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INTRODUCTION NECK PAIN 
 

In the western world the prevalence of people with chronic neck pain is increasing and accompanied by 

growing costs for the health care systems 1–6. In the Netherlands the prevalence of chronic neck pain 

was estimated to be 14.3% (2009) 7. Despite all efforts, recovery rates were not substantially improved 

over the last decades. Half of the patients with traumatic neck pain do not recover within the first three 

months. This has a significant impact on their lives 8–10. While some individuals recover quickly and fully, 

others experience on-going pain and disability 11. It is not known yet why the process of recovery differs 

so much between patients. 

The onset of neck pain can be either traumatic or non-traumatic 1,3. However, the distinction between 

these two types is rather arbitrary, as we do not know which impact leads to eventual trauma and causes 

damage 12,13. Moreover, the impact of the trauma does not by definition explain the diverse symptoms 

of the patient 8,14 and we do not know whether the characteristics of the course of recovery are different 

between the two types of origin. Also other factors are predisposing factors for the prognosis 11. Some 

patients suffer from severe symptoms after a mild trauma while others resume their normal lives after a 

high impact trauma 15. We also do not know exactly what can be the long-term consequences of a mild 

trauma of the neck 16. 

 

WHIPLASH ASSOCIATED DISORDERS (WAD) 

One onset-based category is summarized as ‘Whiplash Associated Disorders’. The term whiplash 

trauma is defined as ‘an acceleration- deceleration mechanism of energy transfer to the neck that results 

from rear-end or side-impact motor vehicle collisions, but can also result from diving or other mishaps. 

The impact results in bony or soft-tissue injuries (whiplash injury), which in turn may lead to a variety of 

clinical manifestations called whiplash-associated disorders (WAD)’17. The annual incidence of 

Whiplash injury in the Netherlands is 30.000 to 50.000 18. No up-to-date Dutch data on the prevalence 

of specific symptoms after whiplash are available 19. 

 

A typical whiplash trauma results from a rear end collision. To understand the biomechanical impact, 

knowledge of the motion pattern of the spine is essential 13. During a rear end collision three phases are 

distinguished. S-curvature resulting from the head lagging behind the thorax (i.e., retraction), C-

curvature characterized by head-neck extension, and rebound of the head from the head restraint 12. In 

the initial phase, a nonphysiologic curvature characterized by flexion in upper cervical segments and 

extension in lower cervical segments occurs. In the middle phase, the spine is fully extended 12,13,20,21. 

 

  

 

Figure 1: Initial phases of head-neck response to automotive rear impacts. The rear impact initiates with the occupant in a neutral 
upright position. As the thorax is accelerated anteriorly, the head remains stationary during the retraction phase, producing an S-
shaped cervical spine curvature. Eventually, loads from the thorax are transferred up the cervical spine and the head-neck 
complex transitions into extension, with the cervical spine in an overall C-shaped extension curvature. The head eventually 
rebounds forward (not shown), and the cervical spine then transitions into flexion.12 
 

The impact of a collision depends on different factors, such as speed, direction, position of body and 

head and awareness of the crash 13. All of this, besides factors related to the car: bumper stiffness, 

stiffness of the backrest, position of the headrest etc.  

Many injuries occur at the same time and cause a variety of pathogenic mechanisms 5,13,22,23. The 

zygapophysial joints of C2-C3, C5-6 and/or C6-7 are most commonly affected 16. The trauma results in 

stretching and impingement of the articular capsule, including the synovial fold and consequently in 

persistent sensitivity 24. It can lead to a constant source of nociception and biomechanical consequences 

like instability and altered loading patterns and furthermore to nerve tissue impingement 23,25. The clinical 

presentation of such a proprioceptive deficit consists of altered muscle response patterns, decreased 

(re)position sense and decreased range of motion 16,26–34. In patients, the amount of primary and 

secondary motion is decreased 23,31,32,35–37. Also, the quality of motion differs between patients and 

healthy individuals. Feipel et al. were the first to report differences in motion curves of the cervical spine 

in chronic neck pain patients in all primary motion directions (flexion/extension, rotation and lateral 

bending) 38. The movement curves of the patients were less harmonic, with hesitations in movement. 

Later on, irregularities in movement were also found in other parameters, such as peak velocity, ‘Jerk 

index’, helical axis position and muscle recruitment 26,31,32,39–42. With regard to the ‘Jerk index’, range of 

motion and joint position error, Sjölander et al. do report that patients with non-traumatic neck pain have 

the jerkiest movements and patients with WAD have the highest repositioning error and a higher 

variability in range of motion 32.  

During trauma the muscles are exposed to an unphysiological level of stretch (muscle fascicle strain is 

7% in the m.sternocleidomastoid and even 21% in the m.semispinalis capitis) 43. However, lesions of 

the muscles can heal within hours and do not explain persistent pain and changed afferent information5. 
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Ligament afferents have reflex projections to the gamma-motoneurons of the muscles and can possibly 

influence the sensitivity of muscle spindles during slow movements 24. In animal models it is shown that 

stimulation of spinal ligaments initiates spinal muscle activity. Conceivably, the injured capsule sends 

abnormal signals to the spinal muscles to stiffen the cervical spine 5. 

 

Identification of factors associated with poor recovery is accumulating the last years. However, 

understanding recovery pathways for individuals following whiplash injury continues to be a challenge 
11,12. Half of the patients with acute WAD develop chronic complaints, which can be physical and/or 

cognitive in nature 44. The most commonly reported symptoms in WAD patients are neck pain, 

headache, decreased cervical range of motion, dizziness, visual complaints and cognitive dysfunction 
5,19,33,34,45–50.  

 

DIAGNOSTICS OF NECK PAIN PATIENTS 

For many years, the diagnosis of neck pain patients focused on the exclusion of serious pathology by 

radiology and on the assessment of the psychosocial impact on daily life. Recently there has been a 

growing interest for disturbances of the sensorimotor system 22,27,36,51,52. The term sensorimotor in this 

case describes the afferent, efferent and central connections and integrative mechanisms necessary for 

the maintenance of postural control and (cervical) spinal stability (figure 2) 51. 

  

Figure 2: Sensorimotor function 51 

 

  

The clinical consequences of altered cervical proprioception are only partly known 34,51,53. Although 

dizziness, unsteadiness, altered head control and visual disturbances are often mentioned, it is difficult 

to relate them to the variety of pathogenetic mechanisms 5,51,53. Reason for this lack of recognition is 

that conventional testing methods (e.g. amount of pain or range of motion) in most instances cannot 

verify patients’ subjective complaints 51,54. 

Recently, several new tests for sensorimotor function were described 54–58. Assessing sensorimotor 

impairment of the neck should involve: 1. proprioception, 2. postural stability and 3. oculomotor control. 

Whereas the assessment and underlying concepts of proprioception and postural stability are well 

established, knowledge of oculomotor disorders in neck pain patients is insufficient right now. In the 

clinical practice, four different aspects of oculomotor control can be distinguished: 

1. smooth pursuit eye movements 

2. eye stabilization reflexes 

3. gaze stability 

4. head-eye coordination 

The knowledge of the assessment and underlying concepts of these four aspects is limited. It is unknown 

why oculomotor disorders are present in neck pain patients, how the different aspects interact, and 

which complaints are caused by oculomotor disorders. This knowledge has to be improved to develop 

optimal assessment and therapy for neck pain patients. Currently, no specific clinical tests for neck pain 

patients with a structured guideline or normative values exist or are subject of discussion 29,53,59–64.  

In this thesis we will mainly focus on eye stabilization reflexes.  

 

OCULOMOTOR CONTROL: EYE STABILIZATION REFLEXES 

Among physiotherapists knowledge of changes in eye stabilization reflexes, as part of the oculomotor 

system, is still minimal compared to knowledge of anatomical and biomechanical changes in patients8. 

Ocular stabilization reflexes guarantee the stabilization of vision even if the head is moving. Based on 

the sensory input, at least three eye stabilization reflexes can be distinguished: the optokinetic reflex 

(OKR), the vestibulo-ocular reflex (VOR) and the cervico-ocular reflex (COR). These three 

complementary reflexes receive input from different sensory systems and have distinct characteristics 

(for further information see table 1). 

The OKR is mainly evoked by visual motion. The VOR receives input from the vestibulum, responding 

to movements of the head in space. The COR receives input from the mechanoreceptors, mainly the 
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muscle spindles and joint sensors, of the upper cervical spine 65. The COR responds to movements of 

the head relative to the trunk. Afferent information from the neck proprioceptors and the vestibulum is 

forwarded via the vestibular nuclei and further on to the flocculus in the cerebellar cortex. From the 

flocculus the efferent information is projected back to the vestibular nuclei and further to the oculomotor 

nuclei to control the extraocular muscles 66. The central pathways of the VOR and the COR are the 

same, both reflexes converge to the vestibular nuclei 65. 

 

Table 1: Overview of thee eye stabilization reflexes 

If these eye reflexes are not properly coordinated, the visual image is ‘slipping’ on the retina and the 

vision will be blurred during movement of the visual stimulus, the head, or the trunk 67–70. Visual 

information processing will then be hampered and even, in some cases, impossible. It is not unlikely 

that impaired visual perception causes secondary effects such as difficulties concentrating, headache 

and difficulties reading and working on a computer. It is noteworthy that these effects are often reported 

by patients with (chronic) neck pain. 

The levels of these three reflexes are subject to adaptation and ageing 68,71–74. The VOR and OKR 

decrease and the COR increases with age 72,75. In healthy humans, the VOR and the COR gain are 

inversely related: in people with a high VOR, the COR is low and vice versa 72. Such a synergy between 

 

  

reflexes is important because under natural conditions all systems are involved in maintaining eye 

stabilization at the same time. This synergy is indicative for an optimizing adaptive process ensuring 

optimal visual information processing. 

 

Figure 3: Gain of the COR (mean) in healthy controls (red line) and patients with WAD (blue line) 63  

 

However, the eye stabilization reflexes of patients with WAD differ 63,64. The eye position traces of these 

patients show increased compensatory movements of the eyes, i.e. the COR, during passive rotation of 

the neck (figure 3). Moreover, COR levels increase without a compensating decrease of the VOR or 

OKR responses.  

 

OUTLINE OF THIS THESIS 

The diagnostics of neck pain patients remains challenging. The last years, the knowledge of 

sensorimotor functioning of neck pain patients improved. However, we still do not understand why many 

patients report visual complaints and how we can integrate oculomotor disorders into neck pain 

diagnostics. 

The general aim of this thesis is to gain knowledge of oculomotor disorders in (traumatic and non-

traumatic) neck pain patients. This knowledge is highly necessary to improve the understanding of the 

complex entity of disorders in neck pain patients and to integrate visual complaints in the diagnostic 

process and therapy of these patients. 

A more specific purpose is to make the therapeutic community more aware of the importance of central 

nervous system disorders, which become clear by eye reflex disturbances. This in its turn should 
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contribute to a better understanding of the characteristics of the course of traumatic cervical spine 

lesions and hence to a better diagnosis and treatment of this group of patients so often misunderstood. 

The first part of this thesis explores the existing evidence on oculomotor disorders in patients with 

Whiplash Associated Disorders and compares the different test methods (chapter 2). In the second part 

it is investigated which neck pain patients have oculomotor disorders (chapter 3-5). In the third part of 

the study different aspects of oculomotor function are tested and artificially manipulated in a 

heterogeneous group of chronic neck pain patients and healthy controls (chapter 6-9). 

In the last part, a general discussion, including recommendations for further research and summary of 

our results described in this thesis are provided (chapter 10 and 11). 

 

We address the following research questions in this thesis: 

1. What is known about oculomotor problems in patients with Whiplash Associated Disorders? 

Therefore, we present a comprehensive, systematic overview of the literature concerning 

altered eye movements in patients with WAD compared to healthy controls (chapter 2). 

2. Are eye stabilization reflexes in a group of patients with long-lasting neck pain different to eye 

stabilization reflexes of healthy controls? Are the eye stabilization reflexes different in patients 

with comparable history, but different origin of complaints, i.e. traumatic versus non-traumatic?  

The eye stabilization reflexes of chronic neck pain patients who apply for tertiary care 

rehabilitation are compared with healthy controls in a cross-sectional study. Furthermore, the 

patient group is divided into chronic traumatic, non-traumatic neck pain patients and patients 

with WAD. These groups are compared to clarify if the origin of complaints determines the 

alteration of eye reflexes (chapter 3). 

3. Are eye stabilization reflexes altered in patients with nonspecific neck pain? 

In a cross-sectional design the eye stabilization reflexes of a group of neck pain patients with 

less severe and shorter duration of complaints is compared to healthy controls (chapter 4).  

4. What affects eye stabilization reflexes? 

Possible relationships between patients’ eye stabilization reflexes and their cervical motion 

profile (range of motion and joint position sense), personality traits (fear avoidance behavior, 

pain and stress, duration of symptoms), personal factors (age, gender, cultural background) and 

the complaints of the patient (level of disability, maximal duration of daily activities, fatigue and 

cognitive complaints) are explored in a cohort study (chapter 5). 

5. Are eye stabilization reflexes and cervical joint position error as a parameter of cervical 

proprioception associated in patients with nonspecific neck pain? 

 

  

The association between eye stabilization reflexes and the cervical joint position error is studied 

with a cross-sectional design in a group of nonspecific neck pain patients (chapter 6). 

6. What is the effect of neck torsion and target predictability on smooth pursuit eye movements 

and saccadic eye movements in healthy individuals? 

Since in the clinical practice often the Smooth Pursuit Neck Torsion Test is used to assess 

oculomotor problems in neck pain patients, we explore the effect of different degrees of neck 

torsion and predictability on the test outcome in healthy individuals. Both smooth pursuit and 

saccadic eye movements are tested (chapter 7). 

7. Does predictability and neck torsion influence smooth pursuit eye movements in patients with 

neck pain and healthy controls differently? 

Smooth pursuit gains are measured during the applying of predictable and unpredictable 

moving stimuli in a heterogeneous group of patients with chronic neck pain and in healthy 

controls (chapter 8). 

8. What is the effect of altered cervical input on the cervico-ocular reflex and the vestibulo-ocular 

reflex? Do the reflexes change gain in response to a temporary reduction of cervical 

proprioceptive output (hypokinesia), induced by passive immobilization of the neck? And do the 

reflexes change as result of temporary increased proprioceptive output (hyperkinesia)? 

To study possible causes for altered eye stabilization reflexes in neck pain patients the influence 

of neck movement is tested. Temporary intensified versus minimized active neck movement is 

applied and the influence on eye stabilization reflexes is measured in healthy controls in a cross-

over trial (chapter 9).  
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ABSTRACT 

Background Many people with Whiplash Associated Disorders (WAD) report problems with vision, some 

of which may be due to impaired eye movements. Better understanding of such impaired eye 

movements could improve diagnostics and treatment strategies. 

Objectives This systematic review surveys the current evidence on changes in eye movements of 

patients with WAD and explains how the oculomotor system is tested.  

Study Design Systematic literature review according to the PRISMA guidelines. 

Results Thirteen studies out of 833 unique hits were included. Nine studies reported impaired eye 

movements in patients with WAD and in four studies no differences compared to healthy controls were 

found. Different methods of eye movement examination were used in the nine studies: in four studies, 

the smooth pursuit neck torsion test was positive, in two more the velocity and stability of head 

movements during eye-coordination tasks were decreased, and in another three studies the cervico-

ocular reflex was elevated. 

Conclusions The thirteen reviewed studies about eye movement in patients with WAD report different 

results. When comparing the results of the relevant publications, one should realize that there are 

significant differences in test set-up and patient population. In the majority of studies patients show 

altered compensatory eye movements and smooth pursuit movements which may impair the 

coordination of head and eyes.  

Keywords Whiplash Associated Disorders (WAD); problems with vision; oculomotor problems; 

systematic review 

 

  

INTRODUCTION 

People who suffer from chronic ‘Whiplash Associated Disorders’ (WAD) exhibit very distinct complaints1. 

70% of patients complain of pain, dizziness and unsteadiness 2, while 50% report problems with 

vision3.These problems with vision comprise concentration problems during reading, sensitivity to light, 

visual fatigue and eye strain 3. The severity of problems with vision is higher in traumatic neck pain 

patients than in non-traumatic neck pain patients 3. Problems in vision could be due to malfunction of 

the oculomotor system that is meant to keep the eye on a target 4,5. Such oculomotor problems in WAD 

patients could be related to cervical sensorimotor disorders. The knowledge of cervical induced 

oculomotor system disorders is still limited 6. This may be because of the complexity of the cervico-

oculomotor system, that includes not only the central nervous system but also the proprioceptive system 

of the cervical spine (for review see e.g. 7).  

Eye movement control depends on eye position in the head and on the position of the head in space 8. 

Head position is determined by integration of several sub-systems such as the vestibular system, visual 

information and proprioceptive system of the cervical spine 8,9. Disturbed afferent cervical information is 

related to nystagmus, dizziness and deficits in balance 10,11.  

The principal source of cervical afferent information is formed by mechanoreceptors in the upper cervical 

spine. Specifically in the deep upper cervical muscles (i.e. m. obliquus capitis superior and inferior, m. 

longus colli), the density of muscle spindles is extremely high compared to other muscles in the body 
12,13. Muscle spindles are part of the sensorimotor system 14. In patients with WAD sensorimotor control 

is disturbed 14–17. 

In attempts to reveal the complex relation between cervical sensorimotor disorders and visual problems 

several studies regarding oculomotor problems in patients with WAD have been published 3,18–23. In all 

studies one of three distinct eye movement types were used to assess oculomotor problems in patients 

with WAD: eye stabilization reflexes, smooth pursuit eye movements and head-eye coordination. 

 

Eye Stabilization reflexes 

Eye stabilization reflexes preserve stable vision on the retina during head movement. At least three eye 

stabilization reflexes can be distinguished based on their sensory input: the cervico-ocular reflex (COR), 

the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR). These three complementary reflexes 

have distinct characteristics and receive input from the cervical spine, the vestibulum and the eyes, 

respectively. The COR receives input from muscle spindles in the cervical spine, especially from the 

deep upper cervical muscles and joint capsules of C1 to C3 24. The central pathways of the VOR and 

the COR are the same; both reflexes converge at the vestibular nuclei 24. The OKR pathways, however, 

are quite distinct from the COR and VOR pathways 25. 
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deep upper cervical muscles and joint capsules of C1 to C3 24. The central pathways of the VOR and 

the COR are the same; both reflexes converge at the vestibular nuclei 24. The OKR pathways, however, 

are quite distinct from the COR and VOR pathways 25. 
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Smooth pursuit eye movements 

Accurate smooth pursuit is essential to look at a moving object by keeping the retinal image steady 

within the foveal area. Ideally, smooth pursuit velocity matches the velocity of the moving object. 

Performing smooth pursuit eye movements properly requires the integration of visual, vestibular and 

cervical information 26. 

 

Head-eye coordination 

Head-eye coordination is the overall result of all systems in control of the visual system. During these 

tasks, the compensatory eye movements and the motor control of the neck co-operate, requiring 

integration of saccades, the COR, VOR, OKR and active neck movements. 

 

This systematic review provides an overview of existing evidence on oculomotor system changes in 

patients with WAD and how this evidence was perceived. We aim to address the question of what is 

known about changed eye movements in patients with WAD. To our knowledge no reviews of the 

literature concerning oculomotor problems in patients with WAD have previously been published. 

Therefore, we present a comprehensive, systematic overview of the literature concerning changed eye 

movements in patients with WAD compared to healthy controls.  

 

METHODS 
The PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) were 

employed in this systematic literature review 27.  

Information sources and search parameters 

To be as comprehensive as possible, the following databases have been searched until September 

2015: Embase, Medline (OvidSP), Web of Science, Scopus, Cinahl, SportDiscus, Cochrane, Pubmed 

Publisher and Google scholar. Keywords were derived from the research question and transformed to 

associated and free text words. The search strategy in Embase was based on the following combination 

of terms: 'cornea reflex'/exp OR 'eye movement'/exp OR 'eye movement disorder'/de OR 'oculomotor 

system'/de OR 'extraocular muscle'/de OR  (((cornea* OR eye* OR ocular* OR cervicoocul* OR visual*) 

NEAR/6 (reflex* OR movement* OR pursuit* OR motilit* OR track*)) OR oculomotor* OR ((extraocular* 

OR ocular* OR eye*) NEAR/3 muscle*) OR 'smooth pursuit' OR (tracking NEAR/3 (perform* OR 

task*))):ab,ti) AND ('neck pain'/de OR 'neck injury'/de OR 'whiplash injury'/exp OR (((neck OR cervic* 

OR colli OR collum*) NEAR/6 (pain* OR hyperextension* OR ache OR injur* OR disorder* OR trauma* 

OR lesion* OR bruise*)) OR neckache* OR Cervicalgia* OR Cervicodynia* OR whiplash ):ab,ti) 

 

  

In addition, Medline (OvidSP), Web of Science, Scopus, Cinahl, SportDiscus, Cochrane, Pubmed 

Publisher and Google scholar were similarly searched with their own thesaurus used for indexing articles 

and free entries. 

Study selection 

For inclusion in the systematic review the following criteria had to be met: (1) participants in the study 

had to be 18 years or older; (2) patients had to have Whiplash Associated Disorders; (3) one of the 

outcome measures in the study had to be eye movements; (4) control subjects were healthy individuals; 

(5) the article was written in English, Dutch or German; (6) the original article was available in full text.  

Data items and collection 

Information was extracted from the included articles and presented in the evidence table (table 1), 

regarding (1) study, (2) sample size, (3) characteristics of the patients, (4) testing device for eye 

movements, (5) eye movements testing protocol, (6) results and (7) possible bias.  

Risk of bias in individual studies 

The validity and risk of bias of the included articles was checked by using the “Methodology Checklist 

4: Case-control studies” version 2.0 and “Methodology Checklist 3: Cohort studies” version 3.0 provided 

by the Scottish Intercollegiate Guidelines Network (SIGN). The risk of bias table is presented in table 2. 

The appraisal of the articles was based on the description of the internal validity, i.e. the selection of 

subjects, exclusion of selection bias, clear definition of outcomes, blinding of assessors, reliable 

assessment of exposure, identification of potential confounders and provision of confidence intervals. 

For the studies the grading score has been set from “Low quality” (0), “Acceptable” (+) or “High quality” 

(++). In the present review, only articles graded as “Acceptable” or “High quality” were included. This 

criterion was set a priori. Methodological quality of the included articles was assessed blindly and 

independently by authors BI and JV. After both researchers appraised the selected articles, results were 

compared and any differences discussed after screening the article a second time.  

 

RESULTS 

1. Study selection 

A total of 833 studies were identified. As shown in figure 1, 13 studies remained after two screening 

phases. 

In the first phase all articles were screened on relevance of the title and abstract. Nineteen of the 

included studies remained after the first screening. These studies met the inclusion criteria, according 

to the title and abstract. After the first full-text reading, two researchers agreed on seventeen of the 

nineteen studies. Six of these seventeen studies were excluded because they did not fulfil the inclusion 

criteria, regarding the participants 28,29 or the outcome parameter 3,18,30,31.  
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Smooth pursuit eye movements 

Accurate smooth pursuit is essential to look at a moving object by keeping the retinal image steady 

within the foveal area. Ideally, smooth pursuit velocity matches the velocity of the moving object. 

Performing smooth pursuit eye movements properly requires the integration of visual, vestibular and 

cervical information 26. 

 

Head-eye coordination 

Head-eye coordination is the overall result of all systems in control of the visual system. During these 

tasks, the compensatory eye movements and the motor control of the neck co-operate, requiring 

integration of saccades, the COR, VOR, OKR and active neck movements. 

 

This systematic review provides an overview of existing evidence on oculomotor system changes in 

patients with WAD and how this evidence was perceived. We aim to address the question of what is 

known about changed eye movements in patients with WAD. To our knowledge no reviews of the 

literature concerning oculomotor problems in patients with WAD have previously been published. 

Therefore, we present a comprehensive, systematic overview of the literature concerning changed eye 

movements in patients with WAD compared to healthy controls.  

 

METHODS 
The PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) were 

employed in this systematic literature review 27.  

Information sources and search parameters 

To be as comprehensive as possible, the following databases have been searched until September 

2015: Embase, Medline (OvidSP), Web of Science, Scopus, Cinahl, SportDiscus, Cochrane, Pubmed 

Publisher and Google scholar. Keywords were derived from the research question and transformed to 

associated and free text words. The search strategy in Embase was based on the following combination 

of terms: 'cornea reflex'/exp OR 'eye movement'/exp OR 'eye movement disorder'/de OR 'oculomotor 

system'/de OR 'extraocular muscle'/de OR  (((cornea* OR eye* OR ocular* OR cervicoocul* OR visual*) 

NEAR/6 (reflex* OR movement* OR pursuit* OR motilit* OR track*)) OR oculomotor* OR ((extraocular* 

OR ocular* OR eye*) NEAR/3 muscle*) OR 'smooth pursuit' OR (tracking NEAR/3 (perform* OR 

task*))):ab,ti) AND ('neck pain'/de OR 'neck injury'/de OR 'whiplash injury'/exp OR (((neck OR cervic* 

OR colli OR collum*) NEAR/6 (pain* OR hyperextension* OR ache OR injur* OR disorder* OR trauma* 

OR lesion* OR bruise*)) OR neckache* OR Cervicalgia* OR Cervicodynia* OR whiplash ):ab,ti) 

 

  

In addition, Medline (OvidSP), Web of Science, Scopus, Cinahl, SportDiscus, Cochrane, Pubmed 

Publisher and Google scholar were similarly searched with their own thesaurus used for indexing articles 

and free entries. 

Study selection 

For inclusion in the systematic review the following criteria had to be met: (1) participants in the study 

had to be 18 years or older; (2) patients had to have Whiplash Associated Disorders; (3) one of the 

outcome measures in the study had to be eye movements; (4) control subjects were healthy individuals; 

(5) the article was written in English, Dutch or German; (6) the original article was available in full text.  

Data items and collection 

Information was extracted from the included articles and presented in the evidence table (table 1), 

regarding (1) study, (2) sample size, (3) characteristics of the patients, (4) testing device for eye 

movements, (5) eye movements testing protocol, (6) results and (7) possible bias.  

Risk of bias in individual studies 

The validity and risk of bias of the included articles was checked by using the “Methodology Checklist 

4: Case-control studies” version 2.0 and “Methodology Checklist 3: Cohort studies” version 3.0 provided 

by the Scottish Intercollegiate Guidelines Network (SIGN). The risk of bias table is presented in table 2. 

The appraisal of the articles was based on the description of the internal validity, i.e. the selection of 

subjects, exclusion of selection bias, clear definition of outcomes, blinding of assessors, reliable 

assessment of exposure, identification of potential confounders and provision of confidence intervals. 

For the studies the grading score has been set from “Low quality” (0), “Acceptable” (+) or “High quality” 

(++). In the present review, only articles graded as “Acceptable” or “High quality” were included. This 

criterion was set a priori. Methodological quality of the included articles was assessed blindly and 

independently by authors BI and JV. After both researchers appraised the selected articles, results were 

compared and any differences discussed after screening the article a second time.  

 

RESULTS 

1. Study selection 

A total of 833 studies were identified. As shown in figure 1, 13 studies remained after two screening 

phases. 

In the first phase all articles were screened on relevance of the title and abstract. Nineteen of the 

included studies remained after the first screening. These studies met the inclusion criteria, according 

to the title and abstract. After the first full-text reading, two researchers agreed on seventeen of the 

nineteen studies. Six of these seventeen studies were excluded because they did not fulfil the inclusion 

criteria, regarding the participants 28,29 or the outcome parameter 3,18,30,31.  
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In two studies, the reviewers disagreed on the validity of the measurement protocol 32,33. After a second 

reading and comparison of the differences, the researchers reached consensus. Both studies were 

included, resulting in 13 included studies.  

Figure 1: Flow Diagram of study selection 

The methodological quality of all of the included studies was “acceptable” (+) according to the SIGN 

criteria checklist. This implies some weaknesses in the study, with an associated risk of bias. Most 

studies used rather small and heterogeneous populations (e.g. the time after accident of the patients 

varied from one months to seven years 32,34). There was also limited information concerning raw data, 

possible confounders and patient characteristics (e.g. pain, anxiety and disability). 

 

 

 

  

 

Table 2: risk of bias table presenting individual criteria in SIGN checklists for the 14 included studies 
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Dispenza et 
al., 2011 

[33] 

+ ? - Cases: 89% 
Controls: 100% 

- - - ? + ? + - - - 

Grip et al., 
2009  

[39] 

+ + + Cases: 100% 
Controls: 90% 

+ + + d.n.a + ? + ++ + + 

Heikkila et al., 
1998 

[20] 

+ ? + Cases: 100% 
Controls: 100%  

- + + d.n.a. - 
 

+ + + + + 

Janssen et al., 
2015 

[40] 

+ + - Cases: 99% 
Controls: 100% 

- + + d.n.a. + ? + + + + 

Kelders et al., 
2005 

[23] 

+ ? ? Cases: 100% 
Controls: 100% 

- - ? d.n.a. + + + + + + 

Kongsted et 
al., 2007 

[36] 

+ + + Cases: 70% 
Controls: 90% 

+ + + + + + + ++ + + 

Montfoort et 
al., 2006 

[21] 

+ + - Cases: 100% 
Controls: 100% 

- ? ? ? + ? - + - - 

Montfoort et 
al., 2008 

[22] 

+ ? ? Cases: 95% 
Controls: 100% 

+ + + ? + ? + + + + 

Prushansky et 
al., 2004 

[35] 

+ + + Cases : 100% 
Controls : 100% 

- + + d.n.a. + - + + + + 

Tjell et al., 
1998 

[34] 

- + - Cases: 75% 
Controls: 100% 

+ ? + d.n.a. + + + + + - 

Treleaven et 
al., 2005 

[37] 

+ ? ? Cases: 100% 
Controls: 100% 

- + + + + + + + - - 

Treleaven et 
al., 2006 

[16] 

+ + + Cases: 100% 
Controls: 100% 

+ + + + + ? - + + + 

Treleaven et 
al., 2008 

[41] 

+ + - Cases: 100% 
Controls: 100% 

+ + + ? ? + - + + + 

Treleaven et 
al., 2011 

[19] 

+ ? + Cases: 100% 
Controls: 100% 

+ + + ? + + + ++ + + 

+= yes; -= no; ++= high quality; += acceptable; - = unacceptable; d.n.a.= does not apply 
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In two studies, the reviewers disagreed on the validity of the measurement protocol 32,33. After a second 

reading and comparison of the differences, the researchers reached consensus. Both studies were 

included, resulting in 13 included studies.  

Figure 1: Flow Diagram of study selection 

The methodological quality of all of the included studies was “acceptable” (+) according to the SIGN 

criteria checklist. This implies some weaknesses in the study, with an associated risk of bias. Most 

studies used rather small and heterogeneous populations (e.g. the time after accident of the patients 

varied from one months to seven years 32,34). There was also limited information concerning raw data, 

possible confounders and patient characteristics (e.g. pain, anxiety and disability). 

 

 

 

  

 

Table 2: risk of bias table presenting individual criteria in SIGN checklists for the 14 included studies 
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2. Study characteristics 

The characteristics of the data that were extracted from the included studies (study, sample size, 

characteristics of the patients, eye movement testing instrument, testing protocol, results, and possible 

bias) are presented in table 1. 

reference sample inclusion 
criteria 

testing 
instrument 

testing 
protocol 

results possible 
bias 

Dispenza et al., 
2011 
32 

33 WAD 
(36.5y, 
21-53) 
23 CON 
(30.4y, 
19-49) 

WAD (without 
loss of 
consciousness) 
1-12 months 
after accident 

video-
oculography 

SPNT neutral: WAD 
0.86, CON 0.87 
right rotation: 
WAD 0.87 
left rotation: WAD 
0.86 
SPNT-diff: WAD 0 

type of WAD 
not described, 
selection of 
controls not 
described, 
no SP in 
rotated position 
tested in 
controls 

Grip et al., 2009  
35 

6 WAD 
(28y) 
20 CON 
(32y) 
 

WAD 
> 3 months 
after accident 

electro-
oculography 

gaze 
stability; 
sequential 
eye and 
head 
movement 
(SEHM) 

gaze stability: 
WAD: head angle 
reduced (no exact 
data) 
SHEM: WAD: 
mean angular 
head velocity 
reduced (no exact 
data) 

small 
population 
(n=7) 
no individual 
data, results 
presented in 
boxplots 

Heikkila et al., 
1998 
20 

27 WAD 
(38.8y, 
18-66) 
25 CON 
(34y, 25-
40y) 

acute WAD II, 
III (without loss 
of 
consciousness) 

electro-
oculography 

SP 
 

right rotation: 
WAD 2x abnormal 
left rotation: WAD 
5x abnormal 

only SP in 
neutral position 
tested, no 
torsion of the 
neck 
only quantity of 
abnormal 
scores 
provided, no 
individual data 

Janssen et al., 
2015 
36 

11 WAD, 
44 non-
WAD 
(44.2y, 
25-67) 
20 CON 
(28.4, 
20-51) 

WAD 
> 6 months 
after accident 

video- 
oculography 

SPNT SPNTdiff 
predictably: WAD 
0.08, non-WAD 
0.05, CON 0.02 
SPNT 
unpredictably: 
WAD 0.01, non-
WAD 0.01, CON 0 

no specification 
of grade of 
WAD 
 

Kelders et al., 
2005 
23 

8 WAD 
(32y, 25-
42) 
8 CON 
(35y, 30-
45) 

WAD I,II,III 
5-36 months 
after accident 

video- 
oculography 

cervico-
ocular reflex 

COR higher in 
WAD than in CON 
* 

little data 
provided, only 
graphs 

Kongsted et al., 
2007 
37 

34 WAD 
(39.4y, 
20-51) 
60 CON 
(40y, 18-
63)) 

WAD I,II,III 
> 6 months 
after accident 

electro-
oculography 

SPNT neutral:  WAD 0.9, 
CON 0.96 
(median) 
right rotation: 
WAD 0.89, CON 
0.94 
left rotation: WAD 
0.93, CON 0.95 
SPNTdiff: WAD 0, 
CON 0 

patient 
population 
heterogeneous 
regarding 
symptoms, 
disability and 
duration of 
symptoms 

Montfoort et al., 
2006 
21 

13 WAD 
(40y, 26-
60) 
18 CON 
(36y, 23-
64) 
 

WAD I, II video-
oculography 

cervico-
ocular 
reflex; 
vestibulo-
ocular 
reflex; 
optokinetic 
reflex 

COR: P=2.9 X 10-

6* 

VOR: P=0.27 
OKR: P= 0.25 

only 
comparison 
between 
groups, no 
individual data 

Montfoort et al., 
2008 
22 

COR: 10 
WAD 
(42y, 22-
52), 10 

WAD I,II video-
oculography 

cervico-
ocular 
reflex; 

COR adaptation: 
WAD 
∆G=0.13±0.24, 

no comparison 
between 
characteristics 
of patients and 

 

  

CON 
(31y, 18-
54) 
VOR: 10 
WAD 
(39y, 19-
56), 
COR 
30y, 24-
39) 

vestibulo-
ocular 
reflex; 
optokinetic 
reflex 

CON ∆G=-
0.19±0.06* 
VOR adaptation: 
WAD 
∆G=0.037±0.062, 
CON 
∆G=-0.2±0.072* 

controls, little 
data provided 

Prushansky et al., 
2004 
34 

26 WAD 
(40.3y, 
25-55) 
23 CON 
(34.2y, 
18-54) 

WAD II, III 
6-84 months 
after accident 

electro-
oculography 

SPNT neutral: WAD 
0.79*, CON 0.86 
right rotation: 
WAD 0.74, CON 
0.82 
left rotation: WAD 
0.75, 0.80 
SPNTdiff: 
WAD 0.026, CON 
0.035 

remarkable 
variation in 
duration of 
neck pain 

Tjell et al., 1998 
33 

50 WAD 
D (39y, 
18-60) 
25 WAD 
ND (34y, 
21-63) 

≥ WAD II 
> 6 months 
after accident 
 

electro-
oculography 

SPNT SPNTdiff: WAD D 
0.14*; WAD ND 
0.10*; CON 0.02 
 

vague 
exclusion 
criteria for 
controls: 
tension in neck 
  

Treleaven et al., 
2005 
38 

100 
WAD: 
50 WAD 
D (35y, 
19-46) 
50 WAD 
ND (35y, 
18-46) 
50 CON 
(30y, 19-
45) 

WAD II  
> 3 months 
after accident 
 

electro-
oculography 

SPNT neutral: WAD ND 
0.82, CON 0.88 * 
right rotation: 
WAD ND 0.78, 
CON 0.88* 
left rotation: WAD 
ND 0.74, CON 
0.87* 
SPNTdiff: WAD D 
0.11*; WAD ND 
0.07, CON 0.01* 

3 groups, but 
just two groups 
compared with 
each other 
(WAD D with 
WAD ND and 
WAD ND with 
controls) 

Treleaven et al., 
2006 
39 

50 WAD 
D (35.5y, 
19-46) 
50 WAD 
ND (35y, 
18-46) 
40 CON 
(29.6y, 
19-45) 

WAD II 
> 3 months 
after accident 
 

electro-
oculography 

SPNT 
 

WAD D: 45 
abnormal SPNT 
scores 
WAD ND: 39  
abnormal SPNT 
scores 

only quantity of 
abnormal 
scores 
provided, no 
individual data 

Treleaven et al., 
2011 
19 

20 WAD 
(37y) 
20 CON 
(33y) 

WAD 
symptoms  > 3 
months, < 5 
year  

electro-
oculography 

gaze 
stability; 
sequential 
eye and 
head 
movement 
(SEHM) 

gaze stability: 
WAD 27.7*/ 30.5*, 
CON 44.5/43.5 
(degrees of head 
ROM right and 
left) 
WAD 16.9/20.2, 
CON 
33.0/37.4*(head 
rotation velocity in 
degrees/sec) 
SHEM: WAD 
23.6/30, CON 
36.9*, WAD 30, 
CON 36.9/36.9*  
(head rotation 
velocity in 
degrees/sec) 
 

remarkable 
variation in 
duration of 
neck pain 

WAD = Whiplash associated disorder; WAD grade I = neck complaints of pain, stiffness or tenderness only but no physical 
signs are noted by the examining physician; WAD grade II = neck complaints and musculoskeletal signs as decreased range 
of motion and point tenderness in the neck; WAD grade III includes additional signs (decreased or absent deep tendon 
reflexes, weakness, and sensory deficits); WAD D= patients with WAD and dizziness; WAD ND= patients with WAD without 
dizziness; CON: healthy controls; y=mean years of age; SPNT= Smooth Pursuit Neck Torsion Test; SP= smooth pursuit; 
SPNTdiff= difference in SP gain between neutral and rotated position; COR= cervico-ocular reflex; VOR= vestibulo-ocular 
reflex; ROM= cervical range of motion; SEHM=  sequential eye and head movement; *= indicates statistically significant 
differences between groups 

Table 1: Evidence table of the included studies 
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2. Study characteristics 

The characteristics of the data that were extracted from the included studies (study, sample size, 

characteristics of the patients, eye movement testing instrument, testing protocol, results, and possible 

bias) are presented in table 1. 

reference sample inclusion 
criteria 

testing 
instrument 

testing 
protocol 

results possible 
bias 

Dispenza et al., 
2011 
32 

33 WAD 
(36.5y, 
21-53) 
23 CON 
(30.4y, 
19-49) 

WAD (without 
loss of 
consciousness) 
1-12 months 
after accident 

video-
oculography 

SPNT neutral: WAD 
0.86, CON 0.87 
right rotation: 
WAD 0.87 
left rotation: WAD 
0.86 
SPNT-diff: WAD 0 

type of WAD 
not described, 
selection of 
controls not 
described, 
no SP in 
rotated position 
tested in 
controls 

Grip et al., 2009  
35 

6 WAD 
(28y) 
20 CON 
(32y) 
 

WAD 
> 3 months 
after accident 

electro-
oculography 

gaze 
stability; 
sequential 
eye and 
head 
movement 
(SEHM) 

gaze stability: 
WAD: head angle 
reduced (no exact 
data) 
SHEM: WAD: 
mean angular 
head velocity 
reduced (no exact 
data) 

small 
population 
(n=7) 
no individual 
data, results 
presented in 
boxplots 

Heikkila et al., 
1998 
20 

27 WAD 
(38.8y, 
18-66) 
25 CON 
(34y, 25-
40y) 

acute WAD II, 
III (without loss 
of 
consciousness) 

electro-
oculography 

SP 
 

right rotation: 
WAD 2x abnormal 
left rotation: WAD 
5x abnormal 

only SP in 
neutral position 
tested, no 
torsion of the 
neck 
only quantity of 
abnormal 
scores 
provided, no 
individual data 

Janssen et al., 
2015 
36 

11 WAD, 
44 non-
WAD 
(44.2y, 
25-67) 
20 CON 
(28.4, 
20-51) 

WAD 
> 6 months 
after accident 

video- 
oculography 

SPNT SPNTdiff 
predictably: WAD 
0.08, non-WAD 
0.05, CON 0.02 
SPNT 
unpredictably: 
WAD 0.01, non-
WAD 0.01, CON 0 

no specification 
of grade of 
WAD 
 

Kelders et al., 
2005 
23 

8 WAD 
(32y, 25-
42) 
8 CON 
(35y, 30-
45) 

WAD I,II,III 
5-36 months 
after accident 

video- 
oculography 

cervico-
ocular reflex 

COR higher in 
WAD than in CON 
* 

little data 
provided, only 
graphs 

Kongsted et al., 
2007 
37 

34 WAD 
(39.4y, 
20-51) 
60 CON 
(40y, 18-
63)) 

WAD I,II,III 
> 6 months 
after accident 

electro-
oculography 

SPNT neutral:  WAD 0.9, 
CON 0.96 
(median) 
right rotation: 
WAD 0.89, CON 
0.94 
left rotation: WAD 
0.93, CON 0.95 
SPNTdiff: WAD 0, 
CON 0 

patient 
population 
heterogeneous 
regarding 
symptoms, 
disability and 
duration of 
symptoms 

Montfoort et al., 
2006 
21 

13 WAD 
(40y, 26-
60) 
18 CON 
(36y, 23-
64) 
 

WAD I, II video-
oculography 

cervico-
ocular 
reflex; 
vestibulo-
ocular 
reflex; 
optokinetic 
reflex 

COR: P=2.9 X 10-

6* 

VOR: P=0.27 
OKR: P= 0.25 

only 
comparison 
between 
groups, no 
individual data 

Montfoort et al., 
2008 
22 

COR: 10 
WAD 
(42y, 22-
52), 10 

WAD I,II video-
oculography 

cervico-
ocular 
reflex; 

COR adaptation: 
WAD 
∆G=0.13±0.24, 

no comparison 
between 
characteristics 
of patients and 

 

  

CON 
(31y, 18-
54) 
VOR: 10 
WAD 
(39y, 19-
56), 
COR 
30y, 24-
39) 

vestibulo-
ocular 
reflex; 
optokinetic 
reflex 

CON ∆G=-
0.19±0.06* 
VOR adaptation: 
WAD 
∆G=0.037±0.062, 
CON 
∆G=-0.2±0.072* 

controls, little 
data provided 

Prushansky et al., 
2004 
34 

26 WAD 
(40.3y, 
25-55) 
23 CON 
(34.2y, 
18-54) 

WAD II, III 
6-84 months 
after accident 

electro-
oculography 

SPNT neutral: WAD 
0.79*, CON 0.86 
right rotation: 
WAD 0.74, CON 
0.82 
left rotation: WAD 
0.75, 0.80 
SPNTdiff: 
WAD 0.026, CON 
0.035 

remarkable 
variation in 
duration of 
neck pain 

Tjell et al., 1998 
33 

50 WAD 
D (39y, 
18-60) 
25 WAD 
ND (34y, 
21-63) 

≥ WAD II 
> 6 months 
after accident 
 

electro-
oculography 

SPNT SPNTdiff: WAD D 
0.14*; WAD ND 
0.10*; CON 0.02 
 

vague 
exclusion 
criteria for 
controls: 
tension in neck 
  

Treleaven et al., 
2005 
38 

100 
WAD: 
50 WAD 
D (35y, 
19-46) 
50 WAD 
ND (35y, 
18-46) 
50 CON 
(30y, 19-
45) 

WAD II  
> 3 months 
after accident 
 

electro-
oculography 

SPNT neutral: WAD ND 
0.82, CON 0.88 * 
right rotation: 
WAD ND 0.78, 
CON 0.88* 
left rotation: WAD 
ND 0.74, CON 
0.87* 
SPNTdiff: WAD D 
0.11*; WAD ND 
0.07, CON 0.01* 

3 groups, but 
just two groups 
compared with 
each other 
(WAD D with 
WAD ND and 
WAD ND with 
controls) 

Treleaven et al., 
2006 
39 

50 WAD 
D (35.5y, 
19-46) 
50 WAD 
ND (35y, 
18-46) 
40 CON 
(29.6y, 
19-45) 

WAD II 
> 3 months 
after accident 
 

electro-
oculography 

SPNT 
 

WAD D: 45 
abnormal SPNT 
scores 
WAD ND: 39  
abnormal SPNT 
scores 

only quantity of 
abnormal 
scores 
provided, no 
individual data 

Treleaven et al., 
2011 
19 

20 WAD 
(37y) 
20 CON 
(33y) 

WAD 
symptoms  > 3 
months, < 5 
year  

electro-
oculography 

gaze 
stability; 
sequential 
eye and 
head 
movement 
(SEHM) 

gaze stability: 
WAD 27.7*/ 30.5*, 
CON 44.5/43.5 
(degrees of head 
ROM right and 
left) 
WAD 16.9/20.2, 
CON 
33.0/37.4*(head 
rotation velocity in 
degrees/sec) 
SHEM: WAD 
23.6/30, CON 
36.9*, WAD 30, 
CON 36.9/36.9*  
(head rotation 
velocity in 
degrees/sec) 
 

remarkable 
variation in 
duration of 
neck pain 

WAD = Whiplash associated disorder; WAD grade I = neck complaints of pain, stiffness or tenderness only but no physical 
signs are noted by the examining physician; WAD grade II = neck complaints and musculoskeletal signs as decreased range 
of motion and point tenderness in the neck; WAD grade III includes additional signs (decreased or absent deep tendon 
reflexes, weakness, and sensory deficits); WAD D= patients with WAD and dizziness; WAD ND= patients with WAD without 
dizziness; CON: healthy controls; y=mean years of age; SPNT= Smooth Pursuit Neck Torsion Test; SP= smooth pursuit; 
SPNTdiff= difference in SP gain between neutral and rotated position; COR= cervico-ocular reflex; VOR= vestibulo-ocular 
reflex; ROM= cervical range of motion; SEHM=  sequential eye and head movement; *= indicates statistically significant 
differences between groups 

Table 1: Evidence table of the included studies 
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Twelve studies were case control studies and one was a cohort study 20. Nine studies used the 

classification of the Quebec Task Force on Whiplash Associated Disorders (WAD) 20–23,33,34,37–39. In 

these studies patients were included with WAD grade 1 (complaints of neck pain, stiffness or tenderness 

only without physical signs that are noted by an examining physician), grade 2 (complaints of neck pain 

and musculoskeletal signs, such as a decreased range of motion and point tenderness in the neck) or 

grade 3 (includes additional signs such as decreased or absent deep tendon reflexes, weakness, and 

sensory deficits) 40. 

All thirteen studies included a healthy control group. 

3. Outcome measures 

The principal outcome measure of the current review was eye movements, being the main subject of 

investigation in all included studies. However, different tests for eye movements were used among the 

included studies. The different tests were: (1) tests for head-eye coordination, integrating compensatory 

eye movements and neck movement tests; (2) smooth pursuit tests and (3) compensatory eye 

movement tests, including the VOR and the COR. Also for these three different tests, two different eye 

movement measurement techniques were used: electro-oculography and video-oculography. 

Head-eye coordination 

In two studies several parameters concerning the head-eye coordination were tested using two different 

tests 19,35. One of the tests was gaze stability during active head rotation. The other test was the 

sequential head and eye movement (SHEM) test. During the gaze stability test, the subject has to keep 

the eyes focused on a point straight ahead while rotating the neck actively. During the SHEM test, the 

subject has to move the eyes first to one side, followed by an active head motion. Subsequently the 

subject first moves the eyes and then the head back to the starting position. During these tasks the 

compensatory eye movements and the motor control of the neck co-operate, requiring integration of 

saccades, the COR, VOR, OKR and active neck movements. In both tasks the patients executed the 

head movements slower compared to controls. During the gaze stability test, head range of motion was 

smaller in patients. 

Smooth pursuit eye movements  

Smooth pursuit eye movements were tested in eight studies 20,32–34,36–39. During the smooth pursuit neck 

torsion (SPNT) test, the influence of a rotated cervical spine on the smooth pursuit eye movement is 

tested 33,41. 

In one study the smooth pursuit eye movements were tested only in neutral position and not in a neck 

rotated position 20. In this study, two of the 26 tested patients were classified with a dysfunctional gain 

(i.e. the ratio between the movement of the eyes and the movement of the stimulus). In seven studies 

the more complex SPNT test was used 32–34,36–39. In three of those seven studies the primary outcome 

parameter, the ‘SPNTdiff’ (the difference between the gain in neutral and in rotated position) was 

significantly higher in patients compared to healthy controls (WAD 0.14/0.11/0.08, controls 

 

  

0.02/0.01/0.02) 33,36,38. Three other studies did not find any differences between cases and controls 
32,34,37. One study provided only the number of patients  with an altered SPNTdiff compared to controls, 

but did not provided the median values of the SP gain 39. One other study also provided only the number 

of individuals with an altered SP in neutral position 20. In one study the SPNT difference of patients with 

WAD was larger for predictably moving targets compared to unpredictably moving targets. This 

difference was not seen in healthy controls and patients with non-traumatic neck pain 36. 

Eye stabilization reflexes 

In three studies the COR and the VOR were measured 21–23. These eye stabilization reflexes were tested 

in a custom setting with an infrared eye tracking device in a darkened room (further description of the 

measurement method in 42). All studies reported a significantly higher COR gain in patients with WAD. 

One study described that both the COR and VOR gain could adapt in healthy controls, but not in patients 
22. 

 

In summary, as shown in table 1, nine of the thirteen studies reported differences between patients with 

WAD and healthy controls 16,19,21–23,33,35,36,38. Velocity of eye movements is decreased and eye 

movements are less coordinated in patients than in healthy controls. In four of the eight studies which 

used the SPNT test, the smooth pursuit movements in the neck-rotated position were slower in the 

patient group compared to the healthy controls 33,36,38,39. In all five studies which used the tests for eye 

stabilization reflexes and the head-eye coordination tests, the WAD group performed worse than the 

healthy control group 19,21–23,35. In the discussion section we will discuss extensively the variety of 

outcome parameters in the tests for oculomotor deficits. Generally, patients with WAD had an elevated 

COR and had more problems in stabilizing the head and gaze during stability tasks and sequential 

movement tasks. 

Four studies did not find differences between patients and healthy controls 20,32,34,37. The results were 

explained with a different analysis of the data 37, differences in symptom severity of the patient group 

and attentional deficits of the patients 32,34. Heikkilä et al. found differences in patients after a whole 

battery of oculomotor tests, but no differences in the SPNT test alone 20. 

In general, most studied studies lack details in the description of patient characteristics 16,20–23,32–36. 

Heterogeneity in patient population may be an important factor in confounding the results of eye 

movement tests.  

 

DISCUSSION 

The current review provides an overview of present knowledge on altered eye movements in WAD 

patients. The majority of studies in this review confirm the possibility of eye movement impairments in 

WAD patients. This underlines the necessity to include an examination of eye movement impairments 
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Twelve studies were case control studies and one was a cohort study 20. Nine studies used the 

classification of the Quebec Task Force on Whiplash Associated Disorders (WAD) 20–23,33,34,37–39. In 

these studies patients were included with WAD grade 1 (complaints of neck pain, stiffness or tenderness 

only without physical signs that are noted by an examining physician), grade 2 (complaints of neck pain 

and musculoskeletal signs, such as a decreased range of motion and point tenderness in the neck) or 

grade 3 (includes additional signs such as decreased or absent deep tendon reflexes, weakness, and 

sensory deficits) 40. 

All thirteen studies included a healthy control group. 

3. Outcome measures 

The principal outcome measure of the current review was eye movements, being the main subject of 

investigation in all included studies. However, different tests for eye movements were used among the 

included studies. The different tests were: (1) tests for head-eye coordination, integrating compensatory 

eye movements and neck movement tests; (2) smooth pursuit tests and (3) compensatory eye 

movement tests, including the VOR and the COR. Also for these three different tests, two different eye 

movement measurement techniques were used: electro-oculography and video-oculography. 

Head-eye coordination 

In two studies several parameters concerning the head-eye coordination were tested using two different 

tests 19,35. One of the tests was gaze stability during active head rotation. The other test was the 

sequential head and eye movement (SHEM) test. During the gaze stability test, the subject has to keep 

the eyes focused on a point straight ahead while rotating the neck actively. During the SHEM test, the 

subject has to move the eyes first to one side, followed by an active head motion. Subsequently the 

subject first moves the eyes and then the head back to the starting position. During these tasks the 

compensatory eye movements and the motor control of the neck co-operate, requiring integration of 

saccades, the COR, VOR, OKR and active neck movements. In both tasks the patients executed the 

head movements slower compared to controls. During the gaze stability test, head range of motion was 

smaller in patients. 

Smooth pursuit eye movements  

Smooth pursuit eye movements were tested in eight studies 20,32–34,36–39. During the smooth pursuit neck 

torsion (SPNT) test, the influence of a rotated cervical spine on the smooth pursuit eye movement is 

tested 33,41. 

In one study the smooth pursuit eye movements were tested only in neutral position and not in a neck 

rotated position 20. In this study, two of the 26 tested patients were classified with a dysfunctional gain 

(i.e. the ratio between the movement of the eyes and the movement of the stimulus). In seven studies 

the more complex SPNT test was used 32–34,36–39. In three of those seven studies the primary outcome 

parameter, the ‘SPNTdiff’ (the difference between the gain in neutral and in rotated position) was 

significantly higher in patients compared to healthy controls (WAD 0.14/0.11/0.08, controls 

 

  

0.02/0.01/0.02) 33,36,38. Three other studies did not find any differences between cases and controls 
32,34,37. One study provided only the number of patients  with an altered SPNTdiff compared to controls, 

but did not provided the median values of the SP gain 39. One other study also provided only the number 

of individuals with an altered SP in neutral position 20. In one study the SPNT difference of patients with 

WAD was larger for predictably moving targets compared to unpredictably moving targets. This 

difference was not seen in healthy controls and patients with non-traumatic neck pain 36. 

Eye stabilization reflexes 

In three studies the COR and the VOR were measured 21–23. These eye stabilization reflexes were tested 

in a custom setting with an infrared eye tracking device in a darkened room (further description of the 

measurement method in 42). All studies reported a significantly higher COR gain in patients with WAD. 

One study described that both the COR and VOR gain could adapt in healthy controls, but not in patients 
22. 

 

In summary, as shown in table 1, nine of the thirteen studies reported differences between patients with 

WAD and healthy controls 16,19,21–23,33,35,36,38. Velocity of eye movements is decreased and eye 

movements are less coordinated in patients than in healthy controls. In four of the eight studies which 

used the SPNT test, the smooth pursuit movements in the neck-rotated position were slower in the 

patient group compared to the healthy controls 33,36,38,39. In all five studies which used the tests for eye 

stabilization reflexes and the head-eye coordination tests, the WAD group performed worse than the 

healthy control group 19,21–23,35. In the discussion section we will discuss extensively the variety of 

outcome parameters in the tests for oculomotor deficits. Generally, patients with WAD had an elevated 

COR and had more problems in stabilizing the head and gaze during stability tasks and sequential 

movement tasks. 

Four studies did not find differences between patients and healthy controls 20,32,34,37. The results were 

explained with a different analysis of the data 37, differences in symptom severity of the patient group 

and attentional deficits of the patients 32,34. Heikkilä et al. found differences in patients after a whole 

battery of oculomotor tests, but no differences in the SPNT test alone 20. 

In general, most studied studies lack details in the description of patient characteristics 16,20–23,32–36. 

Heterogeneity in patient population may be an important factor in confounding the results of eye 

movement tests.  

 

DISCUSSION 

The current review provides an overview of present knowledge on altered eye movements in WAD 

patients. The majority of studies in this review confirm the possibility of eye movement impairments in 

WAD patients. This underlines the necessity to include an examination of eye movement impairments 
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in the diagnostic process of patients with WAD. There are various methods that address different 

aspects of eye movement. Regrettably a general consensus on eye movement examination does not 

yet exist. The thirteen studies included in this review are evaluated by the specific aspect of oculomotor 

problems that are tested, the clinical applicability and test validity. 

Head-eye coordination 

Two studies used a series of tests to analyze the head-eye coordination 19,35. The purpose of this method 

is to evaluate over-all head-eye coordination disturbances. This method does not allow discrimination 

as to which part of the system is causing the actual disturbance. The head-eye coordination tests were 

developed for clinical use, are well described and relatively easy to execute. However, due to the 

requirement of active cervical movements and the combination of cervical, vestibular and visual input, 

it is not possible to draw specific conclusions about eye movements in isolation. The studies included in 

this review did not provide substantial information on the validity of this method. However, in another 

study that was excluded from this review as it was not performed on WAD patients the discriminative 

validity and reliability were considered sufficient when three out of five test scored positive 43. 

Smooth pursuit eye movements 

Eight studies focused on smooth pursuit eye movements by using the SPNT test 20,32–34,36–39. The SPNT 

test is developed for clinical use and eye movements are measured with electro-oculography. One point 

of concern is the diversity in analyzing the recordings. The accuracy, reliability and non-standardized 

interpretation is a source of bias 37,44,45. In this review the four studies that did not find differences 

between patients with WAD and healthy subject were all SPNT test studies. This may lead to the 

conclusion that the discriminating capacity of this test is less than that of the other methods. 

In addition, as in the head-eye coordination method, it remains unclear what exactly is causing the 

recorded disturbance. In a recent study on the SPNT test the question was raised whether confounding 

factors such as pain experience or impaired cognitive functioning may affect test outcomes 36. Based 

on these findings the SPNT test should be used with care in the clinical setting.  

Eye stabilization reflexes 

Solitary cervical induced eye movements were investigated in three studies. These studies focused on 

eye stabilization reflexes and measured the COR in isolation. COR gain was measured without influence 

of visual, vestibular or cervical motor information 21–23. Therefore it is impossible to influence COR gain 

deliberately, which makes the COR an objective outcome measure of oculomotor function. However, 

the experimental setup for the COR test is complex and it is necessary to perform the test in a completely 

darkened room.  

A future challenge would be the conversion of the existing test into a less expensive and easy to perform 

test, suitable for the clinical practice. Recording of eye stabilization reflexes is relatively new. The 

present studies provide little information on validity of the test.  

 

 

  

The optimal test for eye movement impairments does not exist yet. Comparing all three methods in one 

patient group may clarify which method is most applicable to evaluate oculomotor problems in patients 

with WAD. At present the head-eye coordination measurements seem the most suitable for clinical use. 

Particularly when training head-eye disturbances is used as therapeutic intervention. When a test 

comprises multiple (sub-) systems, it remains difficult to determine the most important factor in the 

observed change. However, this knowledge is necessary for successful treatment of the patient. To 

enhance therapeutic interventions, more insight in etiological relations between WAD and oculomotor 

dysfunction is essential. Eye stabilization reflexes, more than the smooth pursuit method, may enhance 

our comprehension of the complex interaction between of the cervico-oculomotor system and the 

coherence of neck pain symptoms. 

 

CONCLUSION 
In the majority of studies included in this review, patients show altered compensatory eye movements 

and smooth pursuit movements which may impair the coordination of head and eyes. 

In this review three methods of eye movement examination are found. The used methods and the patient 

populations significantly differ. An optimal test to measure oculomotor problems in patients with WAD 

does not exist yet. 

At the present time, the head-eye coordination tests may be the most suitable method for clinical use. 

Further studies of eye stabilization reflexes can help to clarify the etiology of oculomotor problems in 

patients with WAD. 
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in the diagnostic process of patients with WAD. There are various methods that address different 

aspects of eye movement. Regrettably a general consensus on eye movement examination does not 

yet exist. The thirteen studies included in this review are evaluated by the specific aspect of oculomotor 

problems that are tested, the clinical applicability and test validity. 

Head-eye coordination 

Two studies used a series of tests to analyze the head-eye coordination 19,35. The purpose of this method 

is to evaluate over-all head-eye coordination disturbances. This method does not allow discrimination 

as to which part of the system is causing the actual disturbance. The head-eye coordination tests were 

developed for clinical use, are well described and relatively easy to execute. However, due to the 

requirement of active cervical movements and the combination of cervical, vestibular and visual input, 

it is not possible to draw specific conclusions about eye movements in isolation. The studies included in 

this review did not provide substantial information on the validity of this method. However, in another 

study that was excluded from this review as it was not performed on WAD patients the discriminative 

validity and reliability were considered sufficient when three out of five test scored positive 43. 

Smooth pursuit eye movements 

Eight studies focused on smooth pursuit eye movements by using the SPNT test 20,32–34,36–39. The SPNT 

test is developed for clinical use and eye movements are measured with electro-oculography. One point 

of concern is the diversity in analyzing the recordings. The accuracy, reliability and non-standardized 

interpretation is a source of bias 37,44,45. In this review the four studies that did not find differences 

between patients with WAD and healthy subject were all SPNT test studies. This may lead to the 

conclusion that the discriminating capacity of this test is less than that of the other methods. 

In addition, as in the head-eye coordination method, it remains unclear what exactly is causing the 

recorded disturbance. In a recent study on the SPNT test the question was raised whether confounding 

factors such as pain experience or impaired cognitive functioning may affect test outcomes 36. Based 

on these findings the SPNT test should be used with care in the clinical setting.  

Eye stabilization reflexes 

Solitary cervical induced eye movements were investigated in three studies. These studies focused on 

eye stabilization reflexes and measured the COR in isolation. COR gain was measured without influence 

of visual, vestibular or cervical motor information 21–23. Therefore it is impossible to influence COR gain 

deliberately, which makes the COR an objective outcome measure of oculomotor function. However, 

the experimental setup for the COR test is complex and it is necessary to perform the test in a completely 

darkened room.  

A future challenge would be the conversion of the existing test into a less expensive and easy to perform 

test, suitable for the clinical practice. Recording of eye stabilization reflexes is relatively new. The 

present studies provide little information on validity of the test.  

 

 

  

The optimal test for eye movement impairments does not exist yet. Comparing all three methods in one 

patient group may clarify which method is most applicable to evaluate oculomotor problems in patients 

with WAD. At present the head-eye coordination measurements seem the most suitable for clinical use. 

Particularly when training head-eye disturbances is used as therapeutic intervention. When a test 

comprises multiple (sub-) systems, it remains difficult to determine the most important factor in the 

observed change. However, this knowledge is necessary for successful treatment of the patient. To 

enhance therapeutic interventions, more insight in etiological relations between WAD and oculomotor 

dysfunction is essential. Eye stabilization reflexes, more than the smooth pursuit method, may enhance 

our comprehension of the complex interaction between of the cervico-oculomotor system and the 

coherence of neck pain symptoms. 

 

CONCLUSION 
In the majority of studies included in this review, patients show altered compensatory eye movements 

and smooth pursuit movements which may impair the coordination of head and eyes. 

In this review three methods of eye movement examination are found. The used methods and the patient 

populations significantly differ. An optimal test to measure oculomotor problems in patients with WAD 

does not exist yet. 

At the present time, the head-eye coordination tests may be the most suitable method for clinical use. 

Further studies of eye stabilization reflexes can help to clarify the etiology of oculomotor problems in 

patients with WAD. 
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ABSTRACT 
Background Many chronic neck pain patients experience problems with vision. These problems are 

possibly induced by deviations of the eye stabilization reflexes. It is not known whether these eye reflex 

alterations occur both in traumatic and non- traumatic neck pain patients. 

Objective To investigate if the cervico-ocular reflex (COR) and the vestibulo-ocular reflex (VOR) are 

changed in tertiary care patients with prolonged, chronic neck pain with various origin of complaints. 

Design Cross sectional study 

Methods Ninety-one chronic neck pain patients were subdivided into three groups by origin of 

complaints, and compared with healthy controls. COR and VOR gains were measured with an infrared 

eye tracking device with the subject sitting on a rotating chair in a darkened room and with the head 

fixed. 

Results Neck pain patients had a higher COR gain (median 0.41, IQR 0.289) compared with healthy 

controls (median 0.231, IQR 0.179). The mean COR gain did not differ between the three patient groups 

(Whiplash Associated Disorders 0.444 (SD 0.221); traumatic group 0.397 (SD0.205); non-traumatic 

0.468 (SD0.236)). There was no difference in VOR gain between the groups. 

Conclusion Chronic neck pain patients, who already received primary care, still have an elevated 

cervico-ocular reflex. The origin of complaints did not seem to be associated with this deviant oculomotor 

behavior. 

Keywords cervico-ocular reflex, vestibulo-ocular reflex, chronic neck pain patients, whiplash associated 

disorders 

  

 

  

INTRODUCTION  

Patients with chronic neck pain suffer from various complaints. Besides diminished range of motion, 

pain, headache and cognitive dysfunction 1–4, half of the patients report vision-related problems (e.g. 

concentration problems during reading, sensitivity to light and eye strain) 5–7. Especially in patients with 

Whiplash Associated Disorders (WAD) visual disturbances might be related to deficits in oculomotor 

control 8. The oculomotor system receives eye and body position information via eye stabilization 

reflexes using information from the eyes, the vestibulum and the cervical spine 9,10. The vestibulo-ocular 

reflex (VOR) receives positional input from the vestibulum whereas the cervico-ocular reflex (COR) 

receives input from the muscle spindles and joint capsules in the (upper) cervical spine 9. The VOR and 

COR work in conjunction to stabilize the visual image on the retina during head and trunk movements 

in space. Previous studies showed that the synergy between the COR and VOR can be disturbed in 

neck pain patients, due to altered cervical sensory input 11–13. Patients’ COR gain (that is, the amplitude 

of eye velocity fit compared to the stimulus velocity) is elevated without a compensatory decrease of the 

VOR gain, that is often observed in healthy individuals 11–13. The optokinetic reflex which receives 

information from the eyes, remains unchanged in patients with WAD 11. Despite the promising results of 

the studies of Kelders et al. and de Vries et al., their patient groups are diffuse with respect to duration 

of complaints, cause of complaints and previous treatments 12,13. In the present patient group the option 

of natural recovery is minimized by increasing the minimum duration of complaints to 6 months. It is 

unknown how long COR and VOR reflex deviations persist, or whether the reflexes might prove 

chronically maladjusted. To our knowledge, no information is available on eye stabilization reflexes in 

severely impaired chronic neck pain patients. Studying oculomotor function in this patient population is 

of particular interest, since these chronic patients still do report sensorimotor, visual and cognitive 

dysfunction, even after multiple treatments. Furthermore, in this study both traumatic and non-traumatic 

neck pain patients are included, with an extra subdivision of the traumatic group. Finally, in this study 

all patients received earlier, but unsuccessful treatment. 

The first aim of the present study is to investigate the eye stabilization reflexes in a group of 

unsuccessfully treated patients with long-lasting neck pain and compare these outcomes with a group 

of healthy controls. 

The second aim is to determine whether there are differences in eye stabilization reflexes in patients 

with comparable history, but different origin of complaints, i.e. traumatic versus non-traumatic. In order 

to specify if a certain traumatic impact is determinative for alteration of eye stabilization reflexes, the 

traumatic group will be divided into a whiplash associated disorders (WAD) group as defined by Spitzer 

at al. and patients with a traumatic impact, but no whiplash acceleration-deceleration mechanism of 

energy transfer to the neck 14. Most of the patients in the WAD group have had a car accident with a 

whiplash mechanism, associated with or without blunt trauma to the head. The patients of the traumatic 

group have had no direct trauma to the neck or the head.  

Right now, the underlying mechanisms of eye reflex alterations are still unknown. It can be argued that 

patients with WAD have, due to the high traumatic impact on the cervical spine, a more distinct reflex 
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ABSTRACT 
Background Many chronic neck pain patients experience problems with vision. These problems are 

possibly induced by deviations of the eye stabilization reflexes. It is not known whether these eye reflex 

alterations occur both in traumatic and non- traumatic neck pain patients. 

Objective To investigate if the cervico-ocular reflex (COR) and the vestibulo-ocular reflex (VOR) are 

changed in tertiary care patients with prolonged, chronic neck pain with various origin of complaints. 

Design Cross sectional study 

Methods Ninety-one chronic neck pain patients were subdivided into three groups by origin of 

complaints, and compared with healthy controls. COR and VOR gains were measured with an infrared 
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fixed. 
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Conclusion Chronic neck pain patients, who already received primary care, still have an elevated 

cervico-ocular reflex. The origin of complaints did not seem to be associated with this deviant oculomotor 

behavior. 
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COR work in conjunction to stabilize the visual image on the retina during head and trunk movements 
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dysfunction, even after multiple treatments. Furthermore, in this study both traumatic and non-traumatic 

neck pain patients are included, with an extra subdivision of the traumatic group. Finally, in this study 

all patients received earlier, but unsuccessful treatment. 

The first aim of the present study is to investigate the eye stabilization reflexes in a group of 

unsuccessfully treated patients with long-lasting neck pain and compare these outcomes with a group 

of healthy controls. 

The second aim is to determine whether there are differences in eye stabilization reflexes in patients 

with comparable history, but different origin of complaints, i.e. traumatic versus non-traumatic. In order 

to specify if a certain traumatic impact is determinative for alteration of eye stabilization reflexes, the 

traumatic group will be divided into a whiplash associated disorders (WAD) group as defined by Spitzer 

at al. and patients with a traumatic impact, but no whiplash acceleration-deceleration mechanism of 

energy transfer to the neck 14. Most of the patients in the WAD group have had a car accident with a 

whiplash mechanism, associated with or without blunt trauma to the head. The patients of the traumatic 

group have had no direct trauma to the neck or the head.  

Right now, the underlying mechanisms of eye reflex alterations are still unknown. It can be argued that 

patients with WAD have, due to the high traumatic impact on the cervical spine, a more distinct reflex 
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alteration than non-WAD and non-traumatic neck pain patients. However, eye stabilization reflexes may 

be, besides due to anatomical damage, also altered due to sensorimotor changes or behavioral factors 
2,11. It is worthwhile to investigate this influence as it may aid in diagnosis and assessing the 

effectiveness of treatments.  

 

METHODS 
Participants 

Patients with chronic neck pain were included from the population of the Spine & Joint Centre 

Rotterdam, a Dutch rehabilitation center for patients with chronic neck complaints. All patients took part 

of the study prior to their rehabilitation. Participants with neck pain were included if they 1) were referred 

to the Spine & Joint Centre with the diagnosis of chronic neck pain (pain primarily in the neck for more 

than six months); 2) had received primary care physiotherapy more than 9 times without benefit (actual 

intervention not specified); 3) were between the age of 18 and 65 years; 4) were able to understand and 

speak the Dutch language and 5) were physically able to undergo COR and VOR measurements (which 

involved sitting immobilized in a chair for 30 minutes).  

The participants with neck pain were divided into three groups: Group 1. patients with WAD grade 2 or 

3 14 (WAD group); Group 2. patients with a traumatic origin of the complaints, but no motor vehicle 

accident and no direct impact on the neck (e.g. falling of a horse or bicycle, traumatic delivery) 

(Traumatic neck pain group [T]); Group 3. patients with a non-traumatic origin of complaints (Non-

traumatic neck pain group [NT]). 

Participants in the healthy control group were recruited among co-workers and students and had no 

personal or legal relationship with the investigator. The inclusion criteria were 1) aged between 18 and 

65; 2) able to understand and speak the Dutch language; 3) without any complaints of the cervical spine 

(including cervicogenic headache and dizziness) in the last 5 years; and 4) without any history of neck 

trauma. Exclusion criteria were 1) suffering from any neurological disorder, or vestibular or visual 

problems prior to the neck pain; and 2) having fractures or surgery in the cervical spine, 

temporomandibular joint or head in the past. 

All participants were without any ocular abnormalities that could not be corrected by wearing glasses or 

contact lenses. They were recruited and tested between January 2012 and January 2015. The study 

was approved by the local ethical board of the Erasmus MC and all participants gave prior written 

informed consent. 

 

Experimental setup 

The experimental setup was identical to the setup described in an earlier study 13. In short, infrared 

video-oculography [Eyelink 1, SMI, Germany 15] at a sample rate of 250 Hz was used for the recording 

of monocular (left) eye positions while people were rotated using a motor driven rotatable chair 

 

  

(Harmonic Drive, Germany). The motor induced continuous sinusoidal chair rotations around the vertical 

axis without any backlash. The position of the chair was recorded with sensors and stored on the 

computer. 

 

 

Figure 1: Panel A shows a photograph of the chair and the position of the cameras and the bite board in the COR setup. Panel 
B shows the measurement of the vestibular ocular reflex (VOR) with the bite board attached to the chair, and the cervico-ocular 
reflex (COR) with the bite board attached to the floor, whilst the chair is rotating back and forth. 
 

The trunk was fixed to the chair at shoulder level by a double-belt system (figure 1a). Head position was 

fixed by means of a custom-made bite board. The bite board was positioned with the axis of chair 

rotation under the midpoint of the inter-aural line and fixed to the floor to guarantee a fixed head position. 

In this case, rotation of the chair in complete darkness induced pure cervical stimulation, which elicits 

the COR in isolation (figure 1b). In the COR stimulation, the chair rotated for 134 seconds with an 

amplitude of 5.0 degrees and a frequency of 0.04 Hz. This yielded five full sinusoidal rotations of the 

chair with peak velocity of 1.26 degrees/s. 

When the bite board was mounted to the chair, rotation of the chair in complete darkness induced pure 

vestibular stimulation, eliciting the VOR in isolation (figure 1b). In the VOR stimulation, the chair rotated 

for 33 seconds with an amplitude of 5.0 degrees and a frequency of 0.16 Hz. This yielded five full 

sinusoidal rotations of the chair with peak velocity of 5.03 degrees/s.  

In both eye movement stimulations, which were ran in complete darkness, participants were instructed 

to look at a position directly in front of the set-up which was briefly indicated by means of a laser dot.  
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trauma. Exclusion criteria were 1) suffering from any neurological disorder, or vestibular or visual 

problems prior to the neck pain; and 2) having fractures or surgery in the cervical spine, 

temporomandibular joint or head in the past. 

All participants were without any ocular abnormalities that could not be corrected by wearing glasses or 

contact lenses. They were recruited and tested between January 2012 and January 2015. The study 

was approved by the local ethical board of the Erasmus MC and all participants gave prior written 

informed consent. 

 

Experimental setup 

The experimental setup was identical to the setup described in an earlier study 13. In short, infrared 

video-oculography [Eyelink 1, SMI, Germany 15] at a sample rate of 250 Hz was used for the recording 

of monocular (left) eye positions while people were rotated using a motor driven rotatable chair 

 

  

(Harmonic Drive, Germany). The motor induced continuous sinusoidal chair rotations around the vertical 

axis without any backlash. The position of the chair was recorded with sensors and stored on the 

computer. 

 

 

Figure 1: Panel A shows a photograph of the chair and the position of the cameras and the bite board in the COR setup. Panel 
B shows the measurement of the vestibular ocular reflex (VOR) with the bite board attached to the chair, and the cervico-ocular 
reflex (COR) with the bite board attached to the floor, whilst the chair is rotating back and forth. 
 

The trunk was fixed to the chair at shoulder level by a double-belt system (figure 1a). Head position was 

fixed by means of a custom-made bite board. The bite board was positioned with the axis of chair 

rotation under the midpoint of the inter-aural line and fixed to the floor to guarantee a fixed head position. 

In this case, rotation of the chair in complete darkness induced pure cervical stimulation, which elicits 

the COR in isolation (figure 1b). In the COR stimulation, the chair rotated for 134 seconds with an 

amplitude of 5.0 degrees and a frequency of 0.04 Hz. This yielded five full sinusoidal rotations of the 

chair with peak velocity of 1.26 degrees/s. 

When the bite board was mounted to the chair, rotation of the chair in complete darkness induced pure 

vestibular stimulation, eliciting the VOR in isolation (figure 1b). In the VOR stimulation, the chair rotated 

for 33 seconds with an amplitude of 5.0 degrees and a frequency of 0.16 Hz. This yielded five full 

sinusoidal rotations of the chair with peak velocity of 5.03 degrees/s.  

In both eye movement stimulations, which were ran in complete darkness, participants were instructed 

to look at a position directly in front of the set-up which was briefly indicated by means of a laser dot.  
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Data Analysis 

All data processing was done with custom-written scripts in Matlab R2013a (The MathWorks Inc., Natick, 

MA). Eye movement reflexes were analyzed by looking at the eye velocity relative to the chair or stimulus 

velocity, referred to as the gain of the eye movement. Eye velocity was calculated by taking the 

derivative of the horizontal eye position signal. Blinks, saccades and fast phases were removed (using 

a 20 degrees-per-second threshold) and a sine wave was fitted through the eye velocity signal data. 

The gain of the response was defined as the amplitude of the eye velocity fit divided by the peak velocity 

of the chair rotation (COR: 1.26 degrees/s; VOR: 5.03 degrees/s). A gain of 1 thus reflects that the peak 

velocity of the eye was the same as the peak velocity of the stimulus.  

 

Statistical Analysis 

Differences in the eye stabilization reflexes between patients with chronic neck pain and healthy controls 

were statistically assessed by non-parametric statistics using Mann-Whitney tests. Correlations between 

the gains of the COR and VOR, as well as between these gains and age and gender, were statistically 

assessed using Spearman’s correlations. 

To assess the effect of the origins of complaints, we compared the eye stabilization reflexes between 

the three groups (WAD, T and NT) with the Kruskal-Wallis test. 

An alpha level of p < 0.05 was considered significant for all statistical tests. The data was analyzed with 

IBM SPSS Statistics for Windows, version 20 (IBM Corp., Armonk, NY). 

 

RESULTS 
117 participants completed the measurements successfully. The VOR measurement of three patients 

(2x WAD; 1x NT) and one healthy control were discarded due to technical errors.   

The comparison of eye stabilization reflexes between 91 patients with chronic neck pain [45 male, 84 

female; median age 42 (IQR 19); median VAS pain 56 (min-max: 11-90; IQR 39)] and 30 healthy controls 

[(16 male, 14 female; median age 25 (IQR 6)] are summarized in table 1 and figure 2. The COR gain of 

patients with chronic neck pain was significantly higher than the COR gain of healthy controls, but the 

VOR gain did not differ between the two groups. In the WAD group and in the traumatic group, the gain 

of the COR was moderately correlated with age. There was no correlation between COR and age in the 

non-traumatic group (table 4). 

 

 

 

 

  

  patients controls Mann-Whitney-test 

n 91 30   

age (median, IQR) 42 (19) 25 (6) U=605.5, Z=-5.856, p<0.001 

gender 65% female 46% female U= 1578.0, Z=-1.866, p=0.062 

VOR (median, IQR) 0.7 (0.302) 0.7 (0.255) U= 1399.5, Z= -0.041, p=0.968 

COR (median, IQR) 0.41 (0.289) 0.231 (0.179) U= 659.5, Z= -4.235, p<0.001 

Table 2: Eye stabilization reflexes in patients and healthy controls. VOR= vestibulo-ocular reflex; COR= cervico-ocular reflex; 
IQR= interquartile range 

Figure 2: Boxplot of COR and VOR gain in patients and healthy control group. Thick horizontal line in the grey box line = 
median; grey box = IQR, grey dots = individual gain values; open circles = outliers. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

 

In both groups no correlations between the eye stabilization reflexes and age or gender were found 

(table 2). 

 VOR age gender 

COR CT: -0.014 (p=0.944) 

PT: -0.054 (p=0.617) 

CT: -0.052 (p=0.786) 

PT: 0.002 (p=0.984) 

CT: 0.154 (p=0.415) 

PT: 0.144 (p=0.173) 

VOR  CT: -0.019 (p=0.923) 

PT: 0.186 (p=0.083) 

CT: -0.07 (p=0.716) 

PT: -0.036 (p=0.742) 

age   CT: -0.077 (p=0.684) 

PT: 0.025 (p=0.814) 
 

  

Table 3: Correlations (correlation coefficient and p-value) between the different variables (gain of the COR and VOR, age and 
gender) for the two groups (PT= patients; CT= controls) 
 

We observed no effect of the origin of the neck pain when we compared the three different patient 

groups (table 3 and figure 3). Both the COR and VOR gains were similar between patients with WAD, 

with a traumatic origin and with a non-traumatic origin. 

 

  WAD T NT Kruskal-Wallis 

n 28 16 47   

age (median, IQR) 40; 21 42; 22 44; 17 H(2)= 6.604, p= 0.037 

gender 59% female 65% female 68% female H(2)= 4.603, p= 0.100 

VOR (median, IQR) 0.695; 0.386 0.680; 0.397 0.712; 0.299 H(2)= 0.351, p= 0.839 

COR (median, IQR) 0.420; 0.372 0.395; 0.182 0.468; 0.330 H(2)= 0.903, p= 0.637 

Table 4: Eye stabilization reflexes in the three different patient groups. VOR= vestibulo-ocular reflex; COR= cervico-ocular 
reflex; WAD= Whiplash group; T= traumatic group; NT= non-traumatic group; IQR= interquartile range 

 

Figure 3: Boxplot of COR and VOR gain in the three patient groups. Thick horizontal line in the grey box line = median; grey box 
= IQR, grey dots = individual gain values; open circles = outliers. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
 
 

 

 



43

Eye stabilization reflexes in traumatic and non-traumatic chronic neck pain  patients    

3

 

  

Data Analysis 

All data processing was done with custom-written scripts in Matlab R2013a (The MathWorks Inc., Natick, 

MA). Eye movement reflexes were analyzed by looking at the eye velocity relative to the chair or stimulus 
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VOR gain did not differ between the two groups. In the WAD group and in the traumatic group, the gain 

of the COR was moderately correlated with age. There was no correlation between COR and age in the 
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gender) for the two groups (PT= patients; CT= controls) 
 

We observed no effect of the origin of the neck pain when we compared the three different patient 
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Table 3: Correlations (correlation coefficient and p-value) between the different variables (gain of the COR and VOR, age and 
gender) for the two groups (PT= patients; CT= controls) 
 

We observed no effect of the origin of the neck pain when we compared the three different patient 

groups (table 3 and figure 3). Both the COR and VOR gains were similar between patients with WAD, 

with a traumatic origin and with a non-traumatic origin. 
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 VOR age gender 

COR WAD: -0.099 (p=0.631) 

T: -0.185 (p=0.494) 

NT: -0.03 (p= 0.843) 

WAD: 0.561 (p=0.002) 

T: -0.615 (p=0.011) 

NT: -0.118 (p=0.429) 

WAD: 0.097 (p=0.622) 

T: -0.14 (p=0.604) 

NT: 0.255 (p= 0.083) 

VOR  WAD: 0.148 (p=0.470) 

T: 0.156 (p= 0.565) 

NT: 0.172 (p=0.254) 

WAD: -0.139 (p=0.5) 

T: 0.098 (p= 0.718) 

NT: -0.047 (p=0.758) 

age   WAD: -0.186 (p=0.343) 

T: 0.24 (p= 0.371) 

NT: -0.077 (p= 0.605) 

Table 5: Correlations (correlation coefficient and p-value) between the different variables for the three different patient groups 
 

 

DISCUSSION 
The current study aimed at the question whether eye stabilization reflexes are altered in unsuccessfully 

treated chronic neck pain patients and whether there are differences in eye stabilization reflexes 

between traumatic and non-traumatic patients. The results of this study show that chronic neck pain 

patients have an elevated COR and an unchanged VOR gain compared with healthy controls. 

Furthermore, traumatic and non-traumatic neck pain patients have similar COR and VOR gains. 

Apparently, changes in eye stabilization reflexes are not predominantly caused by a traumatic physical 

impact. 

 

Chronic neck pain patients who experience neck pain for at least six months, still show an elevated COR 

and an unchanged VOR. Apparently, COR does not diminish automatically in chronic neck pain patients 

even when they receive paramedical treatment. It appears that in this severely impaired patient group 

(with a median reported VAS pain of 56) the persistence of altered reflexes depends on other -non 

temporary- factors. Studies show that chronic neck pain patients demonstrate irregular cervical 

movement strategies and diminished cervical range of motion 3,16. Sensorimotor impairment is 

suggested as underlying cause for these specific motion patterns 16–18. It is hypothesized that this 

specific motion characteristic may lead to altered reflexes 19. Consequently, the COR remains 

augmented as long as cervical afferent information is hampered by this sensorimotor impairment. 

Cervical sensorimotor impairment includes disturbed mechanisms of muscle control (altered activation 

pattern of muscles) and changed muscle properties (e.g. fatty degeneration of the cervical extensor 

muscles) 16–18,20–24. It would be of high clinical relevance to determine if eye stabilization reflexes regulate 

themselves after diminishing of this sensorimotor disturbances. This could be studied by measuring the 

effect of specific sensorimotor training on altered eye stabilization reflexes 18,19,25.  
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Table 3: Correlations (correlation coefficient and p-value) between the different variables (gain of the COR and VOR, age and 
gender) for the two groups (PT= patients; CT= controls) 
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Figure 3: Boxplot of COR and VOR gain in the three patient groups. Thick horizontal line in the grey box line = median; grey box 
= IQR, grey dots = individual gain values; open circles = outliers. (For interpretation of the references to colour in this figure legend, 
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NT: -0.047 (p=0.758) 

age   WAD: -0.186 (p=0.343) 

T: 0.24 (p= 0.371) 

NT: -0.077 (p= 0.605) 

Table 5: Correlations (correlation coefficient and p-value) between the different variables for the three different patient groups 
 

 

DISCUSSION 
The current study aimed at the question whether eye stabilization reflexes are altered in unsuccessfully 

treated chronic neck pain patients and whether there are differences in eye stabilization reflexes 

between traumatic and non-traumatic patients. The results of this study show that chronic neck pain 

patients have an elevated COR and an unchanged VOR gain compared with healthy controls. 

Furthermore, traumatic and non-traumatic neck pain patients have similar COR and VOR gains. 

Apparently, changes in eye stabilization reflexes are not predominantly caused by a traumatic physical 

impact. 

 

Chronic neck pain patients who experience neck pain for at least six months, still show an elevated COR 

and an unchanged VOR. Apparently, COR does not diminish automatically in chronic neck pain patients 

even when they receive paramedical treatment. It appears that in this severely impaired patient group 

(with a median reported VAS pain of 56) the persistence of altered reflexes depends on other -non 

temporary- factors. Studies show that chronic neck pain patients demonstrate irregular cervical 

movement strategies and diminished cervical range of motion 3,16. Sensorimotor impairment is 

suggested as underlying cause for these specific motion patterns 16–18. It is hypothesized that this 

specific motion characteristic may lead to altered reflexes 19. Consequently, the COR remains 

augmented as long as cervical afferent information is hampered by this sensorimotor impairment. 

Cervical sensorimotor impairment includes disturbed mechanisms of muscle control (altered activation 

pattern of muscles) and changed muscle properties (e.g. fatty degeneration of the cervical extensor 

muscles) 16–18,20–24. It would be of high clinical relevance to determine if eye stabilization reflexes regulate 

themselves after diminishing of this sensorimotor disturbances. This could be studied by measuring the 

effect of specific sensorimotor training on altered eye stabilization reflexes 18,19,25.  



46

Chapter 3 

  

In the current study besides the COR, also the VOR was measured. It is yet unclear why the VOR does 

not adapt in neck pain patients and we can only speculate about the cause. In healthy individuals, age 

dependent decrease of the VOR is caused by degeneration of the vestibular system 26. The COR adapts 

to this alteration with increased gain. However, in neck pain patients not the vestibular system, but the 

cervical system changes 11,12. This change affects the COR without an effect on the VOR, thereby 

changing the correlation between the two reflexes. Apparently, while VOR gain seems conditional for 

COR gain, this does not automatically imply that COR gain is also conditional for VOR gain. 

 

The second result of this study is that the three groups of chronic neck pain patients with traumatic and 

non-traumatic origin of complaints have comparable gains of the eye stabilization reflexes. A whiplash 

trauma seems to be no prerequisite for the development of oculomotor disorders. Thus, in the studied 

population, the origin of complaints, whether traumatic or non- traumatic do not determine alteration of 

reflexes and can no longer be seen as negative predictive factor for the development of altered eye 

stabilization reflexes. This implies that the alteration is dependent of other, presently unknown, factors 

which can possibly be changed by treatment. These factors are not explored in the current study. To 

get more insight into the underlying mechanisms of changed reflexes, it would be useful to study the 

influence of a variety of patient characteristics (sensorimotor function, degree of disability and pain, 

duration of complaints, cervical range of motion) and behavioral factors, like e.g. fear avoidance 

behavior, fatigue and stress on eye stabilization reflexes.  

 

With respect to possible confounding in the current study, we paid attention to influence of age on reflex 

gain. In this study there is a significant age difference between patients and healthy controls (the healthy 

control group was younger than the patient group). Nevertheless, the impact of age on the COR seems 

to be negligible. Age dependent increase of the COR is only seen in healthy individuals of 60 years and 

older 27. In the current study the correlation between the COR gain and age differs in the two traumatic 

groups. The correlation in the WAD group is positive and in the traumatic group negative (table 4). We 

can only speculate about this reversed correlation between COR and age between the groups. It could 

be related to differences in patient characteristics between the groups, e.g., in neck mobility and in 

duration of the complaints. 

It is point of discussion whether a negative correlation exists between the VOR- and the COR gain in 

healthy individuals. Two studies report a moderate negative relationship between COR and VOR gain 
11,27, but in the present study and in the study of de Vries et al. this correlation could not be confirmed13. 

 

CONCLUSION 
Severely impaired chronic neck pain patients have an elevated COR and an unchanged VOR compared 

to healthy controls. This elevation seems to be independent of the traumatic or non-traumatic origin of 

 

  

complaints. The group of neck pain patients with altered eye stabilization reflexes is thereby bigger than 

suspected. Maybe persistent sensorimotor disorders of the cervical spine are a perpetuating factor for 

eye reflex alteration.  



47

Eye stabilization reflexes in traumatic and non-traumatic chronic neck pain  patients    

3

 

  

In the current study besides the COR, also the VOR was measured. It is yet unclear why the VOR does 

not adapt in neck pain patients and we can only speculate about the cause. In healthy individuals, age 

dependent decrease of the VOR is caused by degeneration of the vestibular system 26. The COR adapts 

to this alteration with increased gain. However, in neck pain patients not the vestibular system, but the 

cervical system changes 11,12. This change affects the COR without an effect on the VOR, thereby 

changing the correlation between the two reflexes. Apparently, while VOR gain seems conditional for 

COR gain, this does not automatically imply that COR gain is also conditional for VOR gain. 

 

The second result of this study is that the three groups of chronic neck pain patients with traumatic and 

non-traumatic origin of complaints have comparable gains of the eye stabilization reflexes. A whiplash 

trauma seems to be no prerequisite for the development of oculomotor disorders. Thus, in the studied 

population, the origin of complaints, whether traumatic or non- traumatic do not determine alteration of 

reflexes and can no longer be seen as negative predictive factor for the development of altered eye 

stabilization reflexes. This implies that the alteration is dependent of other, presently unknown, factors 

which can possibly be changed by treatment. These factors are not explored in the current study. To 

get more insight into the underlying mechanisms of changed reflexes, it would be useful to study the 

influence of a variety of patient characteristics (sensorimotor function, degree of disability and pain, 

duration of complaints, cervical range of motion) and behavioral factors, like e.g. fear avoidance 

behavior, fatigue and stress on eye stabilization reflexes.  

 

With respect to possible confounding in the current study, we paid attention to influence of age on reflex 

gain. In this study there is a significant age difference between patients and healthy controls (the healthy 

control group was younger than the patient group). Nevertheless, the impact of age on the COR seems 

to be negligible. Age dependent increase of the COR is only seen in healthy individuals of 60 years and 

older 27. In the current study the correlation between the COR gain and age differs in the two traumatic 

groups. The correlation in the WAD group is positive and in the traumatic group negative (table 4). We 

can only speculate about this reversed correlation between COR and age between the groups. It could 

be related to differences in patient characteristics between the groups, e.g., in neck mobility and in 

duration of the complaints. 

It is point of discussion whether a negative correlation exists between the VOR- and the COR gain in 

healthy individuals. Two studies report a moderate negative relationship between COR and VOR gain 
11,27, but in the present study and in the study of de Vries et al. this correlation could not be confirmed13. 

 

CONCLUSION 
Severely impaired chronic neck pain patients have an elevated COR and an unchanged VOR compared 

to healthy controls. This elevation seems to be independent of the traumatic or non-traumatic origin of 

 

  

complaints. The group of neck pain patients with altered eye stabilization reflexes is thereby bigger than 

suspected. Maybe persistent sensorimotor disorders of the cervical spine are a perpetuating factor for 

eye reflex alteration.  



48

Chapter 3 

  

REFERENCES 
1.  Treleaven J. Dizziness, Unsteadiness, Visual Disturbances, and Postural Control Implications for the Transition to 

Chronic Symptoms After a Whiplash Trauma. Spine (Phila Pa 1976). 2011;36:S211-S217. 

2.  Curatolo M, Bogduk N, Ivancic PC, McLean S a, Siegmund GP, Winkelstein B a. The role of tissue damage in 

whiplash-associated disorders: discussion paper 1. Spine (Phila Pa 1976). 2011;36(25 Suppl):S309-15. 

doi:10.1097/BRS.0b013e318238842a. 

3.  Stenneberg MS, Rood M, de Bie R, Schmitt MA, Cattrysse E, Scholten-Peeters GG. To What Degree Does Active 

Cervical Range of Motion Differ Between Patients With Neck Pain, Patients With Whiplash, and Those Without Neck 

Pain? A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil. October 2016. 

doi:10.1016/j.apmr.2016.10.003. 

4.  Anstey R, Kongsted A, Kamper S, Hancock MJ. Are People With Whiplash-Associated Neck Pain Different From 

People With Nonspecific Neck Pain? J Orthop Sports Phys Ther. 2016;46(10):894-901. doi:10.2519/jospt.2016.6588. 

5.  Treleaven J, Takasaki H. Characteristics of visual disturbances reported by subjects with neck pain. Man Ther. 

2014;19(3):203-207. doi:10.1016/j.math.2014.01.005. 

6.  Hülse. Klinik der Funktionsstörungen des Kopfgelenkbereiches. In: Hülse M, Neuhuber WL WH, ed. Der Kranio-

Zervikale Übergang. Berlin: Sprin; 1998:43-97. 

7.  Wolff H. Störungen des kraniozervikalen Übergang (Kopfgelenkbereich). In: Wolff H, ed. Neurophysiologische Aspekte 

Des Bewegungssystems. Berlin: Springer; 1996. 

8.  Ischebeck BK, de Vries J, Van der Geest JN, et al. Eye movements in patients with Whiplash Associated Disorders: a 

systematic review. BMC Musculoskelet Disord. 2016;17(1):441. doi:10.1186/s12891-016-1284-4. 

9.  Hikosaka O, Maeda M. Cervical effects on abducens motoneurons and their interaction with vestibulo-ocular reflex. 

Exp Brain Res. 1973;18(5):512-530. http://www.ncbi.nlm.nih.gov/pubmed/4794882. 

10.  Van Die GC, Collewijn H. Control of human optokinetic nystagmus by the central and peripheral retina: effects of partial 

visual field masking, scotopic vision and central retinal scotomata. Brain Res. 1986;383(1-2):185-194. 

http://www.ncbi.nlm.nih.gov/pubmed/3768688. 

11.  Montfoort I, Kelders WP a, van der Geest JN, et al. Interaction between ocular stabilization reflexes in patients with 

whiplash injury. Invest Ophthalmol Vis Sci. 2006;47(7):2881-2884. doi:10.1167/iovs.05-1561. 

12.  Kelders WP a, Kleinrensink GJ, van der Geest JN, et al. The cervico-ocular reflex is increased in whiplash injury 

patients. J Neurotrauma. 2005;22(1):133-137. doi:10.1089/neu.2005.22.133. 

13.  de Vries J, Ischebeck BK, Voogt LP, et al. Cervico-ocular Reflex Is Increased in People With Nonspecific Neck Pain. 

Phys Ther. 2016;96(8):1190-1195. doi:10.2522/ptj.20150211. 

14.  Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J SS. Scientific monograph of the quebec task force on 

Whiplash-associated disorders: Redefining “whiplash” and its management. Spine (Phila Pa 1976). 1995;20:1S-73S. 

15.  van der Geest JN, Frens M a. Recording eye movements with video-oculography and scleral search coils: a direct 

comparison of two methods. J Neurosci Methods. 2002;114(2):185-195. 

http://www.ncbi.nlm.nih.gov/pubmed/11856570. 

16.  Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M. Sensorimotor disturbances in chronic neck pain--range of motion, 

peak velocity, smoothness of movement, and repositioning acuity. Man Ther. 2008;13(2):122-131. 

doi:10.1016/j.math.2006.10.002. 

17.  Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM. Neck motion patterns in whiplash-associated 

disorders: quantifying variability and spontaneity of movement. Clin Biomech (Bristol, Avon). 2011;26(1):29-34. 

doi:10.1016/j.clinbiomech.2010.08.008. 

18.  Kristjansson E, Treleaven J. Sensorimotor function and dizziness in neck pain: implications for assessment and 

management. J Orthop Sports Phys Ther. 2009;39(5):364-377. doi:10.2519/jospt.2009.2834. 

19.  Röijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation: Part 1: Basic science and 

principles of assessment and clinical interventions. Man Ther. 2015;20(3):368-377. doi:10.1016/j.math.2015.01.008. 

20.  Hodges PW. Pain and motor control: From the laboratory to rehabilitation. J Electromyogr Kinesiol. 2011;21(2):220-

 

  

228. doi:10.1016/j.jelekin.2011.01.002. 

21.  Falla D, Farina D. Neural and muscular factors associated with motor impairment in neck pain. Curr Rheumatol Rep. 

2007;9(6):497-502. http://www.ncbi.nlm.nih.gov/pubmed/18177604. 

22.  Treleaven J, Jull G, LowChoy N. The relationship of cervical joint position error to balance and eye movement 

disturbances in persistent whiplash. Man Ther. 2006;11:99-106. doi:10.1016/j.math.2005.04.003. 

23.  Elliott J, Jull G, Noteboom JT, Darnell R, Galloway G, Gibbon WW. Fatty infiltration in the cervical extensor muscles in 

persistent whiplash-associated disorders: a magnetic resonance imaging analysis. Spine (Phila Pa 1976). 

2006;31(22):E847-55. doi:10.1097/01.brs.0000240841.07050.34. 

24.  Karlsson A, Leinhard OD, Åslund U, et al. An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With 

Severe Neck Symptoms Associated With Chronic Whiplash-Associated Disorder. J Orthop Sports Phys Ther. 

2016;46(10):886-893. doi:10.2519/jospt.2016.6553. 

25.  Clark NC, Röijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: Clinical assessment and 

intervention. Man Ther. 2015;20(3):378-387. doi:10.1016/j.math.2015.01.009. 

26.  Paige GD. Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of 

eye movements with aging. Exp Brain Res. 1994;98(2):355-372. http://www.ncbi.nlm.nih.gov/pubmed/8050519. 

27.  Kelders WP a, Kleinrensink GJ, van der Geest JN, et al. Compensatory increase of the cervico-ocular reflex with age in 

healthy humans. J Physiol. 2003;553(Pt 1):311-317. doi:10.1113/jphysiol.2003.049338. 

 

 

  



49

Eye stabilization reflexes in traumatic and non-traumatic chronic neck pain  patients    

3

 

  

REFERENCES 
1.  Treleaven J. Dizziness, Unsteadiness, Visual Disturbances, and Postural Control Implications for the Transition to 

Chronic Symptoms After a Whiplash Trauma. Spine (Phila Pa 1976). 2011;36:S211-S217. 

2.  Curatolo M, Bogduk N, Ivancic PC, McLean S a, Siegmund GP, Winkelstein B a. The role of tissue damage in 

whiplash-associated disorders: discussion paper 1. Spine (Phila Pa 1976). 2011;36(25 Suppl):S309-15. 

doi:10.1097/BRS.0b013e318238842a. 

3.  Stenneberg MS, Rood M, de Bie R, Schmitt MA, Cattrysse E, Scholten-Peeters GG. To What Degree Does Active 

Cervical Range of Motion Differ Between Patients With Neck Pain, Patients With Whiplash, and Those Without Neck 

Pain? A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil. October 2016. 

doi:10.1016/j.apmr.2016.10.003. 

4.  Anstey R, Kongsted A, Kamper S, Hancock MJ. Are People With Whiplash-Associated Neck Pain Different From 

People With Nonspecific Neck Pain? J Orthop Sports Phys Ther. 2016;46(10):894-901. doi:10.2519/jospt.2016.6588. 

5.  Treleaven J, Takasaki H. Characteristics of visual disturbances reported by subjects with neck pain. Man Ther. 

2014;19(3):203-207. doi:10.1016/j.math.2014.01.005. 

6.  Hülse. Klinik der Funktionsstörungen des Kopfgelenkbereiches. In: Hülse M, Neuhuber WL WH, ed. Der Kranio-

Zervikale Übergang. Berlin: Sprin; 1998:43-97. 

7.  Wolff H. Störungen des kraniozervikalen Übergang (Kopfgelenkbereich). In: Wolff H, ed. Neurophysiologische Aspekte 

Des Bewegungssystems. Berlin: Springer; 1996. 

8.  Ischebeck BK, de Vries J, Van der Geest JN, et al. Eye movements in patients with Whiplash Associated Disorders: a 

systematic review. BMC Musculoskelet Disord. 2016;17(1):441. doi:10.1186/s12891-016-1284-4. 

9.  Hikosaka O, Maeda M. Cervical effects on abducens motoneurons and their interaction with vestibulo-ocular reflex. 

Exp Brain Res. 1973;18(5):512-530. http://www.ncbi.nlm.nih.gov/pubmed/4794882. 

10.  Van Die GC, Collewijn H. Control of human optokinetic nystagmus by the central and peripheral retina: effects of partial 

visual field masking, scotopic vision and central retinal scotomata. Brain Res. 1986;383(1-2):185-194. 

http://www.ncbi.nlm.nih.gov/pubmed/3768688. 

11.  Montfoort I, Kelders WP a, van der Geest JN, et al. Interaction between ocular stabilization reflexes in patients with 

whiplash injury. Invest Ophthalmol Vis Sci. 2006;47(7):2881-2884. doi:10.1167/iovs.05-1561. 

12.  Kelders WP a, Kleinrensink GJ, van der Geest JN, et al. The cervico-ocular reflex is increased in whiplash injury 

patients. J Neurotrauma. 2005;22(1):133-137. doi:10.1089/neu.2005.22.133. 

13.  de Vries J, Ischebeck BK, Voogt LP, et al. Cervico-ocular Reflex Is Increased in People With Nonspecific Neck Pain. 

Phys Ther. 2016;96(8):1190-1195. doi:10.2522/ptj.20150211. 

14.  Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J SS. Scientific monograph of the quebec task force on 

Whiplash-associated disorders: Redefining “whiplash” and its management. Spine (Phila Pa 1976). 1995;20:1S-73S. 

15.  van der Geest JN, Frens M a. Recording eye movements with video-oculography and scleral search coils: a direct 

comparison of two methods. J Neurosci Methods. 2002;114(2):185-195. 

http://www.ncbi.nlm.nih.gov/pubmed/11856570. 

16.  Sjölander P, Michaelson P, Jaric S, Djupsjöbacka M. Sensorimotor disturbances in chronic neck pain--range of motion, 

peak velocity, smoothness of movement, and repositioning acuity. Man Ther. 2008;13(2):122-131. 

doi:10.1016/j.math.2006.10.002. 

17.  Baydal-Bertomeu JM, Page AF, Belda-Lois JM, Garrido-Jaén D, Prat JM. Neck motion patterns in whiplash-associated 

disorders: quantifying variability and spontaneity of movement. Clin Biomech (Bristol, Avon). 2011;26(1):29-34. 

doi:10.1016/j.clinbiomech.2010.08.008. 

18.  Kristjansson E, Treleaven J. Sensorimotor function and dizziness in neck pain: implications for assessment and 

management. J Orthop Sports Phys Ther. 2009;39(5):364-377. doi:10.2519/jospt.2009.2834. 

19.  Röijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation: Part 1: Basic science and 

principles of assessment and clinical interventions. Man Ther. 2015;20(3):368-377. doi:10.1016/j.math.2015.01.008. 

20.  Hodges PW. Pain and motor control: From the laboratory to rehabilitation. J Electromyogr Kinesiol. 2011;21(2):220-

 

  

228. doi:10.1016/j.jelekin.2011.01.002. 

21.  Falla D, Farina D. Neural and muscular factors associated with motor impairment in neck pain. Curr Rheumatol Rep. 

2007;9(6):497-502. http://www.ncbi.nlm.nih.gov/pubmed/18177604. 

22.  Treleaven J, Jull G, LowChoy N. The relationship of cervical joint position error to balance and eye movement 

disturbances in persistent whiplash. Man Ther. 2006;11:99-106. doi:10.1016/j.math.2005.04.003. 

23.  Elliott J, Jull G, Noteboom JT, Darnell R, Galloway G, Gibbon WW. Fatty infiltration in the cervical extensor muscles in 

persistent whiplash-associated disorders: a magnetic resonance imaging analysis. Spine (Phila Pa 1976). 

2006;31(22):E847-55. doi:10.1097/01.brs.0000240841.07050.34. 

24.  Karlsson A, Leinhard OD, Åslund U, et al. An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With 

Severe Neck Symptoms Associated With Chronic Whiplash-Associated Disorder. J Orthop Sports Phys Ther. 

2016;46(10):886-893. doi:10.2519/jospt.2016.6553. 

25.  Clark NC, Röijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: Clinical assessment and 

intervention. Man Ther. 2015;20(3):378-387. doi:10.1016/j.math.2015.01.009. 

26.  Paige GD. Senescence of human visual-vestibular interactions: smooth pursuit, optokinetic, and vestibular control of 

eye movements with aging. Exp Brain Res. 1994;98(2):355-372. http://www.ncbi.nlm.nih.gov/pubmed/8050519. 

27.  Kelders WP a, Kleinrensink GJ, van der Geest JN, et al. Compensatory increase of the cervico-ocular reflex with age in 

healthy humans. J Physiol. 2003;553(Pt 1):311-317. doi:10.1113/jphysiol.2003.049338. 

 

 

  



 

  

Chapter 4: Cervico-ocular Reflex Is Increased in People with 

Nonspecific Neck Pain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

de Vries, Jurryt 

Ischebeck, Britta K 

Voogt, Lennard P 

Janssen, Malou 

Frens, Maarten A 

Kleinrensink, Gert-Jan 

van der Geest, Jos N  

 

published in: Physical Therapy 2016;96. doi:10.2522/ptj.20150211.  



 

  

Chapter 4: Cervico-ocular Reflex Is Increased in People with 

Nonspecific Neck Pain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

de Vries, Jurryt 

Ischebeck, Britta K 

Voogt, Lennard P 

Janssen, Malou 

Frens, Maarten A 

Kleinrensink, Gert-Jan 

van der Geest, Jos N  

 

published in: Physical Therapy 2016;96. doi:10.2522/ptj.20150211.  

	 

  

Chapter 4: Cervico-ocular Reflex Is Increased in People with 

Nonspecific Neck Pain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

de Vries, Jurryt 

Ischebeck, Britta K 

Voogt, Lennard P 

Janssen, Malou 

Frens, Maarten A 

Kleinrensink, Gert-Jan 

van der Geest, Jos N  

 

published in: Physical Therapy 2016;96. doi:10.2522/ptj.20150211.  

 

  

Chapter 4: Cervico-ocular Reflex Is Increased in People with 

Nonspecific Neck Pain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

de Vries, Jurryt 

Ischebeck, Britta K 

Voogt, Lennard P 

Janssen, Malou 

Frens, Maarten A 

Kleinrensink, Gert-Jan 

van der Geest, Jos N  

 

published in: Physical Therapy 2016;96. doi:10.2522/ptj.20150211.  



52

Chapter 4 

  

ABSTRACT  

Background Neck pain is a widespread complaint. People experiencing neck pain often present an 

altered timing in contraction of cervical muscles. This (altered) afferent information elicits the cervico-

ocular reflex (COR), which stabilizes the eye in response to trunk-to-head movements. The vestibulo-

ocular reflex (VOR) elicited by the vestibulum is thought to be unaffected by afferent information from 

the cervical spine. 

Objective Measurement of COR and VOR in people with non-specific neck pain. 

Design Cross-sectional design according to the STROBE statement. 

Methods An infrared eye-tracking device was used to record the COR and the VOR while the participant 

was sitting on a rotating chair in darkness. Eye velocity was calculated by taking the derivative of the 

horizontal eye position. Parametric statistics were performed. 

Results The mean COR gain in the control group (N= 30) was 0.26 (SD= 0.15), against 0.38 (SD= 0.16) 

in the non-specific neck pain group (N= 37). Analyses of covariance were performed to analyze 

differences in COR and VOR gains with age and gender as covariates. Analyses of covariance showed 

a significantly increased COR in people with neck pain (p= 0.046). The VOR between the control group 

with a mean VOR of 0.67 (SD= 0.17) and the non-specific neck pain group with a mean VOR of 0.66 

(SD=0.22) was not significantly different (p= 0.203).  

Limitations Measuring eye movements while the participant is sitting on a rotating chair in complete 

darkness is technically complicated. 

Conclusions This study suggests that people with non-specific neck pain have an increased COR. The 

COR is an objective non-voluntary eye reflex and an unaltered VOR. This study shows that an increased 

COR is not restricted to traumatic neck pain patients.  

 

  

INTRODUCTION 

Neck pain is a major problem worldwide, and is a common reason for individuals to seek care from 

physiotherapists and manual therapists.1, 2 In addition to pain, concomitant symptoms are often present, 

including headache (65% of cases), dizziness (31%)3, and visual disturbances.4 Visual disturbances in 

people with neck pain might be related to deficits in oculomotor control.5-8 In the majority of people with 

neck pain, a specific cause cannot be identified, and the term "non-specific neck pain" is used.9, 10 

People experiencing neck pain often present functional disorders (such as an altered timing in 

contraction) of the cervical muscles, such as the m. longus colli and the m. longus capitis.11-13 These 

cervical muscles provide information to, and receive information from, the central nervous system.14-16 

Animal studies have showed that pain has profound effects on muscle spindle afferents.17, 18 In humans, 

cervical pain leads to, for instance, a worse joint position sense indicating a disturbed proprioception.19-

21 Afferent information from the cervical muscles is sent to the vestibular nuclei where it converges with 

other information regarding head movements relayed by the visual and vestibular systems.22 It can be 

argued that incongruences between the cervical, vestibular, and visual systems are likely to be 

associated with dizziness and decreased postural stability.23 

The cervical afferents are not only important for controlling head movements. They are also involved in 

the cervico-ocular reflex (COR). The COR stabilizes the eye in response to trunk-to-head movements.24-

26 The COR operates in conjunction with the vestibulo-ocular reflex (VOR). The VOR stabilizes the eye 

in response to vestibular input, i.e., movements of the head in space. The COR is elicited by 

proprioception of the facet joints of the cervical spine and deep muscles of the neck. The strength of the 

COR can be modified as a result of altered visual input27 and by immobilization of the cervical spine by 

means of a stiff neck collar.28 The COR increases in people aged over 60 years as a compensatory 

mechanism for the sensory loss of the vestibulum.29. In people with a Whiplash Associated Disorder 

(WAD), this compensatory mechanism is not seen28, 30. The strength of the COR is increased in people 

with WAD although there is no compensatory decline in VOR.30, 31 To date, no research on COR in 

people with non-specific neck pain has been conducted. 

Here we describe the two eye movement reflexes (COR and VOR) in people with non-specific neck pain 

who are likely to have deficits in neck proprioception.32 Therefore, we expect that the COR but not the 

VOR will be altered, compared to healthy controls. 

 

METHODS 

The guidelines of the STROBE statement (Strengthening the Reporting of Observational Studies in 

Epidemiology)33 were used for the outline of this paper. 
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Design Overview 

We conducted a cross-sectional study involving participants with neck pain and healthy controls. 

Setting and Participants 

Participants with neck pain were recruited via physiotherapy practices in Rotterdam, The Netherlands. 

People with non-specific neck pain were asked personally by their physiotherapist to participate in the 

study. These physiotherapists had been briefed about the study and had information letters for the 

patients. If patients formally consented to being contacted by the investigator, the physiotherapist 

contacted the investigator. Healthy controls were recruited by means of an information letter spread 

among co-workers, students, and other people in the Erasmus University Medical Center and the 

Rotterdam University of Applied Sciences having no personal or legal relationship with the 

investigator. All participants were recruited and tested between October 2012 and September 2014. 

The study was approved by the local ethical board of the Erasmus MC. All participants gave prior 

written informed consent. 

Participants with neck pain were eligible if they 1) were between the ages of 18 and 65 years; 2) spoke 

Dutch; 3) experienced non-specific neck pain (defined as the sensation of mild to moderate pain and 

discomfort in the neck area with possible radiation to the thoracic spine and one or both shoulders) 

continuously for less than one year; and 4) were physically able to undergo COR and VOR 

measurements (which involved sitting immobilized in a chair for 30 minutes). Participants were excluded 

if they: 1) used medication that influenced alertness or balance (e.g., benzodiazepines, barbiturates); 2) 

suffered from any neurological disorder, or had vestibular or visual problems; or 3) had a history of neck 

trauma (a history would make the diagnosis specific instead of non-specific). Healthy controls were 

eligible if they; 1) were between the ages of 18 and 65; 2) spoke Dutch; 3) had not experienced any 

complaints of the cervical spine (including cervicogenic headache and dizziness) in the last 5 years; and 

4) were without a history of neck trauma. 

Demographic and Clinical Characteristics 

Participants filled in a standard demographic questionnaire (gender and age were measured and 

labeled as possible confounders). In participants with neck pain, the intensity of perceived pain was 

evaluated using a numeric pain rating scale (NRPS), the functional disability due to neck pain was 

evaluated using the Neck Disability Index (NDI), and the Dizziness Handicap Inventory (DHI) was 

used to assess the perceived handicap due to dizziness. The NRPS, NDI, and DHI have shown good 

psychometric properties in people with neck pain.34-36 

In all participants, the cervical range of motion (CROM) was measured with a CROM device 

(Performance Attainment Associates, USA). The CROM device consists of a magnet and three 

compass-like instruments positioned in the three directions of neck mobility (rotation, flexion/extension, 

and lateroflexion). The CROM measures the maximum range of motion (in degrees) in each of these 

directions.37 

Recording of Reflexive Eye Movements 

Monocular (left) eye positions were recorded by infrared video-oculography (Eyelink 1, SMI, Germany: 

 

  

see van der Geest & Frens38) at a sample rate of 250 Hz. Eye position was calibrated using the built-in 

nine-point calibration routine. Eye movements were recorded during either cervical or vestibular 

stimulation in complete darkness by rotating the chair in which the participant was seated. The chair 

was attached to a motor (Harmonic Drive, Germany) that ensured sinusoidal chair rotation without any 

backlash. The trunk was fixed to the chair at shoulder level by a double-belt system. A sensor 

connected to the chair recorded chair position, and stored the data on a computer along with eye 

positions. 

In both stimulation paradigms (COR and VOR), participants were instructed to keep their eyes open 

during the stimulation and to look at a position directly in front of the set-up. This position was briefly 

indicated by means of a laser dot before the rotation started. Head position was fixed in both conditions 

by means of a custom-made biteboard. In both stimulation paradigms, the position of the biteboard was 

set so that the axis of rotation was under the midpoint of the inter-aural line.  

During the COR stimulation, the biteboard was mounted to the floor to fix the position of the head in 

space (see Figure 1). Rotation of the chair induced pure cervical stimulation, which elicits the COR in 

isolation. The chair was rotated for 134 seconds around the vertical axis with an amplitude of 5.0 

degrees and a frequency of 0.04 Hz. This yielded 5 full sinusoidal rotations of the chair with a peak 

velocity of 1.26 degrees/s. During the VOR stimulation, the biteboard was mounted to the chair so that 

rotation of the chair induced pure vestibular stimulation (see Figure 1). The chair was rotated for 33 

seconds around the vertical axis with an amplitude of 5.0 degrees and a frequency of 0.16 Hz. This 

yielded 5 full sinusoidal rotations of the chair with a peak velocity of 5.03 degrees/s. 

 

Figure 1. A schematic representation of the experimental set-up. In both paradigms the participants had to look at a position 
directly in front of the set-up. For the COR, the body of the subjects was rotated while the head of the participants was held fixed 
relative to the floor to fixate the position of the head in space. For the VOR, the body of the subjects was rotated while the head 
of the participants was held fixed relative to the chair. 
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Data Processing and Analyses  

Eye velocity was calculated by taking the derivative of the horizontal eye position signal. After removal 

of blinks, saccades, and fast phases (using a 20 degrees-per-second threshold), a sine wave was fitted 

through the eye velocity signal data. Stimulus velocity was derived from chair position (COR and VOR 

measurement) data. The gain of the response was defined as the amplitude of the eye velocity fit divided 

by the peak velocity of the chair rotation (COR: 1.26 degrees/s, VOR: 5.03 degrees/s). Therefore, a gain 

of one reflects that the peak velocity of the eye was the same as the peak velocity of the chair rotation. 

All data processing was done with Matlab R2013a (The MathWorks Inc., Natick, MA).  

Statistical Analysis 

Descriptive statistics were computed for the entire sample for the gains of the COR and VOR (outcome 

parameters), NDI, DHI, perceived pain, CROM (outcome variables), and age and gender (possible 

confounders). Since the data was distributed normally (Kolmogorov-Smirnov test), parametric statistics 

were applied. Two analyses of covariance (ANCOVA) were performed to analyze differences in COR 

and VOR gains, respectively, between healthy controls and participants with neck pain with age and 

gender as covariates. Correlations between the gains (outcome parameters) and outcome variables 

were assessed using Pearson correlation coefficients. An alpha level of P < 0.05 was considered 

significant for all statistical tests. The data was analyzed with IBM SPSS Statistics for Windows, version 

22 (IBM Corp., Armonk, NY). 

 

RESULTS 

Forty-one participants with neck pain and 30 healthy controls participated in the study. Eye movement 

recordings were successful in 37 participants with neck pain. In two participants, it was not possible to 

track the eye of the participant; in one participant, calibration of the eye tracking failed, and in one 

participant we failed to store the data properly on the hard disk. 

Table 1 shows the group characteristics. Healthy controls were on average 13.8 years younger than 

participants with neck pain. There was a correlation between the VOR gain and age in the control group 

(r=0.370, p=0.048). In the neck pain group, there was no correlation  

between the VOR gain and age (r=0.163, p=0.364). No other correlations between age, COR  

 gain, VOR gain, and the CROM were found within each group (all r <0.291 ).  

 

 Control (N=30)  Neck pain (N=37)  

 Mean (SD) 95% CI Mean (SD) 95% CI 

Age in years  28.3 (9.1) 25.7, 32.3 42.1 (12.3)* 36.5, 44.9 

Male/female 15/15 - 12/25 - 

COR  0.26 (0.15) 0.21, 0.32 0.38 (0.16)* 0.31, 0.42 

VOR  0.67 (0.17) 0.61, 0.74 0.66 (0.22) 0.56, 0.72 

 

  

CROM Rotation  139 (18) 133, 146 134 (27) 126, 145 

CROM 
flexion/extension  

133 (23) 123, 139 111 (25)* 103, 122 

Pain  - - 4.1 (2.0) 3.5, 4.8 

Neck Disability Index  - - 23.4 (12.8) 20.5, 28.4 

Dizziness Handicap 
Inventory  

- - 18.2 (17.3) 12.3, 24.7 

Tabel 1: Comparison of demographic and questionnaire data between asymptomatic controls and participants with neck pain. 
NDI scores range from 0 (no disability) to 100 (maximal disability), DHI scores range from 0 (no disability) to 100 (maximal 
disability), CROM= cervical range of motion. Age and gender were identified as possible confounders.  
* Significant difference between control and neck pain group at p < 0.05. 
 

Participants with neck pain showed an increased COR after controlling for age and gender, F(1,62) = 

4.15, p= 0.046, η²=0.063), but no significant difference in VOR F(1,58)= 1.66 p= 0.203, η²=0.028), 

compared to healthy controls. The CROM was reduced in participants with non-specific neck pain in the 

vertical plane (flexion/extension, F(1,60)= 4.21, p= 0.045, η²=0.066), but not in the horizontal plane 

(Rotation, F(1,60)= 0.33, p= 0.568, η²=0.005). 

The correlation between the gains of the two eye movement reflexes was not significant when the data 

were pooled (r= 0.211, p=0.102; Figure 2), or analyzed per group, neck pain group (r= 0.304, p=0.091) 

and in the control group (r= 0.152, p=0.431). 
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Figure 2. Scatterplot of the COR and VOR for all participants. In addition, correlations between the COR or VOR on the one hand, 
and pain levels, location of the neck pain, range of motion of the cervical spine, NDI, or DHI scores on the other hand were not 
significant (r between 0.037 and -0.233, all p > 0.172). The correlation between COR gain and pain level at the moment of 
measurement was close to significance (r= -0.304, p=0.07). 
 

DISCUSSION  

We observed a higher COR but an unaltered VOR in a group of participants with non-specific neck pain 

group compared to a group of healthy controls. This is the first study investigating the COR in non-

traumatic neck pain. Similar results were obtained in a previous study in people with WAD.5 This 

suggests that an increased COR is not restricted to specific patient groups with neck pain. 

An explanation for an increased COR in people with neck pain could be altered afferent information from 

the cervical spine. In the cervical spine, the information from muscles is a dominant source of 

information.39, 40 Deficits in afferent information are suggested by MRI studies showing a widespread 

presence of fatty infiltrates in the neck muscles of patients with chronic whiplash41 and to a lesser extent 

in idiopathic neck pain.42 Furthermore, muscles of the cervical spine (especially in the suboccipital 

 

  

region) have an exceptionally high density of muscle spindles.43, 44 An alteration of afferent information 

of the cervical spine is therefore likely to affect the COR.  

Another explanation is that people with neck pain avoid movements in the end-range of motion. This 

could also alter afferent information of the cervical spine and, in turn, affect the COR. Our data suggest 

that this might be the case for the vertical plane where we observed a reduction in the range of motion 

in participants with neck pain. However, the higher age in the non-specific neck pain group could also 

explain the reduced range of motion.45 In the rotational plane, there was no difference between the two 

groups in contrast to other studies.46 This difference could be explained by the low to moderate neck 

pain and disability levels in our neck pain group. 

Normally, the afferent information from the vestibular and cervical system cooperate in order to maintain 

a clear visual image during head and eye movements 47. Our findings suggest that the VOR does not 

compensate for the increased COR in the neck pain group. This mismatch between COR and VOR 

could lead to visual disturbances ,4 dizziness,48 and postural control disturbances.49-51 In our study, we 

found no correlation between pain levels, dizziness and the COR. This lack of correlation could be 

explained by the fact that the study population scored rather low on both the DHI and NPRS.  

Measuring eye movements in patients might be useful for diagnostic and therapeutic purposes. For 

instance, it is not possible to influence COR deliberately. This makes the COR an objective outcome 

measure of oculomotor function that could be used as an additional test in clinical settings. This 

objectivity contrasts with other rather subjective outcome measures used to diagnose neck pain, such 

as questionnaires on disabilities and pain intensity. However, objectively quantifying the ocular reflexes 

also has some limitations. For instance, eye movements need to be measured with adequate precision 

and accuracy. In the present study, we measured reflexive eye movements by means of video-

oculography.38, 52, 53 Measuring eye movements while the participant is sitting on a rotating chair in 

complete darkness is technically complicated. Furthermore, video-oculography is rather expensive. A 

cheaper and easier way to measure eye movements is by means of electro-oculography (EOG). 

Although this method is widely used in clinical settings, it is less suitable for recording VOR and COR 

eye movements due to its limited accuracy and reliability.52, 53 

Another limitation is related to the fact that that we only observed group effects. It would be interesting 

to investigate the possibility of assessing oculomotor control on an individual level, or as part of a 

function profile of people with neck pain. Another interesting question yet to be answered is whether it 

is possible to use the COR as an outcome measure to evaluate the effectiveness of interventions in 

people with neck pain. In a future study, we will make a direct comparison of the COR between people 

with non-specific neck pain, people with WAD, and people without neck pain. It might well be that there 

is an difference between in the COR between these groups. Another interesting direction for future 

research could be to investigate the relationship between COR and visual complaints, which occur 

frequently in people with neck pain4. 
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Normally, the afferent information from the vestibular and cervical system cooperate in order to maintain 

a clear visual image during head and eye movements 47. Our findings suggest that the VOR does not 

compensate for the increased COR in the neck pain group. This mismatch between COR and VOR 

could lead to visual disturbances ,4 dizziness,48 and postural control disturbances.49-51 In our study, we 

found no correlation between pain levels, dizziness and the COR. This lack of correlation could be 

explained by the fact that the study population scored rather low on both the DHI and NPRS.  

Measuring eye movements in patients might be useful for diagnostic and therapeutic purposes. For 

instance, it is not possible to influence COR deliberately. This makes the COR an objective outcome 

measure of oculomotor function that could be used as an additional test in clinical settings. This 

objectivity contrasts with other rather subjective outcome measures used to diagnose neck pain, such 

as questionnaires on disabilities and pain intensity. However, objectively quantifying the ocular reflexes 

also has some limitations. For instance, eye movements need to be measured with adequate precision 

and accuracy. In the present study, we measured reflexive eye movements by means of video-

oculography.38, 52, 53 Measuring eye movements while the participant is sitting on a rotating chair in 

complete darkness is technically complicated. Furthermore, video-oculography is rather expensive. A 

cheaper and easier way to measure eye movements is by means of electro-oculography (EOG). 

Although this method is widely used in clinical settings, it is less suitable for recording VOR and COR 

eye movements due to its limited accuracy and reliability.52, 53 

Another limitation is related to the fact that that we only observed group effects. It would be interesting 

to investigate the possibility of assessing oculomotor control on an individual level, or as part of a 

function profile of people with neck pain. Another interesting question yet to be answered is whether it 

is possible to use the COR as an outcome measure to evaluate the effectiveness of interventions in 

people with neck pain. In a future study, we will make a direct comparison of the COR between people 

with non-specific neck pain, people with WAD, and people without neck pain. It might well be that there 

is an difference between in the COR between these groups. Another interesting direction for future 

research could be to investigate the relationship between COR and visual complaints, which occur 

frequently in people with neck pain4. 
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We conclude that a deficit in eye stabilization function, namely an increased COR, can also be observed 

patients suffering from neck pain without any direct causes, i.e., non-specific neck pain. We suggest 

that the evaluation of oculomotor control in patients with neck pain and concomitant symptoms such as 

decreased postural stability might be worthwhile in clinical settings.54  
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ABSTRACT 
Background Eye stabilization reflexes, in particular the cervico-ocular reflex (COR), are altered in 

chronic traumatic and non-traumatic, neck pain patients. At present, it is unknown whether this alteration 

is related to cervical functioning, personality traits and/ or patients’ complaints. 

Objective To investigate whether the gains of the COR and the vestibulo-ocular reflex (VOR) are 

correlated with biomechanical and behavioral functioning and with the complaints of chronic, severely 

impaired neck pain patients.  

Design Cross-sectional study 

Methods One hundred sixty-four patients with chronic traumatic or non-traumatic neck pain were 

included. The COR and VOR gains were measured with an infrared eye tracking device with the subject 

sitting on a rotating chair in a darkened room and with the head fixed. The correlations were analyzed 

between the COR and VOR gains and personal factors, cervical functioning, personality traits, 

impairments in daily life and cognitive complaints. 

Results No significant correlation between the COR and the other parameters was present. The COR 

gain was moderately correlated with neck pain (r= 0.281, p= 0.008, without Bonferroni correction). The 

VOR gain was correlated with age (r = 0.329, p < 0.001).  

Conclusion Although The COR is disturbed in patients with neck pain, this disturbance cannot be 

associated with factors like cervical functioning or other impairments in daily life.  

Keywords cervico-ocular reflex, vestibulo-ocular reflex, chronic neck pain patients, whiplash associated 

disorders 

  

 

  

INTRODUCTION 
The present study is part two of a two-part study on eye stabilization reflexes in chronic, severely 

impaired traumatic and non-traumatic neck pain patients 1. Part one showed that in both traumatic and 

non-traumatic neck pain patients altered eye stabilization reflexes are present and that the origin of 

complaints did not seem to be associated with deviant oculomotor behavior. In this part two other 

possible explanations for the reflex alterations are explored. 

Traumatic and non-traumatic neck pain are a worldwide common health problem with a prevalence of 

14.3% in the Netherlands 2–4. Patients suffer of pain 5–7, diminished range of motion 5,8, loss of 

sensorimotor control 5,9,10, concentration difficulties 5,7, fatigue 5 and oculomotor disorders 5,9–14. The 

oculomotor disorders are associated with problems of blurred vision, dizziness and loss of concentration 

for instance  when reading 9,11,15–17. Part of the oculomotor disorders might be caused by altered eye 

stabilization reflexes 12,18. In patients with ‘Whiplash Associated Disorders’ (WAD) the normally nearly 

absent cervico-ocular reflex (COR) is elevated without a compensatory alteration of the vestibulo-ocular 

reflex (VOR) 1,14,19. 

Initially, it was thought that only patients with WAD have altered eye stabilization reflexes 14,19.  However, 

present studies show that oculomotor disorders are not limited to acute traumatic neck pain patients, 

but are also present in non-traumatic chronic neck pain patients 1,13. It is conceivable that factors other 

than trauma, may play a role in the disturbed eye movements. However, this is yet to be elucidated. To 

understand more about the alteration of eye stabilization reflexes, a first step is to study the association 

of these reflexes with several other biomechanical and behavioral factors. In general, poor recovery of 

patients with neck pain is already known to be associated with the level of experienced pain and 

disability, post-traumatic stress symptoms and catastrophizing 20.  

In two previous studies from our group, no significant associations were observed between altered eye 

stabilization reflexes and a few patient characteristics. In a small study involving 37 chronic neck pain 

patients and 30 controls, the range of motion, degree of pain, dizziness and neck disability were not 

correlated with the gain of the eye stabilization reflexes 13. In another study involving 28 healthy 

individuals, no relationship between superficial muscle activity in the cervical spine and eye stabilization 

reflexes could be found 21. However, there are three important differences with the current study: 1. both 

earlier studies had a limited number of subjects; 2. the patients of the current study are more severely 

impaired chronic neck pain patients who already received primary care physiotherapy without benefit; 

3. the studied parameters are extended to provide a broad overview. 

The aim of the present study is to identify possible factors that may affect eye stabilization reflexes in 

chronic neck pain patients. The present study assesses the eye stabilization reflexes in a large group 

of chronic traumatic and non-traumatic neck pain patients. Relationships are explored between eye 

stabilization reflexes (COR and VOR) and several factors, which we grouped in five clusters (figure 1): 

personal characteristics, biomechanical factors, behavioral factors and patients’ complaints. This 

inventory will help to get more insight in the association between oculomotor function and the diverse 

dysfunctions and complaints of chronic neck pain patients. 
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It is essential to investigate which factors may affect eye stabilization reflexes in patients with neck pain. 

This knowledge will help in the understanding of oculomotor problems of these patients. Furthermore, 

on long term it may contribute to improvement of the application of eye stabilization reflexes in the 

diagnosis and treatment of the group of patients with neck pain.  

 

Figure 1: Setup of the current study with all measurement parameters divided in different clusters 
 

METHODS 
Participants 

164 patients with chronic neck pain were included from a Dutch outpatient rehabilitation clinic for patients 

with chronic complaints of the neck and/ or the cervical spine. All patients were included in the study 

prior to the start of their rehabilitation trajectory. Participants with neck pain were included when they 1) 

were referred for treatment with a diagnosis of chronic neck pain (primarily in the neck for more than six 

months); 2) had received primary care physiotherapy more than 9 times without benefit; 3) were between 

 

  

the age of 18 and 65 years; 4) were able to understand and speak the Dutch language and 5) were 

physically able to undergo COR and VOR measurements (which involved sitting immobilized in a chair 

for 30 minutes). None of the participants had any ocular abnormalities that could not be corrected by 

wearing glasses or contact lenses. All included patients also participated in another study (Ischebeck 

et. al, 2017). 

The study was approved by the local ethical board of Erasmus MC and all participants gave prior written 

informed consent. 

 

Experimental setup 

The experimental setup was identical to the setup described in earlier studies 1,13. In short, infrared 

video-oculography (Eyelink 1, SMI, Germany 22) at a sample rate of 250 Hz was used for the recording 

of monocular (left) eye positions while people were rotated using a motor driven revolving chair 

(Harmonic Drive, Germany).  

The motor induced continuous sinusoidal chair rotations around the vertical axis without any detectible 

backlash. Chair position was recorded with sensors and stored on the computer. 

The subject’s trunk was fixed to the chair at shoulder level by a double-belt system. Head position was 

fixed by means of a custom-made bite board. The bite board was positioned in line with the axis of chair 

rotation under the midpoint of the inter-aural line and fixed to the floor to guarantee a fixed head position. 

In this case, rotation of the chair induced pure cervical stimulation, which elicits the COR in isolation. In 

the COR stimulation, the chair rotated for 134 seconds with an amplitude of 5.0 degrees and a frequency 

of 0.04 Hz. This yielded five full sinusoidal rotations of the chair with peak velocity of 1.26 degrees/s. 

When the bite board was mounted to the chair, rotation of the chair induced pure vestibular stimulation, 

eliciting the VOR in isolation. In the VOR stimulation, the chair rotated for 33 seconds with an amplitude 

of 5.0 degrees and a frequency of 0.16 Hz. This yielded five full sinusoidal rotations of the chair with 

peak velocity of 5.03 degrees/s.  

In both eye movement stimulations, which were ran in complete darkness, participants were instructed 

to look at a position directly in front of the set-up which was briefly indicated by means of a laser dot, 

before the experiments started.  

The gain of the response was defined as the amplitude of the eye velocity fit divided by the peak velocity 

of the chair rotation. A gain of 1 thus reflects that peak velocity of the eye was the same as peak velocity 

of the stimulus. 

 

The neck function in this study was assessed, by means of the active cervical range of motion (CROM) 

and the ‘Joint Position Sense Test’ (JPS). The amount of CROM in both the horizontal and vertical plane 

was measured using the CROM measurement device (Performance Attainments Associates, USA) 23. 
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The cervical JPS test was assessed by testing the ability of the blindfolded participant to accurately 

relocate their head to the neutral position after an active cervical rotation 24. The outcome measure was 

the difference between the starting and ending point in degrees (mean of three trials).  

The participants were divided into two groups by origin of complaints: traumatic neck pain patients (T 

group) and non-traumatic neck pain patients (NT group). The traumatic group consisted of patients with 

Whiplash Associated Disorders (WAD), grade 2 or 3 25 and patients with traumatic origin of the 

complaints, but not WAD (e.g. bumping of the head or falling of a horse or bicycle). As well as the 

duration since the onset of complaints (defined in months) and the cultural background (native or 

foreigner) was ascertained.  

To assess more subjective parameters, stress and fear avoidance behavior, a numeric rating scale for 

stress (1-10) and the Tampa questionnaire were used 26,27.  

Perceived impairment was measured with the Neck Disability Index questionnaire (NDI) 28, the VAS 

Numeric rating scale for pain (VAS pain) 29 and fatigue (VAS fatigue). The presence of headache, 

dizziness, photophobia and phonophobia, concentration difficulties, temporomandibular joint (TMJ) pain 

and nausea and the maximal pain free endurance of daily activities (walking, sitting, and standing) was 

inventoried as well. 

  

Data Analysis 

The data processing of the eye stabilization reflexes was done with custom-written scripts in Matlab 

R2013a (The MathWorks Inc., Natick, MA). Eye movement reflexes were analyzed by examining the 

eye velocity relative to the chair/ stimulus velocity, referred to as the gain of the eye movement. Eye 

velocity was calculated by taking the derivative of the horizontal eye position signal. Blinks, saccades 

and fast phases were removed (using a 20 degrees-per-second threshold) and a sine wave was fitted 

through the eye velocity signal data. The gain of the response was defined as the amplitude of the eye 

velocity fit divided by the peak velocity of the chair rotation (COR: 1.26 degrees/s; VOR: 5.03 degrees/s). 

A gain of 1 reflects that eye peak velocity equals the peak velocity of the stimulus.  

 

Statistical analysis 

For statistical analyses SPSS 22 (IBM Corp.,Armonk, NY, USA) was used. The COR and VOR gain 

were analyzed and a normal distribution was not found (Shapiro–Wilk test: p < 0.05). 

Correlations between the COR gain, VOR gain and the different variables were statistically assessed 

using non-parametric statistics (Spearman’s rho) (cervical range of motion, JPS error, duration of 

complaints, cultural background, age, gender, Tampa, NDI, VAS pain, VAS fatigue, NRS stress, 

presence of headache, dizziness, nausea, photophobia and phonophobia, concentration deficits, jaw 

pain, fatigue and endurance of activity’s). No family-wise error rate (FWER) correction was applied. 

 

  

Additionally, the patients were divided into two groups by origin (traumatic versus non-traumatic group) 

and differences were statistically assessed by non-parametric statistics using Mann-Whitney tests. 

 

RESULTS 
164 patients were included into the study (median age 42 (IQR 19); 61 males, 103 female). Not all data 

could be obtained from all subjects due to technical problems or missing responses (the number of 

participants is indicated in tables 1 and 2). Correlations (without FWER correction) between the eye 

stabilization reflexes (COR and VOR) and the other parameters are presented in table 1.  

No significant associations were found between the COR and the five clusters (cervical function, 

personal factors, personality traits, impairments in daily life and cognitive complaints). Regarding the 

individual items, the degree of reported pain (VAS) was significantly (without FWER correction) 

correlated with COR gain (r= 0.281). The VOR gain correlated moderately (without FWER correction) 

with two items in the cluster personal factors: with age (r = 0.329) and weakly with duration of complaints 

(r= 0.287). 

 



71

5

What affects eye stabilization reflexes of chronic neck pain patients? 

  

The cervical JPS test was assessed by testing the ability of the blindfolded participant to accurately 

relocate their head to the neutral position after an active cervical rotation 24. The outcome measure was 

the difference between the starting and ending point in degrees (mean of three trials).  

The participants were divided into two groups by origin of complaints: traumatic neck pain patients (T 

group) and non-traumatic neck pain patients (NT group). The traumatic group consisted of patients with 

Whiplash Associated Disorders (WAD), grade 2 or 3 25 and patients with traumatic origin of the 

complaints, but not WAD (e.g. bumping of the head or falling of a horse or bicycle). As well as the 

duration since the onset of complaints (defined in months) and the cultural background (native or 

foreigner) was ascertained.  

To assess more subjective parameters, stress and fear avoidance behavior, a numeric rating scale for 

stress (1-10) and the Tampa questionnaire were used 26,27.  

Perceived impairment was measured with the Neck Disability Index questionnaire (NDI) 28, the VAS 

Numeric rating scale for pain (VAS pain) 29 and fatigue (VAS fatigue). The presence of headache, 

dizziness, photophobia and phonophobia, concentration difficulties, temporomandibular joint (TMJ) pain 

and nausea and the maximal pain free endurance of daily activities (walking, sitting, and standing) was 

inventoried as well. 

  

Data Analysis 

The data processing of the eye stabilization reflexes was done with custom-written scripts in Matlab 

R2013a (The MathWorks Inc., Natick, MA). Eye movement reflexes were analyzed by examining the 

eye velocity relative to the chair/ stimulus velocity, referred to as the gain of the eye movement. Eye 

velocity was calculated by taking the derivative of the horizontal eye position signal. Blinks, saccades 

and fast phases were removed (using a 20 degrees-per-second threshold) and a sine wave was fitted 

through the eye velocity signal data. The gain of the response was defined as the amplitude of the eye 

velocity fit divided by the peak velocity of the chair rotation (COR: 1.26 degrees/s; VOR: 5.03 degrees/s). 

A gain of 1 reflects that eye peak velocity equals the peak velocity of the stimulus.  

 

Statistical analysis 

For statistical analyses SPSS 22 (IBM Corp.,Armonk, NY, USA) was used. The COR and VOR gain 

were analyzed and a normal distribution was not found (Shapiro–Wilk test: p < 0.05). 

Correlations between the COR gain, VOR gain and the different variables were statistically assessed 

using non-parametric statistics (Spearman’s rho) (cervical range of motion, JPS error, duration of 

complaints, cultural background, age, gender, Tampa, NDI, VAS pain, VAS fatigue, NRS stress, 

presence of headache, dizziness, nausea, photophobia and phonophobia, concentration deficits, jaw 

pain, fatigue and endurance of activity’s). No family-wise error rate (FWER) correction was applied. 

 

  

Additionally, the patients were divided into two groups by origin (traumatic versus non-traumatic group) 

and differences were statistically assessed by non-parametric statistics using Mann-Whitney tests. 

 

RESULTS 
164 patients were included into the study (median age 42 (IQR 19); 61 males, 103 female). Not all data 

could be obtained from all subjects due to technical problems or missing responses (the number of 

participants is indicated in tables 1 and 2). Correlations (without FWER correction) between the eye 

stabilization reflexes (COR and VOR) and the other parameters are presented in table 1.  

No significant associations were found between the COR and the five clusters (cervical function, 

personal factors, personality traits, impairments in daily life and cognitive complaints). Regarding the 

individual items, the degree of reported pain (VAS) was significantly (without FWER correction) 

correlated with COR gain (r= 0.281). The VOR gain correlated moderately (without FWER correction) 

with two items in the cluster personal factors: with age (r = 0.329) and weakly with duration of complaints 

(r= 0.287). 

 



72

Chapter 5 

  

  COR   VOR   

  N r p N r p 

Personal 
factors 

Age 91 0,168 0,112 94 ,329 0,001 

 cultural 
background 

91 -0,073 0,491 94 -0,161 0,122 

 duration of 
complaints 76 0,037 0,753 80 ,287 0,01 

 Origin of 
complaints 

91 0,006 0,956 94 0,035 0,741 

Cervical 
function 

CROM vertical 90 -0,067 0,527 93 -0,059 0,571 

 CROM horizontal 90 -0,024 0,821 93 0,019 0,859 

 JPS 67 0,053 0,672 70 0,17 0,16 

Personality 
traits 

Tampa 36 0,069 0,688 38 -0,116 0,486 

 Stress 31 0,065 0,727 30 -0,308 0,098 

Impairments in 
daily life 

NDI 34 0,144 0,416 36 -0,168 0,327 

 walking 36 -0,085 0,620 38 0,24 0,147 

 sitting 36 -0,255 0,134 38 0,27 0,102 

 standing 36 -0,118 0,495 38 0,179 0,282 

 pain 89 0,281 0,008 92 -0,052 0,625 

 TMJ pain 87 -0,157 0,146 90 0,042 0,693 

 fatigue 87 -0,178 0,100 90 -0,13 0,222 

Cognitive 
complaints 

Headache 88 0,081 0,455 91 -0,079 0,459 

 Dizziness 88 0,085 0,432 91 -0,167 0,114 

 Photophobia and 
phonophobia 

87 0,104 0,335 90 -0,084 0,431 

 Concentration 
difficulties 

87 0,022 0,84 90 -0,009 0,931 

 Nausea 87 0,118 0,275 90 -0,178 0,094 

Table 6: Correlations (without FWER correction) between the COR and VOR gain and personal factors, cervical functioning, 
personality traits, impairments in daily life and cognitive complaints in all patients 

 

The differences between the traumatic and non-traumatic groups are presented in table 2. The traumatic 

group had complaints for a shorter period of time compared to the non-traumatic origin group (Z= -5.002, 

p<0.000). ‘Traumatic’ patients had less cervical range of motion in the horizontal plane (Z= -2.004, p= 

0.045), experienced more stress (Z= -2.239, p= 0.025) and more fear avoidance behavior (Z= -2.025, 

p= 0.043). They also experienced more problems with concentration (Z= -2.714, p= 0.007) and 

photophobia and phonophobia (Z= -3.687, p<0.000). In contrast traumatic patients were able to sit 

 

  

longer when compared to the non-traumatic group (Z= -2.150, p=0.032) and had less jaw problems (Z= 

-2.288, p=0.022).  

 

  

all patients (traumatic 
and non-traumatic) 

Traumatic Non-traumatic 
Difference between traumatic and 
non-traumatic group 

n= 164; 61 male, 103 

female 

n=85; 34 male, 51 

female 

n= 79; 27 male, 52 

female 
  

median (IQR);n median (IQR);n median (IQR);n Mann-Whitney test 

Age 42 (19); 164 40 (18); 85 43 (18); 79 U=2846, Z=-1.684, p=0.092 

cultural 
background 

69.7% native Dutch; 

164 

70.6% native Dutch; 

85 

69.6% native Dutch; 

79 
U= 3325, Z= -0.135, p=0.893 

duration (in 
months) 

43 (116); 119 26 (39); 60 89 (133); 59 U= 829, Z= -5.002, p<0.000 

CROM vertical 104 (33); 157 104 (42); 80 106 (32); 77 U=2755, Z=-1.142, p= 0.254 

CROM 
horizontal 

88 (40); 157 84.5 (38); 80 96 (41); 77 U=2509.5, Z= -2.004, p= 0.045 

JPS 5 (5); 124 5 (4); 65 5 (4); 59 U= 1667, Z= -1.259, p= 0.208 

FAB (Tampa) 37 (10); 42 39 (12); 23 34 (6); 19 U= 138.5, Z= -2.025, p= 0.043 

stress (NRS) 5 (4); 49 6 (3); 25 4.5 (4); 24 U=189, Z= -2.239, p= 0.025 

Disability (NDI) 20 (11); 43 23 (14); 24 20 (11); 19 U= 158, Z= -1.719, p= 0.086 

duration walking 
(0-65 min) 

60 (44); 44 60 (43); 25 60 (45); 19 U=233, Z= -0.111, p= 0.912 

duration sitting 
(0-65 min) 

30 (49); 44 60 (43); 25 30 (15); 19 U=149, Z= -2.150, p=0.032 

duration 
standing (0-65 
min) 

30 (50); 44 30 (50); 25 30 (50); 19 U= 216.5, Z= -0.508, p= 0.611 

Pain (VAS) 53.5 (39); 154 58 (35); 78 48 (43); 76 U=2618, Z= -1.251, p=0.211 
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  COR   VOR   

  N r p N r p 

Personal 
factors 

Age 91 0,168 0,112 94 ,329 0,001 

 cultural 
background 

91 -0,073 0,491 94 -0,161 0,122 

 duration of 
complaints 76 0,037 0,753 80 ,287 0,01 

 Origin of 
complaints 

91 0,006 0,956 94 0,035 0,741 

Cervical 
function 

CROM vertical 90 -0,067 0,527 93 -0,059 0,571 

 CROM horizontal 90 -0,024 0,821 93 0,019 0,859 

 JPS 67 0,053 0,672 70 0,17 0,16 

Personality 
traits 

Tampa 36 0,069 0,688 38 -0,116 0,486 

 Stress 31 0,065 0,727 30 -0,308 0,098 

Impairments in 
daily life 

NDI 34 0,144 0,416 36 -0,168 0,327 

 walking 36 -0,085 0,620 38 0,24 0,147 

 sitting 36 -0,255 0,134 38 0,27 0,102 

 standing 36 -0,118 0,495 38 0,179 0,282 

 pain 89 0,281 0,008 92 -0,052 0,625 

 TMJ pain 87 -0,157 0,146 90 0,042 0,693 

 fatigue 87 -0,178 0,100 90 -0,13 0,222 

Cognitive 
complaints 

Headache 88 0,081 0,455 91 -0,079 0,459 

 Dizziness 88 0,085 0,432 91 -0,167 0,114 

 Photophobia and 
phonophobia 

87 0,104 0,335 90 -0,084 0,431 

 Concentration 
difficulties 

87 0,022 0,84 90 -0,009 0,931 

 Nausea 87 0,118 0,275 90 -0,178 0,094 

Table 6: Correlations (without FWER correction) between the COR and VOR gain and personal factors, cervical functioning, 
personality traits, impairments in daily life and cognitive complaints in all patients 

 

The differences between the traumatic and non-traumatic groups are presented in table 2. The traumatic 

group had complaints for a shorter period of time compared to the non-traumatic origin group (Z= -5.002, 

p<0.000). ‘Traumatic’ patients had less cervical range of motion in the horizontal plane (Z= -2.004, p= 

0.045), experienced more stress (Z= -2.239, p= 0.025) and more fear avoidance behavior (Z= -2.025, 

p= 0.043). They also experienced more problems with concentration (Z= -2.714, p= 0.007) and 

photophobia and phonophobia (Z= -3.687, p<0.000). In contrast traumatic patients were able to sit 

 

  

longer when compared to the non-traumatic group (Z= -2.150, p=0.032) and had less jaw problems (Z= 

-2.288, p=0.022).  

 

  

all patients (traumatic 
and non-traumatic) 

Traumatic Non-traumatic 
Difference between traumatic and 
non-traumatic group 

n= 164; 61 male, 103 

female 

n=85; 34 male, 51 

female 

n= 79; 27 male, 52 

female 
  

median (IQR);n median (IQR);n median (IQR);n Mann-Whitney test 

Age 42 (19); 164 40 (18); 85 43 (18); 79 U=2846, Z=-1.684, p=0.092 

cultural 
background 

69.7% native Dutch; 

164 

70.6% native Dutch; 

85 

69.6% native Dutch; 

79 
U= 3325, Z= -0.135, p=0.893 

duration (in 
months) 

43 (116); 119 26 (39); 60 89 (133); 59 U= 829, Z= -5.002, p<0.000 

CROM vertical 104 (33); 157 104 (42); 80 106 (32); 77 U=2755, Z=-1.142, p= 0.254 

CROM 
horizontal 

88 (40); 157 84.5 (38); 80 96 (41); 77 U=2509.5, Z= -2.004, p= 0.045 

JPS 5 (5); 124 5 (4); 65 5 (4); 59 U= 1667, Z= -1.259, p= 0.208 

FAB (Tampa) 37 (10); 42 39 (12); 23 34 (6); 19 U= 138.5, Z= -2.025, p= 0.043 

stress (NRS) 5 (4); 49 6 (3); 25 4.5 (4); 24 U=189, Z= -2.239, p= 0.025 

Disability (NDI) 20 (11); 43 23 (14); 24 20 (11); 19 U= 158, Z= -1.719, p= 0.086 

duration walking 
(0-65 min) 

60 (44); 44 60 (43); 25 60 (45); 19 U=233, Z= -0.111, p= 0.912 

duration sitting 
(0-65 min) 

30 (49); 44 60 (43); 25 30 (15); 19 U=149, Z= -2.150, p=0.032 

duration 
standing (0-65 
min) 

30 (50); 44 30 (50); 25 30 (50); 19 U= 216.5, Z= -0.508, p= 0.611 

Pain (VAS) 53.5 (39); 154 58 (35); 78 48 (43); 76 U=2618, Z= -1.251, p=0.211 
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TMJ pain 9.21%; 152 3.5%; 77 14.66%; 75 U=2576, Z= -2.288, p=0.022 

fatigue 28.95%; 152 24.7%; 77 30.66%; 75 U= 2789.5, Z= -0.46, p= 0.646 

headache 74.68%; 154 72.9%; 78 69.74%; 76 U= 2675, Z= -1.387, p= 0.166 

dizziness 54.55%; 154 56.5%; 78 47.37%; 76 U= 2544, Z= -1.76, p=0.078 

photophobia 
and 
phonophobia 

38.82%; 152 48.2%; 77 24%; 75 U=2043, Z= -3.687, p<0.000 

concentration 
difficulties 
 

37.5%; 152 43.5%; 77 26.66%; 75 U= 2270, Z= -2.714, p= 0.007 

nausea 34.21%; 152 37.6%; 77 26.66%; 75 U= 2457, Z= -1.928, p=0.054 

VOR 0.7095 (0.325); 94 0.707 (0.348); 46 0.711 (0.315); 48 U=1060, Z= -0.333, p= 0.739 

COR 0.42 (0.330); 91 0.421 (0.365); 45 0.417 (0.271); 46 U=1028, Z= -0.056, p= 0.956 

 
Table 2: Descriptives of all measured variables in the different patient groups. TG= traumatic group; NT= non-traumatic group. 
The difference of each parameter between the traumatic and non-traumatic group is presented by the outcome of the Mann-
Whitney tests. Significant correlations are indicated with bold letters 
IQR= Interquartilrange; NRS= Numeric Rating Scale; JPSE= Joint Position Sense Error; FAB= Fear Avoidance Behaviour; NDI= 
Neck Disability Index; VAS= visual analogue scale; CROM= cervical range of motion; VOR= vestibulo-ocular reflex; COR= 
cervico-ocular reflex; TMJ= temporomandibular joint 
 
 

DISCUSSION 
The present study is the follow-up of a study on eye stabilization reflexes in chronic, severely impaired 

traumatic and non-traumatic neck pain patients 1. Part one showed that eye reflex elevation seems to 

be independent of the traumatic or non-traumatic origin of complaints. 

The aim of this second study was to identify factors that may affect eye stabilization reflexes in these 

chronic neck pain patients. Relationships were explored between patients’ eye stabilization reflexes 

(COR and VOR) and personal factors, cervical functioning, personality traits, impairments in daily life 

and cognitive complaints. Traumatic and non-traumatic neck pain patients differ regarding cervical 

function, pain and cognitive complaints. In all patients, no significant associations between the eye 

stabilization reflexes and the studied parameters were found. For the clinical practice it is of surplus 

value to know that many factors have no strong influence on the COR gain. This suggests that these 

factors are less important in understanding or explaining the eye movement deficits in chronic neck pain 

patients. 

 

  

We did observe a moderate association between COR gain and amount of pain. Although this did not 

survive FWER correction, this association might be interesting. It suggests that in neck pain patients 

the, normally almost absent, COR is elevated and patients with more neck pain have a higher COR. 

This relationship is even stronger in the group with traumatic neck pain patients, who also experience 

more neck pain. Why or how pain and COR are related is obscure and needs further study. Several 

mechanisms like altered nociception, central sensitization or peripheral mechanical disturbances and 

altered motor control in the cervical spine may play a role in COR changes. 

Altered cervical spine motor control is considered one explanation for the association between pain and 

COR gain. Earlier studies show that experimental induction of muscle pain alters neck muscle motor 

control 30,31. In these studies the painful agonist is inhibited while synergistic muscles are activated 30,31. 

Hodges’ theory of pain and motor control supports this idea and mentions the consequences in 

mechanical behavior, i.e. modified movement and stiffness 32. Based on Hodges’ theory, we can 

speculate that pain alters motor control which leads to a different motor behavior (e.g. diminished 

cervical motion or lower velocity). The different motor behavior causes an elevated COR gain. Previously 

Kelders et al. suggested that COR gain is increased in patients with WAD because they try to avoid 

neck pain by limiting neck motion 14. The frequency of neck motion drops when more pain is 

experienced, decreasing afferent information needed for COR function. This hypothesis is supported by 

the finding that in healthy subjects temporary neck immobilization directly affects COR gain 21,33. A study 

on COR reflexes and neck motion frequency in neck pain patients could elucidate this notion.  

The relation between increased COR and pain might also be explained by hypersensitivity in the central 

nervous system. Central sensitization influences different central processes, it  delays, for example, 

spinal reflex thresholds in patients with WAD 34–37. Very recently, a correlation of motor impairment and 

disability, pain, fear avoidance and sensitization was also found in a case control study with patients 

with chronic neck pain 38. Possibly, hypersensitivity affects also the COR gain. For future studies more 

focus on the kind of pain is recommended. For example, a study of eye stabilization reflexes in chronic 

pain patients, not neck pain patients could further explore this mechanism. It could also be of value to 

use the ‘Dutch Central Sensitization Inventory’ in combination with the measurement of eye stabilization 

reflexes to get an idea of the patients distress 39. 

In contrast with the suggestion of Woodhouse and Vasseljen regarding the relationship between cervical 

motor control and pain, in the present study the COR gain was moderately related only to degree of 

pain and not at all to the duration of pain/ complaints 40. Although, the patients in the non-traumatic 

group had significantly longer lasting pain compared to the traumatic group, in both groups the duration 

of complaints did not correlate with the COR gain (table 2). 

The result of the current study contrasts somewhat with the expectations that cervical function, e.g. 

measured by JPE, as a parameter of the cervical proprioception, would be associated with the COR 

gain 9. However, whereas the COR test solitary measures cervical induced eye movements, the JPE 

test is also influenced by the vestibular function. Thus, the two tests represent different aspects of 

sensorimotor function and should be used complementary. 
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TMJ pain 9.21%; 152 3.5%; 77 14.66%; 75 U=2576, Z= -2.288, p=0.022 

fatigue 28.95%; 152 24.7%; 77 30.66%; 75 U= 2789.5, Z= -0.46, p= 0.646 

headache 74.68%; 154 72.9%; 78 69.74%; 76 U= 2675, Z= -1.387, p= 0.166 

dizziness 54.55%; 154 56.5%; 78 47.37%; 76 U= 2544, Z= -1.76, p=0.078 

photophobia 
and 
phonophobia 

38.82%; 152 48.2%; 77 24%; 75 U=2043, Z= -3.687, p<0.000 

concentration 
difficulties 
 

37.5%; 152 43.5%; 77 26.66%; 75 U= 2270, Z= -2.714, p= 0.007 

nausea 34.21%; 152 37.6%; 77 26.66%; 75 U= 2457, Z= -1.928, p=0.054 

VOR 0.7095 (0.325); 94 0.707 (0.348); 46 0.711 (0.315); 48 U=1060, Z= -0.333, p= 0.739 

COR 0.42 (0.330); 91 0.421 (0.365); 45 0.417 (0.271); 46 U=1028, Z= -0.056, p= 0.956 

 
Table 2: Descriptives of all measured variables in the different patient groups. TG= traumatic group; NT= non-traumatic group. 
The difference of each parameter between the traumatic and non-traumatic group is presented by the outcome of the Mann-
Whitney tests. Significant correlations are indicated with bold letters 
IQR= Interquartilrange; NRS= Numeric Rating Scale; JPSE= Joint Position Sense Error; FAB= Fear Avoidance Behaviour; NDI= 
Neck Disability Index; VAS= visual analogue scale; CROM= cervical range of motion; VOR= vestibulo-ocular reflex; COR= 
cervico-ocular reflex; TMJ= temporomandibular joint 
 
 

DISCUSSION 
The present study is the follow-up of a study on eye stabilization reflexes in chronic, severely impaired 

traumatic and non-traumatic neck pain patients 1. Part one showed that eye reflex elevation seems to 

be independent of the traumatic or non-traumatic origin of complaints. 

The aim of this second study was to identify factors that may affect eye stabilization reflexes in these 

chronic neck pain patients. Relationships were explored between patients’ eye stabilization reflexes 

(COR and VOR) and personal factors, cervical functioning, personality traits, impairments in daily life 

and cognitive complaints. Traumatic and non-traumatic neck pain patients differ regarding cervical 

function, pain and cognitive complaints. In all patients, no significant associations between the eye 

stabilization reflexes and the studied parameters were found. For the clinical practice it is of surplus 

value to know that many factors have no strong influence on the COR gain. This suggests that these 

factors are less important in understanding or explaining the eye movement deficits in chronic neck pain 

patients. 

 

  

We did observe a moderate association between COR gain and amount of pain. Although this did not 

survive FWER correction, this association might be interesting. It suggests that in neck pain patients 

the, normally almost absent, COR is elevated and patients with more neck pain have a higher COR. 

This relationship is even stronger in the group with traumatic neck pain patients, who also experience 

more neck pain. Why or how pain and COR are related is obscure and needs further study. Several 

mechanisms like altered nociception, central sensitization or peripheral mechanical disturbances and 

altered motor control in the cervical spine may play a role in COR changes. 

Altered cervical spine motor control is considered one explanation for the association between pain and 

COR gain. Earlier studies show that experimental induction of muscle pain alters neck muscle motor 

control 30,31. In these studies the painful agonist is inhibited while synergistic muscles are activated 30,31. 

Hodges’ theory of pain and motor control supports this idea and mentions the consequences in 

mechanical behavior, i.e. modified movement and stiffness 32. Based on Hodges’ theory, we can 

speculate that pain alters motor control which leads to a different motor behavior (e.g. diminished 

cervical motion or lower velocity). The different motor behavior causes an elevated COR gain. Previously 

Kelders et al. suggested that COR gain is increased in patients with WAD because they try to avoid 

neck pain by limiting neck motion 14. The frequency of neck motion drops when more pain is 

experienced, decreasing afferent information needed for COR function. This hypothesis is supported by 

the finding that in healthy subjects temporary neck immobilization directly affects COR gain 21,33. A study 

on COR reflexes and neck motion frequency in neck pain patients could elucidate this notion.  

The relation between increased COR and pain might also be explained by hypersensitivity in the central 

nervous system. Central sensitization influences different central processes, it  delays, for example, 

spinal reflex thresholds in patients with WAD 34–37. Very recently, a correlation of motor impairment and 

disability, pain, fear avoidance and sensitization was also found in a case control study with patients 

with chronic neck pain 38. Possibly, hypersensitivity affects also the COR gain. For future studies more 

focus on the kind of pain is recommended. For example, a study of eye stabilization reflexes in chronic 

pain patients, not neck pain patients could further explore this mechanism. It could also be of value to 

use the ‘Dutch Central Sensitization Inventory’ in combination with the measurement of eye stabilization 

reflexes to get an idea of the patients distress 39. 

In contrast with the suggestion of Woodhouse and Vasseljen regarding the relationship between cervical 

motor control and pain, in the present study the COR gain was moderately related only to degree of 

pain and not at all to the duration of pain/ complaints 40. Although, the patients in the non-traumatic 

group had significantly longer lasting pain compared to the traumatic group, in both groups the duration 

of complaints did not correlate with the COR gain (table 2). 

The result of the current study contrasts somewhat with the expectations that cervical function, e.g. 

measured by JPE, as a parameter of the cervical proprioception, would be associated with the COR 

gain 9. However, whereas the COR test solitary measures cervical induced eye movements, the JPE 

test is also influenced by the vestibular function. Thus, the two tests represent different aspects of 

sensorimotor function and should be used complementary. 
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In this study, beside the COR, also the VOR was measured. The VOR gain was positively correlated 

with two personal factors: age and duration of complaints. The age related decrease of the VOR as 

seen in earlier studies, was not present in the current study. This was probably due to the younger age 

of the studied population 41,42. In this study, patients who experience complaints longer, have a higher 

VOR. To our knowledge, it is the first time that the VOR gain was measured in patients with long lasting 

neck pain. In patients with shorter duration of complaints (less than 6 months), the VOR gain remains 

unchanged 13. Further studies are needed to explore more extensively the influence of persistent neck 

pain on the function of the vestibulum. 

 

The results of the current study confirm that traumatic and non-traumatic neck pain patients differ. Earlier 

studies showed that traumatic neck pain patients experience more complaints, regarding cervical 

function 8,40,43,44 pain 45 and cognitive complaints 11,37,45. 

In the current study, traumatic and non-traumatic neck pain patients also differ regarding functioning 

and degree of complaints, but they have comparable eye stabilization (table 2). Traumatic neck pain 

patients report more stress, fear, photophobia and phonophobia, and concentration difficulties 

compared to non-traumatic neck pain patients. Their horizontal range of motion is less compared to 

non-traumatic patients. We can speculate that the differences can be explained by a combination of 

worse function of the upper cervical spine (horizontal range of motion, photophobia and phonophobia 

and concentration difficulties) and posttraumatic stress symptoms (stress, fear, concentration 

difficulties).  

The aim of this study was to give indications on which parameters have to be further explored during 

oculomotor studies. It can be concluded that the presently studied factors seem to have no strong 

influence on the gains of eye stabilization reflexes. This collection of parameters provides a broad 

overview. However, the limitation is that, possibly due to the large amount of parameters, no significant 

correlations, including Bonferroni correction, could be detected. 

 

CONCLUSION 
In this study possible relationships between eye stabilization reflexes and different patients’ 

characteristics are explored in a large group of chronic traumatic and non-traumatic neck pain patients. 

Traumatic and non-traumatic neck pain patients differ. In all neck pain patients, the relationship is 

observed between the COR and personal function, cervical function, personality traits, cognitive 

complaints and impairments in daily life. No factors were found that were strongly related to altered eye 

reflexes. This suggests that these factors are less important in understanding or explaining the eye 

movement deficits in chronic neck pain patients.  

 

  

There are indications of a possible association between pain and an elevated COR which has to be 

further explored. 
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In this study, beside the COR, also the VOR was measured. The VOR gain was positively correlated 
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seen in earlier studies, was not present in the current study. This was probably due to the younger age 

of the studied population 41,42. In this study, patients who experience complaints longer, have a higher 

VOR. To our knowledge, it is the first time that the VOR gain was measured in patients with long lasting 

neck pain. In patients with shorter duration of complaints (less than 6 months), the VOR gain remains 

unchanged 13. Further studies are needed to explore more extensively the influence of persistent neck 

pain on the function of the vestibulum. 

 

The results of the current study confirm that traumatic and non-traumatic neck pain patients differ. Earlier 

studies showed that traumatic neck pain patients experience more complaints, regarding cervical 

function 8,40,43,44 pain 45 and cognitive complaints 11,37,45. 

In the current study, traumatic and non-traumatic neck pain patients also differ regarding functioning 

and degree of complaints, but they have comparable eye stabilization (table 2). Traumatic neck pain 

patients report more stress, fear, photophobia and phonophobia, and concentration difficulties 

compared to non-traumatic neck pain patients. Their horizontal range of motion is less compared to 

non-traumatic patients. We can speculate that the differences can be explained by a combination of 

worse function of the upper cervical spine (horizontal range of motion, photophobia and phonophobia 

and concentration difficulties) and posttraumatic stress symptoms (stress, fear, concentration 

difficulties).  

The aim of this study was to give indications on which parameters have to be further explored during 

oculomotor studies. It can be concluded that the presently studied factors seem to have no strong 

influence on the gains of eye stabilization reflexes. This collection of parameters provides a broad 

overview. However, the limitation is that, possibly due to the large amount of parameters, no significant 

correlations, including Bonferroni correction, could be detected. 

 

CONCLUSION 
In this study possible relationships between eye stabilization reflexes and different patients’ 

characteristics are explored in a large group of chronic traumatic and non-traumatic neck pain patients. 

Traumatic and non-traumatic neck pain patients differ. In all neck pain patients, the relationship is 

observed between the COR and personal function, cervical function, personality traits, cognitive 

complaints and impairments in daily life. No factors were found that were strongly related to altered eye 

reflexes. This suggests that these factors are less important in understanding or explaining the eye 

movement deficits in chronic neck pain patients.  

 

  

There are indications of a possible association between pain and an elevated COR which has to be 

further explored. 
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ABSTRACT  

Question Is there a relation between the joint position error (JPE) and the cervico-ocular reflex (COR) 

in people with non-specific neck pain? 

Design This study had a cross-sectional design involving participants with neck pain and asymptomatic 

controls. 

Participants Thirty seven participants with non-specific neck pain and 30 asymptomatic controls 

participated in the study. 

Outcome measures The primary outcome measures of this study were the JPE and the gains of COR, 

and vestibulo-ocular reflex (VOR). Secondary outcomes were perceived pain, cervical range of motion, 

disability, and dizziness 

Results Participants with neck pain showed an increased JPE for rotation and flexion extension. They 

showed an increased COR after controlling for age and gender, compared to asymptomatic controls 

whereas the VOR was unaltered. The relation between the gain of the COR and the JPE 

flexion/extension was significantly correlated, the COR and the JPE rotation was not significantly 

correlated. In the control group there were no significant correlations. 

Conclusion This study showed that on a group level there is a difference between people with non-

specific neck pain on JPE and COR than people without neck pain. On an individual level the COR gain 

or JPE alone do not seem to readily classify people with neck pain. The only correlation between COR 

and JPE was in the vertical plane outcome measures which was weak. This implicates that the group 

of people with neck pain is a heterogeneous group. 

Keywords: Cervico-ocular reflex; Vestibulo-ocular reflex; Joint position error; non-specific neck pain; 

Proprioception  

 

  

INTRODUCTION  

Neck pain affects between 10 to 20% of the world population.1 The majority of neck pain does not have 

an apparent cause and is therefore considered idiopathic2. Practice guidelines for neck pain recommend 

conservative treatment.3 People with neck pain often complain about other symptoms besides their neck 

pain, including: lightheadedness, dizziness, unsteadiness, and/or visual complaints.4  

It is known that neck pain has an effect on the activity in muscle spindle afferents,5,6 and that people 

with neck pain show altered timing patterns in the contraction of cervical muscles such as m. longus 

colli, the m. longus capitis, and the m. sternocleimastoid during a neck flexion movement.7,8 These 

changes could lead to altered afferent proprioceptive information stemming from the cervical muscles. 

This afferent information converges within the vestibular nuclei and integrates with the afferent input 

from head movement-related information stemming from the visual9 and vestibular system.10 

This altered cervical afferent information can be assessed by measuring the Joint Position Error (JPE) 

of the cervical spine which is often used as a clinical measure of cervical afferent dysfunction.11 A recent 

systematic review and meta-analysis showed that people with neck pain had a larger JPE than people 

without neck pain.12 Evidence from randomized controlled trials suggest that proprioceptive targeted 

exercises can result in both pain reduction and reduction of JPE.13,14 However, the required head 

movements during the JPE test may be affected by the vestibular system15 and/or be influenced 

consciously or subconsciously by the participants.  

Cervical afferents are not only important for controlling head movements but are also playing a role in 

the cervico-ocular reflex (COR), which stabilizes the eye in response to trunk-to-head movements.16-18 

The COR is a non-voluntary eye reflex that stabilizes the eye in response to afferent information from 

the neck.19 The COR is elicited in response to trunk-to-head movements so there is no afferent 

information of the vestibulum. There is also no (subconscious) influence of pain behavior processes in 

the COR because this is a non-voluntary eye-reflex.20 Earlier research showed that people with 

traumatic neck pain21 and people with non-specific neck pain22 have an increased COR compared to 

asymptomatic controls. The COR and VOR function both serve to stabilize the visual image on the retina 

during head and trunk movements. Previous studies showed that the synergy between COR and VOR 

can be disturbed in neck pain patients from an idiopathic or traumatic origin, due to altered cervical 

sensory input.21-23 This afferent input from the cervical muscles is sent to the vestibular nuclei where it 

converges with other information regarding head movements relayed by the visual and vestibular 

systems9. 

Clinically, direct measurement of the COR is not feasible, as it requires a specific setup involving a 

rotating chair and an accurate eye movement recording device. This is in contrast to measuring the JPE, 

which is uncomplicated and reliable.24 Based on previous studies we expect that both the COR and the 

JPE are affected in patients with neck pain. In the present study, we aim to investigate the relationship 

between these two measures of afferent cervical dysfunction. Therefore, the research questions for this 
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study is: Is there a relation between the joint position error and the cervico-ocular reflex in people with 

non-specific neck pain? 

  

METHODS 

Design  

This study had a cross-sectional design involving participants with non-specific neck pain and 

asymptomatic controls. 

Participants and Centre  

Participants with neck pain were recruited via physiotherapy practices in Rotterdam, The Netherlands. 

Asymptomatic controls were recruited by means of an information letter distributed among people 

having no personal or legal relationship with the investigator. All participants were recruited and tested 

between October 2012 and September 2014. The study was approved by the local ethical board of the 

Erasmus MC. Participants gave written informed consent prior to the start of the study. 

Inclusion criteria for participants with neck pain were: being aged between 18 and 65 years, having non-

specific neck pain continuously for less than one year, and being physically able to undergo COR and 

VOR measurements. Inclusion criteria for asymptomatic controls were overlapping with the inclusion 

criteria for participants with neck pain with the exception that they had not experienced any complaints 

of the cervical spine (including cervicogenic headache and dizziness) in the last 5 years. Participants 

were excluded if they used medication that influenced alertness or balance; suffered from any 

neurological disorder; had vestibular or visual problems; or had a history of neck trauma. 

Outcome measures 

All participants filled in a standard demographic questionnaire. For participants with neck pain, the 

intensity of perceived pain was evaluated using a numeric pain rating scale (NRPS), the functional 

disability due to neck pain was evaluated using the Neck Disability Index (NDI), and the Dizziness 

Handicap Inventory (DHI) was used to assess the perceived handicap due to dizziness. The NPRS, 

NDI, and DHI have shown good psychometric properties in people with neck pain.25-27 All participants 

underwent measurements of maximal cervical range of motion (CROM) in the sagittal and the 

horizontal plane. This was measured with a CROM device that has shown good reproducibility.28 

Cervical JPE testing 

For each participant, the accuracy in relocating the natural head posture (cervical JPE) was tested after 

active cervical movements into left and right rotation, flexion, and extension. The methodology is 

previously described for the lower back and pelvic girdle29 and adapted from Revel et al.30 Participants 

were equipped with four infrared LEDs. Two markers were placed on the head and two markers were 

placed on the thoracic spine. For the sagittal plane the one head marker was placed at the height of C1 

and one marker was rigidly connected to this marker 3 cm up. The thoracic markers were placed on Th1 

 

  

and one marker was rigidly connected to this marker 3 cm down. For the horizontal JPE one head 

marker was placed centrally on top of the head in line with the rotational axis of the neck and one marker 

was rigidly connected to this marker 3 cm to the front. The thoracic markers were placed on Th 1 and 

one marker was rigidly connected to this marker 3 cm down. Marker positions were recorded using a 

CCD video-camera (Javelin JE7642) equipped with a black filter. Accuracy, inter- and intraobserver 

reliability, and reproducibility showed good properties.29 At the beginning of the recording, the subject 

sat upright in a chair with a backrest. Next, subjects were asked to rotate left, rotate right, or bend their 

neck or extend their neck as far as possible in a moderate pace without forcing or jerking and then return 

to the initial position. Each motion was repeated 3 times. The 2 pairs of coordinates obtained from each 

video image were converted into an angle in the sagittal plane or the rotational plane representing the 

JPE in degrees. The JPE is presented as an absolute error calculated over three repetitions. For rotation 

and flexion/extension six repetitions were averaged into one JPE. 

 

Recording of Reflexive Eye Movements  

The exact procedure of recording reflexive eye movements are described elsewhere. 22 In short, 

monocular (left) eye positions were recorded by infrared video-oculography (Eyelink 1, SMI, 

Germany31) during either cervical or vestibular stimulation in complete darkness by rotating a chair. 

The chair was attached to a motor that ensured sinusoidal chair rotation without any backlash. Eye 

movements were recorded during either cervical or vestibular stimulation. In both stimulation 

paradigms (COR and VOR), participants were instructed to look at a position directly in front of the 

set-up. Head position was fixed in both conditions via a biteboard.  

During the COR stimulation, rotation of the chair induced pure cervical stimulation by fixating the position 

of the head in space, which elicits the COR in isolation. The chair was rotated for 134 seconds around 

the vertical axis with an amplitude of 5.0 degrees and a frequency of 0.04 Hz. degrees/s. During the 

VOR stimulation the biteboard was mounted to the chair so that rotation of the chair induced pure 

vestibular stimulation. The chair was rotated for 33 seconds around the vertical axis with an amplitude 

of 5.0 degrees and a frequency of 0.16 Hz.  

Reflexive eye movements were analyzed by taking the first derivative of the horizontal eye position 

signal. After removal of blinks, saccades, and fast phases (using a 20 degrees-per-second threshold), 

a sine wave was fitted through the eye velocity signal data. Stimulus velocity was derived from chair 

position (COR and VOR measurement) data. The gain of the response was defined as the amplitude of 

the eye velocity fit divided by the peak velocity of the chair rotation. All data processing was done with 

Matlab R2013a (The MathWorks Inc., Natick, MA).  

 

Data analysis  

Descriptive statistics were computed for the entire sample for the gains of the COR, VOR, and JPE 

(outcome parameters), NDI, DHI, perceived pain, CROM (outcome variables), and age and gender. 

Since the COR, VOR, NDI, DHI, perceived pain, and CROM data was distributed normally 
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(Kolmogorov-Smirnov test), parametric statistics were applied. Two analyses of covariance (ANCOVA) 

were performed to analyze differences in COR and VOR gains, respectively, between asymptomatic 

controls and participants with neck pain with age and gender as covariates. JPE data was not 

normally distributed (Kolmogorov-Smirnov test). Differences in JPE between people with neck pain 

and asymptomatic controls were statistically assessed using Mann-Whitney tests. Correlations 

between the gains, JPE (outcome parameters) and outcome variables were assessed using 

Spearman’s correlations. Cross tabulations were made of the highest and lowest half of the scores of 

JPE and COR. A two-tailed alpha level of P < 0.05 was considered significant for all statistical tests.  

 

RESULTS  

Flow of participants 

Forty-one participants with neck pain and 30 asymptomatic controls participated in the study. Eye 

movement recordings were successful in 37 participants with neck pain. In four participants the data 

was discarded due to technical problems. For the 37 participants with neck pain the JPE was measured 

correctly, for the control group in 3 measurements were not stored properly on the hard disk. 

Demographic characteristics of all participants are presented in table 1. 

 Control (N=30)  Neck pain (N=37)  

 Mean (SD) [95% CI] Mean (SD) [95% CI] 

Age in years * 28.3 (9.1) [25.7, 32.3] 42.1 (12.3) [36.5, 44.9] 

Male/female 15/15 - 12/25 - 

COR * 0.26 (0.15) [0.21, 0.32] 0.38 (0.16) [0.31, 0.42] 

VOR 0.67 (0.17) [0.61, 0.74] 0.66 (0.22) [0.56, 0.72] 

CROM Rotation 139 (18) [133, 146] 134 (27) [126, 145] 

CROM 

flexion/extension * 
133 (23) [123, 139] 111 (25) [103, 122] 

Pain - - 4.1 (2.0) [3.5, 4.8] 

Neck Disability 

Index 
- - 23.4 (12.8) [20.5, 28.4] 

Dizziness Handicap 

Inventory 
- - 18.2 (17.3) [12.3, 24.7] 

Tabel 2: Comparison of demographic and questionnaire data between asymptomatic controls and participants with neck pain. 
NDI scores range from 0 (no disability) to 100 (maximal disability), DHI scores range from 0 (no disability) to 100 (maximal 
disability), CROM= cervical range of motion. Age and gender were identified as possible confounders.  
* Significant difference between control and neck pain group at p < 0.05. 

 

 

  

Participants with neck pain showed an increased COR after controlling for age and gender, (F(1,62) = 

4.15, p= 0.046, η²=0.063) compared to asymptomatic controls. Table 2 shows the median and the 

interquartile range (IQR) of the JPE for the neck pain group and the control group. 

 

 Control (n = 27) Neck pain (n = 37) 

 Median (IQR) Median (IQR) 

Rotation* 3.6 (1.5) 5.2 (4.4) 

Flexion/extension* 3.6 (2.3) 6.3 (3.3) 

Tabel 3: Comparison of the Joint Position Error in degrees (median and IQR) between asymptomatic controls and participants 
with neck pain. * Significant difference between control and neck pain group at p < 0.05. 
 

People with neck pain showed an increased JPE for rotation (U=343.5, Z=-2.313, p=0.021), right rotation 

(U=343.0, Z=-2.321, p=0.020), flexion extension (U=239.5 Z=-3.691, p=0.000), extension (U=315.0 Z=-

2.509, p=0.012), and flexion (U=216.0 Z=-4.005, p=0.000) compared to asymptomatic controls. Left 

rotation showed no significant difference between people with neck pain and asymptomatic controls 

(U=359.0, Z=-1.912, p=0.056). The relation between the gain of the COR and the JPE flexion/extension 

was significantly correlated for all participants (r = 0.335, p=0.007), the COR and the JPE rotation was 

not significantly correlated (r= -0.028, p=0.825). For the participants with neck pain relation between the 

gain of the COR and the JPE flexion/extension was significantly correlated (r = 0.358, p=0.032), the 

COR and the JPE rotation was not significantly correlated (r= -0.172, p=0.317). In the control group 

there were no significant correlations between the COR and the JPE (COR and flexion/extension, 

r=0.032, p=0.870 and COR and JPE rotation, r=-0.012, p=0.950). 

We observed a large proportion of participants with neck pain scoring in the highest 50% of COR and 

in the highest 50% of the JPE flexion/extension, whereas the controls scored mostly in the lowest 50% 

of the COR and JPE flexion/extension (table 3). For the COR and JPE rotation this distinction between 

neck patients and controls was less clear (table 4). 

 

   JPE 
flexion/extension 

 

COR   Lowest 50% Highest 50% 

 Lowest 50% Control 14 8 

  Neck pain 7 4 

 Highest 50% Control 5 3 

  Neck pain 6 20 

Tabel 4: Cross tabulation describing the highest and lowest half of the scores of JPE flexion/extension and COR 
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   JPE 
rotation 

 

COR   Lowest 50% Highest 50% 

 Lowest 50% Control 13 9 

  Neck pain 3 8 

 Highest 50% Control 6 2 

  Neck pain 11 15 

Tabel 5: Cross tabulation the highest and lowest half of the scores of JPE rotation and COR 
 

DISCUSSION  

The current study aimed to determine if there was a relationship between the joint position error in the 

cervical spine and the cervico-ocular reflex in people with non-specific neck pain. The results do suggest 

that people with non-specific neck pain have a higher JPE and also a higher COR than people without 

neck pain. However, these two outcome measures of cervical dysfunction only seem to correlate weakly, 

and only between the COR and the JPE in the flexion/extension direction in the neck pain group. In the 

control group there, were no correlations between eye movement reflexes and the JPE.  

Similar to numerous other studies12,21,22,32,33 we did observe effects on a group level in the COR and 

JPE between people with neck pain and without neck pain. On an individual level, however, the COR 

gain or JPE alone do not seem to readily classify people with neck pain. The same yields for other 

outcome measures regarding neck pain such as range of motion34 or motor control.35 However, it is 

conceivable that a (weighted) combination of these objective measures can improve individual 

classifications. Such a classification could give direction to a specifically targeted intervention towards 

people with neck pain. Such an approach showed promising results in people with low back pain.36,37  

It is somewhat surprising that we found a correlation between the COR and the JPE in the 

flexion/extension direction whereas the COR was measured in a rotational plane. An explanation could 

be related to the fact that the CROM was more restricted in this plane than in the rotational plane, leading 

to a more pronounced JPE in this plane in particular.  

A limitation of quantifying objective ocular reflexes with video-oculography is the technically difficulty of 

the measurement. Electro-oculography (EOG) could be an alternative measurement method which is 

widely used in clinical settings but it is less suitable for recording COR eye movements due to its limited 

accuracy and reliability.38,39 A possible limitation in regard to measuring protocol for the JPE was the 

amount of repetitions participants made in order to calculate the JPE, which was three. Swait et al.40 

reported that at least six trials were needed to optimize stability and reliability of the cervical JPE 

measurement. However another study24 showed that three repetitions also gives a moderate to almost 

perfect agreement for joint position error a recent review32 concluded that all studies which calculated 

the JPE over at least six trials showed a significantly increased JPE in the neck pain group. Therefore, 

the applied measurement protocol regarding the JPE in this study could be possibly underestimate the 

difference in JPE between controls and people with neck pain. 

 

  

We conclude that people suffering from non-specific neck pain present a deficit in JPE and COR but 

that these representations of cervical afferention only seem to correlate weakly. Evaluation of different 

components of sensorimotor control in patients with neck pain might be worthwhile in clinical settings.41 

We advocate from a clinical point of view that intervention programs should target those functional 

disorders that are present in the heterogeneous group of people with non-specific neck pain. These 

multi-modal programs therefore should also address the important links between the cervical, vestibular 

and ocular systems in those where this relation is disturbed.42 
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ABSTRACT 

Purpose Although several lines of research suggest that the head and eye movement systems interact, 

previous studies reported that applying static neck torsion does not affect smooth pursuit eye 

movements in healthy controls. This might be due to several methodological issues. Here we 

systematically investigated the effect of static neck torsion on smooth pursuit and saccadic eye 

movement behavior in healthy subjects. 

Methods In twenty healthy controls we recorded eye movements with video-oculography while their 

trunk was in static rotation relative to the head (7 positions from 45 degrees to the left to 45 degrees to 

right). The subject looked at a moving dot on the screen. In two separate paradigms we evoked saccadic 

and smooth pursuit eye movements, using both predictable and unpredictable target motions. 

Results Smooth pursuit gain and saccade peak velocity decreased slightly with increasing neck torsion. 

Smooth pursuit gains were higher for predictable target movements than for unpredictable target 

movements. Saccades to predictable targets had lower latencies but reduced gains compared to 

saccades to unpredictable targets. No interactions between neck torsion and target predictability were 

observed. 

Conclusion Applying static neck torsion has small effects on voluntary eye movements in healthy 

subjects. These effects are not modulated by target predictability. 

Keywords: smooth pursuit eye movement, saccadic eye movement, proprioception, neck torsion, human 

 

 

INTRODUCTION 

Humans can shift their gaze voluntarily for optimal visual processing. New objects can be viewed by 

executing saccadic eye movements that rapidly redirect the line of sight, whilst moving objects can be 

followed using smooth pursuit eye movement. In daily life, these eye movements occur together with 

head movements, to ensure that gaze shifts are fast, accurate and efficient. It is not surprising that 

several lines of research suggest that the head movement system and the eye movement system 

interact 1,2. 

Electrical stimulation of the frontal eye fields in monkeys evokes a saccadic eye movement 3. However, 

it also results in contraction of neck muscles that yield head movement in the same direction as the 

saccade, even when the stimulation is at subthreshold level and no saccade is executed 1. A similar 

finding has been observed for the supplementary eye fields 4. Electrophysiological recordings from eye 

movement structures, like the frontal eye fields 5 and the superior colliculus (an important area for eye 

head co-ordination) 6, show that some cells in these areas modulate their responses based on altered 

cervical afferent input due to changes in head position. Some clinical studies have reported affected 

smooth pursuit gains following static rotation of the head relative to the body in patients with neck pain 

due to, for instance, Whiplash Associated Disorder 2,7,8 or cervical spondylosis 9. These findings underlie 

the Smooth Pursuit Neck Torsion (SPNT) test used to assess the degree of eye movement impairments 

relating to clinical neck pain populations 10.  

In healthy subjects, on the other hand, neck torsion seems to affect eye movements minimally at most 
2,10,11. Although this is usually welcomed in clinical practice, as it increases the discriminative ability of 

the SPNT, the lack of neck torsion effects in non-patient populations might be the result of reduced 

sensitivity due to various methodological issues. Firstly, most of these clinical studies focused on smooth 

pursuit eye movements and less so on saccadic eye movements. Secondly, smooth pursuit eye 

movements were evoked by a predictably moving target. Therefore, any decline in smooth pursuit 

performance due to changes in low-level motor processes might well be compensated for by higher 

level cognitive processes that predict target motion12–14. Thirdly, only a few neck rotations are applied in 

the SPNT, being one extreme (30 or 45 degrees to the left or right) and one neutral (straight ahead) 

rotation. Moreover, neck rotation was usually enforced by holding the head manually. Fourthly, eye 

movements were recorded by means of electro-oculography (EOG) which is known to be limited in its 

accuracy and reliability 15,16. Although an influence of neck torsion on eye movements in healthy subjects 

is expected given the alleged interaction between head and eye movement systems, these 

methodological issues might hamper observing such an effect. 

In the present study, we measured eye movements by means of video-oculography and systematically 

investigated the effect of neck torsion on both smooth pursuit and saccadic eye movements. We 

displayed targets with predictable and unpredictable movements and used a custom-made bite board 

to fixate the head while applying a range of static rotations to the trunk. We hypothesized that increased 

neck torsion would yield small changes on eye movement characteristics which are more pronounced 

for unpredictably moving targets than for predictably moving targets. In addition, we expect that 
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unpredictably moving targets would yield less optimal eye movements, showing longer saccadic 

latencies and reduced gains. 

 

 

METHODS 

Subjects 

Twenty healthy subjects participated in each of the two experimental paradigms (smooth pursuit eye 

movements and saccadic eye movements); 16 subjects participated in both paradigms. None of the 

subjects had a history of trauma, neck complaints or neurological conditions. In all subjects, vision was 

normal or corrected-to-normal. In the smooth pursuit paradigm, subjects (10 male, 10 female) were on 

average 28.4 years old (range 20-51 years); in the saccade paradigm subjects (9 male, 11 female) were 

on average 27.9 years old (range 21-44 years). All subjects gave informed consent to participate in this 

study, which was approved by the local ethical board. 

Apparatus 

The paradigms were performed in a darkened and quiet room. Subjects were seated in a custom-made 

rotatable chair. Body movements were restricted by seat belts. Head movements were restrained by 

means of a bite board. Rotating the chair to a fixed position, while keeping the head pointing straight 

ahead, induced static neck torsion.  

Visual stimuli were generated in Matlab (version 2008) and back-projected by a projector (Infocus LP 

335) on a translucent screen, placed 168 cm in front of the subject. In both the saccade and smooth 

pursuit paradigm the visual target was a single red dot of 0.5 degrees of visual angle in diameter that 

was displayed on a black background. We will refer to this dot as the target. 

Eye movements were measured at 250 Hz with an infrared eye-tracking device (Eyelink I, SMI, 

Germany, see 17). 

 

 

 

Figure 1. Experimental setup and paradigms. Panel A shows a schematic representation of the experimental setup: the body of 
the subjects could rotated to a static position while the head faced forwards toward the screen on which the target was presented. 
Panel B shows an example of the saccade paradigm: eye movement responses (grey line) in response to a target (black line) that 
jumped from a center to a peripheral position and back again. Panel C shows examples of the smooth pursuit paradigm: eye 
movement responses (grey line) in response to a predictably (top) or unpredictably (bottom) moving smooth pursuit target (black 
line). 
 
 

Paradigms 

Subjects participated in two experimental paradigms: saccades and smooth pursuit. Each paradigm 

consisted of multiple runs. In both paradigms and in each run, the chair was rotated to one out of seven 

positions to induce static neck torsion, i.e., the trunk was rotated while the head was kept pointing 

straight ahead (figure 1A). These seven chair rotations were 15, 30, 45 degrees to the left or to the right, 

and a neutral rotation (0 degrees straight ahead, i.e., the head and trunk were aligned). 

In the saccade paradigm subjects were instructed to look at target while it jumped on the screen (Figure 

1B). At the beginning of a trial, the target was presented at the center of the screen. After a random 

interval of 0.8 to 1.6 seconds, the target disappeared and immediately appeared unpredictably at one 

out of six possible locations. These locations were 5, 10, or 15 degrees of visual angle to the left or right 

site from the center. After a random interval of 0.8 to 1.6 seconds the target disappeared from that 

location and immediately appeared at the center of the screen, indicating the beginning of the next trial. 

In each trial, two saccades were therefore evoked. The first centrifugal saccade was directed to an 

unpredictable position whereas the second saccade was always directed towards the center 

(centripetal) and therefore was predictable with respect to its direction and amplitude.    We note that 

target predictability is confounded with the initial eye position but this is unlikely to have a significant 

impact (see discussion).  Each of the six possible locations was used in ten trials, yielding 120 trials in 

total per run. The duration of the target display and the order of used target locations were randomized 

in each run. A run lasted about 2 minutes.  
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straight ahead (figure 1A). These seven chair rotations were 15, 30, 45 degrees to the left or to the right, 

and a neutral rotation (0 degrees straight ahead, i.e., the head and trunk were aligned). 

In the saccade paradigm subjects were instructed to look at target while it jumped on the screen (Figure 

1B). At the beginning of a trial, the target was presented at the center of the screen. After a random 

interval of 0.8 to 1.6 seconds, the target disappeared and immediately appeared unpredictably at one 

out of six possible locations. These locations were 5, 10, or 15 degrees of visual angle to the left or right 

site from the center. After a random interval of 0.8 to 1.6 seconds the target disappeared from that 

location and immediately appeared at the center of the screen, indicating the beginning of the next trial. 

In each trial, two saccades were therefore evoked. The first centrifugal saccade was directed to an 

unpredictable position whereas the second saccade was always directed towards the center 

(centripetal) and therefore was predictable with respect to its direction and amplitude.    We note that 

target predictability is confounded with the initial eye position but this is unlikely to have a significant 

impact (see discussion).  Each of the six possible locations was used in ten trials, yielding 120 trials in 

total per run. The duration of the target display and the order of used target locations were randomized 

in each run. A run lasted about 2 minutes.  
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In the smooth pursuit paradigm subjects were instructed to look at the target while it moved gradually 

from left to right on the screen in the horizontal plane (Figure 1C). There were two conditions in this 

paradigm: a predictable motion condition and an unpredictable motion condition. In the predictable 

condition the target moved according to a single sinusoid with frequency of 0.4 Hz and a peak to peak 

amplitude of 27 degrees. In the unpredictable condition the target moved according to a sum of three 

sinusoids with different frequencies and amplitudes (Sum of Sines stimulation, Soeching et al. 2010). 

One of the sinusoids had a frequency of 0.4 Hz and a peak to peak amplitude of 27 degrees, like the 

predictably moving target. In a single run, the other two (non-harmonic) sinusoids were one of the 

following pairs: 0.182 and 0.618 Hz, 0.222 and 0.578 Hz or 0.268 and 0.532 Hz. Note that for each 

combination the average frequency was 0.4 Hz. Three different combinations were used randomly 

between runs to prevent learning. In each run, the predictable condition was performed first for about 

30 seconds, followed by the unpredictable condition for about 30 seconds. In between conditions was a 

brief pause of about 5 seconds. A run lasted little over 1 minute.  

 

Procedure 

The order of the chair rotations was pseudo-randomized across subjects. In the first run the chair was 

in neutral rotation (0 degrees), followed by a 45 degrees chair rotation either to the left or the right in the 

second run. In the third run the chair was rotated 45 degrees to the other direction. In the following runs 

the four remaining rotations were applied in a pseudo-random order across subjects. In the smooth 

pursuit paradigm only, an additional measurement was made with neutral chair rotation in the fourth run. 

In both paradigms, a neutral chair rotation (0 degrees) was used for the final run. The smooth pursuit 

paradigm entailed nine runs, the saccade paradigm entailed eight runs. 

In 12 of the 16 subjects who performed in both paradigms, the two paradigms were executed in two 

sessions on two separate days; in the other four subjects the paradigms were performed in a single 

session. For these subjects, the chair was rotated to a specific position and a run of the smooth pursuit 

paradigm was followed by a run of the saccade paradigm. 

 

Analysis 

The recorded eye data were parsed for events (blinks, saccades and fixations) and eye positions using 

the built-in EyeLink software, and subsequently analyzed off-line using custom-written software in 

Matlab (version 2008b). 

In the saccade paradigm, the primary saccades following a change in target position, either away or 

toward the center, were marked and extracted for each subject and in each run. For each saccade, the 

latency (i.e., the time between change in target location and saccade onset), the amplitude and peak 

velocity were determined. Saccades with a latency smaller than 50 ms, an amplitude below 2 degrees 

or above 30 degrees of visual angle, with a duration over 150 ms, and/or with a vertical component 

above 2 degrees of visual angle were discarded. Saccadic amplitude was transformed into a gain value, 

being the amplitude divided by the size of the target jump. 

 

 

Saccades were grouped in 12 categories according to six trial types (i.e., the combination of two 

directions of the saccade (leftward or rightward), and three sizes of the initial target jump away from the 

center) and two phases within a trial (the unpredictable jump away from the center, evoking a centrifugal 

saccade, and the predictable change towards the center evoking a centripetal saccade). The median 

values of the three saccade parameters of interest (latency, gain, and peak velocity) were calculated 

over the 10 trials for each of the 12 saccade categories and each of the eight runs separately. The two 

values of the two runs when the chair was rotated in the neutral position were averaged within each 

subject. Data were averaged over the direction of chair rotation, since a preliminary analysis showed no 

effect of the direction of chair rotation. 

Statistical analyses were performed by means of repeated measurements ANOVAs, which included four 

factors (“neck torsion” with four levels: 0, 15, 30 and 45 degrees of chair rotation; “predictability” with 

two levels: predictable (centripetal) target jumps vs. unpredictable (centrifugal) target jumps; “direction” 

with 2 levels: left or right; and “amplitude” with three levels: 5, 10 or 15 degrees of visual angle). For 

each of the three outcome parameters of the saccade paradigm (latency, gain, and peak velocity) a 

separate ANOVA was performed.  

In the smooth pursuit paradigm, instantaneous eye velocity signals were calculated from the eye position 

signals. The numbers of saccadic intrusions (amplitude > 1.0 degrees) were counted in a time window 

of 30 seconds, starting one second after the commencement of recording. Saccades and square waves, 

as well as eye blinks were removed from the velocity signals. For the predictable condition, a sinusoid 

with a frequency of 0.4 Hz was fitted through the eye velocity data. This yielded a gain and a phase lag 

of the smooth pursuit eye movement. The gain was defined as the fitted eye velocity amplitude divided 

by the target velocity amplitude (fixed at 2*pi*0.4*13.5 = 33.9 degrees/s). For the unpredictable condition 

a sum of three sinusoids, with frequencies matching the three target frequencies, was fitted through the 

eye velocity data. This yielded three fitted eye velocity amplitudes. The gain of the unpredictable smooth 

pursuit eye movement was defined as the fitted amplitude for 0.4 Hz divided by the target velocity 

amplitude at 0.4 Hz (fixed at 2*pi*0.4*13.5 = 33.9 degrees/s).  

The gains, phase lags, and the number of saccadic intrusions of the second and third measurement, 

when the chair was rotated in the neutral position, were averaged, to obtain values for this chair rotation 

(the first measurement in this rotation was discarded). For each subject, all 14 gains (obtained for 7 

chair rotations and 2 target movement conditions [predictable and unpredictable]) were normalized by 

dividing them by the median of the 7 gains obtained in the predictable condition. The number of saccadic 

intrusions were normalized similarly using the median number of saccades for the 7 chair rotations in 

the predictable condition. Data were averaged over the direction of chair rotation, since a preliminary 

analysis showed no effect of the direction of chair rotation. 

Statistical analyses were performed by means of repeated measurements ANOVAs, which included two 

factors (“neck torsion” with four levels: 0, 15, 30 and 45 degrees of degrees of chair rotation; 

“predictability” with two levels: predictable vs. unpredictable smooth pursuit target motion). For each of 

the three outcome parameters of the smooth pursuit paradigm (gain, phase difference and number of 

saccadic intrusions) a separate ANOVA was performed. 
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In the smooth pursuit paradigm subjects were instructed to look at the target while it moved gradually 

from left to right on the screen in the horizontal plane (Figure 1C). There were two conditions in this 

paradigm: a predictable motion condition and an unpredictable motion condition. In the predictable 

condition the target moved according to a single sinusoid with frequency of 0.4 Hz and a peak to peak 

amplitude of 27 degrees. In the unpredictable condition the target moved according to a sum of three 

sinusoids with different frequencies and amplitudes (Sum of Sines stimulation, Soeching et al. 2010). 

One of the sinusoids had a frequency of 0.4 Hz and a peak to peak amplitude of 27 degrees, like the 

predictably moving target. In a single run, the other two (non-harmonic) sinusoids were one of the 

following pairs: 0.182 and 0.618 Hz, 0.222 and 0.578 Hz or 0.268 and 0.532 Hz. Note that for each 

combination the average frequency was 0.4 Hz. Three different combinations were used randomly 

between runs to prevent learning. In each run, the predictable condition was performed first for about 

30 seconds, followed by the unpredictable condition for about 30 seconds. In between conditions was a 

brief pause of about 5 seconds. A run lasted little over 1 minute.  

 

Procedure 

The order of the chair rotations was pseudo-randomized across subjects. In the first run the chair was 

in neutral rotation (0 degrees), followed by a 45 degrees chair rotation either to the left or the right in the 

second run. In the third run the chair was rotated 45 degrees to the other direction. In the following runs 

the four remaining rotations were applied in a pseudo-random order across subjects. In the smooth 

pursuit paradigm only, an additional measurement was made with neutral chair rotation in the fourth run. 

In both paradigms, a neutral chair rotation (0 degrees) was used for the final run. The smooth pursuit 

paradigm entailed nine runs, the saccade paradigm entailed eight runs. 

In 12 of the 16 subjects who performed in both paradigms, the two paradigms were executed in two 

sessions on two separate days; in the other four subjects the paradigms were performed in a single 

session. For these subjects, the chair was rotated to a specific position and a run of the smooth pursuit 

paradigm was followed by a run of the saccade paradigm. 

 

Analysis 

The recorded eye data were parsed for events (blinks, saccades and fixations) and eye positions using 

the built-in EyeLink software, and subsequently analyzed off-line using custom-written software in 

Matlab (version 2008b). 

In the saccade paradigm, the primary saccades following a change in target position, either away or 

toward the center, were marked and extracted for each subject and in each run. For each saccade, the 

latency (i.e., the time between change in target location and saccade onset), the amplitude and peak 

velocity were determined. Saccades with a latency smaller than 50 ms, an amplitude below 2 degrees 

or above 30 degrees of visual angle, with a duration over 150 ms, and/or with a vertical component 

above 2 degrees of visual angle were discarded. Saccadic amplitude was transformed into a gain value, 

being the amplitude divided by the size of the target jump. 

 

 

Saccades were grouped in 12 categories according to six trial types (i.e., the combination of two 

directions of the saccade (leftward or rightward), and three sizes of the initial target jump away from the 

center) and two phases within a trial (the unpredictable jump away from the center, evoking a centrifugal 

saccade, and the predictable change towards the center evoking a centripetal saccade). The median 

values of the three saccade parameters of interest (latency, gain, and peak velocity) were calculated 

over the 10 trials for each of the 12 saccade categories and each of the eight runs separately. The two 

values of the two runs when the chair was rotated in the neutral position were averaged within each 

subject. Data were averaged over the direction of chair rotation, since a preliminary analysis showed no 

effect of the direction of chair rotation. 

Statistical analyses were performed by means of repeated measurements ANOVAs, which included four 

factors (“neck torsion” with four levels: 0, 15, 30 and 45 degrees of chair rotation; “predictability” with 

two levels: predictable (centripetal) target jumps vs. unpredictable (centrifugal) target jumps; “direction” 

with 2 levels: left or right; and “amplitude” with three levels: 5, 10 or 15 degrees of visual angle). For 

each of the three outcome parameters of the saccade paradigm (latency, gain, and peak velocity) a 

separate ANOVA was performed.  

In the smooth pursuit paradigm, instantaneous eye velocity signals were calculated from the eye position 

signals. The numbers of saccadic intrusions (amplitude > 1.0 degrees) were counted in a time window 

of 30 seconds, starting one second after the commencement of recording. Saccades and square waves, 

as well as eye blinks were removed from the velocity signals. For the predictable condition, a sinusoid 

with a frequency of 0.4 Hz was fitted through the eye velocity data. This yielded a gain and a phase lag 

of the smooth pursuit eye movement. The gain was defined as the fitted eye velocity amplitude divided 

by the target velocity amplitude (fixed at 2*pi*0.4*13.5 = 33.9 degrees/s). For the unpredictable condition 

a sum of three sinusoids, with frequencies matching the three target frequencies, was fitted through the 

eye velocity data. This yielded three fitted eye velocity amplitudes. The gain of the unpredictable smooth 

pursuit eye movement was defined as the fitted amplitude for 0.4 Hz divided by the target velocity 

amplitude at 0.4 Hz (fixed at 2*pi*0.4*13.5 = 33.9 degrees/s).  

The gains, phase lags, and the number of saccadic intrusions of the second and third measurement, 

when the chair was rotated in the neutral position, were averaged, to obtain values for this chair rotation 

(the first measurement in this rotation was discarded). For each subject, all 14 gains (obtained for 7 

chair rotations and 2 target movement conditions [predictable and unpredictable]) were normalized by 

dividing them by the median of the 7 gains obtained in the predictable condition. The number of saccadic 

intrusions were normalized similarly using the median number of saccades for the 7 chair rotations in 

the predictable condition. Data were averaged over the direction of chair rotation, since a preliminary 

analysis showed no effect of the direction of chair rotation. 

Statistical analyses were performed by means of repeated measurements ANOVAs, which included two 

factors (“neck torsion” with four levels: 0, 15, 30 and 45 degrees of degrees of chair rotation; 

“predictability” with two levels: predictable vs. unpredictable smooth pursuit target motion). For each of 

the three outcome parameters of the smooth pursuit paradigm (gain, phase difference and number of 

saccadic intrusions) a separate ANOVA was performed. 
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All statistical analyses were performed using SPSS (Version 20). Significance level was set at 5%. In 

the result section we will focus on the effects of chair rotation and target predictability (and their 

interaction with other factors) on the various outcome measures of saccadic and smooth pursuit eye 

movements. 

 

RESULTS 

Saccadic eye movements 

The data of one subject was discarded, because almost all her predictable centripetal saccades had 

latencies below 50 ms, leaving 19 subjects to be included in the analysis. 

 
Figure 2: Saccadic gains (panel A), latencies (panel B) and peak velocities (panel C) for each of the four eccentricities of chair 
rotation, for predictable centripetal saccades (closed circles) and unpredictable centrifugal saccades (open squares). Error bars 
represent 95% confidence interval. 
 

Saccadic gain (figure 2A) was not affected by neck torsion and none of the interactions involving neck 

torsion reached significance. Predictability did affect saccade gain (F(1,18) = 8.25, p = .01, partial η2 = 

.34): unpredictable centrifugal saccades had higher gains (0.97 ± 0.02) than predictable centripetal 

saccades (0.95 ± 0.01). The interaction between predictability and amplitude (F(2,17) = 27.65, p < .00, 

partial η2 = .77) showed that the gains of unpredictable centrifugal saccades decreased with amplitude 

(1.00 ± 0.02, 0.97 ± 0.02, and 0.94 ± 0.01, for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 20.56, 

p < .00, partial η2 = .71), whereas the gains of predictable centripetal saccades did not (0.92 ± 0.02, 

0.96 ± 0.01, and 0.96 ± 0.01, for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 9.38, p = .00, partial 

η2 = .53). The interaction between predictability and direction (F(1,18) = 6.13, p = .02, partial η2 = .25), 

showed that the difference in gain between leftward saccades and rightward saccades was smaller for 

predictable centripetal saccades (0.94 ± 0.02 vs. 0.95 ± 0.01) than for unpredictable centrifugal 

saccades (0.95 ± 0.02 vs. 1.00 ± 0.01, T(18) = 2.501, p = .02) The main effect of direction (F(1,18) = 

7.93, p = .01, partial η2 = .31) showed that rightward saccades had a higher gain (0.97 ± 0.02) than 

leftward saccades (0.94 ± 0.01). The main effect of amplitude (F(2,17) = 8.26, p = .00, partial η2 = .49) 

showed that, overall, saccade gain differed between amplitudes (0.96 ± 0.02, 0.97 ± 0.02 and 0.95 ± 

0.01 for 5, 10, and 15 degrees amplitude, resp.).  

 

 

Saccadic latency (figure 2B) was not affected by neck torsion and none of the interactions involving 

neck torsion reached significance. Predictability did affect latency (F(1,18) = 82.37, p < .00, partial η2 = 

.82): unpredictable centrifugal saccades had longer latencies (193 ± 5 ms) than predictable centripetal 

saccades (166 ± 6 ms). The interaction between predictability and amplitude (F(2,17) = 12.21, p = .00, 

partial η2 = .59) showed that latencies of unpredictable centrifugal saccades increased with amplitude 

(194 ± 5 192 ± 5, and 214 ± 5 ms for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 105.27, p < .00, 

partial η2 = .93), whereas the latencies of predictable centripetal saccades did not (166 ± 6, 155 ± 5, and 

165 ± 5 ms for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 44.76, p < .00, partial η2 = .84). There 

was no interaction between predictability and saccade direction and there was no main effect of 

direction. The main effect of amplitude showed that, overall, saccade latency differed between 

amplitudes (180 ± 5, 173 ± 4, and 189 ± 4 ms for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 

100.66, p < .00, partial η2 = .92). 

Saccadic peak velocity (figure 2C) was significantly affected by neck torsion (F(3,16) = 6.39, p = .01, 

partial η2 = .55). Post-hoc analysis using paired t-tests showed that the peak velocity at neutral position 

(350 ± 9 deg/s) was significantly different from the peak velocity at 15 degrees (327 ± 9 deg/s , p = .00) 

and at 30 degrees neck torsion (333 ± 10 deg/s , p = .01), but not from the peak velocity at 45 degrees 

neck torsion (342 ± 9 deg/s). The peak velocities between 15 degrees and 45 degrees neck torsion 

differed as well (p = .04).  None of the interactions involving neck torsion reached significance. 

Predictability did not affect peak velocity. The interaction between predictability and amplitude (F(2,17) 

= 51.10, p < .00, partial η2 = .86) was significant. Post-hoc comparisons showed that peak velocity 

increases with amplitude for predictable saccades (239 ± 6, 351 ± 9, and 425 ± 10 deg/s, for 5, 10, and 

15 degrees amplitude, resp., F(2,17) = 406.63, p < .00, partial η2 = .98), but less so for unpredictable 

saccades (253 ± 7, 352 ± 9, and 399 ± 10 deg/s, for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 

305.82, p < .00 partial η2 = .97). There was no interaction between predictability and saccade direction. 

There was no main effect of direction. The main effect of target amplitude showed that, overall, peak 

velocity differed between amplitudes (246 ± 6 deg/s, 355 ± 9 deg/s and 412 ± 10 deg/s for 5, 10, and 15 

degrees, resp., F(2,17) = 395.40, p < .00, partial η2 = .98).  

In neutral chair rotation, the within-subject correlations between predictable centripetal saccades and 

unpredictable centrifugal saccades were significant for all parameters measured: saccade gains (r = 

.78), latencies (r = .57), and peak velocities (r = .79). 

We also compared the mean gain, latency and peak velocity between both runs in neutral rotation (i.e., 

between run 1 and run 8) to assess possible effects of learning and/or fatigue. No differences in gain or 

latency were found. Peak velocities of saccades in the first run (350 ± 12 deg/s) were somewhat higher 

than the second run in neutral rotation (328 ± 12 deg/s; F(1,17) = 7.01, p = .02, partial η2 = .29).  

Smooth pursuit eye movements 

All 20 subjects were included in the analyses. 
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All statistical analyses were performed using SPSS (Version 20). Significance level was set at 5%. In 

the result section we will focus on the effects of chair rotation and target predictability (and their 

interaction with other factors) on the various outcome measures of saccadic and smooth pursuit eye 

movements. 

 

RESULTS 

Saccadic eye movements 

The data of one subject was discarded, because almost all her predictable centripetal saccades had 

latencies below 50 ms, leaving 19 subjects to be included in the analysis. 

 
Figure 2: Saccadic gains (panel A), latencies (panel B) and peak velocities (panel C) for each of the four eccentricities of chair 
rotation, for predictable centripetal saccades (closed circles) and unpredictable centrifugal saccades (open squares). Error bars 
represent 95% confidence interval. 
 

Saccadic gain (figure 2A) was not affected by neck torsion and none of the interactions involving neck 

torsion reached significance. Predictability did affect saccade gain (F(1,18) = 8.25, p = .01, partial η2 = 

.34): unpredictable centrifugal saccades had higher gains (0.97 ± 0.02) than predictable centripetal 

saccades (0.95 ± 0.01). The interaction between predictability and amplitude (F(2,17) = 27.65, p < .00, 

partial η2 = .77) showed that the gains of unpredictable centrifugal saccades decreased with amplitude 

(1.00 ± 0.02, 0.97 ± 0.02, and 0.94 ± 0.01, for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 20.56, 

p < .00, partial η2 = .71), whereas the gains of predictable centripetal saccades did not (0.92 ± 0.02, 

0.96 ± 0.01, and 0.96 ± 0.01, for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 9.38, p = .00, partial 

η2 = .53). The interaction between predictability and direction (F(1,18) = 6.13, p = .02, partial η2 = .25), 

showed that the difference in gain between leftward saccades and rightward saccades was smaller for 

predictable centripetal saccades (0.94 ± 0.02 vs. 0.95 ± 0.01) than for unpredictable centrifugal 

saccades (0.95 ± 0.02 vs. 1.00 ± 0.01, T(18) = 2.501, p = .02) The main effect of direction (F(1,18) = 

7.93, p = .01, partial η2 = .31) showed that rightward saccades had a higher gain (0.97 ± 0.02) than 

leftward saccades (0.94 ± 0.01). The main effect of amplitude (F(2,17) = 8.26, p = .00, partial η2 = .49) 

showed that, overall, saccade gain differed between amplitudes (0.96 ± 0.02, 0.97 ± 0.02 and 0.95 ± 

0.01 for 5, 10, and 15 degrees amplitude, resp.).  

 

 

Saccadic latency (figure 2B) was not affected by neck torsion and none of the interactions involving 

neck torsion reached significance. Predictability did affect latency (F(1,18) = 82.37, p < .00, partial η2 = 

.82): unpredictable centrifugal saccades had longer latencies (193 ± 5 ms) than predictable centripetal 

saccades (166 ± 6 ms). The interaction between predictability and amplitude (F(2,17) = 12.21, p = .00, 

partial η2 = .59) showed that latencies of unpredictable centrifugal saccades increased with amplitude 

(194 ± 5 192 ± 5, and 214 ± 5 ms for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 105.27, p < .00, 

partial η2 = .93), whereas the latencies of predictable centripetal saccades did not (166 ± 6, 155 ± 5, and 

165 ± 5 ms for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 44.76, p < .00, partial η2 = .84). There 

was no interaction between predictability and saccade direction and there was no main effect of 

direction. The main effect of amplitude showed that, overall, saccade latency differed between 

amplitudes (180 ± 5, 173 ± 4, and 189 ± 4 ms for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 

100.66, p < .00, partial η2 = .92). 

Saccadic peak velocity (figure 2C) was significantly affected by neck torsion (F(3,16) = 6.39, p = .01, 

partial η2 = .55). Post-hoc analysis using paired t-tests showed that the peak velocity at neutral position 

(350 ± 9 deg/s) was significantly different from the peak velocity at 15 degrees (327 ± 9 deg/s , p = .00) 

and at 30 degrees neck torsion (333 ± 10 deg/s , p = .01), but not from the peak velocity at 45 degrees 

neck torsion (342 ± 9 deg/s). The peak velocities between 15 degrees and 45 degrees neck torsion 

differed as well (p = .04).  None of the interactions involving neck torsion reached significance. 

Predictability did not affect peak velocity. The interaction between predictability and amplitude (F(2,17) 

= 51.10, p < .00, partial η2 = .86) was significant. Post-hoc comparisons showed that peak velocity 

increases with amplitude for predictable saccades (239 ± 6, 351 ± 9, and 425 ± 10 deg/s, for 5, 10, and 

15 degrees amplitude, resp., F(2,17) = 406.63, p < .00, partial η2 = .98), but less so for unpredictable 

saccades (253 ± 7, 352 ± 9, and 399 ± 10 deg/s, for 5, 10, and 15 degrees amplitude, resp., F(2,17) = 

305.82, p < .00 partial η2 = .97). There was no interaction between predictability and saccade direction. 

There was no main effect of direction. The main effect of target amplitude showed that, overall, peak 

velocity differed between amplitudes (246 ± 6 deg/s, 355 ± 9 deg/s and 412 ± 10 deg/s for 5, 10, and 15 

degrees, resp., F(2,17) = 395.40, p < .00, partial η2 = .98).  

In neutral chair rotation, the within-subject correlations between predictable centripetal saccades and 

unpredictable centrifugal saccades were significant for all parameters measured: saccade gains (r = 

.78), latencies (r = .57), and peak velocities (r = .79). 

We also compared the mean gain, latency and peak velocity between both runs in neutral rotation (i.e., 

between run 1 and run 8) to assess possible effects of learning and/or fatigue. No differences in gain or 

latency were found. Peak velocities of saccades in the first run (350 ± 12 deg/s) were somewhat higher 

than the second run in neutral rotation (328 ± 12 deg/s; F(1,17) = 7.01, p = .02, partial η2 = .29).  

Smooth pursuit eye movements 

All 20 subjects were included in the analyses. 
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Figure 3: Normalized smooth pursuit gain (panel A), phase lags (panel B) and normalized number of saccadic intrusions (panel 
C) for each of the four eccentricities of chair rotation, for predictably moving targets (closed circles) and unpredictably moving 
targets (open squares). Error bars represent 95% confidence interval. 
 

Smooth pursuit gain (figure 3A) was affected by neck torsion (0.95 ± 0.02, 0.99 ± 0.01, 0.97 ± 0.01 and 

0.95 ± 0.01, for 0, 15, 30 and 45 degrees chair rotation, resp., F(3,17) = 4.98, p = .01, partial η2 = .47). 

Predictability did affect smooth pursuit gain (F(1,19) = 22.74, p < 00, partial η2 = .55): predictably moving 

targets yielded higher smooth pursuit gains (1.00 ± 0.00) than unpredictably moving targets (0.94 ± 

0.12). The interaction between predictability and neck torsion was not significant.  

Phase lags (figure 3B) were affected by neck torsion (9.2 ± 0.5, 8.6 ± 0.6, 8.0 ± 0.5 and 9.1 ± 0.6 

degrees, for 0, 15, 30 and 45 degrees chair rotation, respectively (F(3,17) = 3.39, p = .04, partial η2 = 

.37). Phase lag was higher for unpredictably moving targets (10.3 ± 0.6 degrees) than for predictably 

moving targets (6.9 ± 0.6 degrees, F(1,19) = 4.50, p = .05, partial η2 = .19). No interaction between neck 

torsion and predictability was present. 

The normalized number of saccadic intrusions (figure 3C) was not affected by neck torsion. Predictability 

did affect the number of saccadic intrusions (F(1,19) = 7.22, p = .02, partial η2 = .28): predictably moving 

targets resulted in more saccades (1.01 ± .01) than unpredictably moving targets (0.93 ± 0.03). The 

interaction between predictability and neck torsion was just not significant (F(3,17) = 3.04, p = .06, partial 

η2 = .35). A post-hoc analysis suggested that for predictably moving targets the number of saccadic 

intrusions increased with increasing neck torsion (93 ± .04, .96 ± .02, 1.03 ± .04 and 1.07 ± .04 intrusions, 

for 0, 15, 30 and 45 degrees chair rotation, resp., F(3,17) = 3.90, p = .03, partial η2 = .41). For 

unpredictably moving targets, the number of saccadic intrusions was not affected by neck torsion.  

Individual smooth pursuit gains (r = .46) and number of saccadic intrusions (r = .79) correlated between 

predictably moving targets and unpredictably moving targets across 20 subjects in the neutral rotation. 

Smooth pursuit gains did not correlate with number of saccadic intrusions for predictably (r = .14) and 

unpredictably (r = .05) moving targets. 

We compared smooth pursuit gains and numbers of saccades to predictably moving targets between 

both runs in neutral rotation (i.e., between run 4 and run 9) to assess possible effects of learning and/or 

fatigue. No significant differences were found in smooth pursuit gains or numbers of saccadic intrusions. 

 

 

Finally, for the neutral chair rotation, we observed no correlation between the average gain of predictable 

saccades and the gain of predictable smooth pursuit (r = .32), nor between the average gain of 

unpredictable saccades and the gain of unpredictable smooth pursuit (r = .19), using the data of the 16 

subjects who participated in both paradigms. Also, we did not see marked differences between the four 

subjects who performed both paradigms in a single session and the 12 subjects who performed both 

paradigms in two separate sessions. 

 

DISCUSSION 

In this study, we systematically investigated the effect of neck torsion on voluntary eye movements. 

Using a thorough methodological approach using video-oculography and a range of neck torsions, we 

found that smooth pursuit as well as saccadic eye movement performance were only mildly affected by 

static rotation of the trunk relative to the head. The effect was most prominent, but nonetheless small, 

for smooth pursuit eye movements. Using a range of neck torsions from 45 degrees to the left to 45 

degrees to the right, a maximum of 5% percent change in smooth pursuit gain was observed. Gain was 

maximal at 15 degrees torsion, but similar gains were observed for neutral (0 degrees) and extreme (45 

degrees) neck torsions. For saccadic eye movements, only peak velocity seems to be influenced by 

neck torsion, and gain and latency were not. Neutral and extreme neck torsions yielded comparable 

saccadic peak velocities. These findings of small effects of neck torsion on healthy human voluntary eye 

movements are in line with previous reports2,7,8,11. 

Interestingly enough, optimal performance, as reflected by high gains, was not always encountered at 

neutral rotations of the trunk, i.e., when the head and trunk were aligned (see figure 2A and 3A). Indeed, 

some subjects spontaneously reported that they found it more convenient to perform the task when they 

were rotated a little sideways, although this varied between subjects. However, we did not measure this 

“preferential direction” reliably for proper analysis in the present study. It is recommended that it is taken 

into account in the design of future studies. 

The lack of effect of neck torsion might be explained by an adaptive process. Increased neck torsion 

could have only transient effects on eye movement control as it is conceivable that the oculomotor 

system adapts to static changes in afferent cervical input caused by increased neck torsion. This notion 

could be tested in a setup that allows for applying dynamic chair rotation while presenting visual stimuli 

(see, e.g.18,19). In this way, one could disentangle transient from sustained effects of neck torsion on 

oculomotor control. 

In both the saccadic and smooth pursuit paradigm we manipulated the predictability of the target 

movements. As expected, unpredictable target jumps yielded higher saccadic latencies. Previous 

studies suggest that more time is needed in planning a saccade in response to an unpredicted target 

jump 20,21. An increased latency might also allow for executing a more accurate saccade 22. In the present 

study, gains were higher for increased latencies. The observed interaction between peak velocity and 

amplitude seems to be in line with previously reported increased peak accelerations for predictable large 

saccades 23. An increase in peak velocities could be related to the concurrent increase in gain, given 
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Interestingly enough, optimal performance, as reflected by high gains, was not always encountered at 

neutral rotations of the trunk, i.e., when the head and trunk were aligned (see figure 2A and 3A). Indeed, 

some subjects spontaneously reported that they found it more convenient to perform the task when they 

were rotated a little sideways, although this varied between subjects. However, we did not measure this 

“preferential direction” reliably for proper analysis in the present study. It is recommended that it is taken 

into account in the design of future studies. 

The lack of effect of neck torsion might be explained by an adaptive process. Increased neck torsion 

could have only transient effects on eye movement control as it is conceivable that the oculomotor 

system adapts to static changes in afferent cervical input caused by increased neck torsion. This notion 

could be tested in a setup that allows for applying dynamic chair rotation while presenting visual stimuli 

(see, e.g.18,19). In this way, one could disentangle transient from sustained effects of neck torsion on 

oculomotor control. 

In both the saccadic and smooth pursuit paradigm we manipulated the predictability of the target 

movements. As expected, unpredictable target jumps yielded higher saccadic latencies. Previous 

studies suggest that more time is needed in planning a saccade in response to an unpredicted target 

jump 20,21. An increased latency might also allow for executing a more accurate saccade 22. In the present 

study, gains were higher for increased latencies. The observed interaction between peak velocity and 

amplitude seems to be in line with previously reported increased peak accelerations for predictable large 

saccades 23. An increase in peak velocities could be related to the concurrent increase in gain, given 
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the link between saccade amplitude and velocity which is known as the main sequence 24. Also in the 

present study we found this relationship by manipulating the size of the target jump.  

In our saccade paradigm, saccades were either predictable or unpredictable with respect to direction 

and amplitude. However, predictable saccades were always centripetal, whereas unpredictable 

saccades were always centrifugal. Initial eye position could therefore be a confounding factor 25. Eye 

position, however, does not play a role in saccade generation on a low level. Structures like the superior 

colliculus and the brainstem encode saccadic direction, amplitude, duration and velocity, independent 

of initial eye position 26. Saccadic latencies are more likely to be controlled by cognitive processes that 

take target predictability into account. These cognitive processes are part of a higher level of oculomotor 

control in which the frontal eye fields, for instance, play a role 26. We therefore argue that the differences 

in saccadic latencies are not caused by different initial eye positions but rather by target predictabilities. 

For smooth pursuit movements, unpredictable target movements impaired smooth pursuit behavior. As 

expected, adding a frequency component above 0.4 Hz had a decremental effect on smooth pursuit 

gain of the 0.4 frequency component 12. This effect was found to be present for all neck rotations. 

However, reduced gains did not lead to an increased number of saccadic intrusions in response to 

unpredictably moving targets. This could be explained by the notion that it is not useful to make a 

saccade to a location that is unlikely to be the correct position of the target, since it moves unpredictably. 

In line with previous research, phase lags increased in the unpredictable condition for which smooth 

pursuit gain was decreased 27. 

In the Smooth Pursuit Neck Torsion (SPNT) test 10 smooth pursuit is measured in response to 

predictable target motion. Importantly, smooth pursuit performance is compared between neutral 

position and a position with (extreme) neck torsion, which circumvents issues related to between- 

subject differences that are, for instance, related to variations in cognitive abilities. We observed that 

the effect of neck torsion was not affected by target predictability. This suggests that one does not need 

to use unpredictable targets to compare groups of subjects, for instance, patients with neck pain and 

healthy controls. Even so, it might be worthwhile to use both predictable and unpredictable target 

motions to investigate how cognitive factors affect oculomotor behavior in patients with neck pain. For 

instance, patients with cognitive impairments due to frontal lobe degeneration show deficits in predicting 

target movements during smooth pursuit 28. It has been reported that patients with neck pain due to 

WAD also show more self-reports of cognitive complaints 29. It could be that these patients are less able 

to predict target motion and therefore show impairments in smooth pursuit performance. Although 

speculative, this impairment could be more pronounced in more challenging circumstances, i.e., when 

the neck patient is in extreme torsion. However, both the effect of target predictability itself and its 

potential interaction with neck torsion has not been investigated in patients with neck pain. 

The present study has several limitations. For instance, our subjects were rather young and it is known 

that eye movement performance changes with age 30. Therefore, one cannot extrapolate the current 

findings to the general population. Furthermore, we only tested eye movements and neck torsion in the 

horizontal plane. Given the distinct neuronal pathways for horizontal and vertical eye movements 26, it 

might be that neck torsion in different planes (tilt and roll) might yield different results.  

 

 

In conclusion, applying static neck torsion to healthy human subjects resulted in minimal changes in 

oculomotor control, not only for smooth pursuit eye movements, but also for saccadic eye movements. 

These effects were not modulated by target predictability, which, in itself, had clear effects on saccadic 

and smooth pursuit performance.  

Our findings are in line with previous observations about the effect of neck torsion on smooth pursuit 

eye movements in healthy individuals. As in the SPNT test, we did not find significant differences 

between no neck torsion (neutral rotation, 0 degrees) and extreme neck torsion (45 degrees rotation). 

Therefore, the methodological issues mentioned in the introduction do not seem to reduce the clinical 

relevance of the SPNT test to assess the cervical afferent influence on smooth pursuit eye movements. 

However, the use of video-oculography allows for a more detailed analysis of smooth pursuit behavior 

including saccadic intrusions and phases. Using more chair rotations provides a more complete view of 

the effect of neck torsion, for instance, by taking an individual torsion preference into account. Finally, 

using both predictable and unpredictable targets could give more insight in the interaction between 

(impaired) cognitive processes and smooth pursuit. Therefore, when given the opportunity, we 

recommend that future studies, for instance on the oculomotor control of patients with neck pain, include 

both predictably and unpredictably moving targets and use a range of neck torsions. This could be a 

useful and informative supplement of the SPNT test, although we realize that this might be difficult in 

clinical practice. Further studies are warranted to investigate how the head and eye movement systems 

interact to produce efficient gaze shifts in humans. 
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ABSTRACT 

Study Design This is a cross-sectional study. 

Objective The purpose of this study is to support and extend previous observations on oculomotor 

disturbances in patients with neck pain and whiplash-associated disorders (WADs) by systematically 

investigating the effect of static neck torsion on smooth pursuit in response to both predictably and 

unpredictably moving targets using video-oculography. 

Summary of Background Data Previous studies showed that in patients with neck complaints, for 

instance due to WAD, extreme static neck torsion deteriorates smooth pursuit eye movements in 

response to predictably moving targets compared with healthy controls. 

Methods Eye movements in response to a smoothly moving target were recorded with video-

oculography in a heterogeneous group of 55 patients with neck pain (including 11 patients with WAD) 

and 20 healthy controls. Smooth pursuit performance was determined while the trunk was fixed in 7 

static rotations relative to the head (from 45° to the left to 45° to right), using both predictably and 

unpredictably moving stimuli. 

Results Patients had reduced smooth pursuit gains and smooth pursuit gain decreased due to neck 

torsion. Healthy controls showed higher gains for predictably moving targets compared with 

unpredictably moving targets, whereas patients with neck pain had similar gains in response to both 

types of target movements. In 11 patients with WAD, increased neck torsion decreased smooth pursuit 

performance, but only for predictably moving targets. 

Conclusion Smooth pursuit of patients with neck pain is affected. The previously reported WAD-

specific decline in smooth pursuit due to increased neck torsion seems to be modulated by the 

predictability of the movement of the target. The observed oculomotor disturbances in patients with 

WAD are therefore unlikely to be induced by impaired neck proprioception alone. 

Keywords smooth pursuit, whiplash, neck pain, neck torsion, stimulus predictability, human, eye 

movements, diagnostic test, video-oculography, proprioception. 

  

 

 

INTRODUCTION 

Patients with neck pain often present with headaches, dizziness, as well as visual problems1,2, which 

can be related to problems in eye movement control 3-6. This includes smooth pursuit, which is an eye 

movement that is executed to keep track of a moving object 7. The smooth pursuit neck torsion test 

(SPNT) is a clinical test that has been developed to diagnose patients with cervical dizziness (reported 

sensitivity/specificity: 90%/91%) 4. This test is based on the observed decrease in smooth pursuit 

performance in patients due to static neck torsion (placing the head in rotated position while keeping the 

trunk stationary). Smooth pursuit performance is reflected by the smooth pursuit gain, i.e., the velocity 

of the eye movement relative to the velocity of the moving object. A gain of 1 implies perfect smooth 

pursuit. A decline in smooth pursuit performance with increased neck torsion was not observed in 

healthy controls. A later study validated the SPNT for diagnosing patients with whiplash associated 

disorder (WAD), and reported high diagnostic value in discriminating these patients from others with 

cervical complaints 8. Additional studies that used the SPNT reproduced these findings of gain decline 

and specificity for WAD patients 9,10. However, several factors impede proper assessment of these 

findings. First, subjects were fixated manually, which reduces the comparison and reproducibility 

between measurements since one cannot make sure that the same neck torsion is applied at all times. 

Second, eye movement recordings were commonly done by means of electro-oculography (EOG), 

which is quite unreliable to detect small changes in eye position as well as relatively slow eye 

movements 11. Finally, a limited variety of neck torsions was usually applied (either none or very 

prominent, i.e., about 45 degrees of head rotation relative to the body). A final important limitation is 

related to the predictable motion of the object used to evoke smooth pursuit. With such a predictable 

motion, the sought-for modifications in smooth pursuit behavior might be compensated for by adequate 

prediction of target motion7,12-15.  This confounding factor can be avoided by using an unpredictably 

moving target.  

In this research we studied the effects of neck torsion and target predictability on smooth pursuit eye 

movement in patients with various origins of neck pain, avoiding the issues mentioned above. We expect 

that increased neck torsion would have more detrimental effects on smooth pursuit performance in 

patients than in healthy controls. Furthermore, we hypothesized an interaction between target 

predictability and neck torsion, with the SPNT with unpredictably moving targets being more affected. 

 

METHODS 

Subjects 

Twenty healthy controls and 55 patients with neck pain participated in this experiment. Healthy controls 

were recruited among the hospital and university staff: they formed a heterogeneous group of 10 males 

and 10 females, being on average 28.4 years old (range 20-51 years). None of the control subjects had 

a history of trauma, neck complaints or neurological conditions. All had normal or corrected to normal 

vision. Importantly, none of the controls had experienced severe neck pain in the last six months. 
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For the patients, we looked at a heterogeneous group with various origins of their complaints, both 

traumatic and non-traumatic. Patients were included with support of the Spine and Joint Centre 

Rotterdam, a rehabilitation center for patients with chronic neck complaints, as well as regular physical 

therapists. In total, 55 patients (21 males, 34 females, mean age 44.2 years, range 25-67 years) were 

included. All patients experienced chronic pain the neck for more than six months which impaired their 

behavior in daily life. The patients were diagnosed as having Whiplash Associated Disorder (WAD, 

n=11) or not  (non-WAD, n=44) according to experienced physicians of the Spine and Joint Centre 

Rotterdam, with use of the criteria of Spitzer 16.  

All participants gave informed consent and the study was approved by the local review board. 

Apparatus 

The methodology has been described in detail elsewhere 17. Briefly, subjects were seated in a custom-

made rotatable chair. Rotating the chair to a fixed position, while keeping the head pointing straight 

ahead induced static neck torsion. Eye movements in response to a moving red dot on a black 

background were recorded by means of video-oculography (resolution noise < 0.01 degrees, velocity 

noise < 3 degrees/s, sample rate 250 Hz) 18. 

Experiment 

Seven chair rotations were used: a neutral rotation (0 degrees straight ahead, i.e., the head and trunk 

were aligned) and a rotation of 15, 30, 45 degrees to the left or to the right (figure 1). The experiment 

consisted of nine runs in which the chair was positioned in a specific rotation. Each eccentric rotation 

was applied once and the neutral rotation was applied three times. In each run, conditions were applied. 

 

 

 

 

Figure1: Schematic representation of the chair rotation conditions. While the head was fixated by means of a bite board, the torso 
was held in a fixed rotation to the right or to the left, which induced static neck torsion. The subject was asked to follow a single 
moving dot that was projected on the screen in front. 
  

There were two conditions in this experiment: a predictable motion condition and an unpredictable 

motion condition. In the predictable condition the target moved according to a single sinusoid with 

frequency of 0.4 Hz and a peak to peak amplitude of 27 degrees. In the unpredictable condition the 

target moved according to a sum of three sinusoids with different frequencies and amplitudes. One of 

the sinusoids had a frequency of 0.4 Hz and a peak to peak amplitude of 27 degrees, like the predictably 

moving target. Three unpredictable stimuli were used randomly between runs to prevent learning. In 

each run, the predictable condition was performed first, followed by the unpredictable condition. Both 

conditions lasted about 33 seconds. 

Procedure 

The order of the seven chair rotations was pseudo-randomized across subjects, Neutral rotation was 

measured three times at the 1st, 5th and 9th run. The experiment lasted about 20 minutes. 

Analysis 

The recorded eye data were parsed for events (blinks, saccades and fixations) and eye positions using 

the built-in EyeLink software, and subsequently analyzed off-line using custom-written software in 

Matlab (version 2008b). 

Instantaneous eye velocity signals were calculated from the eye position signals. The numbers of 

saccadic intrusions (amplitude > 1.0 degrees) were counted in a time window of 30 seconds, starting 

one second after the commencement of recording. Saccades and square waves, as well as eye blinks, 

were removed from the velocity signals. For the predictable condition, a sinusoid with a frequency of 0.4 
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Hz was fitted through the eye velocity data. This yielded a gain of the smooth pursuit eye movement. 

The gain was defined as the fitted eye velocity amplitude divided by the target velocity amplitude (fixed 

at 2*pi*0.4*13.5 = 33.9 degrees/s). For the unpredictable condition a sum of three sinusoids, with 

frequencies matching the three target frequencies, was fitted through the eye velocity data. These 

combinations were 0.4 Hz combined with one of three frequency pairs (0.182 and 0.618 Hz, 0.222 and 

0.578 Hz or 0.268 and 0.532 Hz), that were on average all 0.4 Hz. This yielded three fitted eye velocity 

amplitudes. The gain of the unpredictable smooth pursuit eye movement was defined as the fitted 

amplitude for 0.4 Hz divided by the target velocity amplitude at 0.4 Hz (fixed at 2*pi*0.4*13.5 = 33.9 

degrees/s).  

Number of saccadic intrusions was determined since an increased number of saccades during smooth 

pursuit eye movement is associated with worse performance 19,20. The gains and the number of saccadic 

intrusions of the second and third measurement at neutral position, were averaged, to obtain values for 

this chair rotation (the first measurement in this rotation was discarded). Data for each chair rotation 

eccentricity to the left and to the right were combined by taking the average of the two values, since a 

preliminary analysis showed no effect of the direction of chair rotation. 

Statistical analyses were performed using all the complete measurements by means of repeated 

measurements ANOVAs, which included one between-subject factor “Group” with two levels (patients 

vs. controls) and two within-subject factors (“Neck Torsion” with four levels: 0, 15, 30 and 45 degrees of 

chair rotation; “Predictability” with two levels: predictable vs. unpredictable smooth pursuit target 

motion). For both outcome parameters (gain and number of saccadic intrusions) a separate ANOVA 

was performed. Correlations between the smooth pursuit gain and the number of saccadic intrusions 

were assessed using Pearson’s correlation coefficient. 

For each subject we also calculated the Smooth Pursuit Neck Torsion (SPNT) difference, similar to the 

previous studies 4,8,21. The SPNT difference is defined as the difference between the average gain in 

the neutral position and the gain in the most eccentric measured positions, averaged over left and right. 

In most cases this was the 45 degree torsion. The SPNT difference was analyzed using a repeated 

measurement ANOVA with one between-subject factor “Group” with two levels (patients vs. controls) 

and one within-subject factors (“Predictability” with two levels: predictable vs. unpredictable moving 

targets). We also analyzed the groups of neck pain patients (WAD and non-WAD) separately. 

 

RESULTS 

Study population 

In total 55 patients with neck pain were included. The data of one patient was discarded due to eye 

movement recording problems. 45 patients (including 7 WAD patients) were measured in all seven chair 

rotations. 

The other nine patients provided only a partial data set. Five patients could not reach 45 degrees neck 

torsion and measurements at these eccentricities were skipped. Another four patients could not 

 

 

complete the measurements due to complaints of fatigue or too much pain and only the first three 

measurements (0 degrees, 45 degrees to the left and to the right) were performed. However, the partial 

data of these nine patients could be included in the analysis of the Smooth Pursuit Neck Torsion 

difference. 

The experiment was performed successfully in all 20 controls. Their results have been reported in more 

detail previously 17.  

 

Smooth pursuit gains 

 

Figure 2: Smooth pursuit gains per group (20 Controls and 45 Patients), for each of the four eccentricities of chair rotation (Neck 
Torsion), and for predictably moving targets (open squares) and unpredictably moving targets (closed circles). Error bars represent 
Standard Error of the Mean. 
 

Smooth pursuit gains of patients and controls are shown in figure 2. The overall ANOVA showed that 

the 20 healthy controls had higher smooth pursuit gains (0.90 ± 0.03) than the 45 neck pain patients 

(0.76 ± 0.02, F(3,62) = 18.12, p < 0.00, partial η2 = 0.22). A significant main effect of Neck Torsion on 

smooth pursuit gain (F(3,62) = 2.80, p = 0.05, partial η2 = 0.12) showed that gains decreased a little with 

increasing neck torsion (0.84 ± 0.02, 0.84 ± 0.02, 0.84 ± 0.02 and 0.82 ± 0.02, for 0, 15, 30 and 45 

degrees respectively). No interaction between Neck Torsion and Predictability was observed (p = 0.10). 

The interaction between Neck Torsion and Group failed to reach significance (p = 0.06). 

 

Predictability affected smooth pursuit gain significantly (F(1,64) = 4.36, p = 0.04, partial η2 = 0.06): gains 

for predictably moving targets were higher  than for unpredictably moving targets (0.85  ± 0.02 vs. 0.82 
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preliminary analysis showed no effect of the direction of chair rotation. 

Statistical analyses were performed using all the complete measurements by means of repeated 
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chair rotation; “Predictability” with two levels: predictable vs. unpredictable smooth pursuit target 

motion). For both outcome parameters (gain and number of saccadic intrusions) a separate ANOVA 

was performed. Correlations between the smooth pursuit gain and the number of saccadic intrusions 

were assessed using Pearson’s correlation coefficient. 

For each subject we also calculated the Smooth Pursuit Neck Torsion (SPNT) difference, similar to the 
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RESULTS 

Study population 

In total 55 patients with neck pain were included. The data of one patient was discarded due to eye 

movement recording problems. 45 patients (including 7 WAD patients) were measured in all seven chair 

rotations. 

The other nine patients provided only a partial data set. Five patients could not reach 45 degrees neck 

torsion and measurements at these eccentricities were skipped. Another four patients could not 

 

 

complete the measurements due to complaints of fatigue or too much pain and only the first three 

measurements (0 degrees, 45 degrees to the left and to the right) were performed. However, the partial 

data of these nine patients could be included in the analysis of the Smooth Pursuit Neck Torsion 

difference. 

The experiment was performed successfully in all 20 controls. Their results have been reported in more 

detail previously 17.  

 

Smooth pursuit gains 

 

Figure 2: Smooth pursuit gains per group (20 Controls and 45 Patients), for each of the four eccentricities of chair rotation (Neck 
Torsion), and for predictably moving targets (open squares) and unpredictably moving targets (closed circles). Error bars represent 
Standard Error of the Mean. 
 

Smooth pursuit gains of patients and controls are shown in figure 2. The overall ANOVA showed that 

the 20 healthy controls had higher smooth pursuit gains (0.90 ± 0.03) than the 45 neck pain patients 

(0.76 ± 0.02, F(3,62) = 18.12, p < 0.00, partial η2 = 0.22). A significant main effect of Neck Torsion on 

smooth pursuit gain (F(3,62) = 2.80, p = 0.05, partial η2 = 0.12) showed that gains decreased a little with 

increasing neck torsion (0.84 ± 0.02, 0.84 ± 0.02, 0.84 ± 0.02 and 0.82 ± 0.02, for 0, 15, 30 and 45 

degrees respectively). No interaction between Neck Torsion and Predictability was observed (p = 0.10). 

The interaction between Neck Torsion and Group failed to reach significance (p = 0.06). 

 

Predictability affected smooth pursuit gain significantly (F(1,64) = 4.36, p = 0.04, partial η2 = 0.06): gains 

for predictably moving targets were higher  than for unpredictably moving targets (0.85  ± 0.02 vs. 0.82 
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± 0.02, resp.). Predictability showed a significant interaction with Group (F(1,64) = 4.48, p = 0.04, partial 

η2 = 0.07): healthy controls had a higher gain for predictably moving targets (0.93 ± 0.03) than for 

unpredictably moving targets (0.88 ± 0.03, p < 0.00), whereas patients had similar gains in both 

conditions (0.76 ± 0.03 vs 0.76 ± 0.02, resp., p = 0.98). The interaction involving all three factors was 

not significant (p = 0.63).  

 

The ANOVA performed on the number of saccadic intrusions showed no effect of Group (p = 0.11) and 

none of the interactions involving Group reached significance (all p > 0.30). We did observe a small 

effect of Neck Torsion (F(3,54) = 3.03 , p = 0.04, partial η2 = 0.14): more eccentric positions evoked 

slightly more saccadic intrusions (70.5 ± 2.1, 71.2 ± 2.5, 73.6 ± 2.5 and 73.9 ± 2.1 saccadic intrusions, 

for 0, 15, 30 and 45 degrees neck torsion, respectively). We also observed a small effect of Predictability 

on number of saccadic intrusions (F(1,56) = 15.32, p < 0.00, partial η2 = 0.22), with unpredictably moving 

targets evoking fewer saccadic intrusions (69.5 ± 1.9) than predictably moving targets (75.6 ± 2.5). The 

interaction between Neck Torsion and Predictability was weak but just significant (F(3,54) = 3.00, p = 

0.04, partial η2 = 0.14). The number of saccadic intrusions increased slightly more with neck torsion for 

predictably moving targets (from 73.0 to 78.1 intrusions, at 0 and 45 degrees chair rotation, resp.) than 

for unpredictably moving targets (from 67.9 to 69.8 intrusions).  

There was no correlation between the smooth pursuit gain and the number of saccadic intrusions in 

controls (r2 = 0.014, p = 0.62) or in patients (r2 = 0.06, p = 0.72) in the neutral condition. 

 

Smooth Pursuit Neck Torsion (SPNT) difference 

The SPNT difference could be calculated for all 20 controls and 54 patients, thereby including those 

patients who skipped measurements at certain chair rotations. The SPNT difference was calculated 

using a chair rotation of 30 degrees in five patients, and the maximum chair rotation of 45 degrees in 49 

patients. 

We first compared all patients to controls. Analysis showed no main effect of Group (F(1) = 0.73, p = 

0.40, partial η2 = 0.01). The SPNT difference was higher for predictably moving targets than for 

unpredictably moving targets (-0.04 ± 0.01 vs. -0.01 ± 0.01, resp., F(1) = 5.39, p = 0.02, partial η2 = 

0.07). There was no interaction between Group and Predictability (p = 0.38). 

 

 

 

Figure 3: Smooth Pursuit Neck Torsion (SPNT) differences for each of the three groups (Controls, WAD patients and non-WAD 
patients) and the two stimulus conditions (predictably moving targets and unpredictably moving targets). Error bars represent 
Standard Deviations. * p < 0.05 
 

We also looked at the effect of target predictability on the SPNT difference in healthy controls, in WAD 

patients, and in non-WAD patients separately (figure 3). In healthy controls and in non-WAD patients, 

the SPNT difference was not significantly different between predictably and unpredictably moving 

targets (controls: -0.02 ± 0.07 vs. -0.00 ± 0.07, resp., t(19) = -1.27, p = 0.22 ; non-WAD patients: -0.05 

± 0.11 vs. -0.01 ± 0.12, resp., t(42) = 1.77, p = 0.09). In WAD patients, however, the SPNT difference 

was larger for predictably than for unpredictably moving targets (-0.08 ± 0.12 vs. 0.01 ± 0.05, resp., t(10) 

= 3.21, p = 0.01). 

Comparisons between the three groups for predictably and unpredictably moving targets separately 

showed that the SPNT differences in WAD patients did not differ from that of controls or non-WAD 

patients (all p > 0.12). 

 

DISCUSSION 

We investigated the effect of neck torsion and target predictability on smooth pursuit eye movements in 

patients with neck pain. As expected based on previous reports, patients with neck pain showed lower 

smooth pursuit gains than healthy controls 4,8-10,21,22. Moreover, smooth pursuit gains in patients 

decreased with increasing torsion of the neck, which is in line with several previous studies 4,8,10. 

However, this decrease in gain was not different between patients and controls. This finding was 

supported by the analysis according to Smooth Pursuit Neck Torsion (SPNT) test. The differences in 
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We also looked at the effect of target predictability on the SPNT difference in healthy controls, in WAD 
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the SPNT difference was not significantly different between predictably and unpredictably moving 

targets (controls: -0.02 ± 0.07 vs. -0.00 ± 0.07, resp., t(19) = -1.27, p = 0.22 ; non-WAD patients: -0.05 

± 0.11 vs. -0.01 ± 0.12, resp., t(42) = 1.77, p = 0.09). In WAD patients, however, the SPNT difference 

was larger for predictably than for unpredictably moving targets (-0.08 ± 0.12 vs. 0.01 ± 0.05, resp., t(10) 

= 3.21, p = 0.01). 

Comparisons between the three groups for predictably and unpredictably moving targets separately 

showed that the SPNT differences in WAD patients did not differ from that of controls or non-WAD 

patients (all p > 0.12). 

 

DISCUSSION 

We investigated the effect of neck torsion and target predictability on smooth pursuit eye movements in 

patients with neck pain. As expected based on previous reports, patients with neck pain showed lower 

smooth pursuit gains than healthy controls 4,8-10,21,22. Moreover, smooth pursuit gains in patients 

decreased with increasing torsion of the neck, which is in line with several previous studies 4,8,10. 

However, this decrease in gain was not different between patients and controls. This finding was 

supported by the analysis according to Smooth Pursuit Neck Torsion (SPNT) test. The differences in 
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smooth pursuit gains between most eccentric neck rotations and neutral rotations were the same in 

patients with neck pain as in controls. 

Target predictability, however, affected smooth pursuit gains differently in healthy controls and patients. 

In line with previous studies using predictably moving stimuli, we observed the performance of patients 

with neck pain was impaired compared to healthy controls 4,8-10,21,22. However, smooth pursuit 

performance of healthy controls decreased when targets moved unpredictably, which might be 

explained by the fact that these subjects are adequately able to predict the movement of the target when 

the target moved in a simple fashion 23,24. In contrast, the performance of patients with neck pain was 

the same for both conditions. This novel finding could suggest that the constant pain in their neck already 

hampered adequate prediction of the straightforward trajectory of a target. A similar hypothesis was put 

forward by Prushansky and colleagues 23, who suggested that observed deficits in eye movement 

performance in WAD patients were related to pain. Another explanation is that patients with neck pain 

are too distracted by the pain in their neck to perform optimally when the task is less challenging. In this 

respect it is worth to note that some patients spontaneously mentioned they found it hard to keep 

focused when the target moved predictably. This lack of focus could explain the lower gains for the 

predictably moving targets. Future studies in patients with neck pain might incorporate tests of 

concentration and attention to assess their effects on smooth pursuit performance. Moreover, to 

correlate pain experience with performance, a detailed analysis of pain experience might be fruitful. 

We also aimed to differentiate between patients with Whiplash (WAD) and non-WAD. In accordance 

with previous reports we observed that for predictably moving targets the SPNT difference was larger 

in WAD patients than in controls and non-WAD patients 8-10,21.  In our population this difference was not 

significant, probably due to a lack of power. However, the SPNT differences disappeared completely 

when we used unpredictably moving targets. The observation that in WAD patients the SPNT difference 

is altered to a large extent by target predictability, raises the question whether the observed effect of 

increased neck torsion on smooth pursuit performance is due to eye movement deficits alone, as 

suggested by previous research 25. If this was the case, increased neck torsion in WAD patients would 

also lead to lower gains for unpredictably moving targets. This was not observed. Therefore, the reduced 

gains for predictably moving targets induced by increased neck torsion could well be caused by 

confounding factors such as pain experience or impaired cognitive functioning (e.g. attention). This 

explanation is supported by previous observations showing that WAD patients have normal reflexive 

saccadic eye movements, but impaired voluntary ones which was explained by the authors as being 

caused by (pre-)frontal dysfunction 26.  

A strength of the present study was the use of a high-quality video-oculography to record smooth pursuit 

eye movements and the range of applied neck torsions from extreme left to extreme right. A limitation 

is the relatively small number of subjects in the two patient groups. Moreover, not all patients could be 

measured in all chair rotation eccentricities. Therefore, too few subjects remained to make the favorable 

separation into two patient groups in the overall ANOVA. On the other hand, all patients could be 

included in the SPNT test. Furthermore, groups differed in age and since eye movements are altered 

when getting older, a more even age distribution would be recommended for future studies 27-29. 

 

 

In conclusion, the differential effects of neck torsion in WAD patients, non-WAD patients and controls 

on smooth pursuit performance seem to be modulated by the predictability of the target trajectory. The 

observed oculomotor disturbances in WAD patients are therefore unlikely to be induced by impaired 

neck proprioception alone. Future studies investigating the relationship between impaired neck 

proprioception and eye movement control could take this property of the visual stimulus into account. 
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ABSTRACT 

Objective: To investigate the influence of the amount of cervical movement on the cervico-ocular reflex 

(COR) and vestibulo-ocular reflex (VOR) in healthy individuals. 

Summary of Background data: Eye stabilization reflexes, especially the COR, are changed in neck pain 

patients. In healthy humans, the strength of the VOR and the COR are inversely related. 

Methods: In a cross-over trial the amplitude of the COR and VOR (measured with a rotational chair with 

eye tracking device) and the active cervical range of motion (CROM) was measured in 20 healthy 

participants (mean age 24.7). The parameters were tested before and after two different interventions 

(hyperkinesia: 20 min of extensive active neck movement; and hypokinesia: 60 min of wearing a stiff 

neck collar). In an additional replication experiment the effect of prolonged (120 minutes) hypokinesia 

on the eye reflexes were tested in 11 individuals.  

Results: The COR did not change after 60 minutes of hypokinesia but did increase after prolonged 

hypokinesia (median change 0.220; IQR 0.168, p=0.017). The VOR increased after 60 minutes of 

hypokinesia (median change 0.155, IQR 0.26, p=0.003), but this increase was gone after 120 minutes 

of hypokinesia. Both reflexes were unaffected by cervical hyperkinesia.  

Conclusions: Diminished neck movements influences both the COR and VOR, although on a different 

time scale. However, increased neck movements do not affect the reflexes. These findings suggest that 

diminished neck movements could cause the increased COR in patients with neck complaints. 

 

Keywords: eye stabilization reflexes, cervico-ocular reflex, vestibulo-ocular reflex, cervical range of 

motion, neck pain patients, oculomotor disturbances 

  

 

 

INTRODUCTION 

In patients with neck pain and Whiplash Associated Disorders (WAD) oculomotor disturbances have 

been described 1–7, which may be attributed to altered cervical functioning 8–11. Here we studied the 

effects of neck (im-) mobilization on the eye stabilization reflexes as part of the oculomotor system in 

healthy subjects. 

To guarantee clear vision the vestibulo-ocular reflex (VOR) and the cervico-ocular reflex (COR) work in 

conjunction to stabilize the visual image on the retina. The VOR receives input from the vestibulum, 

responding to movements of the head in space. The COR receives input from the mechanoreceptors, 

mainly the muscle spindles and joint sensors, of the upper cervical spine 12. The COR responds to 

movements of the head relative to the trunk.  

It is important that the reflexes are properly adjusted to each other, even in circumstances when one of 

them is changed. Both reflexes are indeed quite plastic, in the sense that they adapt to perturbations 

and changes of input. In laboratory settings, it has been observed that the VOR and COR adapt to 

experimentally perturbed visual and vestibular input 6,13–15. However, little is known about the adaption 

of the reflexes to perturbed cervical input.  

 

The overall aim of the present study was to elucidate the effect of altered cervical input on COR and 

VOR. This latter reflex was not taken into account in our previous study 6. Here we will also investigate 

whether the synergy of reflexes is altered and whether the changes of reflexes are directly related to 

changes in active range of motion. The first objective is to assess the changes in COR and VOR gain 

in response to a temporary reduction of cervical proprioceptive output (hypokinesia), induced by passive 

immobilization of the neck. We first study if one hour of neck immobilization is sufficient to observe 

changes in the eye stabilization reflexes. Then, we replicate our previous experiment using a two-hour 

immobilization period.  

The second objective is to study reflex adaptation as result of temporary increased proprioceptive output 

(hyperkinesia), rather than immobilization.  

 

The assessment of both reflexes  in the same subjects under several neck (im-) mobilization conditions, 

allows us to assess the suggested interactions between the cervical and vestibular eye movement 

systems 2,5. Adjustment of theses reflexes is essential for optimal oculomotor control and will prevent 

vision problems. This study elucidates the synergy of eye stabilization reflexes and how changes in one 

reflex affects the other. This information is essential to enhance our understanding of oculomotor 

problems in neck pain patients. 
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ABSTRACT 
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The assessment of both reflexes  in the same subjects under several neck (im-) mobilization conditions, 

allows us to assess the suggested interactions between the cervical and vestibular eye movement 
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MATERIALS AND METHODS 
Participants 

Twenty healthy adults (mean age 24.7 years (range 20-33), 12 male, 8 female) were recruited from the 

Erasmus MC to participate in the main experiment (hypokinesia and hyperkinesia). For the current 

replication experiment (prolonged hypokinesia) eleven healthy subjects (mean age 29.3 (22-48), 4 male, 

7 female) were recruited (four of them also participated in the main experiment). All participants had no 

history of neck complaints (including no cervicogenic headache or dizziness) and no known 

neurological, visual or vestibular disorders. They all had normal or corrected-to-normal visual acuity and 

no one used any form of tranquilizing medication. The local ethical board of the Erasmus MC, which is 

in accordance with the Declaration of Helsinki 1975, revised Hong Kong 1989, approved this study and 

all participants gave prior written informed consent. 

Intervention 

In the main experiment, two types of intervention were applied in a cross-over design: hypokinesia and 

hyperkinesia. Directly before and after the intervention, the eye stabilization reflexes and the active 

range of motion were measured. 

In the hypokinesia intervention, the neck was immobilized by using a stiff neck collar (size 4, Laerdal 

Stifneck® Select™) for one hour. In the hyperkinesia intervention, active neck movement in all possible 

directions of movement was evoked by having the participants move their neck excessively in all 

directions for twenty minutes. The participants were instructed to move their head as far as possible, 

following visual cues (left, right rotation, side bending, flexion, extension and combined movements). 

During the experiment they were motivated to keep moving their neck without rest. 

Each participant of the main experiment received both interventions on two different days separated by 

6 or 7 days. The order of the two interventions was pseudo-randomized and balanced across 

participants.  

In the replication experiment, eleven participants wore the neck collar for two hours (prolonged 

hypokinesia). This experiment took place two weeks after the end of the main experiment. 

 

Experimental Setup 

Monocular (left) eye positions were recorded by infrared video-oculography (Eyelink 1, SMI, Germany: 

see 16) at a sample rate of 250 Hz. Eye position was calibrated using the built-in nine-point calibration 

routine. 

Participants were seated in a comfortable rotatable chair (figure 1A). The trunk of the participant was 

fixed to the chair at shoulder level by a double-belt system. The chair was attached to a motor (Harmonic 

Drive, Germany) which induced continuous sinusoidal chair rotations around the vertical axis without 

any backlash. A sensor connected to the chair recorded chair position, which was stored on the 

computer along with eye positions.  

 

 

The subjects head was fixed by means of a custom-made bite board, which was positioned with the axis 

of chair rotation under the midpoint of the inter-aural line. The bite board could be fixed to the floor or to 

the chair (figure 1B). During the COR stimulation, the bite board, mounted to the floor, fixed the position 

of the head in space. Measurements took place in complete darkness inducing pure cervical stimulation, 

which elicits the COR in isolation. During this stimulation, the chair rotated for 134 seconds with an 

amplitude of 5.0 degrees and a frequency of 0.04 Hz. This yielded five full sinusoidal rotations of the 

chair with peak velocity of 1.26 degrees/s. When the bite board was mounted to the chair, rotation of 

the chair in complete darkness induced pure vestibular stimulation, eliciting the VOR in isolation. During 

the VOR stimulation, the chair rotated for 33 seconds with an amplitude of 5.0 degrees and a frequency 

of 0.16 Hz. This yielded five full sinusoidal rotations of the chair with peak velocity of 5.03 degrees/s. In 

both eye movement stimulations participants were instructed to look at a position directly in front of the 

set-up. This position was briefly indicated by means of a laser dot in the completely darkened room. 

 

Figure 1: Panel A shows a photograph of the chair and the position of the cameras and the bite board in the COR setup. Panel 
B shows the measurement of the vestibular ocular reflex (VOR) with the bite board attached to the chair, and the cervico-ocular 
reflex (COR) with the bite board attached to the floor, whilst the chair is rotating back and forth 
  

The amount of the active cervical range of motion (CROM) in both the horizontal and vertical planes 

was also measured before and after an intervention using the CROM measurement device 

(Performance Attainments Associates, USA; http://www.spineproducts.com/) 17. The CROM device 

consists of two gravity dependent goniometers and one compass dial on a head-mounted frame allowing 

measurement of ROM in three planes. A magnetic yoke consisting of two bar magnets held anteriorly 

and posteriorly is supplied to reduce the influence of thorax rotation. Participants have to rotate their 

head in all directions (left, right rotation, side bending, flexion, extension and combined movements) as 

far as possible. The range of motion is measured in 2° increments. 

Data Analysis 

Eye movement reflexes were analyzed by looking at the eye velocity relative to the chair or stimulus 

velocity. The phase was not detected. All data processing was done with custom-written scripts in Matlab 
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the chair (figure 1B). During the COR stimulation, the bite board, mounted to the floor, fixed the position 

of the head in space. Measurements took place in complete darkness inducing pure cervical stimulation, 

which elicits the COR in isolation. During this stimulation, the chair rotated for 134 seconds with an 
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velocity. The phase was not detected. All data processing was done with custom-written scripts in Matlab 
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R2013a (The MathWorks Inc., Natick, MA). The same analysis was used for all interventions. Eye 

velocity was calculated by taking the derivative of the horizontal eye position signal. After removal of 

blinks, saccades and fast phases (using a 20 degrees-per-second threshold), a sine wave was fitted 

through the eye velocity signal data. The gain of the response was defined as the amplitude of the eye 

velocity fit divided by the peak velocity of the chair rotation (COR: 1.26 degrees/s; VOR: 5.03 degrees/s).  

A gain of 1 thus reflects that the peak velocity of the eye was the same as the peak velocity of the 

stimulus. Gain changes were defined as the difference in gain before and after the intervention.  

 

Statistical analyses were done using SPSS 22 (IBM Corp., Armonk, NY). Descriptive statistics were 

computed for the gains of the two eye movement reflexes and the cervical range of motion before and 

after the interventions. Since the number of subjects was low, and data was not distributed normally 

(Shapiro-Wilk test: p<0.05), non-parametric statistics were applied. For each intervention the changes 

in COR and VOR gains, and changes of the cervical ranges of motion (horizontal and vertical) were 

statistically assessed using the Wilcoxon signed rank test. The differences in the changes between the 

two interventions was assessed using as well the Wilcoxon signed rank test. A correlation analysis 

(Spearman-Rho) was performed to determine any correlation between the five variables.  

An alpha level of p < 0.05 was considered significant for all statistical tests. Reported values are medians 

and inter-quartile ranges. 

 

RESULTS 
In the main experiment, COR recording failed in two participants, and VOR recording failed in another 

participant, in both interventions due to technical reasons. In one participant the COR and VOR 

recording failed in the hyperkinesia condition and in one other participant, VOR recording failed in the 

hyperkinesia condition. Statistical analyses were done on the remaining participants. The results of the 

main experiment are summarized in table 1 and shown in figure 3. 

 

INTER-
VENTION HYPOKINESIA      HYPERKINESIA     

 
n before after change  cor- 

relation 
 n before after change  cor- 

relation 
 

 
 median 

(IQR) 
median 
(IQR) 

median 
(IQR) 

p-
value 

r p-
value 

 median 
(IQR) 

median 
(IQR) 

median 
(IQR) 

p-
value 

r p-
value 

COR 
(gain) 14 0.214 

(0.216) 

0.307 

(0.178) 

0.049 

(0.263) 

0.397 0.03 0.911 17 0.257 

(0.522) 

0.403 

(0.448) 

0.052 

(0.365) 

0.435 0.35 0.163 

 

 

VOR 
(gain) 15 0.568 

(0.21) 

0.736 

(0.275) 

0.155 

(0.26) 

0.003 0.45 0.091 16 0.672 

(0.245) 

0.686 

(0.192) 

-0.011 

(0.23) 

0.642 0.32 0.226 

CROM 
horizontal 
(degrees) 

16 141° 

(10°) 

140° 

(18°) 

-5.5° 

(14°) 

0.005 0.77 0.001 19 140° 

(14°) 

148° 

(10°) 

1 (8°) 0.208 0.75 <0.001 

CROM 
vertical 
(degrees) 

16 144.5° 

(24°) 

132.5° 

(16°) 

-8° (17°) 0.044 0.71 0.002 19 138° 

(32°) 

150° 

(28°) 

2 (25°) 0.198 0.75 <0.001 

Table 1: Gains of the eye reflexes and cervical range of motion recorded before and after the two interventions, the change of 
gain/ range of motion and the correlation between the two recordings. COR = gain of cervico-ocular reflex; VOR = gain of 
vestibulo-ocular reflex (gain= eye velocity divided by stimulus velocity); CROM horizontal= active range of movement of the 
neck in the horizontal plane in degrees; CROM vertical= active range of movement of the neck in the vertical plane in degrees 
 

Hypokinesia 

Sixty minutes of wearing the stiff neck collar did not influence the COR gain, but it increased VOR gain 

by 29.6%. The cervical range of motion decreased slightly in the horizontal plane and in the vertical 

plane. The gains of the reflexes before and after the intervention were not correlated. The cervical 

ranges of motion before and after the intervention did correlate. 

 

Hyperkinesia 

Twenty minutes of intensified neck movements did not change COR, nor VOR gains. The cervical 

ranges of motions were also not affected. Both COR gains and VOR gains were not correlated before 

and after the intervention. The cervical ranges of motion were correlated.  

Hypokinesia versus hyperkinesia 

A direct comparison of the hypokinesia and hyperkinesia interventions in the sixteen participants who 

performed both interventions successfully, shows that the COR gain changes were not different between 

the two interventions (difference in gain change: -0.059 median +- 0.56 IQR, p = 0.463). The increase 

in VOR gain after wearing a neck collar for an hour was different from the decrease in VOR gain in the 

hyperkinesia intervention (0.105 +- 0.33, p=0.039). The changes in cervical ranges of motion were 

significant in both planes (horizontal: -6° +- 17°, p=0.004, vertical: -12° +-29°, p=0.025). 

Prolonged hypokinesia 

In the replication experiment, eleven participants wore the stiff neck collar for two hours. In one subject 

both the COR and VOR recordings failed and in one other subject the VOR recording failed. The results 

are shown in table 2. In figure 2 exemplary eye movement velocity traces of the VOR and COR of 

different subjects before and after the hypokinesia interventions are shown (sections a-h). 
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(0.522) 

0.403 

(0.448) 

0.052 

(0.365) 

0.435 0.35 0.163 

 

 

VOR 
(gain) 15 0.568 

(0.21) 

0.736 

(0.275) 

0.155 

(0.26) 

0.003 0.45 0.091 16 0.672 

(0.245) 

0.686 

(0.192) 

-0.011 

(0.23) 

0.642 0.32 0.226 

CROM 
horizontal 
(degrees) 

16 141° 

(10°) 

140° 

(18°) 

-5.5° 

(14°) 

0.005 0.77 0.001 19 140° 

(14°) 

148° 

(10°) 

1 (8°) 0.208 0.75 <0.001 

CROM 
vertical 
(degrees) 

16 144.5° 

(24°) 

132.5° 

(16°) 

-8° (17°) 0.044 0.71 0.002 19 138° 

(32°) 

150° 

(28°) 

2 (25°) 0.198 0.75 <0.001 

Table 1: Gains of the eye reflexes and cervical range of motion recorded before and after the two interventions, the change of 
gain/ range of motion and the correlation between the two recordings. COR = gain of cervico-ocular reflex; VOR = gain of 
vestibulo-ocular reflex (gain= eye velocity divided by stimulus velocity); CROM horizontal= active range of movement of the 
neck in the horizontal plane in degrees; CROM vertical= active range of movement of the neck in the vertical plane in degrees 
 

Hypokinesia 

Sixty minutes of wearing the stiff neck collar did not influence the COR gain, but it increased VOR gain 

by 29.6%. The cervical range of motion decreased slightly in the horizontal plane and in the vertical 

plane. The gains of the reflexes before and after the intervention were not correlated. The cervical 

ranges of motion before and after the intervention did correlate. 

 

Hyperkinesia 

Twenty minutes of intensified neck movements did not change COR, nor VOR gains. The cervical 

ranges of motions were also not affected. Both COR gains and VOR gains were not correlated before 

and after the intervention. The cervical ranges of motion were correlated.  

Hypokinesia versus hyperkinesia 

A direct comparison of the hypokinesia and hyperkinesia interventions in the sixteen participants who 

performed both interventions successfully, shows that the COR gain changes were not different between 

the two interventions (difference in gain change: -0.059 median +- 0.56 IQR, p = 0.463). The increase 

in VOR gain after wearing a neck collar for an hour was different from the decrease in VOR gain in the 

hyperkinesia intervention (0.105 +- 0.33, p=0.039). The changes in cervical ranges of motion were 

significant in both planes (horizontal: -6° +- 17°, p=0.004, vertical: -12° +-29°, p=0.025). 

Prolonged hypokinesia 

In the replication experiment, eleven participants wore the stiff neck collar for two hours. In one subject 

both the COR and VOR recordings failed and in one other subject the VOR recording failed. The results 

are shown in table 2. In figure 2 exemplary eye movement velocity traces of the VOR and COR of 

different subjects before and after the hypokinesia interventions are shown (sections a-h). 
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Figure 2: Exemplary eye movement velocity traces of the VOR and COR before and after 60 minutes or 120 minutes (prolonged) 
hypokinesia (of different subjects). Red line = the fit through the raw eye movement velocities (grey line). A= COR traces before 
and after hypokinesia; B= COR traces before and after prolonged hypokinesia; C= VOR traces before and after hypokinesia; D= 
VOR traces before and after prolonged hypokinesia  

 

COR gain increased after prolonged neck immobilization by 81.8%, while VOR gain and the cervical 

ranges of motion did not change. The cervical ranges of motion did not change significantly in both the 

horizontal (-5° +- 12°, p = 0.294) and vertical planes (-8° +-20°, p=0.79). The before and after 

measurements were not correlated for the COR, but they were for the range of motion and the VOR. A 

between group-comparison of the hypokinesia and prolonged hypokinesia interventions showed that 

COR and VOR gain changes differ between the two interventions (difference in COR gain change 0.124 

+- 0.228, p = 0.048 and the VOR gain change 0.092 +- 0.224, p=0.003, figure 3). 

 

PROLONGED 
HYPOKINESIA 

 before after change  correlation  

 
n median (IQR) median (IQR) median (IQR) p-

value 
r p-

value 

COR (gain) 10 0.242 (0.375) 0.440 (0.349) 0.220 (0.168) 0.017 0.52 0.128 

VOR (gain) 9 0.733 (0.209) 0.709 (0.278) -0.031 (0.215) 0.314 0.68 0.042 

 

 

CROM horizontal 
(degrees) 

11 142° (24°) 134° (24°) -2° (18°) 0.383 0.73 0.011 

CROM vertical 
(degrees) 

11 138° (32°) 130° (30°) -8° (25°) 0.305 0.88 0.001 

Table 2: Gains of the eye reflexes and cervical range of motion recorded before and after the prolonged hypokinesia intervention, 
the change of gain/ range of motion (including p-value) and the correlation between the two recordings (including p-value) (COR= 
cervico-ocular reflex; VOR= vestibulo-ocular reflex; CROM horizontal= active range of movement of the neck in the horizontal 
plane; CROM vertical= active range of movement of the neck in the vertical plane) 
 

 

Figure 3: Boxplot of the changes in COR and VOR gains following the three different interventions. Red line= median; grey box= 
IQR, grey dots= individual gain values; open circles= outliers 
 

Correlations 

When we collapsed all data across all interventions, changes in the reflexes (COR and VOR) were not 

correlated (table 3). Subjects who moved their head more in the horizontal plane, also did so in the 

vertical plane. As well subjects who tended to move their heads more in the horizontal plan tended to 

exhibit smaller changes in VOR gains.  

 

 VOR CROM horizontal CROM vertical 

COR 0.081 (0.638) 0.015 (0.927) -0.02 (0.904) 

VOR  -0.369 (0.019) 0.005 (0.975) 

CROM horizontal   0.537 (0.000) 

 
Table 3: Correlations (correlation coefficient r and p-value) between the gains of COR and VOR and the range of motion in the 
horizontal and vertical planes. 
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VOR traces before and after prolonged hypokinesia  
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vertical plane. As well subjects who tended to move their heads more in the horizontal plan tended to 
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DISCUSSION 
The present study aimed to elucidate the role of neck movements in the adaptive mechanisms of the 

cervico-ocular reflex (COR) and the vestibulo-ocular reflex (VOR). Thereto we temporarily immobilized 

the head relative to the trunk (hypokinesia) or asked participants to move their neck extensively 

(hyperkinesia). While COR gain does not adapt after one hour hypokinesia or after hyperkinesia, it 

increases after two hours of hypokinesia. VOR gain increases slightly after one hour hypokinesia, but 

was not changed after two hours hypokinesia nor after hyperkinesia. The influence of the maximal range 

of cervical motion on the eye stabilization reflexes seems to be negligible.  

The changes in COR reflex are in line with the ‘upregulation theory’: if the output of the vestibulum and 

the neck is reduced by minimalizing the movement of the head and spine, reflex responsiveness is 

increased to receive enough information which is needed to stabilize the posture 6,13. While the COR did 

not adapt after a shorter period of time, we replicated our previous findings of an increase in COR gains 

after two hours of hypokinesia 6. This finding suggest that the COR adapts rather gradually to changed 

circumstances. In general, the exact time course of sensory adaptation following a stimulus change 

depends on the availability of sensory vestibular, visual and proprioceptive information and on the 

amplitude of the stimulus and the response. For instance, proprioceptive systems adapt slower to 

diminished sensory stimuli and faster to increased sensory stimuli 18.  

 

Considering the importance of proper interaction of COR and VOR in relation to vision, we set out to 

measure the response of the VOR in response to hypokinesia as well. We observed that after one hour 

of hypokinesia the VOR was increased (while the COR was not altered). However, after two hours of 

neck immobility the VOR was no longer affected (while at this time we did observe an increased COR). 

The different time-courses could be explained by a nonlinear reaction of the VOR. When the COR is not 

adapted yet to the immobilization of the neck, the VOR adapts to improve oculomotor control. However, 

when after a longer period the COR finally does adapt, the change in VOR is no longer required. This 

shows that it takes some time for the two reflexes to balance out their interaction in response to changes 

in the environment. A similar effect is found in postural control experiments 18,19. In our view, the results 

of the hypokinesia and prolonged hypokinesia experiment can be explained by the experience that the 

COR as a low gain reflex needs more time to adapt than the high gain VOR. However, it should be noted 

that in the present study the two reflexes were evoked at different frequencies. Therefore, the idea of 

compensatory interactions between the COR and the VOR needs to examined further in a more 

elaborate experiment which uses a broader range of frequencies.   

 

From a clinical point of view this study helps to comprehend the frequently diffuse and confusing 

symptoms of neck pain patients. Neck pain patients show sensorimotor disturbances that are often 

related to pain, diminished range of motion, quality of movement, and oculomotor disturbances 3,10,20–23. 

These oculomotor disturbances can provoke blurred vision, dizziness and the need to concentrate more 

than usual when reading 24. Part of these problems could be attributed to disturbed eye stabilization 

 

 

reflexes 2,5. In patients with WAD and in chronic idiopathic neck pain patients the normally weak COR is 

found to be increased 2,5,25,26.  Based on the findings in this study, it can be speculated that reflex 

alterations are not completely dependent on the origin of complaints, but do also depend on the amount 

of movement. From our studies we can conclude that in healthy controls limitation of neck motion affects 

the COR 6. If a patient decreases neck motion due to e.g. disturbed motor control, pain, illness 

perceptions of fear of motion, the oculomotor system has to deal with reduced afferent sensory 

information from the cervical spine. In healthy controls the temporary increase of the COR is reversible 
6; it is unknown if altered reflexes are reversible in patients also. It will be crucial to understand how 

patients with disturbed eye reflexes, i.e. an increased COR gain, will react to augmented neck motion. 

From a therapeutic perspective it would be exciting if improved quality and increased neck motion would 

help to normalize COR gain and reduce visual problems of neck pain patients. 

An alternative explanation for the diversity of whiplash disorders, such as oculomotor disturbances, is 

tissue damage of diverse structures due to the traumatic origin of complaints 27. However, we recently 

observed that eye reflex alterations are also found in non-traumatic neck pain patients 25,26, making a 

lesion based explanation for eye reflex alterations in whiplash patients less likely. This, however, needs 

to be further explored. 

 

Another finding in the current study is that excessive movement of the neck did not change the gain of 

the reflexes. However, we have to keep in mind that there is a timing difference between the hypokinesia 

and hyperkinesia condition. Possibly, twenty minutes was not enough for reflex adaptation. The result 

of the hyperkinesia condition implies that an increase of afferent somatosensory input of proprioceptors 

does not affect a properly functioning system. This is confirmed by a study of Peterka et al. who found 

saturation behavior to increased proprioceptive stimuli in subjects with normal sensory function 19. The 

conclusion for the clinical practice is that with respect to eye reflexes, proprioceptive training of a properly 

working system may have little surplus value.  

 

In the present study, the COR and VOR altered after an intervention. However, the gain was highly 

variable. Due to the complex nature of the measurement equipment not all data could be recorded and 

analyzed in this study, resulting in missing data. To elucidate this variability, replication of this 

experiment in a bigger population can be considered.  

 

CONCLUSION 
The amount of cervical movement influenced the gain of the eye stabilization reflexes as a part of the 

oculomotor system. The gain of the reflexes increased after temporary immobilization. However, the 

opposite strategy, intensification of movement, did not affect the oculomotor system. These findings 

suggest that neck immobility may indeed play a role in the oculomotor disturbances observed in patients 

with neck complaints. 



133

9

The influence of cervical movement on eye stabilization reflexes: a randomized trial 

 

DISCUSSION 
The present study aimed to elucidate the role of neck movements in the adaptive mechanisms of the 

cervico-ocular reflex (COR) and the vestibulo-ocular reflex (VOR). Thereto we temporarily immobilized 

the head relative to the trunk (hypokinesia) or asked participants to move their neck extensively 

(hyperkinesia). While COR gain does not adapt after one hour hypokinesia or after hyperkinesia, it 

increases after two hours of hypokinesia. VOR gain increases slightly after one hour hypokinesia, but 

was not changed after two hours hypokinesia nor after hyperkinesia. The influence of the maximal range 

of cervical motion on the eye stabilization reflexes seems to be negligible.  

The changes in COR reflex are in line with the ‘upregulation theory’: if the output of the vestibulum and 

the neck is reduced by minimalizing the movement of the head and spine, reflex responsiveness is 

increased to receive enough information which is needed to stabilize the posture 6,13. While the COR did 

not adapt after a shorter period of time, we replicated our previous findings of an increase in COR gains 

after two hours of hypokinesia 6. This finding suggest that the COR adapts rather gradually to changed 

circumstances. In general, the exact time course of sensory adaptation following a stimulus change 

depends on the availability of sensory vestibular, visual and proprioceptive information and on the 

amplitude of the stimulus and the response. For instance, proprioceptive systems adapt slower to 

diminished sensory stimuli and faster to increased sensory stimuli 18.  

 

Considering the importance of proper interaction of COR and VOR in relation to vision, we set out to 

measure the response of the VOR in response to hypokinesia as well. We observed that after one hour 

of hypokinesia the VOR was increased (while the COR was not altered). However, after two hours of 

neck immobility the VOR was no longer affected (while at this time we did observe an increased COR). 

The different time-courses could be explained by a nonlinear reaction of the VOR. When the COR is not 

adapted yet to the immobilization of the neck, the VOR adapts to improve oculomotor control. However, 

when after a longer period the COR finally does adapt, the change in VOR is no longer required. This 

shows that it takes some time for the two reflexes to balance out their interaction in response to changes 

in the environment. A similar effect is found in postural control experiments 18,19. In our view, the results 
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Chapter 10 

 

GENERAL DISCUSSION 
 

The main goal of the research described in this thesis is to improve understanding of oculomotor 

disorders in neck pain patients. This final chapter discusses to what extent this goal is achieved, and 

will discuss the clinical implications. 

Patients with neck pain experience a wide range of complaints. In addition to pain and a diminished 

range of motion they may also experience dizziness and report cognitive complaints 1–3. Previous studies 

suggest that oculomotor disturbances are present in patients with neck pain, which are a cause of many 

complaints 4–6. In this thesis we have investigated disturbances in the oculomotor function of patients 

with neck pain in some detail. The investigation contributes to improved diagnostics and therapy in neck 

pain patients with oculomotor disorders. 

Chapter 2 shows in a systematic review that oculomotor problems occur significantly more frequently 

in patients with WAD compared to healthy subjects, a finding which confirms the idea that further study 

in this area is desirable. The other important result of this study is that very diverse methods are used 

to record oculomotor disturbances. This variety of methods is likely to reflect distinct underlying concepts 

with respect to oculomotor disturbances. Three different eye movement types were used to assess 

oculomotor problems in patients with WAD: eye stabilization reflexes, smooth pursuit eye movements 

and head-eye coordination. Methods applied primarily in fundamental research (measurement of eye 

stabilization reflexes) are reliable and valid, but very time-consuming and unfit for clinical application, 

while methods that are predominantly applied in clinical practice (head-eye coordination tests and SPNT 

test) have not yet been extensively studied. Moreover, these clinical methods do not allow for 

discrimination concerning which part of the oculomotor system is causing the disturbance. We conclude 

that there is no currently available clinical test which has sufficient construct validity. This is an important 

limitation in the diagnostics of neck pain patients with oculomotor disorders. 

This thesis aims at improving understanding of oculomotor disorders in neck pain patients in order to 

enhance assessment and therapy. Therefore we chose from the existing measurement methods for the 

experimental studies, measurement of eye stabilization reflexes with state-of-the-art video-oculography. 

This measurement system was primarily developed for fundamental neuroscience research, but was, 

with some exceptions 5,7–9 rarely used in clinical studies involving neck pain patients. Video-oculography 

is capable of detecting small changes in the performance of eye stabilization reflexes. Our measurement 

setup also allows for the quantifying of oculomotor disorders of neck pain patients in detail by measuring 

eye stabilization reflexes in isolation. 

 

The experimental studies described in Chapters 3 to 5 focus on the quantification of altered eye 

stabilization reflexes in chronic neck pain patients. Two of these studies (Chapters 3 and 5) are 

performed on chronic, unsuccessfully treated neck pain patients. One study (Chapter 4) is performed 

on less severely impaired chronic neck pain patients. These three studies show that altered eye reflexes 

occur far more commonly than is generally suspected in all neck pain patients. Altered eye stabilization 

reflexes are not only present in patients with acute WAD, but also in chronic, traumatic and non-traumatic 

 

 

patients with neck pain (Chapters 3 and 5). Even in a group of patients with less impairments and 

shorter-term complaints, the eye stabilization reflexes are altered (Chapter 4). In these non-traumatic 

neck pain patients applying for physical therapy and experiencing low-to-moderate neck pain and 

disability levels, the COR is elevated. 

Based on the results of these studies, it was argued that changes in eye stabilization reflexes are not 

predominantly caused by a traumatic physical impact, but have other, currently unknown causes. COR 

alterations do not diminish spontaneously in chronic neck pain patients over time. Despite suggestions 

from earlier studies, this outcome shows that the trauma and the duration of complaints are not the 

dominant causes of eye reflex disturbances 5,7. The question then remains: ‘what does cause eye reflex 

disturbances?’  

In order to assess the factors that may be associated with the cause of oculomotor dysfunctions a broad 

spectrum of mechanical, behavioral and personal factors, and their possible relationship with eye 

reflexes, are studied (Chapter 5). In previous studies concerning eye stabilization reflexes only 

demographic characteristics, i.e. age and gender, were included into the analyses 7,10,11. This made it 

impossible to rule out the possible influence of other factors, such as the cervical function, as well as 

personal factors and personality traits, on eye stabilization reflexes. Such an understanding is necessary 

in order to learn more about why some neck pain patients experience oculomotor problems, while others 

do not. It also helps to eliminate confounding in forthcoming studies, and could contribute, at a later 

date, to improvements in therapies for neck pain patients. 

Thus we have deliberately chosen factors from different domains in Chapter 5, and have studied their 

relationship with eye stabilization reflexes. None of the factors included in this study showed any strong 

relationship with altered eye reflexes. This lack of effect might be related to the admittedly large number 

of factors (21) tested in the study that required statistical corrections. Nonetheless, this result enables 

us to exclude many studied factors and to focus on a small number of remaining parameters which might 

possibly influence eye reflexes. The relationship between the amount of pain and eye reflexes does 

seem to be worth examining.  

The results of this study form an important step towards ruling out specific factors for further research, 

and later also for the therapy of neck pain patients.  

 

Parallel to the studies already mentioned, four other experimental studies were also in progress. The 

studies in Chapters 6 and 9 address the question of why neck pain patients have oculomotor problems. 

Chapters 7 and 8 focus on what might be the best way to test these patients.  

The first of these four studies (Chapter 6) focused on the relationship between cervical proprioception 

and eye stabilization reflexes, similar to the study in Chapter 5. There are two relevant differences 

between the two studies: first, the study in Chapter 6 was undertaken using another patient population 

than that of Chapter 5. While in Chapter 5 severe, chronic neck pain patients are included, Chapter 6 

concerns non-traumatic short-term neck pain patients having less severe neck pain. The second and 

probably more important difference is the measurement protocol of the JPE. In contrast to Chapter 5, in 
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enhance assessment and therapy. Therefore we chose from the existing measurement methods for the 
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setup also allows for the quantifying of oculomotor disorders of neck pain patients in detail by measuring 
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shorter-term complaints, the eye stabilization reflexes are altered (Chapter 4). In these non-traumatic 

neck pain patients applying for physical therapy and experiencing low-to-moderate neck pain and 

disability levels, the COR is elevated. 

Based on the results of these studies, it was argued that changes in eye stabilization reflexes are not 

predominantly caused by a traumatic physical impact, but have other, currently unknown causes. COR 

alterations do not diminish spontaneously in chronic neck pain patients over time. Despite suggestions 

from earlier studies, this outcome shows that the trauma and the duration of complaints are not the 

dominant causes of eye reflex disturbances 5,7. The question then remains: ‘what does cause eye reflex 

disturbances?’  

In order to assess the factors that may be associated with the cause of oculomotor dysfunctions a broad 

spectrum of mechanical, behavioral and personal factors, and their possible relationship with eye 

reflexes, are studied (Chapter 5). In previous studies concerning eye stabilization reflexes only 

demographic characteristics, i.e. age and gender, were included into the analyses 7,10,11. This made it 

impossible to rule out the possible influence of other factors, such as the cervical function, as well as 

personal factors and personality traits, on eye stabilization reflexes. Such an understanding is necessary 

in order to learn more about why some neck pain patients experience oculomotor problems, while others 

do not. It also helps to eliminate confounding in forthcoming studies, and could contribute, at a later 

date, to improvements in therapies for neck pain patients. 

Thus we have deliberately chosen factors from different domains in Chapter 5, and have studied their 

relationship with eye stabilization reflexes. None of the factors included in this study showed any strong 

relationship with altered eye reflexes. This lack of effect might be related to the admittedly large number 

of factors (21) tested in the study that required statistical corrections. Nonetheless, this result enables 

us to exclude many studied factors and to focus on a small number of remaining parameters which might 

possibly influence eye reflexes. The relationship between the amount of pain and eye reflexes does 

seem to be worth examining.  

The results of this study form an important step towards ruling out specific factors for further research, 

and later also for the therapy of neck pain patients.  

 

Parallel to the studies already mentioned, four other experimental studies were also in progress. The 

studies in Chapters 6 and 9 address the question of why neck pain patients have oculomotor problems. 

Chapters 7 and 8 focus on what might be the best way to test these patients.  

The first of these four studies (Chapter 6) focused on the relationship between cervical proprioception 

and eye stabilization reflexes, similar to the study in Chapter 5. There are two relevant differences 

between the two studies: first, the study in Chapter 6 was undertaken using another patient population 

than that of Chapter 5. While in Chapter 5 severe, chronic neck pain patients are included, Chapter 6 

concerns non-traumatic short-term neck pain patients having less severe neck pain. The second and 

probably more important difference is the measurement protocol of the JPE. In contrast to Chapter 5, in 
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Chapter 6 the JPE is measured more extensively. Separate JPEs are calculated for rotations in both the 

vertical and horizontal planes and the absolute error is presented with a higher accuracy.  

The results of the study in Chapter 6 show that, in contrast to that of Chapter 5, JPE as a parameter of 

cervical proprioception is weakly correlated with the COR test in non-specific neck pain patients. This 

result suggests a connection between the COR and the cervical JPE, as both tests receive afferent 

information from the (upper) cervical spine. The rather weak correlation between the COR and the JPE 

might be due to the fact that the result of the JPE test depends on multiple factors. While the COR test 

measures purely cervical induced eye movements, the JPE test is also influenced by the vestibular 

function. Since the two tests represent different aspects of sensorimotor function it could be argued that 

in order to obtain adequate insight into neck reflex function, both tests should be used complementarily. 

Treleaven and co-workers already support the idea that the JPE reflects a general disturbance to 

postural control rather than a solitary altered cervical afferent input and emphasize that solitary use of 

the JPE test as a representative for cervical afferent information and eye movement control is an 

oversimplification12.  

 

To gain more insight into how eye movement control could be tested in neck pain patients, one clinical 

test was examined. One of the conclusions of the systematic review in Chapter 2 was that the 

fundamental concept and methodology of the Smooth Pursuit Neck Torsion (SPNT) test should be 

evaluated. Therefore, Chapters 7 and 8 focus on the SPNT test. The setup of these two studies is 

rather complex, because two different items are simultaneously tested: 

1. The fundamental concept of the test that only in neck pain patients and not in the healthy 

controls smooth pursuit eye movements are influenced by the neck position. 

2. The methodology of the test regarding the degree of cervical rotation and the kind of stimulus 

(predictable or unpredictable). 

The fundamental concept of the SPNT test must be evaluated, because it is unclear whether the neck 

position influences smooth pursuit eye movements differently in healthy controls compared to neck pain 

patients. The assumption of this different relationship is prerequisite for the SPNT test. However, it 

seems plausible that the neck position of healthy controls does influence eye movements 12–14, and this 

questions the validity of the test. 

In order to clarify the fundamental concept of the SPNT test, in Chapter 7 the interaction between neck 

torsion and two aspects of the oculomotor system (saccadic eye movements and smooth pursuit eye 

movements) are explored in healthy controls. In this study a clear confirmation of the relationship 

between neck position and eye movements cannot be found. Neck torsion has a small but significant 

influence on the performance of both smooth pursuit and saccadic eye movements. In order to assess 

this small effect, the gain change of healthy controls needs to be compared with the gain change of neck 

pain patients, which has been performed in Chapter 8. Another result of the study is the influence of 

target predictability on the outcome of the test. As expected, healthy controls perform better with 

 

 

predictable targets compared to unpredictable targets. The reaction of target predictability might be an 

indicator of the cognitive performance of the participant 

The results of the study with healthy controls (Chapter 7) become more significant when compared to 

the results of neck pain patients (Chapter 8), resulting in three major observations. First, as expected, 

neck pain patients generally perform worse than healthy controls. Under all conditions smooth pursuit 

gains are lower. Secondly, and unexpectedly, the influence of neck rotation is as small in neck pain 

patients as in healthy controls. Neck pain patients perform slightly worse in rotated neck positions, but 

the differences in smooth pursuit gains between most eccentric neck rotations and neutral rotations are 

the same in patients with neck pain as in the controls. This result might suggest that the effect of neck 

torsion is not a decisive factor in the differentiation between patients with neck pain and healthy controls 

and therefore questions the applicability of the SNPT test in a clinical setting. In addition, it must be 

asked what other factors, besides neck torsion, influence the outcome of the test.  

Thirdly, the performance of neck pain patients is not influenced by the type of stimulus (predictable or 

unpredictable). This contrasts with the results obtained in healthy controls. The apparently easier task 

when target movement is predictable does not lead to better performance. It is unclear why predictability 

influences in different ways patients with neck pain and healthy controls. Cognitive factors such as 

distraction due to pain might offer an explanation, but we can only speculate about this, as we did not 

study those factors. Cognitive factors could certainly play a role, since, in general, neck pain patients 

experience cognitive impairments. Alterations in the central nervous system are also found15–17. The 

influence of cognitive impairments on the execution of the SPNT test should therefore be evaluated 

more thoroughly. This information is essential in order to determine whether the SPNT is a suitable 

(clinical) test for the diagnosis of neck pain patients. 

The results of these two studies lead to questions concerning the suitability of the SPNT test in the 

diagnostic process of neck pain patients. More factors than were suspected seem to influence the 

outcome of the test. Thus, we can now already conclude that the outcome of the SPNT seems unlikely 

to be influenced by impaired neck proprioception alone, as was previously suggested 12,14,18,19.  

 

The proposed relationship between cervical function and oculomotor control is further explored in 

Chapter 9. The existence of a relationship between cervical function and oculomotor control was 

confirmed in the previous studies. This study focusses on the influence of cervical motion on eye 

stabilization reflexes. The exact relationship between cervical movement behavior and eye reflexes in 

neck pain patients has not yet been studied. As a first step the current study concentrated on the effect 

of quantity of neck movement on eye reflexes in healthy controls. In particular, dynamic neck movements 

might influence reflexive eye movements. This is the first study that has entirely focused on the 

relationship between amount of movement and eye stabilization reflexes. 

Eye stabilization reflexes can indeed be manipulated by altered movement behavior: the COR increases 

after two hours of hypokinesia and does not change after the hyperkinesia condition. Remarkably, even 

in healthy controls the reflex system instantly reacts to altered movement behavior. Thus, the reflexive 

system is so sensitive that a short disturbance of movement already has rather large effects. Many neck 
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pain patients move their neck less due to pain than to cognitions such as fear avoidance behavior. Could 

it be that patients have reflex alterations because they move their neck less, regardless of the underlying 

reason?  

 

In summary, the studies described in this thesis support the notion that oculomotor disorders are 

important in the study and assessment of neck pain patients. We have shown that oculomotor disorders 

are a widespread problem in neck pain patients, and that far more patients than suspected have 

oculomotor problems that could have a substantial impact on their daily functioning. In addition to 

patients with WAD, many non-traumatic patients and those who have already received physiotherapy 

still have oculomotor disorders. Given the diversity of this patient group, traumatic impact as the sole 

cause of oculomotor disturbances can be ruled out and other possible causes need have to be 

examined. The relationship between neck function and oculomotor function has been extensively 

explored in this heterogeneous, severely impaired patient group. Different parts of the oculomotor 

system are influenced by cervical dysfunction; in particular, the influence of neck motion on eye reflexes.  

In addition, various personal, physical and behavioral factors can be practically ruled out as an 

explanation for oculomotor alterations. Nevertheless it remains challenging to explain what exactly 

happens and what the causes and consequences are. The interactions between oculomotor function, 

cervical function, cognitive function and pain does need to be further investigated. Such understanding 

is necessary for the optimal assessment and therapy of neck pain patients. We suggest that dysfunction 

of the neck causes pain and alters oculomotor function and that, subsequently, pain and oculomotor 

dysfunction lead to cognitive impairments.  

 

FUTURE RESEARCH 

Oculomotor disorders are a widespread problem in chronic neck pain patients. We now understand a 

little more about the possible reasons for these persistent disorders and the associations with other 

complaints, but there is still much more to achieve.  

In order to improve diagnostics in neck pain patients with respect to oculomotor disturbances, both 

fundamental research and clinical development are essential. In general, fundamental research is 

needed to comprehend the pathophysiology of oculomotor disturbances. Meanwhile, patient and user-

friendly tests need to be developed for daily clinical practice. One measure would be to compare the 

outcome of a fundamental and a clinical measurement method of eye movement control (eye 

stabilization reflexes and head-eye coordination) in the same patient group. Such a comparison would 

help us to know whether the two tests measure the same part of the oculomotor system, and would be 

a long-term help in developing a valid clinical test. 

With testing eye stabilization reflexes in a large patient group, we gained more insights into who suffers 

from altered eye reflexes and whether the alteration is associated with cervical function, personal 

factors, personality traits and/or patients’ impairments. It was thus possible to rule out many factors. 

However, we still do not know exactly which factor most influences oculomotor dysfunction. Therefore, 

 

 

in order to offer optimal therapy, more insight into the factors that cause and prolong reflex alterations 

is essential. It is not sufficient to simply wait until the reflex alterations diminish automatically; the way 

that patients function in this respect needs to be changed through therapy.   

The possible relationship between oculomotor disorders and pain, as suggested by the outcome of the 

study described in Chapter 5, also warrants further investigation. It would be interesting to understand 

whether COR changes due to central processes, such as sensitization, or is rather due to local 

processes, such as altered cervical motor control. Even a combination of these two processes is 

conceivable. Pain is currently considered to be multidimensional 20–23. Measuring those dimensions of 

pain in eye reflex studies might help to understand their relationship to COR change. For example, 

measuring pressure pain thresholds and conditioned pain modulation efficacy could become parameters 

for sensitization of the central nervous system16,17. A study of eye stabilization reflexes in patients with 

musculoskeletal pain, but without neck pain, would be endorsed. 

We have hypothesized that patients with chronic neck pain have altered eye stabilization reflexes 

because they move their neck differently. Based on this idea, we recommend measuring the voluntary 

amount of daily neck movement in future clinical studies, not only the maximum range of motion, as is 

now commonly performed.  

Another, more biomechanical option for future studies would be to compare the cervical muscle 

morphology with the eye stabilization reflexes. Patients with neck pain, and in particular patients with 

WAD, have altered morphology of neck muscles24. These changes are most prominent in the upper 

cervical region, which has the highest density of muscle spindles25. The cause of these morphology 

changes are currently still debated. There are indications that muscle changes are associated with pain 

intensity and with post-traumatic stress26. We believe that pain, caused by sensorimotor changes and 

post-traumatic stress, influences cervical movement behavior. Over the long term dysfunctional cervical 

movement leads to altered morphology of the neck muscles and could cause altered eye stabilization 

reflexes.  

A clinical study that tests the eye reflexes both before and after suitable sensorimotor training programs 

could answer the question of whether these alterations are reversible by therapy. Recently, more studies 

have focused on the benefits of virtual reality tools for the training of neck pain patients. The first results 

were positive 27,28; this therapy does seem to be suitable, especially for neck pain patients with 

oculomotor problems.  

Whether improvement of oculomotor function can diminish the perceived cognitive problems of neck 

pain patients is an issue that still awaits focused research. The new ‘Dutch modified perceived deficits 

questionnaire’ 29 seems to have additional benefits in the registration of cognitive problems and should 

be added to the suggested clinical trial on the effect of specific sensorimotor training on eye stabilization 

reflexes.  
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The possible relationship between oculomotor disorders and pain, as suggested by the outcome of the 
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We have hypothesized that patients with chronic neck pain have altered eye stabilization reflexes 

because they move their neck differently. Based on this idea, we recommend measuring the voluntary 

amount of daily neck movement in future clinical studies, not only the maximum range of motion, as is 
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reflexes.  
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CLINICAL IMPLICATIONS 

This thesis draws attention to oculomotor disorders as a widespread problem in neck pain patients and 

argues that these disorders require special attention in clinical assessment. These disorders do not 

diminish spontaneously, and affected functions need to be restored through suitable therapy. Therefore, 

to offer optimal assessment and therapy, greater insight into the particular factors that cause and 

maintain reflex alterations is essential.  

Currently no valid test is available to measure oculomotor problems in neck pain patients. The suitability 

of the existing clinical SPNT test has been placed under question by the results of Chapters 7 and 8. It 

seems likely that more factors than have been assumed influence the outcome of the test. The need for 

reliable assessment is confirmed by the fact that the group of patients with altered eye stabilization 

reflexes is larger than was suspected.  

In this group differentiation between traumatic and non-traumatic patients seems less important 

regarding eye reflexes. Over the last decades the prevalence of patients diagnosed with Whiplash 

Associated Disorders has increased. Research on this group of patients, as well as a specific guideline, 

has been developed (KNGF Richtlijn Whiplash)30. Remarkably, in 2016 the ‘Guideline Whiplash’ of the 

Dutch Physiotherapy Association was replaced by a general guideline on neck pain31. Patients with 

WAD were no longer seen as specific types of neck pain patients but were incorporated as one subgroup 

of patients, namely those with neck pain related to trauma. This shows that patients with WAD are to be 

regarded as ‘normal’ neck pain patients, although they often experience more impairments 32,33. As 

discovered in this thesis, patients with WAD do not differ from patients with non-traumatic neck pain 

regarding eye stabilization reflexes. It would no doubt be better to differentiate patients by the severity 

of their complaints rather than by their origin.  

In clinical practice it should be borne in mind that different complaints and dysfunctions are associated 

with each other. For instance: oculomotor disorders seem to develop through altered cervical 

sensorimotor function and could cause dizziness and cognitive disorders. Structural damage is less 

likely to be the cause of these alterations. In order to diminish oculomotor disorders, evaluation of both 

the oculomotor and cervical sensorimotor function seems useful.  

In recent years evidence has been growing that isolated treatment of one complaint is not as successful 

as an integrated approach34,35. Sensorimotor training36–38, oculomotor training36, pain education23 and 

self-management education23 should ideally all be combined.  

Based on the study in Chapter 6, it can be suggested that diminishing pain should be a main therapeutic 

goal.  This may prevent deterioration of eye reflexes, although it is unknown whether less pain might 

even contribute to an improvement in eye reflexes. In general, pain reduction through functional recovery 

rather than solitary pain treatment is preferable. 

In Chapter 9 we gained important knowledge of the influence of the cervical movement on eye reflexes. 

It is also crucial to learn whether theses alterations are reversible. Therapy should focus on improvement 

of sensorimotor neck function and the reduction of sensitization. It should also be evaluated whether the 

 

 

oculomotor function improves. It is currently unknown whether these reflex alterations are reversible in 

patients; in healthy controls the temporary increase of the COR as a result of the neck immobilization is 

reversible39. For the development of therapy it will be essential to understand how patients with disturbed 

eye reflexes, i.e., an increased COR gain, will react to augmented neck motion. It would certainly be 

exciting if improved quality and increased neck motion helped to normalize COR gain and reduce long-

term visual and cognitive problems for neck pain patients. In particular, patients with sensorimotor 

disorders in the upper cervical spine might benefit from specific oculomotor training.  

The second valuable finding of the randomized trial is that an adequately working oculomotor system in 

healthy controls does not improve through extensive and active neck movements. The conclusion for 

clinical practice is that whereas proprioceptive training for patients with oculomotor problems seems 

highly desirable, proprioceptive training of a properly working system may have little additional value. 

 

In conclusion, the studies described in this thesis have improved our understanding of oculomotor 

disorders in patients with neck pain. For the clinical practice the five most important take home 

messages are: 

1. Oculomotor disorders occur far more often than previously suspected and needs attention 

during the standard diagnostic process of neck pain patients. Beside common factors like pain 

and range of motion, also the possible presence of oculomotor disorders should always be kept 

in mind.  

2. The occurrence of oculomotor disorders is not dependent of origin or severity of cervical spine 

complaints. 

3. Despite the lack of one optimal clinical test for the diagnosis of oculomotor disorders, a 

combination of the existing tests should be used during the diagnostic process.  

4. Particular attention is needed for the amount and quality of cervical motion. 

5. Sensorimotor training of the upper cervical spine can potentially diminish oculomotor disorders.  
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SUMMARY 
 

The aim of the research described in this thesis was to gain knowledge about oculomotor disorders in 

(traumatic and non-traumatic) neck pain patients. This knowledge is certainly needed to improve the 

understanding of the complex entity of disorders in neck pain patients and to integrate oculomotor 

complaints in diagnostics and therapy of these patients.  

 

In the first article of this thesis we conducted a systematic review about eye movement control in patients 

with ‘Whiplash Associated Disorders’ (WAD) to get on overview of the magnitude of the problem 

(chapter 2). In general, it can be concluded that eye movements are disturbed in patients with WAD. At 

present, three different methods are in use to test the disorders which challenges a straightforward 

comparison of the different studies. There is not one single test that provides all required information. 

The included studies focused on respectively the measurement of eye stabilization reflexes, smooth 

pursuit eye movements or head-eye coordination. A specific combination of tests may be more suitable 

to properly determine eye motion. Currently, head-eye coordination measurements seem the most 

suitable for clinical use. Particularly when training oculomotor coordination as therapeutic intervention. 

However, the clinician has to keep in mind that when a test comprises multiple (sub-) systems, like the 

head-coordination measurements do, it remains difficult to determine the most important factor in the 

observed change. This knowledge is necessary for successful treatment of the patient.  

In the second article of this thesis we investigated if oculomotor problems are only present in patients 

with WAD or also in non-traumatic neck pain patients (chapter 3). The results of this study show that 

chronic, severely impaired neck pain patients have an elevated cervico-ocular reflex (COR) and an 

unchanged vestibulo-ocular reflex (VOR) compared with healthy controls. Seemingly, COR does not 

diminish automatically in chronic neck pain patients even when they receive paramedical treatment. It 

appears that in this severely impaired patient group the persistence of altered reflexes depends on other 

-non temporary- factors. 

The second result of this study is that in a rather large group of chronic neck pain patients with traumatic 

(WAD and non-WAD) and non-traumatic origin of complaints, the patients have comparable gains of the 

eye stabilization reflexes. Thus, in the studied population, the origin of complaints, whether traumatic or 

non-traumatic, do not determine alteration of reflexes and can no longer be seen as a negative predictive 

factor for the development of altered eye stabilization reflexes. This implies that the alteration is 

dependent on other, presently unknown, factors which can possibly be changed by treatment. 

Even patients who experience nonspecific neck pain for less than one year and who had less 

impairments, had altered eye stabilization reflexes (chapter 4). Their COR was elevated by an 

unchanged VOR gain.  

To get more insight into the reasons why eye stabilization reflexes are altered in chronic neck pain 

patients, we investigated the relationship between eye stabilization reflexes and cervical function, 

personality traits, impairments in daily life and cognitive complaints (chapter 5). In all patients, no 

 

 

significant associations between the eye stabilization reflexes and the studied parameters were found. 

We did observe indications for a moderate association between COR gain and level of pain. It suggests 

that in neck pain patients the, normally almost absent, COR is elevated and patients with more neck 

pain have a higher COR. This relationship seems stronger in the group with traumatic neck pain patients, 

who also experience more neck pain. Why or how pain and COR are related is obscure and needs 

further study. 

In chapter 6, the relationship between the eye stabilization reflexes and the joint position error (JPE) 

was tested. The cervical JPE is a clinical test to measure cervical proprioception. Patients with non-

specific neck pain have a higher JPE and also a higher COR than people without neck pain. However, 

these two outcome measures of cervical dysfunction only seem to correlate weakly, and only between 

the COR and the JPE in the flexion/extension direction in the neck pain group. No correlations between 

eye movement reflexes and the JPE were present in the control group.  

Chapter 7 and 8 focused on the fundamental concept and methodology of the clinical Smooth Pursuit 

Neck Torsion (SPNT). The SPNT test is designed for clinical use to measure oculomotor disorders in 

neck pain patients. However, it can be doubted if the test in its current form only tests the influence of 

cervical proprioception on smooth pursuit eye movements or is influenced by other factors. The effect 

of neck torsion and target predictability on smooth pursuit eye movements and saccadic eye movements 

in patients with neck pain was investigated. As was expected on the basis of previous studies, patients 

with neck pain showed lower smooth pursuit gains than healthy controls. Moreover, smooth pursuit 

gains in patients decreased with increasing torsion of the neck, which is in line with several previous 

studies. However, this decrease in gain was not different between patients and controls. Target 

predictability, affected smooth pursuit gains differently in healthy controls and patients. Smooth pursuit 

performance of healthy controls decreased when targets moved unpredictably, which might be 

explained by the fact that these subjects are adequately able to predict the movement of the target when 

the target moved in a simple fashion. In contrast, the performance of patients with neck pain was the 

same for both conditions. 

To judge the immobilization theory, we studied the effect of temporary hypokinesia versus hyperkinesia 

on eye stabilization reflexes in healthy controls (chapter 9). We wanted to elucidate the role of neck 

movements in the adaptive mechanisms of the COR and the VOR. Thereto we temporarily immobilized 

the neck (hypokinesia) or asked participants to move their neck extensively (hyperkinesia). While COR 

gain does not adapt after one hour hypokinesia or after hyperkinesia, it increases after two hours of 

hypokinesia. VOR gain increases slightly after one hour hypokinesia but was not changed after two 

hours hypokinesia nor after hyperkinesia. 

Finally, in chapter 10 and 11 we summarized and discussed the main results as well as some limitations 

of our studies. Recommendations for further research and implications for clinical practice were 

mentioned. 

We strongly suggest to continue both fundamental and clinical research on oculomotor disorders. 

Fundamental research is needed to comprehend the pathophysiology of oculomotor disturbances. One 
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In chapter 6, the relationship between the eye stabilization reflexes and the joint position error (JPE) 
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specific neck pain have a higher JPE and also a higher COR than people without neck pain. However, 

these two outcome measures of cervical dysfunction only seem to correlate weakly, and only between 

the COR and the JPE in the flexion/extension direction in the neck pain group. No correlations between 

eye movement reflexes and the JPE were present in the control group.  

Chapter 7 and 8 focused on the fundamental concept and methodology of the clinical Smooth Pursuit 

Neck Torsion (SPNT). The SPNT test is designed for clinical use to measure oculomotor disorders in 

neck pain patients. However, it can be doubted if the test in its current form only tests the influence of 

cervical proprioception on smooth pursuit eye movements or is influenced by other factors. The effect 
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in patients with neck pain was investigated. As was expected on the basis of previous studies, patients 

with neck pain showed lower smooth pursuit gains than healthy controls. Moreover, smooth pursuit 

gains in patients decreased with increasing torsion of the neck, which is in line with several previous 

studies. However, this decrease in gain was not different between patients and controls. Target 

predictability, affected smooth pursuit gains differently in healthy controls and patients. Smooth pursuit 

performance of healthy controls decreased when targets moved unpredictably, which might be 

explained by the fact that these subjects are adequately able to predict the movement of the target when 

the target moved in a simple fashion. In contrast, the performance of patients with neck pain was the 

same for both conditions. 

To judge the immobilization theory, we studied the effect of temporary hypokinesia versus hyperkinesia 

on eye stabilization reflexes in healthy controls (chapter 9). We wanted to elucidate the role of neck 

movements in the adaptive mechanisms of the COR and the VOR. Thereto we temporarily immobilized 

the neck (hypokinesia) or asked participants to move their neck extensively (hyperkinesia). While COR 

gain does not adapt after one hour hypokinesia or after hyperkinesia, it increases after two hours of 

hypokinesia. VOR gain increases slightly after one hour hypokinesia but was not changed after two 

hours hypokinesia nor after hyperkinesia. 

Finally, in chapter 10 and 11 we summarized and discussed the main results as well as some limitations 

of our studies. Recommendations for further research and implications for clinical practice were 

mentioned. 

We strongly suggest to continue both fundamental and clinical research on oculomotor disorders. 

Fundamental research is needed to comprehend the pathophysiology of oculomotor disturbances. One 
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measure would be to compare the outcome of a fundamental and a clinical measurement method of 

eye movement control (eye stabilization reflexes and head-eye coordination) in the same patient group. 

A clinical study that tests the eye reflexes both before and after suitable sensorimotor training programs 

could answer the question whether these alterations are reversible by therapy. 

For the clinical practice the five most important recommendations are:  

1. Oculomotor disorders occur far more often than previously suspected and need attention during 

the standard diagnostic process of neck pain patients. Beside common factors like pain and 

range of motion, the possible presence of oculomotor disorders should also always be kept in 

mind. 

2. The occurrence of oculomotor disorders is not dependent on origin or severity of cervical spine 

complaints. 

3. Despite the lack of one optimal clinical test for the diagnosis of oculomotor disorders, a 

combination of the existing tests should be used during the diagnostic process.  

4. Particular attention is needed for the amount and quality of cervical motion. 

5. Sensorimotor training of the upper cervical spine can potentially diminish oculomotor disorders.   
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SAMENVATTING 
 

Het doel van dit promotieonderzoek was meer inzicht te krijgen in de oculomotorische (dis)functie bij 

(traumatische en niet-traumatische) nekpijnpatiënten. Deze kennis is noodzakelijk om het complexe 

klachtenbeeld van nekpijnpatiënten beter te begrijpen en om oculomotorische functie te integreren in 

de diagnostiek en therapie van deze patiënten.   

In het eerste deel van dit proefschrift werd een systematische review uitgevoerd. Doel van deze review 

was om een overzicht te krijgen van de omvang van het probleem van oogbewegingscontrole bij 

patiënten met 'Whiplash Associated Disorders' (WAD) (hoofdstuk 2). Over het algemeen kan 

geconcludeerd worden dat veel patiënten met WAD verstoorde oogbewegingen hebben. De bestaande 

3 testen meten echter allen een ander aspect van verstoorde oogreflex (oogstabilisatiereflexen, 

oogvolgbewegingen, de oog-hoofdcoördinatie) Dit maakt vergelijk van deze testen lastig. Momenteel 

lijken de metingen van de hoofd-oogcoördinatie het meest geschikt voor klinisch gebruik omdat zij heel 

gebruiksvriendelijk zijn. De clinicus moet echter in gedachten houden dat wanneer een test meerdere 

(sub)systemen omvat, zoals de metingen van de oog- hoofdcoördinatie, het moeilijk is om de 

belangrijkste factor in de waargenomen verstoring te bepalen. Weten welke factor de verstoring 

veroorzaakt is echter noodzakelijk voor een succesvolle behandeling van de patiënt. Oogreflexen zijn 

afhankelijk van verschillende neurologische (sub-) systemen. Daarom blijft het lastig te bepalen welke 

neurologische aspecten de verstoringen in oogreflexen veroorzaken. 

In het tweede hoofdstuk van dit proefschrift werd onderzocht of het hebben van oculomotorische 

problemen beperkt is tot een specifieke patiëntengroep of dat deze problemen diffuser aanwezig zijn in 

een grotere populatie (hoofdstuk 3). Het blijkt dat bij chronische nekpatiënten zowel traumatische als 

niet-traumatische nekpatiënten een verhoogde cervico-oculaire reflex (COR) en een ongewijzigde 

vestibulo-oculaire reflex (VOR) hebben. Chronische nekpijnpatiënten die al langer dan zes maanden 

nekpijn hebben, vertonen nog steeds een verhoogde COR en een ongewijzigde VOR. Klaarblijkelijk 

neemt de COR niet automatisch af bij chronische nekpijnpatiënten, zelfs niet na een paramedische 

behandeling. Het lijkt erop dat in deze ernstig gestoorde patiëntengroep de persistentie van veranderde 

reflexen afhankelijk is van andere - niet tijdelijke - factoren.  

Het tweede resultaat van deze studie was dat zowel traumatische als niet-traumatische nekpijnpatiënten 

vergelijkbare COR en VOR-waardes hebben. Een traumatisch ontstaan van de klachten lijkt dus geen 

vereiste te zijn voor de ontwikkeling van oculomotorische disfuncties. In de bestudeerde populatie wordt 

de verandering van reflexen niet bepaalt door de ontstaanswijze van de klachten (traumatisch of niet-

traumatisch). De ontstaanswijze kan daarmee niet langer worden gezien als negatief voorspellende 

factor voor de ontwikkeling van veranderde oogstabilisatiereflexen. Dit resultaat impliceert tevens dat 

de verandering afhankelijk is van andere, momenteel onbekende, factoren die mogelijk door 

behandeling kunnen worden veranderd.  

Ook bij patiënten met korter dan een jaar aanwezige niet-specifieke nekpijn, worden afwijkende 

oogstabilisatiereflexen gevonden (hoofdstuk 4). Hun COR is verhoogd bij een onveranderde VOR-
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Om meer inzicht te krijgen in de oorzaken waarom oogstabilisatiereflexen bij chronische 

nekpijnpatiënten veranderen, werd de relatie tussen oogstabilisatiereflexen en cervicale functie, 

persoonlijkheidskenmerken, beperkingen in het dagelijks leven en cognitieve klachten onderzocht 

(hoofdstuk 5 ). Bij geen van de patiënten werden een significante correlatie gevonden tussen de 

oogstabilisatiereflexen en de bestudeerde parameters. Mogelijk is er sprake van een associatie tussen 

de cervico-oculaire reflex en de ervaren hoeveelheid pijn. Deze correlatie was echter niet significant. 

Het resultaat suggereert dat bij nekpijnpatiënten de doorgaans bijna afwezige, COR verhoogd is en dat 

patiënten met meer nekpijn een hogere COR hebben. Er waren aanwijzingen dat deze relatie sterker is 

in de groep met traumatische nekpijnpatiënten, die ook meer nekpijn ervaren. Waarom of hoe pijn en 

COR gerelateerd zijn, is onduidelijk en moet verder worden bestudeerd. 

In hoofdstuk 6 werd de relatie tussen oogstabilisatiereflexen en de ‘Joint Position Error’ (JPE) getest. 

De cervicale JPE is een klinische test om cervicale proprioceptie te meten. Patiënten met aspecifieke 

nekpijn hebben een hogere JPE en een hogere COR dan mensen zonder nekpijn. Deze twee 

uitkomstmaten van cervicale disfunctie lijken echter slechts zwak te correleren, en alleen tussen de 

COR en de JPE in de flexie/ extensie richting in de nekpijngroep. In de controlegroep waren er geen 

correlaties tussen oogbewegingsreflexen en de JPE.  

In de hoofdstukken 7 en 8 werd het fundamentele concept en de methodologie van de ‘Smooth Pursuit 

Neck Torsion’ (SPNT) -test bestudeerd. De SPNT- test is een klinische test die ontwikkeld is om 

oculomotorische stoornissen bij nekpijnpatiënten te meten. Het is echter twijfelachtig of de test in zijn 

huidige vorm enkel de invloed van cervicale sensomotoriek op oogvolgbewegingen test omdat 

verschillende andere factoren het testresultaat lijken te beïnvloeden. Zoals verwacht op basis van 

eerdere onderzoeken, vertoonden patiënten met nekpijn minder goede oogvolgbewegingen dan 

gezonde controles. De nauwkeurigheid van oogvolgbewegingen nam bij patiënten met toenemende 

torsie van de nek af. De verschillen in oogvolgbewegingen tussen maximale rotaties en neutrale positie 

waren zowel bij patiënten als bij gezonden even groot. Het effect van voorspelbaarheid op 

oogvolgbewegingen was verschillend tussen patiënten en gezonde. Net zoals in eerdere onderzoeken, 

presteerden patiënten bij voorspelbare stimuli slechter dan gezonde controles. Bij onvoorspelbare 

stimuli hadden echter alleen gezonden meer moeite met de taak. Patiënten presteerden hetzelfde bij 

zowel voorspelbare als niet-voorspelbare stimuli. Mogelijk zijn gezonde proefpersonen beter in staat om 

bij een simpele taak de beweging te voorspellen.  

In hoofdstuk 9 werd de invloed van de mate van cervicale beweging op oogreflexen onderzocht door 

middel van tijdelijke hypokinesie versus hyperkinesie. De nek werd tijdelijk geïmmobiliseerd 

(hypokinesie) d.m.v. het dragen van een nekkraag. Een week later werd aan de deelnemers gevraagd 

hun nek juist intensief te bewegen (hyperkinesie). De COR veranderde niet na een uur hypokinesie of 

na hyperkinesie, maar nam wel toe na twéé uur hypokinesie. De VOR nam licht toe na een uur 

hypokinesie, maar bleef onveranderd na twee uur hypokinesie en na hyperkinesie.  



155

12

Samenvatting

155

 

 

SAMENVATTING 
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In hoofdstuk 10 en 11 worden de belangrijkste conclusies van deze thesis besproken. Er worden 

aanbevelingen voor verder onderzoek gedaan en implicaties voor de klinische praktijk worden 

toegelicht. 

Het wordt sterk aanbevolen om zowel fundamenteel als klinisch onderzoek na oculomotorische 

stoornissen bij nekpatiënten uit te voeren. Met fundamenteel onderzoek kan meer inzicht in de 

verschillende meetsystemen en de onderliggende verklaringsmechanismen voor oogstoornissen 

verkregen worden. Tijdens klinisch onderzoek kan het effect van specifieke behandeling op 

oculomotorische stoornissen en de ervaren klachten gemeten worden. 

De belangrijkste suggesties en aandachtspunten voor de klinische praktijk zijn: 

1. Oculomorische disfuncties treden veel vaker op dan aangenomen. De clinicus moet daarom 

alert zijn op mogelijke afwijkingen tijdens de diagnostiek van nekpijn patiënten. Het registreren 

van oculomotorische disfuncties zou op den duur net zo normaal moeten zijn als het meten van 

de mate van pijn en de bewegelijkheid van de nek.  

2. Het optreden van oculomotorische disfuncties is onafhankelijk van de ontstaanswijze van de 

klachten. 

3. Zolang er nog geen optimale klinische test bestaat, adviseren wij de bestaande tests te 

combineren tijdens het diagnostisch proces. 

4. Bij patiënten met oculomotorische disfuncties moet er extra aandacht zijn voor de mate en 

kwaliteit van de cervicale bewegingen. 

5. Mogelijk kunnen oculomotorische disfuncties verminderen door sensomotorisch training van de 

hoogcervicale wervelkolom. 
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