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Chapter 1

Introduction

Most of the observables in our immediate environment such as color changes, evolution

of gas, and chemical transformation can be fully understood only by looking at the elemen-

tary steps that make up the whole process. These steps could represent a broad range of

successful reactive collisions or energy transfer collisions depending on the forces acting on

the participants of the reaction, and they often involve transient radicals or excited states.

For over a century, kinetic methods have been central to efforts to explain the complicated

chemistry in numerous bimolecular reactions. However, thermal rate methods are not in-

cisive enough to provide a concrete explanation of the individual encounters because they

measure the average of myriads of random collisions of atoms, molecules, radicals, or ions.

Notwithstanding, this averaging gave rise to many chemical insights and set the stage for

fundamental experiments geared towards detailing the dynamics of the reaction.

The field of reaction dynamics has become a solid platform in understanding the intimate

details of chemical reactions that are otherwise obscured when studied by conventional tech-

niques that average over thermal conditions and report only end-products. This field made a

revolutionary impact when in 1986; Herschbach [1], Lee [2], and Polanyi [3] shared the Nobel

Prize in Chemistry for their work concerning the dynamics of elementary chemical processes.

The dynamics of atom-diatom type reactions have been understood at the molecular level

through the collaborative efforts in theory, experiments, and computations. However, most

of the reactions ubiquitous in nature involve collisions of atoms or radicals with polyatomic
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molecules. Polyatomic molecules collectively present several experimental and theoretical

challenges that can deliver insights beyond what is learned from an atom-diatom systems.

Now, these pioneering efforts are being extended to systems beyond the atom + diatom

type reactions, to include now complex polyatomic systems, radical-radical reactions, tran-

sition metal reactions, and reactions involving electronically excited species. The practical

application covers many broadly important chemical territories such as combustion, marine,

terrestrial and atmospheric environments [4–7]. Reaction dynamics, in its purist sense, aims

to look at the individual collisions of atoms, molecules, radicals, or ions. These experiments

are performed by crossing two collimated molecular beams usually at 90◦, with the scattered

products probed by a variety of detection technique such as the universal mass-spectrometric

detection [8], H-atom Rydberg tagging [9, 10], resonance enhanced multiphoton ionization

(REMPI) [11], laser-induced fluorescence (LIF) spectroscopy [12], and ion imaging [13]. DC

slice or 3-D ion imaging provides the velocity flux contour map directly as the product of

the experiment [14, 15]. Furthermore, the reaction differential cross section and the product

translational energy distribution can be deduced directly from the image of the product to

elucidate the details of the reaction dynamics.

The crossed molecular beam approach is an ideal method that permits visualization of

the microscopic details of chemical reactions. The experiments involve, first, defining the

initial conditions of the reactants such as velocities, approach angle, and internal quantum

state (electronic, vibrational, and rotational) and then measuring the velocity and angular

distribution of the products. The product velocity distributions supply the necessary infor-

mation on how the total available reaction energy is partitioned into translation, rotation,

or internal excitation of the products. The product angular distributions serve as a pri-

mary diagnostic tool in understanding the details of the mechanism of the reaction. It also

contains information on the lifetime of the collision complex. The distinct form of product

angular distributions, I(θ), in the center-of-mass frame contains information on how the

reaction products scatter relative to the direction of approach of the reactants. Elementary
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reactions can be grouped into two main categories namely: direct reactions and complex-

forming reactions. For direct reactions I(θ) exhibits marked forward-backward asymmetry

with respect to the incoming reactants, suggesting rapid separation of the products (∼10−13

s or less). For lingering or complex-forming reactions, I(θ) has forward-backward symmetry,

indicating that an intermediate complex forms that survives long enough to execute at least

a few full rotations (∼5 × 10−12 or longer) [16]. Meticulous measurements of the final prod-

uct states provide insights into the many forces within and between reactants that influence

their interaction in the transition state region.

To provide an accurate model in predicting the behaviors of different systems towards

chemical reactions, it is essential to perform studies under single-collision conditions and

detect the products before they undergo secondary collisions. Two important reactions in

nature include: chlorine atom reactions with hydrocarbons, represented by reaction (1.1a),

and cyano (CN) radical reactions with polyatomic hydrocarbons, represented by reaction

(1.2a).

Cl + RH→ R· + HCl (v , J ) (1.1a)

CN + RH→ R· + HCN (1.2a)

These reactions offer several points of dynamical interest as well as challenges to the exper-

imentalists and theoreticians. For Cl + RH reactions, crossed molecular beam studies of

these systems allow systematic investigation of its dynamics with the possibility of investi-

gating the products of the reaction, see reaction (1.1a), using single photon ionization and

resonance enhanced multiphoton ionization (REMPI) techniques as a product probe for the

hydrocarbon radical and HCl (v, J) products, respectively. These are fast reactions affording

good signal-to-noise ratio in challenging scattering studies. The reaction energetics lie in the

intermediate regime, i. e., some are endoergic, others thermoneutral or exoergic, and with

modest barrier or no barrier at all. In addition, there are different abstraction sites and the

possibility to investigate the associated reactivity. Finally, the H abstraction process leads
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to the diatomic product HCl, which can be detected with quantum state specificity and good

sensitivity using REMPI techniques.

Extensive efforts have been dedicated to understanding the chemistry of Cl + methane

(and its isotopologues) reactions, as well as some small hydrocarbons. The photoloc tech-

nique is the most celebrated method in studying the nascent HCl (v, J) product of the

reaction. Experimental outcomes with theoretical confirmations showed a cold rotational-

state distribution in the nascent HCl/DCl (v, J) and is ascribed to a collinear C-H(D)-Cl

transition state. In fact, cold HCl rotational distributions have turned out to be a univer-

sal signature of Cl + alkanes reactions. In the case of Cl atom reactions with alcohol, the

measured nascent HCl(v, J) distribution was observed to have a larger degree of rotational

excitation than that of Cl + alkanes [11].

Dynamical investigations involving more complex systems such as polyatomic hydrocar-

bons are made more interesting, and more challenging, owing to the high dimensionality

and complexity of the potential energy surfaces of these systems [17]. Some of these issues

include molecular structure and stereochemistry, polarity, degree of unsaturation, confor-

mational isomerism, and competing reactive sites. This is the intriguing set of questions

investigated in the series of dynamical studies of Cl + RH reactions using crossed-beam

imaging methods. The results are compiled in this dissertation with emphasis on detecting

the hydrocarbon radical products generated from reactions (1.1a) and (1.2a) using single

photon ionization as a product probe.

This dissertation is structured as follows: Chapter 2 highlights the experimental tech-

niques used in the study. Here, the concepts of crossed molecular beam and ion imaging

techniques will be discussed. Chapter 3 shows the results of the experiments in the crossed-

beam reactions of atomic chlorine with the three isomers of pentane: n-pentane, isopentane,

and neopentane. These are interesting target molecules because of the different type of hy-

drogens subject to abstraction. Neopentane for example, has only primary H-atoms while

n-pentane and isopentane carry primary, secondary, and tertiary hydrogen atoms. Chapter
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4 reports the sensitive approach to studying abstraction of primary and secondary hydro-

gen atom using deuterated butane as the target system at relatively high collision energy.

Chapter 5 marks the first in the field to probe the dynamics of chlorine atom reactions

with monounsaturated hydrocarbons coupled with ab initio calculations in determining the

associated reaction enthalpies. Decades of kinetics investigations have been devoted to es-

tablish the mechanisms of these reactions. Alkenes, because of the presence of double bond,

are susceptible to several reaction pathways such as addition to the double bond, addition-

elimination, and direct abstraction. These competing pathways often change as a function

of temperature and pressure. A collision energy dependence studies were performed to a

different set of alkene molecules. Efforts in studying the reaction dynamics of ground state

chlorine atom with butanol isomers: n-butanol, sec-butanol, iso-butanol, and tert-butanol

are presented in Chapter 6. Butanol is now prominent among the prototype renewable

biofuels. Oxidation studies of a variety of butanol isomers were investigated under single

collision conditions using chlorine atom as the oxidizing agent to gain detailed insight into

the energetics and dynamics of these reactions.

In addition to Cl + RH reactions, the CN radical reactions are specifically prevalent in

atmospheric environment, on earth and in particular in planetary atmospheres. It is reactive

with saturated hydrocarbons but less so with methane and towards unsaturated hydrocar-

bons without barriers to reaction. Chapter 7 deals with experiments on H-atom abstraction

of CN radicals from alkanes. The reaction of CN with unsaturated hydrocarbons is one way

of producing long chain hydrocarbons and complex organic compounds with several compet-

ing pathways. In addition to addition and addition-elimination routes, hydrogen abstraction

to produce HCN and resonantly-stabilized allyl radical is also possible for larger alkenes.

However, this channel has not been widely examined in kinetics studies. With improved

experimental sensitivity, the associated dynamics of CN reactions with 1-pentene is reported

in Chapter 8. Translational energy release and angular distributions reveal details of the

reactions that were not observed previously.
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Chapter 2

Methods

2.1 Ion imaging

Ion imaging was developed by Chandler and Houston in 1987 to investigate the pho-

todissociation dynamics of methyl iodide, CH3I [18]. This pioneering work on imaging in-

volves photolysis of CH3I molecules at 266 nm wavelength to generate CH3 radicals and I

atoms. The CH3 products are ionized by (2 + 1) resonance enhanced multiphoton ionization

(REMPI) methods and the recoiling ions are accelerated in a Wiley-McLaren [19] time-of-

flight mass spectrometer and projected onto an imaging detector. The apparatus consists of

a repeller electrode, grid, ion shutter, and a microchannel plate (MCP) coupled to a phos-

phor screen detector. In general principle, ion imaging uses a photolysis laser to effect bond

fission and a probe laser to ionize the neutral products following a photodissociation event

after which the three-dimensional (3D) ion cloud is projected onto a two-dimensional (2D)

MCP detector coupled with a charge-coupled device (CCD) camera. To extract meaningful

chemical information from the 2D projected image, a tedious mathematical inversion method

such as the inverse Abel transformation is often employed to reconstruct the 3D distribution.

These snapshots measure simultaneously the product velocity distribution and angular dis-

tribution of the photofragment of interest. One major limitation of the technique, however,

was the poor resolution of the images obtained, which was limited by the dimensions of the

ionization region. The use of grids also perturbs the trajectories of the ions as they traverse
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through the grid wires. The details of ion-imaging are pictorially represented in Fig. 2.1.

Figure 2.1: Schematic diagram of a conventional photofragment ion imaging apparatus.
Adapted with permission from McDonnell et al, J . Mass Spectrom. 33: 415. John Wiley
and Sons. Copyright 1998.

This problem was circumvented by the introduction of velocity map imaging (VMI) by

Eppink and Parker [20]. The VMI technique works without the disadvantage of spatial blur-

ring of the images. This was achieved by the use of ion lenses in place of grids allowing

particles with the same velocity vector in the plane perpendicular to the flight axis to hit

the detector on the same point, irrespective of their point of origin. The replacement of

conventional grid electrodes with lens improved the energy resolution on the order of 1%

or better. However, the projection-reconstruction method remained. The inversion process

brings noise in the symmetry axis of the recovered image compromising experimental reso-

lution. The VMI method also requires the system to have cylindrical symmetry to recover

the 3D distribution of the 2D velocity projections. The latter poses limitations, particularly

in two-color experiments where the polarizations of the photolysis and probe lasers are de-

sired to be orthogonal. Such is a pre-requisite in studies involving vector correlations in the

angular momentum alignment and/or orientation in unimolecular dissociation events. It is

therefore desirable to develop a method that directly analyzes the 3D distribution of the
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Figure 2.2: DC slice imaging ion optics set-up used in the crossed molecular beam ion
imaging apparatus.

non-cylindrical image without the need for projection-reconstruction.

Further refinement of the imaging technique was achieved when the slice imaging strategy

was introduced. The idea is to stretch the ion cloud to several hundred of nanoseconds to

allow only the central slice of the ion cloud to be imaged directly, simply by using narrow

time gate at the detector. Direct current (DC) slice imaging [14] is one of the variants to the

VMI method developed by the Suits group to address the issues associated with the previous

methods while preserving all the inherent advantages of the conventional and velocity map

imaging. The use of low fields in the extraction region and additional two focusing lenses

adequately stretches the ion packet increasing the arrival width onto the detector. This

is especially important to allow the central slice of the ion cloud to be imaged directly

onto the MCP detector. The main advantage of DC slicing is the ability to decode the

total translational energy and angular distribution directly from the equatorial slice without
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utilizing inversion methods. In this method, a spread of ion cloud is obtained by using a very

low repeller voltage. The optimum focusing is achieved by maintaining the precise voltage

ratio applied to the repeller and extractor lenses, and an additional lens element. This

technique eliminates the use of grids or pulsed electric fields, which distort the ion cloud.

DC slicing has become the standard experimental tool employed in all the imaging machines

in the Suits lab both in unimolecular and bimolecular scattering experiments, and is widely

used by other groups around the world. It is in principle equivalent to the “3-D” imaging

approach developed independently by Kopin Liu, and published in the same issue of the

Review of Scientific Instruments [15]. The features of DC slice imaging are illustrated in

Figure 2.2.

2.2 Crossed molecular beams

Atomic and molecular beams are proven effective experimental probe in investigating

molecular structures and chemical reactivity in research areas beyond the mix and stir

methods [21]. Molecular beam is defined as the collection of molecules moving in the same

direction under a collisionless environment in an evacuated vessel. These are produced by

coexpanding, from a high-pressure region, a dilute mixture of a molecule seeded with a rare

gas such as helium through a small nozzle and collimated by a skimmer into a vacuum. As

the gas expands, the molecules are accelerated to many times their thermal velocity leading

to a supersonic beam of internally cold molecules, converting the enthalpy of the gas to bulk

translational energy [22]. The translational energy peak at higher energies and markedly nar-

rowed compared to the Maxwell-Boltzmann distribution, depicted in black curve, as shown

in Figure 2.3, for example in the case of ammonia seeded in xenon undergoing supersonic

expansion [23]. During expansion, molecular vibrations and rotations are cooled. Collisions

within the beam are therefore avoided that may otherwise distort the direction of motion,

kinetic energy, or internal state of the molecule [24]. The terminal velocity of ammonia

molecules will be similar to that of xenon.
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Figure 2.3: Schematic view of a supersonic expansion. Adapted with permission from van
de Meerakker et al., Nature Physics 4: 595. Macmillan Publishers Ltd. Copyright 2008.

One of the most appealing consequences of molecular beam methods in chemical dynamics

experiments is that it affords means for single collision studies. This enables measurement

of the product information before secondary collisions can occur [25]. For this reason, it is

imperative that the mean free path of the gas must be greater than the distance from the

collision region to the detector. The experiments presented here make use of a crossed-beam

imaging apparatus shown in Figure 2.4. The machine is partitioned into two source chambers

fixed at 90◦ and a main scattering chamber. The pressures are maintained at ∼10−7 Torr

(base) and ∼10−5 Torr (operational) by turbomolecular pumps under each source chamber

and in the main scattering chamber to provide efficient differential pumping conditions. The

atomic and molecular beams are isolated in separate source chambers. This condition allows

collisions in a localized region at specified collision energy. In addition, build up of pre-

reaction products prior to collision are avoided. The low background pressure, the absence

of collisions within the beam and prior to collision, and the long mean free path inside

vacuum chambers ensure that only single and well-defined collision events are observed.

The experiments presented here are characterized by two main stages: characterization
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Figure 2.4: Top view of the schematic diagram of a crossed molecular beam ion imaging
apparatus.

and optimization of molecular (atomic) beams and imaging the product of the reaction. The

fusion of crossed molecular beam, Fig. 2.4, with the sophisticated dc slice imaging technique,

Fig. 2.2, offers molecular snapshots to decode the underlying dynamics in several compli-

cated bimolecular reactions. The applicability of this method stands to help considerably

in enhancing our understanding of chemical reactions. The experimental details specific for

each investigation compiled here are discussed in each chapter.
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Chapter 3

Crossed-beam dc slice imaging of
chlorine atom reactions with pentane
isomers

3.1 Introduction

Crossed-beam studies of the dynamics of the gas-phase atom-diatom reaction have pro-

vided deep insight into elementary chemical reaction with systems such as H + H2 [26–29],

F + H2 [30–33], Cl + H2 [34–37], and O + H2 [38–40] serving as benchmarks that have

shaped our understanding. These are particularly important from a theoretical perspective

since for these reactions it is possible to construct complete and accurate ab initio poten-

tial energy surfaces [41, 42] as well as perform full quantum scattering calculations [43, 44].

Now, one key goal for dynamics studies is to extend these insights to polyatomic reactions.

Polyatomic systems possess different conformations, polarities, and structures that may alter

the course of reaction and thus, the dynamics [45]. The reaction may proceed via multiple

or competing pathways or through unusual dynamics. Reactions may occur at a central or

terminal location of the molecule, with varying energy and angular momentum release. As

the number of atoms and degrees of freedom in the reaction increase, the chemistry becomes

much more complicated and new issues and new insights may emerge.

The reaction of chlorine atoms with hydrocarbons (RH) has been an important touch-

stone in exploring the dynamics in polyatomic systems. Literature on these and some related
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systems through 2004 was summarized in a comprehensive review by Murray and Orr-Ewing

[11]. Cl + hydrocarbon reactions are also of practical importance in combustion [46, 47],

marine [48], and atmospheric environments [49, 50]. Extensive information on the kinetics

of these reactions has been published elsewhere [51–53]. Literature data indicate that these

reactions exhibit non-Arrhenius temperature dependencies so that activation energy is dif-

ficult to specify. Flynn and co-workers [54] were the first to report state-to-state reaction

dynamics information on these systems, for the reaction of Cl with c-C6D12. They used

diode laser absorption spectroscopy to measure the nascent DCl(v = 0, J ) product. The

rotational-state distribution in the observed DCl(v = 0, J ) was found to be cold and they

ascribed this result to a collinear C-D-Cl transition state as Cl atoms abstract D atom from

c-C6D12. In fact, cold HCl rotational distributions have turned out to be a universal feature

of Cl + RH reactions, with hotter rotational distributions seen in reactions with alcohols,

for example [55–57]. The dynamics underlying the rotational distributions in these reactions

were examined in detail by Murray and Orr-Ewing [11, 58].

Related work on the reaction of Cl(2P) with RH was carried out by several groups.

Interestingly, in the Cl + RH reaction series, only methane exhibits a significant activation

barrier height, 2.83 kcal/mol, and is the only endothermic reaction, ∆H 298 = +1.82 kcal/mol.

This reaction establishes a foundation in our understanding of the dynamics of other Cl +

polyatom reactions. The use of the photoloc [59] method has been proven fruitful in detailing

the dynamics of this reaction and other photoinitiated bimolecular reactions [55, 60–64].

Investigations of the nascent HCl(v = 0) products using REMPI detection for the reaction Cl

+ CH4 showed that the product HCl(v = 0) is formed with cold rotational-state distribution

and is strongly backscattered. The product state and angular distributions for the ground-

state reaction are consistent with line-of-centers model, in which the cone of acceptance is

only narrowly open [55]. Simpson et al . [60, 61] also investigated the vibrationally excited

reaction Cl + CH4(v 3 = 1). The analysis of the results gave an extraordinarily detailed

picture of the dynamics.
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The dynamics of Cl + C2H6 → C2H5 + HCl has also received attention from Kandel et

al . [62], Bass et al . [64], using photoloc, and Huang et al . [65, 66] using slice imaging, in

independent studies of the reaction. Kandel [62] reported that the C2H5 product exhibits

broad scattering that peaks sideways and that the C2H5 fragment acts largely as a spectator.

Bass et al . [64], however, found the angular distribution to be forward peaking and that

22% of the available energy was channeled into internal excitation of the ethyl coproducts.

Further study on the effects of vibrational excitation of C2H6(v 5 = 1) found a reaction cross

section enhanced by only 5-10% in contrast to a tenfold enhancement for the Cl + CH4(v 3 =

1) reaction. Huang et al . [65, 66] provided the first state-resolved crossed-beam scattering

results for Cl + C2H6, employing the dc sliced ion imaging technique to probe HCl(v = 0,

j = 0 - 5) with (2 + 1) REMPI detection. Analyses of the HCl images revealed center-of-

mass translational energy and angular distributions are strongly coupled. The backscattered

products, principally for J = 2, showed a bimodal translational energy distribution, one with

15% of the total energy partitioned to C2H5 internal energy, and the other with 66%. The

forward scattered product showed only the fast peak. The fast peak was ascribed to direct

reaction, while the slow peak was attributed to chattering-type collisions.

The crossed molecular beam ion imaging [18, 20] method has brought our understanding

of reaction dynamics to an unprecedented level of detail. DC slice [14] or three-dimensional

[15] imaging methods provide the velocity flux contour map directly as the product of the

experiment. Because of the enhanced detection efficiency and resolution, it is now possible to

pursue state-resolved scattering experiments to greater effect than ever before [67–69]. While

the (2 + 1) REMPI detection offers the advantage of state-resolved experiments, it suffers

from lower detection sensitivity due to small probe volumes associated with multiphoton

ionization, and does not necessarily offer a global picture of the dynamics. Universal studies

using mass spectrometric detection have many advantages, and this approach was applied

to Cl + alkane reactions by Blank et al . [70] and Hemmi and Suits [71] with single photoion

ionization detection of the alkyl radical using a tunable synchrotron source. Laboratory
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angular distributions and time-of-flight spectra of the alkyl product were used to obtain

the center-of-mass translational energy and angular distributions. The results showed that

the translational and angular distributions are strongly coupled, with the formation of cold

forward scattered alkyl products and internally excited backscattered radicals, leaving more

energy in the internal excitation in the products. The backscattered product, particularly

in the Cl + n-pentane reaction, revealed evidence of considerable internal excitation in

the alkyl product, in contrast to investigations involving smaller alkanes, where the alkyl

radical was treated as a spectator [54, 61] in the reaction. Recently, the Suits group has

been successful in using a F2 excimer probe [72, 73] in crossed molecular beam imaging

studies. This combination has been proven effective in studying the underlying dynamics

of a variety of polyatomic bimolecular reactions such as O(3P) + alkanes [74–76], Cl(2P)

+ alcohols [77, 78], and CN (X 2Σ+) + alkanes [79]. This universal imaging approach has

some compelling advantages over crossed-beam scattering with mass spectrometric detection:

There are no kinematic limitations for imaging; one measures the product in the center-of-

mass frame directly; in the slice imaging case, the contour maps are the primary form of the

data and no tedious analysis or fitting is necessary. A disadvantage has been background

arising from interference from dissociation of the parent beam. As a consequence, in some of

the previous work, scattering in the forward direction was deemed unreliable and unreported.

In the present studies, improvement in detection efficiency and in the Cl beam source now

allows us to determine the double differential cross sections over the full center-of-mass

angular range. Moreover, these enhancements allow us to obtain these experimental results

fairly quickly, motivating now a systematic investigation of H abstraction by Cl atoms over

a broad range of target molecules. Here, the first of the series of studies is presented, for the
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following reactions: Cl(2P3/2) + n-pentane:

Cl + n-C5H12 → HCl + CH2CH2CH2CH2CH3 ∆rH = −2.0kcal/mol (3.1a)

Cl + n-C5H12 → HCl + CH3CHCH2CH2CH3 ∆rH = −5.3kcal/mol (3.1b)

Cl + n-C5H12 → HCl + CH3CH2CHCH2CH3 ∆rH = −5.3kcal/mol (3.1c)

Cl(2P3/2) + isopentane:

Cl + CH3CH2CH(CH3)2 → HCl + CH2CH2CH(CH3)2 ∆rH = −2.0kcal/mol (3.2a)

Cl + CH3CH2CH(CH3)2 → HCl + CH3CHCH(CH3)2 ∆rH = −5.3kcal/mol (3.2b)

Cl + CH3CH2CH(CH3)2 → HCl + CH3CH2C(CH3)2 ∆rH = −8.2kcal/mol (3.2c)

Cl(2P3/2) + neopentane:

Cl + C(CH3)4 → HCl + CH2C(CH3)3 ∆rH = −2.10kcal/mol (3.3a)

These 298 K reaction enthalpies are taken from Ref. [71] for reaction (1) and the values

for reactions (3.1a) and (3.1b) are used for reactions (3.2a) and (3.2b); the values for reactions

(3.2c) and (3.3a) are from Ref. [80].

There are a number of key questions we can hope to address with such detailed and

systematic dynamical studies: Are there different dynamics for primary, secondary, and

tertiary H abstraction? What is the fraction of energy appearing in translation, vibration,

or rotation of the two products, and what factors govern this disposition of energy? How

do these issues change with collision energy or temperature? What effect do structural or

stereochemical influences have on the dynamics? As seen in the preceding paragraphs, these

questions have been examined with varying degrees of success in the many studies reported

over the years. However, inconsistencies persist and many open questions remain. Slice

imaging experiments promise some new insights into some of these open questions.
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3.2 Experiment

The experiments were performed in a crossed-beam imaging apparatus described else-

where [66, 78]. A molecular beam of oxalyl chloride, (ClCO)2, was produced by passing

helium through a bubbler containing (ClCO)2 held at 0◦C. The Cl atom beam was then

generated by photodissociation of the oxalyl chloride, (ClCO)2, using the 193 nm output of

an ArF excimer laser (60 mJ, 10 Hz) at the nozzle of a piezoelectric pulsed valve. This results

in a very intense Cl atom beam owing to the very large absorption cross section of oxalyl

chloride at 193 nm and the fact that two Cl atoms are produced for each photon absorbed.

The chlorine atom has two spin-orbit states (2P3/2 and 2P1/2) with a separation of 882 cm−1.

Ahmed et al . reported state-selected imaging of the photodissociation of (ClCO)2 and found

Cl, Cl∗(2P1/2), and CO as products of the photodissociation process [81]. Hemmi and Suits

extended this to 193 nm [82]. The excited spin-orbit Cl(2P1/2) produced at 230 nm is also

anticipated at 193 nm. However, after entrainment in the supersonic expansion, most of the

Cl(2P1/2) are likely to be quenched to the ground state [23]. Moreover, quenching studies

of Cl(2P1/2) by various atmospheric gases showed that relaxation by helium is usually fast

[83]. The Cl beam was skimmed before entering the main chamber where the scattering took

place.

The alkane (n-pentane, isopentane, and neopentane), seeded ∼5% in He or H2, was

expanded from a total pressure of 4 bars through another pulsed valve, collimated by a

single skimmer, and crossed the Cl beam at 90 in the interaction region. The alkyl radical

products with m/z = 71 were detected by single photon ionization at 157 nm using a F2

excimer laser (GAM EX-10, 0.5 mJ, 10 Hz) focused loosely using a MgF2 lens (f = 135

cm) into the interaction region of the two crossed molecular beams. The product ions were

accelerated via a four-electrode dc slice ion optics assembly [14] to impact on a 75 mm

diameter dual microchannel plate (MCP) detector coupled to a fast phosphor screen held at

5 kV (Photonis/Burle, Sturbridge, MA). The front of the MCP assembly was held at ground
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Figure 3.1: Sample beam profiles. Top: Cl beam detected using nonresonant ionization at
157 nm. Bottom: neopentane beam detected at 157 nm.

potential and the back plate was pulsed to gate the central slice of the reaction products at

a specific mass by application of a high voltage pulse (2.2/1 kV bias, 70 ns width) using a

commercial pulser (DEI PVX-4140, Fort Collins, CO). The timing of the pulsed molecular

beam nozzles, firing of the photolysis and probe lasers, and detector gate pulse were controlled

using a delay generator (BNC 555, San Rafael, CA). The resulting image was recorded using

a charged coupled device camera (Mintron 2821e, 512 × 480 pixels, Taipei, Taiwan). The

dc slice imaging detection scheme and megapixel acquisition program IMACQ were used to

accumulate the raw images containing centroided data [84]. Image accumulation to reach

a satisfactory signal-to-noise ratio took 1-3 hours. Background images obtained with the

193 nm laser off were also recorded and subtracted (after converting to signed integer data)

before analysis. In previous studies [75, 77–79], background arising from photodissociation

of the parent hydrocarbon to give the radical mass precluded reliable measurements in the
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vicinity of the alkane beam. Here, owing to the intense Cl beam and the loose focusing of

the probe laser, this background has been greatly reduced relative to the signal. Reliable

measurements in the forward direction are now a routine, as will be seen in the data below.

The Cl atom beam velocity was measured using both direct probe via 2+1 REMPI

ionization around 235 nm, as well as nonresonant multiphoton ionization at 157 nm. The

results agreed well so the 157 nm detection was adopted for routine measurements. For the

alkane beam, 157 nm ionization of the parent was also used for beam velocity determination.

Typical measured beam velocity distributions are shown in Figure 3.1. These give speed

ratios ∼4 for the pentane beam and ∼4.5 for the Cl beam, for an overall spread in collision

energy of ∼30% full width at half maximum. Spots also appear in both beams at the

detected radical mass (m/z = 71) with 157 nm detection, but it was found after extensive

investigation that these do not accurately reflect the reactant beam velocities. The spot

associated with the pentane beam that appears at the radical mass is faster than the beam

itself, and appears only on one side of the relative velocity vector. This contribution is

thus excluded in determining the angular distributions. Calibration of the velocity scale was

performed using imaging of CO(J = 50) from photodissociation of carbonyl sulfide, OCS.

The velocity origin was determined first by recording a series of product masses in each beam

at varying delay times and tracing the beam velocities back to the crossing point, and by

monitoring background masses in the absence of the molecular beams. These approaches

gave values in reasonable agreement.

The product dc sliced images embody the product scattering distributions directly con-

taining the full dynamics of the reaction. However, the raw images must be corrected for the

fact that the slower fragments, arising from scattering events that take place before the probe

laser fires, are detected with greater likelihood than fast fragments (density-flux correction).

This modest correction is readily achieved by scaling each pixel intensity by a value (α + v),

where v is the laboratory frame velocity (simply proportional to the distance from the origin)

and α is an empirically determined parameter that accounts for the finite size of the inter-
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action volume and prevents the signal at low laboratory velocities from vanishing [65]. Once

fixed, α is not varied for any of the data presented; in any case, the distributions extracted

from the data are not very sensitive to this parameter. The conditions of the experiment are

illustrated in an accompanying video online. The video shows the live reactive scattering

signal with the principal Newton diagram superimposed. This raw video is uncorrected for

the density-flux detection, and showed that the correction is not a large one. For the images

shown below, the live video is centroided in real time and the centroided data are accumu-

lated. Analogous images are recorded with the Cl laser off and these are subtracted from the

signal images before analysis. Although the centroided data can be interpolated to subpixel

precision, for these studies the spread in the collision energy is such that this additional

resolution is not warranted. The analysis is thus performed at the native 512 × 480 pixel

resolution. The magnitude of the background subtraction and the density-to-flux correction

are shown in Figure 3.2. Figure 3.2a shows a raw image without background subtraction

or density-to-flux correction. All of the features of the final result, shown in Fig. 3.2b, are

present in the original image, but there is some asymmetry across the relative velocity vector

owing to the enhanced sensitivity for products that are slow in the laboratory frame. To

provide a sense of the inherent uncertainty in the data, total translational energy [Fig. 3.2c]

and angular distributions [Fig. 3.2d] are generated from a series of Cl + n-pentane reactions

at the indicated collision energies, each obtained several days apart. The reproducibility is

excellent.

3.3 Results

The H abstraction reaction, Cl + C5H12 → HCl + C5H11, for the three target pentane

isomers is studied at two different collision energies ∼5 and ∼9 kcal/mol. In the case of

neopentane, data obtained at low collision energy is not reported due to the very weak

signal in that case. One question that immediately arises is the isomeric identity of the

detected pentyl radical product. For n-pentane, for example, abstraction of a terminal
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Figure 3.2: (a) Accumulated centroided data for Cl + n-pentane reaction at 5 kcal/mol
collision energy without background subtraction or density-to-flux correction. (b) Same
image as (a) after background subtraction and density-to-flux correction. (c) Translational
energy and (d) angular distributions obtained for a series of Cl + n-pentane experiments at
indicated collision energies.

primary H atom gives the 1-pentyl radical, while abstraction of a secondary H atom can

give 2-pentyl or 3-pentyl radicals. The latter have reported ionization energies significantly

lower than the 1-pentyl radical. If the detection is substantially biased in favor of the 2-

and 3-pentyl radicals, then the current results may not be representative of the overall

dynamics. However, a recent study of relative ionization efficiency for products of heptane

isomer photodissociation at 157 nm [85] showed surprisingly little (less than 20%) variation

in detection efficiency for the various radical products. This variation is thus neglected in

the current study.

Figure 3.3 shows the dc sliced images of the alkyl radical products for all subject reactions

with the nominal Newton diagrams superimposed on the images. These are after background

subtraction and density-to-flux correction as described in Sec. 2.2. Figure 3.4 shows the total

translational energy distributions, integrated over all angles, and the center-of-mass angular

distributions, integrated over all recoil speeds, derived from the images. The translational
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Figure 3.3: DC sliced images for pentyl radical product from Cl atom reaction with indicated
pentane isomer and superimposed Newton diagrams. (A) n-pentane, collision energy 5.4
kcal/mol; (B) isopentane, collision energy 5.3 kcal/mol; (C) n-pentane, collision energy 8.4
kcal/mol; (D) isopentane, collision energy 9.5 kcal/mol; (E) neopentane 8.0 kcal/mol.

energy distributions at low collision energy for n-pentane and isopentane both show a peak

around 3-4 kcal/mol and extend beyond 10 kcal/mol. At high collision energy, these dis-

tributions are shifted to slightly higher energies, but show strong similarities. The angular

distributions at low EC show flux in all directions, with modestly enhanced scattering in the

backward direction with respect to the alkane beam. As the collision energy increases, the

stronger scattering shifts to the forward direction for all cases.

The integrated data for average translational energy release, fraction forward scattered,

and forward-to-backward peak height ratio are compiled in Table 1. At low collision energy,

the backward peak drops off around 120◦ and the forward peak begins around 60◦. Increasing
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Figure 3.4: Total center-of-mass translational energy distributions (left) and angular distri-
butions (right) for indicated pentane isomer reactions from data in Figure 3.3. Black curves
are the low collision energy results from Figs. 3.3a, 3.3b, ∼5 kcal/mol, red curves are high
collision energy results, ∼9 kcal/mol from Figs. 3.3c, 3.3d, 3.3e.

the collision energy shows a shift to a more forward peaking trend and much sharper forward

scattering for neopentane and isopentane (rising at 30◦), less so for n-pentane (∼60◦). These

trends can be seen clearly in the angular distributions shown in Fig. 3.5, in which all systems

at a given collision energy are grouped together.

An important advantage of the slice imaging technique applied to crossed-beam scattering

is that the full coupling of the translational energy and angular distributions are directly

manifested in the data. In analysis of traditional crossed-beam scattering data, strategic

choices in fitting the data are typically made in an effort to explore the detailed nature of

the scattering distributions and to reveal the underlying dynamics. Often these choices are



24

0 30 60 90 120 150 1800.000

0.002

0.004

0.006

0.008

0.010

Center of Mass Angle (Deg)

0 30 60 90 120 150 1800.000

0.002

0.004

0.006

0.008

0.010

Center of Mass Angle (Deg)

A

B n-pentane
isopentane
neopentane

T(
Θ

)
(a

rb
.)

T(
Θ

)
(a

rb
.)

Figure 3.5: Total center-of-mass angular distributions from Figure 3.3 grouped by collision
energy. (A) low collision energy; (b) high collision energy.

not based on features in the data, and some ambiguity in interpretation arises as a result.

Photoloc methods have allowed some investigation of the velocity dependence of the angular

distributions, but owing to the inherent averaging these are underdetermined, and only the

gross features may be obtained from the fitting. Slice imaging methods do not face this

difficulty. The present data show strong coupling of energy release and scattering angle, as

can be seen even in the raw images. In all of the images in Figure 3.3, for example, the

backscattered distribution is broader than that in the forward direction; moreover, for the

high collision energy images, in particular, it is clear that the sideways scattering extends

to lower energy than the forward or backscattered distributions. To gain insight into the

detailed nature of this coupling, these data are integrated in several different ways. Figure 3.6

shows the translational energy distributions for forward (0◦-60◦), sideways (60◦-120◦), and

backscattered (120◦-180◦) regions of the distributions, separately normalized. The forward
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scattered translational energy distributions peak sharply and this is quite striking for the

higher collision energy result, especially for isopentane and neopentane. For n-pentane, all

of the distributions are similar to those for the other isomers but broader, particularly on

the low energy side.
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Figure 3.6: Center-of-mass translational energy distributions for indicated pentane isomer
and center-of-mass scattering region: Forward (0◦-60◦); sideways (60◦-120◦); backward (120◦-
180◦). Left side, low collision energy results; right side, high collision energy results.

Another approach to illustrate the nature of these coupled distributions is to show the

angular distributions for selected translational energy ranges. This is shown in Figure 3.7

for the single case of isopentane at high collision energy; the trends in the others are sim-

ilar. The low recoil energy component of the distributions is nearly isotropic, with slight
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Figure 3.7: Center-of-mass angular distributions for Cl + isopentane at 9.5 kcal/mol and
indicated range of total translational energy.

backscattering. The recoil energy regions in the vicinity of the maximum show sharp forward

scattering superimposed on a broad distribution that shows some slight backward peaking

as well. The highest recoil energy component shows relatively less sideways scattering, as

expected based on the appearance of the images.

3.4 Discussion

The translational energy distributions plotted in Figures 3.4 and 3.6 clearly show that the

distributions for all pentane isomers are quite similar. This is one of the most remarkable

aspects of the present results. As has been seen in the past, the distributions tend to

preserve the collision energy into product recoil. This behavior is expected for collinear

heavy-light-heavy systems as will be discussed further below, and it suggests plotting all

of the translational energy distributions on a reduced scale, as shown in Figure 3.8, with

average values compiled in Table 3.2. The plots are extraordinary in the similarity of the

trends shown regardless of target isomer. For the high collision energy result averaged over

recoil direction, more than 70% of the products possess a translational energy equal to or
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less than the collision energy. At low collision energy, this fraction is smaller, i. e., a greater

fraction of the energy appears in translation. This trend is not surprising, as the exoergicity

is a larger fraction of the collision energy, and some of it finds its way into product recoil.

The most probable translational energy release is similar in all cases, about 80% of EC,

independent of target isomer and collision energy.
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Figure 3.8: Reduced translational energy distributions P(ET/EC).
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Further insight can be obtained by examining these same trends for different scattering

regions, also shown in Figure 3.8 and highlighted in Table 3.1. The forward scattered (0◦-60◦)

distributions show sharp peaking at 0.8EC. It is sharpest for neopentane and isopentane,

somewhat broader for n-pentane. The forward scattered distributions all show much less

variation with collision energy compared to the sideways (60◦-120◦) or backscattered (120◦-

180◦) contributions. The backscattered distributions show a strong dependence on collision

energy, for n-pentane and isopentane there is a change from about 1.02EC at low collision

energy to 0.68EC at high collision energy. This observation shows rather clearly that low

impact parameter collisions are required to couple the exoergicity into recoil. It is interesting

that neopentane, with only primary H sites, shows the highest average recoil at the high

collision energy. As can be seen in Figure 3.8, this is owing to the fact that it has the sharpest

peak and less very low energy recoil; the high recoil energy portion of the distribution is

identical for all three isomers.

Table 3.1: Most probable collision energy, EC (kcal/mol), average translational energy re-
lease, 〈ET〉(kcal/mol) in the different regions of the image for the subject reactions.

EC 〈ET〉total 〈ET〉forward 〈ET〉sideways 〈ET〉backward
n-pentane 5.4 4.6 4.2 3.7 5.3

8.4 5.3 5.5 4.8 5.6
Isopentane 5.3 4.6 3.9 4.1 5.5

9.5 6.3 6.5 5.4 6.6
Neopentane 8.0 5.7 5.9 4.8 6.1

The fraction of available energy appearing in translation is not compiled, in part because

Table 3.2: Most probable collision energy, EC (kcal/mol), average reduced translational
energy, 〈ET〉*= 〈ET〉/EC, and fraction forward scattered for the subject reactions.

EC 〈ET〉*total 〈ET〉*forward 〈ET〉*sideways 〈ET〉*backward f forw

n-pentane 5.4 0.85 0.78 0.69 0.98 0.45
8.4 0.63 0.66 0.57 0.67 0.50

Isopentane 5.3 0.87 0.74 0.77 1.04 0.45
9.5 0.66 0.68 0.57 0.69 0.46

Neopentane 8.0 0.71 0.74 0.60 0.76 0.47
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scaling with collision energy is more meaningful than available energy; moreover, it is difficult

to assay the available energy, as this will depend on the likelihood of abstraction of primary,

secondary, or tertiary H atoms. Nevertheless, for comparison, consider the case of n-pentane

at the high collision energy. Assuming all sites equally likely and the average reaction exoer-

gicity for primary or secondary H abstraction, an available energy of 11 kcal/mol is obtained.

The fraction of available energy appearing in translation will then be 0.48 overall, with for-

ward, sideways, and backscattered contributions of 0.50, 0.44, and 0.51, respectively. This

is significantly lower than the 0.68 reported by Bass et al . [86] for n-butane. These scaled

angle-dependent translational energy distributions are also helpful for exploring the distinct

dynamics of primary, secondary, or tertiary H atom abstraction. A number of studies have

probed this issue directly using partially deuterated alkanes with detection of the DCl or HCl

product. Koplitz and co-workers [87] examined relative reactivity for partially deuterated

propane, butane, and isobutane, and Varley and Dagdigian [88, 89] extended these measure-

ments to examine the site specificity of the dynamics of these reactions using the photoloc

technique. The experiments clearly showed enhanced reactivity at the secondary or tertiary

site, roughly a threefold enhancement on a per H atom basis. It is important to bear in mind,

however, that this enhancement is likely to decrease significantly with collision energy, as the

difference in reactivity is largely a consequence of the difference in energetics. The likelihood

of abstraction of primary H atoms should approach that for secondary and tertiary sites in

the limit of high collision energy. It is suspected that this reduced reactivity for primary H

atom sites is in part responsible for the inability to achieve adequate signal-to-noise ratio for

the low collision energy neopentane case. Varley and Dagdigian also reported gross angular

distributions obtained assuming a single recoil energy with no internal energy in the hydro-

carbon radical. They found, for the reaction with CD3CH2CD3, enhanced scattering in the

backward hemisphere for both HCl and DCl, but for DCl sideways-backward scattering was

dominant. Hemmi and Suits [71], in studies of n-pentane at relatively high collision energy

(16.8 kcal/mol) using universal synchrotron vacuum ultraviolet probe, reported overall for-
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ward scattering, closely resembling that seen here, but with slightly higher energy release

in the forward direction. They decomposed the distribution into two channels and argued

for association of the forward scattering with preferential abstraction of secondary H atoms

based on the observed translational energy release, following earlier suggestions by Blank et

al . [70] for reaction with propane. This interpretation was echoed by Bass et al . [86] in a

study of Cl + n-butane using the photoloc imaging method. Although the present results

do not directly address this issue by any means, the similarities in the translational energy

and angular distributions for the three target pentane isomers clearly show that there is no

strong correlation between scattering angle or translational energy with abstraction site. At

the high collision energy, n-pentane, with equal numbers of primary and secondary H atoms,

shows a nearly identical scaled translational energy release compared to neopentane, with

only primary H atoms, and isopentane, that also includes a tertiary H atom. The greatest

effect is seen in the broadening of the distributions for n-pentane compared to the others,

particularly in the shading of the translational energy release to lower energy. This is con-

sistent with the association of secondary abstraction with greater HCl rotational excitation,

as seen by Koplitz and Dagdigian and others.

For the forward scattered peak, a little momentum transfer can be expected, and the

spectator stripping limit can be examined, i.e., if the product HCl has the same momentum

as the incoming Cl atom. In this case, the predicted translational energy will be (35/36)2EC,

or about 0.95EC. The values in Table 3.1 and 3.2 are significantly lower than this, suggest-

ing likely rotational excitation of the pentyl radicals even for these collisions. As seen in

the raw images and reproduced in the average values in Table 3.1, the sideways scattering

consistently shows the lowest average fraction of energy in translation. It is likely that for

these intermediate impact parameter collisions, there is efficient rotational excitation of the

alkyl radical, but no compensating coupling of the exoergicity into recoil.

The angular distributions shown in Figs. 3.4, 3.5 also show remarkable parallels for all

systems. At lower collision energy there is a modest preference for backward scattering, and
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this shifts to sharp forward peaking for all cases at the higher collision energy. However, even

at the higher collision energy, the integrated distributions still show an overall preference

for backward scattering, as seen in Table 3.1. These angular distributions are consistent

with those reported by Hemmi and Suits [71] for n-pentane, but show greater backward

scattering than the n-butane results of Bass et al . [86] at 7.4 kcal/mol obtained using

photoloc in an imaging configuration. The photoloc results are very similar to these in the

forward direction, showing a sharp forward peak rising from cos θ = 0.5 (30◦), but no sign of

the backscattered peak seen here and in the synchrotron experiment. However, Bass et al .

noted that their study was blind to backscattered products with less than half of the available

energy appearing in translation owing to interference from HCl in the beam. It is somewhat

surprising that they did not consider this as one possible source for the discrepancy between

the angular distribution measurements. The consequences of this omission can be examined

by integrating the images for different recoil energy regions separately, as shown in Fig.

3.7. At the lowest energy contribution, 0-2 kcal/mol, shows some enhanced backscattering,

while the next region, 2-5 kcal/mol, is nearly isotropic. The dominant region from 5 to 8

kcal/mol shows strong forward scattering, and the smaller contribution from 8 to 14 kcal/mol

also shows enhanced forward scattering. If the contributions below 5 kcal/mol is ignored, a

qualitative agreement with the photoloc angular distributions for n-butane is obtained.

Many approaches have been developed over the years to model reaction dynamics in

polyatomic systems. Zare and co-workers successfully treated the Cl + methane reaction

with a combined line-of-centers/hard sphere model. In this treatment, the energy along the

normal to the potential at the barrier determines the likelihood of overcoming the barrier,

with the angular distribution determined as for hard spheres, sometimes with an adjustable

opacity function to model enhanced contributions from peripheral reactions. There are

several key differences for pentanes versus methane, however. The first is in potential energy

surface: For methane, the barrier is substantial and the reaction endoergic. For pentanes,

even for primary H abstraction, there appears to be no barrier and the reaction is significantly
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exoergic. Nevertheless, even for pentanes, there is likely a submerged barrier as characterized

by Greaves et al . [90] for Cl + ethane. This implies that the line-of-centers picture is still

relevant, and reaction away from collinear Cl-H-C not necessarily likely. This is the necessary

ingredient to generate peaking in the backward direction; without this, a flat scattering

distribution would be expected with a cutoff in the forward direction (for pure hard sphere

with impulse) or a forward peaking distribution (for a peripheral reaction). The second key

difference for methane versus pentanes is that for methane, a purely collinear collision is

necessarily a low impact parameter collision. For the pentane isomers, any purely collinear

Cl-H-C collision necessarily possesses a nonzero impact parameter. Other models have been

developed that take account of these issues to some extent.

3.5 Conclusion

Several conclusions can be drawn from these results: The broad backscattered peaking

indicates that even though the barrier may be submerged, it still has an important influence

on the dynamics. The shift to forward scattering shows the role of peripheral abstraction

and the fact that these are largely nonzero impact parameter collisions. The similarities

among all isomers show that the primary and secondary (and perhaps tertiary) H atoms do

not show strongly divergent angular or translational energy distributions. The translational

energy distributions in the forward direction are very consistent, showing generally sharp

peaking at about 80% of the collision energy with the balance perhaps mostly in rotation of

the alkyl radical. The backscattered distributions peak at lower energy but also show some

of the reaction exoergicity, particularly clearly for the low collision energy cases, in general,

manifesting the features of a close collision.
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Chapter 4

Dynamics of H and D abstraction in
the reaction of Cl atom with
butane-1,1,1,4,4,4-d6

4.1 Introduction

The insights obtained from the many dynamical studies on the interaction of free rad-

icals with hydrocarbons (RH) [11, 54, 60, 61, 75, 91–94] has helped build a foundation for

understanding the processes involved in combustion, atmospheric, and marine environments.

However, in fundamental studies involving polyatomic reactants and polyatomic products,

both experimentalists and theoreticians are faced with challenging dynamical issues. Poly-

atomic reactants may have multiple reaction sites that can exhibit distinct reactive behavior.

For example, H-atom abstraction from RH with three or more carbon atoms are complicated

by the nature of H-atom type being abstracted, i. e. competing primary, secondary, or ter-

tiary H-atoms may be present with different energetics and distinct products. Despite long

interest in these questions, little direct probing of these dynamics has been achieved, and the

quantity of speculation in the literature perhaps exceeds that of concrete evidence. Crossed-

beam imaging methods have now developed to the point that these issues can be addressed

more directly, and this paper represents the first of the efforts on this problem.

The dynamics associated with the abstraction at the different H atom sites in alkanes

was studied in a widely cited set of papers of Andresen and Luntz [91] on the reaction of
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O(3P) with neopentane, cyclohexane, and isobutane. These were chosen as prototype sys-

tems for study of abstraction of primary, secondary, and tertiary hydrogens, respectively.

This crossed-beam study relied on laser-induced fluorescence to probe the OH product state

distributions, but without translational energy or differential cross section determinations.

Interestingly, in all systems the OH rotational distributions were found to be cold and they

this ascribed to a collinear O-H-C transition state with low impact parameter collisions.

The OH vibrational distributions, however, showed a dependence on the type of H-atom

abstracted, with increasing vibrational excitation for primary, secondary and tertiary hy-

drogen atoms. This trend was attributed to the increasing exoergicity in this sequence, and

the movement of the reaction barrier toward the reactant geometries. These findings were

confirmed in the quasiclassical trajectory calculations by Luntz and Andresen [92].

There have been several studies on site-selective hydrogen atom abstraction by Cl atoms

from RH with three or more carbon atoms, obtained using various kinetic techniques [95–97].

Tyndall et al . [97] used relative rate technique to quantify the contributions of primary and

secondary H-atoms in the reaction of Cl atoms with propane and butane. They found room

temperature reaction of Cl atoms with C3H8 yields 43±3% 1-propyl and 57±3% 2-propyl

radicals, while the reaction of Cl + n-C4H10 produces 29±2% and 71±2% for abstraction

of primary and secondary hydrogen atoms, respectively. Sarzynski and Sztuba [96] in their

study of Cl + butane using the relative rate method reported a slightly positive temperature

dependence for abstraction of primary hydrogen atom and slightly negative for secondary

hydrogen abstraction, suggesting small barriers for the former reactions.

In addition to many kinetics studies, the reaction dynamics of chlorine atoms with hy-

drocarbons have also been studied in great detail in the past two decades. In contrast to

O(3P) + RH reactions, these reactions have little or no barriers to reaction and are exoergic,

with the exception of Cl + methane with ∆H = +1.82 kcal mol−1. Zare and coworkers

[60, 61, 93, 94, 98]and Varley and Dagdigian [56] investigated the dynamics of chlorine atom

reactions with small hydrocarbons and their deuterated analogues using photoloc with core
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extraction techniques combined with resonance-enhanced multiphoton ionization (REMPI)

to probe the nascent HCl (DCl) product. Results showed cold HCl and DCl rotational dis-

tributions [54]. An earlier report on the secondary abstraction reaction of Cl + c-C6D12

using diode laser absorption technique also showed cold DCl rotation distributions. These

cold HCl(DCl) rotational distributions have been exhibited by Cl atom reaction in a wide

range of target alkane reactants [11, 99]. The most direct investigation involving the site-

specific dynamics of Cl + RH reaction was by Koplitz and co-workers [87] using selectively

deuterated propane. They found that the yield of DCl is nearly equal for either primary and

secondary labeled propane while the HCl yield was 1.5 times greater for CH3CD2CH3 than

CD3CH2CD3. Varley and Dagdigian [88, 89] extended this study to a photoloc investigation

of partially deuterated propane and isobutane deuterated on the tertiary carbon. For the Cl

+ CD3CH2CD3 reaction, results suggested sideways scattered DCl product while the HCl

peaked in the backward direction. For Cl + (CH3)3CD, the nascent DCl product was mainly

backscattered, suggesting that abstraction of a tertiary hydrogen atom proceeds through a

near collinear transition state. Abstraction of the primary hydrogen to yield the HCl prod-

uct was sideways peaked in qualitative agreement to the primary abstraction in the Cl +

partially deuterated propane system.

Numerous studies have demonstrated the efficiency of crossed molecular beam ion imaging

techniques in providing detailed information on the dynamics of many bimolecular reactions.

This technique has also been exploited in studying the dynamical consequence of isotope

effects on several systems. Using crossed molecular beam ion velocity imaging techniques,

Liu and coworkers [100] studied reaction of Cl with CHD3 to examine vibrational mode

selectivity in that system. They found that CH stretch excitation was no more effective than

translation in promoting reaction. Despite the number of studies on deuterated methane

and ethane and on the dynamics of Cl atom reaction with fully hydrogenated systems, there

have been no studies yet bringing the power of imaging methods to explore the dynamics of

H vs . D abstraction in selectively deuterated alkanes.
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In this section, the reaction of chlorine atoms with butane-1,1,1,4,4,4-d6 using crossed

molecular beams and dc slice imaging techniques is reported. In this reaction, the Cl beam

crosses the partially deuterated butane beam and H- or D-atom abstraction occurs forming

HCl (4.1a) or DCl (4.1b) and a butyl radical:

Cl + CD3CH2CH2CD3 −→ HCl + CD3CH2CHCD3 ∆rH(0 K) = −6.0kcal/mol

(4.1a)

Cl + CD3CH2CH2CD3 −→ DCl + CD3CH2CH2CD2 ∆rH(0 K) = −1.7kcal/mol

(4.1b)

The reaction enthalpies used here are from ab initio calculations performed by Visger-

Kiefer [101] using the GAUSSIAN 09 [102] suite of software at the CBS-QB3 [103, 104] level

corrected for zero point energy. The butyl radical products resulting from the H-atom and

D-atom abstraction were probed via single photon ionization using a 157 nm excimer laser.

Previous results from Suits group group have shown improved detection and sensitivity of

single photon ionization in probing the dynamics of a variety of reactions [105, 106]. The

key issue addressed here is to compare the dynamics of abstraction at the primary to that

of the secondary carbon sites.

4.2 Experiment

The experiments were performed in a crossed beam imaging apparatus described else-

where [66, 78]. The apparatus is partitioned into a main scattering chamber and two source

chambers differentially evacuated to 10−7 Torr base pressure and 10−5 Torr operational pres-

sure by turbomolecular pumps. The Cl atom beam was then generated by photodissociation

of tetrachloroethylene, TCE, 5% seeded in helium, using the 193 nm output of an ArF ex-

cimer laser (60 mJ, 10 Hz) at the nozzle of a piezoelectric pulsed valve. The Cl atom product

was entrained in the beam, which was skimmed before traveling into the interaction region.

Butane-1,1,1,4,4,4-d6 (98% D, Isotec Inc.) seeded 5% in Ar, He, or H2, was expanded from

a total pressure of 4 bar through another pulsed valve, collimated by a single skimmer, and



37

crossed the Cl beam at 90◦ in the interaction region. Recent measurements in Suits labora-

tory show that photodissociation of TCE gives 30% spin-orbit excited Cl atoms at 202 nm,

and a similar yield at 193 nm is expected, as it is the same absorption band [107]. However,

efficient quenching to the ground state during the expansion is anticipated as seen in similar

experiments with oxalyl chloride as the Cl atom precursor.

The scattered butyl radical products resulting from H- or D-atom abstraction with m/z

= 63 or m/z = 62, respectively, were detected by single photon ionization. Ionization of

the products was achieved by a 157 nm F2 excimer laser (OPTEX, 0.5 mJ, 10 Hz) focused

loosely using a MgF2 lens (f = 135 cm) into the interaction region of the two crossed

beams. Although the primary butyl radical products nominally possess an ionization energy

slightly higher than the secondary radical, and slightly above the 7.9 eV probe photon energy,

previous studies found essentially identical detection efficiencies for these two products at

157 nm, and no evidence of a dependence on internal energy [85]. The ions were accelerated

perpendicular to the plane formed by the molecular beams via a four-electrode dc slice ion

optics assembly [14] to impact on a 75 mm diameter dual microchannel plate (MCP) detector

coupled to a fast phosphor screen held at 5 kV (Photonis/Burle, Sturbridge, MA). The front

of the MCP assembly was held at ground potential and the back plate was pulsed to gate

the central slice of the reaction products at a specific mass by application of a high voltage

pulse (+2.2 kV/+1 kV bias, 100 ns width) using a commercial pulser (DEI PVX-4140, Fort

Collins, CO). The timing of the pulsed molecular beam nozzles, firing of the photolysis and

probe lasers, and detector gate pulse were controlled using a delay generator (BNC 555,

San Rafael, CA). The resulting image was recorded using a charged coupled device (CCD)

camera (Mintron 2821e, 512×480 pixels, Taipei, Taiwan) and transferred to a computer

for analysis. The dc slice imaging detection scheme, centroiding and megapixel acquisition

program IMACQ were used to accumulate the raw images [84]. Image accumulation to reach

a satisfactory signal to noise ratio took 13 h at a given collision energy.
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4.3 Results

Crossed-beam scattering with single photon ionization has shown to be a sensitive ap-

proach to investigating many complex bimolecular processes [72, 73, 75–79, 105, 106, 108].

With the use of 157 nm excimer laser as product probe, partially deuterated butyl radicals

formed from the H- and D-atom abstraction from Cl + butane-d6 reaction can be examined

selectively. Here, the H-abstraction reaction at nominal collision energies 10.4 kcal mol−1

and 12.9 kcal mol−1 and D-atom abstraction at three different collision energies ranging from

5.2 kcal mol−1 to 12.8 kcal mol−1 is studied. The spread in the collision energy is roughly

25% full-width half maximum. Image obtained in the H-abstraction at the lowest collision

energy is not reported owing to interfering background in the backward hemisphere of the

image.

Figure 4.1 shows the DC sliced images of the butyl radical products from both H and D

abstraction of butane deuterated at the terminal carbons, with the nominal Newton diagrams

superimposed on the images. These are after background subtraction and density-to-flux

correction as described fully in previous reports [105, 106]. The latter correction is modest,

but one significant challenge often associated with the use of 157 nm probe in crossed-beam

imaging is a large photochemical background in the forward scattered portion of the image

arising from photodissociation of the parent hydrocarbon. This issue has been mitigated in

the present configuration with an intense source of Cl radical, and are able to obtain accurate

reactive signals for the full range of scattering except within 5-10◦ of the hydrocarbon beam.

The total translational energy distributions, integrated over all angles, are given in Fig.

4.2. The translational energy distributions of the butyl radical products due to H-atom

abstraction (m/z = 63) peak at higher translational energy than that of D-abstraction (m/z

= 62) at comparable collision energy of ∼10 kcal mol−1. At ∼13 kcal mol−1 this difference is

even more pronounced. Figure 4.3 shows the center-of-mass angular distributions, integrated

over all recoil directions, derived from the images. The butane beam defines the forward
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Figure 4.1: DC sliced images for butyl radical products resulting from the H- and D-atom
abstraction from Cl atom reaction with butane-1,1,1,4,4,4-d6 and superimposed Newton
diagrams. Left panel are results from D-atom abstraction; (a) collision energy 5.2 kcal
mol−1; (b) collision energy 9.1 kcal mol−1; (c) collision energy 12.8 kcal mol−1. Right Panel
are results from H-atom abstraction; (d) collision energy 10.4 kcal mol−1; (e) collision energy
12.9 kcal mol−1.

direction (0◦). The angular distributions at low collision energy show flux in all directions,

with modestly enhanced scattering in the forward direction. As the collision energy increases,

the scattering for both the H- and D-atom abstraction shifts to the forward direction for all

cases while the backward scattering is reduced. The angular distributions for both channels

are remarkably similar.

The average energy release data for the two abstraction channels at each collision energy

is compiled in Table 4.1. For D-abstraction, the fraction of energy appearing in translation

is 65% but is consistently lower for H-abstraction. To gain further insight into the dynamics

of the two abstraction channels, the product translational energy distribution is examined

in two ways. First, the H and D abstraction channels are compared at comparable collision
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Figure 4.2: Total translational energy distributions from data in Figure 4.1. (A) D-
abstraction at 5.2 kcal mol−1 collision energy; (b) H-abstraction (black curve) and D-
abstraction (red curve) at ∼10.0 kcal mol−1; (c) H-abstraction (black curve) and D-
abstraction (red curve) at ∼13.0 kcal mol−1.

energies for the forward (10◦-60◦), sideways (60◦-120◦), and backward (120◦-180◦) scattered

products, by integrating the signals separately in each portion of the image. These are plotted

in Figure 4.4. For these heavy-light-heavy systems, it is well known that the kinematics favor

conservation of translational energy in the reaction [109, 110]. It is therefore revealing as

found in earlier studies to plot the translational energy distributions scaled by the collision

energy. This allows dynamical deviations from the dominant kinematic trend to be seen more

clearly. The scaled translational energy distributions for each of the two channels separately
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Figure 4.3: Total angular distributions from data in Fig. 4.1. (A) D-abstraction at 5.2
kcal mol−1 collision energy; (b) H-abstraction (black curve) and D-abstraction (red curve)
at ∼10.0 kcal mol−1; (c) H-abstraction (black curve) and D-abstraction (red curve) at ∼13.0
kcal mol−1.

are shown in Figure 4.5 and the average values compiled in Table 4.2 and Table 4.3.

4.4 Discussion

The most direct study comparable to the results here is that of Varley and Dagdigian

[88, 89] on the reaction of chlorine atoms with propane deuterated at the secondary site, and

isobutane deuterated at the tertiary site. Both systems showed cold DCl and HCl rotational

distribution, similar to the distributions of Cl reactions with several small hydrocarbon
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Figure 4.4: Center-of-mass translational energy distributions for Cl(2P3/2)+butane-
1,1,1,4,4,4-d6 reaction and center of mass scattering region: Forward (10◦-60◦); sideways
(60◦-120◦); backward (120◦-180◦). Left panel: ∼10 kcal mol−1 collision energy results; right
panel: ∼13 kcal mol−1 collision energy results.

molecules [11]. They reported the angular distributions to be mainly backward for DCl and

sideways for HCl; however they faced a number of challenges in their studies, including a

broad collision energy spread, a spread in initial reagent velocities, and the assumption of a

single product recoil velocity was necessary to fit the data.

It is important to note that in this study the D-atoms are attached to primary C atom

sites and the H-atom is on the secondary C-atoms. As shown in Fig. 4.3, at ∼10.0 kcal

mol−1 collision energy, the backscattering for the D abstraction is slightly greater than that

of the H-abstraction. The difference however is not very significant. At a collision energy of

7.4 kcal mol−1, Bass and coworkers [86] studied the nascent HCl(v = 0, J ) from the reaction

of Cl atom with n-butane using photoloc, and reported forward scattering for the abstraction
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Figure 4.5: Reduced translational energy distributions P(ET/EC). Red curves are for D-
abstraction; solid line: ∼10 kcal mol−1 collision energy, dotted line: ∼13 kcal mol−1 collision
energy. Black curves are for H-abstraction; solid line: ∼10 kcal mol−1 collision energy, dotted
line: ∼13 kcal mol−1 collision energy.

of H at the primary carbon site while abstraction of H atom at the secondary site was seen

to be more isotropic and less forward peaking. This was based on inferences about the

energetics for the two channels, and was not a direct probe of the two channels. However,

this experiment was not able to report the full range of the backward distribution owing

to the interference of HCl in the beam. Forward-peaking secondary abstraction was argued

based on the energy release in crossed-beam studies of Blank et al . [70] and in particular

Hemmi and Suits [71] in the reaction of Cl with propane and pentane, respectively. However,
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Table 4.1: Collision energy, available energy, average total translational energy release, and
fraction of available energy appearing in translation.

EC Eavail (kcal mol−1) 〈ET〉total (kcal mol−1) f t

H-abstraction 10.4 16.4 7.7 0.46
12.9 18.9 11.2 0.58

D-abstraction 5.2 6.9 4.5 0.65
9.1 10.8 6.9 0.64
12.8 14.5 9.0 0.62

Table 4.2: Most probable collision energy, EC (kcal/mol), average translational energy re-
lease, 〈ET〉(kcal/mol) in the different regions of the image for the subject reactions.

EC 〈ET〉total 〈ET〉forward 〈ET〉sideways 〈ET〉backward
H-abstraction 10.4 7.7 8.3 6.6 7.3

12.9 11.2 12.1 8.7 9.3
D-abstraction 9.1 6.9 7.3 6.6 8.2

12.8 9.0 10.1 7.6 8.6

the results shown in the present work clearly indicate that the overall scattering angular

distributions are surprisingly insensitive to the nature of the H atom site that is the target.

At the highest collision energies studied here, the key feature is the sharp forward peaking,

which is essentially identical for both H and D abstraction. Recent investigation of the Cl +

pentane [105] isomers showed a similar tendency toward forward scattering with increasing

collision energy, but did not examine collision energies as high as in the present studies. In

relative kinetics studies, Sarzynski and Sztuba [96] showed that abstraction of primary H-

atoms suggested a positive activation energy indicating a small barrier towards abstraction,

while secondary hydrogen abstraction was barrierless in the reaction of Cl atom with n-

Table 4.3: Most probable collision energy, EC (kcal/mol), average reduced translational
energy, 〈ET〉*= 〈ET〉/EC.

EC 〈ET〉*total 〈ET〉*forward 〈ET〉*sideways 〈ET〉*backward
H-abstraction 10.4 0.74 0.79 0.63 0.70

12.9 0.86 0.93 0.67 0.72
D-abstraction 9.1 0.76 0.80 0.73 0.90

12.8 0.70 0.79 0.60 0.67
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butane. The sharp forward peaking seen at high energy suggests that large impact parameter

collisions show no evidence of this barrier.

Conformational isomerism is an important issue in large molecules in general, and in

alkanes in particular. Butane is the simplest hydrocarbon molecule that possesses different

conformational minima. The most stable is the anti conformation, while a gauche conformer

lies 0.62 kcal mol−1 higher than the anti , and there is a barrier of 3.5 kcal mol−1 separating

them [111]. Under the conditions of the experiment, the gauche conformer should be present

at a level of ∼25% prior to the expansion, and given the high barrier, quenching to the

minimum is not likely to occur to any significant extent. Roughly one fourth of the alkane

target molecules possess a gauche geometry. The dynamical consequence of this is not

entirely clear, but can expect the secondary sites to be less stereochemically constrained.

This is expected to blur the distinction between the primary and secondary dynamics to

some extent.

The distinct dynamics for primary vs . secondary abstraction are only clearly manifested

in the total translational energy distributions, as shown in Fig. 4.2 and in the scaled dis-

tributions shown in Fig. 4.5. At collision energy of 10 kcal mol−1, the translational energy

distribution for D-abstraction peaks at slightly lower energy compared to the H-abstraction

distribution. The difference is even more pronounced at the highest collision energy of 13

kcal mol−1. This is likely a consequence of the much greater exoergicity for the secondary

abstraction reaction, and also the broader range of approach geometries accessible for the

barrierless H abstraction. This is also seen in the marked difference of the scaled transla-

tional energy of H-abstraction and D-abstraction as a function of scattering region. As seen

in Fig. 4.5 and Table 4.3, the scaled translational energy release of the D-atom abstraction

(red curves) showed strong dependence on collision energy in the backward (120◦-180◦) scat-

tered distributions, i.e. 〈ET〉* = 〈ET〉/EC = 0.90 at low collision energy and 0.67 at high

collision energy. This suggests that low impact parameter collisions are required to couple

the reaction exoergicity into product recoil for the primary abstraction. For the secondary
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abstraction, distinct behavior is observed: in the backward direction there is little change

in the scaled translational energy with collision energy, while in the forward direction, there

is a larger fraction of the energy in translation as the collision energy increases: 〈ET〉* rises

from 0.79 to 0.93.

The observed average translational energy in the backward directions is about 2/3 of the

collision energy except for the D-abstraction at the lowest collision energy where it is 0.90.

To help explain this, the simple kinematic model of Evans et al . [110] can cited. This model

predicts the average translational energy release to be given by:

〈EC〉 = EC cos2 β + ER sin2 β (4.2a)

where β is the skew angle for the reaction, EC is the collision energy, and ER is the energy

release in the reaction. For heavy-light-heavy reactions, the skew angle is acute [109, 112]

such that the second term is negligible. For the deuterium abstraction considered here, cos2β

is 0.92, while it is 0.96 for hydrogen abstraction. In all cases the observed translational

energy release is substantially lower than the values predicted by the kinematic model by

Evans et al . [110]. This model is intended for collinear collisions (hence the application to the

backscattered product) and in general it works well for three-atom systems. The discrepancy

between the predicted average translational energy and the observed energy release is not

surprising because the reaction system has a large number of degrees of freedom that are

not accounted in this model. Vibration or rotations of the alkyl radical products are two of

the factors that are not taken into consideration in this kinematic model. A Franck-Condon

picture was invoked by Liu and Suits [75] in the study of O(3P) with butane. They calculated

the relaxation energy of the alkyl from the transition state geometry to be 4-5 kcal mol−1

and argued that this value is not available for recoil of the detected alkyl products. In cases

herein, there is also likely considerable rotational excitation of the butyl radical products. For

the forward scattered products, similar reduced translational energy release in the forward

direction (and below the model prediction) is seen, except for primary (D) abstraction at the

lower collision energy. It can be speculated that these large impact parameter collisions (for
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forward scattering from primary abstraction) result in little momentum transfer, giving rise

to lower rotational excitation in general and a lower likelihood of A-axis rotational excitation

in particular.

Perhaps the most surprising feature of these results is the absence of any strong signature

of the distinct dynamics for these two reaction channels in the angular distribtions. It may be

that these systems, with little or no barrier and large reaction cross sections, are less sensitive

to these issues than analogous reactions with significant barriers, such as for oxygen atoms.

4.5 Conclusion

The abstraction reaction of Cl atom towards butane-1,1,1,4,4,4-d6 has been studied using

single-photon ionization using crossed molecular beam dc slice imaging methods. This allows

comparison in detail the dynamics associated with these two abstraction channels. The

angular distributions showed a dramatic increase in the forward scattered product with

collision energy for both reaction channels but were very similar for H or D abstraction at

all collision energies studied. The translational energy distribution showed some differences

for the two channels, with a larger fraction of the collision energy appearing in translation

for the H abstraction channel in the forward direction, but an opposite trend for the D

abstraction channel.
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Chapter 5

Imaging the dynamics of chlorine
atom reactions with alkenes

5.1 Introduction

The dynamics of chlorine atom reactions with alkanes have been extensively studied and

are now understood at a considerable level of detail. These reactions are particularly at-

tractive because the process proceeds via direct hydrogen abstraction by the chlorine atom

generating an alkyl radical and HCl as products. Both products have been investigated

by several detection schemes such as photoloc and crossed-beam methods. Theoretical and

experimental investigations showed that the nascent HCl(v ,J ) product distributions are rota-

tionally cold and the reaction is characterized by a collinear Cl-H-C transition state. Detailed

reviews on this subject have been published elsewhere [9, 11, 13, 112, 113].

The chemistry of Cl + alkene reactions is very rich, albeit more complicated than the sat-

urated hydrocarbons owing to the presence of the double bonds and the dramatic variations

in CH bond energies across the various reaction sites. The interactions of chlorine atoms

with unsaturated hydrocarbons (URH) are of considerable importance in understanding the

processes involved in combustion, atmospheric, marine, and environmental chemistry. To

date, numerous kinetic studies of chlorine with simple alkenes have been reported [114–123]

but no detailed dynamical investigations. The rate constants reported in these thermal stud-

ies represent three dynamically distinct processes: (5.1a) addition to the double bond with
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stabilization of the adduct by a third body, (5.1b) addition-elimination giving HCl and an

alkenyl radical, and (5.1c) direct hydrogen abstraction the molecule giving the same products

as (5.1b):

Cl + CnH2n −→ CnH2nCl· + M (5.1a)

Cl + CnH2n −→ (CnH2nCl)* −→ CnH2n−1· + HCl (5.1b)

Cl + CnH2n −→ CnH2n−1· + HCl (5.1c)

The C-H bond strengths and associated reactivity vary quite dramatically, as will be

investigated in detail in what follows. Abstraction of an allylic H atom is strongly exoergic

owing to the formation of the resonantly stabilized radical product, so this is the energetically

preferred path. The addition channel (5.1a) produces a chloroalkyl radical and is barrierless

and exoergic (-20 kcal mol−1). The products of addition-elimination (5.1b) and direct ab-

straction (5.1c) mechanisms are identical on the basis of chemical formula, but formation of

distinct product isomers for these two pathways is clearly possible. Moreover, their relative

importance is not clear and the branching may change significantly with temperature and

pressure. Since all of these channels are simultaneously operative in the Cl+URH reactions,

several techniques have been used to disentangle the individual contributions to the whole.

The total reaction rate coefficient dependence on pressure was used to separate addition from

metathesis (i.e., abstraction or addition-elimination). The kinetic isotope effect method has

been used to deconvolute addition and abstraction mechanisms. Extracting the contribu-

tion of direct abstraction from the addition-elimination channel can be modeled by probing

the vibrational energy disposal of the diatomic product HCl [119]. The vibrational energy

disposals for the direct abstraction and addition-elimination channels are significantly dif-

ferent [124, 125]. The reaction of Cl with propene, for example, involves addition, direct

abstraction of allylic hydrogen, and addition-elimination channels that also involve reaction

at the allylic site. This system has been the subject of numerous rate studies using different

methodologies. Kaiser and Wallington [118] measured the total rate coefficient using end
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product analysis by Fourier transform infrared and gas chromatography to separate addition

and metathesis contributions. They reported a net rate constant to be (3.7±0.3)×10−11 cm3

molecule−1 s−1 and about 60% (2.3×10−11) of this is attributed to direct abstraction and the

remainder to the addition-elimination path. Pilgrim and Taatjes [119] measured the fraction

of the vibrationally excited HCl produced in the same reaction. Results showed that a siz-

able fraction, (48±6)%, of the HCl were vibrationally excited at 293 K. They ascribed this

result to the predominance of direct abstraction in the reaction. A comprehensive review on

this subject has been reported by Taatjes [126].

Over the years, ion imaging [18, 20] has become a premier technique in studying photo-

chemical reactions and recently it has provided deep insight in crossed-beam investigations

of complicated atom + polyatom reactions [11, 58, 127–129]. One advantage of crossed-beam

experiments is the capability of the experimentalist to control the initial state (e.g., energize

the reagents mode independently) and the direction of the reactants. Crossed-beam meth-

ods also present the advantage of confining the radical and the target molecules in separate

supersonic beams, ensuring reactions at specified collision energy [8, 130]. In addition, the

reaction differential cross section and the product translational energy distributions can be

deduced directly from the image of the product to elucidate the details of molecular dynamics

of the reaction.

In contrast to Cl + RH reactions, the dynamics of Cl + URH reactions is a rich area

that has received much less attention. In this chapter, results for the reaction of Cl atoms

with a series of target monounsaturated alkene molecules (1-pentene, 1-hexene, 2-hexene,

and cyclohexene) is presented. The advances in sensitivity in probing the alkyl radical in Cl

+ RH reactions prompted to extend the efforts to Cl + URH reactions using crossed-beam

dc slice ion imaging. The detection strategy involves the use of a single photon ionization

of the alkenyl radical product utilizing a 157 nm excimer laser [72, 73, 75–78, 108]. In the

experiments, the hydrocarbon radical product are probed, so the experiments are only sensi-

tive to reactions of larger (C5 and higher) systems whose radical products have low enough



51

ionization energies for 157 nm ionization. This work aims to provide the global picture of the

dynamics of the Cl atom reactions with monounsaturated hydrocarbon reactions. One of the

fundamental questions addressed in this study is the relative importance of direct abstrac-

tion versus addition-elimination mechanism as a function of collision energy. In addition,

the experiments sought to gain insight into the energetics for larger monounsaturated hydro-

carbons and radicals, and probe relative importance for abstraction at the various H-atom

sites in the molecule.

5.2 Methods

5.2.1 Experimental Methods

The reactive scattering experiments reported here were performed in a crossed-beam

imaging apparatus described elsewhere [66, 78]. The experimental details of the present

study have been described in greater length in previous report [105]. Briefly, the apparatus

consists of a main chamber and two source chambers (∼10−7 Torr base, ∼10−5 Torr oper-

ational pressure), fixed at 90◦ to each other. In the radical source chamber, a molecular

beam of oxalyl chloride (ClCO)2 was produced by passing helium through a bubbler con-

taining (ClCO)2 held at 0◦C. The Cl atom beam was subsequently generated by photolyzing

(ClCO)2 using the 193 nm output of an ArF excimer laser (60 mJ, 10 Hz) at the nozzle of a

piezoelectric pulsed valve. The Cl beam was skimmed before entering into the collision re-

gion. Photodissociation of (ClCO)2 at 230 nm by Ahmed et al . [81] reported Cl, Cl*(2P1/2),

and CO as products of the dissociation process and Hemmi and Suits extended this study

to 193 nm [82]. Both studies reported the production of two Cl atoms per photon absorbed.

The excited spin-orbit Cl*(2P1/2) produced at 230 nm is anticipated at 193 nm. However,

after entrainment in the supersonic expansion, most of the Cl*(2P1/2) atoms are likely to be

quenched to the ground state [23, 83, 131].

The alkene (1-pentene, 1-hexene, 2-hexene, and cyclohexene), seeded 5% in Ar or He,

was expanded from a total pressure of 4 bar through another pulsed valve, collimated by
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a single skimmer, and crossed the Cl beam at 90◦ in the interaction region. The alkenyl

radical products of interest were detected by single photon ionization at 157 nm using an

F2 excimer laser (GAM EX-10, ∼0.5 mJ, 10 Hz) focused loosely using a MgF2 lens (f

= 135 cm) into the collision region of the two crossed molecular beams. The ions were

accelerated via a four-electrode dc slice ion optics assembly to impact on a 75 mm diameter

dual microchannel plate (MCP) detector coupled to a fast phosphor screen held at 5 kV

(Photonics/Burle, Sturbridge, MA). The front of the MCP assembly [14] was held at ground

potential and the back plate was pulsed to ”gate” the central slice of the reaction products

at a specific mass by application of a high voltage pulse (+2.2 kV/+1 kV bias, 70 ns width)

using a commercial pulse generator (DEI PVX-4140, Fort Collins, CO). The timing of the

pulsed molecular beam nozzles, firing of the photolysis and probe lasers, and detector gate

pulse were controlled using a delay generator (BNC 555, San Rafael, CA). The resulting

image was recorded using a charged coupled device camera (Mintron 2821e, 512×480 pixels,

Taipei, Taiwan). The dc slice imaging detection scheme and megapixel acquisition program

IMACQ were used to accumulate the raw images containing centroided data [84]. Image

accumulation to reach a satisfactory signal to noise ratio took 13 h per system at a given

collision energy. The conditions of a typical experiment are illustrated in an accompanying

video shown in previous publication [105].

5.2.2 Theoretical Methods

Ab initio calculations were carried out using the GAUSSIAN 09 [102] suite of software.

The geometries of each alkene studied, as well as the radicals formed following removal

of a hydrogen atom from each distinct carbon atom, were optimized in the initial step of

the compound method CBS-QB3 [103, 104]. The bond dissociation energies and reaction

enthalpies were then obtained from the CBS-QB3 (0 K) energies including zero point energy.

Adiabatic ionization energies were also obtained using the CBS-QB3 method to optimize

the corresponding ion structures. The vertical ionization energies were calculated using the
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CBS-QB3 methodology without the initial geometry optimization for the ion. Instead, the

geometries used were those of the optimized radical associated with each ion. Further details

(energies, optimized structures, vibrational frequencies, and rotational constants) may be

found in the online supplementary material [http://dx.doi.org/10.1063/1.3473049].

Figure 5.1: DC sliced images of alkenyl radical product from reactions of Cl(2P3/2) with
indicated alkene reagents and superimposed Newton diagrams. (A) 1-pentene, collision
energy 4.3 kcal/mol; (b) 1-hexene, collision energy 4.2 kcal/mol; (c) 2-hexene, collision energy
4.1 kcal/mol; (d) cyclohexene, 4.3 kcal/mol; (e) 1-pentene, collision energy 7.2 kcal/mol; (f)
1-hexene, collision energy 7.1 kcal/mol; (g) 2-hexene, collision energy 7.0 kcal/mol; and (h)
cyclohexene, collision energy 7.3 kcal/mol.

5.3 Results

Figure 5.1 shows the reactive scattering images of the alkenyl radical from the reaction

of Cl atoms with 1-pentene, 1-hexene, 2-hexene, and cyclohexene at collision energies (EC)
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of 4.0 and 7.3 kcal/mol. The spread in the collision energy is roughly 25% full-width at

half maximum. The most probable Newton diagram for each detected radical is overlaid on

the image. These images are background subtracted and density-to-flux corrected from the

raw images obtained in the experiment as described in detail previously [105]. Background

subtraction is performed by recording an image with the 193 nm photolysis laser off and

the 157 nm probe on to isolate the reactive scattering signals from the radicals produced

by photodissociation of the parent alkene. The 157 nm probe, albeit highly sensitive in

detecting the alkenyl product, can also generate signal from photodissociation of the parent

hydrocarbon [75–79]. The integrated intensity of the background photochemistry signal is

on the order of 20% of the total and it is comparable in magnitude to the reactive signal in

the region of the image in which it appears. It is straightforward to subtract this reliably.

One point that is not apparent in the images in Fig. 5.1 is that the subtracted images are

signed values so that, for example, a region containing only background will integrate to zero

after correction even if the background counts arrive in different pixels in the laser-on and

laser-off images.

+6.6 +2.7

-20.3
-5.9

-3.1

Figure 5.2: Possible H-atom abstraction sites for 1-pentene and the associated reaction
enthalpies (CBS-QB3). Values are in kcal/mol.

Abstraction of a hydrogen atom from the C5 and C6 unsaturated hydrocarbons is a

much more complicated process than that of the corresponding saturated systems. Figure

5.2 shows the different positions of H-atom abstraction for 1-pentene, for example, along with
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the energetics involved in the process. Aside from the varying sites of possible abstraction,

it is also important to note that the chemical environments (i.e., C atom hybridization) to

which these hydrogen atoms are attached are markedly different. Abstraction of the allylic

(β-C) hydrogen and the vinylic (α-C) hydrogen can occur at widely different rates. For higher

alkenes (n ≥ 4), as in the case here, alkyl hydrogens can also be the site of abstraction. The

reaction enthalpies (0 K) are shown in the figure 5.2, based on bond dissociation energies

calculated at the CBS-QB3 level by Visger [106]. Reaction energetics and ionization energies

for the target molecules and various radical products are compiled in Table 5.1. On the

basis of thermochemistry alone, one might predict that abstraction of the allylic hydrogen

atom might be dominant owing to its lower dissociation energy. However, in the case of 1-

pentene, for example, reactions involving any of the allylic and alkylic hydrogen abstractions

are exoergic, with the latter values similar to those for analogous alkanes studied recently

[105]. While the calculated vertical ionization energy values are somewhat higher than the

probe energy (7.9 eV) in some cases, the recent study of the relative ionization efficiency for

products of heptane isomer photodissociation at 157 nm showed little variation in detection

of various radical products even for those with vertical ionization energies slightly above the

probe energy. The exception here is for the radicals produced by abstraction of the vinylic

H atoms: these are both significantly endoergic channels and the radicals possess higher

ionization energies. Abstraction at these sites is highly unlikely and neglect these reactions.

For abstraction at the allylic or alkylic H-atom sites, based on the calculations in Table

5.1, strong variation in ionization efficiency is not expected. In what follows, variations in

detection efficiency for different radical products is not explicitly considered [85].

Figure 5.3 shows the total translational energy distributions, integrated over all angles,

and the center-of-mass angular distributions, integrated over all recoil speeds, derived from

the images after background subtraction and density-to-flux correction. The translational

energy at low collision energy peaks at around 2-3 kcal/mol and extends beyond 10 kcal/mol.

The peak is shifted to slightly higher energies at high collision energy. The angular distribu-
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Table 5.1: CBS-QB3 bond dissociation energies and reaction enthalpies (0 K) for reaction
at indicated carbon atom for each reactant molecule. Also given are vertical and adiabatic
ionization energies for each product radical. Allylic radicals are indicated by asterisks.

aBond dissociation energy, bCl + URH → HCl + UR·,cIonization energy

BDE (kcal/mol)a ∆Hrxn(kcal/mol)b Vertical IEc (eV) Adiabatic IE (eV)
1-pentene
C1 110.0 6.6 8.8 7.9
C2 106.1 2.7 8.4 7.3
C3* 83.1 -20.3 7.6 7.5
C4 97.5 -5.9 7.8 6.8
C5 100.3 -3.1 8.4 7.5
1-hexene
C1 110.0 6.6 8.9 7.8
C2 106.2 2.8 8.4 7.3
C3* 83.0 -20.4 7.6 7.4
C4 97.9 -5.5 7.7 6.8
C5 97.4 -6.0 7.7 7.2
C6 100.3 -3.1 8.4 7.1
2-hexene
C1* 85.5 -17.9 7.5 7.4
C2 106.6 3.2 8.2 7.2
C3 106.8 3.4 8.2 7.1
C4 82.9 -20.5 7.1 7.0
C5 97.5 -5.9 7.6 6.3
C6 100.3 -3.2 8.3 7.6

tions at low EC show flux in all directions and are largely isotropic. Increasing the collision

energy shows a shift to a more forward peaking trend for all cases, superimposed on the

isotropic component. This can be clearly seen in Figure 5.5 where the angular distributions

are grouped by collision energies. To gain further insight on the dynamics, the translational

energy distributions for the forward (0◦-60◦), sideways (60◦-120◦), and backward (120◦-180◦)

directions are examined by integrating the signal in these regions separately, as shown in

Figure 5.4. The translational energy distributions in the forward direction show a modest

peak at low collision energy that grows dramatically with collision energy. If the sharp

forward scattered contribution is assumed as a dynamically distinct feature, it is useful to

quantify its contribution relative to the isotropic component and evaluate it for each reactant
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Figure 5.3: Total center-of-mass translational energy distributions (left) and angular distri-
butions (right) for the indicated alkene reactions from data in Fig. 5.1. Black curves are
the low collision energy results from Figs. 5.1a, 5.1b, 5.1c, 5.1d; red curves are high collision
energy results from Fig. 5.1e, 5.1f, 5.1g, 5.1h.

molecule and collision energy. This will be justified further below. The result of this analysis

is shown in Table 5.3 as the excess forward scattering, i.e., the deviation from an isotropic

distribution. The most probable collision energy and average translational energy release

are compiled in Table 5.2.
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Figure 5.4: Center-of-mass translational energy distributions for the indicated Cl(2P3/2) +
alkene reactions and center-of-mass scattering region: Forward (0◦-60◦), sideways (60◦-120◦),
and backward (120◦-180◦). Left side: low collision energy results; right side: high collision
energy results.

5.4 Discussion

This study presents the first crossed-beam study of the reaction of Cl atoms with mo-

nounsaturated hydrocarbons. This section begins by addressing the issue of the competition

of direct abstraction versus the addition-elimination mechanism by looking at the center-

of-mass product angular distributions grouped by EC as shown in Fig. 5.5. At the low

collision energy, around 4 kcal/mol, the distribution is seen to be largely isotropic with a

small forward scattered contribution; the latter growing markedly as the collision energy is

increased to 7 kcal/mol. The isotropic component is a strong suggestion of the formation of

a collision complex [132] that has a lifetime longer than its rotational period. Schmoltner
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Figure 5.5: Total center-of-mass angular distributions from Fig. 5.1 grouped by collision
energy. (A) Low collision energy; (b) high collision energy.

and co-workers [133–135] observed this trend in their studies of O(3P) reaction with different

unsaturated hydrocarbons. Similar behavior was also observed in the reaction of pseudohalo-

gen CN(X2Σ+) with different unsaturated hydrocarbons by Kaiser and co-workers [136–139].

Crossed-beam reactions of CN(X2Σ+)+unsaturated hydrocarbons with mass spectrometric

detection combined with ab initio calculations showed that the reaction undergoes complex

formation initiated by addition of CN to the π electron density of the olefin to give a long-

lived intermediate. A significant difference, however, is that the newly formed C-C bond is

quite strong in that case, so that H loss is a dominant process rather than simply HCN elim-

ination, which would be analogous to the HCl elimination that is the sole reaction channel

here. In addition to the ∼20 kcal/mol deep minimum for the URH-Cl addition complex, the

adducts in the systems studied here have at least 16 atoms and thus a much higher density

of states and correspondingly longer lifetime at the same collision energy.

As seen in Figs. 5.3 and 5.5, with increased collision energy, the distributions show a

significant gain in intensity in the forward scattered peak in addition to the isotropic distri-

bution. This suggests the presence of another pathway to products that becomes important
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Table 5.2: Most probable collision energy, EC (kcal/mol), average reduced translational
energy, 〈ET〉*= 〈ET〉/EC.

EC 〈ET〉total 〈ET〉forward 〈ET〉sideways 〈ET〉backward
Pentene 4.3 4.7 4.7 4.6 3.7

7.2 5.9 6.1 5.5 5.1
1-hexene 4.2 6.2 5.0 5.8 4.3

7.1 6.1 4.7 6.1 5.5
2-hexene 4.1 6.1 4.8 5.8 3.5

7.0 4.1 5.4 5.3 4.4
Cyclohexene 4.3 5.2 4.9 4.7 3.9

7.3 6.5 6.2 6.5 6.0

with increasing collision energy. There are two possible explanations for this behavior. One

is the “osculating complex” model of Herschbach [140], in which the scattering distributions

lose forward-backward symmetry as the lifetime of the collision complex approaches its rota-

tional period. An alternative explanation is that a distinct, direct component grows in with

collision energy and is superimposed on the long-lived complex component. The translational

energy distributions in the forward direction (see Fig. 5.4) clearly support the latter picture.

For a pure collision complex, it is expected that the forward and backward translational

energy distributions to be the same. At the low collision energy, the sideways and backscat-

tered distributions all peak near zero recoil energy, while for the forward direction one can

easily see a sharp forward peak superimposed on the same distribution as in the backward

direction. As the collision energy is increased, the sharp forward peak grows dramatically

and begins to extend into the sideways direction, while the backscattered component is little

changed.

It is thus suggested that the significant increase in the forward component at higher

collision energy marks the onset of direct abstraction of hydrogen to compete with the addi-

tion/elimination mechanism. As stated in Sec. 4.1, for Cl + alkanes, abstraction reactions

favor a collinear Cl-H-C transition state geometry which is associated with the cold nascent

HCl(v , J ) rotational product distribution [11]. This may be the case in the abstraction

process in Cl + alkene reactions. Literature search indicates that there is no experimental
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measurement reported on the nascent HCl(v , J ) rotational distribution of these class of re-

actions. We can, however, draw a theoretical estimate on the extent of linearity of Cl-H-C

transition state structure from the report of Braña and Sordo [141]. Their theoretical studies

in the abstraction channel of Cl + propene reaction showed almost linear transition state

structures for H abstraction in the five chemically different environments. Ab initio calcula-

tion at the MP2/aug-cc-pVDZ level of theory give values of <Cl-H-C ∼176.4◦-179.9◦ for the

abstraction of the three vinylic H atoms and <Cl-H-C ∼176.6◦-177.9◦ for the allylic H atoms.

Qualitatively, the rapid approach of Cl atom to the C5 and larger alkene molecule can result

in abstraction of an alkylic hydrogen atom producing the corresponding hydrocarbon radical

and HCl. This is reasonable since the H-atom site is at least two carbons away from the

unsaturation site; thus the reactivity is not strongly influenced by the π bond. The present

results clearly suggest the contribution of direct H-atom abstraction in the forward peaking

distributions, reminiscent of the energy dependence of the Cl + pentane results [105].

One significant difference in the direct scattering component seen here is the absence of a

direct component in the backward direction that was seen in Cl + pentane results [105]. This

strongly suggests that the low impact parameter collisions that lead to backscattering for

alkanes are depleted here and lead instead to complex formation and the addition/elimination

reaction.

The integrated translational energy distributions are similar in all target alkene molecules

and peak at 65% EC for the low collision energy and shift to higher values at high collision

energy as highlighted in Figure 5.3. It is sharpest in the 1-pentene systems and broader for

cyclohexene. What is distinct in the present result is the similarity of the sideways (60◦-120◦)

and backward (120◦-180◦) translational energy distributions for the reaction at low collision

energy. While the Cl + pentane results show strong coupling of the translational energy

and angular distributions, the present results reveal otherwise, especially in the low collision

energy. The forward peaking component reveals another interesting fact that even at low

EC, direct H abstraction (∼3%) seems operative as shown in Figure 5.6 and Table 5.3. It
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is clearly more pronounced in the high collision energy experiments as summarized in Table

5.3.
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Figure 5.6: Total center-of-mass angular distributions for 1-pentene from Fig. 5.1 fitted as
distinct isotropic and forward scattered components. Black curves are low collision energy
results and red curves are high collision energy results.

One challenging aspect in the Cl + alkene experiment is to assay the available energy of

the reaction because of the varying energetics for different reaction sites. The calculations

shown in Table 5.1 are consistent with the limited values available in literature, but provide

a consistent overall picture. Reaction at the vinylic carbon sites can largely be neglected

under the conditions owing to significant endoergicity. Reaction at the allylic site is strongly

exoergic, approaching that of F atom reaction with alkanes. Reaction at the more remote

sites shows energetics quite similar to the alkanes, as discussed above. At low energy, addi-

tion/elimination is expected to dominate forming mostly the allylic radical. This suggests

the observed average recoil energies of 4-5 kcal/mole represent on the order of 20% of the

available energy in recoil. This is vastly different from the alkane case and, again, entirely

consistent with addition/elimination. This further leads to the question of energy disposal.

Table 5.3: Percent excess forward scattering from Figure 5.6

Low collision energy High collision energy
1-pentene 3.5 ± 0.01 11.0 ± 0.008
1-hexene 3.2 12.0
2-hexene 3.7 13.5
Cyclohexene 3.4 11.0
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Pilgrim and Taatjes measured the HCl vibrational energy disposal in the Cl + propene

reaction and found that significant amount of reaction exothermicity (28±3%) was found

to be channeled into HCl vibration with 0.48±0.006 formed in vibrationally excited levels.

This could account for a significant fraction of the missing energy. The addition/elimination

reaction will also give rise to much hotter hydrocarbon radical products, again consistent

with the lower fraction of energy in recoil.

5.5 Conclusion

This work represents the first crossed-beam study of Cl atom reactions with monoun-

saturated alkene molecules. The results of the experiment show two distinct mechanisms

for the reaction of chlorine atoms with a series of molecules studied. At low collision en-

ergy, the angular distributions are highly isotropic with small (∼3%) forward component.

This suggests the formation of a long-lived intermediate that indicates addition-elimination

mechanism with minimal direct H-atom abstraction contribution. At higher collision energy,

the contribution of direct H-atom abstraction increases to ∼13.5% of the product flux. The

dynamics associated with the interaction of chlorine atoms with unsaturated hydrocarbons

present a rich ground that merits further dynamical research. In particular, state-resolved

scattering studies probing the distinct dynamics for formation of HCl v = 0 and v = 1 should

be very revealing.
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Chapter 6

Reaction dynamics of Cl + butanol
isomers by crossed-beam sliced ion
imaging

6.1 Introduction

Over the years, a wide array of theory, experiments, and computations has been per-

formed in establishing the dynamics associated with the reaction of Cl atoms with hydrocar-

bons (RH) [11, 112, 113]. However, related studies on the dynamics of Cl atom reactions with

oxygenated hydrocarbons like alcohols are relatively limited. These oxygenated hydrocarbon

(ROH) systems offer special dynamical interest to both theory and experiments. In addition

to its multiple reactive sites and the degree of polarity of the molecule, the complexity of

the potential energy surfaces present some serious setbacks on the part of the researchers in

interpreting the results.

Only a few of the experiments on the dynamics of Cl + ROH reactions involve prob-

ing the hydroxyalkyl radical or the nascent HCl (v, J) products using various detection

methods. Ahmed et. al [77, 78] first combined crossed molecular beam with velocity map

imaging techniques for the reaction of Cl(2P3/2) atoms with smaller alcohol such as methanol,

ethanol, and 2-propanol using single photon ionization as a product probe of the scattered

hydroxylalkyl products. Results showed that 30-40% of the available energy of the reaction

was deposited into product translation with the detected product angular distributions to
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be predominantly sideways/backward scattered with respect to the alcohol beam suggesting

direct rebound dynamics. Rudic and coworkers [142] measured the rotational distribution of

the HCl(v = 0) products formed from the reaction of Cl atoms with methanol, ethanol, and

dimethyl ether to be relatively hotter compared to that of Cl + RH reactions. These results,

coupled with ab initio calculations [143], were ascribed to the dipole-dipole interaction of the

HCl and the radical co-product in the exit channel of the potential energy surface (PES). In

a state-to-state experiments of the Cl + CH3OH → HCl(v, J) + CH2OH reaction, Bechtel

and coworkers [144] employed photoloc technique combined with REMPI methods to inves-

tigate the nascent HCl (v, J). The probed HCl (v = 0, 1) products reveal direct reaction

with both stripping and rebound mechanism for v = 0 and stripping reactions for v = 1 with

the CH2OH co-products act as spectator in direct contrast to v = 0. In the imaging study of

the differential cross sections (DCS) of Cl+CH3OH, Murray and coworkers [145] found that

the nascent HCl (v = 0) products are forward scattered for J = 2 and backwards for J = 5.

Recently, there has been a growing interest in the chemistry of butanol isomers primar-

ily because of the possibility to use these alcohols as an alternative transportation fuel to

address the problem of diminished natural oil and gas resources [146]. A significant number

of detailed kinetic investigations [147–153] and theoretical calculations [154–156] have been

performed to establish an accurate kinetic model in the combustion of butanol. These alco-

hols are produced from fermentation and non-fermentative biosynthesis and possess energy

densities closer to gasoline and do not readily absorbed moisture from the atmosphere [157–

160]. In addition, branched alcohols have octane numbers higher than the straight chain

counterparts. Substantial kinetic database have been established for the reaction of Cl with

smaller alcohols such as methanol, ethanol, and propanol [161–166]. Few kinetic studies

involving Cl + butanol involve determining the rate constant and mechanism of the reaction

[167–171]. However, the associated dynamics of the reaction has not been touched upon.

The kinetics of these reactions has been investigated in a variety of independent studies.

Kinetic measurements have shown that the rate constant for Cl + n-butanol is (1.96 ± 0.19)
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× 10−10 cm3 molec−1 s−1 [168], Cl + sec-butanol is (1.32 ± 0.14) × 10−10 cm3 molec−1 s−1

[167], Cl + iso-butanol is (1.82 ± 0.14) × 10−10 cm3 molec−1 s−1 [169] and Cl + tert-butanol

is (3.26 ± 0.19) × 10−11 cm3 molec−1 s−1 [169].

In this section, a non-state selective study of the H-abstraction reaction of Cl(2P3/2) with

butanol isomers (n-butanol, sec-butanol, iso-butanol, and tert-butanol) by crossed-beam dc

slice imaging is presented. The product hydroxyalkyl radical were probed via single photon

ionization at 157 nm. As has seen in the past, this product probe is a sensitive and systematic

approach to studying the underlying dynamics of complicated polyatomic chemical reactions

[72–79, 101, 105, 106, 108].

6.2 Experiment

The scattering experiments were performed using a crossed-beam dc slice ion-imaging

set-up described elsewhere [66, 78]. Briefly, both beams were confined in separate supersonic

expansion in two source chambers (∼10−7 base Pressure and ∼10−5 operational Pressure)

fixed at 90◦ to each other and collimated by a skimmer before it enters the differentially

pumped interaction region. The Cl atom beam was generated from the photolysis of oxalyl

chloride, (COCl)2 using the 193 nm output of an ArF excimer laser (60 mJ, 10 Hz) at the

nozzle of a piezoelectric pulsed valve. The dissociation dynamics of (COCl)2 was known to

produce Cl, Cl*(2P1/2), and CO as reported by Ahmed and coworkers [81] at 230 nm and

further investigated by Hemmi and Suits [82] at 193 nm. The excited spin-orbit Cl(2P1/2)

produced at 230 nm is anticipated at 193 nm. However, after entrainment in the supersonic

expansion, most of the Cl(2P1/2) are likely to be quenched to the ground state [23] .

The alcohols (n-butanol, sec-butanol, iso-butanol, and tert-butanol), seeded 5% in He

or H2, was expanded from another pulsed valve in another source chamber with a total

pressure of 4 bar, and crossed the Cl beam at 90◦ in the interaction region. An excimer

F2 laser (GAM EX-10, ∼0.5 mJ, 10 Hz) was used to effect ionization of the hydroxyalkyl

radical products (m/z = 73) of the reactions. The probe laser was loosely focused using a
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MgF2 lens (f=135 cm) into the collision region of the two crossed molecular beams. The

ions were accelerated via a four-electrode dc slice ion optics assembly [14] to impact on

a 75 mm diameter dual microchannel plate (MCP) detector coupled to a fast phosphor

screen held at 5kV (Burle Electro-Optics). The front of the MCP assembly was held at

ground potential and the back plate was pulsed to ”gate” the central slice of the reaction

products at a specific mass by application of a high voltage pulse (+2.2 kV/+1 kV bias, 70

ns width) using a commercial pulse generator (DEI PVX-4140). The timing of the pulsed

molecular beam nozzles, firing of the photolysis and probe lasers, and detector gate pulse

were controlled using a delay generator (BNC 555). The resulting image was recorded using

a charged coupled device camera (Mintron 2821e, 512×480 pixels). The dc slice imaging

detection scheme and megapixel acquisition program IMACQ were used to accumulate the

raw images containing centroided data [84]. Image accumulation to reach a satisfactory

signal to noise ratio took 1-3 hours.

6.3 Results

The reactively scattered hydroxyalkyl radical from the Cl atom reactions with butanol

isomers are shown in Figure 6.1 with the nominal Newton diagram overlaid in the images.

The improved instrumental resolution and the ability to produce intense source of Cl radicals

enabled us to obtain considerably more detailed images of the hydroxyalkyl radical than

was previously possible. The spread in the collision energy is roughly 25% full-width half

maximum.

The butanol isomers have two fundamentally different abstraction sites: One in the

hydroxyl end of the molecule and the C-H groups. Thermochemical data indicates the bond

strength to be 104 and 94 kcal/mol for H abstraction in the O-H and C-H sites, respectively.

From this data alone, the C-H bond abstraction site is seen to be favorable. Moreover,

kinetics investigation on the specificity of H atom abstraction showed preference of H-atom

abstraction on the alkyl backbone with ∼3% contribution from the hydroxyl end [163, 164].
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Figure 6.1: Sliced scattering data for reaction of Cl with butanol isomers. A, B: n-butanol
at 6.8 and 8.0 kcal/mol; C, D: 2-butanol at 5.7 and 8.0 kcal/mol; E, F: iso-butanol at 5.3
and 7.0 kcal/mol, and G, H: tert-butanol at 7.0 and 9.2 kcal/mol, respectively.

A dynamical study on the reaction of Cl atom with deuterated methanol: CH3OD and

CD3OH showed no DCl products for the former and measured only the nascent DCl for the

latter [144].

Figure 6.2A shows the total translational energy distributions, integrated over all angles.

The distributions peak at lower energy and grow with collision energy. Figure 6.2B are the

corresponding angular distributions, integrated over all recoil directions derived from the

hydroxyalkyl images after background subtraction and density-to-flux correction, described
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Figure 6.2: Global translational energy and angular distributions extracted from Figure 6.1.

in detail in previous reports [105, 106] . The angular distributions at low collision energy

(EC) show flux in all direction with preference in the backward direction with respect to the

alcohol beam. Increasing the EC shows a shift to a more forward peaking trend.

To gain further insight on the dynamics, the translational energy distributions for the

forward (0◦-60◦), sideways (60◦-120◦), and backward (120◦-180◦) regions of the distributions

is shown in Fig. 6.3 and tabulated in Table 6.1.
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Figure 6.3: Angle-dependent translational energy distributions from more detailed analysis
of images in Fig. 6.1. Left panel: low collision results, right panel: high collision energy
results.

6.4 Discussion

A surprising result here is the similarity of the dynamics of the title reaction with that

of Cl + pentane reaction as will be discussed here. One of the significant differences of Cl

atom reactions with alcohols compared to alkanes is the degree of rotational excitation of the

nascent HCl (v, J) products. It is rotationally cold in alkane while it is modestly rotationally

excited in alcohol [11, 142] . This warmer HCl rotational distribution is ascribed to a dipolar

interaction between HCl and the hydoroxyalkyl moieties in the exit channel of the potential

energy surface [142]. The difference in rotational distributions may suggest a marked con-



71

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

TOTAL
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

P(
E T

) (
ar

b.
)

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

TOTAL
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

P(
E T

) (
ar

b.
)

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

FORWARD
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

P(
E T

) (
ar

b.
)

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

SIDEWAYS
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

P(
E T

) (
ar

b.
)

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

BACKWARD
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

P(
E T

) (
ar

b.
)

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

P(
E T

) (
ar

b.
)

FORWARD
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

P(
E T

) (
ar

b.
)

SIDEWAYS
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Translational Energy/Collision Energy

P(
E T

) (
ar

b.
)

BACKWARD
 n-butanol
 sec-butanol
 iso-butanol
 tert-butanol

Translational Energy/Collision Energy

A B

Figure 6.4: “Reduced” translational energy distributions highlighting tendency for transla-
tion to follow collision energy. Left panel: low collision energy results, right panel: high
collision energy results.

trast in overall dynamics between saturated and oxygenated hydrocarbons towards reactions

with chlorine atoms but may also prove otherwise. We first turn to the angular distribu-

tions shown in Figure 6.2B. At lower collision energy, the product flux are scattered on the

backward direction with respect to the direction of the alcohol beam (0◦). The product

angular distribution shifted to forward distribution as the collision energy is increased. The

absence of symmetric angular distributions supported the hypothesis of a direct or rebound

dynamics at low collision energy as a result of low impact parameter collisions and stripping

for high collision energy coupled to high impact parameter collisions. However, in the ab



72

Table 6.1: Most probable collision energy, EC (kcal/mol), average translational energy re-
lease, 〈ET〉(kcal/mol) in the different regions of the image for the subject reactions.

EC 〈ET〉total 〈ET〉forward 〈ET〉sideways 〈ET〉backward
n-butanol 6.8 5.8 4.0 4.1 5.5

8.0 5.4 6.3 5.4 6.6
sec-butanol 5.7 4.7 4.9 4.7 5.2

8.0 5.2 6.6 6.1 6.8
iso-butanol 5.3 4.2 4.0 3.1 4.8

7.0 4.3 5.3 4.0 6.0
tert-butanol 7.0 5.8 6.2 6.0 6.3

9.2 6.4 6.7 4.9 7.4

Table 6.2: Most probable collision energy, EC (kcal/mol) and average reduced translational
energy release, 〈ET〉* = 〈ET〉/EC in the different regions of the image for the subject reac-
tions.

EC 〈ET〉*total 〈ET〉*forward 〈ET〉*sideways 〈ET〉*backward
n-butanol 6.8 0.86 0.59 0.60 0.81

8.0 0.68 0.79 0.68 0.83
sec-butanol 5.7 0.82 0.86 0.82 0.91

8.0 0.65 0.83 0.76 0.85
iso-butanol 5.3 0.79 0.75 0.58 0.91

7.0 0.61 0.76 0.57 0.86
tert-butanol 7.0 0.83 0.86 0.86 0.90

9.2 0.70 0.73 0.53 0.80

initio MP2/6-311G** calculation of Garzon and coworkers [168], it was found out that the

reaction of Cl + butanol proceed via molecular complexes appearing along the reaction path-

way, with values 5.25 kcal/mol and 3.60 kcal/mol below the reactants for the pre-transition

state and post-transition state complex, respectively. Conventional wisdom reasoned that

for complex mediated reaction, the angular distribution is expected to be highly symmet-

ric in the forward-backward regions or a highly isotropic distribution [132]. Although the

current results show otherwise, a critical parameter influencing the dynamics is, of course,

the collision energy. Global statements such as the reaction is complex-mediated (or direct)

must be associated with a particular collision energy to be meaningful. Unfortunately these

reactions at thermal energies or below have not yet examined .
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This subtle difference in behavior of Cl + butanol is reminiscent to the previously ob-

served distribution in Cl + smaller alcohols. Ab initio calculations for Cl + CH3OH →

HCl + CH2OH characterize molecular complexes appearing in the potential energy surface

suggesting pre-reactive complexes, however, these van der Walls and weak H-bonds wells are

too shallow to allow reaction complexes to exist at the collision energies employed [142, 143].

In separate experimental investigations, Ahmed and co-workers [77, 78] found the reaction

to be backward-sideways scattered suggesting direct rebound dynamics using single photon

ionization as a product probe for the hydroxyalkyl radical at 8.7 kcal/mol collision energy.

Bechtel and coworkers [144] revisited the reaction using co-expansion technique probing the

nascent HCl (v, J) by 2 + 1 REMPI. Their findings suggest stripping mechanism for HCl (v

= 1) and both stripping and rebound mechanism for HCl (v = 0) products. At 5.6 kcal/mol

mean collision energy of Cl + CH3OH, a state-to-state probing of HCl products showed

propensity for forward scattering for J = 2, and more pronounced backward scattering for

J = 5. These results provide additional support to the experimental findings for butanol

isomers.

The question now is how to reconcile this experiment-theory discrepancy? One of the

factors to consider is the issue of the stability of the complex formed in the reaction. The

osculating complex model by Herschbach [140] postulated that the collision complex lifetime

τ , has to survive of at least 5 times its rotational period τ r, to qualify a reaction to be a

long-lived complex-mediated mechanism. For a short-lived complex, the initial approach of

the reactants is not scrambled causing the angular distribution, I(θ) to be asymmetric. One

of the major problems in dealing with large polyatomic systems such as the case herein is

the presence of stereoisomers that potentially blur the angular distributions. Although great

success has been achieved in separating different conformers in unimolecular dissociation

[172–175], studying its effects in full collision reactions remain a challenge [101]. For butanol

alone, the presence of 14 stereoisomers with small differences in energetics [176, 177], in

addition to the anisotropic shape of the molecule, foil the distribution as Cl atom approach
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the butanol at all possible angles. It is however, noteworthy to mention that all rotational

and vibrational levels of the hydroxyalkyl radical are ionized, i. e. universal detection. The

angular distribution may show a forward-backward symmetry in a state-to-state probing of

the nascent HCl (v, J) products at collision energy values near or at the collision energy in

combustion engine just like the way the HCl rotational distribution is different in the two

set of hydrocarbons. One of the problems in the current report is the inability to go to low

collision energy especially for the n-butanol case.

A closer inspection of the translational energy distribution provides additional informa-

tion in the reaction dynamics. Figure 6.2A shows the total translational energy distributions

integrated over all angles. The distributions show to preserve the collision energy into prod-

uct recoil as expected for a heavy-light-heavy reaction, where a heavy atom abstracts a light

atom attached to another heavy atom [16, 178]. The translational energy distributions are

scaled by dividing the distribution values by the collision energy and the plots are shown

in Figure 6.4 and summarized in Table 6.1. At high collision energy, ∼70% of the product

have P(ET) equal to or less than the collision energy. This fraction is smaller in the low col-

lision energy. The translational energy for the forward scattered product can be predicted

using the spectator-stripping model [179] where the departing HCl product has the same

momentum as the approaching Cl atom: (35/36)2 × EC. The values reported in Table 6.1

are significantly lower than the predicted value, i. e. 4.0 kcal/mol (experiment) against

6.5 kcal/mol (model) for the 6.8 kcal/mol collision energy for the Cl + n-butanol reaction,

suggesting likely rotational excitation of the hydroxyalkyl radical. The forward distributions

peak at ∼80% of the collision energy in sharp similarity with Cl + pentanes reaction [105].

The backward scattered peak, which results from the low-impact parameter collisions and

collinear collisions, can be modeled by:

〈EC〉 = EC cos2 β + ER sin2 β (6.1a)

where β is the skew angle for the reaction, EC is the collision energy, and ER is the energy

release in the reaction. Since the reaction considered here is a heavy-light-heavy reaction,
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the second term of the equation above vanishes because the skew angle is highly acute, β

∼ 11.5◦. In all cases, the observed translational energy release for the backward scattered

products are lower than the predicted value from the model of Evans et. al [110]. The

disagreement can be due to the fact that this model works well for triatom systems and

not for polyatomic molecules. Polyatomic systems possess several repositories for the excess

energies: vibrations or rotation of the alkyl radical product are two of the possibilities. A

Franck-Condon argument by Liu and Suits [75] for the reaction of O(3P) + butane, showed 4-

5 kcal/mol for the relaxation energy of the alkyl radical from the transition state geometry is

not available for product recoil. The sideways-scattered product resulting from intermediate

impact parameter collisions, showed with consistency, the lowest average fraction of energy in

translation (see Table 6.1). It is likely that in this case, there is efficient rotational excitation

of the hydroxyalkyl radicals but with no compensating coupling of the exoergicity into recoil.

The fraction of available energy appearing in translation is not reported because of the lack of

scientific reports on the enthalpy of reactions for the different butanol isomers with chlorine

atom.

As mentioned at the outset of this section, one puzzling aspect of the dynamics of the title

reaction is its similarity to the pentane reaction with chlorine atom. The energies for the C-H

bonds in pentane and butanol are very similar and the structures resemble each other with

mass difference of only 2 amu. One key difference between the two is in the potential energy

surface: Cl + pentanes appears to be a barrierless reaction and is significantly exoergic.

For Cl + butanol reactions, a classical barrier of 1.34 kcal/mol has calculated for the most

energetically favored pathway, i. e. H abstraction in the β-C position. Even with the

presence of potential well in the Cl + butanol reaction, it is not “deep enough to cause

long-lived complex to survive,” [142, 144, 180] thus the direct mechanism observed in the

crossed-beam experiments.
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6.5 Conclusion

Understanding the chemistry of butanol and its isomers has attracted attention from the

fields of theory and computation and experimental chemical kinetics following its impor-

tance in combustion. The first dynamics approach to this important molecular system is

studied by crossed beam imaging of the hydroxyalkyl products generated from the reaction

of chlorine atoms with butanol isomers. While the HCl product distributions for oxygenated

hydrocarbons are markedly different from the HCl product distribution of saturated hydro-

carbons, the results presented here for Cl + butanol isomers reaction showed similarity with

that of Cl + pentanes. The product angular distribution showed backward scattering at low

collision energy with enhanced forward scattering with respect to the alcohol beam with in-

creased collision energy. The product translational energy distributions further support the

similarity of these reactions. At high collision energy, a sharp peak of ∼80% of the collision

energy is seen in the forward scattered products. The sideways-scattered product showed

the lowest fraction of energy appearing in translation.
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Chapter 7

Dynamics of CN + alkane reactions
by crossed-beam dc slice imaging

7.1 Introduction

The CN radical is one of the simplest organic radicals and is a key intermediate in nitrogen

bearing fuel combustion [181], in dense interstellar clouds [182–184], in comets, and in the

atmosphere of the outer planets and their moons, notably Titan [185]. Due to the strong C-N

bond (7.76 eV) and the large electron affinity [186], it is often considered a pseudohalogen,

with similar high reactivity. It reacts with both saturated hydrocarbons except methane [187,

188] and unsaturated hydrocarbons without barriers. CN radical reactions are believed to be

one way to produce long chain hydrocarbons and complex organic molecules in astrochemical

environments and in combustion of nitrogen-rich fuels.

There are numerous kinetic studies of the reactions of CN radical with hydrogen [189–193]

and hydrocarbons [187, 188, 194–200] with measurements spanning a temperature range from

25 to 1200 K. All literature data show the large rate coefficients and negative temperature

dependencies for reactions of CN with unsaturated hydrocarbons. Investigations of CN

radical reaction dynamics with unsaturated hydrocarbons have been reported by Kaiser and

co-workers using crossed-molecular beams scattering. They examined the reactions of CN

(X2Σ+) with C2H2 [139, 201], C2H4 [138], CH3CCH [202], C6H6 [136], CH3CCCH3 [137], and

other unsaturated hydrocarbons. All these experimental studies, combined with ab initio
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calculations, showed that these reactions have no entrance barriers, complex forming reaction

dynamics, and are initiated by addition of CN (X2Σ+) to the π electron density to give a

long-lived intermediate. CN addition and H atom elimination is the main channel observed

for these reactions.

The rate coefficients for CN + alkane reactions are smaller than for the reactions of CN

(X2Σ+) with unsaturated hydrocarbons. Furthermore, they show an unusual temperature

dependence, with the rate decreasing from nearly gas kinetic at 25 K, to a minimum at 200 K,

and then increasing again with temperature. This has recently been ascribed by Georgievskii

and Klippenstein [203] to the existence of a “submerged” transition state (TS) at close range

which dominates the rate at high temperature, and an outer variational TS that governs the

rate at low temperature. The former will show conventional Arrhenius behavior while the

latter shows a decreasing rate with temperature. Although there are many studies on the

reactions of CN (X2Σ+) with unsaturated hydrocarbons and kinetic studies of CN reactions

with saturated hydrocarbons, to our knowledge, there have been no investigations at the

microscopic level on CN (X2Σ+)+alkane reaction to date, despite their role in combustion

processes. However, Che and Liu [204, 205] have reported crossed-beam studies of the related

CN radical reaction with D2. Their results, obtained using (1 + 1) resonance enhanced

multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) to detect the D

atom products, yielded both the integral and differential cross sections for the reaction. They

showed that the D atom products were backward scattered, which indicates that rebound

dynamics is dominant in that reaction. The ratio of forward to sideways scattering decreased

with increasing collision energy, implying that the stereodynamics might play a role in the

reaction. Although, by analogy with Cl, for example, we suspect that hydrogen abstraction

will be the dominant mechanism for the reactions of CN (X2Σ+) with hydrogen and saturated

hydrocarbons, the reaction dynamics is as yet unknown.

Here, crossed-beam slice imaging studies of the reactions of CN (X2Σ+) with saturated

hydrocarbons (n-butane, n-pentane, n-hexane, and cyclohexane) is reported . The product
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alkyl radical images were obtained via single photon ionization at 157 nm.

7.2 Experiment

The experiments were carried out in a crossed-beam imaging apparatus described else-

where [66, 78]. Briefly, The CN beam was generated by photodissociation of BrCN seeded

in He (3%), using the 193 nm output of a ArF excimer laser (80 mJ, 10 Hz) at the noz-

zle of a piezoelectric pulsed valve. At this wavelength, essentially only the ground state of

CN (X2Σ+) is produced. Previous photodissociation studies and other previous studies con-

firmed that only less than 6% CN (X2Σ+) radicals were vibrationally excited [206]. Although

the nascent CN rotational distribution is highly excited, after entrainment in the supersonic

expansion, most of the CN (X2Σ+) radicals are likely to be rotationally cooled. It should

be noted, however, that no measurement of the rotational distributions was performed and

there could be some residual rotationally excited CN present.

Target alkane molecules were seeded in hydrogen or helium in order to vary the collision

energy. These two molecular beams are generated by expanding from a piezoelectric pulsed

valve having a 1 mm orifice into differently pumped source chambers. After passing through

collimating skimmers, 2 and 1 mm skimmers for the CN (X2Σ+) beam and alkane beams,

respectively, the two beams cross at an angle of 90◦ in the main chamber. The backing

pressures were typically 1.0 bar for both the BrCN beam and alkane beam. For the gas

sample butane, the backing pressure was increased up to 5.0 bars. The collision energy was

7.5±0.5 kcal/mol for all the reactions except butane. For this case, the experiments are

extended to high collision energy, 10.8 kcal/mol. The typical spread in the collision energy

was 8% full width at half maximum or better. The operating pressures were maintained at

∼10−5 torr in the source chambers and at ≤2×10−7 torr in the main chamber.

The alkyl products were detected with 157 nm vacuum ultraviolet soft ionization [38, 73,

77, 207]. In the experiments, the power of the 157 nm laser is ∼0.6 mJ/pulse with loose

focusing in the chamber, which avoids multiphoton ionization process. The dc slice imaging
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detection scheme and megapixel acquisition program IMACQ were used to accumulate the

raw images. The detector is a 75 mm diameter dual microchannel plate (MCP) coupled to

a fast phosphor screen held at 5 kV (Burle Electro-Optics). The front of the MCP assembly

was held at ground potential and the back plate was pulsed to gate the central slice of the

reaction products at a specific mass by application of a high voltage pulse (+2.2 kV/+1

kV bias, 60 ns width) using a commercial pulser (DEI PVX-4140). The timing of pulsed

molecular beam nozzles, firing of photolysis and probe lasers, and detector gate pulse was

controlled using a delay generator (BNC 555). The resulting image was then recorded using a

charge coupled device camera (Mintron 2821e, 512×480 pixels). Accumulation of the image

took about 1-4 h to reach a satisfactory signal to noise ratio.

7.3 Results

Images for reaction of CN with n-butane are shown in Fig. 7.1. Although 157 nm provides

a sensitive universal probe for C3 and higher alkyl radical reaction products, one shortcoming

is that photochemistry of the parent hydrocarbon at 157 nm also gives the radical, which

can then be detected as well. This gives rise to a photochemical background signal centered

at the hydrocarbon beam. If the reactive signal is strong enough relative to the background,

as seen in Fig. 7.1A for reaction with n-butane at 10.8 kcal/mol, then the photochemistry

signal can be subtracted to get information on scattering in the forward direction, albeit

with lower signal-to-noise ratio and larger inherent uncertainty. In many cases shown here,

however, the photochemical background is too large to allow for reliable subtraction. In that

case, the forward scattered portion of the image is suppressed and results for the region of

interference are not reported.

Figure 7.1 shows the typical raw images of butyl radical reaction products with the

background subtracted. These are images obtained from the CN (X2Σ+) + C4H10 reaction

at the collision energies of 10.8 and 7.5 kcal/mol, respectively. In crossed molecular beams

experiments, the fast products in the laboratory frame can fly away and low speed products
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Figure 7.1: Raw images of butyl product from reactions of CN (X2Σ+) with butane at a
collision energy of (a) 10.8 kcal/mol and (b) 7.5 kcal/mol. The Newton diagram is imposed
on the image at 10.8 kcal/mol collision energy.

will remain in the detection region and can accumulate. The slower products thus have higher

detection efficiency. The raw images show some asymmetry across the relative velocity vector

arising from this effect, although it is clear that this number density to flux correction is not

large in this case. The effect is accounted for in the analysis, as described elsewhere [105, 106].

After doing background subtraction and the density-to-flux correction, the translational

energy and angular distributions are derived from the alkyl images directly. Figure 7.2

shows the angular distributions of the CN (X2Σ+) + C4H10 reaction obtained from the

images shown in Figure 7.1. At the higher collision energy, the angular distributions show

flux in all direction, but with a clear preference for backward scattering with respect to

the alkane beam, and a nearly monotonic decrease to the forward direction. The results



82

0 20 40 60 80 100 120 140 160 180

Angle (degree)

0

0.2

0.4

0.6

0.8

1

T
(Q

)

7.5 kcal/mol

10.8 kcal/mol

Figure 7.2: Total angular distributions for reactions of CN (X2Σ+) with butane.

at the lower collision energy for the region from 60◦ to 180◦ show no significant changes

from the higher collision energy case. The translational energy distributions are shown in

Fig. 7.3. Both of them peak at ∼20% of the available energy. For the high collision energy

butane results, the translational energy distributions for the forward and backward scattered

portion of the distribution are plotted separately. It can be seen that the forward scattered

component has a peak at slightly higher translational energy release. The detailed energy

release data is compiled in Table 7.1.
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Figure 7.3: Translational energy distributions for reactions of CN (X2Σ+) with butane at
10.8 and 7.5 kcal/mol. For 10.8 kcal/mol collision energy: red solid line, total translational
energy distribution; black dotted line, backward scattered; black dot-dashed line, forward
scattered. The blue solid line shows the total translational energy distribution at a collision
energy of 7.5 kcal/mol.

In order to gain insight into the dynamics of primary hydrogen atom abstraction and
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other issues, reactions of CN (X2Σ+) with a series of other alkane molecules are also studied

at the same 7.5 kcal/mol collision energy. The raw images are shown in Fig. 7.4, while

Fig. 7.5 shows the angular distributions derived from the images. Results were obtained for

reaction with butane, pentane, hexane, and cyclohexane. All the angular distributions are

similar. Indeed, they all show preferential backward scattering. Although these results are

blind to the region forward of 60◦, the angular distributions all show a decrease from 90◦ to

60◦ and a marked forward-backward asymmetry. Guided by the high collision energy butane

results, and for additional reasons discussed below, the forward scattered contribution is at

most quite modest. For the reaction with cyclohexane, an even broader angular distribution

is obvious than the other reactants. Figure 7.6 shows the translational energy distributions

for these reactions.

C
H4

10

NC

A B

C D

Figure 7.4: Raw images of alkyl radical product from reactions of CN (X2Σ+) with alkane
reagents at a collision energy of 7.5 kcal/mol: (a) butane, (b) pentane, (c) hexane, and (d)
cyclohexane. The Newton diagram is imposed on the butane image.
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Figure 7.5: Total angular distributions of reactions of CN (X2Σ+) with indicated alkane
reagents.
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Figure 7.6: Total translational energy distributions of reactions of CN (X2Σ+) with indicated
alkane reagents.

7.4 Discussion

These results are the first to study the detailed reaction dynamics of CN (X2Σ+) with

alkane molecules, but they may be compared to related halogen atom [11, 62, 63, 75, 208–

210] and oxygen atom [75, 91, 92, 211–214] reactions for which a growing body of detailed

work now exists. Consider the similarities and differences among these reactions. For X

+ C2H6 → HX + C2H5, the exoergicity decreases in the order X = F>CN>Cl>O, with

0 K ∆HR values of -39.1, -28.1, -5.95, and -5.49 kcal/mol, respectively. For F, Cl, and

CN reactions, the barrier is close to zero; for F and Cl, it may be slightly positive, while

high level calculations for the CN reaction find it slightly below zero, consistent with the
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Table 7.1: Collision energy and translational energy release for indicated reactions
(kcal/mol). EC is the collision energy, Eavail is the total available energy, 〈E〉 is the average
translational energy release, and f t is the fraction of the total available energy appearing in
translational.

Alkane EC(kcal/mol) Eavail 〈E〉 f t

Butane 10.8 36.0 8.8 0.24
7.5 32.7 5.0 0.15

Pentane 7.7 33.6 4.6 0.14
Hexane 7.9 5.2
Cyclohexane 7.1 35.4 6.3 0.18

Table 7.2: Energy partitioning of CN (X2Σ+) + C4H10 reaction at 10.8 kcal/mol.

EC(kcal/mol) Eavail 〈E〉fwd 〈E〉bwd f fwd fbwd

10.8 63.0 9.0 8.6 0.25 0.24

fast reaction seen at 25 K [203]. For O(3P) reaction, there is a sizable barrier of about 8

kcal/mol, which has a profound effect on primary versus secondary H atom abstraction rates,

as the final product energies and barrier heights are lower by ∼2 kcal/mol for secondary H

atom abstraction.

For both F and CN, the barrier, such as it is, is an early one, so that the HX product is

likely to be formed with substantial vibrational excitation. In unique crossed-beam studies

of the F atom reaction with ethane using a high resolution IR absorption probe, Whitney et

al. [208] found product HF vibrational populations of 0.28:0.43:0.12:0.17 for v = 3:2:1:0. For

the CN reaction, the TS structure calculated by Georgievskii and Klippenstein [203] shows

the C-H bond stretched to 1.8 Å(about 75% beyond the equilibrium distance), significantly

longer than the 1.4 Å(53% beyond re) reported for the F-C2H6 TS by Bottoni and Poggi

[209]. It can thus be anticipated perhaps even greater vibrational excitation in HCN than

in HF. Clearly, the bulk of the exoergicity of the reaction is deposited into the new H-CN

bond. For Cl and O abstraction of primary H atoms, the barrier is not early, and vibrational

excitation in the HX product is minimal. One key finding of the classic O + alkane studies

of Andresen and Luntz [91, 92] is that the barrier moves toward reagents for secondary
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and tertiary H abstraction, so that vibrational excitation in the new bond increases in this

progression. The same is likely true for the Cl case, but this is less likely to be important

for CN, with a very early barrier even for primary H abstraction.

With these issues in mind, the translational energy distribution is examined. These are

consistently broad but do not extend to the limit of the available energy. This is consistent

with the minimal HCN v = 0 products expected. Approximately 15%-20% of the available

energy in translation of the products, implying more than 1 eV internal energy distributed

between HCN and the alkyl radical. The distributions show an average translational energy

release typically about 2/3 the value of the collision energy, except for the cyclohexane case

in which it is nearly 90%. This can be compared to the O or Cl reactions, which can be

understood using a simple kinematic picture such as that suggested by Evans et al [110]. In

this model, the average translational energy release is given by

〈EC〉 = EC cos2 β + ER sin2 β (7.1a)

where β is the skew angle for the reaction, EC is the collision energy, and ER is the energy

release in the reaction. This is essentially a linear triatomic model, and the remaining energy

is then allotted to vibrational excitation of the new bond. This picture provides a rough

limiting view of the behavior of some aspects of the Cl and O+alkane reactions, particularly

if modified to account for relaxation of the alkyl radical from the transition state geometry.

Typically, for all of these heavy-light-heavy hydrogen transfer reactions, the skew angle is

acute and the first term dominates, so that the translational energy of the reaction is well

conserved; for the CN reactions considered here, cos2 β is ∼0.95. This further implies that

95% of the substantial exoergicity is to be found in the new HCN bond. However, this model

also implies that the average translational energy release should be larger than the collision

energy, on the order of 8.5 kcal/mol for the nominal 7.5 kcal/mol collision energies, and 11.6

kcal/mol for the high collision energy butane case. Instead, the results are significantly less:

The values cluster around 60% of the model prediction except for the case of cyclohexane,

for which it is 80%. There are two likely possible repositories of this excess energy that are
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not included in the kinematic model: vibration or rotation of the alkyl radical product. A

Franck-Condon argument has been proposed to account for some of this: The relaxation

energy of the hydrocarbon radical from the transition state geometry, typically on the order

of 4-5 kcal/mol, will not be available for recoil [75]. The results are largely consistent with

this picture. On the other hand, there is likely to be considerable rotational excitation of the

alkyl radical product. This has been accounted for in a hybrid Franck-Condon/impulsive

treatment in analysis of the F + ethane work from Whitney et al. [208]. It would be

difficult to implement the same approach here because there is a mixture of abstraction sites

with varying impact parameters and lever arms. Further detailed study will be necessary to

disentangle the precise partitioning of energy between alkyl radical vibration and rotation.

A complication in these experiments arises owing to the nature of the 157 nm probe.

There are both primary and secondary CH bonds involved in these reactions, except for the

case of cyclohexane, in which all H atoms are secondary. The secondary H atoms are generally

more reactive as the saddle points are lower in energy, but for the CN reactions, all H atoms

will be reactive targets. However, the 7.9 eV probe is nominally below the reported values

for the ionization energy of the 1-butyl radical: 8.02 eV (adiabatic) and 8.5 eV (vertical). It

is thus not immediately clear in the butane case if we are selecting a subset of the reaction

products, i.e., the 2-butyl radicals. To gain some insight into the relative sensitivity to 1-butyl

and 2-butyl radicals, a preliminary investigation of the photodissociation of 2-methylhexane

and 2,3-dimethylpentane at 157 nm have been performed [85]. These both will give isopropyl

radical and butyl radicals as primary products, with 1-butyl in the former case and 2-butyl

in the latter. Using the isopropyl signals to scale them, the relative sensitivity is found to be

1:0.64 for 2-butyl versus 1-butyl ionization at 157 nm. This implies that both radical products

are detected, though probably not with equal sensitivity. Moreover, this is consistent with

the observation that the butane signals are not at all weaker than for the pentane or hexane

reactions, and for these we should certainly be above the ionization energy for any radical

product. It may be that the density of Rydberg states at this energy allows for efficient 1 +
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1 ionization, and this may also preclude any strong tendency for a vibrational dependence

of the detection probability.

The angular distributions for these reactions, as discussed in the preceding section, show

broad backward scattering clearly implying direct dynamics. Although in most cases here

the most forward scattered part of the distribution is truncated, in the one instance where

it is clear, no evidence of forward peaking is seen. This is perhaps a bit surprising. It is

similar to the O(3P) + alkane results [75, 211, 212] but very different from the widely studied

Cl + alkane reactions. Even for Cl + ethane, with only primary H atoms, broad angular

distributions are seen with both forward and backward peaking components [66]. Bass et

al. [110] and Retail et al. have reported that Cl reaction with butane shows a similar broad

angular distribution, while Cl + tetramethylsilane shows primarily backscattering [215]. The

calculated TS for CN + ethane indicated possibly a submerged saddle point, and this is even

more likely for the secondary H abstraction cases. Nevertheless, this may constrain reaction

to a near collinear C-H-CN geometry. However, it remains somewhat puzzling that the CN

angular distributions resemble those of O(3P), with the highest barrier, while the Cl reactions

often show very broad angular distributions.

It is clear that the kinetic energy and the angular distribution are somewhat coupled. The

reaction products have broader translational energy distributions in the backward direction

than in the forward direction. Due to interference from the photochemistry background

in the forward direction, we only give the average translational energy 〈E〉 at the lower

collision energy, as shown in Table 7.1. However, the coupling is clear at the higher collision

energy (10.8 kcal/mol) for the reaction of CN (X2Σ+) with butane. The translational energy

spectra of forward (0◦-90◦) and backward (90◦-180◦) scattering were obtained by integrating

the signal in these regions, as shown in Fig. 7.3. All results show a significant fraction

of available energy in the internal excitation of either the alkyl radical or HCN or both

regardless which alkane reagent is used. As discussed above, the bulk of the internal energy

is almost certainly to be found in the new HCN bond, with only modest excitation of the
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alkyl radical product likely. Secondary decomposition of the radical products is thus not

likely, and no lower mass products were detected from these reactions. For the reaction

of CN (X2Σ+) with butane at collision energy of 10.8 kcal/mol, the results show a broad

distribution and peaking at lower translational energy for the backward scattering. The

average translational energy and energy partitioning were calculated and listed in Table 7.2.

One additional point merits some comment. It is noted in the introduction of this chapter

that these reactions are believed to be barrierless, with a rate that has a minimum at ∼200

K but rises both to higher and lower temperature, while the results here clearly show direct

dynamics. However, the results, at collision energies of 7-10 kcal/mol, clearly address the

dynamics at the high energy domain of the kinetics studies, and the conclusions should not

be directly extrapolated to very low energies.

7.5 Conclusion

Crossed molecular beam technique combined with dc sliced ion imaging have been used

to investigate the reaction of CN (X2Σ+) with several target alkane molecules at collision

energies of 7.5 and 10.8 kcal/mol. Center-of-mass translational energy and angular distribu-

tions were directly obtained from the experiments. The results are consistent with very high

vibrational excitation of HCN as the early barrier results in reaction at extremely stretched

NC-H distances. Simple models are used to suggest that structure in the alkyl radicals plays

an important role in the energy disposal, although the precise partitioning of rotational and

vibrational energy in the alkyl product is not yet clear.
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Chapter 8

Crossed-beam imaging of the H
abstraction channel in the reaction of
CN with 1-Pentene

8.1 Introduction

The cyano radical (CN(X2Σ+)) is an extremely reactive species that can abstract hy-

drogen from saturated hydrocarbons without a barrier and add to bonds of unsaturated

hydrocarbons to form strongly bound intermediates also without a barrier. These may then

be stabilized by collision or decay through a variety of pathways, predominantly via atomic

hydrogen or alkyl radical elimination, forming nitriles. Owing to its ability to react without

barriers and its relative abundance in the atmosphere of Titan, the cyano radical plays a key

role in the low-temperature chemistry on Titan, including hydrocarbon growth processes and

nitrogen incorporation into the haze particles that are a dominant feature of its atmosphere

[216–218].

Cyano radical reactions with unsaturated hydrocarbons have been examined in a variety

of kinetics studies, including some using supersonic flows at temperatures down to 20 K

[187, 219, 220]. The reaction rates are found to be extremely fast and show a negative

temperature dependence, with rates of 2.5 ± 0.2 × 10−10 cm3 molecule−1 s−1 reported for the

reaction of cyano with ethylene at 298 K [221]. Two recent kinetics studies are particularly

noteworthy in that products were detected for reaction with propene. The Seakins group
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[222] at Leeds detected H atom elimination following CN addition and determined absolute

yields for this channel; then, they compared these to a master equation calculation using a

model potential surface. Trevitt et al. [223] also studied the CN + propene reaction in a flow

reactor using tunable synchrotron radiation to obtain isomer-specific detection of products.

They detected H and CH3 elimination and identified distinct product isomers but saw no

evidence for formation of the allyl radical when the ionization energy was tuned above the

threshold for detection of allyl but below that for ionization of other products. In addition to

these kinetic studies, a number of crossed-beam studies for cyano radical plus unsaturated

hydrocarbons have been reported, notably from the Kaiser laboratory [138, 224]. Also,

Huang et al. [225] used ab initio theory at the CBS-CCSD(T) level to examine the possible

product channels for crossed beam results at a detailed level for this reaction. They found

slight barriers to H abstraction but acknowledged that these may disappear at higher levels

of theory. Gannon et al. [222] used an IRC search at the UMP2/6-311+G(d,p) level and

concluded there was no barrier. In any case, the traditional crossed-beam approach has little

sensitivity to the abstraction reaction, owing to unfavorable kinematics and background at

the product masses; therefore, this pathway has often been omitted in the analysis.

8.2 Experiment

In the crossed-beam DC slice imaging approach [14, 66, 105], a beam of photolytically

prepared radicals are crossed with a beam of the target reactant in a vacuum chamber and

detect the radical products by single-photon ionization using a compact 157 nm excimer

laser. Owing to the limited photon energy of the probe (7.9 eV), the detection is largely

confined to C4 and larger radical products. The relevant slice of the detected product is

imaged directly, which is then readily converted into the velocity-flux contour map that

embodies the reaction dynamics. Cyano radicals are prepared by 193 nm photolysis of

cyanogen (Apogee Technology, 98.5%), [77, 115] after which it is entrained in the helium

carrier gas. The target reactant, 1-pentene (Sigma-Aldrich, 98%) is seeded in various carrier
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gases (He, H2) chosen to give the collision energy of interest. As seen in some cases in the

past, 157 nm photolysis of the 1-pentene also gives the product radical, which is then also

detected. This gives an interfering signal centered at the pentene beam velocity that, for

these reactions, precludes determination of the reactive scattering within 60◦ of the beam

direction.

8.3 Results

Crossed-beam slice imaging [14, 18, 20] with single-photon ionization at 157 nm is a

sensitive and direct probe of bimolecular reactive scattering for a variety of reactions [75,

77, 78]. Earlier studies on cyano radical reaction with n-alkanes have been reported [79] and

recently the Suits group embarked on systematic studies of chlorine atoms with alkanes [105]

and alkenes [106].

In the present study, the reaction between the cyano radical and 1-pentene at four col-

lision energies from 5 to 9 kcal/mol is investigated. The sliced images of the C5H9 radical,

corrected for the density-to-flux effects [105, 106], are shown in Figure 8.1 with the most

probable Newton diagrams superimposed. As discussed in the Section 8.2, the photochem-

istry background interferes in the vicinity of the pentene beam, so that portion of the image

is suppressed. From these images, the center-of-mass translational energy and angular distri-

butions is shown in Figure 8.2. The translational energy distributions are given separately for

the sideways (60◦-120◦) and backwards (120◦-180◦) portions of the scattering distributions.

Neglecting the undetected forward-scattered part of the distribution, the angular distribu-

tions are isotropic at all collision energies studied. The translational energy distributions

peak near zero, despite very large exoergicity for some of the HCN-forming channels, as

shown in Figure 8.3. This figure gives 0 K reaction enthalpies for H abstraction by CN based

on CBS-QB3 [103, 104] calculations of the bond dissociation energies given in Ref 105. The

average translational energy release is given in Figure 8.2, but the fraction of available energy

is not shown because, as shown in Figure 8.3, this depends very strongly on the particular H
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A

B

C

D

Figure 8.1: DC sliced images of pentenyl radical product from reactions of CN(X2Σ+) with
1-pentene at different collision energies and superimposed Newton diagrams. (A) 5.1, (B)
6.0, (C) 7.3, and (D) 9.2 kcal/mol.

atom that is abstracted. It is, in any case, likely that the products are highly vibrationally

excited, in particular, the HCN product, as has been seen in CN + alkane reactions [194].

8.4 Discussion

The present results unambiguously show the occurrence of hydrogen abstraction in the

CN + 1-pentene reaction. The isotropic angular distributions and relatively low kinetic en-

ergy release are consistent with complex formation, as is the similarity between the sideways-

and backwards-scattered translational energy distributions. This is the generally assumed
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Figure 8.2: Left side: Center-of-mass translational energy distributions at the sideways (60◦-
120◦) and backwards (120◦-180◦) regions and the average translational energy release at each
region. Right side: Center-of-mass angular distributions at indicated collision energies.

entrance path for these reactions given the very high reaction rates, negative temperature

dependence, and relatively stable addition complex. It is roughly estimated the yield of the

product radical in this reaction relative to that of the C5H11 radical in reaction of CN with

n-pentane. On the basis of total integrated image intensities for a comparable acquisition

time, the yields are roughly the same, within experimental uncertainties of at least ±25%,

owing to possible differences in beam intensities, ionization cross sections, and so forth. The

room-temperature rate for the reaction of CN with n-pentane is 1.6 × 10−10 cm3 molecule−1

s−1 [197]. This reaction only gives rise to H abstraction. At the time of writing this disserta-

tion, no literature report on the rate determination for CN + 1-pentene has been reported,
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Figure 8.3: Structure of 1-pentene with 0 K reaction enthalpies (kcal/mol) for H abstraction
by CN at indicated carbon atoms.

but Gannon et al. [222] give the rate for 2-butene at room temperature as 2.93 × 10−10

cm3 molecule−1 s−1, and we suspect that for 1-pentene will be similar. At 5 kcal/mol, much

above room temperature, the pentane rate will likely increase, and the pentene rate will

likely decrease. By using the room-temperature rates to estimate the branching for HCN

production, a lower bound can thus be calculated. On this basis, it is estimated that the

branching to H abstraction in reaction of CN with 1-pentene to be 1.6/2.93, or about 50%.

Although there are many approximations and uncertainties in this determination, the HCN

production is probably not a minor channel.

A key question is whether this may occur in smaller systems such as propene or propyne

that possess similar strongly exoergic channels giving rise to the resonantly stabilized allyl

and propargyl radicals, respectively. Gannon et al. [222] examined this question indirectly

in the kinetic study of CN + propene mentioned previously. They calculated barriers for

isomerization of the addition complex and its dissociation giving H or CH3. The surface

included a barrierless abstraction channel forming HCN and the allyl radical, the most

exoergic reaction pathway, but this was not included in the master equation modeling, owing

to the difficulty of treating the barrierless process. They found that methyl loss branching

slightly exceeds H loss under all conditions. They obtained satisfactory agreement with

the experimental results for H atom yield and concluded that the calculations “support

but cannot confirm the absence of a direct channel.” Trevitt and co-workers [223] also
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studied the CN + propene reaction with direct vacuum ultraviolet probe of the products

using a time-resolved multiplexed mass spectrometer coupled to a flow reactor at 5 Torr.

Most relevant to the results presented here was their failure to detect the allyl radical,

despite attempts to probe this species directly at a photoionization energy of 9.68 eV. This

energy was chosen, just below the ionization onset for propene, to eliminate interference

from propene itself. They concluded that the branching must be less than 2%. The obvious

explanation for the absence of the H abstraction channel in the propene study despite what

is seen in pentene is that these are two different systems with different dynamics and reaction

pathways. Given the similar energetics for these two systems, the present results suggest

that it may be worthwhile to attempt more theoretical and experimental investigations to

unravel the origin of this distinct behavior.

This similarities between the cyano radical plus alkene reactions and those for chlorine

atoms with alkenes, which were studied in some detail recently, [106] warrant some discussion.

The angular distribution that is observed here is consistent, over the detected angular range,

with the results for the analogous chlorine plus alkene reactions [106]. In the latter reactions,

however, it manifested a sharp forward-scattered peak that rose with collision energy, ac-

counting for 3% of the scattered flux at 4 kcal/mol and 11% at 7 kcal/mol. Furthermore, for

the Cl reaction, this collision-energy-dependent forward-scattered flux has a distinct transla-

tional energy distribution. As it strongly resembles the translational energy distribution for

the forward scattering in Cl + alkane reactions, it is associated with abstraction of the alkyl

H atoms in pentene and hexene, rather than the allylic H atoms. Unfortunately, the current

results are blind to this portion of the angular distribution in the CN + pentene experiments;

therefore, it cannot be determined whether a similar direct component is present. On the

other hand, this feature in the Cl reactions only became significant at high collision energy;

therefore, it is unlikely to be relevant to Titan.
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Chapter 9

Conclusions and Prospectus

The single-photon ionization technique provides a sensitive approach in studying the

global dynamics of chlorine atom and cyano radical reactions with hydrocarbons. The alkyl

radicals probed in these reactions reveal an identifying mark unique for each system. In the

case of Cl + pentane isomers, the nature of the abstraction site has little influence on the

dynamics as seen in the similarity of the scattering results. For the selectively deuterated

butane, the angular distributions for primary and secondary abstraction are surprisingly

similar. The only difference can be seen in the translational energy distributions. This is

likely owing to the relatively high collision energy employed; future studies will examine

a lower temperature regime where greater sensitivity to the distinct reactive sites can be

studied in great detail. Chlorine reactions with alkenes showed interesting dynamics as the

collision energy increased, revealing both a complex addition-elimination component and a

direct abstraction reaction. A detailed state-resolved detection of the nascent HCl (v = 0, 1;

J) products is foreseen to completely disentangle the individual contributions of the various

reaction pathways.

A variety of CN(X2Σ+) radical reaction with polyatomic hydrocarbons is a rich field to

tackle owing to the many competing pathways of the reaction. Given the right precursor

for CN(X2Σ+) radicals, an improved signal to noise ratio can be achieved that will therefore

allow full extraction of the translational energy and angular distributions in full angular

range. Nitrogen chemistry on Titan is an area of active investigation with a number of
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puzzling aspects. In the reaction of CN(X2Σ+) with unsaturated hydrocarbons, the HCN

vertical distribution is not well-reproduced by photochemical models, and an extra sink term

has been incorporated in several of them to account for this [226]. A significant additional

source of HCN would increase this discrepancy. There is also uncertainty about the con-

tribution of nitrogen-containing radicals in the lower stratosphere produced by cosmic rays

[227]. The branching in the subject reactions between nitrogen incorporation and chain

lengthening versus HCN production along with resonantly stabilized radicals can have a sig-

nificant impact on models, and further investigation is clearly warranted. A new model to

help experimentalist to account for polyatomic molecular systems is also needed.

The field of molecular reaction dynamics, however not new, has been an integral field in

understanding numerous reactions relevant to several environments as well as to fundamental

theoretical understanding. The efforts put forth by the pioneers of this field have brought our

understanding of how chemical reactions occur to an unprecedented level of detail especially

in the atom + diatom systems. One key goal for chemical dynamics studies now is to extend

the insights learned in the A + BC type reactions to a large variety of polyatomic systems and

properties. As illustrated by several research groups, including the Suits group, the products

of chemical reactions can now be imaged directly as soon as they exit the interaction region

rather than imagining the process. While considerable progress has been achieved on the use

of time-of-flight mass spectrometric detection in studying a variety of crossed-beam reactions,

ion-imaging methods are still not widely exploited in this area. There are still uncharted

territories where the capability of ion imaging can be brought to the fore. For one, reactions

of chlorine atoms with long chain alcohols are important in combustion industry in the

continued effort to provide a cleaner and efficient fuel. Another area where crossed-beam

imaging technique can be used is in the challenging radical-radical reactions. These are

fundamental reactions that are ubiquitous in the atmospheric and interstellar environments.
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This work presents results of crossed molecular beam imaging studies on the reaction

of radicals (Cl and CN) with polyatomic hydrocarbons of different functionalities such as

pentane isomers, deuterated alkanes, alkenes, and alcohols. The reactively scattered alkyl

radicals are probed as a function of collision energy using single photon ionization. The

scattering results for pentane are quite similar for all reactants, suggesting that the nature

of the abstraction site has surprisingly little influence on the dynamics studied at ∼5 and

∼9 kcal/mol. The angular distributions are broad with a backscattered peak at low collision

energy and a sharp forward peak at high collision energy. The similarity of the angular

distributions was observed in the Cl reactions with deuterated butane albeit studied at con-

siderably high collision energy. The presence of conformers in this target molecule likely play

a major role. The reduced translational energy distributions manifested distinct dynamics

showing marked variation with collision energy in the backward direction and variation in

the forward direction for primary versus secondary abstraction, respectively.

For alkenes, an isotropic component was observed in the angular distributions at low

collision energy suggesting complex formation that survive for few rotational period, followed

by HCl elimination. At increased collision energy, the distributions show a sharp forward

peak superimposed on the isotropic component accounting for ∼13% of the product flux.
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The forward translational energy distributions changed dramatically with collision energy.

A sharp forward peak at ∼80% of the collision energy appears at higher energy, similar to

that of pentane isomers.

The butanol isomers exhibit similar dynamics with that of saturated hydrocarbons al-

though the HCl product distributions for these two systems are different. The angular dis-

tributions showed direct reaction with backscattering at low collision energy and enhanced

forward scattering with respect to the alcohol beam with increased energy. This confirms

that the well present in the potential energy surface is shallow to cause long-lived complexes

to exist. The product translational energy distributions further support the similarity of

these reactions. At high collision energy, a sharp peak of ∼80% of the collision energy is

seen in the forward scattered products. The sideways-scattered product showed the lowest

fraction of energy appearing in translation.

Hydrogen abstraction of CN radical with alkanes indicate direct reaction with the prod-

ucts largely backscattered and that most of the available energy (∼80% - 85%) goes into

internal energy the recoiling products. In the 1-pentene system, the results demonstrate the

presence of H-atom abstraction channel yielding a resonantly-stabilized C5H9 radical. The

results have implications for hydrocarbon growth and nitrile incorporation in formation of

haze particles on Saturn’s moon, Titan.
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