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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

 Most vehicle crashes are caused by drivers’ fatigue or cognitive distraction [1]. 

In-car electronic devices such as computers, navigation systems, and mobile phones can 

lead to driver’s inattention that causes drifting off road. A research by the New England 

Journal of Medicine [2] found that drivers who talked on a cell phone were four times 

more likely to be in an accident than drivers who didn't. Heated dispute with passengers, 

fiddling with a radio or climate control system, thinking about other things rather than 

focusing in driving can also lead to driver distraction. Official report of traffic accidents 

indicated that hazardous driving behavior, such as drunk and drowsy driving, was 

responsible for a high proportion of car accidents [3]. Drinking alcohol prior to driving 

greatly increases the risk of car accidents that leads to death. A driver who consumes a 

large amount of alcohol are more likely to be involved in an accident. Alcohol slows 

down the functions of the central nervous system and delay the function of a normal 

brain. This means that a person is unable to function normally. A person's information-

processing skills (cognitive skills) and hand-eye coordination (psychomotor skills) are 

also affected by alcohol. The severity of alcohol impairment depends on the amount of 

alcohol present in the blood, which is based on a person's blood alcohol content 

percentage. According to National Highway Traffic and Safety Administration (NHTSA) 

report, drivers are considered to be alcohol-impaired when their blood alcohol 

concentration is 0.08 grams per deciliter (g/dL) or higher. In 2008, there were 11,773 

fatalities in crashes involving a driver with a blood alcohol concentration of 0.08 or 
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higher (in the United States) [4]. Driver drowsiness is considered as a major contributing 

factor of road crashes. The statistics of fatalities and injuries due to traffic accidents 

become more serious year by year. According to NCSDR/NHTSA Expert Panel on 

Driver Fatigue and Sleepiness (1998), driver’s drowsiness was responsible for 56,000 

crashes each year (in the United States) resulting in more than 40,000  injuries and 1,550 

fatalities per year. 

As the performance of computers and vision systems improved, the road safety 

became one of the largest areas of research in the automobile industry. Many driver 

support systems were developed to prevent vehicle crashes or mitigate their effects. In 

early years, seat belt, air bags, and rumble strips (area of grooved pavement placed on the 

road shoulder) had a large contribution on road safety. Recently, new automobiles are 

equipped with sophisticated driver assistance systems. Advanced driver assistance 

systems (ADAS’s) assist drivers for a driving process by monitoring the driving behavior 

and the vehicle surroundings to predict the dangerous situation in advance and take the 

desired action. These systems can be categorized according to its function to driver 

informing systems, driver warning systems, control-intervention systems and fully 

automatic control systems [5]. Moreover, DAS can be classified to longitudinal (such as 

rear sensing for parking, adaptive cruise control, forward collision warning, pedestrian 

detection and avoidance, and forward crash mitigation and avoidance—active braking ) 

and lateral assistance systems (i.e. lane departure warning system, lane keeping assist 

systems, parallel parking assist, and blind spot monitoring and lane change).  
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Among these promising systems, lane departure warning systems (LDWS) have a 

tremendous potential to save lives. Lane departure warning system is an electronic 

system installed in a vehicle to warren the driver when the vehicle is about to veer from 

the lane and no turn signal is used (unintended lane leaving) [6]. The main goal of lane 

departure warning systems is to provide a suitable warning to drivers, without any 

external intervention, at an early stage so drivers can take the correct action to avoid run-

off-road crashes. 

During the past several years, great efforts were made to design and develop 

robust and reliable LDWS. There are three main functions of any lane departure 

prediction system, data collection, data processing, and the decision making. According 

to the literature, LDS’s can be divided into three main classes based on the methodology 

applied; Algorithms based on calculating the time that a vehicle takes to cross the lane 

(Time to Lane Crossing TLC), on using vision sensors to estimate the position of the 

vehicle with respect to lane marking from the road scene, or on estimating the vehicle 

position using the driving variables (i.e. lateral position of the vehicle, steering angle, 

yaw rate, vehicle speed, vehicle lateral speed, etc.). Despite the method used, LDS should 

work properly in different road geometries (straight or curved), in different weather 

conditions and in any time of the day (day or night). 

In some cases, the lane departure is a normal event that can be resolved by a 

simple steering correction. However, the lane departure can lead to a very danger 

situation. In 2003, 42,643 people were killed in the United States; the number of fatalities 

due to the vehicle’s lane leaving was 25,000 lives  [7] which represents more than 58.5% 
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of the total fatalities .  In 2010, according to the National Highway Traffic Safety 

Administration [8], 32,885 died in motor vehicle traffic crashes in the United States, 

17,389 –almost 53% died in the crashes as a result of abnormal lane departure on the 

road.  

Different driving patterns can be seen daily in roadways. We can agree that 

people drive differently; some people drive in the center of the lane while others weave 

between lane lines.  For some, this may indicate a distraction due to drowsiness, 

drunkenness, or using some electronics while driving, while for others this is a driving 

style. However, the challenge is how we can predict in advance unintended lane 

departures caused by distracted drivers and in the same time keep the number of nuisance 

alarms as small as possible. 

 Different techniques, as can be seen in the literature, have been used to develop 

lane departure warning systems that can assist drivers and reduce the number of fatal 

crashes. Among these, the methods that use machine learning techniques to learn driving 

variables to detect the driving patterns that lead to unintended lane departure. These 

techniques do not subject to mathematical approximations and image processing.  

 The most recent and powerful machine learning technique that is used for pattern 

recognition is the Support Vector Machine (SVM).  SVM is a new supervised learning 

technique that based on statistical learning theory. SVMs are performing better, in many 

cases, than artificial neural network (ANN) [9]. SVM uses a quadratic programming 

which means the local minimum is always global minimum, unlike ANN which can be 

trapped by local minima.  
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 All the above stated points plus the huge amount of data collected in Ford motor 

company give a big motivation and challenge to do research and contribute to this field of 

ongoing study to save lives. 

1.2 Literature Review 

Three main different techniques were used for developing lane departure systems. 

The main goal of this section is to review the literature related to the LDWS implemented 

in previous works and highlight the shortcomings associated to each method. The 

literature review is organized based on the technological method used for implementing 

the model.  

1.2.1 Time to Lane Crossing-Based Techniques  

Time to lane crossing-based technique was first proposed by [10]. TLC is defined 

as: the time that the vehicle takes to drift out of the road boundary assuming the current 

steering wheel angle is held constant and there is no further steering intervention by the 

driver. Assuming  that the steering angle is constant, [11] proposed an algorithm to  find 

the intersection between the vehicle path and the road lines and to calculate the time 

required by a vehicle to cross this point (TLC) using the predicted down range road 

geometry and the future vehicle path. The interpolation method was used to improve the 

results and reduce the error. According to the author, the interpolation scheme reduced 

the TLC error by 40%. In this paper, some factors that affect the down range road 

geometry finding and the future path of the vehicle prediction were also studied to assess 

their effect on the calculation accuracy of TLC. 
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 Publication [12] developed a LDWS by using a lateral position and a speed of the 

vehicle to calculate (TLC). A vision based lane markers detection; lateral position 

estimation and a warning system were the main parts of the system. A lateral position of 

the vehicle was estimated by processing digitized images from a color video camera 

mounted on a side of a vehicle. Even though the system was acceptable and could detect 

lane markers in 60Hz, some human factors need to be added to improve the system. In 

the same way, [13] used a lane images contracted from a video camera and vehicle data 

to come up with data fusion algorithm that can robustly predict TLC. The vehicle 

position in the lane and the markers were constructed from a vision system, and sensors 

were used to collect the kinematic data of the vehicle. [14] Proposed a new method to 

reduce the false alarms resulted from a vision-based TLC-based lane departure prediction 

system. The new method utilized models of the driver behavior of directional sequence of 

piecewise lateral slopes (DSPLS) to discriminate between lane departure event and driver 

correction maneuver. The evaluation showed that this method could distinguish between 

the two events with an error rate of 17%. 

 Paper [15] conducted three experiments to compare the accuracy of TLC 

calculated in different ways. Three methods of computing TLC were examined. The 

trigonometric method which computed distance to line crossing (DLC) taking into 

account a curved path of the vehicle and divides it by the vehicle speed, TLC 

approximation using the first derivative of lateral position, and TLC approximation using 

the first and the second derivative of lateral position. In the first experiment, the TLC 

computed by the trigonometric method compared with the approximated TLC’s in a 
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normal driving maneuver with no lane departure. The results showed that the second 

approximation which used the first and the second derivative of lateral distance was 

comparable with the trigonometric TLC, while the first approximation that used the first 

derivative of lateral position showed poor results.  This means that the first 

approximation can’t be used in studying a driver behavior. The other two experiments 

were conducted during a lane change maneuver and an intentional lane departure due to 

impaired driving. According to the author, the simple approximation gave acceptable 

results over a short time before a lane leaving occurs. 

Many researchers studied the issue of accurate TLC computation.  However, the 

absence of the vehicle state variables and the vehicle trajectory made it difficult to 

estimate an accurate value of TLC.  Paper [16] examined different methods to estimate 

TLC based on the computation of distance to line crossing (DLC). A dynamic model with 

some approximations was used to calculate DLC and TLC in straight and circular roads 

in both zero and constant steering angle taking into account the steering characteristic of 

the vehicle. To solve the problem of road information unavailability, a state observer was 

proposed to estimate the road curvature assuming that the road curvature is almost 

constant. Moreover, by eliminating the slip motion of the vehicle, a kinematic model 

could be used to predict future vehicle location. The real data showed that to get 

acceptable results, vehicle dynamics must be considered. 

In general, we can say that TLC is a simple powerful method to predict an 

unintended lane leaving. However, the major shortcoming of the systems that use this 

technique is the large number of false alarms especially with drivers tends to drive close 
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to the lane markers. These nuisance alarms result from the use of assumptions and 

approximations to computing TLC. Practically, it is not possible to estimate the exact 

value of TLC due to the non-linearity and the absence of road geometry and vehicle state 

information.  

1.2.2 Estimating Vehicle Position with Respect to Lane Markings Using Vision 

Sensors  

 Detecting the lane boundary from the road images is another technique for lane 

departure systems. Paper [17] implemented a two model vision-based algorithm for 

LDWS. The estimated model used perception-Net to estimate the vehicle’s pose and the 

lane geometry while the warning model alarms when a lane crossing detected. By 

combining the classical vision-based lane detection approach with flow-based lane 

recognition technique, which measures the horizontal movement of road parallel 

structures, through a Kalman filter [18] could improve the performance of the system 

especially in a bad weather conditions. Publication [19] proposed a vision-based LDWS 

that utilized the edge information to express an edge distribution function. The edge 

distribution function was used to estimate the orientation of edge pixels and its local 

maximum to detect the lane boundary. Not far from that, [20] presented a brightness-

adaptive image processing-based LDWS. To enhance the visibility of the lane lines in the 

images, a gradient approach was used and an appropriate threshold selected to split 

between the lane lines and the roadway. 

 Paper [21] developed a method to detect lane markers in a different road 

conditions. The method based on extracting the lane markers from the road image then 
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grouping them to detect the lane markers using the least square approach.  [22] designed 

a real time DSP-based LDS that can work in a different weather conditions. A high 

performance digital signal processor was used to process digital signals of road images to 

detect lane marking and estimate the distance between the vehicle and the lane lines. 

These images captured by a video camera mounted on the windshield of a vehicle. To 

reduce the noise from the signals, median value and edge enhancing filters were used. 

According to the author, the system showed promising results and can be practically 

used.  

A novel lane detection algorithm to detect marked roads in images was proposed 

by [23]. This algorithm combined the road geometry features determined by a 

geometrical model and the lane model matching done by Gabor filter (linear filter used 

for edge detection) to improve the accuracy and facilitate the computation process of a 

lane detection.  

Most of the previous studies in LDWS’s were dedicated to warn the drivers in 

highways. One of the few studies that focused on urban roads was demonstrated by [24]. 

In this work, Hough transform and B-Snake were used to detect the lane boundary from 

an edge image contracted by Canny edge detector. The system provided a warning signal 

based on the ratio between the left and the right displacement of the vehicle. To get rid of 

the errors resulting from the lane recognition process, [25] experimented a new method 

depended on detecting  lane boundary points from forward looking images captured by a 

video camera mounted on the top left corner of the windshield. Using a vehicle model, 

the expected vehicle trajectories related to the detected boundary points and the 
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corresponding steering angel could be computed. Moreover, the time required for the 

vehicle to cross the lane could be estimated based on the expected trajectory and the 

speed of the vehicle. When this time exceeded a certain threshold, a lane departure 

tendency was predicted. 

Publication [26] conducted a research to detect the lane departure using the road 

geometry model. The lane boundary was detected by processing the images acquired by a 

CMOS camera. To improve the real time processing, the settings of the dynamic region 

of interest were used. In a related work, [27] proposed a LDWS by applying Hough 

transform to detect the lines in a segmented regions in the lower part of a lane image 

(area of interest). A lane departure decision was made based on the distance between the 

lane lines. In the same way , by extracting and segmenting the region of interest from 

images captured by a video camera [28] designed a new LDWS. A lane boundary model 

was implemented using the Hough transformation and a subtractive clustering algorithm, 

a Kalman filter was used to predict the future position of the lane markers. This system 

issued a warning based on the position of the vehicle with respect to the lane boundary 

which determined from the camera parameters and the width of the vehicle. 

 Realistically, detection of lane markings from the road images is the most 

important task of this kind of LDWSs. Even though, this technique showed robustness in 

some cases of lined roadways, it is not applicable in unmarked roads. Moreover, beside 

the difficulty of real time detection of the lane lines many other obstacles may cause the 

use of this technique quite limited. These complications include: shadow caused by 
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objects outside the road like trees, lines masking by dirt, water, or other vehicles in the 

street, beside the challenge of distinguishing between the varieties of lane markings. 

1.2.3 Estimating Vehicle Position Using Vehicle Variables 

The third technique that was used for LDSs is the one based on estimating vehicle 

position with respect to the lane lines using driving variables (i.e. steering angle, yaw 

activity, speed of the vehicle, breaking, etc.). In an early work, [29] presented a Future 

Offset Distance warning system that uses a new alarm decision model. This model allows 

the vehicle to pass the lane boundary by applying an adaptive virtual lane boundary to 

reduce the number of false alarms. An alarm triggers when the lateral position of a 

vehicle is greater that the virtual lane boundary. [30] combined different methods to 

implement a LDWS. The lane departure event was detected by measuring the lateral 

displacement of the vehicle using the lane detection algorithm.  Furthermore, to make the 

system more effective, a virtual lane boundary was proposed to warn the driver in a 

suitable time before the lane leaving actually occurs. Besides, to reduce the number of 

false alarms, warnings were suppressed if the driver set the turning signal or breaks. 

Risack used the TLC to detect the case when a vehicle cutting the curved lane to avoid 

the unnecessary warning. 

 Paper [31] employed images captured by a CCD camera to estimate the vehicle 

parameters. Image processing was used to obtain lane marking, to calculate the lateral 

offset and the lateral velocity of the vehicle by analyzing the images in a frequency of 30 

frames/sec. A radial basis probability network (RBPN), related to fuzzy neural network 

FNN, was applied to distinguish between a normal lane changing and an unintended lane 
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departure then trigger a warning based on the level of dangerous expected. 5 seconds of a 

lateral velocity and a lateral lane position before each normal lane change and unintended 

lane leaving were devoted. The neural network trained with seven scenarios of video 

recording and five simulation scenarios. According to the author, after several learning 

and training, neural network was able to determine unintended lane departure by rate of 

96.34%.  

 To differentiate between the intended and unintended lane departure, [32] 

designed a model using driving activities. The yaw rate and the lateral speed were used to 

estimate the driver’s activity and trigger a warning based on the state of the driver. 

1.3 Research Objectives and My Technical Contributions 

The main goal of the dissertation is to explore an innovative approach to 

predicting unintended lane departure with minimum false alarms using some of the 

vehicle variables.  My technical contributions include: 

- I explored utilizing the nonlinear binary support vector machine (SVM) technique 

and the time series of vehicle variables to predict unintentional lane departure, 

which is innovative as no machine learning technique has previously been 

attempted for this purpose in the literature. I explored several sets of vehicle 

variables as inputs to the SVM. I experimented the linear, polynomial and RBF 

kernels for the SVMs, which are the most popular kernels in the literature. The 

SVM’s predictive ability was experimentally optimized by finding the best SVM 
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kernel and its parameter values and the most appropriate set of vehicle variables, 

which turned out to be the lateral position and lateral velocity. 

- The preliminary results showed that the SVM was able to predict most of the lane 

departures. However, a significant number of falsely predicted lane departures 

were observed. To minimize the number of falsely predicted lane departures, I 

developed a two-stage SVM training scheme: in which the first-stage testing 

results of a SVM were used in the second-stage of its training.  

1.4 Introduction to Support Vector Machines   

Support vector machine (SVM) is a supervised learning method based on 

statistical learning theory that can be used for data classification, regression and pattern 

recognition. SVMs can be applied to solve many complicated problems that cannot be 

solved by classical programming techniques due to the absence of a mathematical model 

(i.e. hand writing character recognition, speech recognition, data mining and knowledge 

discovery, image classification and several biomedical applications). The basic idea 

behind SVMs is to find the best hyperplane(s) that can separate n-dimensional data into a 

number (two in case of binary SVMs) of categories or classes. To make it clear, this 

section is dedicated to define some technical terms and explain the mathematical 

background of support vector machines. 

1.4.1 Supervised and Unsupervised Learning 

 Machine learning is classified as supervised or unsupervised learning. Supervised 

learning is the type of learning in which training data are available and labeled with the 
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correct result (i.e. the input data and the corresponding output is known). The training 

data is in the form                          in a dimension of       where    is the 

input data (known as samples, features, or attributes),    are the outputs or labels, and   is 

the number of examples. In other words, supervised learning aims to classify objects to 

one of a pre-specified set of categories or classes. Generally, supervised learning consists 

of two steps: training step, to learn classifier from training data, and testing step (known 

as generalization) to enable unseen objects to be identified as belonging to one of the 

classes. Examples of supervised learning techniques are decision trees, neural networks, 

and support vector machines.  However, this is not always the case, and there is another 

type of learning in which the training data with pre-defined labels are not available. This 

is known as unsupervised learning or clustering. In this case, the program search for the 

similarity between samples of data in order to decide which objects should be grouped 

together without any prior information. This technique can be used in image 

segmentation, and speech coding.  As a supervised learning technique, SVM is one of the 

powerful techniques that can be used in classification and pattern recognition. There are 

two classes of SVMs, linear and nonlinear. A linear SVM can only perfectly separate 

classes of data that are linearly separable by a hyperplane (in the case of binary SVM) or 

a set of hyperplanes (in the case of multi-class SVM), whereas a nonlinear SVM is 

capable of classifying data with more complex structure that are not linearly separable. 

Strictly speaking, no real-world classification problem is linearly separable. For 

predicting lane departure events, a binary nonlinear SVM was needed because there were 
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only two class labels: 1 (lane departure) and –1 (not lane departure). In the next few 

subsections, we briefly review how a binary linear and nonlinear SVMs work. 

1.4.2 Linear Support Vector Machines 

 This section introduces a brief dissection of the mathematical background of 

linear support vector machines. Only two-class (binary) SVMs are discussed for both 

separable and non-separable data. 

1.4.2.1 Separable classes  

 Let   and   be the input set and output set of the data to be classified, 

respectively. For binary classification, output is            . Let’s suppose there are 

  training examples with n features,         where                   . A data 

point to be classified is denoted    . The main idea of training a SVM is to find the 

best line in two-dimensional cases, the best plane in three-dimensional cases, or the best 

hyperplane in higher than three-dimension that separates the two classes of data with a 

maximum margin. Such a line, plane or hyperplane is called the decision function. Figure 

1.1 illustrates an example of the maximum margin separation between two classes of 

two-dimensional data where the label (1) represent the points related to class C1 (blue 

dots), while (‒1) for those of C2 (red dots) [33]. The equation for the line separating the 

data into two classes is 

                                                                                               (1.1) 

and the decision function can be written as  

                                                                                       (1.2) 
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where w is a 2x1 the weight vector perpendicular to the line (determine the direction of 

the separating line) and b is the bias (determines the exact position of the separating line). 

The data are linearly separable because a line can divide the two data classes without any 

misclassification. As shown in the Fig. 1.1, this hyperplane is not unique. However, only 

one of them achieves maximum separation (sold line) and should be chosen because it 

leaves more space in both sides, so that data can move a bit without a risk of being wrong 

classified. This is called a maximum margin classifier, and it gives a less chance of 

misclassifying data when it works with unknown data (testing data); this concept is 

known as the generalization performance of the classifier. 

 

 

 

 

 

 

 

 

 

Figure 1.1. A two-dimensional example illustrating linearly separable data [34]. 

We can scale w, b so that the value of D(x) at the nearest points to the margin (known as 

support vectors) is equal to 1 at C1, and -1 at C2. 
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                             (1.3) 

                    (1.4) 

and,                            C1 

                               C2 

Thus:                     

for two support vectors       on each side of the hyperplane, the margin is given by 

projecting the vector         onto the normal vector to the hyperplane i.e. 
 

   
 (Figure 

1.2) from which we get 

                      
 

   
          (1.5)  

 

 

 

 

 

 

 

 

 

Figure 1.2. Margin for linearly separable data [34]. 

The task now is to compute the parameters w and b for maximum margin. Maximizing 

the margin is equivalent to the minimization of the function [35]: 
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                (1.6)  

 Subject to the constraints: 

                                           (1.7)  

This is a quadratic optimization problem subject to linear constraints. The objective 

function to optimized is 

               
 

 
                          

                          (1.8) 

Where L is the Lagrange function and    is the Lagrange multipliers. To find the 

optimum solution, this requires the derivative of L with respect to w and b vanishes,        

                              
  

   
   gives;  

                                     
                                    (1.9) 

               ,  
  

   
   gives;    

                 
 
                            (1.10) 

by substituting (1.9), (1.10) into (1.8) we get 

                 
 

 

 
      

 
                       (1.11)   

 Subject to the constraints 

           , and 

             
    

The decision function is 

                
 
                    (1.12) 

 For every training point there is a Lagrange multiplier    that can be either zero or 

positive. The points in which the Lagrange multiplier      are called support vectors 
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and lie on either of the hyperplanes         . The eq. (1.6) is a strict convex, this 

means the optimal hyper plane classifier of a support vector machine is unique [35]. One 

remark is, the importance of SVMs comes from the theoretical bounds on the 

generalization error which has two features: the upper bound on the generalization error 

does not depend explicitly on the dimensionality of the input space, and the bound is 

minimizing by maximizing the margin M. 

1.4.2.2 Non-Separable Classes (Soft Margin Classifier) 

 Consider the case where the training data are not separable as shown in Figure 

1.3. In this case, there is no possibility to draw a hyperplane that can completely separate 

the two classes; moreover, the above algorithm cannot be applied. Three classes of 

training data can be seen in this case: data are correctly classified, data are correctly 

classified (in the right side of the separating line) but falling inside the band enclosed by 

       , and         , and data that are misclassified. To solve this problem 

with a minimal number of errors, we allow some amount of slackness in constraints (1.7) 

when necessary by introducing new variables, 

                                                                         (1.13) 

                                                                       (1.14) 

The variables    are known as slack variables. It is clear that if        the data point 

lies between the margin and the correct side of hyperplane, and if     , data point is 

misclassified (Fig. 1.3). The objective now is to maximize the margin, and at the same 
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time keeping the points were      as small as possible. Thus, in this case the objective 

function to be minimized is 

                 
 

 
         

 
                     (1.15) 

subject to the constraints (1.13), (1.14). The parameter c in eq. (1.15) is a regularization 

constant, a positive constant that can be estimated using a cross-validation technique or 

can be found experimentally. As the value of c changes, the norm     changes 

correspondingly [36]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. A two-dimensional example illustrating non-linearly separable data [35]. 

This is also a quadratic programming problem, and its lagrangian is given by 

             
 

 
          

 
        

 
    

                   
                                      (1.16) 
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Where    are the Lagrange multipliers introduced to enforce positivity of the   . To find 

the optimum solution, this requires the derivative of L with respect to w and b vanishes 

                  
  

   
   gives;  

                                      
                                                       (1.17) 

                ,  
  

   
   gives;    

                                      
 
                               (1.18) 

                 ,
  

    
   gives, 

                                                                                                 (1.19) 

                                     
                                              (1.20) 

                                                                                                               (1.21) 

                                                                                                     (1.22)  

                                                                                                     (1.23) 

Thus the task now is to maximize (1.16) subject to constraints (1.17), (1.18), (1.19), 

(1.20), (1.21), (1.22), and (1.23). Now, by substituting the above equality into the 

Lagrangian, we can see that, neither    nor their Lagrange multipliers appear in the dual 

problem 

Maximize                     
 

 

 
      

 
                                             (1.24) 

subject to,      

                                                                   (1.25) 

        
                                             (1.26) 
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Equation (1.19) combined with (1.21) shows that if      then     . If      (when 

the data points fall inside the band) the corresponding Lagrange multipliers will have the 

upper bound of c. 

1.4.3 Nonlinear Support Vector Machines 

 Linear support vector machines cannot handle many of complicated classification 

tasks due to computational power limitation. For binary class data that are only 

nonlinearly separable, a nonlinear binary SVM is required. It first maps, via a function  , 

the   data points in the input space   to a higher (can be infinite) dimensional space so that 

the mapped data in the new space   (called the feature space) become linearly separable. 

Figure 1.4 shows how the input data is mapped to the feature space. The feature space is a 

vector space where the dot product is applicable. The binary SVM’s decision function is 

       

    i. e.              

                     

And the decision function (1.12) becomes 

             
 
                                    (1.27) 

It is quite clear that the input data appear in the decision function (1.12) in the form of 

inner product      and in (1.27) as the inner product of           . Thus, rather than 

explicitly mapping the input data into a higher dimension a space and performing a linear 

SVM classification, we can operate in the input space using the so called Kernel function 
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        which implicitly represents the inner product of the mapped data in the feature 

space. 

                             (1.28) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Mapping input data into a higher dimension feature space [36]. 

 Mathematically, the valid Kernel must satisfy the Mercer’s theorem: 

for any     ,     such that, 

              
 

 
                   (1.29) 

there must be the case where, 

           
 

 
                        (1.30) 

Thus, the Kernel should be a positive semi-definite. In non-linear SVMs we need first to 

choose a suitable kernel function, and then maximize the function 
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Maximize                     
 

 

 
      

 
                          (1.31)             

subject to,                                                                (1.32) 

                 
                                                      (1.33) 

And substitute the optimum    in the decision function (1.27) 

                     
 
                 

 

1.4.4 Kernel Functions 

 There exist many kernel functions in the literature. The commonly used ones 

include the linear kernel, polynomial kernel, exponential kernel, and radial basis function 

(RBF) kernel, to name a few [37].  

- Linear Kernel: is the simplest Kernel function that given by the inner product as 

following 

                                                                               (1.34) 

 where the constant, k is optional. 

- Polynomial Kernel: is a non-stationary Kernel and data should be normalized 

when using this Kernel. A polynomial of degree, d can be written as: 

                                                                               (1.35) 

 where, k is a constant. It leads to the linear kernel when    . 

- Gaussian (radial basis function) kernel: 
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                                                       (1.36) 

where σ is a design parameter.  

- Hyperbolic tangent (Sigmoid) Kernel: the sigmoid function is the activation 

function which used in neural networks.  

                                                                                         (1.37) 

where,   is the slop, and k is a constant. 

- Exponential Kernel: is similar to a radial basis Kernel. 

                                          
       

                                            (1.38) 

 Choosing the most appropriate kernel function is an important step for any 

application. Nevertheless, there presently lacks a general method to find it. The kernel 

function selection is application-dependent and hence must be sought with a certain 

degree of trial-and-error effort. Performance of the SVM also depends highly on its 

design parameters, including the parameter of the kernel.  

1.4.5 Kernel Selection 

 Choosing the kernel function is a key issue when using a learning technique. The 

kernel function          implicitly represents the inner product of the mapped data      

in the feature space                      where N is the dimensionality of the 

Reproducing Kernel Hilbert Space [38]. Therefore, the choice of the a good kernel means 

the choice of the effective representation of the data. The problem of choosing the kernel 
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for the SVM, or the appropriate data representations for learning, is an important one. 

There is no a general method to find a good data representation; however, [39] has shown 

that for a given data representation there is a systematic method for kernel estimation 

using semi-definite programming. In the literature we can find many Kernel functions 

that can be used with non-linear SVMs.  

1.4.6 Parameter Estimation 

 Parameter estimation is an important step in SVMs. SVMs algorithms usually 

depend on some parameters, the regularization parameter c which controls the tradeoff 

between margin maximization and error minimization and the kernel parameters which 

appear in the non-linear mapping into feature space such as σ in RBF and exponential 

kernel and d in the polynomial kernel. A cross-validation technique is usually used  to 

assess SVMs classifiers with given kernel arguments and regularization constants. 

Moreover, SVMs parameters and kernel parameters can be chosen experimentally.  

1.4.7 Data Preprocessing 

 Data preprocessing is an important step in machine learning systems and can 

affect the results. Raw data usually tend to be noisy, inconsistent or impossible data 

combination due to the loosely control in data collection. Different data preprocessing 

technique can be applied to correct the data. Data pre-processing includes data cleaning, 

normalization, transformation, feature extraction and selection [40]. Data cleaning, for 

example, can be used to remove noise and correct inconsistence in data. Data 

normalization can be applied, where data are scaled to fall within a specified range (i.e. 1- 
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to1 or 0 to 1). This can improve the accuracy and efficiency of algorithms. Moreover, in 

data collection, many features may be used to represent the data, however only some of 

them can lead to good results. The process of selecting the appropriate variables and 

removing the irrelevant and redundant variables is called feature selection. 

 Data reduction technique is helpful in analyzing reduced data set. Complex data 

analysis on huge amounts of data may take a very long time, making such process 

impractical and time consuming. 

1.4.8 Features Selection  

 The first step in machine learning systems is to select the appropriate set of 

training data that characterize the task to be learned. This step is known as features 

selection, variables selection, or attributes selection. Features selection has an enormous 

impact on the success of learning algorithms to recognize complex patterns and make 

intelligent decisions based on data. It is very important to select the most effective 

features rather than all available features. 
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CHAPTER 2 A TWO-STAGE SVM TRAINING SCHEME 

FOR LANE DEPARTURE PREDICTION 

The main goal of this dissertation is to develop a robust and reliable unintentional 

lane departure prediction algorithm that can work in different conditions with minimum 

false alarms using some driving variables based on support vector machines (SVMs). In 

this chapter we show how the two-stage support vector machines (SVMs) training 

scheme can provide enhanced unintentional lane departure prediction.  

2.1 The Two-Stage SVM Training Scheme  

 In a two-class classification application, which is the case of this study, a SVM is 

trained with input-output examples to find the best decision function to separate the two-

class test data with minimum error. This section describes the steps that we applied to 

implement a two-stage SVM training scheme for lane departure prediction. 

Initially, we explored a set of variables as inputs of a SVM to develop a lane 

departure prediction system. The preliminary results showed that the SVM was able to 

predict the majority of the lane departure events. However, there were a quite significant 

number of falsely predicted lane departures. We carefully analyzed the results and found 

that most of the SVM errors were made when the vehicle was close to the inner edges of 

either side of the lane boundaries. Because these situations resemble real lane departure 

patterns, they caused the SVM to misclassify. To better understand this type of situations, 

let us see two specific cases. Figure 2.1 shows two different types of driving maneuvers 

in terms of vehicle lateral position that were recorded during drowsy driver #2’s 
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experiment.  The width of the simulated lane was 3.81 m. The displacement of the 

vehicle from the center of the lane is called a lateral position of the vehicle. A lateral 

position of 0 m means the vehicle is in the center of the lane while a positive or negative 

lateral position means the vehicle is deviated toward the right or left side of the lane, 

respectively. A simulated 2000 Volvo S80 was used in our study and its body width is 

2.19 m. Hence, the vehicle is out of the lane when the lateral position is greater than 0.81 

m or less than ‒ 0.81 m. Fig. 2.1(a) displays a driving pattern when the driver was trying 

to prevent the vehicle to cross the lane boundary (i.e., maintaining the lateral position to 

be less than 0.81 m) even though the vehicle was very close to the boundary. Clearly, this 

is not a lane departure event. Fig. 2.1(b) shows a similar driving pattern that is a lane 

departure event. The high similarity in cases like these posed a challenge to the SVM.  

(a) Driving maneuver pattern 1 (not a lane deviation event)  
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(b) Driving maneuver pattern 2 (a lane deviation event) 

Figure 2.1. Two driving maneuvers performed by drowsy driver #2 that appear to be 

quite similar. 

 The cases like those in Fig. 2.1 motivated us to develop a two-stage SVM training 

scheme: in which the first-stage testing results of a SVM are used in the second-stage of 

its training. More specifically, for the first-stage training, the driving data of all the 

drowsy and control drivers that we had (see Section 2.2.1 below) were divided into three 

sets, namely Training Set A, Testing Set A, and Testing Set B. Training Set A contained 

training examples constructed using only (randomly) selected lane departure event data. 

Some of these examples were labeled as lane departure while the rest were marked as 

non-lane departure (see Section 2.3.1 below for detail). Because of the way this training 
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set is formed, the number of data points in it as percentage of the total number of data 

points is very small. Next, each of the driver’s driving record was divided at the middle 

point of his/her driving time and the first half time record became Testing Set A while the 

second half became Testing Set B.  Training Set A was used to train a SVM and Testing 

Sets A and B were employed to test the trained SVM, leading to an initial testing result 

(note that this result is the final testing result if the SVM is supposed to be trained in one 

single stage). This completed the first stage of the training. There are only four possible 

classification outcomes: (1) true negatives (correctly predicted non-lane departures), (2) 

false negatives (lane departures failed to be predicted), (3) true positives (correctly 

predicted lane departures), and (4) false positives (falsely predicted lane departures). 

While the initial testing result could be very good, it most likely would contain 

classification errors partially because the SVM failed to differentiate the similar driving 

patterns shown in Fig. 2.1. Subsequently, we carried out the second-stage training of the 

SVM. The training data for this stage, named a Training Set B, were entire Training Set 

A plus a number of randomly selected false positives in the initial testing result that were 

related to Testing Set A only (i.e., they had nothing to do with Testing Set B). After the 

second-stage training, the SVM was tested by Testing Set B, which yielded the final 

testing result of the SVM.  

Due to the additional stage of training, the resulting SVM is expected to 

outperform a similar SVM undergoing only one stage of training. We will show the 

performance comparison results later. For convenience, the two-stage and one-stage 

trained SVMs are named SVM 2 and SVM 1, respectively.  
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2.2 Experiment Data 

2. 2.1 Data Source for SVM 1 and SVM2 

The SVM was trained and tested using the driver experiment data generated by 

VIRtual Test Track Experiment (VIRTTEX), a hydraulically powered 6-degrees-of-

freedom moving base driving simulator at Ford Motor Company. The experiments were 

conducted by a group of Ford researchers for evaluating four different human machine 

interfaces for lane departure warning around 2004 [41], which is about seven years before 

the work reported in this paper began. This simulator emulated a 2000 Volvo S80. The 

test participants, all were licensed drivers and signed the consent form, were divided into 

two groups - drowsy group and control group. There were 32 subjects in the former group 

who were deprived of sleep for almost one day before starting a three-hour simulated 

drive while the 6 control drivers having a full night of sleep drove the same simulated 

vehicle for 20 minutes. 

The drive was on a simulated 514-km long, dry, four-lane (two for each direction) 

US interstate under nighttime conditions. The road was divided by a median or concrete 

barrier. The test participant was asked to drive in the right lane only.  Traffic density was 

very low. Vehicle variables, including the common ones (e.g., speed, lateral position, and 

steering angle), were collected at a sampling period T = 0.02 s [42]. 
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Figure 2.2. The VIRTTEX driving simulator [42] 

We used the experiment data representing 16 drowsy drivers and 6 control drivers 

for the SVM lane departure prediction study. For each driver, the time series at the 

beginning of the experiment when vehicle speed was below 20 MPH were removed, so 

were the data at the end of the experiment after the brake was fully applied. The 

remaining time series were used in the training and testing of the SVMs. There were a 

total of 3,508 lane departures for the 16 drowsy drivers and only 23 for the 6 control 

drivers (two had none).  
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2.2.2 Description of Variables 

 This subsection gives definitions and formulas of the most common variables that 

we used in this lane departure prediction system.  

- Distance from the center line: is the distance between the vehicle’s center of gravity 

     and the center line (see Figure 2.3). 

- Lateral position: is the lateral position of the vehicle in the lane. It can be calculated 

using the following equation: 

                                                     
          

 
       (2.1) 

where                      , 

                                 

 

 

 

 

 

Figure 2.3. Distance between the vehicle's center of gravity and the center line. 

-Yaw angle: is the vehicle’s yaw angle in global coordinate system in degrees. To align to 

zero yaw for vehicle driving forward, we need to subtract 90º from Yaw angle. 

Left lane of street 

Right lane of street 

Center line 

between lanes 
                        >0 Lane width 

    3.81m 
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- Lane deviation: indicates if a vehicle inside or outside a lane. This variable assigned 

value 0 if a vehicle still inside the lane and 1 when the vehicle is outside the lane. A 

vehicle is considered outside a lane when a lateral position is greater than 0.81 m or less 

than ‒ 0.81 m. 

- Lateral velocity: is the lateral velocity of a vehicle. The lateral velocity of a vehicle is 

calculated using the following formula: 

                     
                                           

 
                             (2.2) 

 where        is the sampling period. 

2.2.3 Data Analysis 

 This section gives an overview about the recruited drivers and their style of 

driving based on the collected data. Moreover, Data needs to be analyzed to decide which 

variables that have a large contribution to lane departure so it can be used as inputs to the 

lane departure system [43]. There were many variables that were collected in VIRTEX 

lab at Ford Motor Company.  

 Figures, 2.4 and 2.5 show the percent of driving positions for the control drivers 1 

and 5, respectively. The data shows that driver 1 had no any lane departure, while driver 

5 drifted eight times out of the lane. It is clear that the control driver 1 drove most of the 

time in the middle of the lane (almost 80% within 0.2 m from the center of the lane), 

while the control driver 5 drove most of the time (96%) in the left side of the lane. 

Known that all drivers were ordered to drive in the right lane, control driver 5 hugged the 
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left side of the lane. This style of driving is more confusing because it shows that the 

driver is about to leave the lane while it is not. This can cause more false predictions of 

lane departure. Figures, 2.6 and 2.7 show the percent of driving positions for the drowsy 

drivers 3 and 14, respectively. The data shows that drowsy driver 3 departed the lane 58 

times, while the drowsy driver 14 runs 389 times out of the lane boundary. Figure 2.7 

indicates that drowsy driver 14 drove most of the time (more than 79%) in the left side of 

the lane and 31.5% of the time in more than 0.5 m lateral position. This explains the high 

number of lane departure the driver had committed. In case of drowsy drivers we cannot  

Figure 2.4. Percent of driving in different lateral positions for control driver 1. 
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Figure 2.5. Percent of driving in different lateral positions for control driver 5. 

attribute this to only the way of driving, the degree of fatigue due to drowsiness had a big 

influence on this way of driving. The conclusion that we could come up with was: a 

vehicle lateral position is one of the most important features correlated to a vehicle lane 

leaving. 

More driving features were investigated to select the most appropriate variables 

for our system and remove the irrelevant and redundant variables. An example of a driver 

14 shows different driving variables that can give a good notion about the better variables 

that can be used as input to the lane leaving prediction systems. 
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Figure 2.6. Percent of driving in different lateral positions for drowsy driver 3.  

 

Figure 2.7. Percent of driving in different lateral positions for drowsy driver 14. 
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Example for drowsy subject 14 

  Figure 2.8 shows some features for the drowsy driver 14. As mentioned before, 

there is no fixed time for lane deviation. Long lane deviations show smooth transition in 

features while short lane deviations have abrupt features transition. Figure 2.9 focuses on 

steering signal and lateral velocity during a short lane deviation. The figure shows that 

during the lane leaving the driver exhibited approximately a sinusoidal steering pattern in 

order to fast return the vehicle back to the lane then straighten it. Furthermore, the lateral 

velocity during the vehicle return can be higher than that during the departure. Such 

patterns can only be learned (by machines) when a reasonable sized window of samples 

is used. Thus for all practical purposes when using the SVM for a lane departure, an 

entire window of samples is used as input instead of a single sample.  

 As many variables were collected, reasonably not all combinations of them may 

be used. As can be seen in Figure 2.10 the lateral velocity and the lateral acceleration are 

quite correlated. As lateral acceleration increases, the lateral velocity also increases and 

vice versa.  

 

 

 

 

 



40 

 

 

Figure 2.8. One hour of driving for drowsy driver 14. 

 

Figure 2.9 Steering angle and lateral velocity signals during a lane deviation for drowsy 

driver 14. 
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Figure 2.10 Lateral acceleration and lateral velocity for drowsy driver 14. 

 

2.2.4 Data Cleaning 

 Data cleaning is an important step that can affect the results. Raw data usually 

tends to be noisy and inconsistent. The first step was to investigate the data of the six 
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lateral position of the vehicle is less than 0.81 m                         and the 

vehicle is considered outside the lane                    . The inconsistency of the 

data can impact the results; therefore, deep investigations were done to clean the data. 

Figures, 2.11 and 2.12 show the numbers of marked and unmarked lane deviations for 

both control and drowsy drivers, respectively. Figure 2.13 indicates the repetition of 

different durations of unmarked lane deviations.  

 Two types of unmarked lane deviations can be seen in the data: 

 The first unmarked lane deviations are the instances that preceding real lane 

deviations. Those are too short in time and appear more often in the data. We 

considered those as lateness in marking lane deviations, and the solution was to 

mark these samples as deviated samples. 

 The second unmarked lane deviations are the ones that separated from real lane 

deviations. Those are too rare and last for a long time. The consistency in the 

lateral position indicated that, those unmarked lane deviations were real lane 

deviations, and the solution is to mark them as lane deviations. 

The second type of data inconsistency is the marked non-lane deviation. There are 

three types of marked non-lane deviations: 

 The first marked non-lane deviations are the instances that follow real lane 

deviations when the vehicle returning back to the lane. This type of wrong 

labeling has no effect on the results. 
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 The second marked non-lane deviations are the instances that preceding 

real lane deviations. Those are short in time and appear more often in the 

data. This type of error considers that the vehicle outside the lane before it 

truly exceeds the lane line and the solution is to mark these instances as 

non-lane deviations. 

 The third marked non-lane deviations are the ones that separated from real 

lane deviations. Those are too rare and last for some seconds. To avoid the 

effect of these inconsistent data on the results, we excluded these parts of 

data. 

Figure 2.11. Marked and unmarked lane deviations for control drivers. 

 

 

d1 d2 d3 d4 d5 d6
0

5

10

15
Number of marked and unmarked lane deviations for control drivers

drivers

N
um

be
r 

of
 L

D
s

 

 

Marked lane deviations

Unmarked lane deviations

N
u

m
b

er
 o

f 
La

n
e 

D
ev

ia
ti

o
n

s 

c1                  c2                               c3                         c4                     c5                          c6      

Control Drivers 

 



44 

 

 

Figure 2.12. Marked and unmarked lane deviations for drowsy drivers. 
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(b) Duration of unmarked lane deviations for drowsy driver 2 
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(d) Duration of unmarked lane deviations for drowsy driver 4 

 

(e) Duration of unmarked lane deviations for drowsy driver 5 
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(f) Duration of unmarked lane deviations for drowsy driver 6 

 

(g) Duration of unmarked lane deviations for drowsy driver 7 
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(h) Duration of unmarked lane deviations for drowsy driver 8 

 

(i) Duration of unmarked lane deviations for drowsy driver 9 
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(j) Duration of unmarked lane deviations for drowsy driver 10 

 

(k) Duration of unmarked lane deviations for drowsy driver 11 
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(l) Duration of unmarked lane deviations for drowsy driver 12 
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(n) Duration of unmarked lane deviations for drowsy driver 14 

 

(o) Duration of unmarked lane deviations for drowsy driver 15 
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(p) Duration of unmarked lane deviations for drowsy driver 16 

Figure 2.13. Duration of unmarked lane deviations for the 16 drowsy drivers. 
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steering angle. The speed was normalized to [0, 1] whereas the steering angle, yaw 

deviation, and change in steering angle were normalized to [-1, 1]. 

The prediction horizon for SVM 1 and SVM 2 (i.e., the amount of time in advance to 

detect a lane departure before it occurs) was set at three different levels: 0.2 s, 0.4 s or 0.6 

s. Training examples were created from a lane departure event in an experiment by using 

the P data points prior to the lane departure moment. Each example consisted of N-point 

time series of the vehicle variables. Choosing appropriate time series length (i.e., time 

window size) is very important in order for the SVMs to attain the best prediction results. 

There is no general method to determine the optimal window size. In this study, the time 

series length for each prediction horizon was decided experimentally. Table 2.1 shows, as 

an illustrative instance, how 12 training examples are generated, where a lane departure is 

assumed to occur at time 17T. In this case, P=16, N=5, and the prediction horizon is 10 

data points or 0.2 s (hence the lane departure class label for 7T to 16T is set 1). Each row 

of the five consecutive # symbols below the “Class Label” row represents a time series 

training example. Note that the class label of a training example is determined by the time 

instance of the last data point in the example (e.g., –1 for Example 1 and 1 for Example 

3). The following relationship is obvious:,  

 number of training examples = P × number of lane departure events – N + 1  

Each data point in the time series was treated as an input variable for the SVMs. 

Thus, there were 3N input variables if three vehicle variables were involved in the N-

point long time series. For the lateral position and lateral velocity combination with 0.4 s 

and 0.6 s prediction horizon, every variable value was squared first before being fed to 
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the SVMs to enlarge the differences between the two consecutive values of the variables 

when the difference is larger (because |a2–b2| > |a–b| when |a+b| > 1). This operation was 

not applied to the 0.2 s prediction horizon because it was significantly easier for SVMs to 

classify the data with excellent results at this shorter horizon than they do at 0.4 s and 0.6 

s. This operation was also applied to variable combinations (8) and (9). 

 We used all the odd number of lane departures (1,756 in total) as the base to create 

all the training examples for Training Set A. The total numbers of training examples for 

prediction horizon 0.2 s (using P=36 and N=6), 0.4 s (using P=74 and N=8), and 0.6 s 

(using P=84 and N=10) were 63,211, 129,937 and 147,495, respectively. They represented 

a total driving time of 21.07 min, 43.31 min and 49.17 min, respectively. Together, they 

represented less than 5% of the total driving time for the 22 drivers, which was 42 hours 

and 7 minutes (this is after the low speed data were removed).  

Table 2.1.  Illustration of constructing training examples from one lane departure event. 

 

 To prepare the examples for Training Set B, we employed all the examples in 

Training Set A plus examples constructed using all the false positives (59 in total) 

 
Time 

T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12T 13T 14T 15T 16T 17T 
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# # # # #             
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 # # # # #            
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  # # # # #           

: 
 

Example 12 
           # # # # #  



55 

 

corresponding to Testing Set A in the case of 0.4 s prediction horizon and 80% of the false 

positives (150 in total) for 0.6 s prediction horizon. The number of training examples 

generated from a false positive event equals to the number of consecutive moments 

involving the data from Testing Set A at that time that were misclassified by SVM 1 as 

lane departure. As a result, the total numbers of training examples were 132,301 and 

154,194, respectively, for the 0.4 s and 0.6 s prediction horizons. They represented a total 

driving time of 44.1 min and 51.4 min, respectively. Comparing to Training Set A, a total 

of 2,364 and 6,699 false positive examples were added to Training Sets B for the 0.4 s and 

0.6 s prediction horizons, respectively. A Training Set B was not formed for the 0.2 s 

prediction horizon because there were only total two false positive cases for all the 22 

drivers after the first-stage training, indicating the second-stage training is unnecessary. 

2.3.2 Preparation of Testing Sets A and B 

The trained SVM 1 was tested against the 16 drowsy drivers and 6 control drivers 

while the trained SVM 2 was assessed involving only the 16 drowsy drivers because there 

were too few false positives in the initial testing result to generate training examples.  

The data in a Training Set A were excluded from the driver data files and each of 

the resulting driver files was then divided into two equal-length time series files from the 

middle point of time to form Testing Set A using the first resulting time series and Testing 

Set B using the second resulting time series. An N-point sliding time window moving one 

data point at a time was used to generate test cases from the Testing Sets for each driver 

(N=6, N=8, and N=10 for the prediction horizons 0.2 s, 0.4 s and 0.6 s, respectively, 

regardless of the driver type). The total numbers of testing examples for Testing Set A and 
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Testing Set B were the same. For prediction horizon 0.2 s (using P=36 and N=6), 0.4 s 

(using P=74 and N=8), and 0.6 s (using P=84 and N=10), they were 3,463,060, 3,429,697, 

and 3,420,918, respectively. They represented a total driving time of 19.239 hour, 19.054 

hour, and 19.00 hour, respectively. A lane departure prediction was considered correct 

only if at least 4, 7, and 9 consecutive windows of a test case were classified by SVM 1 or 

SVM 2 as lane departure for the 0.2 s, 0.4 s, and 0.6 s prediction horizons, respectively.  

2.3.3 Other SVM Settings 

We experimented the linear, polynomial and RBF kernels for the SVMs, which are 

the most popular kernels in the literature. A 15-fold cross validation was first used to find 

good estimates for the initial values of the RBF kernel parameter σ and the SVM 

regularization parameter c. Then, different combinations of the c and σ values were 

explored experimentally to find the best combination. The same approach was used to find 

the best combination of the polynomial kernel parameter d and the regularization 

parameter c. 

2.3.4 Statistical Measures of the Binary Classification Performance 

Two statistical measures were used to evaluate the performance of our algorithm, 

sensitivity and specificity. The prediction result can be either one of two states; the driver 

is in the lane or the driver is about to drift off the lane. However, the results may or may 

not match the driver’s actual status. Table 2.2 displays these states, where the rows show 

the true status of the driver while the columns indicate the classification results. The 

positive sign indicates that the driver was out of the lane while the negative sign means 

http://en.wikipedia.org/wiki/Binary_classification
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the driver keeping the lane. Based on this table, sensitivity and specificity can be defined 

as following:  

Sensitivity: is the ability of the algorithm to predict the lane deviations. 

             
 

   
  

             

                            
        (2.3) 

Specificity: is the ability of the algorithm to identify the non-lane deviations. 

             
 

   
  

             

                              
                                          (2.4) 

where, 

True positive (a): drifting drivers correctly predicted as drifting drivers. 

True negative (d): non-drifting drivers correctly classified as drivers still in the 

                            lane. 

False positive (c): non-drifting drivers incorrectly identified as drifting drivers. 

False negative (b): drifting drivers incorrectly classified as non-drifting drivers.   

Table 2.2. Possible classification results of a driver [45]. 
   

Classification results 

 

True status 

Of a driver 

 Positive (+) Negative (-) 

Lane deviation  (+) a b 

Non-Lane deviation (-) c d 
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2.3.5 Statistical Pattern Recognition Toolbox for Matlab (STPRtool box) 

 We implemented the SVMs using the MATLAB-based freeware Statistical 

Pattern Recognition Toolbox (STPRtool) [44], which contained various pattern 

recognition methods, including the binary SVM. The toolbox was initially developed in 

1999 and has been extended to include many pattern recognition algorithms. In our 

research we used the version 2.11 of the software, which was released in August 2011. 

Our SVM program ran on a PC with an i5 Intel CPU and 6 GB RAM. The computer 

execution time for the training ranged from 1 hour to 24.9 hours, depending on the input 

variables and settings. Table 2.3 shows some functions that was implemented in 

STPRtool box and the data type used to represent binary support vector machines is 

shown in Table 2.4. 

Table 2.3. Implemented functions for binary support vector machines [44]. 

Function Description 

svmclass Support vector machine classifier. 

evalsvm Evaluates support vector machines classifier (for cross 

validation). 

smo Sequential minimal optimizer for binary SVMs with L1-soft 

margin. 

svmlight Interface to SVMlight software. 

svmquadprog SVM trained  by Matlab optimization toolbox 
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Table 2.4. Data type used to represent binary SVMs [44]. 

Variable Description 

.Alpha [d ×1] Weight vector α 

.b  [1× 1] Bias b. 

.sv.X  [n × d] Support vectors,              

.options.ker  [string] Kernel identifier. 

.options.arg  [1×p] Kernel argument. 

.fun = ‘svmclass’ Function identifier. 

 

 The resulting SVM model includes several outputs, some of them listed below: 

- model.Alpha: the optimal Lagrange multipliers obtained by solving the dual 

                    problem. 

- model.b: the bias term in the decision function 

-  model.nsv: number of support vectors 

-  model.trnerr: the training error 

- model.margin: the soft margin. 

- model.sv: the support vectors 

- model.cputime: time taken to build the model 
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CHAPTER 3 SVM LANE DEPARTURE PREDICTION 

EXPERIMENT RESULTS 

 

3.1 SVM Training Results 

 Among the three kernel functions that we experimented, the linear kernel 

performed the worst - it failed to predict virtually any of the lane departures. This was to 

be expected because the time series leading to lane departure was not simple (e.g., the 

examples shown in Fig. 2.1). Moreover, among the nine input variable combinations, we 

found that the combination of lateral position and lateral velocity produced the best 

results for both SVM1 and SVM 2 as shown in Section 3.2. Hence, we will report only 

the training and testing results for the two SVMs that use the RBF kernel (with the 

experimentally determined optimal values of c = 10 and σ = 0.1) and the second-order 

polynomial kernel (with the experimentally determined optimal values of c = 10 and d = 

2). Moreover, we will show only the training results involving lateral position and lateral 

velocity in the current subsection and will focus on this input combination in Section 3.2 

that covers the testing results.  

  Table 3.1 shows how the false positives and false negatives change with different 

window sizes at 0.2 s, 0.4 s, and 0.6 s prediction horizons for SVM 1 when the RBF 

kernel was used and the input variables are lateral position and lateral velocity. Similar 

trends were observed for SVM 2 and the other eight input combinations, independent of 

the kernel types. As the window size increases, the number of false negatives increases 

and the number of false positives decreases. This is because for a shorter widow size, the 
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SVMs become more sensitive to a quicker time series change (e.g., an abrupt lane 

departure) and thus is able to correctly predict lane departures more often. At the same 

time, however, small changes in the time series can be mistakenly treated as lane 

departures due to the higher sensitivity, leading to more false positives. For a longer 

window size, the SVMs have fewer false positives but at the same time tend to fail to 

recognize lane departures more frequently due to lower time sensitivity, which translates 

to more false negatives. The tradeoff between the numbers of false positives and false 

negatives led us to a balanced choice of the window sizes - 0.12 s, 0.16 s, and 0.20 s for 

0.2 s, 0.4 s, and 0.6 s prediction horizons, respectively.  

Table 3.1. How numbers of false positives and false negatives change with the window  

size for the RBF kernel SVM 1 using lateral position and lateral velocity as its inputs. 

 

Table 3.2 presents the numbers of support vectors and training errors [defined 

as ∑(labels predicted by the classifier ≠ true labels ) / number of true labels] for SVM 1 

and SVM 2 with different prediction horizons (0.2 s, 0.4 s, and 0.6s). For the RBF kernel 

SVM 1, the number of support vectors and the training error increase as the prediction 

Window 

size (s) 

Number of false negatives Number of false positives 

0.2 s  

prediction 

horizon 

0.4 s  

prediction 

horizon 

0.6 s  

prediction 

horizon 

0.2 s  

prediction 

horizon 

0.4 s  

prediction 

horizon 

0.6 s  

prediction 

horizon 

0.08 4 3 10 3 195 415 

0.12 4 7 23 2 149 388 

0.16 7 10 24 2 138 381 

0.20 9 16 26 2 130 370 

0.24 10 24 32 2 129 369 
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horizon increases. This is because the number of training data and the dimension (i.e., 

window size) of the data increase as the prediction horizon increases. For the same 

prediction horizon the number of support vectors with the RBF kernel is greater than that 

of the second-order polynomial kernel while the training error of the RBF kernel is 

always less than that of the second-order polynomial kernel. These reflect the ability of 

the kernels and the nature of this particular clarification problem. At the 0.4 s and 0.6 s 

prediction horizons, the second-order polynomial kernel SVM 1 correctly predicted only 

23 and 54 of the 1775 lane departures, respectively, which are reflected by high amounts 

of training errors shown in Table 3.2. While the RBF kernel performed far better than the 

second-order polynomial kernel at the 0.4 s, and 0.6 s prediction horizons, its 

performance degraded markedly at the 0.6 s prediction horizon. The number of support 

vectors and the training error for SVM 2 are greater than the corresponding ones for 

SVM 1. This is because the number of training examples for SVM 2 is greater than that 

of SVM 1 for the same prediction horizon as the training data contains the misclassified 

examples of SVM 1, making it more difficult for SVM 2 to classify. The ratio of the 

training error to the number of examples for SVM 1 and SVM 2 at 0.4 s prediction 

horizon are 1.17010
-7

 and 1.21710
-7

 error/example, respectively. These ratios 

increased to 1.78310
-7

  and 2.25010
-7

  at 0.6 s prediction horizon, respectively, as the 

classification task became more challenging. 
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Table 3.2. Amounts of support vectors and training error for SVM 1 using Training Set A 

and SVM 2 using Training Set B. Lateral position and lateral velocity are input variables. 

Kernel 

function 

Number of support vectors Training error 

0.2 s 

prediction 

horizon 

0.4 s 

prediction 

horizon 

0.6 s 

prediction 

horizon 

0.2 s 

prediction 

horizon 

0.4 s 

prediction 

horizon 

0.6 s 

prediction 

horizon 

RBF (SVM 1) 5251 12452 18765 0.0059 0.0152 0.0263 

Second-order 

polynomial (SVM 1) 
2247 4877 8780 0.0071 0.534 0.466 

RBF (SVM 2) NA 13835 20293 NA 0.0161 0.0347 

 

3.2 SVM Testing Results 

  To determine which input variable combination yields the best outcome, Table 

3.3 shows the numbers of false negatives and false positives for all the nine input variable 

combinations at 0.2 s and 0.4 s prediction horizons when either the RBF or second-order 

polynomial kernel is used by SVM 1. As the prediction horizon becomes longer, the 

number of false positives and false negatives get worse. Moreover, when one input 

variable combination performs better than the rest of the combinations at 0.2 s prediction 

horizon, it most likely does better at 0.4 s prediction horizon. These observed patterns 

extend to 0.6 s prediction horizon, which are not shown here. At the 0.2 s prediction 

horizon with RBF kernel, input variable combinations 1, 2, and 8 have the fewest false 

negatives (which are 0, 4, and 3, respectively). Among the three combinations, 

combination 2 has the least false positives, which is 2 only. Therefore, if the false 

positives and false negatives must be counted at the same time, combination 2 (i.e., 

lateral position and lateral velocity) stands out as the best combination among the nine. 

Note that even though combination 9 has only 1 false positive, which is less than 2 false 
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positives of combination 2, it has 7 false negatives, much higher than 4 false negatives of 

combination 2. Reasoning along this line leads to the conclusions that combination 2 is 

the best for the RBF kernel at the 0.4 s prediction horizon and for the second-order 

polynomial kernel at the 0.2 s prediction horizon. Note that at 0.4 s prediction horizon, 

the second-order polynomial SVM 1 performed much worse than the RBF SVM 1 and 

did poorly in general for every input variable combination. Due to this fact as well as the 

desire of having a SVM with as long a prediction horizon as possible, we will focus on 

below the testing results of (1) second-order polynomial SVM 1 at 0.2 s prediction 

horizon and input variable combination 2, (2) SVM 1 and SVM 2 involving the RBF 

kernel and input variable combination 2 at 0.2 s, 0.4 s, and 0.6 s prediction horizons. It is   

Table 3.3. Numbers of false negatives and false positives generated during the testing of  

the RBF kernel SVM 1 and the second-order polynomial kernel SVM 1.   

 Input variable 

combination 

Number of false 

negatives  

(RBF/polynomial) 

Number of false 

positives 

(RBF/polynomial) 

Total number of lane 

departures correctly 

predicted 

(RBF/polynomial) 
0.2 s 

prediction 

horizon 

0.4 s 

prediction 

horizon 

0.2 s 

prediction 

horizon 

0.4 s 

prediction 

horizon 

0.2 s 

 prediction 

horizon 

0.4 s 

prediction 

horizon 

1 Lateral position 
0/0 8/1775 73/54 342/0 1775/1775 1767/0 

2 Lateral position and 

lateral velocity 

4/0 10/1752 2/0 138/3657 1771/1775 1765/23 

3 Lateral position, lateral 

velocity, and speed 

18/19 33/1337 13/0 201/6 1757/1756 1742/438 

4 Lateral position, steering 

angle, and speed 

20/22 36/1737 275/299 829/4578 1755/1753 1739/38 

5 Lateral position, steering 

angle, and yaw deviation 

75/2 93/1219 389/35 967/1495 1700/1773 1682/556 

6 Lateral position, speed, 

and yaw deviation 

74/13 94/793 262/261 739/5612 1701/1762 1681/982 

7 Lateral position and yaw 

deviation 

8/1 22/1197 112/51 462/1607 1767/1774 1753/578 

8 Lateral position and 

steering angle 

3/2 3/496 132/33 333/1548 1773/1773 1773/1279 

9 
Lateral position, lateral 

velocity, and change in 

steering angle 

7/0 14/20 1/1 193/1512 1768/1775 1761/1755 
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important to point out that unlike some of the vehicle variables that can be measured in 

simulated driving only, lateral position and lateral velocity can luckily be obtained in 

practice during vehicle operation. 

Table 3.4, Table 3.5, and Table 3.6 show the testing results of RBF SVM 1 using 

Testing Sets A and B with lateral position and lateral velocity being input variables at 0.2 

s, 0.4 s, and 0.6 s, respectively. At the 0.2 s prediction horizon, there is no false positive 

or false negative for the 6 control drivers, and only 2 false positives and 4 false negatives 

for the 16 drowsy drivers, which translates to only one false positive alarm for 

approximately every 18.5 hours of driving. The overall sensitivity and specificity of the 

SVM with the 0.2 s prediction horizon are 99.77465% and 99.99997%, respectively. 

Accuracy for the 0.4 s prediction horizon is substantially lower –137 false positives and 

10 false negatives for the 16 drowsy drivers and 1 false positive and 0 false negative for 

the 6 control drivers. The overall sensitivity and specificity for the 22 drivers are 

99.43662% and 99.99799%, respectively. As the prediction horizon became longer, the 

prediction accuracy got worsen, and the overall sensitivity and specificity at the 0.6 s 

prediction horizon for the 22 drivers decreased quite significantly to 98.53521% and 

99.99454%, respectively. Table 3.7 presents the overall averages, the averages of average 

prediction horizon of drivers, and standard deviations, the standard deviations of averages 

prediction horizons of drivers, of the actual prediction horizons for the 22 drivers. The 

averages are very close to the intended prediction horizons. Furthermore, the standard 

deviations were very small, indicating the intended prediction horizons were achieved 

evenly by the drivers. 
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Table 3.4. Testing results of RBF SVM 1 using Testing Sets A and B with lateral position 

and lateral velocity being input variables at0.2 s prediction horizons. 

Driver          

(c – control; 

d – drowsy) 

Number of 

lane 

departures 

Number of 

lane 

departures  

correctly 

predicted 

Number of 

lane 

departures  

failed to be 

predicted 

Number of 

falsely  

predicted lane 

departures 

Number of 

non-lane 

departures 

correctly 

identified 

c1 0 0 0 0 62831 

c2 6 6 0 0 60785 

c3 2 2 0 0 64492 

c4 0 0 0 0 63927 

c5 8 8 0 0 62749 

c6 1 1 0 0 51535 

d1 25 25 0 0 384500 

d2 131 131 0 0 402594 

d3 29 29 0 0 484227 

d4 74 73 1 0 410394 

d5 170 170 0 0 400528 

d6 177 177 0 0 365205 

d7 52 52 0 0 459118 

d8 132 132 0 0 412464 

d9 108 108 0 0 421482 

d10 105 105 0 0 437095 

d11 130 130 0 0 412868 

d12 43 43 0 0 434074 

d13 97 97 0 0 433421 

d14 195 194 1 1 338774 

d15 110 109 1 0 398396 

d16 180 179 1 1 346529 

Total 1775 1771 4 2 6907988 

 

 

 

 

 



67 

 

Table 3.5. Testing results of RBF SVM 1 using Testing Sets A and B with lateral position 

and lateral velocity being input variables at 0.4 s prediction horizons. 

Driver          

(c – control; 

d – drowsy) 

Number of 

lane 

departures 

Number of 

lane 

departures  

correctly 

predicted 

Number of 

lane 

departures  

failed to be 

predicted 

Number of 

falsely  

predicted lane 

departures 

Number of 

non-lane 

departures 

correctly 

identified 

c1 0 0 0 0 62829 

c2 6 6 0 0 60644 

c3 2 2 0 0 64467 

c4 0 0 0 0 63925 

c5 8 8 0 0 62643 

c6 1 1 0 1 51497 

d1 25 25 0 0 383941 

d2 131 131 0 8 399642 

d3 29 29 0 7 483459 

d4 74 72 2 7 408729 

d5 170 170 0 10 396567 

d6 177 176 1 6 361312 

d7 52 52 0 10 457872 

d8 132 132 0 8 409414 

d9 108 108 0 15 418900 

d10 105 105 0 10 434688 

d11 130 130 0 9 409908 

d12 43 43 0 2 433133 

d13 97 97 0 8 431157 

d14 195 193 2 13 334420 

d15 110 108 2 8 395914 

d16 180 177 3 16 342441 

Total 1775 1765 10 138 6867502 
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Table 3.6. Testing results of RBF SVM 1 using Testing Sets A and B with lateral position 

and lateral velocity being input variables at 0.6 s prediction horizons. 

Driver          

(c – control; 

d – drowsy) 

Number of 

lane 

departures 

Number of 

lane 

departures  

correctly 

predicted 

Number of 

lane 

departures  

failed to be 

predicted 

Number of 

falsely  

predicted lane 

departures 

Number of 

non-lane 

departures 

correctly 

identified 

c1 0 0 0 0 62827 

c2 6 6 0 0 54691 

c3 2 2 0 0 64347 

c4 0 0 0 0 63923 

c5 8 8 0 0 62158 

c6 1 1 0 1 51409 

d1 25 24 1 9 382606 

d2 131 130 1 18 393065 

d3 29 29 0 10 481828 

d4 74 73 1 11 405069 

d5 170 169 1 33 387919 

d6 177 172 5 20 352851 

d7 52 52 0 22 454866 

d8 132 132 0 23 402819 

d9 108 107 1 36 413013 

d10 105 104 1 30 429061 

d11 130 129 1 31 403274 

d12 43 43 0 9 430915 

d13 97 97 0 26 426133 

d14 195 189 6 33 324717 

d15 110 106 4 21 390238 

d16 180 176 4 37 333412 

Total 1775 1749 26 370 6771141 
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Table 3.7. Overall averages and standard deviations of the actual prediction horizons of 

RBF SVM 1. 

 

Overall average of the actual 

prediction horizons (s) 

Standard deviation of the actual 

prediction horizons (s) 

0.2 s 

prediction 

horizon 

0.4 s 

prediction 

horizon 

0.6 s 

prediction 

horizon 

0.2 s 

prediction 

horizon 

0.4 s 

prediction 

horizon 

0.6 s 

prediction 

horizon 

6 control 

drivers 
0.1987 0.4042 0.5995 0.0063 0.0107 0.0107 

16 drowsy 

drivers 
0.2005 0.3996 0.5922 0.0021 0.0078 0.0078 

 Table 3.8 shows the testing results of the SVM trained to predict lane departure 

0.2 s in advance using the second-order polynomial kernel as at the 0.4s, and 0.6 s 

prediction horizons the SVM 1 with second-order polynomial kernel failed to predict 

most of the lane departures. The overall average of the actual prediction horizon at 0.2 s 

prediction horizon is 0.200728 s. The overall sensitivity and specificity of the SVM with 

the 0.2-second prediction horizon for the 22 drivers are 100% (there are no false positive 

or negative for the control and drowsy drivers). 
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Table 3.8. Testing results of second-order polynomial SVM 1 using Testing Sets A and B 

with lateral position and lateral velocity being input variables at 0.2s prediction horizons. 

Driver          

(c – control; 

d – drowsy) 

Number of 

lane 

departures 

Number of 

lane 

departures  

correctly 

predicted 

Number of 

lane 

departures  

failed to be 

predicted 

Number of 

falsely  

predicted lane 

departures 

Number of 

non-lane 

departures 

correctly 

identified 

c1 0 0 0 0 62831 

c2 6 6 0 0 60785 

c3 2 2 0 0 64492 

c4 0 0 0 0 63675 

c5 8 8 0 0 62747 

c6 1 1 0 0 51535 

d1 25 25 0 0 384500 

d2 131 131 0 0 402591 

d3 29 29 0 0 484227 

d4 74 74 0 0 410391 

d5 170 170 0 0 400519 

d6 177 177 0 0 365209 

d7 52 52 0 0 459116 

d8 132 132 0 0 412459 

d9 108 108 0 0 421479 

d10 105 105 0 0 437093 

d11 130 130 0 0 412868 

d12 43 43 0 0 434069 

d13 97 97 0 0 433411 

d14 195 195 0 0 338775 

d15 110 110 0 0 398395 

d16 180 180 0 0 346539 

Total 1775 1775 0 0 6907706 
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  The SVM 2 was tested against Testing Set B.  The main goal of SVM 2 is to 

reduce false positives. Hence, it was not tested against the 6 control drivers because they 

produced only one false positive at 0.4 s and 0.6 s prediction horizons during the testing 

of SVM 1. For the same reason, SVM 2 was not tested against any control or drowsy 

driver at the 0.2 s prediction horizon because the 22 drivers together generated only 2 

false positives at this horizon for RBF kernel and zero false positive for the second-order 

polynomial kernel. To show the benefit of the second-stage training, Tables 3.9 and 3.10 

compares the testing results of SVM 1 and SVM 2, both of which used the same kernel 

(i.e., the RBF) and the same input variables (i.e., lateral position and lateral velocity) and 

were tested against the 16 drowsy drivers in Testing Set B at 0.4 s and 0.6 s, respectively. 

The ability of SVM 2 to identify lane departure was slightly better than that of SVM 1. 

However, SVM 2 generated far less false positives than SVM 1 (18 vs. 78 for the 0.4 s 

prediction horizon and 63 vs. 181 for the 0.6 s prediction horizon). The numbers of false 

negatives for SVM 1 and SVM 2 were 7 and 3, respectively, at 0.4 prediction horizon and 

11 and 9 at 0.6 s prediction horizon. Even though the numbers of true positives and the 

numbers of false positives for SVM 1 and SVM 2 are the same in some cases, numbers of 

true negatives can be different. The number of examples in a true or false lane departures 

are different. A lane departure prediction is considered only if at least 7, and 9 

consecutive examples of a test case are classified by SVM 1 or SVM 2 as lane departure 

for the 0.4 s, and 0.6 s prediction horizons, respectively. If less than 7 and 9 consecutive 

examples of a test case are mistakenly classified by SVM 1 as lane departures for 0.4 s 

and 0.6 s prediction horizons, they will not be counted as lane departures. However, if 
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they classified correctly as non-lane departures by SVM 2, this will affect only the 

number of true negatives. A true non-lane departure is counted for any single window of 

a test case is classified by SVM 1 or SVM 2 as a non-lane departure. At the 0.4 s 

prediction horizon, the overall sensitivity and specificity for SVM 1 are 99.33205% and 

99.99759%, respectively. The corresponding measures for SVM 2 are improved to 

99.71374% and 99.99944%, respectively. At the 0.6 s prediction horizons, the overall 

sensitivity and specificity for SVM 1 are 98.95038% and 99.99438%, respectively, and 

99.14122% and 99.99805%, respectively, for SVM 2, which shows the same improving 

trends. All these comparison data demonstrate the effectiveness of the second-stage 

training, resulting in a better SVM 2 than SVM 1.  

  Table 3.11 depicts the overall averages and standard deviations of the actual 

prediction horizons achieved by SVM 1 and SVM 2 when tested against the 16 drowsy 

drivers in Testing Set B. The actual prediction horizons are very close to the expected 

horizons for both SVMs. The standard deviations were very small, meaning the actual 

prediction horizons were attained by all the drivers in a uniform fashion. 
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Table 3.9.  Testing results of the RBF SVM 1 and the RBF SVM2 using the 16 drowsy 

drivers in Testing Set B with lateral position and lateral velocity as input variables at 0.4s 

prediction horizons.  

Driver 
Number of 

lane 

departure 

Number of lane 

departure 

correctly 

predicted 

(SVM 1/SVM 2) 

Number of 

falsely 

predicted lane 

departure 

(SVM 1/SVM 2) 

Number of non-

lane departure 

correctly 

identified 

(SVM 1/SVM 2) 

d1 7 7/7 0/0 192416/192404 

d2 95 95/95 4/0 197926/198034 

d3 18 18/18 2/0 241533/241583 

d4 63 61/63 7/3 202609/202708 

d5 102 102/102 4/2 197166/197282 

d6 109 109/109 3/2 179334/179420 

d7 34 34/34 5/0 228435/228525 

d8 74 74/74 5/1 204165/204326 

d9 69 69/69 13/5 208357/208598 

d10 58 58/58 4/0 217063/217161 

d11 83 83/83 5/1 203731/203873 

d12 19 19/19 2/0 216757/216790 

d13 47 47/47 4/0 215687/215776 

d14 89 87/88 6/0 167785/167975 

d15 78 76/77 2/1 196466/196512 

d16 103 102/102 12/3 170307/170493 

Total 1048 1041/1045 78/18 3239737/3241460 
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Table 3.10.  Testing results of the RBF SVM 1 and the RBF SVM2 using the 16 drowsy 

drivers in Testing Set B with lateral position and lateral velocity as input variables at 0.6s 

prediction horizons.  

Driver 
Number of 

lane 

departure 

Number of lane 

departure 

correctly 

predicted 

(SVM 1/SVM 2) 

Number of 

falsely 

predicted lane 

departure 

(SVM 1/SVM 2) 

Number of non-

lane departure 

correctly 

identified 

(SVM 1/SVM 2) 

d1 7 7/7 3/1 192265/192323 

d2 95 95/95 6/2 196705/197023 

d3 18 18/18 4/2 241176/241327 

d4 63 62/63 11/4 201654/201990 

d5 102 102/102 14/8 195721/196031 

d6 109 108/108 8/5 178031/178219 

d7 34 34/34 14/5 227746/228027 

d8 74 74/74 11/7 203148/203426 

d9 69 68/68 22/7 207126/207736 

d10 58 58/58 12/0 216080/216510 

d11 83 82/83 16/6 202560/202866 

d12 19 19/19 7/0 216382/216583 

d13 47 47/47 10/2 214926/215207 

d14 89 87/87 16/7 166383/166896 

d15 78 75/75 8/2 195410/195668 

d16 103 101/101 19/5 168848/169348 

Total 1048 1037/1039 181/63 3224161/3229180 
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Table 3.11. Overall averages and standard deviations of the actual prediction horizons of 

SVM 1 and SVM 2 tested against the 16 drowsy drivers in Testing Set B. 

 Overall average of the actual 

prediction horizons (s) 

Standard deviation of the 

actual prediction horizons (s) 

0.4 s 

prediction 

horizon 

0.6 s 

prediction 

horizon 

0.4 s 

prediction 

horizon 

0.6 s 

prediction 

horizon 

SVM 1 0.39833 0.59001 0.00826 0.01521 

SVM 2 0.39617 0.59013 0.00664 0.01055 
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CHAPTER 4 CONCLUSION 

We explored the nonlinear binary two-stage SVM training scheme with different 

kernel functions to predict lane departure using time series of the vehicle variables with 

different prediction horizons. This SVM’s predictive ability was experimentally optimized 

by finding the best SVM kernel and its parameter values and the most appropriate set of 

vehicle variables (among nine variable sets), which turned out to be the lateral position 

and lateral velocity. It was found that the SVM 1 with the second-order polynomial kernel 

provided the best outcome for 0.2 s prediction horizon, but the results became very bad  

when the prediction horizon was longer. The SVM 1 with the radial basis function kernel 

was the only kernel (among the kernels that we tested) that produced the best results for 

0.4 s and 0.6 s prediction horizons. The SVM’s prediction ability at 0.4 s and 0.6 s 

prediction horizons with the radial basis function kernel was improved by using the SVM 

2. The testing results showed that SVM 2 performed much better than SVM 1 in terms of 

false positives. Testing results involving 16 drowsy drivers and 6 control drivers with a 

total of over 6.84 million prediction decisions (reflecting more than 38 hours of total 

driving time) demonstrated significant SVM performance. 

 The target of the future work is to improve the prediction horizon of the 

developed LDWS (i.e. try 0.8 s and 1 s prediction horizons). The improvement includes 

reducing the false positives (false alarms) and the false negatives, which means 

increasing the capability of the algorithm to predict the real lane deviations. Some of the 

steps that may be applied in order to get better results include: 
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1. Explore more input variable combinations. As we mentioned before, features 

selection has an enormous impact on the success of learning algorithms to recognize 

complex patterns and make intelligent decisions based on data. It is very important to 

select the most effective features rather than all available features. Selecting the best 

combination of variables sometimes requires a systematic approach; however, the ideal 

way to select the best features is to experiment all possible combination of features as 

input to the learning machine. By a common sense, the lateral position of the vehicle 

should be included in all possible input subsets, that because the lateral position 

demonstrated the most consistent pattern among all the other features.  

2. Use different kernel functions. No doubt that the choices of the kernel function is 

a crucial for generalization capabilities of the learning techniques. However, up to now 

there is no a general method to find a best kernel function. We tested three types of 

kernels with different combinations of features to find the kernel function that leads to 

best performance. The tested kernels were linear, polynomial , and RBF kernel. Actually, 

there are some other types of kernels need to be tested. The possible kernels that can be 

used include hyperbolic tangent (Sigmoid) Kernel and exponential Kernel. Moreover, 

different kernel’s parameters need to be experimented in order to optimize the error 

performance of the classifier. 
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 Advanced driver assistance systems, such as unintentional lane departure 

warning systems, have recently drawn much attention and R & D efforts. Such a system 

will assist the driver by monitoring the driver or vehicle behaviors to predict/detect 

driving situations (e.g., lane departure) and alert the driver to take corrective action. In 

this dissertation, we explored utilizing the nonlinear binary support vector machine 

(SVM) technique and the time series of vehicle variables to predict unintentional lane 

departure, which is innovative as no machine learning technique has previously been 

attempted for this purpose in the literature. Furthermore, we developed a two-stage 

training scheme to improve SVM’s prediction performance. Our SVMs were trained and 

tested using the experiment data generated by VIRTTEX, a hydraulically powered 6-

degrees-of-freedom moving base driving simulator at Ford Motor Company. The data 

represented 16 drowsy drivers (about three-hour driving time per subject) and six control 
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drivers (approximately 20 minutes driving per subject), all of which drove a simulated 

2000 Volvo S80. More than 100 vehicle variables were sampled at 50 Hz. There were a 

total of 3,508 unintentional lane departure occurrences for the 16 drowsy drivers and 23 

for four of the six control drivers (two had none).  We optimized the performances of the 

SVMs by experimentally finding their best kernel functions and parameter values as well 

as the most appropriate vehicle variables as their input variables. Our experiment results 

involving the 22 drivers with a total of over 6.84 million prediction decisions demonstrate 

that: (1) the two-stage training scheme significantly outperformed the commonly used 

(one-stage) training scheme, (2) excellent SVM performances, as measured by numbers 

of false positives and false negatives, were achieved when the prediction horizon was set 

at 0.6 s or shorter, (3) lateral position and lateral velocity served as the best input 

variables among the nine variable sets that we explored, and (4) the radical basis function 

was the best kernel function (the other two kernel functions that we tested were the linear 

function and the second-order polynomial). We conclude that the two-stage-training 

SVM approach deserves further exploration because to the best of our knowledge, it has 

demonstrated the best unintentional lane departure prediction performance relative to the 

literature. 
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