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CHAPTER 1: BACKGROUND AND INTRODUCTION

The process of obtaining a comprehensive list of genes, proteins, and metabolites

that are di↵erent between two phenotypes is a today routine for a multitude of re-

searchers in life sciences. And yet, even though such high-throughput comparisons

have become relatively easy to perform, the biggest challenge remains: transforming

the raw data in a deep understanding of the biological phenomena that determine the

observed phenotype. At the same time, we have started to understand that evolution

of many diseases such as cancer, are the results of the interplay between the disease

itself and the immune system of the host. It is now well accepted that cancer is

not a single disease but a “complex collection of distinct genetic diseases united by

common hallmarks” [88]. The heterogeneity of diseases such as breast cancer is well

recognized [79] and gene expression profiling has been used to identify at least four

major subtypes: luminal A, luminal B, HER2+ and basal-like [80, 92]. In the past

decade, important clinical advances in cancer treatments are attributed to molecularly

targeted treatments aiming at specific genes such as estrogen receptor alpha (ER-↵),

HER2, EGFR, etc. Targeted treatments result in greater e�cacy and fewer debili-

tating or dose limiting side e↵ects [88]. This clearly proves that it is important to

identify and appropriately treat each individual disease subtype. However,

our current understanding of disease subtypes appears to be very limited. Despite tar-

geted treatment advances, targeted therapies often fail for some patients. For breast

cancer, while 20% of tumors overexpress the HER2 oncogene, one-third of these fail

to show response to HER2-targeted therapies right from the outset. Research and

clinical studies present a similar story for anti-estrogen treatment of ER-↵-positive

breast cancer and androgen ablation of androgen receptor positive prostate cancer

[17, 44] Not all patients show an initial response, and from those who do, a signifi-
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cant number will develop resistance. The fact that a substantial fraction of patients

with a given subtype of cancer respond very di↵erently to the same treatment, ei-

ther immediately or later on, means that either: i) the known subtypes are not

truly homogeneous in terms or mechanisms of action and must be further

refined, or ii) that subgroups of patients may have di↵erent mechanisms of

defense against the same tumor type.

Another aspect is related to the choice of optimal treatments. For example,

cytotoxic chemotherapy remains the standard adjuvant therapy for lung cancer and

it is not routinely recommended as part of the initial course of treatment for individ-

uals with early stage disease [2, 106]. However, the high recurrence rates for stage

I non-small cell lung cancer (NSCLC) raises consideration that a subset of patients

may benefit from adjuvant therapy. Indeed, recent multinational clinical trials show

that adjuvant chemotherapy can significantly improve the survival of patients with

advanced early-stage (Stage IB-II) disease [8]. It follows that the capability to prog-

nosticate outcomes – e.g., which tumors are likely to recur after surgical resection –

would allow for better disease management where only patients who will benefit are

treated and others who will not do not receive unnecessary over-treatments.

Many attempts to achieve this based on gene expression signatures have been

undertaken but yielded only modest success so far (no FDA approved gene expression

test exists yet).

The goal of PLSI is to go beyond the existing gene expression approaches

for disease sub-typing, by exploiting the most recent approaches for the analysis of

biological pathways, allowing “mechanism level” sub-typing .

The hypothesis is that a given disease subtype can be triggered by a number of

di↵erent events, through di↵erent genes, but may involve common mechanism(s). As

signals propagate along a pathway, the genes that are di↵erentially expressed (DE)
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change over time, while the pathway involved remains the same. Hence, we expect

that a pathway signature, i.e. the pathways that distinguish between subtypes, will

be: i) more easily detectable, ii) more stable, and iii) more useful than a gene signa-

ture. Therefore, PLSI allows the use of pathway profiles to discover and characterize

disease subtypes and patient subgroups.
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CHAPTER 2: DISEASE SUB-TYPING APPROACHES

The rapidly increasingly easy collection of whole-genome expression data resulted

in thousands of publicly available data sets through databases like ArrayExpress [9,

85] and the Gene Expression Omnibus (GEO) [4, 28]. For example, ArrayExpress

contains more than 40,000 RNA screening data sets, out of which more than 15,000

are human data sets. The data sets in these databases are easily retrievable through

their websites or through APIs in di↵erent programming environments. Another

aspect of the fact that expression data is relatively easy and cheap to obtain is related

to the dimensions of the data sets. When such analyses were novel and expensive,

the number of samples was limited to numbers rarely exceeding the dozen, whereas

today it is not surprising to find data sets with tens or hundreds of samples1.

One examples of such studies is The Cancer Genome Atlas (TCGA) [98]. The

TCGA initiative is a coordinated e↵ort of analysis and collection of cancer related

data sets. Research groups that belong to the TCGA consortium are asked to collect

samples, perform the screening using standard analysis protocols, and upload the

results on the TCGA website, where they are made available on the TCGA Data

Portal. Currently more than 11,000 samples are available for download from the data

portal. Table 2.1 shows the distribution of samples for di↵erent cancer diseases.

Samples analyzed in the TCGA initiative are not screened only for gene ex-

pression, but for a multitude of other kinds of data, including DNA methylation,

genomic variants, miRNA expression, etc. With such number of samples available at

once, researchers can test new hypotheses related to the heterogeneity of the condi-

tions observed, allowing meaningful analysis of complex diseases. One of the most

widely used approach for the detection of disease subtypes is arguably hierarchical

1
Issues related to the collection of human samples nowadays surpass the issues in screening the

samples.
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Available cancer types number of cases
Acute Myeloid Leukemia [LAML] 200
Adrenocortical carcinoma [ACC] 80
Bladder Urothelial Carcinoma [BLCA] 412
Brain Lower Grade Glioma [LGG] 516
Breast invasive carcinoma [BRCA] 1098
Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC] 308
Cholangiocarcinoma [CHOL] 36
Colon adenocarcinoma [COAD] 461
Esophageal carcinoma [ESCA] 185
Glioblastoma multiforme [GBM] 528
Head and Neck squamous cell carcinoma [HNSC] 528
Kidney Chromophobe [KICH] 66
Kidney renal clear cell carcinoma [KIRC] 536
Kidney renal papillary cell carcinoma [KIRP] 291
Liver hepatocellular carcinoma [LIHC] 377
Lung adenocarcinoma [LUAD] 521
Lung squamous cell carcinoma [LUSC] 504
Lymphoid Neoplasm Di↵use Large B-cell Lymphoma [DLBC] 48
Mesothelioma [MESO] 87
Ovarian serous cystadenocarcinoma [OV] 586
Pancreatic adenocarcinoma [PAAD] 185
Pheochromocytoma and Paraganglioma [PCPG] 179
Prostate adenocarcinoma [PRAD] 498
Rectum adenocarcinoma [READ] 171
Sarcoma [SARC] 261
Skin Cutaneous Melanoma [SKCM] 470
Stomach adenocarcinoma [STAD] 443
Testicular Germ Cell Tumors [TGCT] 150
Thymoma [THYM] 124
Thyroid carcinoma [THCA] 507
Uterine Carcinosarcoma [UCS] 57
Uterine Corpus Endometrial Carcinoma [UCEC] 548
Uveal Melanoma [UVM] 80

total cases 11041

Table 2.1: Available TCGA data sets

clustering, with thousands of studies where gene expression profiles of samples are

clustered, and clusters then are associated with clinical variables to find meaningful

groups of samples. In [61] the authors cluster gene expression profiles of prostate

tumor samples, performing feature selection to establish which genes best described

the resulting clusters. [92], [103], and [93] cluster breast cancer samples with di↵erent

outcomes in survival, while [59] cluster gene expression profiles of drugs and diseases

together in order to connect drugs and diseases based on their gene expression profile.
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Another widely used clustering method for disease subtyping is k-means clus-

tering [42]. Similarly to hierarchical clustering, this method has been widely applied

on gene expression data to discover subtypes of diseases. [78] and [87] apply k-means

to discover subtypes of glioma, [101] use it to discover subtypes of ovarian cancer

linked to clinical outcome of the patients, while [63] use the clusters found with k-

means to identify the gene signature of a very aggressive subtype of breast cancer,

opening the way for targeted therapies.

More advanced methods are also applied (e.g. spectral clustering, self orga-

nizing maps), and the abundance of works that use one of the numerous available

clustering methods for detecting disease subtypes shows the extent of the problem of

disease subtyping.

Ultimately, by clustering samples of a certain disease to discover subtypes,

researchers aim to find the signatures of such subtypes, signatures that can be used

either for prognosis of new patients, or for discovering mechanisms that are specific

for a subtype, allowing the development of targeted treatments that can reduce side

e↵ects and increase e↵ectiveness.

One issue with the current approaches to disease subtyping and subsequent

signature discovery, is that in the vast majority of the cases the features used for

detecting the disease subtypes are genes, and the values assigned to those features

come from intrinsically noisy measurement methods. While mRNA microarrays are

an excellent method for screening the entire genome of a specimen, this technology

presents high levels of noise in the measurements, yielding results that are di�cult

to reproduce, as shown in several studies [14, 21, 34]. Another problem related to

microarray experiments is the fact that they represent a snapshot of the gene ac-

tivity at a certain moment, adding another factor that undermines reproducibility

and reliability of the results. The issue with gene measurements is that, as signals
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among genes propagate through a given pathway, the specific subset of genes that

are di↵erentially expressed change continuously, on various time scales. However, the

pathways of signal propagation that are impacted in a specific process may remain

the same. By focusing on pathways, rather than single genes, we reduce the noise

introduced by single gene measurements, resulting in more reliable signatures
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CHAPTER 3: PATHWAY ANALYSIS

3.1 Pathway analysis

The first approaches available for the analysis of pathways were over-representation

(ORA) (e.g. hypergeometric [26, 97]) and functional class scoring (FCS) (e.g. GSEA

[72, 94]). These methods are limited when used for pathway analysis because they

completely disregard the topology of the pathway, which captures the way the genes

interact with each other - the very reason of existence of signaling and metabolic path-

ways. Recently an impact analysis approach was developed, able to incorporate gene

interaction knowledge into the analysis of signaling pathways [23] (briefly described

in section 3.1.2 below). This impact analysis was the first approach that extended the

classical analysis by incorporating important biological factors like (i) the magnitude

of expression change for each gene, (ii) their position on the pathway, as well as (iii)

the type of gene interactions on the pathway. Since the introduction of the impact

analysis, more than 20 topology-based methods for pathway analysis have been pro-

posed [23, 24, 27, 32, 35, 36, 38, 39, 40, 41, 47, 48, 49, 68, 70, 83, 90, 96, 104, 108, 110].

The majority of them use variations of centrality measures (e.g., node degree, node

betweenness, etc.) to score genes according to their position in the pathway and

the number of neighboring genes. In addition, methods like ScorePAGE [83] and

PWEA [47] also use gene expression similarity measures (e.g., correlation coe�cients)

between genes on the same pathway to identify tight clusters of highly correlated

genes. Methods such as PARADIGM [104], PathOlogist [32], TAPPA [38], BPA [49]

consider the expression of genes (i.e., nodes) in the pathway as random variables and

use the interactions to define conditional dependency. Independent of the model used

to incorporate pathway topology, all these methods focus on identifying the signif-

icantly impacted pathways in a single given experimental condition. In this work,
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however, we take a step further and focus on the task of discovering and charac-

terizing disease subtypes and patients subgroups using significantly impacted

pathway signatures.

3.1.1 Over-representation Analysis (ORA)

Before the concept of pathways was introduced to describe how complicated gene

signaling processes take place, there were gene annotations, such as those provided

by the Gene Ontology (GO) [3], describing what was known about individual genes.

One approach to the interpretation of an experiment is to use a hypergeometric test

to calculate the probability of observing the actual number of di↵erentially expressed

(DE) genes belonging to a GO category just by chance [26, 54]. Since in most appli-

cations the interest stands in the GO categories that are enriched in DE genes, this

approach has become known as over-representation analysis (ORA).

More recently, pathway databases such as KEGG [52], BioCarta [7], and Re-

actome [51], became available, describing metabolic pathways and gene signaling net-

works. The new type information o↵ered by these sources o↵ered the potential for a

a whole new level of analysis methods, more e↵ective and more refined than simple

GO analysis. However, when such pathway databases started to became available,

the methods originally developed for GO analysis were immediately used to analyze

pathways. The extrapolation was very simple: consider a pathway as merely the set

of the genes that are involved in it (discarding the interactions), and perform exactly

the same analysis used for GO annotations.

The hypergeometric model is one of the most commonly used methods for

performing ORA. This model computes a p-value that represents the probability of

obtaining a number of DE genes in a pathway more extreme than the one observed,
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taking into account the total number of DE genes an the total number of genes

screened. Assuming that N genes are screened, that K genes are found to be DE,

that K
P

genes are found to be DE in pathway P , and that pathway P has size N

P

genes in total, the probability of obtaining exactly K

p

DE genes can be computed as

in Eq. 3.1.

P (X = K

P

|N,N

P

, K) =

�
NP

KP

�
·
�
N�NP

K�KP

�
�
N

K

� (3.1)

The probability of obtaining a number of genes equal or higher than the ob-

served value K

P

can be obtained with Eq. 3.2.

P (X � K

P

) = 1�
KP�1X

i=0

�
Np

i

�
·
�
N�Np

K�i

�
�
N

K

� (3.2)

The hypergeometric p-value computed for each pathway is used to rank them,

and it is interpreted as the amount of involvement of each pathway in the phenomenon

that generated the specific list of DE genes.

Currently, ORA is one of the most widely used method for pathway analysis,

as seen in a number of surveys of pathway analysis methods [53, 56, 71].

3.1.2 Impact Analysis

The impact analysis [23] was the first pathway analysis approach that departed from

the approaches that looked at pathways as mere sets of genes. This approach, able to

capture the phenomena related to the complex interactions and signaling described

by the pathway topology, takes into account the interactions among genes, the mag-

nitude of the change in gene expression, and includes the classical over-representation

analysis (in terms of the proportion of DE genes in a pathway).
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In the impact analysis, an impact factor (IF) is computed as follows for each

pathway:

IF (P
i

) = log

✓
1

p

i

◆
+

P
g2Pi

|PF (g)|
|�E| ·N

de

(P
i

)
(3.3)

The first term is related to the classical probability related to the proportion

of DE/NDE genes in each pathway. This term captures the information provided

by the more traditional, and widely used, classical statistical approaches. We can

compute it with either an over-representation approach (e.g., z-test [20], contingency

tables [75, 77], etc.), a FCS approach (e.g., GSEA [72, 94]) or other more recent

approaches [11, 84, 100]. The p

i

value corresponds to the probability of obtaining a

proportion of DE/NDE genes in a pathway higher than what expected by chance ,

when the null hypothesis is true. In the original work presenting ht impact analysis,

the authors used Fisher’s exact test [26, 97]. This approach computes a probability

p

i

of observing a number of DE genes , N
de

or greater, given a set of M genes tested

to be used as a reference, and a total of N DE genes, just by chance.

The topology of each pathway is captured by the sum of perturbation factors

(PF ) in Eq. 3.3. The value of this sum depends on i) the specific genes that are

di↵erentially expressed (in terms of the magnitude of the expression change), ii) the

position of each gene in the pathway, and iii) the interactions described by the pathway

(i.e., its topology), in terms of e�ciency of signal propagation and type of interaction.

The denominator is a “pathway normalization factor” that takes into account the

number of DE genes in the pathway and the average di↵erential gene expression over

the pathway.

By summing up the gene perturbation factors (PF) for all genes on a pathway,

this term represents an aggregate measure for the entire pathway from the perspective
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of signal propagation through the pathway. For each gene g, the perturbation factor

represents the e↵ect that genes upstream of g exercise on it, through the interactions

described by the pathway, and it can be calculated as follows:

PF (g) = �E(g) +
X

u2USg

�

ug

· PF (u)

N

ds

(u)
(3.4)

In this expression, the first term represents the observed magnitude of the e↵ect

of the phenotype on the gene. The term �E(g) represents the measured expression

change of gene g. One among many methods available for determining di↵erential

activity in phenotype comparison experiments can be used to obtain this value [16,

25, 82, 109]. A common choice, when analyzing a phenotype comparison experiment,

is to average the expression levels in each phenotype, and provide the log-transformed

ratio of the averages. We refer to this as the log-fold change or more simply just fold

change. The second term consists in the sum of the perturbation factors of all the

genes u that a↵ect gene g, and it represents the e↵ect of the part of the pathway that

it is upstream of g. This term is normalized by the number of downstream genes of

each such gene N
ds

(u), so that if a particular gene u has many downstream genes, its

e↵ect is diluted. Lastly, the upstream e↵ect is weighted by a factor �
ug

, which reflects

the e�ciency of the perturbation propagation. These values have to be determined

before the analysis, either through prior knowledge or directly from the data. Lastly,

the e↵ect on the gene due to the genes that are upstream of it is captured by the

term US

g

.

The null hypothesis assumes that the list of DE genes only contains random

genes. If the null hypothesis is true, the impact factor depends only on the number of

DE genes found in the given pathway. As the size of the pathway increases, therefore,

the impact factor grows accordingly. This is the reason why the second term of the
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Figure 3.1: KEGG representation of Focal Adhesion. The red nodes represent di↵er-
entially expressed genes, while the red arrow represents an example of the propagation
of the perturbation that generates from the DE genes. The experiment analyzed the
di↵erences between lung cancer samples and normal samples.

impact factor is normalized by the number of DE genes that fall on the pathway.

In essence, the PFs are calculated in a manner that implies the propagation of the

perturbation on the pathway, following the interactions described by it (see Fig. 3.1

showing the propagation of the perturbations on a sample pathway).

The perturbation factors are computed in order to satisfy a steady state of

the system described by all the equations used to compute the perturbation factors

for all genes in each pathway. Although this could create problems with non-solvable

systems (non-invertible matrices) this can easily be solved by computing pseudo-

inverse matrices of such systems.

This method, however, still requires the a priori selection of DE genes based

on p-value, in order to compute an enrichment p-value. Analyzing only the list of DE

genes might represents an artificial truncation of the information available, as well

as an unnecessary reliance on an upstream gene selection method, which may be far
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from optimal. It has been shown that the choice of threshold in selecting important

genes highly a↵ects any analysis based on a list of DE genes [76]. Also, the statistical

model used to test whether a particular gene is DE as well as the the method used

for multiple correction comparison can further influence the set of DE genes obtained

for a given patient. Furthermore, individual gene expression levels are intrinsically

very noisy and subject to fluctuations, so testing the same person at a later date may

yield a rather di↵erent set of DE genes.

In order to address these issues, a number of pathway analysis methods have

been developed that do not rely on the selection of DE genes, using the entire set of

measured genes to perform the analysis.

One of these methods is the latest implementation of the impact analysis [105],

described in Section 3.1.2. In this approach, the model described by equation 3.4

above is modified as follows:

PF (g) = ↵

g

·�E(g) +
X

u2USg

�

ug

· PF (u)

N

ds

(u)
(3.5)

This model considers all genes with their measured expression change �E(g)

(log ratio with respect to the mean of the controls) but weights them with a factor

↵

g

. Two alternatives for these weights include:

↵

g

= � log
p

g

p

max

and ↵

g

= 1� p

g

p

max

(3.6)

This approach still uses gene p-values but these are not used to reject or not reject a

hypothesis but rather as ranking information, so we can a↵ord to be more lenient with

various assumptions. If we consider a situation in which the least and most significant

p-values after the correction for multiple comparisons are p

max

= 1 and p

min

= 10�3

for instance, the expression to the left in equation 3.6 will provide weights ↵
g

in the



15

range from zero (p = p

max

) to 3 (for p = 10�3 and log in base 10), while the expression

to the right will yield weights in the range from zero to 0.999. In [105] we show that

a meaningful pathway analysis can indeed be done without first selecting DE genes.

3.2 Sample level pathway analysis

Existing pathway analysis methods where designed to study changes between con-

ditions and are not able to identify significant pathways at the sample/patient

level. Usually, the measured expression changes are used in a summarized way, in

the form of a list of DE genes between two groups of samples. Even though such

approaches are useful in discovering the general mechanism of a disease, the specific

response of a patient can be significantly di↵erent. By grouping together all disease

samples, the existing methods are not sensitive to this specific response. Moreover,

these methods assume that the groups of samples are homogeneous (i.e.,

all the samples in a group share the same characteristics). As discussed above, this

is a gross oversimplification of the clinical reality.

In PlDis, we identify pathways signatures, rather than gene signatures. The

classical hunt for gene signatures yielded partial success. On the one hand, the suc-

cess of therapies targeted at specific genes such as HER2 shows that sub-typing the

disease at the molecular level is the right strategy. On the other hand, the fact that

within currently used disease subtypes the response to therapy varies so greatly be-

tween individuals shows that our current molecular classifications are not su�ciently

accurate. The logical step forward is to perform such molecular sub-typing of disease

and patient groups at a system level, using pathways, rather than at individual gene

level.
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3.2.1 Approach

The classical approach used to analyze the results of a high-throughput experiment

such as DNA microarrays or RNA-seq starts with a matrix of genes and samples.

In this matrix, each row corresponds to a gene and each column corresponds to a

sample. Samples are usually belonging to two di↵erent phenotypes. An example of

such matrix can be seen in Table 3.2.

Control samples Disease samples
sample 1 sample 2 · · · sample n sample n+1 sample n+2 · · · sample n+m

gene 1 exp1,1 exp1,2 · · · exp1,n exp1,n+1 exp1,n+2 · · · exp1,n+m

...
...

...
. . .

...
...

. . .
...

...
gene k exp

k,1 exp

k,2 · · · exp

k,n

exp

k,n+1 exp

k,n+2 · · · exp

k,n+m

Table 3.2: Gene-sample matrix for a typical high-throughput data based experiment.
In this matrix each row corresponds to a gene, and each column to a sample. Two
groups of samples are compared, coming from two di↵erent phenotypes (e.g. disease
versus control, treated versus untreated, etc). The cell i, j contains the expression
value for gene i measured in sample j, in this matrix represented by the value exp

i,j

.

In many cases, the goal of the analysis includes a comparison between two

phenotypes such as disease and appropriately matched controls (see Fig. 3.2). Hence,

the columns of the matrix are divided into two subsets, corresponding to the two

phenotypes. The classical approach considers each gene (row) at a time, and uses a

classical statistical testing technique to compare the behavior of this gene between

the two groups. Such technique can range from the simplest (e.g. two-sample t-

test) to the more sophisticated (moderated t-tests [91], linear models [69], general

estimating equations (GEE)[65], etc.). The research hypothesis is that the gene has

significantly di↵erent distributions in the two phenotypes, the null hypothesis is that

the two distribution do not di↵er significantly. The approach calculates p-values for

each gene, then corrects for multiple comparisons with an appropriate method, such

as FDR [5, 6]. Genes with a p-value smaller than a certain threshold are considered
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Figure 3.2: The classical approach for obtaining a molecular signature of a phenotype.
A classical statistical test (e.g. two-sample t-test, linear models, GEE) is performed
for each gene. After a correction for multiple comparisons, the genes with significant
p-values are considered di↵erentially expressed (DE) and constitute a gene signature.

as di↵erentially expressed (DE) between the two groups in a statistically meaning-

ful way. This set of DE genes can be seen as the gene signature of the phenotype.

Subsequently, pathway analysis approaches such as the impact analysis [23, 96] use

these sets of DE genes to identify the pathways that are significantly impacted in the

given condition. Albeit this approach is statistically sound, solid, and widely used, it

does not provide any information regarding individual samples. The goal of sample

level pathway analysis is to identify the pathways that are significantly di↵erent

in an individual patient with respect to the control individuals. In order

to achieve this, we use two approaches. Both approaches aim to identify significant

pathways in a given patient. The first approach still uses the concept of DE genes,

while the second approach departs from this concept and use the expression level of

all genes.

In the first approach, we start with the same gene-sample matrix. However,

now for every gene (row), we consider the distribution of the values in the controls,

and we compare the value of that gene for each disease sample with the distribution

of controls. The null hypothesis is that the patient value comes from the same distri-

bution of the controls, while the research hypothesis is that this value does not come
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Figure 3.3: The proposed approach to obtain a sample pathway profile. A statistic
such as e↵ect size (e.g. Z-score or measured value divided by mean of controls) is
calculated for each gene in a given sample. A significance test is performed on the
individual e↵ect sizes, yielding a set of genes that are DE in each sample with respect
to the distribution of that gene in the control population. These sample-specific
DE genes are then submitted to pathway analysis (e.g. impact analysis [23]) which
identifies the set of significantly impacted pathways that will form the pathway profile
of the sample.

from same distribution (see Fig. 3.3). In PLSI we used the simple Z distribution, but

an arbitrary level of sophistication can be used. This provides a p-value for each gene

in the given disease sample. After the correction for multiple comparison, we will

have a set of genes in this specific sample whose expression levels are unlikely to come

from the distribution of the values of the same genes in the control group. These will

be used as DE genes in the pathway analysis, which in turn will provide the set of

pathways that are significantly impacted in the given sample.

The approach above may not work well if the number of samples in the control

group is not large enough, and/or if the distribution of the expression values in the

control group is not normal. Therefore, we will use the version of the approach

described in Equation 3.5, which does not require selection of DE genes, without

using p-value for ranking genes.

Independently from the approach used, the result is a pathway-sample matrix

of the format shown in Table 3.3.
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Control samples Disease samples
sample 1 sample 2 · · · sample n sample n+1 sample n+2 · · · sample n+m

pathway 1 slpa1,1 slpa1,2 · · · slpa1,n slpa1,n+1 slpa1,n+2 · · · slpa1,n+m

...
...

...
. . .

...
...

. . .
...

...
pathway k slpa

k,1 slpa

k,2 · · · slpa

k,n

slpa

k,n+1 slpa

k,n+2 · · · slpa

k,n+m

Table 3.3: Pathway-sample matrix resulting from the sample level pathway analysis.
In this matrix each row corresponds to a pathway, and each column to a sample. The
cell i, j contains the value for the activity of pathway i in the particular phenomenon
analyzed, in the specific sample j, henceforth referred to as Sample Level Pathway
Activity (slpa), in this matrix represented by the value slpa

i,j

.

The key di↵erences between Table 3.3 and Table 3.2 are: i) now the rows

represent pathways, and the values represent the sample level pathway activity, i.e.

the activity of a specific pathway in a specific sample, and ii) the control samples

are not in the matrix anymore, as they have been used to compute di↵erential gene

expression of each disease sample.

This matrix is used for the detection of subtypes instead of the gene-sample

matrix. Our approach is to detect both the subtypes and the pathways that are

associated with the subtype, which represent the mechanisms of action of a specific

subtype. This is achieved by using state of the art methods for partitioning the data,

as well as extracting the meaningful features (i.e. pathways).
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CHAPTER 4: PATHWAY LEVEL DISEASE SUBTYPING

4.1 PLSI

In this section we will assume that two phenotypes, condition and control, are

compared. Two sample dataset obtained from the Gene Expression Omnibus (GEO)

are provided with PLSI. The first data set contains the genome-wide expression levels

on 156 samples, divided in 91 lung cancer samples and 65 adjacent normal lung tissue

sample (GEO identifier GSE19188 [45]). The second data set investigates the e↵ects

of cigarette smoking and its association with lung adenocarcinoma. The samples

are grouped by metadata factors including smoking (smoker, former smoker, never

smoked), sex, and stage (I-IV) of the tumor (GEO identifier GSE10072 [60]). The

starting point of the PLSI pipeline is the matrix of gene measurements described in

Table 3.2. A sample dataset can be loaded after loading the PLSI package, with the

commands (in this case for the GSE19188 data set):

> ## package loading

> library(PLSI)

> data(gse19188)

The gse19188 data object contains two objects: gse19188.exprData contain-

ing the expression levels, and gse19188.design containing the design of the experi-

ment. Part of the matrix containing the expression levels is shown in Table 4.4

The design of this example of the first six samples is shown in Table 4.5

From this point, the user can select one of two options for computing the

e↵ect size at sample level. The function sleffect can be used for this purpose. The

parameter sltype determines the type of sample level e↵ect returned by the function.

At this moment two options are possible for the value of this parameter. The first
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GSM475656 GSM475657 GSM475658 GSM475659 GSM475660

1 0.1885843 -0.10727474 -0.3684598 -0.12642158 -0.02708948

10 0.1180333 0.22886640 -0.1087965 0.19290213 -0.06819548

100 -0.4145817 -0.61328920 -0.4421180 -0.03193571 -0.98947728

1000 2.6670965 -0.78480325 -0.3589639 -0.59348202 -0.45769893

10000 0.4970104 -0.00436277 0.3021071 0.21718295 -0.08975685

Table 4.4: The expression levels of the first five genes of the first five samples in the
dataset GSE19188 provided with the PLSI package.

tumor healthy
GSM475656 1 0
GSM475657 0 1
GSM475658 0 1
GSM475659 0 1
GSM475660 0 1
GSM475661 1 0

Table 4.5: Design for the first 6 samples of the GSE19188 dataset provided with the
PLSI package.

is the z-score (argument z), defined as the expression level of each condition sample,

divided by the mean of the control samples, and divided by the standard deviation of

control samples. The second option for sample level e↵ect is the fold change (argument

fc), defined as the expression level of each condition sample divided by mean of the

control samples. The default action is to return the log2 transformation of this value.

> gse19188sleffect <- sleffect(eData = gse19188.exprData,

+ expDesign = gse19188.design,

+ refLabel = "healthy", sltype = 'z')

When the sltype parameter is set as ’z’ the sleffect function returns both

z-score and p-value of the expression of each sample. Part of the complete matrix is

shown in Table 4.6. Only the z-scores and the p-values of the first three genes in the

first two samples are shown in the table.
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GSM475656 GSM475661 GSM475656.P.Value GSM475661.P.Value
hsa:1 1.38 0.43 0.17 0.67
hsa:10 0.55 -0.79 0.58 0.43
hsa:100 -0.19 1.28 0.85 0.20

Table 4.6: Results of the sleffect function when the sltype parameter is set as ’z’,
for the first three genes of the first two samples.

Once the sample level e↵ects are computed at gene level, the user needs to

choose the type of analysis to perform. PLSI provides functions for performing two

types of analysis. The first, basic analysis is the over-representation analysis (ORA)

through Fisher’s exact test, as described in Section 3.1.1. The function to perform

ORA is slFisher. This kind of analysis requires a selection of DE genes, which, in

slFisher, is made through the parameter de.threshold.

> oraRes <- slFisher(gse19188sleffect,

+ contrasts = colnames(gse19188sleffect),

+ de.threshold = 0.05)

An example of the sample level pathway activity matrix coming from the

slfisher function is shown in Table 4.7.

GSM475656 GSM475661 GSM475662 GSM475664 GSM475668
path:hsa03008 0.15 0.00 0.01 0.15 0.98
path:hsa03013 0.75 0.00 0.00 0.01 0.91
path:hsa03015 0.27 0.02 0.16 0.28 0.39
path:hsa03018 0.93 0.08 0.05 0.32 0.36

Table 4.7: Results of the slFisher function. Only the p-value is reported.

The second type of pathway analysis is the impact analysis described in Sec-

tion 3.1.2, through the function slpe (Sample Level Pathway Express). The following

example shows the use of the impact analysis without selection of DE genes.
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> peRes <- slpe(effectSize <- gse19188sleffect,

+ contrasts <- colnames(gse19188sleffect),

+ de.threshold = NULL,

+ nboot=2000)

The sample level results of the pe function is a list where each element contains

a number of computed statistics for each sample. These statistics are computed, in

each element of the list, for all the pathways in KEGG. Therefore, the function

peTables is needed to extract the desired computed statistic from the list. The

following command extracts the value of normalized total perturbation.

> peTRes <- peTables(peRes, out="totalPertNorm")

After computing the sample level pathway information, the user can proceed

in the identification of the subtypes. PLSI provides a number of accessory functions

to perform subtype discovery. The function slPCAT performs PCA transformation of

the results matrix, scaling it, and returning the number of PCs that explain a certain

percentage of variance, specified by the parameter varThr.

> pcaORA <- slPCAT(oraRes, varThr=0.95)

The format of the pcaORA matrix is the same as the original sample level

matrix.

PC1 PC2 PC3 PC4 PC5

GSM475656 8.4342980 -5.1317496 -5.280836 1.4784779 -2.958403

GSM475661 5.6300122 9.4074006 2.488379 -1.5055306 -2.514222

GSM475662 -0.8635042 5.0071116 1.298642 0.4525431 2.915951

GSM475664 -2.3315332 2.6352725 2.576171 5.1484617 1.980153

GSM475668 1.9009694 0.7809436 1.523771 -2.8403260 5.922033
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At this point the user has the choice to apply a number of techniques to the

data in order to identify the subtypes and the mechanisms distinguishing subtypes.

PLSI provides wrapper functions for this purpose.

The first wrapper function is the ccWrapper function. This function applies

the CrossClustering method [99] to the data. CC is a novel clustering method that

has two advantages with respect to traditional clustering methods: first, CC is able

to automatically identify the number of clusters in the data. Second, CC is able to

identify outliers in the data, i.e. elements that do not fit properly in any cluster.

> clres <- ccWrapper(pcaORA, kw=c(2,10), kcmax=50)

The result of ccWrapper is a list containing the list of clusters, and the cluster

memberships for each elements as a numeric vector indicating which cluster each

element belongs to. Clusters are given an index starting from 0, where the cluster

with index 0 represents the outliers and the clusters with index greater than zero

represent proper clusters.

GSM475656 GSM475661 GSM475662 GSM475664 GSM475668

2 2 2 0 2

Following is an example of plotting the results of the ccWrapper function.

Gray elements represent outliers. The plotcres function allows the user to interact

with the graph by clicking the figure and dragging it, rotating it around. A snapshot

of the figure is shown in Figure 4.1.

> plotcres(pcaORA, dimensions = 3,

+ memberships= clres$plotcols)

The second clustering method included in PLSI is k-means clustering. How-

ever, k-means presents two important issues. First, the number of clusters has to be



25

Figure 4.1: Plot of the first three principal components of the sample level pathway
profiles of the dataset GSE19188. The data have been clustered with the CrossClus-
tering method. The method indicated two clusters. Blue dots represent elements
belonging to the first cluster, red dots represent elements belonging to the second
cluster, while grey dots represent samples that were identified as outliers.
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provided by the user. This is an issue since, in applications like disease subtyping,

the number of subtypes is usually unknown. Second, k-means is non deterministic

and the results depend on the initial choice of centers. In order to solve these two

issues PLSI implements the suggestions found in [67]. The approach is as follows.

First, a certain range of K (the number of clusters) is chosen by the user. The idea

is to select, in that range, the value of K that minimizes an objective function. One

possible option for such function could be the value of K that minimizes the residual

sum of square (RSS). Unfortunately, the RSS is monotonically decreasing in K,

and it reaches its minimum when K = N , where N is the number of elements to

be clustered, i.e. when each element is center and only element of its own cluster.

A possible solution to this would be to find the point where the decreasing curve of

RSS presents an elbow, i.e. when the successive values of RSS decreases less. PLSI

provides the function obfElbow for detecting the optimum K based on the value of

K at the elbow. Another possible option, which is the one implemented in PLSI, is to

create another objective function introducing a penalty for each new cluster. In [67],

this penalty represents the complexity of the model, and in the context of clustering it

is reasonable to set it as a function of the number of clusters. The Akaike Information

Criterion (AIC) [1] can be used to define an objective function, as follows:

K = argmin
K

(RSS

min

(K) + 2MK) (4.1)

In Equation 4.1, M represents the number of features available.

The second issue with k-means is the non-deterministic component of the al-

gorithm. In PLSI this is solved by performing k-means many times and choosing the

configuration of the centers that minimizes the total RSS, with the function kmean-
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Figure 4.2: AIC values in presence of high RSS. When clustering the GSE19188
dataset the average value for RSS is 10, 500 when K ranges from 1 to 10, whereas
the second component of the AIC ranges from 250 to 1250. In this situation the AIC
behaves exactly like the RSS.

sAIC. If the AIC is used, the AIC value is computed for that center configuration.

One issue with the formulation of the AIC in Equation 4.1 is that the RSS may

be dominating the function. This is indeed what happens in the GSE19188 dataset.

The average RSS is approximatively 10, 500, while 2MK ranges from 250 to 1250.

This kind of situation makes the AIC behave exactly like the objective function that

includes the RSS only, as it is shown in Figure 4.2

Clearly, increasing the range of K, for example up to 50, could fix this issue.

This is indeed the case in this example, where a value of K = 30 shows a change
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Figure 4.3: Scaled AIC objective function. The two components of the AIC are scaled
and shifted so their minimum value is equal to 0, making them comparable.

in the direction of the AIC. However, such a high number of clusters might result in

clusters that are not meaningful from the biological perspective.

Hence, PLSI allows for scaling of the two components of the objective function.

The parameter scaledAIC controls this functionality. If set to TRUE the RSS and the

values 2MK are first scaled, then shifted so that the minimum value of each one is

0, and then summed to obtain the vector of AICs. This scaled AIC results in a curve

that indicates an optimum at K = 4 clusters, as shown in Figure 4.3.
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Hierarchical clustering with p-values. The third subtype discovery method pro-

vided by PLSI is an application of hierarchical clustering. As hierarchical clustering

by itself does not provide any indication about the number of clusters, for each clus-

ter a p-value is computed. Such p-value represents the confidence on how much the

cluster is supported by the data, i.e. high p-values represent clusters that are not

likely to be obtained by chance. The function pvclust[95] performs the hierarchical

clustering, and computes two p-values: the AU (Approximately Unbiased) and BP

(Bootstrap Probability). The BP p-value of a cluster is obtained by bootstrapping

the data [29] and counting how many times the cluster appears in the bootstrap it-

erations. The AU p-value is based on multiscale bootstrap resampling [89], where

multiple sample sizes are chosen for the bootstrap samples, in order to eliminate bias

in the p-values as discussed in [30] and [31].

Parameters of this function are the distance to be used, the clustering method,

and the number of permutations to be performed in the bootstrap procedure.

> pvclustres <- pvclust(t(pcaORA), method.dist='euclidean',

+ method.hclust="ward", nboot=1000)

Results can be plotted and clusters with a p-value higher than a certain thresh-

old can be highlighted with the function pvrect, as shown in Figure 4.4. In this figure

we chose to highlight the AU p-values, using the following code.

> plot(pvclustres)

> pvrect(pvclustres, alpha=0.8, pv='au')

Finally, the clusters can be retrieved by calling the pvpick function. Only the

first two clusters are shown.
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Figure 4.4: Results of the pvclust method. Red rectangles highlight the clusters with
a p-value higher than 0.8. The p-value used here for the highlight is the AU p-value.
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> sigClusts <- pvpick(pvclustres,alpha=0.8,pv="au")$clusters

> sigClusts[1:2]

[[1]]

[1] "GSM475692" "GSM475737" "GSM475765" "GSM475787" "GSM475792" "GSM475793"

[7] "GSM475805"

[[2]]

[1] "GSM475668" "GSM475674" "GSM475730" "GSM475758" "GSM475801" "GSM475804"

[7] "GSM475808"

4.1.1 Flexible procedures for clustering

The last methods for the identification of the disease subtypes provided by PLSI are

the methods described in [43]. These methods allow for the assessment of cluster

stability, allowing an accurate determination of the number of subtypes. Once the

number is determined, the subtypes are determined by either k-means or hierarchical

clustering.

PLSI provides two functions for assessing clustering stability: fpcJitter and

fpcBoot. The concept of the functions is the following: performing clustering on the

data assuming a certain number k of clusters, obtaining a partitioning of the original

data P

orig

. Then, the data is transformed. in fpcJitter noise is added to the data,

while in fpcBoot the data is resampled. Clustering is performed again, obtaining a

partitioning P

modifieddata

. A similarity is computed between P

orig

and P

modifieddata

by

comparing the clusters belonging to each of the partitionings: the Jaccard similar-

ity [50] is computed between each cluster in P

orig

and each cluster in P

modifieddata

,

and then averaged over the most similar unique k pairs. This average represents the
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similarity between two partitionings. This process is repeated a number of times,

and then the similarity values are averaged again. This last average represents the

stability of the initial partitioning. The idea is that if the data can be separated into

k clusters, then the clusters obtained will be robust to slight changes to the data,

whereas for di↵erent values the partitionings will not be stable. For fpcJitter, the

noise is estimated from the data.

Each of the functions requires a range of values for k, and the stability is

assessed for each value. The functions allow to perform parallel evaluation of the sta-

bility of the di↵erent values of k, determined by the value of the parallel parameter.

Two di↵erent clustering methods are provided, k-means and hierarchical clustering.

> cdata=fpcJitter(pcaORA, nboot=100, kmrange=2:10, parallel=TRUE)

The two functions return the most stable cluster and the averages of the jaccard

similarities obtained for the various values of k in the range provided by the parameter

kmrange.

The plotcres function can be used to visualize the results. The dimensions

parameter lets the user chose if the resulting plot should be two-dimensional or three-

dimensional. The three-dimensional plot can be rotated with mouse input.

> plotcres(pcaORA, dimensions = 3,

+ memberships = cdata$clusterResult$partition)

Plotting the values of the Jaccard averages gives an idea of the behavior of the

stability over di↵erent values of k. An example can be seen in Figure 4.5.

> plot(1:9, fpcresult$�jaccard averages�, type='o',

+ xlab='number of clusters', ylab = 'stability', col='red')
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Figure 4.5: Stability of the clusters when the number of clusters varies. The stability
for a specific clustering with k clusters is computed as average Jaccard similarity
between the clustering of the original data and the clusterings of data with added
noise.
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4.1.2 Pathway level signature of subtypes

All the methods described above are able to find disease subtypes based on sample

level pathway information, but do not give any information about the characteristics of

the subtype. In order to fill this gap we need to identify which pathways are responsible

for the observed stratification of samples. PLSI provides wrapper methods for feature

selection as described by [58], using a naive Bayes classifier and a recursive feature

elimination based on random forests [10] as implemented in the Caret R package [37].

Wrapper methods for feature selection

Feature selection based on wrapper methods follows a simple concept: including the

classification problem at hand in the selection of important features. This is opposed

to filter approaches, which instead select features independently of the classification

problem. In gene expression analysis, for example, it is common to select genes based

on the result of statistical tests (e.g. t-test, ANOVA, moderated t-test). Wrapper

methods, instead, try to classify the data for all the possible subsets of the features,

and selecting the subset with the best performance. Our problem is slightly di↵erent

from a classification problem. We start with an unsupervised approach (the clustering

methods described above), where we do not know the subtypes in the data, and we

try to extract the features after we determine the subtypes. Therefore, we need to

choose a classifier to use with wrapper methods. In PLSI we provide the Naive Bayes

classifier and recursive feature elimination based on random forests.

Naive Bayes classifier The function featureWrapperNB implements the wrapper

method with naive Bayes. We use it here with the results obtained with the Cross-

Clustering method (in the object clres). The first action that must be performed is
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dropping the outliers, since CrossClustering returns that information. As described

in the previous sections, the cluster membership in the CrossClustering results is in

the clusterMemberships field. We need to eliminate the outliers since they represent

noise elements. Then, the cluster information is extracted and passed to the fea-

tureWrapper function. Additionally, the split parameter can be set in the function,

defining the fraction of data that will be considered training. The default value for

this parameter splits the data as follows:
2

3
of the data goes into the training set,

while
1

3
goes into the test set.

> outlFilter <- clres$clusterMemberships != 0

> wrapData <- oraRes[outlFilter, ]

> meaningfulClusters <- clres$clusterMemberships[outlFilter]

> selectedFeatures <- featureWrapperNB(oraRes,

+ clusterResult,

+ split = 2/3,

+ method="best")

The featureWrapperNB function provides a number of search alternatives:

backward search, forward search, and best first search. Forward search and backward

search are two greedy search methodologies. The first starts from an empty set of

features, evaluates all of them, then chooses the best one. Then, it evaluates all the

combination between the chosen one and one of the other features. Again, the best

pair is chosen, and the algorithm stops when no addition of new features improves the

evaluation. The second strategy starts from all the features, and removes one feature

at the time, evaluating the resulting set every time, and stopping when removing

one feature does not improve the evaluation result. The best first search algorithm

is similar to forward search, except that it does not stop at the first occurrence
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of new feature that does not improve the evaluation, but it backtracks and tries a

new solution from the ones already evaluated. In PLSI this algorithm backtracks a

maximum of N/10 times, where N is the number of features.

Recursive feature elimination via random forests. The second approach for

feature selection with wrapper methods is the recursive feature elimination via random

forests procedure. The random forest procedure creates a number of decision trees,

each one with a subset of the original features. Such subsets of features are obtained by

bootstrapping the initial set of features. The set of decision trees is the random forest.

Given an input, each one of the trees in the random forest casts a vote about the class

of the input, and the majority of the votes decides the class. This approach has a

number of advantages over well known approaches for classification, in that it does not

overfit, it can be used for multi-class problems, and it is robust with regards to a large

amount of noise variables in the training set [46]. Another advantage of random forests

is that it assigns a measure of importance to each feature, proportional to the decrease

in classification accuracy when the values of such variable are permuted randomly.

The recursive feature elimination extension to random forests iteratively eliminates

a fraction of the features, by ordering them in order of this importance value, and

dropping the worst ones. In [18], the authors drop the 20% worst performing features.

In the context of feature selection, though, it is preferable to choose a certain size

of the features we want to keep, rather than the ones we want to eliminate. The

recursive feature elimination provided by the Caret package implements the following

algorithm: first, the training is performed, and the importance of all the features is

determined. Then, a number k of feature subset sizes is chosen. We will refer to the

i� th subset size as S
i

. These represent the sizes of the feature subsets that we want

to test. For example, we could be interested in testing the performance of subsets of
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size 10, 50, and 100. For each of these subsets, keep the S

i

most important features,

where the importance is assessed with random forest, and train again the classifier

with those features. The algorithm is incorporated in a 10-fold cross validation, i.e.

the train set itself is split in 10 parts, and the algorithm is applied to the subsets

obtained by removing, in turn, one of the folds.

In PLSI the function that performs this selection is featureWrapperRFE. The

parameters for random forests and recursive feature elimination are set as follows:

the number of features are sampled from the logarithmic function that goes from 2

to approximatively 20% of the total number of variables.

> selectedFeatures <- featureWrapperRFE(wrapData, meaningfulClusters)

In this case the number of features was 149 (the total number of pathways).

The object returned by the featureWrapperRFE contains the features ordered by

their importance, as well as the accuracy obtained with the various subsets.

> selectedFeaturesRFE

Recursive feature selection

Outer resampling method: Cross-Validated (10 fold, repeated 10 times)

Resampling performance over subset size:

Variables Accuracy Kappa AccuracySD KappaSD Selected

2 0.9563 0.9085 0.07240 0.15057

3 0.9670 0.9318 0.06035 0.12389

4 0.9660 0.9294 0.05790 0.12033
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7 0.9751 0.9480 0.05560 0.11614

12 0.9731 0.9439 0.05644 0.11771

20 0.9783 0.9545 0.05254 0.10986

149 0.9877 0.9756 0.03709 0.07375 *

The top 5 variables (out of 149):

path:hsa05150, path:hsa05416, path:hsa04650, path:hsa05332, path:hsa05140

In this case, although the best performance is obtained by using all the features,

selecting the top 7 features results in 97% accuracy, with a small standard deviation.

The results, in terms of accuracy, are shown in Figure 4.6.

4.1.3 Biclustering

So far the methods employed perform subtype discovery in one direction only. This

means that the subtypes found include all the pathways, and that the pathways that

discriminate subtypes are not specific for each subtype. In other words, once the

subtypes are identified, we need to apply a feature selection method to detect which

pathways discriminate among all the subtypes. But what happens if only a few

pathways are behaving similarly in a subset of patients, and another set of pathways

is behaving similarly in another subset of patients? This would represent a case in

which, for example, a subtype of lung cancer could involve some mechanisms in some

of the patients, but another subtype could involve completely di↵erent mechanisms

in other patients. One could in theory apply clustering twice, once on the sample

level and once on pathway level. This approach, however, is limited by the fact that,

in whichever direction we perform the clustering, all the features of that direction are

used at the same time. This could present issues related to some features being noise
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Figure 4.6: Accuracy of sets of 2, 3, 4, 7, 12, 20, and 149 features (pathways) on
the GSE19188 dataset. By using the 7 best features we reach an accuracy of 97.5%.
Increasing the number of features results in marginally better accuracy.
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in that specific direction. In the lung cancer example we could have a few pathways

being involved in some subtype, where the other pathways are noise, potentially

masking the e↵ect of the relevant pathways. Methods have been develop to deal

with similar situations at gene level. Biclustering is one of such techniques, first

developed by [15]. This method starts from the same gene expression-sample matrix

E described in Table 3.2. Then, the method searches for sub-matrices of E that

satisfy certain conditions on the within-submatrix variance. These sub-matrices are

the biclusters. In the context of pathways, a bicluster represents a subset of pathways

that are correlated under a subset of samples. Biclustering has been used in several

applications, from the analysis of microarray data, as shown in the review in [66],

to the identification of protein interactions [64]. Again, the same issues relative to

the use of gene information apply. Gene behavior is not constant over time, and

the snapshot-type measurements that are characteristics of microarray experiment

change unpredictably, making it di�cult to identify a phenomenon by looking at genes

alone. This is why in PLSI we use biclustering in a completely innovative way to find

biclusters of pathways and patients that share similar pathway perturbations. The

concept is the same as described in the previous sections: pathway measurements

are going to represent whole mechanisms and to be more stable than genes. In

PLSI we look for biclusters in the pathway impact-sample matrix obtained with the

sample level pathway analysis methods provided. The result is similar to the results

obtained in Section 4.1.2: a pathway signature containing the pathways that are

impacted coherently in a subtype. The di↵erence between this result and the previous

ones is that in this case pathway signatures are unique for each subtype, whereas in

the previous approaches we were only able to find a set of pathways that behaved

di↵erently among subtypes. An overview of this approach is shown in Figure 4.7. This

image shows the pathway impact-sample matrix, where cells of the matrix represent
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Figure 4.7: The proposed approach to identify subtypes of disease and subgroups
of patients: biclustering allows PLSI to find patients that are similar over only a
subgroup of pathways.

the impact of a specific pathway in a specific sample. On the bottom right of the

figure we can see the results of classical cluster analysis. If we cluster rows of the

matrix (pathways) we obtain similarly impacted pathways across all the patients,

disregarding the subtype information. Vice versa, if we cluster columns of the matrix

(disease samples) we obtain samples that behave similarly across all the pathways,

disregarding that pathways may behave di↵erently in di↵erent groups of samples.

The yellow and blue boxes represent biclusters, identifying groups of pathways that

behave similarly in a subset of samples.

In PLSI biclustering is performed by calling the function biclust from the

homonymous package. This function provides a number of biclustering methods:
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the [15] method, which searches for bicluster with variance lower than a predetermined

threshold, the Bimax algorithm [81], a divide-and-conquer approach for biclustering

that decomposes the starting matrix into three sub matrices based on their content,

and then processes them recursively, the Plaid Biclustering method [62, 102], which

models the expression level of a single gene in a single sample as a linear combination of

the e↵ects of a series of additive layers representing the various biclusters, the Xmotif

and Questmotif algorithms [73], which randomly choses samples as seeds and uses

an iterative approach to find biclusters (called motifs in the original work) agreeing

with the sample at least for a big enough proportion of the total samples, the Spectral

biclustering algorithm described in [57], which finds biclusters by using Singular Value

Decomposition of the input matrix, in conjunction with normalization of the data.

In our tests we obtained the best results by discretizing the input matrix

> bcmat <- discretize(oraRes, nof=100)

> ccres <- biclust(bcmat, method=BCCC(), alpha=1)

> ccres

An object of class Biclust

call:

biclust(x = bcmat, method = BCCC(), alpha = 1)

Number of Clusters found: 17

First 5 Cluster sizes:

BC 1 BC 2 BC 3 BC 4 BC 5

Number of Rows: 11 9 9 8 8
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Number of Columns: 10 5 4 6 4

The function simpleBC allows us to retrieve information about the samples-

pathways in a specific bicluster.

> simpleBC(bcmat, ccres, clusterNo=3)

$bcMat

path:hsa04020 path:hsa04060 path:hsa04080 path:hsa04740

GSM475664 1 1 1 1

GSM475713 4 1 1 1

GSM475715 4 4 1 1

GSM475722 4 1 1 1

GSM475728 2 1 1 1

GSM475744 4 1 1 1

GSM475753 2 1 1 1

GSM475787 2 1 1 1

GSM475789 8 7 4 2

$rows

[1] 4 30 31 35 38 46 50 73 75

$cols

[1] 9 10 14 70

This bicluster, for example, contains nine samples, out of which six belong to

the Squamous Cell Carcinoma (SCC) subtype (Fisher exact test p-value = 0.015).

The pathways belonging to this bicluster are Cytokine-cytokine receptor interaction,
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Calcium signaling pathway, Neuroactive ligand-receptor interaction, and the Olfactory

transduction pathway. The Cytokine-cytokine receptor interaction [86] and Calcium

signaling pathway [107] have been found to be altered in patients with esophageal

SCC, while the Olfactory transduction pathway has been found to be down-regulated

in a number of SCC cell lines [33]. The Neuroactive ligand-receptor interaction path-

way has been related to chromosomal alteration in patients with esophageal SCC [13].

Finally, a complete list of biclusters can be found with the bcList function.

This function returns a list of biclusters. Each element of the list contains two char-

acters vectors, samples and features describing the bicluster. Only the first three

biclusters are here reported.

> bl <- bcList(bcmat, ccres)

> bl[1:3]

$BiCluster_1

$BiCluster_1$samples

[1] "GSM475694" "GSM475706" "GSM475751" "GSM475759" "GSM475761" "GSM475762"

[7] "GSM475791" "GSM475794" "GSM475797" "GSM475803" "GSM475806"

$BiCluster_1$features

[1] "path:hsa04060" "path:hsa04062" "path:hsa04080" "path:hsa04620"

[5] "path:hsa04650" "path:hsa04672" "path:hsa04740" "path:hsa05145"

[9] "path:hsa05152" "path:hsa05164"

$BiCluster_2

$BiCluster_2$samples
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[1] "GSM475662" "GSM475670" "GSM475692" "GSM475698" "GSM475712" "GSM475756"

[7] "GSM475760" "GSM475779" "GSM475782"

$BiCluster_2$features

[1] "path:hsa04060" "path:hsa04080" "path:hsa04740" "path:hsa04742"

[5] "path:hsa05152"

$BiCluster_3

$BiCluster_3$samples

[1] "GSM475664" "GSM475713" "GSM475715" "GSM475722" "GSM475728" "GSM475744"

[7] "GSM475753" "GSM475787" "GSM475789"

$BiCluster_3$features

[1] "path:hsa04020" "path:hsa04060" "path:hsa04080" "path:hsa04740"
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

It is now well accepted that many diseases such as cancer are not a single, mono-

lithic disease, but rather a collection of distinct diseases that show common features.

Notable examples are breast cancer, which consists in at least four major subtypes

(luminal A, luminal B, HER2 positive, and basal-like), Acute Myeloid Leukemia,

Alzheimer, etc. Knowing exactly the subtype of a certain disease is crucial, since

treatments targeted for a specific subtype are more likely to address the mechanisms

of action of that subtype, and therefore more likely to succeed, and the identification

of patients that are a↵ected by a subtype makes it sure that the proper treatment is

administered to the right patient. Although our knowledge of disease subtypes im-

proved during the years, the approaches to discovery are still limited to the analysis

of gene expression profiles.

Here we describe an approach that goes beyond simple gene expression, and

performs sub-type discovery at pathway level, looking at mechanisms rather than sin-

gle genes. This approach consists in two steps. First, the sample level expression

profile is computed, describing how gene activity changes from sample to sample.

Then, a sample level pathway profile is computed by using pathway analysis ap-

proaches. Lastly, the discovery is performed on pathway profiles, therefore looking at

the behavior of complete mechanisms rather than single genes.
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[54] P. Khatri, S. Drăghici, G. C. Ostermeier, and S. A. Krawetz. Profiling gene

expression using Onto-Express. Genomics, 79(2):266–270, 2002.

[55] P. Khatri, S. Drăghici, A. L. Tarca, S. S. Hassan, and R. Romero. A system

biology approach for the steady-state analysis of gene signaling networks. In

CIARP’07 Proceedings of the Congress on pattern recognition 12th Iberoameri-

can conference on Progress in pattern recognition, image analysis and applica-

tions, 32–41, Valparaiso, Chile, 13-16 Nov. 2007. ACM.

[56] P. Khatri, M. Sirota, and A. J. Butte. Ten years of pathway analysis: cur-

rent approaches and outstanding challenges. PLoS Computational Biology,

8(2):e1002375, 2012.

[57] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of mi-

croarray data: coclustering genes and conditions. Genome research, 13(4):703–

716, 2003.

[58] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial

intelligence, 97(1):273–324, 1997.

[59] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel,

J. Lerner, J.-P. Brunet, A. Subramanian, K. N. Ross, et al. The connectivity

map: using gene-expression signatures to connect small molecules, genes, and

disease. science, 313(5795):1929–1935, 2006.



54

[60] M. T. Landi, T. Dracheva, M. Rotunno, J. D. Figueroa, H. Liu, A. Dasgupta,

F. E. Mann, J. Fukuoka, M. Hames, A. W. Bergen, et al. Gene expression

signature of cigarette smoking and its role in lung adenocarcinoma development

and survival. PloS one, 3(2):e1651, 2008.

[61] J. Lapointe, C. Li, J. P. Higgins, M. van de Rijn, E. Bair, K. Montgomery,

M. Ferrari, L. Egevad, W. Rayford, U. Bergerheim, P. Ekman, A. M. DeMarzo,

R. Tibshirani, D. Botstein, P. O. Brown, J. D. Brooks, and J. R. Pollack.

Gene expression profiling identifies clinically relevant subtypes of prostate can-

cer. Proceedings of the National Academy of Sciences of the United States of

America, 101(3):811–816, 2004.

[62] L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica

Sinica, 12(1):61–86, 2002.

[63] B. D. Lehmann, J. A. Bauer, X. Chen, M. E. Sanders, A. B. Chakravarthy,

Y. Shyr, and J. A. Pietenpol. Identification of human triple-negative breast

cancer subtypes and preclinical models for selection of targeted therapies. The

Journal of clinical investigation, 121(7):2750, 2011.

[64] J. Li, K. Sim, G. Liu, and L. Wong. Maximal quasi-bicliques with balanced

noise tolerance: Concepts and co-clustering applications. In Proc. SIAM Int.

Conf. on Data Mining SDM’08, 72–83, Apr. 2008.

[65] K.-Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear

models. Biometrika, 13–22, 1986.

[66] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data

analysis: a survey. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 1(1):24–45, 2004.

[67] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to information

retrieval, volume 1. Cambridge university press Cambridge, 2008.



55

[68] M. S. Massa, M. Chiogna, and C. Romualdi. Gene set analysis exploiting the

topology of a pathway. BMC Systems Biology, 4(1):121, 2010.

[69] P. McCullagh and J. A. Nelder. Generalized linear models, volume 37. CRC

press, 1989.

[70] J. Mieczkowski, K. Swiatek-Machado, and B. Kaminska. Identification of Path-

way Deregulation–Gene Expression Based Analysis of Consistent Signal Trans-

duction. PLoS ONE, 7(7):e41541, 2012.

[71] C. Mitrea, Z. Taghavi, B. Bokanizad, S. Hanoudi, R. Tagett, M. Donato,
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It is accepted that many complex diseases consist in collections of distinct ge-

netic diseases. Clinical advances in treatments are attributed to molecular treatments

aimed at specific genes resulting in greater e�cacy and fewer debilitating side e↵ects.

This proves that it is important to identify and appropriately treat each individual

disease subtype. Our current understanding of subtypes is limited: despite targeted

treatment advances, targeted therapies often fail for some patients. The main limita-

tion of current methods for subtype identification is that they focus on gene expres-

sion, and they are subject to its intrinsic noise. Signaling pathways describe biological

processes that are carried out by networks of genes interacting with each other. We

developed PLSI, a software that allows to identify the specific pathways impacted in

individual patients, subgroups of patients, or a given subtype of disease. The expected

impact includes a better understanding of disease and resistance to treatment.



62

AUTOBIOGRAPHICAL STATEMENT

Michele Donato was born in Carrara, Italy. He received a Master’s degree

in Computer Engineering at the University of Pisa in 2006. He joined Wayne State

University in the Winter of 2008 to pursue graduate studies in Computer Science, with

his advisor Sorin Draghici. His research interests include analysis and interpretation

of biological networks.


	Wayne State University
	1-1-2015
	Plsi: A Computational Software Pipeline For Pathway Level Disease Subtype Identification
	Michele Donato
	Recommended Citation


	Acknowledgements
	List of Tables
	List of Figures
	CHAPTER 1: BACKGROUND AND INTRODUCTION
	CHAPTER 2: DISEASE SUB-TYPING APPROACHES
	CHAPTER 3: PATHWAY ANALYSIS
	Pathway analysis
	Over-representation Analysis (ORA)
	Impact Analysis

	Sample level pathway analysis
	Approach


	CHAPTER 4: PATHWAY LEVEL DISEASE SUBTYPING
	PLSI
	Flexible procedures for clustering
	Pathway level signature of subtypes
	Biclustering


	CHAPTER 5: CONCLUSIONS AND FUTURE WORK
	REFERENCES
	ABSTRACT
	AUTOBIOGRAPHICAL STATEMENT

