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Chapter 1  
 

Introduction and Dissertation Overview 

1.1 Introduction 

 The development of quantum mechanics is arguably one of the greatest advances 

in physics in the last century.  With the advent of quantum mechanics we gained 

invaluable insight into the nature of the atom and can now reliably model and predict the 

interactions of subatomic particles.  Computational chemistry applies the concepts of 

quantum mechanics to the larger scale domain of molecules and reactions between them.  

The level of control afforded by computational methods allows one to probe questions 

which may not be possible to answer via experimental methods.  Computational 

chemistry allows us to accomplish several things that are not yet possible experimentally 

such as following the real time dynamics of an electron as it moves from its ground state 

energy level up through several excited states and back again to the ground state. 

 This dissertation covers research involving applications of electronic structure 

theory to problems in chemistry and is divided into eight chapters.  Chapters 2 through 4 

describe a series of related works which explore applications of excited state electronic 

structure methods to problems in strong field chemistry.  Chapters 5 through 7 discuss the 

application of electronic structure theory methods to solving problems in inorganic 

chemistry.  Finally, Chapter 8 looks at an application of electronic structure theory to 

nanomaterials.   
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 As mentioned above Chapters 2 through 4 present research on modeling electron 

dynamics in strong-field chemistry.  Strong-field chemistry utilizes short, intense laser 

pulses to study a chemical system of interest.  These laser pulses tend to have intensities 

on the order of 10
14

 W/cm
2
. At these intensities, the electric field of the laser rivals that of 

the coulombic attraction between an electron and the nucleus of an atom which can lead 

to a variety of effects.
1-10

  During the laser pulse (Figure 1-1) , the coulombic barrier can 

be suppressed enough that an electron is no longer considered bound and is accelerated 

away from the atom or molecule (Figure 1-1d).  A half-cycle later, the sign of the electric 

field changes and the electron is returned to the parent system with excess energy, 

leading to either recombination or electron scattering (Figure 1-1f).  Because the strength 

of the electric field in the laser pulse is so large the interaction cannot be modeled using 

perturbative methods.  The effects of strong-field chemistry have successfully been 

modeled on the small systems with few electrons, using grid based numerical methods.
11-

29
  However, modeling methods have yet to be perfected for larger, more chemically 

complex, many electron systems.  Attempts have been made using various approximate 

methods for a variety of larger molecules.
24,30-59

   

 Chapters 2 – 4 discuss exploratory studies on modeling the electron dynamics of 

butadiene after interaction with a strong field utilizing a time-dependent configuration-

interaction (TD-CI) approach.  We choose butadiene not only because it is highly 

polarizable, but also because we can take advantage of its symmetry to preferentially 

excite a subset of the electrons in the system.  We can utilize the dipole approximation 

for the laser field, which assumes a static dipole model to represent the field at any 

particular step in time.  The TD-CI method can be recast into a set of coupled, linear 
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differential equations which depend on the field free excited state energies and transition 

dipole matrix elements projected in the direction of the field. We then explore which 

theoretical methods provide the best set of excited state energies and transition dipole 

moments to reliably model the strong-field electron dynamics.  Of course these intense 

fields can lead to ionization, but modeling ionization can be a computationally 

demanding feat. 

 To determine which methods perform the best we first look at the change in 

population of the ground and excited states predicted by wavefunction based methods 

(Chapter 2) and DFT functionals (Chapter 3), and then consider ionization (Chapter 4).  

One advantage we have as computational chemists is we can explicitly track the 

population in the ground state and in each of the excited states at every time step in our 

simulations. Unfortunately, we lack an experimental reference to directly test the 

simulations.  Instead we utilize the equation-of-motion coupled cluster method (EOM-

CC)
60-63

 as our gold-standard to check our simulations.  In Chapter 2
64

 we look at the 

performance of simulations using excited state energies and transition dipoles calculated 

using time-dependent Hartree-Fock (TD-HF) also known as the random phase 

approximation (RPA), time-dependent configuration interaction with single excitations 

(TD-CIS), and TD-CIS with perturbative doubles correction (TD-CIS(D)).
65,66

  We also 

look at which basis sets can be used to reasonably describe the space in which the strong-

field excitations take place (Figure 1-2). 

 Chapter 3
67

 builds on Chapter 2 by utilizing time-dependent density functional 

theory (TD-DFT)
68,69

 to calculate the excited state energies and transition dipoles 

required for our TD-CI simulations.  We examine the performance of various classes of 
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DFT functionals such as pure GGA functionals, meta-GGA functionals, hybrid 

functionals, and long-range corrected functionals.  We also attempt to understand how the 

overall response to the laser pulse is affected by the excited state energies and transition 

dipoles (Figure 1-3).  

 Chapter 4 builds upon the work of Chapters 2 and 3, focusing on a model for 

ionization applied to a series of linear polyenes: ethylene, butadiene, hexatriene, and 

octatetraene.  Modeling ionization for small molecules can be achieved by using 

numerical methods with absorbing potentials to produce a loss of electron density.
70-72

  

For larger systems, the Klamroth group has developed a heuristic ionization model
56

 

which utilizes TD-CIS and atom centered gaussian basis sets.  In Chapter 4 we look at the 

different parameters which go into this heuristic model and how they affect the ionization 

rate of molecules in strong laser fields.  We also look at which excited states contribute 

the most towards ionization in the hope that we can pare down the number of excited 

states included in the simulations.  Finally we examine how well the model replicates the 

trends in ionization rates by comparing to ionization rates observed experimentally and 

calculated using other theoretical models (Figure 1-4). 

 Chapters 5 through 7 look at a series of studies based on collaborative work with 

members of the organic and inorganic divisions of chemistry at Wayne State University.  

By combining the efforts of experimental chemists with the methods available to 

computational chemists we can gain a better understanding of the chemistry of a series of 

novel compounds.  Chapters 5
73

 and 6 are a pair of studies in which there was a question 

of the underlying reasons for the preferred geometric structure of a system.  In Chapter 5 

we worked with the Kodanko group to understand the coordination preference for a 
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pentadentate chiral tripyridyldiamine ligand (Figure 1-5).  When this chiral ligand 

complexes with a metal halide, there are five possible isomers (Figure 1-6). However, 

only one (isomer C in Figure 1-6) was observed experimentally.  In this chapter we 

discuss the factors which contribute to the preference of isomer C over the other isomers.  

In Chapter 6 we worked with the Winter group; they were able to synthesize a 

paddlewheel dicopper (II) complex with the shortest Cu—Cu separation reported to date.  

Even though previous studies
74,75

 have declared that a Cu
2+

—Cu
2+

 bond is inaccessible, 

we attempt to understand the causes of the shorter separation, taking into account the 

effect of the ligands as well as the nature of the Cu
2+

—Cu
2+

 electronic interaction.  In 

Chapter 7
76

 we look at a system from the Verani group.  They were investigating the 

redox properties of some materials that could be usable as molecular switches.  Due to 

the number of unpaired electrons in the system and because of contributions of both 

ligand and metal centered orbitals, the nature of the oxidation state of the system can 

become difficult to assign.  Our task was to help understand the oxidation sequence and 

attempt to corroborate the experimental findings (Figure 1-8). 

 Finally, Chapter 8 deals with the computational modeling of carbon nanotube 

materials.  Problems in the field of materials typically deal with systems much larger than 

chemical systems.  Periodic boundary conditions can help make some systems studied by 

the materials science community computationally more tractable, but not all systems are 

periodic.  In this chapter we build a model for a system that does not have periodic 

symmetry, a nanotube hosting a guest molecule inside of it.  Specifically we attempt to 

model a chemical reaction taking place inside a nanotube.  Confinement within a 

nanotube can have a large influence on the potential energy surface of a reaction, 
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significantly affecting the energy profile of reactions which go through large electronic 

and/or conformational changes.  However, the sheer number of atoms in a typical 

nanotube makes the entire system computationally expensive to model.  In this chapter 

we propose and test an affordable model which can be used to optimize any molecular 

system of interest placed inside of a nanotube.  By splitting the effects of a nanotube into 

electronic and mechanical contributions, we can replace a full quantum calculation on the 

entire system into a quantum calculation on the guest system in a polarizable 

environment and a molecular mechanics calculation on the confinement effect (Figure 

1-9).  This approach significantly improves the time it takes to fully optimize the guest 

system in the nanotube.  
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a)  c)  e)  

b)  d)  f)  

Figure 1-1. Electric component of the field of the laser pulse (top) and its effect on the 

coulombic potential binding an electron to a nucleus (bottom).  The red 

dot on the electric field represents the magnitude of the electric field at a 

particular moment in time, the green line in the coulomb potential 

represents the energy level of a bound electron, and the black arrow is the 

motion of the electron.  (a-b) Magnitude of the electric field is zero and 

the potential is a typical 1/r coulomb potential.  (c-d) As the electric field 

nears a peak of the pulse, the coulomb potential is distorted so that the 

electron is either no longer bound or has a high probability of tunneling 

out.  (e-f)  Half a cycle later the electric field has changed sign and the 

distortion in the coulomb potential is reversed, accelerating the electron 

back toward the nucleus. 
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Figure 1-2. Population of the excited states of butadiene, after the pulse, as a function 

of field strength calculated using EOM-CC (left).  Population of the first 

four excited states of butadiene during the laser pulse (right, top). 

Butadiene and the alignment of the laser pulse (right, bottom). 

 

Image used with permission from J. Phys. Chem. A, 2011, 115 (18), pp 4678–4690  

Copyright 2011, American Chemical Society. 
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Figure 1-3. Comparison of the sum of the populations after the pulse of the excited 

states with energies less than 0.5 au for simulations with DFT functionals 

and wavefunction based methods using the 6-31 3+ G(d,p) basis and 300 

excited states.  The horizontal lines represent the population of EOM-CC 

± 25%.  Population of the excited states of butadiene, after the pulse, as a 

function of field strength calculated using the long-range corrected BLYP 

functional (inset, right). 

 

Image used with permission from J. Phys. Chem. A, 2011, 115 (42), pp 11832–11840  

Copyright 2011, American Chemical Society. 
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Figure 1-4. Fraction of the population ionized by the pulse as a function of the 

intensity (W/cm
2
) for ethylene (blue), butadiene (red), hexatriene (green), 

octatetraene (black) calculated using the 6-31 1+ G(d,p) basis set and 

Klamroth’s heuristic model with d = 1 bohr.  The 7-cycle cosine pulse 

used in these simulations (inset, top left) and the four linear polyenes 

studies (inset, bottom left).  The excited states which contribute the most 

towards ionization of hexatriene as a function of excited state energy and 

time step in the pulse (inset, bottom right).   

 

Image used with permission from J. Phys. Chem. A, 2012, 10.1021/jp302389a 

Copyright 2012, American Chemical Society.  
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Figure 1-5. Structure of the pentadentate chiral tripyridyldiamine ligand synthesized 

by the Kodanko group. 

 

 

Figure 1-6. Isomers of M(Bn-CDPy3)Cl determined from calculations: A, B, and C 

display mer orientations of the pyridyl donors; D and E are fac. 

 

Images used with permission from Inorg. Chem., 2010, 49 (11), pp 5202–5211 

Copyright 2010, American Chemical Society. 
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Figure 1-7. Left: X-ray crystal structure of the compound isolated by the Winter group  

Right: Copper acetate compound previously found and characterized 
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Figure 1-8 Left: Total spin density plots showing excess α and β electron spin on each 

of the atomic centers over the oxidation process.   

Right: Full and simplified representations of the Fe(II) system. 

 

Images used with permission, from Angew. Chem., Int. Ed, 2011, 51(13), pp3178-3182 

Copyright 2011, Wiley Publishing. 
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Figure 1-9 Left: Total electron density of a profile of 9,0 single walled carbon 

nanotube (isovalue 0.01 au) showing the interior cavity.   

Right: Cavity used for polarizable continuum model approximating 

interior nanotube cavity. 
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2.1 Introduction 

When molecules are subject to short, intense femtosecond and picosecond laser 

pulses, a variety of strong-field effects are observed.
1-10

  These effects include field 

tunneling and barrier-suppression ionization, above-threshold ionization, field-induced 

resonant enhancement of electronic absorption, nonadiabatic multi-electron excitation, 

and generation of higher-order harmonic emissions. Recent advances using higher 

harmonics generated by short intense pulses include imaging molecular orbitals, 

following chemical processes on a femtosecond time scale, and probing the detailed 

dynamics of ionization.
9,11-22

  Because the electric fields of intense lasers are comparable 
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to those sampled by valence electrons, the strong field response of a molecule cannot be 

treated by perturbative methods.  Under these circumstances, the behavior of the 

electronic density interacting with intense electrical fields has to be simulated by 

numerical methods. For few-electron systems, accurate simulation methods are 

available;
23-41

 however, these cannot be applied to larger polyatomic systems of interest 

in strong-field chemistry.  In this chapter we examine a few of the approximate methods 

that can be used to simulate some aspects of these processes in molecules. 

Atomic systems have been studied extensively, and accurate results are available 

for very simple molecules such as H2
+
 and H2.

23-41
 For larger, many electron systems, 

some approximations are needed.  Chu and co-workers
42-47

 have studied many-electron 

atoms and diatomics using time-dependent generalized pseudospectral methods, self-

interaction corrected density functional theory, and Floquet matrix techniques. Greenman 

et al.
48

 used TD-CIS with grid based orbitals for many electron atoms. Suzuki and 

Mukamel
49,50

 simulated  electron dynamics in octatetraene with a semiempirical 

Hamiltonian and have modeled ionization saturation intensities in a multi-electron system 

in a finite one-dimensional box.  Cederbaum and collaborators
51-56

 and Levine and co-

workers
57-63

 used a multi-electron wavepacket dynamics approach to investigate hole 

migration following ionization.  Klamroth, Saalfrank and co-workers
64-68

 have used 

optimal control theory and time-dependent configuration interaction with single 

excitations (TD-CIS) to shape short, intense pulses for state-selective excitation of N-

methyl-quinoline, and employed TD-CIS(D) to simulate dipole switching in lithium 

cyanide.  These authors have also used heuristic methods to include the effects of 

ionization, dissipation and dephasing.
69-71

  Li and co-workers have combined real time 



27 

 

 

integration of time dependent density functional theory with Ehrenfest dynamics to 

investigate laser controlled dissociation processes.
72-74

  In previous papers we have used 

TD-HF (time-dependent Hartree-Fock) and TD-CIS methods to simulate the response of 

CO2, polyenes, and polyacenes and their cations to short, intense laser pulses.
74-79

 The 

approximate simulations that have been carried out to date on polyatomic systems are 

promising, but there is a need to compare the performance of the various methods. 

Practical calculations on polyatomic systems require some compromises between 

efficiency and accuracy. Real-time response TD-HF and TD-CIS are the least expensive 

methods available for larger systems but these do not include multi-electron excitations. 

CIS(D)
80,81

 treats the effects of higher excitations perturbatively while CISD includes 

double excitations explicitly.  The equation-of-motion coupled cluster method (EOM-

CC)
82-85

 accounts for electron correlation effects as well as higher excitations. EOM-CC 

is considered the method of choice for systems that are too large for extensive multi-

reference configuration interaction calculations. Practical calculations are also limited in 

the number of basis functions and number of excited states that can be considered in the 

simulations.  In the present chapter, we test TD-CI methods for simulating the evolution 

of the electron density of butadiene during a short, intense laser pulse and just prior to 

ionization. Modeling ionization will be covered in Chapter 4, this chapter will focus on 

comparing the performance of TD-CI simulations with different numbers of excited 

states calculated using linear response TD-HF or RPA, CIS, CIS(D) and EOM-CCSD 

with various basis sets.   
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2.2 Methods 

 The time dependent Schrödinger equation (TDSE) in atomic units is 

 
( ) ˆ ( ) ( )

d t
i H t t

dt


   (2.1) 

The wavefunction can be expanded in terms of the ground state 0  and excited states 

i  of the time-independent, field-free Hamiltonian.  

 ( ) ( )i it C t   (2.2) 

An excited state, i , can be written in terms of an excitation operator, ˆ
iR , acting on the 

reference determinant 0 . 

 
0

† † †

0

ˆ

ˆˆ ˆ ˆ ˆˆ ˆ

i i

a ab

i i ij

R

R r r a i r a ib j

 

  
 (2.3) 

The excitation operator involves amplitudes, r, and creation and annihilation operators to 

generate single, double and higher excitations by promoting electrons from occupied 

orbitals ijk to unoccupied orbitals abc.  For configuration interaction calculations (CIS, 

CISD, etc.), the amplitudes and excitation energies are obtained by diagonalizing the 

corresponding field-free Hamiltonian matrix of the time-independent Schrodinger 

equation. 

 
0

ˆ

|

i i i

i j ij

H   

  




 (2.4) 
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The excitation energies can also be obtained by linear response time-dependent Hartree-

Fock theory, also known as the random phase approximation (RPA). 

In the coupled cluster approach with single and double excitations (CCSD), the 

ground state is given by the exponential coupled cluster operator acting on the reference 

determinant. 

 
0 0

† † †

ˆexp( )

ˆˆ ˆ ˆ ˆˆ ˆ

CCSD

a ab

i ij

T

T t a i t a ib j

 

 
 (2.5) 

Excited states in the equation-of-motion coupled cluster method are written in terms of 

the excitation operator, R̂ , acting on the coupled cluster ground state. 

 0
ˆ ˆexp( )

EOMCC

i iR T   (2.6) 

Since the R̂ and T̂ operators commute, the amplitudes for the excitation operator can be 

obtained by solving for the eigenvalues of the similarity transformed field-free 

Hamiltonian, 0H . 

 

0 0 0

0 0 0

0 0

ˆ ˆ ˆ ˆ ˆexp( ) exp( )

ˆ ˆ

ˆ ˆ ˆexp( ) exp( )

i i i

i i i

H R T R T

H R R

H T H T

  

  





 

 (2.7) 

Because 0H is not Hermitian, there is also a set of left-hand eigenstates which satisfy the 

property of biorthogonality. 

 
0 0 0

0 0 0

ˆ ˆ

ˆ ˆ

i i i

i j i ij

L H L
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 (2.8) 
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Inserting Eq.(2.2) into Eq.(2.1) and multiplying from the left by i , reduces the 

time-dependent Schrödinger equation to a set of coupled differential equations for the 

time-dependent coefficients, 

 
( )

( ) ( )i
ij j

j

dC t
i H t C t

dt
  (2.9) 

This can be integrated numerically using a unitary transform approach, 

 ( ) [ ( / 2) ] ( )t t Exp i t t t t    C H C  (2.10) 

 In the dipole approximation, the matrix elements of the field-dependent 

Hamiltonian in Eq.(2.9) and (2.10) can be expressed in terms of the field-free energies, i , 

transition dipole moments, ijD  and the electric field, e(t): 

 0

ˆ( ) | ( ) |

ˆ ˆ| | | | ( )

( )

ij i j

i j i j

i ij ij

H t H t

H t

t

 

   





  

  

e

e

r

D

 (2.11) 

For CIS(D) the same transition dipoles are used as for CIS. Because of the 

biorthogonality of the EOM-CC right and left eigenfunctions, the transition dipole matrix 

is not necessarily Hermitian.  We approximate the EOM-CC transition dipole matrix by 

retaining only the Hermitian component 
*( ) / 2ij jiD D  and dropping the small, non-

physical, non-Hermitian component. 

For the full solution of the TDSE, the sum in Eq.(2.9) extends over all bound states 

and the continuum.  For practical applications, the sum needs to be restricted to a suitable 

subset of states.  For example, CIS includes the ground state and only the singly excited 
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states.  CIS energies typically have errors of 1.0 eV
86

 for valence excited states.  Adding 

perturbative doubles corrections for electron correlation to the CIS excitation energies 

yields the CIS(D) approach.  This reduces the error to ca 0.5 eV
86

.  The equation of 

motion coupled cluster method (EOM-CCSD) treats electron correlation in the ground 

and excited states using the coupled clusters approach.  The EOM-CCSD approach gives 

excitation energies that are within 0.3 eV
86,87

 of the experimental results for valence 

excited states. Large multi-reference configuration interaction calculations would 

produce even more accurate excitation energies, but these are too costly for the size of 

molecules that we hope to study and for the number of states needed in the simulations.  

Within a given method (RPA, CIS, CIS(D), or EOM-CCSD), practical considerations 

limit the total number of states that can be used.  Increasing the number of states included 

until no further change is seen in the simulation is one means of determining whether the 

number of states is adequate.  Finite basis sets are usually used in molecular calculations.  

Since continuum functions are not included in the present calculations, the simulations 

cannot model ionization directly.  

 The present study uses a linearly polarized and spatially homogeneous external 

field,  

 (r, ) ( )sin( )t t t  e E  (2.12) 

this is a good approximation for the laser field, because typical wavelengths are much 

larger than molecular dimensions.  The simulations in this chapter and the next use a 

Gaussian envelope 
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 2( ) [ ( / ) ]g t Exp t n    (2.13) 

 
 

max( ) [ ( / 2) ] / [1 ] for 0

t =0 for t <0 and t >

t g t n t n

n

 



     E E

E
 (2.14) 

where  = 2/ is the period and n is the number of cycles.  The offset  is chosen so 

that E(0) = 0 and E(n) = 0.  For  = 0.06 au (760 nm) and  = 16 ln 2,  = 1/16, n ≈ 3 

and the FWHM  4 fs (see Figure 2-5(c) below). 

 The simulations covered in Chapter 4 will use a cosine envelope 

 ( ) 1/ 2 [2 / ( )] / 2g t cos t n    (2.15) 

 
 

max( ) ( / 2)  for 0

t =0 for t <0 and t >

t g t n t nt

nt

   E E

E
 (2.16) 

where  = 2/ is the period and n is the number of cycles. 

 The RPA, CIS, CIS(D) and EOM-CCSD calculations were carried out with the 

development version of the Gaussian software package.
88

 As in our previous studies,
74,76

 

trans butadiene was optimized at the HF/6-31G(d,p) level of theory.  Excited state 

calculations were carried out with 6-31G(d,p), 6-31 n+ G(d,p), 6-31(n+)G(d,p) and 6-

311++G(2df,2pd) basis sets. The 6-31 n+ G(d,p) basis has one set of 5 Cartesian d 

functions on the carbons, one set of p functions on hydrogen and n sets of diffuse s and p 

functions on all carbons (n = 1, 2 and 3, with exponent of 0.04380, 0.01095, 0.0027375).  

The modified 6-31(n+)G(d,p) basis set is derived from the 6-31 n+ G(d,p) basis set but 

has diffuse s and p functions only on the end carbons.  A 3 cycle Gaussian pulse with  = 

0.06 au (760nm) was used in the simulations.  For maximal effect the field was directed 

along the long axis of the molecule, specifically along the vector connecting the end 

carbons. Up to 500 states were included in the simulations.  Mathematica
89

 was used to 
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integrate the TD-CI equations and analyze the results.  The TD-CI integrations were 

carried out with a step size of 0.5 au (0.012 fs).  To facilitate plotting in Figures 8 – 10, 

the excited state populations were represented by Gaussians with an energy width of 0.01 

au FWHM.  

2.3 Results and Discussion 

     2.3.1 Orbitals and States 

 The ground state Hartree-Fock (HF) wavefunction of trans butadiene in C2h 

symmetry consists of 13  orbitals (7 ag and 6 bu symmetry) and 2  bonding orbitals.  

With the 6-31G(d,p) basis set, the HOMO-1 and HOMO (highest occupied molecular 

orbital) are  orbitals (1 and 2, au and bg symmetry, resp.), while the LUMO (lowest 

unoccupied molecular orbital) and LUMO+1 are * orbitals (3 and 4, au and bg 

symmetry, resp.), as shown in Figure 2-1.  The states involving these four  states have 

large transition dipole moments that play an important role in the response of butadiene 

to intense laser pulses.  The ground state wavefunction is 
1
Ag.  The RPA, CIS, CIS(D) 

and EOM-CC levels of theory concur that the lowest singlet excited state is 
1
Bu and 

corresponds to the HOMO  LUMO (23, 1bg 2au) excitation.  Three additional 

low lying singlet states can be constructed from the  orbitals: the in-phase and out-of-

phase linear combinations of the 24 and 13 excitations (24± 13) (
1
Ag 

symmetry) and 14 (
1
Bu symmetry).  The doubly excited configuration which excites 

two electrons from the HOMO to the LUMO (2 × 23) is also 
1
Ag symmetry and 

mixes strongly with the 24 + 13 configuration.  Since EOM-CC calculations 
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include doubly excited configurations, this excited state is calculated to be considerably 

lower in energy by EOM-CC than by RPA and CIS.   

As the basis set size is increased from 6-31G(d,p) to 6-31 3+ G(d,p), numerous 

low-lying, unoccupied, diffuse, Rydberg-like orbitals start to appear between the smaller 

basis set HOMO and LUMO orbitals, complicating the qualitative description of the 

electronic states.  The energies of the first 30 excited states of 
1
Ag and 

1
Bu symmetry 

calculated by RPA, CIS, CIS(D) and EOM-CC with the 6-31 3+ G(d,p) basis set are 

compared in Figure 2-2 (because of the symmetry of the transition dipoles, states with Au 

and Bg symmetry are not coupled to the Ag and Bu states by the in-plane electric field 

used in the simulations discussed below).  Except for the lowest 
1
Bu state, the * 

states are embedded in a sea of Rydberg-like and pseudo-continuum states arising from 

diffuse, low-energy unoccupied orbitals.  Beyond the first few states, the EOM-CC 

excitation energies are significantly lower than the CIS and RPA excitation energies due 

to the admixture of higher excitations.  CIS(D) captures most of this energy lowering 

compared to EOM-CC, but perturbation theory can overestimate or underestimate the 

correction arising from double excitations.  Since this becomes more problematic for 

higher energy states(see Figure 2-3(a)), the perturbative corrections for states above 11 

eV are limited so that 0.8 Ei
CIS

 ≤ Ei
CIS(D)

 ≤ Ei
CIS

 (this affects ca 10 - 20 states out of 500 

for each of the various basis set).  As shown in the inset in Figure 2-3(b), adding more 

diffuse functions increases the number of states below the ionization threshold.  In the 

pseudo-continuum above the IP, the excited state energies increase approximately 

linearly with the number of states (see Fig. 2-3(b)). The density of states, given by the 
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inverse of the slope of the lines, increases roughly in proportion to the number of diffuse 

functions added, but also depends on the location and exponents of the diffuse functions. 

 The vertical ionization potentials (IP) of butadiene, calculated with the 

unrestricted and restricted Hartree-Fock (UHF and ROHF) and coupled cluster methods 

using various basis sets, are listed in Table 2-1.  The ROHF and UHF IPs are ca 1 and 1.4 

eV lower than the experimental value, 9.0720.007 eV
90

.  The CCSD calculations are 

within 0.15 eV of the experimental value provided that diffuse functions are included in 

the basis set.  Figure 2-2 indicates that only a few of calculated excited state of 
1
Ag and 

1
Bu symmetry are below the IP.   

     2.3.2 Transition Dipoles 

 The transition dipoles are summarized graphically in Figure 2-4 for states up to 15 

eV.  For each transition, the horizontal coordinates indicate the energies of the two states 

and the height of the line is given by the magnitude of the transition dipole. The ground 

to excited state transitions are along the two edges of the plot while the excited to excited 

state transitions are in the interior. The first ionization threshold is ca 9 eV, and the dense 

forest of lines above this energy is the result of transitions between pseudo-continuum 

states.  The lines are peaked near the diagonal as would be expected from continuum 

states.  The effect of basis set size is can be seen in Figure 2-4(a)-(f).  The forest of lines 

is far too sparse with the 6-31G(d,p) basis set but much denser for the larger basis sets. 

The density of lines looks similar with the 6-31(1+)G(d,p), 6-31 1+ G(d,p) and 6-

311++G(2df,2pd) basis sets (Fig 2-4(b), (e), (f)).  The 6-31 n+ G(d,p) results (Fig. 2-4 (b), 

(c), (d)) become progressively denser and more strongly peaked along the diagonal, 
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indicating a better representation of the pseudo-continuum states.  Since multiple diffuse 

functions (Fig. 2-4(c) and (d)) appear to be more important than higher polarization 

functions (Fig. 2-4(f)) for representing the states in the pseudo-continuum, the RPA, CIS, 

CIS(D) and EOM-CC calculations are compared using the 6-31 3+ G(d,p) basis set rather 

than the 6-311++G(2df,2pd) basis set.  Figures 2-4(d), (g) and (h) show that the CIS, 

RPA and EOM-CC transition dipoles with the 6-31 3+ G(d,p) basis set are very similar 

on the scale of these plots.  Since the CIS(D) perturbative correction are applied to the 

energies but not the transition dipoles, the CIS(D) figure (not shown) closely resembles 

the CIS results.  Because the EOM-CC calculations include double excitations, some of 

the transition dipoles between valence states are smaller (particularly the lowest 
1
Bu to 

1
Ag * transitions).  However, the transition dipoles between the pseudo-continuum 

states are similar in appearance to the RPA and CIS results. 

     2.3.3  Simulations with Model Systems 

Since the transitions from the ground state to the 
1
Bu states are the most intense 

absorptions and these transitions involve the  orbitals, early work on polyenes in strong 

fields modeled the response by considering only the  orbitals.
49,50

 To help understand 

the response of butadiene, we first examined the behavior of some simple models of the  

states.  Figure 2-5 shows the results of TD-CI simulations with model two and three level 

systems, as well as the shape of a three cycle Gaussian pulse used in the simulations.  The 

energies and transition dipoles for the model systems were chosen to be comparable to 

the lowest * excitation energies and transition dipoles of butadiene calculated with 

CIS/6-31G(d,p) (0 = 0.,1 = 0.25,2 = 0.35; D01 = 2.0, D12 = 2.0, D02= 0.0 au).  The 
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maximum of the gaussian pulse envelope was varied from 0 to 0.1 au (vertical axis) and 

the frequency of the pulse ranged from 0.01 to 0.35 au (horizontal axis). The populations 

for ground and excited state of the two level system are shown in Fig. 2-5(a) and (b). The 

prominent peak indicates that population inversion is achieved for Emax 0.044 au when 

the frequency is slightly higher than the one photon resonance,  = 0.25 au.  This 

corresponds to a  pulse and the displacement to higher energy is due to Stark shifting. 

The other peaks are the result of higher order processes.  The populations for the three 

level system are shown in Figures 2-5(d), (e) and (f).  The behavior of the first excited 

state as a function of Emax and  is similar to the two level model (Fig. 2-5(e) vs. (b)).  

The peak in the population of the second excited state (Fig. 2-5(f)) corresponds to a two 

photon process (this was verified by changing the energy of the second excited state). 

     2.3.4 Simulations with Butadiene 

 Figure 2-6 illustrates the results of simulations for a simple model of butadiene 

using only the ground state and the four lowest  states computed by TD-CIS and TD-

EOMCC with the 6-31G(d,p) basis set. The response of the 
1
Ag ground state and the 

lowest 
1
Ag excited state and the lowest two 

1
Bu excited states are shown; the population 

of the second 
1
Ag excited state remains less than 0.1 for the range of Emax and  

examined because the transition dipoles with the other  states are small.  The ground 

state is coupled to the lowest 
1
Bu state with a large transition dipole. Likewise, large 

transition dipoles couple this 
1
Bu state to the 

1
Ag state, and the 

1
Ag state to the higher 

1
Bu 

state.  This can be compared to the two and three level systems shown in Figure 2-5.  As 

expected, the response of the first excited state in butadiene is very similar to the first 
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excited state in the 2 and 3 level systems, dominated by the peak for the one photon 

process.  The peak in the population of the lowest 
1
Ag excited state corresponds to a two 

photon process and the peak shown for the second 
1
Bu state corresponds to a three photon 

process (as confirmed by dependence of the peak position on the energy of the states; the 

one photon transition from the 
1
Ag ground state to the 

1
Ag excited state is dipole 

forbidden).  Because of the significant contribution of two electron excitations to the 
1
Ag 

 excited state in the EOM-CC calculations, the transition dipoles coupling this state to 

the 
1
Bu states are about 40% smaller than in the CIS calculations.  As a result, the 

response of both the 
1
Ag state and the second 

1
Bu excited state is much weaker in the TD-

EOMCC simulation.  The regions of decrease in the population of the ground state 

correspond to the peaks in the population of the excited states since the populations must 

sum to unity. Inspection of Figure 2-6 shows that the conditions used for subsequent 

simulations ( = 0.06, Emax up to 0.06 au) are well away from any single or multi-photon 

resonances.  

The populations of the four lowest  states during a three cycle Gaussian pulse are 

shown in Figure 2-7.  In terms of both the zero-field states and the instantaneous 

adiabatic states (defined as the fully relaxed states in the instantaneous electric field), the 

populations change rapidly as the molecule is polarized by the electric field of the pulse, 

with the largest response coming from the lowest 
1
Bu state and the next largest from the 

lowest 
1
Ag excited state (which is strongly coupled to the lowest 

1
Bu state).  The changes 

in the populations of the instantaneous adiabatic states are less than half the size of those 

seen for zero field states, but are still much larger than the final populations after the 

pulse.  Because these fluctuations are so large, it is not readily possible to track the details 
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of the excitation from state to state during the pulse by using the instantaneous adiabatic 

states.  However, the results of the interaction can still be assessed by examining the 

populations after the pulse. 

The calculated response of butadiene to a short, intense pulse depends on the 

number of excited states included in the simulation as well as the theory and basis set 

used for the excited state calculations.  An estimate of the number of excited states 

needed can be obtained by comparing the static polarizability computed with the sum 

over states formalism to the one calculated by linear response theory.  Using the RPA 

data with the 6-31 n+ G(d,p) basis sets, approximately 120, 210, 340 and 460 states are 

required for n = 0 – 3, respectively, to converge the longitudinal polarizability to within 

3% of the linear response value.  The dependence of the simulations on the number of 

states is shown in Figure 2-8 for a 3 cycle Gaussian pulse with  = 0.06 au and Emax = 

0.05 au and calculated with TD-CIS/6-31 n+ G(d,p), n = 1 - 3.  The top row of Fig. 2-8 

shows that at the maximum of the pulse, the populations do not depend strongly on the 

number of states. The largest response is for 1 
1
Bu excited state, and the contribution is 

similar in magnitude for these basis sets.  For the 2+ and 3+ basis sets, the 2 
1
Bu and 3 

1
Bu states are low in energy and show a significant response as well. The larger basis sets 

also have many more low-lying Rydberg-like and pseudo-continuum states.  Even though 

their response is small, the sum of their contributions is significant and more states are 

needed in the sum over states calculation of the polarizability and in the TD-CI 

simulations in order to properly represent the interaction with the field.  The populations 

after the pulse are much smaller but are more sensitive to the quality of the simulation 

since they depend on the cumulative response over the entire pulse.  The bottom row of 
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Figure 2-8 shows the results after the pulse and indicates that 250, 400 and ca 500 states 

are needed with the 6-31 n+ G(d,p) basis sets for n= 1 - 3, respectively.  This again 

illustrates that the small contributions from the numerous low-lying pseudo-continuum 

states are important for stable simulations under these conditions.  Similar results were 

found for simulations with other levels of theory. 

Figures 2-9 and 2-10 summarize the effect of basis sets and levels of theory on the 

response of butadiene to a 3 cycle gaussian pulse ( = 0.06 au).  Populations are plotted 

as a function of the excited state energies and field strength up to Emax =0.06 au (1.26  

10
14

 W cm
-2

).  Figure 2-9 collects the results of TD-CIS simulations using 500 states and 

employing excitation energies and transition dipoles calculated with various basis sets. 

As expected, the populations of the excited states increase dramatically with the field 

strength.  Above a threshold in the maximum field strength, many excited states are 

populated, signaling an increase in the ionization rate.  Details of the populations in 

specific states are very sensitive to the level of theory, basis set and the number of states 

used in the simulation.  Nevertheless, some general trends can be discerned.  Without 

diffuse functions, the response is too weak (Fig. 2-9(a), note the 15-fold difference in the 

vertical scale).  Adding 2 and 3 sets of diffuse functions on the end carbons (Fig. 2-9(b) 

and (c)) increases the response, but not as much as putting one set of diffuse functions on 

each carbon (Fig. 2-9(d)).  With two sets of diffuse functions (Fig. 2-9(e)), significant 

excitation already occurs at lower field strengths.  Augmenting the 6-31 2+ G(d,p) basis 

with a set of sp diffuse functions on the hydrogens increases the response somewhat more 

(not shown).  The results with 3 sets of diffuse functions are very similar to 2 sets (Fig. 2-
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9(f) vs (e)).  Similar trends in basis set effects are found for RPA and CIS(D) simulations 

with 500 states. 

The top row of Figure 2-10 compares TD-CI simulations with 300 states based on 

RPA, CIS, CIS(D) and EOM-CC calculations with the 6-31 3+ G(d,p) basis set. The RPA 

and CIS results are very similar, while the CIS(D) response is somewhat stronger at 

higher Emax.  The EOM-CC response is comparable to or slightly less than CIS and RPA. 

The results of simulations with RPA, CIS and CIS(D) using 500 states are shown in 

bottom row of Figure 2-10 (EOM-CC/6-31 3+ G(d,p) calculations with 500 states are not 

practical at this time).  With the 6-31 3+ G(d,p) basis, the 500 state simulations follow the 

same trend as with 300 states.  However, with small basis sets such as 6-31G(d,p) (not 

shown), the differences between the various levels of theory are more pronounced.   

Because the populations of individual excited states are very sensitive to the level 

of theory, it is useful to compare some aggregate quantities.  The depletion of the 

population of the ground state is equal to the sum of the excited state populations 

generated by the interaction with the intense pulse.  Figure 2-11(a) shows the population 

of the ground state as a function of field strength for simulations with 300 states for 

various levels of theory and the 6-31 3+ G(d,p) basis set. Up to a maximum field strength 

of ca 0.035 au, the RPA, CIS, CIS(D) and EOM-CC ground state populations are nearly 

identical and show less than a 2% depletion. For Emax greater than ca. 0.035 au, there is a 

rapid decrease in the ground state contribution as excited states become more populated. 

In agreement with Figure 2-10, the response of RPA, CIS and EOM-CC are similar but 

CIS(D) is significantly stronger. Similar trends are found for simulations with 500 states 

(not shown). Figure 2-11(b) compares the sum of the populations of the excited states 
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with energies less than 0.5 au. The results are in accord with Figure 2-10 as well as the 

trends the ground state populations (Fig. 2-11(a)).  Interaction with the intense pulse 

deposits energy into the molecule by populating excited states.  Figure 2-11(c) compares 

the sum of the excited state energies weighted by their populations for excited states with 

energies less than 0.5 au. Again, the values for RPA, CIS and EOM-CC are similar but 

CIS(D) is significantly larger. For simulations with 500 states, the amount of energy 

deposited in this range of states is smaller but the trends are similar.  

2.4 Summary 

The lowest singlet excited state of butadiene is a 
1
Bu * state and is treated 

fairly well by RPA, CIS, and CIS(D) when compared to EOM-CC. CIS(D) reproduces 

the trends in energy of the higher bound and pseudo-continuum states better than by RPA 

and CIS when compared to EOM-CC, but the perturbative correction for doubles can be 

erratic. The effect of basis set can be seen rather dramatically by looking at the dipole 

moments for transitions between ground and excited states and between excited states.  

Diffuse functions are particularly important for transitions between excited states in the 

pseudo-continuum, above the first ionization threshold.  Higher polarization functions 

seem to be less important, while multiple diffuse functions should be placed on all of the 

heavy atoms and not just on the end carbons.  Transition dipoles involving the low lying 

 states are smaller for EOM-CC than for CIS and RPA because the latter do not take 

into account the double excitation character of some of these states.  Studies with 2 and 3 

level model systems as well as models involving only the low lying  states of butadiene 

show that intense 3 cycle pulses can cause resonant 2 and 3 photon transitions.  The 

frequency and intensity ranges for the pulse used in the simulations were chosen to avoid 
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these resonances.  Nevertheless, above a threshold in intensity of the pulse, there is rapid 

population of higher states in the pseudo-continuum.  The response depends on the level 

of theory, the basis set and the number of excited states used in the simulation.  

Depending on the basis set, 500 excited states or more may be needed.  For the pulse 

parameters selected, the response is far too weak with small basis sets such as 6-31G(d,p), 

but consistent results are achieved with two and three sets of sp diffuse functions on each 

carbon.  For small basis sets, the difference between levels of theory is more pronounced, 

but with two and three sets of diffuse functions, the CIS, RPA and EOM-CC results are 

similar while the CIS(D) response is too strong when compared to the more reliable 

EOM-CC calculations. 
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Table 2-1. Calculated vertical ionization potentials for butadiene
a 

 

  Theory  

Basis set UHF ROHF UCCSD 

6-31G(d,p) 7.561 7.929 8.790 

6-31+G(d,p) 7.696 8.060 8.935 

6-31++G(d,p) 7.694 8.058 8.934 

6-31 2+ G(d,p) 7.697 8.061 8.943 

6-31 3+ G(d,p) 7.697 8.061 8.943 

6-311++G(2df,2pd) 7.700 8.091 9.151 

 

a
 in eV, experimental value: 9.0720.007 eV

90
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Figure 2-1. The highest occupied and lowest unoccupied π molecular orbitals of 1,3-

butadiene calculated by HF/6-31G(d,p). 
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(a)  

(b)  

Figure 2-2. Vertical excitation energies of butadiene for the first 30 
1
Bu states and 

1
Ag 

states calculated with the 6-31 3+ G(d,p) basis set (RPA (blue triangles 

pointing down), CIS (red squares), CIS(D) (green diamonds), EOM-CC 

(black circles)).  IP is the experimentally determined ionization potential.
90
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(a)   

(b)  

Figure 2-3. Vertical excitation energies for the first 500 states of butadiene (all 

symmetries) calculated with (a) the 6-31 3+ G(d,p) basis and RPA, CIS, 

CIS(D) and EOM-CC (blue, red, green and black, respectively), (b) CIS 

and the 6-31 n+ G(d,p) and 6-31(n+)G(d,p) basis sets (n=1 blue, n=2 red, 

n=3 green, solid lines (n+), dotted lines n+). Inset: Number of states under 

the experimental ionization potential.
90
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(a) (b) (c)  

(d) (e)  (f)

(g) (h)  

 

Figure 2-4. Transition dipoles for butadiene calculated with (a) CIS/6-31G(d,p), (b) 

CIS/6-31 1+ G(d,p), (c) CIS/6-31 2+ G(d,p), (d) CIS/6-31 3+ G(d,p), (e) 

CIS/6-31(1+)G(d,p), (f) CIS/6-31++G(2df,2pd), (g) RPA/6-31 3+ G(d,p), 

and (h) EOM-CC/6-31 3+ G(d,p). 

  



61 

 

 

 

 

(a)  (d)  

(b)  (e)  

(c)  (f)  

Figure 2-5. Response of model two and three level systems (0 = 0., 1 = 0.25, 2 = 

0.35; D01 = 2.0, D12 = 2.0, D02 = 0.0 au) to a 3 cycle Gaussian pulse, as a 

function of the pulse frequency, , and the maximum of the pulse 

envelope, Emax: (a) and (b) ground and excited state populations of the two 

level system, (d), (e) and (f) ground and excited state populations of the 

three level system, (c) pulse shape. 

10
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(a)  (e)  

(b)  (f)  

(c)  (g)  

(d)  (h)  
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Figure 2-6. Response of the butadiene  states (1 
1
Ag ground state and the 1 

1
Bu, 2 

1
Ag 

and 2 
1
Bu excited states) to a 3 cycle gaussian pulse: (a)-(d) CIS/6-

31G(d,p) excited state energies and transition dipoles: 0 = 0.0, 1 = 

0.256, 2 = 0.344, 3 = 0.369, 4 =0.460; D02 = D03 = D14 = D23 = 0.0, D01 

= -2.575,  D04 = 0.485, D12 = 0.430, D13 = 2.620, D24 = 0.547, D34 = 3.406 

au.  (e)-(h) EOM-CC/6-31G(d,p) excited state energies and transition 

dipoles: 0 = 0.0,1 = 0.267,2 = 0.293,3 = 0.358,4 =0.440; D02 = 

D03 = D14 = D23 = 0.0, D01 = -2.091, D04 = 0.555, D12 = -1.581, D13 = -

0.330, D24 = -1.968, D34 = -0.114 au. 
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(a)  

 

 

(b)  

 

Figure 2-7. Comparison of the response of butadiene calculated with TD-CIS/6-

31G(d,p) in a 3 cycle Gaussian pulse ( = 0.06 au, Emax = 0.05 au) in 

terms of (a) the zero-field states and (b) the instantaneous adiabatic states. 
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Figure 2-8. Excited state populations of butadiene as a function of number of states 

included in the TD-CIS simulation, at the maximum of the pulse (top row) 

and after the pulse (bottom row) (= 0.06 au, Emax = 0.05 au) with the 6-

31 n+ G(d,p) basis sets. 
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(a) (b) (c)  

(d) (e) (f)  

 

Figure 2-9. Response of butadiene subject to a 3 cycle Gaussian pulse ( = 0.06 au, 

Emax = 0 – 0.06 au) calculated by TD-CIS with 500 excited states using the 

following basis sets (a) 6-31G(d,p), (b) 6-31(2+)G(d,p), (c) 6-

31(3+)G(d,p), (d) 6-31 1+ G(d,p), (e) 6-31 2+ G(d,p) and (f) 6-31 3+ 

G(d,p). 
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Figure 2-10. Response of butadiene subject to a 3 cycle Gaussian pulse ( = 0.06 au, 

Emax = 0 – 0.06 au) calculated with the 6-31 3+ G(d,p) basis set and RPA, 

CIS,CIS(D) and EOM-CC using 300 states (top row) and 500 states 

(bottom row). 
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(a) (b)  

(c)  

 

Figure 2-11. Dependence of the populations and energies on Emax, the maximum field 

strength of the pulse: (a) ground state population, (b) sum of the 

populations of excited states with energies less than 0.5 au, (c) energy 

deposited in excited states with energies less than 0.5 au (RPA – blue, CIS 

– red, CIS(D) – green, EOM-CC – black). 
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3.1 Introduction 

 In the previous chapter
1
, we employed the TD-CI approach to simulate the 

response of butadiene to an intense laser field.  We were able to compare the response 

predicted by various levels of wavefunction based theory using the excited states and 

transition dipole moments calculated by those theories.  We also examined the effects of 

basis set size and number of excited states used in the simulation.  In this chapter
2
 we 

explore the utility of linear-response time-dependent density functional theory for 

calculating the field-free excitation energies and transition dipoles needed in TD-CI 

simulations.  The least expensive methods for calculating these field-free excitation 

energies and transition dipoles are configuration interaction with single excitations (CIS), 
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linear-response time-dependent Hartree-Fock (TD-HF, also known as the random phase 

approximation – RPA), and linear-response time-dependent density functional theory 

(TD-DFT)
3,4

.  Linear-response TD-DFT calculations do treat electron correlation, but 

there are many functionals to choose from.  Similar to the previous chapter we again use 

butadiene in a short, intense laser pulse as a test case.  In this chapter we will examine 

TD-CI simulations with excitation energies and transition dipoles calculated by a 

representative set of density functionals.  A benefit of using TD-DFT is that excited state 

energies can be calculated at a fraction of the cost of more accurate EOM-CC and 

multireference methods. However, of the many different functionals, some may not be 

suitable for calculating the TD-CI simulations of molecules in strong fields. 

3.2 Methods 

 DFT and EOM-CCSD calculations were carried out with the development version 

of the Gaussian software package.
5
  The functionals used in this study are listed in Table 

3-1 and were chosen to sample various aspects of density functional theory.  TD-DFT can 

have substantial errors when charge-transfer excited states are involved. The use of long-

range corrected functionals is one method of treating this error. Therefore, several long-

range corrected functionals were considered (LC-ωPBE, ωB97XD, CAM-B3LYP, LC-

BLYP, LC-PBE, LC-PW91, LC-TPSS) in addition to a selection of standard functionals 

(B3LYP, BH&HLYP, HSE2PBE (HSE03), BLYP, PBE, PW91, TPSS).  To assess the 

effects of the range parameter in the long-range corrected functionals, calculations with 

LC-ωPBE were carried out with ω=0.2, 0.4, 0.6 and 0.8.  As in the previous chapter, 

trans butadiene optimized at the HF/6-31G(d,p) level of theory was used as the test case.  

Excitation energies and transition dipoles were computed with the 6-31 3+ G(d,p) basis, 
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which has one set of 5 Cartesian d functions on each carbon, one set of p functions on 

each hydrogen and 3 sets of diffuse s and p functions on each carbon, with exponents of 

0.04380, 0.01095, 0.0027375.  A 3 cycle Gaussian pulse with   = 0.06 au (760nm) was 

used in the simulations.  For maximal effect the field was directed along the long axis of 

the molecule, specifically along the vector connecting the end carbons. As in the previous 

chapter, up to 500 excited states were included in the simulations.  Mathematica
6
 was 

used to integrate the TD-CI equations and analyze the results.  The TD-CI integrations 

were carried out with a step size of 0.5 au (0.012 fs).  The same pulse parameters used in 

the previous chapter were used in this chapter as well (see equations 2.12—2.14) 

3.3 Results and Discussion 

     3.3.1 Excitation Energies and Transition Dipoles 

 All of the methods agree that the lowest excited state of butadiene is 
1
Bu and 

involves a single excitation from the highest occupied orbital to the lowest unoccupied 

orbital.  Table 3-1 shows that the standard functionals underestimate the first excitation 

energy while the long-range corrected functionals are in better agreement with 

experiment.  For most of the functionals, the calculated ionization potential (IP) is within 

0.2 eV of the experimental value (the exceptions are TPSS, BLYP and BH&HLYP).  The 

standard functionals tend to be lower than the experimental IP and the long-range correct 

functionals are mostly higher.  Thus, there is a qualitative agreement between the trends 

in the first excitation energy and the ionization potential, but the relation is not 

quantitative (R
2
=0.42). 
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 Figures 3-1—3-4 compare the excited state energies for the functionals listed in 

Table 3-1.  Table 3-2 lists the average excitation energies for first 300 excited states. The 

results seem to be grouped within the rungs of DFT’s Jacob’s ladder
7
, with the 

generalized gradient approximation (GGA) functionals (BLYP, PBE, PW91) predicting 

the lowest average excitation energies. These are followed by TPSS, a meta GGA 

functional, while the highest average excitation energies correspond to hybrid functionals, 

B3LYP, HSE2PBE, and BH&HLYP.  All of the standard functionals predict excited 

states that are on average lower in energy than EOM-CC.  Figure 3-1 shows the energies 

of the first 500 excited states of butadiene using some of the standard functionals listed in 

Table 3-1 (B3LYP, PBE, HSE2PBE, PW91, TPSS).  Included in this figure are the 

excited state energies for the first 300 states calculated by EOM-CC and the first 500 

states by RPA.  Compared to the EOM-CC and RPA results, the TD-DFT excitation 

energies with the standard functionals are lower by as much as 4 eV for the highest 

energy states.  The largest differences are for PBE, PW91 and TPSS.  Compared to 

EOM-CC, the best performers among the standard functionals are BH&HLYP (-2%) and 

HSE2PBE (8%).  The other standard functionals have differences in the average 

excitation energy greater than 10%.  Mixing in a larger amount of Hartree-Fock exchange 

seems to reduce the error. 

 Figure 3-2 explores the effect of adding Hartree-Fock (HF) exchange to the BLYP 

functional: BLYP (no HF exchange), B3LYP (20% HF exchange), CAM-B3LYP 

(between 19 and 65% HF exchange), and BH&HLYP (50% HF exchange).  As the 

amount of Hartree-Fock exchange increases from 0% to 50% the excited state energies 
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approach those predicted by EOM-CC.  The average error goes from -18% for BLYP to -

11% B3LYP to -2% for BH&HLYP.   

 Most standard functionals have the wrong long-range behavior due to the self-

interaction error.
8-12

  As a result, the energies of Rydberg-like states are severely 

underestimated.
13-15

 Increasing the amount of Hartree-Fock exchange in a global hybrid 

functional improves the long-range behavior, but degrades the performance at short-range. 

Long-range corrected (LC) functionals address this problem is by changing from an 

exchange functional at short range to 100% Hartree-Fock exchange at long range.  This is 

achieved by using a switching function to divide the Coulomb operator into short-range 

and long-range parts. 

 12 12

12 12 12

( ) ( )1 erfc r erf r

r r r

 
   (3.1) 

The parameter ω controls the ratio of these components as a function of distance.  Figure 

3-3 shows that excitation energies computed with long-range corrected functionals are in 

much better agreement with EOM-CC.  The ωB97XD and CAM-B3LYP functionals 

predict energies ~3-4% lower than EOM-CC, while the other long-range corrected 

functionals all predict energies slightly higher than those of EOM-CC (LC-ωPBE 3%, 

LC-TPSS 6%, LC-PW91 6%, LC-PBE 6% and LC-BLYP 4%).  

 Varying the ω-parameter changes the distance over which the switch from short 

range to long range behavior takes place.  A relatively narrow range of ω values (from 

0.2 to 0.5 bohr
-1

) has been found by optimization of various properties for existing long-

range corrected hybrid functionals.
16-29

 Figure 3-4 demonstrates the effect on the 



74 

 

excitation energies of changing the ω parameter in the LC-ωPBE functional.  When ω is 

too small (more DFT exchange) the excitation energies are much lower than those of 

EOM-CC.  If ω is too large (more HF exchange) the excitation energies are significantly 

higher than those of EOM-CC and approach the energies predicted by RPA/TD-HF 

(dashed line in Figure 3-4).  A value of ω=0.4 is best for reproducing the EOM-CC 

excited state energies. This is in agreement with the optimal value of =0.4 found for 

calculating enthalpies of formation, barrier heights and ionization potentials.
24

 

Correct transition dipoles should be just as important as accurate excitation 

energies for calculating the response to an intense laser field.  A typical calculation yields 

several valence states below the ionization potential (IP) with more Rydberg-like states 

growing closer together as the energy approaches the IP.  A dense collection of states 

above the IP forms a pseudo-continuum.  There are a few key valence states with large 

transition dipoles, which allow for efficient excitation from the ground state to excited 

states and from one excited state to another.  In the pseudo-continuum, the transition 

dipoles are largest between neighboring states that have the highest spatial overlap and 

therefore the largest transition dipoles.  A typical plot of the transition dipoles is shown in 

Figure 3-5 for the B3LYP functional.  The magnitudes of the transition dipoles are 

plotted vertically; the ground state to excited state transition dipoles are along the 

horizontal axes and the excited to excited state transition dipoles make up the interior of 

the plot.  The basis set dependence of the transition dipoles calculated with the B3LYP 

functional is similar to those found in Chapter 2 with CIS and RPA calculations.
1
  The 

overwhelming majority of the transition dipoles are small in magnitude (of the more than 

23,000 transition dipoles with magnitudes greater than 0.001 au, more than 15,000 have 
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magnitudes less than 0.1 au) and only a relatively small number of transition dipoles 

which have large magnitudes (less than 120 with magnitudes greater than 5 au). The 

statistical distributions of the transition dipoles are relatively similar across all of the 

density functional and wavefunction methods.  The average magnitudes of the transition 

dipoles are compared in Table 3-2.   

     3.3.2 TD-CI Simulations of the Response to a Short, Intense Laser Pulse 

The interaction of butadiene with a three-cycle Gaussian pulse (ω=0.06 au, 760 

nm; eq. 2-12 and 2-13) was simulated with the TD-CI approach (eq. 2-1—2-5) using 

excited states calculated with various density functionals.  During the interaction with the 

laser field, many excited states contribute to the time-dependent wavefunction. Since the 

pulse is not resonant with any of the excitation energies, most of the populations of the 

excited states return to small values after the pulse.  Because the interaction with the 

intense pulse is non-linear, some population remains in the excited states after the field 

has returned to zero.  These residual populations are a measure of the non-linear response 

of the molecule interacting with the intense laser field and of the quality of the time-

dependent wavefunction during and after the interaction with the laser pulse. If the non-

linear response (as measured by the residual populations) is too large or too small, then 

the approximate excitation energies and / or transition dipoles used in the TD-CI 

simulation are not suitable.  Figures 3-6 and 3-7 show the residual populations of the 

excited states of butadiene after the pulse.  The TD-CI simulations used  500 excited 

states and the  populations after the pulse are plotted as a function of the excited state 

energies and field strengths up to Emax = 0.06 au (1.26 x 10
14

 W/cm
2
).  As expected, the 

magnitude of the excitations increases rapidly with increasing field strength.  Inspection 



76 

 

of Figure 3-6 shows that the non-linear response computed with BLYP, PBE, and PW91 

is too strong compared to EOM-CC and RPA, while their long-range corrected 

counterparts are in much better agreement with EOM-CC and RPA.  This indicates that 

long-range Hartree-Fock exchange is necessary.  The effect of Hartree-Fock exchange is 

explored further in Figure 3-7.  Figures 3-7a—3-7c examine the effect of adding Hartree-

Fock exchange to the BYLP functional.  Mixing in HF character strongly affects the 

magnitude of the non-linear response.  B3LYP (20% HF exchange, Fig. 3-7a) is much 

better than BLYP (0% HF exchange, Fig. 3-6a). BH&HLYP (50% HF exchange, Fig. 3-

7b) and CAM-B3LYP (19% - 65% HF exchange, Fig. 3-7c) are a bit better than B3LYP, 

but the residual populations is still too large compared to EOM-CC (Fig. 3-6h).  This 

indicates that adding a percentage of HF exchange is not enough and it is essential to 

switch to 100% HF exchange at long range. The performance of long-range corrected 

DFT calculations can be sensitive to the choice of the range parameter.  Figures 3-7d—3-

7g show the effect of changing the ω in the LC-ωPBE functional. Too small of a value 

(switching to HF exchange at a longer range) yields residual populations that are too 

large compared to EOM-CC.  Too large of a value of ω (switching to HF exchange at a 

shorter range) produces results that are much smaller than the EOM-CC.   

A more quantitative measure of the non-linear response can be obtained by adding 

up the residual populations of the excited states generated by the pulse.  Figure 3-8 and 

Table 3-2 compare the sum of the excited state populations for states with energies less 

than 0.05 au, based on simulations with Emax = 0.05 au and using 300 states.  As noted 

previously
1
, RPA and CIS are in good agreement with EOM-CC but the response of 

CIS(D) is a bit too strong.  The non-linear response for all of the standard functionals is 
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far too strong.  Most of the long-range corrected functionals fall within ±25% of the 

EOM-CC value. The exceptions are ωB97XD and CAM-B3LYP (too strong) and LC-

ωPBE with ω=0.8 (too weak). 

Table 3-2 compares the sum of all excited states populations after the pulse for the 

various functionals, along with the average excitation energies and the average transition 

dipole magnitudes.  The non-linear response, as measured by the sum of the excited state 

populations after the pulse is not correlated with the calculated ionization potential listed 

in Table 3-1 (R
2
 = 0.01) and only weakly correlated with the average transition dipoles 

(linear fit R
2
 = 0.14 for ground state to all excited states, R

2
 = 0.58 for first excited states 

to all excited states, R
2
 = 0.42 for all transition dipoles, see Table 3-2). The non-linear 

response is most strongly correlated with the first excitation energy (R
2
 =0.85) and the 

average excitation energy (Figure 3-9, R
2
=0.89 for a linear fit and R

2
=0.98 for a quadratic 

fit).  In particular, if the average excitation energy is significantly below the EOM-CC 

value, the response is far too strong.  This is the case for most of the standard functionals. 

The average excitation energy for long range corrected functionals is in better agreement 

with EOM-CC and the non-linear response is comparable to EOM-CC. 

3.4 Conclusions 

The TD-CI approach has been used to examine the ability of various density 

functionals to simulate the interaction of butadiene with a short intense laser pulse.  

Excitation energies calculated by TD-DFT with standard functionals are significantly 

lower than the EOM-CC excitation energies.  Long-range corrected functionals tend to 

produce average excitation energies slightly higher than EOM-CC.  A value of ω = 0.4 in 
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the LC- ωPBE functional provides good agreement with EOM-CC over a wide range of 

excitation energies. Long-range corrected functionals also yield transition dipoles that are 

larger than EOM-CC on average.  The non-linear response of butadiene interacting with 

an intense laser pulse is gauged by the residual populations of the excited states after the 

pulse. The non-linear response computed by TD-CI simulations based on excited states 

calculated with standard functionals is far too large, primarily because the excitation 

energies are too low.  The response computed with long-range corrected functionals is 

comparable to that obtained with EOM-CC, RPA and CIS.  This indicates that correct 

long-range behavior is essential for the treatment of the diffuse and highly excited states 

needed to describe the interaction between the electron density and a strong laser field. 
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Table 3-1. Lowest excitation energies and vertical ionization potentials for methods 

used in this study.
a
 

Theoretical Method Method Type First Excited State 

Energy in eV 

Calculated Vertical 

IP in eV 

Time-dependent Density Functional Theory 

BLYP
30-32

 GGA 5.428 8.766 

PBE
33,34

 GGA 5.428 8.940 

PW91
35-39

 GGA 5.529 8.976 

    

TPSS
40

 M-GGA 5.641 8.808 

    

B3LYP
31,32,41

 H-GGA 20% HF 5.730 8.933 

BH&HLYP
5,31,32,42

 H-GGA 50% HF 5.993 8.739 

HSE2PBE 

(HSE03)
43,44

 

H-GGA 
5.641 9.157 

    

LC-ωPBE
24,25,45,46

 LC 6.241 9.088 

ωB97XD
20,47

 LC 5.998 8.951 

CAM-B3LYP
48

 LC H-GGA 19-

65% HF 
5.962 8.987 

LC-BLYP
30-32,49

 LC GGA 6.233 9.097 

LC-PBE
33,34,49

 LC GGA 6.327 9.233 

LC-PW91
35-39,49

 LC GGA 6.323 9.245 

LC-TPSS
40,49

 LC M-GGA 6.334 9.195 

Wave Function Based Methods 

UHF/CIS SCF 6.415 7.697 

ROHF/CIS SCF 6.415 8.061 

UCCSD Coupled-Cluster 6.593  8.943 

Experiment           6.25
50

 9.072 ± 0.007
51

 
a
Calculated using the listed method and the 6-31 3+ G(d,p) basis set 
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Table 3-2. Comparison of average excitation energies, average transition dipole 

magnitudes, and the sum of excited state populations.
a
 

Theoretical 

Method 
Average Excitation 

Energy in au 

Average Transition Dipole 

Magnitude in au
b 

Population of all 

Excited States  

Time-dependent Density Functional Theory 

BLYP 0.3695 0.4590 0.6432 

PBE 0.3760 0.4398 0.5796 

PW91 0.3775 0.4466 0.5278 

    
TPSS 0.3825 0.4393 0.5381 

    
B3LYP 0.4038 0.4699 0.4101 

HSE2PBE 

(HSE03) 
0.4196 0.4620 0.2954 

BH&HLYP 0.4441 0.5053 0.1977 

    
LC-ωPBE 

w= 0.2 
0.4140 0.5067 0.2631 

LC-ωPBE 

w= 0.4 
0.4680 0.5368 0.0705 

LC-ωPBE 

w= 0.6 
0.4962 0.5439 0.0436 

LC-ωPBE 

w= 0.8 
0.5100 0.5416 0.0359 

ωB97XD 0.4399 0.5225 0.1441 

CAM-

B3LYP 
0.4361 0.5176 0.2027 

LC-BLYP 0.4743 0.5445 0.0749 

LC-PBE 0.4809 0.5417 0.0561 

LC-PW91 0.4816 0.5451 0.0576 

LC-TPSS 0.4826 0.5382 0.0560 

Wave Function Based Methods 

EOM-CC 0.4540 0.4764 0.0640 

RPA 0.4945 0.5281 0.0591 

CIS 0.4950 0.5265 0.0454 

CIS(D) 0.4432 0.5265 0.0986 
a
 Calculated using 300 states and the 6-31 3+ G(d,p) basis set with a field strength of 

 Emax = 0.05 au 

b
 for transition dipoles with a magnitude greater than 0.001 au  
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Figure 3-1. Excited state energies for the first 500 states of butadiene (all symmetries) 

calculated by standard density functionals: B3LYP (red), PBE (blue), 

HSEPBE (green), PW91 (purple) using the 6-31 3+ G(d,p) basis set.  For 

comparison EOM-CC (black, dotted) and RPA (black, dashed) energies 

are included. 

 

Figure 3-2. Effect of Hartree-Fock exchange for the first 500 excited states calculated 

using BLYP (0% HF, red), B3LYP (20% HF, blue), CAM-B3LYP (19-

65% HF, purple), BH&HLYP (50% HF, green), EOM-CC (black, dashed), 

RPA (black, dotted).  All methods used the 6-31 3+ G(d,p) basis set. 
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Figure 3-3. Excited state energies for the first 500 states of butadiene calculated by 

long-range corrected density functionals: ωB97XD (blue), CAM-B3LYP 

(red), LC-BLYP (purple), LC-ωPBE (green), LC-PBE (orange) using the 

6-31 3+ G(d,p) basis set.  For comparison EOM-CC (black, dotted) and 

RPA (black, dashed) energies are included. 

 

Figure 3-4. Excited state energies for the first 500 states of butadiene, calculated with  

LC-ωPBE/6-31 3+ G(d,p) and varying the ω-parameter: ω = 0.2 (blue), ω 

= 0.4 (default; red), ω = 0.6 (green), ω = 0.8 (purple), EOM-CC  

(black, dotted) and RPA (black, dashed) are included for comparison. 
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Figure 3-5. Transition dipoles for butadiene calculated with B3LYP/6-31 3+ G(d,p). 
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(a) (b)  

(c)  (d)  

(e) (f)  

(g) (h)  

 

Figure 3-6. Response of butadiene subjected to a three-cycle Gaussian pulse (ω=0.06 

au, Emax =0-0.06 au) calculated with the 6-31 3+ G(d,p) basis set, using 

500 states for the standard functionals (a) BLYP, (b) PBE, (c) PW91, and 

their long range corrected counterparts (e)LC-BLYP, (f)LC-PBE, (g) LC-

PW91, (d) RPA, and (h) EOM-CC (300 states). 
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(a) (b)  

(c) (d)  

(e) (f)  

(g)  

 

Figure 3-7. Response of butadiene subjected to a three-cycle Gaussian pulse (ω=0.06 

au, Emax =0-0.06 au) calculated with the 6-31 3+ G(d,p) basis set, using 

500 states for (a) B3LYP, (b) BH&HLYP, (c) CAM-B3LYP, and LC-

ωPBE with (d) ω = 0.2, (e) ω = 0.4 (default), (f) ω = 0.6, and (g) ω = 0.8. 
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Figure 3-8. Comparison of the sum of the populations of the excited states with 

energies less than 0.5 au for simulations with DFT functionals and 

wavefunction based methods using the 6-31 3+ G(d,p) basis and 300 

excited states.  The horizontal lines represent the population of EOM-CC 

± 25% . 
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Figure 3-9. Correlation between the average excited state energy and the sum of the 

population of all excited states after the pulse calculated with the 6-31 3+ 

G(d,p) basis, Emax = 0.05 au and 300 states for the standard DFT 

functionals (red), long-range corrected functionals (green), wavefunction 

based methods (blue) and EOM-CC (black). (R
2
=0.89 for a linear fit and 

R
2
=0.98 for a quadratic fit) 
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Copyright 2011, American Chemical Society. 

4.1 Introduction 

 Our earlier studies
1
 on linear polyenes examined the electronic excitation of 

conjugated molecules by short, intense laser pulses.  The amount of nonadiabatic 

excitation was found to increase with the length of the polyene.  In the previous 

chapters
2,3

 we looked at the number of excited states and the size of the basis set needed 

in TD-CIS simulations to describe the excited state populations after the laser pulse.  We 

found that a large number of states (~300-500) and a basis set augmented with 3 sets of 

diffuse functions were needed to model the response to the laser pulse.  These studies did 

not examine ionization.  Earlier work from our research group has used time-dependent 

Hartree-Fock and TD-CIS methods to simulate the response of CO2, polyenes, and 

polyacenes and their cations to short, intense laser pulses.
1,2,4-8

  Klamroth, Saalfrank and 

co-workers
9-19

 have used TD-CI to study dipole switching, pulse shaping, ionization, 

dephasing and dissipation.  In the present work, we will use the TD-CIS approach to 
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simulate the ionization of a series of polyenes.  For few electron systems, grid-based 

methods with absorbing boundary conditions can be used to calculate accurate ionization 

rates.
20-22

  Mukamel
23,24

 and co-workers have simulated  electron dynamics in 

octatetraene with a semiempirical Hamiltonian and have modeled ionization saturation 

intensities in a multi-electron system in a finite one-dimensional box.  For larger systems 

Klamroth and coworkers
10

 have developed a heuristic approach to model ionization using 

TD-CI and standard atom centered gaussian basis sets.  For states above the ionization 

potential, the ionization rate is assumed to be proportional to the speed of the excited 

electron divided by a characteristic escape distance.  This model is appropriate in the high 

field case where above-threshold ionization is dominant.  Our goal is to see how well this 

model applies to the ionization rates of a series of linear polyenes and to examine the 

effect of the basis set size, number of states and escape distance parameter on the 

ionization rates.   

4.2 Methods 

Typical molecular electronic structure calculations use atom centered basis functions. 

Since continuum functions are not usually included in these calculations, the TD-CI 

simulations cannot model ionization directly. Klamroth and co-workers
10

 formulated a 

heuristic method to model ionization.  For states above the ionization potential (IP), the 

energy is modified by adding an imaginary component (i/2) Γn to the excited state energy, 

where n is the estimated ionization rate for that excited state. 

 
2

s s s

i
     (4.1) 
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In the following calculations the n, term was added to states above the experimental IPs 

listed in Table 4-1.  Vertical IPs calculated by UHF and Koopman’s theorem are ca 1.1 

and 0.2 eV lower, respectively; nevertheless the results using the UHF IPs are similar to 

those obtained with the experimental IPs.  The ionization rate, n, for a state is obtained 

by summing contributions from the excited determinants that form the excited state.  The 

ionization rate for an electron in an excited determinant is estimated from the velocity of 

the electron in the virtual orbital divided by an escape distance parameter, d.  In turn the 

velocity of the electron is proportional to the square root of its orbital energy, a.   

 
2

,

( )
aa

s i

i a

a s
d


   (4.2) 

where 
2

( )a

ia s  is the probability amplitude for the determinant involving an excitation 

from orbital i to orbital a describing state s. 

The present study uses a linearly polarized and spatially homogeneous external 

field similar to the ones used previously (see equation 2.12) and the cosine envelope 

discussed in Chapter 2 (see equation 2.25—2.16) 

 The CIS calculations were carried out with the development version of the 

Gaussian software package.
25

 For this study ethylene, trans 1,3-butadienene, all trans 

1,3,5-hexatriene, and all trans 1,3,5,7-octatetraene were optimized at the HF/6-31G(d,p) 

level of theory.  Excited state calculations were carried out with the 6-31 n+ G(d,p) basis 

set. The 6-31 n+ G(d,p) basis has one set of five d functions on the carbons, one set of p 

functions on the hydrogens and n sets of diffuse s and p functions on all carbons (n = 1, 2 

and 3, with exponent of 0.04380, 0.01095, 0.0027375).  Some additional calculations 
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were carried out with the 6-311++G(2df,2pd) basis set.  A 7 cycle cosine pulse with  = 

0.06 au (760 nm) was used in the simulations.  The length of the pulse is about 18 fs and 

the simulation is allowed to run for an additional 6 fs after the pulse.  For maximal effect 

the field was directed along the long axis of the molecule, specifically along the vector 

connecting the end carbons. Practical considerations in the calculation of excited to 

excited state transition dipoles limited the simulations to ca 1000 states for butadiene and 

hexatriene, and 800 states for octatetraene.  The total number of singly excited states and 

the maximum number of states used in the simulations for each molecule are listed in 

Table 4-1.  Mathematica
26

 was used to integrate the TD-CI equations and analyze the 

results.  The TD-CI integrations were carried out with a step size of 0.05 au (1.2 as).   

4.3 Results and Discussion 

 In the previous chapters
2
 we examined various levels of theory and basis sets to 

help determine what one should consider when simulating the response of a molecule to 

an intense laser pulse. For systems which cannot directly model ionization, TD-CIS 

calculations of butadiene needed up to 500 excited states computed with the 6-31G(d,p) 

basis set with 3 additional sets of diffuse sp functions to describe the optical response to a 

3 cycle, 760 nm pulse with an intensity of ca 10
14

 W cm
-2

. In a similar vein, the present 

chapter looks at the effect of basis set size and the number of states on the ionization rate 

of a set of linear polyenes using Klamroth’s heuristic model.   

Table 4-1 lists the linear polyenes used in the present study, along with their 

experimentally determined ionization potentials.  Also indicated in the table are the total 

number of singly excited states available for a given basis set and the maximum number 
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used in the simulations.  The excited state ionization rates, Γn, computed with equation 

(4.2) and an escape distance parameter of d = 1 bohr are shown in Figure 4-1 for ethylene, 

butadiene, hexatriene and octatetraene.  The general trend is n increases as the energies 

of the states increase, but there are large fluctuations in the value of n.  The higher 

energy states usually involve excitation to higher energy virtual orbitals, which result in 

larger values of n. However, some of the higher excited states involve excitations from 

low lying occupied orbitals to low lying virtual orbitals, yield smaller values of n.  

Larger basis sets generate more states at lower energy and more low values of n. 

Changing the distance parameter shifts these curves up or down by the appropriate factor, 

but does not change the shape of the plots.   

The ionization rate or lifetime of the excited states leads to a broadening of the 

excited state energies.  The energy can be represented by a normalized Lorentzian with a 

width of n.  Summing over all of the CIS states for a given basis set yields the density of 

states plots shown in Figure 4-2 for a distance parameter d = 1 bohr.  The blue, green and 

red curves correspond to n = 1, 2, 3 for the 6-31 n+ G(d,p) basis. The vertical dashed 

lines indicate the ionization potential and the solid vertical lines are drawn at 20 eV 

above the ionization potential.  For higher energies, the density of states converges nicely 

into a broad continuum-like feature for all three basis sets for each molecule.  Increasing 

the number of diffuse functions from n = 1 to n = 3 primarily affects the states within ca 

20 eV of the ionization potential, and corresponds to an increasing number of low-lying 

pseudo-continuum states.  For a distance parameter of d = 10 bohr (not shown), the 

widths of the states are reduced by a factor of 10 and more structure is seen in the 10 – 30 
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eV range.  As in the d = 1 bohr case, the density of states at higher energies for d = 10. is 

the same for 1, 2 and 3 sets of diffuse functions. 

 In the heuristic model, the ionization rate depends on three factors.  The 

probability amplitude and the molecular orbital energies are determined by the 

calculation, but the escape distance parameter d must be determined empirically.  The 

ionization rate n depends inversely on d. Klamroth and co-workers found the loss of 

norm of their systems reached a maximum near d = 1.  Figure 4-3 shows the loss of norm 

of the population as a function of d for the four linear polyenes with each of the 6-31 n+ 

G(d,p) basis sets using the maximum number of states listed in Table 4-1. For ethylene 

the peak in the loss of norm is near d = 1.  For the longer polyenes, the peak becomes 

broader, extending to larger values of d, corresponding to smaller values of n.   

 The trends in Figure 4-3 can be understood by using perturbation theory to 

describe the time-dependent behavior of a simple two state problem. Let the lower state 

have an energy of 0, the upper state and energy of  – i /2.  If a perturbation causes the 

states to interact, the loss of population depends on Im(1/( - i /2)) = (/(
2
+(/2)

2
) 

as well as on the magnitude of the perturbation.  The loss of population is proportional to 

 for small values of , reaches maximum for /2 = , and goes to zero for large .  

Thus, the maximum ionization rate for given state occurs when n/2 is equal to the 

excitation energy of the state.  Ethylene has relatively few states that interact with the 

ground state under the influence of the laser field, and strong ionization occurs near d = 1.  

For longer polyenes, there are more states that interact with the ground state.  Since these 

states are lower in energy for longer polyenes, smaller values of n and hence larger 
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values of d will also cause strong ionization.  Because all of the polyenes ionize strongly 

for d = 1, this is the primary value used for additional analyses. 

 Figure 4-4 shows the 7 cycle 760 nm cosine pulse and the time evolution of the 

norm of the wavefunctions for ethylene, butadiene, hexatriene and octatetraene during the 

pulse.  The norm of ethylene decreases the least, reaching ca 0.30 by the end of the pulse, 

while the norm for octatetraene decreases nearly to zero by after the maximum in the 

pulse.  The instantaneous ionization rate shown in Figure 4-4(c) can be obtained from the 

derivative of the norm with respect to time.  Alternatively, the instantaneous ionization 

rate can be calculated by multiplying the value of n for a state by its population and 

summing over all of the states.  Early in the pulse, when the intensities are low, it is 

already apparent that the ionization rate is greatest for octatetraene and least for ethylene.  

Toward the end of the pulse, the ionization rate for ethylene is still significant whereas 

the rate for octatetraene is nearly zero.  This reversal of the trend in the instantaneous 

rates is because the population of octatetraene is very small during the last few cycles of 

the pulse but the population of ethylene is still fairly large. 

 Inspection of the ionization rates for the individual states provides some insight 

into the dependence of the total ionization rate on the escape distance parameter.  

Instantaneous ionization rates for ethylene and hexatriene are shown in Figure 4-5 as a 

function of state energy and time.  As expected, the populations of the excited states and 

hence ionization rates for these states peak when the laser field peaks and the polarization 

of the electronic distribution is the greatest.  For each of the polyenes, the ionization is 

dominated by a relatively small number of excited states in the range of 0 – 20 eV above 

the IP.  There are many more states in this range that contribute only weakly to the 
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ionization but are needed to treat the polarization of the electron cloud in the simulation.  

Even for calculations of the static polarizability in the sum-over-states formalism, states 

up to 20 eV above the IP are needed to get within 3% of the correct value.   

 The contribution of an individual state to the total ionization can be obtained by 

integrating its instantaneous ionization rate over the duration of the pulse.  Figure 4-6 

compares the results for d = 1 and d = 10 bohr for ethylene and hexatriene.  For ethylene, 

the same states contribute to the total ionization d = 1 and d = 10 bohr.  The values are 

smaller for the latter but the ratios are nearly the same.  In the case of hexatriene, many 

states in the 10 – 30 eV range are involved in the ionization process for d = 1 bohr.  For d 

= 10 bohr, the distribution is shifted toward lower energies and the contributions from 

these states are larger than for d = 1.  This is in keeping with the analysis of the two state 

system discussed above.  A larger value of d yields smaller ’s.  Since the maximum 

ionization rate occurs when  = /2, lower energy states contribute more when the ’s 

are smaller.  Because hexatriene and octatetraene have more low energy states than 

ethylene and butadiene, ionization as a function of the escape distance d, shown in Figure 

4-3, is much broader for the longer polyenes. 

Figure 4-7 shows the calculated loss of norm of the TD-CIS wavefunction for each of 

the linear polyenes after a 7 cycle 760 nm cosine pulse with intensities up to 3.51×10
14

 W 

cm
-2

 (field strengths up to 0.10 au) for a distance parameter of d = 1 bohr.  The effect of 

varying the number of states used in the simulation is examined in Figure 4-7(a) for 

butadiene with the 6-31 1+ G(d,p) basis set. Compared to the results with all 957 CIS 

excited states, the norm of wavefunction after the laser pulse is well represented with as 

few as 250 states. This corresponds to including all states that are within 20 eV of the IP.  
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Using only 150 states corresponds to using all the states up to ~19.5 eV (only 10.5 eV 

above the IP); doing so neglects strong contributions toward ionization from states in the 

in the 20-30 eV range (10-20 eV above the IP).  The overall contributions from a few 

states in this 20-30 eV range can be quite large as can be seen in Figure 4-6.  Adding 

more polarization functions (e.g. 6-311++G(2df,2pd) basis) has little effect on the 

ionization rate of butadiene (not shown). Figure 4-7(b) –-- Figure 4-7(d) show the effect 

of diffuse functions on the loss of norm for the polyenes. With ca 1000 states, the results 

for butadiene and hexatriene are very similar with 1, 2 and 3 sets of diffuse functions.  

This indicates that ionization with Klamroth’s heuristic model is not as sensitive to 

diffuse functions as the optical response in the absence of ionization.
2
  For octatetraene 

some basis set effects can be seen.  At low field strengths, the ionization rate diminishes 

as the number of diffuse functions is increased.  However, it is not the presence of diffuse 

function that decreases the ionization rate, but rather the absence of higher energy states.  

With the 6-31 n+ G(d,p) basis, a choice of 800 states includes all excitations up to 24, 13 

and 9 eV above the IP for n = 1, 2 and 3 sets of diffuse functions, respectively (compare 

with Figure 1(d)).  Adding more diffuse functions increases the number of low energy 

excited states, thereby decreasing the maximum excitation energy attainable within the 

lowest 800 states.  For the 6-31 3+ basis set, the ionization rate at small field strengths is 

too low because too few high energy, rapidly ionizing states are included within the set of 

the 800 states.  Nevertheless, for Emax  0.05 au, all three basis set yield complete 

ionization of octatetraene by the 7 cycle 760 nm pulse. 

Figure 4-8 summarizes the ionization of ethylene, butadiene, hexatriene and 

octatetraene as a function of the intensity for a 7 cycle 760 nm cosine pulse.  At high 
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intensities, each of the polyenes is ionized completely by the pulse.  At lower intensities, 

the fraction ionized is largest for octatetraene and least for ethylene, as could be 

anticipated qualitatively from the trend in the ionization potentials.  Experimental 

ionization saturation intensities, Isat, have been measured for a number of saturated and 

unsaturated hydrocarbons.  Corkum and coworkers
27,28

 were able to determine Isat = 

89×10
12

 W cm
-2

 for hexatriene and Isat = 110×10
12

 W cm
-2

 for ethylene.  Our calculations 

yield strong ionizations in the right order of magnitude of intensities: 10
12

 to 10
14

 W cm
-2

.  

However, it is not possible to compare the computed ionization rates directly with 

experiment. The distance parameter is empirical and has a large effect on the ionization 

rate.  Only one orientation was used in the calculation rather than averaging over all 

orientations.  The longer polyenes can have several conformations, but the calculations 

were only for the all-trans conformation.  Other variables such as pulse length and shape 

also affect the degree of ionization.   

Some of the difficulties associated with comparing the calculations and experiment 

can be circumvented by examining the ratios of intensities.  For our 7 cycle cosine pulse, 

the field strengths that cause a 50% decrease in the population are 0.026 au for ethylene, 

0.020 au for butadiene, 0.017 au for hexatriene and 0.015 au for octatetraene with the 6-

31 1+ G(d,p) basis set and a distance parameter of d = 1 bohr.  The ratios of intensities 

relative to ethylene are 0.61 for butadiene, 0.44 for hexatriene and 0.35 for octatetraene.  

Similar ratios are found for 75% decrease in the population and for 2 and 3 sets of diffuse 

functions (except for octatetraene, which would require more states for the TD-CIS 

simulation with 2 and 3 sets of diffuse functions, as noted above).  However, the ratio for 

hexatriene to ethylene is significantly smaller than the ratio of 0.81 for the experimental 
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Isat values.  In the present calculations, the molecules are aligned to the laser field, 

possibly increasing the difference in the ionization rates. 

For rare gas atoms and ions, ADK theory
29,30

 provides a good description of the 

dependence of the ionization rate on the ionization potential.  It is known, however, that 

in certain cases ADK theory fails to predict correct saturation intensities for laser pulses 

at 800nm and shorter wavelengths because of interference effects.
31

  To circumvent these 

and related limitations of ADK, we compare only the ratios of the ionization rates.  The 

ratios of ionization rates relative to ethylene computed by ADK theory are 0.59 for 

butadiene, 0.45 for hexatriene and 0.34 for octatetraene when integrated over the same 

pulse shape.  The ionization rates obtained from the TD-CIS simulations compare very 

well with these ratios, indicating that the heuristic ionization model recovers the correct 

trend in dependence of the ionization rates on the ionization potentials.  However, the 

TD-CIS simulations with the heuristic ionization model predict a much slower rise in the 

fraction ionized as the intensity increases.  The heuristic model also leads to a much 

higher ionization rate at low intensities than expected from ADK.  This is likely due to 

the fact that the heuristic approach assumes an above-threshold model for ionization 

whereas ADK is based on tunneling.  The heuristic model for ionization in TD-CI 

simulations depends on only the energies of the virtual orbitals.  A more sophisticated 

model would also take into account the shape of the orbitals and the direction of the field. 

4.4 Conclusions 

 The heuristic approach developed by Klamroth and co-workers provides a 

satisfactory method for modeling the trends in ionization rates of short linear polyenes.  
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The ionization rate is sensitive to the escape distance parameter, and a value of d = 1 bohr 

was found suitable for ethylene, butadiene, hexatriene and octatetraene. In contrast to 

earlier work on modeling the optical response of polyenes to an intense pulse, ionization 

with Klamroth’s model is less sensitive to the basis set size. The 6-31G(d,p) basis set 

augmented with a single set of diffuse functions on the carbon atoms yields results 

similar to calculations with three sets of diffuse functions. TD-CIS calculations also 

depend on the number of excited states used in the simulation.  For the pulse parameters 

considered, consistent results for the ionization of linear polyenes were found using all 

states up to ca 20 eV above the IP.  Although this method does not yield ionization rates 

that can be compared directly with experiment, ratios of the calculated ionization rates 

are in good agreement with the ratios predicted by the ADK model.    
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Table 4-1. Linear polyenes used in the current study, their experimentally determined 

ionization potentials, total number of CIS excited states, and maximum 

number of states used in the current study. 

 Experimental 

ionization 

potential 

(eV) 

Total number of 

CIS states for the       

6-31 n+ G(d,p) 

basis 

Maximum 

number of 

excited states 

used for 

6-31 n+ G(d,p) 

n=1 n=2 n=3 n=1 n=2 n=3 

ethylene 10.5138
32

 288 336 378 288 336 378 

butadiene 9.072
32

 957 1111 1254 957 999 999 

hexatriene 8.42
33

 2016 2320 2592 999 999 999 

octatetraene 7.79
34

 3465 3969 4431 800 800 800 
 

  



113 

(a) (b)  

(c) (d)  

 

Figure 4-1. Ionization rates for the excited states of (a) ethylene, (b) butadiene, (c) 

hexatriene, and (d) octatetraene, using the 6-31 1+ G(d,p) (blue), 6-31 2+ 

G(d,p) (red), and 6-31 3+ G(d,p) (green) basis sets and a distance 

parameter of d = 1 bohr in Equation (4-2). 
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(a) (b)  

(c) (d)  

 

Figure 4-2. Density of states for (a) ethylene, (b) butadiene, (c) hexatriene, (d) 

octatetraene, found using the 6-31 1+ G(d,p) (blue), 6-31 2+ G(d,p) (red), 

and 6-31 3+ G(d,p) (green) basis sets, all CIS excited states, and a distance 

parameter d = 1 bohr.  
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(a) (b)  

(c) (d)  

 

 

Figure 4-3. Loss of norm as a function of the distance parameter d (in bohr) for (a) 

ethylene, (b) butadiene, (c) hexatriene, and (d) octatetraene, using the 6-31 

1+ G(d,p) (blue), 6-31 2+ G(d,p) (red), and 6-31 3+ G(d,p) (green) basis 

sets for Emax = 0.05 au.  
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(a) (b)  

(c)  

Figure 4-4. (a) Electric field for a seven cycle 760 nm cosine pulse with intensity of 

0.88×10
14

 W cm
-2

 (Emax = 0.05 au), (b) time evolution of the wavefunction 

norm during the pulse and (c) instantaneous ionization rate for ethylene 

(blue), butadiene (red), hexatriene (green) and octatetraene (black) with a 

distance parameter d = 1 bohr using the 6-31 1+ G(d,p) basis set. 
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(a) (b)  

Figure 4-5. Instantaneous ionization rates as a function of state number and time for 

(a) ethylene and (b) hexatriene.  The simulations used a 7 cycle 760 nm 

cosine pulse with Emax = 0.05 atomic units, and employed a distance 

parameter d = 1 bohr, 288 excited states for ethylene and 999 excited 

states for hexatriene computed with the 6-31 1+ G(d,p) basis.  
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(a) (b)  

(c) (d)  

 

Figure 4-6. Contributions of individual states to the loss of norm for (a) ethylene with 

escape distance parameter d =1 bohr, (b) hexatriene with d = 1 bohr, (c) 

ethylene with d = 10 bohr and (d) hexatriene with d = 10 bohr. The 

simulations used a 7 cycle 760 nm cosine pulse with Emax = 0.05 atomic 

units, and employed 288 excited states for ethylene and 999 excited states 

for hexatriene computed with the 6-31 1+ G(d,p) basis.  
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(a) (b)  

(c) (d)  

 

Figure 4-7.  Effect of basis set size and number of states on the wavefunction norm 

after the pulse as a function of field strength for (a) butadiene with the 6-

31 1+ G(d,p) basis set and  150 states (blue), 250 states (red), and all 957 

CIS excited states (green), (b) butadiene, (c) hexatriene and (d) 

octatetraene with 6-31 1+ G(d,p), 6-31 2+ G(d,p) and 6-31 3+ G(d,p) basis 

sets (blue, red and green, respectively) with d = 1 bohr. 
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Figure 4-8. Fraction of population ionized by the pulse as a function of the intensity 

(W/cm
2
) for ethylene (blue), butadiene (red), hexatriene (green), 

octatetraene (black) calculated using the 6-31 1+ G(d,p) basis set and d = 

1 bohr. 
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5.1 Introduction 

 The transfer of chirality from an asymmetric ligand to a metal center has been an 

important and long-standing principle of coordination chemistry. Due to their ability to 

create an asymmetric environment around the metal center, chiral ligands have been used 

extensively in asymmetric synthesis and catalysis, as well as supramolecular chemistry.  

The ability to predict and control the coordination geometry of a ligand when bound to a 

metal center is certainly an important aspect of this chemistry, because the geometry can 

dictate the shape of the molecule and the asymmetric environment around the metal 

center.
1
  Chirality can be introduced into a ligand by using building blocks that contain 

planar chiral or stereogenic centers.  Of the various building blocks available, trans-1,2- 

diaminocyclohexane is often used as a key chiral constituent in asymmetric ligands. 
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Thus, this important chiral diamine can be considered a privileged scaffold for ligand 

design.   

 The coordination chemistry of nitrogen-rich pentadentate ligands has received 

much attention (Figure 5-1). Pentadentate ligands display the unique ability to coordinate 

to an octahedral metal center with five donors, while leaving the sixth position open for 

binding to an additional group. This special binding mode has led the way to a variety of 

interesting reactivities not easily accessed by other ligand types. In particular, these 

ligands have demonstrated the ability to stabilize high-valent metal centers
2,3

 and block 

bimolecular decay processes of reactive intermediates observed when using ligands of 

lower denticity. Also important has been their ability to participate in atom- or group-

transfer reactions.
4
  Groups found in the sixth position of such complexes have included 

oxo,
5-9

 hydroperoxo,
10-12

 azide,
13

 imidio,
14

 nitrosyl,
15

 nitridio,
16

 cyanide,
17

 and halogens.
17

 

Despite such attention, the element of chirality has been noticeably absent in these 

ligands, with only a few examples of chiral pentadentate ligands reported that contain 

similar nitrogen-rich donor sets.
18-24

    

 Considering there have been few reported examples of chiral pentadentate 

ligands, the Kodanko group at Wayne State University undertook studies to define new 

ligand sets of this type. To initiate their studies, they chose to merge the privileged 

scaffold trans-1,2-diaminocyclohexane with the general structure of the R-TPEN class of 

pentadentate ligands (Figure 5-1). In this process the ethyl bridge between the two basic 

amines of the parent Bn-TPEN was replaced with a cyclohexyl linker yielding Bn-CDPy3 

(Figure 5-2). While seemingly straightforward, the new cyclohexane motif added 

complexity and new questions surrounding the coordination chemistry of the chiral 
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ligand. By differentiating the amines of the diaminocyclohexane backbone, the C2 

symmetry of the ligand is destroyed, creating a C1 symmetric ligand in its place. This 

lowering of symmetry creates the opportunity for the ligand to access more coordination 

modes than possible for tetra- or hexadentate ligands derived from trans-1,2-

diaminocyclohexane which carry identical donors on the two amine centers.
25-28

 

Furthermore, the element of chirality conferred by the cyclohexane linker would create 

the possibility for additional stereoisomeric coordination modes, that is, modes that were 

equivalent or enantiomeric in the case of the R-TPEN ligands would become 

diastereomeric in the case of the new chiral ligand. of the Kodanko group has 

characterized the complex [Co(Bn-CD-Py4)Cl]Cl2
29

 and report that a single coordination 

geometry is preferred from five possible modes for transition metal complexes derived 

from the chiral pentadentate ligand Bn-CDPy3.  Our theoretical studies support 

experimental observations and help shed light upon the origin of coordination control. 

5.2 Computational Methods 

 All five isomers of the cobalt-, zinc- and iron-containing structures where fully 

optimized using the TPSS
30

 pure functional with an all electron cc-pVTZ
31-35

 basis set on 

the ligands and the metals.  Equilibrium geometries were confirmed using vibrational 

frequency analysis.  For comparison, optimizations where also carried out with the 

B3LYP hybrid functional.
36-38

  Single point calculations were performed on the optimized 

structure of the ligand without the metal halide using the TPSS pure density functional 

with the cc-pVTZ basis set.  NBO
39

 analysis was used to look at the nature of the 

molecular orbitals of the calculated structures. NMR calculations were performed using 

the gauge-independent atomic orbital (GIAO) method
40-43

 with the TPSS functionals and 
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the cc-pVTZ basis set.  The reference in the NMR spectrum was tetramethylsilane (TMS) 

calculated using the same functional and basis set.  Calculations of the UV-vis spectra 

utilized time-dependent density functional theory (TD-DFT)
44-50

 with the long-range 

corrected LC-ωPBE
51-54

 functional and the cc-pVTZ basis set.  All calculations were 

performed using the development version of the Gaussian software suite.   

5.3 Computational Results 

 As shown in Figure 5-3, five isomers can be constructed for M(Bn-CDPy3)Cl.  

The calculated relative energies are summarized in Table 5-1 for M = Co(III), Fe(II) and 

Zn(II). Results for the B3LYP calculations are comparable.  For all of the complexes 

considered, the calculations predict isomer C to be the lowest energy, in good agreement 

with the X-ray crystallographic data for Co(III) and Fe(II) complexes and the NMR data 

for the Zn(II) complex.  The metal-ligand bond lengths and angles compare very well 

with the available experimental structural data.  For isomer C the RMSD for the heavy 

atoms in the crystal structure versus calculated structure is 0.182 Å for the Co(III) 

complex and 0.139 Å for the Fe(II) complex  The bond lengths for the d
6
 Co(III) complex 

are 0.2 – 0.3 Å shorter than for the Fe(II) and the Zn(II) complexes.  This is in keeping 

with the fact that the dz2 and dx2-y2 orbitals are unoccupied in the low spin d
6
 Co(III) 

complex, but are singly and doubly occupied in the high spin d
5
 Fe(II) complex and the 

d
10

 Zn(II) complex.  In three of the five isomers of the M(Bn-CDPy3)Cl complexes, the 

pyridyl donors are arranged meridionally (isomers A, B and C), and two are facial 

(isomers D and E).  Isomer C is calculated to be the most stable.  If it were not for the 

cyclohexane ring, isomer A would be the mirror image of isomer C and is the next most 

stable isomer. For each of the metals considered, isomer B is ca. 8 kcal/mol less stable 
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than C.  In B, the two pyridyl rings are trans to each other and are nearly coplanar, 

whereas none of the pyridyl ring in isomers A and C lie in the same plane.  The two facial 

isomers, D and E, are 10 – 16 kcal/mol less stable than C.  Isomers D and E have the two 

pyridyl rings coplanar and cis to each other. 

 

 Both steric ligand distortion and ligand-metal binding energies contribute to the 

energy differences between the various isomers.  The ligand distortion contributions are 

easily factored out by removing the metal chloride from the complex and computing the 

energy of the ligand frozen at the geometry of the complex.  As shown in Table 5-1, the 

ligand of isomer C has the lowest distortion energy for each metal considered.  Because 

of the shorter metal ligand bond distances, the ligand in the Co(III) complex C is 20 

kcal/mol more strained than the ligand in the corresponding Fe and Zn complexes.  For a 

given metal, the ligand of isomer A has the next lowest distortion energy, and those for 

the remaining isomers are 3-6 kcal/mol greater than for isomer C.  The distortion energies 

of the ligands in the facial isomers D and E are not significantly higher than for the 

meridinal isomers A-C. 

 If the difference in the strain energy is subtracted from the relative energy of the 

isomers, one is left with differences in the electronic contribution arising from the metal-

ligand interactions.  As indicated in Table 5-1, the electronic contribution for the mer 

isomers A - C is 5 – 10 kcal/mol more stabilizing than for the fac isomers, D and E.  

There is a delicate balance between the numerous factors in the electronic contribution, 

and it is not possible to single out one dominant term either by looking at the NBO 

analysis or by examining the geometric parameters.  However, inspection of the 

structures provides evidence for the trans effect
55-57

 and for interactions of the metal-
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ligand bonds with  system of the pyridyl rings.  For example, metal-pyridyl bonds trans 

to an amine nitrogen in isomers A-C are always shorter than the metal-pyridyl bonds cis 

to the amine (see Table 5-2).  The Fe-N and Zn-N bonds trans to Cl are longer than the 

corresponding bonds cis to Cl (for low spin d
6
 Co(III), other factors contribute and the 

trans lengthening by Cl is not evident).  Interactions of the pyridyl  orbitals with the 

metal-ligand anti-bonding orbitals are most clearly seen in the fac isomers. The M-N 

bonds aligned with the  orbital of the pyridyl trans to the Cl (e.g. R(Zn-N4) 2.215 Å and 

R(Zn-N2) 2.286 Å for Zn isomer E) are longer than the M-N bonds perpendicular to the 

 orbital ( R(Zn-N5) 2.165 Å and R(Zn-N1) 2.247 Å, respectively).   

 Calculation of the excited states for isomer C of [Co(Bn-CDPy3)Cl]
2+

 yields a 

weak transition at 532 nm comparable to the weak absorption observed experimentally at 

550 nm.  The longest wavelength transitions calculated for the other meridinal isomers 

are in the same region (541 and 535 nm for A and B, resp.); the transitions for the facial 

isomers were at shorter wavelengths (490 and 505 nm for D and E, resp.).  Similar 

agreement is found for the iron complex: isomer C of [Fe(Bn-CDPy3)Cl]
2+

 has a 

transition at 389 nm compared to the observed transition at 413 nm.

 The 
1
H NMR spectra for [Co(Bn-CDPy3)Cl]

2+
 and [Zn(Bn-CDPy3)Cl]

+
 were 

calculated for comparison with the experimental data.  As shown in Figure 5-4, there is 

an excellent correlation between the calculated and observed chemical shifts for the three 

protons at the 2-position of the pyridine rings.  For each complex, two of the resonances 

are downfield, while the third resonance is shifted upfield by approximately 1.5 ppm.  

The upfield shift is due to the shielding effect of the pyridyl ring situated directly below 

the 2-pyridyl proton as shown in Figure 5-5. A similar effect is seen in calculations of the 
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iron complex, but is complicated by a very large paramagnetic contribution.  Other 

isomers of the cobalt, zinc and iron complexes also show a large upfield shift for 2-

pyridyl protons that are directly above the  system of a pyridyl ring 

5.4 Discussion 

 The theoretical data presented here indicates that the chiral pentadentate ligand 

Bn-CDPy3 displays a significant thermodynamic preference for adopting the same 

coordination geometry in metal complexes of the general formula [M(Bn-CDPy3)Cl], 

regardless of the metal ion.  This observation is noteworthy because five different 

coordination geometries are possible for the chiral ligand complexes of this formula.  In 

the cases of the Co(III) and Fe(II) complexes, X-ray crystallographic data were used to 

determine the structure of the complexes.  For the Zn(II) complex, 1D and 2D NMR data 

were consistent with the assigned structure.  For the Fe(II), Co(III) and Zn(II) complexes, 

the calculations agreed well with the experimental data, including calculations that 

produced the same pattern of two downfield and one upfield resonances in the 
1
H NMR 

spectrum for the 2-pyridyl C-H groups of the Co(III) and Zn(II) complexes.  

 In part, the origin of conformation control can be understood by contrasting the 

data for Bn-CDPy3 complexes with crystallographic data of the related complexes 

derived from the achiral ligand Bn-TPEN.  Compounds of the general formula 

[Fe(II)(Bn-TPEN)X] all crystallize with the same conformation (Figure 5-6, X = Cl), 

having the X group trans to the basic amine donor N(1), and the three pyridyl donors 

N(3)-N(5) adopting the mer geometry. In addition, two pyridine N-donors, N(3) and 

N(4), adopt a coplanar conformation of their rings with respect to the Fe-X bond, while 

the third donor ring containing N(5) is perpendicular to that axis. Therefore, the fact that 
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Bn-CDPy3 would prefer to adopt the same conformation upon coordination to a metal 

ion is not a surprise. On the basis of this analysis, three of the conformers shown in 

Figure 5-3 (B, D and E) can be eliminated from consideration as the most stable because 

they do not possess an X group trans to the basic amine donor N(1). Only two complexes 

with Bn-CDPy3, conformers A and C, adopt this preferred geometry. In the case of the 

Bn-TPEN complexes, the energetic difference between A and C is not an issue, because 

these conformers are enantiomers, therefore they are isoenergetic. However, with the 

chiral ligand Bn-CDPy3, A and C become diastereomeric, therefore they can exist at 

different relative energies. It should be noted that the same conformational preference 

was assumed for the cation [Fe
IV

(O)(Bn-TPEN)]
2+

 based on paramagnetic 
1
H NMR data 

which indicated the same pattern of two downfield and one upfield shifts for the 2-

pyridyl C-H resonances
5
 and on DFT calculations of conformational energies for 

different isomers.
5,58

  

What is interesting in the case of Bn-CDPy3 is what distinguishes conformations A 

from C. Both have same features, an X group trans to N(1) and a mer geometry of three 

pyridyl N-donors, with two coplanar and one perpendicular to the M-X axis. Yet, 

conformation C is preferred over A by greater than 2 kcal/mol in the Zn(II), Fe(II), and 

Co(III) complexes. Our calculations have indicated that the origins of energetic control 

over geometry arise from ligand strain energies in addition to the electronic preference in 

the interaction with the metal (see Ligand-Metal Interactions, Table 5-1). Inspection of 

the calculated structures indicates the ligand preference may be due to interactions 

between the cyclohexane ring and the groups surrounding the metal center. Namely, the 

calculations show 2.65 kcal/mol stabilization for the ligand in conformation C relative to 
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A when the metal ion is removed from the Co(III) complex. Upon inspection of the metal 

complexes, there are no severe steric interactions, such as eclipsing interactions, that are 

readily apparent which are present in A and not in C that would explain why C is 

preferred. However, superimposing the structures shown in Figure 5-7 gives some insight 

into the origin of stereocontrol. In order to visualize the overlap between the two 

structures in the most effective manner, the enantiomer of structure A (ent-A) was 

generated to create the same stereochemistry around the metal center, while the 

stereochemistry of the diaminocyclohexane unit was inverted. The metal atom, the five 

nitrogens and the chloride were superimposed to produce the overlapped structures.  As 

shown in Figure 5-7, atoms surrounding the metal center exhibit good overlap, with the 

exception of the top pyridyl ring, which rotates slightly from structure C to ent-A.  It is 

clear in C that the methylene hydrogen atom can occupy the cavity directly between two 

axial hydrogen atoms as shown in Figure 5-7. In ent-A, because the cyclohexane ring has 

undergone a ring flip, an axial hydrogen atom occupies this space, so in order to avoid an 

unfavorable non-bonding interaction, the 2-pyridyl methylene group rotates by 16° and 

bends by 18° relative to the Co-N-N-N plane in order to move away from the C-H group. 

This rotation also affects the bonding between the pyridine ring and the metal center 

lengthening the distance by 0.018Å. These interactions may explain both the steric and 

electronic contributions to the difference in energy between structures A and C in the 

Co(III)
 
complexes.  Similar interactions are found in the Zn(II) and Fe(II) complexes.  
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5.5 Conclusions 

 In conclusion we have described a computational study of the chiral ligand (R,R)-

Bn-CDPy3 and the characterization of zinc, iron, and cobalt complexes derived from the 

ligand. Experimental studies of these complexes revealed that a single coordination 

geometry is favored, by at least several kcal/mol, in metal complexes of Bn-CDPy3 out 

of five possible isomers.  Theoretical data, which were in good agreement with 

experimental data, indicated that the preference for creating a single coordination 

geometry was due to both steric and electronic effects. Analysis of the calculated 

structures revealed some of the key interactions that enforced a strong stereoisomeric 

preference. Although the introduction of chirality into the pentadentate ligand certainly 

introduced more complexity in the coordination chemistry of the ligand relative to achiral 

ligands of this class, this work proves that control over geometry can be enforced and 

understood.  A good understanding of these factors will pave the way for a selective 

synthesis of enantiopure complexes for applications in asymmetric catalysis.  
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Table 5-1. Relative energies of the five isomers of [Co(Bn-CDPy3)Cl]
2+

, [Zn(Bn-

CDPy3)Cl]
+
,
 
and [Fe(Bn-CDPy3)Cl]

+ 
in kcal/mol. 

isomer entire complex
a
 ligand only

b
 ligand-metal interaction

c
 

C    

Co 0.00 0.00 0.00 

Zn 0.00 0.00 0.00 

Fe 0.00 0.00 0.00 

A    

Co 7.12 2.65 4.47 

Zn 2.49 0.86 1.63 

Fe 2.79 0.96 1.83 

B    

Co 7.79 3.79 4.00 

Zn 7.76 3.25 4.51 

Fe 8.34 3.26 5.08 

D    

Co 15.73 5.70 10.04 

Zn 12.44 2.73 9.71 

Fe 13.12 3.29 9.83 

E    

Co 13.45 3.15 10.31 

Zn 12.44 2.73 9.71 

Fe 12.41 2.79 9.62 
a
Energy of the M(Bn-CDPy3)Cl complex relative to isomer C. 

b
Single Point energies of the complexes with the metal chloride removed, relative to 

isomer C; these energies reflect the differences in the ligand distortion energies in the 

various isomers relative to isomer C; the ligand distortion energies for isomer C are 20.64 

and 1.08 kcal/mol greater for the Co and Fe complexes than for the Zn complex. 

c
Entire complex energies minus the ligand-only energies; these energies reflect the 

differences in the electronic interaction between the ligands and the metal chlorides 

  



140 

 

Table 5-2. Comparison of X-ray crystallographic Data and Calculated Structures for 

the [Co(Bn-CDPy3)Cl]
2+

, [Zn(Bn-CDPy3)Cl]
+
,
 
and [Fe(Bn-CDPy3)Cl]

+ 

Cations
a
  

 crystallographic data isomer C isomer A isomer B isomer D isomer E 

Co       

M—Cl 2.241(1) 2.244 2.243 2.254 2.248 2.279 

M—N1 1.962(2) 1.989 1.999 1.971 1.976 1.987 

M—N2 2.015(2) 2.044 2.049 2.056 2.053 2.036 

M—N3 1.941(2) 1.966 1.989 1.961 1.983 1.973 

M—N4 1.952(2) 1.971 1.957 1.983 1.996 2.010 

M—N5 1.945(2) 1.970 2.007 1.954 1.949 1.988 

Zn       

M—Cl  2.283 2.276 2.290 2.297 2.362 

M—N1  2.331 2.341 2.217 2.216 2.247 

M—N2  2.269 2.252 2.455 2.314 2.286 

M—N3  2.175 2.228 2.227 2.242 2.268 

M—N4  2.220 2.141 2.275 2.419 2.215 

M—N5  2.242 2.361 2.109 2.125 2.165 

Fe       

M—Cl 2.339(1) 2.269 2.267 2.270 2.282 2.340 

M—N1 2.236(1) 2.307 2.319 2.245 2.246 2.257 

M—N2 2.268(1) 2.308 2.298 2.435 2.311 2.304 

M—N3 2.163(1) 2.144 2.213 2.218 2.260 2.240 

M—N4 2.202(1) 2.184 2.124 2.233 2.316 2.213 

M—N5 2.182(1) 2.222 2.284 2.104 2.145 2.187 
a
Bond lengths in Å and bond angles in deg; for atom numbering see Figure 5-3. For 

isomer C, the RMSD for the heavy atoms in the crystal structure versus calculated 

structure is 0.182 Å for [Co(Bn-CDPy3)Cl]
2+

 and 0.139 Å for [Fe(Bn-CDPy3)Cl]
+
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Figure 5-1. Known pentadentate ligands containing multiple N-donors and their 

derivatives 
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Figure 5-2. Structure of (R,R)-Bn-CDPy3 (1), a chiral pentadentate ligand. 

 

 

Figure 5-3. Isomers of M(Bn-CDPy3)Cl determined from calculations: A, B, and C 

display mer orientations of the pyridyl donors; D and E are fac. 
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Figure 5-4. Comparison of calculated and observed chemical shifts of the three 

protons in the 2-position on the pyridyl rings in isomer C of [Co(Bn-

CDPy3)Cl]
2+

 and [Zn(Bn-CDPy3)Cl]
+
 (R

2
 = 0.992). 
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Figure 5-5. Observed vs. calculated (in parentheses) chemical shifts for the 2-pyridyl 

C-H protons (shown in white, other protons omitted for clarity) of (a) 

[Co(Bn-CDPy3)Cl]
+
 and (b) [Zn(Bn-CDPy3)Cl]

+
. 
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Figure 5-6. Structure of the ligand Bn-TPEN and model of the cation [Fe(Bn-

TPEN)Cl]
+
 generated using X-ray crystallographic data from ref. 10. The 

structure of the cation is similar to  [Fe (Bn-CDPy3)Cl]
+
, where the Cl 

group is in a trans configuration relative to N(1), and the three pyridyl N-

donors N(3)-N(5) adopt a mer configuration, with two pyridine N-donors 

residing in a coplanar conformation with respect to the Fe-Cl bond, while 

the third ring is perpendicular to that axis. 
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Figure 5-7. Calculated structures of the dication [Co(Bn-CDPy3)Cl]
2+

 C, ent-A (see 

Figure 5-3), and an overlap of the two structures that illustrates the subtle 

differences between the two stereoisomers.  All hydrogens except those 

creating key interactions are omitted for clarity. In the case of C, a 

methylene hydrogen can occupy a position directly above the cyclohexane 

ring and between two axial hydrogen atoms, whereas with ent-A, the 

pyridyl substituent rotates to avoid an unfavorable interaction with a closer 

axial hydrogen atom. 
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Chapter 6  

A Simple Model in Which Interligand Interactions Control the 

Cu—Cu Distance in Dinuclear Cu(II) Paddlewheel Complexes 

Mahesh C. Karunarathne, Richard L. Lord, Jason A. Sonk, Mary Jane Heeg, 

H. Bernhard Schlegel, and Charles H. Winter* 

Department of Chemistry, Wayne State University, Detroit, Michigan 48202 

6.1 Introduction 

 Antiferromagnetic coupling occurs when otherwise unpaired electrons align their 

spins in opposite directions.  One of the earliest examples of antiferromagnetic coupling 

in a dimer compound was found in a dicopper tetraacetate bridged structure similar to the 

one shown to the right of Figure 6-1.  When the dicopper tetraacetate structure was first 

discovered, the nature of the electronic structure had been the subject of considerable 

debate amongst chemists.  The electronic structure is now very well understood
1
 and the 

distance between the two metal centers (around 2.6 Å) is incompatible with direct 

bonding.  The Winter group at Wayne State University has isolated an isoelectronic 

dicopper (II) paddlewheel complex employing amidates instead of acetates, and it 

exhibits a copper-copper separation of 2.4 Å, significantly shorter than has previously 

been reported.  This could mean the presence of a copper-copper bond, which would 

challenge the understanding of the electronic structure of similar structures.  This chapter 

sets out to identify the origin of this contracted Cu—Cu separation. 
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 Dinuclear transition metal complexes of the formula M2L4, where L is a 

monoanionic, bidentate ligand, have been studied extensively due to their short M-M 

distances, variable M-M bond orders, interesting paddlewheel structures, and for their 

spectroscopic properties.
2
  While the presence of M—M bonds in M2L4 complexes is 

well established for many transition metals, the situation is less clear for Cu(II) 

complexes of the formula Cu2L4.  The structures of hundreds of Cu2L4 complexes have 

been determined by X-ray crystallography.
3
  Carboxylate-based complexes of the 

formula Cu2(O2CR)4Ln (L = neutral donor, n = 0-2) are the most numerous, and generally 

have Cu-Cu distances of 2.55-2.70 Å.
2
  Many of these complexes are diamagnetic, or 

nearly so, which could originate through the formation of a Cu-Cu single bond between 

the two d
9
 centers.  However, an early theoretical study predicted that there is no Cu—Cu 

bond in Cu2(O2CCH3)4, and suggested that the antiferromagnetic coupling of the two d
9
 

metal centers arises from through-ligand coupling.
1
  Several dinuclear or trinuclear Cu(II) 

complexes with much shorter Cu—Cu distances have been reported, and conflicting 

proposals have been made regarding the presence or absence of Cu-Cu bonds in these 

systems.
4,5

  For example, Cu2(PhNNNPh)4 has a Cu—Cu separation of 2.441(2) Å, which 

is the shortest such distance in any Cu2L4 complex reported in previous studies.
4
  The 

presence of a Cu—Cu bond in Cu2(PhNNNPh)4 was proposed, in view of the short Cu—

Cu distance.  A later theoretical study of Cu2(HNNNH)4 predicted a relatively short Cu—

Cu distance of 2.484 Å, but clearly showed that no Cu—Cu bond exists.
5
  The trinuclear 

Cu(II) complex [Cu3(dpa)4][BF4]2 (dpa = di-2-pyridylamido) has very short Cu—Cu 

separations of 2.4029(8) and 2.4035(8) Å, whereas various solvated forms of 

Cu3(dpa)4Cl2 had Cu—Cu separations of 2.471(1) to 2.493(2) Å.
6
  Magnetic studies 
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indicated that [Cu3(dpa)4][BF4]2 and Cu3(dpa)4Cl2 have doublet ground states at low 

temperatures, but the energy difference between the doublet ground state and quartet 

excited state is larger for [Cu3(dpa)4][BF4]2 than for Cu3(dpa)4Cl2.  Since the through-

ligand path length is nearly identical for both complexes, it was not possible to rule out a 

direct Cu—Cu interaction contribution to the antiferromagnetic coupling in 

[Cu3(dpa)4][BF4]2.
6 

 The Winter group at Wayne State University is interested in the development of 

new chemical precursors for the growth of transition metal thin films using atomic layer 

deposition (ALD).
7
  As part of these efforts, they have investigated the synthesis of 

copper(II) complexes containing amidate ligands. This chapter covers theoretical studies 

of the new Cu2L4 paddlewheel complex, Cu2(MeCONiPr)4 (1), which has the shortest 

Cu(II)—Cu(II) distance reported to date in a Cu2L4 complex. The nature of the Cu—Cu 

interaction has been probed by our calculations, and a model is proposed to account for 

the variable Cu(II)—Cu(II) distances that are observed in Cu2L4 systems 

6.2 Computational Methods 

 Electronic structure calculations were carried out using density functional theory 

(DFT)
8
 as implemented in the development version of Gaussian.

9
  Geometry 

optimizations were performed at the B3LYP/SDD/6-31+G(d,p)
10-14

 level of theory with 

no symmetry constraints.  All optimized structures were confirmed to have stable 

wavefunctions,
15,16

 and to be local minima by analyzing the harmonic frequencies.
17

  

Attempts were made to optimize a closed-shell singlet species that would correspond to 

two d
9
-Cu(II) centers formally σ-bonded, but each had a wavefunction instability 

indicative of antiferromagnetically (AF) coupled metals.
18

  Therefore, we also optimized 
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triplet species (one unpaired e– at each d
9
-Cu(II) center) for comparison.  The AF 

coupled singlets were computed to have a lower energy for all six species.  Detailed 

energetics and structures of all species, and both corresponding orbital plots and J values 

for the AF coupled singlets are included in Table 6-1 and Table 6-2. 

6.3 Results and Discussion 

 To address the issue of a Cu—Cu bond in 1, we explored Cu2L4 complexes where 

L is bidentate formate (O-CH-O), formamidate (O-CH-NH), formamidinate (HN-CH-NH), 

acetate (O-CMe-O), N-methylacetamidate (O-CMe-NMe), or N,N’-dimethylacetamidinate 

(MeN-CMe-NMe).  Attempts to locate a closed-shell, singlet species with σ-bonded d
9
-

Cu(II) centers were unsuccessful due to wavefunction instabilities.  In every case, the 

lowest energy singlet is instead best described as having two d
9
 Cu(II) centers that are 

weakly antiferromagnetically coupled to each other through their dx²-y² orbitals (Cu—Cu 

defines the z-axis).  This finding is consistent with previous calculations for Cu2(OAc)4 

and Cu2(HNNNH)4, albeit with much longer Cu—Cu separations than 1.
1,5

  The 

optimized structure for O-CMe-NMe, which replaces the experimental iPr groups in 1 

with more computationally tractable Me substituents, is slightly longer than the Cu—Cu 

distance in 1 (2.4148(3) versus 2.440 Å for O-CMe-NMe) and matches the metal-ligand 

interactions well, as summarized in Table 6-3.  For the methylated ligand complexes, the 

Cu—Cu separations decrease by 0.08 Å in going from O-CMe-O (2.504 Å) to MeN-CMe-

NMe (2.416 Å) (Table 6-3, rows 2-4).  The predicted Cu—Cu separation in the MeN-

CMe-NMe structure is 0.024 Å shorter than the predicted value for O-CMe-NMe complex, 

and therefore may be an interesting target for future experimental studies.  However, 

Cu(II) ion is reduced upon treatment with lithium amidinates to afford Cu(I) amidinate 
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complexes,
19

 and Cu(II) amidinate paddlewheel complexes may be experimentally 

difficult to access.  We originally hypothesized that the Cu-Cu separation was regulated 

by different extents of charge-transfer to the Cu(II) centers.  Because the electronegativity 

of the ligand contact atoms should matter most in this case, we tested small models where 

the Me groups were replaced by H atoms to ensure the trend is consistent (Table 6-3, 

columns 5-7).  To our surprise the Cu-Cu separation ordering reverses, with O-CH-O 

having the shortest (2.54 Å) and HN-CH-NH having the longest (2.60 Å) Cu–Cu 

separation.  Thus, the nature of the ligand plays a critical and non-trivial role in 

controlling the distance between the Cu centers. 

 One structural feature of the ligands stood out: the ligand twist angle as defined 

by the dihedral Cu-X-C-R (θ) where X is the midpoint between the two Cu centers, C is 

the backbone of a ligand, and R is either O or NR’ (Figure 6-3).  Dihedral angles of 0-16° 

were computed, with increases in twisting occurring when going from O → N and H → 

Me in the ligand.  Because the metals are weakly coupled in all of these systems, it is 

plausible that ligand-metal and ligand-ligand interactions dictate the Cu–Cu separation.  

For metal-ligand interactions, the intraligand contact distances R-R (O-O, O-N and N-N) 

are tabulated in Table 6-3.  This separation increases when replacing O with NR groups 

(elongation of ~0.05 Å in each series) which mirrors the Cu—Cu distance trend in the all-

H models.  However, the Cu—Cu distances decrease by 0.083 Å in the methylated series 

upon changing from O → N.  Steric interactions of two types must be considered: 

interligand π-orbital repulsions and intraligand steric crowding between the C/N 

substituents.  The latter are unlikely to matter in our computational models (Figure 6-4), 

but Me/iPr crowding in 1 may reduce the Cu-Cu distance slightly relative to O-CMe-NMe 
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by forcing the N and O atom lone pairs that are donated to the Cu ions toward each other.  

A Walsh diagram for O-CMe-NMe supports our hypothesis that the π-orbital repulsions 

control ligand twisting (Figure 6-5).  The less electronegative N contact atoms have lone 

pairs that extend radially farther than those for O, which leads to more repulsion with 

nitrogen-based ligands, compared to acetate and formate.  Hence, the values of θ decrease 

in the order RN-CR’-NR > O-CR’-NR > O-CR’-O.  Additionally, the electron-releasing 

nature of a Me group on the ligand central C atom increases the electron density of the N 

atom lone pairs and hence their size, relative to a H atom.  This situation leads to more 

interligand π-orbital repulsions in the Me-substituted ligands, larger θ values, and shorter 

Cu-Cu separations, relative to the H-substituted ligands. 

 The intraligand contact distances R-R can be projected onto the Cu—Cu axis 

using θ, defining an effective intraligand contact distance that is geometrically equivalent 

to the two planes defined by R (Figure 6-6 inset).  The distance between these planes for 

the O-O and N-N species correlates very well (R
2
=0.97) with the Cu—Cu separation, as 

shown in Figure 6-6.  Thus, a simple model to account for these data is the following: the 

two Cu(II) centers, being weakly coupled, are electrostatically repulsive.  Metal-ligand 

bonding mostly overcomes this repulsion with attractive forces, and the plane defined by 

(i) intraligand contact distance and (ii) ligand twisting controls the Cu—Cu separation.  

Moreover, for the formate/acetate species where the NR groups do not sterically block 

solvent coordination in the axial position, an additional ligand can bind to Cu and further 

elongate the separation.  Less quantitative agreement is seen for the two amidate species 

(O-CH-NH, O-CMe-NMe), because here the alternating bonding in the structure (2N and 

2O per Cu) makes the definition of a plane less exact (the N and O atoms are not 
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coplanar), although qualitatively it agrees with our model and we have included a plot 

with these data in Figure 6-7. 

6.4 Conclusions 

 We have described the properties of 1, which contains the shortest Cu(II)—Cu(II) 

distance described to date in a Cu2L4 dinuclear complex.  Theory predicts that there is no 

Cu—Cu bond in 1, which suggests that the near diamagnetic character results from 

through-ligand coupling of the unpaired electrons.  The lack of a Cu—Cu bond in 1 is 

consistent with previous theoretical studies of Cu2(O2CCH3)4
1
 and Cu2(HNNNH)4,

5
 and 

also casts doubt upon a direct Cu—Cu interaction contribution to the antiferromagnetic 

coupling in [Cu3(dpa)4][BF4]2.
6
  The present results suggest that Cu2L4 complexes do not 

contain Cu—Cu bonding interactions at any distances that are likely to be accessible 

experimentally with O- and N-based bidentate ligands.  To account for the short Cu-Cu 

separation in 1, we have proposed a model in which interligand O/O, O/N, or N/N lone 

pair repulsions cause the bidentate ligands to twist slightly relative to the Cu—Cu vector.  

This twist angle  becomes larger as the number of N atoms in the ligand increases, due 

to the lower electronegativity of N compared to O and concomitant larger size of the N 

atom lone pairs.  Larger values of  lead to shorter Cu-Cu distances by compressing the 

Cu—Cu vector.  Steric crowding between H and Me groups on the ligand C and N atoms 

were not significant in our theoretical models, but the Cu-Cu distance in 1 is 0.025 Å 

shorter than the O–CMe–NMe model.  Hence, steric congestion between larger alkyl 

groups may also contribute to shortening of the Cu—Cu distances in Cu2L4 complexes by 

compressing the O/N or N/N lone pair separations.  Finally, our proposed model may be 
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useful in understanding metal-metal distance trends in dinculear and oligonuclear 

complexes with bridging ligands where there is little or no metal-metal bonding.  
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Table 6-1. Detailed energetics (in hartree) for all of the species.   

J values listed in cm
–1

. 

Species E(SCF) Triplet / Eh E(SCF) Singlet / Eh J / cm
–1

 

O–CH–O -1151.517715 -1151.519805 -459 

O–CH–NH -1072.008924 -1072.011421 -548 

HN–CH–NH -992.471406 -992.473716 -507 

O–CMe–O -1308.832720 -1308.833793 -236 

O–CMe–NMe -1386.526398 -1386.527724 -291 

MeN–CMe–NMe -1464.183293 -1464.184542 -274 
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Table 6-2. Isocontour plots (0.05 au) of the corresponding orbitals for the AF coupled 

singlets.  In all cases the alpha and beta orbitals are localized to one side of 

the molecule, and correspond to a Cu-centered radical consistent with the 

oxidation assignment Cu
II
. 

Species  Corresponding Orbital  Corresponding Orbital S 

O–CH–O 

  

0.17 

O–CH–NH 

  

0.21 

HN–CH–NH 

  

0.19 

O–CMe–O 

  

0.13 

O–CMe–NMe 

  

0.15 

MeN–CMe–NMe 

  

0.16 
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Table 6-3. Geometric data for crystal structure and optimized geometries with bond 

lengths in Å and bond angles in degrees. 

 Cu—Cu R—R θ 

O-CMe-N
i
Pr (1)

a
 2.4148(3) 2.274 7.4/7.1 

O-CMe-O 2.504 2.262 0.0 

O-CMe-NMe 2.440 2.290 4.1 

MeN-CMe-NMe 2.416 2.309 15.8 

O-CH-O 2.536 2.273 0.0 

O-CH-NH 2.547 2.306 0.0 

HN-CH-NH 2.595 2.330 10.8 
a
Experimental values from X-ray structure data. 
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Figure 6-1. Left: X-ray crystal structure of the compound isolated by the Winter group.  

Right: Copper acetate compound previously found and characterized 
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Figure 6-2. Perspective view of 1 with selected bond lengths (Å) and angles (°): Cu1-

N1 1.996(2), Cu1-N3 1.987(1), Cu2-N2 1.999(2), Cu2-N4 1.997(2), Cu1-

O2 1.955(1), Cu1-O4 1.955(1), Cu2-O1 1.963(1), Cu2-O3 1.958(1), Cu1-

Cu2 2.4148(3), N1-Cu1-N3 171.21(6), N1-Cu1-O2 89.37(6), N1-Cu1-O4 

90.21(6), N3-Cu1-O2 89.28(6), N3-Cu1-O4 90.66(6), O2-Cu1-O4 

176.86(5), N2-Cu2-N4 171.15(6), N2-Cu2-O1 89.75(6), N2-Cu2-O3 

89.90(6), N4-Cu2-O1 90.66(6), N4-Cu2-O3 89.18(6), O1-Cu2-O3 

176.77(6).  
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Figure 6-3. Definition of the Twist Angle θ 
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Figure 6-4. CPK model looking down the Cu–Cu axis of the MeN–CMe–NMe model 

before and after ligand tilting.  The shortest H∙∙∙H distance between 

neighboring methyl groups is 2.66 and 2.98 Å, respectively. 
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Figure 6-5. Walsh diagram for the O–CMe–NMe model.  The orbital which is most 

sensitive to the angular tilt is the antisymmetric combination of the ligand 

π-orbitals.  
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Figure 6-6. Correlation between plane-to-plane and Cu-Cu separation.  Linear 

regression analysis: y = 2.54 x – 3.23; R
2
 = 0.97. 
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Figure 6-7. Linear regression plot including the amidate complexes.  Because the 

interligand contact plane is not as clearly defined (top), the simple 

r*cos(θ) argument overestimates the Cu–Cu separation.  Linear regression 

plot: y = 1.63 x – 1.20; R
2
 = 0.49. 
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7.1 Introduction 

 The Verani group at Wayne State University is interested in integrating 

biomimetic principles into molecular materials that have customized and controllable 

properties.
1,2

  The notion of stimulus-triggered molecular switching between two or more 

ground states of comparable energy
3-9

 is particularly relevant because such switching 

leads to detectable electronic and structural changes.  Coordination complexes that merge 

transition-metal ions with ligands that stabilize organic radicals are among the most 

promising candidates for redox-responsive switching processes.  The Verani group is 

investigating bioinspired designs that incorporate the basic geometries that are present in 

redox-versatile enzymes, such as tyrosine hydroxylase
10

 and intradiol dioxygenase,
11-13

 in 
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which five-coordinate iron(III) centers support radical-based mechanisms for generating 

l-3,4-dihydroxyphenylalanine (l-DOPA) and cleaving catechol-type rings, respectively.  

The Verani group has reported the behavior of high-spin iron(III) complexes that are 

confined to low-symmetry, pentadentate N2O3 environments.
14-16

  In these complexes, the 

assignment of oxidation states
17,18

 becomes challenging because of the contributions of 

ligand- and metal-centered orbitals to the same redox process, and the presence of five 

unpaired electrons.  Nonetheless, they have shown that high oxidation states are 

unavailable to the metal ion, and that the ligand supports up to three consecutive 

oxidations, which leads to antiferromagnetic interactions.  Our group has helped further 

the understanding of the sequence in which the phenolate oxidations occur by modifying 

the broken symmetry approach to enable better approximate molecular orbital 

assignments.   

 In spin-unrestricted systems the alpha and beta orbitals are not required to have 

similar spatial orbitals.  Under spin restricted molecular orbital theory, systems with 

unpaired electrons tend to fill half filled orbitals last and, conversely, those half filled 

orbitals would be the first to be oxidized.  In this case spin restricted MO theory would 

lead us to construct MOs where the unpaired electrons are found on the metal centers of 

the complexes synthesized by the Verani group.  These metal orbitals would then contain 

the electrons mostly likely to be oxidized as opposed to the observed ligand electrons 

being oxidized first.  Because the alpha and beta orbitals are not required to have the 

same spatial distribution in spin-unrestricted calculations it can be difficult to determine 

the nature of the orbitals describing the unpaired electrons.  In MO theory the 

wavefunction is invariant to transformation among the occupied alpha orbitals and among 



171 

 

the occupied beta orbitals.  This allows us to transform the orbitals to maximize their 

spatial overlap.  The resultant orbitals are then sorted in terms of the optimal overlap 

between the alpha and beta orbitals, giving us the corresponding or biorthogonal orbitals.  

Because of the rotation of the orbitals, the Fock matrix is no longer diagonal and 

energetic information is lost.  However the biorthogonal orbitals can be used to transform 

the Fock matrix in order to obtain some energetic information of the corresponding 

orbitals.  A spin restricted orbital energy diagram can then be constructed by averaging 

the alpha and beta biorthogonal orbital energies.  By constructing a corresponding 

molecular orbital diagram with orbital energetic information, a better description of redox 

properties of molecule with high degrees of electronic spin can be obtained.   

7.2 Methods 

The five-coordinate species [Fe
III

L
1
] (1) and [Fe

III
L

2
] (2), in which a low-

symmetry ligand field is purposefully enforced around the 3d
5
 metal ion by the N2O3 

ligands, synthesized by the Verani group is shown in Figure 7-1a.  Ligands [L
1
]

3-
 and 

[L
2
]

3-
 both contain N2O3 environments with three phenolate moieties, denoted A, A’, and 

B; phenolates A and A’ share the same amine group and are chemically equivalent, 

whereas phenolate B is attached to either an azomethine group in L
1
 or to a methylamine 

group in L
2
.  Both species have four accessible ground states: [Fe

III
L]

0
/[Fe

II
L]

— 
, [Fe

III
L

·
]
+
, 

[Fe
III

L
··
]

2+
, and [Fe

III
L

···
]
3+

.  In this chapter we set out to determine the sequence in which 

each of the phenolate rings is oxidized in the presence of the azomethine and the 

methylamine groups and the nature of the orbitals from which the electrons are lost, with 

the intent to contribute to the fundamental understanding of the redox and electronic 

behavior of high-spin 3d
5
 ions in five-coordinate ligand fields, and provide significant 
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insight into bioinspired redox cycling.  To make the system computationally tractable, 

model systems were formed by removing the tert-butyl groups from the phenolate rings, 

yielding 1' and 2' in Figure 7-1b 

Spin unrestricted density functional theory (DFT) calculations were carried out on 

1' and 2' with the B3LYP
19-22

 functional and the 6-31G(d)
23-32

 basis set in the 

development version of Gaussian
33

.  Solvation in dichloromethane was modeled with the 

integral equation formalism polarizable continuum model (IEF-PCM)
34-36

.  Geometries 

were fully optimized without symmetry constraints, and stationary points were verified 

via frequency analysis.  Molecular orbital analysis was facilitated by using the 

biorthogonal or corresponding orbital approach
37

; energies for these orbitals were 

obtained by a unitary transform of the unrestricted Fock matrices into the biorthogonal 

basis.  The averages of the energies of the alpha and beta biorthogonalized orbitals were 

used to approximate the energies of the restricted MO energies and these energies were 

used to build a classical restricted MO ladder diagram.  

7.3 Results and Discussion 

 Electronic structure calculations were carried out on the models 1' and 2' and the 

products of the sequential oxidations 1'→1'
+
→1'

2+
 and 2'→2'

+
→2'

2+
 were investigated.  

Based on available experimental evidence,
14,15,38-40

 an antiferromagnetic coupling 

between the iron(III) center and the phenoxyl radicals was assumed.  Figure 7-2 shows 

the structural changes and spin density plots for the two species (1' and 2') and their first 

and second oxidized states, only minor distortions are observed upon oxidation for each 

of the two species.  The amount of spin density and the charges that are related to each 

phenolate/phenoxyl ring can be quantified by adding the contributions of the ring atoms 
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together (Table 7-1).  The phenolate rings for 1' and 2' exhibit Mulliken spin densities of 

0.17–0.24 and charges of -0.3–-0.4.  In contrast the monocation 1'
+
 has an excess of β 

density.  This excess is consistent with a phenoxyl radical on ring A' that has a calculated 

spin density of -0.88 and charge of 0.20.  Indeed, in the equivalent structure the Fe—OA' 

bond is lengthened by approximately 0.11 Å and the C=O bond is shortened by 0.06 Å.  

These values suggest that the ring becomes quinoid-like in nature and less effective as an 

electron donor.  As a consequence, the Fe—O bonds to both of the remaining phenolate 

rings A and B shorten.  Species 1'
2+

 behaves in a similar manner and a second phenolate 

to phenoxyl conversion takes place on ring A.  The relative absence of geometric 

rearrangements fosters the overall redox bistability that is required for fast redox cycling 

between these species.  Species 2'
+
 behaves differently to species 1'

+
 upon oxidation.  

The first oxidation leads to the formation of a phenoxyl radical on ring B.  This is in clear 

opposition to the oxidation of ring A' in 1'.  The phenolate of ring B is associated with the 

methyl-substituted nitrogen atom and has Mulliken spin density and charge of -0.92 and 

0.13, respectively.  The Fe—O bond is elongated by 0.13 Å and the C=O bond is 

shortened to 1.28 Å.  These changes are in excellent agreement with the values observed 

for the quinoid-like structure of 1'
+
.  The values that were calculated for 2'

2+
 also agree 

with the general trends that were discussed above for 1'
2+

.  It seems apparent that the 

nature of the nitrogen atoms (as a tertiary amine or an azomethine) leads to subtle but 

significant changes in the phenolate rings.  The more π-acidic imino group stabilizes the 

phenolate-based HOMO that becomes less oxidizable than the equivalent 

aminophenolates.  This change drives the electrochemical specificity of 1 and 2.  To our 

knowledge, this effect has not been reported for iron phenolate complexes before.   



174 

 

The analysis of MOs in high-spin species with S=5/2 that are 

antiferromagnetically coupled to S=1/2 organic radicals is far from trivial.  In this study it 

was achieved by furthering the approach of corresponding biorthogonal orbitals that was 

used by Neese to analyze magnetic coupling in coordination complexes,
37

 in which the 

energies of the corresponding α and β orbitals are averaged to construct a classical MO 

ladder diagram.  This unitary transform of the unrestricted Fock matrices into the 

biorthogonal basis allows a qualitative energy ladder to be built for each of the 

compounds (Table 7-2).  An increase in the charge for both complexes leads to a typical 

decrease in the relative energies of all of the frontier orbitals.  This change indicates an 

increase in the ionization potential of the complexes that is related to a larger positive 

charge.  Figures 7-3 and 7-4 depict the MO diagrams constructed with arbitrarily 

assigned d orbitals of the relevant singly and doubly occupied MOs (black and blue 

respectively) and spin coupled pairs (red).  For 1' we have determined dx
2

-y
2
 > dz

2
 > dyz > 

dxz > dxy and for 2' we have determined as dxz > dxy > dx
2

-y
2
 > dyz > dz

2
.  The first doubly 

occupied MO relates to the electrochemical processes that correspond to the oxidation of 

the phenolate to phenoxyl radical, and accurately portrays the primary locus of the radical 

in 2'
+
.  Similarly, for 2'

+
 the first doubly occupied MO relates to the second oxidative 

process.  Interestingly, the presence of the azomethine group in complex 1' leads to a 

shorter Fe—N1 bond and a longer Fe—O1 bond.  This geometry affects the iron-based, 

singly occupied MO that coincides with the N1—Fe—O1 plane, and has an increased 

energy because of a π-antibonding interaction.  The series 1'→1'
+
→1'

2+
 has comparable 

oxidation behavior, however, the elongation of the Fe—O1 bond results in a reduction in 

the energy of the remaining four 3d orbitals.  These calculations required the use of the 
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IEF-PCM solvation model for the first doubly occupied MOs.  Without solvation, the 

resulting radicals become delocalized over the three phenolate groups and lack physical 

meaning.  As recently observed by Klüfers and co-workers
41

 in square planar high-spin 

Fe
2+

 species, it seems that five-coordination and low local symmetries around the metal 

ion support the formation of unique, highly nondegenerate MOs that are considerably 

distinct from an idealized t2g*eg* octahedral scheme.  These MOs rearrange in terms of 

energy upon ligand oxidation, which lowers the HOMOs, stabilizes the radicals, and 

allows redox cycling.  

7.4 Conclusions 

 In conclusion, two iron(III) complexes that incorporate the basic geometrical 

principles that are found in enzymes that form and cycle radicals were synthesized.  Both 

species were formed with pentadentate N2O3 ligands that confer a low symmetry on the 

metal ion.  To understand the results of experimental studies of the electronic and redox 

properties of five coordination , these complexes were examined by theoretical methods.  

Subtle structural changes in the ligand, such as the introduction of a methyl group to the 

bridging nitrogen atom or the presence of an azomethine group, are sufficient to change 

the oxidation sequence of the phenolate groups.  Computational calculations corroborated 

the experimental findings and allowed individual redox loci to be assigned for each of 

these compounds and the corresponding oxidized species.  These results allow us to move 

one step further towards the development of redox-active molecular materials.  
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Table 7-1. Mulliken charge and spin density analysis and selected bond length(Å) for 

1', 1'
+
, 1'

2+
, 2', 2'

+
, and 2'

2+
.
a
 

 Mulliken Spin Density Mulliken Charge Fe—O C(ring)—O 

1' S = 5/2     

Fe
3+

 4.19 1.34   

Ring A 0.24 -0.42 1.86 1.34 

Ring A' 0.23 -0.43 1.87 1.34 

Ring B (C=N) 0.17 -0.30 1.93 1.31 

     

1'
+
 S = 4/2     

Fe
3+

 4.17 1.39   

Ring A 0.28 -0.30 1.83 1.34 

Ring A' (R
↑
) -0.88 0.20 1.98 1.28 

Ring B 0.23 -0.40 1.88 1.31 

     

1'
2+

 S = 3/2     

Fe
3+

 4.18 1.34   

Ring A (R
↑
) -0.87 0.33 1.93 1.28 

Ring A' (R
↑
) -0.90 0.29 1.97 1.28 

Ring B  0.34 -0.44 1.85 1.32 

     

2' S = 5/2     

Fe
3+

 4.18 1.30   

Ring A 0.21 -0.35 1.88 1.34 

Ring A' 0.22 -0.35 1.88 1.33 

Ring B 0.22 0.23 1.88 1.33 

     

2'
+
 S = 4/2     

Fe
3+

 4.16 1.34   

Ring A 0.28 -0.25 1.84 1.35 

Ring A'  0.27 -0.20 1.85 1.34 

Ring B (R
↑
) -0.92 0.13 2.01 1.28 

     

2'
2+

 S = 3/2     

Fe
3+

 4.12 1.39   

Ring A 0.45 -0.19 1.83 1.34 

Ring A' (R
↑
) -0.90 0.27 1.96 1.28 

Ring B (R
↑
) -0.91 0.27 1.97 1.28 

a
B3LYP/6-31G(d) with IEF-PCM solvation in dichloromethane. R

↑
 denotes the phenoxyl 

location. 
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Table 7-2. Orbital energies for 1', 1'
+
,1'

2+
, 2', 2'

+
, and 2'

2+
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(a)  

(b)  

 

Figure 7-1. Experimental structures of 1 and 2 (top) and computational models for 1' 

and 2' (bottom) 
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Figure 7-2. Spin density plots for the oxidation series of 1' (top, left) and 2' (bottom, 

left).  The white and blue areas of electron density correspond to excess – 

α and β electron spin density, respectively. Superimposition of the 

optimized geometries of the sequential oxidation of 1' (top, right) and 2' 

(bottom, right). 
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Figure 7-3. Average orbital energy ladder (top) and selected frontier orbitals (bottom, 

α-SOMOs and spin coupled Pairs with Hydrogen atoms omitted for 

clarity) for 1', 1'
+
, and 1'

2+
. (B3LYP/6-31G(d) IEF-PCM 

dichloromethane). 
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Figure 7-4. Average orbital energy ladder (top) and selected frontier orbitals (bottom, 

α-SOMOs and spin coupled Pairs with Hydrogen atoms omitted for 

clarity) for 2', 2'
+
, and 2'

2+
. (B3LYP/6-31G(d) IEF-PCM 

dichloromethane). 
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8.1 Introduction 

 Since their discovery, carbon nanotubes have been examined for use in a 

wide variety of applications in chemistry, physics, and medicine.
1-15

  Of the many 

applications, their use as a host environment has been studied with great interest
16-26

 and 

they are known to be able to host a variety of guest molecules within them.  The interior 

of a nanotube offers a unique environment for chemical reactions.  The small interior 

diameter provides mechanical confinement and the highly polarizable walls of the 

nanotube act like a high dielectric solvent.  The physical confinement of reactants within 

single walled carbon nanotubes (SWCNTs) can affect both reaction rates and reaction 

equilibria in a variety of ways including selective adsorption of reactants, products and 

transition states, as well as induce steric effects and geometric constraints.  In addition to 

the physical confinement, the electronic environment of SWCNTs can influence the 

electronic structure of species inside of them.  Studies have shown that a system confined 



192 

to a SWCNT can be thought of as being in a solid solvent.
27-31

  The level of control 

provided by computational modeling of nanotubes has the potential to provide a wealth 

of insight into predicting novel interactions and reactions taking place inside and around 

a nanotube environment which would allow researchers to be able to predict the behavior 

of reagents in nanotube environments without first having to synthesize and prepare their 

host-guest system of interest.   However, even in a small nanotube segment, ~1.1 nm in 

length and ~0.7 nm in diameter, there are approximately 110 heavy atoms which is a 

challenge for quantum chemical calculations.  Experimentally observed nanotubes can 

vary in length and diameter by up to several orders of magnitude, increasing the number 

of heavy atoms dramatically.  Unfortunately, since the computational time needed to 

simulate structures scales approximately as the number of atoms to the fourth power
19

, 

running calculations on various nanotubes of interest can be prohibitive.  As a first 

approach one may turn to molecular mechanics and semiemprical methods which, while 

computationally efficient, miss out on significant electronic interactions between 

nanotubes and reagents.  In this chapter we develop an inexpensive, chemically accurate 

modeling method that facilitates the analysis of chemical reactions in and around single 

walled carbon nanotubes (SWCNT).  The role of the SWCNT can be partitioned into an 

electronic interaction coupled with a geometric confinement so it should be possible to 

scale down the complexity of the overall system considerably.  Geometric confinement 

can be handled very well by molecular mechanics methods.  On the other hand, the 

electronic interactions are more difficult and more expensive to model well.  In this 

chapter we focus on developing an inexpensive model for the electronic interactions 

between a SWCNT and a guest molecular system within the nanotube. The validity of 
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this SWCNT model will be tested by comparing the potential energy surfaces of several 

systems of interest calculated using the CNT models and the full SWCNT system.  Doing 

so will allow us to determine the limitations of the model and the shortcomings of any 

approximations made in parameterizing the proposed model.  With this knowledge in 

hand the SWCNT models can then be used to predict reactions of various substituents 

inside nanotubes.   

8.2 Methods 

 To make optimization of a species inside of a nanotube more affordable we 

propose a model which partitions the effects of a nanotube on a guest species into two 

parts: (a) the electrostatic interactions are handled using a solvation model and (b) the 

physical confinement is handled using molecular mechanics.  Solvation models come in 

two varieties: explicit solvation models which include individual solvent molecules in the 

calculation and implicit solvation models which account for the interactions between 

solvent and solute molecules by using a polarizable medium to represent the solvent.  The 

behavior of this polarizable medium mimics the alignment of dipoles and the consequent 

electrostatic induction interactions between solvent and solute molecules.  The resulting 

electric field is known as a reaction field.  The highly polarizable nature of the π-

electrons in a SWCNT allow the electronic environment of the nanotube to behave much 

in the same way that a solvent would around a solute molecule creating a similar reaction 

field.  There are several computational models available to simulate the interaction 

between a solute and solvent.  For this study we utilized the integral equation formulation 

of the polarizable continuum model (IEF-PCM)
32,33

 to represent the electronic interaction 

between the nanotube and the molecule of interest inside the nanotube.  The IEF-PCM 
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method models a solvent through the use of the dielectric constant for the solvent.  The 

dielectric constant for a nanotube can be obtained from the Clausius-Mossotti equation
34-

36
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     (8.1) 

The Clausius-Mossotti relation combines the number density of atoms (  ) and the 

polarizability ( ) to obtain an effective dielectric constant.  A 13.53 Å long 9,0 

nanotube (C108H18) was optimized using the B3PW91
37-43

 density functional with a 3-

21G basis set.  The calculated isotropic polarizability for this SWCNT is 219.41 Å
3
 and 

yields an effective dielectric constant of 2.41.  This is close to the dielectric constant of 

benzene (2.247) but far from the dielectric constant of water (78.36).   

To test the model for the electronic interaction between a SWCNT and a guest, 

we need a system that shows a large difference between the gas phase and solution.  One 

such system is the hydrogen bonded complex between ammonia and hydrogen chloride.  

In the gas phase, the most stable form is H3N-HCl but in a high dielectric solvent the 

most stable form is H3NH
+
-Cl

-
.  The reaction profile for the migration of the central 

proton from the chloride to the ammonia was obtained by elongating the H-Cl distance 

and optimizing all of the remaining coordinates in the gas phase.  The effect of solvation 

is compared to implicit solvation using various solvents at the CCSD/6-311++G(d,p) 

level of theory.  The effects of the nanotube on the H3N—HCl system were explored 

using molecular mechanics, semi-empirical, and single point DFT calculations.  The DFT 

calculations used the B3PW91 functional  with the 3-21G basis set for the nanotube and 
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the 6-311++G(d,p) basis set for H3N—HCl.  This chapter only considers the effect of 

confinement by the nanotube and neglects any changes to the nanotube geometry and any 

possibility of bonding between the quest molecule and the walls of the nanotube. 

8.3 Results and Discussion 

 The system to be studied in this chapter is the hydrogen bonded NH3—H'—Cl 

system shown in Figure 8-1.  For a comparison for when the system is placed inside the 

nanotube we begin by examining the energy profile for the transfer of a proton (H') in the 

hydrogen bonded NH3—H'—Cl system.  Figure 8-2 shows relative energies for the 

relaxed potential energy scan of the H'—Cl distance as H' is transferred away from the 

chloride towards the ammonia calculated at the CCSD/6-311++G(d,p) level of theory in 

the gas phase, and in benzene and water solutions each of which use a PCM for the 

solvation model.  Table 8-1 lists how the N—H' distance and the H—N—H' angle change 

as the H'—Cl distance is lengthened.  The energetics in the gas phase indicate that the 

system has a minimum energy around an HCl separation of 1.30 Å, with a corresponding 

R(N—H'=1.90 Å), which is close to 1.28Å found for the HCl distance in isolated gas 

phase HCl.  In the gas phase the NH3—H'—Cl system is best described as two neutral 

species NH3 and HCl separated by a hydrogen bond of 1.90 Å.  In benzene there are two 

distinct minima, one near the gas phase energy minimum and another shallow minimum 

around R(H'—Cl)=1.72 Å (30% longer than the gas phase minimum) and R(N—H')=1.15 

Å.  In water the energy minimum shifted to longer HCl bond distances approaching 2Å 

with a corresponding R(N—H')= 1.05 Å.  At these distances the system has transferred 

the proton from HCl to the ammonia and is best described as the ammonium chloride salt. 
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 The first approach one might take to modeling reactions inside of carbon 

nanotubes might be to use a QM/MM approach, with high level quantum mechanics for 

the guest system inside the nanotube and a lower level of theory for the nanotube itself.  

Figure 8-3 shows a few QM/MM calculations on the NH3—H—Cl system using the 

ONIOM approach. The hydrogen bonded guest system was calculated using B3PW91/6-

311++G(d,p) while the nanotube was represented by molecular mechanics, and two semi-

empirical approaches.  Geometries were obtained by placing the optimized geometries of 

the gas phase reaction path for the guest system calculated at CCSD/6-311++G(d,p) 

inside the nanotube resulting in C3v symmetry for the entire system.  To obtain reference 

energies for the guest system inside the 9,0 nanotube, single point energies were obtained 

by calculations using B3PW91/6-311++G(d,p) for the guest and B3PW91/3-21G for the 

tube. Using molecular mechanics on the nanotube ignores any electronic interaction 

between the tube and the system inside.  As a result QM/MM calculations recreate the 

gas-phase-like energies for the reaction profile.  The next step might be to utilize a semi-

empirical method for the nanotube.  While this does improve the energetics of the system 

inside the nanotube compared to molecular mechanics, the energetics are not in 

agreement with the energies found using B3PW91 for the entire system. 

 The small section of the relatively narrow 9,0 nanotube used in this chapter 

contains 108 heavy atoms and as such any fully quantum mechanical optimizations on 

the nanotube and any guest molecules inside of them can become quite costly.  Previous 

work
27,28

 has shown that by removing the nanotube entirely and approximating the 

contribution the tube makes towards confinement of a guest species using a polarizable 

continuum model to be quite accurate at reproducing the energetics of SN2 type reactions 
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taking place inside of the nanotube.  In these studies the polarizability for a 9,0 nanotube 

was calculated and the Clausius-Mossotti relation (equation (8.1)) was used to obtain an 

effective dielectric constant of 2.41.  Figure 8-4 shows the effect of immersion of the 

NH3—H—Cl system into solvents of varying dielectric strength employing the same gas 

phase reaction path optimized at CCSD/6-311++G(d,p) used in the previous figure.  

Going from the gas phase (black curve,   = 1) to a benzene (red curve,   = 2.27) 

solution lowers the energy of the ionic species by approximately 15 kcal/mol, doubling 

the dielectric constant from benzene to chloroform (blue curve,   = 4.71), only stabilizes 

the ionic species another 7 kcal/mol.  The final 16 fold increase in the dielectric constant 

in going from chloroform to water (green curve,   = 78.36) only stabilizes the ionic 

system another 7 kcal/mol.  In addition, the gas phase reaction profile predicts the dimer 

of the neutral guests as the favored geometry with an H—Cl separation of about 1.3 Å.  

Going from the gas phase to benzene solvent shifts this preference to the ionic dimer 

system with an H—Cl distance closer to 1.7 Å.  Changing to chloroform and water 

further increases the H—Cl separation to 1.8 Å and 1.9Å, respectively.  From this it can 

be concluded that an ionic solute in a PCM is more sensitive to the initial increase of the 

dielectric constant than further increases of the dielectric constant.  The same gas phase 

optimized geometries were placed into a 9,0 SWCNT resulting in C3v symmetry.  Full 

quantum calculations using the B3PW91 density functional with the 3-21G basis set on 

the nanotube and the 6-311++G(d,p) basis set on the guest system (dashed purple) yields 

energies similar to the results from the PCM calculation using the benzene dielectric 

constant. 
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For polarizable continuum models of solvation, the stabilization energy depends 

on the cavity size as well as the dielectric constant. Figure 8-5 shows the relative energies 

of chloride ion in a PCM solvent as a function of dielectric constant and cavity scaling 

factor.  The greatest amount of stabilization afforded by the PCM occurs within the first 

10 units of increasing dielectric constant.  This is in agreement with the conclusions from 

Figure 8-4. This stabilization decreases rapidly as the size of the cavity increases, going 

from 40 kcal/mol stabilization for a cavity with a scaling factor of 1 to only 

approximately 5 kcal/mol stabilization for a cavity 4 times the normal size.  With this in 

mind, the very good agreement between the energies predicted by the single point 

energies of the NH3—H—Cl system in the tube (dashed line in Figure 8-4) and the 

energies obtained using the dielectric constant of benzene in a PCM calculation (red line 

in Figure 8-4) indicates that using benzene as the PCM solvent is acceptable, and it may 

not be necessary to reoptimize the dielectric constant for a particular tube used in a 

simulation..   

As demonstrated in Figure 8-5, for a given dielectric constant the electronic 

energy of a species in solution depends strongly on the cavity size.  Standard PCM 

calculations build a solvent cavity by finding the union of scaled van der Waals spheres 

placed on the heavy atoms of the solute.  This yields an appropriate solute shaped cavity.  

However, for a guest system inside a nanotube, the shape of the cavity should depend on 

the nanotube and not on the shape of the guest molecule. To approximate the interior of a 

nanotube we can build a cavity with a series of overlapping spheres aligned along the 

nanotube axis (Figure 8-6b).  The spheres are kept close enough so that the overlap of the 
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spheres creates a smooth cavity which closely approximates the nanotube interior.  We 

refer to this cavity as the sausage PCM cavity. 

 Figure 8-7 shows the change in the potential energy curve along the reaction path 

for the transfer of a proton in the hydrogen bonded NH3—H—Cl system as the sausage 

PCM cavity size is varied.  The radius of a m,n nanotube can be calculated from the 

indices using the equation 

 2 22.46Å

2
r m mn n


    (8.2) 

Table 8-2 lists the calculated radii for a 9,0 and an 8,0 nanotube along with the 

approximate radii for the cavity inside of a nanotube, found by subtracting the typical van 

der Waals radius of a carbon atom from the nanotube radius.  The radius of a 9,0 

SWCNT is 3.52 Å while the radius of the cavity is 2.02 Å.  Comparing these values to 

the potential energy curves in Figure 8-7 demonstrate that for a solvent radius of 3.52 Å 

there is little energy stabilization compared to the gas phase energies.  This value falls 

between 3.65 Å and 2.72 Å, both of which behave very much like the gas phase reaction 

path by favoring the neutral NH3—HCl system geometry.  In fact a large change in the 

solvated energies is not seen until the cavity radius has been decreased to smaller than 

2.15 Å suggesting that the cavity radius and not the nanotube radius listed in Table 8-2, is 

the most appropriate one for approximating the nanotube cavity size in sausage PCM 

calculations. 

 Figure 8-8 shows energies from the geometries optimized in the sausage PCM 

solvent cavity for a 9,0 CNT (blue, dashed) and an 8,0 CNT (red, dashed) and the same 
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geometries placed inside each of the nanotubes (solid curves). From this figure it can be 

seen that the sausage PCM cavity used in conjunction with the benzene solvent 

parameters reliably reproduces the full QM relative energies for the 9,0 SWCNT over the 

entire reaction coordinate, while the energies start to differ at longer distances in the 8,0 

SWCNT.  The ionic character of the system at these distances leads to changes in the size 

of the electron density and in the small 8,0 SWCNT this may lead to these energy 

differences. 

 The next step is to add in the effect of confinement of guest species within the 

walls of a nanotube.  To achieve this we can add in the nanotube around our sausage 

PCM using molecular mechanics.  Figure 8-9 shows the energies for the NH3—H—Cl 

system in the gas phase, and in three 9,0 nanotube models using the same geometries as 

in Figure 8-8.  The three models are the full quantum nanotube (green), only the sausage 

PCM representing the nanotube (blue), and the sausage PCM with a molecular mechanics 

nanotube surrounding the nanotube (red).  Compared to the sausage PCM cavity, the 

addition of the molecular mechanics nanotube slightly destabilizes the energies of the 

ionic system compared to the PCM.  The energy difference may be due to using the 

benzene dielectric value of 2.27 instead of the effective dielectric constant for the 

nanotube of 2.41.  This model can be described as an ONIOM calculation where the 

nanotube is represented at a low level using molecular mechanics, and the guest system is 

represented at a high level using a B3PW91/6-311++G(d,p) calculation in a PCM cavity.  

We refer to this approach as the ONIOM and sausage model and it should be efficient for 

the optimization of reaction profiles of guest species inside nanotubes. 
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8.4 Conclusions 

 We have described the construction of an affordable nanotube model useful for 

full optimizations of guest molecules placed inside the nanotube environment.   Taking 

advantage of the polarizable continuum model, which is used to model solute molecules 

in a solvent environment, allows us to circumvent costly parameterization of the model.  

Instead of optimizing a nanotube to find the polarizability and thus an effective dielectric 

constant for the tube, we can use benzene as the solvent in the PCM calculation along 

with a cavity radius which approximates the size of the interior cavity of the nanotube.  

Calculations with this model reproduce energies and internal coordinates of full quantum 

chemical calculations of the system inside the nanotube.  Optimizations using this 

ONIOM and sausage model show promise for optimizations of systems inside of a 

nanotube however more work is needed to replicate the fully quantum mechanically 

optimized geometries.   
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Table 8-1. Relaxed scan of the H'—Cl bond distance calculated at  

CCSD/6-311++G(d,p) in the gas phase and using PCM with benzene and 

water as solvents. 

 Gas Phase PCM Benzene PCM Water 

H'—Cl H'—N 

(Å) 

H—N—H' 

(°) 

H'—N 

(Å) 

H—N—H' 

(°) 

H'—N 

(Å) 

H—N—H' 

(°) 

1.20 2.07 112.47 2.02 112.66 1.96 112.92 

1.30 1.90 112.25 1.82 112.41 1.73 112.58 

1.40 1.67 111.79 1.55 111.80 1.44 111.62 

1.50 1.42 111.00 1.33 111.02 1.26 111.21 

1.60 1.26 110.30 1.21 110.49 1.17 110.81 

1.70 1.18 109.84 1.15 110.12 1.12 110.50 

1.80 1.13 109.51 1.11 109.89 1.09 110.30 

1.90 1.10 109.27 1.08 109.68 1.07 110.16 

2.00 1.08 109.09 1.07 109.54 1.05 109.93 

 

 

Table 8-2. Radius of Nanotubes used 

Nanotube Radius of Nanotube Radius of Cavity (Rnanotube -RC) 

9,0 SWCNT 3.52 Å 2.02 Å 

8,0 SWCNT 3.13 Å 1.63 Å 
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(a)  

(b)  

Figure 8-1. The H3N—H—Cl guest system inside a 9,0 single walled nanotube (a) 

axial view and (b) side view of the nanotube and guest system, exhibiting 

C3v symmetry. 
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Figure 8-2. Relaxed scan of the H—Cl distance for the NH3—H—Cl hydrogen 

bonded system.  Calculated using CCSD/6-311++G(d,p) in the gas phase 

(black), in a benzene solution using PCM (red), and in water solution 

using PCM (green).  The zero of energy has been set to the geometry 

corresponding to the gas phase minimum energy structure. 
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Figure 8-3. Relaxed scan along the transfer of H+ from HCl to NH3 calculated using 

(black) ONIOM(B3PW91/6-311++G(d,p):UFF), (red) ONIOM 

(B3PW91/6-311++G(d,p):MNDO), (green) ONIOM(B3PW91/6-

311++G(d,p):PM3), compared against (blue) single point energies of the 

PCM optimized aqueous solution geometries centered in a 9,0 nanotube 

with C3v symmetry.  
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Figure 8-4. Series of single point calculations based on the geometries taken from a 

relaxed scan of the H—Cl distance for the NH3—H—Cl guest system in 

the gas phase calculated using CCSD/6-311++G(d,p).  Single point 

energies calculated using B3PW91/6-311++G(d,p) in the gas phase 

(green), benzene PCM (blue), chloroform PCM (black), water (red), in a 

9,0 SWCNT (dashed purple). 
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Figure 8-5. Effect of PCM solvation on chloride ion as a function of dielectric 

constant and cavity scaling parameter. Calculated using HF/cc-pVDZ. 
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(a)  

(b)  

Figure 8-6. (a) Electron isodensity (Isovalue = 0.01 au) surface of the 9,0 nanotube 

and guest system. (b) Sausage PCM cavity constructed to approximate the 

interior surface of the nanotube.  12 PCM cavity spheres are centered 

along the axis of the nanotube every angstrom starting at the tube opening.   
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Figure 8-7. Effect of PCM sausage cavity radius on energies along the reaction 

coordinate of the transfer of a proton in the hydrogen bonded NH3—H—

Cl system.  Calculations were performed using the dielectric of benzene, 

and the gas phase CCSD/6-311++G(d,p) optimized geometries; energies 

are calculated using the B3PW91/6-311++G(d,p) level of theory. 
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Figure 8-8. Relative energies along the reaction coordinate of the transfer of a proton 

in the hydrogen bonded NH3—H—Cl system in a 9,0 nanotube (blue) and 

an 8,0 nanotube (red).  Comparison between the relaxed scan calculated at 

B3PW91/6-311++G(d,p) using the sausage PCM model (dashed) and 

single point calculations of the optimized geometries from sausage PCM 

calculations (solid). 
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Figure 8-9. Energies along the reaction coordinate of the transfer of a proton in the 

hydrogen bonded NH3—H—Cl system, using fixed geometries optimized 

from previous sausage PCM calculations.  In the gas phase (black), in a 

9,0 nanotube (green), in the sausage PCM for a 9,0 nanotube (blue), and in 

the 9,0 SWCNT sausage PCM with a molecular mechanics tube around 

the PCM (red). 
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Chapter 9  

Conclusions 

 

9.1 Chapter 2: TD-CI Simulations of Strong-Field Chemistry 

In Chapter 2 we initially set out to model the electron dynamics of butadiene after 

exposure to an intense laser pulse while neglecting any loss of electron density due to 

ionization.  Without experimental data as a reference, we compared the ground and 

excited state populations of butadiene calculated via TD-HF, TD-CIS, and TD-CIS(D) to 

a more accurate simulation using the ground and excited state populations calculated by 

EOM-CC.  The excited state energies found by all the methods are in agreement with 

each other up to the IP of butadiene, after which the methods start to differ.  CIS(D) 

continues to be in agreement with EOM-CC, while TD-CIS and TD-HF predict energies 

higher than those of EOM-CC and CIS(D).  Even then the energies predicted by CIS(D) 

tend to oscillate about the EOM-CC values because of the perturbative nature of the 

doubles correction in the CIS(D) method.  We found that to reasonably represent the final 

populations of the excited states after the pulse a basis set augmented with up to 3 sets of 

diffuse functions on the heavy atoms was required.  The amount of population transferred 

into the excited states increases by an order of magnitude by adding a single set of diffuse 

functions.  The additional diffuse functions help fill out the states in the pseudo-

continuum.  Adding higher angular momentum functions had little effect on the excited 

state populations.  To achieve convergence on the populations of the excited states after 

the pulse more than 450 excited states are needed.  At low field strengths all the methods 
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agree on the amount of population transferred out of the ground states.  It is not until the 

field strength reaches 0.04 au that the populations start to differ.  Despite lacking electron 

correlation, TD-HF and TD-CIS faithfully reproduce the population lost by the ground 

state as that predicted by EOM-CC.  CIS(D) on the other hand predicts that the ground 

state is depleted more than the other methods predict. 

9.2 Chapter 3: TD-DFT Simulations of Strong Field Chemistry 

In this chapter, we compared the performance of TD-CI simulations with excited 

states calculated by TD-DFT to simulations with RPA, CIS, CIS(D) and EOM-CCSD 

excited states.  The TD-DFT calculations used functionals of the GGA, meta-GGA, 

hybrid and long-range corrected variety.  In contrast to the TD-CIS and TD-HF methods 

used in the previous chapter, the functionals in the TD-DFT calculations include electron 

correlation but there are many functionals to choose from.  We again use butadiene as our 

test molecule with the same pulse as the previous chapter.  Our goals, Similar to the 

previous chapter, our goal was to indentify functionals which reproduce the molecular 

response to the laser pulse as obtained with EOM-CC.  In addition we set out to better 

understand the contributions that the excited state energies and transition dipoles made to 

the excited state populations.   

 We observed that the excitation energies calculated by standard GGA and meta-

GGA functionals are significantly lower than the EOM-CC excitation energies.  Mixing 

in different amounts of Hartree-Fock exchange, either through the use of hybrid 

functionals or long-range corrected functionals causes the excitation energies to approach 

those computed by EOM-CC.  Varying the parameter which controls the distance over 

which the long-range correction takes place greatly influences the excited state energies.  
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A value of ω = 0.4 in the LC-ωPBE functional provides good agreement with EOM-CC 

over a wide range of excitation energies.  Lower values of ω yield excited state energies 

lower than EOM-CC and higher values of ω yield excited state energies approaching the 

Hartree-Fock excited state energies.  The magnitudes of the transition dipoles for all the 

DFT and wavefunction based methods used in the previous chapter were largely in 

agreement with each other.  The standard and hybrid functionals yield transition dipole 

magnitudes slightly lower than those found by EOM-CC while the long-range corrected 

functionals and the wave function based methods predict transition dipole magnitudes 

slightly larger then EOM-CC.  Similar to the previous chapter the amount of population 

transferred into the excited states is the metric with which we gauged the relative 

performance of each of the methods.  The amount of population in the excited states 

obtained with standard functionals is far too large.  Hybrid functionals have the next 

lowest amount of population transferred into the excited states, but it is not until the long-

range corrections are included in the functionals that the response is within 25% of the 

EOM-CC calculations.  The response computed with long-range corrected functionals is 

comparable to that obtained with EOM-CC, RPA and CIS.  This indicates that correct 

long-range behavior is essential for the treatment of the diffuse and highly excited states 

needed to describe the interaction between the electron density and a strong laser field.  

The population of the excited states was compared to the averages of the excited state 

energies and transition dipole magnitudes.  Strong correlation was found between the 

excited state energies and the population, however little correlation was found between 

the population and transition dipole magnitudes.  No correlation was found between the 

excited state populations and calculated ionization potentials using each of the methods. 
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9.3 Chapter 4: Strong-Field Ionization of Linear Polyenes 

 The previous two chapters focused on modeling the electron dynamics of 

butadiene after interacting with an intense laser field but did not treat ionization.  One 

method for modeling ionization is through the use of absorbing boundary potentials.  A 

complex potential in a system's Hamiltonian does not conserves the norm of the 

wavefunction and can mimic the loss of electron density.  The difficulty comes in 

constructing a suitable absorbing potential. If the complex potential is too steep the 

simulations yield more reflection than absorption. If the complex potential is too close to 

the molecule, the absorption is too strong even in weak fields.  If the potential conforms 

to the shape of an arbitrary molecule, integrals involving the absorbing potential are 

difficult to calculate.  To circumvent these problems Klamroth and co-workers developed 

a heuristic model based on the premise that the higher the energy of the excited electron, 

the faster it would escape from the molecule. An imaginary term representing the 

ionization rate is added to the energies of excited states above the ionization potential.  

This term dependents on the CI coefficients which describe the state, the energies of the 

destination orbitals which contribute to the excited state and an escape distance 

parameter.  In this chapter we compared the strong-field ionization of the linear polyenes: 

ethylene, butadiene, hexatriene, and octatetraene.   The loss of norm after the laser pulse 

was found to be sensitive to the escape distance parameter and a value of d = 1 bohr was 

found to be suitable for all of the polyenes.  The longer polyenes however can support a 

larger range of the distance parameter since they have more lower energy states which 

contribute to ionization.  In contrast to the non-ionizing models discussed in Chapters 2 

and 3, modeling ionization with Klamroth’s model is less sensitive to the basis set size. 
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The 6-31G(d,p) basis set augmented with a single set of diffuse functions on the carbon 

atoms yields results similar to calculations with larger basis sets.  It was also found that 

the states which contribute the most towards ionization are within the 20 eV of the 

ionization potential for each of the polyenes.  This confirms that only a subset of the 

excited states is needed to converge the loss of norm after the pulse.  Experimental 

ionization saturation values are available for hexatriene and ethylene.  While the heuristic 

ionization model yields ionization saturation values in the right order of magnitude, we 

cannot compare our results directly with experiment.  However, ratios of the calculated 

ionization rates are in good agreement with the ratios predicted by the ADK ionization 

model.   

9.4 Chapters 2-4 Summary & Future Directions 

 In the chapters just described, we were able to determine which basis sets and the 

number of excited state which are best suited to give reasonable descriptions of the 

electron dynamics in polyenes after interaction with an intense laser field.  Extra diffuse 

functions, which allow electrons to be further away from the molecule, have more of a 

profound effect on the population of excited states opposed to the addition of polarization 

functions.  The high number of excited states helps to fully describe the polarization of a 

molecule, but transitions from low energy states to high energy states are key to 

describing the overall response.  However, transitions between the highest energy excited 

states can be ignored and the predicted response is comparable to the response if those 

transitions were included.  This indicates that these transitions may be able to be replaced 

with just the polarizability contributed by those states for use in simulations, thereby 

greatly decreasing the cost of the simulation.  The TD-HF, TD-CIS methods and long-
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range corrected density functionals reproduce excited states, transition dipoles and 

populations of excited states in good agreement with those predicted by EOM-CC, but at 

a much lower cost.  By using the heuristic model mentioned in Chapter 4 to simulate 

ionization we find that the basis sets with extra diffuse functions no longer predict 

significantly different excited state populations after the pulse.  This work can be 

extended to more accurate models of the ionization by explicitly using an absorbing 

boundary potential.  Ultimately, modeling ionization with an absorbing potential should 

require less  parameterization, be sensitive to the direction of the laser field, and take into 

account the shape of the orbitals from which the ionized electron is leaving.    

9.5 Chapters 5-7: 

Applications of Electronic Structure Theory to Problems in Inorganic Chemistry 

 The compounds our experimental collaborators have been able to develop have 

the potential to be employed in a variety of applications.  The Co(III), Zn(II) and Fe(II) 

complexes isolated by the Kodanko group can lead to the development of reagents useful 

in asymmetric synthesis and catalysis.  Our theoretical work on their systems have 

provided insight as to why the isolated isomer is the only one observed experimentally, 

and have given a degree of assurance that the isolated isomer is the isomer that will be 

predominantly present in future work with those compounds.  This will help assuage any 

concerns of any unpredicted product and will help assist in the design of more 

applications of these species.  

 The dicopper Cu(II) complex synthesized by the Winter group was initially part 

of an effort to design new precursors for growth of films using atomic layer deposition.  

From their work they found a shorter Cu—Cu separation than has been previously been 
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observed.  Our calculations have provided evidence for the factors controlling the metal 

separation.  With this in mind it may be possible to predict how to obtain even smaller 

Cu—Cu separation distances, however the ligands proposed in our theoretical studies are 

known to reduce the Cu(II) ion and therefore this complex may be experimentally 

inaccessible.  Nevertheless, with the insight gained from our computational study, other 

ligands can be designed to alter the Cu—Cu distance.  These results should be applicable 

to other paddlewheel complexes as well. 

 The Verani group has been working on a series of complexes for use in the 

development of molecular switches.  In order to be efficient switches the complexes must 

not only be stable over long term redox cycling, but also the redox properties of the 

complex of interest must be customizable and behave predictably.  To obtain the level of 

control necessary to develop applicable molecular switches, one must have a fundamental 

understanding of the redox properties and oxidation states of the species involved in the 

processes.  The theoretical support we have provided for the Verani group has 

corroborated their experimental findings of a series of Fe(III) based complexes.  By 

modifying the corresponding orbital method to obtain energetic data, a quantitative 

description can be obtained for the character of orbitals involved in the redox process.  

Future work will expand upon this work by exploring other complexes with different 

metal centers.    

  

9.8 Chapter 8: Applications of Electronic Structure Theory to Material Systems 

The aim of this chapter is to construct an inexpensive model to allow 

optimizations of a guest molecular system within a nanotube.  To achieve this, the 
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interactions nanotube are split into two components, a geometric component which 

contributes to the physical confinement of the guest inside of the tube, and an electronic 

component which affects the electronic structure of the guest.  The electronic component 

is represented by a polarizable continuum model (PCM), while the geometric component 

is represented by a molecular mechanics (MM) description of the nanotube-guest 

interaction.  This greatly reduces the cost of modeling guest systems inside nanotubes. 

The reaction profile for a simple system in this model was shown to agree with single 

point calculations of the whole system.  With this model in place, larger, chemically more 

complex systems can be studied.  The nanotube used in testing this model was by 1-2 

orders of magnitude smaller than the nanotubes used experimentally.  This model can be 

used to model reactions on such larger systems and provide a theoretical framework to 

study reactions taking place in these larger nanotubes. 
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 This dissertation covers research performed on applications of electronic 

structure theory to various fields of chemistry and is divided into eight chapters. Chapter 

2 covers modeling electron dynamics of butadiene interacting with a short, intense, non-

resonant laser pulse in the absence of ionization.  The effects of basis set size and number 

of excited states included in TD-CI simulations using wavefunction based methods is 

examined.  Chapter 3 expands on this work by examining the response using excitation 

energies calculated by time-dependent density functional theory.  Several DFT 

functionals are tested including: standard, hybrid, and long-range corrected functionals.  

The degree to which excited state energies and transition dipoles contribute to the final 

populations of the excited states is also examined.  Chapter 4 investigates the strong-field 

ionization of a series of linear polyenes of increasing length using a heuristic ionization 

model.  Also tested is the ionization dependence on parameters of the ionization model, 

basis set size, and number of states included in the simulation. 
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 Chapter 5 describes a study on a chiral pentadentate ligand synthesized by the 

Kodanko group and the geometrical preference for a single isomer out of five possible 

isomers.  Electronic structure theory indicates that the favored geometry is due to the 

chiral ligand, which prefers to be in a single conformation in metal complexes due to 

steric interactions.  Chapter 6 covers a paddlewheel dinculear Cu(II) complex synthesized 

by the Winter group.  This complex has the shortest Cu—Cu separation reported to date 

and electronic structure theory is used to explore the cause of this small separation.  A 

simple model is proposed where the metal separation is governed by twisting of the 

ligand due to interligand π orbital interactions.  Chapter 7 describes work done in 

collaboration with the Verani group, exploring the redox properties of some five-

coordinate Fe(III) complexes. Chapter 8 sets out to develop an inexpensive model that 

can be used to optimize guest systems inside single walled nanotubes.  The model takes 

advantage of the highly polarizable nature of nanotubes and is calibrated using a simple 

hydrogen bonded system.  Benchmarks are made to test the reliability of the model. 
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