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PREFACE

A wind turbine blade similar to a helicopter rotor blade has the structure of a pretwisted beam
of a variable airfoil asymmetrical cross-section. A number of approximate theories have been
developed by different researchers to study the dynamic behavior of the blade of a horizontal
axis wind turbine that reacts due to axial, torsional and flexural aerodynamic loadings and to
the coupling interactions among all of these loadings. The new contribution in this present
research is the consideration of all the extensional, torsional and flexural loadings with their
couplings, variable airfoil cross sections with warping effects, shear deflection, rotary inertia
and with or without blade’s pretwist for both the linear small deformation case and the
nonlinear large deformation case. To the best knowledge of the author the simultaneous
inclusion of all these factors has not been done before. The mass matrix, linear and nonlinear
stiffness matrices and the load vector (function of time step) of the dynamic equations of
motion are deduced from the Lagrange equations of motion that were derived step by step.
The steps of the linear and nonlinear Newmark implicit iteration schemes used for solving the
dynamic equations of motion respectively were explained in detail. Numerical implementation
examples for both linear and nonlinear cases were demonstrated for a 14m long blade with
and without pretwisting that has specific material and geometrical properties and a decreasing
NACA4415 airfoil cross section from hub to tip. For both of the linear and nonlinear examples,
the aerodynamic loadings (lift, drag and pitch moment) and the nonlinear stiffness matrices
were computed at each time step utilizing a time dependent set of parameters such as angle of
attack, material and air density, wind and blade speed, flow angle, yaw and pitch angles.
Then the unknown displacements u, v and w in the directions of x, y and z axes respectively,
the bending rotations 6, and 6, about the y and z axes respectively and the torsional rotation ¢
about the x axis, were solved using the linear and nonlinear Newmark implicit iteration

schemes.
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NOTATIONS USED

) denotes differentiation with respect to time t

() denotes differentiation with respect to x

m, p mass per unit length and material density respectively

g gravitational acceleration

AL area at any cross section and length of the beam respectively

E, G effective Young’s and Shear Modulii at any cross section respectively

X coordinate distance measured along the length of the blade from root

u bulk or logitudinal displacement on line of centre-of-flexure where y and z equal
to zero

u, longitudinal displacement of particles on the line of centroids

u,v,w displacements in x, y and z directions respectively

u displacement field

Y. Y dynamic displacement of flexure centre & centroid respectively in yx plane

Z,7Z dynamic displacement of flexure centre & centroid respectively in zx plane

YY,.ZZ Y, Y, zZ  coordinate axes through centre of flexure and centroid respectively

YZ:Y,Z coordinates measured from centre of flexure and centroid respectively

[, second moment of area of cross section about Y, ¥, and z z axes respectively

yy! lzz

. product moment of area of cross section about Yy, y, and z z axes respectively
| 4s polar mass moment of inertia per unit length about centre-of-flexure axis

I, orl, polar mass moment of inertia per unit length about centroid axis

Y, Z, distance between centre-of-flexure and centroid in v,z direction respectively
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R, etc
ext
m,n,k,|

B.C.

beam pre-twisted angle

bending rotation about the y,z axes (or in zx, zy planes) respectively
blade pre-twist angle at x=L

dynamic torsional deflection

stagger angle

rate of pre-twist assumed along the beam length
centroid center of mass axis ( loci of the mass centre of the cross section)

center of elasticity or flexure axis ( loci of the shear center of the cross section)

bending ( flexural) rigidities
coupled bending ( flexural) rigidity and torsional rigidity respectively

coupled flexure-torsional rigidities

cross section shear or shape correction factor and shear rigidity respectively
cross sectional warping and Prandtl stress function respectively

displacement of centroid in 7 direction

coordinate axes through the centroid of the blade at root, tangential and normal
to the plane of disc rotation respectively

angular velocity

disc radius

R/L,etc

external
integers that vary between 1 & M,N,K,L respectively

boundary condition
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Chapter 1

Literature Review on Blade Design & Research Objectives

1.1 Introduction

The sizes of wind turbine mills have increased significantly over the last two decades [1], as
shown in Fig. 1.1.1, and will continue to do so in the coming few years to reach soon a rated
power output in the range of 8-10MW and a rotor diameter about 180 m. Nowadays, the

largest wind turbines have a rated power output of 5SMW and rotor diameters of 126 m.

Evolution of U.S. Commercial Wind Technology
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Fig. 1.1.1: The wind turbine growth [1].

The driving motivation behind this size increase is that larger wind turbines have larger
energy output per unit rotor area due to increased mean wind velocity with height. Moreover,
even though larger wind turbines are more expensive than smaller ones, the general trend is

that the total production cost per kilowatt hour of electricity produced decreases with increasing
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wind turbine size. Present design methods and the available components and materials do not
allow up-scaling of wind turbine size as quoted by many designers, and to achieve the
necessary up-scaling, a need exists to address a number of areas that are considered critical
in achieving this, including innovative materials with a sufficient strength-to-mass ratio and
structural and material design of rotors. Among the materials used in wind turbine blades
manufacturing are polymer matrix composite materials, in a combination of monolithic (single
skin) and sandwich composites (a special type of composite laminate where two (or more) thin,
stiff, strong and relatively dense faces are separated by a thick, lightweight and compliant core
material. Such sandwich composites have gained widespread acceptance as an excellent way
to obtain extremely lightweight components and structures with very high bending stiffness,
high strength, and high buckling resistance. Glass fiber reinforced composites (GFRP) are in
use now, but for very large blades carbon fiber-reinforced composites have to be used, in

addition to GFRP, to reduce the weight.

1.2 Structural Layout Design and Aerodynamic Loads

1.2.1 Design Factors

Wind turbine mills that have between two and four aerodynamically efficient rotor blades give
better results than using many of them. Today’s mills have three-blade rotors which are now
the general trend. Similar to the wings of a plane, wind turbine blades use the airfoil shape to
create lift. As shown in Fig. 1.2.1.1, the lift force is perpendicular to the direction of the motion.
We want this force as big as possible. And the drag force is parallel to the direction of the

motion. We want this force as small as possible.



Upcoming
Wind

Airfoil Section

Fig. 1.2.1.1: The wind turbine airfoil (adapted from [2]).
The following are necessary design factors that should taken into consideration when

designing a new blade:

1) Pretwisting of the blade:

Pretwisting Blade should be twisted and tapered since speed through the air of a point on the
blade that changes along the distance from hub to tip. As shown in Fig. 1.2.1.2, the tip speed
ratio varies along the blade length to optimize the angle of attack along blade length, where the
blade should be twisted from root to tip. Tip-speed ratio (TSR) is the ratio of the speed of the
rotating blade tip to the speed of the free stream wind. There is an optimum angle of attack

which creates the highest lift to drag ratio.

TSR=QR/V
where,
Q : rotational speed in radians /sec
R : Rotor Radius

V' : Wind “Free Stream” Velocity



Fastest

Faster

Fig. 1.2.1.2: Wind turbine blade tip-speed ratio [2].

Because the angle of attack depends on the wind speed and direction, there is an optimum

tip-speed ratio.

2) Power Coefficient (Cp):
Power Coefficient (Cp) which characterize the wind turbine performance varies with the Tip

Speed Ratio as shown in Fig. 1.2.1.3.

o
o
|

T T
0 2 4 6 8 10 12
Tip Speed R atio

Fig. 1.2.1.3: Power coefficient versus tip-speed ratio [2].

Not all of the wind power captured by the blade rotor which lead to have some air still behind
the blade rotor and not allow more wind to pass through after that. Theoretical limit (Betz limit)

of rotor efficiency is 59% while most modern wind turbines [2] are in the 35 — 45% range.
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Fig. 1.2.1.4: The wind turbine efficiency [2].
Wind turbine blades should be placed on high towers of steel and / or concrete due to the fact

that wind velocity and constancy increase with more height above ground. Rotors are on the

upwind side of the tower, in the less turbulent air.
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Fig. 1.2.1.5: The Betz criterion [2].

3) Minimizing the blade weight:
Power extractable from the wind is proportional to the swept area A of the rotor:

P=%pAV2



where,
V: is the Wind speed
p: is the Air density

A: is equal to mR?

This brings challenges that power increases with the square of blade length. The blade mass
and hence bending loads are more closely related to the cube of the blade length. Since mass
rises with rotor size faster than wind energy extracted, minimizing weight becomes increasingly
important as turbine size increases. This implies that we can win this challenge only if we build
the rotor blades with lighter composites materials including carbon fiber composite to beat the
squared-cubed law. Decreasing the blade mass is also important in wind turbine design due to
decreasing the load on the hub and shaft, and because the bending loads reverse at every
rotational cycle, the blade structure being alternately in compression (blade vertically above
the hub) and in tension (blade below). So decreasing the blade weight will decrease these
forces and the fatigue-inducing effect of the continual cycling. Another load cycle is
experienced due to wind gradient and the passage of blades from the bottom of the disc
sweep to an area of higher wind speed at the top. Horizontal axis wind turbines would avoid

this wind speed difference, but are less efficient.

4) Utilizing stiff materials:

Long blades can have large deformations with a big chance to strike the wind turbine tower
as they bend backwards in response to the wind aerodynamic loadings. In addition to the
aerodynamic loadings effect, the blades have an additional structural fatigue loading

created by the back pressure that generated by the eddies turbulence as the blades pass
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by the wind support tower. Carefully engineered composites of great performance are
needed to provide fatigue resistance over design lives of 20 years or more.
Therefore, stiffness is another issue that blade manufacturers need to be met. This can be
countered by incorporating both high form stiffness and stiff materials, or in some cases by

‘prebending’ the blades in the toward-wind direction during manufacturing.

5) Blades with controlled twisting capabilities:

Blades can also fail due to excessive loadings during severe gust winds. To avoid failing,
blades are either automatically turn edgewise into wind to offer less resistance (pitch control),
or are shaped so that air stops flowing smoothly across the blade surface and, on reaching a
certain speed, breaks away destroying blade lift and dissipating energy (stall control).

An emerging possibility is to utilize the tailorability of composite properties to achieve bend-
twist coupling, such that when a blade bends away from the direction of an applied load it also
tends to twist. Given sufficient twist, this could provide an effective passive means of spilling
wind. In other scenarios, some adaptive blades are made to twist when actively signalled to
do so. Such mechanisms enable wind turbines to survive up to a wind gust of up to 100 mph
by preventing rotors from over speeding by rotating the blade tip to act as an aerodynamic

rotor brake.

6) Blade bending mode:

Another critical design issue is the frequency of blade excitation at which the blade can
damage and our need to avoid coincidence between this and blade rotational frequency. Any
such frequency convergence could lead to a damaging resonance condition under which
bending energy is amplified. Blades are usually configured to achieve a first blade bending

mode at least 1.5 times the rotational frequency of the rotor. As stiffening the blade increases
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its natural (bending) frequency, over-stiffening must be avoided. Damping systems are
sometimes included to reduce the effects of any incipient modal vibration.
Endurance quality of materials are also important because blades must be out in the weather,
subject to wind, rain, salt, sand and dust erosion plus ultraviolet (UV). They may have to
endure thermal and humidity extremes and cycling. As they are high and exposed, blades

could attract lightning strikes, so effective protection is needed.

7) Acoustic issue:

Another factor, at least in well-populated developed countries, is acoustic footprint. Most of
the sound is emitted by the generators, by blade tips (which on the larger blades can
experience high airflow rates), and by insufficiently tapered blade trailing edges. Reinforced
plastics can be used for sound-absorbent housings and nacelle covers, and they are readily
molded into specific low-noise tip shapes. Environmental objectors also focus on the claimed
effects of wind turbines on birds, while blades can adversely affect air traffic control radars. (In
the UK, the Ministry of Defense reportedly rejects third party wind farm developments because

of the radar interference.

1.2.2 Structural Design

Considering the layout of wind turbine blades [3] as shown in Fig. 1.2.2.1, Fig. 1.2.2.2 and Fig.
1.2.2.3, the following design aspects are typically adopted:

O Wing shells: The composite sandwich laminates are used towards leading and trailing

edges to increase the buckling resistance (edgewise loading). For the traditional blade

design, see Fig. 1.2.2.2 and Fig. 1.2.2.3 (top), the sandwich shell parts are transferred
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into relatively thin monolithic composite laminates in the areas where the shells are
adhesively bonded to the main spar.
Main spar: The main spar usually extends from the root of the blade to a position close
to the tip. As mentioned, the primary function of the main spar is to transfer the
bladewise bending load, and thus it has to perform as a beam.
Spar cap: The primary function of the spar cap section is to carry the flapwise bending
moment, and it is usually made as a thick monolithic composite laminate, which for
some large blades could be a hybrid glass/carbon composite.
Spar flange: The primary function of these flanges are to carry the flapwise bending
moment, and they are usually made as thick monolithic composite laminates, which for
some large blades is made using hybrid glass/carbon composites. The main spar lay-up
usually include UD-layers to provide for the bending stiffness as well as off-axis or
angle-ply layers (often biaxial) to provide for the buckling resistance of the flange loaded
in compression (suction side of airfoil).
Internal webs/stiffeners: They carry the flapwise shear forces, and they are usually
made as composite sandwich plates with polymeric or balsa core and relatively with

biax laminate thin composite face sheets.

Leading edge -

. / '

Assembly

-~
Pressure side shell

Trailing edge
Edgewise

Main spar i i
bending Flapwise bending

Suction side shell

Fig. 1.2.2.1: The wind turbine blade components [3].
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The sandwich design is chosen in order to enhance the resistance against in-plane shear
buckling. The rotational stiffness of the corners between the flanges and the webs for the
‘main spar design’ is of significant importance to accommodate for sufficient buckling
resistance of the flanges as well as to suppress the tendency of ovalization, the so-called

Brazier effect, of the blade and main spar cross sections during flapwise bending.

@) Suction side (b) Sandwich panel
Toward tip [ e Adhesive layer
| “Face Flange
Trailing edge - f

Core — / ((load-carrying .
_ | laminate-compression)

/f’ Adhesive joinf | My \ .
Leading edge Web [ (’ Adhesive A;ﬂ}esm@
oin
Pressure side (sandwich) layer J
/ Flange
Main spar (load-carrying laminate-tension)

Fig. 1.2.2.2: (a) The wind turbine blade airfoil section [3].
(b) Design details of typical blade [3].

The same goes for the rotational stiffness of the joints between the spar cap and the internal
webs/stiffeners for the ‘spar cap/internal stiffener design’, however, to a somewhat lesser
degree. Various manufacturers use different design and manufacturing concepts. Alternative
designs, as compared with Fig. 1.2.2.1 and Fig. 1.2.2.2, may involve that the two wing shells
are joined with two or more internal webs (stiffeners) as shown schematically in Fig. 1.2.2.3.

In this conceptual design, the wing shells are manufactured with relatively thick so-called spar-
caps, which are usually monolithic composite laminates. Other wind turbine manufacturers
have adopted a manufacturing technique, where the entire blade structure including internal

webs/stiffeners is manufactured in one single process.
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Irrespective of each of the below design concepts shown in Fig. 1.2.2.3 are used, the main
structural principles described earlier apply, i.e. the flapwise bending load is carried by a main
spar or a ‘main spar-like’ structure (constituted by the spar caps and internal webs/stiffeners),

and the edgewise load is carried by the shells.

Main spar flange

.-_,,“_E_: : o ‘“ s ——— *'

/
o —— i

Main spar web Sandwich shell

Spar cap

” -

.

Web Shell panel

Fig. 1.2.2.3: The different blade design concepts [3]

1.2.3 Barriers in Scaling up Conventional Blade Designs

Many fundamental barriers have been analyzed for the cost-effective scaling of the current
commercial blade designs and manufacturing methods over the size range of 100 m t0120 m
diameter. The most substantial constraint is transportation costs, and these rise sharply for
lengths above 50 m (156 ft) and become prohibitive for long blades such as 60 m (187 ft). Itis
expected that environmental considerations will prohibit the continued use of processes with
high emissions of volatile gasses, such as the open-mold wet lay-up that has been the wind

industry norm.
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Another manufacturing issue for large blade is the bonding compounds. As blade size
becomes larger, it is natural for the gaps between bonded parts to grow also. However, the
bonding materials used for smaller blades do not scale well to increasing gap sizes, and blade
tooling and production costs for large blades increase rapidly as dimensional tolerances are
decreased. Gravity loading is not a barrier to scaling-up of the current conventional materials
and therefore blade designs over the size range are considered. However, materials and
designs that reduce blade weight will be of benefit for large scale megawatt blades, as this
facilitate the cost-effective of the scaling and reduce the need for reinforcements in the regions
of the trailing edge and at the blade root where transitions occur.

Another issue for turbine design is the use of larger rotors at a given turbine system rating. A
trend toward decreasing the power output per the unit rotor swept area (specific rating). It is
expected that turbine designs with low specific rating will be of continued interest for
deployment in the low wind speed sites of the Midwest United States. As specific rating is
decreased (i.e. blade lengths increase at a given rating), blade stiffness and the associated tip

deflections become increasingly critical for cost-effective blade design.

1.2.4 Blade Lift, Drag, Pitch Moment and Stall Phenomena

Lift, Drag and Pitch Moment
The two primary aerodynamic forces that act on wind turbine blade airfoil as shown in Fig.
1.2.4.1 are:
U The lift, which acts perpendicular to the direction of wind flow.
U The drag, which acts parallel to the direction of wind flow.

U The pitch moment around the blade length axis.
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Fig. 1.2.4.1: The lift and drag forces [4].

Wind turbine blade are shaped a lot like an airplane wing. They use an airfoil design where
one surface of the blade is somewhat rounded, while the other is relatively kind of flat. In one
simplified explanation of lift, when wind travels over the rounded, downwind face of the blade,
it has to move faster to reach the end of the blade in time to meet the wind traveling over the
flat, upwind face of the blade (facing the direction from which the wind is blowing). Since faster
moving air tends to rise in the atmosphere, the downwind, curved surface ends up with a low-
pressure pocket just above it. The low-pressure area sucks the blade in the downwind
direction, an effect known as "lift." On the upwind side of the blade, the wind is moving slower
and creating an area of higher pressure that pushes on the blade, trying to slow it down. Like
in the design of an airplane wing, a high lift-to-drag ratio is essential in designing an efficient
turbine blade. Turbine blades are twisted so they can always present an angle that takes

advantage of the ideal lift-to-drag force ratio.

Stall Phenomena
This phenomenon of stall is what happened when the wind’s speed angle of attack is climbed

to reach a value where all the sudden the air flow on the upper surface stops sticking to the
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surface of the airfoil as shown in Fig. 1.2.4.2. Instead the air whirls around in an irregular
vortex (a condition which is also known as turbulence). All of a sudden the lift from the low

pressure on the upper surface of the airfoil disappears.

i J N
/.
— P4
— «
Fig. 1.2.4.2: The Flow around an Airfoil

Therefore, it is not easy to have an accurate selection of the required wind turbine blade
airfoils based on the wind tunnel testing data because:
1) Most wind tunnel data sets do not contain airfoil performance in stall, which is
commonly experienced by turbines operating in the field.

2) These wind tunnels have different operating conditions.

Also wind turbines are often roughened by soiling, for which there is very little data. Some
recent tests have shown that dynamic stall is a common occurrence for most wind turbines
operating in yawed, stalled, or turbulent conditions. Little dynamic stall data exists for the
airfoils of interest to a wind turbine designer. In summary, very little airfoil performance data
exits that is appropriate for wind turbine design.

These data should include airfoil performance at high angles of attack, rough leading edges
(bug simulation), and steady and unsteady angles of attack. The unsteady angles of attack
are a result of the blade deflections due the changes in the applied aerodynamical load. To
illustrate more, let us look at below Fig.1.2.4.3 where we have taken one rotor blade off its hub,

and then looking from the hub towards the tip, at the back side (the lee side) of the rotor blade.
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S
Fig. 1.2.4.3: The variation of the Angle of attack at hub and tip.

For example, consider a typical wind blowing say at 8 m/s and 16 m/s from the bottom of Fig.
1.2.4.3, the tip of the blade rotates towards the left side of the Fig. 1.2.4.3. In this Figure, we
can see how the angle of attack of the wind changes much more dramatically at the root of the
blade (yellow line) than at the tip of the blade (red line), as the wind changes. If the wind

becomes powerful enough to make the blade stall, it will start stalling at the root of the blade.

1.2.5 Wind Turbine Blade Materials

Historically, wind turbine blades have been constructed using different materials including
wood, fiberglass . But recently, most of these blades are made of fiberglass with the use of
carbon fiber for some critical areas that need local reinforcement. Also the use of carbon fiber
in the load-bearing spar structure of the blade has been identified as a substantial promise for
cost effective weight reductions beside the increased stiffness. Analyses performed earlier by
some researchers predicted mass reductions of approximately up to 30% and a cost decrease

up to 15% when use the carbon fiber compared the baseline fiberglass blade. This study
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assumed that the fiberglass / carbon hybrid material extended the entire length of the blade
spar. Stitched hybrid fabrics and other automated technologies also have potential benefit in

this area.

1.2.5.1 Different Blades Composites Manufacturing Processes

Maintaining fiber straightness (see Fig. 1.2.5.1.1) is critical to achieve desirable compressive
strength properties from composite materials [1]. While carbon fibers tend to have excellent
stiffness and tensile strength properties, realizing the full benefits from carbon fibers will
require fabric/preform architectures that also result in good compressive strength. MSU has
been testing coupons of large-tow carbon to determine compressive static strength, fatigue

strength, and effect of fiber waviness on material performance.

straightness of carbon fibers in a
unidirectional fabric.

Multi-layer, multi-axial warp-knit
, (MMWK) style produced by
Double Bias (+/- 45) Woven Triax Carbon SAERTEX.

Fig. 1.2.5.1.1: Composite materials [1].
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The primary bending loads shown in Fig. 1.2.5.1.2 are from aerodynamic forces, and are
carried by a structural spar. In North America wind turbine design community, the spar flanges
are termed “spa caps”, while European designers tend to use the term “griders”. For
megawatt-scale blades, two shear webs are common, forming a box beam as shown in
Figurel. Smaller blades, and some MW-scale designs, use a single shear web, or I-beam
configuration. The structural spar is enclosed in two shells (skins) which form the aerodynamic
profile. The skins and shear webs are typically sandwich-style laminate. The composites
laminated parts are either glass or carbon fiber-reinforced polymers, while the sandwich core
materials may be polymeric foams (PVC or BMI), balsa wood core or less frequently of

honeycomb type.

Spar caps
(fiberglass or carbon), :
_~Fiberglass skins

~Balsa or foam core

%

Shear webs |
(glass cver core)—

Fig. 1.2.5.1.2: The typical wind turbine blade structural layout [5].

For blade sizes up to 30 m, the most common manufacturing approach has been open mold,
wet lay-up. The most notable exception to that approach is Vestas Wind Systems, which has
experience in using the prepreg fiberglass for their blade manufacturing. Despite that several
manufacturers are using open-mold, wet lay-up processes, become more and more stringent

environmental restrictions to move manufacturers toward processes that have lower emissions.
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Currently, the most common replacement for traditional methods use one of the following two
methods: A) Preimpregnated materials and B) Resin infusion, with VARTM (most common
infusion method). Both prepreg and VARTM materials have particular design challenges for
manufacturing the relatively thick laminate that typical for large wind turbine blades. For
VARTM processes, the permeability of the dry preform determines the rate of resin penetration
through the material thickness. For prepreg material, sufficient bleeding is required to avoid
resin-rich areas and eliminate voids from trapped gasses.

Another alternative is the partially preimpregnated fabric, marketed by SP Systems and
Hexcel Composites under the name of SPRINT and HexFIT respectively. When laid-up, the
dry fabric regions provide paths for air to flow, and vacuum can be used to evacuate the part
prior to heating. Under heat and pressure, the resin flows into the dry fabric regions to
complete the impregnation. High temperature post-cure is desirable for both prepreg and
VARTM processes. Current prepreg materials require higher cure temperatures (90C—- 110C)
than epoxies used in VARTM processes (60C-65C). Heati ng and temperature control /
monitoring becomes increasingly difficult as the laminate thickness is increased.

Mold and tooling costs are also strongly affected by the heat requirements of the cure cycle.
In all cases, achieving the desired laminate quality requires a trade-off between the extent of
fiber compaction, fabric/ preform architecture, resin viscosity, and the time/temperature profile
of the infusion and cure cycles.

The use of automated preforming and lay-up technologies are potential alternatives to hand
lay-up in the blade molds. Advantages could include improved quality control in fiber/fabric
placement and a decrease in both hand labor and production cycle times. The overwhelming
majority of turbine original equipment manufacturers (OEMs) and third-party blade
manufacturers use a VARTM process. It is notable that the OEMs with the #1 (Vestas) and #3

(Gamesa) shares of the 2007 global market primarily use prepreg material which is the
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standard process for carbon current commercial blades. The differences between the
composite prepreg technology and the vacuum assisted vacuum infusion (VARTM or

variations of this process) are shown below in Table 1.2.5.1.1.

Prepreg Materials Infusion RTM

Advantages Advantages Advantages

Homogeneous distribution of
resin content & higher fiber
volume than any other

process. Lower raw material prices. | Higher production rates.

It is becoming an
alternative for semi-

Quiality & controlled process. | Curing cycles at 60-70 C. structural parts.
Improving process control
every year
Disadvantages Disadvantages Disadvantages
Difficulties to guarantee
Resin flow through thick Resin content higher-
Raw material prices increase | laminates and wet-out of lower mechanical
more than 30% carbon fibers. properties.

Logistic and storage under
restrictive T/RH
conditions controlled

Blade surface areas are
Quality- skilled labor too large for one shot
Long curing cycles at 120 C. required. processes.

Table 1.2.5.1.1: The comparison between Prepreg, Infusion and RTM [1].

1.2.5.2 The Fiber Alignment in Fiber Carbon

The small Business Innovation Research (SBIR) is currently looking on alternatives to
prepreg materials, by evaluating different materials with a unidirectional carbon fabric that
would achieve good structural properties in a VARTM infusion process. In one scenario, the

fabric may infuse well, but waviness in the fibers is a restriction for the carbon to achieve its
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potential strength, particularly in compression. In the other scenario, the fabric architecture
may have very good fiber alignment, but not allow resin penetration through the thickness.
For most fabric architectures, it is generally true that any feature that promotes through-the —
thickness infusion will result in fiber misalignment and corresponding reductions in

compressive strength. Fig. 1.2.5.2.1 shows a typical stitched unidirectional fabric using large-

tow carbon fibers.
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Fig. 1.2.5.2.1: Stitched unidirectional carbon fabric with induced waviness [5].

1.2.6 Varying Properties along the Blade

Wind turbine blades are built from orthotropic materials ( where the material parameters are
direction dependent) that are made of two or more distinct materials put together such as
sandwich plates. Fiber composites are built of several layers, where each layer is composed
of fiber reinforcements embedded in a continuous phase termed the matrix. In general, all
layers can be made of different materials. Moreover, the direction of the fibers in each layer,
according to common axes, influences on the properties of the whole composite. This makes

the expressions for the effective material properties for the fiber composite more complicated,

and more than two material coefficients are required.
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Material Stiffness Matrix for a Single Layer
In the same way as for the isotropic thin plate, lets us assume plane stress conditions to
prevail. Thus, for a single layer of unidirectional, continuous fibers, referred to local axes for

the layer, it can be shown that the material stiffness matrix may be expressed as:

Qu Q12 0
Q.= |@i2Q2 0 {,
0 0 Qss
(1.2.6.1)
where Kk is the layer number, and
Eg
Qll — 1 — VLTVTL,
Er
Q=1 VLTVTL
O = virEr . vrLEL
YT 1 —vpgvpr - 1—vprvpr’
Qo = Grr- (1.2.6.2)

The fiber direction is called the longitudinal direction (L), and the direction normal to the fibers
is the transverse direction (T), see Fig. 1.2.6.1.

where,

EL and E+ : are the elastic moduli in the longitudinal and the transverse directions, respectively
V.7 IS the major Poisson ratio (give transverse strain caused by longitudinal stress)

v7. : is the minor Poisson’s ratio (give the longitudinal strain resulting from a transverse stress)
G, : is the shear modulus.

These four material constants are related through this relation:

VLT _ VTL
Er Er
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Fiber

Fig. 1.2.6.1: The fiber direction in a composite build of unidirectional, continuous fibers [6].

Therefore, four independent material parameters (for each layer) are required for such

orthotropic problems in 2D. Using transformation matrices, it can be shown that the matrix for

a single layer, referred to global ( ) axes, is:
_ Qll Q:12 C:?lﬁ
Qi = | Q12 Q22 Qa6
Q16 Q26 Qoo
(1.2.6.3)
where,

C?n = Q11 008" + Qoo sin* § + 2(Q12 + 2Qg6) sin® Hcos®6,

6222 = Q115in* 0 + Q23 cos* 6 + 2(Q 12 + 2Qg5) sin? 6 cos? 9,

6_266 = (Qu + Q22 — 2Q12 — 2Q¢s) sin® Hcos? § + Qes(cos* 6 + sin* §),

@12 = (Qu1 + Qa2 — 4Qé¢) sin® 6 cos? § + Q12(cos’ § + sin* 4),

C_Qle = (Q11 — Q12 — 2Q¢¢) cos® fsinf — (@22 — Q12 — 2Qgs) cos § sin® g,

Q26 = (Q11 — Q12 — 2Qg6) cosfsin® § — (Qgy — Q12 — 2Qes) cos® Bsin b .
(1.2.6.4)

In these expressions e is the angle between the positive global xbar axis and positive local x

axis for the layer and k is the layer number. The stress-strain relation for one single layer of

the composite can then be expressed as:
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Tk = Qe (1.2.6.5)

To get the material properties for the whole laminate, we sum up for all the layers i.e. integrate

over the plate thickness:

n C:211 Q:IZ Q:lﬁ hi )
Dorto =5 | | Quz Q2 Que [ 2dz
k=1 Q16 Q26 Qee hi—1
1 e, ~
=3 (Qij)x(h§ — Bi_1),
k= (1.2.6.6)

where ( hy - hy1) is the thickness of layer number k. By the way, the stiffness matrix for the

whole matrix is:

Ale) = [ BTD,,;,Bdr,

o2 (1.2.6.7)

1.3 Research Motivation and Objectives

1.3.1 Research Motivation

Over the last two decades, continually growing energy demands as well as global warming
and other pollution concerns have drawn considerable attention to the need for alternative and
renewable sources of energy including the wind energy. The cutting edge technological
development of wind turbine, in recent years, has been focused on the following research
areas:

O Developing the blade composite materials to have more stiff but less weight

blades.
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U Developing new advanced methods to optimize the blade aerodynamic structure.
U Computing the aerodynamic loadings that act on the blade structure using CFD

codes.

Also a number of approximate theories used for the pre-twisted beam (that is similar to
helicopter rotor blades) have been developed by different researchers to analyze its
complex geometry. A carefully selected sample of the relevant literature on the wind
turbine blade ( as explained in Chapter 4 Introduction), show that there is a need to expand
the wind blade research to include more of these research factors that were taken
separately in a one complete research, such factors will include:

U Computing the load vector at each time step and the mass, stiffness matrices of
the dynamic equation of motion utilizing an analytical solution and considering all
the extensional, torsional and flexural loadings acting on the blade with their
couplings.

Variable airfoil cross-sections.
Warping effects.

Shear deflection, rotary inertia and with or without blade’s pretwist.

o O O O

Formulations should include both the linear small deformation case and the

nonlinear large deformation case.

To the best knowledge of the author the simultaneous inclusion of all these factors has not

been done before.

1.3.2 Research Objectives

The objective of the present work is to conduct the following research on the wind turbine

blade, using an analytical energy approach:
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2)

3)

4)

5)

6)

7)
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New approach for computation of the aerodynamic loading that is not based on CFD
codes and considering all the extensional, torsional and flexural loadings and their
couplings acting on the blade at every given time step. This approach utilize the blade
airfoils wind tunnel data to compute the aerodynamic parameters from the given angle
of attack(s) at each time step.
Derivation of the total strain energy, total kinetic energy and external work assuming
that variable airfoil cross sections with warping effects, shear deflection, rotary inertia
and with or without blade’s pretwist for small and large deformations cases.
Then Lagrange equations of motion where derived using the total strain energy, total
kinetic energy and external work and then deduce the mass, stiffness (linear and
nonlinear) and damping matrices of the linear or the nonlinear dynamic equations of
motion(depending whether considering small or large deformation) .
Use the “assumed modes method”, in which displacements are assumed to be a
product of a time dependent constant and a polynomial function of x (along the
lengthwise of the blade) that satisfies the boundary conditions.
The aerodynamic parameters (Cl, Cd and Cm) values versus angle of attack for a
NACA airfoil profile where plotted and interpolated (expanded) to make sure we have
aerodynamic values for any given angle of attack.
Calculation of the aerodynamic lift, drag and pitch moment loadings were calculated at
each time step for a 14m blade that has a linear decreasing NACA4415 airfoil cross
section utilizing a time dependent set of parameters such as aerodynamic parameters
(Cl, Cd and Cm), air density, wind and blade speed, flow angle, yaw and pitch angles.
Then the centrifugal force, modified pitch moment( due to the coordinate differences

between centroid and center of elasticity), thrust and torque forces at some selected
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airfoil stations were calculated using the Airfoil wind tunnel aerodynamical parameters
data ( Cl, Cd and Cm).

8) Create a MATLAB code to contain all the above Mathematical Formulations including
the interpolation of all the stations’ forces and moments to obtain them as a function of x,
using a built-in interpolation algorithm within this code .

9) Using the MATLAB code, compute the six degree of freedom at any point on the blade,
for both linear and nonlinear cases (small and large deformations respectively).

10) For the linear small deformation case, compare the MATLAB code displacement result
plots with Younsi et al. for the same blade example.

11) Create an Is-dyna code that has the same blade inputs of geometrical and material
properties and aerodynamic loadings.

12) For the linear small deformation case, compare its displacement result plots with
those of the MATLAB code ( since the nonlinear case is not found in the literature to
compare).

13) Establish the mathematical relationship for the coupling between the blade twist around
the blade and the angle of attack at every time step to update the angle of attack on the

next time step by adding or subtracting the twist angle from the angle of attack.

1.4 Aerodynamics Loads

1.4.1 Airfoil’s Load Layout

The analysis of the state of load on the wind turbine blade is intended to verify whether the

turbine will withstand the action of load within appropriate safety range. Various cases of load
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blade, resulting from the action of various external factors on the turbine, have to be

considered. The following types of states of loadings on a wind turbine blade can be

distinguished:

O The aerodynamic loads of a wind turbine blade are shown in Fig.1.4.1.1.

Q

120
100+
80
DL, S

20+

The mass loads, as the wind turbine blade is slender, the loads associated with its
inertia are limited to the loads generated by its weight, which causes sinusoidal loads
the frequency of which corresponds to the rotor. Both mass and aerodynamic loads

were investigated.

Rotor plane

-

v

: i Aerodynamic center .'-‘
A\ S o

\/\
K-Q-
IR

Fig. 1.4.1.1: The local forces on the blade [7]

1.4.2 Simple Load Formulas / Model

The loading on a wind turbine blade as shown in the below Fig.1.4.2.1 consist of the following:

Q

The flapwise and edgewise bending due to the loadings on the blade (skew bending).
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U The gravitational loads, which change direction during the rotation of the blade, and
which mainly generate edgewise bending loading.
U The torsional loading because the shear resultants of the flap- and edgewise loads do
not go through the shear centre of the blade section.
U The normal loading due to the rotation of the blade (inertia forces).

O The relative small loads due to pitch de-accelerations and accelerations.

The latter three have very little influence on the design loads, and it is the flapwise and
edgewise loads that determine the structural design and the blade cross sections. The spar
carries most of the flapwise bending, while the edgewise bending primarily is carried of by the
leading and trailing edges of the aerodynamic profile, which are strengthened due to this.
Below Figurel.4.2.1 illustrates the components of airspeed and force acting on an airfoll
section on a wind turbine blade. at a radial distance r from the axis of rotation. The view in
these schematic diagrams is from the blade hub toward the tip. According to the BEM theory,

airloads on a section of an airfoil are proportional to the dynamic pressure at only that section.

Lift and Drag Forces
CL and CD coefficients are proportionality constants that is required for the calculation of the L

and D forces as shown in Fig. 1.4.2.1:

L=CL pd C (1.4.2.1)
D=CD pd C (1.4.2.2)

pd=0.5p Vg * (1.4.2.3)
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Lateral airspeed, V' .
Drag force, D \ Airfoil speed, V 4

Airfoil motion

;z_‘_ el

Relative airspeed, V5

', Aocial |
Chord angle, 5] || i “\" ﬂirgpeedl Il"f.:( I| Angl& of Ettﬂ{:k, ﬂ\
| ' A I'

Chordline: | \ Inflow airspeed, V Flow angle, ¢

Length = ¢ 4 W

_ ) P Tangential force, F
Axis of rotation - | (Torque force)

I
Upwind

Fig. 1.4.2.1: The wind and force vectors acting on an airfoil [7].

which implies that:

Lift Force: L=0.5p Ve 2C CL (1.4.2.6)
Drag Force: D=0.5p Ve > C CD (1.4.2.7)
Thrust Force: FN =L cose + D sing (1.4.2.8)
Torque ForceFT =L sing — D cose (1.4.2.9)

where,

L: is the lift force per unit span; intensity of force perpendicular to relative airspeed (Ib/ft)
D: is the drag force per unit span; intensity of force parallel to relative airspeed (Ib/ft)
CL, CD: are the lift and drag coefficients of the section respectively

C: is the chord length of aerodynamic profile (ft)

pd: is the aerodynamic pressure (Ib/ft%)

p: is the air density (slugs/ft?)

o: is the wind flow angle
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1.5 Blade Element Momentum Theory

Blade Element Momentum Theory relates two methods to examine how a wind turbine
operates. The first method is to use a momentum balance on a rotating annular stream tube
passing through a turbine and the second method is to examine the forces generated by the

aerofoil lift and drag coefficients at various sections along the blade as explained in [8].

Momentum Theory

Consider the stream tube around a wind turbine shown in Fig. 1.5.1 and explained in
reference [8]. Four stations are shown in the diagram 1, some way upstream of the turbine, 2
just before the blades, 3 just after the blades and 4 some way downstream of the blades.
Between 2 and 3 energy is extracted from the wind and there is a change in pressure as a

result. Apply Bernoulli’'s equation, assuming that p; = p, and that V, = V3.

i " Blades
v 1 . 1""-:
E— ", L -
Hub

Fig. 1.5.1: Axial stream tube around a wind turbine [8].

We can also assume that between 1 and 2 and between 3 and 4 the flow is frictionless:

1 b .
pr—p3 =P — V)
2 (1.5.1)
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Noting that force is pressure multiplied by area:

dF; = (pr — ps3)dA

(1.5.2)
or,
1 . . "
(fJF_‘T = ;I}EFI_ — ij_JJd,*'l
= (1.5.3)
Define a as the axial induction factor:
h—r
d=
" (1.5.4)
It can also be shown that:
h="r(l—-a) (155)
= T5(1 — 2a)
Vi=n(l-2a) (1.5.6)
Substitute, implies:
dF, = épr[ila{l — a)|2nrdr
- (1.5.7)

Rotating Annular Stream tube

Applying the conservation of angular momentum in the annular stream tube shown in
Fig.1.5.2, where between 2 and 3 the rotation of the turbine imparts a rotation onto the blade
wake. Considering that the blade wake rotates with an angular velocity w and the blades
rotate with an angular velocity of Q. From basic physics, as explained in reference [8], the

following equations can be obtained:
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- Side View

O00 O

End on view

Fig. 1.5.2: Rotating annular stream tube [8].

Moment of Inertia of an annulus I = mr~ (1.5.8)
Angular Moment L = J® (1.5.9)

- T dL

orgue.f = ——
mes = (1.5.10)

L o _dmre) dm,
dt dt dt (1.5.11)
So for a small element the corresponding torque will be:
dT = dior’

(1.5.12)

For the rotating annular element:

dr = P4V (1.5.13)
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dr

Fig. 1.5.3: Rotating annular stream tube notation [8].

dm = DETU'GT.?'VI (1.5.14)
— dT = p2mrdrVhen” = plaw” 2mrdr
(1.5.15)
Define angular induction factor &' :
®
I
a = ﬁ
(1.5.16)
Recall that 75 = F(1 —a) so:
AT A 3 .
dT =4a (1 —a)pVQr ndr (1.5.17)

Momentum theory has therefore yielded equations for the axial (Egn 1.5.17) and tangential

force (Eqn 1.6.1.17) on an annular element of fluid.

Blade Element Theory

Blade element theory relies on the following two key assumptions [8]:
1) There are no aerodynamic interactions between different blade elements.
2) The forces on the blade elements are solely determined by the lift and drag

coefficients.
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Consider a blade divided up into N elements as shown in Fig. 1.5.4. Each of the blade
elements will experience a slightly different flow as they have a different rotational speed Qr, a
different chord length ¢ and a different twist angle 3. Blade element theory involves dividing up
the blade into a sufficient number (usually between ten and twenty) of elements and

calculating the flow at each one. Overall performance characteristics are determined by

numerical integration along the blade span.

Fig. 1.5.4: The blade different stations [8]

Relative Flow

Lift and drag coefficient data area available for a variety of aerofoils from wind tunnel data.
Since most wind tunnel testing is done with the aerofoil stationary we need to relate the flow
over the moving aerofoil to that of the stationary test. To do this we use the relative velocity
over the aerofoil. In practice the flow is turned slightly as it passes over the aerofoil so in order
to obtain a more accurate estimate of aerofoil performance an average of inlet and exit flow
conditions is used to estimate performance. The flow around the blades starts at station 2 in

Fig. 1.5.2. and Fig. 1.5.1. and ends at station 3. At inlet to the blade the flow is not rotating, at
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exit from the blade row the flow rotates at rotational speed . That is over the blade row wake
rotation has been introduced.
The average rotational flow over the blade due to wake rotation is therefore ®w/2. The blade is
rotating with speed Q@ which lead that the average tangential velocity of the blade is Qr + 0.50r

as shown in Fig. 1.5.5.

Wi l-a)

2 re—

Iplade modfaidom far E T
S i

Fig. 1.5.5: Flow onto the turbine blade [8].

Examining Fig. 1.5.5, we can immediately note that:

wr .
Qr+—=Qr(1+4d)
2 | (1.5.18)

but since V, = V3 V(1-a), implies:

anf — Qr(l+d')
V(1—a) (1.5.19)

where V is used to represent the incoming flow velocity V;.
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The value of B will vary from blade element to blade element. But the local tip speed ratio A,

is defined as:
p
v (1.5.20)
This leads to a further simplification for tanp :
. ,
tan} = 7MI:‘11_+(; )
(1—a (1.5.21)
From Fig. 1.5.5 the following relation is obvious:
— F(l—a)
cos 3
(1.5.22)

Blade Elements
The forces on the blade element are shown in Fig. 1.5.6, note that by definition the lift and
drag forces are perpendicular and parallel to the incoming flow. For each blade element one

can conclude:

Fig. 1.5.6: The forces on the turbine blade [8].
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dFy = dLcosP — dDsinp (1.5.23)

dF;, = dLsipP+ dDcos [
(1.5.24)

dL and dD can be found from the definition of the lift and drag coefficients as follows:

dL = C.'Lllecdr
2 (1.5.25)

dD = cp%pﬁ:ﬂcm-
- (1.5.26)

where dL and dD are the lift and drag forces on the blade element respectively.
If there are B blades, by combining Equation (1.5.23) and Equation (1.5.25), it can be shown
that:

1
dF; = B—pW*(Cy sinB + CpcosP)cdr
2 (1.5.27)

1
dFy = B; pﬁ?'j (CrcosP — Cpsmf)cdr
z (1.5.28)

The Torque on an element, dT is simply the tangential force multiplied by the radius.
1 5, :
dT = B-pW*(Crcosp—Cpsm B)erdr
= (1.5.29)
The effect of the drag force is clearly seen in the equations, an increase in thrust force on the
machine and a decrease in torque (and power output). These equations can be made more

useful by noting that § and W can be expressed in terms of induction factors etc. i.e. Equations

(2.5.21) and (1.5.22). Substituting and carrying out some algebra yields:
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. Vil—a) .
dF, =0 mp——=—I(C; sinf§ + Cp cos3)rdr
cos”p (1.5.30)
(1 —a)’ .
dT = q’npwtf‘ﬂ cosp — Cpsinf)r-dr
(1.5.31)

where ¢ ' is the local solidity:

Be

Ve
T (1.5.32)

Tip Loss Correction

Losses at the tip of the turbine blade are introduced in a similar manner to those found in
wind tip vorticies on turbine blades. It can be accounted for these losses in BEM theory by
means of a correction factor. This correction factor Q varies from 0 to 1 and simulates the

reduction in forces along the blade.

2 [ f (B/21—r/R] H
O = ncn::'s. lEﬂP{ ( (r/R)cosP ) (1.5.33)

The results from cos™ must be in radians. Apply the tip loss correction factor to Eqn 1.5.7 and

Egqn 1.5.17:

dF, = OpVi|da(1 — a)|mrdr
(1.5.34)

dT = Q4d' (1 —a)pVQr- ndr
(1.5.35)

From the above, we now have four equations, two dervied from momentum theory which
express the axial thrust and the torque in terms of flow parameters (Equations (1.5.35) and

(1.5.34):

dF, = OpVi [4a(1 — a)|mrdr
' (1.5.36)
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dT = {;_)4{1’['1 —a}pl"ﬂr:’ndr (1.5.37)

Also we have two equations derived from considering the blade forces which express the
axial force and torque in terms of the lift and drag coefficients of the aerofoil Eqn 1.5.30 and

Egn 1.5.31:

’(1—a)?, ,
'Dg—a{q sin [} + Cp cos 3 rdr

dF, = a'mp .
cos-
(1.5.38)

2 (1—a)? .
dT = G’Kﬂ%[f‘; cosP — CpsinP)rdr

<P (1.5.39)

To calculate rotor performance Egn 1.5.34 and Egn 1.5.35 from a momentum balance are

equated with Egn 1.5.30 and Eqn 1.5.31:

a o0 [CrsmP+Cpcosf

l—a 40cos’ B (1.5.40)
a  o'[CrcosP—Cpsinf
l1—-a 40h,.cosP (1.5.41)

Power Output

Egn 1.5.40 and Eqgn 1.5.41 are used in the blade design procedure. The contribution to the

total power from each annulus is [8]:

dP = QdT
(1.5.42)
The total power from the rotor is:
R R
P= | dPdr= | QdTdr
T “Th (1.5.43)

where r, is the hub radius. The power coefficient C;, is given by:
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P RQdr

A1y

Fyind - %F'J'EREVS

Cp=
(1.5.44)
Using Eqgn 1.5.31, it is possible to develop an integral for the power coefficient directly. After

some algebra:

8 A ., C .
Cr==5 | ONd(1-a) [1——5’ tanli} dhr

.IFI._ ":"I:i CL
(1.5.45)

Blade Design Procedure

The following is a blade design procedure as explained by reference [8]:
1) Determine the rotor diameter required from site conditions and P = 0.5G, pnnRPV °

where,

P: is the power output

C,: is the expected coefficient of performance (0.4 for a modern three bladed wind turbine)
1 :is the expected electrical and mechanical efficiencies (0.9 is a suitable value)

R : is the tip radius

V : is the expected wind velocity

A B

1 8-24

2 6-12

3 3-

4 3-4
more than 4 1-3

Table 1.5.1: The number of blades [8].
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2) Choose a tip speed ratio for the machine. For water pumping pick 1 < A < 3 (which

gives a high torque) and for electrical power generation pick 4 < A < 10.

3) Choose a number of blades B, using Table 1.5.1, which is based on practical experience.

4) Select an airfoil. For A < 3 curved plates can be used.

5) Obtain and examine lift and drag coefficient curves for the aerofoil in question.

6) Choose the design aerodynamic conditions for each aerofoil. Typically select 80% of the

maximum lift value.

7) Divide the blade into N elements. Typically 10 to 20 elements would be used.

8) As a first guess for the blade twist and chord, use the blade shape derived with wake
rotation, zero drag and zero tip losses. Note that these equations provide an initial guess only.

The equations are given as follows:

(1.5.46)
( 4cos? B ) !
a=\l+o=—c=
, 1—3a
d =
da—1 (1.5.48)

9) Calculate rotor performance and then modify the design as necessary. This is an

iterative process. The application of BEM can be sometimes confusing as it can be used to

either to design i.e. select y and Cor to analyze the performance of a blade.

It should be noted that different aerofoil profiles may be used at different spans of the blade,

for example, a thick aerofoil may be selected for the hub to give greater strength.
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Chapter 2

Literature Review on Blade Different Formulations & Research Plan

2.1 Introduction

The wind turbine blade can be considered as a pretwisted beam. Hence it is essential to
understand how to analyze and work with beams. Beam element is a versatile line-element
where in general it has six degrees of freedom at each node, which include three translational
displacements along the x, y, and z directions and three rotational displacements about the X,
y, and z directions as shown on the right side node of the beam of Fig. 2.1.1 shows the

positive directions of these displacements.

nodel

Fig. 2.1.1: Beam element with six degrees of freedom at each node.

Beam element can be used to simulate a slender structure that has a uniform cross- section.
The stiffness constant of a beam element is derived by combining the stiffness constants of a
beam under pure bending, a truss element, and a torsion bar. A beam element can represent
a beam in bending, a truss element, and a bar in torsion. To derive the element stiffness

equation for a beam element that subjected to all these loadings, we start first by deriving the
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stiffness equation of a beam subjected to bending loading only, and then superimpose the
stiffness of a truss subjected to axial loading only and then superimpose the stiffness of a bar

subjected to torsional loading only to obtain the resultant stiffness equation for all loadings .

2.2 Aeroelasticity

Aeroelasticity is the study of the mutual interaction between the aerodynamic and elastic

forces, and the influence of this interaction on blade design [9]. Wind turbine Blade is a very
flexible, and this flexibility is the main factor for the various types of the aeroelastic
phonemena.
The aeroelastic phonemena happen when the structural deformations induce some additional
aerodynamic forces which in turn produce some additional structural deformations that again
induce more aerodynamic forces. The dynamic aeroelasticity phenomena is the one involves
the interactions among all the inertial, aerodynamical, and elastic forces, while the static
aeroelastic phenomena is the one involves the interations between aerodynamical and elastic
forces. Fig. 2.2.1 show the relationship between the all these forces.

For wind turbine blade, such interactions are tremendous because of the couplings among all
the aerodynamics axial, bending and torsional loadings (forces and moments) acting on the
blade. These interactions may tend to become less and less until a condition of equilibrium

stability is reached, or they may tend to diverge and destroy the structure.

The static aeroelasticity includes the following:
1) Static divergence

2) Load redistribution

3) Control reversal and effectiveness

4) Aeroelastic effects on static stability



44
And the dynamic Aeroelasticity includes the following:
1) Flutter
2) Buffeting
3) Dynamic response

4) Aero-elastic effects on dynamic stability

Aerodynamic
Loadings

Static
Aeroelasticity

Dynamic
Stability

Dynamic
Aeroelasticity

Elastic Loadings Inertia Loading

Structural
Vibration

Fig. 2.2.1: The summary of loadings and their responses.

The following are explanation of some common aero-elastic terms:

Q Flutter :is a dynamic instability occurring in a blade at a speed called the flutter speed,

where the elasticity of the structure plays an essential part in the instability.

Buffeting : are the transient vibrations of blade structural components due to aero-
dynamic impulses produced by the wake around the blade, or other components of the
wind turbine mild.

Dynamic response : is the transient response of blade structural components
produced by quick applied loads due to gusts, gun reactions, abrupt control motions,
moving shock waves, or other dynamic loads.

Load Distribution : It is due to the influence of the elastic deformations of the blade

structure on the distribution of aero-dynamic pressures over that structure.
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O Divergence : is the static instability of the wind turbine blade, at a speed called the
divergence speed, where the elasticity of the blade surface plays an essential role in the
instability.
O Control Effectiveness : Itis due to the influence of elastic deformations of the blade

structure on the controllability of the blade.

2.3 Large Deformation versus Small Deformation

When the deformation of the wind turbine blade is small i.e. less than 10% of the length of the
blade, we can use the deformation linear is linear and this happens when the change in
volume is almost negligible. However, once we have deformations that are greater than 10%
of the length of the blade, we should use the appropriate stress and strain tensors to account
for for this large deformation. We should also use the appropriate constitutive relations that
account for that large deformation of the blade.

The above strain tensor is known as the Green-Lagrange strain tensor. It is also a second
order tensor because it has two independent indices. An obvious question is how the Green-
Lagrange strain tensor compares to the small deformation strain tensor that we did make
assumptions to derive. We start by substituting the displacement equation for the deformation

gradient tensor to obtain:

g

T | e . e
i 0%

2 g ox ix

. Qu
6--+ﬂf+—,1+
oy O

5

(2.3.1)
We obtain the above because when a quantity is multiplied by the kronecker delta we obtain
the same quantity back, with the free index from the kronecker delta being exchanged with the

repeated index on the quantity it is multiplying. It should be noted that the large deformation
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strain tensor includes many nonlinear higher order terms which indicate that all the large

deformation analyses are nonlinear. Recall that the small deformation strain tensor is:

3o B (2.3.2)

Therefore by assuming that the deformation is small, we drop all the nonlinear higher order

terms from the Green-Lagrange strain tensor and keep the linear terms only.

2.4 Aeroelastic Coupling Schemes

Due to changes of aerodynamics loads on the wind turbine blades, these blades twist. Due
that twisting, there is a direct influence on the angle of attack, changing loads and affecting
output power. This is directly exploited in classic pitch control used in not only wind turbines
but in rotors of all types. When the pitch changes are rapid enough, they can affect not only
average loads and power, but vibratory loads as well, influencing fatigue life throughout the
system. Even quite small angles of twist can have significant impact.

Any time the wind turbine blade becomes aeroelastically “active” (i.e. when the elastic
deformations play a role in the aerodynamic loading), the dynamic stability of the blade will be
affected. Veers et al. [10] address two of the most common stability constraints, namely flutter
and divergence.

Flutter is the condition where the phasing between the aerodynamic load fluctuations and
elastic deformations are such that a resonant condition is achieved. Every wing will have a

flutter boundary at some speed. For wind turbines the boundary is defined at the rotational
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speed (typically determined in still air) at which the blade will flutter. The stability margin is the
difference between the flutter speed and normal operating speed.

Divergence is a quasi-static condition where the blade twists in response to increasing load in
a direction that further increases the load. If this condition exists on a blade there will be an
operating speed at which the increase in loads caused by the deformation exceeds the ability
of the blade to resist the load, called divergence.

The stability boundaries were determined with respect to the amount of twist coupling built
into the blade. A coupling coefficient, o, was defined to facilitate the generic examination of
stability effects.

For a blade with bending-twist coupling, the matrix equation for blade bending and twisting

strains & and & due to bending and twisting loads My and M, are:

(2.4.2)
where El and GK are the beam bending and torsional stiffness, respectively. The coupling
coefficient, g , is constrained to values that keep the system positive definite. The range of

realizable g values is limited to:

g=0+EIGK: -l1<a<1.
(2.4.2)

It should noted that equation (1.6.2.1) that include the coupling between bending and twisting
loads will change later when | include the couplings of all other possible aerodynamic loading
acting on the blade in addition to the inclusion of the nonlinear higher order terms due the large

nonlinear large deformation assumption.
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2.5 Optimization of Blade Design

The aerodynamic and structural design of rotors for horizontal axis wind turbine (HAWT)
involves many conflicting requirements, for example, maximum performance, minimum loads
and minimum noise. The wind turbine operates in very different conditions from normal
variation in wind speed to extreme wind occurrences. Optimum efficiency is not obtainable in
the entire wind speed range, since power regulation is needed to prevent generator burnout at
high wind speeds. Optimum efficiency is limited to a single-design wind speed for stall
regulated HAWT with fixed speed of rotation.

Several optimization methods exist . They are typically based on a numerical optimization
algorithm.  Multipoint design methods have a larger degree of flexibility for optimization
objective and the majority allows multiple constraints. The first generation of the methods
involved maximum annual energy production as objective, since this includes off-design
performance with no or only few constraints on loads. The reported improvements of the
annual energy production are promising, but they often arrive from an increase in swept area
for the same generator size.

Unfortunately, this will result in larger loads on tower and the blade roots. Actually, the
increase in loads often exceeds the increase in energy yield. Optimum design should not be
restricted to aerodynamic performance. In most of the cases, the key factor is the minimum
cost of energy, and this should be the objective. This leads to the development of second
generation design tools, where the optimization objective is the minimization of the cost of
energy. Cost of energy is by definition the ratio of the total costs from manufacture and
erection of the wind turbine to the annual energy production. Proper cost estimate involves
calculation of fatigue loads as well as extreme loads on all main components and a cost
function describing the coupling between design loads and cost. Using a multi-disciplinary

design method for direct shape design of HAWT rotors.
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In the present research, the author main concern is to use a numerical optimization, where
the objective is to have the displacements and rotations ( six degrees of freedom) at the tip of
the blade under a certain maximum limit with a set of multiple constraints that are allowed i.e.
extreme loads, material Young’s modulus and/or material density.
The optimization of the wind turbine blade displacements and rotations is a feature that can be
done in the MATLAB code and is not really the concentration of this research. The design of
any blade rotor can be utilized to demonstrate the capabilities of this design method within the
MATLAB code. It should be noted that:
U Loads constraints and cost estimation were important for the applicability of the
optimization results.
U With traditional airfoil characteristics and blade structure, shape optimization of the
rotor reduced cost of energy compared to a rotor of the same size.
U The optimum specific power can also be a constraint.
U Optimum airfoil characteristics showed that the airfoil sections should have a relative

high maximum lift on the entire blade.

2.6 Finite Element Beam Formulation

Consider a cantilever beam, under pure bending (without axial loads or torsion loads) of a
total of four degrees of freedom, two at each node i.e. two deflections and two rotations, V;, 6;,
V,, and 6,. For example for the cantilever beam shown in Fig. 2.6.1, the right-side free end
has 6 = 6, and V/,= IV while the left-side fixed end has zero values of displacement and rotation

since it is a fixed end.
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applied
F force

—
;I = 6 rotation vertical

> \ \) displacement

Fig. 2.6.1: Cantilever beam with two degrees of freedom at each node.

Since there are four degrees of freedom, the size of the stiffness matrix of a beam element
has the size 4 x 4. Eqn 2.6.1 is the equation of a beam element, which is under pure bending
load (no axial or torsion loads) that relates the force vector, displacement vector and the 4 x 4

symmetric stiffness matrix (where the stiffness matrix contain the values of Young's modulus

E, moment of inertia I and the length of the element L).

[ F, A G 2EIVL®  (6EI/L*  -(12EIVL*  (6EIY/ L\ Vi
M; (6EIY L2  (4ED/L  -(6EIy/ L* (2EI)/ L 0;
F, i -(12EI¥L*  -(6ED/L* (12EIYL'  -(6EIy L? v,
M (6EIY L*  (2EI/L «(6EI¥ L*  (4EI/L 0;
L
(2.6.1)

Using this equation, we can solve problems in which several beam elements are connected in
an uniaxial direction. If the beam elements are oriented in more than one direction, we will
have to first transform the above Eqn 2.6.1 into a global stiffness matrix equation which
involves using some trigonometric relations. However, Eqn 2.6.1 can be used for solving a

beam problem loaded under bending loads only.
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Stiffness matrix of a beam element with bending and axial loads in local coordinates
The stiffness equation for the combined bending and axial load can be written by
superimposing the axial stiffness terms over the bending stiffness. For axial loading, the

structural equation is:

d]}\'

dj}\

(2.6.2)

The combined axial and bending loading matrix equation can be obtained by superimposing

Egn 2.6.1 and Egn 2.6.2 as follows:

(fix ) 6_ 0 0 -Ci 0 0 \ (dis )
fiy 0 12C, 6C,L 0 -12C, 6C,L diy
m, 0 6 C.L 4C,L% 0 -6C,L 2C,L° Y
fay i <, 0 0 G 0 0 da
fzy 0 -12C; -6CoL 0 12Cy -6CoL dy

Lm Q 6CL 2CL° 0 -6CaL 4{:;& Lo

(2.6.3)
Where the resultant matrix is,
e 0 0 -C 0 0
0 12C, 6C,L 0 -12C, e6C,L
(K] — 0 aczi 4(:;1} 0 —E-Czi, zcz_f
-C, 0 0 C, 0 0
0 -—12C, —-6C,L 0 12C, —6C,L
0 6C,L  2C,L1 0 -6C,L 4C,I |

(2.6.4)
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AE EI
where C; = T and C, = 3

Beam Element with combined loading Bending, Axial, and Torsion
The torsional structural equation for the torsional loads m,, and m,, and their corresponding

deflections are ¢, and @, .

(2.6.6)

3-D Beam Element
Consider a 3-D beam element of Fig. 2.6.5 that has 6 DOF at each node, and 12 DOF for each

element.

Fig. 2.6.2: Six degrees of freedom.

Egn 2.6.6 can be superimposed on the stiffness matrix equation Egn 2.6.3 (of the combined
bending and axial loads) to obtain the stiffness matrix equation that include all the axial,
bending and torsional loadings acted on a beam.

Therefore, the obtained stiffness matrix by superimposing all the axial, bending, and torsional

loadings in the XY, XZ, and YZ planes is:



d].r dh dl d'lt d']'. d'] dl.r d ¥ d'-' (‘ﬂ"‘t ﬁ"-'\ 6'
ATE 0 0 0 0 0 —ATE 0 0 0 0 0
7
Ry g o ML ML,y o S
L r L
12E1 6EI 12E1 6EI
0 0 D0 —— 0 - i
r r L
0 0 0 % 0 0 0 0 0 o 0 0
6EI AEI 6E] 2EI
0 0 - 0 — 0 0 0 — 0o —
L L L
oLy g g o w, m
K= I L L L
—ATE 0 0 0 0 0 AE 0 0 0 0 0
7
o ELoo o o A, o o -
L I r L
12E] 6ET 12E] 6EI
0 0 —— = 0 0 0 0 0
L r L
0 0 0 —% 0 0 0 0 0 % 0 0
6El 2E1 oFEl 4EI
0 —2 0 2 0 0 0 ' y
ET L L 2EI El . L 4El
0 il 0 0 0 — 0 S — 0 0 0 —
L L r
(1.4.1.1.15)

2.7 Non-linearity due to large Deformation of the Blade

Non-linearity of any structural object can come from any the following:
1) Non-linearity due nonlinear boundary conditions.

2) Non-linearity due nonlinear materials.
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3) Non-linearity due nonlinear large deformations.

In the present research, the author only considering the nonlinearity due the large
deformation of the blade (displacement exceed 10% of the length of the blade) where the high
order terms of the strain are kept through the derivation of the components of the total strain
energy due the application of all the aerodynamic loadings and their couplings.

This lead to have two additional nonlinear stiffness matrices in the nonlinear dynamic
equation of motion that can be solved for the the six degrees of freedom of displacements at

any x along the length of the blade using the nonlinear Newmark scheme.

2.8 Research Tasks and Plan

2.8.1 Lagrangian Beam Formulation

Using the following Lagrangian equations of motion approach:

1) Assuming that deformation is large (where higher order terms of strain are kept through
derivation) and considering all the extensional, torsional and flexural loadings acting on
the blade with their couplings, variable airfoil cross sections with warping effects, shear
deflection, rotary inertia and with blade’s pretwist, the total strain energy, total kinetic
energy and the partial derivatives of the external work external work due to the
aerodynamic loading acting on the blade can be calculated and then substituted in the
Lagrange equations of motion.

2) The “assumed modes method” is used, in which displacements are assumed to be an
expansion of products of time-step dependent constants and polynomial functions of x

(where x is the coordinate along the length of the blade) that satisfy the boundary
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conditions at the fixed end where x=0 (hub of the blade) and at the free end where x=L
(tip of the blade).

3) Then mass matrix, linear and non linear stiffness matrices and the load vector R of the
dynamic equations of motion are deduced from the Lagrange equations of motion. The
steps of the linear and nonlinear Newmark implicit iteration schemes used for solving
the linear and nonlinear dynamic equations of motion respectively were explained in
detail.

4) To modify the above formulation for the small linear deformation, all what should be
done is to eleminate the higher order terms of the strain that we kept for the large
deformation ( or simply assume the nonlinear stiffness matrices are not exist)

5) Creating a MATLAB code that contain the mathematical formulations that mentioned

above for the linear and nonlinear deformations.

2.8.2 Model Validation

2.8.2.1 Experimental Testing

There will be no experimental testing will be conducted through this present research period
on any wind turbine blade prototype or on a real working wind turbine in the field due to the
difficulty to do that. So to verify my MATLAB code (that contain all the mathematical
formulation of the present research) displacement results after solving for all the unknown
displacements u, v and w in the directions of x, y and z axes respectively, the bending

rotations 8, and 8, about the y and z axes respectively and the torsional rotation ¢p about the x
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axis (using the linear and nonlinear Newmark implicit iteration schemes), the author will

perform the following:

U Confirming that the linear case displacement result plots are agree with the work of

Younsi et al.

U And confirming that the nonlinear case displacement result plots are agree with the Ls-

Dyna code.

2.8.2.2 Blade Analysis Using Hypermesh and Ls-dyna

Consider the 3D blade Fig. 2.8.2.2.1 as an infinite number of stations that each of these

stations has a ‘local radius’, which is the distance of the station from the centre of the rotor.

BLADE DIMENSIONS AT STATIONS
EXAMPLE - PERU 3 BLADED ROTOR

LOCAL RADIUS

CENTRE OF
ROTOR
<>

Fig. 2.8.2.2.1: The Blade stations [11]

Given the local radius, chord width and blade angle at some given number of airfoil stations,
we can construct the shape of the whole blade.

where,
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chord line: is the longest line within the blade section, and it joins the leading edge to the
trailing edge.
blade pretwist angle (beta): is the angle between the chord line and the plane in which the

rotor spins.

Essential steps to build the given blade Ls-dyna mo del in Hypermesh

Hypermesh, versions10 was used as the finite element preprocessor to model a pretwisted
14 m length wind turbine blade(of linearly decreasing NACA-4415 airfoil type from hub to tip)
and then solve for the blade deformation using Ls-Dyna solver. The following are the essential

steps that used to build the given blade Ls-dyna model in Hypermesh.

1st phase steps: creating the blade model

1) Create a Geom component.

2) Make Geom current and construct all the 1D beam elements using nodes and then lines to
connect the nodes ( 14 1-D beams (total 15 nodes), each beam is 1 m length).

3) Solver Browser then right click ---> create ---> *MAT ---> *MAT _Elastic ---> Create *Mat_
Elastic ( enter the Young’s Modulus E and the poisson ratio of the material).

4) Create properties for each beam section i.e. 14 properties, by entering the associated area
for each beam section as the average of the airfoil areas at the 2 nodes of that beam element
section under consideration---> using a special macro---> enter the coordinates of the average
airfoil as copied from an excel sheet ---> nodes of the airfoil geometry will show on the screen -
--> Go to Geom ---> connect the coordinates of the airfoil geometry--->1D---> Hyperbeam to
create that beam section property). Also using Hyperbeam, any airfoil beam section can be

twisted as shown in the below Fig. 2.8.2.2.1.
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Fig. 2.8.2.2.2: Airfoil geometrical properties using Hypermesh.

5) Create 14 different 1D_beam sections that all share same material but each has its own
property that created at previous step 4.
6) Meshing: Make the 1st beam element component current then 1D ---> line mesh, then

select the associated property then select the the geometry of the 1st beam then Mesh.
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7) Create a constraint collector.
8) Make constraint current and select left node and apply constraints at the hub of the blade
(where x=0). Since each 1D_beam section (that created in step 5) has different average airfoll

area, then all the 14 1-D beam elements will change to a 3-D blade as shown in Fig. 2.8.2.2.3.

feiPrt= 1.00e+00

Pnt=1.00
1.00

Fig. 2.8.2.2.3: Changing 1D beams to a 3D blade using Hypermesh.

2nd phase steps: creating the aerodynamic load curv  es

1. In the Solver Browser right click and select Create>Set>*Set_Node_List.

2. Name it Nodel.

3. Select the first node to be loaded and create the set.

4. Repeat for each node to be loaded. Until you have a Node_Set for each of the nodes.

5. Create your curves for each of the loads you want, X,Y,Z and Rotational X,Y,Z ( view --->
Solver Browser --> *Define ---> create ---> *Define_Curve --> New --> enter X (time) and Y

(load). Then load curves data will looks like Fig. 2.8.2.2.4.



60

=01
Cument curves: Z+force_node]
Curye List +
¥-farce_nodel H 323
foice_nodel §
Zforce_nodel 5 BBed
etemament_node1
‘-moment_nodel
Z7-mament_node1 5 1e3
¥arce_node? Y
'force_node? j
b - 4953
¥ \ ¥ s
01 H003.8 15561 | | |
02 i3 04 1) 176 %3 %
03 4736 X
04 907 oat -k Legend
05 53077
08 my | e R Lasek |y locafor [NE v
07 48146
08 g, Toper fLves v Pessin: |3 v | Tye ILineal B Pecior: [3 v| | | fite
Y 19T
Min Max: i LETS
Calar: I ¥ Dila
- T |3 0« Gidepertic (2 v || Tieg |3 = Grdspertc; (2 =

Update Hew .. | Digletz | Hename| Cloge |

Fig. 2.8.2.2.4: The load curves data.

6. In the Solver Browser right click and select Create>Load>*Load_Node_Set.

7. Name it Load1.

8. When the card editor opens click NSID and pick the first node set.

9. Click DOFX and pick 1 (for the x component).

10. Click LCID and pick the curve for the X Load for the first node.

11. Repeat this procedure for the same node_set and pick DOFX 2 (Y Translational) and pick
the LCID for the Y translational load curve.

12. Do this procedure for each node and every DOFX (1,2,3 are X,Y,Z translational and 5,6,7
are X,Y,Z rotational) so that every node has all load curves associated with it.

The final blade model cards are shown in Fig. 2.8.2.2.5.
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Fig. 2.8.2.2.5: The final blade Ls-Dyna model.

And the final blade model with all the added aerodynamic loadings Fx, Fy, Fz, Mx, My and Mz
at each of the 15 nodes, starting at nodel (where x=0) and ending at nodel (where x=L) are

shown in Fig. 2.8.2.2.6.
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Fig. 2.8.2.2.6: All stations loadings.

The blade solution of the present research formulation for the linear small deformation case
using the MATLAB code is compared with the same blade solution for the displacements and
rotations plots (six degrees of freedom) at the blade tip with Younsi et al work.

While the blade solution of the present research formulation for the nonlinear large deformation
case using the MATLAB code is compared with the same blade solution for the displacements
and rotations plots (six degrees of freedom) at the blade tip with Ls-Dyna work.

It should be also noted that many other commercial codes have been tried throughout the
present research to generate the geometrical blade properties for some given blade airfoil
stations that linearly decrease from hub to tip as shown in Fig. 1.8.2.2. For example, the new
commercial code VABS (Variational Asymptotical Beam Sectional Analysis) is one of the
codes that can be used to model the wind turbine blade structure for which one dimension is

much larger than the other even if the blade is made of composite materials and have a
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complex internal structures. Another commercial code is NuMad, one of set of codes created
by NREL that able to create a 3D blade structure from the 2D airfoils. NuMad is a stand-alone,
GUI pre-processor for ANSYS finite element analysis software developed by Daniel Laird at
Sandia National Laboratories. Some other codes like Concord and X-FOIL are used to create
the 2D airfoils from their known coordinates. It should be noted that composite material work

is not the concentration of the present research since that was done before.

2.9 Torsion of Arbitrary Cross-sections

2.9.1 Saint-Venant’'s Torsion Theory

It should be noted that for any non circular cross-sections, plane cross-sections will not
remain plane after any torsional deformation and therefore warping of the cross-sections will
occur. This problem of torsion and warping need to resolved in order to predict to a high
accuracy the stress distribution and the deformation of a shaft of any arbitrary cross-sections.
The problem of a cylindrical shaft under torsion was analyzed by Barre de Saint-Venant [12],
who utilized the semi-inverse method (which rely on guessing a part of the solution, then trying
to determine the rest of the solution in a rational way where all the differential equations and
boundary conditions should be satisfied.

Consider a cylindrical shaft under torsion, with the x-axis along its length and with the ends at
x=0 and x=L respectively.

The shear stresses in the cross-sections that perpendicular to the x-axis are:

_Ir
J

T (2.9.1.1)

where I is the given radius vector measured from the central x-axis of the shaft.
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The displacements in the x, y and z directions on the shaft are:

U=—¢ Xz Vv=¢ Xy and w =gy (Y,2) (2.9.1.2)
where y/(y,z) is some function of y and z, called warping function, and ¢ is the angle of twist

per unit of length of the shaft and is assumed to be very small (<<1).

The differential equations of equilibrium are:

d oy 0 oyy 0 oyz _
x ay t7 o, trx=l
0o o do
e wr hz _
o tTay TTa tef=l
0 omy d oy 0 oze B
x gy T oz T rE=0

(2.9.1.3)

where,

P :is the density of the substance.
pX, pY, pZ : are the body forces (X, Y and Z are the projections on the coordinate axes of the

mass forces (i.e. gravity) acting on each part of the body, relative to the mass of that part.

Relying on the function y(y,z) to satisfy the above differential equilibrium equations and
assuming that the body forces are negligible. The B.C.s on the lateral surface of the shaft are:
o), +0o,l,=0
o)yt o,l,=0
Oly+ 0 d, =0
(2.9.1.4)

and the B.C.s at the ends x=0 and x=L :

o, =0 ando, and o,, are equipollent to the torque T (2.9.1.5)
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Consider |, 1, as the direction cosine constants for the lateral surface and (I, =0) as the

z

direction cosine constant for the direction along the shaft length . From Eqn 2.9.1.2 , we can

get the stresses values by using Hooke’s law.
oy oy o _
ZX:¢G(§+ y), ny:ﬁ(E—Z) and O-yz—o-yy—O-ZZ: O-XX_O (2916)

A substitution of these values into Eqgns 2.9.1.3 shows that the equilibrium equations is

satisfied if y/(y,z) satisfied Egn 2.9.1.7 within the cross-section of the cylinder :

2
o VoV _g (2.9.1.7)
oy>  oz°
To satisfy the B.C.s, Egn 2.9.1.4, we should maintain:

(a—w—z)cos(,y)+ (a—‘//+ y)cos(,z2)=0 onC, (2.9.1.8)
oy 02

where C is the boundary of the cross-section of the region R that shown in Fig. 2.9.1.1

Fig. 2.9.1.1: An arbitrary cross-section under torsion (adapted from [12]).

but %”cos@ )+ costl)= aa‘f’

Therefore the B.C.(s) of Eqn (2.9.1.9) can be written as:
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oy
E:zcos(y,l)— ycosgl) on C. 2.9.1.9)

The B.C.(s) of Egn 2.9.1.6 are satisfied if:

j j o, dydz=0 and j o dydz=0, (2.9.1.10)
R R
[[ yo,~20,)dydz=T 2.9.1.11)

R

We can verify that Egns. 2.9.1.10 are satisfied if y/(y,z) satisfies Eqn 2.9.1.7 and Egn 2.9.1.9

because: [ o, dydz=¢G|[ (%”-z)olyolz:gﬁ@jR [ {%[y(%//—z) J+ %[y(%—"zj+ ) ]}dydz

R R
since y(y,z) satisfies Eqn. 2.9.1.7. By applying the Gauss theorem to the final integral, it

becomes as a line integral on the boundary C:
¢GJ Y[ aa—"ly— zcos(y,l) + ycos(z,1) ]ds
C

which vanishes on account of Egn 2.9.1.9. Similarly, the second Eqgn of Egns. 2.9.1.10 must

be satisfied. Finally, the last condition of Egn. 2.9.1.11 is :

T =¢G” (y2+22+yal/j —zal//)dydz (2.9.1.12)
2 oz oy
but =” (y2+zz+ya—w—za—w)dydz (2.9.1.13)
R oz oy
which implies, T = ¢GJ (2.9.1.14)

where,

¢ : is the angle of twist at a specific location x along the shaft

GJ: is a proportionality constant or torsional rigidity of the shaft
G :is the shear modulus of the shaft

J :is the polar moment of inertia of the shaft cross-section if it is circular.
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2.9.2 Prandtl Stress Function Theory

Prandtl [12] proposed an approach to calculate the warping in which he considers the stress

components as the principal unknowns. Assuming that onlyo-yx and o,, differ from zero, then

all the equations of equilibrium Eqgn 2.9.1.3 are satisfied if

D = (2.9.2.1)

Also Prandtl [12] observes that this equation is identically satisfied if o, ando,, are derived
from a stress function ¢(y,z) in such a way that:

%9 and o, =— % (2.9.2.2)

0z oy

O-yX:

This stress function ¢(y, z) can be an arbitrary function as long as the stress system Egn
2.9.2.2 satisfy the boundary conditions Eqn 2.9.1.4 and Eqn 2.9.2.1 and the compatibility
conditions.

From Eqgn 2.9.2.1, we can figure out that the compatibility requires that (in absence of body

forces) the following:

2 2
V?o,,=0 and V’c,,=0, where, V> denotes (6_2+ 6—2), hence,
oy. 0z

9 V2 p=oand _V? p=0 (2.9.2.3)
oy 0z

V? p=cons. (2.9.2.4)

Of the boundary conditions Egn 2.9.1.4 only the last equation is not identically satisfied but

from Fig. 2.9.1.1, we note that:

92 and 1, = cos(l,z) = - (2.9.2.5)

|, =cos(l,y) = e 4

We can write the last equation of Eqn 2.9.1.4 as :
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99 02,09 _09_4 onc (2.9.2.6)
0z 0s o0y 0s 0s

Hence ¢(y,z) must be constant along the boundary curve C. For a simply connected region,
it is general enough to set :

=0, orC (2.9.2.7)
It remains to examine the boundary conditions Eqn 2.9.1.5. The first, o,, = 0, follows the

starting assumption. The other conditions are stated in Eqns 2.9.1.10 and Eqn 2.9.1.11.

but J'_[ o, dydz= J'_[ aa—(zp dydz by Gauss’ theorem, this is j @ |, ds and it vanishes on account
R R C

of Eqn 2.9.2.7.

Similarly, the resultant force in z-direction vanishes. Thus Eqn. 2.9.1.10 are satisfied.

Finally, Eqn 2.9.1.11 requires that: T =—” (y +zaa—(p)dydz
y
R

%9
oy

which can be transformed by Gauss’ theorem as follows:

T =—IRJ { %(y(ph %(zqo)—Zco } dydz

=—[ { ypcosly)+zpcos(,2) ds+[[ 2pdydz (2.9.2.8)

C

If R is simply connected region, the line integral vanishes by the boundary conditions Eqn

2.9.2.7, implies: T =2” ¢ dydz (2.9.2.9)
R

Thus, all differential equations and boundary conditions concerning stresses are satisfied if
@ obeys Egn 2.9.2.6, Egn 2.9.2.7 and Eqn 2.9.2.8. But there remains an indeterminante
constant in Eqn 2.9.2.6. This constant has to be determined by boundary conditions on

displacements. From Egn 2.9.1.2 and Eqgn 2.9.1.6, we get:
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(o2
MW_%% 4 gzand Mo Tx _ 4y (2.9.2.10)

oy G 0z G

Differentiating with respect to z and y, respectively, and subtracting we get:

0
1% 0%y _ o, (2.9.2.11)
G oz oy
Hence, a substitution from (2.9.2.7) gives
2 2
99,99 2q (2.9.2.12)
oy- 0z

In this way, the problem of torsion is to the solution of the poisson Eqn 2.9.2.12 with boundary

condition Egn 2.9.2.7.

Elliptical Cross-section

Let us apply the Prandtl approach [12] to calculate the warping of an elliptical cross section

2 2

y | %—1:0 (2.9.2.13)

where —
a

Then Eqn 2.9.2.12 and Eqgn 2.9.2.7 are satisfied by having the stress function:

a’b’Ga (y2 v

- =7 (L f 9 2.9.2.14
¢ (@®+b% 'a®> b2 ) ( )
d
Eqgn 2.9.2.8 gives the relation between the torque and the rate of twist 8 = d—f
3113
_ @b g dg (2.9.2.15)
(@ +b%)  dx

The stresses are given by Eqn 2.9.2.2. Note the following curves have an interesting

meaning:
¢ (y,z) = const

The slope dz/dy of the tangent to such a curve is determined by the formula:
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9,90 2 _, (2.9.2.16)
oy 0z oy

Hence, according to Egn 2.9.2.2, we have

Oy = %9 and o,, =— o9 , which implies: G2 _%e
0z oy o o,
The magnitude of shearing stress is:
2 2 z op op 2
—_ _ 2 2
T _( Oy + 0y )2 _[(E) + (E) ]2 (29217)
The maximum shearing stress is :
=26 2P ¢ (2.9.2.18)
a’+b? o

Now the warping (out of plane displacements) function y(y,z) for a constant elliptic cross-

section can easily be shown to be :

a’—b?

a’+b?

w=— yz =Kyz (2.9.2.19)

where K = =——
a

— is a constant depends on the two diameters a and b of the ellipse.

So as mentioned earlier in section 2.9.1, shafts or cylinders of a non-circular cross-section
undergo warping when subjected to pure torsion. An example is the warping that occurs in the
shafts with elliptical cross sections i.e. Eqn 2.9.2.19.

For the present research, warping will be calculated at many selected given stations from hub
to tip of the given wind turbine blade (that has different airfoil dimentions at different cross
sections) where at each selected station there is only a one calculated value of warping that is
different from the next station. Therefore, warping in the present research is considered to be
dependent on x coordinate only and is independent of the y and z coordinates which is

different from the above mentioned constant elliptic cross-section case.
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2.9.3 Cross-section Geometrical Properties

2.9.3.1 Torsional Rigidity Calculation

The analytical calculation of the exact values of the “torsional rigidity” for cylindrical bars is
limited to a few number of cross-sections. Exact solutions for the ellipse, circle and equilateral
triangle are listed in [13] while the approximations for rectangular cross-sections are available
in [14]. The approximated solution for many cross-sections such as trapezoids, triangle,
semicircles, are listed in handbooks such Roark [15]. A good approach to approximate the
torsional rigidity of any cylindrical solid cross-section is detailed in [15, 16]. Some cross
sections can be considered as a combination of an ellipse, rectangle and triangle, etc.

There are many softwares that can be used to calculate the geometrical properties for any
cross section including warping, moment of inertias and torsional rigidity [16] but for my work |

used the Hypermesh version 10 to calculate such properties that needed for my analysis.

2.9.3.2Second Moment of Inertia

There are three types of moment of inertia: The second moment of inertia, the product
moment of inertia and the polar moment of inertia. Consider a beam with a cross-sectional
area A (that has a plane region of a particular shape which is perpendicular to the beam's axis).
And consider A to be a straight line in the plane (which is by definition, perpendicular to the

axis of the beam). The “second moment of area” of the region A about the line A is:

I,\anz dA
A (2.9.3.2.1)

where dA is the elemental area; and n is the perpendicular distance from the element dA to the

line A
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If the line A is the x axis and the bending force is parallel to the y axis, the second moment of

area can be computed as:

I, = // y* dz dy
A (2.9.3.2.2)

To calculate the bending stresses, the above equation can only be used when cross-sections
are symmetrical about the x-axis. But if cross-sections are not symmetrical, the second
moment of area about both the x-axis and y-axis and the product moment of area, lyy,

(explained in the next section) are required.

2.9.3.3Product Moment of Inertia

The scalar of the “second moment of area” for a beam about a certain axis, describes the
beam's resistance to bending along that axis. Some beams will deflect in a direction other
than the direction they are loaded. Consider, for example, a leaf spring running along the x
axis and directed such that its surface normal is in the (0,1,1) vector direction. If we push
downward on it in the (0, 0, —1) vector direction, we get a bending moment in the (0,1,0) vector
direction. However, even that the spring is moving downward, it is primarily deflecting in the (0,

-1, —1) vector direction. This behavior should be captured by the “product moment of area”.

The product moment of area is:

I, =/:r,yd.—1
S (2.9.3.3.1)

where,
X: is the perpendicular distance from y axis to the element dA.

y: is the perpendicular distance from x axis to the element dA.



73

2.9.3.4Polar Moment of Inertia

Polar moment of inertia is defined as the quantity that used to predict an object's ability to
resist torsion, in objects with an invariant circular cross-section and insignificant warping. It is
used to calculate the angular displacement of an object when it is subjected to a torque. It is
analogous to the area moment of inertia that predicts an object's ability to resist bending. The
larger the polar moment of inertia, means the less the beam can twist, when subjected to a
given torque. It should be noted that “polar moment of inertia” should not be confused with

“moment of inertia”, which characterizes an object's angular acceleration due to a torque.

Limitations

The “polar moment of inertia” can not be utilized to analyze any non-circular cross-section
shaft. For non-circular cross-sections shafts, the “torsional constant” should be calculated
instead of the “polar moment of inertia”. In objects with significant cross-sectional variation
(along the axis of the applied torque), which cannot be analyzed in segments, a more careful
approach should be used. However the “polar moment of inertia” can be utilized to compute

the “moment of inertia” of an object with arbitrary cross-section.

y Bl da

Fig. 2.9.3.4.1: The polar moment of inertia.
A schematic of Fig. 2.9.3.4.1 show how the “polar moment of inertia” is calculated for an

arbitrary shape about an axis o.
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g, = f 2 A
A’ 0.9.3.4.1)

where J, is the “polar moment of inertia” about the axis z; and p is the radial distance to the
element dA from the axis z.

For a circular section with radius r:

J _f?ﬁ[:' ) J dqb_ E'T?‘i
2= o Jo PPIPEOT (2.9.3.4.2)

For a rectangular section with sides b and h:

/ ‘fw fm (2 +37) dudy = 2 (82 + )
: _bl}g _hl,iz 12 Z9343)

The Sl unit for the “polar moment of inertia” is the same as the “area moment of inertia” i.e. m*.

Conversion from Area Moment of Inertia
Using the perpendicular axis theorem, the polar moment of inertia J; is related to the area
moments of inertia about the other two mutually perpendicular axes: J; = Iy + |, . The “polar

moment of inertia” J, appears in the formulae describes torsional stress and angular

displacement.

Torsional stress

g @.9.3.4.4)
where T is the torque; I' is the distance from the center; and_/; is the polar moment of inertia.

In a circular shaft, the shear stress is maximum at the surface of the shaft where the torque is

maximum;

r (2.9.3.4.5)



75

Chapter 3

Total Strain Energy, Total Kinetic Energy, Aerodynamic loadings &
External Work

3.1 Introduction

Wind turbine blades similar to helicopter rotor blades [17] have the structure of pre-twisted
beams that react due to extension, torsion, flexure and the coupling interactions among all
these loads. A number of approximate theories used for the pre-twisted beam have been
developed by different researchers to analyze its complex geometry.

For example, the potential and kinetic energy relationships were given by Carnegie [18] for a
pre-twisted cantilever blade using the standard variational approach to deduce the equations
of motion and allowing for torsion, bending, rotary inertia and deflections due to shear without
any warping effect. Yardimoglu and Yildirim [19] derived the strain energy and kinetic energy
for pretwisted Timoshenko beam undergoing bending-bending load coupling. More recently,
Ozgumus and Kaya derived [20, 21] the strain energy and kinetic energy to obtain the
equations of motion for a rotating beam considering bending-torsional coupling considering the
effect of the centrifugal force and the effect of shear as in a Timoshenku beam. And Liu,
Friend and Yeo [22], derived the strain energy and kinetic energy considering axial-torsional
coupling vibration for a pretwisted beam that has an elliptic cross section. Then they obtained
the equations of motion using Hamilton’s principle assuming an elliptical cross section warping.
The calculation of warping for an eliplitical cross section is elementary and is easy to calculate.

In this chapter, the total strain and total kinetic energy were derived for both the linear small

deformation case and the nonlinear large deformation case.
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Also the pitch moment, thrust, centrifugal forces (that allow us to obtain the external work
acting on the blade), boundary conditions and damping on the blade will be discussed. It
should be noted that the six unknown displacements at any x along the blade’s length direction
were assumed to be expanded a series of products of time dependent constants and

polynomials expansion and then computed by solving the dynamic equations of motion.

3.2 Dynamic Equations of Motion

Consider the blade shown in Fig. 3.2.1 as a Timoshenko beam with a pretwisted angle £.

(8]

/_\ j 7 \ / mass axis
: DAY

elastic axis

Fig. 3.2.1: Pre-twisted asymmetrical blade structure coordinate systems.

The blade has at any x along the lengthwise three displacements u, v and w in the directions

of x, y and z axes respectively, bending rotations 4, and 6, about the y and z axes respectively
and torsional rotation ¢ about the x axis. Also we are considering y as the airfoil cross

sectional warping.
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By applying the following Lagrange equations [23] to the blade of Fig. 3.2.1, we will obtain all

the equations of motion:

d o,  WVroa  Vges oF _MWer _g (3.2.1)

at5q, oq, oq, oq, o4, oaq,

where,

qm:is equal to a,,, by, Cm» dm, €m OT fm

T: is the total Kinetic energy

Urotar: 1S the total strain energy

W.,¢: IS the external work on the blade due to the applied aerodynamic pressure

F: is the applied nonconservative damping force if blade assumed to be of viscous type [61].

1 “ b 7 7 7
F = —(‘f f (u” + 0"+ w7)dxdy
2 Jo Jo

where € has a different value for each term of the mode expansion. Simple calculation give:
.'a .2
5 T Z Z Cm, ”(Hm N U ,n + u"m,n)
n=1 m=I

The damping coefficient <.~ is related to modal damping ratio, that can be evaluated from

experiments, by Sm.n = Cm,n/ (2l n@m.n)s where @m.n s the natural circular frequency

of mode (7. s> and Hm.n is the modal mass of this mode, given by:

=psh(ab/4)

l m.n

In the present research, the author considers only the material damping and neglects the

viscous damping i.e. neglecting the term i=0, which results in reducing one term of the
a9

m

equations 3.2.1 to become:
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d aT) 0T g  WUpes  MWew _ (3.2.2)

dt' g 6q, oq, 0q, 0q,

3.3 Computation of the Total Strain Energy

By adding all the different derived strain energies from Appendix A i.e. equations (A.1), (A.2)

and (A.3), we get the total strain energy [9, 13, 18, 20-22, 24-26]:

Unew = S0 {E(1, 07 +21,6, 0, +1,,07) + KBA(W-6) *+(v-0,) * Jox+ ~[ P [v2-2y,

N |-
Oy~

-

V' +(1,1AKX) ¢°] dx + %j PIw?-2Zz W ¢ +(1,/AX) ¢°] dx +%E j %AW“dx +

0

—Ej S w? g dx+j[K9 ¢+ K,0, ¢ dx+f”dydz{%ngj+2c;(gxy2+gxf)
0o A

1 4]
b dx +j SElL ¢ 2 dx (3.3)
0
where,
au oy 00 1 1 81// , ou oy 1 080 ., oy 06
+ 00— +—y +— (— — ) +—=—0— +— (—y)+o— —
=l ox x o ( ) > O T O T O &Y
6a 89 1 2 2 2 2 2
+ =+ —r%0 where,r- =vy- + 3.3-a
AVt ] Y2+ 2 (3.3-a)
1 1
gxy = ? 9 [_21] and gxz: ? 9 [yl] (33'b)

3.4 Computation of the Total Kinetic Energy

By adding all the different derived kinetic energies [9, 13, 18, 20, 22, 24-26] from Appendix B

i.e. equations (B.1.2), (B.2) and (B.3), we got the total strain energy as:



79

. %JL' . &2 A+ o (%) W A(X)+(‘Z_f)2 p? A(x)+|p(x);;§2 Jox

] R CF2ARGE-CE MR -2 R+ CE RN + CEAR + 20 g6, ~ 207 MR

+ Q7" A(X)p® éz+ 7> A(X) 0, - 7° A(X) ézz + 2§y2A(x)92¢.5 +2Q7°A(X) 6, éﬁ—ﬁyzA(x)ezgﬁzéj - Q72

AC) O ¢+ 25" A0 6, § — 22A000,96, 3 + Y'AM) § + ZAN G + Y AXE G ik

# 2] MOl (2, 87 + (e, 97 Jix 2 [ { pOLs (Ber 2, 807+ o001, (Br+ Y, 9 Jox
O] Ol (2, e y,0) e 2 [ L2020 0)
PG+ Y, '+ Y, 9 ] dx a4

g

3.5 Displacement Expansion

The author assumed a summation of a product of time dependent constants and polynomials

expansion for the three displacements u, v, w and the three rotations 4,,6,,¢ at any x along the

blade length as shown below in order to solve for them using the Assumed Modes Method:

N

0=3 a0,

similarly, V=ZN: b, ()4, (%), W=D ¢, (t)¢,(x), 91=ZN: d,()¢,(x), QZZZN: e, () 4,(), and

n=1

5=3 £ (3.5)

n=1

where the polynomial functions ¢,(x) = (x/L)™* and a,(t),b,(t),c,(t),d, (t),e,(t) and f (t)are the

time dependent constants that need to be solved using the equations of motion and Newmark

non-linear iteration scheme.
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3.6 Thrusts, torques, centrifugal forces and pitch moments

True distributions of the aerodynamic loadings that needed for the structural analysis of the
wind turbine blades, are difficult to predict and usually require some flow codes such as CFD
to determine their accurate magnitude. In this section | am providing a simple model for the
estimate of blade forces suitable for use in structural analysis. Thrust forces are directed in the
axial direction (i.e., following the blade shaft axis). Torque forces are tangent to the radius arc.
Centrifugal forces are normal to the axis. As noted earlier that according to the BEM theory
[27], air loads on a section airfoil of the blade are proportional to the dynamic pressure at only
that section.

The premise of the simplified model is that a) the forces can be modeled by a set of point
loads rather than distributed pressures, and b) the magnitudes of these point loads can be
estimated using the below load formulaes, c) An interpolation scheme needed to have all
computed forces and moments as a function of the blade lengthwise x. Fig. 3.6.1 below,
illustrates how the three principal forces - thrust, torque and centrifugal- are applied as point
loads acting on a radial span of the blade.

The aerodynamic forces (lift, drag and pitching moment) as shown in Fig. 3.6.1 are directly
linked to the type of flow, relative wind velocities and the wind attack angles to the airfoll

sections.
Lift; L=2p V2 cC
. _1 2
Drag: D= 5P Vieic Cq

Pitch Moment: PM = %p V2, c?Cp, (3.6.1)

The simplified model is stating that (a) the forces can be modeled by a set of station loads

rather than distributed loads, and (b) then the magnitudes of these station loads can be
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predicted using the below listed load formulas, (c) then an interpolation scheme will interpolate

all computed station loads (forces and moments) as a function of the blade lengthwise x.

plane of rotor

LAA A A A AL A A A A A R R A A

Fig. 3.6.1: The lift and drag forces.

Fig. 3.6.2 below, illustrates how the three principal forces - thrust, torque and centrifugal- are
applied as point loads acting on a radial span of the blade. Thrust forces are always axial in
their direction (i.e., following the blade shaft axis). Torque forces will be tangent to the radius
arc and centrifugal forces are normal to the axis.

Then all the forces and moments acting at the selected airfoil stations along the blade can be

calculated from the following formulaes [28-30]:

Centrifugal force: Fx=mr Q2
Torque force: Fy=Lsing — D cos¢
Thrust force: Fz=L cos¢ +D sing

Moment in x-direction: Mx= PM +Fyz +Fzy, (3.6.2)
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Fy

[ y
Fz

Fig. 3.6.2. The aerodynamic loads (adapted from [27]).

where,

¢, C; and G, : are the lift, drag and pitch moment coefficients respectively
¢ :is flow angle of the airfoil section

p . is the density of the air

c . is the chord length of the airfoil section

m : is the mass of the airfoil section

Vo1 (Or W) : is the wind relative speed

Q :is angular speed of rotor

r . is the distance from root of the blade to the airfoil section

y, and z : are the distance between centre-of-flexure and centroid in y and z direction

respectively for a specific airfoil section

3.7 External Work

The work done by external forces [23, 27, 31] on the blade is:

W, :j [F,()U+F,(X)v+F,(Qw+ M, (X)g+M (X6, + M ,(X)6,]dx (3.7.1)
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where,

F.(X), F,(x) and F,(x): are the interpolated functions at all stations of the forces at each time

step acting in the direction of x,y and z axes respectively.

M,(X), M, (x) and M,(x) are the interpolated functions at all stations of the moments at

each time step acting in the direction of x,y and z axes respectively.

oW, ; N [

oo TR 8040 dx=[ F,(,() dx

aam aam 0 n=1 0

similarly,
%:j F, (X, (x) dx (3.7.2)
ob o
Mot 1, (0,09 o (37.3)
oc, ©
%:j M, (6 () dx (3.7.4)
od, o
Mot 1,1, (37.5)
oe, ©
%:j‘ Mx(x)¢m(x) dx (376)
of o

3.8 Boundary Conditions

The blade strain energy due to the boundary conditions at x=0 and x=L.:

u :UB.C.1+UB.C.2

B.C.s
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=%Mﬁ7®+%%ﬂ7®+%%wfmh- Kot 0+ Keg' 0+ 5 Ker 0,°0)

1, 1 2 1 1 2
+§kmu (L)+§k|vv (L)+EleW2(L)+ |¢¢ (L) + Kleﬂ (L) 2K|0292 (L)

where (Ko, Ko s Kow + Kig » Ky 1 Ky, ) and Koy Koy Kopo Ky Ky Ky, are the linear and
rotational spring stiffnesses at x =0 and x= L respectively.
aU BCs _ 5 1 1

L2 + 2ket2(L) = keuT(0) —— T(O) + kya(L) —— (L)
oa.  oa 2 2 oa, oa,

Considering the polynomials ¢,(x) = (x/L)™* as mentioned in section 3.5, implies:

u(@)=0andu(L)= i a, , implies:

n=1

oU N
TR e (3.8)
aam n=1
Similarly, for WUecs ’ WUgcs ’ WUges , Upcs andaU BCs
ob, oc, od, 0e, of,

Since the blade has a fixed end at x=0 and a free end at x=L, we can set up the following:

Kog » Kov + Kow @Nd K, Koy Ky, to large number and kg, k, . k,, and K, K, , K,,, to zero or

very small number.
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Chapter 4

Obtaining the Lagrange Equations of Motion

4.1 Introduction

A carefully selected sample of the pretwisted beam or wind turbine blade literature is
analyzed, such as the exact solutions of Timoshenko’s equation for simply supported uniform
beams as given by Anderson [32], and the general equations of motion of a pre-twisted
cantilever blade derived by Carnegie [33]. Carnegie [18] extended the study of the general
equations of motion of a pre-twisted cantilever blade allowing for torsion, bending, rotary inertia
and deflections due to shear but he did not include the warping effect. Dawson et al. [34]
found the natural frequencies of pre-twisted cantilever beams of uniform rectangular cross-
section allowing for shear deformation and rotary inertia by the numerical integration of a set of
first-order simultaneous differential equations. Carnegie and Thomas [35] investigated the
effects of shear deformation and rotary inertia on the frequencies of flexural vibration of pre-
twisted uniform and tapered cantilever beams by using the finite-difference method. The semi-
inverse method was proposed by Saint Venant for solving the elastic deformation of prismatic
rods under resultant end loadings. This was referenced and utilized by Dawson, Ghosh, and
Carnegie [34], Xu, Zhong and Zhang [12], and Sokolnikoff [13]. The strain energy of bending-
torsional and their coupling were investigated by Kima, Fub and Kimc [36] and was modified to
include the shear effect of a Timoshenku beam by Kaya and Ozgumus [20]. Banerjee [37, 38]
had an approach for the Bernoulli and another one for the Timoshenko symmetric beam where
bending was uncoupled from torsion and/or axial loading. Banerjee and Williams [39]
published some work about coupled torsional-bending for asymmetrical Timoshenko beam
where the elastic mass axis is different from the centroid axis. Subrahmanyam, Kulkarni and

Rao worked on coupled bending-bending vibrations of pretwisted cantilever blade [40, 41], and
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also they worked on coupled bending-torsion vibrations of rotating blades of asymmetric
aerofoil cross section with allowance for shear deflection and rotary inertia by use of the
Reissner method [24].

The equations of motion for thin-walled beam with non-symmetric cross-section subjected to
linearly variable axial force were derived by Kim, Fub and Kim [36]. Also one of these early
approximate approaches was Chu’s helical fiber assumption [42], where stresses are initially
determined along and perpendicular to helical fibers of the beam’s pretwist. Even though Chu’s
predictions matched experimental results for thin-walled beams, it was nevertheless a flawed
theory that predicted axial-torsional coupling where warping wasn't present i.e. for the case of
beams with circular cross-sections. Similar approahes include the works of Rosen [43, 44],
Hodges [45], Krenk [46] on static axial-torsional coupling and Tsuiji [47] on the dynamic
response. In recent years, warping function-based beam theories that based on semi inverse
and variational methods appear to have become widely accepted. The semi-inverse method
was proposed by Saint Venant for solving the elastic deformation of prismatic rods under
resultant force and moment end loads [12, 13, 34].

More recently, Liu, James and Yeo [22], investigated the coupled axial-torsional vibration of
pretwisted beams of elliptic cross section. The equations of motion governing the extension,
torsion, and cross-sectional warping of pretwisted beams were derived from Hamilton’s
principle.

The calculation of warping for an eliplitical cross section is elementary and is easy to calculate.

Younsi et al. [28] used a finite element approach based on a variational formulation of the
theory of beams to calculate the blade tip vertical displacement for a 14m untwisted blade of a
variable NACA 4415 type airfoil. Younsi et al. interpolated the forces and moments for a given
wind velocity and attack angle, for all points of the lift line along the blade using a parametric

method based on Bézier surfaces.



87

In the present research, the author study the linear deformation of a wind turbine blade of the
same characteristics of the blade that was considered by Younsi et al. [28] (i.e. 14m untwisted
blade of a variable NACA 4415 type airfoil) assuming the effect of all the extensional, torsional
and flexural loadings with all their couplings, shear deflection, rotary inertia, warping of the
airfoil cross-section that varies linearly from hub to tip. The strain and kinetic energies were
derived to obtain the dynamic equations of motion that were solved to compute the
displacemts and rotations at many stations along the blade length using the linear Newmark
iteration scheme that will be discussed in more detail in section 6.4 .

Then the author extend his work to include the nonlinear large deformation case which
creates two additional nonlinear stiffness matrices. Also the blade’s pretwist is included. Then
the nonlinear dynamic equations of motion are solved for the three unknown displacements in
the directions of x, y and z axes and the three unknown rotations about the x, y and z axes at
the required stations along the lengthwise of the given blade using the nonlinear Newmark

iteration scheme that will be discussed in more detail in section 6.6 .

4.2 Derivation of the Lagrange Equations of Motion

Using Eq. (3.2.2) for q,, = a

d 0Ty T Ui, We, M

dt9a  oa, oa, oa, oa,

Substituting for _J' F (X4, (x)dx Mecs =0 (since given polynomial functions
da, © oa,
#,(x) = (x/ L)™* that discussed in section 2.3 satisfy the B.C.s), U 1o : E( a-l: ) and o
0 dt oa, a

(that was derived in Appendix C and D), implies,
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Similarly, by using Egn (3.2.2) for q,, = by, ¢, dm, €m, @nd f,,, we obtain the following

equations (4.2-b), (4.2-c), (4.2-d), (4.2-e) and (4.2-f) respectively:

d 6T, oaT U, 0Ug.. OW,
dt( ) + To + BEs L= pz SAmn +pz Z, Amn n + szz Amrpn +
ob, ob, &b, ob.  ob,

N N N N
szz xz,,Amn n + kG z SAmn bn —kG z 'SAmn € + Z SPmn bn - z SPyamn fn
n=1 n=1 n=1 n=1
L
- [ F,(0¢n(x)dx=0 (4.2-b)
0

N
gt( a ) a + aUTotaI + aU PES — ext = z SAmnC +pz S ', Amn n + sz z S><Amncn +
0 c oc, oc, oc, oc, =1

N N N
szz Sky Amnfn + kG z Amn n _kG z ISAmn dn + Z SPmn Cn - z SPzwmn fn +% E
n=1 n=1 n=1
N K,L 1 N KL L
z SAmnkICanCI +- E Z SIpmnklcn fk fI _J- FZ(X)¢m(X)dX:O (42-C)
n=l1 k/=1 2 n=1 k,/=1 0

d oT., oT U, O0Ug.. oW, - N N
dt( ) + Toal 4 BCs _ L = Z mnd +pz S|ymn fn _gzslymn dn _gz
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N . N . N KL
gt( oT ) oT + 6UTotaI n ouU BCs _ aWext = —sz S| mn fn —sz S mn fn + pz Slymnkl
0 em o em o em o em o em n=1 n=1 n=1 k,|l=1
. N K,L . K,L . N oo K,L

(0]

— _ N N ;
fn fk fl +sz z SIymnklfn fk fI +sz Iymnklfn fk fI +pz Slymnen _pz SIymnkl

n=1l k,I=1 n=1 k,i=1 n=1 n=1 k,iI=1
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. . N K,L °« o N K,L oo N K,L . . N K,L
fofie _Pz Z Si, mnki f.fe _Pz z Si, mnki f.fe +,Oz z S mnw € fi |, +PZ
n=l k,I=1 n=l Kk,I=1 n=1 Kk,=1 n=1 k,l=1
e o N K,L oo N K,L . . N K,L o o N KL
Si mnia €n f f, +Pz S, mnk €n f f —pz S mnki€n f f —pz z Sy, mnkd enf fi —p
1 kj=1 =l ki=1 nl kl=l nl ki=
oo N o N .o —5 N — N KL _ N
Symnklen fk fI +pz Szmn% +pz SIIzz,,mn fn - Q ,OZ Symn%"' Q pz Symnkl fn fkq _'sz
n=1 n=1 n=1 n=l k|=1 n=l
o o N . 1_ N K,L o N K,L
SIZmn no sz SI ymn n +3 sz z S ,mnkl n k I + EQp Z z Symnkl fn fk fI _pz
n=l k,|=1 n=1l k,|=1 n=l Kk|l=1
e o N K,L o o N K,L . . p N ,0
szmnkl fn € fI + p z z Symnkl fn & fI - pz z S ,mnkl € - z S ,mn €& — —
nl kil nl ki-1 g ma g

N K N
Z z SI 22, Z,mnk fn f + E Z 3 ,mn n + E z Syzmn dn _kG i S'Amn bn + kG i SAmn en + i
k=1 n=1 n=1 n=1

n=1 n=1

Sszn fn _.[ MZ(X)¢m(X) dx =0 (42_e)

d 6T, 0T U, Uge, W, -
P e e —pz Soim +pZ Soymn r +pZ Sy T +sz
of, of of  of of  m
N N K,L N K,L
S ,mn en +sz S ,mn € QZ z S ,mnkl en f f _QZ Z S ,mnkl € f f _QZ S ,mnk € f f
n=1 n=1 k,|l=1 n=1 k,|l=1 n=1 kJl=1
1 NooKL N N N KL
_EQPZ S mnklen f f __sz Z S mnkl% f f __sz z S ymnk & f f +pz
n=l Kk|l=1 n=l k|l=1 n=l k|l=1 n=1 k|=1
. N K,L ° o N KL oo N K,L N K,L
SI mnkl en fk q +pz SIzmnklen fk q +pz Z Szmnklen fk q _pz z Symnkl n k q - pz
n=l k|l=1 n=1 kl=1 n=1 k,|l=1 n=1 k,l=1
N KL N . N K,L . .
SI ymnk n k el _pz SI mnkl fk q +pz SI ,mn n +pz I,mn n +pz z Slzmnkl en ek fI
n=l k,|l=1 n=1 n=l k,|l=1

N K,L ° o N

K,L o N . N . N .
+ pz z SIZmnkI en ek fI + pz z SI ,mnkl en ek fI + Z SMz,,mn bn + Z SMz,lzmn fn + z SMyamn Cn
n=1 n=1 n=1

n=1 k,(=1 n=1 Kk,I=1
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N . N . N
+z SMyzmn n pz S' zmne +pz 1,2,2mn ” +pz 'Syyamndn +pz Iy Ve 2mn ” +§Z
n=1 n=1 n=1
. P N . P N . P N . P N B P N .
'S =>» s . => S , f,+=>» s , f.+=>» 's ..d, +=> s . d,
|zZam”en + g; Izzamnen + gé 1,2,"mn * g; 1,2, mn * g; 'yYa " g; lyYe mn
p N . p N .o —, — N 1 — N K,L
+_z S| v, 2mn fn +_Z S . fn + Q Z S ,mn n + Q pz z S mnklenekf --Q pz
Q' g IyYe mn 1 k-1 2 Nl k-
N . _ N . N KL o e
SI ,mnkl fn fk fI - sz Szmnen + Qp z Symn% sz z symnklf fk q + pz Symnk fn Q< q +
n=1 =l n=l kIl n=l k=L
N K,L . N KL . N K,L o« o N K,L o o
z z mnkl% fk fl + sz Symnklen fk f| - pz z SI ,mnkl en ek fI + pz SI ymnkl en ek fI
n=1 k|l=L n=l k(=1 n=1l k,l=1 n=1 k,|l=1

+QZZ vz mo n+922 ST n+922 SxMymnn+QZZ S N S 0
n=1

n=1

1 N K,L
(PI /A)mn n z SPan E EZ S pmnkl anf +Z S< mn dn +Z S< mn en + E Z SD mn
n=1 k=1
N N 1 N K N K
a, + E Z SDemn fn + E Z S'ngn fn +§ E Z Z SDsmnk a,q + E Z Z SD7mnk n
n=1 n=1 n=l k=1 n=1 k=1
N K 1 N K N K N K
E Z Z SDsmnk a, fk +§ E Z Z S 10mnk n‘f + E Z Z SDzzmnk n k + E Z Z SD mnk
n=l k=1 n=l k=1 n=l k=1 n=l k=1
1 N K N N l
a, fk +E E Z z SDlzmnk fn fk + E Z SD mn &+ E Z Sngn n T E Z Dzmn n
n=-4 k=-4 n=1 n=1
N K N K N K N K
E z Z SDlmnk aq +5 E Z z SDzzmnk fn fk + E Z Z Sngnk a, fk +5 E z z
n=1 k=1 n=1 k=1 n=1 k=1 n=1 k=1

N K N K N K 1 N K,L
+ E Z Z SD mnk &n fk + E Z Z SD7mnk fn fk +E Z z S D,,mnk fn fk + E E z
n=1 k=1 n=1 k=1 n=1 k=1 n=1 k(=1
N K,L N K,L N K,L
SDsmnkl aa f +_ E z z SD mnkl fn fk fI + E z SD7mnkl a, f f +_ E z S D,pgmnk
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KL

n=1

N
SID24mnkl fn fk fI +E Z

S - f +

-

L

X =

n=1

N
SD7mnkl an fk fl + E z

-
= I

X <

T
2T

— N

SD5mnkl anak al +

K,L
1 k=1

K,L
k=1
N
E Z z SlDllmnkl fn fk fI

1

N
E z z SDlzmnkl an fk fl +
1

+=
2

1

+=
2

K
1 k=1

SIDzzmnk fn fk + E ZN: Z SI'Dlomnk fn fk +

n
SIIDlomnkl an fk fI

S Dgmnkl an ak fl

1

N

K,L
E z z II'SDzsmnkI
k=1

n

1
+ =

'SDzzmnkI an fk fI

B
X <

L

i
n=1

1

N

K,L
E z z ISD24mnkl fn.I:k.l:I + E
k=1

n

1

+ =
2

anak fI

K,L

N

E z z ISDlmnkl

n=1 k=1

N

K,L
k=1

1

N

fnfkf| + Ez z I'SD23mnkI fnfkfl +E z

n



K,L

D
&
3

_SD
é”

=~
H

N N
1
+ Ez z SDmnkl aff + E Z Z SDmnkl aak‘f +§

H
>-
p

n=1

=~

[N

N K
Smnkanf—i_EZZSDmnkfnf—i_E
n=l k=1
K,L N KL

SD3Omnkl fn fk fI + E z Z
n=l  k,l=1 n=1 kl=1

K,L

N
So i fnficf +EZ

n=1

x~

J=1

i SIIIpmn fn _T MX(X)¢m(X)dX=0

N K
ZZS mnkff +_EZZSmnklaak

n=1 k=1

SDlzmnkl a‘n fk fI +

N

N[~

>3

n=1

n=1 k,/=1

K,L

k)

=1

N

n=1 k(=1
"

S DygmnkI

f.f.f, + E

SD28mnkl nf f +_ EZ z SD smnkl f f f +GZ S pmn

(4.2-f)
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Chapter 5

Arranging the Mass, Linear & Non-linear Stiffness Matrices

5.1 Introduction

In next section 5.2, all the linear matrices ( mass and stiffness matrices) are deduced from
the previous section derived lagrangian equations (4.2-a) to (4.2-f). These linear matrices can
be used to solve the linear dynamic equations of motion (Eqn 6.1.1a) for the six degrees of
freedom of displacement at any x along the blade length(three displacements in the directions
of X, y and z axes and the three rotations about the x, y and z axes).

In section 5.3, all the nonlinear stiffness matrices in addition to the linear matrices ( mass and
stiffness matrices) are also deduced from the previous section derived lagrangian equations
(4.2-a) to (4.2-f). These linear and nonlinear matrices can be used to solve the nonlinear
dynamic equations of motion (Eqn 6.1.1b) again for the six degrees of freedom of
displacement at any x along the blade length. The solution procedure for both linear and

nonlinear cases will explained in detail in next chapter.

5.2 Arranging the Linear Mass and Stiffness Matrices

These are the terms from Eqg. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to [K]. :

N N N N
_ﬁzpz SAmna'n + E Z SAmn a'n + EZ SD5mn fn + Ez SIDlmn fn from Eq (42-a)
n=1 n=1 n=1 n=1

N

N N N
szi S(Amrpn + QZPZ S><ZaAmnfn + kG i SAmn bn - kG z 'SAmn & + z Spm“ b“ - z SPyumn fn
n=1 n=1 n=1 n=1 n=1

n=1

from Eq. (4.2-b)
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Q pz xAmnCn + szi S%Amnfn + kG i SAmn Cn - kG i ISAmn dn + i SPmn Cn - i SPzamn f
n=1 n=1 n=1 n=1 n=1

n=1

from Eq. (4.2-c)

_gi SImnd +E23mnd+EZSmn n kGZSAmnCn+szSAmnd +ZSK1mn

1

from Eq. (4.2-d)

o N N N N
- szzl Symnen - g z S ,mn en +E Z S ,mn n +E Zl Syzmn -kG Z SAmn h t kG Zl
n= n= n=

n=1

Samn €1 Z S, mn from Eq. (4.2-e)

N N
—> 2
Q pz_;‘ SIzmn fn +0 Z xMZ,,mn h T Q° SxMzn ’mn ” +Q Z SXMV mnCn +Q° SXMY m“fn

n=1 n=1

N N N N N N
- Z SPyamn bn +22 S(PlplA)mn fn _Z SPzamn G +Z Sl<1mn dn +Z S(zmn & + E Z SD5mn a, +
n=1 n=1 n=1 n=1 n=1 n=1
N N N N N N
E z SDemn fn + E z SIngn fn + E Z 'SDlmn a, + E Z ISngn fn + E Z SI'Dzmn fn +GZ
n=1 n=1 n=1 n=1 n=1 n=1
S m fo+ E Z S from Eq. (4.2-f)

And the blocks of the linear stiffness matrix [K], are obtained as follows:

K11 K12 Kl3 Kl4 K15 KlG
K21 K22 K23 K24 K25 K26
[K]L — :231 :232 :233 E34 EBS :236 (521)
41 42 43 44 45 46
K51 K52 K53 K54 K55 K56
_K61 K62 K63 K64 K65 K66_

where,
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Ky=E [ SAmn]_ﬁzp[ SAmn] , Ki,=0, Kz =0, K, =0, Kz =0, K16=E [[ S|35mn] + [Slolmn ]

], K21:O1 K22: kG [ SAmn] + [ SPmn] +sz[SxAmn] ,K23=0, K24:O’ K25= ~-kG [ 'SAmn] ,
K26: - [ SPyamn ] +sz[s><zuAmn]’ K31:O’ K32:O' K33: kG [ SAmn] + [ SPmn] +sz[SxAmn]’

Kay=—KG [ 'Sy 1+ Kas=0, Kyg= = [ S,y 1 +Q°AS amdl s Kiy=0, K, =0, Kj3= —kG
[ Sam ] Kaa= E[ §m] +KG [ sy ]‘§ [ Sm] Kis=E[S ] Kis=[ Sqm] Ks=0
Ky = -kG [ Spm ]  Ksg=0, Ky = E[ S .1 Kes= = pQ[S ]+ E[ S 0] +kG [ S, ]
—g[ Sum 1 Kss = [ S 1 Ker= E[[Soum ]+ [ 'Som 1] Koo = =[Soymn 1+ Sivgmd

! Kes =~ [ SPzdmn] +QZ[SxMyzmn]7 K64 = [ S(lmn] ) K65 :[ S<2mn] 7K66 = 2[ S(PIPIA)mn]
+ P8 ] +E [[ Sopn 1 + [ Somn ] + [ 'Soyme 1 + [ S'omn | + 18" 1] +Q7[S,,,2.1]

+Q[S ]+G[S,mn]

These are the terms from Eqg. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to [M]. :

PZ SAmna +p Z SDlmn from Eq. (4.2-a)
n=1
pz SAmnb +pz 2, Amn n from Eq (42-b)
pz SAmnCn+pZ S, amn T from Eq. (4.2-c)
n=1
N (1]
pz S ,mn n+pz SIIyyamn fn from Eq. (42-d)
n=1
N oo N oo N o
P S m€ TP, Sm€ TPY, Siam fn from Eq. (4.2-€)

n=1 n=1 n=1
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(1] (1) N (1]

N N o N o N N oo
pz 'SDlmnan +pz SDzmn fn +pz SI pmn 1:n +pz Szmn fn +pz SIymn 1:n +Z SI\/Izamn bn +
n=1 n=1 n=1 n=1 n=1

n=1

N o0 N oo
21 SMz Zmn n + Zl SMy mn n + 21 SMy mn n + pz SI 2Z,mn en + pz S Zmn n + pz SI y,,mndn
n=. = n=

p N . N . N . N .
+pz Ty, “mn n g(é 1,2,“mn n Zl 1z, 2mn ; vyam”fn * 1 Syya mn

from Eq. (4.2-f)

And the blocks of the mass matrix [M], are obtained as follows:

Ivlll Iv|12 Ml3 Ml4 MlS MlG
I\/|21 I\/|22 M23 M24 M25 M26
[M]L: M3l M32 M33 M34 M35 M36 (522)
M41 M42 M43 M44 M45 M46
M51 M52 M53 M54 M55 M56
_M61 I\/|62 M63 M64 M65 M66_
where,

My, =o[Saml s M1, =0, My3=0, M;,=0, Mj3=0 Mg = p [ S'Dlmn] M, =0, My, = oSyl
M,,=0, M, =0, M,=0, M, = p[sz amnd + M3=0, M3, =0, Mg= p[s,,,], My=0,
Mays=0, My, = oIS, aml+ My =0, M, =0, M;=0, M44=p[$ymn]a Mis=0 M= p s P

Mg, =0, Mg, =0, Mg3=0, M, =0, M55:p[slzmn] +p[$ymn]’ Mgs = [Slz . Mg=pI SDmn]
’ M62 = [SMzamn]’ M53: [SMyamn] ’ M64:p[lsyyamn] ' I\/|65= p['slzzamn] ' M66 :,0[ [ szmn ] + [ S|pmn ]

TR R R R R T B R I R e R P B L P

1,22mn

+ |:SMyazmn:| + I:SMzazmn:|
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The damping matrix was computed as was done by Younsi et al. [28] :
[C]., = a[M];, + B[K];, , where the constants are given as [48] :

[G = 0.01498 and 3 = 0.10405.

5.3 Arranging the Non-linear Stiffness Matrices

These are the terms from Eqg. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to the first

nonlinear stiffness matrix [K]ni1 :

1 N K N K N K 1 N K
- E z Z SAmnk a,a, +_ E z Z SD mnk f f E z Z SD5mnk n + E z z SIIDzmnk n
2 n=l k=1 n=1 k=1 n=1 k=1 2 n=1 k=1
N K N K N K N K
+E Z Z SIngnk f f + E Z Z S'Dlmnk nS +_ E Z Z S pmnk f f +E Z Z SAmnk a,a,
n=l k=1 n=l k=1 n=l k=1 n=1 k=1
N K N K N K N K
+E Z Z SD mnk nak +E Z Z S.Dlmnk nak +E Z Z SD5mnk nak +E Z Z SDemnk n
n=1 k=1 n=l k=1 n=1 k=1 n=l k=1
N K N K N K N K
E z z S'ngnk fn fk + E z z S'Dlmnk fnak + E z z S'ngnk fn fk + E Z z S”Dzmnk fn fk
n=1 k=1 n=1 k=1 n=l k=1 n=1 k=1
from Eq. (4.2-a)
N K .
- P Z St 2 zmnk o from Eq. (4.2-€)
g9 = «a
N K N K
+_ E z z SD5mnk a,a, +_ E z z SDmnk f f + E z Z SDsmnk a"nf +_ E Z Z Dyomnk
=l k=l n=1 k=1 n=1 k=1 =l k=l
N K N K N K 1 N K
fn fk + E Z Z SlDzzmnk fn fk + E Z Z Sl Dgmnk a"n‘f +_ E Z Z 33 ,mnk n +§ E Z Z
n=l k=1 n=l k=1 n=l k=1 n=l k=1

] 1 K 1 N K 1 1 N K mni
SDlmnk a,a +§ E z SDzzmnk fn fk + E Z Z Sngnk a, fk +§ E z Z S Dymnk fn fk + E
k
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N K N K N K N K
Z Z SD omnk f f + E Z z IISD mnk a f + E z Z ISDzamnk fn fk + E Z Z SDsmnk an fk
n=1 k=1 n=1 k=1 n=1 k=1 n=1 k=1
N K N K N K N K
+ E z Z SD7mnk fn fk + E Z Z SIDzzmnk fn fk + E Z z SD\L-,mnk ana'k + E Z z SDemnk a]fk
n=l k=1 =l k=l n=1 k=1 n=l k=1
N K N K N K N K
+ E Z Z S'ngnk an fk + E Z Z SDzmnk a"nfk + E Z Z I'SDlomnk fn fk + E Z Z SIIID3mnk
n=1 k=1 n=l k=1 n=l k=1 n=l k=1
N K N K N K N K
fn fk + E Z z SIngnk an fk + E Z z SIDzzmnk fn fk + E Z z SIIDmmnk fn fk + E Z z
n=1 k=1 n=1 k=1 n=1 k=1 n=1 k=1

N K N K N K
ISD9mn1< an.l:k + E z Z ISDzzmnk fnfk + E Z ZIISDmmnk fnfk + E Z z ISDlmnka‘nak + E

n=1 k=1 n=1 k=1 n=1 k=1

N K N K N K N K
Z Z 'Sngnk anfk + E Z Z SDzmnk anf + E Z Z SIpmnk an.l:k + E z Z SDlzmnk fnfk

n=1 k=1 n=1 k=1 n=1 k=1 n=1 k=1
N K

+E D > Spm fuf from Eq. (4.2-f)
n=1 k=1

And the blocks of the nonlinear stiffness matrix [K],,, are obtained as follows:

[Klna =
NLL NLL NLL NLL NLL NLL NLL (5.2.3)
Kiw Ko Ko Ky K Ky
NL1 NLL NL1 NL1 NLL NL1
Keiw Ksom Ksgo Ko Koo Kgg
NL1 NLL NL1 NL1 NLL NL1
Keiw Keao Kgo Kgo Kgsm Kes |
where

K K
KE= SE X [ Symd A, KIET=0 K20, KU =0 K =0, K1 = ZE [ 321 Soe]

~

K K K K
fk +6Z[335mnk] ak +6;[ S'ngnk] fk +6;[ S.Dlmnk] ak + ;[ Spmnk] 1:k + 3;

k=1
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[ S md £ ] KM=0 KM=0 KE=0 KM=0 KN=0 KM =0 KM=0,

KM =0, KM =0, KM =0, KN =0, KM =0, KM=0 KM =0 KN =0 KM =0 KM =0,

K‘:\lﬁLl — 0’ Ksl\::.Ll — O, KSI\;Ll — 0’ K;\:laLl — O, K5'\:1Ll — O, K5’\g—l — O, K5'\g_l — 0’ KE;\:ILLl —

K
Z 5mnk

Nloo

[ ] v [ e ] 33 [ e ] v e ]
ak +32 SDemnk fk + 32 SD9mn1< fk + E z SDlmnk a'k + 32 Sngnk fk + 2
k=1 k=1 k=1 k=1
v [ ] v [ ] v [ ]
2SS XS] D KR 0 K =0 ki =0
K K K K
K(;\:Su :0’ K(;\:Su =E [ g Z [ SD7mnk:I fk + [ S”Dlomnk] fk + 32 [ SlDzzmnk] fk +§ z [
k=1

f.3<7, foo3% [ an T1Ff . N f, 1x 7.
SDlzm”k] “ +2;[ SDzzmnk] k +§; [ S D3mnk:I K+ 3;[ SDmmnk] K +EZ[ SD

fk + i [ SIngmnk] fk ]
k=1

These are the terms from Eqg. (4.2-a) to Eq. (4.2-f) from section 4.2 that contribute to the

second nonlinear stiffness matrix [K]n.2 :

1 N K,L 1 N K,L N K,L 1
- E Z SAmnkl a.aa + E Z z SDemnkl fn fkai + E Z z Sjsmnkl fnakai +- E
2 n=l k,|l=1 2 n=l k=1 n=l k,|l=1 2
N K,L N K,L N N K,L
z SIIDzmnkl fn fkai +E z S.D mnkl f fkal +E Z z S'D mnkl nakal +_ E z
n=l k(=1 n=l k(=1 n=l k,|l=1 n=l k(=1
1 N K,L N K,L N K,L
Spmnkl fn fkal +§ E z z SDSmnkI nakal +_ E z S}mnkl n kfl + E z z SDsmnkl
n=1 k,(=1 n=1 k,(=1 n=1 k,(=1
N K,L N K,L N K,L
fn fkal +- E z S”Dmmnkl fn fk fI +E Z SlDzzmnkl fn fk fl +E z Z SIngnkl fn fkal
n=1 k(=1 n=1 k,|=1 n=1 k(=1
1 N K,L N K,L N K,L
+§ E z S,k fofcfi +5 E Z S fidd +- E z Z Somu faficfi +
n=1 k(=1 n=1 k=1 n=1 k(=1
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101

)
: —~ LN - i \T
A/_ VIA_, 1|,._, w o y— - A n__.v = il Wiy KZlIK, il M 2
< e ~ <IN : nd ) -
(.\ — ° y— ¢ y— M.\ - ) en T eK NZﬂ.
= NI s AT : AL z AT )
i N g 4 ] S 2 IR ]
m | . e| bmn _Qp o y— _Q ur _ m _Q
m < = — | NN ot S — I - il y o
S o E @ | S | \E ? |
b ur - + (3 = i " @
X — =
u— 2 1 - A — = T h z 1 -
! i N : ® 4= < 3 3 "
...In N ~ = X m al N@m * o B o 3
i N =
< — NZﬂ * u — = T 3
£ NZ ! = — + AL i
" AR Q - 2N 35 5 q z
| c b4 < = = w g
L,zﬂ_ + E, £ I - o
=NE A ;oo
1 HEON ...|k - AT Q - @ < H. "~ L,ZH_
NZm x - A\ - Tl Ol < o B >
p s « O = _ K,Zblm |,|m A ouK T
_Q ...In z sz o u— o E NZm U NZM
+ 3 5 Q * =11 ? h E L
S < I N N
e e w R TN T Tl
N L}
o o - NI = + my NZﬂ. FO - 7 !
A} I c
RO T N LS @ - NS S
Z = =N Q = ar 37 o IG 3 @
£ [ c c KZJ h x z T auK
= =4 Q _ “ = U o AL o
> - _ . - ENE < _ & N <
_ L,Zﬂ o E Q £, 2] + E
- N x = .o ur w - o
B oy = - " = I e z - ¥ :
BT A B o WE Ty e
Y— N ° x 3
P A T NI SN BN E A
e * R N > I c w 2 £ N
+ o VNS v E @ + ; i
— 4 b - _Q =3 _ - Tl o _O“
PN B 2N L " NE "
> .
G Q —_ - il = z 1
5 oo z[ AT + . KZH . z[ 1 et XL el
X = Q - oy h i - ) 2 T o
: : | g AL s @ BNAL
v o~ e E < g I e T %
o 3 £
) _ v > em E _ g _ ur ! E
; — ¥ = c n o= a - v
™ X x “
: - N B ;
N b c o A\ N - A\ FIRE SNE
Nznm vmdm L ) . H o ~ ....n_lun N = ...In N3 M,
n Ic z Nz z[T = z[ 1T = i 1
: 2 - © A B
— | + o z[ 1 _ o - N > N
| n + u +



K,L

Z Z SIymnklen fk fl

N

- KL
+ sz z S mnid € fi i

1 kl=1

N

n

102

SIymnklfn ek q

SDemnkl

-

L

X <

N
E 2,
n=1

— | N

Spmnkl Can fl +

L
1

K

X

N
ED.
n=1

— |

K,L

N

n

L
=1

K
- /’z Z St mnk € & fi + pz z Si,mnki € €& f, +
=)

N
n:

1 kl=1

kI

— |~

SD7mnkI a,fi f, +

—
- I

X <

b
=N

N

KL
E z z SngnkI f.ff, + E
1 ki1

n

1
+_

anak fI

SDlzmnkl

Slngnkl anak fI +

L
1=

K,

1

n

N
SID22mnkl a'n fk fI + E z

L
|=

K,
n=1

N
SIIDlomnkl an fk fI + E z

X <

E

1

+ =
2

IIISD3mnkl an fk fl

L
1=

K,

n=.

N
S f+ E DD

K,L

n=1

K,L

o f + E ZN:

1 k=1

N

SIII'D4mnkl fn fk fI + E z z IIISD25mnkl f

n

K,L
1 k=1

N

E Z z SlllD25mnkl f

n

1

+ =
2

SlDzzmnkl an fk fI

—
- I
X ~

— |

N

KL
E Z z ISngnkI a,a f, +
1 k4

n:

1

+ =
2

SlDnmnkl fn fk fI

K,L
1 k|l=1

N
E Z z 'SDlmnkI ana‘kal

n

1

+ =
2

K,L

"Soyma Ay i+

1 kl=1

N
E Z z 'SDllmnkI fn fk fl
L
=1

K

1

+ =
2

n=1

IISDmmnkl an fk fl

N
ISDzzmnkl an.l:k fI + E Z



N KL N KL N KL 1
a,ff+E Z " Sp, mnki a,af, +_Ez SDZSmnkIanff +_EZ z Sﬂmnklaakf +5
n=1 k,|=1 2 n=1 k,|l=1 n=1 k(=1 2
N KL N KL 1 N KL N KL
E Z SDgomnkl fn fk fI + E z z SDlzmnkl a, fk fI +§ E z SIIngmnkl fn fk fI + E z
n=1 Kk,I=1 n=l k,/=1 n=1 k,|l=1 n=1 k(=1
N KL N
St ma fnffi + ED S & T £, +— E> z So o T f from Eq. (4.2-f)
" n=l kl=1 * by
And the blocks of the nonlinear stiffness matrix [K],, , are obtained as follows
KK K2 K
K2NlL2 KZNZLZ K2|\13L2 K2N4L2 K2N5L2 K2|\|6L2
NL2 NL2 NL2 NL2 NL2 NL2
[K]y, = K31 K32 K33 K34 K35 K36
N2 L\Jle K 111\12|_2 K 111\13|_2 K :14|.2 K 4N5L2 K 4'1\IeL2 (5.2.4)
NL2 NL2 NL2 NL2 NL2 NL2
K51 K52 K53 K54 Kss Kse
_Ké\llLZ Ké\lzLZ Ké\ng Kel\ile Ké\ISLZ Ké\lﬁLZ
where,
1 K,L 3 K,L
KHLZ = —E [ SAmnkl] aa, , K1';L2 =0, Kll\éLz =0, K1'1L2 =0, Kll\slst =0, Kll\tlst =E [ Py Z [
2 ki 2 o
3 KL K,L
Sl fd + Z [ Sl && + > [ S'oma] fid +32 [ Som] fid +_ Z [
kJI=1 k=1 k=1 kJI=1
' 1 KL 3 K& N 3
SDlmnkl] akai t— [ S pmnkl ] fkal + A z [ SD7mnkl] f f += [ S D;gmnkl ] fk fI tS
2 k= k=1 2 i 2
K,L 1 K,L 1 K,L 1 K,L
z [ S'Dzzmnkl ] fk fI +— [ SDlzmnkl ] fk 1:I +— [ S“'D3mnkl ] fk 1:I +— [ SIDzamnkl ]
ki-1 2 2 2 4

fk f| ] ’ Kzl\:lLLZ — 0’ KZNZLZ — 0’ K2N3L2 — 0’ KZI\LLZ — 0, KZNSLZ — 0’ KZNGLZ — 0’ K?[\:ILLZ — 0’ K:;\IZLZ — O, K:;\:j;_z _

K,L K,L
%E [ Samnia 1 GG +— E D[Sl fif,  Kag' =0 Ki?=0, Kig®=0 Ky*=0,

|= k=1

=~
uN
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Kip?=0, Ki?=0 Kn?=0 K,?=0 Ku?=0 Ki?=0 Ki?=0 Ki?=0 K?=0

KL . . KL . KL . . KL . KL
K5N5L2 = p[ (S mnl] f i+ Z [S il f f — z [Slymnkl] f i — z [Sﬂymnm] fi f z
= = = Ki-1 =

. . KL . KL .. KL .- o
[S ] fi i ] , Kg:\éu:st Z [Symnkl] fi f, _sz [Symnkl] & f _Pz [Symnkl] g fi +Q%

k=1 k=1 k=1
K,L 1 Kt . 1 Kkt . NL2 3 KL
Z [Slymnkl] & fi +5Qp z [Sﬂymnm] fi f, +5Qp z [%Zmnkl] fi £ Ko™ = E Spmnki ]
k,I=1 k=1 k=1 k=L
3 K,L K,L 1 KL 3 KL
" [ SD7mnkI ] fk f| + 3 z [ S'Dzzmnkl ] fk 1:| +5 [ 5mnkl ] aa +o [ S”Dlomnkl ]
2 k=1 k=1 24 2 k,I=1
3 K,L 3 3 KL KL
fk fl + E ngnkl ] akf +_ z [ SDlzmnkI ] f f +§ [ ”SDzmnkI ] akfl + 32[ ”Sommnkl ]
k,I:1 kl=1 k=1 k=L
3 Kt 3 KL
fk fI +§ [ SD mnkl ] f f +§ [ 9mnkl ] akf +5 Z [ SDzmnkl ] f f += z [ SDlmnkl ]
k=1 k=1 kI ) 24
1 Kt 1 KL KL L2
a8 +§ 4 [ ISngmnkl ] fk fI +§ 4 [ Spmnkl ] a fl + klz [ SIDzamnkl ] fk fI ] ) K62 = 0’
J=1 J=1 =1

KL . KL .
K(;\‘3L2 = E z [S mnkl] ¢ fi K&Lz =0, Ksl\flsLZ = _ZQZ [Slzmnkl] fi i —Q pz [Slymnkl] fi f

k,1=1 k,1=1 k=1

o)

L

K,L o o K,L oo K,L o o
+pz [Szmnkl] Q< fI +pz [Szmnkl] q fI +2pz [Slzmnkl] Q< fl +pz [5 mnkl] Q< f +sz

k,1=1 k,1=1 k,I=1 k,1=1

=

=1

KL . KL .« KL . K.L ..
[Sﬂymnm] & f —,OZ [Slymnkl] & fi +QPZ [S mnia] i fi "‘sz [Slymnkl] fi fi _pz [S o] & T,

k=1 k,I=1 k,I=1 k,I=1
PP . 1 KL
) KGG =_QZ [Slzmnkl] Q< fl __sz [SI mnkl] Q< f +p z [SI mnkl] %q __Q Z [Szmnkl] fk fI
k,1=1 2 k=1 k=1 k,1=1
3 K,L
__sz [ S mnkl] Q< f + E[ A Z [ SDankI ] f f +_ Z [ S D,zmnkl ] f f +5 z [ S'D24mnkl ]
2 k,1=1 k,I=1 k,I=1 2k,|:1
K,L 3 K,L 3 KL
f f + 2 [ SD30mnkI] ff +5 [ 'Sy 23mnkl] ffi +2 2 [ S D4mnkl] ff += 2 [ 25mnk|]
k,1=1 2 k=1 2 k,1=1 k| =
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3 K,L . 1 K,L
f f +5 Z [ Sngmnkl ] f f +5 Z[ S Dysmnkl ] f f + E [ SDumnkl ] fk fl +§ [ SD24mnkl ]
kl =l kI =1 k=1 k,1=1
1 K,L 1 K,L 1 K,L
= Z [ "Sp, mnki ] ffi+= Z [ S'p, mnki ] ffy += [ So, mn 1 ffi ]
2 k,I=1 2 k,I=1 2 k=1
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Chapter 6

Displacements Solution Using the Newmark Implicit Procedure

6.1 Introduction

Considering the expansion of the six unknown displacements as discussed in section 3.5:

U=Z a, (t)4,(x), V=Z, b, (04,(3, w=2_ ¢, ()¢, (%), 6’1=Z d, ()¢, (), 92=Z &,(1)¢,(x), and

n=1

EDIRACTA

where,

$,(X) = (x/L)"* are the polynomials (function of x)
a,(t),b,(t),c,(t),d,(t),e (t) and f (t) are the time dependent constants

In order to solve for the six unknown displacements [48-53], we need to solve first one of the
below dynamic equations of motion (6.1.1a) or (6.1.1b) for :

5 =[a,(t),b,(t),c,(t),d,(t),e (), f ()" using the linear or the non-linear Newmark procedure

respectively ( depeding if whether small or large deformation is considered).
[K] & +[C], 6 +[M] & =R (6.1.1a)

[ K], + K1y +[Klya(8hy) B +C1 8+ M1, 6! = R (6.1.1b)

where,
[K], , [C].and [M], are the linear matrices

[K]nw [Kly, are the non-linear matrices

R'is the aerodynamic load vector that can be obtained as follows:
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FL (X)@n (X)dX
F, (X)¢, (x)dX
F,(X)¢, (x)dx
(6.1.2)

M, (X)¢, (X)dx

M, (X)¢n (x)dx

M, (X)¢,, (X)dx

Py
Il
O OO M e ot—ro—

It should be noted that for the small deformation problems, the nonlinear matrices [K],,,
[K]n,  are neglected from our calculations and they are only taken into consideration if we

have the large deformation case.

6.2 Implicit Dynamics versus Explicit Dynamics Schemes

In general, there are two types of schemes (or algorithms) that used to solve dynamics
problems: 1) implicit and 2) explicit. In explicit schemes the solution may be advanced without
storing a matrix to solve a system of equations, while in implicit scheme, a matrix is solved one
or more times per step to advance the solution. Implicit schemes are tend to be numerically
stable, permitting large time steps, but the cost per time step is high and storage requirements
tend to increase dramatically with the size of the finite element mesh, particularly in large
three-dimensional problems. On the other hand, explicit schemes tend to be inexpensive per
time step and require less storage than implicit schemes, but numerical stability requires that

small time steps be used. A survey of explicit methods, the step-by-step computational
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procedure for the widely used central difference method and some developments of the
method are given in Part | [54]. Generally, implicit algorithms are most effective for structural
dynamics problems (in which the response is controlled by a relatively low frequency modes,
while explicit algorithms are very efficient for wave propagation problems ( in which
intermediate and high frequency structural modes are exist.

The method is implicit if the solution at time t + At requires consideration of the equilibrium
condition at at time t 4+ At and the method requires the solution of a set of simultaneous
equations at each time step wherein the coefficient matrix is a combination of the mass,
damping and stiffness matrices. In large scale problems the solution to these equations may
be computationally expensive.

The three most commonly used implicit time integration methods for solving linear problems
are: Newmark, Houbolt and Wilson-6 methods. Additional development in implicit methods are
given in [55] and more reviews of mixed implicit-explicit finite element procedures are found in
[56] . Zienkiewicz et al. have given a set of single-step algorithms to solve dynamic problems
[57-62] . It should be noted that these available implicit algorithms are unconditional stabile

(for linear problems) which is a big advandage over the explicit algorithms.

6.3 The Linear Implicit Newmark Methods

As mentioned in section 6.2, the most important implicit time integration methods for linear
problems are: Newmark, Houbolt and Wilson-8 methods. The procedures (step by step) of
these methods for solving linear structural dynamics problems are little bit different from those
procedures required for solving nonlinear problems, even that both procedures share the same

basic techniques.
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The most widely used family of implicit methods of direct time integration for solving semi-
discrete equations of motion is the Newmark’s family of methods [48, 63, 64].
The Newmark integration scheme can also be understood to be an extension of the linear
acceleration method.

The Newmark method is based on the following assumptions:

Xevar = Xe + A[(1 = )Xe + yXiiacl (6.3.1)
and
Xevar = Xe + AtXt + (At)z [(% - ﬁ)Xt+.BXt+At] (6.3.2)

Where the parameters g and y determine the stability and accuracy of the algorithm.  For
y = % and = % the relations (6.3.1) and (6.3.2) correspond to the linear acceleration method

(which is also obtained using 6 =1 in the Wilson- 6 method). Newmark [64] originally

proposed as an unconditionally stable scheme the constant-average-aceleration method (also

called trapezoidal rule), in which case y =% and g =% as shown in Fig. 6.3.1.

1 ;"i j(i
— 5( e T :-.*\.:.)

Ji;t"'it'
—

t t+At

Fig. 6.3.1: Newmark’s constant-average-acceleration scheme (adapted from [48]).
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In addition to egns (6.3.1) and (6.3.2), for solution of displacements, velocities and
accelerations at time t + At, the equilibrium equations of motion are also considered at time
t + At:

MXHAt + CXt+At + KXerat = Revat (6.3.3)

Solving Eqn 6.3.2 for X,,,, in terms of X,,,, and then substituting for X,,,, in Eqn 6.3.1, we
obtain equations for X,,,, and X,,,; each in terms of the unknown displacements X, only.

These two relations for X,,.,; and X,,,, into egn (6.3.3) to solve for X,,,, as shown in Eqn

6.3.4.
[K + Y C+ 1 M]X =R +C{YX (]/ 1>X +At(——1>X}
1
M {—ﬁ T R Lx + (ﬁ - 1) Xt} (6.3.4)

Then using (6.3.1) and (6.3.2), we can solve for X;,,, and X, ..

The matrix K + EC + (At)2

M in Eg. (6.3.4) is usually referred to as the ‘effective stiffness
matrix’ and is denoted by K. Some assumption on the form of C is necessary for damped
structural systems. If Rayleigh damping is assumed, then as given by [48]:

C =aM + bK (6.3.5)
where a and b are given Rayleigh constants.

The algorithm operates as follows: we start at t=0; initial conditions prescribe X, and X, (from
these and the equations of equilibrium at t=0 we find X,, if X, is not prescribed); then egn
(6.3.4) is solved for X,,; eqn (6.3.2) is solved for X,, and eqn (6.3.1) is solved for X,,; then egn
(6.3.4) yields X,,; and so on.

Warburton [65] has suggested a direct approach in which the effective load vector depends

only on the displacements at t and t — At, thus eliminating the necessity of additional

computation of velocity and acceleration components, X and X, at time t . The recurrence
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relation can be obtained as follows: use the equilibrium equations at times t — At, t and t + At
and Newmark’s basic assumptions, egn (6.3.1) and eqgn (6.3.2), at times t and t — At. We

have seven equations with six unknowns X,,a, Xi, Xe—ae » Xesne, Xe and X,_,, Which can be

eliminated. Fory = % , it is given by the following set of simultaneous equations:

(M + %C + BA*K)Xepar = (B*(BResar + (1 = 28R + BRe_ar)

+(2M — (AD%(1 = 2B)K)X; — (M —2£C + B(AD2K) X, _a (6.3.6)

2

The solution for X;,,; requires knowledge of X; and X;_,; and therefore, a special starting
procedure is necessary. It is more common and more accurate to calculate X,.,, by use of the
central difference scheme. The same relation in the form of a three point finite difference
1

formula has been given earlier by Chan et al. [66] in 1962, for y = % and g = "

Zienkiewicz [67], Chaix and Leteux [68] derived the following general recurrence relation

between three successive displacements similar to egn (6.3.6) involving parameters y and g:
(M + ¥ ALC + BOAD2K)Xesne = (A? (BResae + (5+7 —28) R+ (3= ¥ + B) Re-ae ) + (2M —

1 2 1 2
(1 — 2P)AtC — (E +y— 23) (A)2K) X, — (M + (=1 + y)ALC + (5 —y+ ,8) (A2K) X,_as

(6.3.7)

(2y+1)?

The Newmark method is unconditionally stable if y >0.5and g > v

[69]. Positive

algorithms damping is introduced if y > 0.5 and negative algorithmic damping leading
eventually to an unbounded response if < 0.5 . Thus in most applications y = 0.5 is used.

If y =0.5and g = 0, the Newmark fotmulae (6.3.1) and (6.3.2) reduce to the central difference
method, provided X;,ar, = Xt+(§)AtX't . Many stability issues of the method were

discussed by Gladwell and Thomas [70] and Hughes [71] . The discretization errors of the
method for numerical integration were analysed by Brown [72]. Stability and other properties

of well known members of the Newmark family of methods are summarized in Table 6.5.1.



112

6.4 The Linear Implicit Newmark Iteration Procedure Steps

The steps for the linear Newmark implicit iteration procedure [48, 52, 63] as shown in Chart
6.4.1 are detailed as follows:

A. Initial calculations

1. Set initial conditions att = 0 for &,, 6,and &,

where, &, = [a,(t).b, (t),c,(t).d, (). ), f,(O)]'

2. Select the time step size At and the parameters g and y and calculate integration constants:
y = 0.50; S =>0.25(0.5+y)? ( =0.5and B =0.25 is a good choice)

ap= a,= — a—1 a—l—lay—
07 gatz” “17 gat’ 27 gat’ 37 2B 47 B

a5=A2—t (% —2),a,=At(1—vy), and a,= Aty
3. Form the global stiffness and mass matrices, K and M, and then the damping matrix C.
C = aM + bK; if Rayleigh or ratio damping is assumed

where, a and b are Rayleigh constants.

4. Form global effective stiffness matrix K: K = K + agM + a,C Triangularize K: K = LDLT.

5. Steps 3-5 may vary depending on the matrix solution method employed.

B. For each time step
1. Calculate effective load vector at t + At :
Revne = Revar + [MLI(ao8; +az 6 ¢+ az 6 ) + [CL](a16; + a4 6+ as 6 ¢)
2. Solve for the displacements at time +At :
LDLT5t+At = ﬁt+At
3. Calculate accelerations and velocities at time +At :
5t+At = ao( O¢at — 6¢ ) —ay ) t—as ) t

S t+At = 8 t1T0as 8 tta; gt+At
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4. Iterate for next time step t + At by going to step 1 of B.

Deriving the different strain energies for small
deformation for different aerodynamicload couplings

Derivingthe different
kinetic energies

v v

Boundary Conditions strain energy

Addingallto obtain the:
total strain energy

Addingallto obtain the:
total kinetic energy

Use:=Uses tUsen

v

v

Solvingthe below Lagrangian equation to obtain the dynamic equations of motion:

g(cj:)_i+wﬂ+%=gl q'l‘:an__bmcn__dn_g" me

"oq, 0g, oq oq,

Q== G}T + W . F, W, arethe damping force and the external work
oq, oq

!

Deducingthe linear
matricesK, Mand Cand
load R from the dynamic
equations of motion:

K], 8 +[C), &+[M], & = &'

Solving for : 6, =
[8,(2).5,00).,(0).,(8.6,(0). £, 00

using the following linear
Newmark iteration scheme :

——

TR DRRPTUNE I | 1, o 1,
=5k0§u2(0)+5kmr (0)+5k0nw (0)+E1c“,¢#(0)+ixuﬁel (0)+51c0&_92 (0

1 1 | PN RPN ERP R RO
+ Sk&uz(L)fEkn1'z(L) +Ekhu"(.’_j eEK,,¢‘(L)+ EKHBI (L}azlrc,ﬁﬁr2 (L)

External work

L
W, =J. [F, ()i + F,(x)v + F, (x)w+ M, (x)g + M, ()6, + M ()6, ]dx
0

Form the effective stiffness matrix:
K=K+apM+a,C
Foreach time step:

Calculate effective load vectorat ¢ + At :

Solve for the displacements attime ¢ + At :
§ B.. K

ehar . feam

8z+m =6 T &:"'“7 8:+At
where,
y=050; f=025005+7y)°
=1 L= L=
au_B;\t" ! Bat’ a; pat’
afi—‘(%—Z),afAt(l—y), and a,= Aty

Iterate for next time step t + At

ﬁna: =Resne + [ML](ag6; +a, é et as é o)+ [CL](a6, + “43 et as 8 )

Calculate accelerations and velocities at time ¢ + At :

a ‘§:+at =ag( yse— ;) — 5:““3 6;1‘ W= Z ¢, (1), (x),

af%—l, a4=§—1,

e

Solving forthe six
displacements

0= a(04,x).

Chart 6.4.1: Linear Newmark procedure flow chart.

6.5 Stability Conditions for the Newmark Methods

A summary of the stability conditions for the Newmark method [69-71, 73-75] are given as
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follows:

Unconditional :

2 =y =0.50 (6.5.1)
Conditional :
y = 0.50 (6.5.2)
B<vy/2 (6.5.3)
w At > Qi (6.5.4)

E(r-E-pr£(y-3) 1

(G-#)

Qerit = (6.5.5)

Where w is the undamped frequency of vibration and ¢ = (% + %) is the damping ratio. Note
thatify = % viscous damping has no effect on stability.

It should be noted that when y > % the effect of viscous damping is to increase the critical

time step of conditionally stable Newmark methods. In the case of Rayleigh damping ¢ is
determined by w. The explicit central difference mehod generally results in considerable
savings in computing cost when compared with the linear acceleration and Fox-Goodwin
methods. The average acceleration method is one of he most effective and popular implicit
techniques used for structural dynamics problems.

Because the higher modes of semi-discrete structural dynamic equations are artefacts of the
(finite element) discretization process and not representative of the behavior of the governing
partial differential equations of motion, it is generally viewed as desirable. And often is
considered absolutely necessary, to have some form of algorithmic damping present to

remove the participation of the high-frequency modal components. At the same time it is
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required to maintain good accuracy in the important lower modes.
In the Newmark method, y > % is necessary to introduce high frequency dissipation.

Unfortunately this adversely affects accuracy in the lower modes.

Stability Order of
Method Type B ¥ |condition ** Accuracy
Average acceleration
( trapezoidal rule) Implicit 1/4| 1/2|unconditional 2
Linear acceleration Implicit 1/6( 1/2 Qepie = 2V3 2
Fox-Goodwin formula [Implicit | 1/12 1/2 Qepie = V6 2 **=
Central difference Explicit * of 1/2 Qeyie =2 2 ¥EE=

Table 6.5.1: Properties of the members of the Newmark family of methods [63].

* Strictly speaking, M and C tobe diagonal for the central difference method to be explicit.
** Stability is based on the undamped case in which the damping ratio ¢ = 0.
*** Fourth order accuracy is achieved for the Fox-Goodwin method if C = 0.
**** Second order accuracy is achieved if and only if = 1/2 .

6.6 The Non-linear Implicit Newmark Iteration Procedure Steps

The steps for the non-linear Newmark implicit iteration procedure [48, 52, 63] as shown in
Chart 6.6.1 are as follows:

1. Set initial conditions att = 0 for &,, 6,and § .

where &, = [a, (t),b. (t),c,(t).d. (),e, (), f. ()]

2. Select time step size At, the Newmark parameters =0.25 and y=0.5 and calculate the

1 1
=X g,= az=——

L _Y _At Ly
BAtZ’ al_mr Z_E; ZB 1, a4———1’ aS_Z—(E_Z)’

following constants: a,= :

ag=Aty, and a,= At (1 —vy)
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. Form the linear matrices [K],, [M], and [C], and the non-linear matrices [K] y.,¢ and

(KT niae -

. Form the effective stiffness matrix:

K = [KT], + ao[M], + a;[C] , , where [KT], = [KL] + [K] yp1e + [K] nize » @nd [K] y;q and

[K] n12 are the non-linear stifness matrices. Note that initially [K] yz1: = [K] yi2t = 0.

. Form the effective load vector:

§t+At = Reyar + [ML](a; 6 ttas 8 ¢) + [CL](ay 8 ¢t as 8 ¢) — [KT]: 8¢
. Solve for the displacement increments
delta6=K 'Ry
Iterate for dynamic equilibrium:
a) Fori=i+l
b) Evaluate the (i-1)™ approximation to the acceleration, velocities and displacements:
Si-L = apdeltad’™ —a, 8 ,—az 6,
it = a,deltad’™ —a, § \—as 8 ¢
i1 =deltad’™! + &,
c) Evaluate the updated (i-1)™ residual force
Withe = Revae = (IMLIS¢T5c + [CLY; 6854 +[KT]: 655 )
d) Solve for the i corrected displacement increments
I?t A = wélit
e) Evaluate the corrected displacement increments
deltas’ = deltas’=* + AS!

abs(AS")
abs( 8;+deltas")

f) Check for convergence of the iteration process: < tolerance factor

If ‘No’, return to step 7a, otherwise continue

Return to step 4 to process the next time step.
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Deriving the different strain energies for large
deformation for different aerodynamicload couplings

Derivingthe different
kinetic energies

v

2

Addingall to obtain the:
total strain energy

Addingallto obtain the:
total kinetic energy

v v

Solvingthe below Lagrangian equation to obtain the
dynamic equations of motion:

d oT _or 6Uh,d+ﬁU”
d

o bscyd e, o f

=0, 9=4

fJJ oq, 0q, g,

0= _o_{:' . Mo . F, W, are the damping force and the external work

/

0q, dq,

Deducingthe linearand nonlinear matrices KL, KN1, KN2,
CL, ML and load R from the dynamic equations of motion:

[ K]+ K] (6) + [K ] (6) |67+ H[C] 84 [M), 6 =R

Solving for 4, = [a, (9.5,(0.c,().d,(0.¢,6). £,6]

Boundary Conditions strain energy
Use: =UseatUsca
1

Kuqé‘ 0+

1 1, a1,
=kl (0)+ Ekmr‘(oy;kﬂ“w'( )+—K #(0)+ S ()

1, 1 1 ; R S
+ Ek&uz(LﬂEkn.rZ(Lj +Ekhw;(.£) +Ex,,¢ (L)+ EKMBl (L)+Ex,ﬁe, (L)

External work
I [F, ()it + F,(x)v+ F,(x)w+ M, (x)g+ M, (x)6; + M, (x)6;]dx

[]

using the following nonlinear Newmark iteration scheme:

Solvingfor the six displacements and rotations

N N N
i=} a@d(x.v=3 508K, w=} 06, €
ol sl Hal

&= Z (), (x). &= Z e,(1)g,(x). and ¢ = Z 104,()

1. Formthe effective stiffness matrix:

K= [KT], + ag[M], +a,[C], where, [KT], = [KL]+ [K]yuq + [K] oz

2. Form the effective load vector

Et+ﬂl=nt+ﬂl+[Ml'](ﬂz r+“3 o)+ [CL](a‘, r+“s o) - [KT]. &

3. Solve for the displacement increments: deltag=K 'R ., ,,
4. lterate for dynamic equilibrium:
a) Fori=i+1
b) Evaluate the (i-1)" acceleration, velocities and displacements:
8131, = apdeltas™ —a, 8 .—ay &,
§i71 = a,delta™? —a, § ,—a; &,
5i71, = deltag™™* + &,
c) Evaluate the updated (i-1)" residual force
Withe = Repac— ([MLISGE + [CL], 854 +IKT, 6531: )
d) Solve for the i* corrected displacement increments: &, a5° = w34,
e) Evaluate the corrected displacement increments
deltad® = deltad** + Ag"
f) Check for convergence of the iteration process

abs( A6')

——— 7 = tolerance factor
abs( &;+deltad!)

If ‘No’, return to step 4a, otherwise continue

5. Return to step 1 to process the nexttime step.

-1, a,:=5-1,

1
Where, a,=—, 8

azl gzt gzt
Bac®’ "1 pac’ 2 pac’ 3 2f

ag= 2(——2) ag=Aty, and a;= At (1—y)

Chart 6.6.1: Non-linear Newmark procedure flow chart.
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Chapter?7
The Selected Blade Design

7.1 Introduction

The design of wind turbine blades requires a set of input data that describing the geometrical
and structural characteristics of the blade, such as blade length, thickness distribution, chord
length distribution, blade twist, root connection, etc. The radius of the rotor, i.e. the length of
the rotor's blade, can be determined from the rotor's area which depends in it's value on the
rated power of the wind turbine.

The rated power can be calculated from the equation:

P

rat

= 05pV2 AC

rat p,rat

(7.1.1)
For example if we have a rated power P, =150 KW that defined at one value of wind speed

and power coefficient. These two values can be chosen by experience and will directly
influence the size of the wind turbine rotor, i.e. the diameter. However, experience has shown

that most machines have a rated speed Vv, around 10m/s and for small fast running
machines lower values can be realized. Hence, for this design, Vv, = 9.5 m/s is selected.

The maximum power coefficient attained for an ideal wind turbine is C___ =16/27 =59%,

p,max
but from manufacturer data and test results of Ta'ani et al. [76], most machines of this size

operate at C,= 40%., which is chosen for this design. Also for this design, the air density is

selected as p =1.25 kg/m.
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7.2 Rotor Specifications and Dimensions

With the parameters selection of previous section 7.1, the only remaining unknown is the

rotor's area that can be calculated from Egn 5.1 as: A=P, /(0-5/0V3Cp,rat) =699.75 m?, and

rat

the diameter of the rotor will be d = (4A/7)% = 29.86 m. The wind turbine rotor consists of

two main components, hub and blade, as shown in Fig.4.5.1.1. The hub can be rigid in the
case of fixed pitch, or can have rotating flanges for variable pitch machines. The hub and
flange, including axle assembly, is assigned a radius of 0.93 m, where the blade length is

taken to be 14m as shown in Fig. 7.2.1.

5

14

Blade

Blade flange

Hub flange (circular cross section)

Blade root

Fig. 7.2.1: Three blade rotor assembly (adapted from [27]).

If we zoom in on Fig. 7.2.1, each of the the three blades will look like the blade shown in Fig.
7.2.2. The blade construction looks like that was given by Habalia and Saleh [27] but our

present blade is bigger and longer.
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Station#3

Station#2

Station#1
1BHoNEL 4ia=0.542

-
— -

Measured from 0.93
center of hub .

138 193

Fig. 7.2.2: Blade shape and dimensions.

7.3 Angle of Attack

The angle of attack ( «) for wind turbine blade station (or airfoil) is the angle between the

profile’s chord line and direction of the airflow wind (i.e. relative velocity) is calculated by this

expression which is completely different from that related to the helicopter [77, 78]:

a=¢-(+0,)
where,

¢ (flow angle) is the angle between the relative velocity and the rotor plane
£ (twist angle) is the angle measured relative to the tip chord of the blade

6, (pitch angle) is the angle between the tip chord and the rotor plane
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Airfoil Chord Line

Plane of the Wind Turbine Rotor

Fig. 7.3.1: Flow around an airfoil section.

The angle of attack («) for a wind turbine may be determined by the coefficient of lift and
drag. The design angle should be the angle where the lift is the biggest, and the drag is the
smallest. A rotor blade will stop providing enough lift once the wind hits at a steeper «. The

rotor blades must therefore be twisted to achieve an optimal « throughout the length of the

blade. Assume that the tip pitch angle 6, is zero, then « will be equal to ¢— 3 . Note that the

Lift diminishes and drag increases at « over 15 degrees [79]. Therefore the twisting angle
should be chosen in a way to optimize « in such a way to be high but not exceeding the stall

angle. Considering W, the induced velocity constant we can easily find from Fig. 7.3.1 that if

the rotational speed grow, @ r will reduce the flow angle ¢ where the blade needs to be

twisted to keep « optimized.
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Fig. 7.3.2: Velocity and forces at a blade element at radius r [27]

From the velocity triangle in Fig. 7.3.2 and as explained by [27, 80], the twist angle £ is large
near near the root, where the rotational speed( is V, =rQ) low and small at the tip where the
rotational speed is high. This situation suggests a match between the twist and rotational
speed, since the relative wind velocity Wis
W=U +Qr
The procedure is to either:

1) fixing Q and searching for the optimum twist for
2) fixing f and searching for the optimum Q

The choice number one is better because it is easier for designing the gear and the generator.
Blade rotational speed was chosen to be 75 rpm. As a first estimate of the twist, we use the

equation for twist of the zero lift line:

p = ((Ra/ry—o)— k(1 —r/R)
(7.3.1)

where «; is the angle of attack at the blade’s tip and K is a constant such that K > 0.

o, can be calculated from the velocity triangle shown in Fig. 7.3.2 as follows:
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Knowing that the angular velocity Q =27*75/60s= 7.8575rad/sec we obtain for example the

rotational tip speed V, = RQ =3927m/s. Just for an example, taking a mean free stream wind
speed of U =7m/s, which is usually taken as a design wind speed [27], then from Fig. 7.3.2,
we get g=tan'(U/V,) =tan™* (7/392) =10.1°.
Implies, a« =10.1- 4 thatis applicable at tip blade station only.

Consequently, we may have different blade’s twist angle and different blade’s flow angle
value at each station of the blade since the value of r ( the distance to the station under

consideration) is different. This means that « will be different for each station of the blade

under consideration.

7.4 Airfoil Profile Properties

The rotor blade aerodynamical design is a key element in determining the efficiency of the
wind turbine. It is crucial sometimes in a optimum rotor blade design to select one or more 2D
airfoil sections to form a smooth blade profile. A typical blade cross-sectional airfoil geometry

is shown in Fig. 7.4.1.

Fig. 7.4.1: Airfoil geometry [81].
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where,

Q 1: zero lift line

Q 2:leading edge

O 3:nose circle

Q 4: camber

Q 5: thickness

Q 6: upper surface

Q 7:trailing edge

O 8: main camber line

Q 9: lower surface

7.4.1 NACA4415 Airfoil Profile Properties

Below Table 7.4.1.1 show the NACA-4415 airfoil coordinates [82-84] where the size of the

airfoil shape depends directly on the size of its chord.

Upper Lower
Surface Surface
x/c y/c x/c y/c
0 0 0 0
1.25 3.07 1.25 -1.79
2.5 4.17 2.5 -2.48
5 5.74 5 -3.27
7.5 6.91 7.5 -3.71
10 7.84 10 -3.98
15 9.27 15 -4.18
20 10.25 20 -4.15
25 10.92 25 -3.98
30 11.25 30 -3.75
40 11.25 40 -3.25
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50 10.53 50 -2.72
60 9.3 60 -2.14
70 7.63 70 -1.55
80 5.55 80 -1.03
90 3.08 90 -0.57
95 1.67 95 -0.36
100 0 100 0

Table 7.4.1.1: NACA-4415 airfoil coordinates [82-84].

By plotting these coordinates, we can obtain the geometrical shape of the NACA4415 airfoll

as shown in Fig. 7.4.1.1

Fig. 7.4.1.1: Geometrical shape of NACA-4415 airfoil (plotted using Table 7.4.1.1 data).

The NACA4415 Wind Tunnel Profile Coefficients Cl, Cd and Cm w.r.t. the angle of attack at a

Reynolds number of around 1,000,000 [83] are shown in Table 7.4.1.2.
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AOA C Can Coe
-20.1 -0_38 02555 0.0118
-18.0 -0.32 02181 00047
-16.1 -0.27 01854 00002
-14.1 -0_24 01613 0.0021
-12.1 -0.47 01541 00058
-10.2 -0.60 -0.0141 -0.1014
-8.1 -0_40 -0.0139 -0.0990
6.1 -0.19 -0.0123 00081
-1 0.02 -0.0088 -0.0967
-21 023 -0.0061 -0.0054
0.0 042 -0 0005 -0.0939
21 0.63 00049 -0.0931
4.1 0.86 00126 -0.0947
6.2 1.02 00197 -0.0846
8.1 1.17 0.0257 -0.0745
10.2 1.26 00360 -0.0598
11.2 1.29 00432 -0.0519
122 1.30 00554 -0.0477
133 133 00632 -0.0467
14.3 1.35 00886 -0.0526
153 1.19 00750 -0.0378
16.2 1.15 00925 -0.0447
17.2 1.12 01095 -0.0497
182 1.10 0.1264 -0.0568
192 1.00 01469 -0.0634
20.3 1.08 01675 00695
221 1.04 02161 00877
24.1 1.03 02705 -0.1050

Table 7.4.1.2: CI, Cd and Cm w.r.t. angle of attack for NACA-4415 airfoil (adapted from [83]).

Chart 7.4.1.1, Chart 7.4.1.2 and Chart 7.4.1.3 show CI, Cd and Cm versus angle of

attack respectively for the NACA4415 airfoil.
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Cl- Lift Coefficient
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alpha- Angle of attack

Chart 7.4.1.1: Cl versus alpha for NACA4415 (plotted using Table 7.4.1.2 data).

Cd- Drag Coefficient

-30 -20 -10 0 10 20 30 40 50
alpha- Angle of attack

Chart 7.4.1.2: Cd versus alpha for NACA4415 (plotted using Table 7.4.1.2 data).
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Chart 7.4.1.3: Cm versus alpha for NACA4415 (plotted using Table 7.4.1.2 data).

7.4.2 S809 Airfoil Profile Properties

Below Table 7.4.2.1 show the S809 airfoil coordinates [33, 85] where the size of the airfoll

shape depends directly on the size of its chord.

Upper Lower
Surface Surface
x/c y/c x/c y/c

0.00037 0.00275 0.0014 -0.00498
0.00575 0.01166 0.00933 -0.01272
0.01626 0.02133 0.02321 -0.02162
0.03158 0.03136 0.04223 -0.03144
0.05147 0.04143 0.06579 -0.04199
0.07568 0.05132 0.09325 -0.05301
0.1039 0.06082 0.12397 -0.06408
0.1358 0.06972 0.15752 -0.07467
0.17103 0.07786 0.19362 -0.08447
0.2092 0.08505 0.23175 -0.09326
0.24987 0.09113 0.27129 -0.1006
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0.29259 0.09594 0.31188 -0.10589
0.33689 0.09933 0.35328 -0.10866
0.38223 0.10109 0.39541 -0.10842
0.42809 0.10101 0.43832 -0.10484
0.47384 0.09843 0.48234 -0.09756
0.52005 0.09237 0.52837 -0.08697
0.56801 0.08356 0.57663 -0.07442
0.61747 0.07379 0.62649 -0.06112
0.66718 0.06403 0.6771 -0.04792
0.71606 0.05462 0.72752 -0.03558
0.76314 0.04578 0.77668 -0.02466
0.80756 0.03761 0.82348 -0.01559
0.84854 0.03017 0.86677 -0.00859
0.88537 0.02335 0.90545 -0.0037
0.91763 0.01694 0.93852 -0.00075
0.94523 0.01101 0.96509 0.00054
0.96799 0.006 0.98446 0.00065
0.98528 0.00245 0.99612 0.00024
0.99623 0.00054 1 0
1 0 0 0

Table 7.4.2.1: Coordinates of S809 airfoil profile [33, 35, 85].
By plotting these coordinates, we can obtain the geometrical shape of the S809 airfoil as

shown in Fig. 7.4.2.1

Fig. 7.4.2.1: Geometrical shape of S809 airfoil (plotted using Table 7.4.2.1data).
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The S809 Wind Tunnel Profile Coefficients Cl, Cd and Cm w.r.t. the angle of attack shown in
Table 7.4.2.2. This relations were obtained at the Delft University of Technology Low Speed

Laboratory low-turbulence wind tunnel with a Reynolds number of 1,000,000 ,Somers [85, 86].

Angle of
Attack cl Cd Cm
-1.04 0.019 0.0095 -0.0408
-0.01 0.139 0.0094 -0.0435
1.02 0.258 0.0096 -0.0462
2.05 0.378 0.0099 -0.0487
3.07 0.497 0.01 -0.0514
4.1 0.617 0.01 -0.0538
5.13 0.736 0.0097 -0.056
6.16 0.851 0.0095 -0.0571
7.18 0.913 0.0127 -0.0506
8.2 0.952 0.0169 -0.0439
9.21 0.973 0.0247 -0.0374
10.2 0.952 0.0375 -0.0397
11.21 0.947 0.0725 -0.0345
12.23 1.007 0.0636 -0.042
13.22 1.031 0.0703 -0.042
14.23 1.055 0.0828 -0.0419
15.23 1.062 0.1081 -0.0418
16.22 1.043 0.1425 -0.0452
17.21 0.969 0.1853 -0.0458
18.19 0.938 0.1853 -0.0544
19.18 0.929 0.1853 -0.0658
20.16 0.923 0.1853 -0.0783

Table 7.4.2.2: CI, Cd and Cm w.r.t. angle of attack for S809 airfoil [33, 35, 85].

Using the linear interpolation and extrapolation techniques, we can extend the values of
coefficients Cl, Cd and Cm w.r.t. alpha of Table 7.4.2.2 to include all the required coefficients

for other required angle of attack values as shown.
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Linear interpolation

Generally, linear interpolation takes two data points, say (x_y ) and (x, .y, ). and the interpolant is given by:

(I - Iﬂ) .
Y=Y + (yb — yﬂ)—(:t:b e ) at the point (x.y)
¢ (7.4.2.1)

AN

Linear extrapolation

If the two data paints nearest the point & , 1o be extrapolated are (Xjf_ 1 ¥y - 1) and (Xjf,yk), linear extrapolation gives the function:

— Tp_
Y(T) = Y- 1+ (’y;,—'y;, 1).
T = Tp-1 (7.4.2.2)

Plotting the corresponding Cl w.r.t alpha, Cd w.r.t. alpha and Cm w.r.t. alpha, for the S809,

we obtain chart 7.4.2.1, chart 7.4.2.2 and chart 7.4.2.3 respectively.

H
No

/\/ N—

o)
)

Cl- Lift Coefficient
(o)

o)

(o0}
No §S

-5 0 5 10 15 20 25

alpha- Angle of attack

Chart 7.4.2.1: Cl versus alpha for S809 (plotted using Table 7.4.2.2 data).
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Chart 7.4.2.2: Cd versus alpha for S809 (plotted using Table 7.4.2.2 data).
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Chart 7.4.2.3: Cm versus alpha for S809 (plotted using Table 7.4.2.2 data).
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By interpolating or by looking precisely at these charts we can easily obtain the associated
values of Cl, Cd and Cm at each station of the our blade by only knowing the angle of attack.
And by knowing the values of Cl, Cd and Cm, and some other necessary blade properties, |
will able obtain the aerodynamic loading as Fx, Fy, Fz, Mx, My and Mz.
The angle of attack definition and its relation to other important angles will be discussed in
next section because understanding this is so important for the blade aerodynamic loading

calculation.

7.5 Blade Different Airfoil Geometrical Properties

Considering the present blade of 14m length, as shown in Fig 7.5.1, where the blade is

divided into 15 stations. Each of two consecutive stations is separated by 1m.

/ * Station#15

Station#6to Station#14

Station#5

Station#4

Station#2

G_I;\) _ Station#3

Station#1

Fig. 7.5.1: Blade different airfoil profiles.

The blade profile at each of these stations is shown in Table 7.5.1, where the NACA4415

airfoil profile was considered for all stations that linearly increasing in cross section from station
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1 to station 2 and linearly decreasing in cross section from station 2 to station15 (at tip of the

blade).
Airfoil station Twist angle
Station(m) | x-location(m) [ Chord(m) | Thickness(m) (degree) Profile

0 0.542 0.11382 14 NACA4415
2 1 1.467035 | 0.30807735 13 NACA4415
3 2 1.401105 | 0.29423205 12 NACA4415
4 3 1.35518 0.2845878 11 NACA4415
5 4 1.269245 | 0.26654145 10 NACA4415
6 5 1.2033 0.252693 9 NACA4415
7 6 1.137385 | 0.23885085 8 NACA4415
8 7 1.071455 | 0.22500555 7 NACA4415
9 8 1.005525 | 0.21116025 6 NACA4415
10 9 0.939595 | 0.19731495 5 NACA4415
11 10 0.873665 | 0.18346965 4 NACA4415
12 11 0.807735 | 0.16962435 3 NACA4415
13 12 0.741805 | 0.15577905 2 NACA4415
14 13 0.675875 | 0.14193375 1 NACA4415
15 14 0.675875 | 0.14193375 0 NACA4415

Table 7.5.1: Blade stations airfoil profile properties.

By knowing or by computing the angle of attack ( « ) at each station by using ¢ =¢— /4 , as
was discussed in section 7.3, then we can select the associated Cl, Cd and Cm coefficients at
each station of the blade by using the charts 7.4.1.1, 7.4.1.2 and 7.4.1.3. Some authors
assume that « change in relation with the blade azimuth angle as shown in Fig. 7.5.2 [87]
where inboard alpha is higher than the outboard alpha and alpha incrementaly decreases from
azimuth angle zero to azimuth angle 180 and then incremently increases from azimuth angle
180 degrees to azimuth angle 360 degrees to go back to the same value that it was at zero

degree .
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50.0

40.0

ANGLE OF ATTACK (deg)

10.0

0.95R

0.0 90.0 180.0 270.0 360.0
BLADE AZIMUTH (deg)

Fig. 7.5.2: Angle of attack versus Azimuth angle [87].

Other authors might model the wind gust as a sinusoidal change of the angle of attack ( «)
where it changes as a function of time, for example, « = 15 + 10 sin 6t as was given by
references [28, 88] which is in agreement of the present author’'s assumption.

Consider the blade rotational speed V;;, wind flow angle ¢, blade relative speed V,..;; as given

in Egns 7.5.1, 7.5.2 and 7.5.3 respectively.

Vti = .QXL (751)

¢ = atan (U/Vy) (7.5.2)
2 2 0-5

Veew = (U2 + V%) (7.5.3)

where p, Q and U are defined as given in Table 7.5.2.

Air density p (rho) kg/m? 1.25

rpm 43

Angular speed Q) (omega) =2 77 rpm/60 4.5029

Mean free stream wind speed U- m/s 25

Table 7.5.2: Wind properties.
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By taking the values of g ( twist angle) as given in Table 7.5.1, the given wind parameters as
listed in Table 7.5.2, we can calculate the values V;;, ¢ and V,,;; using Eqns 7.5.1, 7.5.2 and

7.5.3 and then we can calculate the angle of attack using, « =¢— £, at each of the given

stations as shown in Table 7.5.3.

Wind
Angular relative

velocity Rotational velocity Angle of

Station x-location omega speed Vti Flow angle Vreli Attack
(m) (m) 2*pi*rpm (m/s) (radian) (m/s) (degree)

0 4.5029 0 1.5708 25 40

2 1 4.5029 4.5029 1.3926 25.4023 30.7895
3 2 4.5029 9.0059 1.225 26.5727 22.1892
4 3 4.5029 13.5088 1.0754 28.4164 14.6153
5 4 4.5029 18.0118 0.9465 30.8127 8.2283
6 5 4.5029 22.5147 0.8377 33.6439 2.9941
7 6 4.5029 27.0177 0.7466 36.8097 -1.2213

8 7 4.5029 31.5206 0.6705 40.2312 -4.581
9 8 4.5029 36.0236 0.6067 43.8486 -7.2398
10 9 4.5029 40.5265 0.5527 47.6172 -9.3304
11 10 4.5029 45.0295 0.5068 51.5039 -10.9613
12 11 4.5029 49.5324 0.4674 55.4839 -12.219
13 12 4.5029 54.0354 0.4333 59.5384 -13.1719
14 13 4.5029 58.5383 0.4036 63.6533 -13.8741
15 14 4.5029 63.0413 0.3775 67.8174 -14.3684

Table 7.5.3: Angle of Attack Values at All Considered Stations.

7.6 Calculation Procedure of the R -Load vector at Each Airfoil
Station for every time step

At each airfoil station and due to the applied aerodynamic pressure, the following four
components of loading can be calculated as shown in Fig. 3.6.1 and Fig. 7.6.1.1:

» Fx : centrifugal force acting on the x-direction or along the length of the blade.

» Fy : force acting on the y-direction of the blade.
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» Fz : force acting on the z-direction of the blade.

» Mx : torsion around the x-axis, mainly due to the pitch moment plus moments due to Fy and Fz

The moments My and Mz are found as a result of applying the above four components of
loadings i.e. we don’t have to calculate My and Mz.

» My is the bending moment acting in y-direction due to force Fz.

» Mz is the bending moment acting in z-direction due to force Fy.

Table 7.6.1.1 show the forces and moments calculated at each of the 15 stations using Eqns

of section 3.6 for the given values of the angle of attacks that were computed earlier and listed

in Table 7.5.3.
Root . .
Restraints Translational and Rotational
\ Fz= Thrust Forces

Fy= DragForces

Fx= Centrifugal

Forces Mx= PitchMoments
My= Thrust
Moments Drag Moments
Fig. 7.6.1.1: Aerodynamic Forces and Moments [27].
Angle
of Pitch
Station # Attack Moment Fx Fy Fz Mx
or location | (degree) Cl Cd Cm L D (Nm) (N) (N) (N) (Nm)
1 (at x=0) | 40.0385 2.66 0.57 -0.665 563.2 120.6797 -76.3098 0 517.2 253.3 21.6703
2 30.8234 | 2.3376 0.5009 | -0.5844 1383.1 296.371 -507.2511 2.1376 1154 817.5 -220.2619
3 22.2187 | 2.0366 0.4364 | -0.5092 1259.3 269.851 -441.1045 3.8911 927.9 893.1 -602.671
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4 14.6409 | 1.7715 | 0.3796 | -0.4429 | 1193.7 255.7982 -398.4579 5.2877 | 760.3 955.2 -109.8173
5 8.2507 1.548 0.3317 -0.387 1165.9 249.8318 -369.9474 6.3544 | 634.2 | 1009.7 -84.6115
6 3.0139 | 1.3732 0.3 -0.3332 1169 255.3842 -341.3525 7.1184 | 537.1 | 1069.2 -58.5652
7 -1.2037 | 1.2608 0.3 -0.263 1214.4 288.9575 -288.0977 7.6067 | 455.3 1162.3 -0.9592
8 -4.565 1.1712 0.3 -0.207 1269.4 325.1634 -240.3757 7.8466 384.2 1252.8 48.3634
9 -7.2252 | 1.1003 0.3 -0.1627 1329.5 362.4979 -197.6454 7.8651 321.9 1339.9 89.7716
10 -9.3169 | 1.0445 0.3 -0.1278 1390.8 399.4572 -159.9229 7.6892 267.3 1422.1 123.0573
11 -10.949 1.001 0.3 -0.1006 1450 434.5373 -127.3623 7.3462 220 1497.6 147.8931
12 -12.207 | 1.0244 0.2732 | -0.0927 1592 424.5552 -116.3497 6.8631 253.5 1628 159.6402
13 -13.16 1.0434 | 0.2522 -0.087 1714.9 414.5148 -106.0269 6.267 283.3 | 1741.4 164.2314
14 -13.863 | 1.0575 | 0.2368 | -0.0828 | 1809.9 405.2416 -95.7305 5.585 306.3 | 1829.3 161.8792
15 (at x=L) |-14.358 | 1.0674 | 0.2259 | -0.0798 | 1871.4 396.0582 -85.3276 4.8443 | 321.7 | 1885.6 153.0529
Table 7.6.1.1: Aerodynamic forces and moments at different stations in and about x,y and z

directions.

This will enable us to calculate all the interpolated force functions that represent all the station

forces F (x), F,(X) and F,(x) and to calculate all the interpolated moment function of all the

station moments M, (x) as a function of x ( the coordinate along the blade length) using the

MATLAB code of the present research.

The aerodynamic load vector R' ( i.e. the right side of the dynamic equations of motion) can

be computed using the following Eqn 7.6.1.




R _load (time) = R' =

T
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F (X) 4, (x)dx
F, (X)é, (x)dx
F,(X)¢n (x)dx
M, ()¢ (x)dx
M, (X) g (x)dx

M (X)¢, (x)dx

O O O T e o o —,

Fy ()¢, (x)dx
F (X)4,(x)dx
F, (X)d, (x)dx
F, (X)d, (x)dx
F,(x)¢.(x)dx
F,(X)d,(x)dx
M, (X) ¢, (x)dx
M, (X)g,(x)dx
M, (X)d, (X)dx
M, (x)¢,(x)dx
M, (x)¢.(x)dx

M ()¢, (x)dx

o'—.l—o!_,,—o‘—.v—oo_.,—o‘—.l—o'—.v—o. o —o— ot —ot ot —-

(7.6.1)

Specifying , for example, that m= 1 to M=2, implies that ¢,(x) = (x/L)* and ¢,(x) = (x/L)*

since the given polynomial expansion is ¢, (X) = (x/L)™" as was discussed in section 3.5.

It should be noted that all the above steps of the calculation of the load vector R'have to be

repeated for each of the given time steps since R'is a function of the angle of attack ( which is

function of the given time steps) at the given blade stations.
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Chapter 8
Implementation and Numerical Results

8.1 Introduction

Consider that the present blade for both examples of the next two sections 8.2.1 and 8.2.2

share the following assumptions:

» The blade has a 14 m length and a Young’s modulus of 17 GPa.

» The blade is clamped at one end (cantilever) and submitted to non-uniformly distributed
aerodynamic forces (described above), to centrifugal forces and gravitational forces moving
with an angular velocity Q of 4.5029 rad/s.

» Wind turbine rotor is in upwind configuration.

» The blade airfoil section is of NACA4415 type and is wise-piece variable along the
radius.

» The nacelle is adjustable with a yaw angle that varies so as to always align the
wind velocity normal to the rotation plan of the blade, so that the yaw error can be
neglected.

» The connection between the blade and the hub is rigid.

» The deformation is large.

» The analysis of the blade’s response concerns the study of the behavior of the blade
submitted to a gust of wind of 25 m/s speed during 3 s. The direction of the gust is
considered parallel to the axis of the hub (rotor).

» The wind’s attack angle to the blade varies as a function of time, according to a = 15 + 10
sin 6t . This assumption means that the variation of the gust excitation is modeled by the

variation of the attack angle.
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It should be noted that the blade share the same geometry of NACA4415 as the blade for the

linear case example ( section 8.2.1 ) that was studied by Younsi et al. [28].
But for the nonlinear example case ( section 8.2.2 ), the blade is different from that given by
Younsi et al. [28] by the following differences:

» The nonlinear blade example has a pretwisted geometry as mentioned above.

» The nonlinear blade example has a lower material density.

» The nonlinear blade example considers the large deformation case while Younsi et

al. [28] considered only the small deformation case.

8.2 Numerical Application and Results

8.2.1 Linear Small Deformation Case Example

Consider an untwisted 14 m length blade of a Young’'s modulus of 17 GPa and a material

density of 600 Kg/m?®, as listed in the below Table 8.2.1.1, that behave in a linear small

deformation.
Blade Air Density Young’s Blade Blade Airfoil Wind Speed Rated Power
Length Modulus Density Type & Rated Speed
14 m untwisted 1.25 Kg/m3 17 GPa 500 I\'g/m3 NACA-4415 25m/s 150 KW & 9.5m/s

Table 8.2.1.1: Blade properties for the linear example.

It should be noted again that we are considering the same problem that was solved by Younsi
et al. [28] so that we can compare our solution by their solution. The application concerns the
study of the behavior of the blade submitted to a gust of wind of 25 m/s speed during 3
seconds. Fig. 8.2.1.1 shows the main dimensions of the blade, the line of the centers of

gravity as well as the line of aerodynamic centers.
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—e—Trailing edge
—o— Aerodynamic Line

~—e— Gravity Line

L

15 | —es— Leading edge

1.0 4
0.0 3

Fig. 8.2.1.1: Blade geometry and neutral axis line as given by Younsi et al. [28]

The aerodynamic forces Fx, Fy and Fz and the aerodynamic moments Mx, My and Mz were
calculated at all the given 15 stations (or nodes) using the formulas listed in section 3.6 and

section 7.6 and input to the Ls-Dyna model using Hypermesh as shown in Fig. 8.2.1.2.

Fig. 8.2.1.2: Forces and Moments at all the given 15 Stations.

While for the MATLAB code (present research code), all these aerodynamic forces and
moments were interpolated to have them as function of x ( the coordinate along the length of
the blade) and this process have to be repeated for each of the given time steps in order to
obtain the R-load vector per Egn 7.6.1 (as was explained in section 7.6). By having all the

derived linear mass, dynamic and stiffness matrices (that derived in section 5.2) and the
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calculated R-load vector at each time step, the author was able to solve the dynamic equation

of motion( Eqn 6.1.1a) using the MATLAB code and the linear Newmark iteration scheme (that

was explained in section 6.4) for the vibration response at all the given blade stations. Below

in Fig. 8.2.1.2, the displacements and rotations at the blade’s tip are shown:
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Fig. 8.2.1.2: Blade tip linear displacements and rotations.
(a) Displacement in x-direction; (b) Displacement in y-direction;
(c) Displacement in z-direction; (d) Rotation about y-direction;
(e) Rotation about z-direction; and (f) Rotation about x-direction

Fig. 8.2.1.3 shows a two-plot comparison of the blade’s tip displacement in the vertical

flapwise direction between the present work and that of Younsi et al. [28] for the same blade

problem.

In Fig. 8.2.1.3 (a), the peak and stabilized displacements are 1.75m and 1.021 m
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respectively while the peak and stabilized displacements values in Fig. 8.2.1.3 (b) are 1.68 m
and 0.92 m. We observe that both plots have the same kind of trend but the current study has
lower peak and steady state displacements. Current work not only shows an agreement with
the hypothesis of the linearity of the solution introduced by Younsi et al. but also has lower
displacement values. This is due to the fact of the inclusion of all the loadings and their
couplings and the blade’s cross-sectional warping. Note that the vertical direction is along the

z-axis in this work while it is along the y-axis in the work of Younsi et al. [28] .

5
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Time (sec)
(a) (b)

Fig. 8.2.1.3: Comparison of (a) Younsi et el. published work [28].
(b) present work.

8.2.2 Non-linear Large Deformation Case Example

Consider a pretwisted 14 m length blade of a Young’s modulus of 17 GPa and a material
density of 500 Kg/m?, as listed in the below Table 8.2.2.1, that behave in a nonlinear large

deformation.
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Blade Air Density Young’s Blade Blade Airfoil Wind Speed Rated Power
Length Modulus Density Type & Rated Speed

14 m pretwisted 1.25 Kg/m? 17 GPa 500 Kg/m’ NACA-4415 25m/s 150 KW & 9.5m/s
p

Table 8.2.2.1: Blade properties for the non-linear example.

The present blade is modeled as a combination of 14 beams (each of 1m length) separated
by 15 main nodes or stations. The pre-twist angles for these 15 stations as going from the hub
to the tip of the blade are respectively equal to 14,13,12,11,10,9,8,7,6,5,4,3,2,1 and 0.

It should be noted that the pretwist of the present blade change the values of the geometrical
properties at each of the given blade stations from those calculated by Younsi et al. [28].

The aerodynamic forces and moments were calculated and then interpolated as a function of
the lengthwise x of the blade using the same method of the linear example of previous section
8.2.1. By having all the linear mass, dynamic and stiffness matrices (that derived in section
5.2) and the nonlinear stiffness matrices (that derived in section 5.3) and the calculated R-load
vector at each time step, the author was able to solve the nonlinear dynamic equation of
motion (6.1.1b) using the MATLAB code and the nonlinear Newmark iteration scheme (that
was explained in section 6.6) for the vibration response at all the given blade stations. The
displacements and rotations were computed at all the 15 blade stations. (where node# 15 as
mentioned earlier is the location of the blade’s tip).

The obtained solution was compared by the the same blade’s response solution using the Is-
Dyna code that was built using the same blade’s material and geometrical properties with the
same applied loading across the blade that considered for the Matlab code.

Fig. 8.2.2.1, Fig. 8.2.2.2 and Fig. 8.2.2.3 show the displacements at the blade’s in x, y and z-
directions respectively, using the current study Matlab code and the Is-dyna code. And Fig.
8.2.2.4, Fig. 8.2.2.5 and Fig. 8.2.2.6 show the rotational displacement at the blade’s tip about

the x, y and z directions respectively, using the Matlab code and the Is-Dyna code.
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(a) Displacement in x-direction using present work;
(b) Displacement in x-direction using Ls-Dyna.
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Fig. 8.2.2.2: Nonlinear plots comparison for tip displacement in y-direction.
(a) Displacement in y-direction using present work;
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Fig. 8.2.2.3: Nonlinear plots comparison for tip displacement in z-direction.
(a) Displacement in z-direction using present work;
(b) Displacement in z-direction using Ls-Dyna.
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Fig. 8.2.2.4: Nonlinear plots comparison for tip rot. displ. about x-direction.
(a) Rotational displacement about x-direction using present work;
(b) Rotational displacement about x-direction using Ls-Dyna.
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Fig. 8.2.2.5: Nonlinear plots comparison for tip rot. displ. about y-direction.
(a) Rotational displacement about y-direction using present work;
(b) Rotational displacement about y-direction using Ls-Dyna.
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Fig. 8.2.2.6: Nonlinear plots comparison for tip rot. displ. about z-direction.
(a) Rotational displacement about z-direction using present work;
(b) Rotational displacement about z-direction using Ls-Dyna.
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Chapter 9
Conclusion and Related Future Work

9.1 Conclusion

For the linear example case, the present study plot of the displacement in the vertical
direction at the blade’s tip agrees agrees as far as trend with the plot of the same displacement
that were given by Younsi et al. study [28] even that both plots has different peak values. The
advantage of the present study method on Younsi et al. study [28] is the accuracy of the
obtained displacements and rotations solution due to the inclusion of the cross-sectional
warping of the blade and the consideration of all the aerodynamic loads and all the possible
load couplings that acting on the blade. The other advantage is the capability of the present
research method of solving the displacements and rotations for any pretwisted blade while
Younsi et al. [28] study was limited to the untwisted blade case. It is observed that there is a
delay of about 3 seconds before the rapid increase in deflection in Fig. 8.2.1.3 (a) compared to
Fig. 8.2.1.3 (b). This delay is due to the additional aerodynamic interactions that caused by
the CFD code by which Younsi et al. study [28] performed the aerodynamic load prediction.

For the nonlinear example case, the nonlinear large deformation mathematical model for the
present 14 m pretwisted wind turbine blade lead to have a set of higher order terms that
contribute to the formation of two additional non-linear stiffness matrices.

We observe in Fig. 8.2.2.3 (a) and Fig. 8.2.2.3 (b) that the steady state blade’s tip nonlinear
displacement in the vertical z-direction for both codes (the present study Matlab code and the
Ls-Dyna code), is about 4m which is about 28% of the 14 m (length of the blade). This is in
agreement with the hypothesis introduced by Younsi et al. [28] that displacement is considered

to be nonlinear if exceeds 10% of the length of the blade.
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We also observe that even we have a similar trend of all the displacement and rotation plots
for both codes solutions as shown in Fig. 8.2.2.1 to Fig. 8.2.2.6, the peak and/or the steady
state values are vary in many of these plots. For example, in Fig. 8.2.2.3 (a), the peak
displacement using the present study Matlab code is 6.2 m while in Fig. 8.2.2.3 (b), the peak
displacement using the Is-dyna is 7.3 m. This variation is normal and it is due to the inclusion
of the following additional factors in the author’s present research mathematical model (Matlab
code) that are not included in the Ls-Dyna code:

U The additional aerodynamic load couplings.

U The two additional nonlinear stiffness matrices of the dynamic equations of motion due to

the nonlinear large deformation assumption.

The following are number of contributions for the present research:

0 A new simple method that based on the airfoil wind tunnel aerodynamic parameters
collected data (not based on CFD or the Bezier interpolation scheme) to calculate the R
load vector.

0 The mathematical formulation of this present research is capable of generating the
displacements, velocities and acceleration at any point on the blade for small or large
displacement for any duration of the aerodynamic loadings ( for example, it can run for
days) while Ls-dyna and similar current commercial softwares has a limited input data
storage and the aerodynamic load data has to be entered manually.

O The present research MATLAB code is the only current code the is able to update the
angle of attack by the value of the twisting rotation phi about the x-axis ( along the
length of the blade).

O calculation of the geometrical properties of any given blade airfoil profiles using a new

created macro to be used within Hypermesh.
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U The inclusion of warping and all the possible aerodynamic loadings and their couplings
beside the rotary inertia, shear deflection.
U No need to send my files to the Grid or to Gigastar in order to solve as happening in

case of current dynamic codes.

9.2 Related Future Work

My plan is to extend the present wind turbine blade research to include the following
improvement to my present research MATLAB code:

U Add the capability to solve blades with plastic and composite materials.

U Improve the code to be able to compute the natural frequencies and plot the mode

shapes for any given blade inputs.

Q0 To be able to identify the rpm(s) of the blade that the blade designer need to avoid in

order to avoid any possible excitation of the blade natural frequency.
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APPENDIX A: DERIVATION OF THE DIFFERENT STRAIN ENERGIES

A. 1. Axial-Torsional Strain Energy Including Warping Effect

Two common assumptions are made for the coupled extension-torsion problem: first, that
deformation parallel to the cross-sections is negligible, and second, that axial deformation
consists of bulk displacement u and cross sectional warping.

Airfoil warping in wind turbine blade application is assumed to be constant throughout the
cross section (or station) and vary in value between the different stations i.e. ¥(x,y,z) = ¥(x)
only.

To derive the axial-torsional strain energy for the pre-twisted Timoshenko beam of Fig. 3, we
have to start with the Green'’s strain-displacement relation in order to express the strain energy

in terms of large displacement fields [22]:
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It should be noted that keeping the following high order terms:

1
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in the below derivation is an important contribution of the present work.

Expanding, implies:
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Since warping is a function of x only implies: %/’:‘36_‘/2’ =0, which implies,
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The result is the axial-torsional strain energy which is in agreement with [22, 36]:

L 1 L 1 .,
Uaxial—torsional =J; J.I dydé EE gxxz +2G (gxyz + gxzz ) } dX +'0[ EEI p ¢ ? dx (Al)

A

A. 2. Bending-Bending-Shear Coupling Strain Energy

The strain energy due the blade’s bending about the y and z directions and their couplings
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including the effect of deflection due to transverse shear in two planes i.e. the case of
Timoshenko beam [18, 21, 40] is:

Ubending—shear: %J-OL { E ( l yy 01’2 +21 yz 01. 92. + Izz 9£2) + kGA((W_el) 2+ (Vl_ez) 2 }dX
(A.2)

where,

() : means derivative w.r.t. x

k :is the shear correction factor
kGA: is the shear rigidity

l,,, I, - are the second moment of area of the cross-section through the centroid about the Y,

y, and z, z, axes respectively as shown in Fig. 3.2.1.

l,, : is the product moment of area of the cross-section about the Y, ¥, and 7 z axes as

shown in Fig. 3.2.1.

A. 3. Bending-Torsional Coupling Strain Energy

The blade structure will undergo torsional deformation as it flexes because of its asymmetrical
airfoil cross-section where the shear centres axis and the centroid centres axis are not

coincident [21, 39] :

L

EJ' P[vZ-2y, Vg +(,/1A) 47 dx+%

bending-torsion = 2
0

U PIwW?-2z,Wg' +(1,/A) ¢7] dx

Oy

1.7 1, . 1.0 1, 50 L o .
+§E£ 7AW dx+§E£ oWy dx+jO [ Ki6' ¢ +K, 6, ¢ | dx (A.3)

where P is the axial force.
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Appendix B: DERIVATION OF THE DIFFERENT KINETIC ENERGIES

B. 1. Kinetic Energy due to Axial-Torsional Effect

To express the axial-torsional kinetic energy in terms of the displacement field, the velocity

vector R of each point in the beam is given by:
R=U=(U)&+ (V&+ W&,
= (ﬁ+ éz//)éX + g.é(—ysin¢ — ZCOSp)€, + ¢.5(ycos¢ - zsing)e,
= (U+0y)8, +1 4] —(sing)& +(cosp)é, ] (B.1)

o¢

where 6 = 6_ and dot means derivative w.r.t. time.
X

The cartesian unit vectors ( &, &,) are transformed to cylindrical unit vectors ( é,, &,),
~ 1, . . ~ 1, . .
where & = —(yé + z8) andg, = ~(-z8 + yé)) .
r r
The kinetic energy due to axial torsional coupling effects is given by

T[] Aoft

2
dv (B.1.1)

Substituting of R from Eq. (B. 1) into Eq. (B.1.1) results in the following equation [22] :

2

1 ) . . o2 .
T1=jy Ep(x)[ U+200y+ 6 y2+rip | dv

where, r? = y? + 2 , which implies,

L

T, = %I P00l G A+ 20 (Z—f) w A(X) + (%)2 AR 1,09 Kix (B.1.2)

0
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B. 2. Kinetic Energy due to Bending-Torsion including Centrifugal
Effect

The kinetic energy due to bending-bending-torsional coupling including centrifugal effect by

keeping the important higher order terms up to 4™ order is [18, 21, 24, 89]
L

T,= 2] P00l Q72 A0 ~ 0Py A ~ B2 A0, S + 07y A + AU

0

+20Q%y* A(X)¢ éz —207°A(X)¢ 0 + Q77 A(X)¢° éz+ 7° A(X) 0, — 2° A(X)g* 0. + 2Qy*A(X)6, ¢

+2072A(X) 0, - QY AN 0,4° § —Q2° AX) 0,8 3+ 2> A(X)0,6 0,  — 22 AX)0,$0, ¢ + Y A(X)

b+ AN G + Y A0, ¢ }dx+§ [ m[ (v+ 2, 9)7 + (w+ y, 9)? ]dx+% [ {p00r.,
02+ 2,802+ (01, (O y, 97 k=2 [ M (42,6)° +(ws y,0)° Dk (B2)

0

where Q and Q is the rotational speed and the angular velocity of the blade respectively.

B. 3. Kinetic Energy due to Rotary Inertia Effect

The kinetic energy due to rotary inertia effect as given by Carnegie [18] is:

L [ L0027 B e 0@, d v 0

dx (B.3)
2y g g
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APPENDIX C: DERIVATION OF —aggma'

Considering the total strain energy Eq. (2) shown in section 2.1, implies:

Mol E_[ I J Exx dydzdx+ 4G I ” > a: dydzdx+ 4Gj I J 8a: dydzdx

Substituting for,

o€
agxx = (¢mx+ @ ¢mx+ 9_51// ¢mx+ ﬂl// ¢mx)! - :lea_l//gémxzo and%ZEGa_Wﬂ“X:O’
oa,, X OX OX oa, 2 oy oa, 2 oz
implies,

aUTotaI — E‘I': I [ @ + al// + % +1_ (@) 2 +1_ Hal )2 +@ gal +1_
16}

" TV T2 Ty Uy x ' ox 2
0 2, ,0¥ 09 ou 06 1, ., ou 1% o0
Ay tO0— — Al t—r°e (e mx+‘9 mx T ——
& T Y T a3 J¢ x ! o IV

) _
1 oy ou oy 00

P dydzdx +4G —0[—(1+(—+ 06— +—y ) ) —z] Odydzdx
~([ jA 2 oy OX OX OX

L

oy 00
JI —e [—( 1+(— + 07+ ) ) +y] odydzdx
5 A OX OX

o}

Expanding and substituting the associated values of D’s that listed in TABLE A, results in:

L —

L L L
OU 1o ou 00 1
——Toal - E — A dx + O D.(X) dx +| — D,(x) dx +—
P [ .!; o Prux A(X) '([ Box Ds(X) '([ o Prax D1(X) > _([

L

00

A dx+ T 07 Ds(¥) dx +j M g D) o +lf yeg. D, dx +j 0524,
2 . mx 6 @( mx 5 ax mx 2 ax mx

2

0 0 0

G_U%¢ D, (X) dx"'l_,T 024 1 (X dx+'T (a_a)2¢ A(x) dx "'.T
ox ox ™ L 2 e ;0 ok T 0

0

Dy(X) dx + j

0

9¢mx DS(X) dX +J. ¢mx D (X) d +1? j (_) ¢mx A(X) dX +1? H2¢mx D6(X)

0

O ey ™
S

* P

2

dx
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L - L - L - L -
ou 1 ou 00 ou .00 ou

+ ] ()% 04 Ds(x) dx + 5| — ()8 D(0) dx +| — 04, Dy(x) dx +| ()
! X ° 24 x ox ? ! o Ox ° ! X

L

2%415 D, (X) dx+1—j 02@(;& I (X) dx+'T a—at% D.(X) dx +j 6°¢_. D, (X) dx +.T
6)( mx 1 2 ) 8x mx p ax mx 5 mx 6 )

0 0

9%¢ D,(X) dx +1— JL. (a—a)zﬁgzﬁ D.(X) dx +1—JL. %6 D.(X) dx +'L[ a_ﬁ 64 Dg(X)
8x mx 9 2 ) 8x mx 5 2 ) mx 7 . aX mx 6

1 5 06 Y 00 S ou o0 1
dx+ — 9(—>)? D (x) dx +| 6°=—=¢ D, (x) dx+ 60— D.(X) dx + —
7 | OG0 I Do) k[ 72 D) v o P Do00 4 2|

5 OX

L - L L
ou 96 00 00
0%, Dp(X) dx + | — —4, D,(X) dx +| O—¢,, Dy(X) dx + )¢ D,(x) dx +
e D09 W+ [ 20 g D09 o +[ 070 Do d [ (0 e D29
1—T (6—6)2%¢ D, (%) dx+1—j 0?24 DL dx +j u 024 D, dx+1—j
2 5 o ooax™m ! 2.y ox ™ . oxoox Y 2 %

au

06,4 [ 00, f 00, 1 ¢ .00
— Dy(x) dx + | O(— Dp(X) dx +|  — (— D,(X) dx + — | &0°—
G e D00 Bt [ OCY hnu Do e+ [ 0 (0 e D09 e+ [ 02 g,

0

D,g(X) dx ]

Substituting for the displacements and their derivative expressions, implies,

%;:al: E ni I AX) 4.(X) d(X)dX @, + E nﬁ; I Ds(X) ¢ (¥) Bn(¥dx f + E ni_l I D, ()
Pux(X) Prnx (X)X £, +% E i i I AX) ¢, (X) b, (X) 4, (X)dx a a, +% E i i .[ D, (X) 4..(X)

L

D) () o) B T, +2 ED > [ Do

K L K
k= n=l k=1

B (X) Bu(¥)AX T f + E i >

n=1 1

O t—y

o

Io0) B I X T, + EY Y [ Dy 0 ool dX 1,0, +EY Y

Dl(x) ¢nxx(x) ¢kx(x) ¢mx(x)dx fnak +% E ZN: Z J‘ Ip(X) ¢nx(x) ¢kx(x) ¢mx(x)dx fn fk + E ZN: Z

K L K
n=l k=1 ¢ n=l k=1
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AC) 4 6o 0 (00X33, +E DS [ Do) (0 A dn00x T3 + EY Y

K
n=l k=1 ¢ n=1 k=1

Oy

K
k

K,L L

D) o) B dOX f3 2 E D S [ AR o) Al 4,09 (00X 33

n=l kl=1 ¢

Oty

K,L K,L L

ES ST [ D0 0 409 () X 58+ ED S [ Dy 4o A0

n=1 0 n=1 |= 0

—+

N~

=~
[N
=

=z

K,L K, L

¢|X(X) ¢mX(X)dX fnakal +% E i Z J‘ DZ(X) ¢nxx(x) ¢kxx(x) ¢Ix (X) ¢mx(x)dx fn fkal +E i z .[

n=1 k|l=1 ¢ n=1 k,|= 0

-

=
=

K, L

DQ(X) ¢nxx(x) ¢kx(x) ¢Ix(x) ¢mx(x)dx fn fkal +E i z _[ Dl(x) ¢nxx(x) ¢kx(x) ¢Ix(x) ¢mx(x)dx fnakal

n=1 0

-

=
=

-

£ ED S [ 109 40 8 400 X T1@ +E X D [ Do) o) ol

K, K L
n=1 k,|= 0 n=1 k=1 0

=
=

A0 1,84 E DD | D0 4000 o) A0 f+ E DD [ Dy 409 o)

okl o Hokdoo

KL KL

B0 T 2 E XS [ D00 ) ) ) B0 F,38 +2 E Y S [ D19 49

N N
i kJ= =l k=L

KL L

¢kx(x) ¢Ix(x) ¢mx(x)dx fn fk fI + E i Z _[ DG(X) ¢nx(x) ¢kx(x) ¢Ix(x) ¢mx(x)dx fn fka1 +% E

=l kl=l o

N

=

n=1

-~

L oL KL L

[ Dio(®) 0¥ Foo¥) Ao (®) X £ Fi+E DT D [ DuolX) (X h(X) hi(X) b1 (XX

N
0 n=1 0

_?\_
Il
N
x~
[

KL L KL L

hh + EY S [ D00 f) duld 4 XX a2 ES S [ DU ¥

n=l 0 2 n=1 kl=1 ¢

X
UN

B0 ) () Grn(X T FF 4 E D |

n=1

M=

[ D0 o) 8o G (0x T3 4 E D

n=1

=~
gl
1

o
=~
Il
1

K,L

DQ(X) ¢nx(x) ¢kxx(x) ¢mx(x)dx fn fk +E i Z I DZ(X) ¢nxx(x) ¢kxx(x) ¢mx(x)dx fn fk +£ E i Z

n=1 k=1 0 2 n=1 k,iI=1
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E D00 $ru) 6a) 6, () (X 28+ EZ Z j D) () o (X) tho) (X)X
MiheEY 3 j D00 sl () 900 9 13 45 E > 30 j D,() #el)
BaX) () B O0OX T, £, 1, + E ; j Do) (%) o) tho) (XX 1, 1, f, 4 E z z
I 0,00 dhnl0) BralX) () B (XX 1,63+ EZ z j Ds(X) () o) A (X) (X)X

f 1 1

n

Further substituting for the associated S integral definitions as listed in Table B, results in:

aU otal N N N , 1 N K
—al = E Z SAmn a, + EZ SDSmn fn +Ez SDlmn fn +- E z z SAmnk a,a, +_ E Z z
oa,, n-1 1 ) 2 =2d R
N K N K N K
SDemnk fn fk +E z z SDsmnk fnak +- E Z S D,mnk fn fk +E Z Z Sngnk fn fk + E
n=1 k=1 n=1 k=1 n=1 k=1
N K N K N K N K
Z Z SDlmnk nak +- E z S mnk f f + E Z Z SAmnk a'nak +E Z Z SD5mnk fnak +
n=l k=1 n=l k=1 n=l k=1 n=l k=1
N K N K,L N K,L N K,L
E Z Z S'Dlmnk fia += E Z Samnk &3 +§ E Z Soemnkl f.fia + E Z Z
n=1 k=1 n=1 k,(=1 n=1 k,(=1 n=1 k,iI=1
N K,L N K,L N K,L
Sbsmnkl nd - E Z SH D,mnkl f fkal +E Z Z Sngnkl fn fkal +E Z SDlmnkl
n=1 k,iI=1 n=1 k,(=1 n=1 k,iI=1
1 N K,L N K N K N K
fnakal +§ E Z Spmnkl fn fkal +E Z Z SD5mnk fnak +E Z Z SDemnk fn fk +E Z Z
n=1 k,iI=1 n=1 k=1 n=1 k=1 =l k=l
1 N K,L 1 N K,L N K,L
S Dgmnk fn fk +- E Z Sjsmnkl fnakal +- E Z Z 337mnkl fn fk fl + E Z Z SDemnkl fn fkal
2 n=1 k,(=1 2 n=1 k,(=1 n=1 k,(I=1
1 N K,L N K,L N K,L 1
+5 E Z S'ogmia fufifi +E Z So,mu fufifi + E Z Sogmna fofid += E
2 n=1 k,(=1 n=1 k,(=1 n=1 k,iI=1 2



N K,L N K N K N K
Z SDlzmnkl fn fk fI + E z z SDlmnk nak +E Z Z Sngnk fn fk +E Z Z S D,mnk
n=l k|l=1 n=l k=1 n=l k=1 n=l k=1
1 N K,L | 1 N K,L , N K,L 1
fn fk +- E z SDlmnkl fnakal +- E Z z SDzzmnkl fn fk fl +E Z Z Sngnkl n ai +5
2 n=l k|l=1 2 n=1 k,|l=1 n=l k|l=1 2
N K,L N K,L N K,L 1
E Z SI”D3mr1kl fn fk fI + E Z S’ Dy gmnkl f f f + E z SIIDzmnkl fn fka1 +- E
n=1 k,|l=1 n=l k,|l=1 n=l k|l=1 2
N K,L
Z S Dygmnkl fn fk fl
n=l k,|l=1
Slmllarly we can derive aUTotal , aUTotal aUTotal , aUTotal and 6UTotal as
ob,, oc, od,, oe, of,,
aU N N N N
— o = kG Z SAmn bn -kG Z ISAmn € + Z SF’mn n — Z SPy mn fn
8bm n=1 n=1 n=1 n=1 :
aUTotaI N N N 1 N K,L
— = =kG z SAmn G — kG z SAmn n z SPmn n z SPz mn f +- E Z Z SAmnkl
aCm n=1 n=1 n=! 2 n=1 k,|=1
1 N K,L
C.C.G +§ E Z z Spmnklcn f f
n=1 k,|l=1

TotaI_E(z Smnd+z S o n) kGZ SAmnCn+kGZ SAmnd +z Sﬁmn n

N
Total _ E(Z S mn n+z S mn n) kG z Amn n + kG z Spmn €0 T Z Skzmn fn
n=1

aU N N N 1 N K,L N
Total _ _ Z SPyamn bn +22 S(Plp/A)mn fn —Z SPzamn c, +— EZ Spmnkl GG fl +Z S<1mn
6fm n=1 n=L n=l 2 n=1 Kk,I=1 =L
1 N K
d +z S< mn &t E z SD mn & E Z SD P P E z Sngn n +§ E Z SD5mnk
n=1 k=1
N K N K 1 N K
a,a +- E Z Z SD7mnk fn fk + E Z Z SDGmnk a'nfk +§ E z z S D;omnk fn fk + E
n=l k=1 n=l k=1 n=l k=1

N K N K 1
z z SIDzzmnk fn fk + E Z Z SIngnk an fk +§ E Z Z SDlzmnk fn fk + E Z ISDlmn a'n
4



N N 1 N K 1 N K
+ E z ISDmn fn + E z SIID mn fn +- E z z ISI)mnk aa +- E Z 'SD mnk fnfk
n=1 ’ n=1 ’ 2 n=1 k=1 ' 2 n=1 k=1 ”
N N K
+ E Z Z Sngnk a“nfk +_ E Z z S Dymnk n k + E Z Z I'SDlomnk fn fk + E Z Z
=l k=l n=l k=l n=1 k=1 =l k=l

N K
ISDzmnk a‘nf +_ EZZ Sngmnk n k + EZZ SDmnk a'nf + E Z Z SD7mnk fnfk + E

=l k=l =l k=l n=1 k=1

N K 1 N KL N KL N KL
z Z S'o, mnk f,fi "'E E Z Soe & fi +Z E Z Z Som Tofcfi + E Z
n=1 k=1 n=1 k,|=1 n=1 k,|=1 n=1 k,|=1
N KL N KL N KL
S —— f i + - E Z Z S'p, mnk f.ffi + E Z Sho, mnid f.fff + E Z
n=1 k,(=1 n=1 k(=1 n=1 k|l=1

S D,,mnkI a'n.I: f + E Z Z SD3omnkl f f f + E Z Z SDsmnk nak + E ii SDGmnk an fk +

n=l k=1 =l k=l =l k=l

N K N K,L 1 N KL N K,L
E Z Z S'oymnk a, f, +_ E Z Z Somk A& +—- E Z Z (S —— ffi + E Z
=l k=l 2 n=1 k,(I=1 2 n=1 k/l=1 n=1 k|l=1
1 N KL N KL N KL
SDﬁmnkl a'na'k fI +§ E Z Z SI'Dmmnkl a'n fk fl + E Z SIDzzmnkl a'n fk fl + E Z SD mnkl a ak |
n=lokl= =l k= =l k=L

N K
+_ E ZZ SDlzmnkl anf f + E ZZ SDmnk anf + E zz SDmmnk n k + E zz SI”D3mnk

=l k=l k4 kL kL

N KL
f. + E ZZ SDzmnkI a,af, +_ EZ Z SD23mnkI S+ E Z Z “SDlomnkI a, . f,

k=L n=l k=l =kl
1 N KL N KL N KL 1
Py EZ S" b fnffi + E Z Z "Spme T fifi + E z "Somk B fifi +Z E
2 n=l kl=l n=l k=l n=l k,|l=1 2
N KL N K N K
Z Sngmnkl f f f + E Z Z Sngnk a‘nf + E z z SDzzmnk n k + E z Z SH D;omnk
n=l k(=1 n=1 k=1 nl k=l n=l k=1
1 N KL 1 N KL N KL
- E Z S'oymnk 88y fi+- E Z Z S'p, mnk f.ffi +E Z S, mnk &y f i
2 n=l k=L 2 n=l k|l=1 n=l kl=l
1 N KL N KL N KL 1
+= EZ S"o i fafcfi + E Z Z S0 fofifi + EZ S mi e fifi +2
2 n=l k=1 n=l k|l=1 n=1 k,|l=1 2
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N K,L N K N K N K
E Z SDnmnkl fn‘f f + E z z 'Sngnk an fk + E z z 'SDzzmnk fn fk + E z Z IISDmmnk
n=l k,|=1 n=l k=1 n=l k=l =l kel
1 N K,L N K,L N KL
fn fk + E E Z Sngnkl aa f +_ E Z SD24mnkl fn fk fl + E Z z 'SDzzmnkI a, fk fl
n=l Kk,|=1 n=l k=1 n=l k=L
N K,L N K,L 1
+ - E z Z SDzsmnkl fn f f + E Z SD23mnkl fn fk fl + E z Z SDmmnkl a, fk fl + E
n=l k=l n=l k|l=1 n=1 k|l=1
N K,L N K
E z 'SDnmnkI f f f + E Z Z SDmnk a“nak + E Z Z SD mnk an‘f + E Z Z SDzmnk
n=1 k|l=1 n=l k=1 =l k=l =l k=l
1 N K,L N K,L N K,L
a, fk +E E z SDlmnkl a8 +_ E Z 'SDzzmnkI a, fk fl + E z 'SngnkI a, fl
n=1 k|l=1 n=l k=1 n=1 k|l=1

1 N KL N KL N KL 1
+§ = zz ”ISD3mnk| anfkfl + E ZZ ”SDmmnkI anfkf| + E Zz IISDzmnkl anakfl +§ =

il k=l i k=l =l k=l
N KL N K N K N K
z z ISDzamnkl an fk fI + E Z Z SI pmnk n + E Z Z SD12mnk fn fk + E z z S'ngmnk
n=l k=l n=1 k=1 n=1 k=1 n=1 k=1

1

f f, i1 EZZ S ki @& +— EZZ Soumi o fifi + Ezz Somu & fifi += E

2 n=l k=1 =l k=l n=l k=l 2
N KL N KL N KL 1 N KL
z S Dygmnkl fn fk fI + E Z S Dy,mnk n fI + E z S Dpgmnk a, fk fl + E E Z
ki =l k=l n=l k=1 n=l k=l

N

SD27mnkl f f f +GZ SI pmn n + E z SIIIpmn fn
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APPENDIX D: DERIVATION OF 7" - T AND di(ﬂ>
m o0y,

Considering the total kinetic energy Eg. (3) in section 2.2 and a constant material density

along the blade length, implies,

T —, | 0 =, Xk o
o p{ A9a = ~Tdx=0 ,,; j AX)¢, () (X)dxa, = 0 p; Samn
d orT, dp 1% e ag, o -
dt(aa'm)_ o 2{ POl 280002+ 2809 v (1) = -0 Joix

-pj AK)Y. o) (9 dx+pj D09 3. 16 ) o

n=1
N

o N o
= pz SAmn a'n + p Z Slrjlmn fn
n=1

n=1

or

) d 6"’ N N oo

8b =-Q Z Amrpn Q pz xz, Amn n ’ (_) pz Amn + ,OZ Sz{lAmn fn
n= n=1

oT d oT N . N .

E = _szz S><Amn n -Q pz XY, Amn n o dt (_) = z Spamn Cn t ,OZ SyaAmn fn
m 6 C n=1 n=1

a _pN PR L LPY F
8dm_az Symndn"'az ! slyyamn fn +§Z Sy)/amn fn

d oT N N .
a(_) - Z S ,mn n+pz SlIyyamn fn
6d n=1 n=1
oT _ A2 2 N N :
a__Q Z Smnen QPZ Z Smnkl fn fkq +sz SI ,mn n__sz z SImnkl n fI
€n n1 k=1 N k-l
N K,L . N K,L °« o N K,L o o
+sz SI ymn n _EQp Z z SI ymnkl n f fI +pz z SIZmnkI fneK fI _p Z SI ymnkl n
n=l k=1 n=l k,i=1 n=1 k|l=1

K,L N

N p p N K .
+pz Z SI ,mnkl en f f + E SIzmn en E z z SI 42,7, mnk n
n=1 = -1

=
=

n
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d . oT N « N KL . N KL
_(_.) = _sz I,mn n sz SI ymn n sz Z SI ymnkl fn fk fI + pz SIymnklfn fk fI
dt oe, 1 1 kil 1 kil
N KL . N o N KL N KL o
+QPZ Slymnklfn fe f, +pz Si,mn €n —,OZ Sy, mnki I Q _pz z Si, mnkd fofce
n=1 k,iI=1 n=1 n=1 k,I=1 n=1 k,I=1
N K,L oo N K,L . . N K,L e o N KL .
_pz Z S, Tn T @ +,OZ S mnia €n fi 1, "'pz Z S, mia€n fi i +p z S mnia €0 fic 1,
n=l k|l=1 n=l k,|i=1 n=l k,I=1 n=l kl=1
N K,L . N K,L N
_pz SIymnkl €n fk f pz S ymnkl €n f f _pz Z S mnklen f f +,OZ S mne +pz
n=1 k,l=1 n=l k|l=1 n=l k|l=1 n=1
SlI z,mn Fn
oT —, N —, N KL 1— —, N N o
o =—-Q pz Slzmnfn -Q pz Si,mnki€h ef + ZQ pz Z St mnki fofif "'QPZ Si,mn &
m n=1 n=1 k,|l=1 n=l k,|l=1 n=1
N N N N KL .
- sz SI ymn n += sz Z SI ymnkl n k q ,OZ Z SI ymnk n ek q sz SIZmnkI en fk fl
n=1 n=1 k,=1 n=1 k,=1 n=l k,I=1
N KL N N )
- sz z SI ymnkl n f f + pz Z SI ,mnkl n ek f - pz Z SI ymnkl n ek f _Q z SxMz mnbn
n=l k/l=1 n=l k/l=1 n=l k,|l=1 n=1
2 - 2 - 2 -
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ABSTRACT

LINEAR AND NON-LINEAR DEFORMATIONS OF A WIND TURBIN E BLADE
CONSIDERING WARPING AND ALL AEROELASTIC LOAD COUPLI NGS

by
FOUAD MOHAMMAD MOHAMMAD

May 2012

Advisor: Dr. Emmanuel Ayorinde
Major: Mechanical Engineering

Degree: Doctor of Philosophy

The structural dynamics behavior of the blade diasizontal axis wind turbine that reacts to the
different components of the aerodynamic loadingewstudied by many researchers using different
approaches and assumptions. In the present reBgedhe author considered all the extensional,
torsional and flexural loadings acting on the blag#&h their couplings, variable airfoil cross semtis
with warping effects, shear deflection, rotary iteerand with or without blade’s pretwist for bothet
linear small deformation case and the nonlineagideformation case. To the best knowledge of the
author the simultaneous inclusion of all thesedexthas not been done before. The “assumed modes
method” was used, in which displacements are asdumde an expansion of products of time-step
dependent constants and polynomial functions afhefe x is the coordinate along the length of the
blade) that satisfy the boundary conditions atfiked end where x=0 (hub of the blade) and at the f
end where x=L (tip of the blade). The mass malinear and nonlinear stiffness matrices and thadlo
vector (function of time step) of the dynamic eiquist of motion are deduced from the Lagrange
equations of motion that were derived step by st€pe steps of the linear and nonlinear Newmark
implicit iteration schemes used for solving theeéin and nonlinear dynamic equations of motion
respectively were explained in detail. Numericaipiementation examples for both linear and

nonlinear casesvere demonstrated for a 14m long blade with anthout pretwisting that has specific
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material and geometrical properties and a decregdNACA4415 airfoil cross section from hub to tip.
For both of the linear and nonlinear examples, #aeodynamic loadings (lift, drag and pitch moment)
and the nonlinear stiffness matricegere computed at each time step utilizing a timgeddent set of
parameters such as angle of attack, material amdiansity, wind and blade speed, flow angle, yad an
pitch angles. Then the unknown displacemants andw in the directions of x, y and z axes
respectively, the bending rotatiofig and 6, about the y and z axes respectively and the toasio
rotation ¢ about the x axis, were solved using the linear andlinear Newmark implicit iteration
schemes.Thelinear case displacement result plots are showagree withthe work of Younsi et al.
The nonlinear case displacement result plots amwshto agree withthe Ls-Dyna code.
Keywords: aeroelasticity, Bézier surfaces, gust of wind, Lagrange equations, nonlinear Newmark

procedure, wind turbine blade aerodynamic loadings
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