
Multi-objective Optimization
Methods for Allocation and

Prediction

Multi-objective Optimization Methods for
Allocation and Prediction

Multi-objectieve optimalisatiemethoden voor allocatie en voorspelling

Thesis

to obtain the degree of Doctor from the
Erasmus University Rotterdam

by command of the
rector magnificus

Prof.dr. R.C.M.E. Engels

and in accordance with the decision of the Doctorate Board

The public defense shall be held on

Thursday 9 May 2019 at 15:30 hrs

by

Qing Chuan Ye
born in Wageningen, the Netherlands.

Doctoral Committee

Promotor: Prof.dr.ir. R. Dekker

Other members: Prof.dr. A.P.M. Wagelmans
Dr. N. Agatz
Prof.dr. U. Kaymak

Copromotor: Dr. Y. Zhang

Erasmus Research Institute of Management - ERIM
The joint research institute of the Rotterdam School of Management (RSM)
and the Erasmus School of Economics (ESE) at the Erasmus University Rotterdam
Internet: http://www.erim.eur.nl

ERIM Electronic Series Portal: http://repub.eur.nl/

ERIM PhD Series in Research in Management, 460
ERIM reference number: EPS-2019-460-LIS
ISBN 978-90-5892-539-8

SIKS Dissertation Series No. 2019-10
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

c©2019, Qing Chuan Ye

Design: PanArt, www.panart.nl

This publication (cover and interior) is printed by Tuijtel on recycled paper, BalanceSilk R©.
The ink used is produced from renewable resources and alcohol free fountain solution.
Certifications for the paper and the printing production process: Recycle, EU Ecolabel, FSC R©, ISO14001.
More info: www.tuijtel.com

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any
means electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system, without permission in writing from the author.

Acknowledgments

First of all, I would like to thank my supervisors, Yingqian Zhang and Rommert
Dekker, for the opportunity they gave me to do a PhD, and for guiding and assisting
me throughout the PhD trajectory. Rommert, thank you for all the interesting
conversations and the many insights into what it takes to be a researcher. Despite
your busy schedule, you always found some time for casual chitchat, which made
meetings more light-hearted. Yingqian, thank you for all the time spent on meetings,
discussions, email correspondence, and of course some small talk now and then. I
enjoyed our brainstorming sessions and I learned a lot about a myriad of topics from
different expertises throughout the course of these years. Despite having been a
teaching assistant for quite a few years at the beginning of my PhD, I had never
stood in front of a classroom and given a lecture before. That is, until you needed a
replacement for a lecture. Even though I have to admit I was very nervous at first, I
ended up enjoying giving lectures. I really appreciate all the opportunities you have
given me and your patience throughout these years.

I would also like to thank Prof.dr. Albert Wagelmans, Dr. Niels Agatz and
Prof.dr. Uzay Kaymak for being part of my inner committee and giving constructive
feedback on my thesis. Furthermore, I would like to thank Prof.dr. Kevin Tierney
and Prof.dr. Patrick de Causmaecker for being part of my committee and joining the
opposition in the thesis defense.

I would like to give special thanks to Wim Pijls for giving me the opportunity
to be a teaching assistant, which made me realize that I enjoy teaching, eventually
resulting in my decision to pursue a PhD. I am grateful for your kindness. Just
before starting my PhD, I had the privilege to work together with Emiel Maasland

vi

and Tommi Tervonen on a project that eventually resulted in a spin-off company. I
enjoyed the time working together and getting a glimpse of consulting and software
development. In addition, I would like to thank Sicco Verwer for the cooperation on
various papers and the hospitality.

The past few years would not have been as enjoyable if it were not for my fellow
colleagues. Judith, thank you for reaching out to me on my first day and introducing
me to our colleagues. I enjoyed the talks we had when you dropped by from time to
time and your enthusiasm. Rutger, thank you for the discussions on various topics,
both research and non-research related. I greatly appreciate all the proofreading and
feedback, and the work you put in to help your colleagues with the final steps of their
thesis. Kevin, thank you for taking over the responsibility of organizing the game
nights and for facilitating various other activities and helping everyone out when you
can. I would also like to thank the rest of my colleagues, who all helped to make it
a very enjoyable experience: Alexander, Bart, Chiel, Evelot, Frederik, Harwin, Kim,
Kristiaan, Marieke, Mathijn, Nemanja, Nick, Paul, Remy, Rowan, Sha, Thomas,
Thomas, Tim, Twan, Weina, Willem, Zahra. Thanks for the great times, including,
but of course not limited to, lunch breaks, special events, and game nights!

Finally, I would like to thank my family and friends for their support over all
these years. Kevin ten Haaf and Ruben Janssen deserve my gratitude for being my
paranymphs. And last but definitely not least: Ann, thank you so much for being by
my side and for your support. When I started this journey, our journey together also
started soon after. However, as this journey will come to an end, ours will continue
on.

Charlie Ye
Rotterdam, March 2019

Table of Contents

1 Introduction 1
1.1 Task allocation problem . 2
1.2 Auction design optimization . 3
1.3 Thesis outline . 4
1.4 Clarification of contribution . 6

2 Fair task allocation in transportation 9
2.1 Introduction . 9
2.2 Literature review . 12
2.3 Problem definition . 15
2.4 Polynomial-time optimal algorithm for MFMCA 19

2.4.1 IMaxFlow algorithm for solving MMFA 19
2.4.2 FairMinCost algorithm . 27

2.5 Computational results . 35
2.5.1 Test instances . 35
2.5.2 Results: price of fairness . 38
2.5.3 Results: job distribution . 42
2.5.4 Results: varying number of jobs 46
2.5.5 Results: varying number of companies 48

2.6 Conclusions and discussion . 50
2.A Proof of Theorem 2 . 53
2.B Proof of Theorem 4 . 53

viii Table of Contents

3 Participation behavior and social welfare in repeated task alloca-
tions 55
3.1 Introduction . 55
3.2 Literature review . 57
3.3 Problem definition . 58
3.4 Modeling participation behavior . 60

3.4.1 Prospect theory . 60
3.4.2 Fuzzy decision theory . 63

3.5 Experiments . 66
3.5.1 Prospect theory . 67
3.5.2 Fuzzy decision theory . 68

3.6 Conclusion and discussion . 73

4 Auction optimization using regression trees and linear models as
integer programs 75
4.1 Introduction . 75

4.1.1 Sequential auction design . 76
4.1.2 Learning models for white-box and black-box optimization . . 78

4.2 Optimal ordering for sequential auctions OOSA 80
4.3 Learning predictive models for OOSA 83

4.3.1 Two regression functions . 83
4.3.2 Learning regression functions for predicting revenues 85
4.3.3 Modeling power and trade-off 88

4.4 White-box and black-box optimization for OOSA 89
4.4.1 White-box optimization: an ILP model 89
4.4.2 A black-box heuristic: best-first search algorithm 96
4.4.3 Discussion: white-box or black-box optimization? 97

4.5 Experiments . 98
4.5.1 The simulator . 99
4.5.2 Experimental setup . 103
4.5.3 Experiment 1: first-price auctions 106
4.5.4 Experiments 2 and 3: Vickrey auction with myopic and smart

agents . 112

Table of Contents ix

4.5.5 Experiment 4: practical issues 114
4.6 Related work and discussion . 120

4.6.1 Interplay between mathematical optimization and machine
learning . 120

4.6.2 Sequence models . 123
4.6.3 Auction design . 125

4.7 Conclusions . 127
4.A Hardness of auction design using learned predictors 130

5 Decision support system for auction design using multi-objective
optimization of decision trees 133

6 Summary and conclusions 135

References 139

Nederlandse Samenvatting (Summary in Dutch) 149

Curriculum Vitae 151

Portfolio 153

Chapter 1

Introduction

Auctions are a common occurrence in everyday life. With the rise of the internet
online auctions have become increasingly popular, as they are easily accessible to
everyone. An auction is a way of selling items, which can be goods or services, that
are put up for bid by an auctioneer. Participants, or bidders, can place bids on an
item to indicate the price they are willing to pay for an item. The higher the bid, the
better the chance the agent will win. Most auctions consist of many items. These
items can be auctioned off one after another, or they can be put up on auction all at
the same time. Some auctions take place every day, or even multiple times in a day,
whereas other only occur once in a while. Some well known examples of auctions
are commodities auctions, which usually occur daily, like flower and fish wholesale
auctions, and auctions of luxury items, which occur less often, such as fine art and
antiques. Online auctions have also given rise to new kinds of auctions, like vacation
auctions and advertisement auctions. Besides auctions for obtaining goods, one can
also put up a service for bid on which agents can bid their desired compensation.
This is also known as a reverse auction. In this case it follows that the lower the
bid, the higher the chance the agent will win. This type of auction is often used in
procurement, and, what has been on the rise recently, the sharing economy.

In this thesis, we will focus on two different aspects of auctions. First, we consider
the task allocation problem. This comes into play at the end of an auction, when
participants have submitted all their bids, and the auctioneer needs to determine

2 Introduction

which item or task will be assigned to which bidder. Second, we consider the auction
design. Auction design already comes into play before the auction even starts. The
auctioneer needs to decide how the auction will work, e.g. how the items are pre-
sented, and what the starting prices will be. Auction design is very important as it
influences how the bidders will bid, and therefore has a big impact on the outcome.

1.1 Task allocation problem

The task allocation problem, or assignment problem, is a combinatorial optimization
problem that is well studied and has applications in many fields. In a task allocation
problem, there are a number of agents and a number of tasks. The tasks can usually
be done by any of the agents, but an agent might have a limit on the number of
tasks it can perform. Letting an agent perform a task incurs a cost, which differs for
each combination of tasks and agents. The challenge is to determine which task(s)
should be done by which agent, in such a way that the sum of costs is minimized.
This problem has been widely studied and can be solved reasonably fast.

However, in a repeated auction setting this minimum cost solution might not be
the best solution in the long run. We only know that this solution is optimal for
a single task allocation problem. In repeated auctions it can happen that the set
of agents is different in between auctions. Agents will participate in auctions when
they think they will benefit from it. They put in their time and effort in the hopes
of profiting off of it, e.g., winning a task. When an agent participates many times in
the same auction, but rarely wins something, the agent can think they are wasting
their time and effort, which can be put to better use. Therefore, they might choose
to refrain from participating in the auction again. They could start participating
in a different auction from a different auctioneer, or even stop participating at all
when the bidder is not reliant on these auctions, e.g. people participating in online
auctions for luxury items. This results in a smaller pool of participants, resulting in
fewer bids, which means that the allocation will have less flexibility. Ultimately this
could lead to a situation where there are only a few participants who can dictate the
allocation because they are the only agents left, and who may drive up the costs as
there is no competition left. This situation is undesirable for the auctioneer.

1.2 Auction design optimization 3

Therefore, the auctioneer may be interested in another criterion besides only
minimizing costs when allocating tasks to agents. To avoid dissatisfaction among
agents, the auctioneer may opt to incorporate fairness in the task allocation. There
are multiple ways to define fairness, and the exact definition of fairness is up to the
auctioneer to determine what is considered fair in their application.

We study the fair task allocation problem in the context of an actual transporta-
tion situation in the port of Rotterdam in the Netherlands in Chapter 2, and we
study its effects in repeated task allocations in Chapter 3, in which we take into
account the development of the agents’ participation behavior.

1.2 Auction design optimization

Auction design is very important to the way an auction will eventually play out
(Klemperer 2002). A different design for an auction with the exact same items
and participating agents may result in a completely different outcome. Not only
does the design influence the final allocation, but it can also influence the bids that
agents submit. An example of an aspect the auctioneer needs to take into account is
whether the bids are made public, i.e., all bidders may know the bids of other bidders
(open bid), or whether the bids will be secret (sealed bid). Another example would
be whether bidders should submit bids that exceed other bids until no participant
would like to make a better bid (English auction), or whether the auctioneer should
set a price no one is willing to pay for it, and lower it until there is a participant who
is prepared to accept the proposed price (Dutch auction). The starting price of an
item, and the order of items being shown in the auction, can have an impact on the
performance of the auction as well. Therefore, it is important to design an auction
in such a way that it optimizes the desired outcome, whether this would be fetching
the highest price, or selling as many items as possible.

Designing such an auction is difficult as this requires a lot of knowledge of the
specific auction and its properties, and the items that are being auctioned. Hence,
this has been primarily the work of experts who have had many years of experience,
know a lot about the items at hand, and know how and when to auction them.
However, one expert is not the other and they each have their own ideas of what is

4 Introduction

important to an auction and what is not. It can also happen that experts do not
notice certain aspects that are present in historical auctions and therefore will not act
upon. Hence, it is difficult even for experts to design an auction that optimizes the
desired outcome. However, with the rise of digitization and the storage of informa-
tion on conducted auctions, there is a trove of data available on historical auctions.
These historical auctions contain a lot of information that can be useful for designing
future auctions. In order to obtain this information we make use of machine learning
techniques.

Machine learning can be used in data analytics to discover possible patterns
in data. Historical data can contain information on relationships and trends that
might not have been noticed before. Therefore, hidden insights can be uncovered
by examining historical data. With the help of machine learning techniques, one
can construct models and algorithms that can learn relations and patterns within
historical data. Thereafter, these models can be used to predict the outcome of a
new instance that is similar to the situation in the examined historical instances.
There are two main categories in machine learning, supervised and unsupervised
learning. In supervised learning example inputs and the accompanying outcomes are
provided to the computer, from which a general rule needs to be learned that maps
the inputs to the outcomes. In unsupervised learning no outcomes are provided to
the computer. Hence, the computer needs to find structure in the given input by
itself.

We make use of supervised learning for regression and classification problems
and use these in combination with mathematical optimization models in order to
learn what made an item perform well in historical auctions. In Chapter 4 we learn
regression models and map these to integer linear programs, which we can optimize
by using an existing solver. We then apply this technique in Chapter 5 to help
construct a decision support system to aid experts with auction design.

1.3 Thesis outline

In this dissertation we use a combination of techniques from operations research and
computer science to tackle different aspects of an auction. It consists of two main

1.3 Thesis outline 5

parts. In Chapters 2 and 3 we focus mainly on the task allocation part of the auction.
The inspiration for this problem comes from an actual transportation situation in the
port of Rotterdam in the Netherlands, where there is a huge increase in inter-terminal
transport due to the expansion of the port. We propose a sustainable transportation
system that makes use of existing trucks at the port and uses an auction to collect
bids and assign tasks to trucks. As this auction would be repeated every day, and
participants are free to come and go whenever they would like in this system, it is
important to keep the truck companies interested in participating in order to have
competition. Therefore, we investigate the effect of adding fairness into the allocation
and how it fares with regard to the traditional minimum cost solution. In Chapters
4 and 5 we focus on the auction design. We use a combination of machine learning
techniques and mathematical programming models to derive information from his-
torical data that helps with determining the design parameters for a new auction of
similar items. Through experiments and a case study on historical data of auctions
obtained from an online industrial auction company we show the performance of our
methods.

The chapters of this dissertation are based on papers that have been published
in or have been submitted to peer-reviewed journals. As a result, all chapters can
be read independently from each other. We will outline the topic of each chapter in
more detail below.

Chapter 2 considers a fair task allocation problem in transportation where an
optimal allocation has low cost and distributes tasks as evenly as possible among
heterogeneous participants who have different capacities and costs to execute tasks.
We analyze and solve it in two parts using two novel polynomial-time algorithms.
Furthermore, we conduct an extensive set of experiments to investigate the trade-off
between cost minimization and fairness.

In Chapter 3 we study the effect of the fair task allocation in a repeated setting
where we conduct multiple rounds of the auction. We investigate how the allocation
influences the agents’ decision to participate. The participation behavior of agents is
modeled in two different ways, namely using prospect theory, and using a fuzzy con-
nective. Simulations are used to study how agents’ participation affects the outcomes
throughout the rounds. We compare two task allocation algorithms, the traditional
minimum cost allocation, and the fair task allocation.

6 Introduction

In Chapter 4 we demonstrate how to apply machine learning techniques to solve
the optimal ordering problem in sequential auctions. We learn regression models
based on historical auctions, which are subsequently used to predict the expected
value of orderings for new auctions. Given the regression models, we introduce a novel
white-box approach that maps learned regression models to integer linear programs
(ILP), which can then be solved by any ILP-solver. We show that the internal
structure of regression models can be efficiently evaluated inside an ILP solver for
optimization purposes.

A case study using data from an online industrial auction company can be found
in Chapter 5. We propose a method that builds a decision tree to predict how
well an auction will perform in terms of a performance indicator, which is the ratio
between the selling price and the estimated price of items. We show how to learn a
classification tree by combining multiple objectives using integer programming, given
the specific user’s needs. In addition, we compare the performance of our method
with traditional classification tree algorithms, and demonstrate the flexibility of our
method.

Finally, in Chapter 6 we conclude the main findings of this dissertation.

1.4 Clarification of contribution

The chapters of this dissertation are based on papers that are the result of a collabo-
ration between myself, my promotor, my co-promotor and various other authors. For
each chapter, the reference to the publication and the contribution of each author
are given below.

Chapter 2 The research for this chapter has been conducted by the first au-
thor in close cooperation with dr.Yingqian Zhang, under the supervision of
prof.dr.ir. Rommert Dekker. This chapter spawned from an inter-terminal
transport (ITT) project which was part of a collaboration between the Eras-
mus University Rotterdam and TU Delft. This chapter is based on Ye et al.
(2017a).

Chapter 3 The research for this chapter has been conducted by the first author
in close cooperation with dr.Yingqian Zhang. Prof.dr.ir. Uzay Kaymak con-

1.4 Clarification of contribution 7

tributed in defining the problem of the fuzzy connective and aided in the review
process. This chapter is based on Ye and Zhang (2016) and Ye et al. (2017b).

Chapter 4 The research for this chapter has been conducted by dr. Sicco Verwer and
dr.Yingqian Zhang in close cooperation with myself. I was mainly involved in
the construction of mathematical models and algorithms, and the running of
experiments. This chapter is based on Verwer et al. (2017).

Chapter 5 The research for this chapter has been conducted by the first author
in close cooperation with dr.Yingqian Zhang and dr. Sicco Verwer. It follows
a collaboration with an online industrial auction company which provided the
data. This chapter is based on a working paper.

Chapter 2

Fair task allocation in
transportation 1

2.1 Introduction

Traditionally, optimization of task allocation problems considered only the costs in-
volved in the allocation. However, there has been in recent years more attention
to cases where cost should not always be the sole consideration (Campbell et al.
2008). There are circumstances when other criteria need to be taken into account
as well during the decision making process. Fairness has been considered as one
of the important additional criteria in many application domains (Ogryczak et al.
2005, Gopinathan and Li 2011, Bertsimas et al. 2012). Although there is no com-
mon definition for the term, there are two fairness criteria that are often used in the
literature: the Nash bargaining criterion and the Rawlsian maximin criterion. The
former is based on Nash’s four axioms of pareto optimality, independency of irrele-
vant alternatives, symmetry, and invariance to affine transformations or equivalent
utility representations (Nash 1950). The latter is based on Rawls’ two principles of
justice (Rawls 1971). Rawls’ maximin criterion maximizes the welfare level of the

1This chapter is based on Ye et al. (2017a).

10 Fair task allocation in transportation

worst-off group member and has therefore been used in allocation problems (Jaffe
1981, Kumar and Kleinberg 2000).

In this chapter, we study task allocation problems in which we take fairness into
account in addition to the standard minimum cost criterion. This work was inspired
by an actual transportation situation in the port of Rotterdam in the Netherlands.
The increase in the number of container terminals in said port will result in a huge
increase in inter-terminal transport (ITT). The port authority invited a team of
researchers to investigate a sustainable transportation system, called an asset light
solution, in which trucks that were already present in the port could execute open
jobs. The main idea behind this system is that trucks that come from the hinterland
to drop off or pick up containers often have spare time in between tasks. Usually,
trucks are scheduled to do several jobs to and from various terminals in the port
in one day. There may be large gaps between these jobs during which time the
truck would be idle due to the nature of the jobs that truck companies agree to do.
Terminals could take advantage of these idle trucks by providing them with jobs that
they can perform within the port while waiting for their next scheduled job. The
trucks will be compensated for these jobs. The compensation from the terminals to
the trucking companies would be large enough to cover the costs that the companies
would incur. However, the compensation should be less than the costs of purchasing
and maintaining, or even renting the vehicles dedicated for such jobs. This way,
the trucking companies gain additional income while the terminals save money by
using readily available resources. Furthermore, because the utilization rate of existing
trucks becomes higher and no new trucks are needed, this is a more durable approach
to meeting the transport need within the port.

To realize such a task allocation, terminals need to be informed of the indi-
vidual schedules of the different trucking companies. This poses a hurdle because
getting such information is expensive and the trucking companies may be reluctant
to share their entire schedules. One way to circumvent this difficulty is to use auc-
tions as a means to collect information from different parties. Auctions have become
increasingly popular for allocating resources among individual players in many ap-
plication domains, such as in spectrum auctions (Cramton 2002), health care (Smits
and Janssen 2008), industrial procurement (Gallien and Wein 2005a, Bichler et al.
2006) and logistics (Sheffi 2004, Ball et al. 2006). In the auction for our trucking task

2.1 Introduction 11

allocation case, we assume that all terminals together act as an auctioneer and they
announce a set of available jobs. Different trucking companies can bid for those jobs,
depending on their idle trucks at specific times. Given the bids of different compa-
nies, the terminals then decide on a best allocation of jobs to companies.2 Because
there are ITT movements every day that need to be executed, this task allocation
activity would be held daily. Some studies have shown that greedily minimizing cost
does not fare well with repeated auctions. Participants could experience starvation
in the long run, which will reduce their incentive to continue participating in the
allocation activity (Gopinathan and Li 2011). Furthermore, repeated auctions may
affect the relationships between the auctioneer and bidders, which in turn affects the
latter’s way of bidding (Jap and Haruvy 2008). To prevent these adverse effects, we
should not only look at optimizing the costs in the task allocation, but we should also
incorporate fairness in the task allocation that results from the auctions. We do this
by reassuring that all interested parties will receive some market share, therefore giv-
ing trucking companies an incentive to continue participating in the task allocation
activity. As we do not know the exact utility functions of the players, the number of
jobs allocated to them will be used to measure the fair distribution of the utilities of
the players.

We study a “max-min fair minimum cost allocation problem” (MFMCA). The
majority of existing work involving fairness uses mathematical programming models
in which fairness is incorporated in either the constraints (Meng and Yang 2002,
Perugia et al. 2011) or in the objective function (Bertsimas et al. 2011b, 2012, Barn-
hart et al. 2012). However, we aim for a polynomial-time solution. The difficulty
of our problem lies in the additional fairness criterion, which requires the developed
algorithm to satisfy three criteria: allocation maximization, fairness, and cost mini-
mization. To the best of our knowledge, no existing polynomial-time algorithm can
be directly applied to solve our problem. In this chapter, we propose polynomial-
time algorithms to solve MFMCA as a two-level optimization problem. First, we aim
at a fairest allocation among companies while ensuring that a maximal set of tasks
can be allocated for execution. We call this the “max-min fair allocation problem”
(MMFA). Second, because there might be an exponential number of allocations that

2Auctions are used in this research as a way to collect local information from the participants.
We do not consider the bidding behavior of the bidders in this chapter.

12 Fair task allocation in transportation

are considered max-min fair, we would like to determine which of these fair alloca-
tions has the lowest cost. The resulting allocation is max-min fair with minimum
cost. To this end, we develop a polynomial-time optimal method that consists of two
novel algorithms: (1) to solve MMFA, we construct an algorithm, called IMaxFlow,
using a progressive filling idea in a flow network (Bertsekas et al. 1987), and then (2)
by using the solution obtained from MMFA, we propose another algorithm, called
FairMinCost, that smartly alters the structure of the problem to solve MFMCA
optimally.

The contribution of this chapter is two-fold.

1. Despite the new fairness criterion, we are able to develop an optimization
method to solve the task allocation problem to optimality in polynomial-time.

2. Using computational results, we provide insights into situations in which fair-
ness can be incorporated without giving up too much efficiency.

The rest of the chapter is organized as follows. We start with a literature review
in Section 2.2, followed by a problem definition in Section 2.3. In Section 2.4, we
introduce two polynomial-time algorithms to solve MMFA andMFMCA, respectively.
We prove that the output of these algorithms is the optimal allocation in terms of
fairness and cost minimization. In Section 2.5, using different sets of scenarios, we
test the algorithm in terms of its effect on the cost and job distribution. We conclude
and point out interesting directions of future work in Section 2.6.

2.2 Literature review

The idea of factoring fairness into decision making has been studied in various
fields. One of the earlier and still important areas of application where fairness
has been considered is that of bandwidth allocation in telecommunication networks
(Jaffe 1981, Zukerman et al. 2005). In this area, continuous flows with predefined
origin-destination pairs are used, leading to algorithms that increase flow over all
paths simultaneously until links are saturated, or that split up bandwidth equally
among competitors. Bertsekas et al. (1987) give a simple algorithm for computing
max-min fair rate vectors for flow control in networks, the so-called progressive fill-
ing algorithm, which is treated as one of the standard fairness concepts within the

2.2 Literature review 13

telecommunications or network applications (Ogryczak et al. 2005). In their problem
setting, they assume that each session has an associated fixed path in the network.
The algorithm starts with no flow, and then flow gets gradually increased over all
paths simultaneously until a link in a path is saturated. The algorithm then continues
from step to step, equally incrementing the flow in all paths that are not using sat-
urated links, until all paths contain at least one saturated link. Tomaszewski (2005)
provides a general mathematical programming formulation for solving max-min fair
problems using the progressive filling algorithm. Although we cannot use these pro-
posed solution methods directly, we are able to borrow the idea of the progressive
filling algorithm when developing our method for solving MMFA.

Fairness, or equity, has also been incorporated in staff scheduling. They attempt
to distribute the workload fairly and evenly among personnel, where it is a typical
strategy to construct cyclic rosters (Ernst et al. 2004). The more popular measures
for equity in this field are the variance and variants of the Gini index. Equity is then
incorporated in mathematical models in either the objective function, e.g. minimizing
the variation in workload, or through the use of constraints, which provide lower and
upper bounds on the workload (Eiselt and Marianov 2008). Resource allocation
is yet another field in which fairness plays an important role. An example of a
very weak fairness constraint in this field is that any task will be able to use its
requested resource eventually. A much stricter fairness requirement can be found
in proportionate fairness (Baruah et al. 1996). With proportionate fairness, the
difference in the number of resource allocations to tasks will never be more than
one, ensuring that all tasks have similar access to resources. Dominant Resource
Fairness is another type of fairness requirement, which is a generalization of max-
min fairness for multiple resources, where it maximizes the minimum dominant share
across all users (Ghodsi et al. 2011). Fairness influences the order in which resources
are scheduled to tasks, as certain tasks may take precedence.

Another domain in which fairness is incorporated is the field of air traffic manage-
ment. In this field, fairness is important for air traffic flow management (Lulli and
Odoni 2007, Barnhart et al. 2012), flight scheduling (Kubiak 2009), and allocation of
take-off and landing slots at airports (Bertsimas et al. 2011b, 2012). These studies
consider a fair distribution of the utilities of all players usually expressed in monetary
units or delay time. The air traffic flow management problem has been shown to be

14 Fair task allocation in transportation

NP-hard (Bertsimas and Patterson 1998), and therefore mathematical programming
models are often used in which the fairness measurement is incorporated in the ob-
jective function with which good computational results are achieved (Bertsimas et al.
2011b, 2012, Barnhart et al. 2012). In addition, Hoffman et al. (2005) and Kim and
Hansen (2015) emphasize that equity and fairness are important in the air traffic
flow management program design, because equitable treatment of airlines in such
programs will be less likely to encourage gaming behavior by a highly competitive
industry. If one fails to consider equity, it might be detrimental to an otherwise
well-designed air traffic flow management program. Ogryczak et al. (2014) provides
a nice overview of the various areas of application of fairness and the most important
models and methods of fair optimization.

Surprisingly, fairness has not yet been investigated widely in transportation op-
timization problems, although it has been treated as a psychological factor that
influences acceptability of policies like road pricing (Fujii et al. 2004, Eriksson et al.
2008). In road network design fairness is also an issue, because without fairness net-
work users might not get any benefit from the network design project, and therefore
it may be difficult to rally public support and it may be easy to evoke opposition
to the implementation of such a project (Meng and Yang 2002). In this application
fairness is enforced through the addition of a constraint on the difference of the travel
cost ratio between before and after the project. There has also been some work in
vehicle routing problems, where fairness is considered in the extra-time distribution
of a transportation service (Perugia et al. 2011). In order to incorporate fairness,
they make use of a capping function, which enforces an upper bound on the extra-
time. Litman (2002) gives an overview of many different transportation decisions
where fairness could be incorporated. However, there is hardly any literature on
incorporating fairness in task allocation problems in transportation.

We use the number of tasks allocated to a player as our measure of fairness.
Thus, fairness is a property inherent in the allocation itself. We introduce a novel
solution method because in our problem we try to assign tasks to players without
any information on the players’ utilities. This is in contrast to Bertsimas et al.
(2011a, 2012), who assume that one knows the utilities of players, such that efficiency
and fairness can be expressed as a function of the utilities. In addition, we define
our fairness measurement in terms of the allocation itself rather than in terms of

2.3 Problem definition 15

some characteristic of the consequence of the allocation. Examples of the latter are
tardiness and delay time, which are often used in air traffic flow management (Lulli
and Odoni 2007, Bertsimas et al. 2011b, Barnhart et al. 2012). We will show that
our fairness measurement simplifies the optimization problem and that we are able
to develop polynomial-time algorithms to find an optimal fair allocation, which is
highly desirable in practice.

2.3 Problem definition

We assume that the set of available tasks (or jobs) to be distributed is known in ad-
vance by the central planner. For instance, in our motivating example, the terminals
know a day in advance which container vessels will arrive and how many containers
they will need to handle. The terminals are thus able to construct a schedule for
their vehicles and cranes a day ahead, and this schedule reveals the necessary inter-
terminal transport movements. These inter-terminal transport movements are the
jobs to be auctioned. We assume a set of time periods T , which consists of T time
periods. The set of jobs, denoted by J consisting of a total of J jobs, comes with
an earliest available time and a latest completion time for each job. We assume that
jobs are independent. Each job can therefore be executed individually regardless of
the execution of other jobs. We define for each job ji ∈ J its possible starting time
as a mapping: J × T 7→ {0, 1}. When it is clear from the context, we abuse the
notation and use jti to denote that job ji is available at time period t ∈ T .

Once the set of jobs J together with their possible starting times has been made
available, a set of companies K, consisting of K companies, may bid on individual
jobs. We do not consider combinatorial bids in this chapter. In addition to the se-
lection of jobs that a company k ∈ K wishes to perform, the company also needs to
provide their available capacity ntk in time period t in which it is able to perform the
jobs. We assume that each job takes up one unit of capacity and can be completed
within one time unit. Furthermore, company k needs to provide its desired compen-
sation (or cost), c(ji, k), for the bid job ji ∈ J . A bid, Bk, from a company k is thus
a tuple: 〈ck,nk〉, where ck is a set of costs c(jti , k), which denote the compensation

16 Fair task allocation in transportation

of performing job ji at time t, and nk is a set of capacities ntk, which specify the
capacity of company k at time period t.

The focus of this research is on the design of task allocation algorithms, and not on
the auction design. Therefore, to illustrate our approach, we adopt a simple sealed-
bid first-price auction format, where terminals can announce their available tasks and
each company can submit their bids via, for example, a bidding website. In a sealed-
bid first-price auction all bidders submit their sealed bids simultaneously so that no
bidder knows the bids of other participants and the winning bidder pays the price they
submitted. Once all bids from the bidding companies K have been collected, which
can be enforced by a time limit, the auctioneer then decides which companies get to
execute which jobs, that is, the auctioneer determines a task allocation π : J × T ×
K 7→ {0, 1}. An allocation is feasible if (1) each job is allocated to at most one time
slot and to at most one company, i.e., for each j ∈ J ,

∑
t∈T

∑
k∈K π(j, t, k) ≤ 1; and

(2) the number of jobs needed to be executed at time t does not exceed the capacity
at time t of the company to which those jobs are assigned, i.e., for each k and t,∑
j∈J π(j, t, k) ≤ ntk. The companies then receive the corresponding compensations

specified in their bids for executing the assigned jobs. The focus of this chapter is
on determining an optimal allocation π of jobs to bidders. Following our motivating
example, there are three ordered objectives for a fair job allocation: (1) the number
of allocated jobs in π is maximized, (2) the allocation is fair to the bidders, and (3)
the total compensation for executing the jobs is minimized.

Objectives 1 and 3 are rather straightforward given the context. For the fairness
objective, we use the notion of max-min fairness derived from Rawls’ fairness principle
(Rawls 1971). The central idea of max-min fairness is that the minimum utility of
all bidders will have been maximized. In this work, we use the number of allocated
jobs as a measure of the bidders’ utility. In this way, we do not need to worry about
the companies’ actual utility functions, which they are likely unwilling to share with
the auctioneer and which are difficult to model.

Given a feasible allocation π, let the number of allocated jobs be

Z = |{ji : ji ∈ J , π(ji, ·, ·) = 1}| .

2.3 Problem definition 17

Let ω = (ω1, . . . , ωK) denote the number of jobs ωk assigned to company k ∈ K in π.
We call ω an allocation vector. Clearly, it holds that

∑
ωk∈ω ωk = Z. Given Z jobs,

there may exist many possible allocations that distribute Z jobs to K companies. We
call an allocation vector ω Z-feasible if and only if ω can lead to a feasible allocation
and

∑
ωk∈ω ωk = Z.

The max-min fairness principle entails that given a total of Z jobs, the number
of jobs for any company cannot be increased by at the same time decreasing the
number of jobs of the other companies that have the same number of jobs or less.
More formally, let ω be a Z-feasible vector, and σ be a sorting operator in which
the components of ω are sorted in nondecreasing order: σ(ω)i ≤ σ(ω)j if ωi ≤
ωj . Let φ = σ(ω). We want to maximize the lexicographical minimum in all Z-
feasible allocation vectors φ. Intuitively speaking, we want to have an allocation
that distributes a set of jobs among the companies as evenly as possible.

Definition 1 (Max-min fairness). Given Z jobs to be distributed, we say a Z-feasible
sorted allocation vector φ is lexicographically greater than another Z-feasible sorted
vector φ′ if there exists a smallest index j (1 ≤ j ≤ K) such that φj > φ

′
j, and for

index i, 1 ≤ i < j, it holds that φi = φ′i. An allocation vector is max-min fair with
regard to Z jobs if it is lexicographically greater than any other Z-feasible vector.

We now use the following example to illustrate the three objectives of the job
allocation problem.

Example 1. Suppose we have 5 jobs to be auctioned. The jobs can be done in the
following time periods: (j1 : j1

1); (j2 : j2
2 , j

4
2); (j3 : j2

3 , j
3
3); (j4 : j3

4 , j
4
4); (j5 : j5

5). Three
companies submit their bids, as shown in Table 2.1. The first row in the table shows
that company k1 bids on job j1 that is to be executed during time period 1, for a
compensation of 20.

In this example, all 5 jobs can be feasibly assigned. There are five feasible alloca-
tions: π1 assigns j1

1 , j
2
2 to k2 and j3

3 , j
4
4 , j

5
5 to k3; π2 assigns j1

1 to k1 and j2
2 , j

3
3 , j

4
4 , j

5
5

to k3; π3 assigns j2
3 to k2 and j1

1 , j
2
2 , j

4
4 , j

5
5 to k3; π4 assigns j1

1 to k1, j2
2 to k2 and

j3
3 , j

4
4 , j

5
5 to k3; and π5 assigns j1

1 to k1, j2
3 to k2 and j2

2 , j
4
4 , j

5
5 to k3. The alloca-

tion vectors of these five assignments are φ1 = (0, 2, 3), φ2 = φ3 = (0, 1, 4), and
φ4 = φ5 = (1, 1, 3), respectively. In this example, we have two max-min fair al-

18 Fair task allocation in transportation

Time points 1 2 3 4 5
company k1 j1 : 20
company k2 j1 : 30 j2 : 40, j3 : 25
company k3 j1 : 10 j2 : 20, j3 : 20 j3 : 25, j4 : 25 j2 : 30, j4 : 20 j5 : 20

Table 2.1: The bids of three companies include desired jobs in each time period
and their associated costs. The capacity of all companies is assumed to be 1 for each
time period.

locations: π4 and π5, because their allocation vectors φ4 and φ5, respectively, are
lexicographically greater than any other vectors derived from π1, π2, and π3.

Concerning the third objective of the allocation, we notice that π4 has a total
compensation of 125, while π5 has a total compensation of 105. Thus, in this example,
the optimal allocation that satisfies all three objectives is π5 as it has the optimal max-
min fairness with the least compensation.�

We now formally define the optimization problem that we study in this chapter.

Definition 2 (Max-min fair minimum cost allocation (MFMCA) problem). Given
a set of available jobs J with their possible starting times, suppose a set of valid
bids B = {B1, . . . , BK} is submitted by K bidders. Each bid Bk = 〈ck,nk〉 spec-
ifies for each bid job ji its starting time and the desired compensation c(jti , k), to-
gether with the company’s capacity ntk for each time period t ∈ T . The objective
of the max-min fair minimum cost allocation problem is to find the optimal feasi-
ble allocation πφf

: J × T × K 7→ {0, 1}, such that the number of allocated jobs
Z = |{ji : ji ∈ J , π(ji, ·, ·) = 1}| is maximum, and the allocation leads to a max-
min fairness vector φf with regard to Z jobs, with the least total compensation∑
j∈J ,k∈K,t∈T ,πφf

(j,t,k)=1 c(jti , k).

We treat MFMCA as a two-level optimization problem. First, we determine what
allocation is deemed max-min fair, and second, we determine which of the possibly
many max-min fair allocations has the lowest cost.

Definition 3 (Max-min fair allocation (MMFA) problem). The objective of the max-
min fair allocation problem is to find the optimal max-min fairness vector φf that
indicates the maximum number of jobs that can be assigned feasibly and that leads to
a max-min fair allocation among all bidders.

2.4 Polynomial-time optimal algorithm for MFMCA 19

Given the output of the first-level optimization problem (MMFA), i.e., a max-min
fairness vector, we search for the allocation that gives the desired fair allocation and
that has the lowest total compensation.

2.4 Polynomial-time optimal algorithm for
MFMCA

In this section, we introduce a two-stage network flow based polynomial-time algo-
rithm to solve the proposed MFMCA problem. In the first stage, we propose an
iterative maximum flow algorithm, called IMaxFlow, to enforce a fairest job dis-
tribution over companies while ensuring that the maximal number of jobs can be
allocated. The output of the IMaxFlow algorithm, i.e., the optimal max-min fair-
ness vector φf , is then used as input to the FairMinCost algorithm to construct a
new flow network. By any standard minimum-cost maximum-flow algorithm on this
constructed flow network, we prove that we obtain the optimal solution to MFMCA.
In the next section we present the proposed two-stage algorithm, starting with the
iterative maximum flow (IMaxFlow) algorithm.

2.4.1 IMaxFlow algorithm for solving MMFA

Given an instance of the MMFA problem, we can construct a network flow, and then
apply the proposed iterative maximum flow algorithm to obtain the optimal max-min
fairness vector.

Suppose the set of available jobs is J . We want to build a flow network to push J
from source node a to sink node b. The flow network is a directed graph G = (V,A)
with capacities Cu,v for each (u, v) ∈ A. The flow network can be constructed from
any problem instance of MMFA by adding the following node layers and arcs from
a to b: (1) First, we create a node layer for the jobs J . Each job ji ∈ J of this job
layer is connected with source node a. Because each job only needs to be executed
once, the capacity of these arcs is 1. (2) As each job has certain time periods in
which it can be executed, we construct another node layer next to the job layer with
job-time nodes jti for each available time period t for each job ji. The job-time nodes

20 Fair task allocation in transportation

are connected to their corresponding job nodes in the job layer with the arcs having
a capacity equal to 1, because a job can only be executed at most once in a certain
time period. (3) From the bids of the companies we know which companies bid on
which jobs at which time periods with a certain cost. Therefore, from these bids
we can construct yet another node layer with company-time nodes that indicate the
time periods t in which each company k is available, denoted by kt. These nodes
are connected to the corresponding job-time nodes where the company made a bid
at that particular time period. These arcs each have a capacity of 1. However,
unlike previously created arcs, these arcs have costs associated with them equal to
the corresponding compensations indicated in the bids. These costs do not play a
role in solving MMFA, as its objective is not related to the cost. (4) Once we have
constructed this company-time layer, we can construct another node layer consisting
of company nodes. Each node in this company layer corresponds to a company k ∈ K.
The company-time nodes in the company-time layer will then be connected to their
respective companies in the company layer to aggregate the former. These arcs have
a capacity ntk equal to the capacity that a company k has indicated as being available
in that particular time period t. Finally, we connect all nodes in the company layer
with sink node b. For each company k ∈ K the edge between its node and the sink
has a capacity Nk =

∑
t∈T n

t
k, which is the total capacity over all time slots. An

example of the resulting flow network is illustrated in Figure 2.1.
Given the constructed flow network G, the value of a flow f = f(a, b) is the total

flow that can be pushed from the nodes in the company layer to the sink node b,
i.e., f =

∑
v∈{k1,...,kK} f(v, b). Hence, it is clear that the solution to the problem of

finding the maximum flow given the translated flow network problem is equivalent
to finding the maximum number of jobs that can be allocated to the companies in
MMFA. Therefore, given an instance of the MMFA problem, if we run a standard
maximum flow algorithm on the constructed flow network G, we will obtain a solution
that tells us the maximum number of jobs that can be allocated.

However, the objective of the MMFA problem is also to find the optimal max-
min fair solution. Therefore, to solve this maximum flow problem with an additional
fairness property, we introduce an iterative maximum flow algorithm that applies
the maximum flow algorithm, such as Edmonds-Karp (Edmonds and Karp 1972),
in a greedy fashion. In this way, the flow assigned to each company is increased

2.4 Polynomial-time optimal algorithm for MFMCA 21

a

j1

jJ

1

1

j1
1

jT
1

j1
J

jT
J

1

1

1

1

k1
1

kT
1

k1
K

kT
K

1 : c(j1
1,1)

1 : c(j1
1,K)

1 : c(jT
1,1)

1 : c(jT
1,K)

1 : c(j1
J,1)

1 : c(j1
J,K)

1 : c(jT
J,1)

1 : c(jT
J,K)

k1

kK

n1
k1

nT
k1

n1
kK

nT
kK

b

C1,b = N1

CK,b = NK

Figure 2.1: A constructed flow network for solving MMFA, where j1, . . . , jJ repre-
sent a set of available jobs, j1

1 , . . . , j
T
J are job-time nodes, k1

1, . . . , k
T
K are company-

time nodes, and k1, . . . , kK represent a set of companies.

step by step until no more flows can be assigned. This idea is similar to the so-called
progressive filling algorithm (Bertsekas et al. 1987). Our proposed iterative algorithm
IMaxFlow works as follows.

Initiation We construct a setQ that contains all companies and we set the capacity
for all companies to 0, which means that in G, the capacity on the arcs connecting
the nodes k1, . . . , kK ∈ K in the company layer and the sink node b is set to 0, i.e.,
Ck,b = 0 for all k ∈ K in Figure 2.1.

Iterations In the first iteration I1, we arbitrarily pick a company kq ∈ Q and
then increase its capacity by 1, i.e., Ckq,b = Ckq,b + 1 = 1. We then run a standard
maximum flow algorithm, which returns a maximum flow f I1

kq
given the restricted

capacities. We check whether kq receives a flow, i.e., whether f I1(kq, b) = 1 is true.
If f I1(kq, b) = 0, then we can conclude that company kq will not be allocated any

22 Fair task allocation in transportation

job even if we would further increase its capacity. In this case, we fix the capacity
Cfkq,b

of the edge between the sink and company kq to Cfkq,b
= 1− 1 = 0, and remove

company kq from set Q. If f I1(kq, b) = 1, then we know that company kq can handle
a flow of 1, so we can let Ckq,b = 1 and continue. We then choose another company
in Q and repeat the above-mentioned process until we have done the same for all
companies in Q. Recall that all companies can get at most one job in this iteration
because their capacity is set to 1.

We then start the next iteration I2. We arbitrarily pick a company kq ∈ Q and
check whether it has reached its total capacity. If so, we fix its capacity Cfkq,b

= Ckq,b

and remove kq from Q. Otherwise, we increase its capacity to Ckq,b = Ckq,b + 1 = 2.
We again run the maximum flow algorithm on G with the updated capacity and
obtain a maximum flow f I2

kq
. If the maximum flow f I2

kq
is the same as the maximum

flow obtained in the previous step (for the first company in iteration I2, this is the
flow at the end of the previous iteration, f I1), we can conclude that increasing the
capacity Ckq,b for company kq does not result in a larger flow. Therefore, we fix the
capacity Cfkq,b

of the edge between the sink and company kq to Cfkq,b
= 2 − 1 = 1,

and remove company kq from Q. We repeat this for all other companies kq ∈ Q. For
the subsequent companies in the same iteration, we compare the flow obtained after
running the maximum flow algorithm on G with the maximum flow obtained in the
previous step, which is f I2

kq−1
. If the maximum flow f I2

kq
is larger than the maximum

flow obtained in the previous step, then we can let Ckq,b = 2 and continue.
In this way, during iteration Ii we fix a company kq’s capacity to Cfkq,b

= i − 1
in G, either when the company does not receive more flow than in the previous step
Ii,kq−1 (or Ii−1 if kq is first in Ii), or when the company reaches its maximal total
capacity, i.e., Cfkq,b

= i−1 = Nkq
. In each iteration we always add one more capacity

to the company-sink edges whose capacities have not been fixed.

Termination We iterate this process until Q is empty, that is, when the flow no
longer increases with the addition of more capacities to the companies, or when the
capacities of all the companies have reached their limits. It also follows that the
capacities of all the company-sink arcs are fixed to some values.

We return the maximum flow f found upon termination as the maximum number
of jobs that can be allocated, and the fixed capacities Cfk,b. The fixed capacities Cfk,b

2.4 Polynomial-time optimal algorithm for MFMCA 23

— equivalent to the number of flows on the company-sink edges, f(k1, b), f(k2, b),
. . ., f(kK , b) — specifies the number of jobs ωk1 , ωk2 , . . ., ωkK

assigned to companies
k1, . . . , kK . The fixed capacities Cfk,b also comprise the max-min fairness vector
φf = σ(ω).

This iterative maximum flow algorithm is described in Algorithm 1. Note that
this adaptation is independent of the maximum flow algorithm used and is therefore
suitable to be used in combination with any existing maximum flow algorithm.

Algorithm 1 IMaxFlow algorithm for solving MMFA
Input: G = (V,A) a constructed flow network for an instance of MMFA, where a, b
are the source and sink node, respectively. The capacity of a company-sink edge
is denoted as Ck,b for k ∈ K. Nk denotes the maximum capacity of company k

Output: a maximum flow f and a max-min fair allocation vector φf
fcurr ← 0; fprev ← −1
Q = K; I = 0 {I denotes the iteration number}
Cfk,b ← 0, ∀ k ∈ K {Cfk,b denotes the final fixed capacity for company-sink edge
e(k, b)}
Ck,b ← 0, ∀ k ∈ K {update G by setting capacities of company-sink edges to 0}
while Q 6= ∅ do
I = I + 1 {increase the iteration number by 1}
for each k ∈ Q do
fprev ← fcurr
if Ck,b < Nk then
Ck,b ← Ck,b + 1
Call maximum flow algorithm (MF) on G, fcurr ← MF(G)
if fcurr = fprev then
Ck,b ← Ck,b − 1; Cfk,b ← Ck,b
Q ← Q \ {k}

end if
else
Cfk,b ← Ck,b, Q ← Q \ {k}

end if
end for

end while
return fcurr as f , sorted (Cf1,b, . . . , C

f
K,b) as φf

We illustrate IMaxFlow with the following example.

24 Fair task allocation in transportation

Example 2. Refer to the problem instance in Example 1. We can construct the
accompanying flow network as shown in Figure 2.2. The IMaxFlow algorithm first
sets all the capacities of the three companies — i.e., the edges e(k, b) connecting to
sink b — to 0. Then it increases the capacity of e(k1, b) by 1 and runs the maximum
flow algorithm, which obtains f(k1, b) = 1. This is repeated for each company. At
the end of the first iteration we have f I1(k1, b) = f I1(k2, b) = f I1(k3, b) = 1, and the
total maximum flow is f I1 = 3. This can be achieved by pushing a flow from j1 to
k1, a flow from j2 to k2, and a flow from j3 to k3.

During the second iteration, Cfk1,b
is fixed to 1 as k1 has reached its highest capacity

and f I2
k1

= f I1 = 3. Next, the capacity of e(k2, b) is set to 2. After running a
standard maximum flow algorithm, we have a maximum flow f I2

k2
= 3, because k1

and k2 together can be assigned two jobs (either j1, j2 or j1, j3) and k3 receives one
job because its capacity is still 1. As f I2

k2
= f I2

k1
, increasing k2’s capacity does not help

to increase the flow but may harm the fairness because it may happen that both j1, j2

(or j1, j3) can be allocated to k2. Hence, we fix k2’s capacity Cfk2,b
to 1. We then

look at the case where the capacity of e(k3, b) is increased to 2. It is clear that f I2
k3

is
now 4.

Thus, we continue with iteration 3, where we only increase k3’s capacity to 3.
After running IMaxFlow, we have a flow of 5, with a possible allocation of j1 to k1,
j3 to k2, and j2, j4, j5 to k3.

As increasing k3’s capacity will not increase the flow any further, Cfk3,b
is fixed to

3, and the algorithm terminates. The maximum number of allocated jobs is 5, with a
max-min fairness vector of φf = (1, 1, 3), which is simply the fixed capacity of each
company-sink edge sorted in nondecreasing order. �

We now prove that IMaxFlow is correct, that is, the returned flow value f is the
maximum number of jobs that can be allocated, and the returned fairness vector φf
is the most fair job distribution over the participating companies given f .

Theorem 1. IMaxFlow allocates the maximum number of jobs to the companies and
returns a sorted allocation vector that is max-min fair.

Proof. We will prove by induction that given a set of companies K, at any iteration Ii
of the algorithm IMaxFlow, given the available capacities of K, the returned flow f Ii

2.4 Polynomial-time optimal algorithm for MFMCA 25

a

j1

j2

j3

j4

j5

j1
1

j2
2

j4
2

j2
3

j3
3

j3
4

j4
4

j5
5

k1
1

k1
2

k2
2

k1
3

k2
3

k3
3

k4
3

k5
3

20
30

10

40
20

30

25

20

25
25

20

20

k1

k2

k3

b

1

2

5

Figure 2.2: The constructed flow network given the problem instance described in
Example 1. The capacities of the arcs in the flow network are 1, except for the arcs
between the company nodes kk and the sink b. The numbers on the edges between
the job-time nodes jti and the company-time nodes ktk specify the compensations
of company k performing job ji at time period t. We do not take these costs into
account in MMFA.

is maximum, and the sorted allocation vector is max-min fair among all f Ii-feasible
vectors.
Base case: All companies start with capacity 0. In the first iteration I1 of IMaxFlow,
one company k ∈ K is arbitrarily picked and assigned a capacity of 1. Then we run
the maximum flow (MF) algorithm, which determines the maximum flow of the
network given the current available capacity. If this added capacity did not increase
the total flow, k’s capacity is fixed to 0. At the end of iteration I1, when the last
company is given a capacity of 1 and the maximum flow algorithm is run, it is clear
that the returned flow f I1 is maximum given the total capacity of K. Let K0 be the
set of companies whose capacities have been fixed to 0 during this iteration. Then

26 Fair task allocation in transportation

the sorted allocation vector is

φfI1 = (0, . . . , 0,︸ ︷︷ ︸
|K0|

1, . . . , 1︸ ︷︷ ︸
K−|K0|

).

It is possible that the set K0 is not unique. For example, a flow can be pushed either
through j’s node or k’s node. If we pick j first to increase the capacity and to test the
flow, then later increasing k’s capacity to 1 will not increase the total flow and hence
k’s capacity will be fixed to 0, i.e., k ∈ K0. On the other hand, if we pick k earlier
than j, we will have j ∈ K0. This situation however gives us the same sorted vector
of two companies, which is (0, 1). Thus, the first iteration of the algorithm may result
in a different set K0, but the size of K0 is always the same and the total number of
flows f I1 that can be pushed is always maximum. Therefore, the resulting sorted
allocation vector is the same for all possible f I1 -feasible vectors, and it is max-min
fair. Thus the statement holds for the first iteration I1.
Induction step: Suppose the statement is true for iteration Ii, that is, after this
iteration, the returned flow f Ii is maximum given the total capacity added, and the
sorted allocation vector φfIi is max-min fair. Let φfIi be

φfIi = (Cf1,b, . . . , C
f
m,b,︸ ︷︷ ︸

fixed

i, . . . , i︸ ︷︷ ︸
K−m

).

In φfIi , suppose there are m company-sink edges with fixed capacities Cfh,b, 1 ≤ h ≤
m. We denote these companies as Kfix. For the remaining unfixed K −m company-
sink edges, according to the algorithm, the amount of flow must be equal to their
assigned capacity on iteration Ii, which is i. Hence, we have for Ii the maximum
flow f Ii =

∑
h∈Kfix C

f
h,b + i× (K −m).

Now we need to show the statement stays true for iteration Ii+1. During this
iteration, each company j /∈ Kfix, who does not have a fixed capacity, is assigned one
more capacity to have a total capacity of i+ 1. Let j /∈ Kfix be the first company to
increase the capacity. After running the MF algorithm, the returned maximum flow
is either f Ii or f Ii + 1, corresponding to the cases that j will receive either i flow
or i + 1 with an extra capacity. If j receives i flow, it is because either its original
capacity Nj = i or only i flow can be pushed along the job nodes to company j’s

2.4 Polynomial-time optimal algorithm for MFMCA 27

node. At the end of iteration Ii+1, all companies not in Kfix have been given one
more capacity and have been tested with the MF algorithm. Assume L companies
not in Kfix will be assigned i + 1 flows after iteration Ii+1. Then the total flow
f Ii+1 = f Ii + L is maximum given the capacity of this iteration, as f Ii is maximum
at iteration Ii. The resulting sorted allocation vector is

φfIi+1 = (Cf1,b, . . . , C
f
m,b,︸ ︷︷ ︸

m

i, . . . , i,︸ ︷︷ ︸
K−m−L

i+ 1, . . . , i+ 1︸ ︷︷ ︸
L

).

Similar to the reasoning for the base case of iteration I1, these L companies could
be different depending on the ordering of adding one extra capacity and testing.
However, the sorted allocation vector for the companies in Kfix is always the same,
i.e, (i, . . . , i,︸ ︷︷ ︸

K−m−L

i+ 1, . . . , i+ 1︸ ︷︷ ︸
L

). Together with the fact that φfIi is max-min fair in the

previous iteration Ii, we have shown that φfIi+1 is max-min fair among f Ii+1 -feasible
allocation vectors.
Conclusion: By the principle of induction, it follows that the preceding statement
is true for any iteration of the algorithm IMaxFlow.

Hence, it follows that after the final iteration IMaxFlow returns the maximum
number of jobs to the companies and the sorted allocation vector is max-min fair.

As a by-product of the above reasoning, we have the following lemma.

Lemma 1. IMaxFlow returns a unique max-min fair allocation vector, given the
maximum number of allocated jobs.

Finally, we show that the proposed algorithm is a polynomial-time algorithm (see
2.A for the proof).

Theorem 2. The IMaxFlow algorithm runs in time O((J3K3T 3) + (J2K4T 3)).

2.4.2 FairMinCost algorithm

Once we know the fairness vector from IMaxFlow, we want to minimize the associ-
ated cost (compensations). Because there are many feasible max-min fair maximum
flow solutions with different costs, we want to find the one with the minimum cost.

28 Fair task allocation in transportation

Unfortunately, we cannot apply a standard minimum-cost maximum-flow algorithm
to our flow network as it may violate the max-min fairness condition while looking for
the minimum cost. The obtained fairness vector tells us in what quantities the jobs
will be distributed in the fairest allocation. However, we do not know which company
would be assigned which number of jobs such that the total cost is smallest.

If we know the exact number of jobs all companies would get, MFMCA is easily
solvable using a minimum-cost maximum-flow algorithm. This is obvious because we
can set the capacities of the arcs from the company nodes to the sink to be equal to
the number of jobs of the respective companies. Since we know from MMFA that the
flow is maximal and feasible, and that the capacities sum up to this maximum flow,
we know that all jobs will be assigned. This boils down to a simple minimum-cost
maximum-flow problem that can be solved using any of the existing algorithms.

However, if the exact number of jobs that all companies will get is not known,
then the capacity for each company can be any of the capacities in the fairness vector.
This leaves us with many ways to construct the flow network because it is assumed
that the capacity of the arcs in a minimum-cost maximum-flow problem are known.
We can deal with this problem in several ways.

One way to find the minimum cost among all possible max-min fair allocations is
to simply enumerate all possible max-min fair allocations and solve a minimum-cost
maximum-flow problem for each of them, and then to finally choose the allocation
that has minimum cost. However, this method would be computationally inefficient,
because it can be viewed as a multiset permutation with

(
p

r1,r2,...,rp

)
= p!

r1!r2!...rp!

possibilities, where p =
∣∣∣φUf ∣∣∣, in which φUf denotes the vector of unique capacities

in φf , and ri denotes how often capacity i appears in φf , ri =
∑
k∈K

∣∣φf (k) = i
∣∣.

For each possibility, we would need to run a minimum-cost maximum-flow algorithm.
The resulting running time would be exponential.

Instead, in this chapter we propose an algorithm that makes variable capacities
on arcs in the flow network possible. Given the fairness vector φf = (φ1, . . . , φK),
we introduce a solution method that runs in polynomial-time. To this end, we adjust
the network flow model such that the fair job distribution (φ1, . . . , φK) will be intact
at the same time that cost minimization takes place. The challenge is to somehow

2.4 Polynomial-time optimal algorithm for MFMCA 29

enforce the capacities of the fairness vector obtained from IMaxFlow in the final
allocation.

For ease of explanation, we denote an instance of the original MFMCA problem
as P = 〈J ,K, T ,B〉. We now introduce a new problem P ′ = 〈J ′,K′, T ′,B′〉 adapted
from P . The key construction of P ′ given P is that we will update the original set
of jobs J to J ′ = J ∪ J d, where J d is a set of dummy jobs. Each dummy job
provides a flow of 1 and has a cost of 0. These dummy jobs will be performed during
dummy time periods T d, thus, T ′ = T ∪ T d. The set of companies K′ in P ′ stays
the same as in the original problem P , i.e., K′ = K, however, they have capacities
at dummy periods T d for performing dummy jobs J d. The number of dummy jobs
and dummy periods will be determined by the fairness vector φf = (φ1, . . . , φK)
returned by the IMaxFlow algorithm on the instance of P . We construct a flow
network G′ for problem P ′ based on the constructed flow network G for an instance
of problem P by adding the dummy jobs and dummy times in G. In addition, we
update the capacities of all companies to φK . After completing G′, we claim that
if we run a standard minimum-cost maximum-flow algorithm on G′, the solution
is a fair minimum cost job allocation for the original problem P . We denote this
procedure as the FairMinCost algorithm.

Construction of G′. We first show how we can construct a flow network G′ for
problem P ′ based on the constructed flow network G for an instance of problem P .
Given G, we will add a number of so-called horizontal dummy layers (DL for short).
We have a dummy layer for each increment of 1 from the lowest number of jobs,
φ1, to the highest, φK . Hence, the total number of DL is equal to the difference
between the lowest and the highest number of jobs in the fairness vector φf , i.e.,
there are φK − φ1 dummy layers: DL1, DL2, . . . , DLφK−φ1 . Each layer is meant to
provide dummy jobs to companies such that all companies can have jobs up to a
specified number. We associate each dummy layer to the specified number in φf ,
that is, DL1 is associated with number φ1 + 1, DL2 with φ1 + 2, and DLφK−φ1 with
φ1 + (φK − φ1) = φK . In each dummy layer DLl, we create a set of dummy job
nodes J dl in the job layer of the network equal to the number of companies that have
a lower capacity than φ1 + l in the fairness vector φf . These dummy jobs dl,i ∈ J dl
are connected to source node a. We assume that each dummy layer DLl has its own

30 Fair task allocation in transportation

unique dummy time t′l and all dummy jobs from DLl need to be executed at time
t′l. Thereafter, we create dummy job-time nodes dt

′
l

l,i in the job-time layer for each
dummy job dl,i ∈ J dl , and connect them to their corresponding dummy job nodes
dl,i. We assume that every company in K′ is capable of performing every dummy
job in J d, but that for each dummy time t′l the capacity of every company is 1.
Thus, for each dummy layer DLl, we create dummy time-company nodes kt′l in the
time-company layer for each company k ∈ K′ and connect them to all dummy job-
time nodes in that particular dummy layer DLl. Finally, we connect the dummy
time-company nodes ktl to the company nodes k in the company layer of the flow
network G. All added arcs have a cost of 0 and a capacity of 1. Finally, we change
the capacities of the arcs from the company nodes k to the sink b in G to the largest
number according to the fairness vector, i.e., φK .

By creating nodes for each company per dummy layer, we are making sure that
each company can be assigned at most one dummy job in each dummy layer. There-
fore, each company is able to get any of the capacities in the fairness vector and it is
not predetermined which companies are assigned which capacity. This is exactly the
flexibility we desire.

Example 3. In Example 1, we obtained a fairness index of φf = (1, 1, 3), and we
showed the constructed flow network G in Figure 2.2. We now show how to add
dummy layers to G for this instance in order to obtain G′. Figure 2.3 shows the final
construction.

Given φf = (1, 1, 3), we have to create (3 − 1) = 2 dummy layers. In the first
dummy layer DL1 we create two dummy jobs d1,1 and d1,2 for the companies that
have capacity 1 in order for each of them to reach a capacity of 2. We then connect
these two dummy jobs to the same dummy time t′1. Thereafter, we create three dummy
company-time nodes that are connected to the two dummy job-time nodes and to the
three company nodes. The capacity of each arc is 1. This means that every company
is able to do any of the dummy jobs during dummy time t′1 but that only one dummy
job from the same dummy layer can be assigned to the same company due to capacity
constraints. Subsequently, we use a similar construction for the second dummy layer
DL2. In this layer we again need to create two dummy jobs because there are two
capacities smaller than 3 in φf . The cost of all added edges is 0. After creating

2.4 Polynomial-time optimal algorithm for MFMCA 31

DL2, we change the capacities of the arcs between the companies to the sink node
from (1, 2, 5) to (3, 3, 3). �

a Partial flow network of P in Figure 2.2
5

k1

k2

k3

d1,1

d1,2

d2,1

d2,2

1

1
1

1

d
t′1
1,1

d
t′1
1,2

d
t′2
2,1

d
t′2
2,2

k
t′1
1

k
t′1
2

k
t′1
3

k
t′2
1

k
t′2
2

k
t′2
3

b

3

3

3

Figure 2.3: Minimum-cost maximum-flow network with dummy jobs for problem
P ′ for the problem instance described in Example 1. All arcs in the added dummy
layers have a cost of 0 and a capacity of 1.

Finding minimum-cost maximum-flow. Given the constructed network G′, all
edges have a cost cost(e(u′, v′)) of 0, except the edges between the original job-time
nodes and the original company-time nodes. We then run any existing (polynomial-
time) minimum-cost maximum-flow algorithm on G′ that is constructed for problem
P ′. The solution is a flow f ′ satisfying f ′ = arg minu′,v′∈V ′ cost(e(u′, v′))f ′(u′, v′),
and f ′(k) is the number of allocated jobs to company k ∈ K. Let π′k denote the set of
jobs assigned to k. After removing the dummy jobs in π′k, i.e., πk = π′k \{d | d ∈ J d},
we obtain πk that is a set of real jobs in J assigned to company k. Then the allocation

32 Fair task allocation in transportation

vector (πk1 , . . . , πkK
) represents an optimal max-min fair allocation with the least

costs, which is the solution to the original problem P .
To summarize, given an instance P of the problem MFMCA, we use the IMaxFlow

algorithm to obtain a max-min fair allocation vector φf . Algorithm FairMinCost
then constructs an instance P ′, built upon the flow network of P , by adding a set
of dummy nodes and arcs determined by φf . We then run an existing polynomial-
time minimum-cost maximum-flow algorithm on the flow network of P ′. In the
resulting flow, we remove the dummy jobs and dummy flows. Our running example
demonstrates how the algorithm works.

Example 4. We run an existing minimum-cost maximum-flow algorithm on the flow
network for problem P ′ (see Figure 2.3) constructed in Example 3. The job allocation
π′ for problem P ′ is: k1 is assigned {j1

1 , d1,1, d2,1}, k2 is assigned {j2
3 , d1,2, d2,2}, and

k3 is assigned {j2
2 , j

4
4 , j

5
5}. All dummy jobs are assigned, and the allocation vector is

(3, 3, 3). The total cost is 105. We now remove all dummy jobs from π′ in order to
obtain the solution π to the original problem P . We then have: j1

1 to k1, j2
3 to k2

and j2
2 , j

4
4 , j

5
5 to k3. The fairness vector of π is φf = (1, 1, 3), which is max-min fair,

obtained from the algorithm IMaxFlow as illustrated in Example 2. The total cost of
π is 105 as dummy jobs have no cost. This is the same as the optimal max-min fair
allocation in Example 1. �

We now claim FairMinCost is correct, i.e., the final flow returned by the FairMin-
Cost algorithm gives us an optimal solution to P with a max-min fairness vector φf
and has the lowest cost given φf .

Theorem 3. The FairMinCost algorithm returns an optimal solution of instance P
for MFMCA.

The proof is given by the following two lemmas.

Lemma 2. The fairness vector obtained from solving problem P ′ by the FairMin-
Cost algorithm is the max-min fairness vector φf returned as an optimal solution to
MMFA.

Proof. Let φf = (φ1, φ2, . . . , φK) be the nondecreasingly ordered capacities for the
companies in the fairness vector of the optimal solution of MMFA. Hence in an

2.4 Polynomial-time optimal algorithm for MFMCA 33

optimal solution to P , the allocation vector is also φf . In problem P ′, the capacities
are set to φ′ = (φK , φK , . . . , φK), as we add φd = (φd1, φd2, . . . , φdK) = (φK −φ1, φK −
φ2, . . . , φK − φK) capacity for the dummy jobs.

We show that in the allocation of the optimal solution of problem P ′, each com-
pany k ∈ K will be assigned exactly φdk dummy jobs by any minimum-cost maximum-
flow algorithm. We first note that all dummy jobs will be allocated because there
is sufficient capacity added to the network to account for the dummy jobs and they
have a cost of zero.

We will show that any company i ∈ K cannot get assigned more than φdi dummy
jobs. Let i = 1 be the first company in the sorted allocation vector, i.e., it has the
most dummy capacity. For company 1, its number of allocated dummy jobs cannot
be more than φd1, simply because there are in total φK − φ1 = φd1 dummy layers in
G′ and any company can only get at most one job from each dummy layer. Take
an arbitrary company i, 2 ≤ i ≤ K, WLOG, suppose company i is assigned φdi + 1
dummy jobs. This extra one dummy job has to come from another company j (j < i)
who has more dummy capacity than i. Hence, j, j < i, should receive φdj −1 dummy
jobs. If j still gets φdj dummy jobs, it blocks the possibility for i to receive one extra
dummy job as there will not be a sufficient number of dummy jobs in the dummy
layers to support this allocation, due to the construction of dummy jobs in dummy
layers.

Now, if φdj , j < i, will decrease, then there are two possibilities. First, if 0 ≤
φdj −φdi ≤ 1, then φd will not change as it will retain its order. Second, if φdj −φdi ≥ 2,
then this will result in a more even distribution of dummy jobs over companies.
However, since φf = φ′−φd, this will result in a more even, or in other words, fairer
distribution of jobs in φf . This contradicts our claim that φf is max-min fair. The
same reasoning holds if we decrease φdi , for i = 1, . . . ,K − 1 due to symmetry. If we
decrease φdi , our only option is to increase a φdj , j < i, which, as we have seen before,
cannot occur due to insufficiently available dummy jobs.

Lemma 3. The optimal solution for problem P in terms of cost is the same as the
optimal solution for problem P ′.

34 Fair task allocation in transportation

Proof. Assume that the cost of the allocation of jobs in P ′ is different than in P .
If the allocation in P ′ has a lower cost than the allocation in P , then because the
dummy jobs have a cost of zero and we have added sufficient capacity, we can remove
the dummy jobs and obtain an allocation for P that has a lower cost than the optimal
allocation in P . This contradicts the assumption that the allocation in P is optimal.
Now if the allocation in P ′ has higher costs than the allocation in P , then we can add
dummy jobs to the optimal allocation in P and increase the capacities accordingly
so that we obtain problem P ′. We will then have an allocation for P ′ that has a
lower cost than the optimal allocation previously found in P ′. This contradicts the
assumption that the allocation in P ′ is optimal. Therefore, the cost of the optimal
allocation of jobs in P is the same as the cost of the optimal allocation in P ′.

We now show the running time complexity of the proposed FairMinCost algo-
rithm. After constructing the updated graph G′, we use a standard solution method
for minimum-cost maximum-flow problems, namely the cycle-canceling algorithm.
Given a feasible flow, the cycle-canceling method tries to find a negative cycle in the
residual graph whose residual capacity it increases, so that the negative cycle disap-
pears and the resulting solution is a solution with lower costs. Instead of choosing
an arbitrary negative cycle, the cycle with the minimum mean cost is chosen, which
makes the problem strongly polynomial-time solvable (Goldberg and Tarjan 1989).
In order to find minimum mean-cost cycles, we use Karp’s algorithm (Karp 1978).
This will give us our desired solution in which we have an allocation that is max-min
fair and has minimum cost among all possible max-min fair allocations.

The runtime complexity of the FairMinCost algorithm is given below (see 2.B for
the proof).

Theorem 4. The FairMinCost algorithm runs in time O(J3K3(K+T)3(JK+JT +
KT)2 log(JK + JT +KT)).

In conclusion, we can optimally solve MFMCA in polynomial time using first the
IMaxFlow algorithm and then the FairMinCost algorithm.

2.5 Computational results 35

2.5 Computational results

In this section we investigate the performance of the algorithms through numerical
experiments. We are interested in the following two performance measurements:

1. The effect of fairness on the cost, the so-called price of fairness (POF) (Bertsi-
mas et al. 2011a). POF is defined as the relative increase in the total cost (TC)
under the fair solution, compared to the minimum cost (MC) solution; that is,

POF = TC(MFMCA)− TC(MC)
TC(MC) .

2. The effect of fairness on the job distribution. The job distribution depicts the
number of jobs assigned to each company.

Therefore, we generate test cases with various parameters and compute both the
minimum cost solution (MC) using the standard minimum mean-cost cycle-canceling
algorithm, and the fair minimum-cost solution using the two-stage algorithm: first
IMaxFlow, and then FairMinCost. Next to the costs, we take a look at the allocations
in both cases and see how fairness influences the allocation. All algorithms are coded
in Java with the support of the JGraphT library (JGraphT 2014). We run the
experiments on the Lisa Compute Cluster of SURFsara (SURFsara 2014).

2.5.1 Test instances

We derive test instances from our motivating example. In order to make the experi-
ments representative of the situation at the Rotterdam port, we need representative
values for the different parameters. First of all, we define one time unit as one hour,
just as in the port. Although some tasks require more time than others, a task from
one end of the port to the other does not take more than one hour due to the layout
of the port. We choose a time window of 10 time periods, t1, . . . , t10, corresponding
to a typical working day. We then set the number of jobs to 250 (Duinkerken et al.
2006), and the number of companies to 50, based on the members of the “VZV”
(Verenigde Zeecontainer Vervoerders), the Dutch alliance of sea-container carriers,
which represents the different carriers in meetings with the terminals, the port, and
other entities.

36 Fair task allocation in transportation

The jobs have a latest completion time. This is set to 3 time periods after the
earliest time the job becomes available. This means that if a job becomes available
at the beginning of t1, it can be started at t2 and t3 as well but not at t4, as its latest
completion time was at the start of t4. Jobs are distributed over the 10 time periods
but not uniformly. Since there are two peak hours throughout the day (Duinkerken
et al. 2006), we configure jobs to have a 25% chance of starting at t2 and another
25% chance of starting at t6. If a job would not specifically start at a peak hour, it
has an equal chance to start at any time period from t1 to t8. This ensures that each
job has a time window of 3 in which it can be executed. This also ensures that the
number of jobs available in the first and last two time periods are smoothed out.

Scenarios. In our experiments we assign each company a certain probability to bid
on each job at an available time period. We distinguish three different scenarios. The
first scenario is when all companies are not very eager to bid on jobs or they do not
have many trucks available. In this low competition scenario there is a 25% chance of
a company bidding on a job, for all companies, for all jobs. The second scenario is the
exact opposite: companies are actually eager to bid on the jobs or they have many
trucks available. In this high competition scenario there is a 75% chance of bidding
on a job. In the third scenario we combine the first two scenarios by splitting up
the companies into two groups of equal size, where the companies in the first group
have low competition, and the companies in the second group have high competition.
This case is more representative of reality, as there will be large companies that have
plenty of trucks available, and there will also be smaller companies that only have a
few trucks available. We call this the mixed competition scenario.

The number of trucks all companies will have available at a certain time period,
the capacity, will be drawn uniformly random between 0% and 5% (5% capacity) or
between 0% and 10% (10% capacity) of the total number of jobs they bid on in that
particular time period, rounded to the nearest integer. Furthermore, we ensure that
companies will have at least one truck available when they have bid on at least one
job. Note that due to the dependency on the number of jobs they bid on in a time
period, low competition companies will have fewer trucks available at a certain time
period because they bid on fewer jobs, whereas high competition companies will have
more trucks available because they bid on more jobs.

2.5 Computational results 37

Now that we know how companies will bid on jobs, the question remains how much
they will bid. We will have two cases here. The first case is when all companies have
their bid drawn from the same distribution. We choose a uniform distribution that
ranges from 30 to 60. We choose this range because the hourly wage of a truck driver
plus the fuel costs for the largest distance within the port amounts to roughly 30
euros. Because companies would like to make some profit with these extra jobs, we
let the bids range up to 60. We call this cost scenario the homogeneous costs case
and this can be applied to all three aforementioned bidding scenarios. The second
case is when some companies decide to bid relatively low while others decide to bid
relatively high. In the cases of low and high competition, half of the companies will
have their bids drawn from a uniform distribution that ranges from 30 to 50 and
the other half from 40 to 60. When there is mixed competition, the low competition
companies will bid high, from 40 to 60, whereas the high competition companies will
bid low, from 30 to 50. The thought behind this is that low competition companies
value their trucks more than the high competition companies do. Low competition
companies only have a few trucks available and thus can only bid on a few jobs,
whereas the high competition companies have more trucks available and will bid on
more jobs. Therefore, the high competition companies will have to compete with
many others for the same jobs, and so they will offer lower prices. We call this cost
scenario the heterogeneous costs case.

To summarize, we have six scenarios in total, each with 50 companies, 250 jobs,
and a time window of 3 time periods for a job:

1. Low competition, homogeneous costs (low/hom).

2. Low competition, heterogeneous costs (low/het).

3. High competition, homogeneous costs (high/hom).

4. High competition, heterogeneous costs (high/het).

5. Mixed competition, homogeneous costs (mix/hom).

6. Mixed competition, heterogeneous costs (mix/het).

Out of these six scenarios, we believe the last scenario with heterogeneous com-
panies and heterogeneous costs to be the most interesting, because it comes closest

38 Fair task allocation in transportation

to the real situation at the port. We also expect this scenario to yield a relatively
bad performance in terms of price of fairness, because in the minimum cost solution
most jobs will be allocated to the companies with high competition and low costs.
However, because we want to enforce fairness, we need to also allocate jobs to the
companies with low competition and high costs, which may increase the total cost
substantially.

For each scenario, we run 100 experiments with both the minimum mean-cost
cycle-canceling algorithm for a minimum-cost solution and the fair two-stage algo-
rithm for a fair solution. We record the job allocations in both solutions and the
difference in total cost between the minimum-cost solution and the fair solution.

In the end we will investigate the effect of the amount of jobs and companies on
the solutions. One can imagine that the price of fairness will differ depending on the
number of jobs that needs to be allocated. To test this, we run experiments with 50
to 500 jobs in increments of 50, while maintaining all other parameters. In the same
vein, the price of fairness may be dependent on the number of companies present.
When there are only a few companies present the allocation may lack flexibility,
whereas having many companies might drive up the costs because more companies
have to be allocated a number of jobs. Therefore, we run experiments with 25 to 100
companies in increments of 25, while keeping the other parameters the same as in
the base case.

2.5.2 Results: price of fairness

We first present the results of the fair allocations compared to the minimum cost
allocations for the experiments with all six scenarios. In Figures 2.4 and 2.5, the
average price of fairness over 100 experiments per scenario, with 5% capacity and
10% capacity, respectively, are shown in a boxplot. Tables 2.2 and 2.3 show the
accompanying statistics, i.e., the mean, standard deviation, and the minimum and
maximum.

It is clear that costs play an important role in the differences in the total cost
between the minimum-cost and fair solutions. In the scenario with homogeneous
costs (i.e., low/hom, high/hom, mix/hom), the price of fairness ranges from 0 to
2.42. However, in the scenarios with heterogeneous costs (i.e., low/het, high/het,

2.5 Computational results 39

low/hom low/het high/hom high/het mix/hom mix/het

0

2

4

6

8

10

12

14

16

P
O

F

Figure 2.4: Boxplot of the price of fairness with 5% capacity, with the different
scenarios and the price of fairness on the horizontal and vertical axes, respectively.

low/hom low/het high/hom high/het mix/hom mix/het
Min-cost mean 6477.97 7362.67 7515.21 7539.31 7559.42 7537.85

std 355.28 424.07 4.06 8.41 8.20 8.11
min 5585 6236 7506 7522 7535 7250
max 7335 8417 7526 7560 7579 7564

Fair mean 6483.29 7367.40 7516.45 8752.90 7658.93 8578.70
std 358.25 425.22 4.52 4.12 28.23 51.025
min 5582 6245 7506 8732 7602 8403
max 7385 8417 7529 8760 7743 8695

POF mean 0.08 0.06 0.02 16.10 1.32 13.81
std 0.17 0.11 0.02 0.13 0.37 0.70
min 0.00 0.00 0.00 15.75 0.60 11.36
max 0.93 0.46 0.11 16.38 2.42 15.41

Table 2.2: Statistics of minimum cost and fair cost and POF over 100 experiments
with 5% capacity.

mix/het) the price of fairness ranges from 0 to a staggering 17.27. This is as expected,
because if the costs are similar for all jobs for all companies, it will be relatively easy
to reallocate jobs to a different company with similar costs. Once costs vary more
among companies there will be an increase in costs because jobs that were allocated to
relatively cheap companies are forced to be reallocated to more expensive companies.

40 Fair task allocation in transportation

low/hom low/het high/hom high/het mix/hom mix/het

0

2

4

6

8

10

12

14

16

18
P

O
F

Figure 2.5: Boxplot of the price of fairness with 10% capacity, with the different
scenarios and the price of fairness on the horizontal and vertical axes, respectively.

low/hom low/het high/hom high/het mix/hom mix/het
Min-cost mean 7708.83 8069.41 7509.81 7524.81 7535.81 7524.44

std 22.24 90.82 3.45 5.26 6.70 5.80
min 7661 7857 7503 7514 7518 7511
max 7774 8294 7522 7538 7557 7542

Fair mean 7750.36 8872.97 7509.90 8751.89 7589.32 8780.72
std 25.92 17.68 3.48 1.39 14.12 12.84
min 7704 8833 7503 8750 7561 8733
max 7816 8934 7522 8756 7622 8815

POF mean 0.54 9.97 0.00 16.31 0.71 16.70
std 0.16 1.19 0.00 0.08 0.17 0.20
min 0.26 6.88 0.00 16.12 0.37 15.85
max 1.03 12.65 0.03 16.46 1.13 17.27

Table 2.3: Statistics of minimum cost and fair cost and POF over 100 experiments
with 10% capacity.

The seeming discrepancy in the low/het scenario between the 5% and 10% capac-
ity cases can be explained by the structure of the low/het scenario. Because there are
only low competition companies in this scenario, all companies will bid on only a few
jobs. When we set the capacity for each time period to only 5% of those bids, it hap-
pens frequently that the capacity is set to an extremely low number, i.e., 0 or 1. This

2.5 Computational results 41

means that there is not much leeway in the fair solution for jobs to be reallocated.
The fair solution is often similar to the minimum-cost solution as there are only a few
other possible allocations. This can also be observed in Table 2.2 where the means
of the costs of the minimum-cost and the fair solutions in the low/het scenario are
similar but are extremely high compared to those in the low/hom scenario.

By increasing the capacity to 10%, we allow more room for jobs to be reallocated.
In Table 2.3 we can see that the difference in average cost between the low/het and
low/hom scenarios in the minimum-cost solution is significantly smaller than in the
5% capacity case. As there is more room for reallocation, this eventually results in a
higher price of fairness.

We can see that competition also has an influence on the price of fairness. Both
high and mixed competitions result in a higher price of fairness than low competition.
We can see this in the low/het, high/het, and mix/het scenarios in the 10% capacity
case (average price of fairness: 9.97, 16.31, and 16.70 respectively). At first this may
seem surprising. One would imagine that having more possibilities for allocation will
result in both the minimum-cost and fair solutions to be closer to each other compared
to when there are limited possibilities. However, this discrepancy can be explained
by looking at the minimum cost and fair cost of the solutions (see Table 2.3). We can
see that the cost for the minimum-cost solutions in the low/het scenario is on average
higher (8069.41) than that of the high/het (7524.81) and mix/het (7524.44) cases.
This is due to the limited possibilities if there are companies bidding only on a few
jobs. However, the average cost in the fair solutions in the low/het scenario (8872.97)
is similar to that of the high/het (8751.89) and mix/het (8780.72) scenarios. This
results in a smaller difference between the minimum-cost and fair solutions in the
low/het scenario compared to the high/het and mix/het scenarios.

The mix/het scenario, where there is a mix of low- and high-competition compa-
nies, seems to have a price of fairness similar to or lower than the high/het scenario
(13.81 against 16.10 in the 5% capacity case, and 16.70 against 16.31 in the 10%
capacity case). This is somewhat surprising at first. Due to the presence of high-
competition companies, it is clear that the minimum-cost solutions would be similar
to the solutions in the scenario with high competition because the more expensive
low-competition companies are being ignored. However, one would expect that the
fair solutions will have higher costs because the more expensive low-competition

42 Fair task allocation in transportation

companies also need to be allocated jobs. For this we have to keep in mind that
the degree of fairness is not equal among the scenarios. It appears that due to the
presence of low-competition companies, which have fewer bids and therefore fewer
allocation possibilities, they get fewer jobs allocated to them even in the fair alloca-
tion. This in turn means that the other, high-competition companies get allocated
more jobs that are cheaper. In the end, this results in lower costs overall. This effect
can be seen clearly in the 5% capacity case. When we increase the possible capacity
to 10%, low-competition companies get assigned more jobs, almost as many as the
high-competition companies. This results in higher costs.

Summary. All things considered, we can see that the price of fairness is fairly low
when the costs are homogeneous among companies. Jobs can be easily reallocated to
make a more fair allocation while keeping the total cost similar because the individual
costs of a job for each company are similar. In this case, fairness can be easily enforced
without increasing the costs too much or at all. When costs are heterogeneous
however, we have to pay a higher price for fairness. This is as expected because we
would also need to allocate jobs to companies with high costs, whereas we would
only opt for companies with low costs in the minimum-cost solution. In the case
of low competition, allocations tend to have slightly higher costs because there is a
limited availability of jobs to be allocated to companies. This holds true for both the
minimum-cost and fair allocations. In the cases of high and mixed competitions, the
costs of the minimum-cost solutions are similar in the cases with homogeneous costs.
This is as expected because only the companies with the lowest costs get chosen
while the ones with high costs are ignored. However, when we enforce fairness, jobs
will be forcibly reallocated to companies with high costs, which might increase the
total cost. The price of fairness is the highest in the high/het and mix/het scenarios.
Depending on the actual discrepancy between the different costs, one might opt out
of the idea of enforcing fairness when the price of fairness becomes too high.

2.5.3 Results: job distribution

Figures 2.6 and 2.7 show job distributions of both the minimum-cost and the fair
solutions at one instance for each scenario. We choose to show the job allocations

2.5 Computational results 43

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

low/hom

Min−cost

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

Fair

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

low/het

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

high/hom

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

high/het

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

mix/hom

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

mix/het

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

Figure 2.6: Job distributions in the minimum-cost and fair solutions for each sce-
nario with 5% capacity, sorted in ascending order by number of assigned jobs, with
companies on the horizontal axis and the number of assigned jobs on the vertical
axis.

of the instances in which the highest POF was found because there were many cases
with a POF of 0% in some scenarios. The allocations are sorted in nondecreasing
order so that they represent the fairness vector. We can see that in all cases the fair
job distribution is smoother than the minimum-cost distribution, which is exactly
what we desire.

44 Fair task allocation in transportation

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

low/hom

Min−cost

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

Fair

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

low/het

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

high/hom

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

high/het

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

mix/hom

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

mix/het

1 10 20 30 40 50
0

10

20

company

#
jo

b
s

Figure 2.7: Job distributions in the minimum-cost and fair solutions for each sce-
nario with 10% capacity, sorted in ascending order by number of assigned jobs, with
companies on the horizontal axis and the number of assigned jobs on the vertical
axis.

For the low/hom and low/het scenarios in the 5% capacity case, we can see that
the job distributions in the minimum-cost and fair solutions do not differ much, with
the exception of a few companies getting one job more, or less. This further supports
our claim that in these scenarios it is often the case that the fair solution is similar
to the minimum-cost solution because there exists only a few feasible allocations.

2.5 Computational results 45

In the high-competition scenarios (high/hom and high/het) for both the 5% and
10% capacity cases, we can see that the fair allocation assigns each company the same
number of jobs. This is possible because all companies have many bids, which results
in much leeway while reallocating. In the low- and mixed-competition scenarios we
can see that due to the inclusion of low-competition companies that do not bid on
many jobs, it can still happen that certain companies get assigned fewer jobs than
others. This is due to capacity restrictions and to the fact that it is simply not
feasible for our proposed algorithm to assign more jobs to those companies. This
effect can therefore be seen to be more prominent when there is a lower capacity
(5%).

In the homogeneous cost scenarios (low/hom, high/hom and mix/hom) of the 10%
capacity case, we can see that in the minimum-cost solution there are a few companies
that do not get assigned any jobs or are assigned only a few jobs. This is primarily
due to their higher individual costs compared to other companies. However, in the
fair solution all companies are allocated roughly the same number of jobs. A few
companies will receive fewer jobs than others, but this is due to capacity restrictions
as explained above. Given that there are no or just minimal differences between the
costs of the minimum-cost and the fair solutions in the homogeneous cost scenarios,
the price of fairness when costs are homogeneous is minimal. This is as expected.
Reallocating jobs does not come at a significant price because the cost for a job is
similar among all companies. A similar effect can be seen in the homogeneous cost
cases in the 5% capacity case. However, not all companies get the same number of
jobs due to capacity restrictions being more prominent.

With heterogeneous costs, the first 25 companies in the minimum-cost solution
have been allocated only a few jobs or even none at all because of the higher costs
these companies have (except for the 5% capacity low/het scenario, which is due
to capacity restrictions). However, in the fair solution, these companies do get a
significant number of jobs, although this comes with a hefty POF, which can get up
to as much as 17.27.

46 Fair task allocation in transportation

50 100 150 200 250 300 350 400 450 500

number of jobs

0

2

4

6

8

10

12

14

16

18

20
P

O
F

low/hom

low/het

high/hom

high/het

mix/hom

mix/het

Figure 2.8: Line charts of average POF over various numbers of jobs with 10%
capacity, with the number of available jobs in an experiment and the average price
of fairness over 100 experiments on the horizontal and vertical axes, respectively.

2.5.4 Results: varying number of jobs

We investigate the effect of the number of jobs on the price of fairness. We vary the
number of jobs from 50 to 500 while keeping the same number of companies of 50.
For each scenario and number of jobs we run 100 experiments and take the average
price of fairness over these experiments. The results are displayed in Figure 2.8.

We can see that for scenarios with homogeneous costs the price of fairness can be
rather high when the number of jobs is low, as much as 8.88 in the mix/hom scenario.
This can be accredited to the lack of flexibility in allocation when there is a small
number of jobs. The distribution from which the costs of jobs are drawn may be the
same for all jobs, but there is still variation in the costs. With a small number of
jobs this variation plays a larger role when reassigning jobs from the minimum-cost
solution to a fair solution, especially when low-competition companies that bid on
only a few jobs are present. Even if low-competition companies had a high bid on
a particular job, if it is only one of the few jobs they bid on, the job needs to be

2.5 Computational results 47

allocated to these same bidders in the fair solution. This raises the total cost in the
fair solution. We notice this effect particularly in the mix/hom scenario. A job that
was assigned to a high-competition company in the minimum-cost solution, where
the lowest cost was chosen, can suddenly be assigned to a low-competition company
that only submitted a few bids.

As the number of jobs increases, the number of bids also increases, providing
more flexibility for reallocation when a fair solution needs to be constructed. There
will be a bigger chance of having a bid for the same job from another company
with similar cost as the company in the minimum-cost solution. The average price
of fairness decreases when the number of jobs increases and eventually the price of
fairness seems to stabilize close to zero.

For scenarios with heterogeneous costs the effects are more complicated. Due
to heterogeneous costs, jobs that were allocated to cheap companies (ones that bid
between 30 and 50) in the minimum-cost solution need to be reallocated to expensive
companies (ones that bid between 40 and 60) in the fair solution. This means an
average increase of 10 in the cost per reallocated job. When the number of jobs
increases, the share of reallocated jobs increases as well, thus increasing the total
cost. This effect can be seen in particular in the low/het scenario, where the average
price of fairness increases as the number of jobs increases. In the high/het scenario
this effect is not as prominent, because there is high competition and thus there are
many bids to choose from. Then there is a substantial chance that there exists a bid
from another company that is similar in cost.

For the mix/het scenario, we have to keep in mind that high-competition com-
panies have bids between 30 and 50, whereas low-competition companies have bids
between 40 and 60. This means that when a job from a high-competition company
in the minimum-cost solution needs to be reassigned to a low-competition company
in the fair solution (something that also happens in the mix/hom scenario) the cost
will increase by 10 on average. This results in a less steep decline in the average price
of fairness compared to the mix/hom scenario when gradually going from 50 jobs to
200 jobs. The increase in costs resulting from reallocating jobs to companies with
completely different costs is especially noticeable when there are fewer jobs. This
increase in costs due to reallocation weighs more in the mix/het scenario than the
effect of the average increase of 10 when switching from a high-competition company

48 Fair task allocation in transportation

to a low-competition one. The average price of fairness is therefore declining in the
mix/het scenario in contrast to the low/het and high/het scenarios where the price
of fairness increases with the increase in the number of jobs.

For all scenarios with heterogeneous costs it seems that the average price of fair-
ness eventually stabilizes as the number of jobs increases. This again can be ac-
credited to the flexibility that the increasing number of jobs, and therefore bids,
introduces for reallocation when a fair solution needs to be constructed. Realloca-
tions become more efficient and will eventually weigh up against the increase in costs
due to the increased amount of reallocations.

2.5.5 Results: varying number of companies

In order to investigate the effect of the number of companies on the price of fairness
we vary the number of companies from 25 to 100 in increments of 25, while now
fixing the number of jobs to 250. For each scenario and number of companies we run
100 experiments and again take the average price of fairness. The results are shown
in Figure 2.9.

We notice that for the scenarios with homogeneous costs the price of fairness
is rather low, ranging from 0.00 to 1.48 in the mix/hom scenario. The addition
of more companies does not have much effect, as the costs are similar among all
companies. This creates more flexibility for the fair allocation. Only when the
number of companies is low in the mix/hom scenario, there is a slightly higher price
of fairness due to lack of flexibility to allocate the jobs to companies with similar
costs in the fair allocation.

When we look at the scenarios with heterogeneous costs, we can see that for
the high/het and mix/het scenarios the price of fairness seems to decrease as more
companies participate, which is again due to added flexibility as the same number of
jobs can be distributed among more companies with many more bids. The seemingly
odd occurrence of a slightly lower price of fairness at 25 companies compared to the
case with 50 companies can be explained by the lack of competition. When we take a
look at the actual costs of the minimum cost allocations, we can see that it is slightly
higher in the case of 25 companies than it is when there are 50 companies. Because
of the limited number of companies, there is not much competition between the bids.

2.5 Computational results 49

25 50 75 100

number of companies

0

2

4

6

8

10

12

14

16

18

20
P

O
F

low/hom

low/het

high/hom

high/het

mix/hom

mix/het

Figure 2.9: Line charts of average POF over various numbers of companies with
10% capacity, with the number of companies in an experiment and the average price
of fairness over 100 experiments on the horizontal and vertical axes, respectively.

However, the costs for the fair allocations with 25 companies is similar to those in
the cases with more companies, yielding a lower price of fairness.

The results of the low/het scenario stand out the most. It seems that the minimum
cost and the fair allocations have similar costs when there are 25 companies, having
an average price of fairness of 0.02. The price of fairness then increases substantially
to 9.97 and 12.86 as the number of companies increases to 50 and 75 companies,
respectively. It decreases again to 12.08 when the number of companies is further
increased to 100. The average price of fairness of 0.02 with 25 companies can be
easily explained when we take a look at the allocations. It seems that due to the
small number of bids with only 25 companies and low competition, the fair allocation
is often exactly the same as the minimum cost allocation. There is simply no other
allocation possible. As the number of companies increases, the number of bids also
increases, adding more leeway for the fair allocation. With 50 companies the number
of bids seems to be sufficient in order to distribute the jobs to companies evenly.

50 Fair task allocation in transportation

However, the number of bids is still relatively low, resulting in the costs of the
minimum cost allocations to be much higher than in the case of 75 or 100 companies.
At the same time, the costs of the fair allocations gradually decrease as the number of
companies increases. The decrease in costs of the minimum cost allocations is much
heftier than the decrease in costs of the fair allocations, which results in the increase
in price of fairness. Going from 75 to 100 companies the number of bids increases
again, lowering the costs for the minimum cost allocations slightly, while the costs
for the fair allocations decrease more with the added bids. This finally results in a
slight drop in the price of fairness.

2.6 Conclusions and discussion

In task or job allocation problems there are many ways to assign jobs to all interested
parties. The most common way is to minimize the costs of such allocation by only
considering the cheapest companies. In this chapter, instead of just focusing on costs,
we take into account the job distribution over companies. We try to allocate jobs
to all participating parties as fairly as possible in terms of the number of allocated
jobs. This additional criterion is particularly relevant in our motivating example, an
inter-terminal transport problem (ITT) in the port of Rotterdam, where we want
to use the trucks already present at the port to execute inter-terminal transport
jobs. Because such a job allocation will be repeated daily, it is crucial to give those
companies incentives to be involved in this activity by assigning them jobs based not
only on their costs but also on ensuring some market share, i.e., allocated jobs.

To meet the new fairness criteria in task allocation, we developed a polynomial-
time optimal method consisting of two novel algorithms: IMaxFlow, which uses a
progressive filling idea, and FairMinCost, which smartly alters the structure of the
problem. The output of these two algorithms is a max-min fair task allocation with
the least total cost. In the experiments we looked at several scenarios for both the
jobs that are being auctioned, and the companies who are bidding on the jobs. From
the results of the experiments we find that in the situation where the costs among
companies are similar, implementing fair allocations comes with almost no extra cost
for the task owner. When the prices are highly volatile however, the auctioneer may

2.6 Conclusions and discussion 51

need to pay more for the fairness. When there are relatively few jobs, the price of
fairness will usually be relatively high due to the lack of flexibility in reallocating jobs.
As the number of jobs increases, the price of fairness will stabilize due to the flexibility
granted by the increase in the number of bids. Similarly, the more companies are
participating, the more bids there will be, resulting in more flexibility for reallocation
and a lower price of fairness. However, the price of fairness can also be low when there
are only few companies. This is then mainly due to lack of flexibility for reallocation,
so that the fair allocation is similar to the minimum cost allocation. This means that
the number of participants should be sufficient in order to have the desired flexibility
needed for reallocation. The auctioneer should contemplate whether the fairness in
the allocation is worth the extra cost. It is necessary to investigate specific cases
regarding the price of fairness.

We made certain assumptions in this work because we had a real case of the ITT
problem in the port of Rotterdam in mind. Some of these assumptions can be relaxed
to some extent. For instance, we assumed that each task can be completed within
one time unit. If the tasks have different durations, we can normalize them by using a
time unit large enough to encompass the task with the longest duration. We may lose
some efficiency by doing this, but it makes the problem solvable using our proposed
algorithms. Furthermore, we assume that the tasks are independent. One way to
tackle interdependent tasks is to make them available in subsequent time periods,
i.e., make sure one task has been executed before the next one is made available for
execution.

The focus of this research is on designing efficient algorithms for finding fairest
task allocations. Auctions are used in this research as a way to collect local informa-
tion from the participants. This information is then used as input in the task alloca-
tion problem. We do not consider the bidding behavior of the bidders in this chapter.
However, bidders may choose to misreport their inputs in an attempt to affect the
allocation in their favor. In order to incentivize the bidders to bid truthfully, the
mechanism design aspect of the auction needs to be studied as future research (Van
Der Krogt et al. 2008). In addition, we have only looked at one quantification of
fairness in this research, in which we only consider the number of tasks in an allo-
cation. As we have seen in the literature, there are many definitions of fairness and
many different quantifications of fairness (Ogryczak et al. 2008, González-Pachón

52 Fair task allocation in transportation

and Romero 2016). Furthermore, our implementation of fairness is useful for giving
companies equal market share, presumably resulting in more satisfied participants,
which can be useful for long-term relationships between companies and auctioneer.
Some companies might not be satisfied with this fair allocation, as they would rather
maximize their own market share. However, the use of a fair allocation is exactly
to counter certain companies gaining too big of a market share, suppressing other
smaller participants. The idea behind the fair allocation is to not maximize the
welfare of one or a few participants, but to maximize the overall welfare of all partic-
ipants, including the auctioneer. The auctioneer can decide which quantification of
fairness to use that best suits their goals. When considering game theoretical prop-
erties of the auction mechanism, another quantification of fairness might prove to be
better in attaining the desired properties. Investigating different quantifications of
fairness with mechanism design will be an interesting future direction.

In many real-world cases, the bids from one company can be combinatorial, that
is, the cost of receiving two jobs is strictly smaller than the total cost of executing
the same two jobs separately. If this combinatorial property exists between jobs, the
task allocation problem becomes NP-hard (Cramton et al. 2006). For example in
the ITT problem, if one job is to transport some goods from location A to B, and
another job is to ship some goods from B to C, it seems that giving both jobs to
one company leads to smaller costs than letting two companies execute the two jobs
separately. After consulting with a port manager, we find out that the margin of
these two instances is so narrow that we gladly ignored the combinatorial property.
The advantage of this is that we now have a polynomial-time algorithm to compute
the optimal allocation in terms of fairness and cost. For the cases where the tasks
have a high degree of complementarities our proposed algorithms cannot be directly
applied. Adapting our algorithms for solving such cases is open for further research.

Even though our work has been inspired by the situation in the port of Rot-
terdam, the described setting is not unique to this application. This work can be
applied to many other task allocation problems in which the centralized planner
wants to enforce some kind of fairness among the agents. Due to the rise of the
so-called sharing economy (Goldman and Gorham 2006, Belk 2014), collaborative
consumption in transport, for example car-sharing, has gained interest in the past
years. The main concern in this area is on where to station the shared-use vehicles

2.A Proof of Theorem 2 53

(Fan et al. 2008, Shaheen et al. 2010, Kek et al. 2009). However, online platforms
for collaborative consumption in transport have recently been upcoming. In these
platforms participants are free to join or leave as they please. One might think of
taxi services that are operated by civilians. Another application would be in airport
slot allocation. In this area, although not as dynamic as in the cases of the port and
taxi services, it is important to allocate slots to airlines both efficiently and fair, as
such to motivate new entrants (Castelli et al. 2011, Condorelli 2007). It would be
interesting to see whether our methods can be used in those applications.

Appendix

2.A Proof of Theorem 2

Proof. IMaxFlow starts with capacity 0 for all company-sink edges and it adds only
1 more capacity at each iteration. Thus, IMaxFlow takes at most maxk∈K(Nk) < J

iterations, and in each iteration there are at most K steps. In each step, a maximum
flow algorithm is called. In our case, this is the Edmonds-Karp algorithm, which
runs in time O(|V | |A|2). The flow network G consists of at most 2 (source and sink)
+J + JT + TK +K nodes and at most J + JT + JTK + TK +K arcs. This results
in a running time of O(JK(JT + TK)(JKT)2) = O((J4K3T 3) + (J3K4T 3)).

2.B Proof of Theorem 4

Proof. The Goldberg-Tarjan algorithm is known to terminate afterO(|V | |A|2 log(|V |))
iterations, with Karp’s algorithm having a running time of O(|V | |A|). This results in
a O(|V |2 |A|3 log(|V |)) algorithm for solving the second stage of the MFMCA prob-
lem. In G′ there are φK − φ1 < J dummy layers. In each dummy layer the number
of dummy jobs is upper bounded by K. The number of vertices in each dummy layer
is then at most 3K. This results in the number of vertices being upper bounded by
(JT +TK) for the original problem P and by JK for the dummy part of problem P ′,
for a total of JT +TK +JK. The number of arcs |A| is upper bounded by JTK for

54 Fair task allocation in transportation

P and by JK2 for the dummy part of problem P ′, for a total of JTK+JK2. Hence,
FairMinCost runs in timeO(J3K3(K+T)3(JK+JT+KT)2 log(JK+JT+KT)).

Chapter 3

Participation behavior and
social welfare in repeated
task allocations1

3.1 Introduction

Task allocation problems have focused on achieving one-shot optimality, which typi-
cally aims at finding the minimum cost allocations (Weerdt et al. 2012). In Chapter
2 a fair task allocation problem has been studied, where we propose a fair task allo-
cation algorithm that assigns companies jobs based not only on their costs but also
tries to allocate jobs to all participants as fairly as possible. We have demonstrated
the benefit of factoring fairness into task allocation. In the experiments, among the
majority of test instances, fairness comes with a very small price in terms of cost.
The motivation of developing fair task allocation algorithms was inspired by an ac-
tual transportation situation in the port of Rotterdam in the Netherlands, where
many small inter-terminal tasks need to be assigned to companies who have trucks
that are already present in the port. Those trucks that come from the hinterland to

1This chapter is based on Ye and Zhang (2016), Ye et al. (2017b).

56 Participation behavior and social welfare in repeated task allocations

drop or pick up containers often have spare time in between tasks. Hence, terminals
could take advantage of these idle trucks by providing them with jobs that they can
perform within the port while waiting for their next scheduled job. This benefits
both the truck operators and the port operator, in addition to using readily avail-
able resources, which increases the utilization rate of existing trucks. Furthermore,
this means that less or even no new trucks are needed to perform the jobs, which
results in being a more durable approach to meeting the transport need within the
port. Because such allocations will be repeated daily and any truck company that is
present in the port is free to participate, it is crucial to encourage those companies
to participate in this activity.

We hypothesize in Chapter 2 that due to psychological factors, using an allocation
algorithm with fairness as a main criterion will encourage companies’ participation
in the repeated task allocation game. More participants ensure more supplies in the
system, which will eventually lead to a higher social welfare. The objective of this
chapter is to test this hypothesis. We study a repeated task allocation problem.
Besides the inter-terminal transportation example of the port of Rotterdam, another
example of repeated task allocation would be private taxi services, in which any party
is free to take up a job, different from traditional taxi services. An incoming job may
be proposed to several drivers in the neighbourhood, but eventually only one of them
will be assigned the job. In these settings, participants share their idle resources, and
therefore, it is important to ensure some portion of the market share to the players
to encourage their participation.

We consider agents to be not completely rational. Hence, the assumption that an
agent will participate in the game as long as its expected utility is non-negative may
not hold anymore. Instead, we take into account psychological factors of agents that
may curb the decision to participate in two ways. First, we model agents’ participa-
tion based on prospect theory (Tversky and Kahneman 1992). Second, we propose
a model of agent optimism based on a fuzzy connective. In fuzzy decision theory
there is a large number of connectives, i.e., aggregation operators, which can be used
for modeling different types of decision making behavior. The generalized averaging
operators are especially interesting, since they can be used to model human decision
making behavior (Kaymak and van Nauta Lemke 1998, Kaymak 2017). Instead of
using prospect theory to incorporate human decision making behavior, we will now

3.2 Literature review 57

use the generalized averaging operators to incorporate an agent’s utility and previous
experiences into its current participation decision. Each agent will have its own op-
timism level, which is based on its relative allocation compared to the other agents.
This optimism level will transform an agent’s utility in order to determine its partic-
ipation probability that will influence the participation decision in a given round. In
turn, we also look at the effect of agents’ participation on the social welfare, which
is measured by the allocation quality.

The outline of this chapter is as follows. In Section 3.2 we present a brief overview
of existing literature on repeated games, prospect theory, and fuzzy decision theory.
Section 3.3 introduces the problem setting and in Section 3.4 we show how we use
prospect theory and the generalized averaging operator to model agents’ decisions on
participating in each round of the games (Section 3.4). This participation probability
is derived based on the previous allocation outcomes, and particularly, on an agent’s
perception on its received proportion in comparison to other agents. In Section 3.5 we
conduct simulation experiments to investigate how the allocation influences agents’
decision to participate by using two task allocation algorithms, of which one only
looks at optimality in terms of costs, and the other looks at optimality in terms of
primarily fairness and secondarily costs (Chapter 2). We also look at the effect of
agents’ participation on the social welfare in each round, and its effect on the overall
social welfare, where the social welfare is measured by the allocation quality. Finally,
Section 3.6 contains the concluding remarks.

3.2 Literature review

Repeated problems have been studied in the fields of game theory (Benoit and Kr-
ishna 1985, Mailath and Samuelson 2006) and auctions (List and Shogren 1999,
Rothkopf 1999). In these studies, agents are assumed to be rational, i.e., as long
as their expected utility is non-negative, they do not opt out of the game. There-
fore, with an individual rational mechanism, the participating parties are fixed (e.g.,
Nisan and Ronen (1999)). In our work, we discard the assumption of rationality,
and model agents’ different participation behaviors by linking their optimism or pes-
simism motives with the outcomes of the previous games. We do this using both

58 Participation behavior and social welfare in repeated task allocations

prospect theory, and a fuzzy set connective from fuzzy decision theory. Prospect
theory has been widely studied in behavioral economics (Camerer 2004, Lahdelma
and Salminen 2009). It is a behavioral model that shows how people handle decisions
that involve risk and uncertainty. However, this behavioral theory is rarely used in
task or resource allocation problems. Fuzzy sets have been used to model human
decisions, and several fuzzy connectives for this purpose have been proposed based
on experimental work (Kovalerchuk and Taliansky 1992, Thole et al. 1979, Zimmer-
mann and Zysno 1980). The generalized means are of particular interest, as they
easily allow for modeling a wide range of the degree of compensation (van Nauta
Lemke et al. 1983, Dyckhoff and Pedrycz 1984).

3.3 Problem definition

First, we revisit the task allocation setting that we have studied in Chapter 2. We
assume that the set of available jobs to be distributed among agents is known in
advance by the central planner. We assume a set of time periods T , consisting of T
time periods. The set of jobs, denoted by J consisting of a total of J jobs, comes
with an earliest available time and a latest completion time for each job. We assume
that jobs are independent. We define for each job ji ∈ J its possible starting time as
a mapping: J ×T 7→ {0, 1}. When it is clear from the context, we abuse the notation
and use jti to denote that job ji is available at time period t ∈ T . Once the set of
jobs J together with their possible starting times has been made available, a set of
companies K, consisting of K companies, may bid on individual jobs. In addition
to the selection of jobs that a company k ∈ K wishes to perform, the company also
needs to provide their available capacity ntk in time period t in which it is able to
perform the jobs. We assume that each job takes up one unit of capacity and can
be completed within one time unit. Furthermore, the company k needs to provide
its desired compensation (or cost), c(ji, k), for the bid job ji ∈ J . A bid, Bk, from
a company k is thus a tuple: 〈ck,nk〉, where ck is a set of costs c(jti , k), and nk
is a set of capacities ntk. Once all bids from the bidding companies K have been
collected, the auctioneer determines a task allocation π : J × T × K 7→ {0, 1}. If a
job ji is allocated, it will result in a fixed value V , which indicates how much a task

3.3 Problem definition 59

Table 3.1: The bids of three companies include desired jobs in each time period
and their associated compensation.

t1 t2 t3 t4 t5
k1 j1 : 20
k2 j1 : 30 j2 : 40

j3 : 25
k3 j1 : 10 j2 : 20 j3 : 25 j2 : 30 j5 : 20

j3 : 20 j4 : 25 j4 : 20

is worth to the auctioneer. For all unallocated jobs, their values are set to 0. The
social welfare U given an allocation π is defined as the difference between the total
value of allocated tasks and the total costs of performing the allocated tasks. In a
typical task allocation problem, the objective is to maximize the social welfare by
choosing an optimal allocation. Note that for this one-shot task allocation problem,
we can use any existing min-cost max-flow algorithm to find the optimal allocation.

In Chapter 2 a fair algorithm is developed to ensure a max-min fair allocation
to agents. The max-min fairness principle means that given a total of Z jobs, the
number of jobs for any agent cannot be increased by at the same time decreasing the
number of jobs of other agents that have the same number of jobs or less. Intuitively
speaking, we want to have an allocation that distributes the set of jobs among the
agents as evenly as possible. To meet the fairness criterion a polynomial-time fair
method is developed consisting of two novel algorithms: IMaxFlow, which computes
a max-min fair vector, i.e., the most even distribution over agents given all bids,
and FairMinCost, which finds the minimum cost allocation that satisfies the given
max-min fair vector. The output of these two algorithms is a max-min fair task
allocation with the least total cost. We now use the following example to illustrate
the algorithms used in Chapter 2 to obtain the minimum-cost and fair allocations.

Example 5. Suppose we have 5 jobs, all having a value of V = 100. The jobs can
be done in certain time periods and three companies submit their bids, as shown in
Table 3.1. Any min-cost max-flow algorithm results in πmincost assigning j2

3 to k2

and j1
1 , j

2
2 , j

4
4 , j

5
5 to k3, with a total compensation of 95, and social welfare of 405.

For the fair allocation, using the algorithms in Chapter 2 we obtain the max-min fair
allocation vector φ = (1, 1, 3) using IMaxFlow. Thereafter, using FairMinCost, we

60 Participation behavior and social welfare in repeated task allocations

obtain the fair allocation πfair, which assigns j1
1 to k1, j2

3 to k2 and j2
2 , j

4
4 , j

5
5 to k3,

with a total compensation of 105, and social welfare of 395. �

In this chapter, we will extend the one-shot task allocation problem in Chapter 2
to a multi-round task allocation problem. We introduce round r ∈ R. We then have
tasks ji,r ∀ ji,r ∈ Jr, with Jr the set of jobs in round r, Jr ⊆ J . In the repeated task
allocation game with R rounds, the objective is to maximize the social welfare over all
rounds, that is, to maximize

∑R
r=1 Ur =

∑R
r=1

∑
ji,r∈Jr,πr(ji,·,·)=1 |ji,r| ·V −c(ji,r, k),

where πr is an allocation in round r. In addition, we assume agents decide for
themselves whether they would like to participate in bidding in a certain round or
not. This participation decision will be modelled as a participation probability pkr,
which is dependent on earlier allocation outcomes. The repeated task allocation in a
round r goes as follows. After the auctioneer announces the available tasks, agent k
decides on whether to participate or not by computing its participation probability
pkr, and if participating, it submits the bid br,k based on its observed capacities and
compensations. As we do not study agents’ bidding strategies in this chapter, we
simply assume agents submit their bids based on their true values. The auctioneer
then decides on the task allocation πr and the payments c(jti,r, k). Finally, agent k
observes all participants’ bids and the outcome πr.

3.4 Modeling participation behavior

We consider two different ways of modeling an agent’s participation probability pkr
to show the difference in impact an agent’s participation decision can have on the
allocation, dependent on how the agent behaves. First, we use prospect theory, and
second, we use a generalized averaging operator from fuzzy decision theory.

3.4.1 Prospect theory

Prospect theory (Tversky and Kahneman 1992) demonstrates that people view their
expected utility not in absolute terms, what one would expect from expected utility
theory, but rather relative to a reference point. In addition, it indicates that people
are loss-averse, where they would be more willing to take risks in order to avoid a
loss, and they would avoid taking risks if it concerns a gain. There is a distinction

3.4 Modeling participation behavior 61

between two phases in the choice process: (1) the editing phase, where a simpler
representation of the outcomes of alternatives is obtained, as they are coded as gains
or losses relative to a reference point; and (2) the evaluation phase, where the edited
prospects are evaluated and the prospect of highest value is chosen. The overall value
of an edited prospect is expressed by a weighting function and a value function. In
Tversky and Kahneman (1992), the authors propose the form of the value function
given by

v(x) =
{
xα if x ≥ 0

−λ(−xβ) if x < 0
(3.1)

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are coefficients determining the concavity and
convexity for gains and losses, respectively, and λ > 1 is the loss-aversion coefficient.

The participation probability pkr of agent k in round r is dependent on their
experience in previous rounds. To model the participation decision using prospect
theory, we use the average proportion in the previous round over all companies as the
reference point in the editing phase, and a positive (or negative) difference between
a company’s proportion in the previous round and the average proportion as a gain
(or loss). The intuition is that if an agent feels being treated worse in comparison
with others, it might be more uncertain and will care less about participating again,
because the time and effort put in the preparation when participating can then
be seen as a loss. More formally, denote zrjtk and xrjtk as the binary variables
that indicate whether in round r agent k has participated in bidding on job ji,r

or is assigned ji,r in the allocation πr, respectively. For ease of notation we use
round r directly in the subscript of the variables. Denote K+

r ⊆ K as the subset of
agents where k+ ∈ K+

r has
∑
jt zrjtk+ > 0 in round r. For every agent k that has

participated in the round prior to round r, k+ ∈ K+
r−1, we can use the proportion

of number of jobs won in round r − 1 over the number of bids submitted in round
r−1, ψkr, as a measurement of the possible gain and loss of an agent k ∈ K in round
r, see Eq. (3.2). We set the reference point to be the average proportion over all
companies k′ ∈ K, and we normalize the difference between the proportion of agent
k and the average proportion, as in Eq. (3.3). For the evaluation phase, we use the
value function in Eq. (3.4) to obtain the probability of agent k bidding in round r. In

62 Participation behavior and social welfare in repeated task allocations

Eq. (3.5) the prospect probability p̂(ψ′kr) is scaled into the probability interval [0, 1].

ψkr =
∑
j,t x(r−1)jtk∑
j,t z(r−1)jtk

(3.2)

ψ′kr =
ψkr − 1

K

∑
k′∈K ψk′r

maxk+∈K+
r−1

(|ψk+r − 1
K

∑
k′∈K ψk′r|)

(3.3)

p̂(ψ′kr) =
{
ψ′kr

α if ψ′kr ≥ 0

−λ(−ψ′kr
β) if ψ′kr < 0

(3.4)

p′(ψ′kr) = max(pLB ,
p̂(ψ′kr)

2 + 0.5) (3.5)

When an agent’s proportion is equal to the average proportion, we assume that
every agent is indifferent on participating, therefore, p′(ψ′kr) = 0.5. When an agent
is allocated more tasks than others on average, then the participation probability
increases, as the agent will feel more certain in participating. However, when an
agent is allocated less tasks than others on average, the participation probability
decreases. In order for the probability to not become negative we set a lower bound
pLB , so that agents will still be able to come back and participate in later rounds
although with a very small probability. If an agent has not participated in bidding
in the previous round, we set p′(ψ′kr) = pLB . In order to take into account the
experience from previous rounds into the participation probability, we will apply
simple exponential smoothing. Thus, the participation probability for agent k in
round r is calculated as

pkr = γp′(ψ′kr) + (1− γ)p(ψ′k(r−1)), (3.6)

where γ is the smoothing factor. In the first round, r = 1, we assume that all agents
will participate in bidding.

Example 6. In Example 5 we have seen three agents who bid on five jobs. Consider
this as round 1 with participation probabilities pki1 = 1.00 for all three agents. We
choose α = β = 0.88 and λ = 2, as they are commonly adopted in prospect theory,
and pLB = 0.01 and γ = 0.5. In round 2, we obtain ψki2 = (1

1 ,
1
3 ,

3
8), for agent

k1, k2 and k3, respectively. The reference point becomes 0.57, and the correspond-

3.4 Modeling participation behavior 63

ing differences are (0.43,−0.24,−0.19). The normalized proportions become ψ′ki2 =
(1,−0.55,−0.45). Using (3.4) and (3.5), we obtain p′(ψ′ki2) = (1.00, 0.01, 0.01).
Eventually, the participation probability can be obtained through (3.6), resulting in
pki2 = (1.00, 0.505, 0.505). Agents k1 and k3 decide to participate in this round,
bidding on 3 and 5 jobs, and are assigned 1 and 2 jobs, respectively. Using this
information, we can repeat the calculations for round 3, which result in p(ψ′ki3) =
(0.81, 0.01, 1.00). Agent k2 will be very unlikely to participate in the next round of
allocation. �

3.4.2 Fuzzy decision theory

We make use of the generalized averaging operators from fuzzy decision theory in
order to aggregate the utilities of previous m rounds, taking into account an agent’s
personal optimism/pessimism, in a similar fashion as in Lovric et al. (2009). The
generalized averaging operators are given by

pkr(skr) =

 1
min(m, r − 1)

r−1∑
q=max(1,r−m)

µskr

kq


1/skr

, (3.7)

for skr ∈ R \ {0}, and

pkr(0) =


r−1∏

q=max(1,r−m)

µkq


1/min(m,r−1)

, (3.8)

where pkr is the participation probability for agent k in round r, and skr is a pa-
rameter indicating the optimism level of agent k in round r. A positive skr indicates
that the decision making behavior is optimistic, whereas a negative skr indicates that
the decision making behavior is pessimistic. The higher the skr, the closer to the
maximum value of the sample pkr(skr) will be. Whereas the lower the skr, the closer
to the minimum of the sample it will be. If skr → ∞ (skr → −∞), pkr(skr) will be
the maximum (minimum) of the sample, and when skr = 1 (skr = −1) we obtain
the arithmetic (harmonic) mean. In the special case that s → 0, we will use (3.8),

64 Participation behavior and social welfare in repeated task allocations

which returns the geometric mean. The decision function (3.7) holds the following
properties:

• pkr(skr) is continuous in parameter skr;

• pkr(skr) is monotonic and nondecreasing in skr;

• pkr(skr) is increasing in µkr;

• pkr(skr) ∈ [0, 1] if µkr ∈ [0, 1].

We let the optimism parameter skr be dependent on the outcome of the previous
round. Let us first denote zrjtk and xrjtk as the binary variables that indicate
whether in round r agent k has participated in bidding on job ji,r or is assigned ji,r
in the allocation πr, respectively. For ease of notation we use round r directly in the
subscript of the variables. Denote K+

r ⊆ K as the subset of agents where k+ ∈ K+
r

has
∑
jt zrjtk+ > 0 in round r. For every agent k that has participated in the round

prior to round r, k+ ∈ K+
r−1, we can use the proportion of number of jobs won in

round r−1 over the number of bids submitted in round r−1, ψkr, as a measurement
of the optimism or pessimism of an agent k ∈ K in round r.

ψkr =
∑
j,t x(r−1)jtk∑
j,t z(r−1)jtk

(3.9)

This proportion does not indicate how well the agent has performed compared to its
peers. Therefore, we determine the average proportion over all agents k′ ∈ K, and
the difference of the agent’s proportion with this average. As these differences may
be very small, as every agent might have bid on many tasks but was allocated only
a few, we normalize the differences to the largest absolute difference.

ψ′kr =
ψkr − 1

K

∑
k′∈K ψk′r

maxk+∈K+
r−1

(|ψk+r − 1
K

∑
k′∈K ψk′r|)

(3.10)

Since ψ′kr ∈ [−1, 1], we want our optimism parameter skr to have a wider range,
as otherwise we would be obtaining values in between the harmonic and arithmetic

3.4 Modeling participation behavior 65

mean. Hence we multiply ψ′kr by a constant cs to obtain skr ∈ [−cs, cs],

skr = csψ
′
kr. (3.11)

The membership values µkr are the utilities of the agents, which is the total
compensation an agent k receives for the allocated tasks in round r. Since we would
like the participation probabilities pkr to lie in the interval [0, 1], we need to have
µkr ∈ [0, 1]. Therefore, we take the normalized compensation, where an agent’s
compensation is divided by the maximum compensation of all agents in that round,

µkr = Ukr
maxk∈K Ukr

, (3.12)

where Ukr denotes the utility, or social welfare, of agent k in round r.
Note that the calculation of ψ′kr is based on agent k having participated in the

previous round. However, if this is not the case, the proportion and therefore also the
participation probability pkr will be undefined. Since we would like to give agents
the opportunity to enter and participate again in later rounds, we assign a very small
participation probability plow.

We assume that all agents will participate in bidding in the first round, pk1 =
1, ∀ k ∈ K. A participation probability of pkr = 0.5 means that agent k is indifferent
on whether to participate or not. When pkr is higher, agent k is more keen on
participating, whereas when pkr is lower, the agent will be more likely to refrain
from participating. The optimism parameter skr plays a large role in swinging this
participation probability up or down.

The following example illustrates how the participation probability develops
throughout the rounds using the fuzzy connective.

Example 7. In Example 5 we have seen three agents who bid on five jobs. Consider
this as round 1 with participation probabilities p(ψ′ki1) = 1.00 for all three agents. As
parameters we choose cs = 5 and plow = 0.01. In round 2, we obtain ψki2 = (1

1 ,
1
3 ,

3
8),

for agent k1, k2 and k3, respectively. We can now calculate the average proportion as
1
3 (1

1 + 1
3 + 3

8) ≈ 0.57, and the corresponding differences, which are (0.43,−0.24,−0.19).
The normalized proportions become ψ′ki2 = (1,−0.55,−0.45) using (3.10). Therefore,
our optimism parameters become sk2 = (5,−2.75,−2.25). The membership values

66 Participation behavior and social welfare in repeated task allocations

are µk2 = (80,75,240)
240 = (0.33, 0.31, 1). Eventually, the participation probability can

be obtained through (3.7), resulting in pk2 = (0.33, 0.31, 1). Agents k1 and k3 decide
to participate in this round, bidding on 3 and 5 jobs, and are assigned 1 and 2
jobs, respectively. Using this information, and the information that the obtained
compensations are Uk3 = (75, 0, 160), we can repeat the calculations for round 3.
The resulting participation probabilities are pk3 = (0.37, 0.01, 1.00). Agent k2 will be
very unlikely to participate in this round. �

3.5 Experiments

We are interested in how social welfare develops over multiple rounds and how two
different allocation algorithms, a min-cost max-flow algorithm and a fair algorithm,
influence it. Therefore, we conduct a simulation study. We use a first-price sealed-bid
auction where the allocation πr and the number of jobs bid on from all agents will be
made available after each round. This means that all bidders have information on the
allocations and the number of bids from all previous rounds in order to determine
their participation probability. Note that only the number of jobs bid on will be
made available after a round, not the actual bids themselves, so that agents cannot
adjust their own bids accordingly. We will use the same test instances as described
in Chapter 2. We use T = 10 time periods per round. We assume the value of each
task to be the same, V = 100. The tasks have a latest completion time, which we set
to 3 time periods after the earliest time the task become available. In this scenario,
which is similar to the situation in the port of Rotterdam, there are two peak hours
in a day. Therefore, tasks have a 25% chance of starting at t2 and another 25%
chance of starting at t6. If a task does not start at a peak hour, it has an equal
chance to start at any time from t1 to t8. A bidder k has a predetermined set of
tasks it is interested in. In the simulation, each task in each time period has a chance
of either 0.25 or 0.75 to be selected for this set, which are indicated as the low and
high competition case, respectively. For each task in this set the bidder has a bid.
We will distinguish between two bid cases. The first bid case is where every agent
draws their bid cost from an uniform distribution in the interval [30, 60], based on
the hourly wage of a driver and the fuel costs with an additional profit, which we

3.5 Experiments 67

call the homogeneous cost case. In the second bid case a predetermined half of the
agents will draw their bid cost from an uniform distribution in the interval [30, 50],
and the other half of the agents will draw theirs from the interval [40, 60]. The idea
behind this case is that the former half of the agents who draw their bids from a lower
interval represents the agents that are large and can make use of economies of scale to
bid low. The latter half, on the other hand, are small agents that bid relatively high,
because they cannot make use of economies of scale and have to provide a service for
minimally that cost. We call this the heterogeneous cost case. Combining scenarios
with low/high competition and homogeneous/heterogeneous cost, we construct four
scenarios: L/hom, L/het, H/hom and H/het.

It depends on the participation probability, pkr, whether a bidder will actually
participate in bidding in a particular round r. For each round r, a uniform random
number is generated for bidder k, which will be compared to its participation prob-
ability. If they decide to bid in that round, i.e., the uniformly distributed random
number is lower than the value for the participation probability, they will submit the
bids for all the tasks they are interested in in that round. The lower bound on the
participation probability is set to pLB = 0.01. This is to ensure that an agent who
does not participate in the auction for a few rounds will still be able to participate
in latter rounds and will not be excluded from the remainder of the auction due to
having zero or even negative participation probability. In the first round no agent
has experience with the auction yet. Therefore, all agents will have a participation
probability equal to 1.00 and thus all agents will submit their bids. We set the pa-
rameters for the prospect function to α = β = 0.88, λ = 2 (Tversky and Kahneman
1992), and for the smoothing factor we use γ = 0.5. For the generalized averaging
operator, we set cs = 5. We conduct 20 experiments for each of the four scenarios,
with 50 rounds, 50 agents and 250 jobs.

3.5.1 Prospect theory

Figure 3.1 shows the average number of participants per round over the 20 experi-
ments for 50 rounds. In the low competition case the average number of participants
does not differ much between the different cost cases and allocation algorithms over
the rounds. This is due to a limited number of bids, resulting in similar allocations

68 Participation behavior and social welfare in repeated task allocations

regardless of allocation algorithm. For the high competition case, however, the aver-
age number of participants when using the fair algorithm is substantially higher than
when using the minimum-cost algorithm as the rounds progress. This is due to the
jobs being allocated more evenly among agents, which results in higher participation
probabilities over all rounds. The average social welfare over the 20 experiments is
not very different between the different cases with low competition, as seen in Figure
3.2. In the high competition case, social welfare is substantially higher for the fair
algorithm as rounds progress. This is due to the larger number of participants still
present, which enables more bids for the algorithm to choose from. For the H/het
scenario, the fair allocation obtains a lower social welfare in the earlier rounds com-
pared to the minimum-cost allocation, but eventually surpasses it, due to the larger
number of participants still present.

3.5.2 Fuzzy decision theory

In Section 3.5.1 we have seen that the low competition case yielded similar results
using the minimum cost and the fair allocation, due to the lack of leeway in the
allocation. Therefore, we only consider the high competition case in the experiments
using the generalized averaging operator. We show the results of the first 25 rounds,
as the results stabilize in the rounds thereafter.

Figure 3.3 shows the average number of participants per round over the 20 ex-
periments. We already observe a sharp decline in the number of participants in the
second round when making use of the minimum-cost algorithm, with both homo-
geneous and heterogeneous costs. Even though the aggregation operator only takes
into account the first round, in which all agents participate, many agents are de-
terred from participating again in the second round due to their optimism parameter
s being too low, as they obtained fewer tasks than their peers. The number of par-
ticipants keeps declining and goes below an average of 5 already after round r = 5.
When making use of the fair allocation algorithm, we can see that the decline in the
number of participants is not nearly as sharp as with the minimum-cost algorithm.
Even at round r = 10 there are still on average 15 participants, and only slowly
declines after that. The average number of participants manages to stay above an
average of 7 even after round r = 25. This is mainly due to the nature of the fair

3.5 Experiments 69

(a) Low competition

(b) High competition

Figure 3.1: Average number of participants per round over 20 experiments over 50
rounds using prospect theory.

allocation algorithm, which assigns tasks to more agents. This results in a higher
optimism level among more agents, as they feel they have obtained a fair share of
the allocation. This in turn also yields a higher social welfare on average among the

70 Participation behavior and social welfare in repeated task allocations

(a) Low competition

(b) High competition

Figure 3.2: Average social welfare per round over 20 experiments over 50 rounds
using prospect theory.

agents in each round, which, together with the higher optimism level, leads to higher
participation probabilities.

Consequently, a larger number of participants in each round means a higher social
welfare in each round, as depicted in Figure 3.4. As the minimum-cost algorithm

3.5 Experiments 71

Figure 3.3: Average number of participants per round over 20 experiments over 25
rounds using a fuzzy connective.

Figure 3.4: Average social welfare per round over 20 experiments over 25 rounds
using a fuzzy connective.

yields a rapid declining social welfare over the rounds, tied to the drop in participants,
the fair allocation algorithm yields a rather steady social welfare over the first 12
rounds. After round r = 13 the social welfare starts to waver and decline slowly,
due to the decline in participants as well. However, even in round r = 25, the social
welfare is approximately triple the social welfare obtained with the minimum-cost

72 Participation behavior and social welfare in repeated task allocations

Figure 3.5: Cumulative average social welfare over 20 experiments with high com-
petition over 25 rounds using a fuzzy connective.

algorithm. Figure 3.5 shows the cumulative social welfare over the rounds. We can
see that the total social welfare obtained by the fair allocation quickly surpasses
that of the minimum-cost allocation in only a few rounds. In round r = 25 the fair
allocation obtained a total social welfare of approximately twice the amount of the
minimum-cost algorithm.

Comparing these results to Section 3.5.1 using prospect theory, we observe that
using generalized averaging operators results in a faster decline in participants and
social welfare than when using prospect theory. In Figure 3.3 using the generalized
averaging operator the number of participants at round 15 is approximately 2 using
the minimum-cost allocation and 10 using the fair allocation, whereas in Figure 3.1b
using prospect theory the number of participants in the respective allocations are
9 and 22. This, in turn, results in a significant drop of average social welfare in
fewer rounds when using the generalized averaging operator, as seen in Figure 3.4
with an average social welfare of 6000 after 10 rounds. Using prospect theory, we
can see in Figure 3.2b that the average social welfare after 10 rounds is still sitting
strong at around 17000, which is close to the average social welfare of the first round.
Thereafter it does drop down as rounds progress, but it does not drop as steeply
as when using the generalized averaging operator. These differences can be mainly

3.6 Conclusion and discussion 73

attributed to the optimism level of agents. Fluctuations in the optimism level can
cause severe changes in the participation decision, whereas with prospect theory such
fluctuations only had little effect, therefore taking more time to develop noticeable
effects.

3.6 Conclusion and discussion

In a repeated task or resource allocation problem with sharing nature, the partic-
ipation of agents is driven not only by their expected economic gain, but also by
their willingness to put effort in participating in the face of uncertainty and risk.
The main contribution of this chapter is that we model agents’ participation using
prospect theory and generalized averaging operators from fuzzy decision theory to
show the impact an agent’s participation decision can have on the allocation, and
how different allocation algorithms impact the number of participants and average
social welfare in a repeated auction setting. Hereby we use an agent’s experiences
in previous rounds to determine their participation decision. The two different ways
of modeling the agents’ participation decision yield vastly different outcomes, which
shows that the agents’ behavior can have a big impact on the outcome in repeated
auctions. Prospect theory has a more mellow reaction to fluctuations in the agent’s
optimism than the generalized averaging operator. An auctioneer needs to have a
good understanding of its participants in order to model their behavior in a represen-
tative way so that meaningful results can be obtained. They can also conduct a study
with a representative group of agents participating in simulated repeated auctions
to figure out their behavior and whether the model using prospect theory or fuzzy
decision theory, and with which parameters, is more suitable to their agents. Their
behavior could also possibly be extracted from historical data on the bids submit-
ted by their agents and their participation rate. This is left up for future research.
In addition, we demonstrate that fair allocations result in more participants than
minimum-cost allocations throughout the rounds when there are plenty of resources
in the system, which eventually results in a higher social welfare. Therefore, an
auctioneer needs to consider the long term consequences of their chosen allocation

74 Participation behavior and social welfare in repeated task allocations

algorithm in repeated auction settings. Giving up social welfare in the short term
can result in a higher social welfare in the long term.

Allocation algorithms that take into account the participants’ behaviors are es-
pecially of importance in settings like the sharing economy, which is upcoming in the
past years, in which anyone is free to enter and leave as they wish. In these settings,
participants share their idle resources. Therefore, it is important to encourage their
participation and to yield an overall higher social welfare, which can be accomplished
by ensuring some portion of the market share to the players. As our future work, it
will be interesting to investigate how to design algorithms with agents’ participation
behaviors, which maximize social welfare in the long run.

Chapter 4

Auction optimization using
regression trees and linear
models as integer programs1

4.1 Introduction

One of the main challenges of mathematical optimization is to construct a mathe-
matical model describing the properties of a system. When the structure of a system
cannot be fully determined from the knowledge at hand, machine learning and data
mining techniques have been used in optimization instead of this knowledge. They
have, for example, been used in order to obtain decision values (Gabel and Riedmiller
2008), fitness functions (Huyet 2006), or model parameters (Li and Ólafsson 2005).
Models that have been learned from data are frequently used in a black-box manner,
e.g., using only the predictions of learned models but not their internal structure. It
is also possible to use these models in a white-box manner, for instance in order to
determine search space cuts and parameter bounds. Neural networks have in this
way been used to model unknown relations in constraint programming (Bartolini

1This chapter is based on Verwer et al. (2017).

76
Auction optimization using regression trees and linear models as integer

programs

et al. 2011). In this chapter, we develop such a white-box optimization method for
regression models in integer linear programming, that is, we map these entire models
to sets of variables and constraints and solve them using an off the shelf solver. This
white-box method together with a proposed black-box method provides a solution to
an optimization problem of key interest to the artificial intelligence and operations
research communities: auction design. We briefly introduce this problem domain
before going into the details of our methods.

4.1.1 Sequential auction design

Auctions are becoming increasingly popular for allocating resources or items in
business-to-business and business-to-customer markets. Often sequential auc-
tions (Bernhardt and Scoones 1994) are adopted in practice, where items are sold
consecutively to bidders. Sequential auctions are in particular desirable when the
number of items for sale is large (e.g., flower auctions (Heck and Ribbers 1997)),
or when the buyers enter and leave the auction dynamically (e.g., online auc-
tions (Pinker et al. 2010)). In a sequential auction, an auctioneer may tune several
auction parameters to influence the outcome of an auction, such as reserve prices for
items and in which order to sell them. In other words, (s)he can design auctions for
the purpose of achieving some predefined goal. In this chapter, we solve one specific
auction design problem, namely, deciding the optimal ordering of items to sell in a
sequential auction in order to maximize the expected revenue (OOSA in short). We
assume bidders in such auctions are budget constrained. This is a highly relevant
problem in today’s auctions since bidders almost always have limited budget, as seen
for instance in industrial procurement (Gallien and Wein 2005b). Previous research
has shown that with the presence of budget constraints, the revenue collected by the
auctioneer is heavily dependent on the ordering of items to sell (Elmaghraby 2003,
Grether and Plott 2009, Subramaniam and Venkatesh 2009). This holds already for
a toy problem with 2 items. Let us use a simple example to illustrate the importance
of ordering in such cases.

Example 8. Two agents A1 and A2 take part in a sequential auction of items.
For sale are items r1 and r2. Suppose the items are sold by means of first-price,

4.1 Introduction 77

English auction2. Assume the reserve prices, which are the lowest prices at which the
auctioneer is willing to sell the times, for both items are 1. The amount that agent
A1 and agent A2 are willing to pay for two items are: ν1(r1) = 10, ν1(r2) = 15,
ν2(r1) = 12, ν2(r2) = 10. Furthermore, the budgets of A1 and A2 are 15 and 25
respectively.

We assume a simple bidding strategy in this example. The agents bid myopically
on each item, that is, their highest bid on one item is the lower value between the
amount that they are willing to pay and their remaining budget. The auctioneer’s
goal is to maximize the total sold price of the items. Consider one situation where
the auctioneer sells first r2 and then r1. A1 will get r2 when she just over-bids A2

with 11, and then when r1 is auctioned, A1 bids maximally 4 due to her budget limit,
and A2 will win the item with the price of 5. The total revenue is 16. However, if
the selling sequence is (r1, r2), A2 will win r1 with the bid 11, and then A2 will win
r2 with price 11. The collected revenue is 22 in this case. �

Most of the current approaches to the ordering problem in sequential auctions
assume a very restricted market environment. They either study the problem of
ordering two items, see Subramaniam and Venkatesh (2009), Pitchik (2009), or a
market with homogeneous bidders (Elkind and Fatima 2007). To the best of our
knowledge, we are the first to consider how to order items for realistic auction settings
with many heterogeneous bidders competing for many different items. This problem
is highly complex—a good design on ordering needs to take care of many uncertainties
in the system. For instance, in order to evaluate the revenue given an ordering, the
optimization algorithm needs to know the bidders’ budgets and preferences on items,
which are usually private and unshared. Furthermore, the large variety of possible
bidding strategies that bidders may use in auctions are unknown. This auction design
problem is a typical example where the mathematical optimization model cannot be
fully determined, and hence, machine learning and data mining techniques can come
into play. This is exactly what our approach builds upon.

2The English auction that we consider is the one where the starting price is the reserve price,
and bidders bid openly against each other. Each subsequent bid should be higher than the previous
bid, and the item is sold to the highest bidder at a price equal to her bid.

78
Auction optimization using regression trees and linear models as integer

programs

4.1.2 Learning models for white-box and black-box
optimization

Nowadays more and more auctions utilize information technology, which makes it
possible to automatically store detailed information about previous auctions along
with their selling sequences and the selling price per auctioned item. Our approach
to solving the problem of optimal ordering for sequential auctions starts with the
historical auction data. We define and compute several relevant features and then use
them to learn regression trees and linear regression models for the expected revenue.
Given the models, we propose two approaches to find the optimal ordering for a new
set of items: (1) a best-first search that uses the models as a black-box to evaluate
different orderings of the items; and (2) a novel white-box optimization method that
translates the models and the set of items into a mixed-integer program (MIP) and
runs this in an ILP-solver (CPLEX). Figure4.1 displays the general framework of our
approaches using these two optimization methods.

Just like the traditional black-box optimization approach (see, e.g. Jones et al.
(1998), Shan and Wang (2010)), our best-first search is ignorant of the internal struc-
ture of the models and only calls it to perform function evaluations, i.e., predicting
the revenue of an ordering of the items. Optimization is possible by means of a
search procedure that uses heuristics to produce new orderings depending on previ-
ously evaluated ones. Our best-first search makes use of dynamic programming cuts
inspired by sequential decision making in order to reduce the search space.

One of the main contributions of this chapter is the realization that learned re-
gression models can be evaluated efficiently inside modern mathematical optimization
solvers. This evaluation includes the computation of feature values (the input to ma-
chine learning), the evaluation of these features using a learned model (the output
from machine learning), and a possible feedback from such evaluations to new fea-
tures. In this chapter, we efficiently translate all of these steps for two types of learned
models (regression trees and linear regression models) into mixed-integer constraints.
The resulting mixed-integer program can then be evaluated in any modern integer
linear programming (ILP) solver.

4.1 Introduction 79

In this way, modern exact solvers can be used instead of a heuristic search. These
solvers use (amongst others) advanced branch-and-bound methods to cut the search
space, compute and optimize a dual solution, and can prove optimality without
testing every possible solution. This is the main benefit of using the white-box
method over a black-box one. The downside, however, is that when the learned
model is complex, the white-box method may lead to a large mathematical model
that is difficult to optimize. We compare these two approaches and investigate this
trade-off by applying them to the OOSA problem.

Contributions and organization Although we use sequential auction design to
illustrate our method, all of our constructions are general and can be applied to any
optimization setting where unknown relations can be represented using regression
models that have been learned from data. The only constraint for using the white-
box method is that the feature values need to be computable using integer linear
functions from intermediate solutions. Our approach can thus be applied to complex
optimization settings where entire orders, schedules, or plans need to be constructed
beforehand.

We list our main contributions as follows:

• We demonstrate how to apply regression methods from machine learning to
OOSA.

• We give an efficient encoding of regression trees and linear regressors into MIP
constraints.

• We prove OOSA with budget constrained bidders to be NP-hard, also when
using these regression models.

• We provide the first method that tackles OOSA in realistic settings.

• We demonstrate experimentally that white-box methods outperform black-box
methods when the models are not overly complex.

In Section 4.2, we formally introduce the problem of optimal ordering for sequen-
tial auctions (OOSA), and then we show how to learn regression models from histor-
ical auction data in Section 4.3 using standard machine learning methods. Based on

80
Auction optimization using regression trees and linear models as integer

programs

the learned models, our white-box optimization method and a black-box optimiza-
tion are introduced to find the optimal ordering for OOSA in Section 4.4. Extensive
experiments are presented in Section 4.5 where we compare the performance of the
two proposed optimization methods using both the learned models and the auction
simulator. Before we conclude, we compare and discuss more related works in Sec-
tion 4.6.

4.2 Optimal ordering for sequential auctions
OOSA

We assume there is a finite set of bidders (or agents). Let R = {r1, . . . , rl} denote
the collection of the item types, and the quantity of each item type can be more
than 1. When it is clear from the context, we will slightly abuse the notation and
use S = {r1, r2 . . . , r1, . . .} to denote the multiset of all available items. Each bidder
agent i has a valuation (or preference) for each type of item vi : R→ R+. In addition,
each agent has a budget bi on purchasing items, and (s)he desires to win as many
items as are being auctioned within the budget limit.

In one auction, a set of n items S with type set R′ ⊆ R will be auctioned
sequentially using a predetermined order. We use (s1, s2, . . . , sn) to denote such an
ordering. For example, given types r1 and r2 with quantities of 1 and 2 respectively,
there are three possible orderings of items: (s1 = r1, s2 = r2, s3 = r2), (s1 = r2, s2 =
r1, s3 = r2), and (s1 = r2, s2 = r2, s3 = r1). For each rj that is being auctioned,
agent Ai puts a bid on rj that is the minimum between the amount she is willing to
pay for rj and the remaining budget. We point out that in the case of unconstrained
budget, the maximum amount an agent is willing to pay for rj , defined as νi(rj), is
equal to her valuation vi(rj).

Each item rj comes with a reserve price that is the lowest price at which the
auctioneer is willing to sell rj . If the received bids are all below the reserve price of
rj , rj is not sold. Otherwise, the agent who bids highest on rj wins rj . The winners
of items transfer some payment to the auctioneer depending on the auction rule. For
example, in a first-price auction, the winner pays an amount equal to her bid, and in
a second-price auction, she pays the second highest bid (or the reserve price for the

4.2 Optimal ordering for sequential auctions OOSA 81

item if it is higher). The revenue of the auctioneer is the sum of the total payment
on the sold items and the total reserve values of the unsold items. This sequential
auction ends when all items have been auctioned, or when all agents run out of their
respective budgets.

We assume that such an auction is repeated over time, and each auction sells
possibly different items S. At the end of each auction, we have the following infor-
mation at our disposal: (1) the ordering of auctioned items; and (2) the allocation of
items to agents with their payments. The optimization problem we study is: given a
set of items and budget constrained bidders, finding an optimal ordering of items in
sequential auctions such that the expected revenue is maximized. We call the problem
OOSA.

We now show that the decision version of this optimization problem is NP-hard,
even if we have complete information on bidders’ preferences and they are not strate-
gic (i.e., they bid truthfully according to their preferences).

Theorem 5. Given a set of items S, preferences vi : S → R+, and budgets bi for
every bidder i. The problem of deciding whether there exists an ordering that obtains
a revenue of at least K ∈ R+ is NP-hard.

Proof. By reduction from the well-known NP-hard partition problem (Garey and
Johnson 1979): Given a set of integers I = {i1, . . . , in}, is I dividable into two sets
A and B such that

∑
A =

∑
B? We need two bidders with preferences such that

v1(rk) = 2 · ik and v2(rk) = 2 · ik + 1 for 1 ≤ k ≤ n. The reserve price for each item
k (1 ≤ k ≤ n) is ik. The agents’ budgets are b1 = 1

2
∑
I and b2 =

∑
I. There are n

items in S and K is 3
2
∑
I. We claim that I is partitionable into two sets with equal

sums if and only if there exists an ordering that obtains a revenue of K (or more).
(⇒) Given a partition of I into sets A and B, we sell all items in A first, and

those in B later. In this case, agent 2 will buy all items in A with price 2 · ik as it is
the minimal bid to win the items from agent 1. After buying all items in A, agent
2 will have spent 2 ·

∑
ik∈A ik, which makes

∑
I in total (since

∑
ik∈A ik = 1

2
∑
I).

This is the entire budget of agent 2. All items in B are then sold to agent 1 with the
reserve price ik. Thus agent 1 pays

∑
ik∈B ik = 1

2
∑
I. This makes a total revenue

of
∑
I + 1

2
∑
I = 3

2
∑
I = K.

82
Auction optimization using regression trees and linear models as integer

programs

(⇐) Suppose we have an ordering such that agent 1 and 2 spend all of their budget
(K in total). This means that agent 2 wins the first set of items A, each costing 2 · ik
till it uses all its budget. Thus we have 2 ·

∑
k∈A ik =

∑
I, i.e.,

∑
k∈A ik = 1

2
∑
I.

Agent 1 pays ik for the remaining items in B, B = I \ A, and it uses all its money:∑
k∈B ik = 1

2
∑
I. Hence, we have a partition of I where

∑
A =

∑
B.

The construction is clearly polynomial time.

Several related works deal with this type of ordering optimization problem. For
example, the authors of Subramaniam and Venkatesh (2009) investigate the optimal
ordering strategy for the case where the auctioneer has two items to sell. They
show that when the items are different in value, the higher valued items should be
auctioned first in order to increase the seller’s revenue. Pitchik (2009) points out that
in the presence of budget constraints, in a sealed-bid sequential auction, if the bidder
who wins the first good has a higher income than the other one, the expected revenue
is maximized. These greatly simplified auction settings make it possible to derive
bidders’ equilibrium bidding strategies. With some assumptions on the distributions
of bidders’ budgets and preferences, the optimal ordering can be theoretically derived.
However, as real-world auctions are much more complex and uncertain in terms of
the sizes of items/bidders, agents’ preferences and bidding strategies, these existing
results cannot be applied. In this chapter, we instead focus on learning the overall
behaviors of the group of bidders from historical auction data by machine learning
techniques, as the first step of solving OOSA.

In order to apply ML techniques, we assume in every sequential auction the set of
participating bidders and their characteristics (preferences, budgets, bidding strate-
gies) to be similar. This simplifies the problem of learning a good ordering. Instead of
learning the individual valuations/budget/bidding strategies of agents, we can treat
the agent population as a single entity for which we need to find a single global
function. Obviously, such an approach will fail if the agents are radically different
in every auction. However we consider this assumption sensible in many auctions
such as industrial procurement auctions where the same companies repeatedly join
the auctions with similar interests, and the Dutch flower auction where there can
be different bidders every day, but it seldom occurs that one day bidders are only
interested in roses and the next day they only want tulips. Although the different

4.3 Learning predictive models for OOSA 83

participants can be interested in different item types, the interests of the group of
participants remain stable.

4.3 Learning predictive models for OOSA

At the end of each sequential auction, we have the following information at our
disposal: (1) the ordering of auctioned items; and (2) the price of each sold item.
Before we build the optimization model to solve the OOSA problem, we need to find
a suitable way to model the expected revenue of given orderings of auctioned items.

An ordering can be thought of as a sequence of items. However, to the best of
our knowledge none of the existing sequence models fit our auction setting, see also
Section 4.6.2. In this work, we view the prediction of an auction’s outcome as a
regression problem. We split this problem into the subproblems of predicting the
value of the auctioned items. We then sum these up to obtain the overall objective
function, i.e., the expected revenue P (S) given a set S (|S| = n) of items:

P (S) =
∑

1≤k≤n
G(sk, {sj | j < k}, {sl | k < l}),

where G(sk, J, L) is a regression function that determines the expected value of
sk given that J was auctioned before and L will be auctioned afterwards. The main
benefit of this representation is that modern machine learning methods can be used
to learn this function G from data. In addition, since every item sold represents a
single sample, every auction contains many samples that can be used for learning,
further reducing the amount of required data. We study two popular regressions
functions.

4.3.1 Two regression functions

In this chapter, we use regression trees (Breiman et al. 1984) and least absolute
shrinkage and selection operator (LASSO) (Tibshirani 1994) as regression functions,
and train them using features based on the items auctioned before and after the
current item. We first briefly introduce these regressors.

84
Auction optimization using regression trees and linear models as integer

programs

Regression trees Regression trees are a form of decision trees where the predicted
values are real numbers. A decision tree is one of the most popular predictive models
for mapping feature values to a target value. We make use of a regular univariate
decision tree. It is a tree-shaped graph with a root node, interior nodes, and leaf
nodes. The root and every interior node contains a Boolean test for a specific feature
value f , such as f > 5. Every leaf node contains an output value p. It maps the
feature values to an output by performing all the tests along a path from the root to
a leaf. For every test performed, if the outcome is true (f > 5), the path is continued
along the left branch, if the outcome is false (f ≤ 5), the path is continued along the
right branch. Once a leaf is reached, it outputs the value it contains p.

A regression tree learner aims to find a tree that minimizes the mean squared
error of the predicted and the actual observed values. Most regression tree learning
algorithms follow a greedy strategy that splits interior nodes as long as the decrease
in error is significant. A split replaces one leaf node by an interior node connected
with two new leaf nodes. The interior node receives as Boolean constraint one that
minimizes the mean-squared error of the resulting tree, where the leaf nodes predict
the mean value of all observed data values that end up in that leaf after mapping all
data samples to leaf nodes.

LASSO LASSO is a method for constructing a linear regression function

p(f1, . . . , fm) = c1f1 + c2f2 + . . .+ cmfm + d

where p is the value to predict, ci are constants, fi are feature values, and d is
the intercept. The standard approach to find such a function is to minimize the
mean squared error, which is easy to compute. LASSO is a popular regularized
version of this simple estimation that penalizes the absolute values of the regression
coefficients c1, . . . , cm. Formally, given a dataset of features fdi and target values pd,
with 1 ≤ d ≤ k where k is the number of samples, it uses convex optimization in

4.3 Learning predictive models for OOSA 85

order to find a regression function that solves the following problem3:

min
∑

1≤d≤k

1
2 · k (p(fd1 , . . . , fdm)− pd)2 + α ·

∑
1≤i≤m

|ci|

where 0 ≤ α ≤ 1 is a parameter for the effect of the regularization. Intuitively,
the larger α, the larger the penalty of having large coefficients ci. Consequently,
a larger value of α will drive more coefficients to zero. LASSO is a useful method
when there are several correlated feature values, which could make an ordinary least
squares model overfit on these values. We use LASSO regression because more zero
coefficients implies we need to compute less feature values in order to evaluate the
learned model, which has a positive effect on the optimization performance that we
will discuss in Section 4.4.

4.3.2 Learning regression functions for predicting revenues

We first give an overview in Figure 4.1 of the connection between the regression
models and the optimization models for solving OOSA. Given historical auction data,
a regression tree (or a LASSO linear regression function) is learned for each item
type. The regression tree (or LASSO) can be used to evaluate the values of selling
different items based on the feature values that are computed on a given ordering of
the items. The learned regression trees (or LASSO functions) are then used in two
ways to model the optimization problem OOSA: (1) Black-box optimization. In this
chapter, we use a best-first search heuristic to come up orderings of the items, and
then use the learned regression trees (or LASSO) to compute the expected revenue of
these orderings; (2) White-box optimization. We formulate the optimization problem
of finding an optimal ordering as a mixed integer linear program (MIP), which is
shown to be automatically constructed from the learned regression tress (or LASSO
functions).

We now present the details of learning regression trees and LASSO functions for
item types. Currently, we provide the following features for these two regression
models:

3This is the version implemented in the scikit-learn Python package (Pedregosa et al. 2011),
which we use to learn the models.

86
Auction optimization using regression trees and linear models as integer

programs

Figure 4.1: Solving OOSA using white-box optimization and black-box optimiza-
tion with learned models. Black-box optimization only calls the predictive model to
evaluate possible orderings. White-box optimization translates the internal structure
of the predictive model to MIP constraints.

Feature 1: sold For every item type r, the amount of r items already auctioned.

Feature 2: remain For every item type r, the amount of r items still to be auc-
tioned.

Feature 3: diff For every pair of item types r and r′, the difference between the
amount of r and r′ items already auctioned.

Feature 4: sum For every item type r, the amount of value obtained from auctioning
r items, and the overall sum.

Feature 5: index For every item, the index at which it was auctioned.

Other sequential features such as sliding windows and N-grams (see, e.g., Diet-
terich (2002)) can of course be added to the model. However, since our white-box
method computes these values inside an ILP solver, the only requirement is that they
can be represented using an integer linear formulation. Although the diff feature
can be determined using the first, we add it for convenience of learning a regression

4.3 Learning predictive models for OOSA 87

Table 4.1: The data set created from the past two auctions {r2, r1} and {r1, r2} in
Example 9.

type value soldr1 soldr2 remainr1 remainr2 diffr1r2 sumr1 sumr2 sum index
r2 11 0 0 1 0 0 0 0 0 1
r1 5 0 1 0 0 -1 0 11 11 2
r1 11 0 0 0 1 0 0 0 0 1
r2 11 1 0 0 0 1 11 0 11 2

tree, which requires many nodes to represent such values. The influence of budget
constraints is only directly modeled by the fourth feature: once the amount paid for
r1 items reaches a certain (to be learned) bound, we can expect all agents that only
want r1 items to be out of budget. Although, there only exists an indirect relation
between the budget constraints and the first three features, including them can be
beneficial and these are easier to compute. If used by the regression model, these
features thus reduce the time needed to solve the auction design problem. For similar
reasons, we add the last feature. Below we give an example of how an ordering and
its obtained values is transformed into a data set using these 5 types of features.

soldr2 ≤ 0.5

Type r1

predict 11

leaf 1

predict 5

leaf 2

yes no

predict 11

Type r2

leaf 1

Figure 4.2: Two learned regression trees for the two item types r1 and r2 from
Example 9. The leafs of the left (right) tree output the predicted value of the item
of type r1 (r2), determined by the feature value soldr2.

Example 9. Consider the setting of Example 8. Assume two auctions have been car-
ried out. One sold r2 first and then r1. The other reversed. As shown in Example 8,
the first auction would obtain a revenue of 16, and the second auction would receive
22. We compute feature values from these two auctions as depicted in Table 4.1.

88
Auction optimization using regression trees and linear models as integer

programs

Subsequently, we learn regression trees for both item types r1 and r2, as shown in
Figure 4.2.4

After learning these regression trees, we can optimize the ordering for a new
(unseen) multiset of items {r1, r1, r1, r2} by trying all orderings and choosing one with
maximum expected revenue: (r1, r1, r1, r2) gives 11+11+11+11 = 44, (r1, r1, r2, r1)
gives 11+11+11+5 = 38, (r1, r2, r1, r1) gives 11+11+5+5 = 32, and (r2, r1, r1, r1)
returns 11 + 5 + 5 + 5 = 26. Hence, the optimizer will choose to schedule the r2 item
after all r1 items. �

The example showed how to evaluate different orderings of items using the learned
regression trees. In general, trying all possible orderings will be impossible: for a
multiset of items S = {r1, . . . , rm} of m types, there are a total of |S|!∏

1≤i≤m
|{ri|ri∈S}|!

unique orderings, which blows up very quickly.

4.3.3 Modeling power and trade-off

Our method of regression modeling allows the use of any regression method from ma-
chine learning for predicting unknown quantities in optimization, such as objective
values and parameters. In addition, since the regression function G uses other values
in a (proposed) solution as input (J, L) instead of only external parameters/data, a
learned regression model represents unknown relations between the different values
in a solution. The model thus answers the question “What is the value of X given
that we do Y?”, as opposed to “What is the value of X?” that is answered by fitting
only model parameters. Answering the first question allows for many more inter-
esting possibilities. For instance, one could use stochastic optimization with fitted
parameters to produce a schedule, use regression models to predict the effect of this
schedule on the parameters, and use stochastic optimization again on the newly es-
timated parameters. This way, one can use machine learning tools to plan further
ahead. Using our white-box method, this can even be done using a single call to the
optimization software (see Section 4.4).

This loop-back functionality provides a lot of power to our method, but also comes
with a risk. Every time the predictive models are used there is a probability that

4The learned linear regression model is more straightforward. Hence we skip such an example
here.

4.4 White-box and black-box optimization for OOSA 89

the predictions are inaccurate. When using a loop-back, these possible inaccuracies
influence all future predictions that depend on it. These future predictions are thus
more inaccurate and the predicted overall objective value can potentially diverge
from the true value. These cascading inaccuracies are an issue, however, the added
modeling power makes up for it. We make use of it in the sum feature, which relates
the predicted value to the predictions of earlier auctioned items. This feature is very
important for predicting budget constraints, and consequently is often used by the
regression models to produce predictions.

4.4 White-box and black-box optimization for
OOSA

Given the predictive models for the expected value per item, it is not straightforward
to compute a good ordering as we already showed in Example 9. For a given ordering,
we can predict the individual revenues of items using the regression model, and sum
these up to obtain the revenue of the ordering. However, testing all possible orderings
and choosing the one with the highest revenue will take a very long time. For instance,
when we want to order 40 items of 8 types (the experimental setting in Section 4.5)
with 5 of every type, we will need to test 40!

5!8 ≈ 1.9 · 1031 possible unique orderings.
In 4.A, we also provide hardness results that demonstrate there is little hope

(unless P = NP) of finding an efficient (polynomial-time) algorithm that gives the
optimal ordering for any regression tree or linear regression predictor. In general,
we cannot do better than performing a guided search through the space formed by
all possible orderings. We present two such search-based optimization methods: (1)
a novel “white-box” optimization (i.e., ILP model), and (2) a “black-box” heuristic
(i.e., best-first search).

4.4.1 White-box optimization: an ILP model

Given regression tree and linear regression models for the expected value per item
type, we automatically formulate the problem of finding an optimal ordering as a
mixed integer linear program (MIP). We discuss the encoding of a sequential auction,

90
Auction optimization using regression trees and linear models as integer

programs

feature values, objective function, and translating the learned models (regression tree
and linear regression respectively) below.

Ordering an auction Given a multiset S of n items, each from a set of possible
types R, we use the following free variables to encode any possible ordering of S:
xi,r ∈ {0, 1}. Item i is of type r if and only if xi,r = 1. Thus, if x3,r1 is equal to 1, it
means that the third auctioned item is of type r1. We require that at every index i
at most one item type is auctioned, and that the total number of auctioned items of
type r is equal to the number nr of type r items in S.

∑
r∈R

xi,r = 1 for all 1 ≤ i ≤ n (4.1)∑
1≤i≤n

xi,r = nr for all r ∈ R (4.2)

Any assignment of ones and zeros to the x variables that satisfies these two types
of constraints corresponds to a valid ordering of the items in S. The value of such
an ordering is determined by the learned regression models.

Translating feature values In order to compute the prediction of a regression
model, we not only need to translate the models into ILP constraints, but also the
values of the features used by these models.5 Feature 1, 2, 3, and 5 can be computed
using linear functions from the x variables:

soldi,r =
∑
j<i

xj,r for all 1 ≤ i ≤ n, r ∈ R (4.3)

diffi,r,r′ = soldi,r − soldi,r′ for all 1 ≤ i ≤ n, r, r′ ∈ R, r 6= r′ (4.4)

remaini,r =
∑
j>i

xj,r for all 1 ≤ i ≤ n, r ∈ R (4.5)

indexi = i for all 1 ≤ i ≤ n (4.6)

5Including any transformations applied to them.

4.4 White-box and black-box optimization for OOSA 91

For the fourth type of feature, we use an additional variable pj,r, which encodes
the expected value of the item auctioned at index j of type r. If the item at index
j is not of type r, pj,r is equal to 0. Since the p variables are the predictions of the
regression functions, we provide their definition after defining the regression models.

sumi,r =
∑

1≤j≤i
pj,r for all 1 ≤ i ≤ n, r ∈ R (4.7)

To aid the ILP solver, we also pre-compute the minimummf,i and maximumMf,i

obtainable values of every feature f at every index i and provide these as bounds to
the solver.

Constructing the objective function We aim to maximize the expected values
pi,r:

max
∑

1≤i≤n

∑
r∈R

pi,r (4.8)

Although it is also possible to compute both the objective function and the sum

values as very large sums over the x and model variables (described next), specifying
parts of these sums as intermediate continuous p variables significantly reduces both
the encoding size and the computation time.

Finally, we discuss how to encode the learned regression tree and the linear re-
gression model as the constraints in the ILP model.

Encoding regression trees We translate the regression tree models into ILP
using carefully constructed linear functions. Our encoding only requires one new set
of {0, 1} variables zi,l,r, representing whether a leaf node l is reached for item type
r at index i. The internal (decision) nodes of the trees can be represented implicitly
by the constraints on these new z variables. Intuitively, we encode that a z variable
has to be false when the binary test of any of its parent nodes fails. By additionally
requiring that exactly one z variable is true at every index, we fully encode the
learned regression trees.

92
Auction optimization using regression trees and linear models as integer

programs

Let Dr be the set of all decision nodes in the regression tree for type r. Every
decision node in Dr contains a boolean constraint f ≤ c, which is true if and only
if feature f has a value less than or equal to a constant c. A key insight of our
encoding is that every such boolean constraint directly influences the value of several
z variables: if it is true (at index i), then all z variables representing leafs in the
right subtree are false; if it is false, then all that represent leafs in the left subtree are
false. In this way, we require only two constraints per boolean constraint in order to
represent all possible paths to leaf nodes.

fvf,i + (Mf,i − c) ·
∑
l∈L

zi,l,r ≤Mf,i for all 1 ≤ i ≤ n, r ∈ R, (f ≤ c) ∈ Dr (4.9)

fvf,i + (mf,i − c) ·
∑
l∈L′

zi,l,r ≥ mf,i for all 1 ≤ i ≤ n, r ∈ R, (f ≤ c) ∈ Dr (4.10)

where fvf,i is a calculation of feature value f for index i, L and L′ are the leaf nodes
in the left and right subtrees of the decision node with constraint (f ≤ c) in the
regression tree for type r, and Mf,i and mf,i are the maximum and minimum values
of feature f at index i. For the feature calculation we simply replace fvf,i with the
right-hand sides of the corresponding feature definitions.6

The above constraints ensure that when zi,l,r obtains a value of 1, all of the binary
test in the parent nodes on the path to l in the tree for type r return true at index
i. By construction of the regression trees, this ensures that at most one z variable is
true for every type r and index i. We require however that exactly one z variable is
true at every index.7 This z has to be of the same type as the item sold at index i,
denoted by the x variables:

∑
l

zi,l,r = xi,r for all1 ≤ i ≤ n, r ∈ R (4.11)

6We ignore the possibility that a feature f is equal to c because, since features have a limited
precision, we can always replace the constants in a decision node with one that cannot be obtained
by f , without changing its behavior.

7Counterintuitively, it can occur that the objective function (discussed below) is maximized when
every z variable is false at an index i. If a small sum is needed to reach a high revenue prediction,
it can be beneficial to auction but not sell an item.

4.4 White-box and black-box optimization for OOSA 93

This completes our encoding of the regression trees. The predictions of the trees
at every index i are given by the z variable that is true for index i. We multiply this
z variable with the constant prediction in the leaf node it represents to obtain the
prediction, and store it in the p variables used to compute the sum feature values.

pi,r =
∑
l∈Lr

cl,r · zi,l,r for all 1 ≤ i ≤ n, r ∈ R (4.12)

where cl,r is the constant prediction of leaf l in the tree for type r.

Complexity Our translation of regression trees is very efficient. It requires only
2 constraints per decision node (Dr, Equations 4.9 and 4.10) and 1 binary variable
zi,l,r for every leaf node (L + L′, used in Equations 4.9, 4.10, and 4.11) of the tree.
To encode a complete depth k tree with 2k+1 − 1 nodes, this thus requires only
2 × (2k − 1) = 2k+1 − 2 constraints for the decision nodes and 2k binary variables
for the leaf nodes. In addition, we require 1 constraint to force exactly one leaf
variable to be true (the same type as xi,r, Equation 4.11). All the other variables and
constraints, used to compute the feature values and pi,r variables, can be computed
directly without storing the result into a variable. Consequently, this adds zero
variables and zero constraints to the translation.

In order to encode an entire OOSA problem, a new set of constraints representing
a tree is constructed for every item type and every item index. In a problem with
|R| types and n items for sale, this creates n × |R| × (2k+1 − 1) constraints and
n× |R| × (2k) variables to encode a complete tree of depth k. The ordering problem
itself requires n×|R| (xi,r, Equations 4.1 and 4.2) variables and n + |R| constraints.
This totals to: n×|R|×(2k+1) variables and n×|R|×(2k+1−1)+n+|R| constraints.
Since a complete depth k tree has 2k+1 − 1 nodes, this is linear in the number of
nodes of the tree.

We now discuss how to encode a linear regression model.

Encoding linear regression model Due to its linear nature, implementing linear
regression in ILP is very straightforward. We can directly compute the value of the
p variables using the linear predictor function:

94
Auction optimization using regression trees and linear models as integer

programs

pi,r =
∑
f∈Feat

cf,r · fvf,i for all 1 ≤ i ≤ n, r ∈ R (4.13)

where Feat is the set of all features, fvf,i is feature f ’s values at index i, and cf,r
is the constant coefficient for feature f in the regression function for type r. The
only somewhat difficult part is that at every index, the used regression function can
change depending on the auctioned item type r. We implemented this choice using
indicator functions in CPLEX.8 This changes the above formulation as follows:

xi,r = 1→ pi,r =
∑
f∈Feat

cf,r · featf,i for all 1 ≤ i ≤ n, r ∈ R (4.14)

xi,r = 0→ pi,r = 0 for all 1 ≤ i ≤ n, r ∈ R (4.15)

It states that if xi,r is true, then the values of pi,r is determined using the re-
gression function. Otherwise, its value is 0. These are the only constraints needed
to fully implement a linear regression function. When using LASSO regularization,
some coefficients will receive the value 0. These are removed from the encoding,
making the models smaller and easier to evaluate in the solver.

Complexity The translation of regression functions is straightforward and only
requires 2 constraints per item type for the indicator functions (Equations 4.14
and 4.15). Because of these indicators, we do need to encode the n × |R| pi,r vari-
ables. No additional constraints or variables are required. In order to encode an
entire OOSA problem, we thus require only n× |R| × 2 constraints and n× |R| × 2
variables.

An example Now the two ILP models are complete and ready to solve the OOSA
problem. We give the following example to illustrate how the formulation of ILP
works given learned regression trees.

8Many other solvers have similar constructions. If not, these constraints can be implemented
using a ‘big-M’ formulation, similar to the one we use to determine the value of the z variables in
the regression tree formulation.

4.4 White-box and black-box optimization for OOSA 95

Example 10. Given the learned trees in Example 9, suppose we are asked to or-
der a new multiset of items {r1, r2, r2}. We translate this new set, together with
the learned trees into the following integer linear program with the following {0, 1}
decision variables (for all 1 ≤ i ≤ 3): xi,r1 , xi,r2 , zi,1,r1 , zi,2,r1 , zi,1,r2 :

max
∑

1≤i≤3 pi,r1 + pi,r2

where pi,r1 = 11zi,1,r1 + 5zi,2,r1

and pi,r2 = 11zi,1,r2

subject to (for all 1 ≤ i ≤ 3)

x1,r1 + x2,r1 + x3,r1 = 1
x1,r2 + x2,r2 + x3,r2 = 2

xi,r1 + xi,r2 = 1

This denotes that exactly one x variable is true at every index i, 2 x variables are
true for item type r2, and 1 for type r1. This encodes all possible orderings. From
this we compute the feature values (for all 1 ≤ i ≤ 3):

soldi,r1 = x1,r1 + . . .+ xi−1,r1

soldi,r2 = x1,r2 + . . .+ xi−1,r2

that are used in the constraints denoting the Boolean tests in the internal nodes:

soldi,r2 + (100− 0.5)zi,1,r1 ≤ 100
soldi,r2 + (−0.5)zi,2,r1 ≥ 0

where Msold,i = 100 and msold,i = 0. The first two constraints encode that if zi,1,r1 =
1, soldi,r2 ≤ 0.5; and if zi,2,r1 = 1, soldi,r2 ≥ 0.5. Thus, if a z variable is true for
a leaf, then all the Boolean tests of internal nodes on the path from the root to that
leaf have to succeed. At last, we require that exactly one z variable is true at every
index:

zi,1,r1 + zi,2,r1 = xi,r1 ,
zi,1,r2 = xi,r2 .

A satisfying assignment to the x variables is x1,r1 , x2,r2 , x3,r2 set to 1, the rest
to 0, corresponding to the ordering (r1, r2, r2). Since sold1,r2 = 0, this leads to
99.5z1,1,r1 ≤ 100 and −0.5z1,2,r1 ≥ 0, forcing z1,2,r1 = 0. Since z1,1,r1 + z1,2,r1 =

96
Auction optimization using regression trees and linear models as integer

programs

x1,r1 = 1, this implies z1,1,r1 = 1. For the next index, since x2,r2 = 1, it forces
z2,1,r2 = 1. Similarly, we obtain z3,1,r2 = x3,r2 = 1. This results in p1,r1 = 11,
p2,r2 = 11, p3,r2 = 11, and an objective value of 33.

�

4.4.2 A black-box heuristic: best-first search algorithm

We also provide a black-box heuristic for solving the ordering problem, see also Verwer
and Zhang (2012). The traditional method to overcome the computational blowup
caused by sequential decision making is to use a dynamic programming method.
Although this lessens the computational load by combining the different paths that
lead to the same sets of auctioned items, the search space is still too large and
waiting for a solution will take too long. Instead, we therefore employ a best-first
search strategy that can be terminated anytime in order to return the best found
solution so far. We show how this best-first search strategy works in Algorithm 2.

The algorithm uses a hashtable and a priority queue. The hashtable is used to
exclude the possibility of visiting the same nodes twice if the obtained value is less
than before (just like a dynamic programming method). These dynamic program-
ming cuts are sensible but lose optimality as on rare occasions it could be better to
sell earlier items for less, leaving more budget for the remaining ones. The priority
queue provides promising candidate nodes for the best-first strategy. By computing
random orderings of the remaining items, the learned models can evaluate complete
orderings of all items. The best one found is stored and returned if the algorithm is
terminated. Unfortunately, this does not result in an admissible heuristic for an A*
search procedure. Hence, even if the algorithm pops a solution from the queue, this is
not necessarily optimal. In our experience, using random orderings of the remaining
items in this heuristic provides a good spread over the search space. Although some
nodes can be ‘unlucky’ and obtain a bad ordering of the remaining items, there are
always multiple ways to reach nodes in the search space and it is very unlikely that
all possibilities will be ‘unlucky’.

4.4 White-box and black-box optimization for OOSA 97

Algorithm 2 Black-box heuristic for solving OOSA: best-first search
Require: A set of items S, historical data on orderings and their values D, a maximum
number of iterations m

Ensure: Returned is a good (high expected value) ordering
Transform D into a data set
for every item type r do

Learn a regression model from D for predicting the value of item type r
end for
Initialize a hashtable H and a priority queue Q
Add the empty data row to Q
while Q is not empty and the size of H is less than m do

Pop the row of features F with highest value p from Q
if H does not contain F with a value ≥ p then

Add F with value p to H
Let L be the set of remaining items in F
for every item type r of items in L do

Let ik be an item of Type r in L
Let L′ be a random ordering of L − ik

Use the models to evaluate the value p′ of auctioning the ordering ikL′ after F
Create new features F ′ for auctioning ik after F
Add F ′ to Q with value p + p′

end for
end if

end while
return The highest evaluated ordering

4.4.3 Discussion: white-box or black-box optimization?

The main difference between the two abovementioned approaches (see Figure 4.1)
is that the white-box method specifies the predictors entirely as constraints, which
can be used to infer bounds on the predictions and cut the search space. The black-
box method instead uses the predictors as oracles and is ignorant as to how the
predictions are made, which are naturally more efficient to compute but cannot be
used to infer search space cuts, i.e., to deduce that one ordering is better than
another without testing both of them. Another key difference is that the white-
box method results in a single optimization model that can be run in any modern
solver, while the black-box method requires the use of executable code to produce the
predictions. In the black-box setting, it is therefore much harder to use the powerful
solving methods available in dedicated solvers for problems such as integer linear

98
Auction optimization using regression trees and linear models as integer

programs

optimization (ILP), satisfiability (SAT), or constraint programming (CP). Instead,
general search methods can be used such as best-first search, beam-search, meta-
heuristics, genetic algorithms, etc.

Both black-box and white-box approaches have their advantages. The main ad-
vantage of black-box is that its performance is for a large part independent of the
complexity of the used regression model. In contrast, by explicitly modeling the re-
gression model as constraints in a white-box, more complex regression models lead
to many more constraints, which can dramatically increase in the time needed to
solve it. Another advantage of black-box optimization is that it is easy to include
additional cuts such as the dynamic programming cuts discussed above. Such cuts
can be added as constraints in an LP formulation, but this can lead to a blow-up in
runtime.

The main benefit of using the white-box approach is the use of modern exact
solvers instead of a heuristic search. These solvers use (amongst others) advanced
branch-and-bound methods to cut the search space, compute and optimize a dual
solution, and can prove optimality without testing every possible solution. Our white-
box constructions can also be easily integrated into existing (I)LP formulations that
have been used in a wide range of applications in for instance Operations Research.
In this way, one can combine the vast amount of expert knowledge available in these
applications with the knowledge in the readily available data.

The most important downside of white-box is that an evaluation of translated
models likely requires more time than running the code as a black-box, especially
when the models or features are somewhat complex. In our opinion, however, the
advantages of white-box optimization largely outweigh those of black-box optimiza-
tion and make it a very interesting topic for research in machine learning and opti-
mization.

4.5 Experiments

Designing an optimal ordering for sequential auctions is difficult with heterogeneous
bidders, as they may value items differently, have different budget constraints, and
moreover, bid rationally or irrationally with various bidding strategies. To evaluate

4.5 Experiments 99

the performance of the proposed optimization methods, ideally, we should collect
real auction data, build the optimization models, run real-world auctions with real
bidders using different ordering of items produced by different methods, and then
compare the resulting revenues. Since this evaluation method is not feasible for us,
nor is it the main purpose of this chapter, we opted for a widely accepted evaluation
approach in research community, that is, we created an auction simulator which
simulates auctions with agents. We used this simulator to generate auction data
sets, and to evaluate the proposed method. An overview of this process is given in
Figure 4.3.

4.5.1 The simulator

Simulating auctions We simulate several sequential auction settings with the
simulator: (i) first price auctions where agents bid the lower value between the
amount they are willing to pay for the item, which is no higher than their valuation
on the item, and their remaining budget, as in Subramaniam and Venkatesh (2009);
(ii) second price sealed bid auctions, i.e. Vickrey auctions (Vickrey 1961). Agents
bid truthfully on each item in each round based on their valuations, or in case of
insufficient budget, they bid their remaining budget, as in Pinker et al. (2010). This
is the best-response bidding strategy for myopic utility-maximizing agents who only
consider the current round of the auction.9 (iii) Vickrey auctions where agents bid
smartly, i.e., they compare the utility obtained at the end of the auction when buying
and not buying the item and place a bid based on the difference (see Section 4.5.4 for
more details). On the last auctioned item, they bid truthfully if the budget allows.10

Otherwise, they bid their remaining budget. Given all bids on an item, the highest
bid wins. If multiple agents have the same highest bid, one of these is selected as
winner uniformly at random. With these different auction settings, we intend to
show our method is robust to the auction rules and bidding strategies. Below we
explain how we generated agents and items for these settings and what parameters

9Note that in sequential Vickrey auctions with budget constrained agents, truth-telling is not an
equilibrium bidding strategy (see Vetsikas (2013)).

10Vickrey (1961) showed that in a sequential auction with unlimited budget, it is a weakly domi-
nant strategy for bidders to bid their true values for the last auctioned item.

100
Auction optimization using regression trees and linear models as integer

programs

Figure 4.3: Our framework for evaluating optimization using learned models for
OOSA. There is a simulator that is used in two ways: to generate historic data and
to evaluate the OOSA solutions. A train set and a few unseen problem instances are
generated. The train set is used to learn the regression models. Random orderings
of the problem instances are used to test them. The instances together with the
learned models are provided as input to the ILP-based white-box optimization and
the best-first black-box optimization. The resulting orderings are evaluated using
the learned models, and using simulator runs.

we used. At the end of this chapter, we will show how well our method scales when
we use different parameters for the generator.

Item types We use a given set of 8 items to initialize the auction simulator. Every
type ri gets assigned a base value µi of 25 + (5 · i), for 1 ≤ i ≤ 8, and a reserve
price ρi = 1

2 (25 + (5 · i)). Every type is assigned popularity and sparsity values,

4.5 Experiments 101

denoted by γi and λi, drawn uniformly from [2, 10]. The popularity value measures
the degree of desirability of the item type by the agents. The sparsity is a measure
for the frequency that an item type is available in one auction. In every auction, 40
items are generated using a roulette wheel drawing scheme using the sparsity values.

Bidder agents The simulator starts with 20 randomly generated bidding agents.
Every such agent Aj gets assigned a budget bj between 25 and 150 uniformly at
random. They may desire 1 to 5 of the 8 item types, where popular types have a
higher probability of being selected, drawn using a roulette wheel selection on the
item types’ popularity values. Every desired item type ri assigned to an agent Aj is
also given a value of νj(ri) = β · µi, where µi is the base value of type ri, and β is a
uniform random value between 0.5 and 2.0. The value νj(ri) is used as the amount
that agent Aj is willing to pay for ri in the first-price auctions, and is used as the
valuation of Aj on ri in the second-price auctions. If this value is greater than the
budget of the agent, that agent’s budget is increased by another value between 25
and 150 (sampled uniformly), and adding this to its budget. This is repeated until
the budget is sufficient for every item type.

Example 11. The following is an example of eight agents A1, . . ., A8 and four item
types r1, r2, r3, r4 generated for the small-scale experiments in Section 4.5.5, where
for the four item types, the reserve prices of the auctioneer are: ρ1 = 12.5, ρ2 = 15,
ρ3 = 17.5, and ρ4 = 20; the sparsity values of the four item types are: λ1 = 2,
λ2 = 7, λ3 = 2, and λ4 = 5; and the popularity values are γ1 = 8, γ2 = 8, γ3 = 6,
and γ4 = 2. Every agent’s budget is sampled between 25 and 80.

A1 A2 A3 A4 A5 A6 A7 A8

budget b 78 37 80 60 119 103 46 63
ν(r1) 34 24 20 41 38 24
ν(r2) 59 30 21 58 25 42
ν(r3) 61 30 53
ν(r4) 74 22

In the generated agents, we can clearly see that some item types are more popular
than others. Item type r4 is the least popular, being desired by only two agents,
caused by the low popularity value of 2. The valuations are sampled uniformly using

102
Auction optimization using regression trees and linear models as integer

programs

the base values. Agent A5 has a budget greater than 80, due to the budget resam-
pling. Five examples of the generated item sequences with corresponding revenues are:

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
item r2 r4 r1 r2 r2 r1 r2 r4 r4 r2 r2 r4 r2 r2 r3

price 59 22 41 58 45 24 42 22 22 25 21 20 21 19 53

item r2 r2 r2 r4 r4 r4 r2 r4 r2 r4 r4 r2 r2 r1 r4

price 59 58 45 22 22 22 42 20 30 20 20 25 21 39 20

item r1 r1 r4 r4 r2 r4 r2 r2 r4 r2 r2 r4 r1 r2 r2

price 41 38 74 22 58 22 42 30 22 25 20 20 21 21 19

item r3 r4 r1 r3 r4 r4 r4 r4 r3 r4 r2 r1 r2 r1 r3

price 61 74 41 53 20 20 20 20 53 20 58 38 42 24 19

item r2 r3 r2 r4 r3 r3 r1 r3 r2 r3 r2 r4 r4 r3 r2

price 59 61 58 20 53 53 41 19 45 19 42 20 20 17.5 30

In the sequences, items of type r1 or r3 occur the least frequent, due to the low sparsity
values. �

Training For a given set of 20 random bidders, the simulator generates 1000 histor-
ical auctions. The 40 items in these auctions are generated using the above scheme,
and ordered randomly. These items are run in the simulator, where the agents use
the above-mentioned bidding strategies to decide what value to bid, in order to de-
termine the winners and the item selling prices. The total selling price of all items
in one sequential auction is the collected revenue. For the 20 generated bidders, we
first experiment the effect of different item orderings on the collected revenue by try-
ing 100 random orderings and comparing the smallest, median, and largest collected
revenue. If the difference between the largest and smallest is less than one tenth of
the median revenue, 20 new bidders are generated. This process is repeated until we
find a set of agents that passes this check, which typically occurs after a few iter-
ations. By performing this check, we remove irrelevant problem instances. For the
20 agents that pass this check, we generate 1000 auctions of 40 items and simulate
these auctions together with the agents. The resulting sequences of item-price pairs
are then transformed to the features discussed in Section 4.3, and the resulting data
set is used to train the regression trees and linear regressors.

4.5 Experiments 103

Testing For the same set of 20 bidders, we generate 5 sets of 40 items, which are
used for testing. First, the regressors are tested by comparing their predictions with
the revenues generated by the simulator on 50 random orderings of each of these item
sets. Second, we translate each of the item sets into constraints for both the black-
box and white-box optimization solvers. The best ordering found by these solvers
are compared based on their values on the regression model, and in the simulator.

4.5.2 Experimental setup

In each experiment, we generate agents and items as described above. We use an
implementation of regression trees and LASSO from the scikit-learn machine learning
module (Pedregosa et al. 2011) in Python to learn (and evaluate) the regressors. We
learn trees of different depths of 3, 5, 8 (we call them tree3, tree5, tree8), and we
set the minimum number of samples required to split an internal node to 10. The
LASSO regressor is run with 3 different values for α: 1.0, 0.1, and 0.000001 (lasso1,
lasso2, lasso3), the tolerance threshold to test for convergence is set to 0.0001 and
we use a maximum of 100000 iterations. The resulting trees and linear models then
get translated to ILP, which in turn gets solved by an ILP-solver (CPLEX (IBM
2014)). In addition, we provide the solver with an initial solution (the best of 1000
random orderings) in order to start the search, and set the focus of the solver to
finding integer feasible solutions. We set a time limit on the ILP solver of 15 minutes
for each instance using a single thread on an Intel core i-5 with 8 GB RAM and
record the best ordering of items that the ILP solver has obtained. The last minute
is spent on solution polishing (a local search procedure in CPLEX). We apply our
best-first search method on the same problem instances with the same running time
limit.

Evaluations There are two levels of evaluations involved in our problem. Firstly,
we determine the quality of the learned regressors, as they influence the quality of
the solution after optimization. For this, we tested different regression trees with
different maximum depths and linear regression models with different parameters.

Next, the optimization methods are evaluated in terms of the quality of the
produced ordering. The optimization methods that we compare include the proposed

104
Auction optimization using regression trees and linear models as integer

programs

white-box ILP model which finds a solution based on the abovementioned 6 regression
models, the proposed black-box best-first search which evaluates a solution based on
the 6 regression models, and in addition, two other simple ordering methods: (i)
auctioning the most valuable item first (i.e., mvf), as suggested in Subramaniam and
Venkatesh (2009);11 and (ii) a random ordering strategy (i.e., mean5000), as seen in
many real-world auctions for the purpose of fairness.

It is not feasible for us to compute the best solution given the problem size. Thus,
we obtain a lower bound on the optimal solution as follows: given a set of items, we
generate 5000 random orderings, and we use the true model (i.e., the simulator) to
evaluate them and pick the one returning the highest revenue. We use the mean
value of these 5000 random orderings as the output of the random ordering strategy.

We evaluate the 15 ordering methods in two ways:

• Model evaluation: we use the learned regression models to evaluate the solu-
tions returned by the ordering methods to compute the predicted revenues.

• Actual evaluation: we run auctions with the solutions (i.e., orderings) returned
by the ordering methods in our simulator to obtain the corresponding revenues.
Note that such an evaluation is possible only when a simulator is available.

There are in total three sets of main experiments, as well as additional experi-
ments, presented in this chapter.

Experiment 1 We simulate a first-price auction where agents bid the minimum
value between their budget and the amount that they are willing to pay. The
winner pays her winning bid.

Experiment 2 The simulator runs the Vickrey auction with myopic agents, where
agents bid the minimum between their true values on each item and their
remaining budget. The winner pays the higher value between the second highest
bid and the reserve price of the winning item.

Experiment 3 The simulator runs Vickrey auctions with smart agents, where
agents bid smartly based on their expected utility at the end of the auction
(see Section 4.5.4).

11We simply ordered the items according to their base values. We also tested ordering them based
on their mean value in the data, but this performed worse in the test.

4.5 Experiments 105

Experiment 4 In addition, we investigate the scalability of our approach using the
following experiments: (1) first, we test the small instances to show how close
the orderings found by the learned models are to the actual optimum; (2)
second, we generate a randomized population of bidders to test whether our
method can handle the cases where the bidders in different auction vary a lot;
(3) third, we use a larger set of items and item types to demonstrate how well
our approach can be expected to perform in larger auctions with many more
items of greater diversity.

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

0.86

0.88

0.90

0.92

0.94

0.96

0.98

regression performance

r2
 s

co
re

Figure 4.4: Prediction performance of different learning models. The y-axis depicts
for each learning model, the obtained prediction accuracy, i.e., R2 scores (see Equa-
tion 4.16). Each box contains 60 values from the 60 different sets of experiments.

106
Auction optimization using regression trees and linear models as integer

programs

4.5.3 Experiment 1: first-price auctions

We run 60 sets of experiments. For each set of experiment, we generate a set of
agents, and generate and run new sets of items 5 times. This results in 300 models
for each learning method.

Prediction accuracy We first report the performance of the learned trees and
linear models in terms of prediction accuracy. Given the same set of items as used
during learning, we randomly generate 50 permutations of these items as orderings
and compute the predicted values of these orderings using the learned models. Thus,
for every set of agents, there are 50×5×40 = 10000 bids to predict. These predictions
are compared with the evaluated values of the orderings by the simulator. We report
the coefficients of determination, or R2 scores, in Figure 4.4. This coefficient is a
standard measure for comparing regression models and is defined as:

R2 = 1−
∑

1≤d≤k(pd − p(fd1 , . . . , fdm))2∑
1≤d≤k(pd − mean(p))2 , (4.16)

where k is the number of samples, pd is the dth data value (i.e., the revenues re-
turned by the simulator), p(fd1 , . . . , fdm) the predicted values (i.e., the predicted rev-
enues returned by the learning models: tree3lp, tree5lp, tree8lp, lasso1, lasso2,
lasso3), and mean(p) the mean of all data values. Each score is computed from 10000
values in Figure 4.4. A large value (close to 1.0) means the regressor is an almost
perfect predictor, and smaller values indicate worse performance. Figure 4.4 shows
that all regression models lead to good prediction, with the lowest R2 score over 0.86.
The learned trees with depth 8 give the best performance, followed by the trees with
depth 5. Intuitively a larger tree may give a better prediction. The scores of lasso2

and lasso3 are very similar, and slightly better than lasso1. This result makes
sense since LASSO with a higher regularization parameter α (i.e., lasso1) implies
the use of less features, and hence, may have less prediction power. The tree with
depth 3 shows much worse performance than the larger trees, and it is on average
worse than the three linear regression models. This is confirmed by the frequencies
of wins by comparing the R2 scores in pairs in Table 4.2.

4.5 Experiments 107

Table 4.2: The frequencies of wins of 60 runs for each method against others (row
method vs column method) in terms of R2 scores.

tree3 tree5 tree8 lasso1 lasso2 lasso3 total wins
tree3 0 0 0 27 21 22 70
tree5 60 0 2 60 58 58 238
tree8 60 58 0 60 60 60 298
lasso1 33 0 0 0 7 9 49
lasso2 39 2 0 53 0 28 122
lasso3 38 2 0 51 32 0 123

Table 4.3: The frequencies of wins of 300 runs for each method against others (row
method vs column method), evaluated in the simulator.

tr
ee
3l
p

tr
ee
3b

f

tr
ee
5l
p

tr
ee
5b

f

tr
ee
8l
p

tr
ee
8b

f

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

m
vf

be
st
50
00

m
ea
n5

00
0

to
ta
lw

in
s

tree3lp 0 171 105 152 107 125 102 130 71 127 82 119 231 17 240 2068
tree3bf 125 0 83 129 81 105 71 116 61 94 67 86 226 15 230 1770
tree5lp 192 213 0 197 149 168 144 169 111 156 128 164 249 24 273 2632
tree5bf 142 163 97 0 105 122 94 134 74 118 90 115 238 16 241 2037
tree8lp 188 217 142 193 0 178 137 181 113 160 128 162 260 23 287 2668
tree8bf 170 192 130 168 121 0 112 157 91 133 106 138 251 28 269 2361
lasso1lp 193 226 150 202 160 183 0 185 113 178 136 170 263 38 269 2756
lasso1bf 168 181 127 158 113 139 100 0 88 135 91 131 233 18 251 2219
lasso2lp 224 236 184 225 182 205 174 204 0 195 159 199 265 40 286 3073
lasso2bf 171 200 141 177 134 163 115 155 94 0 107 124 243 17 273 2407
lasso3lp 214 231 169 204 167 188 155 201 126 184 0 189 257 36 281 2899
lasso3bf 176 210 131 182 134 161 124 154 89 156 96 0 245 15 276 2439
mvf 68 73 51 61 38 48 36 65 34 55 41 54 0 9 123 982
best5000 282 284 268 284 277 271 257 280 255 278 252 280 291 0 299 4158
mean5000 57 65 27 58 13 30 31 48 12 26 18 24 174 1 0 864

Performance of the ordering methods We now discuss the actual performance
of the different ordering methods. After every ordering method returns its best
ordering, these orderings are then evaluated in the simulator to get corresponding
revenues. As we ran 300 different instances (60 sets of different agents, each with
5 sets of different items), each method has 300 such revenues. We calculate the
frequencies of wins by comparing the revenues in pairs in Table 4.3. One obvious
conclusion from the table is that the ordering heuristic mvf (i.e., most valuable item

108
Auction optimization using regression trees and linear models as integer

programs

tre
e3
lp

tre
e3
bf

tre
e5
lp

tre
e5
bf

tre
e8
lp

tre
e8
bf

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

m
vf

be
st

-300

-200

-100

0

100

200

first price sequential auction
re

ve
nu

e
- m

ea
n

si
m

ul
at

ed
 re

ve
nu

e

Figure 4.5: The performance of the different ordering methods evaluated by the
simulator, compared to mean5000. The simulated auctions are first-price auctions.
Each box contains 300 values.

first) performs worst, regardless of which method it compared to. In fact, this heuris-
tic performed even worse than the random ordering strategy mean5000 (123 wins vs.
174).12 This result contradicts the theoretical finding that was concluded using much
simpler auction settings. Another observation is that given the learned models, the
developed white-box methods win over the black-box methods more than half of the
time. This holds consistently for all 12 proposed methods (wins lp vs. bf: 171, 197,
178, 185, 195, 189). It shows that our new way of utilizing the internal structure of
the learned models for optimization is promising.

12Notice that there is one instance where mean5000 is better than best5000. This is due to
the random scheme that we used in selecting winners who give two identical bids. Consequently,
evaluating the same ordering twice in the simulator may result in two different revenues. We want
to point out that this does not happen often and the effect is often negligible.

4.5 Experiments 109

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

-100

0

100

200

300

first price white-box vs black-box
w

hi
te

-b
ox

 s
ol

ut
io

n
va

lu
e

- b
la

ck
-b

ox
 s

ol
ut

io
n

va
lu

e

Figure 4.6: The performance difference between the LP model and the best-first
search, evaluated by the predictive model. Each box contains 300 values. The simu-
lated auctions are first-price auctions.

If we look at the results of the white-box methods built from the learned regres-
sion trees, i.e., tree3lp, tree5lp, tree8lp, we notice that tree5lp and tree8lp

performed similarly and they are slightly better than tree3lp. This result is consis-
tent with the higher R2 scores of the larger trees. Interestingly, despite their lower R2

scores, the linear regression LP methods return good orderings especially lasso2lp

and lasso3lp which are on average better than the three regression tree LP models.
These are further confirmed with Figure 4.5, which depicts the revenue differences in
the simulator between the ordering methods and mean5000. It is more obvious from
this figure that the proposed linear regression LP models are the better optimization
methods than the tree LP models in practice. We believe that this is due to the
cascading inaccuracies, caused by the sum feature that relates the predicted value to
the predictions of earlier auctioned items (see discussions in Section 4.3.3). Due to

110
Auction optimization using regression trees and linear models as integer

programs

tre
e3
lp

tre
e3
bf

tre
e5
lp

tre
e5
bf

tre
e8
lp

tre
e8
bf

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

-100

0

100

200

300

400

500

first price revenue difference
ex

pe
ct

ed
 re

ve
nu

e
so

lu
tio

n
- a

ct
ua

l s
im

ul
at

or
 re

ve
nu

e

Figure 4.7: The performance difference between the values evaluated by the model
and the values evaluated by the simulator. Each box contains 300 values. The
simulated auctions are first-price auctions.

the crisp boundaries in regression trees, the effect of these errors on the solution eval-
uation is much greater than using linear regressors. We believe the effect is smaller
for larger trees because they are more accurate.

Figure 4.6 shows the performance difference between the LP model and the best-
first search, which are built upon the same learned regression model. The solutions
are evaluated using the predictive models. The value differences between the white-
box and the black-box methods are more significant on smaller trees than on bigger
trees (tree3 vs tree5 vs tree8), and on linear models with higher regularization
parameter than on lower regularization parameter (lasso1 vs lasso2 vs lasso3).
This trend shown in the results is somehow expected. The smaller tree leads to a
smaller LP model, which is easier to optimize by the solver and consequently gives a
much better performance than the best-first search. Similarly, the linear regression

4.5 Experiments 111

with a higher regularization parameter α implies less feature values to compute during
white-box optimization, and therefore, its advantage over the black-box method is
more obvious than lasso2 and lasso3 which are with smaller values of α.

We observe that all white-box LP methods are better than the black-box methods,
except the LP models resulting from the trees with depth 8. The depth 8 regression
trees perform better for best-first search when evaluated on the model (Figure 4.6),
but better for LP when evaluated in the simulator (see Figure 4.5). The most likely
reason for the strange behavior of the depth 8 trees is that the best-first search
outperforms LP on harder to predict instances.13 Intuitively, because harder-to-
predict instances typically result in larger models, they are harder to optimize in
CPLEX. We checked this cause by investigating whether the R2 scores of the depth
8 regression tree are correlated with which method performing better in the model
evaluation. The mean of these R2 scores are 0.950 when the LP performs better, and
0.942 when the best-first performs better. Although this difference seems small, it is
significant.

Moreover, the small difference in R2 scores between trees with depth 5 and depth
8 also has a significant effect on the difference between their model and simulator
evaluations (e.g., due to cascading errors). To demonstrate this, we report in Fig-
ure 4.7 the solution differences of the same ordering methods when being evaluated
by the model and the simulator. The purpose of this comparison is to test whether
the predicted outcome (using learned models) corresponds to the actual outcome (us-
ing simulator). This test is important as in general, there are no simulators available
to evaluate the solutions. The figure demonstrates that the linear regression based
optimization methods return more reliable solutions, i.e., their solutions evaluated
on the learned linear models are closer to the solution values returned by the sim-
ulator. Note that it is logical that most values are over estimated because we the
optimization tries to solve a maximization problem. The trees with depth 5 and 8

13Another possible cause is that the LP solver makes small rounding errors. Such errors are un-
avoidable because using both very small and very large coefficients and/or precision in one problem
formulation can cause numerical instability. We therefore round the mean values of the leaf pre-
dictions to two digits after the decimal point in the regression tree models before translating it to
LP. Unfortunately, due to the crisp decision boundaries in regression trees, these small errors can
sometimes have a large effect.

112
Auction optimization using regression trees and linear models as integer

programs
tre
e3
lp

tre
e3
bf

tre
e5
lp

tre
e5
bf

tre
e8
lp

tre
e8
bf

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

m
vf

be
st

-200

-100

0

100

second price sequential auction

re
ve

nu
e

- m
ea

n
si

m
ul

at
ed

 re
ve

nu
e

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

-50

0

50

100

150

second price white-box vs black-box

w
hi

te
-b

ox
 s

ol
ut

io
n

va
lu

e
- b

la
ck

-b
ox

 s
ol

ut
io

n
va

lu
e

Figure 4.8: Performance of the different ordering methods with second-price auc-
tions and truth-telling, myopic agents. The two figures show the performance evalu-
ated by the simulator and the model respectively. Each box contains 50 values.

show a significant difference in this evaluation. The depth 3 trees end up with the
highest evaluation difference, and overestimate the solution values the most.

4.5.4 Experiments 2 and 3: Vickrey auction with myopic
and smart agents

In order to demonstrate that our method of auction optimization using learned mod-
els is robust to the used auction rule or the bidding strategies, we test it in a second-
price auction in Experiment 2, and with smart agents in Experiment 3. We generate
10 sets of agents using the settings of the main experiments. For each set of agents
we run new sets of items 5 times. Figures 4.8 and 4.9 show the same plots for these
settings as Figures 4.5 and 4.6 for the setting in the first experiment.

In the second-price experiment, we test with truth-telling bidders in second-price
auctions. The only differences with the setting in the first experiment are the bidding
values and the payments. As Figure 4.8 shows, the results are very similar to those
in the first experiments: (1) all methods outperform the naive ordering strategies
from the literature, (2) the white-box outperforms the black-box methods, and (3)

4.5 Experiments 113
tre
e3
lp

tre
e3
bf

tre
e5
lp

tre
e5
bf

tre
e8
lp

tre
e8
bf

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

m
vf

be
st

-150

-100

-50

0

50

100

smart agent sequential auction

re
ve

nu
e

- m
ea

n
si

m
ul

at
ed

 re
ve

nu
e

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

-100

-50

0

50

100

150

200

smart agent white-box vs black-box

w
hi

te
-b

ox
 s

ol
ut

io
n

va
lu

e
- b

la
ck

-b
ox

 s
ol

ut
io

n
va

lu
e

Figure 4.9: Performance of the different ordering methods with second-price auc-
tions and smart agents. The two figures show the performance evaluated by the
simulator and the model respectively. Each box contains 50 values.

the linear regression models perform best. However, the difference between the best
performing methods tree5 and lasso2 is no longer significant.

In the third experiment, we test with smart agents that aim to maximize their
final utility in a second-price auction. Specifically, when deciding what value to bid
on the current item ri, they have access to the auction simulator and use it to run
the remaining items I ′ \ ri. For computational reasons, when running the remaining
items I ′ \ ri, it is assumed that all agents bid truthfully and pay according to the
second-price rule in these runs. For every bid ri, they run the simulator twice: once in
the situation where they bid the item ri with their valuations (run1), and once where
they do not buy the item (run2). They then decide what value to bid according to
the following rules:

• If after run2 the agent has a remaining budget greater than its value for the
item, it bids truthfully. The intuition is that it is better to buy an item than
to have budget left at the end of auction.

• Else, if the total utility after run2 is less than after run1, it also bids truthfully.
When it is better to buy an item, try to obtain it.

114
Auction optimization using regression trees and linear models as integer

programs

• Else, it bids its true value minus the difference in utility after run2 and run1.
When it is x monetary units better not to buy an item, try to obtain it for the
value minus x.

Using these rules, the agents bid the highest value that they expect will give them
an increase in utility.

As can be seen in Figure 4.9, also in this challenging setting, our method per-
forms significantly better than the naive ordering rules from the literature. There is
however a much larger variance in the performance of the different methods, causing
the difference between black-box and white-box to be insignificant in the simulator.
When evaluated on the model, however, white-box is still better than black-box in all
cases except tree8. An interesting final observation is that, with these smart agents,
the mvf method does seem to perform slightly better than mean5000 (although not
significantly), while in the other experiments it performed consistently worse.

4.5.5 Experiment 4: practical issues

Although optimizing the orderings in sequential auctions is a hard problem, the
above experiments demonstrate that high revenues can be obtained, significantly
outperforming the naive methods proposed in the literature. This holds even in the
presence of smart bidders. They also show the advantage of using the white-box
method for optimization, an interesting trade-off between modeling and optimiza-
tion power, and that better predictors are not necessarily better optimizers. In this
section, we investigate several practical issues of our approach. We start with the
easier instances, which will be used to show how close the orderings found by the
learned models are to the actual optimum. Afterwards, we test our method using
two new settings: a randomized population of bidders and a larger set of items and
item types. The randomized population mimics a feature of a type of real-world
auctions: the agents bidding in an auction are not always the same as often seen
in online auctions. The larger instances aim to demonstrate how well our approach
can be expected to perform in large-scale auctions with many more items of greater
diversity.

4.5 Experiments 115
tre
e3
lp

tre
e3
bf

tre
e5
lp

tre
e5
bf

tre
e8
lp

tre
e8
bf

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

m
vf

be
st op
t

-60

-40

-20

0

20

small size first price sequential auction

re
ve

nu
e

- m
ea

n
si

m
ul

at
ed

 re
ve

nu
e

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

-2

0

2

4

small size first price white-box vs black-box

w
hi

te
-b

ox
 s

ol
ut

io
n

va
lu

e
- b

la
ck

-b
ox

 s
ol

ut
io

n
va

lu
e

Figure 4.10: Performance of the different ordering methods and a brute-force search
(opt) for 15 items from 4 types. The figures show the performance evaluated by the
simulator and the model respectively. Each box contains 50 values.

Smaller auctions

The smaller problem instances are generated with: 1) a maximum budget of 80, 2) a
maximum number of 3 desired items, 3) 4 item types, 4) 15 items per auction, and 5)
8 agents. All other settings are the same as those used in the main experiments. In
addition, we added a brute-force method that uses the simulator as a black-box and
tests all possible ordering of the items. Although a brute-force method is infeasible
for 40 items, in the case of 15 items, there are only a few million possible orderings to
consider. The results of 10 sets of agents, each tested with 5 sets of items, are shown
in Figure 4.10. The corresponding plots for the main experiments are Figures 4.5
and 4.6.

The R2 scores show a behavior similar to the main experiments, except that
they range between 0.8 and 0.9. Outliers for the depth 3 trees can get as low as
0.5. This score decrease is likely caused by the decrease in data size (15 instead of
40 data rows per auction). The left plot if Figure 4.10 shows the results obtained
using the simulator. Any difference in performance between the different methods is
insignificant except for depth 3 trees, which are significantly worse at estimating the

116
Auction optimization using regression trees and linear models as integer

programs

obtained revenues and therefore result in lesser quality solutions. The improvement
in performance of the other methods over random is approximately 10 on average,
whilst about 20 could be obtained with perfect models in theory. Frequently, the
black-box and white-box methods find an optimal solution for the learned models,
so this difference is entirely due to the prediction quality of the models. It is good
to see that the performance of the mean5000 method is almost indistinguishable
from optimal (the last boxplot in the figure), giving confidence that this is a good
approximation of the upper bound. As can be seen in the right plot, the difference
between the white-box and black-box methods are negligible for these small instances.

Randomized population

In this set of experiments, we obtain different sets of agents by creating a large
population of size 60, and drawing 20 of them at random for every auction. In
addition, we generate a random set of 20 to 60 items for every auction, sampled
uniformly at random. Other than that, we use the exact same settings as the main
experiments. We show the results of 19 sets of agents (we increased the set to reduce
noise in the results), each being tested with 5 sets of items, see Figure 4.12. The
R2-scores obtained in these experiments are shown in Figure 4.11.

From Figure 4.11, we make two observations. Firstly, the performance of the
predictors is much worse than in the main experiments, with median values around
0.7. As one may expect, the revenue is very hard to predict in this randomized
setting, because it is heavily dependent on which agents take part in the auction.
Learning larger trees does not increase this score. In fact, as the wins table shows,
the depth 8 trees are clearly the worst predictor. Secondly, in contrast to the main
experiments, linear regression appears to be a better estimator than a regression tree,
although the difference is very small.

The simulator and model results in Figure 4.10 confirm that the regression func-
tions perform much worse in this randomized population setting. The linear regres-
sion models still perform better than random. The difference with the expected value
of a random solution is so small that in cases with very uncertain populations it will
probably not be worthwhile to model and optimize the problem. The model results
show that also in these cases, white-box methods outperform black-box ones, with

4.5 Experiments 117

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

0.65

0.70

0.75

0.80

random population regression performance

r2
 s

co
re

tree3 tree5 tree8 lasso1 lasso2 lasso3 total wins
tree3 0 9 17 6 6 6 44
tree5 10 0 15 4 5 5 39
tree8 2 4 0 0 0 0 6
lasso1 13 15 19 0 18 18 83
lasso2 13 14 19 1 0 17 64
lasso3 13 14 19 1 2 0 49

Figure 4.11: Prediction performance of different learning models on the randomized
population, including the number of wins table. Each box contains 19 values from
the 19 different sets of experiments.

the only exception for depth 8 regression trees where the performance of white-box
and black-box is similar.

Larger problem instances

The larger problem instances are generated with the same settings as those used in
the main experiments, expect for: 1) 12 item types, 2) 80 items per auction, and
3) 40 agents. In addition, because the optimization problems are harder, we used
a timeout of 30 minutes instead of 15. The results of 10 sets of agents, each tested
with 5 sets of items, are shown in Figures 4.13 and 4.14.

118
Auction optimization using regression trees and linear models as integer

programs
tre
e3
lp

tre
e3
bf

tre
e5
lp

tre
e5
bf

tre
e8
lp

tre
e8
bf

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

m
vf

be
st

-150

-100

-50

0

50

100

random population first price sequential auction

re
ve

nu
e

- m
ea

n
si

m
ul

at
ed

 re
ve

nu
e

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

-50

0

50

random population first price white-box vs black-box

w
hi

te
-b

ox
 s

ol
ut

io
n

va
lu

e
- b

la
ck

-b
ox

 s
ol

ut
io

n
va

lu
e

Figure 4.12: Performance of the different ordering methods for 20 to 60 items from
8 types for a random population of 20 agents selected from a pool of 60. The two
figures show the performance evaluated by the simulator and the model respectively.
Each box contains 95 values.

Notice that the performance for depth 8 trees is missing in Figure 4.13. The reason
for this is that the CPLEX runs for these trees ran out of memory. The encoding
requires n×|R|×(2k+1) variables, and n×|R|×(2(k+1)−1)+n+|R| constraints. If
we fill in depth 8, 12 types, and 80 items, we end up with 246720 variables and 490652
constraints. This proved too much for our version of CPLEX (v12.5.1). Although
the smaller trees did run, the depth 5 trees are now outperformed by the black-box
approach. For depth 3 trees, it is still better to use white-box. A similar phenomenon
is visible in Lasso results. In all previous results, white-box always outperforms black-
box for the Lasso regressors. Suddenly, this is only the case for the smallest linear
models, in those with more coefficients black-box performs better. These results
match our intuition that using a white-box approach is beneficial when the models
are not overly complex.

In the simulator results, we see that smaller models perform worse than larger
ones, in spite of them being much harder to optimize. We believe this is due to them
being worse predictors, as can be seen in the wins table in Figure 4.14. Interestingly,

4.5 Experiments 119
tre
e3
lp

tre
e3
bf

tre
e5
lp

tre
e5
bf

la
ss
o1
lp

la
ss
o1
bf

la
ss
o2
lp

la
ss
o2
bf

la
ss
o3
lp

la
ss
o3
bf

m
vf

be
st

-400

-300

-200

-100

0

100

200

large size first price sequential auction

re
ve

nu
e

- m
ea

n
si

m
ul

at
ed

 re
ve

nu
e

tre
e3

tre
e5

la
ss
o1

la
ss
o2

la
ss
o3

-200

-100

0

100

200

300

large size first price white-box vs black-box

w
hi

te
-b

ox
 s

ol
ut

io
n

va
lu

e
- b

la
ck

-b
ox

 s
ol

ut
io

n
va

lu
e

Figure 4.13: Performance of the different ordering methods for 80 items from
12 types and 40 bidders. The two figures show the performance evaluated by the
simulator and the model respectively. Each box contains 50 values.

for the larger linear models, the performance difference between black-box and white-
box is no longer there. For the depth 5 tree, the difference is inverted, which we
believe to be due to chance. However, it is also possible that this effect is caused by
over estimation. For the black-box method, the average over estimation of solutions
is 237, while it is 111 for the white-box method. This can be caused by the fact that
CPLEX has problems finding solutions for these large instances, making it also harder
to find very specific solutions that over estimate the solution value. Investigating this
behavior further is left as future work.

Figure 4.14 also shows an increase in R2 scores: all median values are above the
0.92 mark. This is most likely cause by an increase in training data (twice as many
items are sold per auction). The tree models are much better regressors for the large
instances, although their optimization performance in the simulator is much worse.
In fact, their performance is close to that of a random ordering. The larger linear
models perform better than random, but are still far from optimal.

120
Auction optimization using regression trees and linear models as integer

programs

tre
e3

tre
e5

tre
e8

la
ss
o1

la
ss
o2

la
ss
o3

0.90

0.92

0.94

0.96

large size regression performance

r2
 s

co
re

tree3 tree5 tree8 lasso1 lasso2 lasso3 total wins
tree3 0 0 0 9 8 8 25
tree5 10 0 0 10 10 10 40
tree8 10 10 0 10 10 10 50
lasso1 1 0 0 0 1 1 3
lasso2 2 0 0 9 0 2 13
lasso3 2 0 0 9 8 0 19

Figure 4.14: Prediction performance of different learning models for 80 items from
12 types and 40 bidders. The y-axis depicts for each learning model, the obtained
prediction accuracy, i.e., R2 scores (see Equation 4.16). Each box contains 10 values
from the 10 different sets of experiments.

4.6 Related work and discussion

We discuss related works and how our work contributes to and from several related
research communities.

4.6.1 Interplay between mathematical optimization and
machine learning

Many studies have investigated the interplay of data mining and machine learning
with mathematical modeling techniques, see overview in e.g. Bennett and Parrado-

4.6 Related work and discussion 121

Hernández (2006), Meisel and Mattfeld (2010), Corne et al. (2012). Most of these
investigate how to use data mining to estimate the value of parameters in decision
making models or to replace decision model structure when it cannot be fully deter-
mined from the hypotheses at hand. For instance, Brijs et al. (2004) build a decision
model as an integer program that maximizes product assortment of a retail store.
The decision model is then refined by incorporating additional decision attributes
that are the learned patterns from recorded sales data. Li and Ólafsson (2005) use
a decision tree to learn dispatching rules that are then used to decide which job
should be dispatched first. These dispatching rules are previously unknown, and it
is assumed that it is worthwhile to capture the current practices from previous data.
Gabel and Riedmiller (2008) model production scheduling problem as multi-agent
reinforcement learning where each agent makes its dispatching decisions using a re-
inforcement learning algorithm based on a neural network function approximation.

Another line of work investigates how to use learning techniques during optimiza-
tion in order to learn properties of good solutions. For instance, Defourny et al. (2012)
combine the estimation of statistical models for returning a decision rule given a state
with scenario tree techniques from multi-stage stochastic programming. This line of
work shares similarities with the field of black-box optimization, see, e.g., Jones et al.
(1998), Shan and Wang (2010), Rios and Sahinidis (2013). In black-box optimization,
methods are used to approximate a function with unknown analytical form and which
typically is expensive to execute. In contrast, in multi-stage stochastic programming
this form is known but stochastic. An often applied technique for black-box opti-
mization is the use of surrogate methods, see, e.g., Koziel et al. (2011). Surrogates are
approximations of the black-box function that are less expensive to execute. Typical
examples include linear/polynomial regression, neural networks, and other methods
from machine learning. These functions are trained during optimization from (as few
as possible) black-box function calls.

As learning tasks can lead to challenging optimization problems, researchers have
also applied mathematical optimization methods in order to increase learning ef-
ficiency. For instance, Bennett and Mangasarian (1993) use linear programming
for determining linear combination splits within two-class decision trees. Chang
et al. (2012) propose a Constrained Conditional Model (CCM) framework to incor-
porate domain knowledge into a conditional model for structured learning, in the

122
Auction optimization using regression trees and linear models as integer

programs

form of declarative constraints. CCMs solve prediction problems. In Uney and
Turkay (2006), the authors build a mixed integer program for multi-class data clas-
sification. A comprehensive overview of optimization techniques used in learning is
given in Sra et al. (2012). Researchers are also interested in using mathematical op-
timization methods in order to find entire models and rules, see e.g., Carrizosa and
Romero Morales (2013), Raedt et al. (2010), Heule and Verwer (2010).

Our approach fits in the first line of research of this interplay. The proposed
best-first search method uses regression models to learn good orderings, which is
then applied during search to evaluate the solutions of OOSA. Hence, similar to the
works mentioned above, the models learned from data are used in a black-box fashion.
This approach shares similarities with surrogate methods for black-box optimization.
An important difference is that the (surrogate) models here are learned from data.
Furthermore, our proposed white-box optimization method makes all the properties
of the learned models visible to the optimization solver. Bartolini et al. (2011)
propose a similar method by translating neural networks into constraint programming
(CP) models. Their approach is simple yet effective and allows to model complex
relations (such as recurrent neural networks) between any pair of decision variables
based on data. This is very powerful as it allows for multiple trained neural networks
to be plugged into an existing CP model that is constructed by traditional means. It
is up to the system designer which relations between variables to model traditionally
and which to model based on data. In contrast, we use our translation to construct
(parts of) the objective function of an existing MIP model using regression functions.
To the best of our knowledge, we are the first to combine regression functions that
are learned from data with a MIP model in this way.

Other closely related work from the CP literature considers the problem of con-
straint acquisition (Bessiere et al. 2005, Bessière et al. 2007, Beldiceanu and Simonis
2012, Bessiere et al. 2013). Given a large set of possible constraints L and some
training data, the goal of constraint acquisition is to compose a constraint network
(a graphical representation of a CP model, see, e.g., Dechter (2003)) using the con-
straints in L such that it classifies all of the training data correctly, i.e., it should
specify a language that includes all positive and excludes all negative training ex-
amples. Although this is a hard problem, several effective approaches have been
proposed based on supervised (Bessiere et al. 2005), unsupervised (Beldiceanu and

4.6 Related work and discussion 123

Simonis 2012), and active (Bessière et al. 2007, Bessiere et al. 2013) learning. These
approaches are based on their own new learning algorithms, some with proven per-
formance bounds (e.g., Bessiere et al. (2013)).Once learned, the constraints are em-
bedded into an existing CP model and fully integrated into the optimization process.
From a modeling perspective, this method has both benefits and downside. On one
hand, constraint acquisition allows the modeler to define his or her own dedicated
constraint set L instead of only the features/variables, potentially resulting in more
sensible models for the problem at hand. On the other hand, the learning prob-
lem itself is arguably less understood than those tackled by existing algorithms from
machine learning, potentially resulting less quality classifiers.

In addition, in probabilistic inference, an interesting combination of machine
learning and optimization has also been proposed. First, a probabilistic model is
learned in the traditional way. Then, when computing the posterior distribution
over some target variables given new input data, additional constraints are added in
order to limit the possible assignments to the targets. While the original probabilistic
inference problem can often be solved using dynamic programming methods, the ad-
ditional constraints make it much harder to solve, and it is therefore translated into
a MIP. This approach has successfully been applied in order to add expert knowl-
edge to conditional random fields for semantic role labeling in Roth and Yih (2005).
Later, the same principle was used to model the dependencies among textual tokens
in text-based documents for entity recognition by Fersini et al. (2014). Interestingly,
in this last work, the added constraints themselves were also learned from data and
added as soft constraints to the MIP model.

4.6.2 Sequence models

As an auction ordering is essentially a sequence of items, our work is also related to
the many machine learning approaches for sequence modeling. To the best of our
knowledge none of the existing sequence models fits our auction setting. Language
models such as deterministic automata (De la Higuera 2010) are too powerful since
they can model every possible sequence independently and therefore require too much
data to learn accurately. Short sequence models such as hidden Markov models or

124
Auction optimization using regression trees and linear models as integer

programs

N-grams (Bishop 2006) do not model the dependence on items sold a long time (more
than the sliding window length) before.

Markov decision processes (MDPs) (see, e.g., Puterman (2009)) may be closest to
our auction setting, as they can directly model the expected price per item and come
with methods that can be used to optimize the expected total reward (revenue).
However, we notice that a straightforward implementation of the auction design
problem as an MDP is not possible. Let us try to model auction design as an MDP.
Because of the Markov assumption, every state in this MDP has to contain all the
relevant information for the auctioneer’s decision on which item to auction: the set
of available items, the bidders’ valuation functions, budgets and strategies, and for
every bidder the items (s)he already possesses. In every state q of this process, the
auctioneer can choose what item i to put to auction from a multiset of available
items I. The next state q′ resulting from auctioning item i depends on the bidders
and their valuations. These are unknown to the auctioneer, but probabilities can be
used to estimate them. These probabilities Pi(q, q′) provide a distribution over the
possible next states and the corresponding rewards Ri(q, q′), given i is auctioned. In
every possible next state q′, the set of available items is equal to I − {i}, i.e., equal
to the items in q minus the sold item i. The goal of the auctioneer is to maximize
the expected rewards (revenue) for a given set of items I. In every state q, (s)he thus
has to take an action (choosing an item) that maximizes the sum of the expected
rewards V (q, I) of items in I starting in state q:

V (q, I) = arg max
i∈I

∑
q′

Pi(q, q′)Ri(q, q′) + V (q′, I − {i})

 .

In this equation, we separated I from q to highlight the major hurdle that needs to
be overcome in order to represent the auction design problem as an MDP. I needs to
be included in the MDP since it determines the set of available actions in every state.
However, since the set of items is finite this makes the MDP acyclic and at least as
large as the number of possible subsets of items from I (assuming the effect of their
ordering is represented differently), i.e., at least 2|I|. In order to learn the rewards
and transition probabilities, an auctioneer would therefore need an extremely large
data sample.

4.6 Related work and discussion 125

This intuitively shows why it is difficult to represent the auction design problem
as an MDP. However, with a suitable factored representation of the states and/or
function approximation (Puterman 2009) of the rewards, it could be possible to
represent our auction problem as an MDP. In this case, a major hurdle will be to
find a representation that results in Markovian states, which is needed to apply the
dynamic programming methods. Since the problem of deciding whether good auction
ordering exists is NP-complete (Theorem 5), and these methods run in polynomial
time, this is impossible without an exponentially large state space unless P = NP.
Our method relies on solvers and search methods for NP-complete problems, making
a polynomial state space possible, and therefore requiring much less data to estimate
the model parameters.

4.6.3 Auction design

In the auction literature, a few existing papers investigate the impact of ordering
on the performance of sequential auctions. One line of related research focuses on
theoretical analysis. In the economics literature (see Elmaghraby (2003), Pitchik
(2009), Subramaniam and Venkatesh (2009)), such theoretical studies were typically
carried out under very restricted markets. The main research focus there is to analyze
equilibrium bidding strategies of bidders who compete for (usually) two items (het-
erogeneous or homogeneous), and then to gain insights on the impact of ordering on
the auction outcome based on derived bidding behaviors. For instance, Elmaghraby
(2003) studies the influence of ordering on the efficiency of the sequential second price
procurement auctions, where a buyer outsources two heterogeneous jobs to suppliers
with capacity constraints. Suppliers can only win 1 job in this setting. The author
shows that specific sequences lower procurement costs and identifies a class of bid-
ders’ cost functions where the efficient orderings (i.e. the auction rewards the jobs
to the suppliers with the lowest total costs) and equilibrium bidding strategies exist.
Pitchik (2009) points out that in the presence of budget constraints, a sealed-bid
sequential auction with two bidders and two goods may have multiple symmetric
equilibrium bidding functions, and the ordering of sale affects the expected revenue.
If the bidder who wins the first good has a higher income than the other one, the
expected revenue is maximized. Subramaniam and Venkatesh (2009) investigate the

126
Auction optimization using regression trees and linear models as integer

programs

optimal auctioning strategy of a revenue-maximizing seller, who auctions two items,
which could be complements or substitutes. They show that when the items are
different in value, the higher valued item (among the two) should be auctioned first
in order to increase the seller’s revenue. A similar revenue-maximizing strategy is
proposed by Benoit and Krishna (2001) in a complete information auction setting.
The authors conclude that in such a setting, when selling two items to budget con-
strained bidders, it is always better to sell the more valued item first. However, this
strategy does not optimize the revenue anymore when more than two items are to
be auctioned.

Empirical research has been conducted to test the theoretical findings in the
economics community. Grether and Plott (2009) report on a field experiment that
tests the ordering strategies of a seller in sequential, ascending automobile auctions.
They conclude that the worst performing ordering in terms of revenue is for the seller
to auction vehicles from highest to lowest values.

In the computer science literature, Elkind and Fatima (2007) study how to maxi-
mize revenue in sequential auctions with second-price sealed-bid rules, where bidders
are homogeneous, i.e., all their valuations are drawn from public known uniform dis-
tributions, and they want to win only one item (but they can bid any of items). In
this setting, the authors analyze the equilibrium bids, and develop an algorithm that
finds an optimal agenda (i.e., ordering). Vetsikas and Jennings (2010) study a similar
auction setting, but unlike Elkind and Fatima (2007), they assume the valuations are
known to the bidders at the beginning of the auction. The focus of their work was
to compute the equilibrium strategies for bidders. Later, Vetsikas (2013) analyzes
the bidding strategies for budget constrained bidders in sequential Vickrey auctions.
However, it is a challenge to compute the equilibrium strategies in practice.

We are not the first who consider learning from the previous auctions. However,
the difference lies in the fact that the most existing work study how bidders learn
from the past information, and update their bids. Boutilier et al. (1999) propose
a learning model for bidders to update their bidding policies in sequential auctions
for resources with complementarities. The bidding strategies are computed based
on the estimated distribution over prices, that is modeled by dynamic programming.
Goes et al. (2010) present an empirical study of real sequential online auctions. They
analyze the data from an online auction retailer, and show that bidders learn and

4.7 Conclusions 127

update their willingness to pay in repeated auctions of the same item. In Pinker et al.
(2010), the authors show the benefits of using earlier auction data for the management
of sequential, multi-unit auctions, where the seller needs to split its entire inventory
into sequential auctions of smaller lots in order to increase its profit. In their work,
an auction feedback mechanism is developed based on a Bayesian model, and it is
used to update the auctioneer’s beliefs about the bidders’ valuation distribution.

Our contribution to the auction literature lies on the fact that our approach can be
applied to design optimal auctions based on historical auction data. The advantage
of using machine learning and data mining methods is that they are robust to the
uncertainty (or noise), and hence have high potential to be used for real-world auction
design. Moreover, the approach itself is general and can be applied to many different
auction optimization problems, such as finding best reserve price for items for sale,
or maximizing social welfare instead of revenue. The necessary changes may include
the selection of the features for learning regression models and the encoding in the
white-box optimization model.

4.7 Conclusions

Mathematical optimization relies on the availability of knowledge that can be used
to construct a mathematical model for the problem at hand. This knowledge is
not always available. For instance, in multiagent problems, agents are autonomous
and often unwilling to share their local information. Frequently, this autonomy and
private information influence the outcome of the optimization, making finding an
optimal solution very difficult. In this chapter, we adopt the idea of using machine
learning techniques to estimate these influences for an optimization problem with
many unknowns: the optimal ordering for sequential auctions (OOSA) problem.

We have demonstrated our approach by transforming historical auctions into data
sets for learning regression trees and linear regression models, which subsequently
are used to predict the expected value of orderings for new auctions. We proposed
two types of optimization methods with learned models, a black-box best-first search
approach, and a novel white-box approach that maps learned models to integer linear
programs (ILP). We built an auction simulator with a set of bidder agents to simulate

128
Auction optimization using regression trees and linear models as integer

programs

an auction environment. The simulator was used for generating historical auction
data, and for evaluating the orderings of items returned by our methods. We ran an
extensive set of experiments with different agents and bidding strategies. Although
optimizing the orderings in sequential auctions is a hard problem, our proposed
methods obtained very high values, significantly outperforming the naive methods
proposed in the literature. The experimental results also demonstrate the advantage
of using the white-box method for optimization, which significantly outperforms the
black-box approach in nearly all settings. In addition, they indicate that when the
learned model becomes more complex, it potentially results in more constraints and
consequently, an increase in the time needed to solve the problem in a white-box
fashion. Since more complex models are (potentially) better predictors, this shows a
clear trade-off between modeling and optimization power in white-box optimization.
In our opinion, the benefits of the white-box approach largely outweigh the benefits
of using black-box optimization.

Finally, the extended experiments demonstrate that although our encodings are
efficient, the regression tree breaks down when the data becomes too noisy. An in-
triguing extension would therefore be to use regression forests instead of individual
trees. These are known to handle noisy data much better because of the crisp bound-
aries in individual trees. The same experiments also show that our method does not
yet scale very well with the number of items, most likely due to the increase in the
number of trees that need to be evaluated. We expect that a method based on re-
gression forests will therefore require several simplifications or optimizations in order
to be feasible.

Besides an improved performance, a very big benefit of the white-box formulation
is that it provides a new way of obtaining traditional mathematical models. Our
method therefore has many other potential application areas, especially in problems
where more and more data is being collected. Even in cases where there already exists
a handcrafted optimization model, a model that is learned and translated using our
method can easily be integrated into existing (I)LP formulations in order to determine
part of the objective function based on data. In this way, one can combine the vast
amount of expert knowledge available in these domains with the knowledge in the
readily available data. We would like to investigate this combination in the future.

4.7 Conclusions 129

We chose a relatively simple auction model for ease of explanation in this chap-
ter. However, our approach works whenever regression models are able to provide
reliable predictions of the bidding values. Hence we believe it can be applied to other
auction formats with more complex valuation functions (i.e. combinatorial prefer-
ences (Cramton et al. 2006)) and more complex bidding strategies. The results of
our method on the larger experiments with 80 items shows that scaling the approach
up to large real-world auctions will require several non-trivial simplifications. More-
over, in this chapter, we learned regression trees and linear models from simulated
data in order to test the optimization performance. When applying our approach
to real-world data, it is important to test whether the regressors assumptions are
satisfied. If not, it may be needed to transform or filter them. We plan to discover
the simplifications and test our approach with real auction data in the near future.

Our experiments highlight some interesting properties of the white-box method.
Firstly, they show an improvement in performance when the number of features is
reduced and/or the models are less complex. It would therefore be very interesting to
investigate the effect of pruning and feature selection or reduction on the performance
of our methods. Secondly, they show a tendency of the regression tree optimizer to
overestimate, i.e., find orderings that have a much higher expected revenue than their
revenue in practice. Intuitively, the solver abuses the crisp nature of the regression
tree in order to find a solution that satisfies exactly the right constraints. Part of
the problem is that, although these constraints are learned from data, and therefore
uncertain, the solver treats them as exact. Fortunately, there exists a long history
of methods that try to optimize in the presence of such uncertainties in the area
of robust optimization, see, e.g., Ben-Tal et al. (2009). As future work, we will
investigate the potential uses of these techniques for learned models.

Recently, regression tree models with linear models in the leaf nodes have also
been successfully used as black-box surrogate functions (Verbeeck et al. 2013). Since
it is also straightforward to translate these trees given our two encodings (replace
the leaf variables by indicators for which linear function to use), it would be very
interesting to investigate the possibility of a white-box alternative.

130
Auction optimization using regression trees and linear models as integer

programs

sum ≤
∑

I

Type ri

sum ≤
∑

I − v2(ri)

predict v2(ri)predict 0

predict v1(ri)

yes

yes no

no

Figure 4.15: The regression tree for every item type ri used to model a partitioning
problem.

Appendix

4.A Hardness of auction design using learned
predictors

We show that using predictive models instead of agents with utility functions does not
reduce the complexity of the problem: it remains NP-complete for both regression
trees and linear regression predictors.

Lemma 4. Using regression trees, the problem of whether there exists an ordering
that has a total predicted value of at least K is NP-complete.

Proof. The proof follows from the fact that we can use simple regression trees to
model the preferences of the two agents from Theorem 1, and evaluating an ordering
using these trees can be done in polynomial time. The regression tree for every item
type ri is shown in Figure 4.15.

Lemma 5. Using linear regression predictors, the problem of whether there exists an
ordering that has a total predicted value of at least K is NP-complete.

Proof. We prove the lemma using a construction for computing the value of a
quadratic function using only linear functions, the ordering problem, and our feature
values. The maximum value of this quadratic function is then forced to coincide with
the solution of a partition problem instance: Given a set of integers I = {v1, . . . , vn},
is I dividable into two sets A and B such that

∑
A =

∑
B?

4.A Hardness of auction design using learned predictors 131

From the partition instance, let k = 1
2
∑

1≤i≤n vi, we construct the following
items and linear regression predictors (functions v()):

• n items of type x1 . . . xn, with v(xi) = vi − vi·sum(y)
2k , and

• 1 item of type y, with v(y) = 2k −
∑

1≤i≤n sum(xi).

The objective is to maximize
∑

1≤i≤n v(xi)+v(y). The corresponding decision prob-
lem is to ask whether there exists an ordering that achieves a value of 2 1

2k.

(⇒) Let A,B be a partition of I such that
∑
A =

∑
B, and let a1, . . . , a|A| and

b1, . . . , b|B| be the corresponding items of type x1 . . . xn. The following ordering then
gives a value of

∑
1≤i≤n vi:

a1 . . . a|A| y b1 . . . b|B|

In this ordering,
∑

1≤i≤|A| v(ai) = k by definition of A and since sum(y) = 0 before
item y is auctioned. Consequently,

∑
1≤i≤n sum(xi) =

∑
1≤i≤|A| v(ai) = k, giving

v(y) = 2k − k = k.
∑

1≤i≤|A| v(a1) + v(y) thus already obtains the objective value
of 2k, and therefore

∑
1≤i≤|B| v(b1) should be equal to 1

2k. By definition of B,∑
1≤i≤|B| v(bi) = k− k·sum(y)

2k . Since v(y) = k, sum(y) = k, and thus
∑

1≤i≤|B| v(bi) =
k − k·k

2k = k − k
2 = 1

2k, proving that the ordering obtains a value of 2 1
2k.

(⇐) To prove the other direction, let us further analyze the relation between the
objective function

∑
1≤i≤n v(xi)+v(y) and the auction ordering. The only term in the

v(xi) predictors that depends on the ordering is sum(y), all other terms are constants.
This term is equal to zero for the xi items auctioned before y, and equal to v(y) for the
items auctioned after y. Similar to the (⇒) part, let a1, . . . , a|A| denote the xi items
before y, b1, . . . , b|B| those after y, and A,B the corresponding partition of items in
I. The objective value is then given by

∑
1≤i≤|A| v(ai) + v(y) +

∑
1≤i≤|B| v(bi). We

analyze these three parts in turn.

•
∑

1≤i≤|A| v(ai) =
∑
vi∈A vi since sum(y) = 0 for these items.

• v(y) = 2k −
∑

1≤i≤|A| v(ai) = 2k −
∑
vi∈A vi =

∑
vi∈B vi.

132
Auction optimization using regression trees and linear models as integer

programs

•
∑

1≤i≤|B| v(bi) =
∑
vi∈B vi −

∑
vi∈B

vi·v(y)
2k , since v(y) =

∑
vi∈B vi, this be-

comes
∑
vi∈B vi −

v(y)2

2k .

Since
∑
vi∈A vi +

∑
vi∈B vi = 2k, the overall objective function is given by:

2k + v(y)− v(y)2

2k

which is maximized when v(y) = k (for k > 0) with value 2k + k − k2

2k = 2 1
2k. This

exact value of v(y) = k is obtained when
∑
vi∈B vi = k. The sets A and B thus give

a partition of I.

Remarks. We proved the NP-completeness for the general case of Lemma 5.
However, we do not know whether the complexity holds for more realistic valuation
functions that bidders have.

Chapter 5

Decision support system for
auction design using
multi-objective optimization
of decision trees1

1This chapter is based on a working paper.

Chapter 6

Summary and conclusions

In this dissertation we have focused on two different aspects of auctions. First, the
allocation of tasks to agents at the end of the auction, and second, the design of the
auction itself before it takes place. We employ techniques and methods from both
the operations research and computer science fields to aid in these issues.

In Chapters 2 and 3 we study the effect of fairness and the incorporation of the
agents’ participation behavior in the task allocation of one-shot and multiple auctions.
Our results show that fairness comes at a cost in one-shot auctions, but can actually
help achieve a better outcome in repeated auctions. In addition, the way agents
behave in repeated auctions by participating or withholding from participation has
an important effect on the outcome of the auctions.

In Chapters 4 and 5 we use machine learning and mathematical programming
models to aid in the auction design process. Our results show that historical data
can be used to aid the decision maker in designing an auction that can yield better
results for the auctioneer.

In Chapter 2, we study a fair task allocation problem in transportation where an
optimal allocation not only has low cost but more importantly, it distributes tasks as
even as possible among heterogeneous participants who have different capacities and
costs to execute tasks. To tackle this fair minimum cost allocation problem we analyze
and solve it in two parts using two novel polynomial-time algorithms. We show that

136 Summary and conclusions

despite the new fairness criterion, the proposed algorithms can solve the fair minimum
cost allocation problem optimally in polynomial-time. In addition, we conduct an
extensive set of experiments to investigate the trade-off between cost minimization
and fairness. Our experimental results demonstrate the benefit of factoring fairness
into task allocation. Among the majority of test instances, fairness comes with a
very small price in terms of cost.

In Chapter 3 we investigate how allocations influence agents’ decision to partici-
pate. We model the agents’ participation decision in two ways, using prospect theory
and using a fuzzy connective. Both methods use their experiences in the auction thus
far. We conduct simulations to investigate the interactions between the agents’ par-
ticipation behaviors and the outcomes of the task allocations in multiple rounds and
the long term social welfare. We compare two task allocation algorithms, one merely
focusing on costs, and the other focusing on both fairness in the allocation and costs,
using the algorithms developed in Chapter 2. The simulation results demonstrate
that fairness makes agents more optimistic and incentivizes agents to keep partici-
pating. This consequently leads to a higher social welfare in the long run compared
to the cost-minimization algorithm.

The proposed fair task allocation algorithms can be applied to other task allo-
cation problems where it is beneficial to spread tasks among different agents. The
sharing and access economy, which have been growing rapidly in recent years, is a
prime example of where this can be beneficial. These sharing and access economies
thrive when there is ample supply, and thus providers need to be incentivized to keep
participating. Incorporating fairness in the allocation of tasks to the providers makes
the providers feel relevant and will continue providing their services. If not for this
mechanism, only the providers with the lowest prices will remain, which are usually
only a few who will eventually dominate the market. This effect can already be seen
with accommodation rentals in large cities, where a few service providers have many
accommodations that they can offer for lower prices than competitors. This makes it
harder for someone new to join this economy, for whom the platform was originally
intended for.

Also note that the FairMinCost algorithm can be used independently from the
IMaxFlow algorithm. Therefore, a non-fair capacity vector can be used, tweaked to

137

the auctioneer’s preferences. It can be applied to any problem in which the capacities
are uncertain and variable capacities are needed.

In Chapter 4 we apply machine learning techniques to solve the optimal ordering
problem in sequential auctions. We learn regression models from historical auctions
and map these to integer linear programs, which we can optimize by using an existing
solver. This optimization model results in good orderings with high revenues and has
the advantage of being white-box. Furthermore, we show that the internal structure
of regression models can be efficiently evaluated inside an ILP solver through efficient
encodings of regression trees and linear regression models as ILP constraints. The
experimental results show that this white-box approach significantly outperforms the
black-box best-first search in nearly all settings.

Finally, we make use of this white-box approach in Chapter 5 using data obtained
from an online industrial auction company. We show how to learn a classification
tree by combining multiple objectives using integer programming, given the specific
user’s needs. The resulting classification tree is able to achieve a high precision on
low-performing classes of items, which the company is particularly interested in. In
addition, we compare the performance of our method with traditional classification
tree algorithms, and demonstrate the flexibility of our method, as the trade-off be-
tween different learning objectives can be easily adjusted using different weights for
the objectives in the integer program.

The white-box formulation demonstrates an additional way of obtaining mathe-
matical models and can be applied in applications where historical data is available.
In addition, it can aid already existing mathematical models by adding information
obtained from historical data. Therefore, this method provides a way to combine
expert knowledge with possible knowledge hidden in the data. Furthermore, due to
the structure of mathematical models, one can easily tweak the objective function or
add constraints to fit their preferences, which is difficult to do in traditional machine
learning techniques. This makes the method flexible in its application and it can aid
the auctioneer in the auction design process, learning from similar historical auctions.

References

Ball, M. O., G. L. Donohue, K. Hoffman. 2006. Combinatorial Auctions, chap. Auctions
for the Safe, Efficient and Equitable Allocation of Airspace System Resources. MIT
Press, 949–1015.

Barnhart, C., D. Bertsimas, C. Caramanis, D. Fearing. 2012. Equitable and efficient coor-
dination in traffic flow management. Transportation Science 46(2) 262–280.

Bartolini, Andrea, Michele Lombardi, Michela Milano, Luca Benini. 2011. Neuron con-
straints to model complex real-world problems. Jimmy Ho-Man Lee, ed., Principles
and Practice of Constraint Programming, Lecture Notes in Computer Science, vol.
6876. Springer, 115–129.

Baruah, S.K., N.K. Cohen, C.G. Plaxton, D.A. Varvel. 1996. Proportionate progress: a
notion of fairness in resource allocation. Algorithmica 15(6) 600–625.

Beldiceanu, Nicolas, Helmut Simonis. 2012. A model seeker: Extracting global constraint
models from positive examples. Michela Milano, ed., Principles and Practice of Con-
straint Programming, Lecture Notes in Computer Science, vol. 7514. Springer, 141–
157.

Belk, R. 2014. You are what you can access: sharing and collaborative consumption online.
Journal of Business Research 67(8) 1595–1600.

Ben-Tal, A., L. El Ghaoui, A.S. Nemirovski. 2009. Robust Optimization. Princeton Series
in Applied Mathematics, Princeton University Press.

Bennett, Kristin P., O. L. Mangasarian. 1993. Bilinear separation of two sets in n-space.
Computational Optimization and Applications 2 207–227.

Bennett, Kristin P., Emilio Parrado-Hernández. 2006. The interplay of optimization and
machine learning research. Journal of Machine Learning Research 7 1265–1281.

Benoit, J.-P., V. Krishna. 1985. Finitely repeated games. Econometrica 53(4) 905–922.

140 References

Benoit, Jean-Pierre, Vijay Krishna. 2001. Multiple-object auctions with budget constrained
bidders. Review of Economic Studies 68(1) 155–79.

Bernhardt, Dan, David Scoones. 1994. A note on sequential auctions. American Economic
Review 84(3) 653–657.

Bertsekas, D. P., R. G. Gallager, P. Humblet. 1987. Data networks, vol. 2. Prentice-hall
Englewood Cliffs, NJ.

Bertsimas, D., V. F. Farias, N. Trichakis. 2011a. The price of fairness. Operations Research
59(1) 17–31.

Bertsimas, D., V. F. Farias, N. Trichakis. 2012. On the efficiency-fairness trade-off. Man-
agement Science 58(12) 2234–2250.

Bertsimas, D., G. Lulli, A. Odoni. 2011b. An integer optimization approach to large-scale
air traffic flow management. Operations Research 59(1) 211–227.

Bertsimas, D., S.S. Patterson. 1998. The air traffic flow management problem with enroute
capacities. Operations Research 46(3) 406–422.

Bessiere, Christian, Remi Coletta, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar,
Nina Narodytska, Claude-Guy Quimper, Toby Walsh, et al. 2013. Constraint acqui-
sition via partial queries. International Joint Conference on Artificial Intelligence,
vol. 13. 475–481.

Bessiere, Christian, Remi Coletta, Frédéric Koriche, Barry O’Sullivan. 2005. A sat-based
version space algorithm for acquiring constraint satisfaction problems. Machine Learn-
ing: ECML 2005 . Springer, 23–34.

Bessière, Christian, Remi Coletta, Barry O’Sullivan, Mathias Paulin. 2007. Query-driven
constraint acquisition. Manuela M. Veloso, ed., IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence. 50–55.

Bichler, M., A. Davenport, G. Hohner, J. Kalagnanam. 2006. Combinatorial Auctions, chap.
Industrial Procurement Auctions. MIT Press, 1116–1147.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Boutilier, Craig, Moises Goldszmidt, Bikash Sabata. 1999. Sequential auctions for the
allocation of resources with complementarities. Proceedings of the 16th international
joint conference on Artifical intelligence - Volume 1 . Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 527–534.

Breiman, L., J. Friedman, R. Olshen, C. Stone. 1984. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA.

References 141

Brijs, Tom, Gilbert Swinnen, Koen Vanhoof, Geert Wets. 2004. Building an association rules
framework to improve product assortment decisions. Data Mining and Knowledge
Discovery 8(1) 7–23.

Camerer, Colin F. 2004. Prospect theory in the wild: evidence from the field. Advances in
behavioral economics 148–161.

Campbell, A. M., D. Vandenbussche, W. Hermann. 2008. Routing for relief efforts. Trans-
portation Science 42(2) 127–145.

Carrizosa, Emilio, Dolores Romero Morales. 2013. Review: Supervised classification and
mathematical optimization. Computers and Operations Research 40(1) 150–165.

Castelli, L., P. Pellegrini, R. Pesenti. 2011. Airport slot allocation in europe: economic
efficiency and fairness. International Journal of Revenue Management 6(1-2) 28–44.

Chang, M., L. Ratinov, D. Roth. 2012. Structured learning with constrained conditional
models. Machine Learning 88(3) 399–431.

Condorelli, D. 2007. Efficient and equitable airport slot allocation. Rivista di Politica
Economica 1 81–104.

Corne, David, Clarisse Dhaenens, Laetitia Jourdan. 2012. Synergies between operations
research and data mining: The emerging use of multi-objective approaches. European
Journal of Operational Research 221(3) 469 – 479.

Cramton, P. 2002. Handbook of Telecommunications Economics, chap. Spectrum Auctions.
Elsevier, 605–639.

Cramton, P.C., Y. Shoham, R. Steinberg. 2006. Combinatorial auctions. MIT Press.

De la Higuera, Colin. 2010. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA.

Dechter, Rina. 2003. Constraint processing. Morgan Kaufmann.

Defourny, Boris, Damien Ernst, Louis Wehenkel. 2012. Scenario trees and policy selection
for multistage stochastic programming using machine learning. Journal on Computing
Published online before print.

Dietterich, Thomas G. 2002. Machine learning for sequential data: A review. Structural,
syntactic, and statistical pattern recognition. Springer, 15–30.

Duinkerken, M. B., R. Dekker, S. T. G. L. Kurstjens, J. A. Ottjes, N. P. Dellaert. 2006.
Comparing transportation systems for inter-terminal transport at the maasvlakte con-
tainer terminals. OR Spectrum 28 469–493.

142 References

Dyckhoff, Harald, Witold Pedrycz. 1984. Generalized means as model of compensative
connectives. Fuzzy Sets and Systems 14 143–154.

Edmonds, J., R. M. Karp. 1972. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM) 19(2) 248–264.

Eiselt, H.A., V. Marianov. 2008. Employee positioning and workload allocation. Computers
& Operations Research 35(2) 513–524.

Elkind, Edith, Shaheen Fatima. 2007. Maximizing revenue in sequential auctions. Proceed-
ings of the 3rd international conference on Internet and network economics. WINE’07,
Springer-Verlag, Berlin, Heidelberg, 491–502.

Elmaghraby, Wedad. 2003. The importance of ordering in sequential auctions. Management
Science 49 673–682.

Eriksson, L., J. Garvill, A. M. Nordlund. 2008. Acceptability of single and combined trans-
port policy measures: the importance of environmental and policy specific beliefs.
Transportation Research Part A 42(8) 1117–1128.

Ernst, A.T., H. Jiang, M. Krishnamoorthy, D. Sier. 2004. Staff scheduling and roster-
ing: a review of applications, methods and models. European Journal of Operational
Research 153(1) 3–27.

Fan, W., R. Machemehl, N. Lownes. 2008. Carsharing: dynamic decision-making problem
for vehicle allocation. Transportation Research Record: Journal of the Transportation
Research Board 2063 97–104.

Fersini, E., E. Messina, G. Felici, D. Roth. 2014. Soft-constrained inference for named entity
recognition. Information Processing & Management 50(5) 807–819. doi: 10.1016/j.
ipm.2014.04.005. URL http://dx.doi.org/10.1016/j.ipm.2014.04.005.

Fujii, S., T. Gärling, C. Jakobsson, R.-C. Jou. 2004. A cross-country study of fairness and
infringement on freedom as determinants of car owners’ acceptance of road pricing.
Transportation 31(3) 285–295.

Gabel, Thomas, Martin Riedmiller. 2008. Adaptive reactive job-shop scheduling with learn-
ing agents. International Journal of Information Technology and Intelligent Comput-
ing 2(4) 1–30.

Gallien, J., L. M. Wein. 2005a. A smart market for industrial procurement with capacity
constraints. Management Science 51(1) 76–91.

Gallien, Jérémie, Lawrence M. Wein. 2005b. A smart market for industrial procurement
with capacity constraints. Management Science 51 76–91.

References 143

Garey, M R, D S Johnson. 1979. Computers and intractability – a guide to the theory of
NP-completeness. W.H. Freeman and company.

Ghodsi, A., M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica. 2011. Dominant
resource fairness: fair allocation of multiple resource types. NSDI , vol. 11. 24–24.

Goes, Paulo B., Gilbert G. Karuga, Arvind K. Tripathi. 2010. Understanding willingness-
to-pay formation of repeat bidders in sequential online auctions. Information Systems
Research 21 907–924.

Goldberg, A. V., R. E. Tarjan. 1989. Finding minimum-cost circulations by canceling
negative cycles. Journal of the ACM (JACM) 36(4) 873–886.

Goldman, T., R. Gorham. 2006. Sustainable urban transport: four innovative directions.
Technology in Society 28(1) 261–273.

González-Pachón, Jacinto, Carlos Romero. 2016. Bentham, marx and rawls ethical princi-
ples: in search for a compromise. Omega 62 47–51.

Gopinathan, A., Z. Li. 2011. Strategyproof auctions for balancing social welfare and fairness
in secondary spectrum markets. INFOCOM, 2011 Proceedings IEEE . IEEE, 3020–
3028.

Grether, David M., Charles R. Plott. 2009. Sequencing strategies in large, competitive,
ascending price automobile auctions: An experimental examination. Journal of Eco-
nomic Behavior & Organization 71(2) 75–88.

Heck, Eric Van, Pieter M. A. Ribbers. 1997. Experiences with electronic auctions in the
dutch flower industry. Electronic Markets 7(4) 29–34.

Heule, Marijn J.H., Sicco Verwer. 2010. Exact DFA identification using SAT solvers. Gram-
matical Inference: Theoretical Results and Applications, Lecture Notes in Computer
Science, vol. 6339. Springer Berlin Heidelberg, 66–79.

Hoffman, R., J. Burke, T. Lewis, A. Futer, M. Ball. 2005. Resource allocation principles
for airspace flow control. AIAA Guidance, Navigation, and Control Conference and
Exhibit. 6470.

Huyet, A.L. 2006. Optimization and analysis aid via data-mining for simulated production
systems. European Journal of Operational Research 173(3) 827–838.

IBM. 2014. Ibm ilog cplex optimizer. URL http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.

Jaffe, J. M. 1981. Bottleneck flow control. Communications, IEEE Transactions on 29(7)
954–962.

144 References

Jap, S. D., E. Haruvy. 2008. Interorganizational relationships and bidding behavior in
industrial online reverse auctions. Journal of Marketing Research 45(5) 550–561.

JGraphT. 2014. Jgrapht. URL http://jgrapht.org/.

Jones, Donald R, Matthias Schonlau, William J Welch. 1998. Efficient global optimization
of expensive black-box functions. Journal of Global optimization 13(4) 455–492.

Karp, R. M. 1978. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics 23(3) 309–311.

Kaymak, U., H. R. van Nauta Lemke. 1998. A sensitivity analysis approach to introducing
weight factors into decision functions in fuzzy multicriteria decision making. Fuzzy
Sets and Systems 97(2) 169–182.

Kaymak, Uzay. 2017. On practical applicability of the generalized averaging operator in
fuzzy decision making. Granular, Soft and Fuzzy Approaches for Intelligent Systems:
Dedicated to Professor Ronald R. Yager . Springer International Publishing, Cham,
101–118. doi: 10.1007/978-3-319-40314-4_6. URL http://dx.doi.org/10.1007/

978-3-319-40314-4_6.

Kek, A.G.H., R.L. Cheu, Q. Meng, C.H. Fung. 2009. A decision support system for vehicle
relocation operations in carsharing systems. Transportation Research Part E: Logistics
and Transportation Review 45(1) 149–158.

Kim, A., M. Hansen. 2015. Some insights into a sequential resource allocation mechanism
for en route air traffic management. Transportation Research Part B 79 1–15.

Klemperer, Paul. 2002. What really matters in auction design. Journal of Economic Per-
spectives 16(1) 169–189.

Kovalerchuk, B., V. Taliansky. 1992. Comparison of empirical and computed values of fuzzy
conjunction. Fuzzy Sets and Systems 46 49–53.

Koziel, Slawomir, David Echeverría Ciaurri, Leifur Leifsson. 2011. Surrogate-based methods.
Computational Optimization, Methods and Algorithms. Springer, 33–59.

Kubiak, W. 2009. Proportional optimization and fairness, international series in operations
research and management science.

Kumar, A., J. Kleinberg. 2000. Fairness measures for resource allocation. Foundations of
Computer Science, 2000. Proceedings. 41st Annual Symposium on. IEEE, 75–85.

Lahdelma, Risto, Pekka Salminen. 2009. Prospect theory and stochastic multicriteria ac-
ceptability analysis (smaa). Omega 37(5) 961–971.

References 145

Li, Xiaonan, Sigurdur Ólafsson. 2005. Discovering dispatching rules using data mining.
Journal of Scheduling 8(6) 515–527.

List, J. A., J. F. Shogren. 1999. Price information and bidding behavior in repeated second-
price auctions. American Journal of Agricultural Economics 81(4) 942–949.

Litman, T. 2002. Evaluating transportation equity. World Transport Policy & Practice 8(2)
50–65.

Lovric, M., R. J. Almeida, U. Kaymak, J. Spronk. 2009. Modeling investor optimism
with fuzzy connectives. J. P. Carvalho, D. Dubois, U. Kaymak, J. M. C. Sousa,
eds., Proceedings of the Joint 2009 International Fuzzy Systems Association World
Congress and 2009 European Society of Fuzzy Logic and Technology Conference
(IFSA/EUSFLAT 2009). Lisbon, Portugal, 1803–1808.

Lulli, G., A. Odoni. 2007. The european air traffic flow management problem. Transportation
Science 41(4) 431–443.

Mailath, G. J., L. Samuelson. 2006. Repeated games and reputations, vol. 2. Oxford Uni-
versity Press.

Meisel, Stephan, Dirk Mattfeld. 2010. Synergies of operations research and data mining.
European Journal of Operational Research 206(1) 1–10.

Meng, Q., H. Yang. 2002. Benefit distribution and equity in road network design. Trans-
portation Research Part B 36(1) 19–35.

Nash, J. F. 1950. The bargaining problem. Econometrica 155–162.

Nisan, Noam, Amir Ronen. 1999. Algorithmic mechanism design (extended abstract).
Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing.
STOC ’99, ACM, New York, NY, USA, 129–140. doi: 10.1145/301250.301287. URL
http://doi.acm.org/10.1145/301250.301287.

Ogryczak, W., H. Luss, M. Pióro, D. Nace, A. Tomaszewski. 2014. Fair optimization and
networks: a survey. Journal of Applied Mathematics 2014.

Ogryczak, W., M. Pióro, A. Tomaszewski. 2005. Telecommunications network design and
max-min optimization problem. Journal of Telecommunications and Information
Technology 43–56.

Ogryczak, W., A. Wierzbicki, M. Milewski. 2008. A multi-criteria approach to fair and
efficient bandwidth allocation. Omega 36(3) 451 – 463. doi: http://dx.doi.org/10.
1016/j.omega.2005.12.005.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

146 References

M. Brucher, M. Perrot, E. Duchesnay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12 2825–2830.

Perugia, A., L. Moccia, J.-F. Cordeau, G. Laporte. 2011. Designing a home-to-work bus
service in a metropolitan area. Transportation Research Part B 45(10) 1710–1726.

Pinker, Edieal J., Abraham Seidmann, Yaniv Vakrat. 2010. Using bid data for the man-
agement of sequential, multi-unit, online auctions with uniformly distributed bidder
valuations. European Journal of Operational Research 202(2) 574–583.

Pitchik, Carolyn. 2009. Budget-constrained sequential auctions with incomplete informa-
tion. Games and Economic Behavior 66(2) 928–949.

Puterman, Martin L. 2009. Markov decision processes: discrete stochastic dynamic pro-
gramming, vol. 414. John Wiley & Sons.

Raedt, Luc De, Tias Guns, Siegfried Nijssen. 2010. Constraint programming for data mining
and machine learning. AAAI . 1671–1675.

Rawls, J. 1971. A theory of justice. Harvard University Press.

Rios, Luis Miguel, Nikolaos V Sahinidis. 2013. Derivative-free optimization: A review of
algorithms and comparison of software implementations. Journal of Global Optimiza-
tion 56(3) 1247–1293.

Roth, Dan, Wen-tau Yih. 2005. Integer linear programming inference for conditional random
fields. Proceedings of the 22Nd International Conference on Machine Learning. ICML
’05, ACM, New York, NY, USA, 736–743. doi: 10.1145/1102351.1102444. URL
http://doi.acm.org/10.1145/1102351.1102444.

Rothkopf, M. H. 1999. Daily repetition: a neglected factor in the analysis of electricity
auctions. The Electricity Journal 12(3) 60–70.

Shaheen, S., A. Cohen, E. Martin. 2010. Carsharing parking policy: review of north amer-
ican practices and san francisco, california, bay area case study. Transportation Re-
search Record: Journal of the Transportation Research Board 2187 146–156.

Shan, Songqing, G Gary Wang. 2010. Survey of modeling and optimization strategies
to solve high-dimensional design problems with computationally-expensive black-box
functions. Structural and Multidisciplinary Optimization 41(2) 219–241.

Sheffi, Y. 2004. Combinatorial auctions in the procurement of transportation services.
Interfaces 34(4) 245–252.

Smits, M., R. Janssen. 2008. Impact of electronic auctions on health care markets. Electronic
Markets 18(1) 19–29.

References 147

Sra, Suvrit, Sebastian Nowozin, Stephen J Wright. 2012. Optimization for machine learning.
Mit Press.

Subramaniam, Ramanathan, R. Venkatesh. 2009. Optimal bundling strategies in multi-
object auctions of complements or substitutes. Marketing Science 28 264–273. doi:
10.1287/mksc.1080.0394.

SURFsara. 2014. Surfsara - the lisa system. URL https://surfsara.nl/systems/lisa.

Thole, U., H.-J. Zimmermann, P. Zysno. 1979. On the suitability of minimum and product
operators for the intersection of fuzzy sets. Fuzzy Sets and Systems 2 167–180.

Tibshirani, Robert. 1994. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58 267–288.

Tomaszewski, A. 2005. A polynomial algorithm for solving a general max-min fairness
problem. European Transactions on Telecommunications 16(3) 233–240.

Tversky, A., D. Kahneman. 1992. Advances in prospect theory: cumulative representation
of uncertainty. Journal of Risk and Uncertainty 5(4) 297–323.

Uney, Fadime, Metin Turkay. 2006. A mixed-integer programming approach to multi-class
data classification problem. European Journal of Operational Research 173(3) 910–
920.

Van Der Krogt, Roman, Mathijs De Weerdt, Yingqian Zhang. 2008. Of mechanism de-
sign and multiagent planning. Proceedings of the Eighteenth European Conference on
Artificial Intelligence. IOS Press, 423–427.

van Nauta Lemke, Hans R., Jaap G. Dijkman, H. van Haeringen, M. Pleeging. 1983. A char-
acteristic optimism factor in fuzzy decision-making. Proc. IFAC Symp. on Fuzzy Infor-
mation, Knowledge Representation and Decision Analysis. Marseille, France, 283–288.

Verbeeck, Denny, Francis Maes, Kurt De Grave, Hendrik Blockeel. 2013. Multi-objective
optimization with surrogate trees. Proceeding of the fifteenth annual conference on
Genetic and evolutionary computation conference. ACM, 679–686.

Verwer, Sicco, Yingqian Zhang. 2012. Revenue prediction in budget-constrained sequential
auctions with complementarities. Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 3 . 1399–1400.

Verwer, Sicco, Yingqian Zhang, Qing Chuan Ye. 2017. Auction optimization using regression
trees and linear models as integer programs. Artificial Intelligence 244 368–395.

Vetsikas, Ioannis A. 2013. Sequential auctions with budget-constrained bidders. IEEE 10th
International Conference on e-Business Engineering. IEEE, 17–24.

148 References

Vetsikas, Ioannis A, Nicholas R Jennings. 2010. Sequential auctions with partially substi-
tutable goods. Agent-Mediated Electronic Commerce. Designing Trading Strategies
and Mechanisms for Electronic Markets. Springer, 242–258.

Vickrey, William. 1961. Counterspeculation, auctions, and competitive sealed tenders. The
Journal of Finance 16(1) 8–37.

Weerdt, Mathijs M., Yingqian Zhang, Tomas Klos. 2012. Multiagent task allocation in
social networks. Autonomous Agents and Multi-Agent Systems 25(1) 46–86.

Ye, Q. C., Y. Zhang. 2016. Participation behavior and social welfare in repeated task
allocations. IEEE International Conference on Agents (ICA). IEEE, 94–97.

Ye, Qing Chuan, Yingqian Zhang, Rommert Dekker. 2017a. Fair task allocation in trans-
portation. Omega 68 1–16.

Ye, Qing Chuan, Yingqian Zhang, Uzay Kaymak. 2017b. Modeling participation behavior
in repeated task allocations with fuzzy connectives. Systems, Man, and Cybernetics
(SMC), 2017 IEEE International Conference on. IEEE, 3219–3234.

Zimmermann, H.-J., P. Zysno. 1980. Latent connectives in human decision making. Fuzzy
Sets and Systems 4 37–51.

Zukerman, M., L. Tan, H. Wang, I. Ouveysi. 2005. Efficiency-fairness tradeoff in telecom-
munications networks. Communications Letters, IEEE 9(7) 643–645.

Nederlandse Samenvatting
(Summary in Dutch)

In dit proefschrift bestuderen we twee verschillende aspecten van veilingen en we
maken gebruik van technieken en methoden vanuit zowel de besliskunde als de in-
formatica. Ten eerste bestuderen we de toewijzing van taken aan agenten aan het
einde van een veiling. Er zijn verschillende manieren om taken toe te wijzen geba-
seerd op de biedingen die zijn ingediend door de agenten. Meestal worden de taken
toegewezen op een manier die de kosten voor de veilingmeester minimaliseert. In een
eenmalige veiling is deze toewijzing optimaal, maar als de veiling meerdere malen
wordt uitgevoerd, kan dit gevolgen hebben voor de participatiegraad van agenten
en uiteindelijk de kosten voor de veilingmeester. Hierom beschouwen we een gelijke
toewijzing, die wat meer kost in een enkele veiling, maar welke een positieve invloed
heeft op de participatiegraad van agenten en de uiteindelijke kosten gemaakt door
de veilingmeester over alle veilingen. Ten tweede kijken we naar het ontwerp van de
veiling. Hoe een veiling werkt, zoals welke taken het eerst aan bod komen, of wat
de startprijs is, heeft invloed op de uitkomst. Meestal zijn er experts die verstand
van zaken hebben en weten wat er in voorgaande veilingen heeft plaatsgevonden en
hoe een toekomstige veiling moet worden ingericht om de beste resultaten te verkrij-
gen. Voorgaande veilingen bevatten echter zoveel informatie dat zelfs experts soms
dingen over het hoofd zien. We gebruiken een combinatie van machinaal leren en
optimalisatiemodellen om informatie uit voorgaande veilingen te onttrekken en deze
te gebruiken om toekomstige veilingen in te richten voor betere resultaten.

Curriculum Vitae

Charlie (Qing Chuan) Ye (1989) obtained his BSc Econo-
metrics and Operations Research from Erasmus Univer-
sity Rotterdam in 2009. In 2012 he received his MSc
Econometrics and Management Science at the same uni-
versity, with a specialization in Operations Research and
Quantitative Logistics.

Charlie joined the Erasmus Research Institute of
Management (ERIM) in October 2012 as a PhD student
under the supervision of prof.dr.ir. Rommert Dekker and
dr.Yingqian Zhang. He worked on multi-objective opti-

mization problems in task allocations and auctions. His work has been published
in the journals Artificial Intelligence and Omega. His paper in the journal Omega
has received the Best Paper Award for 2017. He has presented his research at vari-
ous national and international conferences. His research interests include operations
research, optimization, algorithm design and machine learning.

During his PhD project he assisted in and taught various courses, primarily nu-
merical methods and programming courses.

Portfolio

Publications
Peer-reviewed journal articles:
Verwer, Sicco, Yingqian Zhang, and Qing Chuan Ye. (2017) Auction opti-
mization using regression trees and linear models as integer programs. Artificial
Intelligence 244: 368-395.
Ye, Qing Chuan, Yingqian Zhang, and Rommert Dekker. (2017) Fair task
allocation in transportation. Omega 68: 1-16.

Peer-reviewed conference papers:
Ye, Qing Chuan, and Yingqian Zhang. (2016) Participation behavior and
social welfare in repeated task allocations. Agents (ICA), IEEE International
Conference on, pp. 94-97.
Ye, Qing Chuan, Yingqian Zhang, and Uzay Kaymak. (2017) Modeling par-
ticipation behavior in repeated task allocations with fuzzy connectives. Sys-
tems, Man, and Cybernetics (SMC), 2017 IEEE International Conference on,
pp. 3219-3234.

Working papers:
Ye, Qing Chuan, Yingqian Zhang, Sicco Verwer, Michiel Hilgeman. (2018)
Decision Support System for Auction Design using Multi-Objective Optimiza-
tion of Decision Trees.

Teaching
Lecturer:
Introduction to Programming, Erasmus School of Economics, minor Computer
Science / pre-master, 2013, 2016.
Advanced Programming, Erasmus School of Economics, minor Computer Sci-
ence, 2016.
Numerieke Methoden (Numerical Methods), Erasmus School of Economics, BA
Econometrics and Operations Research, 2014-2016.
Tutorial lecturer:
Introduction to Programming, Erasmus School of Economics, minor Computer
Science, 2012.
ICT, Erasmus School of Economics, BA Economics and Business Economics,
2013.
Numerieke Methoden (Numerical Methods), Erasmus School of Economics, BA
Econometrics and Operations Research, 2013.
Programmeren (Programming), Erasmus School of Economics, BA Economet-
rics and Operations Research, 2013.
Voortgezet Programmeren (Advanced Programming), Erasmus School of Eco-
nomics, BA Econometrics and Operations Research, 2013.

PhD courses
SIKS
Advanced Course on Data Mining
Methods and Methodology for IKS
Learning and Reasoning
Information Retrieval
Agent Systems

LNMB
Cooperative Games
OR Games
Robust Optimization
Integer Programming Methods
Noncooperative Games
Algorithmic Game Theory

ERIM
Scientific Integrity
English: CPE level
Publishing Strategy

Summer school
EASSS 2013

Conferences attended
BNAIC 2012, Maastricht, the Netherlands
BENELEARN 2013, Nijmegen, the Netherlands
OR 2013, Rotterdam, the Netherlands
BNAIC 2013, Delft, the Netherlands
LOGMS 2014, Rotterdam, the Netherlands
INFORMS 2014, San Francisco, CA, USA
EURO 2015, Glasgow, Scotland
ICCL 2015, Delft, the Netherlands
INFORMS 2015, Philadelphia, PA, USA
LNMB Conference 2016, Lunteren, the Netherlands
IEEE ICA 2016, Matsue, Japan
Workshop on Data Driven Operations Management 2016, Eindhoven, the
Netherlands
LNMB Conference 2017, Lunteren, the Netherlands
IEEE SMC 2017, Banff, Canada
BNAIC 2017, Groningen, the Netherlands

The ERIM PhD Series

The ERIM PhD Series contains PhD dissertations in the field of Research in Management

defended at Erasmus University Rotterdam and supervised by senior researchers affiliated

to the Erasmus Research Institute of Management (ERIM). All dissertations in the ERIM

PhD Series are available in full text through the ERIM Electronic Series Portal:

http://repub.eur.nl/pub. ERIM is the joint research institute of the Rotterdam School of

Management (RSM) and the Erasmus School of Economics (ESE) at the Erasmus

University Rotterdam (EUR).

Dissertations in the last four years

Akemu, O., Corporate Responses to Social Issues: Essays in Social Entrepreneurship and
Corporate Social Responsibility, Promotors:Prof. G.M. Whiteman & Dr S.P. Kennedy,
EPS-2017-392-ORG, https://repub.eur.nl/pub/95768

Alexiou, A., Management of Emerging Technologies and the Learning Organization:
Lessons from the Cloud and Serious Games Technology, Promotors: Prof. S.J. Magala,
Prof. M.C. Schippers and Dr I. Oshri, EPS-2016-404-ORG, http://repub.eur.nl/pub/93818

Alserda, G.A.G., Choices in Pension Management, Promotors: Prof. S.G. van der Lecq &
Dr O.W. Steenbeek, EPS-2017-432-F&A, https://repub.eur.nl/pub/103496

Arampatzi, E., Subjective Well-Being in Times of Crises: Evidence on the Wider Impact of
Economic Crises and Turmoil on Subjective Well-Being, Promotors: Prof. H.R.
Commandeur, Prof. F. van Oort & Dr. M.J. Burger, EPS-2018-459-S&E,
https://repub.eur.nl/pub/111830

Avci, E., Surveillance of Complex Auction Markets: a Market Policy Analytics Approach,
Promotors: Prof. W. Ketter, Prof. H.W.G.M. van Heck & Prof. D.W. Bunn,
EPS-2018-426-LIS, https://repub.eur.nl/pub/106286

Benschop, N, Biases in Project Escalation:Names, frames & construal levels,
Promotors: Prof. K.I.M. Rhode, Prof. H.R. Commandeur, Prof. M.Keil & Dr A.L.P.
Nuijten, EPS-2015-375-S&E, http://repub.eur.nl/pub/79408

Bernoster, I., Essays at the Intersection of Psychology, Biology, and Entrepreneurship,
Promotors: Prof. A.R. Thurik, Prof. I.H.A. Franken & Prof. P.J.F Groenen, EPS-2018-463-
S&E, https://repub.eur.nl/pub/113907

Beusichem, H.C. van, Firms and Financial Markets:Empirical Studies on the
Informational Value of Dividends, Governance and Financial Reporting,
Promotors: Prof. A. de Jong & Dr G. Westerhuis, EPS-2016-378-F&A,
http://repub.eur.nl/pub/93079

Bliek, R. de, Empirical Studies on the Economic Impact of Trust,
Promotor: Prof.J. Veenman & Prof. Ph.H.B.F. Franses, EPS-2015-324-ORG,
http://repub.eur.nl/pub/78159

Bouman, P., Passengers,Crowding and Complexity:Models for Passenger Oriented Public
Transport, Prof. L.G. Kroon, Prof. A. Schöbel & Prof. P.H.M. Vervest,
EPS-2017-420-LIS, https://repub.eur.nl/

Brazys, J., Aggregated Marcoeconomic News and Price Discovery,
Promotor: Prof.W.F.C. Verschoor, EPS-2015-351-F&A, http://repub.eur.nl/pub/78243

Bunderen, L. van, Tug-of-War: Why and when teams get embroiled in power struggles,
Promotors: Prof. D.L. van Knippenberg & Dr. L. Greer, EPS-2018-446-ORG,
https://repub.eur.nl/pub/105346

Burg, G.J.J. van den, Algorithms for Multiclass Classification and Regularized Regression,
Promotors: Prof. P.J.F. Groenen & Dr. A. Alfons, EPS-2018-442-MKT,
https://repub.eur.nl/pub/103929

Chammas, G., Portfolio concentration, Promotor: Prof. J. Spronk, EPS-2017-410-F&E,
https://repub.eur.nl/pub/94975

Cranenburgh, K.C. van, Money or Ethics: Multinational corporations and religious
organisations operating in an era of corporate responsibility, Prof. L.C.P.M. Meijs,
Prof. R.J.M. van Tulder &Dr D. Arenas, EPS-2016-385-ORG,
http://repub.eur.nl/pub/93104

Consiglio, I., Others: Essays on Interpersonal and Consumer Behavior,
Promotor: Prof. S.M.J. van Osselaer, EPS-2016-366-MKT, http://repub.eur.nl/pub/79820

Darnihamedani, P., Individual Characteristics, Contextual Factors and Entrepreneurial
Behavior, Promotors: Prof. A.R.Thurik & S.J.A. Hessels, EPS-2016-360-S&E,
http://repub.eur.nl/pub/93280

Dennerlein, T., Empowering Leadership and Employees’ Achievement Motivations: the
Role of Self-Efficacy and Goal Orientations in the Empowering Leadership Process,
Promotors: Prof. D.L. van Knippenberg & Dr J. Dietz, EPS-2017-414-ORG,
https://repub.eur.nl/pub/98438

Deng, W., Social Capital and Diversification of Cooperatives,
Promotor: Prof. G.W.J. Hendrikse, EPS-2015-341-ORG, http://repub.eur.nl/pub/77449

Depecik, B.E., Revitalizing brands and brand: Essays on Brand and Brand Portfolio
Management Strategies, Promotors: Prof. G.H. van Bruggen, Dr Y.M. van Everdingen
and Dr M.B. Ataman, EPS-2016-406-MKT,http://repub.eur.nl/pub/93507

Duijzer, L.E., Mathematical Optimization in Vaccine Allocation,
Promotors: Prof. R. Dekker & Dr W.L. van Jaarsveld, EPS-2017-430-LIS,
https://repub.eur.nl/pub/101487

Duyvesteyn, J.G., Empirical Studies on Sovereign Fixed Income Markets,
Promotors: Prof. P.Verwijmeren & Prof.M.P.E. Martens, EPS-2015-361-F&A,
https://repub.eur.nl/pub/79033

Elemes, A., Studies on Determinants and Consequences
of Financial Reporting Quality, Promotor: Prof. E.Peek, EPS-2015-354-
F&A,https://repub.eur.nl/pub/79037

Ellen, S. ter, Measurement, Dynamics, and Implications of Heterogeneous Beliefs in
Financial Markets, Promotor: Prof. W.F.C. Verschoor, EPS-2015-343-F&A,
http://repub.eur.nl/pub/78191

El Nayal, O.S.A.N., Firms and the State: An Examination of Corporate Political Activity
and the Business-Government Interface, Promotor: Prof. J. van Oosterhout & Dr. M. van
Essen, EPS-2018-469-S&E, https://repub.eur.nl/pub/114683

Erlemann, C., Gender and Leadership Aspiration: The Impact of the Organizational
Environment, Promotor: Prof. D.L. van Knippenberg, EPS-2016-376-ORG,
http://repub.eur.nl/pub/79409

Eskenazi, P.I., The Accountable Animal, Promotor: Prof. F.G.H. Hartmann,
EPS-2015-355-F&A, http://repub.eur.nl/pub/78300

Evangelidis, I., Preference Construction under Prominence,
Promotor: Prof. S.M.J.van Osselaer, EPS-2015-340-MKT, http://repub.eur.nl/pub/78202

Faber, N., Structuring Warehouse Management, Promotors: Prof. M.B.M. de Koster
& Prof. A. Smidts, EPS-2015-336-LIS, http://repub.eur.nl/pub/78603

Feng, Y., The Effectiveness of Corporate Governance Mechanisms and Leadership
Structure: Impacts on strategic change and firm performance,
Promotors: Prof. F.A.J. van den Bosch, Prof. H.W. Volberda & Dr J.S. Sidhu,
EPS-2017-389-S&E, https://repub.eur.nl/pub/98470

Fernald, K., The Waves of Biotechnological Innovation in Medicine: Interfirm
Cooperation Effects and a Venture Capital Perspective, Promotors: Prof.E.Claassen, Prof.
H.P.G. Pennings & Prof. H.R. Commandeur, EPS-2015-371-S&E,
http://hdl.handle.net/1765/79120

Fisch, C.O., Patents and trademarks: Motivations, antecedents, and value in industrialized
and emerging markets, Promotors: Prof. J.H. Block, Prof. H.P.G. Pennings &
Prof. A.R. Thurik, EPS-2016-397-S&E, http://repub.eur.nl/pub/94036

Fliers, P.T., Essays on Financing and Performance: The role of firms, banks and board,
Promotors: Prof. A. de Jong & Prof. P.G.J. Roosenboom, EPS-2016-388-F&A,
http://repub.eur.nl/pub/93019

Frick, T.W., The Implications of Advertising Personalization for Firms, Consumer, and Ad
Platfroms, Promotors: Prof. T. Li & Prof. H.W.G.M. van Heck, EPS-2018-452-LIS,
https://repub.eur.nl/pub/110314

Fytraki, A.T., Behavioral Effects in Consumer Evaluations of Recommendation Systems,
Promotors: Prof. B.G.C. Dellaert & Prof. T. Li, EPS-2018-427-MKT,
https://repub.eur.nl/pub/110457

Gaast, J.P. van der, Stochastic Models for Order Picking Systems,
Promotors: Prof. M.B.M de Koster & Prof. I.J.B.F. Adan, EPS-2016-398-LIS,
http://repub.eur.nl/pub/93222

Ghazizadeh, P., Empirical Studies on the Role of Financial Information in Asset and
Capital Markets, Promotors: Prof. A. de Jong & Prof. E. Peek. EPS-2019-470-F&A
https://repub.eur.nl/pub/114023

Giurge, L., A Test of Time; A temporal and dynamic approach to power and ethics,
Promotors: Prof. M.H. van Dijke & Prof. D. De Cremer, EPS-2017-412-ORG,
https://repub.eur.nl/

Gobena, L., Towards Integrating Antecedents of Voluntary Tax Compliance,
Promotors: Prof. M.H. van Dijke & Dr P. Verboon, EPS-2017-436-
ORG,https://repub.eur.nl/pub/103276

Groot, W.A., Assessing Asset Pricing Anomalies, Promotors: Prof. M.J.C.M. Verbeek
& Prof. J.H. van Binsbergen, EPS-2017-437-F&A, https://repub.eur.nl/pub/103490

Hanselaar, R.M., Raising Capital: On pricing, liquidity and incentives, Promotors: Prof.
M.A. van Dijk & Prof. P.G.J. Roosenboom, EPS-2018-429-F&A-9789058925404,
https://repub.eur.nl/pub/113274

Harms, J. A., Essays on the Behavioral Economics of Social Preferences and Bounded
Rationality, Prof. H.R. Commandeur & Dr K.E.H. Maas, EPS-2018-457-S&E,
https://repub.eur.nl/pub/108831

Hekimoglu, M., Spare Parts Management of Aging Capital Products,
Promotor: Prof. R. Dekker, EPS-2015-368-LIS, http://repub.eur.nl/pub/79092

Hendriks, G., Multinational Enterprises and Limits to International Growth: Links
between Domestic and Foreign Activities in a Firm’s Portfolio, Promotors: Prof.
P.P.M.A.R. Heugens & Dr. A.H.L Slangen, EPS-2019-464-S&E,
https://repub.eur.nl/pub/114981

Hengelaar, G.A., The Proactive Incumbent: Holy grail or hidden gem?Investigating
whether the Dutch electricity sector can overcome the incumbent’s curse and lead the
sustainability transition, Promotors: Prof. R.J. M. van Tulder & Dr K. Dittrich,
EPS-2018-438-ORG, https://repub.eur.nl/pub/102953

Hogenboom, A.C., Sentiment Analysis of Text Guided by Semantics and Structure,
Promotors: Prof. U. Kaymak & Prof. F.M.G. de Jong, EPS-2015-369-LIS,
http://repub.eur.nl/pub/79034

Hollen, R.M.A., Exploratory Studies into Strategies to Enhance Innovation-Driven
International Competitiveness in a Port Context: Toward Ambidextrous Ports,
Promotors: Prof. F.A.J. Van Den Bosch & Prof. H.W. Volberda, EPS-2015-372-S&E,
http://repub.eur.nl/pub/78881

Hurk, E. van der, Passengers, Information, and Disruptions,
Promotors: Prof. L.G.Kroon & Prof. P.H.M. Vervest, EPS-2015-345-LIS,
http://repub.eur.nl/pub/78275

Jacobs, B.J.D., Marketing Analytics for High-Dimensional Assortments,
Promotors: Prof. A.C.D. Donkers & Prof. D. Fok, EPS-2017-445-MKT,
https://repub.eur.nl/pub/103497

Kahlen, M. T., Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity
Markets, Promotors: Prof. W. Ketter & Prof. A. Gupta, EPS-2017-431-LIS,
https://repub.eur.nl/pub/100844

Kampen, S. van, The Cross-sectional and Time-series Dynamics of Corporate Finance:
Empirical evidence from financially constrained firms, Promotors: Prof. L. Norden &
Prof. P.G.J. Roosenboom, EPS-2018-440-F&A, https://repub.eur.nl/pub/105245

Karali, E., Investigating Routines and Dynamic Capabilities for Change and Innovation,
Promotors: Prof. H.W. Volberda, Prof. H.R. Commandeur and Dr J.S. Sidhu, EPS-2018-
454-S&E, https://repub.eur.nl/pub/106274

Keko. E, Essays on Innovation Generation in Incumbent Firms,
Promotors: Prof. S. Stremersch & Dr N.M.A. Camacho, EPS-2017-419-MKT,
https://repub.eur.nl/pub/100841

Kerkkamp, R.B.O., Optimisation Models for Supply Chain Coordination under
Information Asymmetry, Promotors: Prof. A.P.M. Wagelmans & Dr. W. van den Heuvel,
EPS-2018-462-LIS

Khattab, J., Make Minorities Great Again: a contribution to workplace equity by
identifying and addressing constraints and privileges, Promotors: Prof. D.L. van
Knippenberg & Dr A. Nederveen Pieterse, EPS-2017-421-ORG,
https://repub.eur.nl/pub/99311

Kim, T. Y., Data-driven Warehouse Management in Global Supply Chains,
Promotors: Prof. R. Dekker & Dr C. Heij, EPS-2018-449-LIS,
https://repub.eur.nl/pub/109103

Klitsie, E.J., Strategic Renewal in Institutional Contexts: The paradox of embedded
agency, Promotors: Prof. H.W. Volberda & Dr. S. Ansari, EPS-2018-444-S&E,
https://repub.eur.nl/pub/106275

Kong, L. Essays on Financial Coordination, Promotors: Prof. M.J.C.M. Verbeek, Dr.
D.G.J. Bongaerts & Dr. M.A. van Achter. EPS-2019-433-F&A,
https://repub.eur.nl/pub/114516

Krämer, R., A license to mine? Community organizing against multinational corporations,
Promotors: Prof. R.J.M. van Tulder & Prof. G.M. Whiteman, EPS-2016-383-ORG,
http://repub.eur.nl/pub/94072

Kysucky, V., Access to Finance in a Cros-Country Context, Promotor: Prof. L.Norden,
EPS-2015-350-F&A, http://repub.eur.nl/pub/78225

Lee, C.I.S.G., Big Data in Management Research: Exploring New Avenues, Promotors:
Prof. S.J. Magala & Dr W.A. Felps, EPS-2016-365-ORG, http://repub.eur.nl/pub/79818

Legault-Tremblay, P.O., Corporate Governance During Market Transition:
Heterogeneous responses to Institution Tensions in China, Promotor: Prof. B. Krug, EPS-
2015-362-ORG, http://repub.eur.nl/pub/78649

Lenoir, A.S., Are You Talking to Me? Addressing Consumers in a Globalised World,
Promotors: Prof. S. Puntoni & Prof. S.M.J. van Osselaer, EPS-2015-363-MKT,

http://repub.eur.nl/pub/79036

Li, D., Supply Chain Contracting for After-sales Service and Product Support,
Promotor: Prof. M.B.M. de Koster, EPS-2015-347-LIS, http://repub.eur.nl/pub/78526

Li, X., Dynamic Decision Making under Supply Chain Competition, Promotors: Prof.
M.B.M de Koster, Prof. R. Dekker & Prof. R. Zuidwijk. EPS-2018-466-LIS,
https://repub.eur.nl/pub/114028

Liu, N., Behavioral Biases in Interpersonal Contexts, Supervisors: Prof. A. Baillon
& Prof. H. Bleichrodt, EPS-2017-408-MKT, https://repub.eur.nl/pub/95487

Ma, Y., The Use of Advanced Transportation Monitoring Data for Official Statistics,
Promotors: Prof. L.G.Kroon& Dr J. van Dalen, EPS-2016-391-LIS,
http://repub.eur.nl/pub/80174

Maira, E., Consumers and Producers, Promotors: Prof. S. Puntoni &Prof. C. Fuchs,
EPS-2018-439-MKT, https://repub.eur.nl/pub/104387

Mell, J.N., Connecting Minds: On The Role of Metaknowledge in Knowledge
Coordination, Promotor: Prof. D.L. van Knippenberg, EPS-2015-359-ORG,
http://hdl.handle.net/1765/78951

Meulen,van der, D., The Distance Dilemma: the effect of flexible working practices on
performance in the digital workplace, Promotors: Prof. H.W.G.M. van Heck
& Prof. P.J. van Baalen, EPS-2016-403-LIS,http://repub.eur.nl/pub/94033

Micheli, M.R., Business Model Innovation: A Journey across Managers’ Attention and
Inter-Organizational Networks, Promotor: Prof. J.J.P. Jansen, EPS-2015-344-S&E,
http://repub.eur.nl/pub/78241

Moniz, A, Textual Analysis of Intangible Information, Promotors: Prof. C.B.M. van Riel,
Prof. F.M.G de Jong & Dr G.A.J.M. Berens, EPS-2016-393-ORG,
http://repub.eur.nl/pub/93001

Mulder, J., Network design and robust scheduling in liner shipping,
Promotors: Prof. R. Dekker & Dr W.L. van Jaarsveld, EPS-2016-384-LIS,
http://repub.eur.nl/pub/80258

Neerijnen, P., The Adaptive Organization: the socio-cognitive antecedents of ambidexterity
and individual exploration, Promotors: Prof. J.J.P. Jansen, P.P.M.A.R. Heugens
& Dr T.J.M. Mom, EPS-2016-358-S&E, http://repub.eur.nl/pub/93274

Okbay, A., Essays on Genetics and the Social Sciences, Promotors: Prof. A.R. Thurik,
Prof. Ph.D. Koellinger & Prof. P.J.F. Groenen, EPS-2017-413-S&E,
https://repub.eur.nl/pub/95489

Oord, J.A. van, Essays on Momentum Strategies in Finance,
Promotor: Prof. H.K. van Dijk, EPS-2016-380-F&A, http://repub.eur.nl/pub/80036

Peng, X., Innovation, Member Sorting, and Evaluation of Agricultural Cooperatives,
Promotor: Prof. G.W.J. Hendriks, EPS-2017-409-ORG, https://repub.eur.nl/pub/94976

Pennings, C.L.P., Advancements in Demand Forecasting: Methods and Behavior,
Promotors: Prof. L.G. Kroon, Prof. H.W.G.M. van Heck & Dr J. van Dalen,
EPS-2016-400-LIS, http://repub.eur.nl/pub/94039

Petruchenya, A., Essays on Cooperatives: Emergence, Retained Earnings, and Market
Shares, Promotors: Prof. G.W.J. Hendriks & Dr Y. Zhang, EPS-2018-447-ORG,
https://repub.eur.nl/pub/105243

Plessis, C. du, Influencers:The Role of Social Influence in Marketing,
Promotors: Prof. S. Puntoni & Prof. S.T.L.R. Sweldens, EPS-2017-425-MKT,
https://repub.eur.nl/pub/103265

Pocock, M., Status Inequalities in Business Exchange Relations in Luxury Markets,
Promotors: Prof. C.B.M. van Riel & Dr G.A.J.M. Berens, EPS-2017-346-ORG,
https://repub.eur.nl/pub/98647

Pozharliev, R., Social Neuromarketing: The role of social context in measuring advertising
effectiveness, Promotors: Prof. W.J.M.I. Verbeke & Prof. J.W. van Strien,
 EPS-2017-402-MKT, https://repub.eur.nl/pub/95528

Protzner, S., Mind the gap between demand and supply: A behavioral perspective on
demand forecasting, Promotors: Prof. S.L. van de Velde &Dr L. Rook,
EPS-2015-364-LIS, http://repub.eur.nl/pub/79355

Pruijssers, J.K., An Organizational Perspective on Auditor Conduct, Promotors:
Prof. J. van Oosterhout & Prof. P.P.M.A.R. Heugens, EPS-2015-342-S&E,
http://repub.eur.nl/pub/78192

Reh, S.G., A Temporal Perspective on Social Comparisons in Organizations, Promotors:
Prof. S.R. Giessner, Prof. N. van Quaquebeke & Dr. C. Troster, EPS-2018-471-ORG,
https://repub.eur.nl/pub/114522

Riessen, B. van, Optimal Transportation Plans and Portfolios for Synchromodal
Container Networks, Promotors: Prof. R. Dekker & Prof. R.R. Negenborn,
EPS-2018-448-LIS, https://repub.eur.nl/pub/105248

Rietdijk, W.J.R., The Use of Cognitive Factors for Explaining Entrepreneurship,
Promotors: Prof. A.R. Thurik & Prof. I.H.A. Franken, EPS-2015-356-S&E,
http://repub.eur.nl/pub/79817

Rösch, D., Market Efficiency and Liquidity, Promotor: Prof. M.A. van Dijk,
EPS-2015-353-F&A, http://repub.eur.nl/pub/79121

Roza, L., Employee Engagement in Corporate Social Responsibility: A collection of
essays, Promotor: Prof. L.C.P.M. Meijs, EPS-2016-396-ORG,
http://repub.eur.nl/pub/93254

Schie, R. J. G. van, Planning for Retirement: Save More or Retire Later?
Promotors: Prof. B. G. C. Dellaert & Prof. A.C.D. Donkers, EOS-2017-415-MKT,
https://repub.eur.nl/pub/100846

Schoonees, P., Methods for Modelling Response Styles, Promotor: Prof. P.J.F. Groenen,
EPS-2015-348-MKT, http://repub.eur.nl/pub/79327

Schouten, K.I.M., Semantics-driven Aspect-based Sentiment Analysis, Promotors: Prof.
F.M.G. de Jong, Prof. R. Dekker & Dr. F. Frasincar, EPS-2018-453-LIS,
https://repub.eur.nl/pub/112161

Schouten, M.E., The Ups and Downs of Hierarchy: the causes and consequences of
hierarchy struggles and positional loss, Promotors; Prof. D.L. van Knippenberg
& Dr L.L. Greer, EPS-2016-386-ORG, http://repub.eur.nl/pub/80059

Smit, J., Unlocking Business Model Innovation: A look through the keyhole at the inner
workings of Business Model Innovation, Promotor: Prof. H.G. Barkema,
EPS-2016-399-S&E, http://repub.eur.nl/pub/93211

Straeter, L.M., Interpersonal Consumer Decision Making,
Promotors: Prof. S.M.J. van Osselaer & Dr I.E. de Hooge, EPS-2017-423-MKT,
https://repub.eur.nl/pub/100819

Stuppy, A., Essays on Product Quality, Promotors: Prof. S.M.J. van Osselaer & Dr. N.L.
Mead. EPS-2018-461-MKT, https://repub.eur.nl/pub/111375

Subaşi, B., Demographic Dissimilarity, Information Access and Individual Performance,
Promotors: Prof. D.L. van Knippenberg & Dr W.P. van Ginkel, EPS-2017-422-ORG,
https://repub.eur.nl/pub/103495

Suurmond, R., In Pursuit of Supplier Knowledge: Leveraging capabilities and dividing
responsibilities in product and service contexts, Promotors: Prof. J.Y.F Wynstra & Prof. J.
Dul. EPS-2018-475-LIS, https://repub.eur.nl/pub/115138

Szatmari, B., We are (all) the champions: The effect of status in the implementation of
innovations, Promotors: Prof. J.C.M van den Ende & Dr D. Deichmann, EPS-2016-401-
LIS, http://repub.eur.nl/pub/94633

Toxopeus, H.S., Financing sustainable innovation: From a principal-agent to a collective
action perspective, Promotors: Prof. H.R. Commandeur & Dr. K.E.H. Maas. EPS-2019-
458-S&E, https://repub.eur.nl/pub/114018

Tuijl, E. van, Upgrading across Organisational and Geographical Configurations,
Promotor: Prof. L. van den Berg, EPS-2015-349-S&E, http://repub.eur.nl/pub/78224

Turturea, R., Overcoming Resource Constraints: The Role of Creative Resourcing and
Equity Crowdfunding in Financing Entrepreneurial Ventures, Promotors: Prof. P.P.M.A.R
Heugens, Prof. J.J.P. Jansen & Dr. I. Verheuil, EPS-2019-472-S&E,
https://repub.eur.nl/pub/112859

Valogianni, K., Sustainable Electric Vehicle Management using Coordinated Machine
Learning, Promotors: Prof. H.W.G.M. van Heck & Prof. W. Ketter, EPS-2016-387-LIS,
http://repub.eur.nl/pub/93018

Vandic, D., Intelligent Information Systems for Web Product Search,
Promotors: Prof. U. Kaymak & Dr Frasincar, EPS-2017-405-LIS,
https://repub.eur.nl/pub/95490

Verbeek, R.W.M., Essays on Empirical Asset Pricing, Promotors: Prof. M.A. van Dijk
& Dr M. Szymanowska, EPS-2017-441-F&A, https://repub.eur.nl/pub/102977

Vermeer, W., Propagation in Networks:The impact of information processing at the actor
level on system-wide propagation dynamics, Promotor: Prof. P.H.M.Vervest,
EPS-2015-373-LIS, http://repub.eur.nl/pub/79325

Versluis, I., Prevention of the Portion Size Effect, Promotors: Prof. Ph.H.B.F. Franses &
Dr E.K. Papies, EPS-2016-382-MKT, http://repub.eur.nl/pub/79880

Vishwanathan, P., Governing for Stakeholders: How Organizations May Create or
Destroy Value for their Stakeholders, Promotors: Prof. J. van Oosterhout
&Prof. L.C.P.M. Meijs, EPS-2016-377-ORG, http://repub.eur.nl/pub/93016

Vlaming, R. de., Linear Mixed Models in Statistical Genetics, Prof. A.R. Thurik,
Prof. P.J.F. Groenen & Prof. Ph.D. Koellinger, EPS-2017-416-
S&E,https://repub.eur.nl/pub/100428

Vries, H. de, Evidence-Based Optimization in Humanitarian Logistics,
Promotors: Prof. A.P.M. Wagelmans & Prof. J.J. van de Klundert, EPS-2017-435-LIS,
https://repub.eur.nl/pub/102771

Vries, J. de, Behavioral Operations in Logistics, Promotors: Prof. M.B.M de Koster
& Prof. D.A. Stam, EPS-2015-374-LIS, http://repub.eur.nl/pub/79705

Wagenaar, J.C., Practice Oriented Algorithmic Disruption Management in Passenger
Railways, Prof. L.G. Kroon & Prof. A.P.M. Wagelmans, EPS-2016-390-LIS,
http://repub.eur.nl/pub/93177

Wang, P., Innovations, status, and networks, Promotors: Prof. J.J.P. Jansen
& Dr V.J.A. van de Vrande, EPS-2016-381-S&E, http://repub.eur.nl/pub/93176

Wang, R., Corporate Environmentalism in China, Promotors: Prof. P.P.M.A.R Heugens
& Dr F. Wijen, EPS-2017-417-S&E, https://repub.eur.nl/pub/99987

Wang, T., Essays in Banking and Corporate Finance, Promotors: Prof. L. Norden
& Prof. P.G.J. Roosenboom, EPS-2015-352-F&A, http://repub.eur.nl/pub/78301

Wasesa, M., Agent-based inter-organizational systems in advanced logistics operations,
Promotors: Prof. H.W.G.M van Heck, Prof. R.A. Zuidwijk & Dr A. W. Stam,
EPS-2017-LIS-424, https://repub.eur.nl/pub/100527

Wessels, C., Flexible Working Practices: How Employees Can Reap the Benefits for
Engagement and Performance, Promotors: Prof. H.W.G.M. van Heck,
Prof. P.J. van Baalen & Prof. M.C. Schippers, EPS-2017-418-LIS, https://repub.eur.nl/

Wiegmann, P.M., Setting the Stage for Innovation: Balancing Diverse Interests through
Standardisation, Promotors: Prof. H.J. de Vries & Dr. K. Blind, EPS-2019-473-LIS,
https://repub.eur.nl/pub/114519

Williams, A.N., Make Our Planet Great Again: A Systems Perspective of Corporate
Sustainability, Promotors: Prof. G.M. Whiteman & Dr. S. Kennedy, EPS-2018-456-ORG,
https://repub.eur.nl/pub/111032

Witte, C.T., Bloody Business: Multinational investment in an increasingly conflict-afflicted
world, Promotors: Prof. H.P.G. Pennings, Prof. H.R. Commandeur & Dr M.J. Burger,
EPS-2018-443-S&E, https://repub.eur.nl/pub/104027

Yuan, Y., The Emergence of Team Creativity: a social network perspective,
Promotors: Prof. D. L. van Knippenberg & Dr D. A. Stam, EPS-2017-434-ORG,
https://repub.eur.nl/pub/100847

Ypsilantis, P., The Design, Planning and Execution of Sustainable Intermodal Port-
hinterland Transport Networks, Promotors: Prof. R.A. Zuidwijk & Prof. L.G. Kroon,
EPS-2016-395-LIS, http://repub.eur.nl/pub/94375

Yuferova, D., Price Discovery, Liquidity Provision, and Low-Latency Trading,
Promotors: Prof. M.A. van Dijk & Dr D.G.J. Bongaerts, EPS-2016-379-F&A,
http://repub.eur.nl/pub/93017

Zhang, Q., Financing and Regulatory Frictions in Mergers and Acquisitions,
Promotors: Prof. P.G.J. Roosenboom & Prof. A. de Jong, EPS-2018-428-F&A,
https://repub.eur.nl/pub/103871

Zuber, F.B., Looking at the Others: Studies on (un)ethical behavior and social

relationships in organizations, Promotor: Prof. S.P. Kaptein, EPS-2016-394-ORG,
http://repub.eur.nl/pub/94388

SIKS Dissertation Series

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent Gaussian Mod-
els

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Operational Semantics
of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of Component-Based
Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis and empirical
evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing the Performance
of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural Heritage
07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human Computer In-

teraction
08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dialogues
09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Airport Ground Han-

dling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence for Information

Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Relatedness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-based approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social Media
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordination with Virtual

Humans On Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior
25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models for Trust Dynamics
26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication - Emotion Regulation

and Involvement-Distance Trade-Offs in Embodied Conversational Agents and Robots
27 Aniel Bhulai (VU), Dynamic website optimization through autonomous management of design

patterns
28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query Context and Docu-

ment Structure
29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the mystery of

emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for Modeling Bounded

Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Mapping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and Game-theoretical

Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training

36 Erik van der Spek (UU), Experiments in serious game design: a cognitive approach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications for Preference

Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Software Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access Control
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution
43 Henk van der Schuur (UU), Process Improvement through Software Operation Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-based Architecture

for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent Support of Persons

with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive Artificial Listening

Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken dialogues: design

aspects influencing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human and Ambient Agent

Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software Repositories
04 Jurriaan Souer (UU), Development of Content Management System-based Web Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in Research Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-based Models of

Human Performance under Demanding Conditions
08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-Aware Service Plat-

forms
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia Environment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocessing, Discovery,

and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in Semantic Web

Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of emotion during

playful interactions
14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adaptive Web-based Sys-

tems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integrated Internal and

Social Dynamics of Cognitive and Affective Processes.
16 Fiemke Both (VU), Helping people by understanding them - Ambient Agents supporting task

execution and depression treatment
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business Process Compli-

ance
18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm for Brain-

Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Retrieval

22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Exploring the Neuro-

physiology of Affect during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken Document Retrieval
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-Organizational IT

Projects: A Methodology and its Application
26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation & Brain-Computer

Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval
30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher Order Cognitive

Skills Improvement, Building Capacity and Infrastructure
32 Wietske Visser (TUD), Qualitative multi-criteria preference representation and reasoning
33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Controllers in Swarm-

and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Modeling Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learning
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transactions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data for Statistical Ma-

chine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Predicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of reinforcement

learning algorithms in strategic interactions
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Systems Engineering
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical framework with a case

study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store Database Technol-

ogy for Efficient and Scalable Stream Processing
03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries for a Data Ware-

house Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for opponent agents in fighter

pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and Applications

10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework for Service Design.
11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization in Overlay Services
12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of integrated IT-based home-

care services to support independent living of elderly
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning Learning
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applications
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-agent deliberation
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart Electricity Grid
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Scheduling
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Information Retrieval
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine translation
22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Support. A new way of

representing and implementing clinical guidelines in a Decision Support System
26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service Provisioning
27 Mohammad Huq (UT), Inference-based Framework Managing Data Provenance
28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry into the Infor-

mation eXperience
29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management: Analysis and Sup-

port
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Networking in a Lifelong

Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams
37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of Enterprise Informa-

tion Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic Systems: A Knowledge

Engineering Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UVA), Exploration and Contextualization through Interaction and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Modeling Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search Behavior and

Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies and interface design

- Three studies on children’s search performance and evaluation
05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic Capability
06 Damian Tamburri (VU), Supporting Networked Software Development
07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior

08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Representation and Com-

putation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change: Models and Applications

in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Functioning in Complex

Socio-Technical Systems: Applications in Safety and Healthcare
16 Krystyna Milian (VU), Supporting trial recruitment and design by automatically interpreting

eligibility criteria
17 Kathrin Dentler (VU), Computing healthcare quality indicators automatically: Secondary Use

of Patient Data and Semantic Interoperability
18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of Dynamic Agent

Organizations
19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and Quantitative Evalua-

tion and Tool Support
20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Informal Text: The

Missing Link
21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments
22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-supported

scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big Data Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy and Probabilistic

Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manufacturing and Product

Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software Development: Analyzing

Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware Design Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: improving usability

through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital
40 Walter Omona (RUN), A Framework for Knowledge Management Using ICT in Higher Edu-

cation
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in News Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance Models
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method Increments

44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-gestuurde poli-
tiezorg in gebiedsgebonden eenheden.

45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Approach
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diversity
47 Shangsong Liang (UVA), Fusion and Diversification in Information Retrieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in Crisis Response
02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in Customs Controls
03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding
06 Farideh Heidari (TUD), Business Process Quality Computation - Computing Non-Functional

Requirements to Improve Business Processes
07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for designing and evalu-

ating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Systems
10 Henry Hermans (OUN), OpenU: design of an integrated system to support lifelong learning
11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A study of computing

bisimulation and joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The Effect of Context

on Scientific Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news conversations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Documentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Properties, Combinations

and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in Asymmetric Mem-

ories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordination
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical Search Algorithms

and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Semantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Performance; The Uganda Finan-

cial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player and Two-Player

Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-Learning
31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Perception and Effects

in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through decision support:

prescribing a better pill to swallow
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge Worker Support
04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an Application in

Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social Networks from

Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Development in West Africa

- An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Algorithms and

Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Automatic Anal-

ysis of Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Systems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An Iterative and

data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and Browsing

Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational Models to Study

the Role of Human Awareness and Control in Behavioural Choices, with Applications in Avi-
ation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on epidemic

prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems - Markets and prices

for flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for Crisis Or-

ganisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis, and Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classification and Recom-

mendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction behavior opti-

mized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computational inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & Interaction Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style Selection

for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing Institutional

Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of Bilingual Aligned

Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From Theory to

Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational Performance

Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks using Argu-

mentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with Au-

tonomous Products and Reconfigurable Manufacturing Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health Insurance Data

using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective on Vari-

ation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #anticipoint-

ment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch through

haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling Player Traits from

Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Information Re-

trieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The Role of

Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A Play

on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty

23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines, with applications

to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots: People’s

Preferences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance: A Moderated

Mediation Model of Social Innovation, and Enterprise Governance of IT"
30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation: A Model

of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-throughput

Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Framework that

Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and compressive

sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human Control

in Relation to Emotions, Desires and Social Support For applications in human-aware support
systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental Processes
and a Smart Environment to Provide Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with applications on
ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in Agile Re-

quirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-Driven

Development of Context-Aware Applications, and Behavior Prediction
04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-Centric

Engineering Tasks
05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Information Seeking Pro-

cess
06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-Technical Sys-

tems
07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior change through
intelligent technology

11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collaborative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and playing scenario-

based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread of Behaviours,

Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous Telepres-

ence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational Messages for

Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they make you

feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The "K" in "semantic web" stands for "knowledge": scaling semantics to the web

2019 01 Rob van Eijk (UL),Comparing and Aligning Process Representations
02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for Assessing Class

Size Uncertainty
03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases: Extracting Event

Data from Real Life Data Sources
04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cultural Heritage

Datasets
07 Soude Fazeli (TUD),
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency in software sys-

tems

