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PREFACE 
 

  A wind turbine blade similar to a helicopter rotor blade has the structure of a pretwisted beam 

of a variable airfoil asymmetrical cross-section.  A number of approximate theories have been 

developed by different researchers to study the dynamic behavior of the blade of a horizontal 

axis wind turbine that reacts due to axial, torsional and flexural aerodynamic loadings and to 

the coupling interactions among all of these loadings.  The new contribution in this present 

research is the consideration of all the extensional, torsional and flexural loadings with their 

couplings, variable airfoil cross sections with warping effects, shear deflection, rotary inertia 

and with or without blade’s pretwist for both the linear small deformation case and the 

nonlinear large deformation case.  To the best knowledge of the author the simultaneous 

inclusion of all these factors has not been done before.  The mass matrix, linear and nonlinear 

stiffness matrices and the load vector (function of time step) of the dynamic equations of 

motion are deduced from the Lagrange equations of motion that were derived step by step. 

The steps of the linear and nonlinear Newmark implicit iteration schemes used for solving the 

dynamic equations of motion respectively were explained in detail.  Numerical implementation 

examples for both linear and nonlinear cases were demonstrated for a 14m long blade with 

and without pretwisting that has specific material and geometrical properties and a decreasing 

NACA4415 airfoil cross section from hub to tip.  For both of the linear and nonlinear examples, 

the aerodynamic loadings (lift, drag and pitch moment) and the nonlinear stiffness matrices 

were computed at each time step utilizing a time dependent set of parameters such as angle of 

attack, material and air density, wind and blade speed, flow angle, yaw and  pitch angles.  

Then the unknown displacements �, � and �  in the directions of x, y and z axes respectively, 

the bending rotations �� and �� about the y and z axes respectively and the torsional rotation 	 

about the x axis, were solved using the linear and nonlinear Newmark  implicit iteration 

schemes. 
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Chapter 1 

Literature Review on Blade Design & Research Objectives 

1.1  Introduction  

  The sizes of wind turbine mills have increased significantly over the last two decades [1], as 

shown in Fig. 1.1.1, and will continue to do so in the coming few years to reach soon a rated 

power output in the range of 8–10MW and a rotor diameter about 180 m.  Nowadays, the 

largest wind turbines have a rated power output of 5MW and rotor diameters of 126 m. 

 

 
 

Fig. 1.1.1:  The wind turbine growth [1]. 

  
  The driving motivation behind this size increase is that larger wind turbines have larger 

energy output per unit rotor area due to increased mean wind velocity with height.  Moreover, 

even though larger wind turbines are more expensive than smaller ones, the general trend is 

that the total production cost per kilowatt hour of electricity produced decreases with increasing 
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wind turbine size.  Present design methods and the available components and materials do not 

allow up-scaling of wind turbine size as quoted by many designers, and to achieve the 

necessary up-scaling, a need exists to address a number of areas that are considered critical 

in achieving this, including innovative materials with a sufficient strength-to-mass ratio and 

structural and material design of rotors.  Among the materials used in wind turbine blades 

manufacturing are polymer matrix composite materials, in a combination of monolithic (single 

skin) and sandwich composites (a special type of composite laminate where two (or more) thin, 

stiff, strong and relatively dense faces are separated by a thick, lightweight and compliant core 

material.  Such sandwich composites have gained widespread acceptance as an excellent way 

to obtain extremely lightweight components and structures with very high bending stiffness, 

high strength, and high buckling resistance.  Glass fiber reinforced composites (GFRP) are in 

use now, but for very large blades carbon fiber-reinforced composites have to be used, in 

addition to GFRP, to reduce the weight.  

        
                                                                   

1.2   Structural Layout Design and Aerodynamic Loads                              

1.2.1   Design Factors 

  Wind turbine mills that have between two and four aerodynamically efficient rotor blades give 

better results than using many of them. Today’s mills have three-blade rotors which are now 

the general trend.  Similar to the wings of a plane, wind turbine blades use the airfoil shape to 

create lift.   As shown in Fig. 1.2.1.1, the lift force is perpendicular to the direction of the motion.  

We want this force as big as possible.  And the drag force is parallel to the direction of the 

motion.  We want this force as small as possible.   
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Fig. 1.2.1.1:  The wind turbine airfoil (adapted from [2]). 

  The following are necessary design factors that should taken into consideration when 

designing a new blade: 

 

1) Pretwisting of the blade: 

  Pretwisting Blade should be twisted and tapered since speed through the air of a point on the 

blade that changes along the distance from hub to tip.  As shown in Fig. 1.2.1.2, the tip speed 

ratio varies along the blade length to optimize the angle of attack along blade length, where the 

blade should be twisted from root to tip.  Tip-speed ratio (TSR) is the ratio of the speed of the 

rotating blade tip to the speed of the free stream wind.  There is an optimum angle of attack 

which creates the highest lift to drag ratio. 

 

                   TSR = Ω 
 / �  
 
   where, 

               Ω : rotational speed in radians /sec 

               
 : Rotor Radius 

               � : Wind “Free Stream” Velocity  
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Fig. 1.2.1.2:  Wind turbine blade tip-speed ratio [2]. 

 

  Because the angle of attack depends on the wind speed and direction, there is an optimum 

tip-speed ratio.   

 

2) Power Coefficient (Cp): 

  Power Coefficient (Cp) which characterize the wind turbine performance varies with the Tip 

Speed Ratio as shown in Fig. 1.2.1.3. 

 
 
 
 
 
 
 
 
                   Fig. 1.2.1.3:  Power coefficient versus tip-speed ratio [2]. 

 

  Not all of the wind power captured by the blade rotor which lead to have some air still behind 

the blade rotor and not allow more wind to pass through after that. Theoretical limit (Betz limit) 

of rotor efficiency is 59% while most modern wind turbines [2] are in the 35 – 45% range. 
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Fig. 1.2.1.4:  The wind turbine efficiency [2]. 

  Wind turbine blades should be placed on high towers of steel and / or concrete due to the fact 

that wind velocity and constancy increase with more height above ground.  Rotors are on the 

upwind side of the tower, in the less turbulent air.           

 

 
 

Fig. 1.2.1.5:  The Betz criterion [2]. 
 
 

3)  Minimizing the blade weight: 

  Power extractable from the wind is proportional to the swept area A of the rotor: 

P =  
�
� � A ��   
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where,  

 �: is the Wind speed  

 �: is the Air density   

 A: is equal to �
�  

 
  This brings challenges that power increases with the square of blade length.  The blade mass 

and hence bending loads are more closely related to the cube of the blade length.  Since mass 

rises with rotor size faster than wind energy extracted, minimizing weight becomes increasingly 

important as turbine size increases.  This implies that we can win this challenge only if we build 

the rotor blades with lighter composites materials including carbon fiber composite to beat the 

squared-cubed law.  Decreasing the blade mass is also important in wind turbine design due to 

decreasing the load on the hub and shaft, and because the bending loads reverse at every 

rotational cycle, the blade structure being alternately in compression (blade vertically above 

the hub) and in tension (blade below).  So decreasing the blade weight will decrease these 

forces and the fatigue-inducing effect of the continual cycling.  Another load cycle is 

experienced due to wind gradient and the passage of blades from the bottom of the disc 

sweep to an area of higher wind speed at the top.  Horizontal axis wind turbines would avoid 

this wind speed difference, but are less efficient.  

 

4)  Utilizing stiff materials: 

Long blades can have large deformations with a big chance to strike the wind turbine tower 

as they bend backwards in response to the wind aerodynamic loadings.  In addition to the 

aerodynamic loadings effect,  the blades have  an additional structural fatigue loading 

created by the back pressure that generated by the eddies turbulence as the blades pass 
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by the wind support tower.  Carefully engineered composites of great performance are 

needed to provide fatigue resistance over design lives of 20 years or more. 

  Therefore, stiffness is another issue that blade manufacturers need to be met.   This can be 

countered by incorporating both high form stiffness and stiff materials, or in some cases by 

‘prebending’ the blades in the toward-wind direction during manufacturing.   

 

5)  Blades with controlled twisting capabilities:  

  Blades can also fail due to excessive loadings during severe gust winds.  To avoid failing, 

blades are either automatically turn edgewise into wind to offer less resistance (pitch control), 

or are shaped so that air stops flowing smoothly across the blade surface and, on reaching a 

certain speed, breaks away destroying blade lift and dissipating energy (stall control).  

  An emerging possibility is to utilize the tailorability of composite properties to achieve bend-

twist coupling, such that when a blade bends away from the direction of an applied load it also 

tends to twist.  Given sufficient twist, this could provide an effective passive means of spilling 

wind.  In other scenarios, some adaptive blades are made to twist when actively signalled to 

do so.  Such mechanisms enable wind turbines to survive up to a wind gust of up to 100 mph 

by preventing rotors from over speeding by rotating the blade tip to act as an aerodynamic 

rotor brake.   

 

6)   Blade bending mode: 

  Another critical design issue is the frequency of blade excitation at which the blade can 

damage and our need to avoid coincidence between this and blade rotational frequency.  Any 

such frequency convergence could lead to a damaging resonance condition under which 

bending energy is amplified.  Blades are usually configured to achieve a first blade bending 

mode at least 1.5 times the rotational frequency of the rotor.  As stiffening the blade increases 
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its natural (bending) frequency, over-stiffening must be avoided.  Damping systems are 

sometimes included to reduce the effects of any incipient modal vibration. 

  Endurance quality of materials are also important because blades must be out in the weather, 

subject to wind, rain, salt, sand and dust erosion plus ultraviolet (UV).  They may have to 

endure thermal and humidity extremes and cycling.  As they are high and exposed, blades 

could attract lightning strikes, so effective protection is needed. 

 

7)  Acoustic issue: 

  Another factor, at least in well-populated developed countries, is acoustic footprint.  Most of 

the sound is emitted by the generators, by blade tips (which on the larger blades can 

experience high airflow rates), and by insufficiently tapered blade trailing edges.  Reinforced 

plastics can be used for sound-absorbent housings and nacelle covers, and they are readily 

molded into specific low-noise tip shapes.  Environmental objectors also focus on the claimed 

effects of wind turbines on birds, while blades can adversely affect air traffic control radars. (In 

the UK, the Ministry of  Defense reportedly rejects third party wind farm developments because 

of the radar interference.  

 

1.2.2  Structural Design 

 
  Considering the layout of wind turbine blades [3] as shown in Fig. 1.2.2.1, Fig. 1.2.2.2 and Fig. 

1.2.2.3, the following design aspects are typically adopted: 

� Wing shells:  The composite sandwich laminates are used towards leading and trailing 

edges to increase the buckling resistance (edgewise loading).  For the traditional blade 

design, see Fig. 1.2.2.2 and Fig. 1.2.2.3 (top), the sandwich shell parts are transferred 



9 
 

 
 

into relatively thin monolithic composite laminates in the areas where the shells are 

adhesively bonded to the main spar.  

� Main spar:  The main spar usually extends from the root of the blade to a position close 

to the tip. As mentioned, the primary function of the main spar is to transfer the 

bladewise bending load, and thus it has to perform as a beam.  

� Spar cap:  The primary function of the spar cap section is to carry the flapwise bending 

moment, and it is usually made as a thick monolithic composite laminate, which for 

some large blades could be a hybrid glass/carbon composite.  

� Spar flange:  The primary function of these flanges are to carry the flapwise bending 

moment, and they are usually made as thick monolithic composite laminates, which for 

some large blades is made using hybrid glass/carbon composites. The main spar lay-up 

usually include UD-layers to provide for the bending stiffness as well as off-axis or 

angle-ply layers (often biaxial) to provide for the buckling resistance of the flange loaded 

in compression (suction side of airfoil). 

� Internal webs/stiffeners:  They carry the flapwise shear forces, and they are usually 

made as composite sandwich plates with polymeric or balsa core and relatively with 

biax laminate thin composite face sheets.  

                                                                    

 
 

Fig. 1.2.2.1:  The wind turbine blade components [3]. 
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  The sandwich design is chosen in order to enhance the resistance against in-plane shear 

buckling.  The rotational stiffness of the corners between the flanges and the webs for the 

‘main spar design’ is of significant importance to accommodate for sufficient buckling 

resistance of the flanges as well as to suppress the tendency of ovalization, the so-called 

Brazier effect, of the blade and main spar cross sections during flapwise bending.   

 

 
 

Fig. 1.2.2.2:  (a) The wind turbine blade airfoil section [3]. 
         (b) Design details of typical blade [3]. 

        
                                                                   

  The same goes for the rotational stiffness of the joints between the spar cap and the internal 

webs/stiffeners for the ‘spar cap/internal stiffener design’, however, to a somewhat lesser 

degree.  Various manufacturers use different design and manufacturing concepts.  Alternative 

designs, as compared with Fig. 1.2.2.1 and Fig. 1.2.2.2, may involve that the two wing shells 

are joined with two or more internal webs (stiffeners) as shown schematically in Fig. 1.2.2.3.   

In this conceptual design, the wing shells are manufactured with relatively thick so-called spar-

caps, which are usually monolithic composite laminates.  Other wind turbine manufacturers 

have adopted a manufacturing technique, where the entire blade structure including internal 

webs/stiffeners is manufactured in one single process. 
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  Irrespective of each of the below design concepts shown in Fig. 1.2.2.3 are used, the main 

structural principles described earlier apply, i.e. the flapwise bending load is carried by a main 

spar or a ‘main spar-like’ structure (constituted by the spar caps and internal webs/stiffeners), 

and the edgewise load is carried by the shells. 

                                                                        

 
 

Fig. 1.2.2.3:  The different blade design concepts [3] 
 
 

 

1.2.3   Barriers in Scaling up Conventional Blade Designs 

 
  Many fundamental barriers have been analyzed for the cost-effective scaling of the current 

commercial blade designs and manufacturing methods over the size range of 100 m to120 m 

diameter. The most substantial constraint is transportation costs, and these rise sharply for 

lengths above 50 m (156 ft) and become prohibitive for long blades such as 60 m (187 ft).  It is 

expected that environmental considerations will prohibit the continued use of processes with 

high emissions of volatile gasses, such as the open-mold wet lay-up that has been the wind 

industry norm.  
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  Another manufacturing issue for large blade is the bonding compounds.  As blade size 

becomes larger, it is natural for the gaps between bonded parts to grow also.  However, the 

bonding materials used for smaller blades do not scale well to increasing gap sizes, and blade 

tooling and production costs for large blades increase rapidly as dimensional tolerances are 

decreased.  Gravity loading is not a barrier to scaling-up of the current conventional materials 

and therefore blade designs over the size range are considered.  However, materials and 

designs that reduce blade weight will be of benefit for large scale megawatt blades, as this 

facilitate the cost-effective of the scaling and reduce the need for reinforcements in the regions 

of the trailing edge and at the blade root where transitions occur. 

  Another issue for turbine design is the use of larger rotors at a given turbine system rating.  A 

trend toward decreasing the power output per the unit rotor swept area (specific rating).  It is 

expected that turbine designs with low specific rating will be of continued interest for 

deployment in the low wind speed sites of the Midwest United States.  As specific rating is 

decreased (i.e. blade lengths increase at a given rating), blade stiffness and the associated tip 

deflections become increasingly critical for cost-effective blade design. 

 

1.2.4   Blade Lift, Drag, Pitch Moment and Stall Phenomena 

 
Lift, Drag and Pitch Moment 

  The two primary aerodynamic forces that act on wind turbine blade airfoil as shown in Fig. 

1.2.4.1 are:  

� The lift, which acts perpendicular to the direction of wind flow.  

� The drag, which acts parallel to the direction of wind flow. 

� The pitch moment around the blade length axis. 
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Fig. 1.2.4.1:  The lift and drag forces [4]. 

 
  Wind turbine blade are shaped a lot like an airplane wing.  They use an airfoil design where 

one surface of the blade is somewhat rounded, while the other is relatively kind of flat.  In one 

simplified explanation of lift, when wind travels over the rounded, downwind face of the blade, 

it has to move faster to reach the end of the blade in time to meet the wind traveling over the 

flat, upwind face of the blade (facing the direction from which the wind is blowing).  Since faster 

moving air tends to rise in the atmosphere, the downwind, curved surface ends up with a low-

pressure pocket just above it.  The low-pressure area sucks the blade in the downwind 

direction, an effect known as "lift." On the upwind side of the blade, the wind is moving slower 

and creating an area of higher pressure that pushes on the blade, trying to slow it down.  Like 

in the design of an airplane wing, a high lift-to-drag ratio is essential in designing an efficient 

turbine blade.  Turbine blades are twisted so they can always present an angle that takes 

advantage of the ideal lift-to-drag force ratio.   

 

Stall Phenomena 

  This phenomenon of stall is what happened when the wind’s speed angle of attack is climbed 

to reach a value where all the sudden the air flow on the upper surface stops sticking to the 
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surface of the airfoil as shown in Fig. 1.2.4.2.  Instead the air whirls around in an irregular 

vortex (a condition which is also known as turbulence).  All of a sudden the lift from the low 

pressure on the upper surface of the airfoil disappears. 

 

 
 

Fig. 1.2.4.2:  The Flow around an Airfoil  

 

  Therefore, it is not easy to have an accurate selection of the required wind turbine blade 

airfoils based on the wind tunnel testing data because: 

1) Most wind tunnel data sets do not contain airfoil performance in stall, which is 

commonly experienced by turbines operating in the field.   

2) These wind tunnels have different operating conditions.   

  Also wind turbines are often roughened by soiling, for which there is very little data.  Some 

recent tests have shown that dynamic stall is a common occurrence for most wind turbines 

operating in yawed, stalled, or turbulent conditions.  Little dynamic stall data exists for the 

airfoils of interest to a wind turbine designer.  In summary, very little airfoil performance data 

exits that is appropriate for wind turbine design.      

  These data should include airfoil performance at high angles of attack, rough leading edges 

(bug simulation), and steady and unsteady angles of attack.  The unsteady angles of attack 

are a result of the blade deflections due the changes in the applied aerodynamical load.  To 

illustrate more, let us look at below Fig.1.2.4.3 where we have taken one rotor blade off its hub, 

and then looking from the hub towards the tip, at the back side (the lee side) of the rotor blade.   
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Fig. 1.2.4.3:  The variation of the Angle of attack at hub and tip. 

 

  For example, consider a typical wind blowing say at 8 m/s and 16 m/s from the bottom of Fig. 

1.2.4.3, the tip of the blade rotates towards the left side of the Fig. 1.2.4.3.  In this Figure, we 

can see how the angle of attack of the wind changes much more dramatically at the root of the 

blade (yellow line) than at the tip of the blade (red line), as the wind changes.  If the wind 

becomes powerful enough to make the blade stall, it will start stalling at the root of the blade.  

 

1.2.5   Wind Turbine Blade Materials 
 
  Historically, wind turbine blades have been constructed using different materials including 

wood, fiberglass .  But recently, most of these blades are made of fiberglass with the use of 

carbon fiber for some critical areas that need local reinforcement.  Also the use of carbon fiber 

in the load-bearing spar structure of the blade has been identified as a substantial promise for 

cost effective weight reductions beside the increased stiffness.  Analyses performed earlier by 

some researchers predicted mass reductions of approximately up to 30% and a cost decrease 

up to 15% when use the carbon fiber compared the baseline fiberglass blade.  This study 
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assumed that the fiberglass / carbon hybrid material extended the entire length of the blade 

spar.  Stitched hybrid fabrics and other automated technologies also have potential benefit in 

this area.   

      
 
 

1.2.5.1   Different Blades Composites Manufacturing Processes 

  Maintaining fiber straightness (see Fig. 1.2.5.1.1 ) is critical to achieve desirable compressive 

strength properties from composite materials [1].  While carbon fibers tend to have excellent 

stiffness and tensile strength properties, realizing the full benefits from carbon fibers will 

require fabric/preform architectures that also result in good compressive strength. MSU has 

been testing coupons of large-tow carbon to determine compressive static strength, fatigue 

strength, and effect of fiber waviness on material performance.        

                                                                                                                                                                                                                                                

 
 

Fig. 1.2.5.1.1:  Composite materials [1]. 
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  The primary bending loads shown in Fig. 1.2.5.1.2 are from aerodynamic forces, and are 

carried by a structural spar.  In North America wind turbine design community, the spar flanges 

are termed “spa caps”, while European designers tend to use the term “griders”.  For 

megawatt-scale blades, two shear webs are common, forming a box beam as shown in 

Figure1.  Smaller blades, and some MW-scale designs, use a single shear web, or I-beam 

configuration.  The structural spar is enclosed in two shells (skins) which form the aerodynamic 

profile. The skins and shear webs are typically sandwich-style laminate. The composites 

laminated parts are either glass or carbon fiber-reinforced polymers, while the sandwich core 

materials may be polymeric foams (PVC or BMI), balsa wood core or less frequently of 

honeycomb type.  

 

 
 

Fig. 1.2.5.1.2:  The typical wind turbine blade structural layout [5]. 

 

  For blade sizes up to 30 m, the most common manufacturing approach has been open mold, 

wet lay-up. The most notable exception to that approach is Vestas Wind Systems, which has 

experience in using the prepreg fiberglass for their blade manufacturing.  Despite that several 

manufacturers are using open-mold, wet lay-up processes, become more and more stringent 

environmental restrictions to move manufacturers toward processes that have lower emissions.   
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  Currently, the most common replacement for traditional methods use one of the following two 

methods: A) Preimpregnated materials and  B) Resin infusion, with VARTM (most common 

infusion method).  Both prepreg and VARTM materials have particular design challenges for 

manufacturing the relatively thick laminate that typical for large wind turbine blades. For 

VARTM processes, the permeability of the dry preform determines the rate of resin penetration 

through the material thickness.  For prepreg material, sufficient bleeding is required to avoid 

resin-rich areas and eliminate voids from trapped gasses. 

  Another alternative is the partially preimpregnated fabric, marketed by SP Systems and 

Hexcel Composites under the name of SPRINT and HexFIT respectively.  When laid-up, the 

dry fabric regions provide paths for air to flow, and vacuum can be used to evacuate the part 

prior to heating. Under heat and pressure, the resin flows into the dry fabric regions to 

complete the impregnation.  High temperature post-cure is desirable for both prepreg and 

VARTM processes. Current prepreg materials require higher cure temperatures (90°C– 110°C) 

than epoxies used in VARTM processes (60°C–65°C).  Heati ng and temperature control / 

monitoring becomes increasingly difficult as the laminate thickness is increased. 

  Mold and tooling costs are also strongly affected by the heat requirements of the cure cycle. 

In all cases, achieving the desired laminate quality requires a trade-off between the extent of 

fiber compaction, fabric/ preform architecture, resin viscosity, and the time/temperature profile 

of the infusion and cure cycles. 

  The use of automated preforming and lay-up technologies are potential alternatives to hand 

lay-up in the blade molds.  Advantages could include improved quality control in fiber/fabric 

placement and a decrease in both hand labor and production cycle times.  The overwhelming 

majority of turbine original equipment manufacturers (OEMs) and third-party blade 

manufacturers use a VARTM process.  It is notable that the OEMs with the #1 (Vestas) and #3 

(Gamesa) shares of the 2007 global market primarily use prepreg material which is the 
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standard process for carbon current commercial blades.  The differences between the 

composite prepreg technology and the vacuum assisted vacuum infusion (VARTM or 

variations of this process) are shown below in Table 1.2.5.1.1.     

                                                                 

Prepreg Materials Infusion RTM 
Advantages Advantages Advantages 

Homogeneous distribution of 
resin content & higher fiber 

volume than any other 
process. Lower raw material prices. Higher production rates. 

  

 

Quality & controlled process. Curing cycles at 60-70 C. 

It is becoming an 
alternative for semi-

structural parts. 

 

Improving process control 
every year 

 

   Disadvantages Disadvantages Disadvantages 

Raw material prices increase 
more than 30% 

Difficulties to guarantee 
Resin flow through thick 
laminates and wet-out of 

carbon fibers. 

Resin content higher- 
lower mechanical 

properties. 
Logistic and storage under 

restrictive T/RH  
conditions controlled 

Long curing cycles at 120 C. 
Quality- skilled labor 

required. 

Blade surface areas are 
too large for one shot 

processes. 
 

Table 1.2.5.1.1: The comparison between Prepreg, Infusion and RTM [1]. 
      

 

1.2.5.2   The Fiber Alignment in Fiber Carbon 
 
  The small Business Innovation Research (SBIR) is currently looking on alternatives to 

prepreg materials, by evaluating different materials with a unidirectional carbon fabric that 

would achieve good structural properties in a VARTM infusion process. In one scenario, the 

fabric may infuse well, but waviness in the fibers is a restriction for the carbon to achieve its 
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potential strength, particularly in compression.  In the other scenario, the fabric architecture 

may have very good fiber alignment, but not allow resin penetration through the thickness.   

  For most fabric architectures, it is generally true that any feature that promotes through-the –

thickness infusion will result in fiber misalignment and corresponding reductions in 

compressive strength.  Fig. 1.2.5.2.1 shows a typical stitched unidirectional fabric using large-

tow carbon fibers. 

                                                                                                                                                       

 
 

Fig. 1.2.5.2.1:  Stitched unidirectional carbon fabric with induced waviness [5]. 

 

 

1.2.6  Varying Properties along the Blade 
 

  Wind turbine blades are built from orthotropic materials ( where the material parameters are 

direction dependent) that are made of two or more distinct materials put together such as 

sandwich plates.  Fiber composites are built of several layers, where each layer is composed 

of fiber reinforcements embedded in a continuous phase termed the matrix.  In general, all 

layers can be made of different materials.  Moreover, the direction of the fibers in each layer, 

according to common axes, influences on the properties of the whole composite.  This makes 

the expressions for the effective material properties for the fiber composite more complicated, 

and more than two material coefficients are required. 

 



 

 

Material Stiffness Matrix for a Single Layer

  In the same way as for the isotropic thin plate,  lets us assume plane stress conditions to 

prevail. Thus, for a single layer of unidirectional, continuous fibers, referred to local axes for 

the layer, it can be shown that the material stiffness matrix may be ex

 
 where k is the layer number, and 
 

 

  The fiber direction is called the longitudinal direction (L), and the direction normal to the fibers 

is the transverse direction (T), see 

where,  

EL and ET : are the elastic moduli in the longitudinal and the transverse directions, respecti

υLT  : is the major Poisson ratio (give

υTL  : is the minor Poisson’s ratio (give

GLT  : is the shear modulus.   

These four material constants are related through this re
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Material Stiffness Matrix for a Single Layer  

same way as for the isotropic thin plate,  lets us assume plane stress conditions to 

prevail. Thus, for a single layer of unidirectional, continuous fibers, referred to local axes for 

the layer, it can be shown that the material stiffness matrix may be expressed as: 

                                                                       

where k is the layer number, and  

                                               

The fiber direction is called the longitudinal direction (L), and the direction normal to the fibers 

is the transverse direction (T), see Fig. 1.2.6.1.   

are the elastic moduli in the longitudinal and the transverse directions, respecti

: is the major Poisson ratio (give transverse strain caused by longitudinal stress

: is the minor Poisson’s ratio (give the longitudinal strain resulting from a transverse stress)

nts are related through this relation:  

same way as for the isotropic thin plate,  lets us assume plane stress conditions to 

prevail. Thus, for a single layer of unidirectional, continuous fibers, referred to local axes for 

pressed as:  

                          (1.2.6.1)   

                                               (1.2.6.2)    

The fiber direction is called the longitudinal direction (L), and the direction normal to the fibers 

are the elastic moduli in the longitudinal and the transverse directions, respectively  

transverse strain caused by longitudinal stress)   

ulting from a transverse stress)  



 

 

                     
 
Fig. 1.2.6.1:  The fiber direction in a composite build of unidirectional, continuous fibers 

 

  Therefore, four independent material parameters (for each layer) are required for such 

orthotropic problems in 2D.  Using transformation matrices, it can be shown that the matrix for 

a single layer, referred to global

 

                                      
   
where,  

                                                                                                              
                                                                                                                             
 
  In these expressions ө is the angle between the positive global xbar axis and positive local x 

axis for the layer and k is the layer number.  

the composite can then be expressed as:
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The fiber direction in a composite build of unidirectional, continuous fibers 

Therefore, four independent material parameters (for each layer) are required for such 

orthotropic problems in 2D.  Using transformation matrices, it can be shown that the matrix for 

a single layer, referred to global (  ) axes, is: 

                                          

                                                                                                               
                                                                                                                                         

 is the angle between the positive global xbar axis and positive local x 

yer and k is the layer number.  The stress-strain relation for one single layer of 

the composite can then be expressed as: 

 

The fiber direction in a composite build of unidirectional, continuous fibers [6]. 

Therefore, four independent material parameters (for each layer) are required for such 

orthotropic problems in 2D.  Using transformation matrices, it can be shown that the matrix for 

                                                 (1.2.6.3) 

 

                     (1.2.6.4) 

 is the angle between the positive global xbar axis and positive local x 

strain relation for one single layer of 



 

 

                                                                 

To get the material properties for the whole laminate, we sum up for all the layers i.e. integrate 

over the plate thickness:  

                   
 

where ( hk - hk-1
 ) is the thickness of layer number k.  

whole matrix is: 

                                 
                                                        
        

1.3   Research Motivation and Objectives
 

1.3.1   Research Motivation
 
  Over the last two decades, continually growing energy demands as well as global warming 

and other pollution concerns have drawn considerable attention t

renewable sources of energy including the wind energy.  The

development of wind turbine, in recent years, has been focused on the following research 

areas: 

� Developing the blade composite materials to 

blades. 
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To get the material properties for the whole laminate, we sum up for all the layers i.e. integrate 

                     

e thickness of layer number k.  By the way, the stiffness matrix for the 

                              
                                                           

1.3   Research Motivation and Objectives 

Motivation 

Over the last two decades, continually growing energy demands as well as global warming 

and other pollution concerns have drawn considerable attention to the need for alternative

renewable sources of energy including the wind energy.  The cutting edge 

development of wind turbine, in recent years, has been focused on the following research 

Developing the blade composite materials to have more stiff but less weight 

                    (1.2.6.5)   

To get the material properties for the whole laminate, we sum up for all the layers i.e. integrate 

                     (1.2.6.6) 

stiffness matrix for the 

                                (1.2.6.7)   

Over the last two decades, continually growing energy demands as well as global warming 

o the need for alternative and 

cutting edge technological 

development of wind turbine, in recent years, has been focused on the following research 

have more stiff but less weight 
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� Developing new advanced methods to optimize the blade aerodynamic structure.  

�  Computing the aerodynamic loadings that act on the blade structure using CFD 

codes. 

  Also a number of approximate theories used for the pre-twisted beam (that is similar to 

helicopter rotor blades) have been developed by different researchers to analyze its 

complex geometry.  A carefully selected sample of the relevant literature on the wind 

turbine blade ( as explained in Chapter 4 Introduction), show that there is a need to expand 

the wind blade research to include more of these research factors that were taken 

separately in a one complete research, such factors will include:  

� Computing the load vector at each time step and the mass, stiffness matrices of 

the dynamic equation of motion utilizing an analytical solution and considering all 

the extensional, torsional and flexural loadings acting on the blade with their 

couplings.  

� Variable airfoil cross-sections. 

� Warping effects. 

� Shear deflection, rotary inertia and with or without blade’s pretwist. 

� Formulations should include both the linear small deformation case and the 

nonlinear large deformation case.   

To the best knowledge of the author the simultaneous inclusion of all these factors has not 

been done before.   

 

1.3.2   Research Objectives  
 
  The objective of the present work is to conduct the following research on the wind turbine 

blade, using an analytical energy approach: 
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1) New approach for computation of the aerodynamic loading that is not based on CFD 

codes and considering all the extensional, torsional and flexural loadings and their 

couplings acting on the blade at every given time step. This approach utilize the blade 

airfoils wind tunnel data to compute the aerodynamic parameters from the given angle 

of attack(s) at each time step. 

2) Derivation of the total strain energy, total kinetic energy and external work assuming 

that variable airfoil cross sections with warping effects, shear deflection, rotary inertia 

and with or without blade’s pretwist for small and large deformations cases. 

3) Then Lagrange equations of motion where derived using the total strain energy, total 

kinetic energy and external work and then deduce the mass, stiffness (linear and 

nonlinear) and damping matrices of the linear or the nonlinear dynamic equations of 

motion(depending whether considering small or large deformation)  . 

4) Use the “assumed modes method”, in which displacements are assumed to be a 

product of a time dependent constant and a polynomial function of  x (along the 

lengthwise of the blade) that satisfies the boundary conditions.   

5) The aerodynamic parameters (Cl, Cd and Cm) values versus angle of attack for a 

NACA airfoil profile where plotted and interpolated (expanded) to make sure we have 

aerodynamic values for any given angle of attack.  

6) Calculation of the aerodynamic lift, drag and pitch moment loadings were calculated at 

each time step for a 14m blade that has a linear decreasing NACA4415 airfoil cross 

section utilizing a time dependent  set of parameters such as aerodynamic parameters 

(Cl, Cd and Cm), air density, wind and blade speed, flow angle, yaw and pitch angles.  

7) Then the  centrifugal force, modified pitch moment( due to the coordinate differences 

between centroid and center of elasticity), thrust and torque forces at some selected 
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airfoil stations were calculated using the Airfoil wind tunnel aerodynamical parameters 

data ( Cl, Cd and Cm).  

8) Create a MATLAB code to contain all the above Mathematical Formulations including 

the interpolation of all the stations’ forces and moments to obtain them as a function of x, 

using  a built-in interpolation algorithm within this code .  

9) Using the MATLAB code, compute the six degree of freedom at any point on the blade, 

for both linear and nonlinear cases (small and large deformations respectively). 

10)  For the linear small deformation case, compare the MATLAB code displacement result 

plots with Younsi et al. for the same blade example. 

11)    Create an ls-dyna code that has the same blade inputs of geometrical and material 

properties and aerodynamic loadings.   

12)  For the linear small deformation case, compare its displacement result plots with 

those of the MATLAB code ( since the nonlinear case is not found in the literature to 

compare). 

13) Establish the mathematical relationship for the coupling between the blade twist around     

      the blade and the angle of attack at every time step to update the angle of attack on the     

      next time step by adding or subtracting the twist angle from the angle of attack.  

 
 
 
 

1.4  Aerodynamics Loads 
 

1.4.1  Airfoil’s Load Layout 

 
  The analysis of the state of load on the wind turbine blade is intended to verify whether the 

turbine will withstand the action of load within appropriate safety range.  Various cases of load 
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on the blade, resulting from the action of various external factors on the turbine, have to be 

considered.  The following types of states of loadings on a wind turbine blade can be 

distinguished: 

� The aerodynamic loads of a wind turbine blade are shown in Fig.1.4.1.1. 

� The mass loads, as the wind turbine blade is slender, the loads associated with its 

inertia are limited to the loads generated by its weight, which causes sinusoidal loads 

the frequency of which corresponds to the rotor.  Both mass and aerodynamic loads 

were investigated. 

  

 
 
 

Fig. 1.4.1.1:  The local forces on the blade [7] 

 

 

1.4.2 Simple Load Formulas / Model 
 
The loading on a wind turbine blade as shown in the below Fig.1.4.2.1 consist of the following: 

� The flapwise and edgewise bending due to the loadings on the blade (skew bending). 
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� The gravitational loads, which change direction during the rotation of the blade, and 

which mainly generate edgewise bending loading. 

� The torsional loading because the shear resultants of the flap- and edgewise loads do 

not go through the shear centre of the blade section.                                                   

� The normal loading due to the rotation of the blade (inertia forces). 

� The relative small loads due to pitch de-accelerations and accelerations. 

  The latter three have very little influence on the design loads, and it is the flapwise and 

edgewise loads that determine the structural design and the blade cross sections.  The spar 

carries most of the flapwise bending, while the edgewise bending primarily is carried of by the 

leading and trailing edges of the aerodynamic profile, which are strengthened due to this.   

Below Figure1.4.2.1 illustrates the components of airspeed and force acting on an airfoil 

section on a wind turbine blade. at a radial distance r from the axis of rotation.  The view in 

these schematic diagrams is from the blade hub toward the tip.  According to the BEM theory, 

airloads on a section of an airfoil are proportional to the dynamic pressure at only that section. 

 

Lift and Drag Forces 

CL and CD coefficients are proportionality constants that is required for the calculation of the L 

and D forces as shown in Fig. 1.4.2.1: 

 

                                                          L = CL  pd  C                                                         (1.4.2.1) 

                                                         D = CD  pd  C                                                          (1.4.2.2) 

                                                         pd = 0.5 ρ Vrel 
2                                                        (1.4.2.3) 
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Fig. 1.4.2.1:  The wind and force vectors acting on an airfoil [7]. 
 

which implies that: 

                                              Lift Force:            L = 0.5  ρ Vrel 
2  C  CL                              (1.4.2.6) 

                                              Drag Force:         D = 0.5  ρ Vrel 
2  C  CD                              (1.4.2.7) 

                                              Thrust Force:      FN = L cos φ + D sin φ                             (1.4.2.8) 

                                              Torque Force:     FT = L sin φ − D cos φ                             (1.4.2.9) 

where, 

L: is the lift force per unit span; intensity of force perpendicular to relative airspeed (lb/ft) 

D: is the drag force per unit span; intensity of force parallel to relative airspeed (lb/ft) 

CL, CD: are the lift and drag coefficients of the section respectively 

C: is the chord length of aerodynamic profile (ft) 

pd: is the aerodynamic pressure (lb/ft2) 

ρ: is the air density (slugs/ft2) 

φ: is the wind flow angle  
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1.5  Blade Element Momentum Theory 

 
  Blade Element Momentum Theory relates two methods to examine how a wind turbine 

operates.  The first method is to use a momentum balance on a rotating annular stream tube 

passing through a turbine and the second method is to examine the forces generated by the 

aerofoil lift and drag coefficients at various sections along the blade as explained in [8]. 

 

Momentum Theory 

  Consider the stream tube around a wind turbine shown in Fig. 1.5.1 and explained in 

reference [8].  Four stations are shown in the diagram 1, some way upstream of the turbine, 2 

just before the blades, 3 just after the blades and 4 some way downstream of the blades.  

Between 2 and 3 energy is extracted from the wind and there is a change in pressure as a 

result.  Apply Bernoulli’s equation, assuming that p1 = p4 and that V2 = V3 .   

 
 

Fig. 1.5.1:  Axial stream tube around a wind turbine [8]. 
 

 

We can also assume that between 1 and 2 and between 3 and 4 the flow is frictionless:                                        

                                                                  (1.5.1) 
       
 



31 
 

 
 

Noting that force is pressure multiplied by area: 
 

                     (1.5.2) 
or, 
 

                                                                 (1.5.3) 
             
 
Define a as the axial induction factor: 
 
 

                                                 (1.5.4) 
   
 
It can also be shown that: 
 

                                                (1.5.5) 
 
 

                                                (1.5.6) 
 
Substitute,  implies: 
 

                                               (1.5.7) 

 
 

Rotating Annular Stream tube 

  Applying the conservation of angular momentum in the annular stream tube shown in 

Fig.1.5.2, where between 2 and 3 the rotation of the turbine imparts a rotation onto the blade 

wake.  Considering that the blade wake rotates with an angular velocity ω and the blades 

rotate with an angular velocity of Ω.  From basic physics, as explained in reference [8], the 

following equations can be obtained: 
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Fig. 1.5.2:  Rotating annular stream tube [8]. 

 

                                           (1.5.8) 

                                             (1.5.9) 

                                            (1.5.10) 

                                               (1.5.11)       

So for a small element the corresponding torque will be: 
 

                                                               (1.5.12) 
For the rotating annular element: 
 

                                                               (1.5.13) 
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Fig. 1.5.3:  Rotating annular stream tube notation [8]. 
 
 

                                                             (1.5.14) 
 

                                                             (1.5.15) 
 
Define angular induction factor a׳ : 
 

                                                                                                                                           (1.5.16) 

                      

                                                        (1.5.17) 
  
 

Momentum theory has therefore yielded equations for the axial (Eqn 1.5.17) and tangential 

force (Eqn 1.6.1.17) on an annular element of fluid.  

 

Blade Element Theory 

Blade element theory relies on the following two key assumptions [8]:                                                                                                                                       

1) There are no aerodynamic interactions between different blade elements. 

2) The forces on the blade elements are solely determined by the lift and drag 

                coefficients. 



34 
 

 
 

  Consider a blade divided up into N elements as shown in Fig. 1.5.4.  Each of the blade 

elements will experience a slightly different flow as they have a different rotational speed Ωr, a 

different chord length c and a different twist angle β.  Blade element theory involves dividing up 

the blade into a sufficient number (usually between ten and twenty) of elements and 

calculating the flow at each one.  Overall performance characteristics are determined by 

numerical integration along the blade span. 

 

 
 

Fig. 1.5.4:  The blade different stations [8] 
 
 
 
Relative Flow 

  Lift and drag coefficient data area available for a variety of aerofoils from wind tunnel data. 

Since most wind tunnel testing is done with the aerofoil stationary we need to relate the flow 

over the moving aerofoil to that of the stationary test.  To do this we use the relative velocity 

over the aerofoil.  In practice the flow is turned slightly as it passes over the aerofoil so in order 

to obtain a more accurate estimate of aerofoil performance an average of inlet and exit flow 

conditions is used to estimate performance.  The flow around the blades starts at station 2 in 

Fig. 1.5.2. and Fig. 1.5.1. and ends at station 3.  At inlet to the blade the flow is not rotating, at 
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exit from the blade row the flow rotates at rotational speed ω. That is over the blade row wake 

rotation has been introduced.   

  The average rotational flow over the blade due to wake rotation is therefore ω/2.  The blade is 

rotating with speed Ω  which lead that the average tangential velocity of the blade is  Ωr + 0.5ωr  

as shown in Fig. 1.5.5.                                                                                                

 
 

Fig. 1.5.5:  Flow onto the turbine blade [8]. 
 
 
Examining Fig. 1.5.5,  we can immediately note that: 
 

                                                                        (1.5.18) 
 
but since V2 = V1  V(1-a), implies: 
 

                                                                                 (1.5.19) 
 
 
where V is used to represent the incoming flow velocity  V1 .   
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The value of β will vary from blade element to blade element.  But the local tip speed ratio λr  

is defined as: 

                                                                               (1.5.20) 
 
This leads to a further simplification for tanβ : 
 

                                                                                (1.5.21) 
 
From Fig. 1.5.5 the following relation is obvious: 
 

                                                                               (1.5.22) 
                                                                         
 
Blade Elements 

  The forces on the blade element are shown in Fig. 1.5.6, note that by definition the lift and 

drag forces are perpendicular and parallel to the incoming flow.  For each blade element one 

can conclude: 

 
Fig. 1.5.6:  The forces on the turbine blade [8]. 
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                                         (1.5.23) 
 

                                        (1.5.24) 
 
                                                                                       
dL and dD can be found from the definition of the lift and drag coefficients as follows:  

                                             (1.5.25) 
 
 

                                       (1.5.26) 
 
where dL and dD are the lift and drag forces on the blade element respectively.  

If there are B blades, by combining Equation (1.5.23) and Equation (1.5.25), it can be shown 
 
that: 
                                                                                 

                                                       (1.5.27) 
 

                                               (1.5.28) 
 
 
The Torque on an element, dT  is simply the tangential force multiplied by the radius. 
 

                                                                  (1.5.29) 
 
  The effect of the drag force is clearly seen in the equations, an increase in thrust force on the 

machine and a decrease in torque (and power output).  These equations can be made more 

useful by noting that   � and W can be expressed in terms of induction factors etc. i.e. Equations 

(1.5.21) and (1.5.22).  Substituting and carrying out some algebra yields:  
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                                                    (1.5.30) 
 

                                                   (1.5.31) 
 
where σ ׳ is the local solidity: 

                                                                            (1.5.32) 
 
 
Tip Loss Correction 

  Losses at the tip of the turbine blade are introduced in a similar manner to those found in 

wind tip vorticies on turbine blades. It can be accounted for these losses in BEM theory by 

means of a correction factor.  This correction factor Q varies from 0 to 1 and simulates the 

reduction in forces along the blade. 

                                                             (1.5.33) 

The results from cos-1 must be in radians. Apply the tip loss correction factor to Eqn 1.5.7 and 

Eqn 1.5.17: 

                                                                 (1.5.34) 
  

                                                                (1.5.35) 
 
  From the above, we now have four equations, two dervied from momentum theory which 

express the axial thrust and the torque in terms of flow parameters (Equations (1.5.35) and 

(1.5.34): 

                                                                  (1.5.36) 
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                                                                   (1.5.37) 

  Also we have two equations derived from considering the blade forces which express the 

axial force and torque in terms of the lift and drag coefficients of the aerofoil Eqn 1.5.30 and 

Eqn 1.5.31: 

                                                          (1.5.38) 
 

                                                          (1.5.39) 
 
To calculate rotor performance Eqn 1.5.34 and Eqn 1.5.35 from a momentum balance are 

equated with Eqn 1.5.30 and Eqn 1.5.31:  

                                                                       (1.5.40) 
 
 

                                                                       (1.5.41) 
 
 
Power Output 
 
  Eqn 1.5.40 and Eqn 1.5.41 are used in the blade design procedure.  The contribution to the 

total power from each annulus is [8]:  

                                                                     (1.5.42) 
The total power from the rotor is:  
 

                                                                (1.5.43) 
 
where rh is the hub radius.  The power coefficient Cp is given by: 
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                                                                                (1.5.44) 
 
Using Eqn 1.5.31, it is possible to develop an integral for the power coefficient directly.  After 
 
some algebra: 
 

                                                           (1.5.45) 
 

 
 
Blade Design Procedure 
 
 
The following is a blade design procedure as explained by reference [8]: 
 

1)   Determine the rotor diameter required from site conditions and P = 0.5Cp ρηπR2V 3     

where,  

P:   is the power output 

Cp : is the expected coefficient of performance (0.4 for a modern three bladed wind turbine) 

η  : is the expected electrical and mechanical efficiencies (0.9 is a suitable value) 

R : is the tip radius 

V : is the expected wind velocity  

 
 

Table 1.5.1:  The number of blades [8]. 
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2)  Choose a tip speed ratio for the machine.  For water pumping pick 1 < λ < 3 (which 

gives a high torque) and for electrical power generation pick 4 < λ < 10. 

     3)  Choose a number of blades B, using Table 1.5.1, which is based on practical experience. 

     4)  Select an airfoil.   For λ < 3 curved plates can be used. 

     5)  Obtain and examine lift and drag coefficient curves for the aerofoil in question. 

6)  Choose the design aerodynamic conditions for each aerofoil. Typically select 80% of the 

maximum lift value. 

7)  Divide the blade into N elements.  Typically 10 to 20 elements would be used. 

      8)  As a first guess for the blade twist and chord, use the blade shape derived with wake 

rotation, zero drag and zero tip losses.  Note that these equations provide an initial guess only.  

The equations are given as follows: 

                                                                                              (1.5.46) 
 

                                                                                              (1.5.47) 
 

                                                                                                                      (1.5.48) 
 
 
     9)  Calculate rotor performance and then modify the design as necessary.  This is an 

iterative process.  The application of BEM can be sometimes confusing as it can be used to 

either to design i.e. select  γ and c or to analyze the performance of a blade. 

  It should be noted that different aerofoil profiles may be used at different spans of the blade, 

for example, a thick aerofoil may be selected for the hub to give greater strength. 
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Chapter 2 

Literature Review on Blade Different Formulations & Research Plan 

  
 2.1  Introduction  
 

  The wind turbine blade can be considered as a pretwisted beam.  Hence it is essential to 

understand how to analyze and work with beams.  Beam element is a versatile line-element 

where in general it has six degrees of freedom at each node, which include three translational 

displacements along the x, y, and z directions and three rotational displacements about the x, 

y, and z directions as shown on the right side node of the beam of Fig. 2.1.1 shows the 

positive directions of these displacements. 

 

 
 

Fig. 2.1.1:  Beam element with six degrees of freedom at each node. 

 
  Beam element can be used to simulate a slender structure that has a uniform cross- section.   

The stiffness constant of a beam element is derived by combining the stiffness constants of a 

beam under pure bending, a truss element, and a torsion bar.  A beam element can represent 

a beam in bending, a truss element, and a bar in torsion.  To derive the element stiffness 

equation for a beam element that subjected to all these loadings, we start first by deriving the 
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stiffness equation of a beam subjected to bending loading only, and then superimpose the 

stiffness of a truss subjected to axial loading only and then superimpose the stiffness of a bar 

subjected to torsional loading only to obtain the resultant stiffness equation for all loadings . 

 

2.2   Aeroelasticity 

  Aeroelasticity is the study of the mutual interaction between the aerodynamic and elastic 

forces, and the influence of this interaction on blade design [9].  Wind turbine Blade is a very 

flexible, and this flexibility is the main factor for the various types of the aeroelastic 

phonemena.    

The aeroelastic phonemena happen when the structural deformations induce some additional 

aerodynamic forces which in turn produce some additional structural deformations that again 

induce more aerodynamic forces.  The dynamic aeroelasticity phenomena is the one involves 

the interactions among all the inertial, aerodynamical, and elastic forces, while the static 

aeroelastic phenomena is the one involves the interations between aerodynamical and elastic 

forces.  Fig. 2.2.1 show the relationship between the all these forces. 

  For wind turbine blade, such interactions are tremendous because of the couplings among all 

the aerodynamics axial, bending and torsional loadings (forces and moments) acting on the 

blade.  These interactions may tend to become less and less until a condition of equilibrium 

stability is reached, or they may tend to diverge and destroy the structure. 

 

The static aeroelasticity includes the following: 

1) Static divergence 

2) Load redistribution 

3) Control reversal and effectiveness 

4) Aeroelastic effects on static stability 



 

 

And the dynamic Aeroelasticity includes the following:

1) Flutter 

2) Buffeting 

3) Dynamic response 

4) Aero-elastic effects on dynamic stability

                                                Fig. 2.2.1:
 

The following are explanation of some common aero

� Flutter  : is a dynamic instability occurring in a blade at a speed called the flutter speed, 

where the elasticity of the structure plays an essential part in the instability. 

� Buffeting  : are the transient vibrations of blade structural components due to aero

dynamic impulses produced by the wake around the blade, or other components of the 

wind turbine mild.  

� Dynamic response  : is the transient response of blade structural compon

produced by quick applied loads due to gusts, gun reactions, abrupt control motions, 

moving shock waves, or other dynamic loads. 

� Load Distribution  : It is due to the influence of the elastic deformations of the blade 

structure on the distribution of 
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And the dynamic Aeroelasticity includes the following: 

elastic effects on dynamic stability 

 
Fig. 2.2.1:  The summary of loadings and their responses

The following are explanation of some common aero-elastic terms: 

: is a dynamic instability occurring in a blade at a speed called the flutter speed, 

where the elasticity of the structure plays an essential part in the instability. 

: are the transient vibrations of blade structural components due to aero

dynamic impulses produced by the wake around the blade, or other components of the 

: is the transient response of blade structural compon

produced by quick applied loads due to gusts, gun reactions, abrupt control motions, 

moving shock waves, or other dynamic loads.  

: It is due to the influence of the elastic deformations of the blade 

structure on the distribution of aero-dynamic pressures over that structure. 

 

responses. 

: is a dynamic instability occurring in a blade at a speed called the flutter speed, 

where the elasticity of the structure plays an essential part in the instability.  

: are the transient vibrations of blade structural components due to aero-

dynamic impulses produced by the wake around the blade, or other components of the 

: is the transient response of blade structural components 

produced by quick applied loads due to gusts, gun reactions, abrupt control motions, 

: It is due to the influence of the elastic deformations of the blade 

dynamic pressures over that structure.  



 

 

� Divergence  : is the static instability of the wind turbine blade, at a speed called the 

divergence speed, where the elasticity of the blade surface plays an essential role in the 

instability.  

� Control Effectiveness  : It is due to the influence of elastic deformations of the blade 

structure on the controllability of the blade. 

 

2.3   Large Deformation versus Small Deformation  
  
  When the deformation of the wind turbine blade is small i.e. less than 10% of 

blade, we can use the deformation linear is linear and this happens when the change i

volume is almost negligible.  However, once we have deformations that are greater than 

of the length of the blade, we should use the appropriate st

for for this large deformation.  

account for that large deformation of the blade.

  The above strain tensor is known as the Green

order tensor because it has two independent indices.  An obvious question is how the Green

Lagrange strain tensor compares to the small deformation strain tensor that we did make 

assumptions to derive.  We start by substituting the displace

gradient tensor to obtain: 

           

  We obtain the above because when a quantity is multiplied by the kronecker delta we obtain 

the same quantity back, with the free index from the kroneck

repeated index on the quantity it is multiplying. It should be noted  that the large deformation 
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: is the static instability of the wind turbine blade, at a speed called the 

divergence speed, where the elasticity of the blade surface plays an essential role in the 

: It is due to the influence of elastic deformations of the blade 

structure on the controllability of the blade.   

Large Deformation versus Small Deformation      

When the deformation of the wind turbine blade is small i.e. less than 10% of 

blade, we can use the deformation linear is linear and this happens when the change i

However, once we have deformations that are greater than 

we should use the appropriate stress and strain tensors to account 

for for this large deformation.  We should also use the appropriate constitutive relations that 

account for that large deformation of the blade. 

The above strain tensor is known as the Green-Lagrange strain tensor. It i

order tensor because it has two independent indices.  An obvious question is how the Green

Lagrange strain tensor compares to the small deformation strain tensor that we did make 

assumptions to derive.  We start by substituting the displacement equation for the deformation 

                      

We obtain the above because when a quantity is multiplied by the kronecker delta we obtain 

the same quantity back, with the free index from the kronecker delta being exchanged with the 

repeated index on the quantity it is multiplying. It should be noted  that the large deformation 

: is the static instability of the wind turbine blade, at a speed called the 

divergence speed, where the elasticity of the blade surface plays an essential role in the 

: It is due to the influence of elastic deformations of the blade 

 

When the deformation of the wind turbine blade is small i.e. less than 10% of the length of the 

blade, we can use the deformation linear is linear and this happens when the change in 

However, once we have deformations that are greater than 10% 

ress and strain tensors to account 

We should also use the appropriate constitutive relations that 

Lagrange strain tensor. It is also a second 

order tensor because it has two independent indices.  An obvious question is how the Green-

Lagrange strain tensor compares to the small deformation strain tensor that we did make 

ment equation for the deformation 

                      (2.3.1) 

We obtain the above because when a quantity is multiplied by the kronecker delta we obtain 

er delta being exchanged with the 

repeated index on the quantity it is multiplying. It should be noted  that the large deformation 
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strain tensor includes many nonlinear higher order terms which indicate that all the large 

deformation analyses are nonlinear.  Recall that the small deformation strain tensor is: 

                                                                                                (2.3.2)                                                                              

Therefore by assuming that the deformation is small, we drop all the nonlinear higher order 

terms from the Green-Lagrange strain tensor and keep the linear terms only.  

 
 

2.4 Aeroelastic Coupling Schemes  
 
  Due to changes of aerodynamics loads on the wind turbine blades, these blades twist. Due 

that twisting, there is a direct influence on the angle of attack, changing loads and affecting 

output power. This is directly exploited in classic pitch control used in not only wind turbines 

but in rotors of all types. When the pitch changes are rapid enough, they can affect not only 

average loads and power, but vibratory loads as well, influencing fatigue life throughout the 

system.  Even quite small angles of twist can have significant impact. 

  Any time the wind turbine blade becomes aeroelastically “active” (i.e. when the elastic 

deformations play a role in the aerodynamic loading), the dynamic stability of the blade will be 

affected.  Veers et al. [10] address two of the most common stability constraints, namely flutter 

and divergence.   

  Flutter is the condition where the phasing between the aerodynamic load fluctuations and 

elastic deformations are such that a resonant condition is achieved.  Every wing will have a 

flutter boundary at some speed.  For wind turbines the boundary is defined at the rotational 
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speed (typically determined in still air) at which the blade will flutter.  The stability margin is the 

difference between the flutter speed and normal operating speed.  

  Divergence is a quasi-static condition where the blade twists in response to increasing load in 

a direction that further increases the load. If this condition exists on a blade there will be an 

operating speed at which the increase in loads caused by the deformation exceeds the ability 

of the blade to resist the load, called divergence. 

  The stability boundaries were determined with respect to the amount of twist coupling built 

into the blade.  A coupling coefficient, α, was defined to facilitate the generic examination of 

stability effects.   

For a blade with bending-twist coupling, the matrix equation for blade bending and twisting 

strains εb and εt   due to bending and twisting loads Mb and Mt are: 

                                                                                    (2.4.1) 

where EI and GK are the beam bending and torsional stiffness, respectively. The coupling 

coefficient, g , is constrained to values that keep the system positive definite. The range of 

realizable g values is limited to: 

                                                                                        (2.4.2) 

 It should noted that equation (1.6.2.1) that include the coupling between bending and twisting 

loads will change later when I include the couplings of all other possible aerodynamic loading 

acting on the blade in addition to the inclusion of the nonlinear higher order terms due the large 

nonlinear large deformation assumption.  
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2.5 Optimization of Blade Design  

 
  The aerodynamic and structural design of rotors for horizontal axis wind turbine (HAWT) 

involves many conflicting requirements, for example, maximum performance, minimum loads 

and minimum noise. The wind turbine operates in very different conditions from normal 

variation in wind speed to extreme wind occurrences.  Optimum efficiency is not obtainable in 

the entire wind speed range, since power regulation is needed to prevent generator burnout at 

high wind speeds. Optimum efficiency is limited to a single-design wind speed for stall 

regulated HAWT with fixed speed of rotation.  

  Several optimization methods exist .  They are typically based on a numerical optimization 

algorithm.   Multipoint design methods have a larger degree of flexibility for optimization 

objective and the majority allows multiple constraints.  The first generation of the methods 

involved maximum annual energy production as objective, since this includes off-design 

performance with no or only few constraints on loads.  The reported improvements of the 

annual energy production are promising, but they often arrive from an increase in swept area 

for the same generator size.  

  Unfortunately, this will result in larger loads on tower and the blade roots.  Actually, the 

increase in loads often exceeds the increase in energy yield.  Optimum design should not be 

restricted to aerodynamic performance.  In most of the cases, the key factor is the minimum 

cost of energy, and this should be the objective.  This leads to the development of second 

generation design tools, where the optimization objective is the minimization of the cost of 

energy.  Cost of energy is by definition the ratio of the total costs from manufacture and 

erection of the wind turbine to the annual energy production.  Proper cost estimate involves 

calculation of fatigue loads as well as extreme loads on all main components and a cost 

function describing the coupling between design loads and cost.  Using a multi-disciplinary 

design method for direct shape design of HAWT rotors.   
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  In the present research, the author main concern is to use a numerical optimization, where 

the objective is to have the displacements and rotations ( six degrees of freedom) at the tip of 

the blade under a certain maximum limit with a set of multiple constraints that are allowed i.e. 

extreme loads, material Young’s modulus and/or material density.   

The optimization of the wind turbine blade displacements and rotations is a feature that can be 

done in the MATLAB code and is not really the concentration of this research.  The design of 

any blade rotor can be utilized to demonstrate the capabilities of this design method within the 

MATLAB code.  It should be noted that: 

� Loads constraints and cost estimation were important for the applicability of the 

optimization results. 

� With traditional airfoil characteristics and blade structure, shape optimization of the 

rotor reduced cost of energy compared to a rotor of the same size.                                                     

� The optimum specific power can also be a constraint. 

� Optimum airfoil characteristics showed that the airfoil sections should have a relative 

high maximum lift on the entire blade. 

 

 

2.6 Finite Element Beam Formulation  
 
  Consider a cantilever beam, under pure bending (without axial loads or torsion loads) of a 

total of four degrees of freedom, two at each node i.e. two deflections and two rotations, ��, ��, 

��, and ��.  For example for the cantilever beam shown in Fig. 2.6.1, the right-side free end 

has � � �� and ��= � while the left-side fixed end has zero values of displacement and rotation 

since it is a fixed end.  
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Fig. 2.6.1:  Cantilever beam with two degrees of freedom at each node. 

 

  Since there are four degrees of freedom, the size of the stiffness matrix of a beam element 

has the size 4 x 4.  Eqn 2.6.1 is the equation of a beam element, which is under pure bending 

load (no axial or torsion loads) that relates the force vector, displacement vector and the 4 x 4 

symmetric  stiffness matrix (where the stiffness matrix contain the values of Young’s modulus 

�, moment of inertia � and the length of the element �).      

 
 
                                                                                                                                                (2.6.1) 
 
 
 
  Using this equation, we can solve problems in which several beam elements are connected in 

an uniaxial direction.  If the beam elements are oriented in more than one direction, we will 

have to first transform the above Eqn 2.6.1 into a global stiffness matrix equation which 

involves using some trigonometric  relations.  However, Eqn 2.6.1 can be used for solving a 

beam problem loaded under bending loads only. 
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Stiffness matrix of a beam element with bending and  axial loads in local coordinates 

  The stiffness equation for the combined bending and axial load can be written by 

superimposing the axial stiffness terms over the bending stiffness.   For axial loading, the 

structural equation is: 

                                                  (2.6.2) 
 
 
The combined axial and bending loading matrix equation can be obtained by superimposing 
 
Eqn 2.6.1 and Eqn 2.6.2 as follows: 
                                                                     

 
                                                                                                                              (2.6.3) 

 
Where the resultant matrix is, 
                                                                     

 
                                                                                                                                     (2.6.4) 
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where �� � ��
�   and  �� � ��

��      

 

Beam Element with combined loading Bending, Axial, and Torsion   

The torsional structural equation for the torsional loads ��� and ��� and their corresponding 

deflections are ��� and  ���  .   

                                                              (2.6.6) 
 
 

3-D Beam Element  

Consider a 3-D beam element of Fig. 2.6.5 that has 6 DOF at each node, and 12 DOF for each 

element.   

 
 

Fig. 2.6.2:  Six degrees of freedom. 

 

Eqn 2.6.6 can be superimposed on the stiffness matrix equation Eqn 2.6.3 (of the combined 

bending and axial loads) to obtain the stiffness matrix equation that include all the axial, 

bending and torsional loadings acted on a beam. 

Therefore, the obtained stiffness matrix by superimposing all the axial, bending, and torsional 

loadings in the XY, XZ, and YZ planes is:                                                                                                                                                   
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                                                                                                                               (1.4.1.1.15) 
 

 

2.7  Non-linearity due to large Deformation of the Blade  

 

Non-linearity of any structural object can come from any the following: 

1) Non-linearity due nonlinear boundary conditions. 

2) Non-linearity due nonlinear materials. 



54 
 

 
 

3) Non-linearity due nonlinear large deformations. 
 
  In the present research, the author only considering the nonlinearity due the large 

deformation of the blade (displacement exceed 10% of the length of the blade) where the high 

order terms of the strain are kept through the derivation of the components of the total strain 

energy due the application of all the aerodynamic loadings and their couplings.  

  This lead to have two additional nonlinear stiffness matrices in the nonlinear dynamic 

equation of motion that can be solved for the the six degrees of freedom of displacements at 

any x along the length of the blade using the nonlinear Newmark scheme. 

 

 

2.8   Research Tasks and Plan 

2.8.1 Lagrangian Beam Formulation 
 
Using the following Lagrangian equations of motion approach: 
 

1) Assuming that deformation is large (where higher order terms of strain are kept through 

derivation) and considering all the extensional, torsional and flexural loadings acting on 

the blade with their couplings, variable airfoil cross sections with warping effects, shear 

deflection, rotary inertia and with blade’s pretwist, the total strain energy, total kinetic 

energy and the partial derivatives of the external work external work due to the 

aerodynamic loading acting on the blade can be calculated and then substituted in the 

Lagrange equations of motion. 

2) The “assumed modes method” is used, in which displacements are assumed to be an 

expansion of products of time-step dependent constants and polynomial functions of x 

(where x is the coordinate along the length of the blade) that satisfy the boundary 
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conditions at the fixed end where x=0 (hub of the blade) and at the free end where x=L 

(tip of the blade). 

3) Then mass matrix, linear and non linear stiffness matrices and the load vector R of the 

dynamic equations of motion are deduced from the Lagrange equations of motion.  The 

steps of the linear and nonlinear Newmark implicit iteration schemes used for solving 

the linear and nonlinear dynamic equations of motion respectively were explained in 

detail. 

4) To modify the above formulation for the small linear deformation, all what should be 

done is to eleminate the higher order terms of  the strain that we kept for the large 

deformation ( or simply assume the nonlinear stiffness matrices are not exist) 

5) Creating a MATLAB code that contain the mathematical formulations that mentioned 

above for the linear and nonlinear deformations. 

 
 
 

2.8.2 Model Validation  
 

2.8.2.1 Experimental Testing   

  There will be no experimental testing will be conducted through this present research period 

on any wind turbine blade prototype or on a real working wind turbine in the field due to the 

difficulty to do that.  So to verify my MATLAB code (that contain all the mathematical 

formulation of the present research) displacement results after solving for all the unknown 

displacements �, �  and �  in the directions of x, y and z axes respectively, the bending 

rotations �� and �� about the y and z axes respectively and the torsional rotation 	 about the x 
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axis (using the linear and nonlinear Newmark  implicit iteration schemes), the author will 

perform the following:  

� Confirming that the linear case displacement result plots are agree with the work of 

Younsi et al.   

� And confirming that the nonlinear case displacement result plots are agree with the Ls-

Dyna code.     

 

2.8.2.2 Blade Analysis Using Hypermesh and Ls-dyna 
 
 
  Consider the 3D blade Fig. 2.8.2.2.1 as an infinite number of stations that each of these 

stations has a ‘local radius’, which is the distance of the station from the centre of the rotor.   

 
 

Fig. 2.8.2.2.1:  The Blade stations [11] 
 
 

Given the local radius, chord width and blade angle at some given number of airfoil stations, 

we can construct the shape of the whole blade.   

where, 
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chord line: is the longest line within the blade section, and it joins the leading edge to the 

trailing edge.   

blade pretwist angle (beta): is the angle between the chord line and the plane in which the 

rotor spins.   

 

Essential steps to build the given blade Ls-dyna mo del in Hypermesh 

  Hypermesh, versions10 was used as the finite element preprocessor to model a pretwisted 

14 m length wind turbine blade(of linearly decreasing NACA-4415 airfoil type from hub to tip) 

and then solve for the blade deformation using Ls-Dyna solver.  The following are the essential 

steps that used to build the given blade Ls-dyna model in Hypermesh. 

 

1st phase steps: creating the blade model 

1) Create a Geom component. 

2) Make Geom current and construct all the 1D beam elements using nodes and then lines to 

connect the nodes ( 14 1-D beams (total 15 nodes), each beam is 1 m length). 

3) Solver Browser then right click ---> create ---> *MAT ---> *MAT _Elastic ---> Create *Mat_ 

Elastic ( enter the Young’s Modulus E and the poisson ratio of the material). 

4) Create properties for each beam section i.e. 14 properties, by entering the associated area 

for each beam section as the average of the airfoil areas at the 2 nodes of that beam element 

section under consideration---> using a special macro---> enter the coordinates of the average 

airfoil as copied from an excel sheet ---> nodes of the airfoil geometry will show on the screen -

--> Go to Geom ---> connect the coordinates of the airfoil geometry--->1D---> Hyperbeam to 

create that beam section property).  Also using Hyperbeam, any airfoil beam section can be 

twisted as shown in the below Fig. 2.8.2.2.1. 
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Fig. 2.8.2.2.2:  Airfoil geometrical properties using Hypermesh. 

 

5) Create 14 different 1D_beam sections that all share same material but each has its own 

property that created at previous step 4. 

6) Meshing: Make the 1st beam element component current then 1D ---> line mesh, then 

select the associated property then select the the geometry of the 1st beam then Mesh. 
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7) Create a constraint collector. 

8) Make constraint current and select left node and apply constraints at the hub of the blade 

(where x=o).  Since each 1D_beam section (that created in step 5) has different average airfoil 

area, then all the 14 1-D beam elements will change to a 3-D blade as shown in Fig. 2.8.2.2.3. 

 

 

Fig. 2.8.2.2.3:  Changing 1D beams to a 3D blade using Hypermesh. 

 
2nd phase steps: creating the aerodynamic load curv es 

1. In the Solver Browser right click and select Create>Set>*Set_Node_List. 

2. Name it Node1. 

3. Select the first node to be loaded and create the set. 

4. Repeat for each node to be loaded. Until you have a Node_Set for each of the nodes. 

5. Create your curves for each of the loads you want, X,Y,Z and Rotational X,Y,Z (  view ---> 

Solver Browser --> *Define ---> create ---> *Define_Curve --> New --> enter X (time) and Y 

( load).  Then load curves data will looks like Fig. 2.8.2.2.4. 
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Fig. 2.8.2.2.4:  The load curves data. 

 

6. In the Solver Browser right click and select Create>Load>*Load_Node_Set. 

7. Name it Load1. 

8. When the card editor opens click NSID and pick the first node set. 

9. Click DOFX and pick 1 (for the x component). 

10. Click LCID and pick the curve for the X Load for the first node. 

11. Repeat this procedure for the same node_set and pick DOFX 2 (Y Translational) and pick 

the LCID for the Y translational load curve. 

12. Do this procedure for each node and every DOFX (1,2,3 are X,Y,Z translational and 5,6,7 

are X,Y,Z rotational) so that every node has all load curves associated with it. 

The final blade model cards are shown in Fig. 2.8.2.2.5. 
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Fig. 2.8.2.2.5:  The final blade Ls-Dyna model. 

 

  And the final blade model with all the added aerodynamic loadings Fx, Fy, Fz, Mx, My and Mz 

at each of the 15 nodes, starting at node1 (where x=0) and ending at node1 (where x=L) are 

shown in Fig. 2.8.2.2.6. 
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Fig. 2.8.2.2.6:  All stations loadings. 

 

  The blade solution of the present research formulation for the linear small deformation case 

using the MATLAB code is compared with the same blade solution for the displacements and 

rotations plots (six degrees of freedom) at the blade tip with Younsi et al work. 

While the blade solution of the present research formulation for the nonlinear large deformation 

case using the MATLAB code is compared with the same blade solution for the displacements 

and rotations plots (six degrees of freedom) at the blade tip with Ls-Dyna work. 

  It should be also noted that many other commercial codes have been tried throughout the 

present research to generate the geometrical blade properties for some given blade airfoil 

stations that linearly decrease from hub to tip as shown in Fig. 1.8.2.2.  For example, the new 

commercial code VABS (Variational Asymptotical Beam Sectional Analysis) is one of the 

codes that can be used to model the wind turbine blade structure for which one dimension is 

much larger than the other even if the blade is made of composite materials and have a 
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complex internal structures.  Another commercial code is NuMad, one of set of codes created 

by NREL that able to create a 3D blade structure from the 2D airfoils.  NuMad is a stand-alone, 

GUI pre-processor for ANSYS finite element analysis software developed by Daniel Laird at 

Sandia National Laboratories.  Some other codes like Concord and X-FOIL are used to create 

the 2D airfoils from their known coordinates.  It should be noted that composite material work 

is not the concentration of the present research since that was done before.   

 

 

2.9   Torsion of Arbitrary Cross-sections 

 

2.9.1   Saint-Venant’s Torsion Theory    

  It should be noted that for any non circular cross-sections, plane cross-sections will not 

remain plane after any torsional deformation and therefore warping of the cross-sections will 

occur.  This problem of torsion and warping need to resolved in order to predict to a high 

accuracy the stress distribution and the deformation of a shaft of any arbitrary cross-sections.  

The problem of a cylindrical shaft under torsion was analyzed by Barre de Saint-Venant [12], 

who utilized the semi-inverse method (which rely on guessing a part of the solution, then trying 

to determine the rest of the solution in a rational way where all the differential equations and 

boundary conditions should be satisfied.  

  Consider a cylindrical shaft under torsion, with the x-axis along its length and with the ends at 

x=0 and x=L respectively.   

The shear stresses in the cross-sections that perpendicular to the x-axis are: 

                                                                                                                                     
(2.9.1.1)

                                                       

where  is the given radius vector measured from the central x-axis of the shaft. 

J

Tr
=τ

r
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The  displacements in the x, y and z directions on the shaft are:  

                                                 and                              (2.9.1.2)
                                                        

where  is some function of y and z, called warping function, and  is the angle of twist 

per unit of length of the shaft and is assumed to be very small (<<1).   

The differential equations of equilibrium are:  

 

 

                                                                                        

                                                                                      

                                                                                                                            (2.9.1.3) 

where,  

ρ : is the density of the substance. 

,Xρ : are the body forces (X, Y and Z are the projections on the coordinate axes of the 

mass forces (i.e. gravity) acting on each part of the body, relative to the mass of that part. 

Relying on the function  to satisfy the above differential equilibrium equations and 

assuming that the body forces are negligible.  The B.C.s on the lateral surface of the shaft are:  

=0 

 

 

                                                                                                                                                    (2.9.1.4)
                                                       

and the B.C.s at the ends x=0 and x=L : 
 

and  and   are equipollent to the torque                                            (2.9.1.5)
                                                        

,xzu φ−= v xyφ= ),( zyw φψ=

),( zyψ φ

,Yρ Zρ
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  Consider   as the direction cosine constants for the lateral surface and (  as the 

direction cosine constant for the direction along the shaft length .  From Eqn 2.9.1.2
 
, we can 

get the stresses values by using Hooke’s law. 

             ,   and
 

                       (2.9.1.6)
    

                                                                      

                                                   
 

A substitution of these values into Eqns 2.9.1.3 shows that the equilibrium equations is 

satisfied if  satisfied Eqn 2.9.1.7 within the cross-section of the cylinder : 

                                                                                                                            (2.9.1.7)
  

                                                      
                                     

 To satisfy the B.C.s,  Eqn 2.9.1.4, we should maintain: 

                                            on ,                                (2.9.1.8)
                                                       

                                                                                       
where  is the boundary of the cross-section of the region R that shown in Fig. 2.9.1.1

                                              . 
 

 
 

Fig. 2.9.1.1:  An arbitrary cross-section under torsion (adapted from [12]). 
 
 

but  

 
Therefore the B.C.(s) of Eqn (2.9.1.9) can be written as:   
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                                            on                                           (2.9.1.9)
                                                       

 
The B.C.(s) of Eqn 2.9.1.6

 
 are satisfied if:   

 
 

                                                 and                                          (2.9.1.10)
                                                       

 
                                                                                                           (2.9.1.11) 

                                                       
                                     

We can verify that Eqns. 2.9.1.10 are satisfied if  satisfies Eqn 2.9.1.7 and Eqn 2.9.1.9 

because:     

since  satisfies Eqn. 2.9.1.7.  By applying the Gauss theorem to the final integral, it 

becomes as a line integral on the boundary : 

 

 
which vanishes on account of  Eqn 2.9.1.9.  Similarly, the second Eqn of Eqns. 2.9.1.10 must 

be satisfied.  Finally, the last condition of Eqn. 2.9.1.11 is : 

                        	                         (2.9.1.12)                                            

                                   but                                               (2.9.1.13)                                                             

which implies,                                  
   

 � � 	��                                                  (2.9.1.14)                                      

where, 

	 : is the angle of twist at a specific location x along the shaft 

: is a proportionality constant or torsional rigidity of the shaft  

 : is the shear modulus of the shaft  

J  : is the polar moment of inertia of the shaft cross-section if it is circular.  
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2.9.2  Prandtl Stress Function Theory 
 
  Prandtl [12] proposed an approach to calculate the warping in which he considers the stress 

components as the principal unknowns.  Assuming that only  and  differ from zero, then 

all the equations of equilibrium Eqn 2.9.1.3 are satisfied if  

                                                                                                                         (2.9.2.1) 

 
Also Prandtl [12] observes that this equation is identically satisfied if  and  are derived 

from a stress function  in such a way that:  

                                                                 and                                           (2.9.2.2) 

 
This stress function  can be an arbitrary function as long as the stress system Eqn 

2.9.2.2 satisfy the boundary conditions Eqn 2.9.1.4 and Eqn 2.9.2.1 and the compatibility 

conditions.   

From Eqn 2.9.2.1, we can figure out that the compatibility requires that (in absence of body  

forces) the following: 

  
and

 
 where,  denotes , hence, 

                                                      and                                              (2.9.2.3) 

 

                                                                                                                                 (2.9.2.4) 
 
Of the boundary conditions Eqn 2.9.1.4 only the last equation is not identically satisfied but 

from Fig. 2.9.1.1, we note that:  

                                            and                              (2.9.2.5) 

 
We can write the last equation of Eqn 2.9.1.4 as : 
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                                                          on                                       (2.9.2.6)  

 
Hence  must be constant along the boundary curve   For a simply connected region,  

it is general enough to set :  

                                                                         on                                                      (2.9.2.7) 
 

It remains to examine the boundary conditions Eqn 2.9.1.5.  The first,
 

 follows the 

starting assumption.  The other conditions are stated in Eqns 2.9.1.10 and Eqn 2.9.1.11.    

but , by Gauss’ theorem, this is  and it vanishes on account 

of Eqn 2.9.2.7. 

Similarly, the resultant force in z-direction vanishes.  Thus Eqn. 2.9.1.10 are satisfied.   

Finally, Eqn 2.9.1.11 requires that:
   

 

which can be transformed by Gauss’ theorem as follows: 
  

                                                  

                                          
                 (2.9.2.8)

 
 
If R is simply connected region, the line integral vanishes by the boundary conditions Eqn 

2.9.2.7, implies:                                                                                         (2.9.2.9) 

 
  Thus, all differential equations and boundary conditions concerning stresses are satisfied if 

 obeys Eqn 2.9.2.6, Eqn 2.9.2.7 and Eqn 2.9.2.8.  But there remains an indeterminante 

constant in Eqn 2.9.2.6.  This constant has to be determined by boundary conditions on 

displacements.  From Eqn 2.9.1.2 and Eqn 2.9.1.6, we get: 
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                                        and
                          

     (2.9.2.10)
 

 
Differentiating with respect to z and y, respectively, and subtracting we get: 
 

                                                                                               (2.9.2.11) 

 
Hence, a substitution from (2.9.2.7) gives 
 

                                                                                                 
                (2.9.2.12)

 
 
In this way, the problem of torsion is to the solution of the poisson Eqn 2.9.2.12 with boundary 

condition Eqn 2.9.2.7.  

 

Elliptical Cross-section 
 
Let us apply the Prandtl approach [12] to calculate the warping of an elliptical cross section 
 

                                                     where                                            (2.9.2.13)
 

 

Then Eqn 2.9.2.12 and Eqn 2.9.2.7 are satisfied by having the stress function: 

 

                                                                                        (2.9.2.14) 

  

Eqn 2.9.2.8 gives the relation between the torque and the rate of twist  � �  !
 �  

 

                                                                                                   
(2.9.2.15) 

 
 
The stresses are given by Eqn 2.9.2.2.  Note the following curves have an interesting 
 
meaning:   

                                                        
 
The slope dz/dy of the tangent to such a curve is determined by the formula:
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                                                                                                                   (2.9.2.16) 

 
Hence, according to Eqn 2.9.2.2, we have

 

 

   and   , which implies: .  

 
 The magnitude of shearing stress is: 

  

                                            " [                                   (2.9.2.17) 

 
The maximum shearing stress is : 
 

                                                 " �
 

 �                                    (2.9.2.18)                                                                 
 

Now the warping (out of plane displacements) function  for a constant elliptic cross-

section can easily be shown to be : 

                                                      = #$%                                            (2.9.2.19) 

 

where # � &'()'
&'*)'  is a constant depends on the two diameters + and , of the ellipse. 

 
 
  So as mentioned earlier in section 2.9.1, shafts or cylinders of a non-circular cross-section 

undergo warping when subjected to pure torsion.  An example is the warping that occurs in the 

shafts with elliptical cross sections i.e. Eqn 2.9.2.19.   

  For the present research, warping will be calculated at many selected given stations from hub 

to tip of the given wind turbine blade (that has different airfoil dimentions at different cross 

sections) where at each selected station there is only a one calculated value of warping that is 

different from the next station.  Therefore, warping in the present research is considered to be 

dependent on x coordinate only and is independent of the y and z coordinates which is 

different from the above mentioned constant elliptic cross-section case.  
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2.9.3 Cross-section Geometrical Properties  
 

2.9.3.1 Torsional Rigidity Calculation   

  The analytical calculation of the exact values of the “torsional rigidity” for cylindrical bars is 

limited to a few number of cross-sections.  Exact solutions for the ellipse, circle and equilateral 

triangle are listed in [13] while the approximations for rectangular cross-sections are available 

in [14].  The approximated solution for many cross-sections such as trapezoids, triangle, 

semicircles, are listed in handbooks such Roark [15].  A good approach to approximate the 

torsional rigidity of any cylindrical solid cross-section is detailed in [15, 16].  Some cross 

sections can be considered as a combination of an ellipse, rectangle and triangle, etc.   

  There are many softwares that can be used to calculate the geometrical properties for any 

cross section including warping, moment of inertias and torsional rigidity [16] but for my work I 

used the Hypermesh version 10 to calculate such properties  that needed for my analysis.  

 

2.9.3.2  Second Moment of Inertia 

  There are three types of moment of inertia: The second moment of inertia, the product 

moment of inertia and the polar moment of inertia.  Consider a beam with a cross-sectional 

area A (that has a plane region of a particular shape which is perpendicular to the beam's axis). 

And consider λ to be a straight line in the plane (which is by definition, perpendicular to the 

axis of the beam).  The “second moment of area” of the region A about the line λ is: 

                                                                                                     (2.9.3.2.1) 
 
where dA is the elemental area; and n is the perpendicular distance from the element dA to the 

line λ 
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If the line λ is the x axis and the bending force is parallel to the y axis, the second moment of 

area can be computed as: 

                                                                                                           (2.9.3.2.2) 

  To calculate the bending stresses, the above equation can only be used when cross-sections 

are symmetrical about the x-axis.  But if cross-sections are not symmetrical, the second 

moment of area about both the x-axis and y-axis and the product moment of area, Ixy, 

(explained in the next section) are required. 

2.9.3.3  Product Moment of Inertia 

  The scalar of the “second moment of area” for a beam about a certain axis, describes the 

beam's resistance to bending along that axis.  Some beams will deflect in a direction other 

than the direction they are loaded.  Consider, for example, a leaf spring running along the x 

axis and directed such that its surface normal is in the (0,1,1) vector direction.  If we push 

downward on it in the (0, 0, −1) vector direction, we get a bending moment in the (0,1,0) vector 

direction.  However, even that the spring is moving downward, it is primarily deflecting in the (0, 

−1, −1) vector direction. This behavior should be captured by the “product moment of area”.  

The product moment of area is: 

                                                                                                   (2.9.3.3.1) 
  

where,  

x: is the perpendicular distance from y axis to the element dA. 

y: is the perpendicular distance from x axis to the element dA.    



 

 

2.9.3.4  Polar Moment of Inertia

  Polar moment of inertia is defined as the quantity that used to predict an object's ability to 

resist torsion, in objects with an invariant circular cross

used to calculate the angular displacement of an object when it is subjected to a 

analogous to the area moment of inertia that predicts an object's ability to resist bending.  The 

larger the polar moment of inertia, means the less the beam can twist, when subjected to a 

given torque.  It should be noted that “polar moment

“moment of inertia”, which characterizes an object's angular acceleration due to a torque.

Limitations  

  The “polar moment of inertia” can not be utilized to analyze any non

shaft.  For non-circular cross-sections shafts, the “torsional constant” should be calculated 

instead of the “polar moment of inertia”.  In objects with significant cross

(along the axis of the applied torque), which cannot be analyzed in segments, a mo

approach should be used.  However the “polar moment of inertia” can be utilized to compute 

the “moment of inertia” of an object with arbitrary cross

Fig. 2.9.3.4
 
A schematic of Fig. 2.9.3.4.1 show how
 
arbitrary shape about an axis o.
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Polar Moment of Inertia 

is defined as the quantity that used to predict an object's ability to 

resist torsion, in objects with an invariant circular cross-section and insignificant warping.  

used to calculate the angular displacement of an object when it is subjected to a 

analogous to the area moment of inertia that predicts an object's ability to resist bending.  The 

larger the polar moment of inertia, means the less the beam can twist, when subjected to a 

given torque.  It should be noted that “polar moment of inertia” should not be confused with 

“moment of inertia”, which characterizes an object's angular acceleration due to a torque.

The “polar moment of inertia” can not be utilized to analyze any non-

sections shafts, the “torsional constant” should be calculated 

instead of the “polar moment of inertia”.  In objects with significant cross

(along the axis of the applied torque), which cannot be analyzed in segments, a mo

approach should be used.  However the “polar moment of inertia” can be utilized to compute 

the “moment of inertia” of an object with arbitrary cross-section. 

 
 

2.9.3.4.1: The polar moment of inertia. 

show how the “polar moment of inertia” is calculated for an

.  

is defined as the quantity that used to predict an object's ability to 

ion and insignificant warping.  It is 

used to calculate the angular displacement of an object when it is subjected to a torque.  It is 

analogous to the area moment of inertia that predicts an object's ability to resist bending.  The 

larger the polar moment of inertia, means the less the beam can twist, when subjected to a 

of inertia” should not be confused with 

“moment of inertia”, which characterizes an object's angular acceleration due to a torque. 

-circular cross-section 

sections shafts, the “torsional constant” should be calculated 

instead of the “polar moment of inertia”.  In objects with significant cross-sectional variation 

(along the axis of the applied torque), which cannot be analyzed in segments, a more careful 

approach should be used.  However the “polar moment of inertia” can be utilized to compute 

is calculated for an 
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                                                                                                              (2.9.3.4.1) 
 

where Jz is the “polar moment of inertia” about the axis z; and ρ is the radial distance to the 

element dA from the axis z. 

For a circular section with radius r: 
 

                                                                 (2.9.3.4.2) 

For a rectangular section with sides b and h: 

                                             (2.9.3.4.3) 

The SI unit for the “polar moment of inertia” is the same as the “area moment of inertia” i.e. m4. 

Conversion from Area Moment of Inertia 

Using the perpendicular axis theorem, the polar moment of inertia Jz is related to the area 

moments of inertia about the other two mutually perpendicular axes:  Jz = Ix + Iy .  The “polar 

moment of inertia” Jz appears in the formulae describes torsional stress and angular 

displacement.  

Torsional stress 

                                                                                                              (2.9.3.4.4) 

where T is the torque; r is the distance from the center; and J z is the polar moment of inertia.  

In a circular shaft, the shear stress is maximum at the surface of the shaft where the torque is 

maximum: 

                                                                                                   (2.9.3.4.5) 
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Chapter 3 

Total Strain Energy, Total Kinetic Energy, Aerodynamic loadings & 

External Work 

 

3.1  Introduction  
 

  Wind turbine blades similar to helicopter rotor blades [17] have the structure of pre-twisted 

beams that react due to extension, torsion, flexure and the coupling interactions among all 

these loads.  A number of approximate theories used for the pre-twisted beam have been 

developed by different researchers to analyze its complex geometry.   

  For example, the potential and kinetic energy relationships were given by Carnegie [18] for a 

pre-twisted cantilever blade using the standard variational approach to deduce the equations 

of motion and allowing for torsion, bending, rotary inertia and deflections due to shear without 

any warping effect.   Yardimoglu and Yildirim [19] derived the strain energy and kinetic energy 

for pretwisted Timoshenko beam undergoing bending-bending load coupling.  More recently, 

Ozgumus and Kaya derived [20, 21] the strain energy and kinetic energy to obtain the 

equations of motion for a rotating beam considering bending-torsional coupling considering the 

effect of the centrifugal force and the effect of shear as in a Timoshenku beam.  And Liu, 

Friend and Yeo [22], derived the strain energy and kinetic energy considering axial-torsional 

coupling vibration for a pretwisted beam that has an elliptic cross section.  Then they obtained 

the equations of motion using Hamilton’s principle assuming an elliptical cross section warping.  

The calculation of warping for an eliplitical cross section is elementary and is easy to calculate.   

  In this chapter, the total strain and total kinetic energy were derived for both the linear small 

deformation case and the nonlinear large deformation case.  
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  Also the pitch moment, thrust, centrifugal forces (that allow us to obtain the external work 

acting on the blade), boundary conditions and damping on the blade will be discussed.  It 

should be noted that the six unknown displacements at any x along the blade’s length direction 

were assumed to be expanded a series of products of time dependent constants and 

polynomials expansion and then computed by solving the dynamic equations of motion.  

 

 

3.2   Dynamic Equations of Motion 
 
  Consider the blade shown in Fig. 3.2.1 as a Timoshenko beam with a pretwisted angle .  
 
 

 
 

Fig. 3.2.1:  Pre-twisted asymmetrical blade structure coordinate systems. 
 
 
  The blade has at any x along the lengthwise three displacements u, v and w in the directions 

of x, y and z axes respectively, bending rotations  and  about the y and z axes respectively 

and torsional rotation  about the x axis.  Also we are considering  as the airfoil cross 

sectional warping.   

β

1θ 2θ

φ ψ
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  By applying the following Lagrange equations [23] to the blade of Fig. 3.2.1, we will obtain all 

the equations of motion:  

    

                       
0)( .. =

∂

∂
−

∂

∂
+

∂

∂
+

∂

∂
+

∂

∂
−

∂

∂
••

m

ext

mm

sCB

m

Total

mm q

W

q

F

q

U

q

U

q

T

q

T

dt

d
                  (3.2.1)   

                                                                                                                                                       
where, 

 -.: is equal to  +., ,.,  /., 0., 1. 23 4.  

 
�: is the total Kinetic energy                                                                                                                                                                                                                                                     

5678&9: is the total strain energy  

:;�8: is the external work on the blade due to the applied aerodynamic pressure  

<: is the applied nonconservative damping force if blade assumed to be of viscous type [61]. 

                                       
 

where  has a different value for each term of the mode expansion.  Simple calculation give: 
 

                            
 
  The damping coefficient  is related to modal damping ratio, that can be evaluated from 

experiments, by   where   is the natural circular frequency 

of mode and  is the modal mass of this mode, given by:  

                                                             

  In the present research, the author considers only the material damping and neglects the  

viscous damping i.e. neglecting the term  0=
∂

∂
•

mq

F
, which results in reducing one term of the 

equations 3.2.1 to become: 
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3.3   Computation of the Total Strain Energy 

  By adding all the different derived strain energies from Appendix A i.e. equations (A.1), (A.2) 

and (A.3), we get the total strain energy [9, 13, 18, 20-22, 24-26]: 
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3.4   Computation of the Total Kinetic Energy 

  By adding all the different derived kinetic energies [9, 13, 18, 20, 22, 24-26] from Appendix B 

i.e. equations (B.1.2), (B.2) and (B.3), we got the total strain energy as: 
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3.5   Displacement Expansion 

 

  The author assumed a summation of a product of time dependent constants and polynomials 

expansion for the three displacements �=, �, � and the three rotations  at any x along the 

blade length as shown below in order to solve for them using the Assumed Modes Method: 

 

similarly,
    

and
 

                                                                                                                   
(3.5)

                                                                                               

where the polynomial functions  and  and are the 

time dependent constants that need to be solved using the equations of motion and Newmark 

non-linear iteration scheme. 
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3.6   Thrusts, torques, centrifugal forces and pitch moments 
 
  True distributions of the aerodynamic  loadings that needed for the structural analysis of the 

wind turbine blades, are difficult to predict and usually require some flow codes such as CFD 

to determine their accurate magnitude.  In this section I am providing a simple model for the 

estimate of blade forces suitable for use in structural analysis.  Thrust forces are directed in the 

axial direction (i.e., following the blade shaft axis).  Torque forces are tangent to the radius arc.  

Centrifugal forces are normal to the axis.  As noted earlier that according to the BEM theory 

[27], air loads on a section airfoil of the blade are proportional to the dynamic pressure at only 

that section.  

  The premise of the simplified model is that a) the forces can be modeled by a set of point 

loads rather than distributed pressures, and b) the magnitudes of these point loads can be 

estimated using the below load formulaes, c) An interpolation scheme needed to have all 

computed forces and moments as a function of the blade lengthwise x.  Fig. 3.6.1 below, 

illustrates how the three principal forces - thrust, torque and centrifugal- are applied as point 

loads acting on a radial span of the blade.         

  The aerodynamic forces (lift, drag and pitching moment) as shown in Fig. 3.6.1 are directly 

linked to the type of flow, relative wind velocities and the wind attack angles to the airfoil 

sections. 

 Lift:           L = 
�
� ρ  �>;9�   / �9   

 

Drag:       D =  
�
� ρ  �>;9�  /  �  

 

                                              Pitch Moment:      ?@ = 
�
� ρ  �>;9�   /� �.                                 (3.6.1)                     

 
   

  The simplified model is stating that (a) the forces can be modeled by a set of station loads 

rather than distributed loads, and (b) then the magnitudes of these station loads can be 
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predicted using the below listed load formulas, (c) then an interpolation scheme will interpolate 

all computed station loads (forces and moments) as a function of the blade lengthwise x.   

 

 
 

Fig. 3.6.1:   The lift and drag forces. 
 

 
  Fig. 3.6.2 below, illustrates how the three principal forces - thrust, torque and centrifugal- are 

applied as point loads acting on a radial span of the blade.   Thrust forces are always axial in 

their direction (i.e., following the blade shaft axis).  Torque forces will be tangent to the radius 

arc and centrifugal forces are normal to the axis. 

  Then all the forces and moments acting at the selected  airfoil stations along the blade can be 

calculated from the following formulaes [28-30]:   

 
Centrifugal force:    Fx = m 3 Ω�  

Torque force:   Fy = L sin 	 − D cos 	  

Thrust force:    Fz = L cos 	 + D sin 	 

                                   Moment in x-direction:    Mx = ?@ + Fy  + Fz                       (3.6.2)                     

 

αz αy
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Fig. 3.6.2:  The aerodynamic loads (adapted from [27]). 
 

where, 

 �9 , �  and �. : are the lift, drag and pitch moment coefficients respectively  

φ  : is flow angle of the airfoil section 

 � : is the density of the air  

/ : is the chord length of the airfoil section  

m : is the mass of the airfoil section 

�>;9 (or :) : is the wind relative speed  

Ω : is angular speed of rotor  

3 : is the distance from root of the blade to the airfoil section  

 and : are the distance between centre-of-flexure and centroid in y and z direction 

respectively for a specific airfoil section    

 
 

 

3.7   External Work  
 
The work done by external forces [23, 27, 31] on the blade is: 
 

                              (3.7.1) 

αy αz
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where, 

,  and : are the interpolated functions at all stations of the forces at each time 

step acting in the direction of  and  axes respectively.  

,  and  are the interpolated functions at all stations of the moments at 

each time step acting in the direction of  and  axes respectively.  

   

 

similarly,    

 

                                               

                                                (3.7.2)     

                                                                                                     

(3.7.3) 

                                                                                              (3.7.4) 

                                                                                                   

(3.7.5) 

                                                                                         (3.7.6) 

 
 
 
 
 

3.8   Boundary Conditions 
  

The blade strain energy due to the boundary conditions at x=0 and x=L: 
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where ( , ,  , , ,  ) and ( ,  ,  , , ,  ,   ) are the linear and 

 
rotational spring stiffnesses at  and  respectively.   
 

  (  + )    +     

   
Considering the polynomials  as mentioned in section 3.5, implies: 
 

 and
 
, implies:  

 

                                                                                                                  (3.8)   

                                              

Similarly, for , , ,  and                                                   

 
Since the blade has a fixed end at x=0 and a free end at x=L, we can set up the following: 

, ,  and , ,  to large number and , ,  and , ,  to zero or 
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Chapter 4 

 Obtaining the Lagrange Equations of Motion  
 

4.1  Introduction  
 
  A carefully selected sample of the pretwisted beam or wind turbine blade literature is 

analyzed,  such as the exact solutions of Timoshenko’s equation for simply supported uniform 

beams as given by Anderson [32], and the general equations of motion of a pre-twisted 

cantilever blade derived by Carnegie [33].  Carnegie [18] extended the study of the general 

equations of motion of a pre-twisted cantilever blade allowing for torsion, bending, rotary inertia 

and deflections due to shear but he did not include the warping effect.  Dawson et al. [34] 

found the natural frequencies of pre-twisted cantilever beams of uniform rectangular cross-

section allowing for shear deformation and rotary inertia by the numerical integration of a set of 

first-order simultaneous differential equations.  Carnegie and Thomas [35] investigated the 

effects of shear deformation and rotary inertia on the frequencies of flexural vibration of pre-

twisted uniform and tapered cantilever beams by using the finite-difference method.  The semi-

inverse method was proposed by Saint Venant for solving the elastic deformation of prismatic 

rods under resultant end loadings.  This was referenced and utilized by Dawson, Ghosh, and 

Carnegie  [34], Xu, Zhong and Zhang [12], and Sokolnikoff [13].  The strain energy of  bending-

torsional and their coupling were investigated by Kima, Fub and Kimc [36] and was modified to 

include the shear effect of a Timoshenku beam by Kaya and Ozgumus [20].  Banerjee [37, 38] 

had an approach for the Bernoulli and another one for the Timoshenko symmetric beam where 

bending was uncoupled from torsion and/or axial loading.  Banerjee and Williams [39] 

published some work about coupled torsional–bending for asymmetrical Timoshenko beam 

where the elastic mass axis is different from the centroid axis.  Subrahmanyam, Kulkarni and 

Rao worked on coupled bending-bending vibrations of pretwisted cantilever blade [40, 41], and 
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also they worked on  coupled bending-torsion vibrations of rotating blades of asymmetric 

aerofoil cross section with allowance for shear deflection and rotary inertia by use of the 

Reissner method [24].   

  The equations of motion for thin-walled beam with non-symmetric cross-section subjected to 

linearly variable axial force were derived by Kim, Fub and Kim [36].   Also one of these early 

approximate approaches was Chu’s helical fiber assumption [42], where stresses are initially 

determined along and perpendicular to helical fibers of the beam’s pretwist. Even though Chu’s 

predictions matched experimental results for thin-walled beams, it was nevertheless a flawed 

theory that predicted axial–torsional coupling where warping wasn’t present i.e. for the case of 

beams with circular cross-sections.  Similar approahes include the works of Rosen [43, 44], 

Hodges [45], Krenk [46] on static axial–torsional coupling and Tsuiji [47] on the dynamic 

response.  In recent years, warping function-based beam theories that based on semi inverse 

and variational methods appear to have become widely accepted.   The semi-inverse method 

was proposed by Saint Venant for solving the elastic deformation of prismatic rods under 

resultant force and moment end loads [12, 13, 34].     

  More recently, Liu, James and Yeo [22], investigated the coupled axial–torsional vibration of 

pretwisted beams of elliptic cross section.  The equations of motion governing the extension, 

torsion, and cross-sectional warping of pretwisted beams were derived from Hamilton’s 

principle.       

The calculation of warping for an eliplitical cross section is elementary and is easy to calculate.     

  Younsi et al. [28] used a finite element approach based on a variational formulation of the 

theory of beams to calculate the blade tip vertical displacement for a 14m untwisted blade of a 

variable NACA 4415 type airfoil.  Younsi et al. interpolated the forces and moments for a given 

wind velocity and attack angle, for all points of the lift line along the blade using a parametric 

method based on Bézier surfaces.     



87 
 

 
 

  In the present research, the author study the linear deformation of a wind turbine blade of the 

same characteristics of the blade that was considered by Younsi et al. [28] (i.e. 14m untwisted 

blade of a variable NACA 4415 type airfoil) assuming the effect of all the extensional, torsional 

and flexural loadings with all their couplings, shear deflection, rotary inertia, warping of the 

airfoil cross-section that varies linearly from hub to tip.  The strain and kinetic energies were 

derived to obtain the dynamic equations of motion that were solved to compute the 

displacemts and rotations at many stations along the blade length using the linear Newmark 

iteration scheme that will be discussed in more detail in section 6.4 . 

  Then the author extend his work to include the nonlinear large deformation case which 

creates two additional nonlinear stiffness matrices.  Also the blade’s pretwist is included.  Then 

the nonlinear dynamic equations of motion are solved for the three unknown displacements in 

the directions of x, y and z axes and the three unknown rotations about the x, y and z axes at 

the required stations along the lengthwise of the given blade using the nonlinear Newmark 

iteration scheme that will be discussed in more detail in section 6.6 .  

  

  
            

 

4.2 Derivation of the Lagrange Equations of Motion 
 
 
Using Eq. (3.2.2)  for  -. � +. :  
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Similarly, by using Eqn (3.2.2) for  -. � ,., /.,  0.,  1.,  and 4.,  we obtain the following 

equations (4.2-b), (4.2-c), (4.2-d), (4.2-e) and (4.2-f) respectively:  
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Chapter 5 

 Arranging the Mass, Linear & Non-linear Stiffness Matrices  
 

 

5.1  Introduction 
 
  In next section 5.2, all the linear matrices ( mass and stiffness matrices) are deduced from 

the previous section derived lagrangian equations (4.2-a) to (4.2-f).  These linear matrices can 

be used to solve the linear dynamic equations of motion (Eqn 6.1.1a) for the six degrees of 

freedom of displacement at any x along the blade length(three displacements in the directions 

of x, y and z axes and the three rotations about the x, y and z axes).  

In section 5.3, all the nonlinear stiffness matrices in addition to the linear matrices ( mass and 

stiffness matrices) are also deduced from the previous section derived lagrangian equations 

(4.2-a) to (4.2-f).  These linear and nonlinear matrices can be used to solve the nonlinear 

dynamic equations of motion (Eqn 6.1.1b) again for the six degrees of freedom of 

displacement at any x along the blade length.  The solution procedure for both linear and 

nonlinear cases will explained in detail in next chapter. 

 

 

5.2  Arranging the Linear Mass and Stiffness Matrices 
 
                                                                                                     
 These are the terms from Eq. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to [K]L : 

−
 
+                           from Eq. (4.2-a)     

                                                                                              

 +  +                                                                                                            

                                                                     

                                                                                                                                         from Eq. (4.2-b) 
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                                                                                              from Eq. (4.2-f)                      

 

 
And the blocks of the linear stiffness matrix  are obtained as follows:  
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These are the terms from Eq. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to [M]L :    
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                                                                                                                                        from Eq. (4.2-f)

       
 

                                                                                                                                

  
And the blocks of the mass matrix  are obtained as follows:   
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The damping matrix was computed as was done by Younsi et al. [28] :

 

B
BCDE � αBMDE G βBKDE

 
, where the constants are given as [48] : 

 

 
α � 0.01498 and β � 0.10405 . 

     

 
 

5.3  Arranging the Non-linear Stiffness Matrices 
 
 
These are the terms from Eq. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to the first 

nonlinear stiffness matrix [K]NL1 :    
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                                                                                                 from Eq. (4.2-f)                                                                        

                                                                                                                                                  

                                                                                                                                       
 

And the blocks of the nonlinear stiffness matrix  are obtained as follows: 
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These are the terms from Eq. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to the 
 
 second nonlinear stiffness matrix [K]NL2 : 
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                     from Eq. (4.2-f)                                                                                                                      

                                                                                                                                                  
                                                                                                                                 
And the blocks of the nonlinear stiffness matrix  are obtained as follows:  
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Chapter 6 

Displacements Solution Using the Newmark Implicit Procedure 
 

 

 

6.1  Introduction 

 
  Considering the expansion of the six unknown displacements as discussed in section 3.5: 

  
and

 

   

where,  

 are the polynomials (function of x) 

 and  are the time
 
dependent constants 

 

In order to solve for the six unknown displacements [48-53], we need to solve first one of the 

below dynamic equations of motion (6.1.1a) or (6.1.1b) for : 

 using the linear or the non-linear  Newmark procedure 

respectively ( depeding if whether  small or large deformation is considered).  
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where,  

LK][  , and  are the linear matrices  

 are the non-linear matrices  

is the aerodynamic load vector that can be obtained as follows: 

 

),()(
1

xtau nn

N

n

φ∑
=

= ),()(
1

xtbv nn

N

n

φ∑
=

= ),()(
1

xtcw nn

N

n

φ∑
=

= ),()(
1

1 xtd nn

N

n

φθ ∑
=

= ),()(
1

2 xte nn

N

n

φθ ∑
=

=

)()(
1

xtf nn

N

n

φφ ∑
=

=

1)/()( += n
n Lxxφ

)(),(),(),(),( tetdtctbta nnnnn )(tfn

T
nnnnnn

t
i tftetdtctbta )](),(),(),(),(),([=δ

[ ] tt
iL

t
iL

t
i

t
iNL

t
iNLL RMCKKK =++++

•••

−− δδδδδ ][][)(][)(][][ 1211

LC][ LM ][

,][ 1NLK 2][ NLK

tR



107 
 

 
 

                                                                                       (6.1.2)       

 

It should be noted that for the small deformation problems,  the nonlinear matrices

     are neglected from our calculations and they are only taken into consideration if we 

have the large deformation case. 

 

 
 
 
6.2  Implicit Dynamics versus Explicit Dynamics Schemes 

 
  In general, there are two types of schemes (or algorithms) that used to solve dynamics 

problems: 1) implicit and 2) explicit.  In explicit schemes the solution may be advanced without 

storing a matrix to solve a system of equations, while in implicit scheme, a matrix is solved one 

or more times per step to advance the solution.  Implicit schemes are tend to be numerically 

stable, permitting large time steps, but the cost per time step is high and storage requirements 

tend to increase dramatically with the size of the finite element mesh, particularly in large 

three-dimensional problems.  On the other hand, explicit schemes tend to be inexpensive per 

time step and require less storage than implicit schemes, but numerical stability requires that 

small time steps be used.  A survey of explicit methods, the step-by-step computational 
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procedure for the widely used central difference method and some developments of the 

method are given in Part I [54].  Generally, implicit algorithms are most effective for structural 

dynamics problems (in which the response is controlled by a relatively low frequency modes, 

while explicit algorithms are very efficient for wave  propagation problems ( in which 

intermediate and high frequency structural modes are exist. 

  The method is implicit if the solution at time S G ∆S requires consideration of the equilibrium 

condition at at time S G ∆S  and the method requires the solution of a set of simultaneous 

equations at each time step wherein the coefficient matrix is a combination of the mass, 

damping and stiffness matrices. In large scale problems the solution to these equations may 

be computationally expensive. 

  The three most commonly used implicit time integration methods for solving linear problems 

are: Newmark, Houbolt and Wilson-� methods.  Additional development in implicit methods are 

given in [55] and more reviews of mixed implicit-explicit finite element procedures are found in 

[56] .  Zienkiewicz et al. have given a set of single-step algorithms to solve dynamic problems 

[57-62] .  It should be noted that these available implicit algorithms are unconditional stabile 

(for linear problems) which is a big advandage over the explicit algorithms.    

 
 
6.3  The Linear Implicit Newmark Methods 

 
  As mentioned in section 6.2, the most important implicit time integration methods for linear 

problems are: Newmark, Houbolt and Wilson-� methods.  The procedures (step by step) of 

these methods for solving linear structural dynamics problems are little bit different from those 

procedures required for solving nonlinear problems, even that both procedures share the same 

basic techniques.  
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The most widely used family of implicit methods of direct time integration for solving semi-

discrete equations of motion is the Newmark’s family of methods [48, 63, 64].    

  The Newmark integration scheme can also be understood to be an extension of the linear 

acceleration method.   

The Newmark method is based on the following assumptions: 

UV8*∆8 � UV8 G ∆SBW1 X YZU[8 G YU[8*∆8D                                                                               (6.3.1) 
 
and 
 

U8*∆8 � U8 G ∆SUV8 G W∆SZ� BW�
� X �ZU[8G�U[8*∆8D                                                                (6.3.2) 

 
Where the parameters � and Y determine the stability and accuracy of the algorithm.   For 

Y � �
� and � �

\ , the relations (6.3.1) and (6.3.2) correspond to the linear acceleration method 

(which is also obtained using � � 1  in the Wilson-  �  method).  Newmark [64] originally 

proposed as an unconditionally stable scheme the constant-average-aceleration method (also 

called trapezoidal rule), in which case Y � �
�  and � � �

]  as shown in Fig. 6.3.1. 

     

Fig. 6.3.1:  Newmark’s constant-average-acceleration scheme (adapted from [48]). 
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  In addition to eqns (6.3.1) and (6.3.2), for solution of displacements, velocities and 

accelerations at time S G ∆S, the equilibrium equations of motion are also considered at time 

S G ∆S: 

                               @U[8*∆8 G �UV8*∆8 G #U8*∆8 � 
8*∆8                                                (6.3.3)   

 

  Solving Eqn 6.3.2 for U[8*∆8 in terms of U8*∆8  and then substituting for U[8*∆8  in Eqn 6.3.1, we 

obtain equations for U[8*∆8  and UV8*∆8 each in terms of the unknown displacements U8*∆8 only.                                              

These two relations for  U[8*∆8  and UV8*∆8 into eqn (6.3.3)  to solve for U8*∆8  as shown in Eqn 

6.3.4.  

B# G Y
�∆S � G 1

�W∆SZ� @DU8*∆8 � 
8*∆8 G � ^ Y
�∆S U8 G _Y

� X 1` UV8 G ∆S _ Y
2� X 1` U[8b 

                                            X@ c �
dW∆8Z' U8 G �

d∆8 UV8 G e f
�d X 1g U[8h                                (6.3.4) 

  Then using (6.3.1) and (6.3.2), we can solve for U[8*∆8  and UV8*∆8.  

The matrix # G f
d∆8 � G �

dW∆8Z' @ in Eq. (6.3.4) is usually referred to as the ‘effective stiffness 

matrix’ and is denoted by #i.  Some assumption on the form of � is necessary for damped 

structural systems.  If Rayleigh damping is assumed, then as given by [48]: 

                                                       � � +@ G ,#                                                          (6.3.5) 

where + and , are given Rayleigh constants. 

  The algorithm operates as follows: we start at t=0; initial conditions prescribe Uj and UVj (from 

these and the equations of equilibrium at t=0 we find  U[j, if U[j is not prescribed); then eqn 

(6.3.4) is solved for U∆8; eqn (6.3.2) is solved for U[∆8 and eqn (6.3.1) is solved for  UV∆8; then eqn 

(6.3.4) yields U�∆8 and so on.   

  Warburton [65] has suggested a direct approach in which the effective load vector depends 

only on the displacements at S  and S X ∆S , thus eliminating the necessity of additional 

computation of velocity and acceleration components, UV  and U[ , at time S  . The recurrence 
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relation can be obtained as follows: use the equilibrium equations at times S X ∆S, S and S G ∆S 

and Newmark’s basic assumptions, eqn (6.3.1) and eqn (6.3.2), at times S and S X ∆S.  We 

have seven equations with six unknowns U[8*∆8 , U[8 , U[8(∆8 , UV8*∆8 , UV8  and UV8(∆8  which can be 

eliminated.  For Y � �
�  , it is given by the following set of simultaneous equations: 

               W@ G ∆8
� � G �W∆SZ�#ZU8*∆8 � W∆SZ�W�
8*∆8 G W1 X 2�Z
8 G �
8(∆8Z         

                      GW2@ X W∆SZ�W1 X 2�Z#ZU8 X W@ X ∆8
� � G �W∆SZ�#ZU8(∆8                      (6.3.6)                                              

  The solution for  U8*∆8 requires knowledge of U8  and U8(∆8  and therefore, a special starting 

procedure is necessary.  It is more common and more accurate to calculate U∆8/� by use of the 

central difference scheme.  The same relation in the form of a three point finite difference 

formula has been given earlier by Chan et al. [66] in 1962, for  Y � �
�  and � � �

] .   

Zienkiewicz [67],  Chaix and Leteux  [68] derived the following general recurrence relation 

between three successive displacements  similar to eqn (6.3.6) involving parameters   Y and �: 

W@ G  Y ∆S� G �W∆SZ�#ZU8*∆8 � W∆SZ� e�
8*∆8 G e�
� G Y X 2�g 
8 G e�

� X Y G �g 
8(∆8g G W2@ X

W1 X 2YZ∆S� X e�
� G Y X 2�g W∆SZ�#Z U8 X W@ G WX1 G YZ∆S� G e�

� X Y G �g W∆SZ�#Z U8(∆8                                                                                                        

                                                                                                                                        (6.3.7)  

  The Newmark method is unconditionally stable if  Y l 0.5 and � l W�f*�Z'
�\    [69].  Positive 

algorithms damping is introduced if Y m 0.5  and negative algorithmic damping leading 

eventually to an unbounded response if n 0.5 .  Thus in most applications Y � 0.5 is used.   

If  Y � 0.5 and � � 0, the Newmark fotmulae (6.3.1) and (6.3.2) reduce to the central difference 

method, provided  UV8*∆8/� �  UV8 G W�
�Z∆SU[8  .  Many stability issues of the method were 

discussed by Gladwell and Thomas [70] and Hughes [71] .  The discretization errors of the  

method for numerical integration were analysed by Brown [72].  Stability and other properties 

of well known members of the Newmark family of methods are summarized in Table 6.5.1.  
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6.4  The Linear Implicit Newmark Iteration Procedure Steps 

 

  The steps for the linear Newmark implicit iteration procedure [48, 52, 63] as shown in Chart  
 
6.4.1 are detailed as follows: 
 
A.  Initial calculations 

 
1. Set initial conditions at S � 0  for  o8 ,  o8V  and o[ 8   

 
where,  o8 �  
 

2. Select the time step size ∆S  and the parameters � and Y and calculate integration constants: 

Y l 0.50;    � l 0.25W0.5 G YZ�  (  =0.5 and  � =0.25 is a good choice)  
 

+j= 
�

β ∆q ' ,  +�= 
γ

β∆q  ,  +�= 
�
β ∆q ,  +r= 

�
�β X 1 ,  +]= 

γ 
β X 1 , 

 
+s=

∆q 
�  ( 

γ 
β X 2Z , +\= ∆t W1 X γZ  ,  and +v= ∆t γ 

 
3. Form the global stiffness and mass matrices, # and @, and then the damping matrix �. 

� � +@ G ,#;  if Rayleigh or ratio damping is assumed 

where,  + and   ,  are  Rayleigh constants.       

4. Form global effective stiffness matrix #i:  #i � # G +j@ G +�� Triangularize  #i:  #i � �w�6.  

5. Steps 3-5 may vary depending on the matrix solution method employed. 

B.  For each time step 

 
1. Calculate effective load vector at  S G ∆S  : 

             
x8*∆q � 
8*∆q  G  B@�DW+jo8 G +� oV 8G +r o[ 8) G B��DW+�o8 G +] oV 8G +s o[ 8)  
     
      2.  Solve for the displacements at time G∆S  :  

 
        �w�6o8*∆q �  
x8*∆q 
 

      3.  Calculate accelerations and velocities at time G∆S  : 
  
                 o[8*∆q � +jW o8*∆q X o8 ) X+� oV 8X+r o[ 8   
 
                 oV 8*∆q � oV 8G+\ o[ 8G+v o[8*∆q       

T
nnnnnn tftetdtctbta )](),(),(),(),(),([
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       4.  Iterate for next time step S G ∆S  by going to step 1 of  B.   
 

 
 

Chart 6.4.1:  Linear Newmark procedure flow chart. 

 

 

 

6.5  Stability Conditions for the Newmark Methods 

 
 
A summary of the stability conditions for the Newmark method [69-71, 73-75]  are given as  
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follows: 
 
Unconditional : 

 
                                                          2� l Y l 0.50                                                       (6.5.1) 

 
Conditional : 
 
                                                               Y l 0.50                                                           (6.5.2) 
 
 
                                                               � n Y/2                                                           (6.5.3) 
 
 
                                                            y ∆S l Ω{>|8                                                        (6.5.4) 
 
                                                

                                            Ω{>|8  � } ef ( ~'g*B  �' –d * }'ef ( ~'g' D�.�

e�
' ( dg                                        (6.5.5)   

  
 
Where y  is the undamped frequency of vibration and  � � W&

� G )
�Z  is the damping ratio.  Note 

 
that if Y � �

�  viscous damping has no effect on stability. 
 
  It should be noted that when Y m �

�   the effect of viscous damping is to increase the critical  
 
time step of conditionally stable Newmark methods.  In the case of Rayleigh damping � is 
 
determined by y.  The explicit central difference mehod generally results in considerable 
 
savings in computing cost  when compared with the linear acceleration and Fox-Goodwin 
 
methods.  The average acceleration method is one of he most effective and popular implicit 
 
techniques used for structural dynamics problems. 
 
Because the higher modes of semi-discrete structural dynamic equations are artefacts of the 
 
(finite element) discretization process and not representative of the behavior of the governing 
 
partial differential equations of motion, it is generally viewed as desirable.   And often is 
 
considered absolutely necessary, to have some form of algorithmic damping present to  
 
remove the participation of the high-frequency modal components.  At the same time it is  
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required to maintain good accuracy in the important lower modes.   
 
In the Newmark method, Y m �

�   is necessary to introduce high frequency dissipation.   
 
Unfortunately this adversely affects accuracy in the lower modes. 
 
 

 
Table 6.5.1:  Properties of the members of the Newmark family of methods [63].  

 
* Strictly speaking, @ and � tobe diagonal for the central difference method to be explicit. 

** Stability is based on the undamped case in which the damping ratio � � 0. 
*** Fourth order accuracy is achieved for the Fox-Goodwin method if � � 0. 

**** Second order accuracy is achieved if and only if � 1/2 . 
 
 
 
 
 
                                            

6.6  The Non-linear Implicit Newmark Iteration Procedure Steps 

 
 
  The steps for the non-linear Newmark implicit iteration procedure [48, 52, 63] as shown in  
 
Chart 6.6.1 are as follows: 
 

1. Set initial conditions at S � 0  for  o8 ,  o8V  and o[ 8   
 
where o8 �  
 

2. Select time step size ∆t, the Newmark parameters β=0.25 and γ=0.5 and calculate the 
 
 following constants: +j= 

�
� ∆q ' ,  +�= 

�
�∆q  ,  +�= 

�
� ∆q ,  +r= 

�
�� X 1 ,  +]= 

� 
� X 1 ,   +s=

∆q 
�  ( 

� 
� X 2Z ,  

 
+\= ∆t γ ,  and +v= ∆t W1 X γZ  
 

T
nnnnnn tftetdtctbta )](),(),(),(),(),([
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3. Form the linear matrices ,  and  and the non-linear matrices B#D ���8 and 

  B#D ���8 .  

4. Form the effective stiffness matrix:  

 #i � B#�DS G +jB@D� G +�B�D �
 
, where

 
B#�D8  � B#�D G B#D ���8 G B#D ���8 , and B#D ��� and 

  B#D ��� are the non-linear  stifness matrices.  Note that initially B#D ���8 �  B#D ���8 � 0.  
   

5. Form the effective load vector: 

             
x8*∆q � 
8*∆q  G  B@�DW+� oV 8G +r o[ 8) G B��DW+] oV 8G +s o[ 8) – B#�D8  o8     
 

6. Solve for the displacement increments  
 
deltao=#i(�
x8*∆q  
 

7. Iterate for dynamic equilibrium: 
 
a)  For i=i+1 

b)  Evaluate the (i-1)th approximation to the acceleration, velocities and displacements: 

                 o[8*∆q|(� � +jdeltao|(� X+� oV 8X+r o[ 8   
 
                 oV8*∆q|(� � +�deltao|(� X+] oV 8X+s o[ 8  
                 o8*∆q|(� � deltao|(� G o8  

             c)  Evaluate the updated (i-1)th residual force  
 
                  �8*∆q|(� � 
8*∆q X  W B@�Do[8*∆q|(� G B��D8 oV8*∆q|(�  GB#�D8 o8*∆q|(�   )     
  
              d)  Solve for the ith corrected displacement increments  
 
                   #i8 ∆o� � �8*∆q|(�    
 
              e)  Evaluate the corrected displacement increments  
 
                       deltao| � deltao|(� G  ∆o� 

              f)  Check for convergence of the iteration process:   +,�W ∆oi Z
absW  oSGdeltao� Z ≤ tolerance factor  

 
                   If ‘No’ , return to step 7a, otherwise continue 
 

8.     Return to step 4 to process the next time step.                                                    

LK ][ LM ][ LC][
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Chart 6.6.1:  Non-linear Newmark procedure flow chart. 
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Chapter7 

The Selected Blade Design 
 
 

7.1  Introduction 
 

  The design of wind turbine blades requires a set of input data that describing the geometrical 

and structural characteristics of the blade, such as blade length, thickness distribution, chord 

length distribution, blade twist, root connection, etc.  The radius of the rotor, i.e. the length of 

the rotor's blade, can be determined from the rotor's area which depends in it's value on the 

rated power of the wind turbine.  

The rated power can be calculated from the equation: 

                                                                                                         
(7.1.1)

                                            

  For example if we have a rated power 150 KW that defined at one value of wind speed 

and power coefficient.  These two values can be chosen by experience and will directly 

influence the size of the wind turbine rotor, i.e. the diameter.  However, experience has shown 

that most machines have a rated speed  around 10m/s and for small fast running 

machines lower values can be realized. Hence, for this design, = 9.5 m/s is selected. 

  The maximum power coefficient attained for an ideal wind turbine is =16/27 =59%, 

but from manufacturer data and test results of Ta'ani et al. [76], most machines of this size 

operate at = 40%., which is chosen for this design.   Also for this design, the air density is 

selected as =1.25 kg/m. 

 
 
 
 
 

ratpratrat ACVP ,
35.0 ρ=

Prat =

ratV

ratV

max,pC

pC

ρ
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7.2 Rotor Specifications and Dimensions 
 
 
  With the parameters selection of previous section 7.1, the only remaining unknown is the 

rotor's area that can be calculated from Eqn 5.1 as: 699.75 m2, and 

the diameter of the rotor  will be  29.86 m.  The wind turbine rotor consists of 

two main components, hub and blade, as shown in Fig.4.5.1.1. The hub can be rigid in the 

case of fixed pitch, or can have rotating flanges for variable pitch machines. The hub and 

flange, including axle assembly, is assigned a radius of 0.93 m, where the blade length is 

taken to be 14m as shown in Fig. 7.2.1.  

 
 

Fig. 7.2.1:  Three blade rotor assembly (adapted from [27]). 

 
  If we zoom in on Fig. 7.2.1, each of the the three blades will look like the blade shown in Fig. 

7.2.2.  The blade construction looks like that was given by Habalia and Saleh [27] but our 

present  blade is bigger and longer. 

 

,
3 20000)5.0/( CVPA ratpratrat == ρ

Ad )/4( 5.0 == π



 

 

 
Fig. 7

 
 

 
 
 
7.3  Angle of Attack  
 
  The angle of attack ( ) for wind turbine blade 

profile’s chord line and direction of the airflow wind (i.e. relative velocity) is calculated by this 

expression which is completely different from that related to 

  

where, 

 (flow angle) is the angle between the relative velocity and the rotor plane 

 (twist angle) is the angle measured relative to the tip chord of the blade

(pitch angle) is the angle between the tip chord and the rotor plane

 

α

)( pθβφα +−=

φ

β

pθ

120 

 

Fig. 7 .2.2: Blade shape and dimensions. 

for wind turbine blade station (or airfoil) is the angle between the 

profile’s chord line and direction of the airflow wind (i.e. relative velocity) is calculated by this 

expression which is completely different from that related to the helicopter

(flow angle) is the angle between the relative velocity and the rotor plane 

(twist angle) is the angle measured relative to the tip chord of the blade

(pitch angle) is the angle between the tip chord and the rotor plane 

 

is the angle between the 

profile’s chord line and direction of the airflow wind (i.e. relative velocity) is calculated by this 

helicopter [77, 78]:  

(flow angle) is the angle between the relative velocity and the rotor plane  

(twist angle) is the angle measured relative to the tip chord of the blade 
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Fig. 7.3.1:  Flow around an airfoil section. 

 
  The angle of attack ( ) for a wind turbine may be determined by the coefficient of lift and 

drag.  The design angle should be the angle where the lift is the biggest, and the drag is the 

smallest.  A rotor blade will stop providing enough lift once the wind hits at a steeper .  The 

rotor blades must therefore be twisted to achieve an optimal  throughout the length of the 

blade.  Assume that the tip pitch angle  is zero, then  will be equal to  .  Note that the 

Lift diminishes and drag increases at  over 15 degrees [79].  Therefore the twisting angle 

should be chosen in a way to optimize  in such a way to be high but not exceeding the stall 

angle.  Considering W, the induced velocity constant we can easily find from Fig. 7.3.1 that if 

the rotational speed grow, will reduce the flow angle  where the blade needs to be 

twisted to keep  optimized. 

α

α

α

pθ α βφ −

α

α

rω φ

α
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Fig. 7.3.2:  Velocity and forces at a blade element at radius r [27] 

 

  From the velocity triangle in Fig. 7.3.2 and as explained by [27, 80], the twist angle  is large 

near near the root, where the rotational speed( is  low and small at the tip where the 

rotational speed is high.  This situation suggests a match between the twist and rotational 

speed, since the relative wind velocity is 

 

The procedure is to either: 

1) fixing  and searching for the optimum twist or  

2) fixing  and searching for the optimum  

The choice number one is better because it is easier for designing the gear and the generator.   

Blade rotational speed was chosen to be 75 rpm. As a first estimate of the twist, we use the 

equation for twist of the zero lift line: 

                                                    (7.3.1) 

where  is the angle of attack at the blade’s tip and  is a constant such that  > 0. 

 can be calculated from the velocity triangle shown in Fig. 7.3.2 as follows: 

β

)Ω= rVt

W

rUW Ω+=

Ω β

β Ω

tα k k

tα
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  Knowing that  the angular velocity rad/sec we obtain for example the 

rotational tip speed   Just for an example, taking a mean free stream wind 

speed of   which is usually taken as a design wind speed [27], then from Fig. 7.3.2, 

we get     

Implies,    that is applicable at tip blade station only.                      

  Consequently, we may have different blade’s  twist angle and different blade’s flow angle 

value  at each station of the blade since the value of r ( the distance to the station under 

consideration) is different.  This means that  will be different for each station of the blade 

under consideration. 

 

 

7.4  Airfoil Profile Properties 
 
  The rotor blade aerodynamical design is a key element in determining the efficiency of the 

wind turbine.   It is crucial sometimes in a optimum rotor blade design to select one or more 2D 

airfoil sections to form a smooth blade profile.   A typical blade cross-sectional airfoil geometry 

is shown in Fig. 7.4.1. 

 

 

Fig. 7.4.1:   Airfoil geometry [81]. 

Ω 8575.760/75*2 s == π

./27.39 smRVt =Ω=

,/7 smU =

.1.10)2.39/7(tan)/(tan 011 === −−
tVUφ

α β−= 1.10

α



124 
 

 
 

where, 

� 1: zero lift line  

� 2: leading edge  

� 3: nose circle  

� 4: camber  

� 5: thickness  

� 6: upper surface  

� 7: trailing edge  

� 8: main camber line  

� 9: lower surface  

 

7.4.1 NACA4415 Airfoil Profile Properties 
 

  Below Table 7.4.1.1 show the NACA-4415 airfoil coordinates [82-84] where the size of the 

airfoil shape depends directly on the size of its chord.  

 
Upper Lower  

Surface Surface 

x/c y/c x/c y/c 

0 0 0 0 

1.25 3.07 1.25 -1.79 

2.5 4.17 2.5 -2.48 

5 5.74 5 -3.27 

7.5 6.91 7.5 -3.71 

10 7.84 10 -3.98 

15 9.27 15 -4.18 

20 10.25 20 -4.15 

25 10.92 25 -3.98 

30 11.25 30 -3.75 

40 11.25 40 -3.25 



 

 

50

60

70

80

90

95

100

Table 7.4 .1
 

  By plotting these coordinates, we can obtain the geometrical shape of the NACA4

as shown in Fig. 7.4.1.1 

Fig. 7.4.1.1:  Geometrical shape of 
 
 
 
  The NACA4415 Wind Tunnel Profile Coefficients Cl, Cd and Cm 

Reynolds number of  around 1,000,000 

 

-10
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50 10.53 50 -2.72 

60 9.3 60 -2.14 

70 7.63 70 -1.55 

80 5.55 80 -1.03 

90 3.08 90 -0.57 

95 1.67 95 -0.36 

100 0 100 0 

 
.1.1: NACA-4415 airfoil coordinates [82-84]

coordinates, we can obtain the geometrical shape of the NACA4

hape of NACA-4415 airfoil (plotted using Table 7.4.1.1 data)

Wind Tunnel Profile Coefficients Cl, Cd and Cm w.r.t. the angle of attack 

Reynolds number of  around 1,000,000 [83] are shown in Table 7.4.1.2.   

40 60 80

x/c

]. 

coordinates, we can obtain the geometrical shape of the NACA4415 airfoil 

 

Table 7.4.1.1 data).  

w.r.t. the angle of attack at a 

 

100 120
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Table 7.4.1.2:   Cl, Cd and Cm w.r.t. angle of attack for NACA-4415 airfoil (adapted from [83]). 

 

Chart 7.4.1.1, Chart 7.4.1.2 and Chart 7.4.1.3 show  Cl, Cd and Cm versus angle of  

attack respectively for the NACA4415 airfoil. 
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Chart 7.4.1.1:   Cl versus alpha for NACA4415 (plotted using Table 7.4.1.2 data). 
 
 

 
 

Chart 7.4.1.2:   Cd versus alpha for NACA4415 (plotted using Table 7.4.1.2 data). 
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Chart 7.4.1.3:   Cm versus alpha for NACA4415 (plotted using Table 7.4.1.2 data). 

 
 
 
 
7.4.2  S809 Airfoil Profile Properties 
 
 
  Below Table 7.4.2.1 show the S809 airfoil coordinates [33, 85] where the size of the airfoil 

shape depends directly on the size of its chord.  

 
Upper 

Surface 

Lower 

Surface 

 x/c y/c x/c y/c 

0.00037 0.00275 0.0014 -0.00498 

0.00575 0.01166 0.00933 -0.01272 

0.01626 0.02133 0.02321 -0.02162 

0.03158 0.03136 0.04223 -0.03144 

0.05147 0.04143 0.06579 -0.04199 

0.07568 0.05132 0.09325 -0.05301 

0.1039 0.06082 0.12397 -0.06408 

0.1358 0.06972 0.15752 -0.07467 

0.17103 0.07786 0.19362 -0.08447 

0.2092 0.08505 0.23175 -0.09326 

0.24987 0.09113 0.27129 -0.1006 
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0.29259 

0.33689 

0.38223 

0.42809 

0.47384 

0.52005 

0.56801 

0.61747 

0.66718 

0.71606 

0.76314 

0.80756 

0.84854 

0.88537 

0.91763 

0.94523 

0.96799 

0.98528 

0.99623 

1 

Table 7.4.2.1:  
 
By plotting these coordinates, we can obtain the geometrical shape of the 

shown in Fig. 7.4.2.1 

 

Fig. 7.4.2.1:  Geometrical shape of S809 a
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0.09594 0.31188 -0.10589

0.09933 0.35328 -0.10866

0.10109 0.39541 -0.10842

0.10101 0.43832 -0.10484

0.09843 0.48234 -0.09756

0.09237 0.52837 -0.08697

0.08356 0.57663 -0.07442

0.07379 0.62649 -0.06112

0.06403 0.6771 -0.04792

0.05462 0.72752 -0.03558

0.04578 0.77668 -0.02466

0.03761 0.82348 -0.01559

0.03017 0.86677 -0.00859

0.02335 0.90545 -0.0037 

0.01694 0.93852 -0.00075

0.01101 0.96509 0.00054

0.006 0.98446 0.00065

0.00245 0.99612 0.00024

0.00054 1 0 

0 0 0 

 
 Coordinates of S809 airfoil profile [33, 35, 

By plotting these coordinates, we can obtain the geometrical shape of the 

 
eometrical shape of S809 airfoil (plotted using Table 7.4.2.1data)

0.2 0.4 0.6 0.8 1 1.2

x/c

0.10589 

0.10866 

0.10842 

0.10484 

0.09756 

0.08697 

0.07442 

0.06112 

0.04792 

0.03558 

0.02466 

0.01559 

0.00859 

 

0.00075 

 

 

 

, 85]. 

By plotting these coordinates, we can obtain the geometrical shape of the S809 airfoil as 

 

Table 7.4.2.1data). 

1.2
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  The S809 Wind Tunnel Profile Coefficients Cl, Cd and Cm w.r.t. the angle of attack shown in 

Table 7.4.2.2.  This relations were obtained at the Delft University of Technology Low Speed 

Laboratory low-turbulence wind tunnel with a Reynolds number of 1,000,000 ,Somers [85, 86]. 

 
Angle of  

Attack Cl Cd Cm 

-1.04 0.019 0.0095 -0.0408 

-0.01 0.139 0.0094 -0.0435 

1.02 0.258 0.0096 -0.0462 

2.05 0.378 0.0099 -0.0487 

3.07 0.497 0.01 -0.0514 

4.1 0.617 0.01 -0.0538 

5.13 0.736 0.0097 -0.056 

6.16 0.851 0.0095 -0.0571 

7.18 0.913 0.0127 -0.0506 

8.2 0.952 0.0169 -0.0439 

9.21 0.973 0.0247 -0.0374 

10.2 0.952 0.0375 -0.0397 

11.21 0.947 0.0725 -0.0345 

12.23 1.007 0.0636 -0.042 

13.22 1.031 0.0703 -0.042 

14.23 1.055 0.0828 -0.0419 

15.23 1.062 0.1081 -0.0418 

16.22 1.043 0.1425 -0.0452 

17.21 0.969 0.1853 -0.0458 

18.19 0.938 0.1853 -0.0544 

19.18 0.929 0.1853 -0.0658 

20.16 0.923 0.1853 -0.0783 

 
Table 7.4.2.2:  Cl, Cd and Cm w.r.t. angle of attack for S809 airfoil [33, 35, 85].  

 
 
  Using the linear interpolation and extrapolation techniques, we can extend the values of 

coefficients Cl, Cd and Cm w.r.t. alpha of Table 7.4.2.2 to include all the required coefficients 

for other required angle of attack values as shown. 
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Linear interpolation 
 

           (7.4.2.1) 
` 
Linear extrapolation 
 

(7.4.2.2) 
 

  Plotting the corresponding Cl w.r.t alpha, Cd w.r.t. alpha and Cm w.r.t. alpha, for the S809, 

we obtain chart 7.4.2.1, chart 7.4.2.2  and chart 7.4.2.3 respectively.  

 

 
 

Chart 7.4.2.1:  Cl versus alpha for S809 (plotted using Table 7.4.2.2 data). 
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Chart 7.4.2.2:   Cd versus alpha for S809 (plotted using Table 7.4.2.2 data). 
 
 

 
 

Chart 7.4.2.3:   Cm versus alpha for S809 (plotted using Table 7.4.2.2 data). 
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  By interpolating or by looking precisely at these charts we can easily obtain the associated 

values of Cl, Cd and Cm at each station of the our blade by only knowing the angle of attack.   

And by knowing the values of Cl, Cd and Cm, and some other necessary blade properties,  I 

will able obtain the aerodynamic loading as Fx, Fy, Fz, Mx, My and Mz.  

  The angle of attack  definition and its relation to other important angles will be discussed in 

next section because understanding this is so important for the blade aerodynamic loading 

calculation.   

 

 
 
7.5  Blade Different Airfoil Geometrical Properties 

 
  Considering the present blade of 14m length, as shown in Fig 7.5.1, where the blade is 

divided into 15 stations.   Each of two consecutive stations is separated by 1m.    

 

 
 

Fig. 7.5.1:  Blade different airfoil profiles. 

 
  The blade profile at each of these stations is shown in Table 7.5.1, where the NACA4415 

airfoil profile was considered for all stations that linearly increasing in cross section from station 
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1 to station 2 and linearly decreasing in cross section from station 2 to station15 (at tip of the 

blade). 

 

Station(m) 

 

Chord(m) Thickness(m) 

 

Profile 

Airfoil station Twist angle 

x-location(m) (degree) 

1 0 0.542 0.11382 14 NACA4415 

2 1 1.467035 0.30807735 13 NACA4415 

3 2 1.401105 0.29423205 12 NACA4415 

4 3 1.35518 0.2845878 11 NACA4415 

5 4 1.269245 0.26654145 10 NACA4415 

6 5 1.2033 0.252693 9 NACA4415 

7 6 1.137385 0.23885085 8 NACA4415 

8 7 1.071455 0.22500555 7 NACA4415 

9 8 1.005525 0.21116025 6 NACA4415 

10 9 0.939595 0.19731495 5 NACA4415 

11 10 0.873665 0.18346965 4 NACA4415 

12 11 0.807735 0.16962435 3 NACA4415 

13 12 0.741805 0.15577905 2 NACA4415 

14 13 0.675875 0.14193375 1 NACA4415 

15 14 0.675875 0.14193375 0 NACA4415 

 
Table 7.5.1:  Blade stations airfoil profile properties. 

  

 
  By knowing or by computing the angle of attack ( ) at each station by using   , as 

was discussed in section 7.3, then we can select  the associated Cl, Cd and Cm coefficients at 

each station of the blade by using the charts 7.4.1.1, 7.4.1.2 and 7.4.1.3.  Some authors 

assume that  change in relation with the blade azimuth angle as shown in Fig. 7.5.2 [87] 

where inboard alpha is higher than the outboard alpha and alpha incrementaly decreases from 

azimuth angle zero to azimuth angle 180 and then incremently increases from azimuth angle 

180 degrees to azimuth angle 360 degrees to go back to the same value that it was at zero 

degree .    

 

α α βφ −=

α
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Fig. 7.5.2:   Angle of attack versus Azimuth angle [87]. 
  
 
  Other authors might model the wind gust as a sinusoidal change of the angle of attack ( ) 

where it changes as a function of time, for example,  = 15 + 10 sin 6t as was given by 

references  [28, 88] which is in agreement of the present author’s assumption.   

  Consider the blade rotational speed �8|, wind flow angle 	, blade relative speed �>;9|  as given  
 
in Eqns 7.5.1, 7.5.2 and 7.5.3 respectively. 
 

                                                               �8| � Ω U|                                           (7.5.1) 
 

                                                          	 � atan WU/�8|Z                                     (7.5.2) 
 

                                                        �>;9| � �5� G �8|��j.s
                                 (7.5.3) 

 
 
where �, Ω and U are defined as given in Table 7.5.2. 
 

Air density (rho)  kg/m3 
1.25 

rpm 43 

Angular speed (omega) = 2 rpm/60 4.5029 

Mean free stream wind speed U- m/s 25 

 
Table 7.5.2:  Wind properties. 

  
 

α

α

ρ

Ω π
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  By taking the values of � ( twist angle) as given in Table 7.5.1, the given wind parameters as 

listed in Table 7.5.2, we can calculate the values �8|, 	 and �>;9| using Eqns 7.5.1 , 7.5.2 and 

7.5.3 and then we can calculate the angle of attack using,  , at each of the given 

stations as shown in Table 7.5.3. 

Station 

(m) 

 Angular 

velocity 

omega 

2*pi*rpm 

Rotational  

speed Vti 

(m/s) 

 

Wind 

relative 

 velocity 

Vreli 

(m/s) 

   

x-location 

(m) 

Flow angle 

(radian) 

Angle of 

Attack 

(degree) 

1 0 4.5029 0 1.5708 25 40 

2 1 4.5029 4.5029 1.3926 25.4023 30.7895 

3 2 4.5029 9.0059 1.225 26.5727 22.1892 

4 3 4.5029 13.5088 1.0754 28.4164 14.6153 

5 4 4.5029 18.0118 0.9465 30.8127 8.2283 

6 5 4.5029 22.5147 0.8377 33.6439 2.9941 

7 6 4.5029 27.0177 0.7466 36.8097 -1.2213 

8 7 4.5029 31.5206 0.6705 40.2312 -4.581 

9 8 4.5029 36.0236 0.6067 43.8486 -7.2398 

10 9 4.5029 40.5265 0.5527 47.6172 -9.3304 

11 10 4.5029 45.0295 0.5068 51.5039 -10.9613 

12 11 4.5029 49.5324 0.4674 55.4839 -12.219 

13 12 4.5029 54.0354 0.4333 59.5384 -13.1719 

14 13 4.5029 58.5383 0.4036 63.6533 -13.8741 

15 14 4.5029 63.0413 0.3775 67.8174 -14.3684 

 
Table 7.5.3:   Angle of Attack Values at All Considered Stations. 

 
 
 
 
 

7.6  Calculation Procedure of the R -Load vector at Each Airfoil 

Station for every time step 
 
At each airfoil station and due to the applied aerodynamic pressure, the following four 

components of loading can be calculated as shown in Fig. 3.6.1 and Fig. 7.6.1.1:   

� Fx : centrifugal force acting on the x-direction or along the length of the blade. 

� Fy : force acting on the y-direction of the blade. 

α βφ −=
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� Fz : force acting on the z-direction of the blade. 

� Mx : torsion around the x-axis, mainly due to the pitch moment plus moments due to Fy and Fz 

The moments My and Mz are found as a result of applying the above four components of 

loadings i.e. we don’t have to calculate My and Mz. 

� My is the bending moment acting in y-direction due to force Fz. 

� Mz is the bending moment acting in z-direction due to force Fy. 

  Table 7.6.1.1 show the forces and moments calculated at each of the 15 stations using Eqns 

of section 3.6 for the given values of the angle of attacks that were computed earlier and listed 

in Table 7.5.3. 

 

 
 

Fig. 7.6.1.1:  Aerodynamic Forces and Moments [27]. 
 
 

Station # 
or location  

Angle 
of 

Attack 
(degree)  Cl Cd Cm L D 

Pitch 
Moment 

(Nm) 
Fx 
(N) 

Fy 
(N) 

Fz 
(N) 

Mx 
(Nm) 

1 (at x=0) 40.0385 2.66 0.57 -0.665 563.2 120.6797 -76.3098 0 517.2 253.3 21.6703 

2 30.8234 2.3376 0.5009 -0.5844 1383.1 296.371 -507.2511 2.1376 1154 817.5 -220.2619 

3 22.2187 2.0366 0.4364 -0.5092 1259.3 269.851 -441.1045 3.8911 927.9 893.1 -602.671 
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4 14.6409 1.7715 0.3796 -0.4429 1193.7 255.7982 -398.4579 5.2877 760.3 955.2 -109.8173 

5 8.2507 1.548 0.3317 -0.387 1165.9 249.8318 -369.9474 6.3544 634.2 1009.7 -84.6115 

6 3.0139 1.3732 0.3 -0.3332 1169 255.3842 -341.3525 7.1184 537.1 1069.2 -58.5652 

7 -1.2037 1.2608 0.3 -0.263 1214.4 288.9575 -288.0977 7.6067 455.3 1162.3 -0.9592 

8 -4.565 1.1712 0.3 -0.207 1269.4 325.1634 -240.3757 7.8466 384.2 1252.8 48.3634 

9 -7.2252 1.1003 0.3 -0.1627 1329.5 362.4979 -197.6454 7.8651 321.9 1339.9 89.7716 

10 -9.3169 1.0445 0.3 -0.1278 1390.8 399.4572 -159.9229 7.6892 267.3 1422.1 123.0573 

11 -10.949 1.001 0.3 -0.1006 1450 434.5373 -127.3623 7.3462 220 1497.6 147.8931 

12 -12.207 1.0244 0.2732 -0.0927 1592 424.5552 -116.3497 6.8631 253.5 1628 159.6402 

13 -13.16 1.0434 0.2522 -0.087 1714.9 414.5148 -106.0269 6.267 283.3 1741.4 164.2314 

14 -13.863 1.0575 0.2368 -0.0828 1809.9 405.2416 -95.7305 5.585 306.3 1829.3 161.8792 

15 (at x=L) -14.358 1.0674 0.2259 -0.0798 1871.4 39 6.0582 -85.3276 4.8443 321.7 1885.6 153.0529 

 
Table 7.6.1.1:  Aerodynamic forces and moments at different stations in and about x,y and z 

directions. 
  
 
  This will enable us to calculate all the interpolated force functions that represent all the station 

forces ,  and  and to calculate all the interpolated moment function of all the 

station moments  as a function of x ( the coordinate along the blade length) using the 

MATLAB code of the present research.   

  The aerodynamic load vector tR  ( i.e. the right side of the dynamic equations of motion) can 

be computed using the following Eqn 7.6.1. 

 

 

)(xFx )(xFy )(xFz

)(xM x
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                    (7.6.1) 
  
 
  Specifying , for example, that m= 1 to M=2, implies that 2

1 )/()( Lxx =φ  and 3
2 )/()( Lxx =φ  

since the given polynomial expansion is 1)/()( += m
m Lxxφ  as was discussed in section 3.5.   

  It should be noted that all the above steps of the calculation of the load vector tR have to be 

repeated for each of the given time steps since tR is a function of the angle of attack ( which is 

function of the given time steps) at the given blade stations. 
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Chapter 8 

Implementation and Numerical Results 

 

 

8.1  Introduction 

 
  Consider that the present blade for both examples of the next two sections 8.2.1 and 8.2.2 

share the following assumptions: 

 
� The blade has a 14 m length and a Young’s modulus of 17 GPa.  

� The blade is clamped at one end (cantilever) and submitted to non-uniformly distributed 

aerodynamic forces (described above), to centrifugal forces and gravitational forces moving 

with an angular velocity Ω of 4.5029 rad/s.  

� Wind turbine rotor is in upwind configuration.  

� The blade airfoil section is of NACA4415 type and is wise-piece variable along the 

radius. 

� The nacelle is adjustable with a yaw angle that varies so as to always align the 

wind velocity   normal to the rotation plan of the blade, so that the yaw error can be 

neglected. 

� The connection between the blade and the hub is rigid. 

� The deformation is large. 

�  The analysis of the blade’s response concerns the study of the behavior of the blade 

submitted to a gust of wind of 25 m/s speed during 3 s. The direction of the gust is 

considered parallel to the axis of the hub (rotor).  

� The wind’s attack angle to the blade varies as a function of time, according to α = 15 + 10 

sin 6t .  This assumption means that the variation of the gust excitation is modeled by the 

variation of the attack angle.   
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  It should be noted that the blade share the same geometry of NACA4415 as the blade for the 

linear case example ( section 8.2.1 ) that was studied by Younsi et al. [28]. 

But for the nonlinear example case ( section 8.2.2 ), the blade is different from that given by 

Younsi et al. [28] by the following differences: 

� The nonlinear blade example has a pretwisted geometry as mentioned above.  

� The nonlinear blade example has a lower material density. 

� The nonlinear blade example considers the large deformation case while Younsi et 

al. [28] considered only the small deformation case.  

 
 

 
8.2  Numerical Application and Results 

 

 

8.2.1  Linear Small Deformation Case Example  

  Consider an untwisted 14 m length blade of a Young’s modulus of 17 GPa and a material 

density of 600 Kg/m3, as listed in the below Table 8.2.1.1, that behave in a linear small 

deformation. 

 

Table 8.2.1.1:  Blade properties for the linear example. 

  It should be noted again that we are considering the same problem that was solved by Younsi 

et al. [28] so that we can compare our solution by their solution.  The application concerns the 

study of the behavior of the blade submitted to a gust of wind of 25 m/s speed during 3 

seconds.  Fig. 8.2.1.1 shows the main dimensions of the blade, the line of the centers of 

gravity as well as the line of aerodynamic centers. 
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Fig. 8.2.1.1:   Blade geometry and neutral axis line as given by Younsi et al. [28] 
 
 
  The aerodynamic forces Fx, Fy and Fz and the aerodynamic moments Mx, My and Mz were 

calculated at all the given 15 stations (or nodes) using the formulas listed in section 3.6 and 

section 7.6 and input to the Ls-Dyna model using Hypermesh as shown in Fig. 8.2.1.2.   

 

Fig. 8.2.1.2:  Forces and Moments at all the given 15 Stations. 

  While for the MATLAB code (present research code), all these aerodynamic forces and 

moments were interpolated to have them as  function of x ( the coordinate along the length of 

the blade) and this process have to be repeated for each of the given time steps in order to 

obtain the R-load vector per Eqn 7.6.1 (as was explained in section 7.6).  By having all the 

derived linear mass, dynamic and stiffness matrices (that derived in section 5.2) and the 
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calculated R-load vector at each time step, the author was able to solve the dynamic equation 

of motion( Eqn 6.1.1a) using the MATLAB code and the linear Newmark iteration scheme (that 

was explained in section 6.4) for the vibration response at all the given blade stations.  Below 

in Fig. 8.2.1.2, the displacements and rotations at the blade’s tip are shown: 

 
 

Fig.  8.2.1.2:  Blade tip linear displacements and rotations.  
(a) Displacement in x-direction; (b) Displacement in y-direction; 

                          (c) Displacement in z-direction; (d) Rotation about y-direction; 
(e) Rotation about z-direction; and (f) Rotation about x-direction 

 

  Fig. 8.2.1.3 shows a two-plot comparison of the blade’s tip displacement in the vertical 

flapwise direction between the present work and that of Younsi et al. [28] for the same blade 

problem.  In Fig. 8.2.1.3 (a), the peak and stabilized displacements are 1.75m and 1.021 m 
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respectively while the peak and stabilized displacements values in Fig. 8.2.1.3 (b) are 1.68 m 

and 0.92 m.  We observe that both plots have the same kind of trend but the current study has 

lower peak and steady state displacements.  Current work not only shows an agreement with 

the hypothesis of the linearity of the solution introduced by Younsi et al. but also has lower 

displacement values.  This is due to the fact of the inclusion of all the loadings and their 

couplings and the blade’s cross-sectional warping.  Note that the vertical direction is along the 

z-axis in this work while it is along the y-axis in the work of Younsi et al. [28] .  

 
Fig. 8.2.1.3:   Comparison of (a) Younsi et el. published work [28].  

                (b) present work.  
 
 
 
 

 

8.2.2  Non-linear Large Deformation Case Example  

 
  Consider a pretwisted 14 m length blade of a Young’s modulus of 17 GPa and a material 

density of 500 Kg/m3, as listed in the below Table 8.2.2.1, that behave in a nonlinear large 

deformation. 
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Table 8.2.2.1:  Blade properties for the non-linear example. 

 

  The present blade is modeled as a combination of 14 beams (each of 1m length) separated 

by 15 main nodes or stations. The  pre-twist angles for these 15 stations as going from the hub 

to the tip of the blade are respectively equal to 14,13,12,11,10,9,8,7,6,5,4,3,2,1 and 0.   

It should be noted that the pretwist of the present blade change the values of the geometrical 

properties at each of the given blade stations from those calculated by Younsi et al. [28]. 

  The aerodynamic forces and moments were calculated and then interpolated as a function of 

the lengthwise x of the blade using the same method of the linear example of previous section 

8.2.1.   By having all the linear mass, dynamic and stiffness matrices (that derived in section 

5.2) and the nonlinear stiffness matrices (that derived in section 5.3) and the calculated R-load 

vector at each time step, the author was able to solve the nonlinear dynamic equation of 

motion (6.1.1b) using the  MATLAB code and the nonlinear Newmark iteration scheme (that 

was explained in section 6.6) for the vibration response at all the given blade stations.  The 

displacements and rotations were computed at all the 15 blade stations. (where node# 15 as 

mentioned earlier is the location of the blade’s tip).    

  The obtained solution was compared by the the same blade’s response solution using the ls-

Dyna code that was built using the same blade’s material and geometrical properties with the 

same applied loading across the blade that considered for the Matlab code.    

  Fig. 8.2.2.1, Fig. 8.2.2.2 and Fig. 8.2.2.3 show the displacements at the blade’s in x, y and z-

directions respectively, using the current study Matlab code and the ls-dyna code.  And Fig. 

8.2.2.4, Fig. 8.2.2.5 and Fig. 8.2.2.6 show the rotational displacement at the blade’s tip about 

the x, y and z directions respectively, using the Matlab code and the ls-Dyna code.  
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Fig. 8.2.2.1:  Nonlinear plots comparison for tip displacement in x-direction. 

 (a) Displacement in x-direction using present work;  
(b) Displacement in x-direction using Ls-Dyna.  

 
 

 
Fig. 8.2.2.2:  Nonlinear plots comparison for tip displacement in y-direction. 

 (a) Displacement in y-direction using present work;  
(b) Displacement in y-direction using Ls-Dyna.  

 
 



147 
 

 
 

 
Fig. 8.2.2.3:  Nonlinear plots comparison for tip displacement in z-direction. 

 (a) Displacement in z-direction using present work;  
(b) Displacement in z-direction using Ls-Dyna. 

 
   

 
Fig. 8.2.2.4:  Nonlinear plots comparison for tip rot. displ. about x-direction. 

 (a) Rotational displacement about x-direction using present work;  
(b) Rotational displacement about x-direction using Ls-Dyna.  
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Fig. 8.2.2.5:  Nonlinear plots comparison for tip rot. displ. about y-direction. 

 (a) Rotational displacement about y-direction using present work;  
(b) Rotational displacement about y-direction using Ls-Dyna.  

 
 

 
Fig. 8.2.2.6:  Nonlinear plots comparison for tip rot. displ. about z-direction. 

 (a) Rotational displacement about z-direction using present work;  
(b) Rotational displacement about z-direction using Ls-Dyna.  
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Chapter 9 

Conclusion and Related Future Work 

 

 

9.1  Conclusion 
 
  For the linear example case, the present study plot of the displacement in the vertical 

direction at the blade’s tip agrees agrees as far as trend with the plot of the same displacement 

that were given by Younsi et al. study [28] even that both plots has different peak values.  The 

advantage of the present study method on Younsi et al. study [28] is the accuracy of the 

obtained displacements and rotations solution due to the inclusion of the cross-sectional 

warping of the blade and the consideration of all the aerodynamic loads and all the possible 

load couplings that acting on the blade.  The other advantage is the capability of the present 

research method of solving the displacements and rotations for any pretwisted blade while 

Younsi et al. [28] study was limited to the untwisted blade case.  It is observed that there is a 

delay of about 3 seconds before the rapid increase in deflection in Fig. 8.2.1.3 (a) compared to 

Fig. 8.2.1.3 (b).  This delay is due to the additional aerodynamic interactions that caused by 

the CFD code by which Younsi et al. study [28] performed the aerodynamic load prediction.  

  For the nonlinear example case, the nonlinear large deformation mathematical model for the 

present 14 m pretwisted wind turbine blade lead to have a set of higher order terms that 

contribute to the formation of two additional non-linear stiffness matrices.   

  We observe in Fig. 8.2.2.3 (a) and Fig. 8.2.2.3 (b) that the steady state blade’s tip nonlinear 

displacement in the vertical z-direction for both codes (the present study Matlab code and the 

Ls-Dyna code), is about 4m which is about 28% of the 14 m (length of the blade).   This is in 

agreement with the hypothesis introduced by Younsi et al. [28] that displacement is considered 

to be nonlinear if exceeds 10% of the length of the blade.    
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  We also observe that even we have a similar trend of all the displacement and rotation plots 

for both codes solutions as shown in Fig. 8.2.2.1  to Fig. 8.2.2.6, the peak and/or the steady 

state values are vary in many of these plots.  For example, in Fig. 8.2.2.3 (a), the peak 

displacement using the present study Matlab code is 6.2 m while in Fig. 8.2.2.3 (b), the peak 

displacement using the ls-dyna is 7.3 m.   This variation is normal and it is due to the inclusion 

of the following additional factors in the author’s present research mathematical model (Matlab 

code) that are not included in the Ls-Dyna code: 

� The additional aerodynamic load couplings. 

�  The two additional nonlinear stiffness matrices of the dynamic equations of motion due to 

the nonlinear large deformation assumption. 

The following are number of contributions for the present research: 

�   A new simple method that based on the airfoil wind tunnel aerodynamic parameters 

collected data (not based on CFD or the Bezier interpolation scheme) to calculate the R 

load vector. 

�  The mathematical formulation of this present research is capable of generating the 

displacements, velocities and acceleration at any point on the blade for small or large 

displacement for any duration of the aerodynamic loadings ( for example, it can run for 

days) while Ls-dyna and similar current commercial softwares has a limited input data 

storage and the aerodynamic load data has to be entered manually. 

�   The present research MATLAB code is the only current code the is able to update the 

angle of attack by the value of the twisting rotation phi about the x-axis ( along the 

length of the blade). 

� calculation of the geometrical properties of any given blade airfoil profiles using a new 

created  macro to be used within Hypermesh. 
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�  The inclusion of warping and all the possible aerodynamic loadings and their couplings 

beside the rotary inertia, shear deflection.  

�  No need to send my files to the Grid or to Gigastar in order to solve as happening in 

case of current dynamic codes.  

  
 
 
 

9.2  Related Future Work 
 
 
My plan is to extend the present wind turbine blade research to include the following 

improvement to my present research MATLAB code: 

� Add  the capability to solve blades with plastic and composite materials.  

� Improve the code to be able to compute the natural frequencies and plot the mode 

shapes for any given blade inputs. 

�    To be able to identify the rpm(s) of the blade that the blade designer need to avoid in 

order to avoid any possible excitation of the blade natural frequency. 
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APPENDIX A:  DERIVATION OF THE DIFFERENT STRAIN ENERGIES 

                    

A. 1.  Axial-Torsional Strain Energy Including Warping Effect 
 
 
  Two common assumptions are made for the coupled extension-torsion problem: first, that 

deformation parallel to the cross-sections is negligible, and second, that axial deformation 

consists of bulk displacement u and cross sectional warping.   

Airfoil warping in wind turbine blade application is assumed to be constant throughout the 

cross section (or station) and vary in value between the different stations i.e. �W�, $, %Z � �W�Z 

only.    

To derive the axial-torsional strain energy for the pre-twisted Timoshenko beam of Fig. 3, we 

have to start with the Green’s strain-displacement relation in order to express the strain energy 

in terms of large displacement fields [22]: 

 
 
This implies that the resulting strain components are: 
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where , as stated earlier, is the angle of elastic rotation additional to the pre-twist angle .   

This implies that: 
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It should be noted that keeping the following high order terms:  

[ 2)(
x

u

∂
∂

 + 22θr  ] 

in the below derivation is an important contribution of the present work.  

Expanding, implies: 
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The result is the axial-torsional strain energy which is in agreement with  [22, 36]
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A. 2.  Bending-Bending-Shear Coupling Strain Energy  
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including the effect of deflection due to transverse shear in two planes i.e. the case of  

Timoshenko beam [18, 21, 40] is:
 

 

= ( 2
1θ ′  + 2  + 2

2θ ′ ) +  +  }dx     

                                                                                                                                                 (A.2)                              
                                                                                                                                                                    
 
where, 

 W ′ Z : means derivative w.r.t. x  

k  : is the shear correction factor 

kGA: is the shear rigidity  

 : are the second moment of area of the cross-section through the centroid about the 

 and  axes respectively as shown in Fig. 3.2.1. 

 : is the product moment of area of the cross-section about the  and  axes as 

shown in Fig. 3.2.1. 

               

                                                                                      

A. 3.  Bending-Torsional Coupling Strain Energy     

 
  The blade structure will undergo torsional deformation as it flexes because of its asymmetrical 

airfoil cross-section where the shear centres axis and the centroid centres axis are not 

coincident [21, 39] :  
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where P is the axial force.     
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Appendix B:  DERIVATION OF THE DIFFERENT KINETIC ENERGIES 

                         

       B. 1.  Kinetic Energy due to Axial-Torsional Effect  
 
  To express the axial-torsional kinetic energy in terms of the displacement field, the velocity 

vector of each point in the beam is given by: 
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and dot means derivative w.r.t. time.

                                                                              

The cartesian unit vectors
 
are transformed to cylindrical unit vectors ,  

where  
 
and  . 

The kinetic energy due to axial torsional coupling effects is given by  
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Substituting of from Eq. (B. 1) into Eq. (B.1.1) results in the following equation [22] : 
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)ˆzez =φê +− yez
r

ˆ(
1

)ˆzey

dVRT
V

2

1 2

1 •

∫∫∫= ρ

•

R

[)(
2

1
1 xT

V

ρ∫∫∫= +
• 2

u
•

u2 +
•

ψθ +
•

2
2

ψθ ] dVr
2

2
•

φ

[)(
2

1

0

x
L

ρ∫
•

u2 )(

•

∂
∂

x

φ
ψ

2ψ



156 
 

 
 

B. 2.  Kinetic Energy due to Bending-Torsion including Centrifugal 

Effect 
 
  The kinetic energy due to bending-bending-torsional coupling including centrifugal effect by 

keeping the important higher order terms up to 4th order is [18, 21, 24, 89]
 
: 
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where Ω and Ω  is the rotational speed and the angular velocity of the blade respectively.
 

 

 

 

 

B. 3.  Kinetic Energy due to Rotary Inertia Effect 
 
The kinetic energy due to rotary inertia effect as given by Carnegie [18] is: 
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APPENDIX C:  DERIVATION OF  
m

Total

q
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Considering the total strain energy Eq. (2) shown in section 2.1, implies: 
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VALUES OF D’S AS FUNCTION OF X   
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ABSTRACT 
 

LINEAR AND NON-LINEAR DEFORMATIONS OF A WIND TURBIN E BLADE 
CONSIDERING WARPING AND ALL AEROELASTIC LOAD COUPLI NGS 
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May 2012 
 

 
Advisor: Dr. Emmanuel Ayorinde 
 
Major: Mechanical Engineering 
 
Degree: Doctor of Philosophy 
 
 
  The structural dynamics behavior of the blade of a horizontal axis wind turbine that reacts to the 

different components of the aerodynamic loading were studied by many researchers using different 

approaches and assumptions.  In the present research, the author considered all the extensional, 

torsional and flexural loadings acting on the blade with their couplings, variable airfoil cross sections 

with warping effects, shear deflection, rotary inertia and with or without blade’s pretwist for both the 

linear small deformation case and the nonlinear large deformation case.  To the best knowledge of the 

author the simultaneous inclusion of all these factors has not been done before.  The “assumed modes 

method” was used, in which displacements are assumed to be an expansion of products of time-step 

dependent constants and polynomial functions of x (where x is the coordinate along the length of the 

blade) that satisfy the boundary conditions at the fixed end where x=0 (hub of the blade) and at the free 

end where x=L (tip of the blade).  The mass matrix, linear and nonlinear stiffness matrices and the load 

vector (function of time step) of the dynamic equations of motion are deduced from the Lagrange 

equations of motion that were derived step by step.  The steps of the linear and nonlinear Newmark 

implicit iteration schemes used for solving the linear and nonlinear dynamic equations of motion 

respectively were explained in detail.  Numerical implementation examples for both linear and 

nonlinear cases were demonstrated for a 14m long blade with and without pretwisting that has specific 
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material and geometrical properties and a decreasing NACA4415 airfoil cross section from hub to tip.  

For both of the linear and nonlinear examples, the aerodynamic loadings (lift, drag and pitch moment) 

and the nonlinear stiffness matrices were computed at each time step utilizing a time dependent set of 

parameters such as angle of attack, material and air density, wind and blade speed, flow angle, yaw and  

pitch angles.  Then the unknown displacements �, �  and �  in the directions of x, y and z axes 

respectively, the bending rotations �� and ��  about the y and z axes respectively and the torsional 

rotation 	 about the x axis, were solved using the linear and nonlinear Newmark  implicit iteration 

schemes.  The linear case displacement result plots are shown to agree with the work of Younsi et al.  

The nonlinear case displacement result plots are shown to agree with the Ls-Dyna code.     

Keywords: aeroelasticity, Bézier surfaces, gust of wind, Lagrange equations, nonlinear Newmark 

procedure, wind turbine blade aerodynamic loadings 
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