dissociate and recycle back to the ER via its retention signal (126). In Drosophila, 

Boca was shown to promote maturation and surface expression of several LDLR 

family members through a direct, but transient, interaction (114, 187). Boca/Mesd 

family members are localized in the ER, where they aid in the folding of YWTD β-

propeller domains. ER chaperone proteins provide the most prevalent 

mechanism for achieving quality control during protein translation and 

translocation (208). Boca/MESD are important for the folding of LRP5 and LRP6,. 

Our lab recently solved the high resolution NMR structure of full-length of 

MESD (209).  MESD contains two structural and functional domains: a 

chaperone domain and an escort domain. The chaperone domain is located in 

residues 1-150 and highly structured, with a four-stranded anti-parallel β-sheet in 

the center, surrounded by two rigid helices on the top and one rigid helix in the 

bottom. Another flexible short helix is also above the sheet, containing several 

critical binding-residues to the BP domain of LRP6. The escort domain is located 

in residues 151-195 and is flexible, containing two short helices and an array of 

conserved lysine and arginine residues.  
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3.1.4. Challenge of refolding of BP1-LRP6 

The BP1-LRP6 is a 328-amino acid  fragment at the N-terminal of LRP6, 

including six YWTD β-propeller motifs and one epidermal growth factor (EGF)-

like repeat. It is a  multiple domains protein with three disulfide bonds in the EGF 

domain. Refolding such a complex multiple-domain protein BP1-LRP6 in vitro is  

challenging. Spontaneous refolding in vitro is only efficient for small, single-

domain proteins that fold rapidly. multiple domain proteins often refold 

inefficiently due to the formation of partially folded intermediates that tend to self-

associate (aggregate) into disordered complexes, driven by hydrophobic forces 

and inter-chain hydrogen bonding. The aggregation process irreversibly removes 

proteins from their productive folding pathways and only can be avoided in vivo 

protein refolding facilitated by molecular chaperones.  

Previous in vitro protein folding studies with BP1-LRP6 have shown that 

not only the formation of disulfide bonds in vitro occurs significantly slower than 

in vivo, but also the efficiency of forming native disulfide bonds in vitro is 

dramatically lower than in vivo, even under the most favorable condition (210). 

During in vitro refolding, non-native disulfide bonds may be formed. Compared 

with the lower efficiency of forming native disulfide bonds in vitro, our in vivo 

protein refolding technique can offer much greater native disulfide bond formation 

efficiency. 

Specific ER chaperone MESD was reported to be necessary for the 

folding of BP1-LRP6 (211). Our in vivo protein refolding technique can equip the 

refolding process with complete molecular chaperones and folding enzymes, 
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greatly increasing the refolding efficiency.  Therefore, to refold large quantities of 

bacterially expressed BP1-LRP6 into its native conformation, we used our novel 

in vivo protein folding technology.  

 

3.2. Material and methods 

3.2.1. Strain, plasmid and media 

E. coli cells were grown in Luria-Bertani (LB) medium (BD) at 37℃ and 

then were grown in minimal M9 medium at 20℃ for overnight. Kanamycin (30 

µg/ml) was added as required. E. coli stain ER2556 [genotype: F − λ − fhuA2 [lon] 

ompT lacZ::T7 geneI gal sulA11 ∆(mcrC-mrr)11::IS10 R(mcr-73::miniTn10)2 

R(zgb-210::Tn10) 1 (TetS) endA1 [dcm]; New England Biolabs] was used for 

molecular cloning. E. coli strain BL21(DE3) [F- ompT hsdSB (rB-mB-) gal dcm 

(DE3 [lacI lacUV5-T7 gene1 ind1 Sam7 nin5; New England Biolabs] was used for 

protein expression and purification. BP1-LRP6 with an N-terminal 6-histidine tag 

was expressed from plasmid pET30a (+) (Novagen). 

 

3.2.2. DNA manipulation 

The original long his-tag of the pET30a (+) vector (Novagen) was replaced 

by a short His tag containing six histidine plus two serine residues by 

mutagenesis. Mutagenesis was carried out using the QuickChangeTM site-
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directed mutagenesis kit (Stratagene, CA). The mutations were confirmed by 

DNA sequencing.  

Human BP1-LRP6 cDNA (kindly provided by Dr. Guojun Bu, Mayo Clinic, 

Jacksonville, FL, USA) was used as the template of PCR. BP1-LRP6 was 

constructed by subcloning PCR products into the BamHI/XbaI sites of the 

engineered pET30a(+) vector. BP1-BP1-LRP6 includes six YWTD β-propellers 

and one EGF repeat, referring the residues 20-324 of full-length LRP6. The 

constructs derived from PCR were confirmed by DNA sequencing.  

The engineered pET30a (+) vector  provide high protein expression level. 

The confirmed positive DNA constructs were first transformed into the E. coli 

strain ER2566 competent cells for plasmid DNA replication and glycerol stock 

production. Ultimately, they were transformed into BL21 (DE3) cells for protein 

expression. 

 

3.2.3.  Protein expression and purification  

Protein expression was carried out using the E. coli strain BL21(DE3). A 

10-15 ml overnight culture in a rich medium, such as 2×YT, was made from a 

glycerol stock of BP1-LRP6 expressing cells. The next morning, the overnight 

culture was diluted into the LB medium with a ratio 1:100. The culture was grown 

in LB medium with 30 ug/ml kanamycin at 37 °C until it reached an OD600 of 0.8-

1.0. The cells were spun down and re-inoculated into a minimal M9 medium 

(kanamycin, 30 µg/ml) at half volume of LB medium. The culture was continued 
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at 20 °C for one hour. A sample of the culture was take n to check its OD600 to 

confirm the continuous growth of cells under lower temperature and the minimal 

M9 medium. Then expression of the recombinant BP1-LRP6 was induced by 

IPTG at the concentration of 1 mM for overnight at 20 °C. The cells were 

harvested by centrifuge the next morning. The cell pellet was resuspended in 

binding buffer (10 g/ml cells, 20 mM Tris-HCl, 500 mM NaCl, 2.5 mM imidazole, 6 

M urea at pH 8.0) of His tag affinity purification system followed by sonication 

while on ice. To separate the cell pellet from the supernatant, the cell pellet was 

spun down. The pellet was again resuspended in the binding buffer containing 6 

M urea and then sonicated on ice again. This procedure was repeated three 

times to ensure complete solubilization of all bacterially expressed BP1-LRP6 in 

the inclusion bodies in this buffer system. All supernatant fractions were 

combined and applied on a His�Bind® resin column (Novagen). The column was 

extensively washed with binding buffer containing 6 M urea followed by washing 

with 100-500 ml of wash buffer harboring 20-30 mM imidazole. The purified 

recombinant BP1-LRP6 was eluted from the column using elution buffer with 1.0 

M imidazole and 6 M urea. The eluted protein was dialyzed against 10 mM 

ammonium bicarbonate to remove the unwanted salt and imidazole in the buffer . 

Ultimately, the dialyzed protein solution was lyophilized to get the pure BP1-

LRP6 protein powder. The protein powder was weighed and was stored at -20 °C 

for future experimental purposes. 
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3.2.4. Time course for QQ-protein delivery  

 The bacterially expressed BP1-LRP6 was modified with QQ-reagent 

overnight at 4 °C with gently shaking. Modified BP1-L RP6 was centrifuged at 

5000 rpm for 5 minutes to remove precipitation. Then the modified BP1-BP1-

LRP6was mixed with serum-free DMEM to reach a final protein concentration of 

0.1 mg/ml. Eighteen dishes (35 cm2) of 80% confluent (about 0.3×106 cells) HeLa 

cells were incubated with the protein delivery medium and protease inhibitor for 3 

hours. Another 3 dishes of HeLa cells were incubated with QQ-reagent only (no 

BP1-LRP6) for 3 hours as a negative control. Samples of HeLa cells were taken 

in triplicate every 30 minutes to monitor the protein delivery efficiency. All the 

samples were subjected for SDS-PAGE gel electrophoresis with or without DTT. 

 

3.2.5. Confocal fluorescence imaging 

 Zeiss Apotome microscopy system is useful for optical sectioning in 

multicolor applications and for high-resolution fluorescence microscopy. We use 

this system to monitor and visualize the protein delivery of fluorophore attached 

BP1-LRP6.  The bacterially expressed BP1-LRP6 was first dissolved in PBS 

buffer, pH 7.4 (0.5-1.0 mg/ml), overnight. The solution then was spun for 10 

minutes at 12,000xg at room temperature. Seventy ul of protein solution was 

taken and 1 µl of amine-reactive ArrayIt®Green540 was added at room 

temperature. Incubation was carried out for 6 hours or overnight in a cold room 

and then purified using a desalting spin-column at 10,000 rpm for 4 minutes to 

remove free dye. The purified, fluorescence labeled protein was incubated with 
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QQ-reagent overnight without further purification. HeLa cells were seeded three 

days before the experiment to reach 80% confluency. QQ-reagent modified, 

fluorophore labeled BP1-LRP6 in serum-free DMEM culture medium was 

incubated with Hela cells at 37 °C for 1 hour or 2 hours. The cells were very 

healthy after protein delivery, displaying normal morphology (Figure 3-7). Cells 

were washed with PBS extensively to remove any labeled protein from the 

medium. Then the Hela cells were subjected to confocal fluorescenceimaging 

using a Zeiss Axioplan2 Imaging fluorescent microscope with ApoTome imaging 

at the Microscopy and Imaging Resources Laboratory at Wayne State University, 

School of Medicine. Fluorescence was recorded with an AxioCam MRm camera 

and AxioVision software. 

 

3.2.6.  Far-Western blot 

           The cell lysates on a native PAGE gel were tansferred onto a 

nitrocellulose membrane at 380 mA for 2 hours. After transfer, the membrane 

was incubated at room temperature with the probe---MESD, which is the private 

chaperone of LRP5/6 and can specifically bind to the properly folded BP1-LRP6. 

The membrane was then washed three times with 20 ml PBS for 5 minutes each 

time, to remove unbound MESD. The membrane was incubated with anti-MESD 

(Abnova) for 1 hour in 2% dry milk PBS, followed by incubation with HPR-

conjugated seconday antibody for 1 hour. At last, the membrane was detected 
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using ECL (Pierce). Using this assay, properly folded BP1-LRP6 can be detected 

because of the formation of the MESD/BP1-LRP6 complex. 

 

3.2.7. Time course for protein refolding  

 Protein refolding inside mammalian cells takes time, especially for BP1-

LRP6. We delivered large quantities of bacterially expressed BP1-LRP6 inside 

HeLa cells. After protein delivery, we set up a three-day protein refolding time 

course experiment to monitor the refolding and stability of the delivered BP1-

LRP6 inside HeLa cells. 

 BP1-LRP6 first was modified with QQ-reagent for overnight at 4 °C. Then 

QQ-reagent modified BP1-LRP6 was mixed with serum-free DMEM to reach 0.1 

mg/ml concentration. The protein delivery medium was incubated with 80% 

confluent HeLa cells for 3 hours (the optimal protein delivery condition) at 37 °C. 

Then the protein delivery medium was removed and the Hela cells were gently 

washed with pre-warmed PBS buffer three times. Hela cell samples were taken 

in triplicate to monitor the protein delivery. During the three-day protein refolding 

time course experiment, Hela cells were incubated with fresh serum-free DMEM 

and every 24 hours, HeLa cell samples were taken to monitor the protein folding 

and the protein stability inside of the cells. One flask of cells was set aside, only 

loading with QQ-reagent protein delivery medium (without BP1-LRP6) as a 

negative control. 
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3.2.8. Detection of the refolded BP1-LRP6 by Wester n blot 

 The recombinant BP1-LRP6 was fused with His-tag. Protein purification 

was performed using nickel chelating resin column. The purified refolded BP1-

LRP6 protein powder and the bacterially expressed BP1-LRP6 protein powder 

was dissolved in PBS buffer and the concentrations of both of the proteins were 

adjusted to 0.25 mg/ml, confirmed by a BCA protein assay (Pierce). Protein 

samples were loaded at different volumes and analyzed by SDS-PAGE with or 

without the reducing reagent, DTT. Following transferring to PVDF membrane, 

successive incubation with mouse anti-His tag monoclonal antibody (Sigma) or 

mouse anti-BP1-LRP6 antibody (kindly provided by Dr. Jian-Ping Jin) and 

horseradish peroxidase-conjugated secondary antibodies (Amersham Life 

Science) were carried out according to the routine Western blotting procedures. 

The immunoreactive proteins were then detected using the ECL system. 

 

3.2.9. Far UV Circular Dichroism (CD) Spectroscopy 

Circular dichroism (CD) spectroscopy measures differences in the 

absorption of left and right circularly polarized light, which arise due to structural 

asymmetry. Protein secondary structure can be determined by CD spectroscopy 

in the far UV region (190-260 nm). Three common secondary structure motifs (α-

helix, β-sheet, and random coil) exhibit the characteristic and distinctive CD 

spectra in the far UV region. α-Helical proteins have negative bands at 222 nm 

and 208 nm and a positive band at 193 nm. Proteins with well-defined antiparallel 

β-pleated sheets have negative bands at 218 nm and positive bands at 195 nm, 
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whereas disordered proteins have very low ellipicity above 210 nm and negative 

bands near 195 nm.  

CD is reported in units of ellipticity (θθθθ), usually expressed in millidegrees, 

which reflects the sum of the entire molecular population in a sample solution. It 

can be normalized to the molar concentration of the sample as molar ellipticity. 

Circular dichroism spectroscopy is commonly used to: 1) determine if a 

protein is folded; 2) characterize protein secondary structure and tertiary 

structure (using near-UV CD spectrum); 3) compare the structures of a wild-type 

protein with different mutants; 4) study protein stability to temperature or 

chemical denaturation (GdnHCl or urea) and effects of salt, pH, organic solvents; 

5) study protein folding, unfolding, denaturation or aggregation; and 6) determine 

whether protein-lipid interactions alter the conformation of a protein. 

In our studies, CD measurements were carried out on an Olis DSM 17 CD 

spectrophotometer (Bogart, GA), with a constant 20 °C temperature capability 

under computer control within ±0.2 oC. Protein concentrations were determined 

by the BCA protein assay (Pierce) and absorbance at 280 nm using a 

spectrophotometer, which gave a similar result of the protein concentration by 

both methods. Eight hundred µl samples in 25 mM phosphate buffer at pH 7.4 

were prepared. The far UV spectra were collected at 190-260 nm with a cuvette 

using 250 µl sample in a 1 mm pathlength, at a protein concentration of 0.1-0.2 

mg/ml. Fifteen scans between 190 and 260 nm were acquired and averaged. A 

base-line scan was subtracted to produce the final average scan. The value of 

molar ellipticity ([θ] x 103 deg cm2/dmole) was plotted as a function of protein 
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concentration. The average α-helical, β-sheet, and other secondary structure 

element content in the refolded BP1-LRP6 was calculated using DICHROWEB 

server (212).  

 

3.3. Results 

3.3.1. Expression and purification of the recombina nt BP1-LRP6 from 

Escherchia coli (E. coli) 

 BP1-LRP6 with N-terminus His tag was expressed in E. coli. Bacterially 

expressed BP1-LRP6 adopted random conformations and preferred forming 

oligomers by non-native disulfide bonds. In order to break the intermolecular 

disulfide bonds for monomer BP1-LRP6 protein band, all the samples in Figure 

3-4 were reduced by DTT.   

 Figure 3-4 showed the highly efficient recombinant BP1-LRP6 expression 

and the nickel chelating column purification process.  The strong protein band of 

37 kDa (BP1-LRP6) was shown in the IPTG-induced cell lysates while there was 

no induced protein expression band in the control ( lanes 1 and 2). Large 

quantities of recombinant BP1-LRP6 expressed inside E. coli caused protein 

aggregation and formed inclusion bodies. We had to use 6 M urea in the 

purification buffer and repeated the sonication step three times in order to extract 

the recombinant BP1-LRP6. The extracted recombinant BP1-LRP6 in the buffer 

was loaded onto a nickel chelating column, followed by extensive washings to 

reduce non-specific proteins from binding. BP1-LRP6 was eluted out with 1 M  
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Figure 3-4: A 12% reducing SDS-PAGE gel, showing th e induced expression of 

BP1-LRP6 in E. coli and its purification by using nickel chelating col umn.  

 

imidazole. The elution was dialyzed and lyophilized to obtain pure protein 

powder. By using this high-yield recombinant protein expression method, we 

could routinely obtain about 70 mg of pure BP1-LRP6 protein powder from 500 

Lane 1: E. coli cell lysates after IPTG induction. Lane 2: E. coli cell lysates without 

IPTG induction as a negative control. Lane 3: the cell extract before loading onto the 

column. Lane 4-6: the cell extract from the 1st sonication, 2nd sonication, and 3rd 

sonication. Lane 7: the flow through after loading. Lane 8: the flow through of the 

binding buffer wash. Lane 9: the flow through of the washing buffer wash. Lane 10: 

the elution. 
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ml cell culture. Pure bacterially expressed BP1-LRP6 was stored at -20 °C for 

further experiments.  

  

3.3.2. Highly efficient protein delivery by QQ-reag ent 

 To optimize the protein delivery condition for in vivo refolding of BP1-

LRP6, we conducted a time course of protein delivery experiment for 3 hours. 

Bacterially expressed BP1-LRP6 was modified with QQ-reagent for overnight at 

4 °C. The QQ-modified BP1-LRP6 was mixed with serum-fr ee DMEM to reach 

the final concentration of 0.1 mg/ml. Dishes containing 80% confluent HeLa cells 

were incubated with the protein delivery medium for different periods of time. 

Every half hour, one dish of HeLa cells was taken out and was suspended in the 

SDS-PAGE loading buffer. All the samples were analyzed by a 12% SDS-PAGE. 

In order to observe the monomer band of BP1-LRP6, we ran a duplicate SDS-

PAGE under reducing condition.  

 Figure 3-5 showed the gradual appearance of a monomer BP1-LRP6 

protein band (red arrow) in the Hela cell lysates samples from 0.5 hour to 3 

hours. Under a reducing condition (Figure 3-5, right panel), the intensity of the 

BP1-LRP6 protein band was significantly increased (red arrow). The data 

demonstrated that the protein delivery of BP1-LRP6 into Hela cells was linear, 

maximizing around 2 hours post delivery. 

 



                                                                               128 

 

 
 

 

Figure 3-5: 12% SDS-PAGEs of a time course of the Q Q-delivery of the BP1-LRP6 

into HeLa cells.  

 

 Bacterially expressed BP1-LRP6 was labeled with amine-reactive 

ArrayIt®Green540 and delivered into Hela cells with the QQ-reagent and imaged 

using confocal fluorescence imaging (Figure 3-6). Images were taken after 1 and 

2 hours after protein delivery.  After 1 hour protein delivery, the fluorescence 

images showed that most of BP1-LRP6 was located in the perinuclear location 

inside HeLa cells, possibly in the ER for refolding (Figure 3-6, top panel).This 

was confirmed by the imaging data after 2 hours of protein delievery, showing 

that more BP1-LRP6 proteins were located into the perinuclear area of the HeLa 

cells (Figure 3-6, bottom panel). This result confirmed our result of the time 

Lane CT: the Hela cell lysis after loaded with QQ-reagent for 3 hours as a negative 

control. Lane M: protein marker. Lane 1-6:  the Hela cell lysis after loaded with QQ- 

modified BP1-LRP6 for 3 hours, 2.5 hours, 2 hours, 1.5 hours, 1 hour and 0.5 hours. 

Lane 7: the bacteria expressed BP1-LRP6 powder. Lane 8: the bacteria expressed 

BP1-LRP6 powder with DTT. Left panel: Without DTT. Right panel: With DTT.  
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course of BP1-LRP6 delivery, suggesting that 2 hour protein delivery appeared to 

be the optimal protein delievery time (Figure 3-5).  The QQ-reagent is highly 

efficient for protein delivery with most of bacterially expressed BP1-LRP6 being 

delivered inside of HeLa cells, ready for refolding. 

 

Figure 3-6: Confocal fluorescence images of the Hel a cells with the delivered BP1-

LRP6.  

 

BP1-LRP6 was first labeled with small molecular fluorophore (ArrayIt® Green 540 

amine-reactie dye) and then modified with QQ-reagent for protein delivery. 

Fluorescence images (on the left) and DIC images (on the right) were taken after 1-

hour and 2-hour protein delivery.  
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 A relatively high concentration of BP1-LRP6 was kept inside HeLa cells 

during refolding. After delivering bacterially expressed BP1-LRP6 for 2 hours, we 

changed the protein delivery medium for fresh serum-free DMEM for another 

overnight incubation. We took samples of the HeLa cells and ran the cell lysates 

sample on a SDS-PAGE. We found that BP1-LRP6 accumulated inside HeLa  

 

Figure 3-7: A 12% SDS-PAGE analysis to semi-quantif y the delivered BP1-LRP6 

inside HeLa cells.  

 

All the samples were reduced with DTT. Lane M: protein marker. Lane 1-3: 10 ul, 15 

ul and 20 ul of the Hela cell lysates sample after 2 hours protein delivery and an 

overnight incubation. Lane 4: the intact Hela cell lysates as negative control. Lane 5: 

the modified BP1-LRP6 before loading. Lane 6: the remaining undelievered BP1-

LRP6 in the medium after 2 hours of protein delievery. Lane 7-10: 10 ul bacterially 

expressed BP1-LRP6 powder at the concentrations of 0.25 mg/ml, 0.5 mg/ml, 0.75 

mg/ml and 1 mg/ml. The concentration of the delivered BP1-LRP6 was between 0.25 

mg/ml and 0.5 mg/ml.  



                                                                               131 

 

 
 

cells (Figure 3-7). To semi-quantify the amount of BP1-LRP6 inside of HeLa 

cells, we ran the HeLa cell lysates samples and the bacterially expressed BP1- 

LRP6 samples with known concentrations under the same reducing condition 

(Figure 3-7). We found that the delivered BP1-LRP6 inside Hela cells reached 

the concentration range between 0.25 mg/ml and 0.5 mg/ml (lanes 7-10, Figure 

3-8). It was surprising that the protein delivery could be so efficient for BP1-LRP6 

as compared to that for LBD-ApoER2 (Chapter 2).  The delivered protein 

appeared stable inside HeLa cells even after overnight incubation. The 

differences in delievery efficiencies could be related to the unique biochemical 

properties of individual proteins (modified by QQ-reagent to differing extents, 

charge, etc.). 

 

3.3.3.   Inside of HeLa cells, the delivered BP1-LR P6 was under refolding 

process, showing increasing ligand-binding ability in the Far-western blot 

  MESD is an ER chaperone especially binding properly folded YWTD β-

propeller domains of LRP5/6 and escorting them throughout the secretary 

pathway (209). We used MESD as our far-Western blot probe to specifically bind 

and detect the properly folded and biologically functional BP1-LRP6 in the 

samples.  

 Bacterially expressed BP1-LRP6 was modified by QQ-reagent and was 

delivered inside of HeLa cell for 4 hours. Each hour, we collected the sample of 

HeLa cells harboring delivered BP1-LRP6. All the HeLa cell samples were lysed  
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Figure 3-8: Far-Western blot (MESD as probe) of BP1 -LRP6.  

 

and, with the bacterially expressed BP1-LRP6 sample, the HeLa cell lysates 

were subjected to the far-Western blot. Our result showed that the delivered 

BP1-LRP6 gradually underwent conformational changes inside of HeLa cells, 

showing stronger and stronger binding ability to its probe, MESD, as time went 

on (as shown in Figure 3-8). This data suggested that once the bacterially 

expressed BP1-LRP6 was delivered inside of HeLa cells, the refolding process 

began. More bacterially expressed BP1-LRP6 was refolded and increasing 

amounts of properly folded BP1-LRP6 appeared, showing its specifically binding 

The HeLa cells with delivered BP1-LRP6 were collected at different time point. The 

samples were lysed and were subjected to far-western blot using MESD as probe. 

Lane1: 1 hour. Lane 2: 2 hours. Lane 3: 3 hours. Lane 4: 4 hours. Lane 5: the 

bacterial expressed BP1-LRP6 without refolding as negative control. The red arrow 

shows the band site of BP1-LRP6. (Courtesy of Dr. Qianqian Li). 
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to the ligand (our probe) MESD. At this point, we confirmed that the delivered 

BP1-LRP6 can be refolded inside of HeLa cells. Given refolding time long 

enough, more BP1-LRP6 can be properly folded showing its biological function to 

bind MESD and eventually the delivered BP1-LRP6 can be totally refolded while 

the persistent unfolded BP1-LRP6 can be degraded by the active mechanisms 

such as ERAD or UPR. 

 

3.3.4. Optimization of the protein refolding protoco l for BP1-LRP6 

 Protein refolding inside Hela cells takes time. We conducted experiments 

to monitor the fate of the delivered BP1-LRP6 (Figure 3-9). Our recombinant 

BP1-LRP6 does not have a signal peptide at the N-terminus, thus the refolded 

BP1-LRP6 remains inside HeLa cells. We tried to prolong the in vivo refolding 

time by incubating the protein delivered HeLa cells with serum-free DMEM for 

three days (Figure 3-9). Every 24 hours, HeLa cell samples were taken. All the 

samples were incubated with 10 mM DTT before being analyzed by 12% SDS-

PAGE for a monomer BP1-LRP6 protein band. Our results showed that the 

amount of BP1-LRP6 inside HeLa cells was significantly decreased in the first 

day of in vivo protein refolding. However, in the subsequent two days of in vivo 

refolding, the amount of BP1-LRP6 inside HeLa cells was relatively stable, 

showing only slight decrease. After 3 days of refolding, the HeLa cells still 

appeared morphologically normal (data not shown).  Since a BP1-LRP6 protein 

band (red arrow) remained detectable and the protein refolding time was 

maximal to 3 days.  These results suggest that 2 hours of protein delievery of the  



                                                                               134 

 

 
 

 

Figure 3-9: The time course experiment on refolding  BP1-LRP6 inside HeLa cells.   

  

bacterially expressed BP1-LRP6 into Hela cells by the QQ-reagent (Figure 3-5) 

followed by 3 days of protein refolding inside of the cells (Figure 3-9) are likely 

the optimized conditions for the refolding of BP1-LRP6 inside Hela cells. 

 Mammalian cells have developed mechanisms to actively remove toxic 

proteins, such as unfolded or misfolded proteins. Not only the active ATP-

Lane M: protein marker. Lanes 1-3: the Hela cell lysates after incubation for 3 days, 2 

days and 1 day post protein delievery. Lane 4: the Hela cell lysates of negative 

control. Lane 5: the Hela cell lysis after 2 hours protein delivery. Lane 6: the modified 

BP1-LRP6 before loading. Lane 7: the remaining BP1-LRP6 in the protein delivery 

medium after 2-hour of protein delievery. All the samples were in the presence of 10 

mM DTT. 



                                                                               135 

 

 
 

consuming ER associated degradation (ERAD) and unfolded protein response 

(UPR) but also the unspecific proteolytic enzymes of the lysosome can actively 

degrade the toxic unfolded or misfolded proteins inside mammalian cells 

(Chapter 1). Also, mammalian cells can secrete out the toxic proteins and 

compact them into a less toxic amyloids stocked in the extracellular tissue. 

Ultimately, accumulation of these toxic proteins in the cell cytoplasm can cause 

apoptosis. It is unlikely that the unfolded BP1-LRP6 could escape away from 

such a well-organized and strict control, being kept inside healthy HeLa cells. We 

thought that the relatively stable stock of BP1-LRP6 inside HeLa cells after 3 

days of in vivo protein folding was the potentially refolded BP1-LRP6.  

 

3.3.5. The high yield of refolded BP1-LRP6  

 Is the refolded BP1-LRP6 properly folded? How is its structure organized? 

To address these questions, we need first to purify the refolded BP1-LRP6 from 

the HeLa cells after three-day in vivo protein folding (Figure 3-10). In order to 

keep the native conformation of the refolded BP1-LRP6 as it was inside Hela 

cells, no denaturing reagent was used in the buffers of nickel chelating column 

purification. Due to the protein-protein interactions inside HeLa cells, non-specific 

proteins could be co-purified (data not shown). To solve the problem, we 

modified the purification protocol by increasing NaCl concentration up to 1 M in 

the buffers. This modification greatly improved the quality of the eluted refolded 

BP1-LRP6. The column was extensively washed and the refolded LRP6 was 

eluted by an imidazole concentration gradient (lanes 7-9, Figure 3-10).  
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 To identify the purified refolded BP1-LRP6, Western blot against anti-His 

tag antibody and anti-LRP6 were applied to the same quantity of the purified 

refolded BP1-LRP6 and the bacterially expressed one (Figure 3-11). Purified 

refolded BP1-LRP6 showed strong positive signals detected by both anti-His tag 

antibodies and anti-LRP6 antibodies, identifying the re-purified protein as the 

refolded BP1-LRP6 (Figure 3-11). In the anti-His tag Western blot, both the 

bacterially expressed and the refolded protein powders showed positive signals 

of BP1-LRP6 at the monomer position. Compared with the bacterially expressed 

BP1-LRP6, our in vivo protein refolding method had significantly enriched 

monomeric BP1-LRP6 in the sample.  

 

Figure 3-10: Re-purification of refolded BP1-LRP6 f rom Hela cells.   

Lane 1: the bacteria expressed BP1-LRP6 powder. Lane 2: the Hela cell extract 

before loading onto His•Bind column. Lane 3: the flow through after loading. Lane 4: 

the flow through of binding buffer washing. Lane 5-6: the flow through of washing 

buffer wash (20 mM and 70 mM imidazole washing). Lane 7-9: the elution at 100mM, 

250mM and 1M imidazole concentrations. All the samples were treated with 10 mM 

DTT before analyzed by 12% SDS-PAGE. 
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Figure 3-11: Anti-His tag (Left panel) and anti-LRP 6 (right panel) western blotting 

to identify purified refolded BP1-LRP6.  

 

 The crystal structure of the homologue of BP1-LRP6, the LDL receptor BP 

domain, had been solved (PDB file # 1IJQ) (130). In this structure, we noticed 

that the six cysteine residues in EGF-like domain formed three intramolecular 

disulfide bonds. Only the properly folded BP1-LRP6 should have structure 

similarities to the LDL receptor BP domain; its cysteine residues should also only 

form intra-domain disulfide bonds. If folded properly, the oligomeric species 

The left panel: all the protein samples were at 50 ng/µl and without DTT. Lane 1: 10 

ul (500 ng) bacteria expressed BP1-LRP6. Lane 2: 10 ul (500 ng) purified refolded 

BP1-LRP6. The right panel: all the protein powder sample were at the concentration 

of 50 ng/ul. Lane 1-3: 4 ul, 8 ul, and 12 ul (200, 400, and 600 ng, respectively) 

purified refolded BP1-LRP6. Lane 4-6: 4 ul, 8 ul and 12 ul bacterial expressed BP1-

LRP6  at the same concentrations. 
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(intermolecular bonds) should be greatly reduced while the monomeric band 

(intramolecular bonded form) (37 kDa) should be greatly enriched.  This is 

exactly what was observed (lanes 1 and 2, the left panel of Figure 3-11).  This 

finding suggests that this in vivo protein refolding technique enables efficient 

refolding of BP1-LRP6. Previous published data (211) supports this conclusion, 

showing that the molecular chaperone MESD was co-overexpressed with BP1-

LRP6 to facilitate its folding. MESD dramatically enhanced the folding of BP1-

LRP6, and the properly folded BP1-LRP6 was secreted into the medium. Only 

one monomer band of the secreted BP1-LRP6 was shown in their Western blot. 

Therefore, the monomer BP1-LRP6 represents the potential properly folded BP1-

LRP6. Our purified refolded BP1-LRP6 had large percentage of the properly 

folded BP1-LRP6.  

 The in vivo protein refolding method was optimized specifically for BP1-

LRP6. The bacterially expressed BP1-LRP6 was modified by the QQ-reagent at 

0.1 mg/ml (final concentration). Protein delivery was conducted for 2 hours and 

protein was extensively refolded inside of HeLa cells for 3 days. After 3 days of  

refolding, the potentially properly refolded BP1-LRP6 was purified by His�Bind 

(Nickel chelating) column chromatography. A high yield of the refolded BP1-

LRP6 was achieved through this in vivo refolding process. The yields of the 

refolded BP1-LRP6 from two independent purification schemes are shown in 

Table 3-1. We routinely obtained a yield of around 60%. 
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Table 3-1: The final yield of the purified refolded  BP1-LRP6 using in vivo protein 

refolding technique.  

 

3.3.6. Well-defined secondary structure shown in th e far-UV CD spectrum  

of refolded BP1-LRP6  

 Far-UV circular dichroism (CD) spectroscopy is an excellent tool for rapid 

determination of the secondary structure and folding properties of proteins. CD 

spectra of the purified refolded BP1-LRP6 and the bacterially expressed BP1-

LRP6 were recorded in 50 mM sodium phosphate buffer at pH 7.4. The results 

showed very different spectra for these two samples (Figure 3-12). While the 

spectrum of the bacterially expressed BP1-LRP6 was more characteristic of a 

random coil, the spectrum of the purified refolded BP1-LRP6 showed a positive 

CD signal at 193 nm and negative CD signal near 218 nm, suggesting a 

predominantly defined β-sheet structure. This result is consistent with the crystal 

structure of the homologue of BP1-LRP6--- the LDL receptor BP domain, in 

which six YWTD repeats together fold into a six-bladed β-propeller and each 

blade is consisted of four-stranded β-sheets. Also, in the CD spectrum of the 
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refolded BP1-LRP6, the negative CD peaks centered near 208 nm and 222 nm 

suggest that the refolded BP1-LRP6 also contains some α- helical structure.  

 To further quantify the result, we sent the CD data of the refolded BP1-

LRP6 to the DICHROWEB server (212). DICHROWEB is a user-friendly interface 

to analyze CD spectra. As the spectra of proteins that have been characterized 

by x-ray crystallography are standards, DICHROWEB compared the spectra of 

the refolded BP1-LRP6 with the standards using programs such as CONTINLL, 

VARSLC, K2d, CDSSTR, and SELCON3 (212), assuming that the spectrum of a 

     

Figure 3-12: Far-UV circular dichroism (CD) spectru m of the bacterially expressed 

BP1-LRP6 and the purified refolded BP1-LRP6.  

The right panel showed the CD samples on 12% SDS-PAGE. Lane 1 is the refolded 

BP1-LRP6 protein  sample. Lane 2 is the bacterially expressed BP1-LRP6 protein 

sample. Both samples had reacted with 10 mM DTT. 
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protein can be represented by a linear combination of the spectra of its 

secondary structural elements, plus a noise term, which includes the contribution 

of aromatic chromophores and prosthetic groups (213). The calculated 

secondary structure element content of the refolded BP1-LRP6 was shown as 

Table 3-2. Compared with its homologue---the LDL receptor BP domain, the 

refolded BP1-LRP6 had almost the same high content of β- sheet and small 

percent of α- helices. The percentage numbers of the secondary element are so 

close that it strongly supports the idea that the refolded BP1-LRP6 adopts a 

similar conformation as the LDL receptor BP domain, further confirming that our 

refolded BP1-LRP6 was properly folded and adopted a defined and a potentially 

native conformation. 

Table 3-2: Comparison of the secondary structure co ntent of the refolded BP1-

LRP6 (using DICHROWEB web server) with that of the BP domain of LDLR ( 130, 

212). 

         Secondary Structure  Alpha -helix (%)  Beta-sheet (%)  Loop (%) 

The refolded BP1 -LRP6 2.6 41.0 56.4 

LDL receptor YWTD -EGF  2.0 46.0 52.0 

 

 

3.4. Discussion   

LRP5 and LRP6 are unique members of LDL receptor family. Instead of 

having clusters of ligand binding repeats in the extracellular domain to exert 
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ligand-binding function, the YWTD β-propeller/EGF (BP) modules occupies large 

part of the extracellular domain and plays an important role in ligand binding. 

Especially in Wnt signal transduction, LRP5/6 acts as co-receptor of the 

canonical Wnt/β-catenin pathway. Malfunctions of LRP5 can cause disorder in 

bone metabolism (152). LRP6 mutations associate with coronary artery disease, 

Alzheimer’s disease, and cancer (192). Structural studies on LRP5/6 are very 

important to understand the mechanisms of the above diseases.  

BP1-LRP6 is a 328 amino acids (37 kDa) fragment, including six YWTD β-

propeller motifs and one EGF-like repeat. No previous structural study on LRP6 

has been reported. But, as the homologue of BP1-LRP6, the x-ray 

crystallography structure of LDL receptor YWTD β-propeller/EGF (BP) domain 

has shown that the six YWTD repeats of LDL receptor was folded into a six-

bladed β-propeller domain. Each blade consisted of four-stranded β-sheets. 

EGF-like domain tightly packs against the second and third blades of the 

propeller. 

Refolding the bacterially expressed BP1-LRP6 in vitro is challenging. BP1-

LRP6 is a 37 kDa protein with multiple motifs. During in vitro refolding, the 

exposed hydrophobic residues in the refolding intermediates may cause 

irreversible aggregation by hydrophobic interactions or non-native hydrogen 

bonding. Also, without help of molecular chaperones and folding enzymes, 

especially RAP and MESD, it is very difficult to form native intra-repeat disulfide 

bonds in the EGF-like repeat of BP1-LRP6 for a proper folding.  



                                                                               143 

 

 
 

Instead of using traditional in vitro protein refolding methods, we used our 

novel in vivo protein refolding technique to refold bacterially expressed BP1-

LRP6. With optimized conditions, QQ-reagent efficiently delivered large quantity 

of bacterially expressed BP1-LRP6 inside HeLa cells within two hours (Figure 3-5 

to 3-7). Protein refolding was extensively processed inside HeLa cells for three 

days (Figure 3-9). During these three days, the bacterially expressed BP1-LRP6 

underwent refolding facilitated by the ER molecular chaperones and folding 

enzymes. Persistent unfolded or misfolded BP1-LRP6 could be actively 

degraded by the ERAD or UPR mechanism in the ER.  

During BP1-LRP6 folding, MESD may play a key role to escort the 

properly folded BP1-LRP6 travel from the ER to Golgi. We delivered a large 

quantity of BP1-LRP6 inside Hela cells for refolding (Table 3-1). The quantity 

may be above the threshold of endogenous MESD, causing the refolded BP1-

LRP6 to be retained inside of the Hela cells. Also, the refolded BP1-LRP6 was 

lacking a signal peptide, which may cause the difference in localization 

(intracellular versus secreted) of the refolded BP1-LRP6. 

We used a nickel chelating column to purify the refolded BP1-LRP6 from 

HeLa cell lysates (Figure 3-10). We found our purified and potentially refolded 

BP1-LRP6 was greatly enriched for the monomeric form (Figure 3-11). The 

refolding efficiency and the final yield for this cysteine-rich, large-sized protein 

were so high that nearly 60% percent of the delivered BP1-LRP6 was refolded 

and re-purified. To futher purify our refolded BP1- LRP6, the protein could be 

applied to a size exclusion chromatography to separate the monomeric species 
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from the higher molecular weight oligmeric ones. A functional assay was 

performed to prove that the BP1-LRP6 obtained by our novel in vivo protein 

refolding technique was properly refolded and biologically functional (Figure 3-8).  

This provided more evidence that the refolded BP1-LRP6 was in a native 

conformation. 

The secondary structure and folding properties of the refolded BP1-LRP6 

was studied by far-UV circular dichroism (CD). Our CD data showed that the 

refolded BP1-LRP6 adopted a β-sheet rich conformation while the spectrum of 

the bacterially expressed BP1-LRP6 was more characterized as random coil 

(Figure 3-12). The DICHROWEB server further analyzed and quantitated the CD 

data (Table 3-2). The analysis showed that the refolded BP1-LRP6 and its 

homologue, the LDL receptor BP domain shared almost the same percentage of 

α-helix and β-sheet in their structure, suggesting that our refolded BP1-LRP6 

adopted similar defined conformation as its homologue, the LDL receptor BP 

domain. Our in vivo protein refolding technique is unique because it gives a more 

physiological relevant in-cell environment for protein refolding. In this 

environment, not only the refolding is assisted by molecular chaperones and 

folding enzymes in the ER, but also the folding quality is strictly monitored by a 

complex quality control system inside the mammalian cells. Compared with 

traditional in vitro protein refolding methods, our method is much more efficient in 

large protein refolding, which has been demonstrated in the refolding of LBD-

apoER2 (Chapter 2). However, endogenous ER chaperones and folding 

enzymes have their threshold for protein folding. This may cause the retention of 
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the refolded protein inside of the mammalian cells or partially refolding of the 

delivered protein. We confronted these problems when we challenged our in vivo 

protein refolding technique with cysteine-rich, large-size protein, BP1-LRP6. We 

hope we can overcome these problems by further optimizing our in vivo protein 

refolding technique or by engineering mammalian cells that can sustain large 

quantity protein refolding. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                               146 

 

 
 

CHAPTER IV 

Conclusion and future directions 

4.1.  Conclusion 

Studies of in vitro protein refolding allow us to understand fundamental 

aspects of the folding mechanisms without the complications of the biological 

environment. From Anfinsen’s RNase renaturation experiment, it has been long 

accepted that all the driving forces and guiding information of protein folding are 

embedded in the primary amino acid sequence of a protein and no external 

template is required. Under physiological conditions, the native state protein 

adopts the most thermodynamically stable conformation. In vitro refolding 

process is a good model for defining the types of intramolecular interaction that 

drive polypeptide folding and understanding the mechanisms of protein folding. 

However, in vitro refolding cannot accurately reflect the folding process of 

nascent proteins inside of cells due to the differences between protein folding in 

the intracellular environment and those in the test tube: 1) the intracellular 

environment is a highly crowded macromolecular environment; 2) folding inside 

of the cell is facilitated by molecular chaperones and folding enzymes and must 

be accomplished in the context of the synthesis of polypeptide chains on 

ribosomes; 3) cells are an intrinsically dynamic system. Protein folding 

experiments in vitro may not mimic the dynamics states in vivo. Ultimately,  

protein folding must be studied in a cellular context. It is necessary to develop 

new techniques using new in vivo  systems to integrate the best aspects of both 
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the high-level bacterial expression system and the efficient cellular folding 

machinery of mammalian cells.  

Our novel in vivo protein refolding technique uniquely integrates these two 

aspects. This technique first expresses recombinant proteins in E. coli with a very 

high-yield and then deliver the bacterially expressed pure protein directly into the 

ER of HeLa cells, using the QQ- protein delivery system, to properly refold the 

protein by the comprehensive protein folding machinery inside of mammalian 

cells. We drive the proteins into the inclusion bodies for the purpose of high yield 

and high purity. We then purify the recombinant proteins under denatured 

conditions since the bacterially expressed proteins will be refolded in the HeLa 

cells. The key step of this in vivo protein refolding technique is the QQ-protein 

delivery system that allows specific delivery of the bacterially expressed proteins 

into the ER for efficient refolding. This novel in vivo protein refolding technique 

offers a unique tool for protein folding study as well as for broader applications, 

such as therapeutical protein productions.  

This thesis also presents the applications and optimizations of our novel in 

vivo protein refolding technique on two challenging proteins: LBD-apoER2 and 

BP1-LRP6. ApoER2 is an important LDL receptor super family member involved 

in ApoE metabolism in brain and the onset of Alzheimer’s disease. The LBD-

apoER2 contains 7 ligand binding repeats. Each repeat contains 6 cysteines 

forming 3 intra-repeat disulfide bonds, plus one Ca2+-binding site. Bacterially 

expressed LBD-apoER2 formed non-native disulfide bonds, causing multiple 

conformations and aggregation. LRP6 is the co-receptor of Wnt signalling 
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pathway, involved in cell proliferation, differentiation and mobility. The homologue 

of BP1-LRP6, BP domain of LDL receptor, adopts a β-sheet rich conformation. In 

BP domain of LDL receptor, the YWTD β-propeller module is composed of six β-

strand blades and the C-terminal EGF-like module is stabilized by three intra-

domain disulfide bonds. Bacterially expressed BP1-LRP6 was misfolded and 

formed large amounts of oligomers.  

By using our in vivo protein refolding technique, we efficiently delivered 

the misfolded proteins into the ER of HeLa cells. Under the physiological 

environment of ER and with the help of molecular chaperones and folding 

enzymes, the misfolded proteins were efficiently refolded into their native 

conformations. The refolded LBD-apoER2 displayed RAP binding function, 

implying its proper conformation. The refolded BP1-LRP6 also showed biological 

function of MESD binding ability, indicating the appearance of native 

conformation after refolding. Far-UV circular dichroism spectra of the refolded 

BP1-LRP6 indicated a β-sheet rich structure. The data analysis of the far-UV 

circular dichroism spectra provided indirect evidence that the refolded BP1-LRP6 

adopted a remarkably similar secondary structure as its homologue --- BP 

domain of LDL receptor. Based on our results, we concluded that the application 

of our novel in vivo protein refolding method gave high yields of properly folded 

LBD-apoER2 and BP1-LRP6. 

This novel in vivo protein refolding technique not only provides an efficient 

tool to obtain large quantities of properly folded recombinant proteins with stable 

isotopes for structural apporaches such as NMR spectroscopy, but also opens 
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interesting new perspectives for producing biological active polypeptides and 

proteins with therapeutic value on a large-scale. Moreover, this technique bridges 

the existing technical gap between in vitro protein folding and folding in living 

cells and can be used to gain a fundamental understanding of dynamic 

intracellular folding mechanisms in the living mammalian cells by studying the 

folding of the radioactive amino acid labelled recombinant proteins inside of 

mammalian cells. Or, as the fluorescence based techniques (such as fluorescent 

resonance energy transfer, FRET) develop, we can expect to study 

conformational changes of proteins in the living cell. 

    

4.2. Future Directions 

 We have successfully refolded LBD-apoER2 and BP1-LRP6 into their 

native comformations with biologically functions by applying the in vivo protein 

refolding technique. The logical next step is to investigate the biochemical and 

structural characters of these properly folded proteins under physiologically 

relevant circumstances. One of strengthes of our in vivo protein refolding is that 

we can efficiently refold isotope-labelled bacterially expressed proteins into their 

native conformations. With isotope labelling, the refolded LBD-apoER2 and BP1-

LRP6 can be dissolved in physiologically relavent buffers, ready for NMR 

structural studies. BP domains of LRP6 is involved in Wnt signalling pathway and 

LBD-apoER2 may be involved in the onset of Alzheimer disease. They are 
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potentially important drug targets. Detailed structure information on these two 

proteins can be very helpful for drug design. 

 The folding of the cysteine-rich ligand binding repeats of LBD-apoER2 

relies on a special ER/Golgi resident molecular chaperone RAP (138). RAP 

escorts the ligand binding domain and inhibits pre-mature ligand binding through 

the secretary pathway. RAP exerts high binding affinity to the ligand binding 

domain of the LDLR family (KD~ 1-10 nM) in the ER (125, 138, 139). But under 

the acidic environment of Golgi, RAP is released fom the binding complex by 

lowering the binding affinity to ligand binding repeats. The RAP releasing 

mechanism in Golgi is still not clear. Acoording to the x-ray crystal structure of 

RAP-D3 and LDLR-LA3-4, A low-pH induced unfolding model was proposed 

(214). In this model, the histidine residues which are buried in the hydrophobic 

interior of  the RAP-D3 helical bundle are protonated under the low pH 

environment of Golgi and, in sequence, trigger unfolding of the helical bundle and 

dissociation of RAP-D3/LDLR-LA3-4 complex. However, Gettins’ group found 

that domain D1 of RAP also bound LA repeats of LRP with very high affinity 

(215). In their low-pH induced YWTD displacing model, the flanking YWTD 

“propeller” domains competitively bind to RAP at the two binding sites in RAP-D1 

and RAP-D3 under the low pH environment of Golgi. Thus, RAP is displaced by 

YWTD domains, releasing from LA repeats. The debating of these two models 

diverges at different study objects. The low-pH induced YWTD displacing model 

claimed for the acuteness by applying the intact RAP and three ligand binding 

repeats of LRP instead of RAP-D3 and two ligand binding repeats only of LDLR. 
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To clear the debating, we can conduct isothermal titration calorimetry (ITC) 

experiments on the protein-protein interactions between the intact RAP (available 

in our lab) and our refolded LBD-apoER2 which contains the whole ligand 

binding domain (seven ligand binding repeats) at different pH environments. This 

research will offer direct evidences to elucidate the RAP releasing mechnism in 

Golgi. 

 Protein chaperones are involved in the protein folding process inside of 

cells. For example, Bip, the abundant general ER chaperone, usually is the first 

chaperone binding to the nascent peptide chain to facilitate translocation of the 

nascent peptide chain into the ER lumen. PDI is one of the most important ER 

chaperones facilitating the native disulfide bond formation (28). RAP is the 

specific folding chaperone for the ligand-binding domain of LDLR superfamily 

members (125). MESD is the private chaperone for LRP5/6 BP domain folding 

(139). In our research, the folding threshold of endogenuous molecular 

chaperones and folding enzymes was the main factor that limits the in vivo 

protein refolding efficiency. Our QQ- protein delivery system is powerful. We can 

co-deliver important molecular chaperones or folding enzymes inside of cells with 

the proteins of interest to overcome the folding threshold problem and to further 

increase the refolding efficiency of the in vivo protein refolding technique. 

 On the other hand, the host mammalian cells could also be engineered for 

the purpose of improving in vivo protein refolding efficiency. Reports have 

provided examples of how the growth, survival, and productivity of the host cell 

can be improved through use of these genetic engineering techniques. Proto-
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oncogenes, cell cycle control genes (cyclins), growth factor genes (e.g., insulin-

like growth factor), and anti-apoptotic genes have been inserted into cell lines for 

the generation of superior recombinant protein production hosts (216). 

Improvements of in vivo protein refolding and post-translational modification can 

also be achieved by genetic engineering method. Stable cell lines can be 

generated by integrating key genes of molecular chaperones or folding enzymes 

into the host cell genome. These engineered host cell lines stably overexpress 

these important molecular chaperones or folding enzymes and they can be used 

as the refolding host cell lines to enhance the refolding ability. Thus, the protein 

refolding efficiency by using these engineered host cells may be significantly 

improved. 

 The establishment of a basis for understanding the determinants of protein 

folding has the potential to transform our understanding of many of the most 

perplexing issues surrounding protein folding diseases, and perhaps most 

importantly, the true nature of misfolded pathogenic protein species. Our in vivo 

protein refolding technique has opened the field for in vivo analysis of protein 

folding diseases, which has previously only been possible in vitro. We believe 

this approach may become a fundamentally important technique that could aid in 

understanding the protein folding and the complex chaperone networks inside of 

cells and its physiological relevance could, ultimately, be of clinical benefit.  
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Figure 2-5: ER export and retrieval cycle of RAP- R ole in LRP secretion. Adapted 
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Proteins perform their functions in their native folded states and misfolding 

of proteins may cause severe diseases, including Alzheimer’s disease, 

Parkinson’s disease, prion disease and diabetes. Understanding protein folding 

is important for us to engineer proteins to treat these diseases. For protein 

therapeutics, large quantities of properly folded and functional proteins are 

required. The current technology produces recombinant proteins using either 

eukaryotic or prokaryotic expression system, both of them have major problems 

that prevent production of large quantities of properly folded and functional 

human proteins for protein therapeutics. 

Although the eukaryotic cells have comprehensive folding machinery that 

contains chaperones and folding enzymes and a complex quality control (QC) 

system to ensure that only properly folded proteins will be generated to perform 

their functions, either intracellular or extracellular, the protein yield is usually very 
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low. Protein production using this system is usually costly. In contrast, 

prokaryotic cells can be used to produce large quantities of recombinant human 

proteins at a low cost. However, the produced human proteins using prokaryotic 

cells usually misfold and are not functional due to the much simpler protein 

folding machinery and QC system of these prokaryotic cells. To solve this 

problem, the in vitro protein refolding technique has been developed that either 

mimics the intracellular redox conditions to promote protein folding at a diluted 

concentration or uses column chromatography to refold the misfolded 

recombinant proteins. Although this in vitro protein folding technique has some 

success for small proteins with simple folds, the refolding efficiency is generally 

very low. For large proteins of complex folds of multiple domains, this in vitro 

protein refolding technique is usually not working. 

To solve these challenges, our lab recently developed an in vivo protein 

refolding technique that uses the intracellular folding machinery and QC system 

of the Endoplasmic reticulum (ER) of mammalian cells to refold the misfolded 

recombinant proteins produced using bacterial expression system. This novel 

technique uses the QQ-protein delivery technology developed in our lab to 

directly deliver bacterially expressed proteins into the ER for refolding. We 

showed that the intracellular folding machinery of mammalian cells had a large 

capacity to properly refold large quantities of misfolded bacterially expressed 

proteins and the QC system of the mammalian cells ensured that only properly 

folded proteins followed the normal intracellular trafficking pathway as their 

endogenous counterparts. Since the refolded proteins contain an affinity tag, we 
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can purify the properly refolded proteins. This in vivo refolded technique takes 

the advantage of the high yield prokaryotic expression system and the 

comprehensive protein folding machinery/QC system of mammalian cells to 

efficiently produce large quantities of properly folded and biologically functional 

proteins. 

I optimized this in vivo protein refolding technique for the beta-

propeller/EGF domain I of LDL receptor-related protein 6 (BP1-LRP6) and the 

ligand-binding domain of apolipoprotein E receptor 2 (LBD-ApoER2). These two 

proteins contain a large number of cysteines that form intracellular disulfide 

bonds. The folding of these two proteins is very challenging. I performed 

optimizations of experimental conditions that allow me to produce large quantities 

of properly folded and functional BP1-LRP6 and LBD-apoER2. The yield of 

refolding is about 20-60%, depending on different proteins, allowing me to 

produce milligram quantity of properly refolded and functional BP1-LRP6 and 

LBD-apoER2. The Far-UV Circular Dichroism (CD) Spectrum of refolded BP1-

LRP6 showed a high percentage of beta-sheet which is consistent with the x-ray 

crystal structure of the beta-propeller/EGF domain of low-density lipoprotein 

receptor (LDLR). Refolded LBD-apoER2 showed the biological function of active 

binding the chaperone receptor-associated protein (RAP) in the ligand-blotting 

assay. My results suggested that, as a new tool, this protein refolding technique 

can be used to produce large quantities of properly folded and biologically 

functional proteins for many applications including protein therapeutics to treat 

human disease, structural biology and protein folding studies. 
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