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GENERAL INTRODUCTION 

 

 The immune response requires the coordinated function of many cell types to 

appropriately execute successful defense against extracellular pathogens, infected cells 

and malignancies.  An intricate balance exists between immune activity to clear disease 

and immune suppression to avoid excessive damage.  While rapid and robust induction 

is necessary to clear the body of destructive pathogens, an over-exuberant response 

can be equally dangerous.  When left unchecked an overactive immune system 

develops into autoimmunity, leading to the destruction of normal tissue and the onset of 

diseases such as diabetes mellitus, Hashimoto’s thyroiditis and multiple sclerosis 

among many others.  Under these circumstances treatments are directed at 

suppressing the immune response.  On the other hand, treatment of late stage 

malignancies often requires elimination of immune suppression to boost anti-tumor 

activity (76).  During the onset of cancer the immune system is able to recognize and 

attack malignant cells; if unsuccessful in clearing the malignancy, the relationship 

between tumor and immune system shifts in favor of tumor tolerance, a process 

referred to as immunoediting (35). 

 Current therapies for a variety of disorders take advantage of the immune 

response by either targeting activation or suppression pathways.  The co-stimulatory 

molecule cytotoxic lymphocyte associated factor 4, or CTLA-4, acts to control T cell 

proliferation (116), making it an excellent therapeutic target.  CTLA-4 was first 

discovered in mouse CD8 T cells and its expression was thought to be restricted to 

activated T and B cells (18).  Soon after a human homologue was found and shown to 
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be structurally similar, indicating these may be the same protein in these two species 

(33).  The CTLA-4 protein is a 223 amino acid T cell surface molecule with an 

extracellular domain, transmembrane region and short cytoplasmic tail.  In humans the 

CTLA-4 gene is located on chromosome 2, just over 100kb away from the activating 

receptor CD28, suggesting the CTLA-4 gene may be the result of a duplication event 

(44, 58).  CTLA-4 and CD28 share about 20-30% sequence homology, particularly in 

exon 2 where the hexapeptide MYPPPY is found on both proteins (23, 58).  They each 

form homodimers and both interact with antigen presenting cell molecules CD80 and 

CD86, collectively known as B7 (100, 105).  However, CTLA-4 binds B7 with at least 

10-fold higher avidity (63), which is probably due to its bivalent interaction with B7 

versus the monovalent binding of CD28 (100, 105).  This phenomenon allows negative 

T cell regulation to take priority over activation.   

 The CTLA-4 gene is induced in effector CD4 and CD8 cells upon activation (94), 

however we detect higher expression levels in memory CD4 populations than CD8 

following stimulation (unpublished data).  Regulatory T cells (Tregs), which maintain 

peripheral tolerance and control immune activation, constitutively express CTLA-4 on 

their cell surface, again demonstrating the role of this gene in immune response control 

(55, 101, 108).  The distinctive methods of expression between regulatory and effector 

T cells are not well understood; it would be valuable to elucidate what properties direct 

constitutive versus inducible activation.  This work focuses on regulation of the inducible 

CTLA-4 in human CD4 T cells. 
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Effects of CTLA-4 dysfunction in mouse models and human disease.  The critical 

role CTLA-4 plays in immune regulation becomes clear when this gene is knocked out 

in an animal model.  Transgenic mice suffer severe lymphoproliferation and infiltration 

leading to multi-organ failure and death within 3-4 weeks (111, 123).  Target organs 

include liver, heart, lung and pancreas.  Knockout T cells proliferate rapidly and 

robustly, supporting CTLA-4’s function as a braking system for T cells which helps 

maintain homeostasis in the adaptive immunity.  The T cell receptor (TCR) associated 

tyrosine kinases FYN, LCK and ZAP-70 are robustly activated in the transgenic mice 

(72).  Addition of CTLA-4 immunoglobulin (Ig) can block the lymphoproliferative effects 

in CTLA-4 -/- mice, but this therapy does not have long-term function as T cell activation 

resumes upon removal of the Ig (112). 

 In humans, CTLA-4 dysregulation has been linked to autoimmunity.  

Polymorphisms of CTLA-4 have been discovered, including three within non-coding 

promoter or regulatory regions at positions -1722, -1661, and -318, one within exon 1 at 

position +49 and a dinucleotide repeat microsatellite within the 3’ UTR.  These 

abnormalities correlate to various immune-mediated diseases including Grave’s, 

systemic lupus erythematosus, Hashimoto’s thyroiditis and type 1 diabetes, again 

implicating its essential role in normal human immune function (9, 56, 61).  While the 

three non-coding polymorphisms likely affect transcription efficiency, the A49G 

substitution is within the signal sequence and results in atypical processing by the 

endoplasmic reticulum and thus reduced surface expression (4).    A study by Huang, et 

al demonstrated the impact of the AT repeat on T cell activity, showing the length of the 

repeat was proportional to serum IL-2 levels in their specimens and PBMC isolated from 
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patients with longer repeats were more proliferative upon stimulation of the TCR and 

CD28.  Those with longer alleles were also more prone to myasthenia gravis 

development (49).  Taken together, these studies have shown the impact dysfunctional 

CTLA-4 can have on immune modulation. 

 Splice variants also exist for CTLA-4 and each has an influence on function.  

Mice may express a variant lacking exon 2, but humans do not generate this protein.  

Removal of exon 3, where the transmembrane region is located, results in a soluble, 

secreted form (sCTLA-4).  This transcript has been detected in B cells and unstimulated 

T cells (69, 80).  Upon activation, the level of sCTLA-4 decreases in T cells, which then 

begin to favor the full transcript form.  The protein was still capable of binding B7 and 

inhibiting PBMC proliferation in a mixed leukocyte reaction.  Basal levels of sCTLA-4 

were measured in a percentage of normal donor sera.  Interestingly, in patients with 

autoimmune thyroid disease, which includes Grave’s disease and Hashimoto’s 

thyroiditis, the level of serum sCTLA-4 is significantly higher (79).  Similar findings were 

reported for systemic lupus erythematosus (66).  A less characterized splice form 

containing only exons 1 and 4 is also found in T cells (113).  Given that this protein 

lacks both the transmembrane and B7 interacting regions, it is not clear what the 

physiological function might be or whether dysregulation of mRNA processing to favor 

this variant may contribute to disease. 

 Aside from autoimmunity, where decreases in functional CTLA-4 are observed, 

CTLA-4 can also play a role in tumor biology.  In the case of cutaneous T cell lymphoma 

(CTCL), a malignancy of skin-homing T cells, CTLA-4 is up-regulated in the tumor 

population (13, 126).  This phenomenon could in part explain the reduced cytokine 
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production seen in later stages of the disease (29).  CTCL may serve as a direct 

example of a tumor population mediating immune response through CTLA-4.  It is 

unclear if this gene is regulated abnormally in other malignancies.  

 

Mechanisms of T cell suppression by CTLA-4.  There are two distinct processes by 

which CTLA-4 exhibits its suppressive activity.  Through its high efficiency interaction 

with B7 molecules, CTLA-4 sequesters local B7 to prevent stimulation of nearby T cells 

(82).  By use of a CTLA-4 mutant lacking the cytoplasmic tail, Carreno et al show B7 

binding is sufficient for suppression of IL-2 production and the level of suppression is 

proportional to the density of CTLA-4 on the cell surface (22).  This not only highlights 

the importance of B7 binding, but shows the level of surface CTLA-4 can be important in 

immune regulation. 

 In addition to antagonistic competition for B7, multiple studies have shown that 

the CTLA-4 cytoplasmic tail contributes to inhibitory signal transduction, but the exact 

mechanisms remain elusive.  A ligand-independent mutant of CTLA-4 was able to 

reverse the hyperreactivity of CTLA-4 -/- T cells; proliferation, cytokine production and 

TCR-mediated ERK activation were significantly reduced (26).  Current research 

attributes CTLA-4 inhibitory signaling to a combination of dephosphorylation of TCR 

and TCR-associated kinases, binding and trapping of phosphatidylinositol 3-kinase 

(PI3K) and inactivation of Ras signaling (27, 93, 109, 110).  As CTLA-4 lacks intrinsic 

enzymatic activity within its cytoplasmic tail, it is likely a series of enzymes interact with 

CTLA-4 to mediate regulatory functions. 
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 After T cell activation, CTLA-4 binds to the TCR chain and recruits tyrosine 

phosphatase SHP-2 to remove phosphate groups from TCR (60).  Both CTLA-4 and 

CD28 cytoplasmic tails contain Src homology 2 (SH2) domains with a similar tyrosine-

containing domain.  CTLA-4 is also known to cooperate with phosphatidylinositol 3-

kinase (PI3K) at the YVKM motif of SH2 on the cytoplasmic tail with similar affinity to the 

interaction with the CD28 motif YNMN (98).  A follow-up study reported phosphorylation 

of the tyrosine in the CTLA-4 YVKM domain by resting lymphocyte kinase (Rlk) is 

necessary and sufficient for PI3K interaction (99).  It is thought that CTLA-4 binds to 

PI3K and prevents its contact with CD28.  Tyrosine phosphorylation is not required, 

however, to block IL-2 production, indicating CTLA-4 utilizes its multiple inhibitory 

mechanisms to regulate T cell response (10). 

 Beyond TCR kinase activation, Ras is also induced upon T cell stimulation.  The 

serine/threonine phosphatase PP2A, which downregulates the Ras/ERK pathway, 

associates with CTLA-4 and may affect T cell activation (31).  However, the regulatory 

subunit of PP2A interacts with a 3-lysine repeat on the CTLA-4 cytoplasmic tail and 

inhibits repression by CTLA-4 as measured by IL-2 production (11).  PP2A also 

interacts at a similar domain on the cytoplasmic tail of CD28 and the exact mechanism 

of activity remains unclear (31).  The Ras pathway is also regulated by CTLA-4 through 

interaction of tyrosine phosphatase SYP at the YKVM domain of the CTLA-4 

cytoplasmic tail (72).  The Ras regulator p52SHC is shown by Marengere et al to be 

dephosphorylated upon SYP/CTLA-4 interaction.  Simply transducing the cytoplasmic 

domain has proven effective in the prevention of collagen-induced arthritis, 
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demonstrating the compelling potential of signaling regulation through the cytoplasmic 

tail (28). 

Control of CTLA-4 activity by intracellular trafficking.  Appropriate surface CTLA-4 

levels are regulated by trafficking between the cell membrane, endosomes and 

lysosomes.  Though previous studies have implied unstimulated T cells express CTLA-4 

in intracellular stores which are quickly transported to the surface upon activation (53), 

these experiments used cell clones that were cultured with IL-2 and CD3 antibodies, 

thus activating the cells.  A report by Linsley, et al developed monoclonal antibodies to 

CTLA-4 and found surface expression in resting cells was undetectable, as was mRNA 

transcript (64).  In fresh unstimulated primary cells from normal donors we have 

observed CTLA-4 protein levels are undetectable both at the cell surface and within 

intracellular stores.  We have also found transcriptional regulation mediates protein 

expression, which does not begin until cells are activated.  Regardless, it is clear that 

transport to and from the cell surface is an extremely important and highly regulated 

process through which T cells control to what degree CTLA-4 becomes involved in the 

immune response. 

 Internalized CTLA-4 is located near the microtubule-organizing center (MTOC), 

where it can be rapidly polarized to the site of cell-cell interaction upon TCR 

engagement (62).  Recruitment of CTLA-4 is highly dependent on the strength of TCR 

signaling (37).  Low levels of stimulation do not induce CTLA-4 localization to the cell 

membrane, but strong signaling does.  As CTLA-4 functions as an immune suppressor, 

it is intuitive that it would only be required during potent T cell activation.  
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 The transient surface expression of CTLA-4 is the result of concerted surface 

budding and internalization into endosomes.  CTLA-4 mRNA is targeted to and 

processed by the rough endoplasmic reticulum and the protein is glycosylated by the 

Golgi complex to form dimers (18, 33).  While in the Golgi, CTLA-4 interacts with 

clathrin adapter complex AP-1 at the YVKM motif in the SH2 region of the CTLA-4 

cytoplasmic tail (97).  The AP-1 molecule is involved in transport of excess CTLA-4 to 

the lysosome for destruction.  CTLA-4 interacts at the same motif with the 2 subunit of 

adapter AP-2 at the cell surface, but only when the cytoplasmic tail tyrosine residues 

are not phosphorylated (102).  Interestingly, the phosphorylated cytoplasmic tail is 

capable of interacting with SYP and PI3K, and therefore the phosphorylated species 

remains on the cell surface (131).  Phosphorylation can be mediated by members of the 

Src family of tyrosine kinases FYN, LYN and LCK, which may ultimately control whether 

CTLA-4 remains on the cell surface (17, 74). 

 The medium chain subunit of AP-2, AP50, also interacts with the YVKM domain 

in an unphosphorylated state and has been shown to direct internalization into 

endosomes (131).  Tyrosine mutation of the CTLA-4 cytoplasmic tail abrogates AP50 

interaction and leads to accumulation on the cell surface (30).  Upon internalization, 

CTLA-4-containing endosomes traffic to the lysosome (81), but degradation is not 

inevitable.  Instead, if the cell is appropriately activated the lysosome takes on a 

secretory function, thus recycling CTLA-4 for reuse to control the immune response (15, 

51).  The typical half-life of CTLA-4 protein is approximately 2 h (37, 81). 
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Therapeutic targeting of CTLA-4.  Standard autoimmune therapy includes 

immunosuppressants such as cyclosporin, corticosteroids and methotrexate which 

dampen the unrestrained immune response.  These medications do not exclusively 

target the immune system; the associated side effects are systemic and can limit the 

treatment regimen (88, 95, 114).  Biologics have more recently come into play, including 

use of interferons, TNF inhibitors, costimulatory molecule inhibitors and antibodies to 

deplete specific populations of immune cells.  CTLA-4 has shown promise as a target 

for autoimmunity, particularly in the case of rheumatoid arthritis (RA).  The costimulation 

modifier abatacept is a fusion protein containing the B7 binding domain of CTLA-4 

attached to the constant region fragment (Fc) of human IgG1 (91).  The Fc hinge was 

modified to eliminate Fc receptor recognition, which would reduce circulating drug 

levels.  Acting as a native CTLA-4 protein, this compound presumably binds to B7 and 

suppresses immune activation.  This therapy has proven effective in RA, even in 

patients who are refractory to other immune and biologic therapies, and is better 

tolerated than most alternatives (96).  A similar fusion protein, belatacept, substitutes 

two amino acids to favor a tighter interaction between B7 and CTLA-4, thus acting as a 

more potent inhibitor.  This compound has proven useful in transplant patients, where 

abatacept was less effective due to insufficient CD86 binding (43). 

 Tumor vaccination has been utilized in clinical trials for a variety of cancers (39).  

A potent adaptive T cell immune response subsequent to vaccination is necessary to 

attack and eradicate malignant cells; however, in many cases late stage patients have 

developed Treg populations that, in fact, protect the tumor.  Efforts to target Tregs using 

CD25-directed immunotoxins such as RFT5-SMPT-dgA have entered clinical trials, but 
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reduction is incomplete (90).  Instead by targeting CTLA-4, levels of immune response 

can be increased to help fight the tumor.  Fusion proteins with CTLA-4 joined to a tumor 

antigen of a B cell malignancy were examined in a mouse model in an effort to boost 

immune activity while simultaneously vaccinating against tumor cells (50).  The result of 

this study was an elevated antibody response, supporting CTLA-4 blockade as a 

valuable therapy. 

 Efforts to obstruct CTLA-4 function using antibodies in a mouse model resulted in 

tumor clearance and immunity to future tumor cell injections (59).  Since then, human 

antibodies to block CTLA-4 activity, particularly the FDA approved drug ipilimumab, 

have shown considerable success in clinical trials in conjunction with vaccines, 

chemotherapy and other treatments for metastatic melanoma and prostate cancer to 

revive the anti-tumor immune response (19, 25, 124).  While these efforts have shown 

promise, many patients experience severe adverse side effects including extensive 

autoimmunity.  Treatments that target CTLA-4 at the transcriptional level may improve 

efficacy while avoiding overstimulation of the immune response. 

 

Transcriptional regulation of CTLA-4.  Analysis of CTLA-4 induction has been limited.  

An early study found expression was limited to T cells and the first 335bp of the 

proximal promoter were necessary for maximum activation (87).  They also provide 

evidence that expression is regulated at the level of transcription.  A follow-up report 

found synergistic induction of CTLA-4 occurs with engagement of both the TCR and 

CD28, which can be blocked with either cyclosporin A or rapamycin (38).  In addition, 

mRNA stability is doubled when CD28 is activated together with the TCR.  Work by 
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Miller et al showed a correlation between reduced NFAT1 expression and reduced 

CTLA-4 (73).  Our previous work identified a bona fide NFAT1 binding site in the 

proximal promoter of CTLA-4 (41).  Upon stimulation of cells, NFAT1 binding is detected 

and histone acetylation occurs.  Through discovery of the mechanisms regulating 

transcription, we feel that distinctive pathways can be targeted to modulate CTLA-4 

expression for the novel treatment of autoimmunity and cancer. 
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MATERIALS AND METHODS 

 

Isolation of primary CD4 T cells and PBMCs: In brief, CD4 T cells were purified from 

Columbus Red Cross apheresis leukopacks from healthy donors. Cells were collected 

and incubated with 1.5 mL CD4 T cell Rosette Sep (Stem Cell Technologies) per 50 mL 

leukopack blood with rocking for 30 min.  Afterwards, cells were diluted with PBS, 

underlayered with Ficoll gradient, and separated by centrifugation at 1600 x g for 30 

min. The band of CD4s was isolated by aspiration and washed to remove the Ficoll. 

Residual RBC were lysed by resuspending the CD4 pellet with ACK lysis buffer (0.15 M 

NH4Cl, 1 mM KHCO3, and 0.1 mM EDTA, pH 7.3) for 5 min. The CD4s were diluted in 

PBS, centrifuged at 1600 x g.  Final purities were >90% purity for all donors.  PBMCs 

were isolated using the Ficoll protocol as stated above.  Cells were maintained in RPMI 

1640 medium with 10% fetal bovine serum. 

 

Cell line culture: The E6-1 clone of Jurkat T cells were maintained at 105 to 2x106/mL 

in RPMI-1640 medium supplemented with 10% fetal bovine serum and 1% 

penicillin/streptomycin. 

 

Biochemicals: All stimulations were with 50 ng/mL PMA and 1 g/mL A23187.  

Bortezomib (Millennium Pharmaceuticals) was reconstituted in water and maintained at 

a stock concentration of 2.5 mM.  ALLN and ALLM peptides (Sigma) were reconstituted 

in DMSO at stock concentrations of 10 mM.  MAPK inhibitors SB203580 and PD98059 

(Sigma) were maintained at stock concentrations of 10 mM in DMSO.  TPCA-1 was 
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reconstituted and stored at a stock of 10 mM in DMSO.  Curcumin and garcinol (Sigma) 

were stored as stock concentrations of 10 mM in DMSO.  Cyclosporin A (Sigma) was 

reconstituted at 10 mg/mL in 100% ethanol.  Camptothecin, SN-38 and etoposide 

(Sigma) were all reconstituted in DMSO at 10 mM stock concentrations.  All chemicals 

were stored at -20oC prior to use.  

 

RNA isolation: Total RNA was isolated from cells using TRIzol (Invitrogen) as 

recommended by the manufacturer.  Briefly, up to 107 cells were lysed in 1 mL TRIzol 

and incubated at room temperature for 5 min.  200 L chloroform was added followed 

by vigorous shaking for 15 s.  Samples were centrifuged for 15 min at 12 kRPM at 4oC 

and the aqueous layer was transferred to a new tube.  The RNA was precipitated by 

addition of 600 L isopropanol, thorough mixing and incubation at room temperature for 

10 min.  The RNA was pelleted by centrifugation at 12 kRPM at 4oC for 10 min followed 

by washing with 70% DEPC ethanol.  Samples were resuspended in 15 L DEPC water 

and heated to 55oC for 5 min prior to quantification by absorption at 260 and 280 nm. 

 

First strand cDNA synthesis: Reverse transcription was performed with up to 4 g 

total RNA.  Briefly, RNA was diluted to 10 L with DEPC water and combined with 1 L 

oligo dT (Invitrogen) and 1 L 10 mM dNTP mix (Invitrogen) and incubated at 70oC for 

10 min after which the samples were placed on ice.  A master mix of 4 L SuperScript II 

5x buffer, 2 L 0.1 M DTT and 1 L 50 mM MgCl2 per sample was made and 7 L was 

distributed to each sample.  Tubes were transferred to 42oC and 1 L SuperScript II 

reverse transcriptase was added.  After 1 h at 42oC the samples were transferred to 
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70oC for 15 min to deactivate the enzyme.  The volume was then increased to 50 L per 

g RNA initially added and samples were stored at -20oC until use. 

 

Quantitative real-time PCR (qPCR): Total RNA was isolated from cells using TRIzol 

as recommended by the manufacturer. Reverse transcription was performed with up to 

4 g total RNA to generate cDNA using SuperScript II reverse transcriptase (Invitrogen)  

and quantitative PCR was performed with the equivalent of 10 ng RNA per sample 

using an Applied Biosystems 7900HT set for 40 cycles at 95oC for 15 s, 60oC for 1 

min/cycle. Primers are listed in Table I and have similar amplification efficiencies. 

Analysis for relative gene expression was performed using the 2-CT method (67). The 

expression of each gene in each sample was performed in duplicates and the level was 

normalized relative to B2-microglobulin (B2M) for mRNA samples and input DNA for 

ChIP samples. 

  



15 
 

 

Gene Forward Reverse 

Actin TGCGTTGTTACAGGAAGTCCC CTATCACCTCCCCTGTGTGGA 

B2M TCTACTTTGAGTGCTGTCTCCATGT AAGTTGCCAGCCCTCCTAGAG 

CTLA-4 CTACCTGGGCATAGGCAACG CCCCGAACTAACTGCTGCAA 

FoxP3 ATCCGCCACAACCTGAGTCT GTCCACACAGCCCCCTTCT 

GAPDH CCCACTCCTCCACCTTTGAC CATACCAGGAAATGAGCTTGACAA 

GATA3 TCTGGAGGAGGAATGCCAAT CCGGGTTAAACGAGCTGTTC 

IFN- TCCTGTCACTGTCTCACTTAATCCTT TTAGGTTGGCTGCCTAGTTGG 

IL-2 GCAACCATTGTAGAATTTCTGAACAG CTGATATGTTTTAAGTGGGAAGCACT 

IL-4 CACAGGCACAAGCAGCTGAT CTCTGGTTGGCTTCCTTCACA 

NFAT1 TCCTGGAGATACCCTTGGAGC AGTCGATGGTTGCCCTCATG 

NFB p50 CAAATAGACGAGCTCCGAGACA GAGACTCGGTAAAGCTGAGTTTGC 

TNF- GGAGAAGGGTGACCGACTCA CTGCCCAGACTCGGCAA 

ChIP CTLA-4 GAGGACCCTTGTACTCCAGGAA CGAAAAGACAACCTCAAGCACTC 

ChIP CTLA-4 
Cotransfection GAGGACCCTTGTACTCCAGGAA AGATCGCAGATCTCGAGGGCT 

 

Table I.  PCR Primer Sets 
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Protein lysates: All lysis buffers were supplemented with protease inhibitor cocktail at 

1L/mL buffer immediately prior to use.  Whole cell total protein was prepared from 15 

million cells by resuspension of the cell pellet in 100L RIPA buffer (50 mM Tris pH 7.4, 

150 mM NaCl, 1% Triton X-100, 0.1% SDS).  Samples were briefly sonicated to shear 

genomic DNA and centrifuged to remove cellular debris.  Nuclear and cytosolic fractions 

were isolated by swelling cells in 100L Buffer A (10mM HEPES-KOH pH 7.9, 1.5mM 

MgCl2, 10mM KCl) for 15 min on ice followed by centrifugation at 6kRPM for 15 min at 

4oC.  Supernatant was removed and kept as the cytosolic fraction.  The nuclear pellet 

was then resuspended in 100L Buffer B (20mM HEPES-KOH pH 7.9, 1.5mM MgCl2, 

420mM NaCl, 0.2mM EDTA, 25% glycerol) and briefly sonicated to shear genomic 

DNA.  Both the nuclear and cytosolic fractions were then centrifuged to remove cellular 

debris.  All lysates were stored at -80C prior to use. 

 

Immunoblot analysis: Equal amounts of protein as indicated were denatured in 2x 

Laemelli buffer and boiled 5 min.  Proteins were separated by SDS-PAGE on 10% 

polyacrylamide gels.  Separated proteins were transferred to polyvinylidene difluoride 

membranes in transfer buffer (25 mM Tris base, 192.5 mM glycine, 15% methanol) 

overnight at 35 mA in 4oC with stirring.  The membrane was then blocked in I-Block 

(ABI) for 1 h at room temperature and incubated overnight at 4oC with one of the 

following primary antibodies: GATA3 (Abcam), phospho-GATA3 (Abcam), Actin (Santa 

Cruz), NFAT1 (Santa Cruz), FoxP3 (Abcam), polyubiquitin (Cell Signaling), IB (Cell 

Signaling), CTLA-4 (Beckman Coulter), histone 3 (Cell Signaling), phospho-MAPKAPK2 

(Cell Signaling) at 1:1000 dilution in I-Block.  The membrane was washed five times in 
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TTBS and the specific protein was detected with an appropriate secondary Ab (Santa 

Cruz) at 1:2000 dilution in I-Block for 1.5 h.  After washing in TTBS five times, protein 

bands were visualized by chemiluminescence autoradiography with either SuperSignal 

West Pico or Femto reagents (Pierce). 

 

20S proteasome assay: Cell lysates were prepared from 50x106 cells by resuspension 

in Proteasome Lysis Buffer (40 mM Tris pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton 

X-100 with addition of ATP to 2 mM immediately before use) and incubation on ice for 

30 min, briefly sonicated to shear genomic DNA and centrifuged to remove debris.  10 

g protein was diluted into a total of 40 L lysis buffer in an opaque 96 well plate.  After 

addition of 10 L 37.5 mM Suc-LLVY-AMC in DMSO (Enzo Life Sciences), reaction was 

incubated at room temperature and fluorescence was read every 5 min on a Thermo 

Fluroskan Ascent FL at an Excitation of 360 nm, Emission of 460 nm and gain of 85.  

Samples were analyzed in quadruplicate and normalized to substrate in lysis buffer 

without extract. 

 

Flow cytometric analysis: Cells were stained for extracellular expression of CD4 and 

CTLA-4 with 1 L antibody (Beckman Coulter IM2636U and BD 555853, respectively) 

per 106 cells for 20 min prior to washing with PBS and analysis on a FACS Calibur.  

Intracellular expression was measured by permeabilization and fixation with the FoxP3 

staining buffer set (eBioscience).  Briefly, 4x permeabilization/fixation concentrate was 

diluted to 1x with the provided diluent.  106 cells were resuspended in 1 mL 1x buffer 

and were incubated on ice 30 min.  Cells were centrifuged and washed 1x with PBS 
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followed by staining in 100 L PBS with 1 L PE-GATA3 (eBioscience 12-9966-42) or 1 

L PE-CTLA-4 (BD 555853) for 3 h.  Cells were washed three times with 100 L PBS, 

resuspended in 300 L PBS and analyzed on a FACS Calibur.  Data was analyzed with 

FlowJo software. 

 

Annexin V/PI staining for apoptosis: Staining buffer was diluted to 1x with ddH2O.  

105 cells were resuspended in 100 L 1x staining buffer with 1 L FITC-annexin V and 1 

L PI, then incubated 15 min at room temperature.  Cells were then diluted to 500 L 

with 1x staining buffer and transferred to 5 mL tubes followed by analysis by flow 

cytometry. 

 

Mixed lymphocyte reaction: Primary CD4 T cells were PMA/A23187 stimulated with 0, 

0.1 and 10 M bortezomib for 9 h and allogeneic PBMCs were fixed with 50 g/mL 

mytomycin C for 30 min.  Cells were then washed with PBS three times for 10 min each 

with rocking.  After counting, cells were plated in a 96-well flat bottom plate at 5x105 

PBMCs mixed with 5x105 CD4s per well.  Samples were treated with 0.5 g CTLA-4 

blocking antibody or mouse IgG2a control (Beckman Coulter IM2070 and A55763, 

respectively) and volumes were raised to 100 L per well with RPMI 1640 medium with 

10% fetal bovine serum.  After incubating 7 d, proliferation was measured by addition of 

20 L MTS reagent (Promega G5421), 3 h incubation at 37oC and measurement of 

absorbance at 570 nm on a Thermo MultiScan plate spectrophotometer. 
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Plasmids: CTLA-4 promoter constructs were cloned into the pGL3 luciferase vector as 

previously described (41).  The promoterless pGL3 Basic and SV40-driven pGL3 

Control were used as controls.  The GATA3 expression vector was kindly received from 

Dr. Gerd Blobel.  E1A 12S WT and mutant constructs were described previously (127). 

  

Reporter transcription analysis: Jurkat cells were seeded in 6 well plates at 1.5x106 

cells per sample in serum-free RPMI-1640.  1 g CTLA-4 380bp luciferase construct 

was transfected into each sample with increasing concentrations (0, 0.5, 1, 2 and 3 g) 

GATA3 expression vector or vector control plasmid using Lipofectin (Invitrogen) per 

manufacturer protocol in triplicate.  Cells were lysed in luciferase lysis buffer (25 mM 

glycylglycine, 15 mM MgSO4, 4 mM EGTA, 1% Triton X-100), with DTT added to 1 mM 

immediately prior to use, and equal protein concentrations were subjected to luciferase 

analysis.  The luciferase level was determined using a Lumat LB 9501 luminometer as 

described in Current Protocols in Molecular Biology (5). 

 

Chromatin immunoprecipitation (ChIP) assay: Cells were stimulated and treated as 

indicated, harvested and fixed for 10 min in 1% formaldehyde to crosslink protein and 

DNA complexes.  The reaction was quenched with addition of 1.25 M glycine for 5 min, 

cells were pelleted and resuspended in sonication RIPA buffer (50 mM Tris pH 7.4, 150 

mM NaCl, 1% NP-40, 1% SDS).  Samples were sonicated to shear DNA fragments to 

within 200-1000 bp, centrifuged to remove cellular debris and diluted 10-fold with ChIP 

dilution buffer to reduce SDS concentration.  Immunoprecipitations were performed 

using the ChIP Assay Kit (Millipore).  Briefly, after 1 h preclearing with protein A beads, 
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samples were treated with 10 g primary antibodies to GATA3 (Santa Cruz), NFAT1 

(Santa Cruz) or acetylated histone 3 K9/14 (Millipore) overnight at 4oC with rocking 

followed by addition of protein A beads for 1.5 h.  Samples were washed with Low Salt, 

High Salt, LiCl and TE buffer per manufacturer protocol.  After elution with NaHCO3 and 

SDS, protein crosslinks were reversed with 5 M NaCl at 65oC overnight.  

Immunoprecipitated DNA fragments were purified with QiaQuick gDNA columns 

(Qiagen) and evaluated by PCR or qPCR with primers specific to the CTLA-4 promoter 

as indicated in Table I. 

 

Agarose gel electrophoresis: PCR samples were stained with 10X xylene 

cyanol/bromophenol blue dye in 80% glycerol prior to loading onto 1% agarose 

Tris/Borate/EDTA (TBE) gels stained with 0.5 g/mL ethidium bromide.  Electrophoresis 

was run at 100V in TBE buffer and DNA fragment sizes were compared to the 1 kb Plus 

DNA Ladder (Invitrogen).  Gels were visualized by UV transillumination. 

 

Nucleic acid electroporation:  Primary CD4 T cells were electroporated at 107 cells 

per cuvette using the Amaxa system at a setting of U014.  Electroporation solution was 

82 L Nucleofector Solution with 18 L supplement (Amaxa Human T Cell Kit) for each 

sample.  Expression plasmids for GATA3 or control vector were electroporated at 2 

g/sample.  siRNA was electroporated at 20 pmol/sample SmartPool siRNA directed at 

GATA3 or off-target control (Dharmacon).  After electroporation, cells were transferred 

to RPMI 1640 culture media with 10% fetal bovine serum and allowed to rest 18 h.   
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Cell sorting: 40x106 bortezomib-treated and/or PMA/A23187 stimulated cells were 

stained with 20 L PE-CTLA-4 (BD 555853) in 1 mL PBS for 20 minutes at room 

temperature.  Samples were treated with 100 U/mL DNase (New England Biolabs), 

diluted to 10 mL PBS and passed through a cell strainer.  Cells were then sorted on a 

FACS Aria for presence or absence of surface CTLA-4 and checked for purity which 

exceeded 98% for all samples. 

 

Cytometric bead array (CBA): Cell culture supernatant was isolated from cell samples 

and frozen at -80oC prior to use.  The Th1/Th2 CBA kit (BD Biosciences) was used 

following manufacturer protocol.  Briefly, cytokine capture beads were reconstituted in 

Assay Diluent and combined with 50 L PE Detection Reagent and either 50 L culture 

supernatant or 50 L serially diluted standards (provided in the kit).  After incubation at 

room temperature for 3 h protected from light, samples were washed with 1 mL Wash 

Buffer.  Samples were resuspended in 300 L Wash Buffer and analyzed by flow 

cytometry using the provided template and cytometer setup beads.  The resulting data 

was analyzed with FCAP Array v 1.0.1 software (Soft Flow). 

 

Statistical analysis: Student’s t-test (2-tailed, unequal variance) was used to analyze 

the significance of differences between two experimental groups.  Data with a p value of 

0.05 or less were considered to be significant. 
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CHAPTER 1 

Altered Proteasome Function Leads to a GATA3-Dependent Increase in CTLA-4, a 

Mechanism That May Provide Insight to CTLA-4 Regulation in CTCL 

 

ABSTRACT 

 

The costimulatory molecule CTLA-4 functions as an immunomodulator generally 

associated with suppression of T cell proliferation.  Though structurally similar to CD28, 

which is expressed constitutively on T cells, transcription of CTLA-4 is highly regulated.  

CTLA-4 is elevated in cutaneous T cell lymphoma (CTCL), which may contribute to 

suppression of anti-tumor response during disease progression.  The transcriptional 

regulator GATA3 is also over-expressed in CTCL, but its significance in CTLA-4 is 

unclear.  We find that both transcript and protein levels of GATA3 are augmented by 

proteasome inhibition.  We show by polyubiquitin immunoblot that the proteasome 

pathway is dysregulated in CTCL.  Here we demonstrate a role for GATA3 in 

transcriptional regulation of CTLA-4 using the proteasome inhibitor bortezomib, a 

compound which reversibly binds to and inactivates the catalytic core of the proteasome 

through its boron atom. 

Bortezomib treatment leads to a dose-dependent increase in both GATA3 and 

CTLA-4 expression in normal CD4 T cells at both the transcript and protein level.  We 

also detect an increase in phospho-GATA3, the activated form, with bortezomib.  Flow 

cytometric analysis confirms the elevated CTLA-4 is properly trafficked to the cell 

surface.  Overexpression of GATA3 into Jurkat T cells by transfection stimulates a 
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CTLA-4 promoter luciferase construct.  The GATA3 expression can enhance CTLA-4 

promoter activity in a dose-dependent manner.  In primary CD4 cells, we detect specific 

binding of GATA3 to the CTLA-4 proximal promoter in bortezomib-treated CD4 cells by 

ChIP assay.  Furthermore, depletion of GATA3 with specific siRNA significantly impacts 

CTLA-4 transcription.  These results support a potential mechanism for increased 

CTLA-4 observed in CTCL T cells where GATA3 is increased.  Additionally, this work 

provides insight into potential effects on T cell function from proteasome inhibition with 

bortezomib.  As GATA3 supports differentiation of Th2 T cells, bortezomib may be 

useful in immune modulation in diseases associated with Th1 dominance and explain its 

effectiveness in graft versus host disease. 

  



24 
 

 

INTRODUCTION 

 

 Cutaneous T cell lymphoma (CTCL) is a malignancy of skin-homing CD4+ 

CD45RO+ T cells.  The leukemic form, Sezary Syndrome, is characterized by an influx 

of circulating tumor cells in the periphery.  An elevated level of CTLA-4 expression is 

detectable in tumor cells of patients with CTCL, which may contribute to immune 

suppression and tumor progression (126).  The mechanism contributing to the observed 

augmented CTLA-4 remains unclear.  We previously reported a functional NFAT1 

binding site in the CTLA-4 proximal promoter (41), but additional factors are likely 

involved in the complex regulation of this gene.  Reports have shown FoxP3 activates 

expression of CTLA-4 in Tregs (48), but whether FoxP3 plays a role in effector T cell 

expression is unknown.  CTLA-4 is also elevated when Th2-associated transcription 

factor GATA3 is overexpressed in a mouse model (115), but it is not clear whether the 

effect is causative.  Interestingly, GATA3 levels are also elevated in CTCL (78). 

 The 26S ubiquitin/proteasome pathway functions as a proficient cellular 

protein degradation system which enzymatically cleaves a variety of polypeptides (77).  

Substrates are marked for disposal by the successive addition of ubiquitin groups via a 

series of ligases.  Once a polyubiquitin tail is affixed, the protein is sent through the 19S 

cap and into the enzymatic 20S core where it is dismantled by a cylinder of proteases.  

The resulting peptides can either be metabolized, recycled into new proteins or loaded 

onto MHC I complexes for immune monitoring.  Proteasome inhibitors have shown 

increased cytotoxicity in certain malignancies, including multiple myeloma (117).  These 

compounds block this complex, resulting in stabilization of the substrates.  Specifically 
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in the case of T cell transcription factors, exogenous levels of NFAT1 have been 

reported to increase in the presence of proteasome inhibitors (130), though an 

additional study found the inhibitors diminished nuclear NFAT1 (14).  NFkB nuclear 

translocation requires cytosolic ubiquitination and degradation of IkB (86).  Blockade of 

proteasomal activity thus reduces NFkB activity.  Additionally, work by Yamashita et al 

shows proteasome inhibitors cause an increase in GATA3 protein (129).   

 This chapter investigates whether GATA3 is directly involved in CTLA-4 

transcription, particularly in the presence of proteasome inhibitors.  We examine 

whether the proteasome is dysfunctional in CTCL, which may explain why these cells 

exhibit increased GATA3.  Our findings show excessive levels of polyubiquitination in 

patient samples when compared to normal donors.  We then questioned whether 

proteasome inhibition alone can augment CTLA-4 expression in normal CD4 T cells.  

Not only do we find elevated CTLA-4 protein and transcript, but we show this increase is 

functionally able to suppress T cell proliferation.  Our findings also demonstrate an 

increase in activated GATA3, which binds to and induces CTLA-4 transcription.  Taken 

together, this work introduces a novel mechanism for CTLA-4 regulation. 
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RESULTS 

 

CTLA-4 and GATA3 are abnormally elevated in Sezary T cells.  To better 

understand the role of GATA3 in CTLA-4 regulation, we evaluated the level of CTLA-4 

and GATA3 transcript in Sezary Syndrome and normal peripheral CD4 T cells 

stimulated with PMA/A23187 from normal donors, Sezary patients and psoriasis 

patients.  Psoriasis samples serve as an inflammatory T cell-mediated disease control.  

The relative expression of CTLA-4 and GATA3 mRNA was analyzed by quantitative RT-

PCR (qPCR) as described in Materials and Methods.  Though resting T cells express 

minimal CTLA-4 mRNA, in Sezary T cells, the average level of CTLA-4 transcript is 

elevated 3.9-fold over normal in unstimulated samples (p=0.0069).  Upon induction, 

healthy donor CD4 cells exhibit a peak in CTLA-4 transcription after 2 hours, followed 

by a gradual decline in expression after longer stimulations.  In the Sezary samples 

analyzed, we detect significant increases in CTLA-4 expression at each of the time 

points as compared to normal donors (Figure1.1a).  Psoriasis samples are similar to 

normal, indicating its expression is specific to Sezary and not a consequence of the 

inflammatory response. 

Consistent with previously published data, we confirmed that GATA3 transcript is 

also significantly increased in these same Sezary patients (Figure1.1b).  Furthermore, 

we find GATA3 expression levels remain stable over the stimulation time course (p< 

0.005).  Immunoblot analysis of GATA3 levels in unstimulated whole-cell extract from 5 

Sezary patients confirms the elevated mRNA is translated into protein (Figure1.1c).  

Activation of GATA3 occurs after T cell stimulation and is dependent on phosphorylation 
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of serine 308 within the protein’s nuclear translocation region.  Using an antibody 

specific to phospho-GATA3, we find unstimulated Sezary cells exhibit an elevation in 

activated GATA3 despite lack of activation (Figure1.1c). 
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Figure 1.1.  CTLA-4 and GATA3 are augmented Sezary and normal T cells. a) PBMCs were isolated 

from Sezary patients (n = 6), psoriasis (n = 6) and normals (n = 6) and cells were stimulated with 

PMA/A23187 for the indicated time points.  Total RNA was isolated qPCR was performed as described in 

Materials and Methods with B2M serving as the internal control.  Results are shown as the average fold 

increase over unstimulated normal cells ± SEM (*p<0.05).  b) qPCR analysis of GATA3 expression in 

Sezary, psoriasis and normals using the same samples as in (a).  c) Immunoblot analysis of whole cell 

lysates from unstimulated normal donor (n = 2) CD4 T cells and Sezary (n = 5) patients.  PBMCs were 

purified and protein extracts were processed as described in Materials and Methods.  Samples were 

probed for expression of total GATA3 and phospho-GATA3 (p-GATA3) with specific antibodies as 

detailed in Materials and Methods.  Actin serves as a loading control. 
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NFAT and FoxP3 are not consistently abnormal in Sezary T cells.  We previously 

identified NFAT1 as an important transcription factor in CTLA-4 expression (41), and 

FoxP3 has also been identified as a factor involved in CTLA-4 regulation in Tregs (48, 

128).  Elevated FoxP3 levels were detected in Sezary (119), though another report 

failed to find an increase (42).  To determine whether either of these factors is 

responsible for the elevated CTLA-4 found in Sezary, we measured levels of mRNA and 

protein in our Sezary and normal samples.  There were no significant differences 

between normal donors and patients at the mRNA level (Figure1.2a, Fig1.2b), and 

protein expression was highly variable between patients (Figure1.2c).  Given the 

consistency of increased CTLA-4 in these samples, it is thus unlikely that NFAT1 or 

FoxP3 contribute significantly to the augmented CTLA-4 found in Sezary. 

 

Total polyubiquitin levels are elevated in Sezary T cells.  GATA3 has been shown to 

be regulated by the ubiquitin-proteasome pathway (129), but proteasome function has 

not been directly evaluated in Sezary.  To assess the proficiency of proteasome function 

in Sezary, we measured total ubiquitin from whole cell extracts of unstimulated cells by 

immunoblot and found increased total ubiquitin in Sezary cells compared to normals 

(Figure 1.3a).  The presence of excess ubiquitin in Sezary implies there may be 

dysregulation of the ubiquitin-26S proteasome pathway.  The 20S enzymatic region of 

the proteasome was assayed by cleavage of a Suc-LLVY-AMC fluorogenic peptide 

substrate.  We did not detect a significant difference between Sezary and normal 

extracts, though on average Sezary samples were better capable of degrading the 

peptide (Figure1.3b). 
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Figure 1.2.  NFAT1 and FoxP3 are sporadically dysregulated in Sezary and normal CD4 T cells.  

CD4 T cells were isolated from Sezary patients (n = 6) and normals (n = 6) and cells were stimulated with 

PMA/A23187 for the indicated time points.  Total RNA was isolated qPCR was performed as described in 

Materials and Methods with B2M serving as the internal control.  Results are shown as average fold 

increase over unstimulated normal cells ± SEM (* p<0.05).  qPCR expression analysis of a) NFAT1 and 

b) FoxP3 in Sezary and normals.  c) Immunoblot analysis of whole cell lysates from unstimulated normal 

donor (n = 2) CD4 T cells and Sezary (n = 5) patients.  CD4 T cells were purified and protein extracts 

were processed as described in Materials and Methods.  Samples were probed for expression of NFAT1 

and FoxP3 with specific antibodies as detailed in Materials and Methods.  Actin serves as a loading 

control. 
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Figure 1.3.  Proteasome activity analysis in normal and Sezary cells.  a) Immunoblot analysis of 

whole cell lysates from unstimulated normal donor (n = 2) CD4 T cells and Sezary (n = 5) patients.  

PBMCs were purified and protein extracts were processed as described in Materials and Methods.  

Samples were probed for total polyubiquitin with a specific antibody as detailed in Materials and Methods.  

Actin serves as a loading control.  b) 20S proteolytic core activity in Sezary cells and normals.  Cell 

lysates were assayed for 20S proteasome core activity by Suc-LLVY-AMC fluorogenic peptide cleavage.  

Emission measurements are normalized to background detection levels and are the averages of 5 normal 

and 5 Sezary CD4 samples ± SEM.  The proteasome activities were not significantly different (p>0.05). 
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Surface CTLA-4 expression increases in normal CD4 T cells treated with the 

proteasome inhibitor bortezomib.  Increased ubiquitin levels in Sezary cells suggest 

altered proteasomal regulation may play a role in enhancing CTLA-4 expression in 

Sezary.  We next study the regulation of CTLA-4 by blocking proteasome function in 

normal primary CD4 T cells using bortezomib, a dipeptide boronic acid inhibitor of the 

proteasome (1).  Normal CD4 T cells were stimulated with PMA/A23187 and treated 

with increasing concentrations of the specific proteasome inhibitor bortezomib and 

surface CTLA-4 was analyzed by flow cytometry.  Figure 1.4a shows a representative 

dot plot of CTLA-4 expression in bortezomib-treated (10 M) and untreated CD4 cells 

after 12 hours of stimulation.  Cells were stained with PE-conjugated anti-CTLA-4 and 

PC5-conjugated anti-CD4 prior to analysis.  The results demonstrate an overall increase 

in the quantity of CTLA-4-positive cells after proteasome inhibition, as well as an 

elevation in the magnitude of surface CTLA-4 expression on each cell.   

To understand the kinetics of surface CTLA-4 expression with proteasome 

inhibition, we conducted a stimulation time-course with treatments of 0, 0.1 and 10 M 

bortezomib in CD4 T cells from 4 healthy donors.  Untreated CD4 T cells exhibit a peak 

in percent CTLA-4 expression between stimulation times of 3 and 6 h, after which these 

levels progressively decline.  Treatment with bortezomib leads to sustained CTLA-4 

expression which remains stable through 12 h of stimulation (Figure1.4b).  Results are 

also presented graphically as percent CTLA-4 positive cells (Figure1.4c).  These data 

illustrate the potent effect of proteasome inhibition on CTLA-4. 
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Figure 1.4.  Proteasome inhibition augments CTLA-4 surface expression. a) Normal primary CD4 T 

cells were stimulated 12 h with PMA/A23187 and treated with and without 10  M bortezomib and 

analyzed for CTLA-4 expression. Cells were stained with PE -CTLA-4 and PerCP -CD4 and analyzed 

by flow cytometry as described in Materials and Methods.  Percentages represent double positive cells.  

The results are representative of at least 6 independent experiments.  b) CTLA-4 expression histogram of 

one normal donor treated with 0, 0.1 and 10 M bortezomib over a time course.  Cells were stimulated 

with PMA/A23187 for the indicated time points with and without the inhibitor and % CTLA-4 expression 

was determined by flow cytometry as described above. These results are representative of 4 independent 

experiments.  c) Graphical representation of average CTLA-4 surface expression ± SEM in (b) 

(**p<0.005). 
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Increased CTLA-4 in cells treated with bortezomib is not an artifact of apoptosis.  

As bortezomib has been used in treatment of multiple myeloma for its cytotoxic effects, 

we next sought to determine whether apoptosis plays a role in our system.  Primary 

CD4 T cells were treated with bortezomib and stimulated as in Figure 1.4 and analyzed 

by Annexin V/PI staining (Figure1.5).  Our results indicate an increase in apoptosis with 

stimulation alone.  Bortezomib treatment causes a modest increase in apoptosis after 9 

h, and only after 12 h at the 10 M concentration do we detect a significant increase 

over stimulation alone. 

 

CTLA-4 elevation with bortezomib suppresses T cell proliferation.  To determine 

whether the elevated CTLA-4 in bortezomib-treated cells can suppress T cell 

proliferation, we conducted a mixed lymphocyte reaction (MLR).  Purified primary CD4 T 

cells were stimulated for 9 h with 0, 0.1 and 10M bortezomib treatment, which resulted 

in 8.11%, 14.87% and 23.00% CTLA-4 expression, respectively.  Interestingly, CTLA-4 

expression diminishes within 12 h after washing in cells with stimulation alone, but at 

the 10 M concentration CTLA-4 remains detectable in 9.85% of cells in the 

bortezomib-treated population after 24 h and 4.49% after 48 h (Figure1.6a).  The cells 

were washed and then used in an MLR as described in Materials and Methods.  The 

bortezomib-treated cells effectively suppressed proliferation, which was reversed with 

CTLA-4 blocking antibody as compared to IgG control (Figure1.6b).   With the CTLA-4 

antibody, growth of 0.1 and 10 M bortezomib-treated cells improved by 51.1% and 

42.3%, respectively, while the stimulation alone samples did not significantly change. 
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Figure 1.5.  Apoptosis levels in normal CD4 T cells treated with bortezomib and stimulated with 

PMA/A23187.  1x10
6
 fresh CD4 T cells were treated with 0 (red), 0.1 (green) or 10 M (blue) bortezomib 

and stimulated for the indicated time periods.  Cells were then stained with annexin V and PI as detailed 

in Materials and Methods prior to analysis by flow cytometry.  Results are presented as histograms for 

intensity of annexin V staining and are representative of three independent experiments. 
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Figure 1.6.  Increased CTLA-4 with bortezomib treatment suppresses CD4 T cell proliferation.  

Primary CD4 T cells were isolated and treated with 0, 0.1 and 10 M bortezomib during PMA/A23187 

stimulation for 9 h.  Cells were washed 3x and returned to culture media without bortezomib or 

PMA/A23187.  a) CTLA-4 surface expression by flow cytometry over a time course after washing.  CTLA-

4 levels were measured at the indicated time points.  b) Proliferation was measured by mixed lymphocyte 

reaction.  Washed cells were plated at 5x10
4
/well of a 96-well plate and stimulated with an equal amount 

of mytomycin C-treated allogenic PBMCs as detailed in Materials and Methods.  Samples were 

supplemented with 0.5 g CTLA-4 blocking antibody or IgG control.  After 7 days, proliferation was 

measured by MTT assay as described in Materials and Methods.  Results are presented as the averages 

of quintuplicate samples ± SEM and are representative of three independent experiments (**p<0.005).  
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Bortezomib treatment leads to augmented mRNA expression.  We next sought to 

establish whether the responsible mechanism driving the CTLA-4 increase occurs at the 

level of transcription, protein regulation or surface trafficking.  To determine the effect of 

proteasome inhibition on mRNA expression of CTLA-4 and selected transcription 

factors, we treated fresh CD4 T cells from normal, healthy donors with bortezomib at 0, 

0.1 and 10 M.  Cells were treated with bortezomib and stimulated with a combination 

of PMA/A23187 in 3 h increments over 12 h.  Expression of mRNA was analyzed by 

quantitative real-time PCR as detailed in Materials and Methods. 

 The level of CTLA-4 transcript increases significantly with bortezomib treatment, 

particularly after extended stimulations (Figure1.7a).  Untreated samples follow a 

pattern where expression peaks at approximately 3 h of stimulation, after which it 

declines steadily over prolonged activation periods.  Cells treated with bortezomib, 

however, do not exhibit this same decline in CTLA-4 transcription after 3 h.  These cells 

instead maintain and continue to increase expression in a dose-dependent manner 

through 12 h of stimulation.  At the 12 h time point, treatment with 10 M bortezomib 

results in more than 7-fold greater CTLA-4 expression over untreated.  These results 

provide evidence that the observed effect of proteasome inhibition on CTLA-4 occurs 

upstream of CTLA-4 transcription, possibly through specific transcription factors. 

 We next investigated the relative mRNA transcript levels of NFAT1, FoxP3 and 

GATA3 in the presence of bortezomib.  Neither NFAT1 nor FoxP3 were significantly 

altered at the level of transcription (Figure1.7b, c).  Supporting previously published 

data, a dose-dependent increase of GATA3 mRNA was detected after proteasome 

inhibition (Figure1.7d).  Given that proteasome inhibition may lead to reduced 
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degradation of these factors and not necessarily an increase in transcript, mRNA 

analysis of these genes may not accurately reflect cellular protein levels. 

 

An alternate proteasome inhibitor, ALLN, also enhances CTLA-4 transcription.  In 

order to determine whether our results with bortezomib were due to proteasome 

inhibition and not an off-target effect of the drug, we utilized an alternative proteasome 

inhibitor, ALLN.  This chemical is a peptide aldehyde that inhibits both the proteasome 

and the calpain pathways.  As a control for calpain inhibition, we included the compound 

ALLM, which blocks calpain activity without suppressing proteasome function.  Cells 

were treated with 10 M ALLM, ALLN or bortezomib and stimulated for 9 h.  CTLA-4 

expression was measured by qPCR (Figure 1.8).  Both ALLN and bortezomib increased 

CTLA-4 transcription over vehicle control, while ALLM did not.   
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Figure 1.7. Transcript levels of CTLA-4, NFAT1, FoxP3 and GATA3 after bortezomib treatment.  

Expression of a) CTLA-4, b) NFATc2, c) FoxP3 and d) GATA3 mRNA in normal primary CD4 T cells 

treated with the indicated concentrations of bortezomib and stimulated with PMA/A23187 over a time 

course.  Normal CD4 T cells were purified using RosetteSep as described in materials methods.  Total 

RNA was isolated for qPCR analysis as previously described.  Results are the averages of 4 individual 

normal donors ± SEM analyzed by qPCR normalized to B2M and presented as the fold increase over 

unstimulated normal cells (*p<0.05, **p<0.005). 
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Figure 1.8.  CTLA-4 transcript also increases with proteasome inhibitor ALLN.  10x10

6
 primary CD4 

T cells were treated with 10 M ALLM, ALLN, bortezomib or an equivalent volume of DMSO followed by 

stimulation for 9 h.  Total RNA was isolated by Trizol preparation, cDNA was synthesized and qPCR was 

performed with primers specific to CTLA-4 as described in Materials and Methods.  Results were 

normalized to B2M and are presented as the averages of three independent experiments ± SEM 

(*p<0.05, **p<0.005).  
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Bortezomib-treated cells display transcription factor protein dysregulation.  To 

investigate whether proteasome inhibition leads to increased stability of transcription 

factors NFAT1, FoxP3 or GATA3, we probed whole-cell lysates from CD4 T cells 

collected from normal, healthy donors.  Cells were treated as they were for transcript 

studies in Figure 1.7.  Levels of IkB serve as a control to demonstrate proficiency of 

proteasome inhibition.  In parallel with flow cytometry data, bortezomib leads to 

maintained CTLA-4 expression over extended stimulations (Figure1.9).  NFAT1 protein 

was not elevated with bortezomib, indicating this transcription factor is not appreciably 

regulated by the proteasome pathway.  After longer stimulations at higher bortezomib 

concentrations, we instead detect a modest reduction in the intensity of NFAT1 protein.  

Untreated samples show enhanced FoxP3 expression over the stimulation time course, 

but expression is abrogated in cells treated with bortezomib.  As early as 6 h after 

stimulation, FoxP3 levels diminish with proteasome inhibition. 

 We find that GATA3 protein levels do not increase remarkably, however over 

longer stimulations with bortezomib we begin to distinguish a second, higher molecular 

weight band that may represent the phosphorylated, transcriptionally active species.  To 

investigate this further, we isolated nuclear and cytosolic fractions from cells stimulated 

for 6 h with treatments of 0, 0.1 and 10 M bortezomib.  By immunoblot we probed 

samples with an antibody specific for phospho-S308 GATA3 (Figure1.10a).  In the 

nuclear fraction, we detect a marked increase in activated GATA3 after bortezomib 

treatment.  Again, total GATA3 levels remain similar, but with proteasome inhibition the 

higher molecular weight band is more prevalent.  Cytosolic levels of total and phospho-

GATA3 remain comparatively lower in each sample.  As a method of determining the 
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purity of the fractionation, samples were also probed for total histone 3.  The cytosolic 

fractions do not contain any of this protein.  Interestingly, the 10 M nuclear sample 

shows elevated histone expression, indicating this protein may be regulated by the 

proteasome.  The included actin loading control verifies equal protein lysates were 

loaded in the gel. 

 We next quantified total GATA3 levels by permeabilization and staining with PE-

conjugated antibody for intracellular flow analysis (Figure1.10b).  Over the time course 

we find stimulation alone leads to a gradual, stepwise decrease in GATA3 expression 

from 72.44% in unstimulated cells to 28.73% after 12 h of stimulation.  Treatment with 

bortezomib results in stabilization of GATA3 expression across all time points at an 

average of 71.31% (+/- 3.55%) for 10 M samples.  
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Figure 1.9.  Transcription factor protein levels in bortezomib-treated CD4 T cells.  Immunoblot 

analysis of normal CD4 T cells stimulated in a time course with PMA/A23187 and treated with bortezomib 

for CTLA-4, GATA3, NFAT1 and FoxP3.  Whole CD4 T cell extracts were prepared with RIPA buffer and 

10 g total protein was separated on SDS-PAGE gels.  Proteins were transferred to PVDF membranes 

and probed with antibodies specific for IB (as a proteasome inhibition control), CTLA-4, GATA3, NFAT1 

and FoxP3 as described in Materials and Methods.  Actin serves as a loading control. Results are 

representative of 3 independent experiments.     
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Figure 1.10.  GATA3 protein is phosphorylated and stabilized with bortezomib.  a) Nuclear and 

cytosolic fractions were isolated from primary CD4 T cells treated with 0, 0.1 and 10 M bortezomib and 

stimulated for 6 h with PMA/A23187 as described in Materials and Methods. Lysates were probed with an 

antibody specific to phospho-GATA3 (S308) as described above.  b) Cells were treated and stimulated as 

in Figure 1.8, then permeabilized and stained with PE-conjugated antibody to GATA3 as described in 

Materials and Methods followed by flow cytometric analysis.  Percentages of GATA3 positive cells were 

determined by analysis with FlowJo software and are shown in red (0M), green (0.1M) and blue (10M) 

text for each time point.  Results from (a) and (b) are representative of three independent experiments.  
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Bortezomib activates the p38 kinase pathway, leading to GATA3 phosphorylation.  

We have shown that treatment with bortezomib causes a dose-dependent increase in 

the phosphorylated species of GATA3 protein (Figure 1.10a).  Previous work has 

implicated both the p38 and ERK pathway in GATA3 phosphorylation (70, 129).  To 

establish which mechanism is responsible in our system, we treated fresh primary CD4 

T cells with the p38-specific inhibitor SB203580 and the ERK inhibitor PD98059 in 

addition to bortezomib.  After stimulating 9 h, we measured IFN- (Figure 1.11a) and IL-

4 (Figure 1.11b) transcript levels to determine which kinase was more specific to 

GATA3.  IL-4 is heavily dependent on GATA3 activity whereas IFN- is not.  We find 

ERK inhibition suppresses both IFN- and IL-4 expression, which indicates this pathway 

may not be distinctly involved in GATA3 activation.  The p38 inhibitor selectively 

represses IL-4, supporting p38’s role in GATA3 regulation. 

 When we measure CTLA-4 transcript in these samples, we again find ERK 

inhibition blocks expression (Figure 1.11c).  The p38 inhibitor also suppresses CTLA-4 

activation, both with and without bortezomib (p<0.005).  We next examined phospho-

GATA3 protein levels with the p38 inhibitor by immunoblot (Figure 1.11d).  Bortezomib 

again increased GATA3 activation, but with the p38 inhibitor the level was reduced.  To 

verify the inhibitor adequately blocked p38 we probed these same samples with an 

antibody specific to phospho-MAPKAPK2, a direct downstream product of activated 

p38.  The resulting protein bands followed the same trend of phospho-GATA3, further 

supporting that the p38 pathway phosphorylates GATA3 in cells treated with 

bortezomib. 
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Figure 1.11.  The role of the p38 pathway in GATA3 and CTLA-4 expression in CD4 T cells after 

bortezomib treatment.  5x10
6
 primary CD4 cells were treated with 30 M p38 inhibitor SB203580, 30 M 

ERK inhibitor PD98059 or vehicle control for 1 h prior to stimulation with PMA/A23187 for 9 h.  Total 

mRNA was isolated and analyzed by qPCR as previously described with primers specific for a) IFN-, b) 

IL-4 and c) CTLA-4.  Results are presented as the averages of three independent experiments ± SEM 

(*p<0.05, **p<0.005).  d) Immunoblot analysis of stimulated primary CD4 T cells treated with 10 M 

bortezomib alone or with 30M p38 inhibitor SB203580 as compared to unstimulated and stimulated 

alone.  Cells were pretreated for 1 h followed by stimulation for 9 h with PMA/A23187.  Nuclear fractions 

were isolated as described previously and lysates were probed with antibodies specific to phospho-

GATA3 (S308) and phospho-MAPKAPK2 as an indicator of p38 activity.  Actin and histone 3 serve as 

loading controls and results are representative of three independent experiments. 
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The CTLA-4 promoter is augmented by GATA3.  The previous experiments 

demonstrate a correlation between GATA3 and CTLA-4 expression in normal CD4 T 

cells treated with bortezomib.  To address whether GATA3 can directly affect CTLA-4 

transcription, we cotransfected increasing concentrations of a GATA3 expression vector 

with pGL3 luciferase reporter plasmids containing regions of the CTLA-4 promoter into 

Jurkat T cells, which we previously demonstrated is dependent on an NFAT1 binding 

site (41).  GATA3 has been shown to directly interact with NFAT1, and addition of 

exogenous GATA3 leads to a dose-dependent increase in activity of a pGL3 construct 

with 380 bp of the CTLA-4 promoter by luciferase assay (Figure1.11).  The detected 

RLU values are significantly higher than co-transfections with the same quantity of 

control vector (p<0.005).  Similar results were obtained with a 1 kb CTLA-4 pGL3 

construct, as well (data not shown).  Importantly, co-transfection of GATA3 with the 

SV40 pGL3 control vector or a promoterless vector did not increase luciferase activity, 

indicating the effect is specific to the CTLA-4 promoter (data not shown).  These results 

provide evidence that GATA3 is able to augment CTLA-4 transcriptional activity. 
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Figure 1.12.  Ectopic GATA3 enhances CTLA-4 promoter activity.  A 380 bp CTLA-4 promoter 

luciferase construct (41) was cotransfected with increasing concentrations of GATA3 or vector control into 

Jurkat cells using Lipofectin as described in Materials and Methods.  Luciferase assay was performed 

and relative light units (RLU) were calculated.  Results are averages of three independent experiments ± 

SEM (**p<0.005). 
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GATA3 interacts with the endogenous CTLA-4 promoter in bortezomib-treated 

primary CD4 T cells.  To confirm the role of GATA3 at the endogenous CTLA-4 

promoter in primary cells, we performed chromatin immunoprecipitation assays (ChIP).  

Normal CD4 T cells were treated or untreated with 10 M bortezomib followed by 

stimulation for 6 h.  An unstimulated/untreated sample serves as a negative control.  By 

agarose gel analysis we detect binding of GATA3 to the CTLA-4 promoter in 

bortezomib-treated samples (Figure1.12a).  As a more sensitive method of analysis, we 

ran quantitative real-time PCR using the same samples and primer set (Figure1.12b).  

Results are interpreted as fold increase over isotype control, normalized to input 

samples, and are the averages of three independent experiments.  Upon stimulation we 

detect a 3-fold increase of GATA3 binding (p=0.028), however this interaction is 

markedly enhanced in the presence of bortezomib (p=0.043). 

 

Transient overexpression of GATA3 in CD4 T cells does not affect CTLA-4 

expression.  We next addressed whether addition of ectopic GATA3 alone would be 

sufficient to induce CTLA-4 to the same extent as proteasome inhibition.  Cells were 

electroporated with a GATA3 expression vector or LacZ control and stimulated for 9 h.  

We measured intracellular GATA3 (Figure 1.14a) to evaluate the efficacy of our 

expression vector and found that after 9 h stimulation there was a 17.2% increase from 

31.7% in the control LacZ sample to 48.9% with the GATA3 plasmid.  Importantly, the 

level of GATA3 detection in the LacZ population was consistent with what we found in 

non-electroporated cells in Figure 1.10b.  In these same samples, we next measured 
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extracellular CTLA-4 (Figure 1.14b).  We found no change in CTLA-4 expression with 

the addition of exogenous GATA3. 

 

GATA3 knockdown by siRNA reduces CTLA-4 transcript in bortezomib-treated 

CD4 T cells.  To further assess the role of GATA3 in CTLA-4 expression in bortezomib-

treated CD4 T cells, we knocked down GATA3 with siRNA.  Primary CD4 T cells were 

nucleoporated with a set of either GATA3 specific or control siRNA and allowed to rest 

for 18 h.  Samples were then stimulated in the presence or absence of 10 M 

bortezomib for 9 h, the point at which CTLA-4 expression becomes distinctly different 

with bortezomib treatment.  GATA3 expression was reduced by approximately 50% with 

targeted siRNA at both the mRNA and protein level (Figure 1.15 a, b).  As a GATA3-

dependent positive control, we measured IL-4 mRNA and found a reduction of 40.9% 

(p<0.05) by mRNA qPCR in an average of three independent experiments (Figure 

1.15c).  Expression of internal control GAPDH was not affected by GATA3-specific 

siRNA in these same samples (Figure 1.15d), indicating the transcript reduction was not 

a global effect.  Transcript levels of CTLA-4 in bortezomib-treated cells were diminished 

by 23.6% when GATA3 was depleted (p<0.05), but not with stimulation alone (Figure 

1.15d). 
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Figure 1.13.  GATA3 is detected at the endogenous CTLA-4 promoter with bortezomib.  1X10
6
 fresh 

CD4 T cells were stimulated and/or treated with 10 M bortezomib for 6 h as indicated, formaldehyde 

crosslinked and sheared by sonication.  ChIP was performed as described in Materials and Methods with 

antibodies to GATA3 and an isotype control.  Crosslinks were reversed and the DNA was purified for 

amplification with primers spanning the CTLA-4 promoter.  Input samples serve as a loading control.  a) 

Agarose gel of PCR products.  b) Quantification by qPCR with primers spanning the proximal promoter 

where samples are normalized to isotype control and presented as the fold over unstimulated/untreated.  

Presented results are the average of three experiments ± SEM (*p<0.05). 
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Figure 1.14.  Ectopic GATA3 does not transiently affect CTLA-4 expression.  10x10
6
 primary CD4 T 

cells were electroporated with 2 g GATA3 or LacZ expression vectors using the Amaxa system as 

described in Materials and Methods.  Cells were cultured 18 h prior to stimulation for 9 h.  a) Intracellular 

GATA3 levels were determined by permeabilization of cells and staining with a PE-conjugated GATA3 

antibody as described in Materials and Methods followed by flow cytometric analysis.  Histograms were 

generated with FlowJo software.  Percentages of GATA3 expression are shown in green (LacZ) and red 

(GATA3) text.  b) Extracellular CTLA-4 was measured by staining with a PE-conjugated CTLA-4 antibody 

and analysis by flow cytometry.  Results are representative of three independent experiments.   
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Figure 1.15.  GATA3 knockdown by siRNA reduces CTLA-4 mRNA in bortezomib-treated CD4 T 

cells.  Using the Amaxa system, 10X10
6
 fresh CD4 T cells were electroporated with 20 pmol control or 

GATA3-targeted SMARTpool siRNA (Dharmacon).  Cells were rested for 18 h then stimulated 9 h with 

and without 10 M bortezomib. Analysis of GATA3 a) protein and b) transcript was conducted by 

intracellular flow and qPCR, respectively.  Levels of c) IL-4, d) GAPDH and e) CTLA-4 mRNA were 

measured by qPCR. Results are presented as averages of three independent experiments ± SEM 

(*p<0.05). 
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Elevated GATA3 transcript in bortezomib-treated CD4 T cells does not guarantee 

surface CTLA-4 expression.  To establish whether the cells expressing CTLA-4 also 

have enhanced GATA3 transcript, we sorted bortezomib-treated and untreated cells for 

surface CTLA-4 and evaluated their mRNA profile by qPCR (Figure 1.16).  Cells were 

separated into CTLA-4 + and – fractions to a purity greater than 98%.  As expected, 

CTLA-4 mRNA expression is higher in the CTLA-4+ population (Figure 1.16a), and 

bortezomib treatment nearly doubles what is detected with stimulation alone.  

Surprisingly, GATA3 expression, though elevated with bortezomib, is not significantly 

different in the CTLA-4+ fraction (Figure 1.16b).  We find NFAT1 levels are increased in 

the CTLA-4+ population and as we have observed previously bortezomib does not 

impact NFAT1 expression (Figure 1.16c).  FoxP3 is also higher in cells expressing 

CTLA-4, and there is a modest decrease in the presence of bortezomib (Figure 1.16d). 
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Figure 1.16.  Expression profile in cells sorted for surface CTLA-4.  40x10
6
 CD4 T cells were 

stimulated 9 h with either 10 M bortezomib or no treatment followed by staining with PE-conjugated -

CTLA-4 and sorting for CTLA-4 + or – fractions.  After isolation of mRNA, expression of a) CTLA-4, b) 

GATA3, c) NFAT1 and d) FoxP3 were measured by qPCR as previously described.  Presented results 

are the averages of three independent experiments ± SEM. 
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NFB does not inhibit CTLA-4 transcription.  Proteasome inhibition blocks IB 

dissociation from NFB, and thus inhibits NFB’s activity as a transcription factor.  As 

NFB can function as a transcriptional repressor (16), we next wanted to evaluate 

whether NFB can block CTLA-4 activation.  This could contribute to the CTLA-4 

enhancement we find in cells treated with bortezomib.  By inhibiting NFB directly with 

the compound TPCA-1 followed by 9 h stimulation, we are able to examine whether 

NFB blockade results in increased CTLA-4 transcription (Figure 1.17).  To verify NFB 

is effectively repressed, we measured transcription of the NFB-dependent gene TNF- 

by qPCR (Figure 1.17a).  We find TPCA-1 reduces expression dose-dependently, with 

significant decreases after 1 and 10 M treatments.  CTLA-4 expression is not affected 

by TPCA-1 treatment (Figure 1.17b).  We include samples treated with bortezomib for 

comparison, which do exhibit elevated CTLA-4. 
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Figure 1.17.  NFB inhibitor TPCA-1 does not affect CTLA-4 expression.  5x10
6
 primary CD4 T cells 

were treated with the indicated concentrations of TPCA-1 and stimulated for 9 h followed by mRNA 

analysis of a) TNF (as an NFB-dependent gene control) and b) CTLA-4 by qPCR as previously 

described (*p<0.05).  Effect of 0.1 and 10 M bortezomib is shown as red bars in panel (b) for 

comparison.  Results are the averages of three independent experiments ± SEM. 
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DISCUSSION 

 

 Expression of CTLA-4 is elevated in tumor cells of patients with cutaneous T cell 

lymphoma (126), which may contribute to decreased anti-tumor immunity in later stages 

of the disease.  The mechanism governing the observed transcriptional dysregulation 

has not been well characterized.  In this study we show excessive polyubiquitination of 

proteins in the malignant cells of CTCL, which implies the ubiquitin-mediated 

proteasome pathway is defective.  These results correlate with elevated CTLA-4 and 

GATA3 protein and transcript in patient samples, but a link between proteasome activity 

and expression of these genes had not been previously explored.  By treating healthy 

primary CD4 T cells with bortezomib, we are able to isolate the single element of 

proteasome deficiency and establish a role for this pathway in CTLA-4 regulation.  Our 

results not only demonstrate a novel T cell response to bortezomib, but also identify a 

direct role for GATA3 in CTLA-4 transcription.  We show GATA3 protein levels are 

stabilized by proteasome inhibition and we also observe a dose-dependent increase in 

phosphorylation at S308, the transcriptionally active form.  By luciferase and ChIP, we 

find GATA3 is able to bind to and induce the CTLA-4 promoter, and bortezomib 

enhances this interaction.  After siRNA suppression of GATA3, CTLA-4 induction with 

bortezomib is significantly reduced.  Taken together, these data delineate a mechanism 

where proteasome inhibition increases CTLA-4 expression through stabilization and 

activation of GATA3. 

This study reveals aberrant proteasome regulation in CTCL, as detected by total 

polyubiquitin immunoblot.  Interestingly, when we assayed the 20S proteolytic core 
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subunit of Sezary and normal extracts we found it was moderately, though not 

statistically significantly, more active in patient samples.  This is not entirely unexpected 

given gene array analysis has identified two 26S proteasome regulators, PSMD3 and 

PSMC5 which are upregulated in Sezary (21).  Taken together these data indicate the 

profuse polyubiquitination detected in Sezary may be due to impaired function of 

another component within the ubiquitin-proteasome pathway aside from the 20S 

proteolytic core.  Given that a multitude of proteins interact with and direct the function 

of this pathway (45), further analysis will be required to identify the exact cause.   

By inhibiting the proteasome in primary CD4 cells with either bortezomib or 

ALLN, we show this defect alone can augment CTLA-4 expression.  When stimulating 

with PMA/A23187, we find CTLA-4 transcript levels are rapidly induced but peak at 3 h, 

after which they steadily decline (Figure 1.7a).  Addition of bortezomib prevents this 

regression, allowing expression levels to remain elevated through 12 h.  Interestingly, 

both GATA3 and CTLA-4 follow a similar kinetic trend when CD4 T cells are stimulated 

in the presence and absence of the proteasome inhibitor.  Our data shows GATA3 is 

also stabilized in the presence of bortezomib, which substantiates previous studies with 

alternative proteasome inhibitors (129).  Aptly, GATA3 is also overexpressed in CTCL, 

but further studies will be required to determine whether this is due to proteasome 

dysregulation.  In normal CD4 T cells with stimulation alone, GATA3 protein levels 

diminish over time (Figure 1.19b).  Bortezomib treatment leads to sustained GATA3 

expression, which in turn increases transcription of GATA3-dependent genes.  CTLA-4 

has been implicated as a Th2-associated gene (83), which is further supported here 

where we show a direct involvement of GATA3 in CTLA-4 transcription. 
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We were initially concerned that the effects we had observed were a 

consequence of cytotoxicity from proteasome inhibition.  In addition to multiple 

myeloma, bortezomib has been tested in a variety of other hematological malignancies 

(46, 47, 85) as well as solid tumors (3, 89, 118, 125) for its ability to induce apoptosis.  

Only when cells were treated for 12 h at the 10 M concentration in our system did we 

detect elevated annexin V staining.  Generally stimulation alone caused a slight amount 

of cell death, likely due to PMA toxicity.  The effect of bortezomib on CTLA-4 is evident 

after 6 to 9 h, time points at which apoptosis levels are minimal.  These data indicate 

the observed increase in CTLA-4 is independent of apoptosis induction. 

As CTLA-4 is involved in downregulation of T cell proliferation, we wanted to 

address whether the increased CTLA-4 in cells treated with bortezomib could 

functionally suppress growth.  Long treatments with bortezomib will induce apoptosis, 

but since bortezomib is a reversible proteasome inhibitor we are able to vastly reduce 

the concentration of the compound in the cell culture media by washing.  Once the 

bortezomib and stimulation are removed, CTLA-4 levels begin to decline.  However, we 

found bortezomib-treated cells sustained surface expression over longer intervals.  Our 

mixed lymphocyte reaction showed increased suppression with bortezomib 

pretreatment.  We can determine CTLA-4 is responsible for the observed growth 

suppression by blocking its activity with a specific antibody.  These results identify 

bortezomib as a T cell growth inhibitor through a mechanism independent of apoptosis, 

which may in part explain the protective effects of this drug in prevention of GVHD 

without sacrificing anti-tumor effects (107). 
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Our results introduce a novel mechanism for CTLA-4 transcriptional regulation 

where GATA3 interacts with the proximal promoter.  GATA3 was loosely connected to 

CTLA-4 by van Hamburg et al (115) with their use of a GATA3 overexpressing mouse 

model, and our data show a direct role for this transcription factor.  In our luciferase 

study GATA3 augmented promoter activity with as little as 380 bp which indicates 

GATA3 may be involved with the proximal promoter.  Our ChIP assay results support 

this, as primers were designed for the NFAT1 binding region.  Alignment software 

predicts three potential GATA3 binding sites within the proximal promoter.  We were 

unable to detect GATA3 binding to these sequences by electrophoretic mobility shift 

assay, however GATA3 may not be directly in contact with the DNA.  Indeed, previous 

studies have shown GATA3 works cooperatively with NFAT1 to activate Th2 cytokines 

(6), and coprecipitation in cells transfected with expression constructs shows these two 

proteins can physically interact (57) which may be the case for CTLA-4 regulation.  Our 

efforts to coprecipitate endogenous proteins were unsuccessful, but this may have been 

due to low protein concentrations. 

 FoxP3 was also shown to cooperate with NFAT1 to regulate CTLA-4 in the 

context of regulatory T cells (128), which express CTLA-4 constitutively.  This chapter 

has focused on induced CTLA-4 expression in effector CD4 T cells.  Our data does not 

support a mechanism of FoxP3 involvement in increasing CTLA-4 by proteasome 

inhibition.  Indeed, in the presence of bortezomib FoxP3 levels are suppressed as early 

as 6 h after treatment and stimulation (Figure 1.8).  As FoxP3 is a reliable marker of 

Treg cells, this would support that proteasome inhibition does not induce a transition to 

the Treg phenotype.  In fact, it has been reported that GATA3 can directly bind to the 
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FoxP3 promoter and suppress FoxP3 transcription (71).  We also assayed our whole 

cell extracts for FoxP3 expression by immunoblot and found that only 2 of 5 Sezary 

patients had expression levels higher than normal.  This is consistent with previous 

findings showing erratic expression of FoxP3 in CTCL (42, 119). 

 Our previous work did not identify a role for NFB in activation of CTLA-4.  If 

NFB was required for CTLA-4 transcription, proteasome inhibition would suppress 

expression.  We also wanted to determine if NFB plays a suppressive role in CTLA-4, 

and through use of specific inhibitor TPCA-1 we again find NFB has no effect.  Not 

only does this provide more details to CTLA-4 regulation, but it also suggests 

therapeutic use of NFB inhibitors should not directly modulate CTLA-4 expression. 

 When we sorted cells to isolate those with surface CTLA-4 expression, we found 

mRNA levels of CTLA-4 were roughly 10-fold higher in cells that were CTLA-4+, 

regardless whether they were treated with bortezomib.  This implies a certain subset of 

CD4 T cells may be more likely to express CTLA-4.  Interestingly, cells treated with 

bortezomib had about 2-fold higher mRNA and surface protein which suggests 

trafficking to the cell membrane also increases in this population.  Expression of NFAT1 

was nearly equivalent among all samples tested, but FoxP3 was specifically expressed 

in CTLA-4+ cells.  A slight but not statistically significant reduction in FoxP3 mRNA was 

detected in bortezomib-treated cells as compared to stimulation alone, which mimics 

what we observe at the protein level.  We were surprised to find GATA3 levels were not 

significantly higher in the CTLA-4+ fraction, particularly in the bortezomib-treated 

samples.  This may indicate either another factor is involved or that activation of GATA3 

only occurs in a limited collection of cells.  
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 GATA3 activation plays a critical role in bortezomib-induced CTLA-4 expression.  

We show the p38 kinase pathway mediates GATA3 phosphorylation in the presence of 

bortezomib.  This is not unexpected, given proteasome inhibition triggers a stress 

response and p38 is activated by cell stress conditions (92).  The inhibitor we used, 

SB203580 did not completely inactivate p38 in our cells, as illustrated by the phospho-

MAPKAPK2 blot with our samples.  Importantly, the level of phospho-MAPKAPK2 

reduction did coincide with that of phospho-GATA3.  We did not detect an increase in 

CTLA-4 upon transient overexpression of GATA3, but this may have been due to a lack 

of GATA3 phosphorylation under these circumstances.  Overexpression in a mouse 

model did, however, result in CTLA-4 upregulation (115).   

 Our targeted inhibition of GATA3 by siRNA led to greater than a 50% reduction in 

GATA3 mRNA and protein.  Similar to our other experiments, bortezomib treatment and 

stimulation for 9 h increased GATA3 roughly 2.5-fold over unstimulated cells when 

electroporated with control siRNA.  GATA3-directed siRNA suppresses mRNA levels in 

bortezomib-treated samples to just below that of the unstimulated control.  This was a 

functionally adequate reduction, as observed in the measured effect on the GATA3-

dependent Th2 cytokine IL-4.  The statistically significant reduction in CTLA-4 after 

GATA3 ablation again validates the important role GATA3 plays in CTLA-4 activation in 

cells treated with bortezomib.    Proteasome inhibition likely triggers the kinase pathway 

responsible for GATA3 activation as well, as the level of phospho-GATA3 increases 

dose-dependently with bortezomib.  Taken together, these data show that both 

stabilization of GATA3 protein and increased phosphorylation are essential for the 

observed augmentation of CTLA-4 transcription.  
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CHAPTER 2 

Identification of the Role of p300 in Activation of T-cell Regulator CTLA-4 by Use 

of Adenovirus 2 E1A 

 

ABSTRACT 

 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is an important regulator 

of T cell activation, and thus transcriptional regulation is a tightly controlled process.  

Expression of the CTLA-4 gene in effector T cells is induced by activation and binding of 

NFAT1 in the proximal promoter. Upon activation, histones in the CTLA-4 proximal 

promoter become acetylated at lysines 9 and 14.  The presence of these modifications 

is conventionally recognized as an activated chromatin region.  As NFAT1 has no 

known histone acetyltransferase (HAT) activity, we sought to determine whether a 

cofactor may be involved by utilizing adenovirus 2 E1A proteins.   

Adenovirus 2 E1A 12S contains two distinct conserved regions.  The E1A 

conserved region 1 (CR1) and 2 (CR2) interact with a variety of cellular proteins 

including histone acetyltransferase p300 and cell cycle regulator pRb, respectively.  By 

co-transfecting luciferase CTLA-4 constructs with wild-type and mutant E1A 12S 

plasmids in the leukemia cell line Jurkat, we show that the CR1 region, but not CR2, is 

capable of inhibiting CTLA-4 transcription.  During normal activation of this gene, 

acetylation of histone 3 occurs at lysines 9 and 14.  Analysis utilizing chromatin 

immunoprecipitation (ChIP) assays reveals that this histone acetylation does not occur 

in the presence of the E1A 12S CR1 region, implicating the potential involvement of 
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p300.  Using the p300 inhibitors curcumin and garcinol, we are able to block 

transcription of CTLA-4 and demonstrate a role for p300 in CTLA-4 activation.  Through 

use of calcineurin inhibitor cyclosporin A (CyA), we also show NFAT1 binding to the 

proximal promoter precedes histone acetylation by ChIP assay. 
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INTRODUCTION 

 

 Gene regulation involves the concerted activity of transcription factors and 

epigenetic modifiers to either initiate or suppress expression.  Organization and 

packaging of genomic DNA is a dynamic process maintained by the wrapping of DNA 

around nucleosomes made up of core histone proteins H2A, H2B, H3 and H4 (68).  A 

variety of covalent modifications to specific residues of these proteins can further 

remodel DNA/histone complexes into open, active regions of euchromatin or 

compressed, transcriptionally inaccessible heterochromatin (54).  Specifically, histone 3 

acetylation at lysine residues 9 and 14 has been associated with elevated gene 

expression (2).  Addition and removal of acetyl groups at these sites is controlled by the 

balance between histone acetyltransferases (HATs) or deacetylases (HDACs), 

respectively (106).   

The acetyltransferase p300 was initially identified due to its interaction with the 

adenovirus early protein E1A (36).  Since then, p300’s role as a transactivator and HAT 

has been elucidated.  Previous reports have shown p300 interacts with an assortment 

of transcription factors, including but not limited to AP-1, p53, STAT family members, 

TFIIB, NFB, NFAT1 and members of the GATA family, among many others (34).  

Structurally homologous to p300, CREB-binding protein (CBP) also cooperates with 

many transcription factors and acetylates many cellular proteins including histones, 

which leads to the restructuring of chromatin for gene expression.  The CBP and p300 

proteins are often paired together and can be referred to collectively as p300/CBP.  

Another related cofactor, p300/CBP-associated factor, or PCAF, associates with p300 
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and CBP to fulfill its function as a cofactor.  Through use of a series of E1A mutants, Liu 

et al established a role for p300 in IL-5 regulation (65) and we employed a similar 

technique to study CTLA-4 transcription. 

More recently, chemical inhibitors to HATs have been discovered and exploited 

for their impact on gene transcription.  The polyphenolic compound curcumin efficiently 

disrupts p300-dependent histone acetylation without affecting PCAF (8).  Less 

specifically, polyisoprenylated benzophenone, or garcinol, can also block p300 but has 

a stronger potency toward PCAF (7).  The high cellular toxicity of garcinol led to 

development of its derivative LTK-14, which is specific to p300 but is currently not 

commercially available.  The effect of these compounds on CTLA-4 transcription has 

not previously been investigated. 

Our initial studies identified an NFAT1 binding site in the proximal CTLA-4 

promoter in addition to histone acetylation upon T cell induction (41).  The main 

objective of this section was to determine whether p300 is responsible for the detected 

acetylation at the CTLA-4 promoter through use of a panel of E1A constructs in addition 

to the above described chemical inhibitors to p300.   
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RESULTS 

 

The CR1 region of the E1A 12S protein suppresses activity of CTLA-4 reporter 

constructs.  To determine whether E1A proteins can impact CTLA-4 expression, wild-

type and mutant 12S E1A vectors were cotransfected with a series of CTLA-4 luciferase 

promoter constructs in Jurkat T cells as detailed in the schematic in Figure 2.1.  The two 

E1A mutants individually eliminate the two conserved regions (CR), CR1 and CR2 of 

the wild-type 12S splice variant.  CR1 has been shown to sequester cellular proteins 

including p300, while CR2 is known to bind pRB.  For this study, we utilized one 264 bp 

CTLA-4 promoter construct that omitted the NFAT1 binding site and three constructs 

with larger promoter regions of 380 bp, 4 kbp and 6 kbp.   

After cotransfection, we measured promoter activity by luciferase assay as 

described in Materials and Methods (Figure 2.2).  Our results are presented as relative 

light units (RLU).  As expected due to the lack of NFAT1 binding, the 264 bp construct 

had undetectable luciferase levels which were unaffected by the presence of E1A 

vectors.  For the remaining constructs we find strong luciferase activity for the promoter 

alone, but the addition of wild-type 12S E1A significantly suppresses promoter 

induction.  Mutation of the CR1 region, which is known to bind p300, results in the 

rescue of luciferase activity for each of our promoters.  In the 4 kbp and 6 kbp 

constructs, we actually detect an increase in RLUs with this mutant.  However when the 

CR2 region is mutated, luciferase activity is not recovered. 
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Figure 2.1. CTLA-4 promoter constructs and 12S E1A mutants. a) The CTLA-4 promoter was cloned 

from genomic DNA and 5’ deletion constructs were ligated into luciferase reporter plasmid pGL3.  This 

study used clones of 264 bp, 380 bp, 4 kbp and 6 kbp.  As indicated in the top of the schematic, previous 

work has shown NFAT1 binds to the -280 region of the CTLA-4 promoter. b) Schematic of 12S E1A wild-

type and mutants CR1 and CR2.  The CR1 region binds p300/CBP while CR2 binds pRB. 
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Figure 2.2. CTLA-4 promoter activity with E1A wild-type and mutant plasmids. Jurkat cells were 

cotransfected with 2 g each E1A plasmid and in combination with 2 g CTLA-4 luciferase constructs 

using Lipofectin as detailed in Materials and Methods.  Results are presented as the average RLU of 

triplicate samples and are representative of three or more independent experiments ± SEM (* p<0.05). 
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Histone acetylation is blocked by wild-type 12S E1A but not CR1.  To determine 

the cause of promoter activity suppression in cotransfected samples, we conducted 

chromatin immunoprecipitation (ChIP) assays to measure levels of NFAT1 binding and 

histone 3 acetylation (Figure2.3).  After Jurkat cotransfection of E1A plasmids with the 4 

kbp CTLA-4 luciferase construct as in Figure 2.2, samples were either stimulated with 

PMA/A23187 for 4 h or left unstimulated.  Chromatin was prepared as described in 

Materials and Methods and immunoprecipitated with antibodies specific to NFAT1 and 

acetyl histone 3 at lysines 9 and 14.  The resulting DNA was analyzed by real-time PCR 

with a forward primer specific to the CTLA-4 promoter and a reverse primer within the 

luciferase gene of pGL3.  As Jurkat cells do not express CTLA-4, this primer set allowed 

us to eliminate background detection of the endogenous promoter. 

 After stimulation, we detect an increase in NFAT1 binding at the transfected 

promoter (Figure2.3a).  The 2- to 3-fold increase after stimulation is similar to what we 

previously reported at the CTLA-4 promoter in stimulated PBMCs, indicating the 

exogenous promoter behaves in a similar manner to what we find in primary cells.  

Addition of the 12S E1A wild-type and mutant plasmids does not reduce NFAT1 binding 

at the exogenous promoter.  In fact, addition of the wild-type 12S E1A construct results 

in elevated detection of NFAT1. 

 Histone acetylation is also enhanced after stimulation, though the degree of 

increase is much lower than that of NFAT1 (Figure2.3b).  Wild-type 12S E1A blocks 

histone acetylation, reducing detectable levels to 25% of the non-E1A samples.  

Interestingly, there is an equivalent reduction in the unstimulated cells, which implies 

acetylated histones accumulate on the plasmid in the absence of activation.  When the 
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E1A CR1 region is eliminated, histone acetylation is no longer inhibited.  Similar to the 

luciferase results in Figure 2.2, our CR2 mutant impedes acetylation to levels 

comparable to wild-type. 
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Figure 2.3. ChIP assay analysis of cotransfected Jurkat cells. Jurkat cells were transfected with 2 g 

4 kbp CTLA-4 luciferase plasmid and 2 g E1A constructs using Lipofectin as described in Materials and 

Methods.  Cells were formaldehyde crosslinked and sheared by sonication.  ChIP was performed as 

described in Materials and Methods with antibodies to a) NFAT1, b) acetylated histone 3 (K9/14) and 

isotype control.  Crosslinks were reversed and the DNA was purified for amplification with primers 

spanning the NFAT binding region at -280 bp through the 5’ region of the luciferase gene.  Results are 

presented as the average fold over unstimulated without E1A normalized to isotype control and are 

representative of two independent experiments ± SEM (* p<0.05). 
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The E1A 12S construct suppresses CTLA-4 transcription in primary CD4 cells.  

The previous experiments show our E1A wild-type and mutant constructs can impact an 

ectopic CTLA-4 promoter in the Jurkat cotransfection system, but our objective is to 

study the endogenous CTLA-4 promoter.  We next transfected E1A into normal primary 

CD4 T cells to observe the effect on CTLA-4 expression.  Using the Amaxa nucleofector 

system, 2 g each E1A vector or control plasmid was electroporated into freshly 

isolated CD4 cells.  After resting 36 h, cells were stimulated 4 h, the point at which 

CTLA-4 expression is at its peak.  By real-time PCR we then measured induction of 

CTLA-4 as compared to unstimulated control plasmid in each of the samples (Figure 

2.4a).  Similar to our findings with the luciferase assay, we detect a 52.9% reduction of 

CTLA-4 transcription with wild-type 12S E1A.  It is important to note the level of 

suppression in these experiments is limited to the transfection efficiency, which ranges 

from 40-60% in these samples by eGFP transfection.  When the p300-binding CR1 

region is mutated, CTLA-4 expression is recovered.  Contrary to the luciferase results, 

we also find expression is restored with the CR2 mutant. 

 As the goal of these studies is to find methods to specifically target CTLA-4 

expression, we also utilized these samples to measure expression of IL-2 (Figure 2.4b) 

and GAPDH (Figure 2.4c).  We find IL-2 levels are also reduced, by 71.3%, with the 

12S construct, indicating the effect is not specific to CTLA-4.  The repressive effect of 

the 12S construct is not global, however.  Expression of internal control gene GAPDH is 

unaffected by this vector, implying the effect may be more specific to induced T cell 

genes. 
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Figure 2.4 Transfection of E1A constructs into primary CD4 T cells.  10x10
6
 primary CD4 T cells 

were electroporated with 2 g each of the indicated E1A constructs or a vector control using the Amaxa 
system as described in Materials and Methods.  Cells were then cultured 36 h to allow expression of the 
constructs, followed by stimulation with PMA/A23187 for 3 h.  After RNA was isolated with Trizol, cDNA 
was synthesized as described in Materials and Methods.  qPCR was performed with primers specific to a) 
CTLA-4, b) IL-2 and c) GAPDH.   Results are the averages of 3 independent experiments, presented as 
the fold over an unstimulated sample ± SEM, normalized to B2M (*p<0.05).  
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NFAT1 binding precedes histone acetylation at the CTLA-4 promoter.  NFAT1 

nuclear translocation requires activation of the calcium-dependent cytoplasmic 

phosphatase calcineurin.  Cyclosporin A inhibits calcineurin, thus blocking NFAT1 and 

preventing transcriptional activation of NFAT1-dependent genes (12).  To determine the 

sequential order of NFAT1 binding and histone acetylation at the CTLA-4 promoter in 

primary cells, we evaluated the effect of NFAT1 blockade on levels of histone 3 acetyl 

9/14 by ChIP (Figure 2.5).  Freshly isolated PBMC were either untreated or treated with 

10 ng/mL cyclosporin.  Unstimulated samples were compared to cells stimulated for 2 h 

with PMA/A23187. 

 As we have previously observed detection of NFAT1 at the CTLA-4 promoter 

increased more than 3-fold after stimulation in untreated samples (Figure2.5a).  Addition 

of cyclosporin A inhibited NFAT1 binding; measurable levels were reduced to those of 

unstimulated cells in these samples.  When we assayed for acetylated histone 3, we 

again saw a 3-fold induction with stimulation alone.  Importantly, NFAT1 blockade also 

negatively impacted the level of histone acetylation, again diminishing detection to that 

of unstimulated samples.  As the cofactor p300 is not directly activated by calcineurin, 

these data suggest histone acetylation at the CTLA-4 proximal promoter is directly 

dependent on nuclear translocation of NFAT1. 
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Figure 2.5. ChIP assay analysis of cyclosporin-treated primary PBMC. Primary PBMC were isolated 

by Ficoll preparation as described in Materials and Methods.  10x10
6 
cells were either untreated or treated 

with 10 ng/mL CyA for 30 min, after which samples were split in half and either stimulated with 

PMA/A23187 for an additional 2 h or left unstimulated followed by formaldehyde crosslinking and 

shearing by sonication.  ChIP was performed as described in Materials and Methods with antibodies to a) 

NFAT1, b) acetylated histone 3 (K9/14) and isotype control.  Crosslinks were reversed and the DNA was 

purified for amplification with primers spanning the CTLA-4 NFAT binding region at -280 bp.  Results are 

presented as the average fold over unstimulated/untreated ± SEM normalized to isotype control and are 

representative of two independent experiments (*p<0.05). 
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The p300 inhibitor curcumin blocks CTLA-4 transcription in CD4 T cells.  Our 

previous experiments have shown E1A blocks histone acetylation at the CTLA-4 

promoter, but it is not clear which HAT is involved.  Curcumin has been used to 

specifically inhibit p300 (8).  To determine whether p300 plays a role, we treated 

primary CD4 T cells with increasing concentrations of curcumin and analyzed the 

samples for mRNA expression (Figure 2.6).  CTLA-4 transcription is repressed dose-

dependently, with a significant reduction starting at 20 M (Figure 2.6a).  To establish 

whether curcumin could serve as a CTLA-4-specific inhibitor, we measured IL-2 

transcript levels in the same samples (Figure 2.6b).  Unfortunately, IL-2 expression is 

also abrogated implying curcumin may inhibit multiple aspects of the adaptive immune 

system.  The concentrations needed to suppress expression were similar for both IL-2 

and CTLA-4. 

 To be sure transcription inhibition was not global we also measured mRNA levels 

of internal control GAPDH (Figure 2.6c).  The 20 M concentration actually caused an 

increase in GAPDH expression, which was further elevated at 80 M.  The GAPDH 

gene does not appear to be regulated by p300 and may actually benefit from p300 

inhibition, as we observed a dose dependent increase in GAPDH mRNA. 
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Figure 2.6 Analysis of mRNA after p300 inhibition with curcumin.  Primary CD4 T cells were isolated 
as previously described.  5x10

6
 cells were pre-treated for 1 h with the indicated concentration of curcumin 

with 0 M serving as a DMSO vehicle control, then stimulated for 3 h with PMA/A23187.  RNA was 
isolated with Trizol and cDNA was synthesized as described in Materials and Methods.  Expression of a) 
CTLA-4, b) IL-2 and c) GAPDH was measured by qPCR as described in Materials and Methods using 
specific primers and B2M as the internal control.  Results are presented as fold over an unstimulated 
sample and are the averages of experiments with 3 independent donors ± SEM (*p<0.05, **p<0.005).   
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High concentrations of garcinol suppress CTLA-4 expression.  The HAT inhibitor 

garcinol can block both PCAF and p300, with a higher affinity for PCAF (7).  We treated 

primary CD4 T cells with increasing concentrations of garcinol and measured the effect 

on mRNA expression as we did with curcumin in Figure 2.6.  The concentrations 

necessary to block CTLA-4 were far higher for garcinol than curcumin (Figure 2.7a).  

We did not detect a significant decrease until 80 M.  IL-2 expression followed the same 

dose response and was also significantly suppressed with the 80 M treatment (Figure 

2.7b).  Again similar to curcumin we found an increase in GAPDH with 80 M garcinol 

(Figure 2.7c). 
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Figure 2.7.  Garcinol modulates mRNA expression in primary CD4 T cells.  Primary CD4 T cells were 

isolated as previously described.  5x10
6
 cells were pre-treated for 1 h with the indicated concentration of 

garcinol with 0 M serving as a DMSO vehicle control, then stimulated for 3 h with PMA/A23187.  RNA 

was isolated with Trizol and cDNA was synthesized as described in Materials and Methods.  Expression 

of a) CTLA-4, b) IL-2 and c) GAPDH was measured by qPCR as described in Materials and Methods 

using specific primers and B2M as the internal control.  Results are presented as fold over an 

unstimulated sample and are the averages ± SEM of experiments with 3 independent donors (*p<0.05). 
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DISCUSSION 

 

 The work within this chapter has not only identified an NFAT1-dependent 

cofactor involved in histone acetylation at the CTLA-4 promoter, but through the use of 

E1A proteins we show this method can be a valuable tool for studying gene regulation.  

Our initial studies used cotransfection of luciferase CTLA-4 constructs with wild-type 

and mutant E1A 12S plasmids in the leukemia cell line Jurkat.  We show that the CR1 

region, but not CR2, is capable of inhibiting CTLA-4 promoter induction.  In these 

experiments, we found the wild-type E1A 12S protein blocked luciferase activity with as 

little as 380 bp of the promoter.  As previously reported, the 264 bp promoter construct 

was inactive, and addition of E1A proteins had no effect on this region.  Use of larger 

promoter constructs did not improve luciferase production over the 380 bp alone, and 

again both the wild-type E1A and CR2 constructs abrogate promoter activity in each of 

these plasmids.  These data suggest the involved cofactor binds to CR1 and may be 

directly interacting with NFAT1. 

 During normal activation of the CTLA-4 gene, acetylation of histone 3 occurs at 

lysines 9 and 14.  Analysis utilizing chromatin immunoprecipitation (ChIP) assays in our 

Jurkat cotransfection model reveals that this histone acetylation does not occur in the 

presence of an intact CR1 region, implicating the potential involvement of HATs p300 or 

PCAF, which both interact with CR1.  Interestingly, we find acetylated histone interacts 

with the exogenous promoter even in the absence of stimulation in Jurkat cells which 

may be an artifact of our model.  Addition of 12S and CR2 E1A eliminates acetylated 

histone 3 detection in both unstimulated and stimulated cotransfected Jurkats.  When 
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we immunoprecipitate with antibodies specific to NFAT1, we find stimulation leads to 

increased NFAT1 binding.  Unlike histone acetylation, NFAT1 interaction with the CTLA-

4 promoter is not affected by E1A. 

 Given E1A suppresses histone acetylation but does not block NFAT1 interaction 

with an ectopic CTLA-4 promoter we wanted to evaluate whether histone acetylation 

would require NFAT1 at the endogenous promoter in primary cells.  Upon induction by 

PMA/A23187 stimulation, we find both NFAT1 and acetylated histone localize to the 

proximal CTLA-4 promoter.  By pre-treating cells with CyA we block NFAT1 nuclear 

translocation as evidenced by our ChIP results.  Under these conditions we also find 

histone acetylation is lost.  CyA has no direct effect on HATs, and therefore these 

results provide evidence NFAT1 binding precedes histone acetylation at the CTLA-4 

promoter.   

 Similar to our Jurkat cotransfection experiments, the wild-type 12S E1A construct 

is also capable of inhibiting CTLA-4 transcription in primary CD4 T cells.  The 12S 

construct reduced expression to approximately 50% of the control sample.  

Unexpectedly, mutation of either the CR1 or CR2 site revived CTLA-4 induction, which 

may indicate the involved cofactor is binding to both regions.  Another interesting finding 

is that the 12S E1A protein does not explicitly inhibit CTLA-4 transcription; it also 

suppresses IL-2.   Our objective in these studies is to isolate pathways specific to 

CTLA-4 in order to modulate the immune response.  The suppression of IL-2 in samples 

electroporated with the 12S E1A plasmid suggests the cofactor may be involved in 

expression of both activating and regulatory T cell genes.  The 12S construct does not 
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affect global gene expression as evidenced by transcription of GAPDH which was not 

suppressed with any of the E1A proteins. 

 E1A is known to bind histone acetyltransferases, but it also interacts with a 

variety of additional proteins.  We next targeted histone acetyltransferases with the 

specific inhibitors curcumin and garcinol to determine whether the effects of E1A 

transfection were due to p300/CBP or PCAF activity.  We are able to block transcription 

of CTLA-4 and demonstrate a role for p300 in CTLA-4 activation with curcumin and 

garcinol.  Curcumin was a far more potent CTLA-4 inhibitor in these experiments.  Both 

of these compounds inhibit HAT activity, but their dissimilar chemical structures lead to 

distinct binding affinities for HAT family members.  Curcumin was shown to selectively 

block p300/CBP without impacting PCAF (8).  Conversely, garcinol shows activity 

against p300 but has a higher potency toward PCAF (7).  As curcumin is more effective 

at suppressing CTLA-4 transcription, our data suggests p300 may be responsible for 

acetylation at the CTLA-4 promoter.   

 We also find inhibition of IL-2 transcription with curcumin and garcinol at 

equivalent concentrations as required for CTLA-4 suppression.  This again provides 

evidence that the same cofactor may be necessary for transcription of both genes.  An 

earlier study using E1A constructs found p300 was important for IL-5 expression (65).  

Both garcinol and curcumin have been shown to reduce inflammation (52, 84).  Taken 

together with our results, p300 may be a common cofactor for a variety of T cell 

cytokines.  The work in this chapter provides evidence that histone acetylation is 

necessary for CTLA-4 expression and that targeting the cofactor p300 is an effective 

method of inhibiting CTLA-4 transcription.   
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CHAPTER 3 

Topoisomerase I Modulates a Subset of Induced T Cell Genes, Including CTLA-4 

 

ABSTRACT 

 

 Upon activation, T cells immediately initiate transcription of immune modulating 

genes to appropriately direct the immune response.  The general role of DNA 

conformation in transcription, including the involvement of topoisomerase enzymes, has 

been previously explored, but whether this mechanism is specifically involved in 

induced genes remains unclear.  In effector T cells, CTLA-4 transcription is rapidly 

activated after stimulation.  Here we show topoisomerase I but not II is necessary for 

transcription of CTLA-4 and a subset of induced genes.   

 By use of the topoisomerase I-specific inhibitors camptothecin and SN-38, we 

find a dose-dependent reduction in CTLA-4 mRNA when enzymatic activity is blocked.  

CTLA-4 intracellular and extracellular protein levels are also diminished with 

topoisomerase I inhibition.  We measured expression of a panel of induced genes and 

found all of them except TNF- were also inhibited at the transcript and protein levels.  

The topoisomerase II inhibitor etoposide had no effect on induced gene expression, 

demonstrating these results are specific to topoisomerase I.  When constitutive, internal 

control genes actin and GAPDH were analyzed, these inhibitors did not modulate 

expression.  Finally, we compared camptothecin to cyclosporin A, an inhibitor of NFAT1 

nuclear translocation used clinically for immune suppression.  The collection of genes 
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affected by CyA differs from camptothecin, indicating there may be circumstances 

where use of topoisomerase I inhibition is a more ideal method of immune suppression. 
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INTRODUCTION 

 

 The previous chapter explored DNA conformation at the level of chromatin 

organization through histone modifications.  We next wanted to investigate whether 

supercoiling could play a role in CTLA-4 transcriptional regulation.  The DNA double 

helix created by base pairing is further compacted by supercoiling, a process that is 

regulated by enzymes known as gyrases or topoisomerases.  During replication, the two 

strands of DNA are unzipped by a helicase at the replication fork, resulting in highly 

coiled DNA upstream of the polymerase machinery.  Topoisomerases work to either 

relax positive supercoils or introduce negative supercoils to relieve the tension caused 

by helicase activity.   

 DNA gyrase, a prokaryotic topoisomerase, was first discovered in E. coli in 1971 

(121).  Since then, topoisomerases have been identified in eukaryotes, as well.  Aside 

from replication, these proteins have been implicated in both recombination and 

transcription (122).  The majority of evidence into how topoisomerases regulate 

transcription has been limited to bacteria and yeast studies, as well as in vitro systems 

with purified proteins and DNA.  Whether higher eukaryotes require topoisomerase 

activity for transcription is still poorly understood.  Analysis of eukaryotic cells has 

demonstrated topo I may be involved in transcriptional elongation or mRNA splicing 

(20). 

 There are two main classes of topoisomerases which are differentiated by their 

mechanisms (24).  The ATP-independent type I topoisomerases (topo I) nick one strand 

of the DNA and relax supercoils before religation.  This changes the linking number, or 
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number of times the two strands wind around each other, by single digits.  Type II 

topoisomerases (topo II) require ATP and function by cutting both DNA strands to 

change the linking number in increments of two.   

 Inhibitors to topoisomerases have proven effective in treatment of cancer due to 

the high replication rates of tumor cells (120).  Small molecule inhibitors to topo I and II 

can either cause excess cleavage of DNA or prevent religation.  Topo II can also be 

inhibited by blocking ATPase activity.  In this chapter we will utilize etoposide, a topo II 

inhibitor, and derivatives of camptothecin, a topo I inhibitor.  Camptothecin is a natural 

compound found in the bark of a Chinese tree known as the “happy tree”.  Due to its low 

solubility, the analog irinotecan was developed.  Irinotecan naturally has very little effect 

on topo I until it is activated by hydrolysis into the metabolite SN-38, a potent topo I 

inhibitor.  Blockade of topo I or topo II with these compounds has been effective in 

apoptosis induction in proliferating cancer cells.  The objective of this chapter is to 

explore the role of topoisomerase enzymes in the rapid transcriptional induction of 

CTLA-4 and other T cell genes using the described chemical inhibitors. 
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RESULTS 

 

Inhibition of topo I, not II represses CTLA-4 mRNA expression.  To determine 

whether topoisomerases are involved in CTLA-4 transcription, we isolated primary CD4 

T cells and treated them with increasing concentrations of camptothecin and etoposide 

to inhibit topo I and II, respectively (Figure 3.1).  Cells were pre-treated for 1 h prior to 

stimulation to ensure the cells had adequately taken up the compounds.  We then 

stimulated the cells for 3 h to induce CTLA-4 to its maximum level, which was 55.5-fold 

(+/- 9.8) over unstimulated cells as the average of four donors we tested.  Compared to 

DMSO alone, camptothecin significantly reduces CTLA-4 expression dose-dependently.  

With 100nM expression is suppressed to 40-fold (+/- 10.2), and 10 M treatment 

reduces transcript to 10.2-fold (+/- 2.3) on average.  With the same concentrations of 

the topo II inhibitor etoposide, we do not detect a significant effect on CTLA-4 mRNA 

levels. 
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Figure 3.1.  Topo I inhibition with camptothecin suppresses CTLA-4 transcript.  Primary CD4 T cells 

were isolated and 5x10
6
 cells were treated with each of the indicated concentrations of camptothecin or 

etoposide for 1 h prior to stimulation with PMA/A23187 for 3 h.  Total RNA was isolated with Trizol, cDNA 

was synthesized and qPCR was performed as described in Materials and Methods with primers specific 

to CTLA-4.  Results were normalized to B2M and are presented as the average fold over unstimulated 

cells from four independent experiments ± SEM (*p<0.05). 
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Camptothecin does not induce apoptosis in primary CD4 T cells.  Camptothecin 

and its derivatives have been used to target profusely replicating tumor cells for 

apoptosis.  Based on the raw data of the internal control B2M from our dose curve in 

Figure 3.1, we were confident the resulting effects were not due to apoptosis in our 

primary cell system.  To verify this experimentally, we treated cells with 0, 0.1, 10 and 

100 M camptothecin as in Figure 3.1, stimulated the cells for 3 and 6 h with 

PMA/A23187 and measured apoptosis by annexin V/PI staining (Figure 3.2a).  We find 

overall apoptosis levels increase between stimulation for 3 and 6 h, but the addition of 

camptothecin does not boost cell death over DMSO.  Treatment with 100 M, a 10-fold 

increase over the highest concentration in our mRNA dose curve, also does not impact 

programmed cell death in primary CD4 T cells. 

 To determine the effect of camptothecin on proliferating cells, and as a positive 

control for our results in Figure 3.2a, we treated Jurkat T cells with 10 M camptothecin 

or DMSO for 6 h (Figure 3.2b).  With DMSO alone, less than 10% of cells are apoptotic.  

After 6 h with 10 M camptothecin, greater than 80% of cells are undergoing 

programmed death. 
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Figure 3.2.  Apoptosis does not increase in primary CD4 T cells transiently treated with 

camptothecin.  a) Primary CD4 T cells were isolated and treated with the indicated concentrations of 

camptothecin for 1 h, followed by stimulation for 3 or 6 h as denoted on the histograms.  10
5
 treated cells 

were stained with 1 L each of annexin V or PI and positive staining was measured by flow cytometry.  

Results are presented as histograms generated by FlowJo analysis and are representative of three 

independent experiments.  b) Jurkat T cells were plated in culture at 10
6
/mL and treated with 10 M 

camptothecin or an equivalent volume DMSO for 6 h, followed by staining and analysis as in (a).  

Presented results are representative of three independent experiments. 
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Topo I inhibition suppresses CTLA-4 but not constitutive internal control genes.  

Irinotecan is a more soluble analog of camptothecin, but its activity as a topo I inhibitor 

requires its hydrolysis into the metabolite SN-38.  In addition to camptothecin, we 

treated fresh primary CD4 T cells with irinotecan and SN-38 to determine the effect on 

transcription (Figure 3.3).  The calcineurin inhibitor cyclosporin A (CyA) was included as 

a control for CTLA-4 inhibition and etoposide demonstrates the specificity to topo I.  

CTLA-4 was suppressed with both camptothecin and SN-38, but not the inactive topo I 

inhibitor irinotecan (Figure 3.3a).  The topo I inhibitors repressed CTLA-4 expression to 

the same degree as CyA (p<0.05).  Etoposide again had no impact on CTLA-4 

expression. 

 Previous studies have suggested topoisomerase is necessary for the elongation 

phase of transcription (20), which would imply all genes would be affected by our 

inhibitors.  We next measured mRNA expression levels of NFAT1 (Figure 3.3b), Actin 

(Figure 3.3c) and GAPDH (Figure 3.3d).  We find the topoisomerase inhibitors have no 

effect on any of these three non-induced genes.  The fact that NFAT1 mRNA is 

unaffected by topo I inhibition supports that this enzyme directly modulates CTLA-4 

activation.   
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Figure 3.3. SN-38 and camptothecin inhibit CTLA-4 induction but not constitutive genes.  Primary 

CD4 T cells were isolated and 5x106 cells were treated with 10 g/mL CyA or M camptothecin, SN-

38, irinotecan, etoposide or DMSO as indicated for 1 h prior to stimulation with PMA/A23187 for 3 h.  

Total RNA was isolated with Trizol and cDNA was synthesized as detailed in Materials and Methods.  

Samples were analyzed by qPCR using primer sets specific to a) CTLA-4, b) NFAT1, c) Actin or d) 

GAPDH with normalization to B2M.  Results are the averages of three independent experiments ± SEM 

and represent the fold increase over an unstimulated sample (*p<0.05).  

  



95 
 

 

CTLA-4 protein expression is reduced with topo I inhibitors.  We find that CTLA-4 

transcript induction decreases dramatically but incompletely with topo I inhibitors, so we 

next measured protein expression in primary CD4 T cells to determine the degree of 

inhibition at this level (Figure 3.4).  By immunoblot with whole cell extracts we find 

strong induction of CTLA-4 with stimulation alone.  Addition of CyA blocks expression 

almost entirely, while camptothecin inhibits CTLA-4 to a slightly lesser degree.  

Treatment with etoposide has no effect on CTLA-4 and irinotecan also does not impede 

expression. 

 As a more quantitative method, we next assayed cells for surface (Figure 3.5a) 

and intracellular (Figure 3.5b) CTLA-4 expression by flow cytometry.  Consistent with 

the immunoblot results, CTLA-4 protein is minimal in unstimulated cells at both the 

intracellular and extracellular level.  Stimulation induces expression, which can be 

blocked with CyA or the topo I inhibitors camptothecin and SN-38.  The topo I inhibitors 

were slightly less efficient at suppressing CTLA-4 than CyA.  Etoposide and irinotecan 

do not impede either intracellular or surface CTLA-4.  

 To establish whether topo I inhibition affects NFAT1 activation or overall protein 

levels we also probed our immunoblot membrane with an antibody specific to NFAT1 

(Figure 3.4).  Two species of NFAT1 exist, a higher molecular weight band for the 

phosphorylated, inactive form and a lower band for the dephosphorylated protein.  As 

expected, the unstimulated sample has a higher band than the stimulated sample.  CyA 

treatment not only blocks dephosphorylation, but also diminishes total NFAT1 protein.  

The topoisomerase inhibitors do not eliminate NFAT1, nor do they impede 

dephosphorylation.  
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Figure 3.4.  Protein analysis of CD4 T cells treated with topoisomerase inhibitors by immunoblot.  

Primary CD4 T cells were isolated and treated with 10 g/mL CyA or 10 M camptothecin, etoposide or 

irinotecan as indicated for 1 h prior to stimulation for 3 h with PMA/A23187.  Total cell lysate was isolated 

by lysis with RIPA buffer as described in Materials and Methods.  Proteins were quantified and 30g of 

each sample was separated on a 10% acrylamide gel, transferred to PVDF and probed with antibodies 

specific to CTLA-4 or NFAT1 as detailed in Materials and Methods.  Actin serves as a loading control.  

These results are representative of three independent experiments. 
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Figure 3.5.  Flow cytometric analysis of CTLA-4 expression in CD4 T cells treated with 

topoisomerase inhibitors.  Primary CD4 T cells were isolated and treated with 10 g/mL CyA or 10 M 

camptothecin, etoposide or irinotecan as indicated for 1 h prior to stimulation for 3 h with PMA/A23187.  

a) 10
6
 cells were stained with 1 L PE-conjugated CTLA-4 antibody and analyzed by flow cytometry as 

described in Materials and Methods.  b) 10
6
 cells were fixed/permeablized and stained with 1 L PE-

conjugated CTLA-4 antibody followed by analysis by flow cytometry for intracellular CTLA-4 as described 

in Materials and Methods.  Analysis of the results from (a) and (b) was conducted with FlowJo and the 

presented histograms are representative of 3 independent experiments. 
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Topo I inhibitors repress many but not all induced T cell genes.  To determine 

whether topo I inhibition exclusively represses CTLA-4 transcription we measured 

mRNA expression of additional induced T cell genes using the samples from Figure 3.6.  

We find IL-2 (Figure 3.6a), IFN- (Figure 3.6b) and IL-4 (Figure 3.6c) follow the same 

trend as CTLA-4, where both camptothecin and SN-38 potently inhibit transcription to 

nearly the same degree as CyA.  Interestingly, TNF- is unaffected by topo I inhibition, 

while CyA blocks expression (Figure 3.6d).  Conversely, the p50 subunit of NFB is not 

affected by CyA but induction is repressed with topo I inhibitors.  As with each of the 

previously measured transcripts, expression levels of all of these genes are unchanged 

with etoposide or irinotecan. 

 

Inhibition of topo I modulates cytokine secretion in primary CD4 T cells.  Given the 

transcript levels of many of the cytokines were reduced, we wanted to evaluate the 

effect of topo I inhibition on secreted protein levels.  We utilized a flow cytometry based 

assay to measure cytokine levels in culture media of treated and stimulated cells.  

Similar to an ELISA, this system uses capture beads to bind and detect each antigen 

which are then analyzed by flow.  Protein concentrations are then calculated based on a 

standard curve of antigen at known concentrations.  Using this assay, we find the 

secreted proteins follow the expression trend we detected for transcript levels (Figure 

3.7).  As expected, irinotecan and etoposide did not impact protein secretion.  
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Figure 3.6. SN-38 and camptothecin inhibit many but not all induced genes.  Primary CD4 T cells 

were isolated and 5x10
6
 cells were treated with 10 g/mL CyA or M camptothecin, SN-38, irinotecan, 

etoposide or DMSO as indicated for 1 h prior to stimulation with PMA/A23187 for 3 h.  Total RNA was 

isolated with Trizol and cDNA was synthesized as detailed in Materials and Methods.  Samples were 

analyzed by qPCR using primer sets specific to a) IL-2, b) IFN-, c) IL-4, d) TNF- or e) NFB p50with 

normalization to B2M.  Results are the averages of three independent experiments ± SEM and represent 

the fold increase over an unstimulated sample (*p<0.05).  

  



100 
 

 

 
 
Figure 3.7.  Cytokine secretion is suppressed with topo I inhibition.  Primary CD4 T cells were 

isolated and plated at 2x10
6
 cells/mL.  Samples were treated with 10 g/mL CyA or M camptothecin, 

SN-38, irinotecan, etoposide or DMSO as indicated for 1 h prior to stimulation with PMA/A23187 for 3 or 6 

h.  Culture supernatant was collected and analyzed by cytometric bead array as described in Materials 

and Methods.   Samples were quantified based on a standard curve of known antigen concentrations.  

Presented results are the averages of four independent experiments ± SEM (*p<0.05, **p<0.005). 
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DISCUSSION 

 

 This chapter has identified a novel role for topoisomerases in the rapid induction 

of certain T cell genes including CTLA-4.  It was previously thought that topoisomerase 

enzymes may take part in transcription, but compelling evidence has remained elusive.  

We show here that involvement of topoisomerase hinges on the nature of the gene in 

question.  Our results suggest constitutive genes do not require topological 

modifications to the DNA, while a certain class of induced genes utilizes DNA 

conformation as a means of regulation.  Through use of specific inhibitors, we find topo I 

activity, but not topo II, is necessary for expression of these genes.  Manipulation of this 

pathway can be a valuable tool for immune regulation, particularly given the group of 

genes suppressed with topo I inhibitors differs from those blocked by CyA. 

 Primary T cells present a convenient opportunity in studying topoisomerase 

function.  Cells that are freshly isolated are quiescent, requiring stimulation to promote 

cell proliferation.  Most previous studies tried to demonstrate a role for topoisomerase in 

transcription using cell lines.  This is problematic because cell lines freely replicate, 

making them targets for apoptosis when topoisomerases are inhibited.  High 

concentrations were required to see any effect on transcription (40), which was not the 

case in our studies.  The alternative was to use an artificial in vitro system with purified 

proteins and DNA, which has shown topo I cooperates at the site of transcription 

initiation, but it  does not represent an accurate depiction of what normally occurs within 

a cell and in vivo studies have had a difficult time reproducing the results (103).  Aside 

from the issue of replication and apoptosis clouding results, part of the obscurity may be 
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due to the fact that constitutive genes have been the focus of these studies, where we 

find only induced genes require topo I.  Taken together, we have shown primary T cells 

are an ideal system for studying topoisomerase in transcription due to the lack of 

replication and the abundance of inducible genes. 

 Aside from initiation, topoisomerase has also been implicated in both the 

elongation phase of transcription, particularly for longer transcripts, as well as the 

processing of mRNA by splicing (20).  Our results suggest elongation in general does 

not involve topo I since the constitutive genes we examined were not affected by 

inhibitors.  We examined NFAT1 expression, which has a long primary transcript of 

roughly 150 kbp with multiple introns.  Not only is the transcript unaffected but protein 

levels also do not change with camptothecin.  From these data we can conclude that 

elongation, even for longer transcripts, does not always depend on topoisomerase 

activity.  Topoisomerase involvement in splicing is also unlikely given our results with 

NFAT1, which has multiple splice sites.  We do not know the exact mechanism of action 

for induced genes.  It is plausible that the elongation phase of transcription requires 

topoisomerase for these genes but further experiments will be necessary to establish 

this conclusively.  Another possibility is that the conformation of DNA may be too 

constrained to allow necessary transcription factors or the RNA polymerase complex to 

bind for transcription initiation. 

 In addition to small molecule inhibitors, we sought to deplete topo I with siRNA.  

As it can be technically challenging to transfect primary T cells with high enough 

efficiency, our efforts did not result in adequate reduction of topo I protein and we did 

not detect any change in induced gene expression.  Instead we used two related but 
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chemically distinct topo I inhibitors, camptothecin and SN-38, to verify the specificity of 

our results. 

 Mondal et al demonstrated topo II is also involved in transcription (75).  As both 

topo I and II have functions in replication in prokaryotes, yeast and higher eukaryotes, it 

would not be surprising to find overlapping roles in transcription also.  We used 

etoposide, a potent topo II inhibitor that was shown by Mondal et al to inhibit chromatin-

associated DNA transcription in vitro and detected no reduction in transcription for any 

of the genes we measured. 

 The topo I inhibitor irinotecan is an improvement over camptothecin due to its 

higher solubility in aqueous solutions.  This compound itself has 100-fold less inhibitory 

ability than its hydrolyzed metabolite SN-38.  Bioactivation of irinotecan into SN-38 

requires the activity of carboxylesterases (104).  When we treat our primary CD4 T cells 

with irinotecan we do not observe any effect on transcription, though an equivalent 

molar concentration of SN-38 inhibits a select group of induced genes.  This implies 

primary T cells do not have the necessary enzymes to convert irinotecan into SN-38, an 

observation which needs to be recognized for in vitro studies. 

 As expected, when transcript levels of the cytokines IL-2, IFN- and IL-4 are 

blocked by topo I inhibition, we detect a decrease in protein secretion in the culture 

media.  The inhibitor does not have an effect on the secretory pathway, though, based 

on our results with TNF-.  This gene is neither altered at the transcript level or in its 

protein secretion by topo I inhibition.  This data indicates topoisomerase inhibition only 

represses a particular subset of induced genes and also does not impact cellular protein 

processing. 
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 When we compare T cell gene inhibition with CyA to topo I inhibitors we find 

these compounds suppress different sets of genes.  CyA is used for transplant patients 

to suppress the immune response and prevent graft rejection.  It has also shown 

efficacy in the treatment of autoimmunity.  The robust suppression of immune activation 

with CyA leaves patients susceptible to infection.  Though topo I inhibitors have been 

used in cancer therapy, their capacity in immune regulation has not been investigated.  

We show many adaptive immunity cytokines are inhibited while the innate immunity 

cytokine TNF- remains inducible.  More work will be required, but if topo I inhibitors 

can be used to dampen adaptive immunity without hindering the innate response they 

could become a valuable tool for autoimmunity and transplant with a reduced risk of 

infection. 
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GENERAL CONCLUSIONS 

 

 A delicate balance exists in achieving sufficient activation of the immune system 

without allowing the response to continue unrestrained.  Many current cancer therapies 

strive to enhance immunity through use of vaccines and pro-inflammatory cytokines in 

an effort to clear malignancy.  Recently immune regulatory pathways have become 

therapeutic targets with the goal of obstructing immune suppression, thus enhancing 

activation.  For example, monoclonal antibodies to NK cell inhibitory KIR molecules as 

well as T cell regulators PD-1 and CTLA-4 have been investigated experimentally and in 

clinical trials with considerable promise.  In the case of CTLA-4, antibody blockade has 

been a successful cancer treatment, but rampant autoimmunity is all too commonly a 

life threatening side effect.  CTLA-4 is constitutively expressed on the surface of Tregs 

and is also induced in effector T cells upon activation.  The work of this dissertation has 

focused on the transcriptional regulation of induced CTLA-4 with the intent to identify 

pathways to specifically modulate CTLA-4 expression in effector T cells.  Ideally down 

regulation of this gene in these cells would lead to an enhanced immune reaction to 

tumor with reduced risk of autoimmune side effects. 

 Conversely, for patients with autoimmunity it would be valuable to augment 

CTLA-4 expression to quell the uncontrolled immune response.  Similar challenges exist 

for transplant patients where the goal is to reduce the likelihood of graft rejection.  

Current therapies block inflammatory cytokines with monoclonal antibodies and 

inhibitors to transcription factors such as CyA, which blocks NFAT nuclear translocation.  

A CTLA-4 immunoglobulin fusion protein has also shown promise in the treatment of 
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rheumatoid arthritis, demonstrating the potency of CTLA-4 in an autoimmune setting.  

By increasing CTLA-4 cell surface expression through modulation of transcription, we 

may be able to attain more effective suppression of the overactive immune system. 

 We have shown CTLA-4 is elevated in malignant cells of patients with CTCL both 

here and previously (126), which presents an interesting opportunity to investigate how 

these cells differentially regulate expression of this gene.  Not only could the pathways 

used by CTCL cells be targeted to decrease CTLA-4 expression and hopefully revive 

the anti-tumor immune response, but we can also learn from how these cells augment 

CTLA-4 transcription and perhaps exploit this mechanism for treatment of both 

autoimmunity and organ and tissue transplant.  Using CTCL as a guide, we have 

identified a novel method for CTLA-4 regulation where proteasome inhibition leads to 

elevated expression.   

 Our initial experiments found an increase in polyubiquitinated proteins in cell 

lysates from CTCL patients.  The proficiency of the 26S proteasome pathway had not 

previously been investigated in CTCL.  Our ubiquitin results suggest either improper 

function of a component within the proteasome pathway or excessive accumulation of 

extraneous or misfolded proteins.  Due to its involvement in immune monitoring, the 

proteasome is targeted by viruses including Epstein-Barr to avoid recognition by 

cytotoxic T cells (32).  CTCL may be functioning in a similar manner, but further 

experiments will be required to determine this.  We isolated the single entity of 

proteasome dysfunction by using specific inhibitors in normal CD4 T cells and found 

that this caused an increase in CTLA-4 transcription.  We identified GATA3 as a 

necessary factor in augmentation of CTLA-4 in the presence of proteasome inhibitors, 
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and this transcription factor is also elevated in CTCL.  Further experiments will be 

required to determine whether GATA3 may be responsible for the CTLA-4 increase we 

observe in CTCL.  If this is the case, GATA3 could prove to be a valuable therapeutic 

target. 

 Within this work and in combination with our previous study we have established 

NFAT1 and GATA3 are important transcription factors that promote CTLA-4 induction 

(41).  Our data also suggests NFB does not contribute to or suppress CTLA-4 

expression.  GATA3 may be involved only under specific circumstances while NFAT1 is 

a requirement for CTLA-4 transcription.  We were not able to identify a role for GATA3 

in CTLA-4 expression in the absence of proteasome inhibitors, though published work 

by van Hamburg, et al shows higher CTLA-4 in a GATA3 over-expressing mouse model 

(115).  Additional expression vector studies with longer term GATA3 overexpression 

may be a better system for human primary CD4 T cells, but from our transient data it 

does not appear CTLA-4 is enhanced simply with elevated GATA3 protein.  Specific 

signaling may also be required. 

 Our kinase inhibitor results suggest the p38 pathway is responsible for GATA3 

phosphorylation and this pathway is also activated by proteasome inhibition.  This may 

in part explain why addition of GATA3 alone does not increase CTLA-4.  It may also 

help explain our sorted cell data where cells expressing GATA3 transcript were not 

destined to express CTLA-4.  We did not evaluate kinase activity in these samples, 

which could be an important future experiment.  Altogether, these data provide evidence 

that the p38 pathway may be a valuable therapeutic target.  We show IFN- expression 

is unaffected, while CTLA-4 and Th2 cytokine IL-4 are both suppressed with p38 
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inhibition.  Both IL-4 and CTLA-4 behave similarly in these experiments, again 

suggesting CTLA-4 is a Th2-associated gene.  Treatment with SB203580 or an 

alternative compound could support a pro-inflammatory immune response, which would 

be more valuable with cancer therapies. 

 Aside from the impact on CTLA-4 expression, it is important to note proteasome 

inhibition, through its increase in the Th2 transcription factor GATA3 and blockade of 

pro-inflammatory NFB, can promote a Th2 phenotype.  We measure a decrease in 

transcription of IFN- while IL-4 levels rise.  Bortezomib has more recently been used for 

GVHD treatment and prevention (107), but the mechanism behind this effect remains 

unclear.  Our results shed light on the shift from Th1 to Th2 that bortezomib can induce, 

which in addition to increased CTLA-4 could account for the protective phenotype 

created by bortezomib to treat GVHD.  Other inflammatory diseases could benefit from 

bortezomib, as well, but further studies will be necessary.  Currently clinical trials are 

focused on using this drug to treat a variety of malignancies, but its influence on the 

immune response should also be exploited. 

 As mentioned previously, this work has focused on induced CTLA-4 and not the 

constitutive expression found in Tregs.  FoxP3 is the most consistent marker for Tregs 

currently known.  In the case of proteasome inhibition, we find FoxP3 protein levels are 

depleted in the CD4 population, indicating the CTLA-4 we measure is strictly expressed 

on effector T cells.  This is important for our mechanistic studies, but it also has 

implications for understanding regulation of Tregs.  It is unclear how proteasome 

inhibition leads to a reduction in FoxP3 or if this could be an efficient mechanism of Treg 
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depletion.  Further experiments including in vivo analysis would be valuable to 

determine the effects of proteasome inhibition on other immune cell types. 

 Aside from transcription factors, epigenetic modification in the form of histone 

acetylation is necessary to induce CTLA-4 expression, as well.  This may serve to open 

the chromatin conformation to allow transcriptional machinery to access the promoter.  

We find NFAT1 binding precedes and is required for histone acetylation, suggesting the 

HAT cofactor may interact directly with NFAT1.  From our data we can infer p300 is 

likely the HAT responsible for acetylation at the CTLA-4 promoter.  Interestingly, our 

E1A and inhibitor experiments affected CTLA-4 and IL-2 in a similar manner.  A 

previous report found p300 functions at the IL-5 promoter, as well (65).  These and 

other induced T cell genes, though different in function, may share key steps in their 

activation.  If HAT activity is dependent on transcription factor binding for these genes 

as it is for CTLA-4, the ultimate regulator may be whether transcription factors are able 

to access the promoter. 

 In addition to packaging of genomic DNA into chromatin by its wrapping around 

nucleosomes, the actual topology of the DNA can also be modified to regulate 

transcription of certain genes.  In humans, topoisomerases have only loosely been 

associated with transcription, though stronger evidence has been reported for 

prokaryotes and yeast.  We have shown here that transcription of constitutive genes is 

not impacted by topoisomerase inhibition in primary CD4 T cells, while induced genes 

require topo I activity.  Under normal circumstances T cells are in a quiescent state until 

they are stimulated.  Upon T cell receptor engagement the immune response is quickly 

activated to clear the responsible pathogen.  A cascade of kinase signaling as well as 
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calcium influx ultimately leads to the activation of transcription factors and production of 

a repertoire of cytokines and chemokines to direct the immune response appropriately 

for the type of pathogen involved.  Though the activation of transcription factors plays a 

critical role in the instantaneous induction of many of these genes, we questioned 

whether the degree of supercoiling in the DNA could also be involved.  Resting T cells 

provide an excellent model for these experiments because in addition to constitutively 

active genes, they can be stimulated to express many inducible genes.  Our results 

using specific inhibitors in vivo define a novel mechanism for topo I, where only a 

distinct subset of CD4 T cell genes, including CTLA-4, requires topoisomerase activity.  

As these data support that topo I is not utilized globally for transcription, it is our 

hypothesis that induction of these genes requires relaxation of the DNA to rapidly 

initiate expression.  Further experiments will be valuable in determining the exact 

mechanism for topoisomerase at these promoters. 

 Inhibitors to both topo I and II are used clinically in cancer therapies due to their 

increased cytotoxicity to highly proliferant tumor cells.  Our results provide insight to 

immune capabilities in the presence of these compounds.   Topo II inhibitors may be 

more favorable therapeutically as they target replicating cells without having an impact 

on the immune system’s cytokine induction.  The use of topo I inhibitors may impede 

the immune response and reduce the rate of tumor clearance by suppressing critical 

immune signaling.  Alternatively, the use of topo I inhibitors to modulate the immune 

response for autoimmunity and transplant should be investigated.  The panel of genes 

affected by topo I inhibitors varies from those blocked by CyA.  As a result it should be 
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explored whether compounds directed at topo I provide more benefit than current 

therapies for immune suppression. 

 This dissertation has focused on mechanisms regulating CTLA-4 transcription.  A 

2004 study found CTLA-4 was internalized in endosomes in T cell clones and only after 

stimulation would the protein bud to the cell surface (53).  They report that CTLA-4 is 

pre-formed in the T cell lines they developed, which suggests trafficking is the chief 

mechanism controlling cell surface expression.  As previously mentioned, their model 

uses T cells that are expanded with IL-2 and CD3 antibody, thus activating the cells.  

Though intracellular trafficking is an important component of CTLA-4 regulation, our 

results demonstrate CTLA-4 is not present at considerable levels in freshly isolated 

unstimulated T cells.  This work has utilized primary, resting T cells to study CTLA-4.  

We find by immunoblot and intracellular flow cytometry that baseline levels of CTLA-4 

protein are nearly undetectable.  Given we did not deplete Tregs from our CD4 T cell 

population it is plausible the CTLA-4 we do find in our unstimulated samples is from 

constitutive expression within the Treg subset but additional experiments would be 

necessary to support this.  It is from our data that we conclude transcription induction is 

the fundamental switch determining CTLA-4 expression in effector CD4 T cells. 

 Our goal is to find pathways unique to CTLA-4 transcription that can be exploited 

to modulate the immune response.  Through the use of bortezomib we are able to 

increase both CTLA-4 mRNA and surface expression to ultimately suppress T cell 

proliferation in a CTLA-4-dependent manner.  These results provide direct evidence that 

simply altering CTLA-4 transcription is sufficient to modify the immune response.  We 

have defined three distinct levels of CTLA-4 transcriptional regulation which could be 
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useful targets to adjust T cell activity accordingly for a variety of immune-mediated 

diseases.  Though histone acetylation and topo I involvement did not prove specific to 

CTLA-4, they can be manipulated to control the immune response.  Our proteasome 

inhibition results suggest GATA3 may be a key component that would be specific to 

CTLA-4 and the Th2 phenotype without affecting the Th1 response.  Through use of 

proteasome inhibitors or compounds specifically directed at GATA3 or its activation it 

may be possible to guide T cell activity to be active or suppressive.  The discussed 

transcriptional mechanisms should be investigated further for their use in autoimmune, 

transplant and cancer therapies.  
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 Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a T cell surface protein that is 

homologous to CD28 and binds to the B7 family of ligands.  Unlike CD28, CTLA-4 

interaction transmits a negative signal in T cells, leading to suppression of proliferation.  

CTLA-4 is constitutively expressed on regulatory T cells (Tregs) but is also inducible in 

effector T cells.  The mechanisms driving transcriptional regulation of CTLA-4 are poorly 

understood.  Our previous work identified a bona fide NFAT1 binding site in the 

proximal promoter for effector T cells.  In addition, we found histone acetylation 

occurred after stimulation. 

 As a result of its role in suppressing T cell proliferation, CTLA-4 is important for 

regulation of T cell responses.  CTLA-4-immunoglobulin fusion proteins have shown 

efficacy to quell the overactive immune system in various types of autoimmune 

diseases.  Alternatively, blocking antibodies to CTLA-4 have been used in cancer 

therapies to boost the anti-tumor immune response.  Malignant cells of cutaneous T cell 

lymphoma (CTCL) express elevated levels of CTLA-4, which may contribute to reduced 
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tumor immunity as the disease progresses.  The objective of this work was to identify 

mechanisms of transcriptional regulation of CTLA-4 to better understand how this gene 

can be modulated to potentially cater the immune response for a variety of immune-

mediated diseases. 

 The major findings of this work include a mechanism by which proteasome 

inhibition augments CTLA-4 transcription in normal primary human CD4 T cells.  The 

Th2 associated transcription factor GATA3 is both elevated and activated by 

phosphorylation after treatment with the proteasome inhibitor bortezomib, which in turn 

leads to CTLA-4 transcriptional activation in primary CD4 T cells.  This finding may in 

part explain the increase in CTLA-4 found in CTCL, where GATA3 is also more 

abundant, particularly in its phosphorylated state.  The increased CTLA-4 in our primary 

cell model is capable of suppressing T cell proliferation, demonstrating the potency of 

transcriptional modulation of this gene.  Additionally we explored epigenetic and 

topological modifications that occur for CTLA-4 activation.  We found the histone 

acetyltransferases p300 is responsible for histone 3 acetylation at the CTLA-4 promoter, 

and its activity is required for CTLA-4 transcription.  We also discovered a previously 

undiscovered role for topoisomerase I in expression of a variety of induced genes, 

including CTLA-4.  These results define novel mechanisms governing transcriptional 

activation of CTLA-4 in human effector CD4 T cells. 
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