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CHAPTER I: INTRODUCTION 

Since the pivotal discovery of DNA in 1953 by Watson and Crick, the 

fundamental mechanism of DNA replication by DNA polymerase has been intensely 

investigated (1). Despite a lengthy and rich history, packed with discovery and driven by 

theories, the full mechanistic details of DNA replication remains uncertain. Researchers 

have argued the minimal reaction scheme from various standpoints, quarrelling over 

which step is rate limiting and even disagreeing upon fundamental questions such as what 

drives nucleotide selection (2-4). The minute mechanistic details of replication are 

justifiably a worthy topic for debate, for errors produced by incorrect replication can lead 

to a variety of genetic disorders, most notably the generation of cancerous cells. A 

thorough understanding of the mechanism of DNA replication builds a framework upon 

which the process of mutagenesis can be investigated. 

The mechanism of DNA polymerases can be further complicated by the presence 

of DNA adducts such as benzo[a]pyrene (B[a]P), N-acetyl-2-aminofluorene (AAF), and 

N-2-aminofluorene (AF) within the templating strand (5). DNA adducts interfere with 

replication by triggering the polymerase to misread the template, causing mismatches to 

be inserted or deletion products to be formed (6, 7). Carcinogen-induced replication 

errors are uniquely defined by the structures of these adducts, giving rise to various 

effects depending upon the chemical makeup of the particular adduct involved. B[a]P is 

of particular importance because of the ubiquitous distribution within the environment 

and its direct link to cancer (8, 9). 
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This research focuses on identifying what happens during the selection of a dNTP 

and how this selection process fits into the mechanism of DNA replication. In addition, 

the effects of positioning a benzo[a]pyrene adduct on the template is used to investigate 

how this carcinogenic adduct may produce errors during replication, and how the 

benzo[a]pyrene may perturb the native mechanism of DNA polymerase action. 

 

I. DNA Polymerase 

A. Structural Overview 

E. coli DNA polymerase I was first discovered by Arthur Kornberg in 1957, 

resulting in the rewarding of a Nobel prize in 1959 (10). E. coli DNA polymerase I plays 

a role in the repair of damaged duplex DNA and the processing of Okazaki fragments in 

E. coli (11). This polymerase consists of a multi-domain architecture housing not only the 

5’-3’ polymerization activity required for DNA replication, but also 3’-5’ and 5’-3’ 

exonuclease activities. The 3’-5’ exonuclease, or proofreading activity, allows greater 

fidelity to be achieved by removing incorrectly incorporated nucleotides from the 

growing DNA primer strand resulting in another opportunity to incorporate the correct 

base before continuing on with synthesis. The 5’-3’ exonuclease does not directly 

function in increasing fidelity but instead is involved with processing of Okazaki 

fragments by the excision of RNA primers situated on the lagging strand.  

A very useful proteolytic digest of DNA polymerase I produces a truncated 

enzyme termed Klenow fragment, named after the researcher Hans Klenow who first 

discovered this useful derivative (12, 13). Klenow fragment is unique in that it houses the 
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5’-3’ polymerase activity required for DNA synthesis and the 3’-5’ exonuclease 

proofreading activity, but is devoid of the 5’-3’ domain responsible for the excision of 

RNA primers. In addition, a single D424A point mutation within Klenow fragment’s 3’-

5’ exonuclease domain almost abolishes the exonuclease activity, making this polymerase 

an excellent choice for DNA synthesis studies without the complication of exonuclease 

action (14). Klenow fragment has been a model enzyme for the study of DNA replication 

for the last four decades, and the solution of the crystal structure in 1985 by Ollis et al. 

aided in providing a structural overview of DNA polymerase enzymatic domains (15). 

The crystal structure of Klenow fragment revealed a two domain architecture; a 

smaller 200 amino acid N-terminus forming the 3’-5’ exonuclease domain, and a larger 

400 amino acid C-terminal domain folding to form the polymerization domain. The 

general shape of the Klenow fragment polymerization domain, being akin to a human 

right hand, has proven to be strikingly universal among DNA polymerases. Later crystal 

structures of the analogous Klenow fragment portion of thermophilic Thermus aquaticus 

DNA polymerase I, called Klentaq1, showed a close homology to Klenow fragment with 

a nearly identical C-terminal fold (Figure 1) (16). The polymerase domain can be further 

subdivided into three subdomains consisting of the fingers, thumb, and palm, all of which 

form a cleft of approximately 20-24 Å wide and 25-35 Å deep (15). Based on previous 

biochemical studies identifying catalytically important residues in Klenow fragment, the 

active site of the C-terminal polymerization domain was mapped to the base of the cleft 

within the palm of the enzyme, with the 3’-5’ exonuclease active site located about 35 Å 

away. The cleft was noted to be of the approximate size to bind DNA, but it would not be 
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Figure 1. Structure of Klentaq2. Structure of Klentaq in the absence of DNA (PDB 
#1KTQ). The overall structure of polymerases resembles that of a human right hand 
forming palm (yellow), fingers (green) and thumb (blue) domains. The palm domain 
houses the active site residues responsible for the 5’ to 3’ polymerase activity, and the 
3’ to 5’ exonuclease domain (red) allows excision of misincorporated bases. The H1H2 
Loop is disordered and missing from the structure (ends connected with orange line). 
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until 1993 when Beese et al. published a co-crystal structure of Klenow fragment bound 

to duplex DNA that the orientation and structure of the duplex within the enzyme would 

be known (17). 

B. Open Binary Complex 

 The co-crystal structure of Klenow bound to duplex DNA gave the first glimpse 

into the arrangement of the DNA within the polymerase and evidence of the first 

conformational change that takes place within the enzyme (17). In this structure, the 

DNA was situated within the polymerase at right angles to the cleft containing the active 

polymerase site, however the 3’ primer terminus was melted from the template and 

situated within the exonuclease site in an editing complex. Despite being in an editing 

complex, the authors modeled the primer strand at the polymerase active site and 

concluded that the primer could alternate between the exonuclease and polymerase sites, 

without dissociation of the enzyme. Interestingly, Beese et al. noted in their modeling 

that some distortion of the DNA duplex terminus or protein would be required in order to 

achieve binding at the polymerase site and that this distortion of the DNA would make 

the equilibrium between single-stranded and double-stranded DNA more sensitive to 

mismatches. Irrespective of the mode of binding, many important observations were 

noted from this structure and further confirmed in later crystal structures of Klentaq 

(Figure 2A) (18).  

 One such observation was the small DNA-induced closing motion the thumb 

region undergoes upon formation of the binary complex. This region of the thumb, 

residues 558 to 637 in Klenow fragment, executes a shift (12 Å at the N-terminus of helix  
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Figure 2. Open binary and closed ternary structures of Klentaq2. (A) Klentaq open 
binary complex (PDB #4KTQ) [10]. The DNA is situated in the cleft formed between 
the fingers, thumb, and palm domains. The Y671 residue (pink) is stacked on top of the 
template (dark blue). K540 (brown) makes non-specific interactions with the minor 
groove to aid in holding the polymerase bound to the DNA. Helices I (cyan) and H 
(orange) make small movements relative to their positions in the open complex, and the 
H1H2 loop (light green) now becomes visible in the structure. The remainder of the 
colors are as follows; primer (red), H1 and H2 helix (light green), O helix (yellow), N 
helix (green). (B) Klentaq closed ternary complex (PDB #3KTQ) [10]. A correctly base 
pairing ddCTP (light blue) is located within the active site inducing a large 
conformational change of the O (yellow) and N (green) helices (compare with positions 
in (A)). Y671 is now flipped out of its stacking arrangement with the -1 template base 
and the n templating base forms Watson-Crick base pairs with the ddCTP. 
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I) towards the 3’-5’ exonuclease domain to form direct contacts with the DNA (17). 

Chemical modification studies also showed that Lys635 (Lys540 in Klentaq), which is a 

highly conserved residue among the Pol I family, is directly involved in DNA binding 

(19). In addition to the thumb, extensive contacts are formed between the enzyme and the 

DNA, however virtually all contacts are non-specific in nature forming interactions with 

the phosphate backbone of the DNA, or to the universal hydrogen bond donors and 

acceptors of the minor groove. This is important to ensure that the polymerase will bind 

all DNA equally, irrespective of the sequence. The small closing movement of the thumb 

upon DNA binding proved to be the first of at least two conformational changes to take 

place.  

 The initial description of Klenow fragment in terms of a hand, and specifically the 

naming of the subdomains as fingers and thumb, proved to be somewhat serendipitous 

due to their anthropomorphic motions upon forming a binary complex, and as was later 

shown, a catalytically competent ternary complex. 

C. Ternary Complex Formation 

In order to successfully replicate DNA, an active ternary complex must be formed 

with the proper geometric alignment of the polymerase catalytic residues, the metal ions, 

the primer-template DNA duplex, and the correctly chosen dNTP. The first crystal 

structure solutions for the ternary complexes were of Rat DNA polymerase β, Klentaq1, 

the replicative DNA polymerase of bacteriophage T7, and Bacillus stearothermophilus 

DNA polymerase I (18, 20-22). These structures revealed a great deal of information 

regarding the location of dNTP binding and catalytically active residues, a large 
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conformational change in the protein, and a two metal ion mechanism for nucleotidyl 

transfer. Despite the wide breadth of organisms these polymerases were obtained from, 

all exhibited the now stereotypical polymerase architecture of a human right hand and 

share a similar geometry of the polymerase active site. What follows is a general 

culmination of information for most observed structures. 

i. Conformational Change 

The ternary complex is defined by binding of a dNTP into the polymerase cleft 

alongside the DNA. The incoming dNTP is aligned within the active site by interactions 

of the non-bridging oxygens of the phosphate moiety to positively charged residues along 

and near the O helix, placing the phosphate moiety roughly parallel to the O helix. These 

phosphate interactions are suggested as the primary recognition segment of the incoming 

dNTP, which is based upon crystal structures of binary complexes of Klentaq1 with all 

four dNTPs, showing the phosphates of all four dNTPs aligned in similar positions (23). 

However, the base and ribose moieties were in slightly different orientations for the four 

structures. Most interestingly, the formation of the ternary complex in the presence of the 

next correct dNTP for base-pairing with the first single stranded template base is 

accompanied by a large conformational change in the fingers of the polymerase (Figure 

2B). In the case of Klentaq this change is an inward rotation of the O helix by 

approximately 46° (41˚ in T7) towards the primer-template (18, 21). The formation of the 

closed ternary complex has the effect of clamping down the dNTP into the active site, 

effectively sealing off the crevice formed by the thumb, palm and fingers, resulting in the 
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proper geometric alignment of catalytic residues to complete a nucleotidyl transfer 

reaction.  

Further elaboration by Dzantiev and Romano showed that the closed tertiary 

complex could only be observed in the presence of the next correct nucleotide and not in 

the presence of incorrectly base-pairing nucleotides (24). Using a tryptic digestion 

analysis they showed that trypsin was capable of cleaving Klenow fragment near the 

active site of the polymerization domain in its open form. However upon incubation of 

Klenow fragment with a correctly base-pairing dNTP the cleavage was inhibited, 

presumably due to the conformational change of the enzyme protecting the region near 

the active site from proteolytic cleavage. Further, a correctly base-pairing ribonucleotide 

substrate also did not trigger this conformational change as evidence by the formation of 

trypsin cleavage products. This suggested that only a correctly base-pairing dNTP could 

conform to the close fitting active site of the polymerase and any deviation from the ideal 

active site geometry would not allow the conformational change to take place. Indeed, the 

crystal structures of the closed ternary complexes showed the dNTP situated in a tightly 

surrounded environment as it stacks between the 3’ base of the primer strand and residues 

of the O helix (21). The dNTP binds such that it can form a Watson-Crick base pair with 

the first single-stranded templating base. The dNTP is further co-ordinated and positioned 

by interactions to two metal ions located within the active site. 

ii. Reaction Mechanism 

The alignment of the dNTP in the closed conformation allows a two metal ion 

mechanism for the nucleotidyl transfer to occur. The two metal ions, positioned 
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approximately 3.6 Å apart, are octahedrally coordinated by all three phosphates of the 

dNTP, the highly conserved side chain residues of the enzyme, and two water molecules 

(Figure 3A and 3B). Metal ion A functions to lower the ribose’s 3’OH affinity for its 

hydrogen. This makes the attack on the α phosphate of the dNTP by the primer’s 3’ O- 

possible. Metal B serves to support the leaving of the pyrophosphate and together both 

metals stabilize the negative charge of the pentacovalent transition state. It appears that 

all polymerases studied to date, as well as enzymes such as HIV-1 reverse transcriptase, 

utilize this same two metal ion mechanism for nucleotide addition (25). 

iii. DNA Conformational Changes 

Similar to the changes within the enzyme during binding, the DNA undergoes 

several changes from its typical solution based linear B-form duplex structure (18, 20-

22). The DNA in the ternary complex remains held in place by the small conformational 

change of the thumb. This maintenance of the closed thumb conformation ensures that 

despite continued dissociation and re-association of incoming dNTPs during the selection 

process, the transient binary DNA-Pol complex remains relatively stable and the 

propensity for dissociation during these transient events does not increase dramatically. 

The polymerase-DNA- interactions are almost exclusively non-specific in nature, binding 

to the non-sequence specific minor groove while providing no interactions to the 

sequence specific major groove, with the small exception of those bases located near the 

active site. Despite the wide breadth of organisms the polymerases were obtained from, 

the DNA is mostly B-form yet transitions to A-form DNA as it nears the active site (18, 

20-22). The B-form DNA has an ordered spine of water molecules along the minor  
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Figure 3. Stereoview of Klentaq active site in the open binary and closed ternary 
conformations from the same view point [10]. (A) Open conformation (PDB #4KTQ): 
The O (yellow) an N (green) helices are in an open conformation allowing incoming 
dNTPs to reach the active site. The templating base (colored by element) is flipped out 
and Y671 (pink) occupies a stacked arrangement with the template (dark blue). (b) 
Closed conformation (PDB #3KTQ): The O and N helices have undergone a large 
conformational change and closed off the nucleotide binding pocket, which a ddCTP 
(colored by element with blue space filling) now occupies. The Y671 residue has 
flipped away from the template allowing the templating base to form a Watson-Crick 
base-pair with the ddCTP. The position of E615 allows screening of rNTPs via a steric 
clash with what would be a 2’OH of an incoming rNTP. The metal ions A and B (green 
spheres) form interactions with the phosphates of the ddCTP, and Klentaq residues 
D610, 611 O, D785, and 2 waters (grey spheres). The missing binding partner of metal 
A is hypothesised to be the missing 3’OH of the dideoxy-terminated primer terminus. 
(cross-eyed viewing). 
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groove interacting with the N3’s of purines and O2’s of pyrimidines (22). Both proper A-

T and G-C base pairs display the correct N3 and O2 along the minor groove required for 

this interaction, whereas misincorporations will cause a disturbance in these interactions, 

possibly providing a mechanism by which misincorporations can be detected upstream of 

the active site. These highly ordered water molecules are intentionally disrupted along the 

minor groove as it nears the active site, giving rise to A-form DNA and a widening of the 

minor groove with a decreased helical twist in this region. The DNA is further contorted 

forming a slight “S” shape, with the first bend being induced by interactions with the 

palm domain, and the second from interactions with the closed thumb (21). 

As the conformational change from the open to closed ternary complex occurs, 

another interesting movement takes place regarding the templating base and an aromatic 

residue at the base of the O helix (Tyr766 in Klenow Fragment, Tyr671 in Klentaq, 

Tyr530 in T7). In both the open binary and open ternary complexes, the templating base 

is twisted almost 90° away from the nucleotide binding site (Figure 3A), and in its place 

the aforementioned Tyr671 of the O helix is stacked on top of the template of the 

terminal base pair (18). At first glance this appears to be illogical since the template base 

must be base-paired with the incoming nucleotide to direct its proper selection. However, 

this unique positioning of the templating base in the open conformation is thought to 

allow an incoming dNTP to “preview” the template prior to reaching the full depth of the 

binding pocket, and has thus been coined the preinsertion site (26). This preview in the 

preinsertion site may facilitate selection of a correct dNTP early on in the incorporation 

process. Upon binding of a correct dNTP to the complex, the conformational closing 
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movement of the O helix induces a movement of the tyrosine side chain out of its 

stacking arrangement on the template, allowing the flipped out templating base to rotate 

back into its typical stacking arrangement with the template (Figure 3B) (18). The 

exchange of positions of the tyrosine side chain with that of the templating base in the 

closed conformation allows the templating base to form its typical Watson-Crick 

hydrogen bonding alignment with the incoming dNTP. Given a correct fit, the subsequent 

alignment of catalytic residues takes place and phosphodiester bond formation can ensue.  

D. Mechanism of Polymerization 

i. Walk Through of the Mechanism  

The minimum polymerization mechanism (Figure 4) highlights various states the 

polymerase is known to undergo upon the route to catalysis (27, 28). The initial step, and 

the only step that would not require repetition during a bout of synthesis, is the formation 

of a binary complex where the polymerase initially binds the DNA. For polymerases that 

contain exonuclease domains, such as E. coli DNA polymerase I and T7 DNA 

polymerase, the polymerase may bind the DNA at either the polymerase domain (EP) or 

at the exonuclease domain (Ee). Templates that contain several mismatches, as well as 

some properly base paired segments with certain sequences are known to cause a larger 

extent of binding to the exonuclease domain than to the polymerase domain (29-31). 

However, certain polymerases such as bypass polymerase eta (Polη) and DNA 

polymerase IV (Dpo4) are devoid of exonuclease domains, and in these instances would 

lack the portions of the mechanism related to exonuclease function (32-34).  
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Figure 4. Linear schematic of DNA replication. Step 1) Enzyme forms a binary complex 
with DNA by binding at either the polymerase site or the exonuclease site. Some 
polymerases are devoid of exonuclease function and would subsequently exclude the 
boxed in region of the mechanism. In KF-DNA binding experiments using non-
extendible primers everything after step 1 will be measured as DNA binding. Step 2) 
Nucleotides bind the complex to form a ternary complex in an open conformation. Step 
3) If a correct dNTP is present in the polymerase active site a conformational re-
arrangement involving closing of the fingers domain to form a ternary closed 
conformation is induced. Steps 4-6) Catalysis ensues and product is formed. Polymerase 
re-opens and releases the pyrophosphate, followed by translocation to the next 
templating base. 
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Once the DNA is positioned within the polymerization active site, the addition of a 

dNTP first forms a ternary complex appears to be in an open conformation (18). If the 

bound dNTP is capable of forming a WC base pair with the templating base the 

polymerase then undergoes a conformational change to a closed ternary complex (18, 20-

22, 24, 35, 36). Following phosphodiester bond formation, the polymerase returns to the 

open conformation, pyrophosphate is released, and the polymerase transitions along the 

DNA to the next templating base. The polymerase, once again in an open binary 

complex, may then begin the selection process once again to find the next correct dNTP. 

ii. dNTP Selection 

The successful proliferation of cells requires that DNA polymerases must not only 

have a very rapid catalytic rate while maintaining incredible accuracy, but also must be 

able to vary their specificity depending on which of the four bases is at the templating 

position in the active site. In essence the polymerase must recognize four types of 

substrates, differentiating between them in order to reject incorrectly pairing dNTPs and 

catalyzing incorporation for correct dNTPs. The statistical reality of this process is that 

during the incorporation of a properly paired nucleotide, the polymerase must be able to 

cope with the binding of incorrectly pairing dNTPs multiple times prior to finding the 

correctly pairing dNTP. DNA polymerases have clearly evolved the ability to repetitively 

and precisely accommodate these four different Watson-Crick (WC) base-pairing 

arrangements, minimize the possibility of catalyzing the incorporation of incorrect WC 

base-pairing dNTPs, and in each case reject rNTPs that are present at significantly higher 

concentrations. 
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Selection of a proper nucleotide is no trivial matter considering this onslaught of 

correctly base-pairing ribonucleotides and mismatched deoxyribonucleotides that must be 

rejected in order to find the correctly matching substrate. Utilizing a FRET-based stopped 

flow and chemical quench assay, Joyce et al. studied the mechanism by which each of 

these incorrect substrates are selected against during the process of replication (2). In this 

assay a fluorophore donor was positioned on a mobile portion of the fingers of Klenow 

fragment and a fluorescence quencher was positioned on the DNA. This allowed 

monitoring of a change in position of the fingers relative to the DNA and the formation of 

a correctly paired ternary complex. A concentration-dependent decrease in fluorescence 

was seen in the presence of the next correct dNTP, indicating that fingers closing was 

occurring. Mispairing dNTPs as well as mispairing rNTPs showed little fluorescence 

change, suggesting that they are selected against early on in the process, prior to fingers 

closing. This implied that a large discrimination against mispairing nucleotides (dNTPs 

and rNTPs) occurs directly in the open conformation.  

Addition of a correctly base-pairing rNTP caused the conformational change to a 

closed complex to become significantly hampered, yet still occur to a marginal extent. 

This reduction in conformational change had previously been identified as a direct clash 

between the 2’-OH of the incoming ribonucleotide and the steric gate side chain Glu710 

of Klenow fragment (Glu615 of Klentaq, see Figure 3) (37). Similarly, based on their 

crystal structure of T7 DNA polymerase, Doublie et al. postulated that the corresponding 

Glu480 residue along with Tyr526 forms a hydrophobic pocket that would preclude the 

2’-OH of ribonucleotides (21). 
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Taken together these data indicate that the selection of a correctly paired 

nucleotide substrate occurs first, followed by a selection against ribonucleotides. This 

specific order for the stepwise selection of a proper substrate provides a more efficient 

pathway for replication. By initially constraining downstream processing of a substrate to 

only correctly base-pairing molecules, six of the eight possible substrates will be selected 

against. This provides an efficient first step to screen out as many incompatible substrates 

as possible, thereby limiting downstream processing of incompatible substrates. In 

essence only one incorrect substrate (the correctly pairing ribonucleotide) of the initial 

eight nucleotide substrates will see further unnecessary processing. Conversely, if the 

ribonucleotide was selected against first, four of the eight substrates (all dNTPs) would 

need to be screened for in downstream processing prior to catalysis, and any additional 

time spent in their processing would be wasted three out of the four times. Overall, the 

conformationally-induced changes in the thumb upon binding DNA, and the large 

changes in the fingers, function to grip the DNA and dNTP substrate respectively. This 

provides a means for testing the nascent base pair for correct alignment and ensuring that 

only compatible dNTPs are incorporated. 

Although numerous studies have focussed on what happens when a correctly 

paired dNTP is placed within the polymerization active site, few have examined the 

process by which the polymerase rejects an incorrectly paired dNTP. A recent study has 

identified a novel state that forms when a polymerase binds an incorrect dNTP (38). In 

this analysis, it was shown that E. coli DNA polymerase I (Klenow fragment) (KF1) 

formed an intermediate when bound to a mispaired dNTP that could not be classified as 
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either an open or closed complex, but instead appeared to be a previously unobserved 

state. Prior studies had also alluded to the possibility for the formation of this open 

mispaired dNTP bound ternary complex but did not include it in the polymerization 

mechanism (27, 29, 39, 40). 

E. Polymerase Dynamics 

 Recently a new picture regarding the conformational dynamics of polymerases 

has begun to emerge. Single-molecule assays allow the direct monitoring of individual 

molecules and can reveal properties that are otherwise masked by ensemble averaging of 

large populations of molecules. Non-synchronous fluctuations that appear in fleeting 

moments of time go unseen in ensemble averages yet become obvious when viewed at 

the single molecule level. Single-molecule FRET (smFRET) experiments where a FRET 

donor was positioned on the template of a duplex DNA strand, and a FRET acceptor was 

positioned on Klenow fragment, allowed the direct visualization of DNA synthesis as it 

proceeded through incorporation of three nucleotides (41). The movement of the DNA to 

the exonuclease domain, as well as the movements during synthesis, could also be 

viewed. As expected, discrete steps in the FRET traces were observed for each nucleotide 

incorporation event. Further, a few individual molecules were noted to have the primer 

transition directly from the polymerization site to the exonuclease site, and visa versa, 

without dissociation of the binary complex. This correlated well with the proposition 

made during the modeling of the crystal structure in 1993 by Beese et al (17). In 

Addition, following each incorporation event the polymerase appeared to move one 

nucleotide further downstream than was necessary to place the following nucleotide in 
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the preinsertion site. This was immediately followed by a return back to the expected 

FRET level for the ensuing preinsertion site. This transient drop was routinely observed 

in the presence of the next correct nucleotide and was never observed in the presence of 

an incorrectly base-pairing nucleotide. The ubiquitous nature of this novel step led the 

authors to conclude that this was indeed an integral step in nucleotide incorporation and 

that it might be involved in checking for proper base pair formation. Movement to this 

site might be part of the routine proofreading process that results in movement of a 

misincorporation to the exonuclease domain. This transitioning process to the 

exonuclease domain was observed when experiments were performed using mismatched 

primer-template termini (41). Alternatively, it was also suggested that the transient state 

could represent an equilibrium between the preinsertion and insertion complexes, or it 

could represent a further conformational rearrangement that is part of the polymerase 

mechanism. Regardless, the smFRET based discovery of this novel motion of the 

polymerase shows new dynamics previously unobserved in bulk biochemical 

experiments. 

 Further demonstration of the lively dynamic nature of these enzymes comes from 

new evidence regarding the continual conformational changes that polymerases undergo 

during nucleotide incorporation and the identification of yet another conformational state 

(38). Santoso et al. utilized alternating-laser excitation (ALEX) smFRET with both 

members of the FRET pair placed on Klenow fragment to directly monitor 

conformational changes of the polymerase in real time. More specifically, one 

fluorophore was positioned on residue 744 of the fingers domain of Klenow fragment, 
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and the other on residue 550 of the thumb. Using a femtoliter observation volume where 

individual molecules diffuse freely, the conformational changes of the enzyme could be 

accurately tracked. Observations of Klenow fragment bound to DNA in a binary complex 

revealed that despite the lack of dNTP, the enzyme was found to occupy both the open 

and closed states, with the open conformation existing 66% of the time. The large 

occupancy of polymerases in a closed binary complex is a fascinating proposition and 

adds an active quality to the crystal structure snapshot of the binary complex published 

almost two decades previously (17). Upon addition of the next correctly base-pairing 

dNTP the closed conformation dominated 84% of the time (38).  

 Addition of incorrectly base-pairing dNTPs revealed a third conformation of the 

enzyme that was distinct from the open and closed complexes identified previously. 

Similarly, addition of rNTPs also showed the formation of a third state. Despite the 

similarities observed in the third conformational state observed with incorrect dNTPs and 

rNTPs the authors advocate that they cannot be the exact same state, because as noted 

earlier the rejection of an incorrectly base-pairing dNTP occurs at a different step along 

the reaction pathway than does the rejection of rNTPs. Regardless, the third state is 

thought to more closely resemble an open KF-dNTP complex where the interactions of 

the triphosphate moiety induce a subtle rearrangement of the residues along the O helix, 

yielding the third FRET state. This process would allow the complementarity of the 

templating base with the incoming dNTP to be tested in the open conformation. Provided 

a good fit is obtained the polymerase would then move the pair to the active site via 
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rearrangements of the O-helix as the closed conformation is formed, whereas mispairing 

nucleotides would be rejected in the open conformation.  

 More striking than the identification of the novel third conformational state was 

the observations that the unbound enzyme was found to be continually fluctuating 

between various conformational states despite the lack of a DNA template or dNTPs (38). 

These conformational transitions were incredibly rapid, occurring in the low millisecond 

range. The ability of the polymerase to continually sample its conformational states in the 

absence of substrate further exemplifies the dynamic nature of this enzyme. 

 

II. Carcinogenesis 

 Many exogenous compounds have been identified in the environment that can 

alter the genetic makeup of organisms by inducing mutations in their genomes. The 

accumulation of such mutations within the genome can lead to successive proliferation of 

cells that are lacking the normal restrictive processes that govern their replication. This 

unrestricted proliferation is known as cancer. The mechanism by which a correct 

nucleotide is chosen is clearly a complex process even under ideal conditions. However, 

DNA is under constant assault from both endogenous and exogenous agents that alter the 

DNA template by modifying the bases, resulting in distortions in the DNA structure or 

changes in the base electrostatics. Due to their disrupting nature, DNA damage can act as 

roadblocks to DNA polymerases or result in nucleotide misincorporations and generation 

of frameshifts.  
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A. Benzo[a]pyrene 

i. Brief History of Benzo[a]pyrene 

 Arguably one of the most well studied compounds belonging to the polycyclic 

aromatic hydrocarbons (PAHs) is benzo[a]pyrene (B[a]P) (Figure 5). The carcinogenic 

effects of B[a]P were indirectly first investigated in 1775 by Sir Percival Pott who 

demonstrated a direct correlation between exposure to soot by chimney sweeps, and their 

incidence of scrotal cancer (42). Over 100 years would pass before Bell discovered a link 

between exposure to similar compounds as soot, such as coal tar, paraffin, and oil, with a 

heightened incidence of cancer (43). Despite this result, it was not until the early 1920s 

that this link was solidified by experiments showing the formation of epithelial tumors on 

the backs of mice by directly applying coal tar (44). It was then a short while later in the 

early 1930’s when isolation and purification methods for compounds had developed 

sufficiently that investigations began by Cook et al. to determine which compounds in 

coal tar were responsible for these mutagenic consequences (45). Cook et al. discovered 

that B[a]P was the carcinogen responsible for inducing the tumor growth found on mouse 

skin exposed to coal tar, cementing B[a]P as a representative carcinogen that would be 

intensely studied in the years to come.  

 The link between B[a]P and its ability to induce mutations is now conclusively 

established by being identified as a causative factor in many human epithelial cancers 

such as skin, lung, bronchus and colon cancer (46). Since the first establishment of this 

link in the 1930s, a plethora of studies have been directed at investigating the specific 

carcinogenic action of B[a]P. 
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Figure 5. Structure of benzo[a]pyrene (B[a]P) and numbering scheme. Defining bonds 
of bay region are indicated by darkened lines 
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ii. Environmental Sources 

 B[a]P is considered by many to be the ultimate environmental carcinogen both 

due to its ubiquity in the environment, being found in waterways, oceans, soil, the 

atmosphere, and throughout the food chain, and also due to its potent ability to induce 

mutations (47, 48). Various PAHs, including B[a]P, can be formed from virtually all 

carbon based sources including coal, tar, crude oil, gasoline, most organisms, and also 

produced in many foods (47). The chief natural sources of B[a]P are from volcanic 

eruptions and forest fires, with some of the largest anthropogenic sources being 

combustion of fossil fuels, coke oven emissions and transportation emissions (47, 49). 

These sources chiefly expel B[a]P into the atmosphere where widespread distribution is 

achieved, and exposure is virtually unavoidable. Rain water then transfers the carcinogen 

to the soil and sediment where 82% and 17% respectively of B[a]P is found (50). 

 Despite B[a]P’s abundance in the environment, 97% of human exposure is via the 

food chain, where B[a]P is present in many foods that utilize some type of combustion in 

their cooking or processing, such as charcoal broiled meats, cereals, tea, and smoked 

foods, resulting in an average daily exposure of approximately 2.2 micrograms (9, 50-

53). Despite the environmental prevalence of B[a]P, some sources of B[a]P are easily 

preventable, such as avoiding the direct exposure from cigarette smoke where an 

individual is exposed to approximately 20-40 ng of B[a]P/cigarette (54). When a 

comparison is made between the mutational hotspots found in human lung cancers, and 

the regions that are largely modified with B[a]P metabolites, there is an overlap 
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indicating that B[a]P is most likely at least partially responsible for the generation of lung 

tumours in smokers (8). 

iii. Metabolic Activation of B[a]P and DNA Adduction 

 It is now known that B[a]P itself is actually not carcinogenic and possess little 

reactivity, but instead requires metabolic activation to highly reactive epoxides and diol 

epoxides to induce its mutagenic action (55). Once B[a]P has entered the body, the 

hydrophobic molecule is altered by several enzymes in an effort to make the molecule 

more hydrophilic, and hence expedite its excretion from the body. This is the body’s 

normal response to rid foreign compounds from the body by making them more readily 

excreted in the urine. Unfortunately, the process that normally provides hydrophobic 

molecules a one way ticket out of the body results in the metabolic activation of B[a]P, 

forming four major benzo[a]pyrene diol epoxide (BPDE) stereoisomers, designated (+/-)-

syn and (+/-)-anti (Figure 6).  

 The dire consequence of this metabolic pathway is that the diol epoxides 

produced are very electrophilic, and hence readily reactive. Although the electrophilic 

hydroxyl and epoxide groups do allow B[a]P to become more soluble in aqueous 

solutions, and hence aid in expediting its removal from the body, they also become more 

reactive with other compounds, in particular DNA. In 1964, it was discovered that in 

order for a chemical to be mutagenic, it must specifically be able to bind to DNA (56). 

The metabolic activation of B[a]P directly achieves this due to the creation of the 

electrophilic epoxide, allowing the BPDE to be the site for nucleophilic attack by the 

electron rich exocyclic amines of purines, such as the N2 of guanine and the N6 of  
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Figure 6. Metabolic activation of benzo[a]pyrene by monooxygenases and epoxide 
hyrolases to yield 4 benzo[a]pyrene diol epoxide stereoisomers. 
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adenine. This metabolic activation from a hydrophobic to an electrophilic molecule 

allows the BPDE to be converted into a molecule capable of adducting DNA, and thus 

revealing its carcinogenic potential. Of the four major BPDEs formed, studies have 

shown that the anti isomers are the more active compounds in mammalian systems, 

possibly owing to their much longer half life in aqueous solutions (46). 

 To establish a covalent bond with DNA the BPDE is first thought to non-

covalently interact with duplex DNA by intercalating between two adjacent base pairs 

(57). Once posed within the DNA duplex and stabilized by the formation of hydrophobic 

interactions, the epoxide is free to react with the DNA. Of the assortment of possible 

reactions, the predominate reactions of BPDE with DNA is the N2 of guanine performing 

a nucleophilic attack at the C10 position of the anti BPDEs (58). Reactions also take 

place with the N6 of adenine, and marginally with N7, however these adducts do not have 

the same biological relevance that the guanine adducts possess (59). The cis or trans 

opening of the (+/-)-anti epoxide ring results in the production of four adducted B[a]P-

DNA stereoisomers designated (+)-cis, (-)-cis, (+)-trans and (-)-trans (Figure 7). 

Although these DNA adducts only differ in stereochemistry, their mutagenic properties 

are quite diverse.  

iv. DNA B[a]P Structures in Duplex DNA 

 The mutagenic properties associated with each stereoisomer can be attributed to 

the varying conformations that each adopts in a DNA segment. The structures that are 

formed in both duplex DNA and those found at a primer template junction are 

dramatically different from one another, also varying with the identity of the B[a]P  
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Figure 7. Binding of activated anti-benzo[a]pyrene diol epoxide isomers to the N2 
position of a guanine base. This process forms four stereoisomers. The isomers are 
abbreviated to: (–)-cis, (-)trans, (+)-trans, and (+)-cis. 
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isomer, and these structures may hold clues for the mutagenic properties that each isomer 

exhibits. For instance, the (+)-trans isomer adopts a conformation in double stranded 

DNA with the pyrenyl moiety stacking on the ribose of the opposite strand, along the 

minor groove pointing towards the 5’ end of the adducted template strand. However, the 

(–)-trans isomer has the pyrenyl moiety pointing towards the 3’ end while stacking with 

the ribose of the opposite strand along the minor groove (Figure 8) (60). Thus, the 

similarities of the trans isomers are that they adopt a conformation where the pyrenyl 

moiety stacks with a ribose of the opposite strand either 3’ or 5’ of the adduct. In contrast, 

the cis isomers form a base displaced intercalative structure which is markedly different 

from that of the trans isomers. More specifically, the (+)-cis isomer has the pyrenyl ring 

pointing towards the major groove as it intercalates in the duplex and forces the modified 

guanine into the minor groove, with the partner cytosine displaced into the major groove. 

Similarly, the (–)-cis isomer also has the pyrenyl ring intercalate, with the partner 

cytosine being pushed towards the major groove. However, here the pyrenyl ring points 

to the minor groove and the modified guanine is displaced into the major groove. Overall, 

the major conformations of the trans stereoisomers in duplex DNA has the modified 

guanine remain within the duplex and the B[a]P residue stack along the minor groove, 

whereas the cis stereoisomers have the B[a]P intercalate while the modified guanine is 

displaced out of the helix.  

 These structures that form are further complicated by variations in sequence 

identity surrounding the adduct. For instance, when the sequence is switched from a CGC 

context seen above, to a TGT sequence, the NMR structure was not able to be solved, and  
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Figure 8. Duplex DNA structures containing four isomers of B[a]P adducts. The B[a]P 
moiety is in varying conformations for the different adduct isomers, resulting in a 
different mutagenic profile for each isomer. Figure adapted from Geacintov et al., Chem 
Res Toxicol, 10(2): 111-146 (1997). 
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this was attributed to fluctuations in adduct conformations. Molecular modeling studies 

have further investigated this and have shown that up to 16 conformations with similar 

stability can exist in the TGT context (61). 

v. DNA B[a]P Structures in Primer-Template Junctions 

 Within the primer template junction the conformation of the B[a]P adduct is yet 

again different, however here the adduct has primarily been shown to stack with the 

terminal base of the primer strand (Figure 9). Due to the various conformations adopted 

by the four isomers, the effects of an adduct during replication which is positioned at a 

primer template junction is dependent upon which isomer is present. This can be seen in 

the complexity of the mutational spectrum produced by B[a]P adducts, yielding 

substitutions, frameshifts, insertions, and deletions in E. coli (7). Presumably, this 

complex mutational spectrum is dependent on the varying conformations of the different 

B[a]P stereoisomers at a primer template junction, within the active site of the DNA 

polymerase, the types of polymerases involved, and the sequence context surrounding the 

adduct. For instance, within the same primer template junction a (-)-trans isomer has been 

shown to cause a greater disturbance to the overall structure of the region, as compared to 

a (+)-trans adduct. This region of deformation extended three base pairs into the duplexed 

region 3’ of the adduct. 

vi. B[a]P and Polymerase 

 Klenow fragment has been widely utilized to study replication across from 

various adducts including B[a]P. One main reason Klenow fragment has been the choice 

for investigation is chiefly due to its capability to replicate across from and past a B[a]P  
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Figure 9. Stereoview of a (+)-trans-anti-B[a]P-N2-dG adduct in a primer-template 
junction across from a cytosine (cross eyed viewing). The B[a]P adduct (green) is base 
stacked with the terminal base of the primer (red). Template is colored blue. 
PDB#1AXO. 
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adduct positioned in a primer template junction (3). It is thought that when KF encounters 

an adducted B[a]P on the template strand, the polymerase will attempt to incorporate a 

nucleotide that causes the least amount of local distortion. The nucleotide that causes the 

least amount of distortion may vary with various adduct conformations. Consequently, 

the polymerase will often incorporate the incorrect nucleotide across from the adducted 

guanine, presumably due to steric clashes within the polymerase active site. Many studies 

have shown that an adenine is the most easily incorporated nucleotide, which coincides 

with the most common mutation, a GT transversion (62). Nevertheless, the nucleotide 

that is most favored for incorporation may not necessarily be the nucleotide that is 

required for bypass and extension from the lesion, and the preferred nucleotide for 

incorporation also changes with a change in the sequence context surrounding the B[a]P 

lesion (63).  

 B[a]P has also been shown to exhibit inhibitory effect on the conformational 

change of the polymerase when it is positioned within the templating position. Both the 

(+)-trans and the (+)-cis isomer inhibit the switch from the open complex to the closed 

ternary complex (64). Moreover, the addition of the next correct nucleotide, cytosine, 

causes an increase in the KF’s propensity to dissociate from the DNA. This is exactly the 

opposite effect as seen with an unmodified primer template. 

 Regardless of KF’s inability to form a stable closed, ternary complex in the 

presence of B[a]P adducts, replication past these adducts does transpire. The formation of 

-1 to -6 deletion products are possibilities, depending on the sequence context 

surrounding the B[a]P adduct, as well as the sequence of the downstream template bases 
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(63). In the instance of frameshift mutations, translesion synthesis is thought to happen 

via a slipped displaced frameshift intermediate. In this mechanism, the 3’ nucleotides of 

the primer base pairs with nucleotides along the template downstream of the adduct, 

generating a nucleotide bulge in the template strand. This bulging of the template strand 

may help facilitate the bypass of strongly blocking adducts such as the (+)-trans isomer of 

B[a]P. Despite extensive study, the molecular mechanism by which each isomer 

generates mutations, and the mechanism by which frameshift mutations are generated has 

yet to be determined. 

B. AAF and AF 

 One class of DNA damage that has been well-studied is that formed when 

experimental animals are treated with N-acetyl-2-aminofluorene (AAF). This compound, 

originally patented as an insecticide, has been shown to induce the formation of tumors in 

a variety of organs and was subsequently never introduced to market (65). Metabolic 

activation and reaction of these compounds with DNA results in the attachment of the 

AAF or the related AF counterpart to the C8 position of guanine as the major DNA 

adducts.  

i. AAF-DNA Structure 

Structural, biochemical, and theoretical studies all indicate that the dG-C8-AF 

structure causes much less distortion in duplex DNA compared with the dG-C8-AAF 

adduct. NMR experiments show that the guanine bearing the AAF adduct rotates from an 

anti to syn conformation (Figure 10) in the double stranded DNA helix so that the 

fluorine moiety becomes inserted into the helix (base displacement model) (66). This  
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Figure 10. Conformations of a dG-C8-AAF adduct. Native DNA favors the anti-
conformation that allows Watson-Crick base pairs to form with the opposing strand 
while a dG-C8-AAF in the anti conformation results in a steric clash between the acetyl 
moiety (dashed circle) and the ribose. This causes the conformational equilibrium to 
shift towards the more favorable syn conformation. dG-C8-AF adducts differ from dG-
C8-AAF adducts by having a smaller hydrogen in place of the circled acetyl moiety. 
This avoids the steric clash and allows both the syn and anti conformations to be 
sampled more equally.  
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contrasts with the dG-C8-AF adduct that can adopt interchangeable 

conformations: (i) in the major structure the fluorene remains outside the helix (outside 

binding model) (ii) while the minor conformation has the fluorene ring stacked within the 

helix (67, 68). These different conformations presumably are related to the differences 

observed in the biological properties of these two adducts. Utilizing primer extension 

assays, numerous studies have shown that a dG-C8-AAF adduct at the templating 

position poses a strong block to DNA synthesis by high-fidelity polymerases, whereas a 

dG-C8-AF adduct in the same sequence is more easily bypassed (69). When the adducts 

are positioned on the template downstream single stranded region at the +1 and +2 

templating positions3, little to no effect from either adduct is noted. However, positioning 

of the adduct at the postinsertion site (position -1) or in regions of the DNA upstream of 

the postinsertion site (at the -2 and -3 positions relative to the insertion site) also leads to 

diminished synthesis (70). This indicates that the specific placement of the adduct within 

the polymerase active site was guiding its behaviour (70, 71). 

ii. KF Binding to AAF-DNA 

It is interesting to note that despite the block posed by the presence of the dG-C8-

AAF adduct, gel shift binding experiments utilizing Klenow fragment showed that 

polymerase binding to the AAF modified template was an order of magnitude greater 

than to native DNA (69). In addition, unlike native DNA where addition of a correctly 

base-pairing dNTP induces a tighter binding, the identity and presence of any dNTP had 

little to no effect on this already strengthened binding. To remedy this counterintuitive 

discovery Dzantiev and Romano postulated that the AAF moiety was interacting with 
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hydrophobic amino acid residues located within or near the active site of the polymerase. 

This interaction was thought to strengthen the binary DNA-polymerase complex and also 

preclude binding of a dNTP within the active site. Further, the authors postulated that the 

adduct may block the conformational change seen in the presence of the next correctly 

base-pairing nucleotide, thereby removing any further energetic contribution that the 

dNTP would bestow upon the complex.  

A subsequent paper by the same authors explored more directly the 

conformational change of Klenow fragment in the presence of these two adducts (71). 

Utilizing the same tryptic digestion assay discussed above for unmodified DNA, it was 

shown that the conformational change typically induced by the presence of the next 

correct dNTP was in fact inhibited by the presence of the dG-C8-AAF adduct, as 

predicted. The tryptic digestion band indicative of the open conformation was maintained 

despite the presence of any dNTP. However, this was only observed when the adduct was 

in the templating position. When the dG-C8-AAF adduct was moved one nucleotide to 

the +1 templating position (the preinsertion site), the dNTP-induced conformational 

change was again observed. Conversely, placement of a dG-C8-AF adduct in the 

templating position (insertion site) only partially inhibited the conformational change to a 

closed ternary complex. This difference was attributed to the dissimilar conformations 

that each adduct adopts within the polymerase active site and further strengthened the 

proposition that the AAF adduct was inducing interactions within the polymerase-DNA 

complex in a way that precluded the conformational changes necessary for competent 

nucleotide binding (71). 
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Picking up on this line of investigation, in 2003 Lone and Romano utilized a 

Klenow mutant, Y766S, to focus on the specific interactions responsible for the effect of 

the AAF adducts on this inhibition (72). In the native protein the tyrosine at position 766 

is located at the base of the O helix near the junction of the fingers and palm domain and 

is thought to function in maintaining active site geometry. This tyrosine stacks with the 

templating base in the open conformation and swings away during formation of the 

closed complex (similar to Figure 3B), (see more detailed description under the DNA 

Polymerase section). Mutations at this position have been shown to both increase the rate 

of insertions of incorrect nucleotides and reduce the ability to extend from these 

misincorporations (73). Under identical conditions, the wild-type Klenow fragment 

predominantly stalled one nucleotide prior to the dG-C8-AAF adduct, incorporating 

across from the adduct approximately 20%, and extending past the AAF adduct to yield 

6% full extension. Interestingly the Y766S mutant showed a higher (40%) incorporation 

across from the AAF adduct, but gave only 1% full extension (72). In addition, the 

Y766S mutant showed a 16-fold higher Vmax/Km for incorporation of a correct dC across 

from the dG-C8-AAF adduct and also displayed a much greater propensity to 

misincorporate nucleotides on unmodified DNA. Together this illustrated the importance 

placed upon the tyrosine residue for discrimination of a correct base pair and also shows 

that the Y766S mutation allowed the accommodation of the AAF-C8-dG lesion, possibly 

because of a more open active site that allows improper base pairs to form during 

synthesis (72).  
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iii. Polymerase Conformational Change and AAF 

Using gel shift analyses and the tryptic digestion assay, the ability of the Y766S 

mutant to undergo a conformational change was examined (72). Similar to wild-type, the 

Y766S mutant showed an increased binding to native DNA in the presence of the next 

correct dNTP. The binding of the mutant polymerase to a dG-C8- AAF adduct was also 

increased, again similar to wild-type. However, where the wild-type showed no further 

increase in binding strength to dG-C8-AAF containing primer-templates in the presence 

of a correctly pairing dCTP, the mutant polymerase did show increased binding. In fact, 

the presence of any nucleotide appeared to increase the binding strength of the mutant, 

indicating a possible conformational change was occurring. This was confirmed utilizing 

the tryptic digestion analysis in which it was shown that the presence of dCTP caused 

protection of the cleavage site whereas other dNTPs reduced cleavage, indicating a 

conformational change was taking place despite the presence of the dG-C8-AAF adduct 

(72). The ability of the mutant Y766S to undergo a conformational change even in the 

presence of a bulky dG-C8-AAF adduct is indicative of the more open active site and the 

importance the tyrosine residue plays in this conformational transition. Interestingly, the 

Y family of bypass polymerases that specialize in synthesis past bulky adducts also 

display a markedly open active site (32). It is thought that this open nature better 

accommodates lesions by reducing the propensity of steric clashes, although at the 

expense of reduced fidelity.  
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iv. AAF and AF Binary Crystal Structures 

It has long been thought that the conformations adopted within the active site by 

various DNA adducts will account for the array of biological effects and mutagenic 

consequences that the adducts display (65, 74). Direct evidence for the predicted 

mechanism of inhibition of the conformational change for wild-type Klenow fragment in 

the presence of dG-C8-AAF, along with the increased binding affinity to these substrates, 

came in the form a crystal structure published in 2004 (75). Dutta et al. were successful 

in obtaining functionally relevant crystal structures of bacteriophage T7 DNA polymerase 

bound to DNA duplexes containing either a dG-C8-AAF or dG-C8-AF at the templating 

position. The crystal structure of the dG-C8-AAF adduct has several key features that 

correlate with the aforementioned results obtained by Romano et al. First, the polymerase 

complex with dG-C8-AAF modified DNA is in a distorted open conformation and no 

nucleotide is bound to the complex despite the fact that crystals were growth in the 

presence of ddCTP (Figure 11). The modified nucleoside is in a syn conformation, 

flipped out of the active site and bound to the surface of the fingers. The AAF moiety is 

positioned in a hydrophobic pocket behind the O helix stacking alongside Phe528, which 

is usually buried within the fingers (Figure 12). Further stabilizing the position of the 

AAF moiety are hydrogen bonds between the adducted guanine’s N2 and N7 with 

Asp534 and Arg566, respectively. The AAF interactions with the O helix pushes the 

helix towards the active site, forcing Tyr530 (analogous Tyr766 of Klenow fragment and 

Tyr671 of Klentaq) partially into the nucleotide binding site (75). The positioning of the 

AAF and its various direct interactions with the polymerase, as well as the inability to  
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Figure 11. Structure of bacteriophage T7 polymerase bound to a DNA primer-template 
containing a dG-AAF adduct at the templating position (PDB# 1X9M). The overall 
shape of T7 polymerase resembles a human right hand forming fingers (green circle), 
thumb (blue circle), and palm (not highlighted). T7 also contains thioredoxin, a 
processivity factory, in addition to the polymerase and exonuclease domains. The AAF 
adduct inserts behind the O helix, locking the helix in a distorted open conformation, 
inhibiting the binding of dNTPs.  
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Figure 12. Close-up view of active site of bacteriophage T7 bound to a DNA primer-
template containing a dG-AAF adduct at the templating position (PDB# 1X9M). The 
AAF moiety (grey with green space filling) is inserted into a hydrophobic pocket behind 
the O helix stacking with a flipped out Phe528 (brown, with brown space filling), which 
is buried in the native structure. The adducted guanine is in an anti conformation 
placing the hydrogen bond acceptors and donors away from the nucleotide binding 
position. This position is further stabilized by hydrogen bonds to Arg566 and Asp534. 
The AAF moiety pushes the O helix forward, causing Tyr530 (pink with pink space 
filling) to stack on top of the DNA, occupying the nucleotide binding site which 
occludes a dNTP from binding. Residues 537-557 have been removed for simplified 
visualization (ends are circled red). 
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bind nucleotide due to the positioning of Tyr530, explain why the adduct places a strong 

block on replication as well as its increased binding affinity. This also confirms the 

previous experiments performed using Y766S that showed that the presence of the 

smaller serine allowed the conformational change to a closed ternary complex to occur.  

The crystal structure containing the analogously positioned dG-C8-AF adduct 

showed similar conformations as the AAF adduct, but with a few significant differences. 

The AF residue was not positioned in the same hydrophobic pocket as its AAF 

counterpart, but instead the electron density of this moiety was either of poor quality or 

absent (75). Despite limited quality of the electron density around the AF adduct, it could 

be established that the AF moiety was also not binding to the active site of the 

polymerase. This is indicative of a fluctuation between various conformations, possibly a 

transition from anti to syn conformations. The amino acid residues forming the 

hydrophobic pocket of the AAF complex were oriented in more native-like positions 

within the AF containing structure. Also, the important Tyr530 was found to occupy the 

binding site of the template base in the closed ternary complex. The authors modeled the 

positions of the AF adduct in both syn and anti conformations of the nucleoside (75). The 

anti conformation was shown to be able to form a closed complex with no significant 

steric clashes with the AF adduct. However, the syn conformation was shown to place the 

AF adduct stacked in the active site. This stacking arrangement will effectively compete 

with the stacking arrangement of guanine in the alternative anti conformation. The 

positioning of the adducted guanine in the syn conformation would not allow base-pairing 
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with an incoming nucleotide and would subsequently stall synthesis when in this 

conformation.  

A paper published by Hsu et al. in the same year was successful in crystallizing 

thermophilic Bacillus DNA polymerase I fragment in the presence of an AF and AAF 

adduct, and provided direct visualization of the effects of a dG-C8-AF adduct (76). 

Bacillus DNA polymerase I fragment has the ability to catalyze nucleotide addition 

within the crystal, allowing snapshots to be taken of the adducted guanine within the pre- 

and postinsertion sites (20). Capture of a dG-C8-AF adduct within the preinsertion site 

showed the adducted template base within the preinsertion site in a syn conformation, 

with the fluorene moiety also buried within the confines of the same site. The presence of 

the adduct induced a perturbation of the O1 helix, yet the O helix maintained its position 

in an open conformation. The remainder of the protein and the DNA was unaltered by the 

presence of the dG-C8-AF adduct. This showed that prior to incorporation of a dCTP the 

dG-C8-AF was positioned within the preinsertion site, whereas the catalytic site, the O 

helix, and postinsertion site remained unaffected and presumably capable of performing 

the transfer of the template base from the preinsertion site to the insertion site. The 

relatively ordered structure allows nucleotide incorporation to occur opposite the dG-C8-

AF adduct, albeit to a reduced extent relative to unmodified DNA.  

After a dCTP had been incorporated within the complex, the dG-C8-AF adopts an 

anti conformation, placing the AF moiety within the major groove while the dG forms 

cognate Watson-Crick hydrogen bonds with the dC within the postinsertion site. The 

polymerase is able to accommodate this structure because the adduct is solvent exposed 
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within the major groove, unlike what would occur if its placement was into the minor 

groove where many interactions between the DNA and the polymerase are found. This 

conformation is similar to the outside model that places the AAF moiety outside the 

duplex DNA helix (67, 68). This structure also showed a much greater degree of 

distortion that ultimately affects DNA replication. The dG-C8-AF:dC induces distortions 

to the template that relocate the n-1 template base causing perturbations to the minor 

groove, the O and O1 helicies, and placing the AF moiety obscuring the preinsertion site 

to the next template base. This conveniently explains the ability of polymerases to 

incorporate across from an AF adduct, yet exhibit difficulty in extending further. 

Conversely, the dG-C8-AAF adduct-containing structure in the pre- and postinsertion 

sites were indistinguishable, and hence a dCTP was absent from the postinsertion 

structure. In both structures the protein was in an open conformation with an empty pre-

insertion site as the AAF-adducted guanine is somewhat disordered and placed over the 

preinsertion site. The duplex DNA, as well as the protein’s catalytic, pre- and 

postinsertion sites were undisturbed. Again, this inability to perform incorporation could 

presumably be due to the inability of an dG-C8-AAF adduct to adopt an anti 

conformation. In general, the observed crystal structures Dutta et al. (75) and of Hsu et 

al. (76) correlated well with the previous results and provided further support for the 

premise that the effects of these adducts are related to the conformations that they adopt 

within the polymerase active site. However, the crystal structures of Dutta et al. and Hsu 

et al. show that the conformations adopted by the adducts are also dependent upon the 

polymerase they are bound to, yet still correlate well with the previously observed results. 
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v. AAF and AF Sequence Context Effects 

The stark difference in the mutagenic properties of AAF and AF adducts are 

further influenced by the sequence of bases surrounding the adduct. AAF’s ability to 

induce frameshifts is targeted to repetitive sequences such as the NarI restriction 

recognition sequence (5’-G1G2CG3CC-3’) (NarI sequence reviewed in (77)) (78). In 

bacteria, when an AAF adduct is positioned at G3 a dinucleotide GC deletion is produced, 

while an AF adduct at this same position does not yield the deletion product (78, 79). The 

dinucleotide deletion is thought to be induced via a slipped displaced structure where 

during synthesis the primer is capable of misaligning with the template within the 

polymerase active site. These misaligned looped out structures are further stabilized by 

Watson-Crick base-pairing of adjacent nucleotides, allowing the polymerase to skip the 

nucleotides in proximity to the adduct. Gill and Romano explored this possibility utilizing 

primer extension analysis and gel shift binding assays of various primers along the NarI 

restriction recognition sequence (80). By positioning various primers along the AAF 

modified template and examining which nucleotide best complemented binding of 

Klenow fragment, along with the ability to extend the substrate, it was shown that the 

formation of a GC dinucleotide bulge was induced. Interestingly, where the AAF adduct 

previously had caused a significant increase in binding to non-NarI sequences, an AAF 

adduct positioned at G3 of the NarI sequence showed no increase in binding affinity over 

the unmodified NarI sequence. In fact, both the binding of Klenow fragment to AAF 

modified and unmodified NarI sequences showed decreases over non-NarI sequences 

(80). This indicated that a possible different conformation with the AAF modified NarI 
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sequence existed within the polymerase active site than had previously been noted in the 

non-NarI sequence of the T7 or Bacillus fragment crystal structures. Similar to non-NarI 

sequences modified with AAF, the addition of nucleotides did not enhance Klenow 

fragment binding. However, the presence of dGTP, dATP, or dTTP did decrease the 

binding affinity. This was indicative of a destabilizing effect these nucleotides had on the 

complex, presumably due to an incorrect base pair match.  

 Taken together, these results indicated a specific two-step mechanism for 

formation of the dinucleotide deletion (Figure 13). The first step has a dCTP be 

incorporated across from the AAF modified base, followed by a structural rearrangement 

that places the AAF modified base along with the upstream 3’C in a dinucleotide bulge. 

The primer’s 5’ upstream guanine and the cytosine initially incorporated across from the 

adduct now base pair downstream of the templates adducted guanine. This two-step 

mechanism also suggests that the frameshift extension product could be generated in vivo 

by two different polymerases, one better suited for incorporation across from the bulky 

AAF adduct followed by another more suited for extension from the adduct (reviewed in 

(81)). This two enzyme stepwise mechanism has been postulated for both bacterial and 

eukaryotic polymerases and provides a mechanism to reconcile the different properties 

required of a polymerase for replicative DNA synthesis, and the specialized niche of 

performing replication in proximity to bulky DNA adducts. This process is exacerbated 

by specific sequences such as NarI that preferentially adopt structures to induce 

frameshift mutations after incorporation of a nucleotide opposite the adducted base. 
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Figure 13. Mechanism for bypass of a dG-C8-AAF adduct in the NarI sequence. A 
polymerase more suited for incorporation across from the adduct places a proper 
dCTP:G base pair at the adducted position followed by incorporation, then dissociation 
of the enzyme. A subsequent rearrangement of the DNA to form a 2 nucleotide budge 
ensues, allowing a possible second polymerase to perform extension from this slipped 
structure, resulting in a -2 deletion frameshift product. 
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C. Bypass Polymerases 

i. AF and AAF 

 A class of polymerases capable of performing nucleotide incorporation in the 

presence of such distorting adducts as AF and AAF are the bypass or translesion 

synthesis (TLS) polymerases (82). TLS polymerases are characterized by their open 

active sites that are capable of accommodating bulky lesions and the DNA distortions 

they produce. For example, yeast Polη (γPolη) has a more open active site caused by 

stubby fingers and thumb domains, as well as an additional polymerase associated 

domain (PAD) (Figure 14). γPolη belongs to the Y-family of polymerases and also 

contains a little finger domain that is unique to this class of polymerases. The more open 

active site allows Polη in both humans and yeast to correctly synthesis past a cis-syn 

thymine-thymine UV-induced dimer (83). Unlike the solvent-excluded tight constraints 

of replicative polymerases, the active sites of Y-family polymerases are solvent exposed 

and thus capable of accommodating many distorting lesions. However, the open active 

site comes at the cost of low fidelity, orders of magnitude lower than replicative 

polymerases (84, 85). Bypass polymerases typically also do not possess high 

processivity, indicative of their brief role in synthesis past a lesion then allowing a more 

precise replicative polymerase to continue synthesis (86). 

Prakash and co-workers were the first to present evidence that γPolη was capable 

of undergoing a conformational change step prior to chemistry occurring (87). Utilizing 

pre-steady state kinetics and measuring the elemental effect of a sulfur substituted for an 

oxygen at the α-phosphate of the nucleotide they showed that γPolη undergoes an  
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Figure 14. Structural overview of the TLS yeast polymerase eta (PDB# 1JIH, molecule 
A). γPolη contains stubby fingers (green) and thumb (blue) domains, a palm (yellow) 
domain, as well as a polymerase associated domain (PAD, (brown)). The open nature of 
the active site allows two nucleotides to be accommodated during synthesis, as well as 
bulky carcinogenic adducts and DNA distorting lesions. 
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induced fit mechanism for nucleotide incorporation. γPolη poorly discriminates between 

correct and incorrect nucleotides both at the initial nucleotide binding step and during the 

induced conformational change. A more direct FRET based method was used to visualize 

the global conformational dynamics of another similar Y family polymerase, Dpo4, in a 

paper published by Xu and co-workers (88). Here FRET pairs were positioned at various 

locations around Dpo4 allowing movement of specific locations to be tracked during real 

time measurements. Assemblage of all movements along with the rates of the 

corresponding FRET changes allowed the authors to assemble global movements of the 

enzyme. Upon binding of a correct nucleotide a concerted global rearrangement of all 

four domains (fingers, little fingers, thumb, and palm) takes place where the little fingers 

domain moved in opposing directions to the polymerase core domains. The movement 

was relatively small compared to those of T7, being only a few angstroms, yet form 

similar fingers and thumb closing motions as mentioned previously for various other 

polymerases.  

On unmodified DNA, gel shift binding assays with γPolη showed increased 

binding in the presence of the next correct nucleotide (89). This is consistent with a 

dNTP-induced conformational change resulting in a closed ternary complex, just as what 

had been shown previously for Klenow fragment. Addition of an incorrectly base-pairing 

dGTP was noted to have a destabilizing effect on the complex, presumably due to an 

incompatible fit within the enzyme, again similar to that previously observed for Klenow 

fragment. 
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Extension assays showed that γPolη is capable of fully bypassing a dG-C8-AF 

adduct and while incorporation occurred across from a dG-C8-AAF adduct, extension 

past this position was inhibited (89). These results are similar to that observed for the 

Klenow mutant Y766S, which, similar to γPolη, also has a more open active site. 

Interestingly, where Klenow fragment was unable to become more stable upon addition 

of any dNTP across from a dG-C8-AAF adduct, binding was stabilized with γPolη in the 

presence of dCTP, consistent with the formation of a closed ternary complex. Also 

consistent with the lack of extension after incorporation across from the AAF adduct, no 

enhanced binding was observed at this position in the presence of the next correct 

nucleotide. Despite the structural and behavioral differences between replicative 

polymerases and lesion bypass polymerases, a common conformational change in the 

mechanism appears to be shared in this case. It should be noted however that studies of 

some polymerase such as Dbh have not been able to detect a conformational change (90). 

Although it is conceivable that smaller undetected conformational changes are 

performing the analogous function as the larger scale rearrangements seen in replicative 

polymerases or that these motions have yet to be detected. 

The open active site of Y-family polymerases is not necessary only to 

accommodate DNA lesions, but also able to allow various primer-template alignments 

that may favor the replication of the adducted template. As mentioned previously, the 

formation of frameshift mutations in the NarI sequence occur via a template 

misalignment and this misaligned structure must be accommodated within the 

polymerase active site. A recent crystal structure by Rechkoblit et al. of the Y family 
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polymerase Dpo4 in the presence of an dG-C8-AF adduct shows such a complex and how 

it can be accommodated and stabilized within the polymerase (91).  

In this study two molecular structures were obtained in one asymmetric unit of the 

crystal: 1) a correct alignment with the dG-C8-AF adduct base-pairing with a dC at the -1 

position (dG-AF:dC at the postinsertion site) and a typical correctly forming dC:dGTP 

pair of the adjacent base (5’ template side of adduct at position n, the insertion site) 

(Figure 15A) a misaligned structure with the dG-C8-AF adduct base-pairing with a dC 

shifted to the -2 position (1 position upstream of the postinsertion site) and the adjacent 5’ 

C of the template looping out (Figure 15B). More specifically, in the correctly aligned 

molecule 1 the dG containing the AF is in an anti conformation and the AF is placed on 

the major groove side of the duplex within a pocket buried from solvent, and stabilized 

by interactions to the little finger domain. This is similar to the conformation of the AF 

adduct in Bacillus fragment, with the exception that Dpo4 contains interactions to the 

little fingers domain that stabilize the adducts position, a caveat that is impossible in 

Bacillus fragment due to the lack of a little fingers domain (76). The template C 5’ of the 

adduct (at position 0, the insertion site) is base paired with an incoming dGTP, yet is 

shifted from its typical stacking arrangement over the postinsertion site base pair, and is 

instead poised partially over the AF adduct with the dGTP over the center of the 

postinsertion site base pair. In addition, the next downstream template base (0 position, 

which would typically be within the insertion site) is flipped out and stacks on top of the 

AF adduct in alignment with the templating C base and the incoming dGTP at the 0 

position (insertion site). In the misaligned structure of molecule 2 the dG-C8-AF: dC base  
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Figure 15. Two structures of Dpo4 ternary complexes in the presence of a dG-C8-AF 
adducted template. (A) Correctly aligned primer template with the dGTP and 
corresponding template dC correctly at the 0 position. The adducted dG retains base 
paring with its corresponding dC while the AF is positioned towards the major groove 
and stacks in a pocket of the little fingers domain. The +1 templating base stacks on top 
of the AF adduct and is in alignment with the 0 position. (B) The misaligned structure 
contains the templating base in a looped out structure. The looped out base slides into a 
pocket, rotated away from the active site. As a consequence the +1 templating base 
rotates and stacks on top of the adducted dG base, and the DNA is shifted downwards as 
the +1 base now occupies the -1 position within the polymerase. The AF adduct is 
rotated downwards and placed into a hydrophobic pocket within the little fingers 
domain. The dGTP does not contain any Watson-Crick binding partner as it occupies 
the 0 position and stacks onto of the template base below. 
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pair is shifted upstream relative to the polymerase to the -2 position, as the adjacent 5’ 

template C loops out of the helix towards the major groove, stacking with the little 

fingers domain (Figure 15B). Again, the AF adduct is on the side of the major groove and 

situated within a pocket on the little fingers. The 0 template base is rotated back into the 

helix and occupies the post-insertion site (-1 position) as the incoming dGTP stacks on 

top of it in the insertion site (occupying the n position). Consequently, the incoming 

nucleotide does not possess a Watson-Crick hydrogen binding partner.  

Interestingly, the correctly pairing ternary structure of molecule 1 was poised in 

resemblance to a binary like state which is incapable of performing catalysis without 

additional rearrangements. However, the misaligned structure of molecule 2 showed an 

uncanny resemblance to the ternary complex of Dpo4, with protein-DNA interactions 

similar to that of the ternary complex. It should be noted however that the misaligned 

structure of molecule 2, despite being arranged similar to a ternary complex, would also 

require further rearrangements in order to achieve a catalytic state.  

 The ability of Dpo4 to not only accommodate the bulky AF lesion but also to 

stabilize its position by binding to the little fingers domain that only Y family 

polymerases possess, is indicative of its design for its role in lesion bypass. In addition, 

Dpo4’s ability to further utilize its specialized little finger domain to stabilize primer-

template misalignments strengthens its ability to cope with distorting lesions, albeit at the 

expense of increasing mutagenicity. This paper also shows that misaligned structures are 

not only stabilized by the Watson-Crick base-pairing of the misaligned structure, but also, 
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and possibly more so by direct interactions of the polymerase with the misaligned 

complex (91). 

 

III. MALDI-TOF MS 

A. Theory 

 The ability to measure the masses of molecules greatly aids in the physical 

characterization of samples. Matrix-assisted laser desorption ionization time-of-flight 

mass spectrometry (MALDI-TOF MS) obtains mass spectra by ionizing a sample and 

accelerating the ions over a fixed distance to a detector, where the relative ion abundance 

along with the time of flight, are used to calculate the mass spectrum based upon the mass 

to charge ratio (92). 

 The ionization process is achieved by co-crystallizing sample with a suitable 

matrix. The matrix is typically a low molecular weight compound that readily absorbs the 

laser light in the UV region. The matrix functions to increase the ionization and 

vaporization processes of the sample by absorbing pulsed laser light. The absorption of 

this energy ionizes and vaporizes matrix which carries the sample into the vapour phase 

and transfers charge to the sample (93). The now charged sample is accelerated through a 

field-free drift tube using electric and magnetic fields. The time required to traverse the 

distance from the source to the detector is related to the mass and charge of the sample 

species. For two samples with the same given charge, the sample molecules having larger 

mass will take longer to reach the detector. Similarly, for two samples of the same given 

mass, the sample molecules having the smaller charge will take longer to reach the 
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detector. Thus, based upon the time of flight a mass to charge (m/z) ratio of a particular 

species can be determined. 

B. Use in Biological Systems 

 MALDI-TOF mass spectrometry is able to accurately determine masses of a wide 

range, making it useful for biological studies. Large molecules such as proteins and 

nucleic acids are routinely examined by MALDI-TOF MS in order to rapidly ascertain an 

accurate mass of the molecule. In addition to this type of simple characterization, 

MALDI-TOF MS can also be used for more sophisticated characterizations such as 

sequencing by exonuclease digestion (94, 95), sequencing by a Sanger type method (96, 

97), single nucleotide polymorphism (SNP) analysis (98, 99), analysis of DNA-protein 

interactions (100, 101), and identification of covalently bound carcinogenic adducts (102-

104).  

 An important factor in the analysis of biomolecules by MALDI-TOF MS is the 

method used to prepare the sample for analysis. It is well-established that the matrix used 

plays a crucial role in both the vaporization and ionization process and utilizing the 

proper matix can greatly improve results (105). For DNA analysis, the most common 

matrix used is 3-hydroxypicolinic acid (3-HPA) because of its ability to give good 

vaporization and ionization with low levels of fragmentation. Various other matrices, 

such as 3-hydroxycoumarin, have also been shown to give promising results when used 

with DNA (106). The addition of additives such as sugars to the sample has aided in 

improving mass resolution by preventing the transfers of excess laser energy to the DNA 

molecules (107). Other research efforts have focused on techniques for spotting of 
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samples onto the MALDI plates and in this regard various methods have been developed 

to maximize the concentration of matrix and sample while still providing high-quality 

crystal growth (108, 109).  

 A second area of research focuses not on the matrix and sample preparation but 

instead on the support where the sample is spotted prior to laser ionization. Most 

commercial systems use steel plates because of their high durability, evenness of the 

surface, and ease of cleaning the surface following use. Several methods have been 

developed to achieve higher resolution or better spotting properties, including Teflon 

coatings to anchored gold particles (108-110), sheets of Parafilm (111), and paraffin wax 

(112). Despite the advantages these hydrophobic coatings may confer, each suffers from 

numerous drawbacks. The Teflon-coated gold surface is difficult to prepare and very 

expensive. Methods that used Parafilm sheets placed on top of a steel plate are often not 

compatible with the strict tolerances of the sample chamber in commercial instruments 

and further suffer from the reliance on the use of internal standards because of the 

unevenness of the Parafilm layer thickness.  

 

IV. Surface Plasmon Resonance 

A. History 

 One method that has grown widely in use over the last two decades for 

investigating the binding of various molecules and proteins is surface plasmon resonance 

(SPR). SPR is capable of measuring, in real time and label free, the binding of an analyte 

to a ligand. SPR was first indirectly observed in 1902 by Wood, whom noted varying 
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light and dark bands in the reflected light when he reflected polarized light through a 

diffraction grating placed on the surface of a mirror (113, 114). An interpretation of these 

results would follow shortly in 1907, described by Lord Rayleigh, and then built upon 

from 1936 to 1941 by Fano (115-117). Despite the first published observations in 1907 

by Wood, a complete physical description of the results would not be purposed until 61 

years later, in 1968, by Andreas Otto, and in the same year by Kretschmann and Reather 

(118, 119). They noted that the phenomena observed and reported prior could be 

explained by the excitation of surface plasmons. Briefly after this explanation was 

purposed, Leidberg et al. had come up with a method to utilize this phenomenon to 

investigate the binding of biomolecules, specifically immunoglobulin’s, while designing 

a laboratory experiment for undergraduate students to explore surface plasmons (120). 

This informal experiment directly paved the road for the upcoming development of 

commercial Biacore systems that are available today. 

B. Physical Description 

 When p-polarized light is reflected off of a surface at varying angles great than 

the critical angle, such that total internal reflection occurs, the energy of the reflected 

photons typically will not vary with a change in the angle of reflection. However, the 

following will described that if surface plasmon resonance is possible at the interface of 

two mediums, then the reflected light intensity will vary with a change in angle of the 

reflected light, and a minimum will form at the angle that generates plasmon resonance. 

 To begin, surface plasmons can be found at the interface between a metal and a 

dielectric medium. At this interface, a charge density wave can exist due to the free 
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conduction electrons found in the metal. It should be noted that some authors describe 

this charge density wave an electromagnetic wave that is strongly bound to the interface 

of the two materials. The undulating nature of this wave allows a resonance to be 

established upon proper excitation. The excitation of these surface plasmons can occur 

when the energy and momentum of an incoming photon matches that of the charge 

density wave on the surface of the metal (121).  

 Due to the overlap of these coordinated waves, the result is a transfer of energy 

from the photon to the charge density wave on the metal surface via an evanescent wave. 

However, the energy and momentum of the incident photon, and consequently the energy 

of the evanescent wave, will vary with varying angles of total internal reflection. Thus, 

only angles of reflection that cause the energy and momentum of the evanescent wave, 

generated by the incident photon, to coincide with that of the charge density wave will 

cause resonance to take place. This can be seen in Figure 16A, with angle θb. In this 

example the incident light from θa and θc do not generate an evanescent wave capable of 

establishing resonance, however θb does. This causes a decrease in the reflected light 

intensity at this particular angle of reflection, due to the transfer of energy from the 

incident photon to the metal surface. If the reflected light intensity (reflectance) is plotted 

as a function of the angle of incidence, this event is registered as a sharp decrease in the 

reflected light intensity at a particular angle of reflection. This can be seen in Figure 16C, 

where the center of the dip (θb) corresponds to the angle that gave rise to the highest level 

of plasmon resonance.  
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Figure 16. Principles of SPR. (A) Light at varying angles is reflected off a gold surface 
to produce an evanescent wave. A low mass at the surface will result in θb transferring 
energy to the plasmons and consequently having a weaker reflected light intensity. (B) 
An increase in mass (binding of red spheres) will cause light reflected at θc to now be of 
lowest intensity. C) Plots of the intensity of reflected light vs. angle of incidence shows 
the shift in the minimum reflectance upon binding of the biomolecules. Black line 
represents reflectance in figure A and green line represents reflectance in figure B. (D) 
Figure C rotated 90°. (E) The shift in angle in D is converted to response units by a 
mathematical transformation. This shift in the minimum reflectance is monitored in real 
time allowing direct observation of association and dissociation of biomolecules in what 
is termed a sensorgram. 
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 The charge density wave, and its ability to resonate, is influenced by mass 

accumulation near this region. An accumulation of mass will cause the need for an 

evanescent wave of different energy and momentum in order to establish plasmon 

resonance, and hence a different angle of incident light will be required (Figure 16B). 

This accumulation of mass has the effect of shifting the dip in the reflectance as seen in 

Figure 16C. This shifting of the minimum reflectance can be monitored in real time and 

is expressed on a sensorgram where the shift in the minimum reflectance is plotted as 

response units (RU) on the Y axis, and it’s real time change is monitored along the x axis 

(Figure 16E and E). A response unit is merely a mathematically transformed unit of the 

shift in reflectance, where the angle change generated from a mass change of 

approximately 1ng/mm on the surface (0.001˚) corresponds to a signal of 1000 response 

units. 

C. Use for Biological Systems 

 The ability of surface plasmon resonance to monitor a change in mass on its 

surface opens the door to many biological studies. By covalently linking one molecule to 

the surface, binding can be visualized by flowing the other over the surface and 

monitoring any changes in the refractive index. This provides a direct means to monitor 

in real time the binding kinetics of biomolecules.  

 Several facets of SPR Biacore machinery provides benefits beyond those obtained 

for more classical binding experiments such as gel shift, anisotropy or circular dichroism. 

Because SRP allows the re-use of the same surface, and consequently the same substrate, 

very direct comparisons can be made between binding of different ligands. For example, 
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attachment of a potential target to the sensor surface followed by flowing of various 

antibodies over the same surface can identify which antibody sample has the highest 

affinity to the desired target. This allows rapid screening of large numbers of biosamples 

to identify potential binding interactions.  

 In addition, the multiple flow cells of the instrument allow the same ligand to be 

flowed over multiple covalently bound surfaces concomitantly, again allowing more 

direct comparisons between noted binding activities between various substrates. For 

example, if mutant and wild type proteins show small changes in binding to their targets, 

both of the proteins can be immobilized onto adjacent flow cells. During an injection of 

sample the same sample is flowed over both surfaces which will allow a sensitive 

comparison of the binding parameters of the two proteins. 

 SPR is also a very sensitive method for visualizing binding, and thus requires low 

levels of sample to be immobilized onto the sensor surface. This is beneficial when using 

limited quantities of precious sample. The immobilized sample is required in very low 

levels, and only one immobilization procedure is required for each experiment. However, 

the amounts of required sample that will be injected and flowed over the surface can be 

quite high, especially if high flow rates are used.  
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CHAPTER II: EXPERIMENTAL PROCEDURES 

I. Materials 

A. DNA Oligonucleotides 

 Unmodified, biotinylated, and fluorescein labelled DNA oligonucleotides (Figure 

17A-F, and 17J-L) were purchased from either Midland Certified Inc. (Midland, TX), or 

MWG Operon (Huntsville, AL). All DNA was purchased as either GF grade desalted 

oligonucleotides or reverse phase HPLC purified, and further purified and verified as 

described under methods. 

B. Protein 

 DNA polymerase I Klenow fragment of Escherichia coli was overexpressed and 

purified from a strain provided by Dr. Catherine Joyce of Yale University (New Haven, 

CT) as described in (57). The Klenow fragment used carries a D424A mutation that 

greatly reduces the 3’-5’ exonuclease activity of the enzyme, yet does not affect its 

polymerase activity. Purification of the enzyme was graciously performed by Asad Ullah 

and Radoslaw Markiewicz. 

C. Other Materials 

 Terminal deoxynucleotidyl transferase, 2’-deoxyribonucleotide 5’-triphosphates 

(dNTPs) and 2’,3’-dideoxyribonucleotide 5’-triphosphates (ddNTPs) were purchased 

from USB Corp. The instrument used for all SPR biosensor experiments was a Biacore 

2000 (Uppsala, Sweden). Carboxymethylated dextran 5 (CM5) research grade 

sensorchips and the amine coupling kit containing N-ethyl-N’-[3-

(diethylamino)propyl]carbodiimide (EDC), N-hydroxysuccinimide (NHS), and 1 M 
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Figure 17. List of DNA oligonucleotides used in this study. A, B, G-I were also used 
with a 5’ end labelled fluorescein. 
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 ethanolamine hydrochloride were also purchased from Biacore. Streptavidin was 

obtained from Sigma. All other general reagents were obtained from Fisher, Sigma-

Aldrich, or VWR. 

 

II. Methods 

A. Unmodified DNA Studies 

i. DNA Purification 

 All synthetic DNA oligonucleotides utilized in this study are shown in Figure 17. 

DNA was extensively purified via several rounds of reverse phase HPLC until a single 

peak was obtained on HPLC and confirmed via matrix assisted laser desorption 

ionization time of flight mass spectrometry (MALDI-TOF MS) analysis (method 

described under MALDI-TOF). A Thermo Fisher Scientific C18 column containing 5 µm 

particles was used on a Varian ProStar (Palo Alto, CA) with a Varian ProStar photo diode 

array (PDA) detector. Buffer A was 0.1 M triethylamine acetate (TEAA), pH 7.0, and 

buffer B was a 70% mixture of buffer A and 30% mixture of acetonitrile. Both buffers 

were degassed prior to running the HPLC, and subsequently degassed prior to a run if not 

used for longer than 24 hours. The column was pre-equilibrated at 10% buffer B for 10 

minutes, then 14% buffer B for an additional 15 minutes prior to each run. A gradient of 

14%B → 45%B over fifty minutes gave good separation of failure sequences. Minor 

adjustments to the starting percentage of buffer B from 1-4% and of the ending 

percentage of buffer B from 1-10% were performed, depending on oligonucleotides 

length and presence or absence of hydrophobic moieties such as biotin or a carcinogenic 
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adducts, in order to achieve optimum separation yet retain good peak resolution. 

Nevertheless, a 14%B → 45%B over fifty minutes proved to be adequate for most 

oligonucleotides used. 

ii. Dideoxy Termination of Primers 

 Dideoxy terminated primers were obtained by 3’ extension of the 22mer primer 

(Figure 17A) with a ddNTP using terminal deoxynucleotide transferase (TdT). This 

produces a primer lacking the 3’OH required for extension. Concentrations of 

oligonucleotides were determined using Abs260 and the calculated molar extinction co-

efficients (122). Approximately 10 nmols (final concentration of 10 uM) of the 22mer 

primer was incubated with an excess of the appropriate ddNTP in 200 mM potassium 

cacodylate buffer, pH 7.0, 4 mM MgCl2, 1 mM 2-mercaptoethanol, and approximately 

50-100 units of terminal deoxynucleotide transferase. The reaction was allowed to 

proceed for 6 hours at 37 ˚C which achieves near 100% completion. Following 

incubation the mixture was heated in boiling water for 5 minutes to terminate the 

reaction. This process was repeated to generate three different primers where the 3’ 

terminal nucleotide was either a ddC, ddT, or ddG (Figure 17G, H and I respectively). 

The products were then directly purified via reverse phase HPLC as described above 

(refer to Unmodified DNA Studies, DNA Purification), and the products were analyzed 

by MALDI-TOF MS as described below (refer to sections MALDI-TOF Instrument 

Setup and Sample preparation and Spotting). 
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iii. Annealing Duplex DNA 

 Oligonucleotides were annealed by incubating a 3-5 fold excess of template in the 

appropriate buffer for 2 minutes in a water bath at 95°C. After 2 minutes the water bath 

was removed from the heat source and allowed to slowly cool to room temperature, 

typically taking approximately 1.5-2 hours. Duplexes for use in the SPR, containing 

either a terminal T:G mismatch, a correctly base paired C:G, or a terminal G:G mismatch 

at the -1 position (Figure 18 A, B, and C, respectively) were formed by mixing a 5 µM 

primer : 1 µM template ratio in HSM buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 10 

mM MgCl2, and 0.05% P40), heating to 95 ˚C for 2 minutes then allowing to slowly cool 

to room temperature over 1.5-2 hours. 

iv. Extension Assays 

 Extension assays were performed using a novel method in which fluorescein 

labelled primers were utilized in place of radiolabelled 32P primers. Primers used are 

identical to the primers listed in Figure 17, however they are 5’-end labelled with 

fluorescein. Reactions were done with either a constant concentration of Klenow 

fragment varying the reaction time, or they were completed with a constant time and the 

concentration of Klenow fragment was varied. DNA was annealed in KB buffer (50 mM 

Tris, pH 7.5, 10 mM MgCl2, 1 mM DTT, 0.05 mg/mL bovine serum albumin) so the final 

concentrations loaded per lane contained 200 fmols of labelled primer, and a 4-fold 

higher concentration of the template. After annealing, all four dNTPs were added to a 

final concentration of 400 uM. The reactions were initiated by adding the indicated 

amount of Klenow fragment and allowed to proceed for the indicated time. Reactions  
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Figure 18. DNA Primer-template duplexes used in SPR experiments. Primer strands are 
dideoxyterminated at the 3’ end to prevent extension. Template stands are 3’-
biotinylated to allow capture onto streptavidin coated flow cells for SPR experiments. 
(A) Duplex containing a T:G mismatch at the primer terminus. This mismatch is 
positioned at the -1 position (post-insertion site) of the polymerase. (B) Correctly paired 
primer-template. (C) Mismatched primer-template with a G:G mismatch at the primer 
terminus. 
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were quenched by removing 10 uL aliquots at the indicated time and placing into 30 uL 

of bromophenol blue loading buffer (10 mg bromophenol blue, 10 mL formamide, 10 

mM EDTA). Products were resolved by 20% PAGE and directly imaged using a 

Typhoon scanner. 

v. Amine Coupling of Streptavidin to CM5 Sensorchip 

 The SPR biosensor instrument utilized for all experiments was a Biacore 2000 

(Uppsala Sweden) in conjunction with a carboxymethylated dextran 5 (CM5) research 

grade sensorchip. Prior to amine coupling of the streptavidin, the dextran matrix of the 

chip was conditioned. To do so HBS-EP buffer (0.01 M HEPES, pH 7.4, 0.15 M NaCl, 3 

mM EDTA, 0.005% P20) at a flow rate of 100uL/min, with a system temperature of 25 

˚C was flowed over the chip and three separate 10 µL portions of 10 mM NaOH were 

repeatedly injected, flowed by three separate 10 µL portions of 500 mM NaCl. All 

solutions and buffers were sterile filtered and degassed prior to use.  

 Streptavidin was bound to the sensorchip using the amine coupling kit and the 

Biacore Immobilization wizard within the accompanying Biacore control software. The 

flow rate was set to 5 µL/min of HBS-EP buffer (0.01 M HEPES, pH 7.4, 0.15 M NaCl, 3 

mM EDTA, 0.005% P20), and the system temperature was kept at 25 ˚C. The 

immobilization was completed one flow cell (FC) at a time, starting with FC 4 and 

progressing towards FC 1, in order to achieve precise control over binding levels. The 

amine coupling kit contains 0.2 M N-ethyl-N’-[3-(diethylamino)propyl]carbodiimide 

(EDC), 0.05 M N-hydroxysuccinimide (NHS), and 1 M ethanolamine hydrochloride. A 

35 μg/mL solution of streptavidin in 10 mM sodium acetate buffer, pH 5.0, was first 
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injected, and the relative slope governed by the rate of binding of the streptavidin to the 

sensor surface was calculated. Slopes of approximately 300 RU/min gave good results. 

The carboxymethylated dextran (CMD) layer of the sensorchip was then activated by 

injecting a 1:1 mixture of NHS and EDC. Following, repeated injections of the 

streptavidin solution were performed until the appropriate level of binding was obtained, 

which in most instances was set to 1000 RU in each individual flow cell unless otherwise 

indicated. The amount of streptavidin bound is calculated by taking the baseline signal 

prior to injecting streptavidin and subtracting this value from the baseline signal after the 

streptavidin injection is complete. This iterative process of injecting streptavidin and 

calculating the amount bound is repeated until the intended level of binding is reached. 

Once the intended level of binding is reached, a 1 M solution of ethanolamine is injected 

to quench any reactive NHS esters left over. The sensor surface was then washed with 

HBS-EP buffer to remove any non-bound streptavidin from the surface, and the process 

was repeated for the next flow cell. 

vi. Duplexing and Binding of Unmodified DNA to the CM5 Sensorchip 

 Primer-template duplexes were annealed in HMS buffer (10 mM HEPES, pH 7.4, 

150 mM NaCl, 10 mM MgCl2, and 0.05% P20) by incubating a 5 µM : 1 µM mixture of 

primer to template. The excess of primer ensures that during duplex formation all 

template is annealed. It is of importance to note that this is the opposite ratio that is used 

for extension reactions and gel shift binding assays, where the primer must be limiting. 

The oligonucleotides mixture was then placed in a boiling water bath, and the bath was 

immediately removed from the heat source and allowed to cool slowly to room 
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temperature to anneal the DNA duplexes as indicated above (refer to Annealing Duplex 

DNA). A small portion of the resulting solutions were then diluted either 500 or 1000 

fold to obtain 10-5 nM : 2-1 nM mixtures to be used for binding to the CM5 sensorchip. 

10 nM : 2 nM concentrations allow relatively quick increases in binding levels whereas 

the 5 nM : 1 nM allowed precise control when adjusting the final amount of DNA bound 

to the matrix. 

 DNA templates contain a biotin modification at the 3’ end, so capturing of the 

duplexes onto the sensor surface, which is now modified with streptavidin, is performed 

by simply flowing the DNA duplex over the sensor surface. Binding was accomplished at 

a flow rate of 5 µL/min of HSM buffer (10mM HEPES, 150 mM NaCl, 10 mM MgCl2, 

and 0.05% P20) at a temperature of 25 ˚C. Small quantities of 5-50 uL of diluted duplex 

mixtures of the appropriate primer and template were injected into the appropriate FC, 

followed by rinsing with HSM buffer. Binding levels were determined by subtracting the 

baseline level before injection with the baseline level after injection. This was repeated 

until DNA reached an immobilization level of approximately 15-100 RU, depending on 

the particular experiment. This process was then repeated with the remaining flow cells 

leaving FC 1 containing no DNA and only streptavidin, to serve as a reference flow cell 

to correct for non-specific binding and any bulk changes in the refractive index during 

injections of polymerase. For any particular experiment, DNA binding levels within each 

flow cell of the chip are within 5% of each other to allow direct observation of 

polymerase binding levels on each substrate. 
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vii. Dialysis of KF 

 KF solutions were prepared by dialyzing stock 33.5 µM KF using a Pierce Slide-

A-Lyzer MINI eppendorf dialysis tube (Rockford, Il), having a 10 kDa cutoff membrane. 

The dialysis tube was placed into a distilled and filtered 1L water bath for 20 minutes to 

aid in the subsequent removal of glycerol. The dialysis tube was then placed into 1.5 L of 

4 ˚C Tris buffer (50 mM Tris base, pH 7.44, 10 mM MgCl2, 150 mM NaCl, 0.05% P20). 

The stock KF was then added into the dialysis tube and allowed to equilibrate for 6 hours. 

6 hours of dialysis ensured the removal of all contaminants from the KF storage buffer 

(including glycerol), and was completed each time KF solutions were to be used on the 

SPR. To obtain the final concentration of KF in the dialysed solution the UV-VIS Abs280 

was measured, and the concentration was calculated using an extinction co-efficient of 

58,800 Mol-1•cm-1. 

viii. DNA Polymerase Binding Experiments 

 Three different DNA primer templates were immobilized previously onto three 

flow cells of the sensorchip so that KF binding to 3 various DNA constructs could be 

concomitantly examined. KF solutions, ranging from 0-600 nM were prepared from the 

dialysed KF, in Tris buffer or HMS buffer as indicated. These solutions contained either 

no nucleotide, or 0.4 mM of either dATP, dTTP, dGTP, dCTP, rUTP, or rATP. An 

automated method on the Biacore was written to simplify repeated injections of these 

various solutions. The flow rate was set to 35-50 µL/min, and 25-35 µL of sample was 

injected followed by a 170-1000 second dissociation in which only Tris buffer was 

flowed over the sensorchip, or buffer containing the same dNTP used for injection with 



74 
 

 

KF followed by a short time (~100 sec) in which only buffer was injected. This resulted 

in greater than 99% of polymerase falling off. This omission of a regeneration procedure 

ensured that the DNA substrate remains unchanged over several injections. The injections 

of sample were completed randomly to aid in removing any build-up or hysteresis type 

effects from previous injections, and repeated in triplicates. For experiments depicted in 

Figure 37 and 38 the concentration of NaCl within the Tris buffer was varied as 

indicated. The sensorgrams for all injections were collected in real time at a data rate of 

60 Hz. 

ix. Nucleotide Selectivity Assay 

 Twenty-five µL injections of 100 nM Klenow fragment solutions containing 

either dATP, dTTP, dCTP, or dGTP at a range of concentrations from 0 to 1 mM were 

injected at a flow rate of 50 µL/min in HSM buffer at 25 ˚C, followed by dissociation 

using only HSM buffer until greater than 99% of the polymerase had dissociated. For this 

experiment it is imperative to choose an enzyme concentration that is near the 

dissociation constant, allowing either an increase or decrease in binding to be observed. 

This omission of a regeneration procedure ensures that the DNA substrate remains 

unchanged over several injections. Samples were injected randomly, and repeated in 

triplicates unless otherwise noted. The sensorgrams for all injections were collected in 

real time at a data rate of 60 Hz. 

x. Equilibrium Data Analysis 

 Data was analyzed by two methods; an equilibrium type method, where the 

equilibrium level obtained for injections of KF at various concentrations is plotted to 
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obtain a dissociation constant, and a direct method where the dissociation phases of the 

sensorgrams were fit to various equations to obtain off rates.   

 For the equilibrium method, Real-time sensorgrams were first reference-

subtracted from flow cell one, which contains only streptavidin bound to the surface, and 

no DNA. The reference-subtracted average response at equilibrium was then plotted as a 

function of KF concentration ([KF]). This data is then fit to a rearranged form of the 1:1 

Langmuir binding equation (eqn. 1). 

RU =  
Rmax

1 + �KD
[KF]� �

 
(1) 

Here Rmax represents the theoretical maximum signal obtainable when the chip has 

reached full binding capacity, KD is the dissociation constant, and RU is the response in 

response units. Data was fit using a non-linear regression least squares approach. Solver, 

an add on for Microsoft Excel, or Scrubber 2 (Biologics Inc., Australia) was utilized for 

the fitting of Equation 1 to the data by minimizing the residual differences between 

calculated data points and actual data points by varying the Rmax and KD. The RU values 

were then converted to % bound by taking the RU obtained for each data point and 

dividing it by the calculated Rmax to obtain plots of % bound versus KF concentration. 

Theoretical Rmax values were calculated based upon the known levels of DNA bound. 

The calculated Rmax was compared to the theoretical Rmax based upon known levels of 

bound DNA to verify its accuracy and reduce errors caused by multiple polymerases 

concurrently binding the same primer-template. The experimentally determined Rmax 

values agree well with the theoretical Rmax values. Tables depicting dissociation constants 
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are the average of three data fits, and the errors reported are the standard errors associated 

with each non-linear regression fit of the data. 

 To obtain dissociation rates for the various complexes, the data was modeled to 

single or double exponential decay Equation 2 or 3. 

RU = Ro1 ∗ e−(kd∗t) + R∞ (2) 

RU =  Ro1 ∗ e−(kd1∗t) + Ro2 ∗ e−(kd2∗t) + R∞ (3) 

Again Microsoft Excel Solver, or Scrubber2 (BioLogic Software, Australia), was used to 

fit the equations to the data by minimizing the residual differences between calculated 

data points and actual data points. A modified version of equations 2 and 3 were used to 

fit the data, and also accurately determine the beginning of dissociation by utilizing a 

logic function in conjunction with Equations 2 and 3 to yield Equations 4 and 5. 

RU = If(t ≥ 0, Ro1 ∗ e−(kd∗t) + R∞,Reql) (4) 

RU =  If(t ≥ Ro1 ∗ e−(kd1∗t) + Ro2 ∗ e−(kd2∗t) + R∞, Reql) (5) 

Here, t represents time, and if the time is before the beginning of the dissociation a linear 

equation with no slope is fit to the equilibrium level. At time 0, the beginning of the 

dissociation, the equation for either a single or a double exponential takes over and is fit 

to the remainder of the data where t ≥ 0.  Ro1 is the initial response that will decrease as a 

function of the off rate kd1, and Ro2 is the initial response that will decrease as a function 

of the off rate kd2. R∞ is the response at infinity, and Reql is the equilibrium response prior 

to the beginning of dissociation. Data fit using Scrubber was globally fit to multiple 

dissociation curves obtained for various concentration of enzyme injected. Errors 

represent standard deviation for three triplicate measurements. 
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xi. Nucleotide Selectivity Data Analysis 

The average Klenow fragment equilibrium binding levels achieved in the absence 

of dNTPs were subtracted from the average equilibrium binding levels achieved in the 

presence of various concentrations of dNTPs. This provides a method for directly looking 

at the effects the addition of dNTPs has on KF-DNA binding. The results were plotted as 

a function of dNTP concentration. The baseline of this plot, or 0, would reflect a dNTP 

that does not affect the binding of Klenow fragment to DNA, giving the same binding 

levels as a binary KF-DNA complex; an upwards trend (positive values) would indicate 

that the included dNTP contributes to a higher level of binding, further stabilizing the 

complex; and a downwards trend (negative values) reflect dNTPs that would decrease the 

stability of the complex below that obtained with the binary KF-DNA alone. For the Y-

axis +100% reflects the predicted RU level that would be obtained if all available DNA 

binding sites were occupied by Klenow fragment, and -100% reflects the binding level if 

all KF-DNA interactions are inhibited. Plots were fitted to a modified version of the hill 

equation (equation 4); 

Selectivity =  
Emax ∗ [dNTP]
[dNTP] + (Sf)

 (4) 

where 𝐸𝑚𝑎𝑥 is the maximum effect from addition of the dNTP, [𝑑𝑁𝑇𝑃] is the 

concentration of dNTP, and 𝑆𝑓 is the concentration of dNTP required to achieve half the 

effect from addition of the dNTP at infinite concentration, or the dNTP concentration 

required to achieve half of the 𝐸𝑚𝑎𝑥. This assay allows a direct visualization of the effect 
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inclusion of a substrate, in this case dNTPs, has on the binding of the enzyme, and 

introduces two parameters that describe this effect. 

B. BP Modified DNA Studies 

i. Modification of DNA with (-)-trans-anti-benzo[a]pyrene 

  Prior to oligomer modification with B[a]P, the DNA substrate (Figure 17F) was 

purified as described above (refer to Unmodified DNA studies, DNA purification) and 

dried down in a speedvac. A racemic mixture of (±)-anti-B[a]PDE (National Cancer 

Institute Chemical Reference Standard Repository, Kansas City, MO) in a 19:1 THF:TEA 

mixture was mixed with the oligonucleotides (1 mM) in a 1000:1 ratio, in BP reaction 

buffer (25 mM Tris, pH 10.87, 300 mM NaCl, 1.5% TEA) and allowed to react at room 

temperature for 48 hours (123). Subsequently the mixture was centrifuged at 10000 RPM 

for 5 minutes and the supernatant was collected and filtered through 0.45 µm Durapore 

PVDF filters (Bedford, MA). This is done to remove any unreacted and precipitated 

benzo[a]pyrene tetrol products. The solution was then diluted 3x with buffer A (0.1 M 

TEAA, pH 7.0), and HPLC purified on a Thermo Fisher Scientific 250 mm x 4.0 mm 

Hypersil ODS, 5µm C18 column. Buffer A consisted of 0.1M TEAA, pH 7.0, and buffer 

B was 65% ACN with 35% buffer A, and a gradient of 16% buffer B to 44% buffer B 

over 80 minutes was run. The HPLC generates a single large unmodified DNA peak, 

followed by 4 major B[a]P-N2-dG modified peaks. Each peak was collected and dried 

down for anaylsis by circular dichroism (refer to Unmodified DNA Studies, Circular 

Dichroism) and MALDI-TOF analysis (refer to sections MALDI-TOF Instrument Setup 

and Sample Preparation and Spotting).  
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ii. Circular Dichroism 

 CD spectra were obtained for the oligonucleotides in single stranded form (60). 

DNA previously modified with B[a]P and purified via HPLC was re-suspended in 400 uL 

of distilled water (approximately 8-12 µM). Spectra were obtained on an Applied 

Photophysics Chirascan (Leatherhead, United Kingdom). Spectra were scanned from 200 

nm to 400 nm at 1 nm steps, 0.75 seconds/datapoint, 10 mm pathlength, 25 ˚C, and 

averaged over 2-5 replicates. Subsequent analysis was performed on the accompanying 

Photophysics Chirascan Pro-Data software. 

iii. Ligation of Benzo[a]pyrene Modified DNA 

 The 11mer (-)-trans-anti-B[a]P-N2-dG modified oligonucleotide (Figure 17M) 

was ligated to 17mer biotinylated (Figure 17C) modified oligos using a 28mer 

scaffolding primer (Figure 17B) to form a full length duplex, and T4 DNA ligase was 

used to ligate the two template pieces (Figure 19). Specifically, a mixture of 2500 pmols 

of 28mer Primer, 2500 pmols of Biotin 17mer temp, and 500 pmols of BP Mod 11mer 

Temp was mixed and annealed in 200 uL of T4 ligation buffer (66 mM Tris-HCl, pH 7.6, 

6.6 mM MgCl2, 10 mM DTT, 66 µM ATP). The mixture was annealed by placing in a 

boiling water bath and the bath was immediately removed from the heat source and 

allowed to cool slowly to room temperature. Once annealed, the solution was placed into 

a 16 ˚C bath for 10 minutes, and then 2 uL (2 units) of T4 DNA ligase were added to the 

solution. The mixture was allowed to incubate at 16 ˚C for 16-24 hours prior to 

purification. 
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Figure 19. Ligation of (-)-trans-anti-B[a]P-N2-dG modified 11mer to form a 28mer 
modified template to be used in SPR experiments. A 28mer scaffolding oligonucleotide 
serves to hold the B[a]P modified 11mer and the 3’biotinylated and 5’ phosphorylated 
17mer for ligation. Following ligation a DHPLC protocol is utilized to separate the 
B[a]P modified 28mer from the 28mer scaffold, remaining 17mer, and any unreacted 
B[a]P modified 11mer. 
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iv. DHPLC of Ligation Mixtures 

 Ligation mixtures were separated out by using a novel denaturing HPLC 

procedure. A Hamilton PRP-1 (polymeric reverse phase), 10 µm, 100 Å, 4.1 mm x 250 

mm column, submerged in a water bath at 74 ˚C was used. The buffer system consisted 

of buffer A; 0.1 M TEAA, pH 7.0, and buffer B; 30% ACN, 60% buffer A, and a gradient 

of 27% to 80% buffer B over 80 minutes was run. (-)-trans-anti-B[a]P-N2-dG modified 

28mer products are easily separated from the remaining oligonucleotides. Products were 

collected and analyzed by MALDI-TOF MS as described in sections MALDI-TOF 

Instrument Setup and Sample preparation and spotting. 

v. CM5 Chip Preparation with Benzo[a]pyrene Modified DNA 

 A new sensorchip was coated with 1000 RU of streptavidin using the methods 

described under the section Unmodified DNA Studies, Amine Coupling of Streptavidin 

to CM5 Sensorchip. Duplexes containing either a terminal T:G-B[a]P mismatch, a 

correctly base paired C:G-B[a]P, or a terminal G:G-B[a]P mismatch  at the -1 position 

(Figure 20A, B, and C respectively) were annealed by mixing a 5 µM primer : 1 µM 

template ratio in HSM buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 10 mM MgCl2, 

and 0.05% P20), heating to 95 ˚C for 2 minutes then allowing to slowly cool to room 

temperature over ~1.5 hours. 

vi. DNA Polymerase Binding Experiments 

 All polymerase binding experiments were done in Tris running buffer (50 mM 

Tris, pH 7.5, 10 mM MgCl2, 150 mM NaCl, 0.05% P20), at 25 ˚C. KF was dialysed as 

described under Unmodified DNA Studies, KF Dialysis. KF injections were performed  
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Figure 20. (-)-trans-anti-B[a]P-N2-dG modified DNA primer-template duplexes used in 
SPR experiments. Primer strands are dideoxyterminated at the 3’ end to prevent 
extension during injection of Klenow fragment. (A) T:G-B[a]P mismatch positioned at 
the -1 position. (B) C:G-B[a]P correct base pair positioned at the -1 position. (C) G:G-
B[a]P mismatch positioned at the -1 position. 



83 
 

 

similarly to those described under Unmodified DNA Studies, DNA Polymerase Binding 

Experiments. 35 µL of Klenow fragment solutions ranging in concentration from 0 to 200 

nM, and containing 0.4 mM of either dATP, dTTP, dGTP, dCTP, rUTP, rATP, or no 

dNTP, were injected at a flow rate of 35 µL/min. Dissociation was accomplished by 

injecting 170 uL of Tris running buffer containing the same dNTP at 0.4 mM used during 

the injection. A regeneration procedure was not required as the dissociation with Tris-

dNTP was sufficient to remove 99% of bound polymerase. This omission of a 

regeneration procedure ensures that the DNA substrate remains unchanged over several 

injections. Samples were injected randomly and repeated in triplicates. Sensorgrams were 

collected in real time at a data rate of 60 Hz. 

vii. Data Analysis 

 Data analysis was performed as described under Unmodified DNA Studies, Data 

Analysis. 

C. MALDI-TOF 

i. MALDI-TOF Instrument Setup 

 MALDI-TOF mass data was obtained using a Bruker Ultraflex MALDI-TOF 

mass spectrophotometer. The instrument was operated in the linear positive ion mode 

with a pulsed ion extraction time of 150 ns. The acceleration voltages were 21 kV and 

19.5 kV on ion sources 1 and 2 respectively. The lens voltage was 5 kV. A nitrogen laser 

(λ = 337 nm) at a frequency of 20 Hz and an energy of 126.7 uJ was utilized. The laser 

power was adjusted to maximize signal intensity without distorting the baseline 

surrounding sample peaks. No matrix suppression was used. The plate used for all 
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experiments was a MTP 384 ground steel target plate (Part No. 209519, Bruker Daltonik, 

Bremen Germany). Collected MALDI-TOF data was analysed and processed using the 

accompanying Bruker Daltonik’s Flex Analysis software. 

 Lower molecular weight oligonucleotides (< 10 kDa) were also shot in the 

reflectron positive mode. Reflectron positive mode gives better mass resolution than 

linear positive mode, however it should be noted that with larger molecules it becomes 

increasingly difficult to obtain sensible mass spectra. 

ii. Preparation of Parafilm-coated MALDI-TOF plate 

 A saturated solution of Parafilm “M” (Pechiney Plastic Packaging, Menasha, WI 

54952) in hexane was created by cutting up pieces of Parafilm to approximately 5 mm by 

5 mm, vortexing them in hexane (approximately 0.125 ml of hexane per 5 mm square) 

and leaving the solution overnight at room temperature in a sealed container. Small 

quantities (100-300 µL) of the supernatant were removed and filtered twice through 

Millipore Ultrafree-MC 0.45 µm centrifugal filters immediately prior to coating the 

ground steel plate. The filtered solution (20 µL) was pipetted along the margin of the 

plate (Figure 21A dashed oval region) and immediately spread across the length of the 

plate using a smoothened straight edge of a plastic ruler while maintaining a very light 

constant pressure. The layer was left for at least 30 minutes before proceeding with 

sample spotting. The thin Parafilm layer was then examined under a stereomicroscope to 

ensure a homogenous layer was obtained and no uneven spots or contaminants were 

present. 

  



85 
 

 

 

  

Figure 21. Comparison of thin layer Parafilm coating and ground steel surfaces. (A) 
Ground steel plate with Parafilm coating. Parafilm coated areas appear darker than 
uncoated ground steel. Dashed oval region is where initial 20 uL of solution is spotted 
before being spread across plate to right. (B) 2 uL of 25mM ammonium citrate 
containing 7.5% acetonitrile (v/v) on both Parafilm and steel (left and right 
respectively). (C) Top view of crystals on Parafilm and ground steel (left and right 
respectively). (D) Side view of (C). 
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iii. Sample Preparation and Spotting 

 The matrix used for all experiments was 3-hydroxypicolinic acid (3-HPA). A 

saturated solution of 3-HPA was made in 25 mM ammonium citrate containing 7.5% 

(v/v) acetonitrile. The saturated solution was then diluted to 75% saturation with the same 

citrated acetonitrile buffer. The diluted matrix (0.5-1 µL) was then spotted onto the 

Parafilm or steel surface and allowed to air dry under a vented cover. DNA samples, 

typically 1-25 pmols,  were prepared in filtered deionised water and desalted using C18 

Ziptips according to the manufacturer’s directions. The DNA samples were eluted from 

the Ziptips using 1 µL of a 50% acetonitrile in water solution and spotted directly onto 

the matrix previously crystallized on the plate. The samples were allowed to air dry at 

room temperature under a vented cover and spots were subsequently examined under a 

stereomicroscope to ensure proper crystallization. 

iv. Cleaning the Parafilm-coated Plate 

 Two options exist for cleaning the sample plate. The first option is to simply run a 

gentle stream of warm water over the plate for a few minutes until all matrix and sample 

have been removed. The hydrophobic Parafilm layer will remain intact on the plate as the 

sample and matrix are washed away and the coated plate can be subsequently reused in 

this form. The second method entails removal of the Parafilm layer. First the sample and 

matrix is removed as indicated above and then the Parafilm layer is removed by gently 

wiping the plate with a Kimwipe soaked with hexane. The Parafilm layer redissolves in 

the hexane and is easily removed. The plate may then be washed normally as indicated by 
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the manufacturer and recoated with Parafilm as described above (refer to Preparation of 

Parafilm-coated MALDI-TOF plate). 
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CHAPTER III: RESULTS 

I. DNA Purification 

A. Synthesis of Benzo[a]pyrene Modified 11mer Templates 

 To study the mechanism by which B[a]P affects polymerization, it is necessary to 

generate site-specifically modified DNA adducts. The purification of site-specifically 

labelled B[a]P oligonucleotides of defined stereochemistry is imperative to assigning the 

observed effects towards a particular isomer and structure. Site-specific modification is 

also necessary to be able to apply the observed affects towards specific portions of the 

polymerase mechanism that are affected by that particular stereoisomer. We utilized 

previously defined methods for the initial reaction of benzo[a]pyrene diol epoxides 

(BPDE) with short DNA templates that contain only one guanine (124).  

 To generate these site-specific B[a]P adducts, a racemic mixture of the 

physiologically relevant (+/-)-anti-B[a]PDE was reacted with a short 11mer 

oligonucleotide containing only one guanine residue in the middle of the sequence. The 

predominant products of this reaction are attachment at the N2 position. Having the single 

guanine in the sequence ensures that modification at the guanine will be the major 

product, and complications from multiple labels will be reduced. However, the sequences 

used also contain several adenine residues that potentially could have been modified at 

the exocyclic N6 position. Even though this reaction does occur, the quantity of this 

unwanted reaction is relatively low in comparison to quantities of the anti-B[a]P-N2-dG 

adducts, and the adducted adenine products are quite easily separated from the desired 

guanine adducts by HPLC.  



89 
 

 

After the reaction is complete, the reaction mixture was run on an HPLC through 

a reverse phase C18 column. The HPLC allows each isomer to be separated from one 

another in a single run (Figure 22). Although one HPLC separation is sufficient to 

separate a significant amount of the products, second and third runs were made on each 

isolated product to ensure samples pure. According to several studies, the elution profile 

for the adducts follows the order (+)-cis, (-)-trans, (-)-cis, and lastly (+)-trans. In 

addition, the quantity of the (+)-trans-B[a]P-N2-dG was greatest followed in quantity by 

the (-)-trans-anti-B[a]P-N2-dG adduct. This is the expected relative quantity of each 

peak. 

After each stereoisomer adduct was collected, circular dichroism (CD) spectra of 

the two largest peaks, presumably the (+) and (-)-trans-anti-B[a]P-N2-dG stereoisomers, 

were obtained in order to validate the stereochemistry at the C10 position of these 

adducts. Coinciding with the typical elution profile, the suspected (+)-trans-anti-B[a]P-

N2-dG adduct exhibited a negative CD spectra at the B[a]P maximum absorbance peaks 

of approximately 334nm and 350nm, whereas the (-)-trans-anti-B[a]P-N2-dG adduct 

displayed a strong positive CD spectra in these regions (Figure 23). The analysis of the 

CD spectra confirmed the orientations of all the B[a]P adducts collected (60). 

 

B. Ligation to Form 28mer Templates 

 Subsequent to the validation of the B[a]P isomers, the 11mer oligonucleotides 

were ligated with 17 mer oligonucleotides using T4 DNA Ligase, generating a 28mer 

final product (Figure 19). The ligation products were separated using a novel HPLC  
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Figure 22. HPLC chromatogram after reaction of (+/-)-anti-B[a]PDE with 11mer 
oligonucleotide. Peak 1 is unmodified DNA, peaks 2, 3, 4 and 5 are (+)-cis, (-)-trans, (-
)-cis, and (+)-trans stereoisomers respectively. 
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Figure 23. CD spectra of purified B[a]P oligonucleotides. The (-)-trans-anti-B[a]P-N2-
dG adduct  spectra (blue) exhibited a negative CD spectra at the B[a]P maximum 
absorbance peaks of approximately 334 nm and 350 nm, indicating the C10 position has 
an S orientation. Conversely the (-)-trans-anti-B[a]P-N2-dG adduct spectra (red) 
displayed a strong positive CD spectra in these regions, indicative of an R orientation of 
the C10 bond. 
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protocol employing a PRP polystyrene-divinylbenzene column at a temperature of 70ºC. 

The high temperature melts DNA duplexes and allows nucleotide separations based on 

length, permitting any unligated or complement oligonucleotides from eluting with the 

fully ligated 28mer product. Figure 24 displays a control set of experiments displaying 

the aforementioned separation. Figure 24A shows an injection of 11mer template (Figure 

17F), 17mer biotin template (Figure 17C), and 28mer biotinylated template (Figure 17D). 

All three oligos are easily separated, with the 28mer template eluting last. Figure 24B 

shows a duplex mixture of 28mer primer and 28mer biotinylated template. The heating of 

the column melts the DNA duplex allowing both oligonucleotides to be easily separated. 

If the column is not heated, the DNA remains partially duplexed and the same level of 

separation is not achieved (data not shown). Using this method of separation, the ligation 

mixture for unmodified DNA was first separated (Figure 24C). Ligation was performed 

with a five-fold excess of the primer excess of 17mer template to ensure that all of the 

11mer template would be duplexed. The expected HPLC peaks were obtained and the 

quantity of 28mer product indicated that the ligation procedure had achieved ~100% 

ligation.  

 This method of separation is vastly superior to previous methods in which the 

ligation products required separation by polyacrylamide gel electrophoresis, followed by 

a crush and soak procedure where typical loses vastly exceeded 50%. Obtaining product 

with minimal loss is essential when working with precious samples such as site-

specifically B[a]P adducted oligonucleotides. 
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Figure 24. Ligation mixture separation on heated HPLC. (A) Three different template 
constructs were injected to monitor the elution times. (B) Primer-template duplex is 
injected (red line). The duplex fully separates. (C) Ligation mixture is injected (purple 
line). The fully ligated product is easily resolved from the 17mer biotinylated product. 
Based upon a theoretical maximum of 500 pmols of product the reaction appears to 
have gone to 100% completion. 
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 The same ligation protocol was then followed to ligate the (-)-trans-B[a]P-N2-dG 

adducted 11mer. Here, the separation of the scaffolding oligos is achieved to even a 

greater degree because the B[a]P-modified template is retained longer on the column than 

the unmodified templates. In addition, the modified ligated 28mer is retained longer than 

the unligated modified 11mer. Overall, all oligonucleotides have baseline separation and 

this new method of purifying the ligation products achieves a high level of purity with 

minimal loses of sample. 

C. Fluorescein Labelled Extension Assays 

 Having generated site-specifically modified B[a]P-adducted oligonucleotides, as 

well as having isolated and verified the stereoisomers, extension experiments were done 

to once again confirm both the position and nature of the adduct. Figure 25A and B show 

two extension assays, the first with a primer extended across from the adduct, and one 

with the primer extended one position before the adduct. Under these conditions 

unmodified DNA is fully extended in one minute, however the presence of the adduct 

does not allow extension past the adducted template position. If the primer is backed up 

one position as in Figure 25B, it can be seen that polymerase is capable of incorporating a 

nucleotide into the primer across from the adduct but unable to extend the substrate any 

further. This characteristic where a dNTP can be inserted across from the adduct and 

inhibit further downstream extension, validated the position and identity of the adducted 

templates. Had the adduct been placed at a different position on the template, or have 

been a cis isomer, the extension of these two assays would have looked different. Had the 

adduct been positioned on an Adenine the extension would have occurred up to the  
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Figure 25. Extension assay of umodified and (-)-trans B[a]P adducted templates. (A) 
Extension performed with a 23mer primer that extends across from the adducted 
position and 5 nM KF. Unmodified templates show full extension in 1 min, whereas 
B[a]P containing templates show no extension. (B) Extension performed with a 22mer 
primer that ends one position before the adduct. Here polymerase is capable of 
incorporating a dNTP across from the adduct but further extension is again inhibited. 
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adducted position. Our extension is blocked at the expected adduct position. Also, had the 

adduct been a cis isomer, small amounts of extension past the adduct would be expected. 

Once again, the identity and position of the adducted templates were confirmed by this 

analysis. 

 

II. MALDI-TOF Method Development 

A. Characterization of Hydrophobic Coating and Crystal Formation 

 To prepare this hydrophobic layer small squares of Parafilm were dissolved in 

hexane to produce a saturated solution. This solution contains undissolved Parafilm and 

many very small strands of filamentous particles. Thus it is important to filter the solution 

through a 0.45 µm centrifugal filter immediately prior to use so the small particles do not 

create an uneven surface when it is spread on the steel plate.  

 To achieve a high degree of homogeneity and uniform thickness of the Parafilm 

layer on the steel MALDI-TOF plate, the short straight edge of a flexible plastic ruler was 

used to spread the hexane solution. A small amount of the solution (typically ~20 uL) 

was placed on the peripheral edge of the plate (Figure 21A dashed oval) and spread with 

the straight edge using a very light but constant pressure. The hydrophobic coating 

appeared darker grey against the brighter steel surface and the homogeneity of the coating 

was examined by both a visual inspection and a stereomicroscope examination. The 

consistency of the pressure as well as the smoothness of the applicator was critical in 

producing a good quality layer. A 20 µL volume of the Parafilm solution would generally 

cover 16-20 cm2 of surface area on the plate (Figure 21A). With minimal practice 75 
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sample spotting areas could be coated with Parafilm where greater than 80% of the 

sample area was useful for sample spotting. It is important to carefully inspect the layer 

for irregularities so that these regions can be avoided when applying the sample spots. 

Typically, it is best to avoid the region where the 20 µL of Parafilm solution was initially 

spotted because of its non-uniform appearance. 

 The effect of the thin hydrophobic surface on the size and shape of the sample 

spotted onto the steel plate is shown in Figure 21B where equal volumes (2 µL) of a 

sample-matrix mixture were deposited on the uncoated plate (right sample) and the 

Parafilm-coated area (left sample). As one would expect, the hydrophobic layer causes 

the sample to bead up compared with sample spotted onto the steal surface. This results 

in the sample being concentrated into a much smaller area on the plate. 

To further investigate the properties of the Parafilm coating, the contact angle of a 

water sample on the Parafilm coating was measured by microscopy. Figure 26C shows 2 

uL of filtered deionized water placed onto a Parafilm coated area that was  dried under 

argon after application of the Parafilm layer. The Parafilm coated area was dried with 

argon in order to maximize the contact angle by reducing nucleation sites from water 

trapped on the surface. With the argon dried Parafilm coated surface the contact angle 

was measured to be approximately 114º-117º. Comparison of Figure 21B right spot with 

Figure 26 shows the dramatic difference the hydrophobic coating makes upon the sample. 

This indicates that the Parafilm coating forms a true non-wetting surface because the 

measured contact angle was greater than 90º (Figure 26B). This is beneficial because the  
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Figure 26. Measurement of contact angle. (A) 2 uL of filtered deionized water on 
parafilm coated surface gives a contact angle of approximately 117º. (B) Wetting and 
non wetting surfaces. A non-wetting surface (left) has a contact angle greater than 90º 
and consequently has a smaller surface area in contact with the surface than a wetting 
surface (right). In terms of sample crystallization this will result in samples being 
concentrated into a smaller area upon crystallization. 
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volume to surface area ratio is maximized by placing hydrophilic buffers on non-wetting 

surfaces. 

Furthermore, because the volume to surface area ratio of the sample spot is higher 

on the Parafilm coating than on the ground steel the spots dry slower. In addition, the 

spots on the Parafilm shrink dramatically in diameter as they dry whereas the sample 

spots on the steel tend to flatten out. The slow drying helps slow crystal growth and helps 

formation of good crystals on the Parafilm coating. Consequently the crystals can be 

found throughout the entire area where the spot dried, whereas the crystals found on 

ground steel tend to be located at the peripheral edge of where the spot dried. The central 

localization of crystals further helps aid in finding the most beneficial signal. However, 

because the crystals tend to also grow up away from the plate as well, different signals 

and consequently different mass spectra can be obtained by shooting a high versus low 

crystal. Because of this, only the highest mass spectra obtained for a given sample are 

utilized when adding shots to generate the final mass spectra. The highest masses 

generated will represent sample that is closest to the Parafilm coating and thus supplies 

the user with a consistent bases for measurement.  This is especially simple to do because 

of the wealth of usable signal obtained on the Parafilm coated plate. 

 Shown in Figures 21C and D are the resulting crystals formed after an 

oligonucleotide and matrix have dried on the Parafilm coating (left) and ground steel 

(right). As expected the crystals that formed on the hydrophobic surface are in a much 

smaller area compared with those formed on the steel surface. The side view of the 

crystals formed on the hydrophobic surface shown in Figure 21D indicates that there can 
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be some differences in the height of the crystals. As a result different signals and 

consequently different mass spectra can be obtained by shooting at a high spot versus low 

spot on the sample. Because of this, if external calibrations are being used, only mass 

spectra giving the highest masses obtained for a given sample are utilized when adding 

shots to generate the final mass spectra. It is of importance to note that the laser power 

should be adjusted slightly over the ionization threshold, and not any higher due to the 

shift in the m/z location of peaks. The highest masses generated using adequate laser 

powers will represent sample that is closest to the hydrophobic coating and thus supplies 

the user with a consistent bases for measurement. 

B. Effect of a Parafilm Layer on MALDI-TOF Mass Spectra 

 We examined MALDI-TOF spectra obtained on the ground steel and the 

Parafilm-coated plate for DNA samples in the moderately low femto-mol range. Shown 

in Figure 27 is a direct comparison MS analysis of 93 fmol of three oligonucleotides 

spotted directly onto a steel plate or the Parafilm coating. From the onset of data 

collection several differences were noticed between obtaining sample data on the steel 

versus the Parafilm coating. The steel sample required a significantly longer time to 

locate usable regions of the sample crystal. On the contrary, crystals on the Parafilm 

coating proved easy to locate regions that gave suitable spectra. On average, the Parafilm 

coating was able to give these better results with 66% fewer shots than the ground steel 

plate. Moreover, the resolution of the spectra obtained on the Parafilm coating was 

sufficient that the (M+salt)+ peaks, associated with both the internal standards as well as  
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Figure 27. Comparison of MALDI-TOF mass spectra of DNA oligonucleotides on steel 
and Parafilm-coated steel plates. 83 fmols each of three oligonucleotides, a 16mer, 
19mer, and 21mer, are displayed. (A) Top spectrum obtained from a steel plate and 
represents 40 laser shots. Bottom spectrum utilized a Parafilm-coated steel plate and 
represents 30 laser shots. (B) Expanded regions from 6400 to 6600 m/z for each spectra 
shown in A. (C) Expanded regions from 1000 to 3800 m/z for each spectra shown in A.  
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the unknown sample, were readably identified (Figure  27B). On the ground steel the 

region of the salt peaks appeared only as a broad hump adjacent to the major peak. 

 We also note that at these sample concentrations the sample located on the ground 

steel gives a spectra that lacks useable (M+2H)2+ peaks and also has baseline drift in the 

lower mass range. In contrast, the sample on the Parafilm coating not only displays 

excellent (M+2H)2+ peaks but also an (M+3H)3+ peak, which allows calibration through a 

larger mass range without the insertion of additional internal standards. On the ground 

steel the additional noise under 1500 m/z may pose problems for researchers who wish to 

extract useful data out of this range while still maintaining useful data in the higher mass 

ranges (Figure 27C).  

 Due to the difference in locating usable regions of the crystal that give good 

signal on the Parafilm layer vs. the ground steel surface, we performed an area scan of 

crystals on both surfaces. The entire crystal surface area was analysed to locate regions of 

the crystal that gave low and high quality sample signals. Figure 28 shows the results of 

one such experiment. Regions of the crystal that gave low quality sample signal are 

displayed in enclosed white areas, and areas that gave high quality sample signal are 

displayed as black enclosed areas. Figure 28A displays a typical crystal obtained on the 

ground steel surface. In this case approximately 30% of the crystal area gave some 

sample signal but only about 1% of the area gave high quality signal. Using the Parafilm-

coated plates increases the area giving usable signal to about 50% and increases the high 

quality signal to about 20%. 
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Figure 28. Area scan to locate regions of the crystal that gave high quality MS signals. 
(A) Crystal formed on ground steel surface: white enclosed areas indicate regions where 
MS signal could be observed and black areas (indicated by arrows) where high quality 
MS signals could be observed. (B) Crystal formed on the Parafilm coated surface: white 
enclosed areas indicate regions where MS signal could be observed and black areas 
where high quality MS signals could be observed. 
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C. Effect of a Parafilm Layer on Analysis of Labile Oligonucleotide Adducts 

 Several oligonucleotides ranging from 16 to 18-mers were modified with 

benzo[a]pyrene (B[a]P) and examined on the Parafilm-coated plates utilizing 17 and 21-

mer oligonucleotides as internal standards. B[a]P has two peak major UV absorbances 

ranging from 346-355 and 330-336 nm, depending on the isomer of the adduct and the 

sequence context it is situated within (60). Because the nitrogen laser used excites at 337 

nm, an absorbance that is close to the absorbance of B[a]P adduct, higher laser powers 

may cleave the B[a]P adduct from the DNA. The mass spectra obtained were internally 

calibrated using a quadratic fit to the (M+H)+ and (M+2H)2+ peaks of the 17 and 21-mers. 

A typical spectra for the (+)-trans-anti-B[a]P adducted 18-mer can been see in Figure 29. 

The resolution of the peaks was more than sufficient to easily identify the B[a]P modified 

oligo as well as several associated salt peaks. Four such peaks were identified as 

(M+Na)+, (M+K)+, (M+Na+K)+ and (M+2K)+ (Figure 29 insert).  

 As seen in Table 1, all four B[a]P isomeric adducts gave markedly similar spectra 

results with high mass accuracy as demonstrated by the very low error (< 0.05%) in the 

calculated masses. The FWHM is also relatively small indicating that the peaks are very 

narrow, mostly being in the 5-15 Dalton range, while still maintaining a high signal-to-

noise ratio.  

D. Use of External Standards When Using the Parafilm Layer 

 We chose to compare the use of external standards on steel and Parafilm-coated 

plates. In this case, 16 and 21-mer external standards were used to determine the mass of 

an unknown oligonucleotide. In this experiment it was important to aim at sample  
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Table I. Summary of four B[a]P adducted 18mer oligonucleotides analyzed using 
MALDI-TOF MS on a Parafilm-coated plate utilizing internal standards 
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Figure 29. MALDI-TOF mass spectrum of a (+)-trans-anti-B[a]P-modified DNA 
oligonucleotide on a Parafilm-coated steel plate. An 18-mer modified with a (+)-trans-
anti-B[a]P adduct was prepared and analyzed as described in the Materials and Methods 
section using a total of 30 laser shots.  A 17-mer and a 21-mer were used as internal 
standards. The calculated average (M+H)+ mass of the modified oligonucleotide is 
5621.826. The spectra was calibrated using the (M+H)+ and (M+2H)2+ peaks for the 17-
mer and 21-mer (far left and far right peaks respectively). (Insert) Expanded view of the 
modified oligonucleotide mass range (dashed box). The (M+Na)+, (M+K)+, 
(M+Na+K)+, and (M+2K)+ peaks are clearly visible. 
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locations that gave the highest masses for peaks. This was done for both the external 

standard and the unknown sample in order to minimize variances in TOF due to the 

crystals height above the surface. Figure 30 displays the mass spectra of the unknown 

sample after calibration using the external standards. A remarkable similarity can be 

noted between the mass of the unknown obtained on the ground steel and mass of the 

unknown on the Parafilm coating. The unknown oligonucleotide was later disclosed as 

having the sequence 5’-GGAGAGTGATTGGTAGTGTGG-3’ with a calculated (M+H)+ 

mass of 6638.2. Both the sample on the ground steel and the Parafilm gave an m/z of 

approximately 6640, indicating that the external standards functioned sufficiently well for 

obtaining mass data. In addition, the accuracy obtained with the use of external standards 

appears equal to the accuracy obtained on the ground steel although resolution of the 

spectra obtained on the Parafilm coating is once again superior (Figure 30A and B). 

 Lastly, the use of external standards was examined when analysing the more 

labile B[a]P adducted oligonucleotides. Table 2 shows a summary of the results obtained 

when two 16-mer and two 18-mer oligonucleotides, containing either the (+) or (-)-trans 

B[a]P adducts, were analyzed on the Parafilm coating utilizing external standards. The 

masses obtained correspond very well to the predicted (M+H)+ peaks of the 

oligonucleotides. The error associated with the molecular masses was generally greater 

with the external standards than with the internal standards, however the average error 

was still under 1.1 m/z units 
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Table II. Summary of four B[a]P adducted oligonucleotides analyzed using MALDI-
TOF MS on a Parafilm-coated plate utilizing external standards. 
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Figure 30. Comparison of MALDI-TOF mass spectrum using external standards for 
calibration on a steel plate and a Parafilm-coated steel plate. (A) Mass spectra of a 21-
mer sample calculated using external standards (16-mer and 21-mer) on both ground 
steel (top) and Parafilm (bottom). The calculated mass of the oligonucleotide analyzed 
(5’-GGAGAGTGATTGGTAGTGTGG-3’) was 6637.2 Daltons. (B) Expanded views of 
the (M+2H)2+ peak range and corresponding salt peaks. 
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III. Surface Plasmon Resonance 

A. Unmodifed DNA 

 Previous studies have looked at the effects various nucleotides have on 

polymerases. We have chosen to conduct our studies into dNTP selection using surface 

plasmon resonance (SPR) for two chief reasons: 1) SPR allows the re-use of the same 

DNA substrate for multiple binding studies conducted with various nucleotides and 2) 

multiple flow cells of the instrument allow concurrent experiments to be run in tandem. 

These two facets of SPR allow a direct comparison between varying the identity of 

nucleotides, and concurrently examining these changes on different DNA substrates. This 

setup provides a means to examine the dNTP effects others have noted previously, 

chiefly the stabilization achieved upon binding of the next correct dNTP, and a 

destabilizing effect an incorrect dNTP bestows upon the ternary complex. It has been 

conclusively shown that the sharp decrease in dissociation constants measured in the 

presence of the next correct dNTP correlate with a transition to a closed conformation 

(24). We have devised a binding experiment that clearly shows the gain or loss of 

stability upon dNTP binding, which correlates with conformational dynamics previously 

reported. We also examined polymerase binding to mismatched primer templates to 

determine how a misincorporation event placing a mismatch at the postinsertion site 

would affect dNTP selection.  

i. Streptavidin Binding 

 We employed a streptavidin-biotin coupling to capture three different DNA 

primer-template duplexes (Figure 18) on three of the four flow cells of a CM5 sensorchip. 
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Initially all flow cells were bound with 1000 ± 100 RU of streptavidin using amine 

coupling to the carboxymethylated dextran matrix and the Biacore immobilization 

wizard. 

 The typical sensorgram attained when performing immobilization of streptavidin 

is shown in Figure 31. The initial injection is a test injection of streptavidin to measure 

the pre-concentratoin effects. The streptavidin is dissolved in pH 5.0 sodium acetate, 

giving it a positive attraction towards the matrix at this pH. This attraction process allows 

a low concentration of streptavidin to be used, which effectively concentrates the protein 

at the surface. The pH 5.0 sodium acetate and a 35 μg/mL solution of streptavidin 

provided a good pre-concentration effect, generating slopes of approximately 300 

RU/min, which is sufficient for binding of 1000 RU of protein.  

 After ensuring the streptavidin solution concentrates properly to the matrix a 

mixture of EDC and NHS is injected, which activates the carboxylic acid residues on the 

dextran matrix surface. The EDC NHS provides an activated surface (Figure 32A) that 

the protein may then bind in a subsequent reaction (Figure 32B). Following activation, 

repeated injections of streptavidin are completed until the baseline shift indicates the 

desired level of protein is bound. Following a solution of ethanolamine is injected to 

quench any remaining reactive species. 

ii. DNA Binding 

 One flow cell was used for a reference to allow subtraction of any non-specific 

interactions, or changes in the bulk refractive index of solution during injections of 

polymerase. DNA templates contained a 3’-biotin for capture on the streptavidin coated  
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Figure 31. . Binding of Streptavidin to the dextran matrix surface. The surface is first 
tested with an injection of streptavidin to check for appropriate pre-concentration 
effects. Then the surface is activated with a mixture of EDC and NHS (see figure 32 for 
chemistry). After activation repeted injections of streptavidin are performed to attain 
binding levels of 1000 RU. Afterwards an injection of ethanolamine serves to quench 
the remaining reactive species, thereby preventing further binding. 
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Figure 32. EDC NHS activation of CM5 sensor surface. (A) EDC and NHS activate the 
carboxylic acid residues of the carboxymethylated dextran surface. (B) The activated 
surface can be reacted with solvent exposed amines of proteins to provide covalent 
attachment of the protein to the surface.  
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surface. A 3’-biotinylated template versus a 5’-biotinylated primer was chosen so that 

future experiments using costly template-modified DNA could take advantage of using 

the template as the limiting oligonucleotide during duplex formation. Low levels of 

DNA, ~90 RU, were bound to limit any effects from mass transfer. Low concentrations 

of DNA primer-templates provided a good means of achieving low binding levels while 

being able to precisely control the quantity of DNA bound. Figure 33 shows a typical 

DNA binding sensorgram. In this instance, 3 separate injections of duplexed DNA are 

injected to achieve the desired 90 RU of duplex bound. DNA constructs shown in Figures 

18A, B and C, were bound in flow cells 2, 3, and 4, respectively, for unmodified DNA 

experiments. Oligonucleotide duplexes shown in Figure 20A, B, and C were bound in 

flow cells 2, 3, and 4, respectively, for (-)-trans-anti-B[a]P-N2-dG studies. 

iii. Influence of Dideoxy Termination and Sequence on Klenow Fragment Binding 

 A sensorchip was created to compare binding related sequence effects, along with 

changes to the 3’ OH of the primer-template terminus. For this experiment, DNA 

oligonucleotides shown in Figure 34A, B, and C were bound in flow cells 2, 3, and 4 

respectively. This allows comparison of dideoxy and deoxy terminated primers, as well 

as a 22mer deoxy primer, with that of a 23mer deoxy primer. The binding levels and rates 

of association and dissociation were the same for both deoxy and dideoxy terminated 

primer-templates (Figure 35, green and red curves). This agrees with multiple other 

studies that show that dideoxy termination of primers has no effect on Klenow fragment 

binding properties. 
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Figure 33. Representative sensorgram showing DNA capture onto streptavidin coated 
sensor surface. Surface is coated with streptavidin and templates contain a 3’-biotin. In 
this sensorgram three injections of duplex DNA were injected at 5 uL/min to achieve a 
binding level of approximately 86 response units. 2-4 injections were typically required 
to achieve binding levels of ~90 RU. 
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Figure 34. DNA Primer-template duplexes used in SPR dideoxy/deoxy experiments. 
(A) Duplex with a 22mer primer containing a native 3’-OH at the primer terminus. (B) 
Duplex with a 23mer primer containing a dideoxy terminated primer terminus. (C) 
Duplex with a 23mer primer containing a native 3’-OH at the primer terminus. 
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Figure 35. Effect of dideoxy termination and sequence on KF binding. Sensorgram 
showing the injection of 100 nM KF over  DNA substrates in figure 34. Dideoxy 
terminated 23mer primer (blue) shows the same binding properties as non-dideoxy 
terminated 23mer primers (green). Changing the sequence by using a non-dideoxy 
terminated primer (red) has a very small, but noticeable effect on KF binding. 
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 In addition, the sequence affect was monitored by using another 22mer primer 

that was non-terminated. The binding to this substrate was almost identical to the 23mers; 

however, there was a small but noticeable difference in the binding. The 22mer contains a 

terminal A:T base pair, whereas the 23mers contain terminal G:C base pairs. It is possible 

that this subtle change in sequence causes the small change in binding properties. 

Regardless, any changes noted were very small, and most importantly, dideoxy 

termination of primers showed no effect on binding. 

iv. Klenow Fragment Binding Curves 

  The association rate of Klenow fragment to the DNA was very rapid, reaching 

equilibrium quickly (Figure 36), even on mismatched primer-templates. Previously others 

using different methods have found the association rate to be near diffusion limitations, 

consistent with our observations (125). The rapid rate at which equilibrium is achieved 

allowed short injections at high flow rates. Due to the complex nature of the polymerase 

binding mechanism, and the near-diffusion limited association rate, we are not reporting 

kinetic fits of our data and instead have chosen an equilibrium fitting method. Sufficient 

kinetic fits were obtained for this data, showing results consistent with a significantly 

simpler equilibrium analysis. The maximum binding capacity of the relative binding 

curves are accurately determined by curve fitting using non-linear regression to Equation 

1. The calculated Rmax for the binding curves were compared with the theoretical Rmax 

that was calculated based upon the levels of DNA bound. The theoretical Rmax and the 

calculated Rmax were in good agreement. This allows accurate fitting of binding curves 

despite not reaching 100% saturation. In addition, this approach was verified with  
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Figure 36. SPR sensorgrams showing 100 nM KF injection and binding to mismatched 
and correctly paired duplexes. Correctly paired duplex (long dashed line) shows the 
tightest Klenow fragment binding and a slightly longer dissociation phase than either a 
T:G mismatch (short dashed line), or a G:G mismatch (solid line). Faster dissociation is 
either caused by faster dissociation from the exonuclease site or by weaker KF-DNA 
interactions caused by a distorted structure. 



120 
 

 

 

injections that do reach 100% saturation, as in the case of the correct base pair with the 

next correct dNTP, where the calculated and theoretical values for Rmax were very similar 

(< 10% difference). 

v. Effects of NaCl on Klenow Fragment Binding in the Presence and Absence of 

dNTPs 

 Sensorgrams obtained in the absence and presence of 150 mM NaCl are shown in 

Figure 37A and Figure 37B, respectively. In general, in the absence of NaCl the binding 

is tighter and the dissociation rates are slower. The equilibrium binding levels do not 

increase in the presence of the next correct dNTP (dTTP), however the overall rate of 

dissociation does decrease. The presence of an incorrectly pairing dNTP (dGTP) leads to 

a lower equilibrium level, and a faster rate of dissociation. 

 The use of buffer containing NaCl shows a weaker binding, however the selection 

of correct vs. incorrect dNTP is greater than in the absence of NaCl. The inclusion of the 

next correct dNTP (dTTP) greatly increases the equilibrium binding levels and shows a 

slow rate of dissociation. The inclusion of an incorrectly base pairing dNTP (dGTP) 

greatly decreases the equilibrium binding levels, and leads to a rapid rate of dissociation. 

are shown to have an effect on polymerase binding. 

 The presence of NaCl has an effect on the binding of Klenow fragment to DNA. 

We examined this by measuring the equilibrium levels obtained with various 

concentrations of NaCl, in the presence and absence of correct or incorrect dNTPs. Figure  
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Figure 37. SPR sensorgrams showing KF injection and binding to correctly paired 
duplex in the presence or absence of 150 mM NaCl, in the presence of either dTTP, 
dGTP, or no dNTP. (A) 100 nM KF injections without NaCl. The presence of dTTP 
causes a slower dissociation, however the equilibrium level does not increase above that 
for no dNTP. dGTP shows a lower equilibrium level and a faster dissociation. (B) 100 
nM KF injections with NaCl. The presence of dTTP causes a strong stabilization of KF 
binding during the equilibrium phase, and a slower dissociation. An incorrect dGTP 
causes a strong destabilization and a rapid dissociation. 
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38 shows the results of such an experiment. A NaCl concentration dependent decrease in 

polymerase binding is noted for all measured substrates. Interestingly, the rate of change  

for inclusion of dTTP, dGTP, or no dNTP is different. At low NaCl concentrations the 

binding levels of Klenow fragment in the presence of dTTP do not dramatically differ 

from the binding levels in the absence of dNTP. Conversely, at high concentrations of 

NaCl the binding levels of Klenow fragment in the presence of dGTP do not significantly 

differ from the binding levels in the in the absence of dNTP. However, at a NaCl 

concentration of approximately 150 mM, the difference in binding between all substrates 

is largest. Thus all experiments were thus conducted in the presence of 150 mM NaCl to 

observe the largest fold changes in binding with different dNTPs. 

 Overall the inclusion of 150 mM NaCl  gave slightly weaker binding with higher 

dissociation constants than those found in typical solution based assays, but nevertheless 

exhibited larger differences between binding affinities of the measured substrates. The 

results are reported as apparent KDs and all conclusions drawn are based on relativistic 

changes of the values rather than their absolute quantity. 

vi. Native and Mismatched Primer-Templates in the Absence of dNTPs.  

A mismatch located at the -1 position places the misaligned structure at the post-

insertion site (-1 position, see Figure 18A). We placed either a pyrimidine-purine (T:G, 

Figure 1A) or a purine-purine (G:G, Figure 18C) mismatch at the -1 position to compare 

with polymerase binding to a native primer-template (Figure 18B). Figure 38 shows a 

typical sensorgram that is obtained when a 100 nM Klenow fragment solution is injected 

over these substrates. The flow cells containing mismatched oligonucleodies contain  
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Figure 38. NaCl effects on polymerase binding. As NaCl concentration is increased, the 
binding equilibrium binding levels of Klenow fragment in the presence or absence of 
dNTPs decreases. At a concentration of 150 mM NaCl the largest difference in binding 
between no dNTP, correct dTTP, and incorrect dGTP is observed. 
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slightly higher levels of bound DNA, yet exhibit lower KF-DNA binding levels than the 

correctly aligned primer-template. Examining the dissociation phase reveals that the 

mismatched oligonucleotides induce a faster rate of dissociation of the polymerase than 

the correctly pair DNA substrates. Table 3 shows the dissociation constants for 

equilibrium fits to obtained data. Differences visually noted in the sensorgrams are 

confirmed in the dissociation constants. The dissociation constant for binding to a single 

mismatch is approximately 2.8-3.6 fold weaker binding than to a correctly paired primer-

template. 

vii. Correct vs. Incorrect dNTPs on Native Primer-Templates  

The influence of correct vs. incorrect dNTPs is well established in solution-based 

assays (3, 24, 38-40). Our data illustrates that similar changes are evident in our SPR 

experiments. At Klenow fragment concentrations above 400 nM two polymerases begin 

binding each primer-template (Figure 39), so polymerase concentrations were kept at and 

below 200 nM. Others have reported similar results at high concentrations (80, 126). 

Below Klenow fragment concentrations of 200 nM the data fits well to a 1:1 Langmuir 

model. To generate these binding curves multiple concentrations of KF were injected 

over the sensor surfaces (Figure 40A). The equilibrium levels were then plotted as a 

function of the concentration of Klenow fragment used for the injection to generate 

binding curves (Figure 40B-D). Figure 40B shows Langmuir binding isotherms of 

correctly paired primer-templates in the presence of the next correctly pairing dTTP, 

incorrectly pairing dNTPs, or rNTPs. A correctly pairing dTTP caused approximately a 

20-fold enhancement in binding over the absence of nucleotide (Table 3). This is  



125 
 

 

  

Table III. Dissociation constants for binding of Klenow fragment to various primer-
templates in the presence or absence of 2’-deoxy- or ribo-nucleotide-5’-triphosphates. 
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Figure 39. KF-DNA binding curves derived from SPR data at equilibrium levels (in 
HSM buffer). Data points are indicated as follows: no dNTP(×), dTTP (●), dATP (♦). 
Binding curves show that at concentrations of Klenow fragment above 200 nM two 
polymerases begin to bind the DNA primer-templates 
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consistent with formation of a closed ternary complex, causing an enhancement in 

binding (24). Conversely, the addition of an incorrectly WC-pairing dNTP causes a 

destabilizing effect, and a 2.8- to 11-fold increase in the dissociation constant. Similarly, 

the presence of a rNTP causes a destabilization of 2.7- to 8.4-fold. However, a correctly 

base-pairing and smaller rUTP causes less destabilization than the corresponding larger 

rATP. The influence of Klenow fragment binding follows the order dTTP >> no dNTP 

>> rUTP > dCTP > dATP > rATP > dGTP. 

viii. Effect of dNTPs and rNTPs on Mismatched Primer-Templates  

 We investigated the ability of Klenow fragment to undergo a conformational 

change when a mismatch is positioned at the -1 position. The binding isotherms obtained 

with either a terminal T:G mismatch (Figure 40C), or a terminal G:G mismatch (Figure 

40D), show that a destabilizing effect occurs in the presence of any NTP, deoxy or ribo. 

Unlike properly base-paired primer-templates, the dissociation constants reveal that 

polymerase binding to the T:G mismatch is destabilized approximately 2.4- to 7.2-fold by 

the presence of any NTP. Similarly, addition of any NTP to a G:G mismatch at the -1 

position causes significant destabilization. On average, the destabilization seen with the 

G:G mismatched primer-template is greater than that observed with the T:G mismatched 

DNA construct in the presence of NTPs. Incorrectly pairing dATP and dGTP show the 

largest change, up to a 13.7 fold decrease in binding. A correctly base-pairing dTTP or 

rUTP show a smaller 3- to 6.2- fold decrease in binding. However, it is undetermined if 

this is simply a size exclusion in which the smaller dTTP or rUTP cause less distortion to 

the already crowded G:G mismatched terminus, or due to hydrogen-bonding interactions.  
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Figure 40. KF-DNA binding curves used to determine apparent dissociation constants 
(KD). (A) KF concentration series. Plotting equlibirum levels vs concentration of KF 
and using non-linear regression of a 1:1 Langmuir binding isotherm to data points gives 
C-D. (B) Binding curves for correctly paired primer-template (Figure 18B). The 
presence of the next correct dNTP causes an increase in binding, whereas the presence 
of incorrect dNTPs or an rNTP causes a decrease in the measured binding. (C) Binding 
curves attained on T:G mismatched templates (Figure 18A). Here the presence of any 
dNTP or rNTP causes a decrease in binding. (D) Binding curves attained on G:G 
mismatched templates (Figure 18C). Once again, the presence of any dNTP or rNTP 
causes a decrease in binding. Data points are indicated as follows: no dNTP(×), dTTP 
(●), dATP (♦), dGTP (■), dCTP (▲), rUTP (○), rATP (□).  
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It is interesting to note that rATP causes less destabilization than dATP on the G:G 

mismatched primer-template. It is possible that the unique structure of this mismatch 

doesn’t allow the larger rATP access to the active site, thereby limiting it to have a 

smaller destabilizing effect due to its inability to bind. 

ix. Direct Measurement of Gain or Loss of Stability 

  Previous results show a clear correlation with the identity of a dNTP and either a 

gain or loss of stable polymerase binding (24). By examining the change in equilibrium 

binding while keeping the concentration of Klenow fragment constant and changing the 

concentration of the dNTP, we were able to directly show the gain or loss of KF-DNA 

stability as influenced by various dNTPs. Figure 41 displays the results of such an 

experiment. A baseline of zero would indicate that the inclusion that dNTP would have 

no effect on the KF-DNA complexes formed. An increase in the relative binding above 

zero with an increase in concentration of dNTP would indicate that the dNTP causes an 

increase in binding over the binary KF-DNA complex, and a negatively deflected curve 

with an increase in concentration of dNTP would indicate that dNTP decreases binding. 

As expected, inclusion of a correctly base-pairing dTTP on a correctly paired primer-

template has a profound enhancing effect on the polymerase binding (Figure 41A and B, 

solid circles). The binding level increases rapidly with dTTP concentration, maxing out 

near the theoretical maximum DNA binding limit. Conversely, the inclusion of any 

incorrectly pairing dNTP causes a concentration-dependent decrease in binding. To 

quantify this, a modified version of the Hill equation (Equation 4) was fit to the data 

(Figure 41, black lines). This allows two important variables to be deduced: 1) the Emax,  
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Figure 41. Results for dNTP selectivity assay. Data points are indicated as follows: 
dTTP (●), dCTP (▲), dATP(♦), dGTP(■). Solid lines represent fits of data points to 
equation 4. A) Influence of various dNTPs attained for Klenow fragment binding to 
correctly paired primer templates. Only the presence of dTTP causes an increase in the 
amount of KF-DNA complexes, and all other dNTPs cause a decrease in KF-DNA 
complexes. B) Zoomed in view of (A) showing more clearly the dTTP binding curve at 
low concentrations. Small amounts of dTTP induce a rapid increase in the levels of 
DNA bound Klenow fragment complexes, whereas incorrect dNTPs require a greater 
concentration to achieve their affect. This is evident when examining the Sf value in 
table 2. C) Curves attained for a T:G mismatched primer-template. Similar to the 
previous results, the presence of any dNTP causes a decrease in binding below 
formation of the binary complex alone. D) Results for binding to a G:G mismatched 
primer template. Here the presence of any dNTP causes a concentration dependent 
decrease in binding. Data points are averages of triplicates and error bars reflect the 
standard deviations of the averaged data points. 
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which represents the maximal effect the dNTP can cause, ranging from increasing 

binding to 100% of the available DNA substrate, or completely destabilizing all binding  

(-100%); or 2) a selectivity factor Sf, which represents the concentration of dNTP 

required to reach half of the Emax. High values of Sf would indicate that high 

concentration of the dNTP would be required to achieve the effect dictated by the Emax. 

Table 4 displays the results of this data set. For instance, dTTP shows a sharp rise in the 

curve, giving a low selectivity factor, indicating that dTTP reaches its maximal affect at a 

very low concentration. Conversely, the destabilizing dNTPs have a much greater 

selectivity factor, 47- to 380-fold higher than dTTP, and require a much higher 

concentration to reach their maximal destabilizing effect. In terms of destabilization, 

dCTP causes the smallest maximal effect and requires the highest concentration to 

achieve half this value, meaning it is the least destabilizing dNTP for this correctly base-

paired substrate (Figure 41A). 

 The results for measurements with T:G mismatched and G:G mismatched primer-

templates are shown in Figure 41C and 41D respectively. Similar to the equilibrium 

binding data, the selectivity experiment shows that the inclusion of any dNTP, even the 

next correctly base-pairing dTTP, causes a destabilizing effect in a concentration 

dependent manor. In the case of the T:G mismatched primer-template, dTTP has the least 

destabilizing effect followed by dCTP. Both dATP and dGTP cause the largest 

destabilization. The maximum destabilizing effect (Emax) of all four dNTPs are relatively 

similar, however, dTTP and dCTP show less destabilization at a lower concentration. 

Again consistent with the dissociation constants, a G:G mismatch shows a greater degree  



132 
 

 

  

Table IV. Computed values of Emax and Sf based upon fits of equation 4 to data 
presented in figure 39. 
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of destabilization in the presence of any dNTP than observed on the T:G mismatch. There 

is also a lower degree of destabilization noted with dTTP and dCTP at a lower 

concentration, than with dATP or dGTP. Lastly, it should be noted that equilibrium 

binding experiments were conducted at dNTP concentrations of 400 μm, a dNTP 

concentration that generates large differences in polymerase binding based upon the 

identity of the dNTP. 

x. Dissociation of Klenow Fragment Complexes in the Presence and Absence of 

dNTPs  

 Typically experiments are conducted so the injection of enzyme and any co-

factors are only present during the association phase, while the dissociation phase 

typically is composed of only buffer. Injections of Klenow fragment mixed with various 

dNTPs were conducted, followed by dissociation with only buffer (Figure 42A). Figure 

42A shows the results obtained for such an experiment on a properly paired C:G 

substrate. The inclusion of dTTP causes an increase in the equilibrium levels of KF-DNA 

binding above that obtained in the absence of dNTP. The dissociation phase also shows a 

slightly slower rate of dissociation than for the absence of dNTP. Conversely, the 

addition of dGTP to the association phase only results in a decrease in equilibrium 

binding followed by a rapid dissociation with buffer. To contrast this, and test the ability 

of Klenow fragment to sample dNTPs while remaining bound to the DNA we conducted 

experiments in which we placed dNTPs not only in the association phase (mixed with 

KF) but also into the dissociation phase (Figure 42B). The results obtained here are 

similar to those state above with two exceptions: 1) when a correctly base-pairing dTTP  
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Figure 42. Sensorgrams depicting cycling of dNTP during Klenow fragment binding on 
proper C:G base paired primer-templates (Figure 18B). Sensorgrams are obtained by 
injection 100 nM Klenow fragment in the presence or absence of dNTPs. A) After 
equilibrium is established the injection of Klenow fragment is stopped (vertical solid 
black line) and buffer is flowed over the surface. This results in the dissociation of 
bound Klenow fragment. Klenow fragment bound with a correctly base pairing dTTP 
show a slower dissociation, most likely due to the formation of a closed ternary 
complex. B) After equilibrium is established the injection of Klenow fragment is 
stopped and buffer containing either dTTP, no dNTP, or dGTP is flowed over the 
surface. The inclusion of dTTP in the dissociation buffer results in a very slow 
dissociation of Klenow fragment. This is due to the Klenow fragment re-cycling dTTP 
as it opens and closes repeatedly. 
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was included into the dissociation buffer the dissociation rate of the complex was 

dramatically reduced; 2) the inclusion of a mismatching dGTP in the dissociation buffer 

resulted in a more rapid rate of dissociation than in buffer alone. The slower dissociation 

with dTTP in the buffer indicates that polymerase is capable of cycling the nucleotides 

prior to dissociation from the DNA. When equilibrium is established and the closed 

complex formed, if this was a stagnant complex the inclusion of dTTP during the 

dissociation phase would have no effect. However, because a large increase in binding is 

noted, a significant portion of the bound polymerase must be fluctuating between the 

open and closed conformation, even in the presence of the next correct dNTP. 

B. Benzo[a]pyrene Studies 

 Previous surface plasmon resonance experiments show that Klenow fragment 

binding to a correctly paired unmodified primer-template in the presence of a correctly 

pairing dNTP causes a significant drop in the dissociation constant, and a much slower 

rate of dissociation. We again chose surface plasmon resonance to conduct studies to 

investigate the effects of a (-)-trans-anti-B[a]P-N2-dG adduct on Klenow fragment 

binding. SPR allows the concomitant measurement of polymerase binding to three 

different DNA primer-template substrates. The ability to measure binding on multiple 

substrates allows a direct comparison between the three primer-templates listed in Figure 

20. In addition, the same surface is utilized for multiple injections, again allowing a direct 

comparison between various injections, in this case the effect measured by the presence 

of various dNTPs and rNTPs. We have used an equilibrium type analysis as opposed to a 

kinetic fit of our sensorgrams. Sufficient kinetic fits were obtained for this data; however, 
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we find the overall conclusions attained are the same as with a significantly simpler 

equilibrium analysis. 

i. Sensorgrams and Binding Curves  

 CM5 sensorchips were immobilized first with 1000 ± 50 RU of streptavidin in all 

flow cells using standard Biacore amine coupling procedures. Typically other 

experiments capture DNA employing a 5’-biotinylated primer duplexed to template. This 

type of setup using a 5’-biotinylated primer would require the template to be in excess 

upon duplex formation to ensure all primer was duplexed. We instead chose to utilize 

DNA templates which contain a 3’-biotin for capture. This allows limiting quantities of 

template to be used with a vast excess of easily purified primer upon duplex formation. 

This is the same strategy employed with previous unmodified DNA studies and again 

worked well here. 

ii. Correctly Paired and Mismatched (-)-trans-anti-B[a]P-N2-dG Primer-Templates 

in the Absence of dNTPs  

 Injections of Klenow fragment onto the (-)-trans-anti-B[a]P-N2-dG modified 

surfaces produce sensorgrams that display rapid association rates (Figure 43). All primer 

template structures, correctly base paired or containing terminal mismatches, display 

similar association phases. This is similar to the results noted in unmodified DNA studies. 

This indicates that the (-)-trans-anti-B[a]P-N2-dG must not interfere significantly with 

the association of  Klenow fragment to the duplex. However, where unmodified DNA 

shows the largest extent of binding to a correctly paired C:G substrate, Klenow fragment 

shows the greatest binding to a mismatched G:G-B[a]P primer-template (Figure 43). In  
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Figure 43. SPR response obtained when Klenow fragment is injected onto templates 
shown in figure 20. Binding to a G:G-B[a]P base pair is significantly stronger than to a 
correctly base paired C:G-B[a]P primer-template or a mismatched G:G-B[a]P primer-
template. A longer dissociation phase is also evident from a G:G-B[a]P primer-
template. 
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Figure 43 the quantities of immobilized DNA are within ± 5% of each other and would 

yield similar values of Rmax. However, it is apparent that the binding of KF to a C:G-

B[a]P substrate is much weaker. Also, unmodified DNA also showed a substantial 

decrease in binding of KF to a T:G mismatch relative to a C:G correct base pair. Here a 

T:G-B[a]P mismatch shows approximately the same levels of binding as a C:G-B[a]P 

correct base pair. Furthermore, the dissociation phase of the sensorgram for binding to a 

G:G-B[a]P appears to be slower than that observed for the T:G-B[a]P duplex or the C:G-

B[a]P duplex. Again, this is opposite to the observations on unmodified DNA in which 

the dissociation phase for binding to a correctly paired C:G primer-template is the slowest 

and dissociations from mismatches are more rapid. This unexpected result with G:G-

B[a]P primer-tempates was repeated multiple times on several sensorchips, under varying 

buffer conditions, and different levels of immobilized DNA, always giving the same 

trends.  

 To further probe this result, multiple injections of KF ranging in concentration 

from 0 nM to 200 nM were performed (representative series in Figure 45A). As the 

concentration of Klenow fragment increases, the equilibrium levels of the association 

phase increases. Generating a plot of the average equilibrium value versus the 

concentration of KF used for the injections allows the generation of binding curves 

(Figure 6 B-D). Fitting of a 1:1 Langmuir binding isotherm (Equation 1) allows 

determination of dissociation constants (KD) (Table 5). It should be noted that these 

experiments include 150 mM NaCl within the buffer. We have conducted experiments 

both with and without salt and concluded that the inclusion of salt in the buffer allows a  
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Table V. Dissociation constants for binding of Klenow fragment to various B[a]P 
labeled primer-templates in the presence or absence of 2’-deoxy- or ribo-nucleotide-5’-
triphosphates  
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larger-fold change to be observed upon addition of correct or incorrect dNTPs on 

unmodified DNA; however, inclusion of salt results in significantly higher dissociation 

constants. The results are thus reported as apparent KDs and all conclusions drawn are 

based on relativistic changes of the values rather than their absolute quantity. 

Examination of the equilibrium binding constants in table 5 in the absence of dNTPs 

show that the binding of KF to a G:G-B[a]P is approximately 7 fold tighter than to a T:G-

B[a]P or a C:G-B[a]P substrate. This confirms the observations noted above upon visual 

examination of the sensorgrams. Conversely, unmodified DNA previously showed 

tightest binding to correctly paired C:G substrates, with a 3- to 4-fold decrease in binding 

to T:G and G:G mismatched substrates. 

iii. Correct vs. Incorrect NTPs on Correctly Paired C:G-B[a]P Substrates  

 Klenow fragment is known to undergo a conformational change to a closed 

complex upon binding of the next correct dNTP. SPR experiments conducted with 

unmodified DNA show a substantial 20-fold increase in binding in the presence of the 

next correct dNTP. Conversely, the presence of an incorrectly pairing dNTP or any rNTP 

causes a destabilization by 3-11 fold, with the smaller pyrimidines causing less 

destabilization. Table 5 shows the binding constants determined in the presence of 

various dNTPs and rNTPs from fitting of a 1:1 Langmuir binding isotherm to data 

presented in Figure 44. Unlike unmodified DNA, (-)-trans-anti-B[a]P-N2-dG modified 

DNA shows no increase in binding upon addition of any dNTP or rNTP. Instead, 

inclusion of any nucleotide results in a large destabilization. This is indicative of the (-)-

trans-anti-B[a]P-N2-dG adduct preventing the Klenow fragment from forming a closed  
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Figure 44. Determination of equilibrium binding constants from Langmuir binding 
isotherms. (A) Representative sensorgrams of concentration series showing KF binding 
to a G:G-B[a]P primer-template. (B) Isotherms for KF binding to a correctly base paired 
C:G-B[a]P primer-template. (C) Isotherms for KF binding to a mismatched base paired 
T:G-B[a]P primer-template. (D) Isotherms for KF binding to a mismatched base paired 
G:G-B[a]P primer-template. Data points are indicated as follows: no dNTP(×), dTTP 
(●), dATP (♦), dGTP(■), dCTP(▲), rATP(◊), and rUTP(○). 
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ternary complex in the presence of a correctly pairing dNTP. The active site is most 

likely so distorted by the large adduct that even properly base-pairing dNTPs are 

interpreted as incorrect. However, the binding of dNTP must still occur because its 

presence leads to a measureable destabilization. This is similar to gel shift binding 

experiments examining (-)-trans-anti-B[a]P-N2-dG modified templates that show no net 

stabilization from the addition of any dNTP, but instead a destabilizing effect was noted 

(64). Yet, similar to unmodified DNA, (-)-trans-anti-B[a]P modified templates show less 

destabilization in the presence of smaller incorrectly pairing pyrimidines that larger bulky 

mispairing purines. 

iv. Effect of NTPs on Mismatched (-)-trans-anti-B[a]P-N2-dG Primer-Templates  

 Positioning of a mismatch at the -1 position on unmodified DNA resulted in an 

inability for the KF to undergo a conformational transition to the closed complex upon 

addition of any dNTP or rNTP. Similarly, positioning of a T:G-B[a]P or a G:G-B[a]P at 

the -1 position caused the polymerase to become destabilized upon addition of any dNTP 

or rNTP. The T:G-B[a]P substrate showed a 4- to 8-fold decrease in stabilization upon 

addition of any dNTP. Similarly, the tighter binding G:G-B[a]P complex also underwent 

a 3-9 fold decrease in binding upon addition of any dNTP. This is in very similar to the 3-

13 fold decrease seen with unmodified DNA mismatches at the -1 position. In addition, 

the smaller pyrimidines once again exhibited smaller levels of destabilization than the 

larger purine nucleotide triphosphates. 
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v. Dissociation Rates from (-)-trans-anti-B[a]P Primer-Templates  

 Visual examination of the sensorgrams revealed that the G:G-B[a]P complex 

undergoes slower rates of dissociation than properly paired C:G-B[a]P or T:G-B[a]P 

substrates. Figure 45 shows fitting of a single exponential decay (Equation 2) to C:G- 

B[a]P, T:G-B[a]P, and G:G-B[a]P substrates. Single exponential decays provided good 

fits to the data. Table 6 shows the determined koff values for the various experiments. The 

same trends noted above are once again noted upon examination of the dissociation rates. 

The G:G-B[a]P mismatch shows the slowest off rate, approximately 3- to 4-fold slower 

than for C:G-B[a]P, or T:G-B[a]P substrates. The addition of any dNTP or rNTP to any 

of the (-)-trans-anti-B[a]P-N2-dG DNA substrates resulted in an increase in the koff by 

approximately 2- to 4-fold. 
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Table VI. Dissociation rates for release of Klenow fragment from various B[a]P labeled 
primer-templates in the presence or absence of 2’-deoxynucleotide-5’-triphosphates. 
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Figure 45. Representative dissociation phase for Klenow fragment binding in the 
absence of dNTPs. Data points are shown as points and fits are shown as solid lines. 
Data points are indicated as follows: C:G-B[a]P correct base pair (□),T:G-B[a]P 
mismatch (●), G:G-B[a]P mismatch (▲). 
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CHAPTER IV: DISCUSSION 

I. MALDI-TOF Method Development 

 It has been established by prior work that hydrophobic surfaces can enhance the 

resolution of MALDI-TOF mass spectra and aid in the ability of obtaining sample spots 

with high levels of crystalline matrix suitable for laser vaporization (111, 112). We have 

developed methods for preparing a uniform hydrophobic surface made up of a thin and 

very uniform layer of Parafilm that not only provides these advantages, but also allows 

the use of external standards and provides low levels of background signal. 

 Our hydrophobic coating is easy to apply, inexpensive, and the materials are 

readily available in almost all labs. The very thin hydrophobic layer produces a true non-

wetting surface that minimizes the contact surface area of the liquid to the coating. This is 

beneficial because the volume to surface area ratio is minimized by placing hydrophilic 

buffers on non-wetting surfaces. Because the volume to surface area ratio of the sample 

spots are larger on the hydrophobic surface as compared with the ground steel, the spots 

dry more slowly. As the samples dry they maintain a spherical shape while shrinking in 

diameter whereas the sample spots on the steel tend to flatten out and remain widespread. 

This compact nature of the sample makes it much easier upon sample crystallization to 

find areas with crystals that give good spectra. Further, this action concentrating action 

also lowers the limits of detection for samples. This is in agreement with result others 

have found using different hydrophobic surfaces (111, 112).  

 Quite often the most difficult part of MS is locating sample that gives good signal. 

On the Parafilm layer this is not difficult because of the wealth of usable signal. This has 
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also previously been noted by other researchers utilizing similar hydrophobic surfaces 

(111, 112). This effect is thought to occur due to the concentration of sample into a 

smaller area. This effectively raises the amount of sample vapourized (and subsequently 

traveling to the detector) with each shot of the laser. Our results indicate about a 20 times 

higher likelihood of obtaining similar spectra on parafilm coated surfaces than on ground 

steel. This implies that if one were to randomly shoot at the crystal one would be about 

20 times more likely to hit a high quality area for crystals grown on the Parafilm coating 

than on the ground steel. This increase in area that gives high quality signals on the 

Parafilm coating dramatically cuts down on the time needed to locate regions within the 

crystal that are usable. In addition, the number of samples spotted that do not give any 

usable signal also drops significantly. Virtually all samples spotted gave usable signal. 

 Not only does the Parafilm layer greatly increase the usable sample area for 

analysis, but also results in improved resolution. The spectra obtained tend to be of 

superior quality, and have clearer peaks. As a result less smoothing is required upon 

processing of spectra. The clearer spectra containing usable additional salt peaks provide 

further points for calibration when shooting standards, and provide more peaks to confirm 

the identity of unknown sample masses. In addition, the spectra obtained on ground steel 

tend to lack M+2H peaks in comparison to spectra obtained on Parafilm. The lack of 

these peaks reduces the utility of internal standards since these calibration points are often 

missing. Spectra obtained on the hydrophobic coating consequently allow mass 

calibration over a wider range, extending their usefulness. Adding to this is the lower 

background noise obtained at low mass ranges on the Parafilm layer. This becomes useful 
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when spectra over a large mass range are being obtained. For instance, when performing 

exonuclease digests of DNA and subsequently utilizing the MALDI-TOF for sequencing 

analysis, the introduction of noise in the low mass range interferes with identifying lower 

mass fragments (103). As a result exonuclease digests must be performed in both the 5’ 

to 3’ and 3’ to 5’ directions. The use of this Parafilm coating may help reduce the 

aberrant noise found in the lower mass range, which will aid in obtaining a more 

complete mass spectrum of the exonuclease digest. 

 Prior studies had shown that when utilizing coatings on plates it is difficult to 

employ external standards due to variances in the thickness of the deposited coating 

(112). These variations in film thickness create shorter and longer time of flights that 

introduce error into the associated masses. The prior experiments indicated that the 

variances in the mass spectral data prior to processing were minimal. This high 

reproducibility between subsequent spots on the Parafilm-coated plate implied that the 

variances in the Parafilm thickness may be negligible. Microscopic examination of the 

Parafilm layer revealed that its thickness was smaller than the thickness of most crystals. 

As a result we chose to examine the possibility of utilizing external standards with the 

Parafilm coating. Our results suggest that the use of the Parafilm coating allows accurate 

mass determination even when utilizing external standards. The accuracy obtained with 

the Parafilm coating when using external standards served to further confirm the ability 

for this thin, homogenous layer to improve on currently used MALDI-TOF methods. 

Overall the time saving and ease at which excellent spectra are obtained make this 

method valuable to mass spectrometry. 
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II. Surface Plasmon Resonance 

A. Unmodified DNA 

Replication could not proceed without a method for proper dNTP selection. 

Numerous studies have identified various intermediate states describing a relatively linear 

mechanistic pathway (27). With the exception of partitioning to the exonuclease domain, 

the current mechanism of polymerization is in fact a linear path (Figure 4). Mismatches 

represent misincorporation events that have already occurred. In the case of our results, 

mismatches placed at the primer terminus, at the -1 position, cause a destabilizing effect 

as depicted by their increased dissociation constants relative to correctly base paired 

primer-templates. This reduced binding can be easily described along the linear 

polymerization path. The forward rate of step 1 (Figure 4) could be decreased due to 

unfavourable interactions of the non-Watson Crick DNA structure, restricting polymerase 

binding. Alternatively, the reverse dissociation rate could be increased due to an unstable 

conformation the DNA adopts within the polymerase upon binding. Polymerases with 

exonuclease domains have also been shown to increase the partitioning to the 

exonuclease domain upon binding mismatches, and that the dissociation rate from this 

domain is different than that from the polymerase domain (30, 31, 127). Regardless, the 

observed effects of terminal mismatches in the absence of dNTPs are readily accounted 

for in the current mechanistic model. 

Similarly, the increase in binding noted in the presence of the next correct dNTP 

can also be accounted for in the linear model. Addition of a correctly pairing dNTP 

causes a conformational change of the polymerase into a ternary closed complex (Step 3) 
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(24). This sequestering of enzyme and DNA in this closed conformation effectively shifts 

the equilibrium to the right, de-populating the binary complex and causing free DNA and 

enzyme to bind in order to fill the void. Such a shift results in more KF-DNA complex 

which is measured as an increase in binding. This result is also neatly validated in the 

linear mechanistic pathway.  

However, the addition of an incorrectly pairing dNTP has experimentally been 

shown to decrease the level of binding below that of simply binary complex formation (in 

this study and in (80, 89)). It is of importance to note that any DNA bound by enzyme, 

whether in a binary, open ternary, or closed ternary complex, will show up as “binding” 

on many experiments such as gel shift, or in this case SPR experiments. With the current 

linear model as seen in Figure 4 this destabilization result simply cannot be explained. 

For example, if the dNTP was an incompatible fit and subsequently did not undergo 

transition to the closed ternary complex but instead remained populated within the open 

ternary complex, the relative populations of the binary and open ternary complex will still 

exceed that of the binary complex in the absence of nucleotide. Taken one step further, 

the worst case example would be if the dNTP was completely restricted from forming the 

ternary complex at all, the mechanism remaining would be that up to binary complex 

formation. Even in this worst case dNTP binding situation, it is impossible for the level of 

enzyme-DNA binding to fall below that of binary complex alone, meaning that 

experiments showing a decrease in KF-DNA binding below levels of experiments 

conducted without dNTPs cannot be explained using this linear model. The linear 

mechanism simply cannot account for this result. 
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To explain this abnormality, we propose a new path along the mechanism that is 

capable of accounting for this result, as well as providing a new selection pathway along 

which dNTPs can be continually sampled without the necessary dissociation of the 

polymerase. Figure 46 shows our modified mechanism. Here, an open ternary complex is 

formed, from dNTP binding the open binary complex, followed by one of two states; 1) 

in the case of a correct dNTP the polymerase may form the closed ternary complex 

followed by catalysis, or 2) in the case of an incorrect dNTP, the polymerase may form a 

destabilized ternary complex followed by rejection of the dNTP to form a destabilized 

binary complex, following with either direct dissociation from the DNA or reforming the 

open binary complex. This evacuation pathway provides several key intermediates and 

resolves the problem of the current model to account for destabilization caused by 

incorrect dNTPs. The resolution comes from the fact that once this destabilized complex 

is formed, the enzyme-DNA complex may directly dissociate to free enzyme and DNA. 

This provides a second route to free the enzyme from the DNA, and importantly, this 

allows the measured levels of KF-DNA complexes to fall below the levels of KF-DNA 

achieved during binary complex formation in the absence of dNTPs. This is because the 

formation of some ternary complex could potentially lead back to free enzyme and DNA 

without having to reform the binary complex. The dissociation from the destabilized 

binary complex may be brought about by decreased KF-DNA interactions following 

release of the incorrect dNTP. 

Direct evidence for this destabilized state of the polymerase has already been 

experimentally determined, yet unaccounted for in the polymerase mechanism. In 2006  
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Figure 46. Novel proposed mechanism for DNA synthesis reflecting a dNTP selection 
cycle. Schematic representation of various states achieved during synthesis. The newly 
proposed mechanism includes a conformational change to a destabilized ternary 
complex (Er●DNA●dNTP) where the enzyme exists in a conformational state that 
promotes the rapid rejection of the dNTP. Following release of the dNTP the Er 
polymerase conformation may reform the native binary conformation or dissociate 
directly to free enzyme and DNA. This dissociation from the Er●DNA complex may be 
brought about by decreased KF-DNA interactions following release of the incorrect 
dNTP. Inclusion of this step provides a mechanism by which a decrease in stability may 
be measured during experiments such as the SPR binding assays. 
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Johnson et al. suggested that binding of an incorrect dNTP may use some of the binding 

energy to actively misalign catalytic residues of the polymerase (39). We propose that 

this misalignment is in fact the polymerase actively rejecting the dNTP in an attempt to 

speed up synthesis by finding a correctly pairing dNTP. This provides the polymerase a 

method to increase the dissociation of incorrect dNTPs and increase the binding of 

correct dNTPs as is seen with measurements of ground state dNTP binding (unpublished 

results). Johnson et. al. also stated that the resting polymerase may be in a partially closed 

state and that the presence of an incorrect dNTP causes the polymerase to populate the 

fully open state. We feel that the resting polymerase is in an open state defined by our 

model, and that the presence of an incorrect dNTP induces formation of a destabilized 

state. Joyce et al. have recently confirmed the existence of such a destabilized state (38). 

Using fluorescence resonance energy transfer (FRET) with two fluorophores positioned 

on the polymerase, they were able to show that an incorrect dNTP evokes a fluorescent 

state that is different from either the open binary, or the closed ternary complex. Their 

results fit very well into our model in which the novel fluorescent state they measured is 

direct evidence for either the destabilized binary or destabilized ternary complexes. 

Our results also show that rNTPs undergo destabilization of the KF-DNA 

complexes. Because of this, we feel that rNTPs, mispairing or correctly pairing, will fall 

along the same pathway as mispairing dNTPs. Again, the only way to explain a 

destabilization effect exceeding that of forming the binary complex alone is through an 

alternate pathway. This is again supported by Joyce et. al. where it was noted that the 

presence of rNTPs caused the formation of the same FRET state as the incorrect dNTPs. 
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Also, the relative partitioning between returning from the open ternary complex to the 

binary complex versus preceding through the destabilized pathway may account for rate 

differences observed between various rNTPs versus dNTPs. For instance, the mismatched 

G:G primer-template shows a larger destabilization from addition of dATP than for 

rATP. This could indicate that the ability of rATP to bind in the open ternary complex is 

not as easy as for the dATP. If the rATP is incapable of forming the open ternary 

complex due to steric interactions, then the destabilized ternary complex cannot form. 

This is observed only with mismatches, possibly owning to their more confined active 

sites not allowing competent binding of the rATP. 

In addition to simply forming a destabilized complex followed by dissociation of 

the polymerase, we have included a step whereby the destabilized binary complex may 

transition back to an open binary complex, and feel this is the preferred path for several 

reasons. This step ensures that each time the polymerase incurs a mismatched dNTP or an 

rNTP within the active site it will not necessarily lead to dissociation of the entire 

complex. We feel that the preferred route for an incorrect NTP is the cyclic path: 1) 

incorrect dNTP binding to form an open ternary complex, 2) dNTP-induced polymerase 

misalignment forming destabilized ternary complex, 3) dissociation of the incorrect 

dNTP to form a destabilized open complex and 4) reforming of the open binary complex 

to which new dNTP may bind. This pathway provides the polymerase a method to cycle 

actively the nucleotides in a rapid and efficient effort to find a correct match. Figure 47 

shows a representation of how the DNA synthesis pathway overlaps with what we term 

the dNTP selection loop. This process can occur without dissociation of the polymerase;  
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Figure 47. dNTP selection cycle. Cartoon depiction showing how the DNA synthesis 
cycle may be coupled to the dNTP selection cycle. After formation of an open ternary 
complex the polymerase will transform into one of two conformational states that is 
driven by the nature of the template-dNTP interactions. Incorrectly pairing dNTPs will 
be rejected reforming the open binary complex and allowing a new dNTP from the pool 
to be sampled and correct dNTPs will undergo synthesis into the growing primer chain. 
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however, the destabilized binary complex does possess the ability to dissociate to free 

enzyme, giving the polymerase an advantage on non-native templates such as 

carcinogenic adducts. For instance, if a polymerase stalls at a location due to an altered or 

non-native template base, the polymerase may cycle in multiple attempts to find a correct 

dNTP match, followed by an increased rate of dissociation from existing in the 

destabilized state. This dissociation will allow another polymerase, possibly a lesion 

bypass polymerse in the case of DNA adducts, to complete the synthesis. Similar to this 

example, repetitive bombardment of mispairing dNTPs is seen in experiments such as 

ours in which only the incorrect dNTP is present, and no correct match can be found. 

Here even a small contribution to this repetitive loop by directly dissociating from the 

destabilized binary complex to free enzyme can contribute to equilibrium binding levels 

that fall below that of binary complex formation alone. 

This cycle also predicts that a great deal of nucleotide selectivity must occur in 

the open state. The proverbial fork in the pathway exists after formation of the open 

ternary complex. Previous reports have argued that a great deal of the dNTP selection 

process must occur within the open ternary complex (2). Our model agrees with this, in 

which the resulting mechanistic path that is chosen based upon whether the current dNTP 

within the polymerase was deemed correct or not; however, it should be noted that the 

forked point may be downstream of the open ternary complex falling after another 

intermediate, but must still remain prior to formation of the closed ternary complex. That 

is to say that step 3 may be broken into several smaller steps, and the formation of the 

destabilized state will lay at some step prior to conformational closing (27). 



157 
 

 

Our selectivity assay correlates well with this novel cycle in the mechanism. The 

stabilization measured in the presence of a correctly base-pairing dTTP on the correct 

substrate indicates formation of the closed ternary complex. The destabilization measured 

with any other dNTPs is due to formation of the destabilized ternary complex which 

eventually leads to direct dissociation of the destabilized binary complex. The 

mismatched primer-templates also showed the ability to form destabilized complexes 

although they did not form any stabilizing complexes. This result indicates that with these 

mismatched substrates the polymerase are still capable of forming a ternary complex; 

however, it transitions primarily to a destabilized ternary complex and not to a closed 

ternary complex. The mismatch at the post insertion site most likely forms a 

conformation the polymerase interprets as incorrect, inhibiting formation of a closed 

ternary complex. However, the polymerase must not block the formation of the 

destabilized ternary complex because we are still capable of measuring destabilization 

above and beyond formation of the binary complex alone. This dissociation would be 

advantageous to the cell to allow other enzymes to repair the damaged DNA bases prior 

to re-initiating synthesis.  

Our results shown in Figure 42B also illustrate the process by which dNTPs are 

sampled without dissociation of the polymerase. The equilibrium KF-DNA binding levels 

obtained prior to initiating dissociation will populate the various states defined by the 

mechanism. During dissociation, when a dNTP is not present, the population of Klenow 

fragment in the closed ternary complex quickly re-opens to form the open ternary 

complex followed eventually by dissociation from the DNA, which is seen as a fast 
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dissociation phase. Conversely, when a correctly pairing dNTP is added during the 

dissociation phase, the polymerase remains bound significantly longer. The explanation 

for this comes from the polymerase being able to open and exchange dNTPs without 

dissociation from the DNA. In the case of no dNTP present during dissociation, the 

closed ternary complexes formed during equilibrium will have no dNTP to exchange 

when it reopens to form the binary complex. On the other hand, the dissociation phase 

containing free correct dNTP affords the polymerase the ability to open, releasing the 

dNTP followed by binding of a new dNTP and reforming the closed complex. If this 

exchange of dNTP was not possible the results for Figure 42A and 42B would be 

expected to be the same or very similar. 

In our mechanism the transition from open ternary to destabilized ternary may be 

reversible, but the direction the equilibrium lies will be determined by the identity of the 

dNTP. We have also assigned single direction arrows to three particular steps of the 

mechanism. We feel these steps represent one-way steps in which we predict the reverse 

rates will be extremely slow in any situation. The transition from a destabilized ternary 

complex to a destabilized binary complex should not occur in reverse. Once the dNTP 

has dissociated, the following steps are most likely rapid and energetically favoured. The 

dissolution of the destabilized binary complex to either the free enzyme or the binary 

complex is also considered a one-way step. Similar to what was proposed by Johnson et 

al., the binding energy of the mismatched dNTP is required to transition to the 

destabilized state (39). Direct transitions from the open binary complex to a destabilized 

binary complex would be energetically expensive and an unlikely occurrence given no 
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driving energy is available for the process. The use of the dNTP binding energy to cause 

the polymerase to change conformation is not a new idea (39). The energy of binding can 

be used to drive the conformational change noted in the presence of a correct dNTP. 

Likewise, if an incorrect dNTP is present, the conformation of the polymerase may be 

altered into what we call the rejection conformation (Er*). Formation of the rejection 

conformation will similarly use dNTP binding energy, and will result in a complex that 

has a weaker affinity for the dNTP. This correlates with studies that have shown the 

equilibrium dissociation constants for binding of incorrect dNTPs are higher than correct 

dNTPs. We also suggest that there may possibly be alternative conformations of the DNA 

formed during this process. This is a possibility, although we feel it is unlikely. The direct 

dissociation of the rejection conformation would be due to weaker KF-DNA interactions 

induced by changes in polymerase conformations rather than DNA conformational 

alterations. 

 DNA polymerases have had a great deal of time to evolve and perfect their 

mechanism of DNA synthesis. It appears unlikely that through evolution polymerases 

would miss an opportunity to actively expedite the process of dNTP selection. Our 

proposed model incorporates a new cyclic pathway whereby the polymerase actively 

undergoes dNTP selection that can take place without dissociation of the enzyme, thereby 

allowing an increase in the rate at which a polymerase finds a correct dNTP. Inclusion of 

this novel pathway is obligatory to understanding the way polymerases function. We feel 

that this minimal reaction mechanism should currently be examined when interpreting 

results. In addition, other enzymes that use a similar process of selection, for instance 
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RNA polymerases, may also benefit from including such a selection step in their 

mechanisms. Lastly, our mechanism predicts states that should hopefully be detectible in 

future assays. 

B. Benzo[a]pyrene 

 The ability of DNA polymerases such as Klenow fragment to accurately choose 

the correct dNTP for incorporation into the primer is of prime significance in determining 

the accuracy of DNA replication. A mistake during DNA synthesis can have disastrous 

outcomes for the cell. Most DNA polymerases have the extraordinary ability to correctly 

choose dNTPs on native undamaged DNA in a repeated and rapid process (128). 

However, when a carcinogenic adduct is positioned on the same template the results are 

often quite different (129). We previously utilized surface plasmon resonance to 

investigate the mechanism of DNA replication, specifically to study what happens when 

Klenow fragment is in the presence or absence of either a correctly pairing deoxy- or 

ribo-NTP or a mismatched deoxy- or ribo-NTP, on both correctly paired primer-

templates and mismatched primer-templates. Using this approach we identified a novel 

process in the mechanism of DNA replication that selects for a correct dNTP. The 

addition of a correctly pairing dNTP on native correctly matched substrates results in the 

formation of a closed ternary complex that is productive in catalyzing the addition of the 

dNTP to the growing primer stand. Conversely, addition of a mismatched dNTP, or any 

rNTP, causes a destabilizing effect in which a destabilized ternary complex is formed 

followed by rejection of the nucleotide to form a destabilized binary complex (Figure 46). 

This destabilized complex can then dissociate from the DNA at a rate that exceeds the 
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reverse of step 1, binary complex formation, leading to a net decrease in measured 

binding levels. Using a similar approach, we have investigated how polymerase binding 

to a a (-)-trans-anti-B[a]P-N2-dG adduct fits into this new step of the polymerase 

mechanism. 

 In this study, we positioned a (-)-trans-anti-B[a]P-N2-dG adduct at the -1 position, 

paired with either a correctly base-pairing cytosine on the 5’ end of the primer, or a 

mismatched thymine or guanine. Extension assays have shown that this is the location 

that stalls predominantly occur, with the polymerase being able to extend up to and across 

from a B[a]P adduct (Figure 25) (62, 130). Measuring the binding of Klenow fragment at 

this stalling position allowed us to examine what occurs during the pivitol moment when 

polymerases fail, and determine how misparing at this location affects polymerase 

binding. Similar SPR experiments on unmodified DNA showed that Klenow fragment 

prefers to bind to correctly base-paired primer-template terminus, with the binding to 

mismatched T:G and G:G primer termini being weaker. This weaker binding is due to 

incompatible primer-template termini that disrupt the polymerase-DNA interactions. 

Interestingly, our (-)-trans-anti-B[a]P-N2-dG adducted template showed the strongest 

binding when a G:G-B[a]P was positioned at the -1 position. Whereas the binding to 

properly C:G-B[a]P and mismatched T:G-B[a]P was weaker. This implies that the 

structures of C:G-B[a]P and T:G-B[a]P are adopting conformations that are not 

conducive to the binding of the polymerase. Most likely the B[a]P moiety is adopting a 

conformation within the primer-template and polymerase active site that causes 

significant steric clashes with either the protein, or disrupts the DNA to the extent that the 
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polymerase is no longer capable of forming normal alignments with the primer-template 

terminus. The result of either would be a weakened binding to these substrates. The G:G-

B[a]P mismatch may have an increased level of binding due to hydrophobic interactions 

of the pyrene moiety with the polymerase that is exacerbated by the G:G mismatch. 

Alternatively, the orientation of the pyrene moiety may be such that the adduct is 

positioned interacting with the DNA resulting in the mismatched guanine on either the 

primer or the template being positioned into a hydrophobic pocket of the polymerase. In 

either case, the polymerase retains a tighter affinity to the G:G-B[a]P mismatch that is 

unique to this structure. 

 The increase in binding to a G:G-B[a]P over C:G-B[a]P and T:G-B[a]P substrates 

indicates that the G:G-B[a]P is adopting a conformation that promotes the interactions of 

Klenow fragment with the substrate. Yet, despite the increased affinity, the complex is 

still not capable of forming productive alignments to form a closed ternary complex. The 

addition of the next correctly base-pairing dTTP does not induce tighter binding, but 

conversely diminishes binding. On all substrates tested, the inclusion of any dNTP or 

rNTP decreased the levels of polymerase binding lower than those obtained in the 

absence of dNTPs or rNTPs. The inability of the polymerase to undergo a conformational 

transition to a closed ternary complex indicates that NTPs are not capable of productively 

binding the complex. The blocking of the conformational transition to the closed complex 

can again be attributed to the conformations adopted by the B[a]P adducted primer-

template termini. The already tight constraints of the polymerase active site, now further 

crowded by the presence of the adduct, interferes with the proper geometric alignment of 
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residues that are responsible for testing the fit of the incoming dNTP. Relating this to the 

polymerization mechanism, the conformational closing motion (step 3) is inhibited 

(Figure 48). The build-up of the open ternary complex will now cause a higher proportion 

of complexes to occupy the destabilized ternary complex, resulting in a measureable 

destabilizing effect. 

 Y family polymerases are able to accommodate such lesions due to their more 

open active site (Figure 14). The open active site will preclude the insertion of the pyrene 

moiety into hydrophobic pockets of the enzyme, and will free up more room for dNTPs 

to productively align. Members of the Y family of bypass polymerases, such as human 

pol Κ, are capable of bypassing a (-)-trans-anti-B[a]P-N2-dG adduct by correctly 

inserting a C (131). Another study examined which polymerases are specifically 

responsible for non-mutagenic bypass of these adducts (132). Here it was found that non-

mutagenic bypass of the (+)-trans-anti-B[a]P-dG was accomplished by DNA polymerase 

IV and V, whereas non-mutagenic bypass of the (-)-trans-anti-B[a]P-dG was 

accomplished by DNA polymerase IV alone. This variation in polymerase for non-

mutagenic bypass illustrates the importance stereochemistry and the conformations that 

these adducts adopt within the polymerease. It has yet to be determined whether bypass 

polymerases undergo the same kinetic mechanism as regular replicative polymerases, but 

it would appear that they are less susceptible to undergoing re-arrangements to a 

destabilized ternary complex due to their open active sites. 

 In summary, the  positioning of a bulky (-)-trans-anti-B[a]P-N2-dG adduct at the -

1 position causes Klenow fragment to be unable to efficiently undergo a conformational  
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Figure 48. Mechanism of DNA replication. The presence of a (-)-trans-anti-B[a]P-N2-
dG adduct inhibits the formation of the ternary closed complex, resulting in a greater 
partitioning to the destabilized ternary complex, and a faster rate of dissociation from 
the DNA. 
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rearrangement to a closed ternary complex in the presence of  dNTPs or rNTPs. This 

results in the population of destabilized ternary complex and rapid dissociation of the 

polymerase from the DNA. In addition a G:G-B[a]P mismatch forms a unique structure 

that yields a tightly bound complex that is also incapable of forming a normal closed 

ternary complex. Taken together, this suggests that the structures of these various primer-

templates are different within the polymerase. 

III. Conclusions and Future Directions 

A. Unmodified DNA 

 Using surface plasmon resonance and an assay that directly examines the impact 

of the identity of the incoming dNTP on formation of KF-DNA complexes; we have 

shown evidence for the formation of a stabilized complex in the presence of correctly 

pairing dNTPs, and formation of a destabilized complex in the presence of incorrectly 

pairing dNTPs. The formation of a closed ternary complex has been previously accounted 

for in the minimal reaction pathway. However, the minimal reaction pathway cannot 

account for the destabilizing effect an incorrect dNTP bestows upon the complex. We 

have accounted for this by including a destabilized dissociation pathway into the minimal 

reaction scheme. Furthermore, inclusion of the destabilized complex into the minimal 

mechanism of DNA polymerization reveals a selection cycle by which polymerases may 

choose a correctly pairing substrate for incorporation into the growing primer strand. This 

minimal reaction pathway predicts particular intermediates that may be probed in future 

studies. For example, single molecule studies may be able to directly measure formation 

of the various destabilized states, and directly monitor the destabilizing effect in real 
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time. In particular, measurements capable of visualizing either the destabilized ternary, or 

the destabilized binary complex, would supply further evidence for this pathway. 

 Our reaction pathway also predicts a dNTP selection cycle. This selection cycle 

shows how polymerases aid in the removal of mispairing dNTPs from their active sites in 

an effort to seek a correctly pairing dNTP for catalysis. Future experiments can utilize 

combinations of dNTPs, both correct and incorrect, at varying levels to examine the 

ability of polymerase to sample the substrates. By examining the concentration 

dependence and ratio of these substrates to the binding of Klenow fragment, insight can 

be gained into how the polymerase can cycle through various dNTP substrates. 

 Our experiments examining mismatches revealed that an incorporation event that 

places a mismatch into the post-insertion site creates a substrate where the polymerase is 

incapable of sufficiently determining the next correct dNTP to be incorporated. This 

terminal mismatch presumably forms an incompatible substrate with our tested 

mismatches. To further examine the effects of mismatches, an A:G mismatch can be 

compared with the G:G and T:G mismatches used in this study. Also, examination of 

mismatches in other sequence contexts may reveal a sequence dependence effect whereby 

some mismatches can be accommodated in some sequence contexts. Further, similar 

experiments can be performed with different classes of polymerases, such as the bypass 

polymerase Polη, to determine how they cope with the presence of mismatches and how 

they are capable of determining nucleotide selectivity on these DNA substrates. 
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B. Benzo[a]pyrene 

 Bulky DNA adducts such as benzo[a]pyrene interfere with replication by forming 

structures within the polymerase that preclude the productive binding of dNTPs, and/or 

inhibit the conformational change. We studied the effect various dNTPs have upon 

Klenow fragment binding to several (-)-trans-anti-B[a]P-N2-dG adducted primer-

templates. The presence of the (-)-trans-anti-B[a]P-N2-dG adduct interferes with the 

formation of a stable closed ternary complex. Unlike unmodified DNA, the addition of 

any dNTP favoured formation of a destabilized ternary complex that rapidly dissociates 

to free polymerase and DNA. In addition, Klenow fragment shows tighter binding to a 

mismatched G:G-B[a]P adducted primer-template than either a correctly base paired 

C:G-B[a]P or mismatched T:G-B[a]P primer template. The G:G-B[a]P structure was also 

inhibited from forming the closed ternary complex, yet dissociation rates from this 

complex were slower than for the correctly base paired C:G-B[a]P or mismatched T:G-

B[a]P primer template. This result indicates that the conformation adopted by the G:G-

B[a]P within the active site of the polymerase is unique to this structure.  

 It is unclear whether this increased binding is a result of the G:G-B[a]P mismatch 

alone, or also dictated by the surrounding sequence. Future experiments can examine the 

same G:G-B[a]P mismatch positioned within different sequence contexts to make this 

determination. In addition, experiments can be conducted where the similar (+)-trans-

anti-B[a]P-N2-dG adduct is placed within the same sequence. The mutagenic profile for 

the (-)-trans-anti-B[a]P-N2-dG adduct is different from that of the (+)-trans-anti-B[a]P-

N2-dG adduct, and we would predict that this adduct would not form the same types of 
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structures (133). Also, the study can be furthered by examining the (-)-cis-anti-B[a]P-N2-

dG and (+)-cis-anti-B[a]P-N2-dG adducts. Again, it is expected that each of these adducts 

will produce a different binding pattern than the (-)-trans-anti-B[a]P-N2-dG adduct due to 

differences in their mutagenic profiles (7). Further, binding of various polymerases such 

as the bypass polymerase Polη can be examined to note any differences as compared to 

replicative polymerases. 
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 DNA polymerase has had a great deal of time to evolve efficient strategies to 

perform synthesis. Critical to this process is the selection of a correctly base pairing 

dNTP to become incorporated into the primer strand. A variety of effects are induced by 

the identity of the incoming dNTP and its ability to effectively base pair with the 

templating base. The presence of the next correct dNTP is known to induce a 

conformational change of the polymerase and lead to an increase in KF-DNA binding. 

Conversely, the presence of an incorrect dNTP is shown to lead to a destabilization and 

reduction in the levels of KF-DNA complexes formed. Using surface plasmon resonance 

and an assay that directly examines the impact of the identity of the incoming dNTP on 

formation of KF-DNA complexes, we present evidence for the formation of a 

destabilized complex in the presence of incorrectly pairing dNTPs. We present and 

discuss the implications of a new model for DNA synthesis that involves a dNTP 

selection cycle. This selection cycle shows how polymerases aid in the removal of 
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mispairing dNTPs from their active sites in an effort to seek a correctly pairing template-

dNTP for catalysis. Polymerases have evolved to utilize efficiently this method of dNTP 

selection to speed up dNTP selection.  

 Bulky DNA adducts such as benzo[a]pyrene interfere with replication by forming 

structures within the polymerase that preclude the productive binding of dNTPs, and/or 

inhibiting the conformational change. Surface plasmon resonance was used to study the 

effect various dNTPs have upon Klenow fragment binding to several (-)-trans-anti-

B[a]P-N2-dG adducted primer-templates. Dissociation constants were determined for 

Klenow fragment binding to primer templates containing either a correctly paired C:G-

B[a]P, mismatched T:G-B[a]P, or mismatched G:G-B[a]P positioned at the -1 position, in 

the presence and absence of various dNTPs and rNTPs. The presence of the (-)-trans-

anti-B[a]P-N2-dG adduct interferes with the formation of a stable closed ternary complex. 

Moreover, the addition of any dNTP favoured formation of a destabilized ternary 

complex that rapidly dissociates to free polymerase and DNA. In addition, Klenow 

fragment shows tighter binding to a mismatched G:G-B[a]P adducted primer-template 

than either a correctly base paired C:G-B[a]P or mismatched T:G-B[a]P primer template. 

The G:G-B[a]P structure was also inhibited from forming the closed ternary complex, yet 

dissociation rates from this complex were slower than for the correctly base paired C:G-

B[a]P or mismatched T:G-B[a]P primer template. This result indicates that the 

conformation adopted by the G:G-B[a]P within the active site of the polymerase is unique 

to this structure.  
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