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l)ESSAYS ON MOMENTUM STRATEGIES IN FINANCE

This thesis discusses several aspects and possible improvements of equity momentum strate -
gies in finance. Equity momentum is the phenomenon that stocks that have recently outperform -
ed continue to outperform, while underperformers will continue to underperform. Equity strate -
gies that exploit this phenomenon by buying the recent outperformers and short-selling the
recent underperformers have proven to be profitable for investors. In his Nobel prize lecture in
2013 Eugene Fama referred to this performance of the momentum strategy as being the biggest
challenge for the efficient market hypothesis.

Nevertheless, equity momentum is also known for its crash risk, wiping out years of average
positive returns in just a few months, and the fact that its risk and returns vary over time. In this
thesis different hedging strategies are applied to reduce momentum’s crash risk and time varying
exposures without reducing its positive average returns. Furthermore, different recent improve -
ments of momentum are combined in a mean-variance optimization set-up. Optimization also re -
duces momentum’s crash risk and its time varying exposures. Moreover it improves momentum’s
Sharpe ratio for moderate transaction costs.

Finally, this thesis addresses momentum’s time varying risks and returns in a different way. A
Bayesian latent factor model where the number of latent factors is allowed to vary over time is
derived. Using the predictive likelihood approach this model is then applied to a residual industry
momentum strategy. In turbulent times, like the crisis that started in 2008, the Bayesian latent
factor model performs well in terms of risk and return characteristics.
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Chapter 1

Introduction

1.1 Motivation

Equity momentum is the phenomenon that the stocks that recently have outperformed

other stocks continue to outperform these stocks in the coming months. Likewise, stocks

that have underperformed continue to underperform in the coming months. Jegadeesh

and Titman (1993) show that a strategy that is long in the stocks that have recently

performed well and short in the stocks that have underperformed has positive average

returns.

Equity momentum has turned out to be a profitable strategy, available to many investors.

Using just historical returns of the stocks in one’s investment universe is sufficient to

exploit equity momentum. Academics struggle to explain momentum’s performance as a

reward for risk and as such equity momentum challenges the efficient market hypothesis.

Nobel laureate Eugene Fama even refers to momentum as the biggest challenge to market

efficiency1.

Despite momentum’s positive average returns, it exhibits substantial crash risk. A crash of

just several months wipes out years of positive average returns; in this sense, momentum

is not an attractive strategy for a risk-averse investor, or even any investor at all. Next

to this crash risk, momentum also exhibits time-varying risks and returns, in particular

over the business cycle.

1See, for example, http://www.nobelprize.org/nobel prizes/economic-sciences/laureates/

2013/fama-lecture.html for Eugene Fama’s Nobel prize lecture.
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All these aspects make momentum less attractive for investors and support the efficient

market hypothesis that momentum’s positive average returns are a compensation for

specific types of risks. In this thesis we explore several models and methods that are able

to reduce momentum’s crash risk as well as its time-varying risks and returns. Moreover,

these strategies are able to improve momentum’s performance by increasing the Sharpe

ratio. As such, results are interesting for practitioners as well as academics who study

momentum’s challenge of the efficient market hypothesis.

In the three essays in this thesis we look at equity momentum in different ways. In

Chapter 2 we compare and combine alterations of the equity momentum strategy, while in

Chapter 3 our approach is to leave the equity momentum strategy as it is and investigate

if, and how, hedging is able to improve momentum’s performance. Both chapters aim

at reducing momentum’s time-varying risks and returns as well as its crash risk while

improving, or at least maintaining, momentum’s returns. In Chapter 4 we look at the time

variation in the comovements of stock returns using a Bayesian latent factor model and

subsequently apply this model to a momentum strategy. This strategy performs relatively

well in times of market turbulence when equity momentum itself experiences negative

returns. As such, all essays address time variation in general, and that of momentum

more specifically, in different ways.

1.2 Summary of Methods and Results

Equity momentum thus exhibits substantial crash risk. Daniel and Moskowitz (2013)

and Daniel, Jagannathan, and Kim (2012) among others state that momentum’s average

positive returns are a compensation for its crash risk. In Chapter 2 and Chapter 3 we

show that optimization, combination and hedging strategies are able to substantially

reduce momentum’s crash risk without affecting its positive average returns. As such we

weaken this crash risk explanation of momentum.

Momentum’s crash risk is a consequence of its time-varying exposures. Grundy and

Martin (2001) show that, by construction, momentum has time-varying exposures to

the three Fama and French (1993) equity risk factors. Although momentum’s average

exposures to these risk factors are close to zero, the momentum strategy’s exposures to

these factors do vary substantially over time, depending on the recent returns on the equity

risk factors. If the recent returns on a particular factor have been negative, momentum
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is negatively exposed to this particular factor. If the return on this factor then reverses

to a positive return the momentum strategy suffers from its negative exposure to this

factor. Actually, momentum’s largest losses occurred in July 1932 and March 2009 after

equity markets strongly recovered from two of the largest losses on equity markets ever.

In Chapter 3 we show that hedging momentum’s time-varying exposures to the equity

risk factors indeed reduces momentum’s crash risk.

Another consequence of momentum’s time-varying exposures is that its performance varies

over the business cycle, as shown by Chordia and Shivakumar (2002). Momentum suffers

when the return on the equity risk factors reverses and these reversals occur more often

during specific stages of the business cycle. Most prominent are momentum’s large losses

at the end of recessions when equity markets already start to recover from their previous

losses, even before the real economy recovers and starts expanding again. Hedging

momentum’s time-varying exposures thus also reduces momentum’s return variation over

the business cycle, see Chapter 3.

The standard equity momentum strategy does not take into account the risks of the

constituent stocks; it is a strategy that simply attaches equal weights to the stocks in the

top and bottom of momentum’s ranking. It would be straightforward to apply Markowitz

(1952) mean-variance optimization to make a trade-off between the expected returns and

risks in the momentum strategy. However, several claim that mean-variance optimization

does not provide a better risk-adjusted performance. For example, Michaud (1989)

refers to mean-variance optimization as ’error maximization’ and DeMiguel, Garlappi,

and Uppal (2009) find that equally weighted equity portfolios outperform optimized

portfolios. Nevertheless, in Chapter 2 we find that applying mean-variance optimization

to the equity momentum strategy does improve momentum’s performance, in particular,

when combined with other improvements of equity momentum.

Momentum’s top-bottom phenomenon is key to take into account when applying standard

mean-variance optimization. The momentum phenomenon of continuing outperformance

of recent outperforming stocks only holds for the stocks that are ranked high according to

their recent performance. Stocks in the middle of momentum’s ranking actually do not

outperform other stocks in the middle of this ranking, although their recent performance

might be higher than that of other stocks in the middle of momentum’s ranking. Similarly,

only the lowest ranked stocks continue to underperform in the coming months. When
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using the stocks’ recent performance as input for the expected returns, mean-variance

optimization suffers since the differences in expected returns of stocks in the middle of

momentum’s ranking are not reflected in the stocks’ realized returns. In Chapter 2 we

find that taking into account momentum’s top-bottom phenomenon further improves

momentum’s performance.

Optimization of equity momentum also reduces momentum’s time-varying exposures

and thereby its crash risk and return variation over the business cycle. Mean-variance

optimization is a trade-off between the risks and returns of the stocks in the investment

universe. As such, it does take into account the risks associated with the stocks in the

momentum strategy; at times when the equally weighted momentum strategy is more

exposed to the equity risk factors, standard mean-variance optimization selects the stocks

with relatively less risk and less exposures to the equity risk factors. In Chapter 2 we

indeed find that the optimized momentum strategy has less time-varying exposures and

therefore also exhibits less crash risk and performs more stable over the business cycle.

Recent alterations of the equity momentum strategy have also improved momentum’s

performance. In particular, residual momentum by Blitz, Huij, and Martens (2011) and

constant-risk momentum by Barroso and Santa-Clara (2015) outperform the standard

momentum strategy. Residual momentum is also an equally weighted zero net-investment

strategy. Rather than ranking stocks on their recent total returns, residual momentum

ranks stocks on their residual returns from the regression of the stocks’ total returns

on the Fama and French (1993) equity risk factors. Constant-risk momentum adjusts

the exposure of the standard momentum strategy to address its time-varying risks. If

standard momentum’s recent returns have been volatile, constant-risk momentum reduces

the exposure to the standard momentum strategy, while it increases the exposure when

momentum returns have recently been less volatile. In Chapter 2 we compare these

alterations of equity momentum as well as our optimized momentum to the standard

momentum strategy. We find that residual momentum performs best in terms of Sharpe

ratio, but optimized momentum exhibits the least crash risk. In Chapter 2 we also show

that combining alterations of the equity momentum strategy outperforms both standard

momentum as well as our optimized and the residual and constant-risk alternatives, both

in terms of Sharpe ratio as in terms of crash risk. Using a bootstrap test on the differences

between the Sharpe ratios of the different strategies we find that the Sharpe ratio of the

combined strategy is also significantly higher than those of standard, optimized, residual
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and constant-risk momentum strategies over the full sample. Although mean-variance

optimization often increases transaction costs we find that the outperformance of specific

optimized and combined momentum strategies does not come at the cost of substantial

additional transactions compared to standard and residual momentum. The combined

strategies consistently outperform the standard and constant-risk momentum strategies

over different subsamples between 1929 to 2014, but the residual momentum strategy

performs best both in terms of Sharpe ratio and crash risk in the most recent subsample

starting in 1973; however, residual momentum’s Sharpe ratio is not significantly higher

than those of the combined strategies during these subsamples.

Throughout this thesis equity risk factors play a role in different places: in the factor

covariance matrix used for the optimization strategy, in the time-varying risks and

exposures of momentum and in the different altered and combined momentum strategies.

As such, we zoom also zoom on factor models in Chapter 4, in particular, on a Bayesian

latent factor model. We show that conditional posteriors of the latent factors and the

factor loadings are well-known distributions if we use flat or conjugate priors. We discuss

the well-known issue that the number of factors in a static factor model are typically

fixed. Using predictive likelihoods we are able to determine the optimal number of latent

factors. We find that the optimal number of latent factors varies considerably over time.

We also apply the Bayesian latent factor model in a momentum based strategy and

make use of the fact that this Bayesian model takes the uncertainty with respect to the

parameters and the unknown latent factors into account when forecasting. In particular,

we apply the Bayesian latent factor model to a momentum based strategy for ten industry

portfolios. We find that selecting the best industry every year from ranking the stocks on

their recent residuals from the latent factor model with time-varying number of factors

performs well, in particular in comparison to a similar strategy based on static latent

factors. We find that the choice for the size of the training sample is important for the

performance of the strategy.

The Bayesian latent factor model application to residual industry momentum particularly

outperforms other residual industry moment strategies in turbulent times, for example,

during the crisis that started in 2008. We hypothesize that a Bayesian latent factor model

adjust more quickly to big shocks than static models with known rather than latent factors,

like, for example, the Fama and French (1993) equity risk factor model. During the more
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quiet times, like in the nineties, the applications of other static models with known factors

also perform well. We therefore hypothesize that time-varying combinations of model

structures and momentum strategies improve momentum’s performance, though at the

cost of increased complexity.

1.3 Outline

This thesis consists of two parts. The first part consists of Chapter 2 and Chapter 3

and contains empirical research on the improvement of the equity momentum strategy.

Chapter 2 is based on Baştürk, Hoogerheide, Van Dijk, and Van Oord (2016). Chapter 3

has been published as Martens and Van Oord (2014). In these two chapters we explore

whether optimization and hedging as well as combining different momentum strategies

improve momentum’s performance. The second part, in Chapter 4, is based on Baştürk,

Grassi, Hoogerheide, Van Dijk, and Van Oord (2016) and it contains the derivation of a

Bayesian latent factor model and its application to a momentum based strategy on ten

industry portfolios.

The contribution of Chapter 2 is twofold: first, it shows the impact on momentum’s

performance if we apply mean-variance optimization and, secondly, it combines this opti-

mization together with other alterations of the equity momentum strategy like residual and

constant-risk momentum. We evaluate the performance of the optimized and combined

momentum strategies in terms of standard equity performance measures. like the Sharpe

ratio. as well as their crash risk characteristics. like the maximum monthly loss and the

maximum drawdown. The crash risk characteristics play an important role in evaluating

momentum strategies since standard momentum is known for its crash risk. With respect

to combining different momentum strategies into new strategies we find that specific

combinations outperform the standard momentum strategy as well as residual, constant-

risk and optimized momentum strategies, without significantly increasing transaction

costs.

Chapter 3 focuses on hedging momentum’s time-varying risks. We apply two feasible

hedging strategies to reduce momentum’s time-varying exposures to the equity risk

factors and as such aim at reducing momentum’s time-varying risks. Since standard

momentum’s time-varying exposures result in substantial crash risk as well as variation in

the performance over the business cycle we particularly focus on these characteristics after
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hedging. We indeed find that hedging the time-varying exposures of equity momentum

reduces its crash risk as well as its performance variation over the business cycle. It turns

out that a conditional hedging strategy using momentum’s recent time-varying returns

to estimate the time-varying exposures performs better than the commonly used hedging

strategy aggregating the individual stocks’ exposures that constituent the momentum

strategy at that particular moment.

The second part of this thesis consists of Chapter 4 and contains the derivation of a

Bayesian latent factor model. In particular, we focus on how to determine the optimal

number of factors in a latent factor model. We use the predictive likelihoods of the latent

factor models, that only differ in the number of factors applied, to determine the optimal

number of factors. We find that the optimal number of latent factors varies considerably

over time. We also apply the latent factor model to a residual momentum based strategy

of ten industry portfolios. Compared to static models with known factors the Bayesian

latent factor model performs particularly well in turbulent times.

1.4 Declaration of Contribution

In this section I declare my contribution to the different chapters of this thesis and

acknowledge the contributions of others.

Chapter 1: I have written this chapter independently and implemented feedback that

I received from my supervisor.

Chapter 2: This chapter is based on Baştürk, Hoogerheide, et al. (2016). The ideas

on mean-variance optimization of standard momentum and combining different strategies

were discussed in joint meetings, where I participated as a full member. I have performed

the data gathering, programming and much of the analyses of this chapter. The writing

is done in collaboration with my co-authors. I have implemented valuable comments from

the members of the doctoral committee which also inspired me to add further empirical

analyses. A modified version of this chapter will be submitted for publication in an

international journal.

Chapter 3: This chapter is based on Martens and Van Oord (2014) that appeared in

the Journal of Empirical Finance. Developing the ideas of this chapter was a joint project
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with the co-author, where I fully participated. I have programmed all analyses in this

chapter. The writing of this chapter is joint work with the co-author.

Chapter 4: This chapter is based on Baştürk, Grassi, et al. (2016). Preliminary ideas

were a continuation of a project of my co-authors on cointegration models. I fully

participated in the derivation and double checking of the new theoretical results. I have

participated in the writing jointly with my co-authors. I also contributed by implementing

the valuable comments that we received from the members of the doctoral committee. The

results of this chapter will be published in a book that will appear by Springer Verlag.
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Equity momentum strategies at work
∗

2.1 Introduction

Exploiting momentum in a portfolio of stocks has been a profitable and therefore popular

strategy among investors over a long period of time. At the same time, explaining

momentum’s positive performance in connection with the efficient market hypothesis has

turned out to be a great challenge for academics. Nobel laureate Eugene Fama refers to

momentum in his Nobel prize lecture as the biggest challenge to market efficiency 1.

The standard equity momentum strategy ranks stocks on their recent returns, skips a

particular short-term period to overcome short-term return reversals and then buys the

stocks in the top of the ranking and short-sells the stocks in the bottom of this ranking.

The strategy applies equal weights to the stocks. Jegadeesh and Titman (1993) show that

this zero net-investment strategy yields positive average returns.

In this chapter we explore the working of several extensions of standard momentum. We

start with mean-variance optimization of equity momentum with a focus on momentum’s

top-bottom phenomenon. This top-bottom phenomenon refers to the fact that stocks

in the top and bottom of momentum’s ranking out- and underperform the other stocks,

while stocks ranked in the middle do not outperform each other consistently over the total

∗This chapter is based on Baştürk, Hoogerheide, et al. (2016), see also Van Oord (2015)
1See http://www.nobelprize.org/nobel prizes/economic-sciences/laureates/2013/

fama-lecture.html for Eugene Fama’s Nobel Prize lecture
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time period considered.

Apart from the proposed mean-variance optimization we investigate two other recent

extensions of equity momentum: the residual momentum strategy by Blitz et al. (2011)

and, as we call it, the constant-risk momentum strategy by Barroso and Santa-Clara

(2015).

The working of these different momentum strategies is evaluated by using common return

characteristics like the average realized return, realized volatility and Sharpe ratio, but

also using several crash risk features. Equity momentum is well-known for its crash risk: in

1932 and 2009 this strategy lost 95 and 83 percent, respectively, in just three months. For

this reason, Daniel et al. (2012) and Daniel and Moskowitz (2013) state that momentum

fits the efficient market hypothesis as its performance is a reward for this crash risk.

A first conclusion from our empirical analysis is that the three suggested strategies

outperform standard momentum in terms of higher Sharpe ratios and less crash risk.

When one compares these strategies among each other a mixed result appears. In terms

of a higher Sharpe ratio residual momentum performs best, while in terms of crash risk,

the optimization strategy is best.

Therefore, we continue the analysis using several combinations of the mean-variance

optimized, residual and constant-risk momentum strategies. Empirical results indicate

further improvements in terms of return and crash risk characteristics for these combined

momentum strategies over the whole period 1929 - 2014.

Given these improvements in momentum’s Sharpe ratio, we also investigate whether

these improvements are statistically significant. We do not only test if a Sharpe ratio

is significantly larger than zero, but also whether the Sharpe ratio of each strategy is sig-

nificantly higher than the Sharpe ratios of standard momentum and other improvements

of momentum. The Sharpe ratios of thecombination strategies turn out to be higher while

they also havebetter performance in terms of crash risk. However, we note that this holds

forthe whole period considered.

In order to explore the effect of transaction costs, we check whether the different proposed

strategies and their combinations lead to an increase in the transaction costs that may
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adversely effect their profitability. We find that the performance of most strategies is not

very sensitive to reasonable changes in the amounts of transaction costs. Specifically, the

number and average size of the transactions of the different strategies do not substantially

increase compared to the standard momentum strategy, except for the constant-risk

strategies.

The results, described so far, hold for the whole period 1929 - 2014. A major concern with

respect to the performances of equity momentum strategies is their sensitivity to special

data features as turbulence and volatility that may occur in particular subperiods.

We explore the time variation in the exposures of the different strategies to the Fama

and French (1993) equity risk factors as already indicated by Grundy and Martin (2001).

Another concern is the variation in return over the business cycle. A reduction in the

time-varying exposures to the equity risk factors is obtained for the optimized momentum

and the combination strategies. This also implies lower variation in the returns over the

business cycle.

The sensitivity of the performance of the different strategies is also explored in a time

series and episode analysis. Here we investigate how the strategies differ over the pre-

World-War-II period where a major economic crisis occurred; over the post World-War-II

period where a restoration of the economies of the industrialized nations took place and

as a third episode we take the period after the first oil price shock in 1973.

Our results indicate that different strategies have different performances over these three

episodes. The Sharpe ratios of the combination strategies are rather robust for shocks

and turbulence and these strategies also exhibit less crash risk. The Sharpe ratio of

the combination strategies is also significantly higher than those of standard momentum

and other momentum improvements. For moderate transaction costs the combination

strategies also keep the highest Sharpe ratio. However, the residual momentum strategy

performsbest in terms of Sharpe ratio and several crash risk criteria in the thirdepisode

after the oil price shock in 1973, although its Sharpe ratio isnot significantly higher than

those of the combination strategies.

The contents of this chapter is organized as follows. Section 2.2 presents the data,

the standard equity momentum strategy and the stylized fact regarding momentum’s
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top-bottom phenomenon. Section 2.3 continues with different implementations of mean-

variance optimization of momentum taking account of this top-bottom phenomenon.

Section 2.4 contains a comparison of the performance of the optimized, residual and

constant-risk momentum strategies. Section 2.5 contains the results of several combination

strategies. In Section 2.6 we deal with the effect of introducing transaction costs.

Section 2.7 presents the analysis and results of the time-varying exposures of the different

strategies and Section 2.8 contains an analysis of the different momentum strategies over

three important episodes. Section 2.9 contains conclusions.

In the appendices we present some technical details and some robustness checks. Ap-

pendix 2.A contains the details of the closed form solution used in the mean-variance

optimization. In Appendix 2.B we discuss the robustness of the results if we use different

quantiles for the selection of the stocks in the top and bottom deciles of the momentum

strategies. Appendix 2.C describes a bootstrap test that we apply to the Sharpe ratios

of the different strategies as well as their differences. We make use of a block bootstrap

which is a simplification of the Ledoit and Wolf (2008) bootstrap test for Sharpe ratios.

We use this bootstrap rather than the Jobson and Korkie (1982) test with the Ledoit

and Wolf (2003) adjustment since this latter test is not valid for non-normally distributed

time series like we have.

The uncertainty of our results is an interesting issue. A major analysis of parameter

and model uncertainty and their effect on the performance of the different strategies is

outside the scope of this chapter. A first attempt to deal with this feature is presented

in Chapter 4. We take only an initial step in this direction by investigating whether the

Sharpe ratios of the different strategies are significantly larger than zero.

2.2 Data, standard momentum strategy and top-bottom

phenomenon

The data contain all monthly NYSE and AMEX common equity returns from the CRSP

database2 from January 1926 until December 2014. In addition we use the three Fama and

French (1993) equity risk factors: market, size and value, from July 1926 until December

2014 and the 1 month T-bill return from January 1926 until December 2014. Every

2Stocks with exchange code equal to 1 or 2 (NYSE and AMEX respectively) and share code equal to

10 or 11 (representing common shares and as such ruling out ADRs, REITs etc.)
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investment month the investment universe contains stocks that have a stock price higher

than 1$ to overcome possible noise from the relative large tick sizes for these stocks3. We

also require stocks to have at least a return history of 36 consecutive months as we require

36 months to estimate the stocks’ loadings on the Fama and French (1993) equity risk

factors.

The number of stocks included in the analysis varies over time. Figure 2.1 presents the

number of stocks at each time period, with and without the requirement of a 36 month

return history. Without adjusting the universe for the 36 month history the number of

available stocks runs from 484 in January 1926 to 1576 stocks in December 2014; when

adjusting the investment universe for a 36 month return history for each stock the number

of stocks runs from 418 in July 1929 to 1269 in December 2014.

Figure 2.1: Investment universe. Number of stocks in the investment universe after adjusting

for the 36 month return history requirement versus the total number of stocks from January

1926 - December 2014.

2.2.1 Standard momentum strategy

The standard momentum strategy we apply sorts the stocks in the investment universe

based on their past six months performance on returns, skips one month and subsequently

invests in the top decile of this ranking and short-sells the stocks in the bottom decile.

3We follow Pastor and Stambaugh (2003) who exclude stocks with prices lower than 5$; our results

are robust for the exclusion of stocks with prices below 5$, below 1$ or no exclusion at all.



13B_Erim van Oord_StandV5.job

14 Chapter 2

An equal weighting scheme is used for the stocks in the top and bottom deciles.

Table 2.1 presents the return and crash risk characteristics of this strategy between July

1929 and December 2014. The period of analysis starts in July 1929 since we require the

stocks in the investment universe to have at least 36 months of return history. Standard

equity momentum itself does not require a particular return history, but we do in order

to obtain a fair comparison with other strategies. Both mean-variance optimization and

residual momentum strategies require, for instance, the estimation of the stocks’ factor

loadings using the Fama and French (1993) equity risk factors and 36 months are required

to do so with sufficient accuracy. July 1929 is the first month that 36 months of equity

risk factor returns are available.

Table 2.1 displays several performance characteristics of the standard momentum strategy.

We specifically look into two types: standard characteristics and crash risk ones. Standard

performance characteristics are the annualized mean, annualized volatility and annualized

Sharpe ratio, which practitioners commonly use. Crash risk characteristics are particularly

important for the evaluation of equity momentum performance. Daniel and Moskowitz

(2013) and Cooper, Jr., and Hameed (2004) state, for instance, that equity momentum’s

performance is a reward for its crash risk. We make use of the following four crash risk

characteristics: largest monthly loss, defined as the largest loss in a single month over the

whole period; realized 1% shortfall, defined as the average loss over one percent of the

months with the worst returns (this reduces to the average over the 10 worst months of

our sample of 1026 months); maximum drawdown, defined as the largest cumulative loss

over the whole period; and finally, maximum recovery period, defined as the maximum

time, measured in months, that it takes to recover from a drawdown to the level of the

previous peak. The number of stocks in each case are in line with Figure 2.1.

Table 2.1 indicates that the obtained Sharpe-ratio is not very large, mainly due to the

large volatility and that standard equity momentum exhibits considerable crash risk. A

maximum drawdown of around 300 percent and a maximum recovery period of more

than 400 months, approximately 35 years, are clear indicators of crash risk. We note that

requiring a shorter return history for the stocks to be eligible for the momentum strategy

gave minor differences in terms of risk and return characteristics.
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These results are such that it appears worthwhile to investigate improvements over

standard equity momentum both from an academic and a practical perspective.

Table 2.1: Return and crash risk characteristics of the standard momentum strategy.

The return characteristics are the annualized mean, annualized volatility and annualized Sharpe

ratio over the period July 1929 to December 2014. The crash risk characteristics are the largest

loss in a single month, the maximum drawdown over the whole period and the maximum period

to recover from a drawdown to the level of the prior peak.

Characteristics Results

Annualized Mean 6.5%

Annualized Volatility 22.2%

Annualized Sharpe Ratio 29.3%

Largest Monthly Loss -57.3%

1% Expected Shortfall -38.1%

Full Period Maximum Drawdown 323.6%

Maximum Recovery Period in Months 430

2.2.2 Momentum’s top-bottom phenomenon

Momentum strategies are based on the expectation that past winners will continue to

be winners, and similarly, past losers will continue to be losers. The standard strategy

outlined in the previous paragraph is based on a top-bottom phenomenon, where the

relation between past and future returns are assumed for the top and bottom deciles.

A justification for using this top-bottom phenomenon is presented in Figure 2.2 for the

average monthly performance of ten deciles, where the averages of six months lagged

returns based on the past performance of stocks are shown. These may be labeled as

‘signals’ and are used as inputs for standard momentum strategy. For comparison, the

actual realized returns are also shown. The similarity between averages of past returns

and actual returns is seen at the top and bottom deciles: Decile 1 is clearly characterized

by relatively higher past returns and relatively higher actual returns. Similarly, decile

10 is characterized by relatively lower past returns and relatively lower actual returns.

Using the top and bottom deciles and the past performance of stocks are surely suitable

for portfolio construction.

However, Figure 2.2 further shows that all remaining deciles have a similar average realized

return of approximately 0.9 percent per month but the averages of the past returns
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have a typical decreasing pattern. This substantial difference between the averages of

past returns and actual returns for the stocks in deciles 2-9 may potentially have an

adverse effect on mean-variance optimization using all deciles. In the following sections,

we outline a methodology which incorporates momentum’s top-bottom phenomenon in

mean-variance optimization.

Figure 2.2: Actual versus lagged returns. Average six month lagged return signals (left

axis) used for standard momentum’s ranking and the actual realized returns after one skip

month (right axis) over July 1929 - December 2014.

We emphasize that this data feature holds for the period from July 1929 to December

2014. In Section 2.8 we investigate the robustness of this feature for particular subperiods.

2.3 Mean-variance optimization under the top-bottom

phenomenon

In this section we start with a brief description of standard mean-variance optimization.

Markowitz (1952) puts forward mean-variance optimization as a way to construct equity

portfolios that ex-ante trade-off the risks and returns of the stocks. This is different

from, for example, an equally weighting scheme like the standard equity momentum

strategy and in theory mean-variance optimization would yield better risk adjusted

returns. However, practitioners are not keen on mean-variance optimization as it results

in portfolios with extreme long and short positions in stocks with high and low expected
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returns or attractive and unattractive risk characteristics. If a stock’s expected return is

over- or underestimated its weight in the optimized portfolio is also over- or understated.

Given this sensitivity to extreme observations, Michaud (1989), for example, refers to

mean-variance optimization as ’error maximization’. Since equity momentum appears

to be more or less right about the expected returns in the top and bottom deciles, we

explore whether mean-variance optimization with expected returns based on this data

feature results in better risk-adjusted returns.

2.3.1 Mean-variance optimization

This section presents mean-variance optimization for the construction of momentum

portfolios. Every month t, we construct a portfolio ht, a Nt × 1 vector of weights for

the Nt stocks in the investment universe at that time. These portfolios are based on

the mean-variance optimization taking account of the top-bottom phenomenon. The

constructed portfolios are long-short portfolios, where the sum of positive and negative

weights add up to one. We choose this restriction of 1$ long and 1$ short to have a fair

comparison with the standard momentum strategy outlined in Section 2.2.1, which is also

a long-short strategy with 1$ long and 1$ short exposure.

In order to ease the technical steps of the optimization, we first construct an initial

portfolio h∗
t that does not satisfy the constraint that both positive and negative weights

add up to one. We find the initial portfolio h∗
t by minimizing the portfolio variance given

unit exposure to the expected returns ft. The optimization problem is formulated as

follows

min
h∗
t

{
h∗
t
′Vth

∗
t

∣∣h∗
t
′ι = 0, h∗

t
′ft = 1

}
(2.1)

where Vt is theNt×Nt covariance matrix and ι is an Nt×1 vector of ones. In Appendix 2.A

we present the derivation of the following solution to this minimization problem

ĥ∗
t =

V −1
t ft − f ′

tV
−1
t ι(ι′V −1

t ι)−1V −1
t ι

f ′
tV

−1
t ft − (f ′

tV
−1ι)2(ι′V −1

t ι)−1
=

V −1
t (ft − C2,tι)

C1,t

(2.2)

where C1,t = f ′
tV

−1
t ft− (f ′

tV
−1
t ι)2(ι′V −1

t ι)−1 and C2,t = f ′
tV

−1
t ι(ι′V −1

t ι)−1 are time-varying

scalars.
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Equation 2.2 can be written as follows:

ĥ∗
t = w1,t

(
V −1
t ft − w2,tV

−1
t ι

)
(2.3)

where w1,t =
1

C1,t
and w2,t = C2,t. As such, the optimized portfolio is a weighted average of

scaled and demeaned expected returns ft where the weights depend on the inverse of the

variance-covariance matrix Vt. We note that V −1
t ft refers to the vector of Sharp ratios of

returns and that V −1
t ι refers to the inverse of the variance, that is, the precision of returns.

We transform the initial portfolios obtained from Equation 2.2 such that the optimized

long-short portfolios have 1$ long and 1$ short exposure:

ĥt =
2ĥ∗

t∣∣∣∣∣∣ĥ∗
t

∣∣∣∣∣∣
1

, (2.4)

We note that this scaling does not affect the zero net-investment constraint for a long-

short portfolio and also does not change its ex-ante Sharpe ratio.

An important concern in obtaining the weights using equation (2.2) is to ensure that

the covariance matrix Vt is invertible. Standard methods, such as obtaining Vt from the

historical sample covariance matrix, may fail to satisfy this condition. This is particularly

the case in our example with 36 monthly past returns and a large investment universe with

at least 400 and at most over 2000 stocks. See Ledoit and Wolf (2004) and DeMiguel et

al. (2009) for details on this invertibility problem. We use the following factor covariance

matrix using the Fama and French (1993) equity risk factors which ensures an invertible

covariance matrix

Vt = Γ′
tVFF,tΓt +Δt (2.5)

where Γt is the 3 × Nt matrix with the three estimated equity risk factor loadings for

each of the Nt stocks in the investment universe for that investment month t, VFF,t is the

sample covariance matrix of the equity risk factors and Δt is an Nt ×Nt diagonal matrix

with the residual variances of the stocks. These residual variances are the variances of

the residuals from regressing the stock returns on the equity risk factors. We use the past

36 months for all estimations.

The covariance matrix Vt does not reflect the momentum phenomenon, but momentum

will be reflected in the remaining input parameter: the expected returns ft. In the next
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section we discuss in which ways these expected returns reflect momentum and its top-

bottom phenomenon.

2.3.2 Optimization strategies using the top-bottom phenomenon

In this section we present two mean-variance optimization procedures which differ in the

way they take into account momentum’s top-bottom phenomenon.

For convenience, we start to describe a straightforward way to apply mean-variance

optimization to equity momentum. In the previous section we already discussed the

problem set-up including the covariance matrix. It would be straightforward to make use

of the past six month average returns after a skip month for ranking the stocks in the

momentum strategy as expected returns in the mean-variance optimization:

fit =
t−2∑

t∗=t−7

rit∗∀i ∈ It. (2.6)

We will compare our results with this pure mean-variance optimization strategy, denoted

by ‘Full-data’.

We take the top-bottom phenomenon into account in two ways: by filtering the expected

returns or by reducing the investment universe to only the stocks in the top and bottom

decile.

The first method we propose, filtering returns, implies zero expected returns for stocks

that are ranked in the intermediate deciles, defines a value of 1 for stocks at the top

decile, and a value of −1 for stocks at the bottom decile. Intuitively, this approach

smooths extreme returns, and the portfolio constructed with filtered returns does not rely

on the returns of the stocks in the intermediate deciles. We denote this optimization

strategy as ‘101’ optimization and present details of the filtering procedure below.

The second method, reducing the investment universe, ensures that the optimization

algorithm does not select stocks from intermediate deciles. Discarding stocks from

these intermediate deciles is expected to improve the realized return of the strategy as

Figure 2.2 already showed that long and short positions in these stocks in the intermediate

deciles have a zero net return. We note that a disadvantage of reducing the investment
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universe according to this strategy is the reduction in diversification benefits. The stocks

in the top and bottom deciles keep their past six month average returns after a skip

month as expected returns. We denote this optimization strategy as ‘Top-Bottom-Data’

optimization.

The different optimized portfolio strategies can be summarized as follows:

• Full-data: This strategy uses mean-variance optimization to allocate all stocks in

a zero net investment long-short portfolio using the momentum signals used for

ranking the stocks in equation (2.6) as expected returns.

• Full-101 : The portfolio is optimized over all stocks, but past expected returns are

filtered to reflect momentum’s top-bottom phenomenon. This optimization results

in a minimum variance combination of all stocks. The expected returns of the stocks

in the top decile equal one, that of stocks in the bottom decile equal minus one and

that of the stocks in the intermediate deciles equal zero. This is also formulated in

equation (2.7). The rationale for using expected returns equal to plus and minus one

is that this results in minimum variance combinations of these stocks within the top

and bottom deciles. This reduces the ”error maximization problem” in wrongfully

estimated expected returns in mean-variance optimization by have equal expected

returns for the stocks in the top and bottom deciles. We use a zero expected

return for the stocks in the intermediate deciles to reflect momentum’s top-bottom

phenomenon that these stocks do not out- or underperform each other; allocating to

these stocks would not be beneficial from a return perspective. However, due to the

weighted average of returns in equation (2.2), optimized weights of returns within

the same decile can differ according to the correlation between stocks.

• Top-Bottom data: We reduce the investment universe to only the stocks in the top

and bottom decile of momentum’s ranking and use these stocks’ recent returns, their

momentum signals according to Equation 2.6, as expected returns. The portfolio is

constructed using mean-variance optimization on the reduced investment universe.

Filtering returns according to momentum’s top-bottom phenomenon The

methodology to filter past returns is as follows. We base the expected returns ft of the

stocks in a particular month in the investment universe It on the standard momentum

signals, the six month average realized returns, lagged by one month to deal with short-

term reversals as in equation (2.6). We then test if taking into account momentum’s
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top-bottom phenomenon is able to boost the performance. We change the expected

returns to plus one for the top decile, minus one for the bottom decile and zero for the

intermediate deciles.

The filtered or adjusted expected returns f ∗
t become

f ∗
it =

⎧⎪⎨⎪⎩
1 fit ≥ F−1

t (0.1)

0 F−1
t (0.1) < fit ≤ F−1

t (0.9)

−1 fit ≤ F−1
t (0.9)

(2.7)

where Ft is the sample cumulative distribution function of the momentum signals used

for investing in month t.

We emphasize that the covariance matrix is not based on filtered returns even when

past returns are adjusted according to equations (2.6) and (2.7). The obtained variances,

calculated from the Fama and French (1993) equity risk factors, are by construction

less volatile than returns. Given a single extreme observation, variances will not change

drastically, hence there is not a clear need to ‘filter’ variances. Strategy Full-101 benefits

from smoothing by filtering extreme returns to -1 and 1, and filtering intermediate returns

to 0. Still, the portfolio benefits from diversification since the weight of each stock is

determined by filtered returns but non-filtered variances in equation (2.2).

An illustrative example As an illustration, consider the investment universe of 20

stocks. The standard momentum strategy in Section 2.2.1 and the alternative momentum

strategies proposed above are as follows

• Strategy Standard momentum, presented in Section 2.2.1, takes the 2 best perform-

ing stocks and the 2 worst performing stocks according to the average returns in

the last 7 months. The return of the strategy is the equal weighted return of these

4 stocks.

• Strategy Full-data takes 20 stocks as investment universe. The choice of stocks

and the weights of stocks are determined using the mean-variance optimization and

the average past returns. The return of this strategy is a mean-variance optimized

weighted returns of all 20 stocks. No filtering is applied on returns.

• Strategy Full-101 takes 20 stocks as investment universe. Past performance of the

stocks are evaluated according to ‘filtered’ returns taking values −1, 0, 1, correspond-
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ing to bottom, intermediate and top deciles, respectively. The optimized portfolio of

this strategy is a mean-variance optimized weighted holding in all 20 stocks. Even

when stocks have equal filtered returns, e.g. for stocks with 0 filtered returns in

deciles 2 and 3, weights of stocks can be different due to the correlation structure.

Hence this strategy takes into account momentum’s top-bottom phenomenon, but

it does not simply reduce the investment universe to only four stocks.

• Strategy Top-Bottom data takes 4 stocks from the top and bottom deciles as

investment universe. The choice of stocks and the weights of stocks are determined

using the mean-variance optimization and the average past returns. The return of

this strategy is a mean-variance optimized weighted returns of 4 stocks. No filtering

is applied on returns.

2.3.3 Empirical results

We apply the proposed momentum strategies and the standard momentum strategy to the

data described in Section 2.2.1. Table 2.2 presents several results obtained from different

portfolio strategies including the annualized mean, volatility, Sharpe-ratio and the crash

risk characteristics. For all strategies, the investment universe consists of stocks with at

least 36 months from July 1929 until December 2014.

The first three rows of Table 2.2 indicate the standard mean-variance trade-off in portfolio

strategies. The standard strategy leads to a relatively high annualized mean, associated

with the highest volatility. Strategy Full-101 has a slightly lower annualized mean, but

a considerably lower volatility. The Sharpe-ratio takes account of this mean-variance

trade-off. The proposed two strategies, with results listed in the last two columns,

lead to a higher Sharpe-ratio than the standard strategy. Hence the return results are

improved by using Full-101 and Top-Bottom data, which take into account the top-bottom

phenomenon by filtering the expected returns (Full-101 ) or by reducing the investment

universe to only the stocks in the top and bottom decile (Top-Bottom data).

We next compare strategies Full-101 and Top-Bottom data with the pure mean-variance

optimization strategy Full-data. The former strategies take momentum’s top-bottom

phenomenon into account when applying mean-variance optimization. The strategy Full-

data, on the other hand, is only based on mean-variance optimization. Table 2.2 shows

that the proposed strategies Full-101 and Top-Bottom data perform better than the pure
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Table 2.2: Return and crash risk characteristics of standard and optimized momen-

tum. The optimized momentum strategies differ in two aspects. The Full strategies optimize

over all available stocks in the investment universe, while the Top-Bottom (T-B) data strategy

optimizes over just the stocks in the top and bottom decile of momentum’s ranking. The data

strategies use the unfiltered momentum signals as expected returns, while the 101 strategy

adjusts the expected returns to plus one for the stocks in the top decile of momentum’s ranking,

minus one for the stocks in the bottom decile and zero for the remaining stocks. The return and

crash risk characteristics cover the period from July 1929 to December 2014.

Std. Full Full T-B

Mom. Data 101 Data

Annualized Mean 6.5% 4.2% 6.1% 9.9%

Annualized Volatility 22.2% 10.2% 9.7% 17.1%

Annualized Sharpe-Ratio 29.3% 41.3% 63.6% 57.9%

Largest Monthly Loss -57.3% -23.7% -23.8% -40.6%

1% Expected Shortfall -38.1% -17.7% -15.1% -26.2%

Maximum Drawdown 323.6% 73.5% 44.3% 132.9%

Max. Recovery Period 430 202 197 239

mean-variance optimization strategy in terms of mean and Sharpe-ratio. Hence, both

taking the top-bottom phenomenon of momentum and mean-variance optimization im-

proves portfolio performance. Taking momentum’s top-bottom phenomenon into account

is beneficial since in this way the allocation to stocks in deciles 2 to 9 decreases. The

Full-data optimizes under the assumption that stocks in decile 2 will outperform all other

stocks, but the stocks in decile 1. Figure 2.2 has, however, shown that the stocks in decile

2 only outperform stocks in decile 10. As a consequence the Full-Data has long-short

positions in stocks in deciles 2 to 9 that are assumed to be beneficial, but in practice

are not. Both removing the stocks in the intermediate deciles in the Top-Bottom-Data

strategy and adjusting the expected returns of these stocks in these deciles in the Full-

101 strategy is beneficial. The Sharpe ratios of these latter strategies do not differ that

much. The Full-101 strategy has lower risk because of its diversification benefits from

optimizing over the full investment universe rather than only the stocks in the top and

bottom deciles and because of forming minimum variance combinations of the stocks in

the top and bottom deciles. The higher realized return of the Top-Bottom data strategy

stems from the fact that it allocates 100 percent to the top and bottom deciles and does

not ’suffer’ from allocating to stocks in the intermediate deciles that do not outperform

each other.
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In terms of crash risk characteristics, we conclude that optimization improves the results of

the standard momentum strategy substantially, as shown in the bottom panel of Table 2.2.

Within the optimized strategies, Full-101 performs best.

In Figure 2.3, we present the average monthly optimized weights for each decile for

two strategies, Full-data and Full-101, in order to clarify the effect of filtered returns

in mean-variance optimization. The Full-101 strategy is on average long 58.8 percent in

the top decile and short 68.2 percent in the bottom decile in comparison to 29.4 percent

long in the top decile and 30.0 percent short in the bottom decile for the Full-Data

strategy with the unadjusted momentum signals as expected returns. As such the Full-

101 strategy implicitly takes into account the top-bottom phenomenon of momentum.

The higher Sharpe ratio for Full-101 compared to Full-data in Table 2.2 is explained with

this exposure.

An interesting feature of these optimized weights is the slight increase in weights from

deciles 2 to 9 for strategy Full-101. Adjusted returns for all stocks in deciles 2 to 9 are 0,

but the covariance matrix Vt leads to different weights for each stock and thus each decile.

Therefore the optimized portfolio with filtered returns benefits from diversification. For

example, slightly low weights of stocks in decile 2 potentially result from the positive

correlation of these stocks with those in decile 1; mean-variance optimization typically re-

sults in offsetting positions in positively correlated stocks with different expected returns.

The increased allocation to the top and bottom deciles of the Full-101 strategy does

not come at the cost of higher risk; the Full-101 strategy has actually lower crash risk

properties than the strategy based on momentum signals as expected returns. We ascribe

this to the optimization of the stocks within the top decile: mean-variance optimization

loads on the input expected returns and within the top decile the Full-Data strategy

with unadjusted expected returns heavily loads on the few stocks with extremely high

and low returns. These stocks are likely the most risky ones within the top and bottom

deciles. The Full-101 strategy rather selects the less risky stocks within the top and

bottom deciles. In general, having equal expected returns, for example by adjusting the

expected returns to one, results in the minimum variance portfolio. In our case, adjusting

the expected returns to plus one and minus one results in minimum variance combinations
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Figure 2.3: Weights over deciles for optimized momentum. Average monthly weights

when the investment universe contains all stocks for the strategy that use the standard

momentum signals as expected returns (Full-Data) and the strategy that uses filtered returns

for momentum ranking (Full-101).
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of the stocks within the top and bottom deciles4. The outperformance of this Full-101

is in this way in line with the findings of Clarke, de Silva, and Thorley (2006) who also

find that the minimum variance portfolio outperforms the market value weighted portfolio.

Mean-variance optimization is known to often result in extreme weights. We deem

the minimum and and maximum weights of the Full-101 equity momentum strategy in

Figure 2.4 not to be extreme. We achieve these non-extreme weights by our problem set up

that restricts all weights to be between minus and plus 100 percent. This is comparable

to the solution Jagannathan and Ma (2003) come up with to prevent mean-variance

optimized portfolios to have extreme weights: by adding a no short-selling restriction

they ensure that all weights are between 0 and 100 percent. Without this restriction

standard fully-invested mean-variance optimized portfolios typically have long positions

in part of their stocks and short positions in stocks in the other part; for example all long

holdings add up to 500 percent and all short holdings add up to 400 percent.

Figure 2.4: Minimum and maximum weights of Full-101 optimized momentum strategy over

the period from July 1929 to December 2014.

Based on the presented results, we conclude that momentum improves by mean-variance

optimization and by accounting for the top-bottom phenomenon of momentum, either by

reducing the investment universe or by filtering past returns. According to the Sharpe

ratios and crash risk characteristics, strategy Full-101 is the best strategy from the

compared alternatives so far.

4Of course, the adjustment of the expected returns to plus and minus one also results in long-short

positions in highly correlated stocks with high versus low risk.
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2.4 Alternative momentum strategies: residual and

constant-risk

In this section we consider two recent alternative momentum strategies and compare their

performance with the proposed optimized momentum strategy, the standard momentum

strategy, as well as with each other. First, we consider residual momentum proposed by

Blitz et al. (2011), where stocks are ranked on the recent residual returns from regressing

the stocks’ total returns on the Fama and French (1993) equity risk factors. Second, we

consider the constant-risk momentum strategy put forward by Barroso and Santa-Clara

(2015) where the momentum strategy is leveraged to a strategy with constant risk over

time.

In the following tables and figures, we make use of the symbol ‘S’ for the standard

momentum strategy; the symbol ‘O’ for the Full-101 optimization strategy; the symbol

‘R’ for residual momentum and the symbol ‘C’ for constant-risk momentum.

Residual momentum (R) Residual momentum, proposed by Blitz et al. (2011), ranks

stocks based on their recent residual returns from regressing the stock returns on the

Fama and French (1993) equity risk factors rather than ranking stocks on their recent

total returns. Blitz et al. (2011) find that a strategy that is long in the top decile and

short in the bottom decile according to the ranking of these residual returns leads to a

higher Sharpe ratio compared to the standard momentum strategy.

The residual momentum strategy we apply first estimates the stocks’ equity risk factor

exposures over the months t−T to t− 1 where T equals 36 months. The average residual

returns from these regressions over t− 7 to t− 2 are then used for residual momentum’s

ranking. The average residuals returns used for ranking do not include the most recent

month t−1 for the same argument as for standard momentum: in order to overcome short-

term reversals in residual returns. The residual momentum strategy invests in month t in

the stocks in the top decile of the ranking on residual returns and short-sells the stocks

in the bottom decile of this ranking.

Unlike Blitz et al. (2011), we do not rank the stocks on the risk-adjusted residual returns

by normalizing recent average residual returns with the corresponding residual volatilities,

i.e. the standard errors of the regressions. We choose to do so to remain closer to the
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standard momentum strategy in which the total returns are also not divided by the total

volatility of the stocks. Dividing the residual, or total, returns used for momentum’s

ranking would add exposure to the low volatility effect as documented by Blitz and Vliet

(2007). Nevertheless, we note that our results are similar when we use average residual

returns or these normalized residual returns.

Column 3 in Table 2.3 confirms the results of Blitz et al. (2011) that residual momentum

outperforms standard momentum. Residual momentum’s Sharpe ratio is 77.9 percent in

comparison to 29.3 percent for standard momentum. Residual momentum also exhibits

less crash risk than standard momentum. Its largest monthly loss is 40.1 percent versus

57.3 for standard momentum and the maximum drawdown is 63.0 percent in comparison

to 323.6 percent for standard momentum. Moreover its maximum recovery period to

recover from a drawdown to the level of the previous peak is 84 months, 7 years, while

this is more than 430 months, 35 years, for the standard momentum strategy.

Constant-risk momentum (C) Barroso and Santa-Clara (2015) adjust the momen-

tum strategy in a different way. They find that leveraging the momentum strategy to a

strategy with constant risk over time outperforms standard momentum. This constant-

risk momentum strategy reduces the exposure of standard momentum when momentum’s

volatility has been high during the recent months. At times when momentum’s recent

volatility has been low, the strategy increases its exposure. At times of low volatility, the

total holdings in both the top and bottom decile add up to more than one, while these

holdings add up to less than one when the recent momentum returns have been volatile.

However, the constant-risk strategy still attaches equal weights to the stocks in the top

and bottom deciles. The holdings in the top and bottom decile of the standard momentum

strategy add up to one every month, irrespective of momentum’s recent volatility.

The constant-risk momentum strategy we apply estimates the volatility of the standard

momentum strategy over the past 6 months and then adjust the total, although still

equally weighted, holdings in the top and bottom deciles of momentum’s ranking. In

this way we differ from Barroso and Santa-Clara (2015) who use daily data to estimate

momentum’s volatility to adjust the leverage. Nevertheless, we do find that our variant

of constant-risk momentum also outperforms standard momentum. The total holdings in

the top and bottom are adjusted such that the momentum’s recent volatility times these

total holdings are constant over time. For a fair comparison with the other momentum

strategies that have total holdings in the top and bottom decile equal to one, we multiply
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the returns of the constant-risk momentum strategy afterwards, such that the constant-

risk strategy also has on average total holdings in the top and bottom deciles equal to

one.

Results All proposed alternative momentum strategies in the columns 2 to 4 of Table 2.3

outperform standard momentum, S, in terms of their Sharpe ratios which are higher than

standard momentum’s Sharpe ratio of 29.3 percent. Furthermore, their largest monthly

loss is lower, their maximum drawdown is much lower than standard momentum’s 323.6

percent and their maximum recovery period from a drawdown is well below the 430

months for standard momentum. In terms of Sharpe ratio, the residual momentum

strategy performs best with a Sharpe ratio of 77.9 percent and this strategy does not

take more than 84 months (7 years) to recover to the previous peak after a drawdown.

The second highest Sharpe ratio is obtained by the constant-risk strategy. In terms of

the risk indicators largest monthly loss and maximum drawdown, however, the proposed

optimized strategy outperforms the constant-risk and residual momentum strategies.

We conclude that the proposed optimized and alternative strategies outperform standard

momentum strategy in all risk and return characteristics, except that strategy O has a

slightly lower annualized mean (6.1 percent) than strategy S (6.5 percent). However, a

second conclusion is that none of the proposed three strategies outperforms the other two

strategies on all risk and return characteristics. In terms of a higher Sharpe ratio residual

momentum, R, performs best, while in terms of crash risk, the optimization strategy, O,

outperforms the other improvements mostly.

Table 2.3: Return and crash risk characteristics of four different momentum

strategies: Standard momentum (S), mean-variance optimization of momentum using filtered

data, earlier denoted by Full-101 and now as (O), residual momentum (R) and constant-risk

momentum (C). The results cover the period July 1929 to December 2014.

S O R C

Annualized Mean 6.5% 6.1% 10.3% 11.8%

Annualized Volatility 22.2% 9.7% 13.2% 18.0%

Annualized Sharpe-Ratio 29.3% 63.6% 77.9% 65.4%

Largest Monthly Loss -57.3% -23.8% -40.1% -35.0%

1% Expected Shortfall -38.1% -15.1% -22.7% -18.0%

Maximum Drawdown 323.6% 44.3% 63% 93.2%

Max. Recovery Period 430 197 84 198
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2.5 Combining momentum strategies

In the previous section we compared the three momentum strategies and found some

mixed results on the risk and return characteristics of the optimized (with filtered data),

residual and constant-risk momentum strategies. Optimization is better according to

largest monthly loss and maximum drawdown, while residual and constant-risk mo-

mentum are better in terms of Sharpe ratio. Therefore, it is natural to continue the

analysis using several combination strategies: pairwise as well as a joint strategy of using

optimized, residual and constant-risk momentum. In the following tables and figures, we

make use of an asterisk ’*’ to denote optimization strategies that use the Top-Bottom

data instead of the Full-101 method.

2.5.1 Combination strategies

Residual Optimized Momentum: R-O In order to investigate whether optimiza-

tion improves residual momentum, we first investigate whether residual momentum also

exhibits a top-bottom phenomenon. Figure 2.5 presents the average 6 month return signal

for residual momentum and the actual realized return in the investment month per decile.

Average returns obtained from residual momentum show a different pattern compared to

realized returns. Actual realized returns exhibit a different decreasing pattern between

deciles 2 to 9 than the residual momentum signals that by construction show a steady

decrease over these deciles. Like standard momentum, residual momentum seems to be

most pronounced in the top and bottom deciles of the ranking. This makes optimization

strategies that take account of this phenomenon also appropriate for optimizing residual

momentum. Similarly as for standard momentum we choose to apply the Full-101 strategy

to optimize residual momentum.

In Table 2.4 risk and return characteristics are presented when we apply mean-variance

optimization to residual momentum. This combined strategy is denoted by ‘R-O’. These

results confirm that optimization does not only work for standard momentum, but also for

residual momentum. Although the improvement in the Sharpe ratio and the reduction in

the crash risk characteristics are smaller than when optimizing the standard momentum

strategy. The results for the Top-Bottom data R-O strategy, not reported, are comparable

to those of the Full-101 R-O strategy. The Full-data R-O strategy, also not reported here,

performs less than these strategies that take the top-bottom phenomenon into account.

This is in line with the results when optimizing standard momentum. More details are
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Figure 2.5: Actual versus lagged residual returns. Average residual return signals over the

six month ranking period (left axis) and actual realized returns (right axis) for each decile from

July 1929 to December 2014.

discussed below.

Just like in Section 2.3, we consider in Figure 2.6 the average monthly weights of the

optimized strategies, but now for the residual momentum strategies. The pattern of

the weights for the optimized residual momentum strategies is similar to the pattern

of the weights of the optimized standard momentum strategies in Figure 2.3. The

optimized momentum Full-101 strategy using filtered returns, shown in Figure 2.3,

allocates approximately 60 percent of the portfolio to the top and bottom deciles, while

residual momentum with filtered returns, shown in Figure 2.6, allocates almost 80 percent

of the portfolio to the top and bottom deciles. A possible explanation for this finding is the

existence of more pronounced diversification benefits for residual momentum within the

top and bottom deciles. The top and bottom deciles of residual momentum are always

populated by stocks with both high and low factor loadings, irrespective of the factor

returns during momentum’s ranking period. The top and bottom deciles of standard

momentum are populated by just stocks with high or low factor loadings if the factor

returns have been highly positive or strongly negative during momentum’s ranking period.

This follows from the fact that if a factor return has been highly positive during the ranking

period the stocks with large loadings on this factor tend to end up in the top decile of

standard momentum as they profit from being largely exposed to a factor with a positive
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return. Residual momentum ranks stocks on their residual returns and as such stocks

with high and low factor loadings are equally likely to end up in the top and bottom

deciles, irrespective of the returns on these factors during momentum’s ranking period.

This phenomenon also relates to the time-varying exposures of the equity momentum

strategy that we discuss in Section 2.7.

Figure 2.6: Weights over deciles for optimized residual momentum. Average monthly

weights when the investment universe contains all stocks for the strategy that use the residual

momentum signals as expected returns (Full-Data) and the strategy that uses filtered returns

for momentum ranking (Full-101).

The allocation to the deciles in Figure 2.6 for residual momentum also exhibits the pattern

over the deciles 2 to 9 as the allocation of optimized standard momentum in Figure 2.3,

but to a lesser extent. This is also a consequence of ranking stocks on their residual

return rather than on their total return. When ranking stocks on their total returns

stocks with high or low factor loadings tend to end up in the top or bottom deciles

when the factor return during momentum’s ranking period has been highly positive. The

average factor loading of stocks in a particular decile in this situation declines from decile

1 to 10. As a consequence stocks in neighboring deciles tend to be more correlated

when the factor return has been highly positive or strongly negative during momentum’s

ranking period. Mean-variance optimization results in offsetting positions in stocks that

are highly correlated and that is why we find the increasing pattern in allocation to the

stocks in deciles 2 to 9 for standard momentum. Since residual momentum ranks stocks



23A_Erim van Oord_StandV5.job

2.5 Combining momentum strategies 33

on their residual returns, stocks with high and low factor loadings are equally likely to be

in the different deciles and as such neighboring deciles are less correlated. Therefore we

find a smaller increasing pattern in the allocation from deciles 2 to 9 than for standard

momentum.

Optimized constant-risk momentum: O-C It is possible to apply the mean-

variance optimization in a constant-risk setting. Rather than scaling the solution to

the subproblem in equation 2.2 to a 1$ long and 1$ short exposure, one may scale the

optimal weights such that the long-short portfolio has constant risk over time:

ĥt = ĥ∗
t

CR√
ĥ∗
t

′
Vtĥ∗

t

(2.8)

where CR is the ex-ante constant-risk the portfolio is scaled to. After constructing all

monthly portfolios ĥt we scale these weights again such that on average the optimized

constant-risk momentum strategy has unit long and unit short exposure. We do this for

a fair comparison of the different strategies. Note that this scaling does not affect the

Sharpe ratio or the time to recover from a large drawdown, but it does affect the crash

risk figures largest loss and maximum drawdown.

Optimized constant-risk momentum at lower costs: O-C* Since mean-variance

optimization typically increases the number of transactions we also apply the constant-

risk momentum strategy to just the stocks in the top and bottom deciles of momentum’s

ranking. Given that this optimized constant-risk at lower costs momentum strategy is only

long and short in the stocks in the top and bottom decile its number of transactions will

be lower than when optimizing over all available stocks. It is thus similar to the optimized

constant-risk momentum O-C strategy except that the strategy buys and short-sells less

stocks every investment month. The strategy is in that sense also similar to the Top-

Bottom data strategy in Section 2.3; it only differs from this strategy by keeping its

ex-ante risk constant over time.

Residual momentum with constant risk: R-C The constant-risk residual momen-

tum strategy is similar to the constant-risk momentum (C) strategy, but the risk adjust-

ment to achieve a constant-risk over time is now applied to the residual R momentum

strategy. The realized volatility over the past 6 months of residual momentum is used to

leverage and deleverage to a constant risk over time.
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Residual momentum optimized with constant risk: R-O-C The strategy with all

three improvements combined is the optimized constant-risk residual momentum strategy,

denoted by ’R-O-C’. It is similar to the optimized constant-risk momentum O-C strategy

but with the adjusted residual returns used as expected returns in the mean-variance

optimization.

Residual momentum optimized with constant risk at lower costs: R-O-C*

Similarly as for standard momentum we also test the performance of the optimization of

constant-risk residual momentum over just the stocks in top and bottom deciles of residual

momentum’s ranking. Given that this optimized constant-risk residual momentum at

lower costs strategy is only long and short in the stocks in the top and bottom decile its

number of transactions will be lower than when optimizing over all available stocks.

2.5.2 Summary of momentum strategies

In the next sections we compare all ten momentum strategies that we have discussed so

far. First, we briefly summarize all ten momentum strategies:

• S: The standard momentum strategy is long in the stocks ranked in the top

decile and short in the stocks in the bottom decile. The stocks are ranked on their

total return over the previous six months with a delay of one month to account for

short-term reversals.

• O: The optimized momentum strategy is the Full-101 strategy and uses mean-

variance optimization to construct portfolios that are 1$ long and 1$ short. The

expected returns are plus one for the stocks ranked in the top decile, minus one for

the stocks ranked in the bottom decile and zero for the remaining stocks.

• C: The constant-risk momentum strategy leverages and deleverages the standard

momentum S strategy such that its ex-ante risk is constant over time. The ex-ante

risk is determined as the realized volatility of standard momentum S over the past

six months. Afterwards the strategy is scaled such that its exposure is on average

1$ long and 1$ short.

• O-C: The optimized constant-risk momentum strategy is similar to the stan-

dard optimized O strategy, but constructs portfolios that have a constant ex-ante

volatility over time rather than portfolios that are 1$ long and 1$ short. Afterwards

the strategy is scaled such that its exposure is on average 1$ long and 1$ short.
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• O-C*: The optimized constant-risk momentum at lower costs strategy

is similar to the optimized constant-risk momentum O-C strategy, but does not

optimize over all available stocks with expected returns adjusted to plus one, minus

one and zero. This strategy is rather the Top-Bottom data optimization strategy

that applies mean-variance optimization to only the stocks in the top and bottom

deciles with the total returns over the previous six months as expected returns. The

strategy keeps the ex-ante risk constant over time; afterwards the strategy is scaled

such that its exposure is on average 1$ long and 1$ short.

• R: The residual momentum strategy is long in the stocks ranked in the top

decile and short in the stocks in the bottom decile. The stocks are ranked on their

residual return over the previous six months with a delay of one month to account

for short-term reversals. The residual returns stem from regressing the three equity

risk factors market, size and value on the past 36 months.

• R-O: The residual optimized momentum strategy is the Full-101 residual

momentum strategy and uses mean-variance optimization to construct portfolios

that are 1$ long and 1$ short. The expected returns are plus one for the stocks

ranked on their residual returns in the top decile, minus one for the stocks ranked

in the bottom decile and zero for the remaining stocks.

• R-C: The residual momentum with constant-risk strategy leverages and

deleverages the residual momentum R strategy such that its ex-ante risk is constant

over time. The ex-ante risk is determined as the realized volatility of residual

momentum R over the past six months. Afterwards the strategy is scaled such

that its exposure is on average 1$ long and 1$ short.

• R-O-C: residual optimized constant-risk momentum strategy is similar to

the optimized constant-risk momentum O-C strategy, but uses the ranking on the

residual returns instead of the ranking on total returns to determine the expected

returns of plus one, minus one and zero used for the mean-variance optimization.

• R-O-C*: The residual optimized constant-risk momentum at lower costs

strategy is similar to the optimized constant-risk momentum O-C* strategy, but

uses the residual returns instead of the total returns for the expected returns used

in the mean-variance optimization.
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2.5.3 Results

Table 2.4 shows the results for return and crash characteristics of the standard strategy,

the proposed individual and combined strategies. As stated above, the proposed individual

momentum strategies O, C, and R outperform standard momentum on all criteria, except

one case, see the results in columns 2-4 compared to the results in column 1. Applying

pairwise combination strategies gives improvements on the Sharpe ratios from R-O and

R-C and two of their crash risk characteristics.

Combining all proposed alternatives in the R-O-C strategy improves standard momen-

tum’s performance and reduces its crash risk substantially. The Sharpe ratio improves

from 29.3 percent to 100.3 percent. In addition, crash risk indicators like the largest

monthly loss, the maximum drawdown and the time to recover to the level of the previous

peak after a drawdown improve from, respectively, 57.3 percent, 323.6 percent and 430

months to 13.8 percent, 35.8 percent and 104 months. The R-O-C* strategy has a Sharpe

ratio of 106.6% that is even higher than that of the R-O-C strategy, but does exhibit

slightly more crash risk as shown by two criteria. Its higher volatility and the larger

crash risk are due to the fact that this strategy only optimizes over the stocks in the top

and bottom deciles and thus exhibits less diversification than the R-O-C strategy that

optimizes over all available stocks. On the other hand the R-O-C* strategy will likely profit

from imposing less transactions than the R-O-C strategy. We will look into transaction

costs in the next section. Both the R-O-C and R-O-C* strategies also outperform the

alternative momentum strategies, O, R and C in terms of Sharpe ratios and most crash

risk characteristics.

2.5.4 Statistical significance of Sharpe ratios

In this section we test whether the Sharpe ratios of the ten different strategies are signif-

icantly larger than zero and whether a Sharpe ratio of a specific strategy is significantly

higher than that of the other strategies. We do so by using the bootstrap method presented

in Appendix 2.C. Table 2.5 presents the p-values of the bootstrap test whether the Sharpe

ratio of a strategy is larger than zero. It is directly seen that the Sharpe ratios of all

momentum strategies have p-values equal to zero except for standard momentum with a

p-value of 1.04%. This indicates that all Sharpe ratios are significantly larger than zero

at the 5% confidence level and all but one are significant at the 1% confidence level.
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Table 2.4: Return and crash risk characteristics of different momentum strategies and

their combinations. The return and risk characteristics are as follows: Average annualized

returns, annualized volatility, annualized Sharpe ratio, the largest monthly loss (Lowest), the

1% expected shortfall (Shortfall), maximum drawdown (Drawdown) and the maximum period

to recover from a drawdown to the level of the prior peak (Recovery). See Section 2.5.2 for a

brief description of the strategies corresponding to the different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Mean 6.5% 6.1% 11.8% 10.3% 6.5% 12.2% 7.9% 10.1% 8.7% 12.4%

Volatility 22.2% 9.7% 18.0% 13.2% 8.4% 15.8% 9.5% 11.8% 8.7% 11.7%

Sharpe 29.3% 63.6% 65.4% 77.9% 76.9% 77.6% 83.5% 86.0% 100.3% 106.6%

Lowest -57.3% -23.8% -35.0% -40.1% -17.3% -34.0% -24.0% -24.6% -13.8% -18.7%

Shortfall -38.1% -15.1% -22.7% -18.0% -10.8% -20.9% -12.9% -14.8% -9.8% -12.0%

Drawdown 323.6% 44.3% 93.2% 63.0% 29.9% 62.0% 70.3% 30.2% 35.8% 35.5%

Recovery 430 197 198 84 82 184 109 126 104 70

Table 2.5: Statistical significance Sharpe ratios. The p-value of the bootstrap test whether

a momentum strategy’s Sharpe ratio is larger than zero. See Section 2.5.2 for a brief description

of the strategies corresponding to the different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Sharpe 29.3% 63.6% 65.4% 77.9% 76.9% 77.6% 83.5% 86.0% 100.3% 106.6%

p-value 1.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 2.6 shows the p-values of the bootstrap tests whether the Sharpe ratio of a specific

strategy is higher than those of the other strategies. The entries in Table 2.6 read as

follows. Consider the case of comparing strategy R versus strategy O, then the p-value

of the test that the Sharpe ratio of strategy R is higher than that of strategy O equals

92.64%. Obviously, the test whether the Sharpe ratio of R versus O is lower is then equal

to 7.36%. In Table 2.6 this is reflected by the fact that the sum of an entry and the

opposite entry along the diagonal add up to one.

Column 1 of Table 2.6 shows that the Sharpe ratios of all alternative and combined

momentum strategies are significantly higher than the Sharpe ratio of standard momen-

tum. Furthermore, it turns out that the highest Sharpe ratio of momentum strategy

R-O-C* is significantly higher than the Sharpe ratios of the other strategies at the 5%

significance level; it is also significantly higher at the 1% level for all strategies except for

the R-O-C strategy; this R-O-C strategy is similar to the R-O-C* strategy, but uses all
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Table 2.6: Statistical significance Sharpe ratio differences. The p-values of the bootstrap

test whether the Sharpe ratio of the momentum strategy in the particular row is higher than the

Sharpe ratio of the strategy in that particular column. See Section 2.5.2 for a brief description

of the strategies corresponding to the different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

O 0.00% 59.51% 92.64% 99.99% 99.50% 99.37% 98.56% 100.00% 100.00%

C 0.00% 40.49% 85.70% 90.15% 93.25% 95.68% 97.61% 99.94% 100.00%

R 0.00% 7.36% 14.30% 47.04% 49.61% 77.62% 89.72% 99.87% 99.99%

O-C 0.00% 0.01% 9.85% 52.96% 56.92% 76.90% 81.21% 99.82% 100.00%

O-C* 0.00% 0.50% 6.75% 50.39% 43.08% 75.75% 80.61% 99.94% 100.00%

R-O 0.00% 0.63% 4.32% 22.38% 23.10% 24.25% 61.65% 100.00% 100.00%

R-C 0.00% 1.44% 2.39% 10.28% 18.79% 19.39% 38.35% 95.70% 99.69%

R-O-C 0.00% 0.00% 0.06% 0.13% 0.18% 0.06% 0.00% 4.30% 97.06%

R-O-C* 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.31% 2.94%

available stocks. The Sharpe ratio of this strategy itself is also significantly higher than

any other strategy at the 5% significance level.

2.6 Transaction costs

So far, our analysis has not taken account of transaction costs, while mean-variance

optimization is known to increase the number of transactions compared to 1
N

strategies.

In our case this feature holds particularly true for the strategies where the optimization

is over all available stocks rather than only over the stocks in the top and bottom deciles.

The constant-risk strategies are also expected to increase the number of transactions, since

the leveraging and deleveraging in these strategies requires buying and selling additional

amounts of equities. In this section we investigate the effect of transaction costs. We

are interested for which level of transaction costs the Sharpe ratios remain positive and

whether the Sharpe ratio of a strategy remains higher than those of other strategies for

different levels of transaction costs. We also investigate the break-even transaction costs

for which the Sharpe ratio bootstrap test remains significantly higher than zero for the

5% significance level.

Number and size of transactions Table 2.7 presents the number and size of the

transactions for the ten momentum strategies. Standard momentum, for example, turns
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out to require on average 4248 transactions per year and the average size of all transactions

per year equals 20.3. This 20.3 is relative to being 1$ long and 1$ short and is the

consequence of rebalancing the portfolio to the 1
N
long and short portfolio 12 times a year.

Table 2.7: Average number and size of transactions plus break-even transaction costs.

The number of transactions in row Number presents the average number of transactions per year

for the different momentum categories; row Size contains the average size of all transactions per

year. The table also presents the break-even transaction costs in row BE SR>0 up to which

the Sharpe ratio would remain positive; row BE p(5%) presents the break-even transactions

up to which the Sharpe ratio would remain higher than zero at the 5% significance level (see

Appendix 2.C for the bootstrap method used). See Section 2.5.2 for a brief description of the

strategies corresponding to the different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Sharpe 29.3% 63.6% 65.4% 77.9% 76.9% 77.6% 83.5% 86.0% 100.3% 106.6%

Number 4248 15497 4249 4345 15497 4227 15497 4346 15497 4322

Size 20.3 21.2 44.5 21.8 21.5 25.1 23.1 39.2 23.8 25.9

BE SR>0 0.32% 0.29% 0.26% 0.47% 0.30% 0.49% 0.34% 0.26% 0.36% 0.48%

BE p(5%) 0.10% 0.21% 0.19% 0.36% 0.23% 0.37% 0.26% 0.20% 0.29% 0.39%

Table 2.7 also shows a distinction between the strategies that only use stocks in the

top and bottom deciles and the strategies that optimize over all available stocks. The

number of transactions for the optimization strategies over all available stocks have on

average 15497 transactions per year, while the strategies that only use the stocks in the

top and bottom deciles have on average somewhere around 4300 transactions per year.

Although both strategies based on residual and standard momentum are invested in the

same number of stocks every month, their numbers of transactions slightly differ. This is

due to the fact that the number of stocks entering and leaving the top and bottom deciles

differs for these strategies. Given that the strategies based on residual momentum require

more transactions, residual momentum strategies’ turnover of this type is thus higher.

The size of the transactions for the different strategies is typically between 20$ and 25$

per year, relative to being 1$ long and 1$ short. However, the constant-risk strategies do

have much larger transactions with an average total transaction size of 39.2 for residual

constant-risk momentum and 44.5 for standard constant-risk momentum. Relative to the



26B_Erim van Oord_StandV5.job

40 Chapter 2

transactions for standard and residual momentum the constant-risk strategies typically

have larger transactions due to their leveraging and deleveraging in order to keep their risk

constant. The constant-risk optimized strategies do not exhibit these larger transactions;

this is probably due to the fact that the risk of the optimized strategies is based on 36

months of return history, while the constant-risk strategies themselves only use 6 month

of return history to estimate the volatility used for leveraging. This 6 month realized

volatility varies substantially over time and as a consequence these strategies require a

substantial amount of leveraging and deleveraging every month.

Statistical significance of Sharpe ratios under transaction costs Table 2.7

shows, first, in the row BE SR>0 that the transaction costs for which the Sharpe

ratio would still be positive ranges from 0.26% to 0.49%. As a consequence of their

relatively large transactions the Sharpe ratio of the constant-risk momentum strategies

only remains positive for transactions costs up to 0.26%. The strategies R, O-C* and

R-O-C* would keep a positive Sharpe ratio for transaction costs up to 0.47%, 0.48% and

0.49%, respectively. This is substantially higher than for the other strategies.

The last row of Table 2.7 presents the break-even transaction costs for which the Sharpe

ratio of the different strategies remains positive at the 5% level. These break-even costs

are obviously lower than those for the Sharpe ratio to remain just positive and range from

0.10% for standard momentum to 0.36%, 0.37% and 0.39% for the strategies R, O-C* and

R-O-C*.

Mutual outperformance and transaction costs So far, we have considered the

transaction costs in isolation for each momentum strategy and how these costs would

affect the Sharpe ratio and the significance of that Sharpe ratio of a specific strategy.

We now turn to testing for which transaction costs the different strategies outperform

each other. Table 2.8 shows for which ranges of transaction costs a particular strategy

outperforms another strategy in terms of Sharpe ratio and for which its own Sharpe ratio

is still positive. For example, the entry in column S and row C shows that the Sharpe ratio

of the constant-risk momentum strategy C has a higher Sharpe ratio than the standard

momentum strategy S as long as transaction costs are between 0.00% and 0.23%. Column

C and row S show that standard momentum’s Sharpe ratio is higher than that of constant-

risk momentum for transaction costs between 0.23% and 0.32%. An empty entry means

that the strategy in that row does not have a higher and still positive Sharpe ratio than

the strategy in the corresponding column for any, positive, range of transaction costs.
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Table 2.8: Transaction costs and mutual outperformance. The range of transaction costs

for which the strategy in the specific row has a higher, and still positive, Sharpe ratio than the

strategy in the specific column. If an entry is empty the strategy in that row does not outperform

the strategy in that column for a range of transaction costs for which its Sharper ratio would

still be positive. See Section 2.5.2 for a brief description of the strategies corresponding to the

different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 0.27%

0.32%

0.23%

0.32%

0.29%

0.32%

0.24%

0.32%

O 0.00%

0.27%

0.07%

0.29%

0.20%

0.29%

C 0.00%

0.23%

0.00%

0.07%

0.24%

0.26%

R 0.00%

0.47%

0.00%

0.47%

0.00%

0.47%

0.00%

0.47%

0.00%

0.06%

0.07%

0.47%

0.05%

0.47%

0.20%

0.47%

O-C 0.00%

0.29%

0.00%

0.30%

0.00%

0.30%

0.12%

0.30%

O-C* 0.00%

0.49%

0.00%

0.49%

0.00%

0.49%

0.06%

0.49%

0.00%

0.49%

0.07%

0.49%

0.05%

0.49%

0.20%

0.49%

0.46%

0.49%

R-O 0.00%

0.34%

0.00%

0.34%

0.00%

0.34%

0.00%

0.07%

0.00%

0.34%

0.00%

0.07%

0.03%

0.34%

R-C 0.00%

0.24%

0.00%

0.20%

0.00%

0.24%

0.00%

0.05%

0.00%

0.12%

0.00%

0.05%

0.00%

0.03%

R-O-C 0.00%

0.36%

0.00%

0.36%

0.00%

0.36%

0.00%

0.20%

0.00%

0.36%

0.00%

0.20%

0.00%

0.36%

0.00%

0.36%

R-O-C* 0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

0.00%

0.46%

0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

The results in Table 2.8 confirm our earlier results: The strategies R, O-C* and R-O-

C* outperform the other strategies for a wide range of transaction costs. It is interesting

that the constant-risk residual momentum strategy, R-C, also outperforms most other

strategies for relatively low transaction costs, but is itself outperformed by any other

strategy for relatively larger transaction costs. We ascribe this to its relatively large

average size of the transactions due to leveraging and deleveraging to a constant risk over

time. Finally, the optimized constant-risk residual momentum at lower costs strategy,

R-O-C*, outperforms all other strategies up to the level of its break-even transaction

costs of 0.48%, except for the optimized constant-risk momentum at lower costs strategy,
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O-C*, that has a higher Sharpe ratio for transaction costs between 0.46% and 0.49%.

Figure 2.7 shows the Sharpe ratios of the different momentum strategies for different

levels of transaction costs. This figure confirms that the three strategies R, O-C* and

R-O-C* have the highest Sharpe ratios for most levels of transaction costs. Strategy R-

O-C* has the highest Sharpe ratio up to 0.46% and beyond transaction costs of 0.49%

the Sharpe ratio of every strategy becomes negative.

Figure 2.7: Sharpe ratios of momentum strategies for varying transaction costs. The

annual Sharpe ratios of the different strategies over the period from July 1929 to December 2014

for transaction costs ranging from 0.00% to 0.50%. See Section 2.5.2 for a brief description of

the strategies corresponding to the different abbreviations.

Break-even transaction costs over time Although transaction costs nowadays might

be well below the break-even numbers we have presented in this section, these costs might

have been considerably larger in the past. Figure 2.8 shows the break-even transaction

costs per decade for the different momentum strategies. For example, the Sharpe ratio of

the standard momentum strategy, S, would be larger than zero for transaction costs below

0.78% in the period 1996 to 2005. As a consequence of the relatively poor performance of

all strategies until 1945 the break-even transaction costs are also relatively low or negative

in this period as holds particularly true for the standard momentum strategy S. Since 1946

the break-even transaction costs are positive for every strategy over all decades. Note that

the standard momentum strategy, S, has the highest break-even transaction costs during
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two of the post-war decades. This means that standard momentum does keep a positive

Sharpe ratio for relatively high transaction costs of, say, 0.70%, during these periods,

while all the other momentum strategies would then have a negative Sharpe ratio for

these transaction costs.

Figure 2.8: Break-even transaction costs over time. The break-even transaction costs for

different time spans are the transaction costs that would imply a Sharpe ratio of zero during

that specific time frame. See Section 2.5.2 for a brief description of the strategies corresponding

to the different abbreviations.

Transaction costs5 are an important aspect of the profitability of the different momentum

strategies; it depends on an investor’s actual costs if a specific momentum strategy is a,

significantly, profitable investment strategy. The analysis over the whole period from July

1929 to December 2014 indicates that most alternative and, in particular, the combined

momentum strategies have a higher Sharpe ratio than the standard momentum strategy,

also after correcting for transaction costs. However, during a few decades the Sharpe ratio

of the standard momentum strategy would be higher than that of any other momentum

strategy, but this only holds for relatively high transaction costs.

Our analysis shows that the number and size of the transactions of the combined equity

5An investor’s transaction costs do not only consist of brokerage fees, but also include the impact of

the bid-ask spread and the market impact of actually doing the transactions. Whereas brokerage fees

relatively decrease with the size of an investment, the market impact could increase substantially for

larger investments.



28B_Erim van Oord_StandV5.job

44 Chapter 2

momentum strategy, R-O-C*, are comparable to those of the standard and residual mo-

mentum strategies, S and R, and that this R-O-C* strategy outperforms those strategies

with a higher Sharpe ratio for a large range of transaction costs, while it possesses lower

crash risk characteristics. Moreover, we find that its Sharpe ratio is also significantly

higher than those of the other strategies. Thus, we conclude that this combined strategy

R-O-C* is worthwhile for an investor to explore.

2.7 Time-varying risks and returns

The standard equity momentum strategy is known for its time-varying risks and returns.

In this section we look into these features and investigate if the optimized momentum

strategy, O, the residual and constant-risk momentum strategies, R and C, as well as

their combinations are able to reduce momentum’s time-varying risks and returns.

First, we look at the strategies’ static exposures to the three Fama and French (1993)

equity risk factors. Then we test if the strategies also exhibit time-varying exposures to

these risk factors as put forward by Grundy and Martin (2001). Finally, we test if, and

by how much, the returns on all these momentum strategies vary over the business cycle

as Chordia and Shivakumar (2002) find for standard momentum.

Chan, Jegadeesh, and Lakonishok (1996) show that the three Fama and French (1993)

equity risk factors do not explain standard momentum’s performance. Table 2.9 confirms

that momentum’s exposures to the equity risk factors do not explain its returns: after

correcting for these risk factors a significantly positive alpha of 0.91 percent remains.

Nevertheless, standard momentum does negatively load on the three equity risk factors.

Table 2.9 also shows the exposures of the alternative and combined strategies. All

alternative and combined strategies are less exposed to the equity risk factors as can

be seen from the fact that the monthly volatility explained by the equity risk factors is

less than the 2.5 percentage points of the standard momentum strategy. For example,

the equity risk factors explain only 0.6 percentage points of the optimized constant-risk

residual momentum (R-O-C and R-O-C*) strategies.
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Table 2.9: Regression of momentum returns on three equity risk factors. The estimated

coefficient and t-statistics (in brackets), the standard deviation explained by these factors (Vol.

Explained), the total standard deviation (Vol. Total) and the R-squared of the regressions of

the returns of the different momentum strategies on the three equity risk factors market, size

and value from July 1929 to December 2014. See Section 2.5.2 for a brief description of the

strategies corresponding to the different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Intercept
0.91% 0.70% 1.18% 0.95% 0.68% 1.25% 0.78% 0.92% 0.81% 1.12%

(4.90) (9.15) (7.48) (8.10) (9.64) (9.40) (9.40) (8.68) (10.47) (10.68)

Market
-0.22 -0.04 -0.07 -0.11 -0.02 -0.06 -0.09 -0.07 -0.06 -0.07

(-5.88) (-2.79) (-2.37) (-4.76) (-1.46) (-2.38) (-5.50) (-3.53) (-3.65) (-3.48)

Size
-0.26 -0.24 -0.18 0.01 -0.19 -0.29 -0.05 -0.04 -0.05 -0.05

(-4.30) (-9.47) (-3.44) (0.21) (-8.40) (-6.70) (-1.86) (-1.22) (-2.16) (-1.43)

Value
-0.43 -0.26 -0.27 -0.08 -0.18 -0.30 -0.12 -0.05 -0.09 -0.07

(-8.02) (-11.75) (-6.02) (-2.42) (-9.16) (-8.00) (-5.17) (-1.66) (-3.88) (-2.19)

Vol. Explained 2.5% 1.4% 1.4% 0.7% 1.0% 1.7% 0.8% 0.5% 0.6% 0.6%

Vol. Total 6.4% 2.8% 5.2% 3.8% 2.4% 4.5% 2.7% 3.4% 2.5% 3.4%

R-squared 15.1% 23.9% 7.1% 3.7% 16.8% 13.6% 8.4% 2.6% 4.9% 3.0%

2.7.1 Time-varying exposures

Grundy and Martin (2001) find that momentum has time-varying exposures to the Fama

and French (1993) equity risk factors. After a large positive return on a specific factor

during momentum’s ranking period the momentum strategy has a large positive exposure

to this factor. This is a consequence of ranking the stocks on their past returns in

the momentum strategy. If a factor return has been high during momentum’s ranking

period, stocks with the highest factor loadings on this factor tend to end up in the top

of momentum’s ranking as they profit from this high factor return. At the same time

stocks with the lowest loadings on this particular factor tend to populate the bottom of

the ranking as these stocks profit the least from this high factor return. The momentum

strategy then, being long in the stocks with high factor loadings and short in the stocks

with low factor loadings, is positively exposed to this particular factor. Equivalently,

momentum is negatively exposed to an equity risk factor when the return on that factor

has been negative during momentum’s ranking period.

Martens and Van Oord (2014) achieve a reduction in momentum’s time-varying exposures

by directly hedging these exposures. We do not consider hedging in our combined

strategies as optimization is supposed to take account of a reduction in the exposures
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to the equity risk factors as it penalizes these exposures via the factor covariance matrix.

Our approach is to determine momentum strategies’ time-varying exposures to the equity

risk factors by regressing momentum returns on conditional equity risk factors according

to the following model:

rMom i,t = α +
(
βdownD

MKT,down
t + βflatD

MKT,flat
t + βupD

MKT,up
t

)
rMKT,t

+
(
sdownD

SMB,down
t + sflatD

SMB,flat
t + supD

SMB,up
t

)
rSMB,t (2.9)

+
(
hdownD

HML,down
t + hflatD

HML,flat
t + hupD

HML,up
t

)
rHML,t + et

where Dt are the dummies that denote whether the market (MKT), the size factor (SMB)

or the book-to-market factor (HML) during the ranking period (t− 7 to t− 2) went down

by more than one standard deviation relative to the mean (down), or up by more than one

standard deviation relative to their mean (up) or stayed within one standard deviation

from their mean (flat). As such we estimate three coefficients per equity risk factor: one

for the situation where the factor returns have been highly positive during momentum’s

ranking period, one where they have been strongly negative and one where they are around

zero. This results in the estimation of ten coefficients since we also include a constant in

the estimation.

The first column in Table 2.10 confirms standard momentum’s time-varying exposures: for

the market, size and value factor the coefficients after ”Up” returns in the ranking period

are significantly positive, while they are significantly negative after ”Down” returns. The

significance of these time-varying exposures of momentum is clear from the R-squared of

46.4 percent of this regression, whereas the unconditional equity risk factors only explain

15.1 percent of standard momentum’s returns.

All alternative and combined momentum strategies have less time-varying exposure to

the equity risk factors than the standard momentum strategy. The time-varying equity

risk factors explain 4.4 percentage points of standard momentum’s monthly volatility of

6.4 percent. The time-varying exposures explain less for all alternative and combined

strategies. For example, these risk factors only explain 0.9 percentage points of the

optimized constant-risk residual momentum, R-O-C, strategy’s monthly volatility of

2.5 percent. The decrease in time-varying exposures of the alternative and combined

strategies is also clear from the coefficients being closer to zero.
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Table 2.10: Regression of momentum returns on time-varying equity risk factors.

The estimated coefficients and t-statistics (in brackets), the standard deviation explained by

these time-varying factors (Vol. Explained), the total standard deviation (Vol. Total) and

the R-squared of the regression of the returns of the different momentum strategies on the

time-varying equity risk factors market, size and value from July 1929 to December 2014. See

Section 2.5.2 for a brief description of the strategies corresponding to the different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Intercept
0.74% 0.69% 1.09% 0.93% 0.67% 1.22% 0.73% 0.89% 0.77% 1.08%

(4.98) (9.34) (7.57) (8.32) (9.77) (9.50) (9.32) (8.71) (10.38) (10.63)

Market

Up
0.39 0.03 0.24 0.03 0.03 0.03 0.01 0.05 0.03 0.02

(4.32) (0.77) (2.76) (0.42) (0.74) (0.44) (0.11) (0.78) (0.71) (0.39)

Flat
0.06 0.01 0.06 -0.01 0.02 0.03 0.02 -0.01 0.02 0.01

(1.53) (0.40) (1.64) (-0.46) (1.06) (0.94) (0.77) (-0.28) (0.94) (0.36)

Down
-0.64 -0.11 -0.28 -0.25 -0.08 -0.19 -0.24 -0.17 -0.16 -0.19

(-13.48) (-4.86) (-6.14) (-7.04) (-3.58) (-4.61) (-9.46) (-5.31) (-6.90) (-6.02)

Size

Up
0.61 -0.08 0.60 0.24 -0.03 0.11 0.10 0.19 0.12 0.22

(5.80) (-1.59) (5.91) (2.99) (-0.65) (1.26) (1.88) (2.63) (2.37) (3.03)

Flat
-0.52 -0.36 -0.43 -0.22 -0.30 -0.48 -0.13 -0.20 -0.13 -0.17

(-8.13) (-11.28) (-6.96) (-4.54) (-10.21) (-8.74) (-3.81) (-4.48) (-4.11) (-3.94)

Down
-0.41 -0.08 -0.27 0.35 -0.08 -0.20 -0.01 0.13 -0.04 -0.01

(-4.18) (-1.65) (-2.80) (4.76) (-1.81) (-2.38) (-0.12) (1.83) (-0.77) (-0.15)

Value

Up
0.69 -0.02 0.20 0.21 -0.01 0.08 0.04 0.11 0.04 0.11

(6.53) (-0.38) (1.96) (2.61) (-0.23) (0.90) (0.74) (1.49) (0.69) (1.55)

Flat
-0.25 -0.23 -0.13 0.04 -0.17 -0.26 -0.02 0.05 -0.01 -0.01

(-4.45) (-8.24) (-2.38) (0.86) (-6.51) (-5.40) (-0.61) (1.19) (-0.51) (-0.30)

Down
-1.02 -0.39 -0.55 -0.39 -0.24 -0.44 -0.30 -0.25 -0.19 -0.12

(-10.78) (-8.30) (-5.91) (-5.46) (-5.59) (-5.37) (-6.08) (-3.79) (-3.95) (-1.78)

Vol. Explained 4.4% 1.5% 2.5% 1.4% 1.1% 2.1% 1.2% 1.0% 0.9% 1.0%

Vol. Total 6.4% 2.8% 5.2% 3.8% 2.4% 4.5% 2.7% 3.4% 2.5% 3.4%

R-squared 46.4% 30.1% 23.0% 14.0% 21.7% 20.4% 18.5% 9.1% 12.2% 8.7%

The reduction in the time-varying exposures in Table 2.10 for the optimized and residual

momentum strategy are perfectly understood from their construction. The residual

momentum, R, strategy ranks stocks on their recent residual returns rather than their

total returns. As such the equity risk factor loadings of the stocks in the top and bottom

of this ranking are independent of the factor returns during momentum’s ranking period,

whereas the top and bottom of standard momentum’s ranking are populated by stocks

with either high or low factor exposures if the factor return has been highly positive or

strongly negative. Consequently, residual momentum’s equity risk factor exposures are
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close to zero over time. The optimized (O) momentum strategy has, by construction, less

time-varying exposures but for different reasons. First and most importantly, the strategy

takes into account risk by applying mean-variance optimization: the optimization prefers

portfolios with less risk and as such more or less aims at long-short portfolios with zero

or small exposures to the equity risk factors. Secondly, although optimized momentum’s

expected returns are based on the recent total returns that do depend on the factor returns

over momentum’s ranking period we adjust the expected returns to plus one and minus

one for the stocks ranked in the top and bottom of momentum’s ranking. As such, after

highly positive or strongly negative factor returns during momentum’s ranking period all

stocks with either high or low factor loadings get an expected return of either plus one or

minus one. Using these equal expected returns puts more emphasis on the risks and factor

exposures of the stocks in the top and bottom of momentum’s ranking when optimizing.

For example, when we do not filter the expected returns to plus one, minus one and zero,

but use the stocks’ recent average returns as expected returns the time-varying factors

explain 1.9 percentage points of the monthly volatility (not reported in Table 2.10) versus

1.5 percentage points for the optimization using the filtered expected returns in column

2 of Table 2.10.

The constant-risk momentum (C) strategy has the largest time-varying exposures among

all alternative and combined strategies: the conditional model in Equation 2.9 still

explains 2.5 percentage points of its monthly volatility. We ascribe this to the fact that this

risk-adjusted momentum strategy responds somewhat delayed to changes in momentum’s

risk profile. Consider the case where factor returns have been relatively stable and positive

for some time including during momentum’s ranking period. In that case the standard

momentum strategy builds up a positive exposure to these risk factors. So far, the risk-

adjusted constant-risk strategy has not reduced the exposure to the standard momentum

strategy. If in the investment month the factor returns realize strongly negative returns the

standard momentum strategy realizes a relatively large loss. The risk-adjusted momentum

strategy then also realizes a large loss since it has not been adapted to these built-up large

factor exposures. Only after this realized loss, standard momentum’s realized volatility

increases and this constant-risk momentum strategy reduces its total exposures. In this

way the constant-risk momentum strategy only reduces its factor loadings after it has

already suffered from these large loadings.

Nevertheless, when adding the constant-risk constraint to the optimized standard and
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residual momentum strategies (O-C and O-C respectively) the time-varying risk factors

explain even less of these strategies’ volatilities: 1.1 and 0.9 percentage points of monthly

volatility is ascribable to the time-varying exposures versus 1.5 and 1.2 percentage points

for the optimized standard momentum (O) strategy in column 2 of Table 2.10 and

optimized residual momentum (R-O), respectively.

2.7.2 Variation over the business cycle

The fact that momentum has a positive factor loading after a positive factor return during

momentum’s ranking period also has the implication that it suffers when the factor return

is negative in the investment month. These factor return reversals occur, in particular, at

the end of recessions. We establish in this section that standard equity momentum loses

on average 2.1 percent per month in the second half of recessions while it earns on average

1.5 percent per month in the second half of expansionary periods when fewer factor return

reversals occur. The optimized strategy only loses 0.1 percent per month at the end of

recessionary periods while the combined strategies no longer experience losses in these

periods. Moreover, the monthly average returns over the business cycle vary less than 1.0

percent for the optimized and combined strategies while this number is 3.6 percent for

the standard momentum strategy.

The literature also points to these data features. Chordia and Shivakumar (2002)

show that momentum’s performance varies over the business cycle. Martens and Van

Oord (2014), see Chapter 3, explain that these time-varying exposures play a key role

in the time-varying performance over the business cycle. A consequence of the time-

varying exposures is that momentum’s returns vary over the business cycle. For example,

momentum’s performance suffers when a factor return has been strongly negative during

momentum’s ranking period and reverses to a positive return in the investment month;

momentum then suffers from its built-up negative exposure to this particular factor. For

the market risk factor these factor return reversals from negative to positive particularly

occur at the end of recessions when equity markets start to recover from previous large

losses, even before the real economy starts to recover. For example, momentum’s two

largest monthly losses occur in July 1932 and April 2009 when equity markets strongly

recover after their largest losses in history.

Table 2.11 shows the average returns during four different stages of the business cycle of

the different momentum strategies. These four stages of the business cycle are defined as
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Table 2.11: Return variation of different momentum strategies over the business

cycle. Average monthly returns during four different stages of the business cycle as well as

the overall monthly average and the maximum return difference between the different stages of

the business cycle. The four stages of the business cycle are based on the peaks and troughs of

the US economy as established by the NBER. Stage I contains the months in the first half of

expansionary periods and stage II contains the months in the second half of these expansionary

periods. Stage III contains the months in the first halfs of recessions and stage IV are the latter

halfs of recessions. See Section 2.5.2 for a brief description of the strategies corresponding to

the different abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Expansion
Stage I 0.2% 0.3% 0.5% 0.6% 0.3% 0.7% 0.4% 0.6% 0.5% 0.7%

Stage II 1.5% 0.8% 1.7% 1.3% 0.9% 1.6% 1.0% 1.3% 1.1% 1.4%

Recession
Stage III 0.8% 0.9% 1.8% 0.8% 0.8% 1.3% 1.2% 0.7% 1.1% 1.4%

Stage IV -2.1% -0.1% -0.7% 0.3% 0.0% -0.3% 0.2% 0.3% 0.2% 0.4%

Overall 0.5% 0.5% 1.0% 0.9% 0.5% 1.0% 0.7% 0.8% 0.7% 1.0%

Difference 3.6% 0.9% 2.5% 1.0% 0.9% 1.9% 1.0% 1.0% 0.9% 1.1%

follows: first, the months are classified in expansionary and recessionary periods according

to the NBER data on the US economy and secondly, these periods are split in two equal

halfs to end up with four stages. The results in Table 2.11 confirm that momentum’s

returns vary over the business cycle: during the second stage of the business cycle in

expansionary periods momentum earns on average 1.5 percent per month, while it loses

on average 2.1 percent per month during the second halfs of recessions. That is a return

difference of 3.6 percent per month over the business cycle.

The returns on all alternative and combined momentum strategies vary less over the

business cycle. The returns on the constant-risk (C) momentum strategy still vary over

the business cycle: the difference between its best and worst stages of the business cycle is

still 2.5 percent per month, while this difference reduces to 1.0 percent for optimized (O)

and residual (R) momentum and to 0.9 percent for the optimized constant-risk momentum

(O-C and R-O-C) strategies. This is in line with our findings in the previous section

that the constant-risk (C) strategy keeps the largest time-varying exposures, while the

optimized constant-risk strategies exhibit the least time-varying exposures.
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2.8 Episode analysis

In this section we look at the performance of different strategies over severalsubperiods of

our total ninety year period. One motivation to do so stems from the fact that we founda

rather constant return pattern for deciles 2 to 9 in Figure 2, while Jegadeesh and Titman

(1993) find a decreasing return pattern for these deciles. Figure 2.9 shows that this is

a consequence of the different time periods considered in the analyses: Jegadeesh and

Titman (1993) use data from 1965 to 1989 in which indeed a decreasing return pattern

exists, whereas we use July 1929 to December 2014 that also covers the periods 1929

to 1945 and 1995 to 2014. This might indicate that the performance of the different

strategies varies over time.

Figure 2.9: Average returns of different deciles of the equity momentum strategy during nine

decades from 1929-2014.

Another motivation for the episode analysis stems from analyzing some first results

for the nine decades for the case of the mean-variance optimized standard momentum

strategies of Section 2.3. Given that Figure 2.9 already showed that momentum’s top-

bottom phenomenon varies over time, it is clear that the Full-Data strategy will perform

better when momentum’s top-bottom phenomenon is increasing over all deciles rather

than that only stocks in decile 1 outperform and stocks in decile 10 underperform.

Figure 2.10 shows the Sharpe ratios of the three optimization strategies compared to

standard momentum for different decades and confirms the variation in the performance of

the different optimization strategies. The Full-Data strategy has indeed a higher Sharpe
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ratio than standard momentum, particularly between 1946 to 1975 when momentum’s

top-bottom phenomenon in Figure 2.9 is strictly decreasing. During these years the

optimization strategies Full-101 and Top-Bottom-Data that take account of momentum’s

top and bottom phenomenon over the whole period also perform relatively well in terms

of Sharpe ratio.

Figure 2.10: Sharpe ratios over time of different optimization strategies.

These results motivate us to explore the dynamic behavior of the risk and return char-

acteristics of the ten momentum strategies and to focus on particular episodes. We do

so in two different ways. We start to analyze the time series behavior of the average

returns, volatilities and Sharpe ratios for the ten strategies over the total period of 1929-

2014. Next, we specify three particular episodes, namely, (I) Pre-World-War-II period,

denoted by Pre-war, where an economic crisis occurred and the preparation for World

War II started; (II) Post-World-War-II, denoted by Post-war Restoration, since it may be

characterized as an economic restoration period, which lasted until the first oil crisis in the

early seventies; (III) Deregulation after the oil crisis, which is the period with economic

liberation and several economic shocks with the most recent one in 2008 as the most

severe. We investigate whether the return and crash risk characteristics and the possible

effects of transaction costs on Sharpe ratios are different during these three episodes.
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2.8.1 Dynamic patterns in average returns, volatilities and Sharpe

ratios over the period 1929-2014

The time series of the 10-year annualized means of the ten different momentum strategies

is shown in Figure 2.11. For the annualized volatilities it is shown in Figure 2.12,

while Figure 2.13 contains the derived time series of the annualized Sharpe ratios. We

summarize the major results as follows.

Means Strategy S performs poorly in the crisis period of the thirties with a substantial

negative mean return. Similarly, strategies C and R perform poorly, albeit less so. The

combination strategies R-O-C and R-O-C* do much better in terms of mean return

during this period. After World-War II, during the recovery period, all strategies improve

substantially in terms of mean return and show a more stable behavior. It is interesting

to observe that strategy C does well in quiet periods like the fifties and nineties but does

very poorly in turbulent times like the seventies and the recent crisis. This pattern is also

typical for several other strategies. However, the combination strategy R-O-C* shows a

rather robust behavior with respect to shocks and strategy R is a major component in

this combination. It is also interesting to observe that strategy R does best in the recent

period.

Volatilities There are three distinct periods of larger volatility and turbulence: the

economic crisis of the thirties, after the first oil price shock in 1973, and during the recent

crisis starting in 2008. It is seen that the individual strategies S, C and R are negatively

affected by the high volatility, although residual momentum (R) only exhibits this high

volatility in the beginning. The optimization strategy O copes better with volatility.

The combination strategies R-O-C and R-O-C* are also much less affected by shocks and

volatility. It is clear that during the relatively quiet periods in the fifties and early sixties

as well as in the nineties both strategies R and O positively contribute to the low volatility

of the combination strategies R-O-C and R-O-C*.

Sharpe ratios A first observation is that the Sharpe ratios appear as a rather non-

stationary series that vary much over time for all strategies with negative values in the

thirties for strategies S and C. A remarkable strong restoration process occurs until the

mid fifties. Next, a very good period comes along until the first oil price shock and after

that again a very good period over the nineties with a recent downturn that started already

before the crisis of 2008. Clearly, the observed time series patterns in the volatilities have
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strongly affected the more stationary behavior of the mean returns.

It is clear that strategy S does not do well in terms of Sharpe ratio over most decades

and, in particular, in the three periods of high volatility. Until 1945 most momentum

strategies have relatively low or even negative Sharpe ratios. During and after the first

oil price shock and during the years that cover the last financial crisis, 2008 to 2014, we

also observe relatively low Sharpe ratios for all strategies.

With respect to the group of residual momentum strategies we find that the R-O-C and

R-O-C* strategies have a higher Sharpe ratio than residual momentum over the decades

running up to the first oil price shock. During the decades thereafter strategy R ’catches

up’ with a higher Sharpe ratio in recent times. This might be a consequence of the

possibly increased comovements of the stock returns over time; in particular, the increase

in the comovements of the residual returns. Mean-variance optimization then becomes

less beneficial because of the decrease in the diversification benefits. It may require a

modeling approach using factor models like in Chapter 4 to support this line of reasoning.

We conclude that the combination strategies show better Sharpe ratios than individual

strategies and are robust in turbulent times. In quiet times an individual strategy like

strategy R performs well in terms of Sharpe ratio. We note that the combination strategies

also showed the best performance in terms of crash risk criteria in our earlier analysis,

which confirms our present conclusion.

2.8.2 Three episodes of return and crash risk characteristics for

all momentum strategies

In this section we investigate how the data features on annualized means, volatilities

and Sharpe ratios from the previous section translate into summary statistics for the

three episodes. These results are reported jointly with the results on the four crash risk

characteristics. Table 2.12 presents the main risk and return characteristics for three

different subperiods, namely, (I) Pre-war period, (II) Post-war restoration period, which

maybe characterized as a restoration period in industrialized countries that lasted until

the first oil crisis in the early seventies; (III) Deregulation, post oil shock.

Episode I: Pre-war In this episode all momentum strategies have their worst perfor-

mance as can be seen from the lowest, and even negative, Sharpe ratios as well as the



34A_Erim van Oord_StandV5.job

2.8 Episode analysis 55

Figure 2.11: Average returns over time. The annualized means of the ten different

momentum strategies over ten year moving windows between June 1939 to December 2014. See

Section 2.5.2 for a brief description of the strategies corresponding to the different abbreviations.

(a) All strategies

(b) Subset of five strategies
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Figure 2.12: Volatilities over time. The annualized volatilities of the ten different momentum

strategies over ten year moving windows between June 1939 to December 2014. See Section 2.5.2

for a brief description of the strategies corresponding to the different abbreviations.

(a) All strategies

(b) Subset of five strategies



35A_Erim van Oord_StandV5.job

2.8 Episode analysis 57

Figure 2.13: Sharpe ratios over time. The annualized Sharpe ratios of the ten different

momentum strategies over ten year moving windows between June 1939 December 2014. See

Section 2.5.2 for a brief description of the strategies corresponding to the different abbreviations.

(a) All strategies

(b) Subset of five strategies
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Table 2.12: Episode analysis. Annualized mean, volatility and Sharpe ratio as well as lowest

monthly return, realized 1% shortfall, maximum drawdown and maximum recovery period over

the whole period and three different subperiods.

Whole period: July 1929 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Mean 6.5% 6.1% 11.8% 10.3% 6.5% 12.2% 7.9% 10.1% 8.7% 12.4%

Volatility 22.2% 9.7% 18.0% 13.2% 8.4% 15.8% 9.5% 11.8% 8.7% 11.7%

Sharpe 29.3% 63.6% 65.4% 77.9% 76.9% 77.6% 83.5% 86.0% 100.3% 106.6%

Lowest -57.3% -23.8% -35.0% -40.1% -17.3% -34.0% -24.0% -24.6% -13.8% -18.7%

Shortfall -38.1% -15.1% -22.7% -18.0% -10.8% -20.9% -12.9% -14.8% -9.8% -12.0%

Drawdown 323.6% 44.3% 93.2% 63.0% 29.9% 62.0% 70.3% 30.2% 35.8% 35.5%

Recovery 430 197 198 84 82 184 109 126 104 70

Pre-war: July 1929 - December 1945

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Mean -15.2% 1.6% -0.9% 3.1% 1.2% 0.4% 5.5% 1.6% 3.9% 5.4%

Volatility 34.8% 14.2% 17.8% 21.0% 8.4% 14.4% 14.2% 12.1% 8.4% 9.7%

Sharpe -43.8% 11.3% -4.9% 14.8% 14.6% 2.6% 38.6% 13.0% 46.4% 56.2%

Lowest -54.8% -23.8% -29.0% -40.1% -16.2% -30.1% -24.0% -24.6% -13.2% -10.6%

Shortfall -54.8% -23.8% -29.0% -40.1% -16.2% -30.1% -24.0% -24.6% -13.2% -10.6%

Drawdown 323.6% 44.3% 93.2% 63.0% 18.6% 61.5% 70.3% 30.2% 35.8% 21.6%

Recovery 186 156 157 84 82 156 109 126 104 59

Post-war restoration: January 1946 - December 1972

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Mean 14.0% 7.4% 17.1% 13.1% 9.1% 18.5% 10.4% 15.6% 13.0% 18.5%

Volatility 14.3% 5.8% 17.9% 8.0% 7.1% 13.8% 5.9% 9.9% 7.3% 9.9%

Sharpe 97.3% 128.1% 95.7% 164.0% 126.9% 133.9% 176.7% 158.6% 179.6% 187.2%

Lowest -19.3% -6.1% -35.0% -5.6% -7.7% -17.0% -4.9% -8.1% -5.5% -8.4%

Shortfall -16.9% -5.4% -20.9% -5.2% -6.6% -14.0% -4.1% -7.4% -5.3% -7.3%

Drawdown 25.5% 8.6% 35.9% 8.2% 8.8% 17.0% 9.1% 11.8% 8.8% 10.6%

Recovery 29 21 29 10 21 9 13 10 13 11

Deregulation, post oil crisis: January 1973 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Mean 9.9% 7.0% 13.1% 11.2% 6.8% 12.7% 7.2% 9.8% 7.7% 11.1%

Volatility 19.8% 9.5% 18.0% 11.9% 9.1% 17.2% 9.2% 12.6% 9.5% 13.2%

Sharpe 50.0% 73.8% 72.7% 93.7% 74.5% 73.6% 78.9% 77.4% 80.8% 84.3%

Lowest -57.3% -18.4% -29.5% -17.8% -17.3% -34.0% -12.4% -23.8% -13.8% -18.7%

Shortfall -33.4% -13.0% -21.5% -12.8% -12.4% -23.9% -10.3% -16.4% -10.2% -14.3%

Drawdown 93.4% 56.8% 92.4% 41.4% 53.9% 62.0% 42.4% 43.0% 40.6% 40.7%

Recovery 112 117 117 58 116 78 81 58 71 70
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largest crash risk characteristics. The strategies that optimize residual momentum R-O,

R-O-C and R-O-C* have the highest Sharpe ratios, while the constant-risk optimized

residual momentum R-O-C and R-O-C* strategies also exhibit the least crash risk.

Episode II: Post-war, restoration This episode is characterized by the best per-

formance for all strategies in terms of Sharpe ratios as well as crash risks. The higher

average returns and lower volatilities result in the highest Sharpe ratios among the three

episodes. The relative performance in terms of Sharpe ratios, which strategies outperform

other strategies, is similar to that for the whole period. All strategies outperform standard

momentum S. Residual momentum R performs best among the three proposed alternative

momentum strategies and it is a major component in the combined strategies R-O-C and

R-O-C* that themselves perform best among all strategies.

Episode III: Deregulation, post oil crisis All momentum strategies still have

positive Sharpe ratios, but lower than during the episode leading up to the oil crisis.

All proposed individual and combined momentum strategies still outperform the stan-

dard momentum strategy in terms of higher Sharpe ratios and lower crash risks. The

performance of all proposed individual and combined momentum strategies is more or

less similar as over the whole period. It is noteworthy that the constant-risk standard

momentum strategies C and O-C* exhibit relatively large crash risk. Also the residual

momentum strategy R stands out: its Sharpe ratio of 93.7% over this episode is the

highest among all strategies, while its crash risk is close to the lowest crash risk among

the strategies. This is different from the previous episodes and the full period analysis. As

stated before in Section 2.8.1, the superior performance of the residual momentum strategy

R might be caused by the increased correlation of the residual returns of the stocks, since

increased correlations would reduce the diversification benefits from optimization.

The conclusion from this empirical analysis is that over different periods different strate-

gies perform well. More specifically, it is seen that combination strategies work well in long

periods of turbulent times, while it is noteworthy that the residual momentum strategy

does well in more quiet times and in recent decades.

2.8.3 Statistical significance of Sharpe ratios over three episodes

In this section we explore possible variations in the statistical significance of the Sharpe

ratios over the three episodes. We consider both the significance of the Sharpe ratios for
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each of the different strategies and, next, the significance of the differences in the Sharpe

ratios between different strategies.

Table 2.13 shows the statistical significance of the Sharpe ratios of the different strategies

for the whole period and the three episodes. The strategies’ worst performance in terms

of the lowest and even negative Sharpe ratios in the pre-war episode are also reflected in

Sharpe ratios that are not significantly larger than zero. In the pre-war episode only the

Sharpe ratios of the optimized constant-risk residual momentum (R-O-C and R-O-C*)

strategies are significantly larger than zero at the 5% significance level. During the post-

war restoration and deregulation episodes the Sharpe ratios of all momentum strategies

are significantly larger than zero with the p-values of all strategies equalling 0.0%. This

does not come as a surprise given the relatively high Sharpe ratios during these episodes.

Table 2.13: Episode analysis of statistical significance of Sharpe ratios.

Whole period: July 1929 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Sharpe 29.3% 63.6% 65.4% 77.9% 76.9% 77.6% 83.5% 86.0% 100.3% 106.6%

p-value 1.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pre-war: July 1929 - December 1945

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

SR -43.8% 11.3% -4.9% 14.8% 14.6% 2.6% 38.6% 13.0% 46.4% 56.2%

p-value 95.52% 30.27% 58.36% 29.99% 23.91% 46.01% 7.71% 31.31% 4.91% 1.40%

Post-war restoration: January 1946 - December 1972

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

SR 97.3% 128.1% 95.7% 164.0% 126.9% 133.9% 176.7% 158.6% 179.6% 187.2%

p-value 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deregulation, post oil crisis: January 1973 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

SR 50.0% 73.8% 72.7% 93.7% 74.5% 73.6% 78.9% 77.4% 80.8% 84.3%

p-value 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 2.14 shows the statistical significance of the variation in the Sharpe ratios over the

three episodes. A first observation is that all strategies have a significantly higher Sharpe

ratio than standard momentum in any of the three different episodes at the 5% significance

level, except for the constant-risk momentum strategy C during the restoration period.

The relatively high and significantly positive Sharpe ratio of the strategy R-O-C* during
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the pre-war episode has also resulted in a significantly higher Sharpe ratio than the other

strategies at the 5% level, except when it is compared with the other two optimized

residual momentum strategies R-O and R-O-C. In the post-war restoration episode we

also find that the Sharpe ratio of this strategy is significantly higher than any other

momentum strategy except for the other two optimized residual momentum strategies.

During the deregulation and post oil crisis episode we find hardly any significantly higher

Sharpe ratios among the different strategies, apart from the significantly lower Sharpe

ratios for the standard momentum strategy S. This is a consequence of the level of the

Sharpe ratios being close to each other in this episode. The highest Sharpe ratio of

the residual momentum strategy R is not significantly higher than the Sharpe ratios of

the other strategies at the 5% level, except with respect to the constant-risk residual

momentum strategy R-C.
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Table 2.14: Episode analysis of statistical significance of Sharpe ratio differences.

Whole period: July 1929 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

O 0.00% 59.51% 92.64% 99.99% 99.50% 99.37% 98.56% 100.00% 100.00%

C 0.00% 40.49% 85.70% 90.15% 93.25% 95.68% 97.61% 99.94% 100.00%

R 0.00% 7.36% 14.30% 47.04% 49.61% 77.62% 89.72% 99.87% 99.99%

O-C 0.00% 0.01% 9.85% 52.96% 56.92% 76.90% 81.21% 99.82% 100.00%

O-C* 0.00% 0.50% 6.75% 50.39% 43.08% 75.75% 80.61% 99.94% 100.00%

R-O 0.00% 0.63% 4.32% 22.38% 23.10% 24.25% 61.65% 100.00% 100.00%

R-C 0.00% 1.44% 2.39% 10.28% 18.79% 19.39% 38.35% 95.70% 99.69%

R-O-C 0.00% 0.00% 0.06% 0.13% 0.18% 0.06% 0.00% 4.30% 97.06%

R-O-C* 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.31% 2.94%

Pre-war: July 1929 - December 1945

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 99.74% 99.95% 98.50% 99.65% 99.59% 100.00% 98.61% 100.00% 100.00%

O 0.26% 20.68% 56.03% 69.26% 27.99% 91.25% 53.92% 95.80% 98.25%

C 0.05% 79.32% 79.66% 82.62% 65.29% 98.30% 78.58% 99.29% 99.84%

R 1.50% 43.97% 20.34% 49.25% 26.70% 88.75% 43.21% 96.08% 99.58%

O-C 0.35% 30.74% 17.38% 50.75% 16.57% 86.80% 48.30% 94.33% 98.34%

O-C* 0.41% 72.01% 34.71% 73.30% 83.43% 97.05% 71.22% 99.56% 99.99%

R-O 0.00% 8.75% 1.70% 11.25% 13.20% 2.95% 10.13% 85.56% 89.04%

R-C 1.39% 46.08% 21.42% 56.79% 51.70% 28.78% 89.87% 97.02% 99.87%

R-O-C 0.00% 4.20% 0.71% 3.92% 5.67% 0.44% 14.44% 2.98% 81.80%

R-O-C* 0.00% 1.75% 0.16% 0.42% 1.66% 0.01% 10.96% 0.13% 18.20%

Post-war restoration: January 1946 - December 1972

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 98.75% 46.07% 100.00% 99.00% 99.98% 100.00% 99.96% 100.00% 100.00%

O 1.25% 3.25% 96.57% 39.19% 75.01% 99.92% 93.85% 99.95% 100.00%

C 53.93% 96.75% 99.87% 96.90% 99.57% 100.00% 99.95% 100.00% 100.00%

R 0.00% 3.43% 0.13% 2.50% 4.08% 87.35% 33.23% 90.17% 98.44%

O-C 1.00% 60.81% 3.10% 97.50% 81.99% 99.94% 94.53% 99.98% 100.00%

O-C* 0.02% 24.99% 0.43% 95.92% 18.01% 99.94% 91.17% 99.98% 100.00%

R-O 0.00% 0.08% 0.00% 12.65% 0.06% 0.06% 13.23% 78.89% 94.78%

R-C 0.04% 6.15% 0.05% 66.77% 5.47% 8.83% 86.77% 91.60% 97.96%

R-O-C 0.00% 0.05% 0.00% 9.83% 0.02% 0.02% 21.11% 8.40% 91.40%

R-O-C* 0.00% 0.00% 0.00% 1.56% 0.00% 0.00% 5.22% 2.04% 8.60%

Deregulation, post oil crisis: January 1973 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 99.27% 98.69% 100.00% 99.52% 99.81% 99.88% 97.71% 99.80% 99.92%

O 0.73% 47.98% 94.29% 59.03% 48.37% 70.64% 61.65% 75.85% 86.50%

C 1.31% 52.02% 90.03% 54.16% 51.04% 65.89% 61.87% 70.51% 77.82%

R 0.00% 5.71% 9.97% 6.90% 5.11% 6.18% 3.95% 9.64% 13.50%

O-C 0.48% 40.97% 45.84% 93.10% 42.60% 68.10% 58.95% 74.66% 85.98%

O-C* 0.19% 51.63% 48.96% 94.89% 57.40% 73.56% 61.45% 79.40% 90.64%

R-O 0.12% 29.36% 34.11% 93.82% 31.90% 26.44% 45.34% 72.77% 87.20%

R-C 2.29% 38.35% 38.13% 96.05% 41.05% 38.55% 54.66% 61.74% 74.00%

R-O-C 0.20% 24.15% 29.49% 90.36% 25.34% 20.60% 27.23% 38.26% 80.05%

R-O-C* 0.08% 13.50% 22.18% 86.50% 14.02% 9.36% 12.80% 26.00% 19.95%
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2.8.4 Transaction costs over three episodes

In this section we start to investigate the variation in the number and size of the

transactions over the three episodes. Next, we consider break-even transaction costs and

the transaction costs for which the Sharpe ratios of the strategies remain significantly

larger than zero at the 5% level. We then look at the level of the transaction costs for

which the different strategies outperform the other strategies in terms of a higher Sharpe

ratio.

Table 2.15 shows the number and size of the transactions for the different strategies.

Given that the number of stocks increases over time, the number of transactions for the

different strategies also increases over the three different episodes. However, the pattern

of the number of transactions over the different strategies does not change over the three

episodes. The size of transactions does change over the different episodes. In particular,

the strategies that involve the constant-risk setting have relatively smaller transactions

during the pre-war episode than in the other two episodes. This is due to the relatively

high volatility of the standard S and residual R strategies during this episode; these

constant-risk momentum strategies deleverage in this episode to get a constant-risk over

the full period and as such attach relatively small weights to all stocks in this episode.

Relatively smaller weights obviously also result in relatively smaller transactions. The

other strategies that do not have an ex-ante constant-risk setting over the whole period

have a relatively stable transaction size over the different episodes. This stems from the

fact that the standard S and residual R strategies as well as their optimized counterparts

O and R-O have a 1$ long and 1$ short exposure in every investment month; the weights

attached to the different stocks are of a similar magnitude in all episodes.

Given that the performance of the different strategies, in terms of Sharpe ratios, varies

over the three different episodes we also find that the break-even transaction costs vary

over these episodes. The break-even transaction costs in Table 2.15 are high during the

episodes that all momentum strategies perform well and low, and even negative for some

strategies, during the pre-war episode. This also holds for the break-even transaction

costs for which the strategies still have a significantly positive Sharpe ratio at the 5%

significance level. Only the optimized constant-risk residual momentum strategies R-O-

C and R-O-C* keep a significantly positive Sharpe ratio for positive transaction costs.
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Negative transaction costs indicate that an investor would have to get paid for doing

transactions in order to end up with a significantly positive Sharpe ratio. In the pre-

war episode transaction costs of up to 0.35% of the investment size are required in order

to have the best strategy R-O-C* keep its positive Sharpe ratio; it is questionable if

transaction costs were that low at that time. During the post-war restoration episode

all momentum strategies keep a, significantly, positive Sharpe ratio for relatively high

transaction costs; for transaction costs up to 0.33% all strategies keep a positive Sharpe

ratio and for standard momentum this is even the case for transaction costs up to 0.71%.

Finally, the lower Sharpe ratios during the deregulation post oil crisis episode are also

reflected in lower break-even transaction costs.

Table 2.15: Episode analysis of transaction costs.

Whole period: July 1929 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Sharpe 29.3% 63.6% 65.4% 77.9% 76.9% 77.6% 83.5% 86.0% 100.3% 106.6%

Number 4248 15497 4249 4345 15497 4227 15497 4346 15497 4322

Size 20.3 21.2 44.5 21.8 21.5 25.1 23.1 39.2 23.8 25.9

BE SR>0 0.32% 0.29% 0.26% 0.47% 0.30% 0.49% 0.34% 0.26% 0.36% 0.48%

BE p(5%) 0.10% 0.21% 0.19% 0.36% 0.23% 0.37% 0.26% 0.20% 0.29% 0.39%

Pre-war: July 1929 - December 1945

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Sharpe -43.8% 11.3% -4.9% 14.8% 14.6% 2.6% 38.6% 13.0% 46.4% 56.2%

Number 1977 7084 1982 1988 7084 1952 7084 1993 7084 1960

Size 22.4 22.2 27.3 23.0 15.3 16.5 23.6 25.1 15.3 15.4

BE SR>0 -0.68% 0.07% -0.03% 0.14% 0.08% 0.02% 0.23% 0.06% 0.25% 0.35%

BE p(5%) -1.48% -0.17% -0.30% -0.29% -0.11% -0.35% -0.04% -0.16% 0.00% 0.09%

Post-war restoration: January 1946 - December 1972

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Sharpe 97.3% 128.1% 95.7% 164.0% 126.9% 133.9% 176.7% 158.6% 179.6% 187.2%

Number 3765 13679 3765 3864 13679 3736 13679 3864 13679 3834

Size 19.7 20.3 51.1 21.7 25.3 30.0 22.9 47.7 28.4 31.8

BE SR>0 0.71% 0.37% 0.33% 0.60% 0.36% 0.61% 0.46% 0.33% 0.46% 0.58%

BE p(5%) 0.53% 0.28% 0.23% 0.48% 0.28% 0.50% 0.38% 0.26% 0.39% 0.49%

Deregulation, post oil crisis: January 1973 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

Sharpe 50.0% 73.8% 72.7% 93.7% 74.5% 73.6% 78.9% 77.4% 80.8% 84.3%

Number 5429 19892 5430 5557 19892 5415 19892 5558 19892 5541

Size 19.9 21.3 46.7 21.5 21.4 25.1 23.0 39.0 23.9 26.2

BE SR>0 0.50% 0.33% 0.28% 0.52% 0.32% 0.50% 0.31% 0.25% 0.32% 0.43%

BE p(5%) 0.24% 0.22% 0.18% 0.38% 0.21% 0.33% 0.21% 0.17% 0.21% 0.29%
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Table 2.16 now presents the ranges of transaction costs for which a particular momentum

strategy outperforms the other momentum strategies over the three different episodes.

We find that during the pre-war episode the optimized constant-risk residual momentum

strategies R-O-C and R-O-C* outperform all other strategies for a range of transaction

costs for which these strategies keep a positive Sharpe ratio themselves, with the strategy

with lower costs R-O-C* performing best. This is mainly a consequence of the other

strategies having a relatively low Sharpe ratio during this episode. During the post-war

restoration episode we also find that the R-O-C* strategy outperforms all other strategies

for moderate transaction costs, up to a level around 0.50%. Still, the standard S, residual

R and optimized constant-risk at lower costs O-C* strategies outperform this strategy

for relatively high transaction costs above 0.50%, up to 0.71% for standard momentum.

In this episode the average size of the transactions of the R-O-C* strategy is relatively

large and as such these strategies with a relatively smaller size of the transactions are

able to outperform for relatively high transaction costs. During the deregulation post oil

crisis episode residual momentum R has a higher Sharpe ratio than any other momentum

strategy for transaction costs up to 0.52%. This is in line with its Sharpe ratio being the

highest in this episode, although not significantly higher than most other strategies.
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Table 2.16: Episode analysis of mutual outperformance for ranges of transaction

costs.

Whole period: July 1929 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 0.27%

0.32%

0.23%

0.32%

0.29%

0.32%

0.24%

0.32%

O 0.00%

0.27%

0.07%

0.29%

0.20%

0.29%

C 0.00%

0.23%

0.00%

0.07%

0.24%

0.26%

R 0.00%

0.47%

0.00%

0.47%

0.00%

0.47%

0.00%

0.47%

0.00%

0.06%

0.07%

0.47%

0.05%

0.47%

0.20%

0.47%

O-C 0.00%

0.29%

0.00%

0.30%

0.00%

0.30%

0.12%

0.30%

O-C* 0.00%

0.49%

0.00%

0.49%

0.00%

0.49%

0.06%

0.49%

0.00%

0.49%

0.07%

0.49%

0.05%

0.49%

0.20%

0.49%

0.46%

0.49%

R-O 0.00%

0.34%

0.00%

0.34%

0.00%

0.34%

0.00%

0.07%

0.00%

0.34%

0.00%

0.07%

0.03%

0.34%

R-C 0.00%

0.24%

0.00%

0.20%

0.00%

0.24%

0.00%

0.05%

0.00%

0.12%

0.00%

0.05%

0.00%

0.03%

R-O-C 0.00%

0.36%

0.00%

0.36%

0.00%

0.36%

0.00%

0.20%

0.00%

0.36%

0.00%

0.20%

0.00%

0.36%

0.00%

0.36%

R-O-C* 0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

0.00%

0.46%

0.00%

0.48%

0.00%

0.48%

0.00%

0.48%

Pre-war: July 1929 - December 1945

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S

O 0.00%

0.07%

0.00%

0.07%

0.00%

0.07%

0.03%

0.07%

C

R 0.00%

0.14%

0.00%

0.14%

0.00%

0.14%

0.00%

0.14%

0.00%

0.14%

0.00%

0.14%

O-C 0.00%

0.08%

0.00%

0.08%

0.00%

0.08%

0.00%

0.08%

0.00%

0.08%

O-C* 0.00%

0.02%

0.00%

0.02%

R-O 0.00%

0.23%

0.00%

0.23%

0.00%

0.23%

0.00%

0.23%

0.00%

0.23%

0.00%

0.23%

0.00%

0.23%

R-C 0.00%

0.06%

0.00%

0.03%

0.00%

0.06%

0.00%

0.06%

R-O-C 0.00%

0.25%

0.00%

0.25%

0.00%

0.25%

0.00%

0.25%

0.00%

0.25%

0.00%

0.25%

0.00%

0.25%

0.00%

0.25%

R-O-C* 0.00%

0.35%

0.00%

0.35%

0.00%

0.35%

0.00%

0.35%

0.00%

0.35%

0.00%

0.35%

0.00%

0.35%

0.00%

0.35%

0.00%

0.35%

Continued on next page
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Table 2.16 – Continued from previous page

Post-war restoration: January 1946 - December 1972

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 0.14%

0.71%

0.00%

0.71%

0.49%

0.71%

0.14%

0.71%

0.45%

0.71%

0.32%

0.71%

0.18%

0.71%

0.32%

0.71%

0.49%

0.71%

O 0.00%

0.14%

0.00%

0.37%

0.00%

0.37%

0.23%

0.37%

C 0.32%

0.33%

R 0.00%

0.49%

0.00%

0.60%

0.00%

0.60%

0.00%

0.60%

0.00%

0.56%

0.11%

0.60%

0.00%

0.60%

0.13%

0.60%

0.46%

0.60%

O-C 0.00%

0.14%

0.00%

0.36%

0.24%

0.36%

O-C* 0.00%

0.45%

0.00%

0.61%

0.00%

0.61%

0.56%

0.61%

0.00%

0.61%

0.25%

0.61%

0.09%

0.61%

0.26%

0.61%

0.51%

0.61%

R-O 0.00%

0.32%

0.00%

0.46%

0.00%

0.46%

0.00%

0.11%

0.00%

0.46%

0.00%

0.25%

0.00%

0.46%

R-C 0.00%

0.18%

0.00%

0.23%

0.00%

0.32%

0.00%

0.24%

0.00%

0.09%

R-O-C 0.00%

0.32%

0.00%

0.46%

0.00%

0.46%

0.00%

0.13%

0.00%

0.46%

0.00%

0.26%

0.00%

0.46%

0.00%

0.46%

R-O-C* 0.00%

0.49%

0.00%

0.58%

0.00%

0.58%

0.00%

0.46%

0.00%

0.58%

0.00%

0.51%

0.00%

0.58%

0.00%

0.58%

0.00%

0.58%

Deregulation, post oil crisis: January 1973 - December 2014

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

S 0.19%

0.50%

0.14%

0.50%

0.18%

0.50%

0.19%

0.50%

0.13%

0.50%

0.20%

0.50%

0.35%

0.50%

O 0.00%

0.19%

0.00%

0.33%

0.07%

0.33%

0.00%

0.00%

0.19%

0.33%

0.04%

0.33%

0.24%

0.33%

C 0.00%

0.14%

0.10%

0.28%

R 0.00%

0.52%

0.00%

0.52%

0.00%

0.52%

0.00%

0.52%

0.00%

0.52%

0.00%

0.52%

0.00%

0.52%

0.00%

0.52%

0.00%

0.52%

O-C 0.00%

0.18%

0.00%

0.07%

0.00%

0.32%

0.00%

0.01%

0.27%

0.32%

0.04%

0.32%

O-C* 0.00%

0.50%

0.00%

0.50%

0.00%

0.50%

0.01%

0.50%

0.05%

0.50%

0.02%

0.50%

0.07%

0.50%

0.21%

0.50%

R-O 0.00%

0.19%

0.00%

0.19%

0.00%

0.31%

0.00%

0.27%

0.00%

0.05%

0.00%

0.31%

R-C 0.00%

0.13%

0.00%

0.04%

0.00%

0.10%

0.00%

0.04%

0.00%

0.02%

R-O-C 0.00%

0.20%

0.00%

0.24%

0.00%

0.32%

0.00%

0.32%

0.00%

0.07%

0.00%

0.32%

0.00%

0.32%

R-O-C* 0.00%

0.35%

0.00%

0.43%

0.00%

0.43%

0.00%

0.43%

0.00%

0.21%

0.00%

0.43%

0.00%

0.43%

0.00%

0.43%
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2.9 Conclusions

In this chapter we investigate the working of several equity momentum strategies and

compare their performances in terms of return and crash risk characteristics. We use

data that contain all monthly NYSE and AMEX common equity returns from July 1929

until December 2014 from CRSP. Our conclusions are listed in two groups. The first

group is related to the whole period and the second one to three episodes that together

form the full period from July 1929 to December 2014.

For the whole period we find that basic mean-variance optimization, in particular, when

taking account of momentum’s top-bottom phenomenon, improves standard momentum’s

risk and return characteristics and reduces momentum’s time-varying exposures. This

top-bottom phenomenon is the fact that the stocks in the top of momentum’s ranking

outperform and that stocks in the bottom of the ranking underperform. The other

alternative momentum strategies, residual momentum by Blitz et al. (2011) and constant-

risk momentum by Barroso and Santa-Clara (2015) also outperform standard momentum.

No individual strategy is superior over the whole period in all characteristics. Mean-

variance optimization is best in crash risk reduction, while residual momentum is best in

Sharpe ratio improvement.

Combining all three alternative strategies in a joint strategy further improves momentum’s

performance and reduces its crash risk substantially. The Sharpe ratio improves from

29.3% to 106.6%, while crash risk indicators like the largest monthly loss, the maximum

drawdown and the time to recover to the level of the previous peak after a drawdown

improve from respectively 57.3%, 323.6% and 430 months for standard momentum to

18.7%, 35.5% and 70 months. The joint strategy is also able to outperform residual and

constant-risk momentum. The obtained results are statistically significant.

Although transaction costs play a key role in the performance of the momentum strategies,

the outperformance of standard momentum by other strategies is independent of the

transaction size. Combining the three individual strategies improves momentum’s perfor-

mance for a similar number of transactions while only slightly increasing the average size

of the transactions. For transaction costs up to 0.46% we find that this joint momentum

strategy outperforms any other momentum strategy, including residual and constant-risk

momentum.
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A second group of conclusions refers to how the results vary over time and in particular

episodes. A major concern with respect to the performance of equity momentum strategies

is their sensitivity to special data features as turbulence and shocks that may occur in

particular episodes.

We find that all three alternative momentum strategies, as well as the combined strategies,

reduce the time-variation in momentum’s exposures and returns. This also implies that

the returns become more stable over different stages of the business cycle.

Episode analysis shows that the performance of the different strategies varies substantially

over time. Nevertheless, the performance of our proposed optimized and combined

momentum strategies over standard momentum is robust for the choice of the episode,

also when moderate transaction costs are taken into account.

Episode analysis also shows reasonably stationary behavior of mean returns for all strate-

gies after the economic crisis of the thirties and turbulent behavior of the volatilities in

three subperiods: the crisis of the thirties, the oil price shock of 1973 and the recent

crisis since 2008. This strongly affects the dynamic pattern of the Sharpe ratios over

the three episodes. It leads to the conclusion that combined strategies work fine over

the whole period with very good performance during turbulent periods, whereas residual

momentum appears to be a good strategy in relatively quiet times. These results are

statistically significant and not sensitive for a reasonable range of transaction costs.

In general, we conclude that the proposed combination of equity momentum strategies

may provide practitioners with an attractive strategy with good performance in terms of

return and crash risk over a long period of time. Our second general conclusion is that

different strategies may perform better in different episodes depending upon the amount

and level of turbulence and volatility. The results presented in this chapter also indicate

that momentum’s improved performance is still a challenge for the concept of market

efficiency and this remains a topic for further academic research.

Some topics for further research Given the possible sensitivity of our results for the

chosen data, one may explore different data sets than the one we considered. That is,

data for different countries, like emerging markets, and data for particular sectors of the

economy.
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Searching for a causal explanation of the improved performance will require more detailed

and complex modeling.

Exploring the uncertainty in the results and connect this inferential uncertainty with

forecast and policy uncertainty and effectiveness in a coherent way remains a major

research topic. A very first methodological attempt is presented in Chapter 4.

Given that different strategies perform well in different time periods, exploring a weighted

time-varying combination of strategies where the weights depend on the past performance

of a strategy might be beneficial. For some first results on this topic we refer to Casarin,

Grassi, Ravazzolo, and Van Dijk (2015).

All these topics will require more data, better and more complex modeling and more

intense computational procedures where possibly parallel computing is needed. Connec-

tions between this financial econometric topic and the field of data science should be

fruitfully pursued.
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2.A Analytical Solution to the Mean-Variance Opti-

mization Problem

Every investment month we solve the following problem to form the optimized momentum

portfolios.

min
h∗

{
h∗′V h∗ ∣∣h∗′ι = 0, h∗′f = 1

}
(2.10)

We use the Lagrange function

L (h∗, λ1, λ2) = h∗′V h∗ − λ1h
∗′ι− λ2

(
h∗′f − 1

)
(2.11)

and set its derivatives to zero

δL

δh∗ = 2V h∗ − λ1ι− λ2f = 0 (2.12)

δL

δλ1

= h∗′ι = 0 (2.13)

δL

δλ2

= h∗′f − 1 = 0 (2.14)

The optimal solution for h∗ becomes

h∗ =
1

2
V −1 (λ1ι+ λ2f) (2.15)

We then solve for λ1

h∗′ι =
1

2
V −1 (λ1ι+ λ2f)

′ ι =
1

2

(
λ1ι

′V −1ι+ λ2f
′V −1ι

)
= 0

λ1 =
−λ2f

′V −1ι

ι′V −1ι
(2.16)

and for λ2

h∗′f − 1 =

(
1

2
V −1 (λ1ι+ λ2f)

)′
f − 1 =

1

2

(
λ1ι

′V −1f + λ2f
′V −1f

)− 1 = 0

λ2 =
2− λ1ι

′V −1f

f ′V −1f
(2.17)
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which results in the following solutions for λ1

λ1 =
−λ2f

′V −1ι

ι′V −1ι
=

−
[
2−λ1ι′V −1f

f ′V −1f

]
f ′V −1ι

ι′V −1ι
=

λ1ι
′V −1ff ′V −1ι− 2f ′V −1ι

f ′V −1fι′V −1ι

λ1 = −2
f ′V −1ι

f ′V −1fι′V −1ι− ι′V −1ff ′V −1ι
(2.18)

and λ2

λ2 =
2− λ1ι

′V −1f

f ′V −1f
=

2−
[
−2 f ′V −1ι

f ′V −1fι′V −1ι−ι′V −1ff ′V −1ι

]
ι′V −1f

f ′V −1f

λ2 = 2
1 + f ′V −1ιι′V −1f

f ′V −1fι′V −1ι−ι′V −1ff ′V −1ι

f ′V −1f
(2.19)

These Lagrange multipliers λ1 and λ2 then yield the following optimal solution

h∗ =
1

2
V −1 (λ1ι+ λ2f)

=
1

2
V −1

(
−2

[
f ′V −1ι

f ′V −1fι′V −1ι− ι′V −1ff ′V −1ι

]
ι

+2

[
1 + f ′V −1ιι′V −1f

f ′V −1fι′V −1ι−ι′V −1ff ′V −1ι

f ′V −1f

]
f

)

=
V −1f

f ′V −1f
+

f ′V −1ιι′V −1f

f ′V −1fι′V −1ι− ι′V −1ff ′V −1ι
× V −1f

f ′V −1f

− f ′V −1ι

f ′V −1fι′V −1ι− ι′V −1ff ′V −1ι
V −1ι

=
f ′V −1fι′V −1ιV −1f − f ′V −1ιf ′V −1fV −1ι

f ′V −1f (f ′V −1fι′V −1ι− (f ′V −1ι)2)

=
ι′V −1ιV −1f − f ′V −1ιV −1ι

f ′V −1fι′V −1ι− (f ′V −1ι)2

=
V −1f − f ′V −1ι(ι′V −1ι)−1V −1ι

f ′V −1f − (f ′V −1ι)2(ι′V −1ι)−1

=
V −1 (f − C1ι)

C2

(2.20)

where C1 = f ′V −1ι(ι′V −1ι)−1 and C2 = f ′V −1f − (f ′V −1ι)2(ι′V −1ι)−1. I.e. the optimized

portfolio is a weighted average of demeaned returns f , and the weights are determined

according to inverse of the variance-covariance matrix V .
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2.B Momentum strategies with different percentiles

Throughout this chapter all strategies were based on dividing stocks over the top and

bottom deciles of the ranking on total or residual returns. In this appendix we consider

the dependence of the performance of the strategies on this choice for deciles by considering

other percentiles.

Table 2.B.1 presents the Sharpe-ratios of the momentum strategies if we use percentiles

other than deciles (tenth percentile). The 10 percent row in this table corresponds to

the Sharpe-ratios for the compared strategies in Table 2.3. For example, the standard

momentum (S) strategy would have a Sharpe ratio of 37.8% if only the stocks in the top

and bottom fifth percentile are used for the strategy. The increasing Sharpe ratios for

smaller percentiles of the standard momentum strategy reflects momentum’s top-bottom

phenomenon that is discussed in Section 2.2.2: using the stocks in the top and bottom

20% of momentum’s ranking results in a Sharpe ratio of 18.7% versus the Sharpe ratio of

29.3% when using deciles.

Table 2.B.1 also shows that the differences between the Sharpe ratios when using deciles

generally remains if we use other percentiles. The conclusions in this chapter thus do not

seem to depend on the percentile chosen. However, we note that Table 2.B.1 indicates that

most strategies have the highest Sharpe ratio around the fifth percentile; the performance

of these strategies could thus be improved by choosing this smaller percentile.
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Table 2.B.1: Sharpe ratios for different percentiles. The annualized Sharpe ratio of the

momentum strategies for different percentiles used to divide the stocks over the top and bottom

deciles. See Section 2.5.2 for a brief description of the strategies corresponding to the different

abbreviations.

S O C R O-C O-C* R-O R-C R-O-C R-O-C*

1% 43.1% 60.3% 55.2% 59.8% 73.5% 62.8% 68.3% 62.4% 78.2% 73.9%

2% 42.5% 64.1% 56.6% 72.3% 77.3% 69.4% 80.1% 82.5% 91.1% 93.4%

3% 36.4% 64.6% 60.0% 80.4% 81.5% 71.9% 82.3% 94.0% 94.6% 99.0%

4% 38.2% 62.6% 61.3% 86.6% 81.5% 75.1% 90.1% 95.2% 102.8% 106.5%

5% 37.8% 67.0% 63.9% 80.5% 86.0% 80.6% 86.8% 90.5% 101.6% 107.5%

6% 37.2% 68.8% 68.6% 78.4% 83.6% 79.7% 83.5% 86.8% 99.8% 109.6%

7% 34.8% 69.9% 67.4% 79.3% 83.6% 79.7% 85.3% 84.4% 101.5% 109.6%

8% 32.3% 64.9% 64.8% 77.5% 79.4% 78.9% 84.7% 85.2% 101.6% 109.9%

9% 30.0% 64.1% 64.6% 78.8% 77.7% 78.4% 85.1% 85.6% 101.8% 109.9%

10% 29.3% 63.6% 65.4% 77.9% 76.9% 77.6% 83.5% 86.0% 100.3% 106.6%

11% 26.7% 59.0% 65.7% 76.8% 72.6% 77.4% 80.8% 80.3% 97.6% 105.1%

12% 26.0% 58.8% 64.3% 75.7% 71.1% 76.0% 78.0% 81.5% 96.0% 103.5%

13% 25.1% 58.3% 65.1% 76.3% 70.6% 75.4% 78.0% 85.4% 95.3% 103.1%

14% 23.5% 54.4% 63.1% 72.4% 66.3% 74.1% 75.9% 82.8% 90.9% 99.9%

15% 22.2% 50.5% 61.8% 70.0% 62.5% 72.4% 70.7% 80.2% 86.5% 96.2%

16% 22.2% 49.9% 62.2% 66.2% 61.9% 71.2% 67.0% 77.4% 84.2% 96.0%

17% 21.1% 48.1% 61.5% 66.3% 60.2% 71.0% 66.6% 77.0% 82.4% 93.5%

18% 19.9% 44.2% 59.9% 68.2% 57.4% 70.0% 65.7% 76.1% 81.9% 93.4%

19% 19.0% 43.3% 61.0% 67.1% 56.8% 70.3% 63.9% 76.3% 80.4% 93.6%

20% 18.8% 42.0% 59.4% 66.2% 55.4% 69.2% 64.2% 74.8% 80.2% 93.4%

2.C Bootstrapping Sharpe ratios

In this section we present a bootstrap method to test whether a Sharpe ratio is significantly

larger than zero as well as a similar bootstrap method to test whether a Sharpe ratio of

a strategy is significantly higher than that of another strategy. We do so by applying

the circular bootstrap method by Politis and Romano (1992). Following Ledoit and

Wolf (2008), we do not use the Jobson and Korkie (1982) test with the Ledoit and Wolf

(2003) adjustment for differences between the Sharpe-ratios as it is not valid for non-

normal time series. Momentum returns are typically not normally distributed given

their relatively extreme drawdowns. Given these return characteristics the standard

bootstrap approach of sampling single observations in every bootstrap sample by Efron

(1979) is also inappropriate, because the bootstrap methodology should take into account
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autocorrelations in the first and second moments. Among others, Barroso and Santa-Clara

(2015) show that momentum returns have persistence in volatility.

Bootstrap method Several bootstrapping methods exist to take into account persis-

tence in the first and second order moments of the data. Equivalent to the circular

bootstrap are the moving block bootstraps by Liu and Singh (1992) and Kunsch (1989),

apart from their small sample behavior. The circular bootstrap solves that observations in

the beginning or at the end of a time series end up less frequently in the bootstrapped sam-

ples by having the last observations also in a continuing block with the first observations.6

Unlike Ledoit and Wolf (2008) we do not perform a two-sided test on the difference

between two Sharpe ratios, but simply test how many of the bootstrapped Sharpe ratio

differences are higher than that of the actual observed difference between the Sharpe ratios

of the two strategies. The p-value of this test if a strategy’s Sharpe ratio is higher than

that of another strategy is one minus the portion of bootstrapped samples for which their

bootstrapped difference is larger than their actual observed difference in Sharpe ratio. It

is key to sample the Sharpe ratios under H0 by demeaning the return series such that

the Sharpe ratio of the series becomes zero. Testing if a Sharpe ratio is different from

zero is equivalent; rather than comparing the actual difference between two ratios with

the bootstrapped differences, the actual Sharpe ratio is compared to the bootstrapped

Sharpe ratios. This method follows Ledoit and Wolf (2008) in that it does not sample

from the distribution under H0, but rather inverts a confidence interval; Ledoit and Wolf

(2008) refer to paragraph 1.8 in Politis, P.Romano, and Wolf (1999) to do so.

The bootstrap algorithm we apply to find the p-value of the Sharpe ratio test of return

series 1 r1 being larger than zero or being higher than the Sharpe ratio of return series 2

r2 is as follows:

1. Demean the return series r1 such that its Sharpe ratio becomes zero in order to

sample Sharpe ratios under H0. If testing the difference between two Sharpe ratios

also demean the return series r2 such that its Sharpe ratio becomes zero.

6Politisand and P.Romano (1994) have come up with a circular stationary bootstrap with random

block length to preserve the persistence in the bootstrapped samples. We do not see the advantages of

this stationary bootstrap over the non-random block length bootstraps and choose the regular circular

bootstrap, like Ledoit and Wolf (2008) use for their hypothesis testing on the difference between two

Sharpe ratios.
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2. Set i = 0, where i will count the number of times the bootstrapped Sharpe ratio of

series 1 is larger than the Sharpe ratio for the actually observed data, or the number

of times the difference between the bootstrapped Sharpe ratios is larger than the

difference between the Sharpe ratios for the actually observed data.

3. Determine the optimal block length size b, by either the algorithm in Ledoit and

Wolf (2008) or the corrected Politis and White (2004) optimal block length size in

Patton, Politis, and White (2009).

4. Sample l = �T
b
� blocks of b random integers between 1 and T , where T equals the

length of the original return series. Following the circular bootstrap by Politis and

Romano (1992) a block that starts at the end of the series continues at the start of

the series until its length equals the block size b. The last sampled block l might

have more observations than required to have the series filled to length T ; in that

case the last observations of the last block l are thrown away.

5. Construct a single index series x that contains the subsequently sampled integers of

the l blocks in the previous step.

6. Construct the adjusted return series r∗1 and that has at time t the sampled obser-

vations r∗1 = r1 (xt); if applicable also construct r∗2 in a similar way r∗2 = r2 (xt).

7. Calculate the Sharpe ratios of the constructed series r∗1 and, if applicable, r∗2. If the

Sharpe ratio of the series r∗1 is larger than the Sharpe ratio for the actually observed

data or if the difference between the bootstrapped Sharpe ratios is larger than the

difference between the Sharpe ratios for the actually observed data, then i = i+ 1,

else i = i.

8. Repeat steps 3 to 6 M times

9. The p-value of the bootstrap test then equals i, the number of times the boot-

strapped Sharpe ratio of series 1 has been larger than the Sharpe ratio for the

actually observed data, or the number of times the difference between the boot-

strapped Sharpe ratios is larger than the difference between the Sharpe ratios for

the actually observed data, divided by the number of bootstrap samples M.

Bootstrap settings In this study we construct 10000 bootstrap samples from the

original observations; a Sharpe ratio is thus significantly higher at the 5 percent level

if 9500 of the bootstrapped Sharpe ratio differences are smaller than the actual difference.
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We choose a block length of 6 months as this is the optimal block length when we apply

the algorithm by Ledoit and Wolf (2008) for block lengths of 1, 3, 6, 10 and 15 months.

As such our methodology takes into account the optimal block length put forward by

Politis and White (2004)7 and corrects for the persistency in the first and second order

moments of the raw and optimized momentum returns.

Bootstrap test and transaction costs Not only the statistical significance is of

interest, but also if this significance would hold after transaction costs. We have therefore

more or less reversed the bootstrap test on the Sharpe ratios being larger than zero. Given

all bootstrapped Sharpe ratios for the original test on being different from zero we have

solved for the transaction costs that would lower the actual Sharpe ratio by an amount

such that a specific percentage, equal to the significance level, of the bootstrapped Sharpe

ratio would be higher. We have presented the results of this test for a significance level

of 5% in Table 2.7 in Section 2.6.

7Patton et al. (2009) have later corrected the formulas for the optimal block lengths
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Hedging the Time-Varying

Exposures of Equity Momentum∗

3.1 Introduction

Momentum is a strategy that ranks stocks on past performance, buys the past winners

and sells the past losers1. Kothari and Shanken (1992) and Grundy and Martin (2001)

show that the resulting momentum returns have time-varying exposures to the market

and all three Fama and French (1992) and Fama and French (1993) equity risk factors

respectively. In this study we show that an ex-ante feasible hedging strategy accounting

for these time-varying exposures outperforms the standard momentum strategy. The

hedged returns are larger, less risky, more stable over time and vary less over market

and economic conditions. The results weaken the crash risk explanation of momentum

returns in Daniel and Moskowitz (2013) and Daniel et al. (2012) as the average of the

twelve worst one-month losses is reduced by 60 percent. We show that the way of

hedging is important. Taking into account the momentum’s conditional factor exposures

outperforms both hedging based on the momentum’s unconditional factor exposures and

hedging based on the individual loadings of the constituents of the momentum strategy.

We also find that it is crucial to account for all three equity risk factors, not just the

market which has been the focus of recent studies.

∗This chapter is based on Martens and Van Oord (2014).
1See Jegadeesh and Titman (1993) and Jegadeesh and Titman (2001), among others.
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3.1.1 Time variation in the returns and exposures of the mo-

mentum strategy

The average factor exposures of momentum to the equity risk factors are all negative.

For example, the full-sample market beta is -0.25. These factor exposures, however, vary

substantially over time. If the market returns are positive (negative) during the ranking

period, the market beta of the zero-investment momentum strategy is 0.45 (-0.62). When

subsequently the market reverses in the investment period the strategy will lose due to its

adverse loading on the market factor. Moreover, if all three equity risk factors move in the

opposite direction in the investment period compared to the ranking period, momentum

on average loses 3.6 percent per month. On the contrary, momentum earns 3.5 percent

when the factors move in the same direction. These time-varying exposures of momentum

also result in variation of the returns over the business cycle: during the second half of

recessions momentum loses 2.1 percent per month on average, while it earns 1.5 percent

per month in the second half of expansions.

The reason for the time variation in the exposures is as follows: Consider the simplified

case that stock returns are governed by their market beta, the market return and a

residual return. If during the ranking period the market return is positive, the momentum

strategy tends to buy high beta stocks and sell low beta stocks. The resulting positive

beta exposure then positively contributes to the momentum return if the market return

is positive again in the investment period. In contrast, if during the investment period

the market return is negative, this positive beta exposure negatively contributes to the

return. In short, when the market factor moves in the same direction in both ranking

and investment period, it is beneficial for the momentum return. If, however, the market

factor moves in the opposite direction in the investment period, it is detrimental for the

momentum returns. The same arguments hold for the size and book-to-market factors.

3.1.2 Hedging the time-varying exposures of momentum

We investigate three different ways to hedge the time-varying risk exposures of momentum.

First, we use the common approach of regressing historical momentum returns for a

specific window on the three Fama and French (1993) equity risk factors. This mostly

corrects for the long-term negative factor loadings of momentum. This is a rather naive

strategy as it assumes the current momentum portfolio has the same factor loadings

as the past momentum portfolios, while the constituents of the strategy change rapidly
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over time. As a consequence, this hedging method still has strong time-varying factor

exposures. Therefore we consider two hedging methods that do take into account the

current factor exposures of momentum. First, we use individual historical betas of the

constituents of the momentum portfolio to estimate the exposures. Second, we capture

the time-varying patterns in the momentum exposures by regressing momentum returns

on the equity risk factors conditional on the factor returns in the ranking period of the

momentum strategy, as proposed by Grundy and Martin (2001).

Hedging based on either individual stock betas or the conditional factor model reduces

the volatility of the momentum strategy by about 25 percent. When all three equity risk

factor returns show a reversal from the ranking to the investment period, the hedge based

on individual betas gains 0.6 percent, and the hedge based on conditional momentum

loadings loses -0.4 percent, compared to -3.6 percent for the unhedged momentum strategy.

The hedge based on individual betas has an annual Sharpe ratio of 0.47 and the con-

ditionally hedged returns have a Sharpe ratio of 0.71 compared to a Sharpe ratio of

0.36 for unhedged momentum. These Sharpe ratios further improve to 0.63 and 0.75,

respectively, if we only take offsetting positions when the estimated factor exposures are

negative. These asymmetric hedges profit from the average positive factor returns and

reduce the overall negative loadings on the equity risk factors.

3.1.3 Crash risk as an explanation for momentum profits

Daniel and Moskowitz (2013) and Daniel et al. (2012) show that the momentum strategy

has many large monthly losses. As such they hypothesize that the momentum profits

are a compensation for crash risk. For our data we find that the average loss equals

36.8 percent for the twelve months where momentum loses more than 20 percent. The

conditional hedge reduces the losses in these months to an average loss of 14.8 percent.

We achieve this by understanding the time-varying exposures of momentum and only

using ex-ante available information. Hence these results substantially weaken the crash

risk explanation of momentum profits.
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3.1.4 Stability of hedged momentum returns over the business

cycle

Hedging also stabilizes the momentum returns over the different stages of the business

cycle. Similar to Chordia and Shivakumar (2002) we find that momentum returns are

on average higher periods of expansion (0.90 percent) than in periods of recession (-0.50

percent). For the conditionally hedged returns, however, we find average monthly returns

of 1.13 percent and 0.46 percent in periods of expansions and recessions, respectively.

Especially in the second half of recession periods, raw momentum suffers with an average

return of -2.09 percent per month. We find that this is mainly due to reversals in the

market, size and value-growth factors. Hedging reduces the adverse conditional loadings

on the equity risk factors and thereby improves performance in the latter stages of

recessions, from -2.09 percent to 0.05 percent per month.

Hedging also improves momentum returns after down markets. Cooper et al. (2004) find

substantial momentum losses after the 3-year market return is negative. The conditional

hedge improves momentum returns in down markets from -1.78 percent per month for

the unhedged strategy to 0.27 percent. Hence we attribute the differences between down

and up markets partly to time-varying risk exposures rather than only to overreaction

theories as Cooper et al. (2004) do.

3.1.5 Systematic under- and overestimation historical betas

The common approach to estimate a portfolio’s factor exposures by the historical betas

of its constituents leads to systematic over- and underestimation of the momentum

exposures2. After positive factor returns in the formation period momentum selects

stocks with high loadings on the winning factors. It turns out that these loadings are

overestimated. Hence the ex-ante hedge will ex-post turn out to be an over-hedge and

results in negative loadings on the equity risk factors. Following negative factor returns

the exposures of stocks with high loadings on a particular factor are underestimated, while

momentum is short in these stocks. It follows that the ex-ante hedge ratios will ex-post

turn out to be insufficient, leaving negative loadings on the equity risk factors. Thus both

after positive and after negative factor returns hedging based on individual stock betas

2Boguth, Carlson, Fisher, and Simutin (2011) find for ex-post betas of the momentum strategy a

negative correlation between beta biases and market returns. They, however, focus on estimating unbiased

alphas, not hedging.
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will leave on average negative exposures to the factors.

The remainder of this chapter is organized as follows. Section 3.2 describes the data.

Section 3.3 explains how we measure the ex-post exposures of momentum to the equity risk

factors and how the hedging methods work. Section 3.4 presents the key results. Section

3.5 describes the systematic under- and overestimation of the momentum exposures when

using the commonly used individual historical estimated betas. Finally, Section 3.6 will

conclude.

3.2 Data

Total monthly returns of all NYSE and AMEX common stocks in the CRSP database

are used3, covering the period 1926 to 2011. Stocks that have a stock price lower than $1

at the beginning of the investment period are excluded as also done by Amihud (2002)

and Pastor and Stambaugh (2003) for $5 stocks. Following Grundy and Martin (2001)

we use a six-month ranking period, wait for one month to avoid return reversals4, and

then go long in the 10 percent winners and short in the 10 percent losers for one month

assigning equal weight to each individual stock. We rule out those stocks that do not

exist in the whole six-month ranking period. With these criteria the first ranking period

is from January 1926 to June 1926 to invest in August 1926, and there are 44 stocks in

each decile at that time. The final ranking period is from April 2011 to October 2011 to

invest in December 2011, and by then there are 146 stocks in each decile.

Table 3.1 column 1 shows the sample characteristics of the standard momentum strategy

from February 1932 to December 2011. We leave out the data before February 1932 as for

the hedging strategies we require a burn-in period to estimate the first individual factor

loadings and the conditional model presented in section 3.35. The average return to the

momentum strategy is 0.67 percent per month with a volatility of 6.5 percent per month.

The worst month is April 2009 with a return of -60.5 percent, and the best month is

3Common AMEX and NYSE stocks with an exchange code equal to 1 or 2 and a share code equal to

10 or 11 during the investment month are eligible for the momentum strategy.
4See e.g. Jegadeesh and Titman (1993), Narasimhan Jegadeesh (1995), Lehmann (1990) and Lo and

MacKinlay (1990).
5Data on the Fama and French (1993) equity risk factors start in July 1926. Our conditional regressions

need these equity risk factor returns from t − 7 to t − 2 besides the skip month t − 1. Subsequently we

require at least 60 months for the estimation of the conditional regression presented in Section 3.3.
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March 1938 with a return of 23.0 percent. The final rows of Table 3.1 also show that

momentum on average has significant negative loadings on the market (-0.25), size (-0.25)

and HML (-0.42) factors.

Table 3.1: Sample statistics momentum strategy. Monthly sample statistics of investing

according to the regular momentum strategy (Unhedged), i.e. sort stocks based on their

performance from t − 7 to t − 2, skip month t − 1, and invest at time t in the top 10% of

the ranked stocks and short the bottom 10%. The next three columns show the same results

for the hedged momentum returns, where hedging takes place by taking positions in the equity

risk factor portfolios offsetting predicted exposures to these equity risk factors. These predicted

factor exposures are based on using past unconditional loadings on the three equity risk factors,

over the most recent 120 months (Hedge 1); using the average of the individual loadings of the

constituents of the momentum strategy using a maximum estimation window of 120 (Hedge 2);

or using past conditional loadings using Equation 3.1 (Hedge 3) estimated over the most recent

120 months. The final four rows show the results of regressing the (hedged) momentum returns

on the equity risk factors over the full sample. ***, ** and * denote significance at the 1%, 5%

and 10% significance levels, respectively. The sample period covers Febuary 1932 to December

2011 (959months).

Unhedged Hedge 1 Hedge 2 Hedge 3

Average return 0.67% 1.08% 0.68% 1.02%

Standard deviation 6.5% 6.1% 5.0% 5.0%

Minimum -60.5% -56.5% -42.9% -42.3%

Maximum 2.03% 22.1% 17.0% 23.6%

Alpha 1.10%*** 1.06%*** 1.04%*** 1.07%***

Market beta -0.25*** -0.06* -0.08*** -0.02

Size beta -0.25*** 0.05 -0.44*** -0.10**

HML beta -0.42*** 0.14*** -0.42*** 0.00

R-squared 15.5% 0.8% 23.2% 0.6%

3.3 Methods

Let ri,t be the return on stock i in month t. At the end of each month t − 1 all NYSE

and AMEX stocks are ranked on the basis of their cumulative returns over the formation

months t − 7 to t − 2. Note that month t − 1 itself is known as the skip month, and

is explicitly not used for the ranking to avoid mean-reversion in returns. Subsequently

equally weighted deciles are formed. The return differential between the winners’ portfolio
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(top ranked 10 percent stocks) and the losers’ portfolio is denoted by rWL,t. This is the

momentum return in month t.

3.3.1 Ex-post evaluation of the time-varying risks of the mo-

mentum strategy

Grundy and Martin (2001) estimate the conditional model in Equation 3.1, since regress-

ing the momentum returns on the equity risk factors ignores the time-variation in the

factor exposures of momentum:

rWL,t = α +
(
βdownD

MKT,down
t + βflatD

MKT,flat
t + βupD

MKT,up
t

)
rMKT,t

+
(
sdownD

SMB,down
t + sflatD

SMB,flat
t + supD

SMB,up
t

)
rSMB,t (3.1)

+
(
hdownD

HML,down
t + hflatD

HML,flat
t + hupD

HML,up
t

)
rHML,t + et

where Dt are the dummies to denote whether the market (MKT), the size factor (SMB)

or the book-to-market factor (HML) during the ranking period (t− 7 to t− 2) went down

by more than one standard deviation relative to the mean (down), up by more than one

standard deviation relative to their mean (up) or stayed within one standard deviation

from their mean (flat).

Consider for example the exposure to the market factor. If the market is up during the

ranking period only DMKT,up
t ,up equals one. In that case the winners (losers) portfolio

will have more high (low) beta stocks and momentum will have a positive beta exposure.

Hence we expect βup to be larger than zero. For similar reasons we expect βdown to be

smaller than zero. Obviously similar arguments apply to the SMB and HML exposures.

It is these time-varying factor exposures that we would like to reduce with hedging. Hence

we evaluate the adequacy of hedging strategies by checking if the estimated conditional

betas in Equation 3.1 get closer to zero for the hedged return series. Using adequately

hedged momentum returns rHedge j
WL,t+1 on the left-hand-side of Equation 3.1 should reduce

the regression R-squared of this conditional model.

3.3.2 Hedging strategies for the standard momentum returns

If we were to know the momentum factor exposures at the start of the investment month

we could hedge the momentum return by taking opposite positions in the market, the
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size and the value-growth factor6. We look at three different ways to hedge returns in

this way. They differ from each other in the way they estimate the factor exposures of

momentum. The hedged momentum returns become:

rHedge i
WL,t+1 = rWL,t+1 − ̂βHedge j

W−L,t rMKT,t+1 − ̂sHedge j
W−L,t rSMB,t+1 − ̂hHedge j

W−L,t rHML,t+1 (3.2)

Using unconditional loadings of momentum returns (hedge 1)

The simplest approach is to regress the momentum returns in months tT to t1 on the

unconditional factor returns to find the loadings for month t,

rWL,t∗ = αt + βtrMKT,t∗ − strSMB,t∗ − htrHML,t∗ + et t∗ = t− T, ..., t− 1 (3.3)

The estimated betas can be used directly in Equation 3.2 to create a hedged version of

momentum.

Using individual factor loadings of the current constituents (hedge 2)

The composition of the momentum portfolio changes over time, while we are interested

in the loadings of the current portfolio. Hence a more logical approach to determine

a portfolio’s current exposures is to first compute the historical factor loadings of the

individual stocks that make up the current portfolio and then compute the factor loadings

of the portfolio. Hence each month t we estimate for each stock in the momentum portfolio

ri,t∗ = αt + βi,trMKT,t∗ − si,trSMB,t∗ − hi,trHML,t∗ + ei,t t∗ = t− T, ..., t− 1 (3.4)

for months tT to t1 (or less history when the stock does not exist for T months). Then

we compute the factor loadings of the momentum portfolio for month t as follows,

̂βHedge 2
t =

Nt∑
i=1

wi,tβ̂i,t
̂sHedge 2
t =

Nt∑
i=1

wi,tŝi,t
̂hHedge 2
t =

Nt∑
i=1

wi,tĥi,t (3.5)

where wi,t is the weight of stock i in the momentum portfolio in month t. In our case

with equal weighting for the top and bottom decile the weights will be 10/Nt or −10/Nt

6We assume it is possible to do this. Daniel and Titman (1997) point to the efficacy of the approach

of trading offsetting portfolios of long-short positions that mimic the Fama and French (1993) factors. In

practice it could be difficult and costly to create short positions. As future research it will be interesting to

test hedging using recently launched futures on value, growth and small cap indices, including transaction

costs.
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respectively for the constituents of these deciles with Nt the number of stocks at time t;

stocks in deciles two to nine get a weight of zero.

Using conditional loadings of momentum returns (hedge 3)

Rather than estimating the individual exposures of the current constituents of the mo-

mentum strategy we directly take offsetting positions according to the current conditional

loadings. We only use in-sample data that is known prior to the investment month t to

estimate these conditional loadings. For that purpose we estimate Equation 3.1 for the

past T months up to t to determine the conditional loadings. Next we use the factor

returns in the formation period to establish for each factor whether we are in the up,

down or flat state and use the corresponding estimate for the offsetting positions. The

advantage of this approach over the individual hedge is that we do not have to assume that

individual stocks have constant loadings for a longer historical period. The disadvantage

is that we assume to know the functional form and the parameters of the conditional

model7.

3.4 Results

3.4.1 Sample characteristics of hedged momentum returns

Table 3.1 shows the sample characteristics of momentum and the three versions of hedged

momentum. We use T equal to 120 months for all hedge methods. In Section 3.5 we show

results for smaller T . First, as expected hedging reduces the volatility. The hedge based

on individual stock betas and the conditional hedge both have a standard deviation of 5.0

percent per annum, compared to 6.5 percent for unhedged momentum. The reduction in

risk is also visible in the minimum return, with the worst monthly loss reduced from 60.5

percent to less than 43 percent. In addition the hedge based on the conditional model in

Equation 3.1 provides a higher average monthly return of 1.02 percent, compared to 0.67

percent for both unhedged momentum and for hedged momentum based on individual

loadings. The unconditional hedge also increases the return to 1.09 percent but reduces

the volatility only to 6.1 percent and the max loss is still -56.5 percent. We will see in

the next section that the unconditional hedge is not effective in reducing the time-varying

7Jr. and Prinsky (2007) and Blitz et al. (2011) follow a completely different approach that aims at

avoiding the conditional factor loadings of momentum altogether. In particular the residual momentum

strategy looks at the past residual returns to form decile portfolios, based on the residuals from Equation

3.4. Here we take the positions of the total return momentum strategy as given
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exposures to the risk factors.

The final rows of Table 3.1 explain the return differences of the hedged momentum

strategies. Both the unconditional and conditional hedge on average increase the loadings

on the market, size and HML, three factors known to have on average a positive return.

For our sample the market excess return is 3.9 percent per annum, and the returns for size

and HML are respectively 2.9 and 4.6 percent per annum. In contrast the hedge based on

individual stock loadings still has negative loadings on all three factors. We investigate

this in more detail in Section 3.5.

3.4.2 Ex-post time-varying exposures

We started the hedging exercise with the objective to reduce the time-varying exposures

of momentum. These exposures are shown in column 1 of Table 2. The results are

comparable to those on page 47 in Grundy and Martin (2001). In particular we see that

momentum has a negative market beta (0.62) when the market return in the ranking

period is negative and a positive beta (0.45) after the market return is positive during

the ranking period. Similarly the momentum strategy has higher (lower) loadings to the

size and HML factors when these factor returns have been positive (negative) during

the ranking period. The conditional model explains 51.3 percent of the variation in the

momentum returns. This is in contrast with the unconditional equity risk factor model

that explains only 15.5 percent, see column 1 final row in Table 3.1.

All three hedging methods reduce the impact of the time-varying exposures to the

equity risk factors. The conditional hedge is the best method to reduce the time-varying

exposures. After hedging the regression R-squared is reduced to just 5.2

Column 2 in Table 3.1 shows the ex-post conditional factor exposures of the hedged

momentum returns, where the hedge parameters have been computed using the uncondi-

tional model in Equation 3.3. The unconditional hedge is the least effective in reducing

the time-varying risk exposures of momentum. Effectively this method most of the time

only adds the market, size and HML because the average loading of momentum to these

factors is negative (see Table 3.1 column 1). This is also visible from column 2 in Table

3.3 where for all three factors the loadings are higher in all three states. For example

the exposure to the market, after the market went up, has increased from 0.45 to 0.66.

And the exposure, after the market went down, has increased from 0.62 to 0.38. Both
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Table 3.1: Ex-post risk exposures of (hedged) momentum strategies. This table shows

the estimation results of the conditional equity three risk factor model in Equation 3.1, estimated

for February 1932 to December 2011 (959 monthly observations). The first column shows the

results for the original momentum strategy that ranks stocks based on their returns in the past

6 months, skips one month and then invests for one month. The next three columns show the

same results for the hedged momentum returns, where hedging takes place by taking positions

in the equity risk factor portfolios offsetting predicted exposures to these risk factors. These

predicted factor exposures are based on using past unconditional loadings on the three equity

risk factors, over the most recent 120 months (column 2); using the average of the individual

loadings of the constituents of the momentum strategy using a maximum estimation window of

120 (column 3); or using past conditional loadings using Equation 3.1 (final column) estimated

over the most recent 120 months.

Unhedged Hedge 1 Hedge 2 Hedge 3

Intercept
0.0095 0.0092 0.0103 0.0101

(6.42) (5.79) (7.42) (6.35)

MKT

Up
0.445 0.661 -0.075 0.108

(5.03) (6.94) (-0.90) (1.13)

Flat
0.067 0.195 0.058 0.075

(1.64) (4.42) (1.5) (1.7)

Down
-0.621 -0.384 -0.243 -0.094

(-12.43) (-7.13) (-5.17) (-1.74)

SMB

Up
0.537 0.837 -0.462 0.212

(5.47) (7.92) (-5.02) (2.01)

Flat
-0.58 -0.254 -0.645 -0.24

(-9.14) (-3.72) (-10.83) (-3.51)

Down
-0.422 -0.17 -0.023 -0.181

(-4.62) (-1.73) (-0.27) (-1.83)

HML

Up
0.687 1.249 -0.208 0.003

(6.66) (11.24) (-2.14) (0.03)

Flat
-0.129 0.376 -0.344 0.211

(-2.18) (5.87) (-6.16) (3.29)

Down
-1.048 -0.468 -0.534 -0.201

(-13.19) (-5.47) (-7.16) (-2.35)

R-squared 51.3% 37.8% 27.9% 5.2%

increases are not far away from the average (negative) 0.25 loading on the market for

momentum (see Table 3.1 Column 1). Hence the unconditional hedge is merely adding

betas to offset the average negative betas, but it is not providing a solution for the time-

varying exposures.
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Column 3 in Table 3.1 shows the results for the hedge based on individual stock loadings,

see Equations 3.4 and 3.5. The results show that this hedging approach partially succeeds

in reducing the time-varying risk exposures. For example the down market beta is still

0.24, and the down HML beta is still 0.53. Also in some instances the hedge ratio has been

overestimated, as e.g. the up market beta is 0.08 and the up size beta is even 0.46. The

regression R-squared of the conditional model is still 27.9 percent. Hence this hedging

approach improves over not hedging and the unconditional hedge, but there is room for

further improvement. Hence the hedge based on individual loadings does not work that

well, and we believe the main cause is estimation error. The estimated loadings of the

constituents of the momentum portfolio are, for example, biased upward after positive

factor returns during the formation period. We investigate this in more detail in Section

3.5 where we also motivate the choice for the 120 month window.

Column 4 in Table 3.1 shows the ex-post conditional factor exposures of the hedged

momentum returns, where the hedge parameters have been computed by applying the

conditional regression in Equation 3.1 to the past 120 momentum returns prior to

investing. The results show that this approach succeeds to a large extent in reducing

the time-varying risk exposures. All market betas are no longer significantly different

from zero at the 5 percent significance level. For the HML factor the loading in the up

state is no longer significant at the 5 percent level. This hedging method is the least

successful for the size factor, with the up state beta lowered to a still significant 0.21, a

flat beta of 0.24 and the down size beta still 0.18. The regression R-squared has been

substantially reduced from 51 percent to just 5 percent.

We therefore conclude on this criterion that the conditional hedge has the best hedging

performance than the hedge based on individual stock betas. Apparently imposing a prior

structure on the time-varying factor loadings improves their estimation substantially.

3.4.3 Momentum returns over factor return reversals

Table 3.2 shows the results when sorting the raw and hedged momentum returns based

on the factor returns during the ranking and investment period. This exercise can be

viewed as the non-parametric alternative to the regression-based analysis in the previous

section to analyze the consequences of the time-varying exposures to the factor loadings.

For each of the three equity risk factors we consider the case where the factor return
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moves in the same direction in ranking and investment period (same) or in the opposite

direction (reversal). This gives 8 possibilities. The raw momentum strategy earns on

average 3.5 percent per month when all factor returns have the same sign in the ranking

and investment period, whereas this is -3.6 percent when all factor returns have opposite

signs in the ranking and investment period, a difference of 7.1 percent.

Table 3.2: Momentum returns conditional upon factor returns. This table shows the

average monthly (hedged) momentum returns in 8 different states for February 1932December

2011 (959 monthly observations). If the factor returns have the same sign in the ranking period

(t− 7 to t− 2) and investment period (t) it is labeled Same. If the factor moves in the opposite

direction in ranking and investment period it is labeled Reversal. For the three equity risk

factors we thus get 8 possibilities. The second column (Unhedged return momentum) shows the

results for the original momentum strategy that ranks stocks based on their returns in the past

6 months, skips one month and then invests for one month. The next three columns show the

same results for the hedged momentum returns, where hedging takes place by taking positions in

the equity risk factor portfolios offsetting predicted exposures to these equity risk factors. These

predicted factor exposures are based on using past unconditional loadings on the three equity

risk factors, over the most recent 120 months (column 3); using the average of the individual

loadings of the constituents of the momentum strategy using a maximum estimation window of

120 (column 4); or using past conditional loadings using Equation 3.1 (final column) estimated

over the most recent 120 months.

MKT SMB HML Obs Unhedged Hedge 1 Hedge 2 Hedge 3

Same Same Same 188 3.5% 4.1% 0.6% 2.0%

Same Same Reversal 120 1.7% 2.5% 0.9% 1.4%

Same Reversal Same 119 1.6% 2.2% 0.6% 1.4%

Same Reversal Reversal 117 -0.3% -0.1% 1.0% 0.6%

Reversal Same Same 96 1.8% 2.4% 0.5% 1.3%

Reversal Same Reversal 78 -1.0% -1.2% 0.5% 0.1%

Reversal Reversal Same 116 -0.2% 0.2% 0.7% 1.1%

Reversal Reversal Reversal 125 -3.6% -3.5% 0.6% -0.4%

All 959 0.67% 1.08% 0.68% 1.02%

Hedge 2 based on individual stock betas reduces the impact of the time-varying factor

exposures. The range is reduced to 0.5 percent (best 1.0 percent, worst 0.5 percent). The

conditional hedge 3 is worse on this criterion with the range being reduced to 2.4 percent

(best 2.0 percent, worst -0.4 percent). The unconditional hedge 1 is clearly the worst.

The range between the best case at 4.1 percent and the worst case at -3.5 percent is 7.6
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percent, even larger than that of unhedged momentum. This illustrates once again that

the unconditional hedge is not effective in estimating the factor exposures of momentum

accurately at each moment in time.

3.4.4 Momentum crashes

Daniel and Moskowitz (2013) and Daniel et al. (2012) show that momentum crashes

occur following market declines, when market volatility is high, and contemporaneous

with market rebounds. We show that this is largely due to the time-varying exposures in

the factor loadings of momentum. When the market crashes, low beta stocks will lose less

than high beta stocks. Hence momentum will load on low beta stocks and short high beta

stocks, leading to a negative beta for the strategy. If subsequently the market rebounds,

the negative beta exposure leads to a loss.

Hedging this negative beta should reduce these losses; the better the ex-ante hedge the

larger this loss reduction. Table 3.3 shows that we manage to reduce the momentum

crashes quite substantially. Following Daniel and Moskowitz (2013) we look at 12

drawdowns, months in which WML loses 20 percent or more. The average loss of WML

in our case is -36.8 percent.

This reduces to -23.1 percent after the unconditional hedge, because in the market down

state the beta is -0.38 instead of -0.62 (Table 3.1 row labeled MKT down), reducing the

loss due to a market rebound. The hedge based on individual stock betas reduces the

average loss in the worst unhedged momentum return months to -24.2 percent. It also

has a less negative market beta in market down states. Finally the conditional hedge

manages to bring down the average loss to just -14.8 percent, a reduction of 60 percent

compared to the -36.8 percent for unhedged momentum. At the same time this hedging

method provides an even better average monthly return, up from 0.67 percent to 1.02

percent. Hence this makes a crash risk based explanation of momentum less likely8.

8Of course after hedging other months than the original twelve months could have greater losses. For

the conditional hedge the new twelve worst months have an average loss of 21.9 percent, substantially

lower than the worst twelve months of unhedged momentum at -36.8 percent. Also these losses will not

necessarily take place after market downturns and subsequent recoveries (see also 3.4.5 and 3.4.6), or

when market volatility is high.
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Table 3.3: Twelve largest monthly WML losses and these losses after hedging. The

table reports all momentum (unhedged column 2) losses in excess of 20 percent in a single month

from February 1932 to December 2011. The final three columns show the losses in the same

months for the hedged momentum returns, where hedging takes place by taking positions in the

equity risk factor portfolios offsetting predicted exposures to these equity risk factors. These

predicted factor exposures are based on using past unconditional loadings on the three equity

risk factors, over the most recent 120 months (column 3); using the average of the individual

loadings of the constituents of the momentum strategy using a maximum estimation window of

120 (column 4); or using past conditional loadings using Equation 3.1 (final column) estimated

over the most recent 120 months.

Rank Month Unhedged Hedge 1 Hedge 2 Hedge 3

1 Apr-09 -60.5% -56.5% -42.9% -42.3%

2 Sep-39 -57.7% -38.6% -37.9% -41.2%

3 Jul-32 -50.9% -24.0% -27.2% 1.6%

4 Apr-33 -44.6% -25.1% -4.3% 14.4%

5 Aug-32 -35.8% 9.6% -41.9% -5.2%

6 Jan-01 -35.4% -37.9% -33.3% -29.6%

7 Jan-75 -31.4% -24.3% -26.0% -13%

8 May-33 -28.9% -5.4% -11.5% -20.3%

9 Nov-02 -27.9% -26.9% -22.7% -23.5%

10 Jan-34 -25.6% -8.2% -14.7% -3.0%

11 Sep-70 -21.6% -24.3% -3.2% -4.5%

12 Jan-74 -20.8% -15.3% -24.4% -11.5%

Average -36.8% -23.1% -24.2% -14.8%

3.4.5 Stability of momentum returns over the business cycle

Momentum returns vary over the different stages of the business cycle; hedging the time-

varying exposures of momentum reduces this variation. The National Bureau of Economic

Research (NBER) defines expansions and recessions for the US economy, including specific

dates for troughs and peaks. Several studies (see e.g. MichaelDeStefano (2004)) use this

information to split the business cycle into four stages: Stage 1 starts in the month after

the trough (early expansion) with stage 2 ending at the peak (end of expansion). Stage 3

starts in the month after the peak (first part of recession period) and stage 4 ends with the

trough (end of the recession). Table 3.4 shows the average (hedged) momentum returns

during the various stages of the business cycle.

Momentum performs below par in stage 1 (early expansion) with an average return of
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Table 3.4: (Hedged) momentum returns over the business cycle. This table shows the

average monthly (hedged) momentum returns from February 1932 to December 2011 divided

over 4 stages of the business cycle between the peaks and troughs of the US economy as

established by the NBER. Stage 1 starts in the month after the trough with stage 2 ending

in the month of the peak, with months being equally divided between stages 1 and 2. Similarly

stage 3 starts in the month after the peak with stage 4 ending in the month with the trough,

with months being equally divided between stages 3 and 4. Hence stages 1 and 2 reflect the

different stages of the expansion, whereas stages 3 and 4 are the different stages of the recession.

The second column (Unhedged) shows the results for the original momentum strategy that ranks

stocks based on their returns in the past 6 months, skips one month and then invests for one

month. The next three columns show the same results for the hedged momentum returns, where

hedging takes place by taking positions in the equity risk factor portfolios offsetting predicted

exposures to these equity risk factors. These predicted factor exposures are based on using past

unconditional loadings on the three equity risk factors, over the most recent 120 months (column

3); using the average of the individual loadings of the constituents of the momentum strategy

using a maximum estimation window of 120 (column 4); or using past conditional loadings using

Equation 3.1 (final column) estimated over the most recent 120 months.

Obs Unhedged Hedge 1 Hedge 2 Hedge 3

Expansion
Stage 1 418 0.32% 0.75% 0.58% 0.83%

Stage 2 384 1.53% 2.02% 1.09% 1.46%

Recession
Stage 3 73 1.33% 1.11% 0.74% 0.94%

Stage 4 84 -2.09% -1.55% -0.77% 0.05%

All 959 0.67% 1.08% 0.68% 1.02%
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0.32 percent. In the second part of the expansion (stage 2) momentum performs better

with an average monthly return of 1.53 percent. The first part of recession periods (stage

3) is also good for momentum with an average return of 1.33 percent per month. In

contrast, in the latter stage of the recessions momentum is generating losses with an

average monthly return of -2.09 percent. Overall this means that momentum on average

loses during recession periods (on average -0.50 percent per month), as also reported

by Chordia and Shivakumar (2002). Our explanation for this is that there are more

market return reversals in stage 4 that are bad for momentum and these market returns

in reversal months are usually large; stage 4 typically contains the last part of recessions

where market returns are positive (and large) and lead the recovery in the coming period

of expansion. Hence momentum returns are unstable over the business cycle. Both the

hedge based on individual betas (hedge 2) and the conditional hedge (hedge 3) improve

the stability of returns over the business cycle, with the conditional hedge even posting

a tiny positive return of 0.05 percent during recession. This last result again provides

evidence against a crash risk explanation for momentum profits. The hedge based on

the unconditional loadings of momentum is less good in stabilizing the returns over the

business cycle, still posting a loss of 1.55 percent in stage 4.

3.4.6 Stability of momentum returns after up and down markets

Cooper et al. (2004) show that momentum profits depend on the state of the market. In

particular momentum is profitable after the market has been up in the past years and

loses money when the market has been down in the past years. For our sample period we

also find that when the market return has been positive in the past 3 years momentum

makes 1.23 percent per month, whereas momentum loses 1.78 percent per month when

the market return has been negative in the past 3 years, see Table 3.5.Cooper et al.

(2004) say that this is consistent with the overreaction models of Daniel, Hirshleifer, and

Subrahmanyam (1998) and Hong and Stein (1999).

Results are different when hedging momentum returns for time-varying exposures to the

equity risk factors. Again focusing on the most successful method, the conditional hedge,

we see that after up markets the average return is 1.19 percent, whereas after down

markets it is 0.27 percent, in sharp contrast with unhedged momentum returns. Hence

we attribute Cooper et al. (2004) results partly to time-varying risk exposures rather

than only to overreaction models. The small positive returns at 0.27 percent after 3-year

market losses also contradict the crash risk explanation of momentum returns after large
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Table 3.5: (Hedged) momentum returns after up and down markets. This table shows

the average monthly (hedged) momentum returns from February 1932 to December 2011 split

into up and down markets. The market is up if its return is positive in the past 36 months. The

market is down if its return is negative in the past 36 months. The second column (Unhedged )

shows the results for the original momentum strategy that ranks stocks based on their returns

in the past 6 months, skips one month and then invests for one month. The next three columns

show the same results for the hedged momentum returns, where hedging takes place by taking

positions in the equity risk factor portfolios offsetting predicted exposures to these equity risk

factors. These predicted factor exposures are based on using past unconditional loadings on the

three equity risk factors, over the most recent 120 months (column 3); using the average of the

individual loadings of the constituents of the momentum strategy using a maximum estimation

window of 120 (column 4); or using past conditional loadings using Equation 3.1 (final column)

estimated over the most recent 120 months.

Obs Unhedged Hedge 1 Hedge 2 Hedge 3

Up 782 1.23% 1.53% 0.99% 1.19%

Down 177 -1.78% -0.90% -0.72% 0.27%

All 959 0.67% 1.08% 0.68% 1.02%

market downturns.

The unconditional hedge improves both the Up and Down states. Most of the time

it simply adds market beta, which is beneficial both in the Up and in the Down state,

because irrespective of these states the market more often goes up than down. Hence the

unconditional hedge profits from its average positive loading on the market factor.

3.4.7 Only hedging negative loadings on the equity risk factors

The momentum strategy loads positively on the equity risk factors when the factor returns

are positive during the formation period, and negatively when the returns are negative

during the formation period. From a return perspective it should actually be beneficial

to have a positive exposure on average, because the equity risk factors each have positive

returns on average. On the other hand we have seen that loading negatively on factors

after they posted a negative return during the formation period, will be detrimental for

returns. Hence hedging should improve momentum returns in those cases.

We apply an asymmetric hedge to illustrate this point: We only take offsetting positions
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Table 3.6: Only hedging negative loadings on equity risk factors. This table shows the

average monthly (hedged) momentum returns, standard deviation and annualized Sharpe ratios

from February 1932 to December 2011 when hedging the exposures all the time or when hedging

only negative estimated loadings on the equity risk factors. The first column (Unhedged) shows

the results for the original momentum strategy that ranks stocks based on their returns in

the past 6 months, skips one month and then invests for one month. The next three columns

show the same results for the hedged momentum returns, where hedging takes place by taking

positions in the equity risk factor portfolios offsetting predicted exposures to these equity risk

factors. These predicted factor exposures are based on using past unconditional loadings on the

three equity risk factors, over the most recent 120 months (column 2); using the average of the

individual loadings of the constituents of the momentum strategy using a maximum estimation

window of 120 (column 3); or using past conditional loadings using Equation 3.1 (final column)

estimated over the most recent 120 months.

Unhedged Hedge 1 Hedge 2 Hedge 3

Always hedging

Return 0.67% 1.08% 0.68% 1.02%

St. dev 6.5% 6.1% 5.0% 5.0%

Sharpe ratio p.a. 0.36 0.61 0.47 0.71

Only hedging negative loadings

Return 1.1% 0.93% 1.14%

St. dev 6.1% 5.1% 5.3%

Sharpe ratio p.a. 0.63 0.63 0.75

when the estimated factor exposures are negative. The results are shown in Table 3.6.

As expected for the two hedging methods most accurately measuring the time-varying

factor exposures of momentum hedge 2 and hedge 3 only hedging negative loadings on

the equity risk factors yields a higher return and also a higher risk than hedging both

positive and negative exposures. The Sharpe ratio when only hedging negative exposures

improves.

On an annualized basis (times the square root of 12) the Sharpe ratio for the unhedged

momentum strategy is 0.36, and this increases to 0.47 for hedge 2 and 0.71 for hedge

3. Only hedging negative loadings further increases the Sharpe ratio to 0.63 for hedge 2

and 0.75 for hedge 3. Hence understanding the conditional risk exposures of the original

momentum strategy with a Sharpe ratio of 0.36 provides a (partially) hedged momentum

strategy that can (more than) double the Sharpe ratio to (0.71) 0.75. The results for the

unconditional hedge do not change a lot. This hedge estimates negative loadings for all

factors most of the time given the overall negative loading of momentum on these factors

(see Table 3.1). Hence, this hedge already frequently takes positive offsetting positions.
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3.5 Estimation windows and biases

In Section 3.4 we have used an estimation window of 120 months for all hedges. We do

this because we find worse hedging results for shorter estimation windows. In this section

we show results for these shorter estimation windows, and also compare ex-ante estimated

betas with ex-post realized betas of the momentum constituents. In Section 3.5.3 we look

at the importance of including size and HML when hedging.

3.5.1 Estimation windows

Shorter estimation windows reduce the risk reduction of the hedging strategies. Table

3.1 shows the average monthly returns, standard deviations and Sharpe ratios for shorter

estimation windows of 36 and 60 months. For all three hedges we see that the longer

the estimation window, the lower the remaining risk. For the conditional hedge 3 a short

estimation window even leads to hedged momentum having a higher standard deviation

than unhedged momentum. For this conditional hedge we find near-singularity issues

when estimating 10 parameters (a constant plus three betas for each factor return) on

just 36 months of momentum return history. This results in unstable estimated hedge

ratios and as a consequence an increase of the variance rather than a reduction. Hence it

is important to have a sufficiently large estimation window for the hedge ratios to reduce

the risk of the momentum strategy.

The final column of Table 3.1 shows the regression R-squared for Equation 3.1 applied to

unhedged and hedged momentum. This number corresponds to the explanatory power of

the time-varying risk exposures. Interestingly for the unconditional hedge we do find a

lower R-squared for the regression in Equation 3.1 when using shorter estimation windows.

By using shorter estimation windows the unconditional hedge will shift from simply

removing the average negative exposures to the equity risk factors to getting closer to

the actual exposures of momentum. As a result the R-squared drops from 37.8 to 32.5

percent.

In contrast the time-varying exposure to the equity risk factors decreases for longer esti-

mation windows for hedge 2 and hedge 3, especially for the conditional hedge. Although

the conditional hedge is much better in reducing the conditional risks of the momentum

strategy for the shorter estimation windows the reduction in R-squared decreases. For the

36-month estimation window the R-squared is still 17.9 percent, whereas it drops to 5.2
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Table 3.1: Performance and exposures for different estimation windows. This table

shows the monthly returns, standard deviation and annualized Sharpe ratio of momentum

(Unhedged) and hedged momentum where the hedge is based on unconditional momentum betas,

individual stock betas or conditional momentum betas from Equation 3.1 based on estimation

windows of the past 36, 60 or 120 months. The final column shows the R-squared from Equation

3.1 for unhedged momentum and the various hedges. The sample period covers February 1932

to December 2011 (959 months).

Window Return St. dev. Sharpe ratio R-squared

Unhedged 0.67% 6.5% 0.36 51.3%

Hedge 1

36 1.03% 6.3% 0.56 32.5%

60 1.09% 6.2% 0.60 35.3%

120 1.08% 6.1% 0.61 37.8%

Hedge 2

36 0.55% 5.6% 0.34 29.9%

60 0.62% 5.2% 0.42 28.1%

120 0.68% 5.0% 0.47 27.9%

Hedge 3

36 1.00% 7.1% 0.49 17.9%

60 0.91% 5.9% 0.54 10.5%

120 1.02% 5.0% 0.71 5.2%

percent when using the 120-month estimation window. This indicates for the conditional

hedge it is important to have sufficient data to estimate the long-run conditional exposures

of momentum.

3.5.2 Estimation error in individual stock betas

The hedge based on individual stock betas has a systematic bias: the hedge overestimates

momentum’s factor exposures after positive factor returns and underestimates momen-

tum’s factor returns after negative factor returns. The results in Table 3.1 in Subsection

3.4.2 already suggest this systematic bias since the positive exposures after positive factor

returns become negative after hedging, while the negative exposures after negative factor

returns in the ranking period remain negative. This phenomenon is further illustrated

in Table 3.2 by the comparison of the estimated ex-post realized momentum betas with

the ex-ante hedge ratios of the hedge methods after up and down factor returns in the

ranking period.

Table 3.2 shows the betas estimated for the individual hedge and the realized betas

of the momentum strategy after the market, size or value-growth factors posted a large
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Table 3.2: Bias in individual stock betas. The table shows the ex-post and ex-ante betas of

the hedged momentum strategy (WML) based on individual stock betas. WML is the top 10

percent minus bottom 10 percent portfolio based on stock returns from t− 7 to t− 2 to invest

in month t. The ex-post betas use the period t to t + 11. The ex-ante betas use the 36, 60 or

120 months preceding month t. All betas are conditional upon the market MKT, SMB or HML

having a return larger than one standard deviation above their mean (up) or smaller than one

standard deviation below their mean (down) in the ranking period from t − 7 to t − 2. The

sample period runs from February 1932 to January 2011 (948 months).

Ex-post betas Ex-ante betas

Window 12 36 60 120

MKT up 0.43 0.54 0.47 0.41

Top 1.24 1.33 1.30 1.27

Bottom 0.81 0.79 0.84 0.86

MKT down -0.51 -0.49 -0.41 -0.35

Top 0.87 0.81 0.86 0.88

Bottom 1.38 1.30 1.27 1.23

SMB up 0.69 1.47 1.23 1.09

Top 1.36 1.89 1.74 1.65

Bottom 0.67 0.42 0.50 0.56

SMB down -1.01 -1.03 -0.92 -0.76

Top 0.51 0.48 0.55 0.64

Bottom 1.52 1.51 1.47 1.40

HML up 0.44 1.33 1.11 0.88

Top 0.54 1.13 0.96 0.81

Bottom 0.09 -0.20 -0.15 -0.07

HML down -1.05 -1.09 -0.91 -0.70

Top -0.10 -0.24 -0.15 -0.04

Bottom 0.95 0.85 0.76 0.66

positive (up) or negative (down) return in the formation period. The realized betas are

approximated by the 12 month beta of the constituents of the momentum strategy over

months t to t+ 11. For example if the market return exceeds its average return plus one

standard deviation (MKT up) during the formation period of WML (t − 7 to t − 2) we

see that based on individual stock betas estimated over t to t+11 the WML portfolio has

an (ex-post) beta of 0.43. For hedge 2 we use the individual betas estimated over t − T

to t − 1 and find that these (ex-ante) betas are 0.54, 0.47 and 0.41 for the estimation

windows of 36, 60 and 120 months.



57A_Erim van Oord_StandV5.job

3.5 Estimation windows and biases 101

Momentum’s market exposures are thus overestimated after positive factor returns in

the ranking period. This overestimation is also present for momentum’s exposures to the

size and value factor. These overestimated factor loadings after positive factor returns

in the formation period result in the change from a positive loading on the factors for

unhedged momentum in these situations to a negative exposure after hedging (as found

in Table 3.1).

When looking at the overestimation of momentum’s of factor loading after positive factor

loadings for the individual hedge in more detail we find that this overestimation decreases

for larger estimation windows. Table 3.2 also shows that the overestimation is mostly

caused by an overestimation of the high beta stocks after positive factor returns in the

top decile rather than an underestimation of the stocks in the bottom decile.

After down factor returns similar, but opposite results: the estimated factor loadings

of the individual hedge underestimate the realized betas for the coming 12 months.

These underestimated factor loadings then fail to fully hedge the negative loading of the

unhedged momentum strategy after negative factor returns leaving a negative exposure to

the three factors. Like the overestimation after positive factor returns the underestimation

after negative factor returns is mainly caused by the underestimation of the high beta

stocks. However, this underestimation increases with larger estimation windows contrary

to the decreasing overestimation after positive factor returns,

It is well-known that individual stock betas contain estimation errors and a common

solution is to apply Bayesian shrinkage to the individual estimates. This solution, however,

does not help when hedging the time-varying exposures of momentum. Shrinkage would

help to reduce the overestimation of the high betas in the top decile after up factor returns,

but would also increase the underestimation of the high betas in the bottom decile after

down factor returns. These two opposite effects result in a hedge performance similar to

the performance of the hedge with the original individual loadings.

Overall we find that using 120 months of history is best in reducing the bias in the

estimates of the momentum exposures. These results also explain why in Table 8 we

found that the hedge based on individual betas improves when moving from a 36-month

estimation window to the 120-month estimation window. This is an important finding

given that practitioners and academics often make use of the 36-month and 60-month
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window, respectively.

We believe that these results are related to the nature of the momentum strategy. Assume

the true stock market beta is 1. Suppose we look back 36 months and the market goes up

in each month and in addition the (true) residual return of this stock also goes up in each

month. In that case the market beta estimated over this period will be higher than 1, as it

is impossible to distinguish between systematic and stock specific returns. After a positive

market return in the ranking period the top portfolio is not only populated by high beta

stocks but also populated by stocks that posted high residual returns. Our example stock

would definitely be in the top 10 percent portfolio. Increasing the estimation window

decreases the possibility that residual returns are predominantly in the same direction as

the market return, and hence the bias is reduced. Obviously all of the above also holds

for the size and value factor.

3.5.3 The importance of hedging for all three equity risk factors

Recent studies on momentum only focus on the market exposures. We, however, find that

it is important to also take into account the size and HML exposures of momentum to

fully understand and hedge its exposures. In this section we provide a number of results

for the conditional hedge based on only the market factor, without repeating all the tables

in detail.

First, the conditional hedge based on only the market leaves on average negative exposures

to size and HML of -0.26. Also the worst loss is 52.9 percent compared to 42.3 percent

when hedging all three equity risk factors. The Sharpe ratio drops from 0.71 to 0.46.

Second, the conditional regression in Table 3.1 applied to the conditional hedge based

on just the market gives an R-squared of 29.4 percent, up from 5.2 percent when hedging

based on all three factors. Hence, only hedging out the market exposure leaves the time-

varying exposures to the size and HML factors.

Third, if we repeat the non-parametric analysis for the market factor we are left with just

two cases: The market moves in the same direction during the formation and investment

period, or it moves in the opposite direction. Unhedged momentum gains 1.9 percent per

month when the market continues in the same direction, and loses 0.9 percent when the

market reverses. Hence ignoring reversals in HML and size does not reveal the much wider
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gap of a gain of 3.5 percent per month when all factors continue in the same direction,

and a loss of 3.6 percent when all factors have a reversal.

Fourth, for the momentum crashes in Table 3.3 we find that the conditional hedge based

on just the market factor leads to an average loss of 24.8 percent, up from 14.8 percent

when also hedging for size and HML.

Fifth, in stage 4 of the business cycle (see Table 3.4 ) the conditional hedge earns 0.05

percent per month. The conditional hedge based on the market factor only leads to a loss

of -0.77 percent per month. Similarly, the conditional hedge using only the market loses

1.00 percent after a negative 3-year market return, compared to a gain of 0.27 percent

reported in Table 3.5 when hedging all three factors.

All results and conclusions improve when considering all three equity risk factors. We

therefore recommend not only focusing on just the market factor when investigating the

momentum strategy.

3.6 Conclusion

Selecting the past winners and selling the past losers result in time-varying exposures to

the Fama and French (1992), Fama and French (1993) equity risk factors. In particular

the exposures are higher after the factor returns went up during the ranking period. These

exposures lead to losses on the momentum strategy when factors move in the opposite

direction in the ranking and investment period.

We show that specifically accounting for the conditional pattern in the time-variation

of the exposures provides the best hedge. Hedging decreases the volatility of momentum

by about 25 percent and does not suffer from negative returns at turning points of the

factor returns as raw momentum does. Furthermore hedged momentum has more stable

returns over the business cycle, in contrast to raw momentum that suffers losses in the

latter part of recessions.

We also show that hedged momentum returns no longer suffer losses after the stock

market has shown a negative return in the recent years. This puts a different light on the

findings of Cooper et al. (2004) who claim that the negative returns after down markets
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and the positive returns after up markets for the raw momentum strategy support the

overreaction theories of Daniel et al. (1998) and Hong and Stein (1999). Also the crash

risk explanation of momentum by Daniel and Moskowitz (2013) and Daniel et al. (2012)

seems less likely as the ex-ante available hedged momentum reduces the loss of the 12

worst months from -36.8 to -14.8 percent.

For investors we have good news as well as an important warning; the latter is also

relevant for risk-management. Hedging momentum using conditional factor loadings

doubles the annualized Sharpe ratio from 0.36 to 0.71, but the common approach to

hedge using individual stock betas leads to systematic biases. Momentum’s ex-post factor

exposures are generally overestimated by the individual betas after positive factor returns

and underestimated after negative factor returns. This is mainly caused by the over- and

underestimation of the betas of high beta stocks after positive and negative factor returns

respectively. The overestimation of the betas of high beta stocks after positive factor

returns decreases when longer estimation windows are used, while the underestimation of

the betas of high beta stocks decreases when shorter estimation windows are used.

Hence using these individual betas leads to ex-post negative factor exposures where one

ex-ante expects to have zero exposures. Longer windows of 120 months rather than the

common 36 and 60 month windows reduce the estimation bias.
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Bayesian Factor Modeling with

Industry Momentum Strategies∗

4.1 Introduction

Financial and economic relations vary over time. One of these time varying relations is

the increase in the correlations between equities during market downturns. During equity

market crashes all stocks lose and diversification does not help much in reducing these

losses. In this chapter we analyze this time variation in the comovements of equity returns

with a Bayesian latent factor model. The model allows the number of latent factors to

vary over time; that is, during equity market downturns fewer latent factors are assumed

to be able to explain the same amount of variation in equity returns. We apply this

Bayesian latent factor model to evaluate risk and return properties of a residual industry

momentum strategy, which is a combination of residual momentum by Blitz et al. (2011)

and industry momentum by Moskowitz and Grinblatt (1999) and compare the results

with those obtained from using a Bayesian factor model with the three Fama and French

(1993) equity risk factors as explanatory variables.

The advantage of using a Bayesian approach in this context is that the uncertainty with

respect to the time varying latent factors is taken into account in a coherent way for

forecasting and decision analysis. For the theoretical model, we make use of a standard

static latent factor model where the factors are defined as latent variables. Our aim is

to let the information in the likelihood dominate the prior information and we therefore

use flat and weakly informative priors. We show that, under flat or conjugate priors,

∗This chapter is based on Baştürk, Grassi, et al. (2016).
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the conditional posteriors of the static factors and of the factor loadings are well-known

distributions. The marginal posteriors, however, do not have this property. The marginal

posteriors of the factors potentially have fat tails, but these densities are integrable due

to our ‘regularization’ of the likelihood information through weakly informative normal

prior distributions of factors and their loadings. Given our analytical results some basic

Markov Chain Monte Carlo methods can be used to numerically evaluate results.

In our Bayesian latent factor model we address the following well-known issue: The

number of factors in a static factor model cannot be easily treated as a model parameter

due to the identification assumptions of the model. As a consequence the number of

factors are often fixed prior to the analysis. This difficulty also presents itself if one wants

to allow for time variation in the number of factors by extending the standard factor

model. Neglecting this possibility of time variation may adversely affect model forecasts.

We present a method that accounts for time variation in the number of factors through a

moving window estimation. For each estimation, the optimal number of factors are chosen

according to the predictive likelihoods of models with a different number of factors. We

use the predictive likelihood approach instead of the marginal likelihood approach since

the former ensures that adequate priors are taken using the prior data sample. This also

refrains from the (Bartlett, 1957) paradox occurring under diffuse priors; see (Baştürk,

Çakmaklı, Ceyhan, & Van Dijk, 2014) for a comprehensive discussion.

An important issue in predictive likelihood comparisons is the size of the training sample,

particularly as a ratio of the full sample size. We show the impact of the training sample

size using simulated data and find that the correct number of factors are obtained in

almost all simulated data sets, regardless of the training sample size.

One focus of this chapter is the derivation of a Bayesian time varying latent factor model

using the concept of predictive likelihoods. A second focus is to apply this modeling

approach to residual industry momentum; a regular application of residual industry

momentum is found in Hühn (2015). Standard momentum strategies, see Jegadeesh

and Titman (1993), are long-short equity strategies that rank stocks on their recent total

returns, skip a short period and then buy the stocks in the top of this ranking and short-

sell the stocks in the bottom of this ranking. Residual momentum is different in the sense

that it ranks stocks on their recent residual returns from regressing the total stock returns

on the three Fama and French (1993) equity risk factors rather than ranking the stocks
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on their recent total returns. Industry momentum differs from standard momentum by

ranking industry portfolios rather than individual stocks. The main reason that we apply

all procedures using industry portfolios rather than individual stocks is that this reduces

the computational workload. For a large number of individual stocks the computational

workload of our procedures increases substantially.

The residual industry momentum strategy that we apply differs from the approach by

Blitz et al. (2011) and Hühn (2015). Rather than using the static Fama and French

(1993) equity risk factors to compute residual returns we use a latent factor model in

which the number of factors varies over time. In our strategy the time varying latent

factors are not explicitly linked to the equity risk factors market, size and value. We

aim to let the basic data features ’speak’ for themselves. We compare the results of

our Bayesian time-varying latent factor modeling approach with the results from using

a Bayesian factor model that takes account of the three Fama and French (1993) equity

risk factors as explanatory variables.

Using US industrial portfolios over the period 1980-2015, our empirical results show that

the Bayesian time varying latent factor model applied to residual industry momentum

outperforms in terms of several return and risk characteristics a Bayesian factor model

with standard equity risk factors in turbulent times, in particular during the crisis that

started in 2008. We also find that the optimal number of latent factors varies substantially

over time and that the number of optimal factors indeed decreases when the equity markets

experience large losses.

An other empirical result is that in quiet times like in the nineties, the Fama and

French (1993) equity risk factor model has very good performance features. Thus a

major conclusion of our empirical analysis is that a time-varying combination of model

structures and momentum strategies may give overall superior performance.

The contents of this chapter is organized as follows. In Section 4.2, the standard static

latent factor model is presented. Section 4.3 and Section 4.4 contain our Bayesian

posterior analysis of the latent factor and the implied simulation technique is discussed.

In Section 4.5 the Bayesian factor model using the three Fama and French (1993) equity

risk factors is presented. The predictive likelihood approach to determine the optimal

number of factors is given in Section 4.6. In Section 4.7 empirical results are presented.
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Section 4.8 states conclusions and suggestions for further research.

We note that some of the theoretical results presented in this chapter are part of a larger

research project about Bayesian analysis of reduced rank econometric models. For some

proofs we refer, therefore, to Zellner, Ando, Baştürk, Hoogerheide, and Van Dijk (2014)

and Baştürk, Hoogerheide, Kleijn, and Van Dijk (2015).

4.2 A static factor model

Consider a time series of observations on p economic variables during the period t =

1, ..., T . A static factor model may be defined as:

y′t = f ′
tΛ + ε′t, (4.1)

f ′
t = 0 + u′

t, (4.2)

where y′t is a 1 × p vector of observations on the economic variables of interest, f ′
t is

the 1 × r vector of the unobserved random factors, and Λ is a r × p matrix of unknown

random factor loadings. We assume that p >> r, that is the information in the p economic

variables of interest can be compressed to a much lower number of r unobserved random

factors. Deterministic factors, individual fixed effects and trends can be added to the

factor structure. For convenience of the analysis, we refrain from these latter extensions

of the factor model. For a background on factor models we refer to Lawley and Maxwell

(1971) and Anderson (1984).

The following distributional assumptions are made for the model in (4.1) and (4.2):

ut ∼ NID(0, Ir), cor(ut, εs) = 0, ∀s, t, (4.3)

εt ∼ NID(0,Σ), Σ =

⎛⎜⎜⎜⎜⎝
σ2
11 0 . . . 0

0 σ2
22 . . . 0

...
...

. . .
...

0 0 . . . σ2
pp

⎞⎟⎟⎟⎟⎠ , (4.4)

where NID stands for indepently and normally distributed and the diagonal covariance

matrix assumption with respect to the disturbances εt implies that all cross-sectional

correlation is captured by the factors ft.
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The model introduced in (4.1) and (4.2) can be specified in matrix notation as follows:

Y = FΛ + E, (4.5)

F = 0 + U, (4.6)

where Y is the T ×p matrix of observations, F is the T ×r matrix of factors, Λ is the r×p

matrix of factor loadings, E is the T ×p matrix of disturbances and U is the T × r matrix

of disturbances. In addition, cor(U,E) = 0, E ∼ MN(0,Σ, IT ) and U ∼ MN(0, Ip, IT ).

In this notation, MN(X,Ω,Φ) denotes the matricvariate normal distribution with mean

M and scale parameters Ω,Φ, and Ik is the k × k identity matrix.

The identification problem of determining factors F and their loadings Λ in this model

stems from the following equality:

FΛ = FRR−1Λ,

for any r × r invertible matrix R, which has r2 free parameters. Hence at least r2

restrictions are needed for the model to be identified. In addition, matrix R can as

well be an r × r invertible rotation matrix, i.e. rotated factors and loadings provide the

same likelihood unless further restrictions are set Λ.

Several identification strategies can be followed using alternative restrictions on F and Λ.

We consider two types of linear normalization:

1. Linear normalization of Λ using a lower-triangular matrix, as in Geweke and Zhou

(1996) and Lopes and West (2004):

Λ =
(
Λ

(r×r)
1 Λ

(r×(p−r))
2

)
, Λ1 =

⎛⎜⎜⎜⎜⎝
λ11 0 . . . 0

λ21 λ22 . . . 0
...

...
. . .

...

λr1 λr2 . . . λrr

⎞⎟⎟⎟⎟⎠ (4.7)

where Λ2 is unrestricted.

2. Linear normalization of Λ with identity restrictions, as in Bai and Ng (2013):

Λ =
(
I(r×r) Λ

(r×(p−r))
2

)
, (4.8)
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where Λ2 is unrestricted.

We note that different normalizations exist in the literature. For a detailed discussion of

identification restrictions for the static factor model, see Bai and Ng (2013). We also refer

to Baştürk et al. (2015) for an extended discussion on possible identification restrictions

for a similar reduced rank model, namely the cointegration model. We follow the present

identification restrictions for ease of tractability in the posterior and predictive analysis.

4.3 Conditional Posterior densities of F,Λ, and Σ

In this section we derive conditional posterior densities of Σ, the factors F and their

loadings Λ. We analyze the existence of posterior moments for flat as well as normal

prior specifications in the next section. These results are important for the construction

of simulation algorithms for the numerical evaluation of the densities.

We start with the interpretation of the model in (4.5) and (4.6) as a model that includes

data augmentation with respect to the factors. That is, the factors are interpreted as

latent variables on which there is specified a normal distribution. The likelihood function

using data augmentation is as follows

p(Y | Λ,Σ) =
∫

p(Y |F,Λ,Σ)p(F | Λ,Σ)dF

∝
∫

|Σ|−T
2 exp

(
−1

2
tr(F ′F )

)
× exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
dF (4.9)

We consider the following flat prior for Λ,Σ:

p(Λ,Σ) ∝ |Σ|−h/2, h > 1, (4.10)

and we choose h = p+ 1 which implies that the information in the likelihood is the same

from a Bayesian or a Frequentist perspective at this stage of the analysis.

An alternative interpretation of prior and likelihood is to specify only the model given in

equation (4.1) or equation (4.5) and derive a likelihood function of the parameters F,Λ,Σ
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given the data Y :

p(F,Λ,Σ|Y ) = (2π)rT/2|Σ|−T
2 exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
(4.11)

where this likelihood is similar to (4.9) except that the normal prior on F is deleted and

no integration with respect to F takes place. Then we assume as prior:

p(F,Λ,Σ) ∝ exp

(
−1

2
tr(F ′F )

)
|Σ|−h/2, h = p+ 1. (4.12)

It is obvious that this Bayesian model yields the same posterior as the one with the

augmented likelihood and a flat prior on F . We will use both interpretations in subsequent

analysis.

Apart from the prior specifications on F we make use of prior specifications for Λ that are

similar. That is, for the prior of Λ both a flat and a normal prior will be used. This allows

us to investigate the prior effects on posterior moments in several cases by combining flat

and normal priors on F and on Λ and both on F and Λ.

We start with the joint posterior density for F,Λ,Σ. Using the likelihood in (4.11) and

the prior in (4.12), we obtain the following density:

p(F,Λ,Σ | Y ) ∝ |Σ|−T+p+1
2 exp

(
−1

2
tr(F ′F )

)
× exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
. (4.13)

We note that the same result would be obtained by using the model with data augmen-

tation in (4.5) and (4.6), where the integration with respect to F is not yet performed.

Conditional posterior of Σ|F,Λ From (4.13), the conditional posterior of Σ|F,Λ, Y
is:

p(Σ | F,Λ, Y ) ∝ |Σ|−T+p+1
2 exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
(4.14)

= |Σ|−T+p+1
2 exp

(
−1

2
tr
(
(Y − FΛ)′(Y − FΛ)Σ−1

))
, (4.15)

∝ IW (Σ|(Y − FΛ)′(Y − FΛ), T ) (4.16)
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where IW(Σ|Ω, T ) denotes the inverted Wishart density with a p × p positive definite

symmetric scale matrix Ω and T degrees of freedom. For the factor model, this density

exists when the inner product Ω = (Y − FΛ)′(Y − FΛ) has full rank p and T > p − 1.

We assume that these conditions, which depend on the data Y and the sample size, hold.

Conditional posterior of F |Λ,Σ To derive the conditional posterior of F |Λ,Σ, we
complete the squares on F in (4.13):

p(F,Λ,Σ | Y ) ∝|Σ|−T+p+1
2 exp

(
−1

2
tr(F ′F )

)
× exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
(4.17)

=|Σ|−T+p+1
2 exp

(
−1

2
tr
(
FF ′ + (Y − FΛ)Σ−1(Y − FΛ)′

))
(4.18)

=|Σ|−T+p+1
2 exp

(
−1

2
tr
(
Y
(
Σ−1 − Σ−1Λ′(I + ΛΣ−1Λ′)−1ΛΣ−1

)
Y ′))

× exp

(
−1

2
tr
(
(F − F̂ )

(
I + ΛΣ−1Λ′) (F − F̂ )′

))
(4.19)

where F̂ = Y Σ−1Λ′(Ir + ΛΣ−1Λ′)−1.

From (4.19), the conditional posterior of F |Λ,Σ is a matricvariate normal density, where

the latter is indicated by the symbol mn:

p(F | Λ,Σ, Y ) ∝ MN
(
F ;Y Σ−1Λ′(Ir + ΛΣ−1Λ′)−1, IT ,

(
I + ΛΣ−1Λ′)−1

)
, (4.20)

where the first scale parameter IT stems from the assumption on the distribution of

the disturbances εt ∼ NID(0,Σ). Using properties from the matricvariate normal

distribution, one can derive in a straightforward way that the marginal posterior density

of each column ft with t = 1, ..., T is also normal.

p(ft | Λ,Σ, yt) ∝ N
(
ft; (Ir + ΛΣ−1Λ′)−1ΛΣ−1yt,

(
Ir + ΛΣ−1Λ′)−1

)
, (4.21)

where the symbol N indicates the normal density function.

Conditional posterior of Λ|F,Σ For convenience we present results for the case of

linear normalization with identity restrictions as given in (4.8). The case of triangular

restrictions gives similar results but the derivations are more involved. We note that Λ1
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was defined as an identity matrix: Λ =
(
Λ

(r×r)
1 Λ

(r×(p−r))
2

)
=
(
I(r×r) Λ

(r×(p−r))
2

)
, where

Λ2 is unrestricted. This restriction implies that the posterior density is defined over the

matrix of parameters, Λ2, since Λ1 is now fixed. Thus the conditional posterior of Λ2 from

(4.13) is:

p(Λ2 | F,Σ, Y ) ∝ |Σ|−T+p+1
2 exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
. (4.22)

We next complete the squares on Λ in (4.22):

p(Λ2 | F,Σ, Y ) ∝ |Σ|−T+p+1
2 exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
(4.23)

= |Σ|−T+p+1
2 exp

(
−1

2
tr
(
Σ−1Y ′MFY

))
× exp

(
(−1

2
tr
(
Σ−1(Λ− Λ̂)′F ′F (Λ− Λ̂)

))
(4.24)

∝ exp

(
−1

2
tr
(
Σ−1(Λ− Λ̂)′F ′F (Λ− Λ̂)

))
, (4.25)

where Y ′MFY = Y ′Y − Y ′F (F ′F )−1F ′Y and Λ̂ = (F ′F )−1F ′Y . The right-hand side

of (4.25) is for an unrestricted Λ proportional to a matricvariate normal density with

location Λ̂, and scale matrices Σ and (F ′F )−1. We restrict |F ′F | to be nonsingular for all

values of F except events with measure zero. We comment on this in the next section.

From (4.25), it is also seen that the conditional posterior Λ2|Λ1 = I has a conditional

matricvariate normal density with the following parameters:

p(Λ2 | Λ1, F,Σ, Y ) ∝ MN(Λ2; Λ̂2,Σ22, P2|1) (4.26)
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where the parameters of the matricvariate normal density are defined using the following

equations and matrix partitionings:

Λ̂ = (F ′F )−1F ′Y =
(
Λ̂

(r×r)
1 Λ̂

r×(p−r)
2

)
Σ =

(
Σ

(r×r)
11 Σ

(r×(p−r))
12

Σ
((p−r)×r)
21 Σ

(p−r)×(p−r)
22

)
P = F ′F

P2|1 = P + (I − Λ̂1)
′Σ11.2(I − Λ̂1)

Σ11.2 = Σ11 − Σ12Σ
−1
22 Σ21.

We refer to Zellner (1971), appendix B.5 and Bauwens, Lubrano, and Richard (2000),

appendix A.2 for the details of this property. See also Baştürk et al. (2015) for an

extension to the conditionals of a matricvariate t density.

Under the fixed parameter assumption Λ1 = I, (4.26) is adjusted such that the conditional

posterior density is as follows:

p(Λ2 | F,Σ, Y ) ∝ MN(Λ2; Λ̂2,Σ22, P2|1) (4.27)

and this density is proper if Σ is positive definite and P = F ′F is positive definite for all

values of F . We investigate this latter condition in the next section.

We conclude that the conditional posterior distributions, with their corresponding density

functions, of each of the parameters F,Λ,Σ have known analytical forms that are given

as matricvariate normal and inverse Wishart distributions, and thus are integrable.

It appears, therefore, that a straightforward simulation algorithm, such as the Gibbs

sampler, can be used for posterior inference. However, this depends on whether the joint

and marginal posterior distributions exist with corresponding proper densities. We will

investigate this in the next section.

A second conclusion can also be derived. It follows rather directly from the analysis

of this section that a uniform prior on F or a normal prior on Λ2 or normal priors on both

parameters will yield the same results. That is, the conditional distributions of F,Λ,Σ

are all members of known classes of distributions only their parameters differ. Again,
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Gibbs sampling appears possible but depends on the existence of the joint and marginal

distributions, which we investigate next.

4.4 Marginal posterior densities of F and Λ and ex-

istence conditions for posterior moments

We start to derive the joint marginal posterior of (F,Λ) and then derive the individual

marginal posteriors of F and Λ by making use of the decomposition of a joint density into

a conditional density and a marginal density and by using properties of the multivariate

and matricvariate normal and t distributions.

Using an inverse Wishart integration step on Σ in (4.13), the joint marginal density

of F and Λ is given by:

p (F,Λ | Y ) ∝ exp

(
−1

2
tr(F ′F )

) ∣∣(Y − FΛ)′ (Y − FΛ)
∣∣−T/2

, (4.28)

under the condition that (Y − FΛ)′ (Y − FΛ) is a PDS matrix for all values of Λ and F

and the sample size T was already restricted to T > p− 1.

4.4.1 Marginal posterior of F

As mentioned above, we make use of the decomposition of p (F,Λ | Y ) into the conditional

density p (Λ|F, Y ) and the marginal p (F | Y ). The steps of this derivation follow from

Baştürk et al. (2015), with slight changes in the notation.

We first rewrite (4.28) by completing the squares on F as follows:

p (F,Λ | Y ) ∝ exp

(
−1

2
tr(F ′F )

) ∣∣∣∣Y ′MFY +
(
Λ− Λ̂

)′
F ′F

(
Λ− Λ̂

)∣∣∣∣−T/2

(4.29)

where we use the earlier definitions of Λ̂ and Y ′MFY and the earlier condition on F ′F .

Using the definition of the matricvariate t density the joint posterior density in (4.29)
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is:

p (F,Λ|Y ) ∝ exp

(
−1

2
tr(P )

) ∣∣∣∣Q+
(
Λ− Λ̂

)′
P
(
Λ− Λ̂

)∣∣∣∣−T/2

∝ exp

(
−1

2
tr(P )

)
|P |− p

2 |Q|−T−r
2 pMt

(
Λ|Λ̂, P,Q, T

)
(4.30)

where we use the earlier definition P = F ′F and Q = Y ′MFY , which do not depend on

Λ, and pMt

(
Λ|Λ̂, P,Q, T

)
denotes the matricvariate t density function with location Λ̂,

scale parameters P,Q, and degrees of freedom T .

In case of no normalization for Λ, the matricvariate t density in (4.30) can, given F ,

be decomposed as follows:

p (Λ | F, Y ) = p (Λ2 | Λ1, F, Y )× p (Λ1 | F, Y ) (4.31)

and the conditional density of Λ2|Λ1 and the marginal density Λ1, both conditional upon

(F, Y ), are given as:

p (Λ2 | Λ1, F, Y ) =pMt

(
Λ2|MΛ2|Λ1 , PΛ2|Λ1 , Q22, T

)
(4.32)

p (Λ1 | F, Y ) =pMt (Λ1|MΛ1 , P,Q11.2, T − p+ r) (4.33)

where

MΛ2|Λ1 =Λ̂2 − (Λ1 − Λ̂1)Q12Q
−1
22 , MΛ1 = Λ̂1 (4.34)

PΛ2|Λ1 =P + (Λ1 − Λ̂1)Q11.2(Λ1 − Λ̂1)
′ (4.35)

Q11.2 =Q11 −Q12Q
−1
22 Q21 (4.36)

Λ̂ =(F ′F )−1F ′Y =
(
Λ̂

(r×r)
1 Λ̂

(r×(p−r))
2

)
(4.37)

Y ′MFY =Q =

(
Q

(r×r)
11 Q

(r×(p−r))
12

Q
((p−r)×r)
21 Q

(p−r)×(p−r))
22

)
(4.38)

see Dickey (1967), Zellner (1971), Bauwens et al. (2000) and Baştürk et al. (2015) for

details.
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Inserting (4.31)–(4.33) in (4.30) we obtain:

p (F,Λ|Y ) ∝ exp

(
−1

2
tr(P )

)
|P |− p

2 |Q|−T−r
2

× pMt

(
Λ2;MΛ2|Λ1 , PΛ2|Λ1 , Q22, T

)
× pMt (Λ1;MΛ1 , P,Q11.2, T − p+ r) . (4.39)

From (4.39), it is clear that the conditional density of Λ2|Λ1, F, Y is a matricvariate t

density, given all values of Λ1:

p (Λ2|Λ1, F, Y ) = pMt

(
Λ2;MΛ2|Λ1 , P,Q22, T

)
, (4.40)

and under the restriction Λ1 = I, this density is simply evaluated at Λ1 = I.

Marginal posterior density of F : We next derive the marginal posterior density

of F under the linear restriction on Λ. This density is obtained using (4.39) under the

restriction Λ1 = I:

p (F,Λ2|Λ1 = I, Y ) ∝ exp

(
−1

2
tr(P )

)
|P |− p

2 |Q|−T−r
2

× pMt

(
Λ2;MΛ2|Λ1=I , P,Q22, T

)
× pMt (Λ1 = I;MΛ1 , P,Q11.2, T − p+ r) (4.41)

where this density is now defined for F,Λ2, since Λ1 is fixed.
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From (4.41) we have:

p (F | Y ) ∝
∫

p (F,Λ2 | Y ) dΛ2 (4.42)

= exp

(
−1

2
tr(P )

)
|P |− p

2 |Q|−T−r
2

× pMt (Λ1 = I;MΛ1 , P,Q11.2, T − p+ r)

×
∫

pMt

(
Λ2;MΛ2|Λ1 , P,Q22, T

)
dΛ2 (4.43)

= exp

(
−1

2
tr(P )

)
|P |− p

2 |Q|−T−r
2

× pMt (Λ1 = I;MΛ1 , P,Q11.2, T − p+ r) (4.44)

∝ exp

(
−1

2
tr(P )

)
|P |− p

2 |Q|−T−r
2 |P |−T−p+r−r

2 |Q11.2|− r
2

× ∣∣P−1 + (I −MΛ1)Q
−1
11.2(I −MΛ1)

′∣∣−T−p+r
2 . (4.45)

We next simplify (4.45) using the determinant equality |Q11.2| = |Q11 −Q12Q
−1
22 Q21|:

p (F | Y ) ∝ exp

(
−1

2
tr(P )

)
|P |−T

2 |Q|−T
2 |Q22| r2

× ∣∣P−1 + (I −MΛ1)Q
−1
11.2(I −MΛ1)

′∣∣−T−p+r
2 . (4.46)

Note that the marginal posterior in (4.46) is in line with the marginal posterior of the

adjustment parameters of a cointegration model given in Baştürk et al. (2015), with

different definitions of the positive definite symmetric matrices P and Q. These authors

further analyze the existence conditions of the factors and show that for any positive

definite symmetric matrix Q, the third and the fourth factors, |Q|−T
2 |Q22| r2 in (4.46) are

bounded from above and below. Therefore the existence conditions of the density in (4.46)

do not depend on these terms.

Thus, the existence of the marginal distribution of F , with density in (4.46), depends

on the product of the first, second and fifth factor:

exp

(
−1

2
tr(F ′F )

)
|F ′F |−T

2

∣∣F ′F−1 + (I −MΛ1)Q
−1
11.2(I −MΛ1)

′∣∣−T−p+r
2

≤ exp

(
−1

2
tr(F ′F )

)
|F ′F |− p−r

2 . (4.47)
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We refer to Baştürk et al. (2015) where a proof is presented that |F ′F |−(p−r)/2 is integrable

in a finite area around the event F = 0 but that the function does not tend fast enough to

zero when the arguments tend to infinity in order to be integrable on the whole real space

of F . The argument is that |F ′F |−(p−r)/2 can be interpreted as indicating the limiting tail

behavior of a matricvariate t density of the matrix F with a degrees of freedom restriction

of r = 0 which implies non-regular tail behavior of the marginal posterior of F . However,

since the exponential factor tends to zero much faster and in a regular way, this first

factor is responsible for integrability of the marginal posterior of F .

For expository purpose, we present here the result for the case of p = 2 and r = 1,

where F = f is a T × 1 vector of latent observations on one factor with typical element

ft. In this case the following holds for the product of the first factor and the bounding

function in (4.46):

exp

(
−1

2
tr(F ′F )

)
= exp

(
−1

2

T∑
t=1

f 2
t

)
(4.48)

|F ′F |−(p−r)/2 ≤
(

T∑
t=1

f 2
t

)−1/2

(4.49)

where it is immediately clear that the exponential factor in (4.48) tends to zero much

faster than the third factor in (4.49).

For an illustration, consider the limit
∑T

t=1 f
2
t → ∞. The multiplication of the first

and the bounding function in the limit is:

lim∑T
t=1 f

2
t →∞

exp

(
−1

2
tr(F ′F )

)
|(F ′F )|−(p−r)

≤ lim∑T
t=1 f

2
t →∞

exp

(
−1

2

T∑
t=1

f 2
t

)(
T∑
t=1

f 2
t

)−1/2

= 0, (4.50)

and the left hand side of (4.50) is non-negative by definition, hence we have:

lim∑T
t=1 f

2
t →∞

exp

(
−1

2
tr(F ′F )

)
|F ′F |−(p−r)/2 = 0. (4.51)

From (4.46) and (4.51), we conclude that the marginal posterior of F under flat priors

has an asymptote when one or more of the factors approach infinity. Still, the density
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is integrable due to the first factor in (4.46), which comes from the normal prior on F .

Whether the prior for Λ2 is uniform or normal is not essential for these results. We note

again that all conditionals are integrable both under a normal and a uniform prior.

The results of this subsection are important for the construction of a Markov Chain Monte

Carlo method. Mechanical application of the Gibbs sampling method under a uniform

prior on F would lead to the situation where the sampler gets stuck at an absorbing state.

This situation of proper conditional densities but improper marginal densities is also been

analyzed by Zellner et al. (2014) and by Baştürk, Stefano, Hoogerheide, Opschoor, and

Van Dijk (2015) for another reduced rank model, i.e. the instrumental variables model,

and by Hobert and Casella (1998) for the hierarchical linear mixed model.

4.4.2 Marginal posterior of Λ2

In this subsection, we explore features of the marginal posterior of Λ2. For the general

case of a full covariance matrix Σ and flat priors on Λ2, this density is improper. However,

imposing a diagonal covariance matrix on Σ and making use of regularization (normal)

priors for Λ2 make the posterior of Λ2 proper and an easy simulation method is available

for computing the density. We start to consider a flat prior instead of (4.10). The joint

posterior in this case is similar to (4.19) except for the factor |Σ|− p+1
2 .

We integrate out F in the joint posterior (4.19), using the conditional posterior of F

in (4.20). We further use the identification restriction, hence only partition Λ2 of Λ is

stochastic:

p(Λ2,Σ | Y ) ∝
∫

|Σ|−T
2 exp

(
−1

2
tr
(
Y
(
Σ−1 − Σ−1Λ′(I + ΛΣ−1Λ′)−1ΛΣ−1

)
Y ′))

× exp

(
−1

2
tr
(
(F − F̂ )

(
I + ΛΣ−1Λ′) (F − F̂ )′

))
dF (4.52)

∝|Σ|−T
2 |I + ΛΣ−1Λ′|−T/2

× exp

(
−1

2
tr
(
Y
(
Σ−1 − Σ−1Λ′(I + ΛΣ−1Λ′)−1ΛΣ−1

)
Y ′)) (4.53)

∝|Σ|−T
2 |(I + ΛΣ−1Λ′|−T/2 exp

(
−1

2
tr
(
Y (Σ + ΛΛ′)−1

Y ′
))

(4.54)

where the last line uses Woodbury’s identity, see, e.g., Seber (1984).
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Next, we use the matrix determinant properties to obtain:

p(Λ2,Σ | Y ) ∝|Σ|−T
2

∣∣I + ΛΣ−1Λ′∣∣−T/2
exp

(
−1

2
tr
(
Y (Σ + ΛΛ′)−1

Y ′
))

(4.55)

=|Σ|−T
2 |Σ|T2 |Σ + ΛΛ′|−T/2

exp

(
−1

2
tr
(
Y (Σ + ΛΛ′)−1

Y ′
))

(4.56)

= |Σ + ΛΛ′|−T/2
exp

(
−1

2
tr
(
Y (Σ + ΛΛ′)−1

Y ′
))

, (4.57)

The result is a density function that is proportional to an inverse Wishart density in the

sum Σ + ΛΛ′. For details on the required matrix determinant properties as well as for

the definitions of matricvariate densities, we refer to the appendix of Baştürk et al. (2015).

From (4.57) it is clear that only the sum Σ + ΛΛ′ is identified under a flat prior or a

normal prior on F for the special case of p = 1 and r = 1 and for the general case

where Σ is a full matrix. For example, the conditional posterior of Σ|Λ2, Y in (4.57) is a

‘shifted’ inverse Wishart density with a shift parameter of ΛΛ′. A similar conclusion holds

for the posterior of Λ2|Σ, Y , but these parameters are not jointly identified. This non-

identification of the joint posterior of (Λ2,Σ) implies that the marginal of Λ2 is also not

identified in the sense that the marginal posterior will be flat. Thus, posterior moments do

not exists and a uniform prior on F amplifies this problem. However, given that Σ = D a

diagonal matrix, the off-diagonal zero restrictions are sufficient for identification of the Σ

and Λ2 parameters when the number of variables p is greater or equal than two. Further,

when normal priors are adopted for F as well as for Λ, proper posteriors for all model

parameters are ensured. However, no analytical results exist like in the case of the lower

left hand entry of Table 1.

As a summary, we present results in a diagram in Table 4.1. Given that conditional

distributions and higher order moments of Λ2 and F exist, Gibbs sampling is possible for

cases I–IV, but only for case IV one obtains meaningful numerical results. The important

point is that a normal prior on F and a normal prior on Λ2 are sufficient to ensure

existence of the distributions and their higher order moments.
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Table 4.1: Prior choice and posterior existence

Λ2

Prior Flat Normal

F Flat
I III

No moments (F,Λ2) No moments for (F,Λ2)

Normal
II IV

No moments for (F,Λ2)

Marginal moment for F

Moments for F and Λ2, no an-

alytical results

4.4.3 Posterior sampler

Given the conditional densities in section 4.3, a straightforward sampler is the Gibbs

sampler. Gibbs sampler iteratively obtaining draws from:

p(Σ | Λ, F, Y ), p(Λ | F,Σ, Y ), p(F | Λ,Σ, Y ),

where the first conditional is a density with an inverse Wishart distribution, and the latter

are densities with matricvariate Normal distribution function.

We follow Lopes and West (2004) in specifying proper but vague priors for factors, factor

loadings as well as the variance parameters. The unrestricted elements of the factor

loading matrix Λ, have independent priors with λij ∼ N(0, 1) for i 
= j. The diagonal

elements of the loading matrix λii for i = 1, . . . , r have a standard normal distribution

truncated above from 0. For the variance parameter, σ2
ii, i = 1, . . . , p, we use inverse

gamma priors with a shape parameter of ν = 5, and a scale parameter of η = 0.1. The

prior means and variances for the variance parameters based on these values are similar to

those of Lopes and West (2004), where a slightly different parametrization is used for the

inverse Gamma distribution. We note that the results are not sensitive to small changes

in parameters ν and η.
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4.5 A Bayesian Factor Model using the Fama-French

risk factors

In this section we present a brief analysis of a Bayesian Factor Model using the three

Fama and French (1993) equity risk factors as explanatory variables. Our analysis so far

was based on an unobserved factor structure. Given that the Fama-French risk factors

are “observed” (constructed) we are back in the multivariate regression model and the

factor model in (4.5) simplifies to a multivariate linear regression model, where

Y = XΛ + E, (4.58)

where Y is the T×pmatrix of observations, X is the T×r matrix of observable explanatory

variables, E is the T × p matrix of disturbances and E ∼ MN(0,Σ, IT ) with a positive

definite symmetric matrix Σ. We use the notation X for known factors in order to clarify

the distinction between this model and the unobserved factor models in earlier sections.

For the three risk factors, X in equation (4.58) is a T × 4 matrix of a constant in the

first column and three observed factors proposed by (Fama & French, 1992) and (Fama

& French, 1993). These factors relate to the overall market return (β), firm size (small

minus big capitalization), and book to market ratio (high minus low book-to-market ratio).

Using flat priors, the following equations provide the Gibbs sampling steps for parameters

Λ and Σ:

Λ|Σ, X, Y ∼ MN(Λ̂,Σ, (X ′X)−1) (4.59)

Σ|X, Y ∼ IW

((
Y −XΛ̂

)′ (
Y −XΛ̂

)
, v

)
, (4.60)

where Λ̂ = (X ′X ′)−1X ′Y is the OLS estimate of Λ and v = T + p − r + 1. We refer to

(Anderson, 1958) and (Zellner, 1971) for the derivations of these distributions.

In addition, the marginal posterior of the parameters Λ in equation (4.58) is a matric-

variate student t density with mean equal to the least squares value:

E(Λ|X, Y ) = Λ̂ = (X ′X)−1X ′Y. (4.61)
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under the condition that T + p− r > 1, see (Zellner, 1971) for details.

Given these results, we present two procedures for the computation of the implied

momentum strategies. The first is an exact analysis that uses Gibbs sampling and the

second one is an approximate analysis using the posterior mean of the residuals. The latter

approach is mathematically equivalent to the regression approach but the interpretation

of the results is different. It is based on a posterior analysis using one data set and not a

frequentist interpretation of the results.

The first approach uses the Gibbs sampling steps in equations (4.59) and (4.60)

to obtain draws from the model parameters. Given posterior draws Λ(m) for m =

1, . . . ,M , the investment strategy at time t� is based on the expected “residual returns”,

equivalently, “excess returns”, in the last L periods calculated by

Êt� =
1

ML

M∑
m=1

L∑
l=1

(
Yt�−l −Xt�−lΛ

(m)
)

(4.62)

where Yt and Xt are row-vectors of dependent variable and the explanatory variables at

time t. The investment decision is then made based on the ranking of the values of Êt� .

The second approach, i.e. the approximate analysis we present, uses the property in

equation (4.61) to obtain the expected “residual returns”:

Êt� =
1

L

L∑
l=1

E(Et�−l|Y,X) =
1

L

L∑
l=1

(Yt�−l −Xt�−lE(Λ|Y,X)) , (4.63)

i.e. the expected values of the posterior residuals equivalent to least squares residuals.

Thus the frequentist columns have a Bayesian interpretation under prior ignorance.

Similar to the full Bayesian analysis, the investment decision is then made based on

the sorted values of Êt� .

4.6 Predictive analysis to determine the number of

factors

An important decision for the factor model is the number of factors, r, in the above

setting. The purpose in this section is to propose a ‘predictive likelihood’ approach to

assess the number of factors in the factor model.
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Predictive likelihood in order to determine a varying number of factors The

first step in such a predictive approach is to assess the number of factors, as in standard

Bayesian model comparison. The gain is the use of ‘prior data points’ to obtain model

probabilities (predictive model probabilities). In this approach, part of the data are used

to obtain ‘priors’, hence model selection or model weights are arguably less sensitive to

the prior. In the extreme case of diffuse priors, part of the data selected as the ‘training

sample’ regulates the diffuse priors. Further, predictive likelihoods evaluated at different

times (using different training samples) will provide time-varying model probabilities.

Any decision making based on these model weights, such as a momentum strategy, will

therefore be time-varying as well.

A predictive likelihood approach to obtain model probabilities Let Mr denote

the factor model with r << p factors for the factor model in (4.5) and (4.6). A predictive

likelihood for model Mr is computed by splitting the dataset as follows:

Y =

(
Yt0:t1

Yt1+1:t2

)
=

(
Y �

Ỹ

)
(4.64)

where observations from t0 to t1 are defined as the ‘training sample’ and observations

from t1 + 1 to t2 are defined as the ‘hold-out sample’.

The predictive likelihood for the hold-out sample is then defined as:

p(Ỹ |Y �,Mr) =
p(Ỹ , Y �|Mr)

p(Y �|Mr)
=

p(Y |Mr)

p(Y �|Mr)
(4.65)

Important notes:

1. The choice of the training and hold-out samples is important theoretically, and the

results may be sensitive to this choice.

2. The size of the hold-out sample is also important, especially for decision making.

Consider a time-varying momentum strategy based on rolling windows. If the hold-

out sample is very small, the decision of the momentum strategy will be heavily

affected by the training sample and not the hold-out sample (which is the most

recent and potentiality informative part of the sample). On the contrary, if the

hold-out sample is very large, information from this sample and the training sample

are potentially outdated, and momentum strategy will only have slight changes over
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time.

Equal training and hold-out sample sizes seem to be an intuitive choice. This way

both the ‘data based prior’ and the ‘posterior’ have similar effects on the momentum

strategy. Naturally, robustness checks should be performed to see the effect of this

training and hold out sample size selection.

Estimating predictive model probabilities A simple method to estimate model

probabilities is the harmonic mean estimator. Several alternatives exist, see e.g. Ardia,

Baştürk, Hoogerheide, and Van Dijk (2012). The harmonic mean estimator has the

advantage that it is easily estimated using n = 1, ..., N parameter draws from the posterior

distribution of parameters of model Mr, θr = {Λr, Fr,Σ}.

Calculation of the predictive likelihoods and predictive model probabilities using the

harmonic mean estimator is outlined as follows: Define the set of models, Mr for

r ∈ 1, . . . , p− 1.

1. For each model obtain draws from the posterior, obtain N draws of parameters θr

from the two posterior distributions for n = 1, . . . , N :

(a) θ
(f,n)
r from p(θr|Y,Mr), draws from the posterior distribution of modelMr given

all data points (including training and hold-out sample)

(b) θ
(�,n)
r from p(θr|Y �,Mr), draws from the posterior distribution of model Mr

given the training sample only.

2. Using the harmonic mean estimator, calculate (approximate) two marginal likeli-

hoods for each model m, first for the whole sample, second for the training sample

using the exact likelihood:

p(Y | F,Λ,Σ) = (2π)−
Tp
2 |Σ|−T

2 exp

(
−1

2
tr
(
Σ−1(Y − FΛ)′(Y − FΛ)

))
(4.66)

(a) Full sample marginal likelihood

p(Y |Mr)
−1 =

∫
θr

p(Y |θr,Mr)
−1p(θr|Mr)dθr ≈ 1

N

N∑
n=1

p(Y |θf,nr ,Mr)
−1

where the likelihood is given in (4.66).
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(b) Training sample marginal likelihood

p(Y �|Mr)
−1 =

∫
θr

p(Y �|θr,Mr)
−1p(θr|Mr)dθr ≈ 1

N

N∑
n=1

p(Y �|θ�,nr ,Mr)
−1

where the likelihood is given in (4.66).

3. Calculate predictive likelihoods for each model Mr using (4.65) and the approxi-

mated marginal likelihoods in step (2):

p(Ỹ |Y �,Mr) =
p(Y |Mr)

p(Y �|Mr)
≈

∑N
n=1 p(Y

�|θ�,nr ,Mr)
−1∑N

n=1 p(Y |θf,nr ,Mr)−1
(4.67)

4. From the predictive likelihoods for each model in step (3), compute model proba-

bilities for Mr for r ∈ 1, . . . , p− 1:

p(Mr|Y ) =
p(Ỹ |Y �,Mr)× p(Mr)∑p−1

r′=1 p(Ỹ |Y �,Mr′)× p(Mr′)
,

where p(Mr) is the prior model probability. An uninformative prior, such as p(Mr) =

1/(p− 1) is intuitive to use in this setting.

Based on the predictive likelihood calculation from a rolling window of predictive likeli-

hoods, an optimal model M� for the momentum strategy can be chosen. Based on this

model, the momentum strategy can be applied. This will be pursued in the next section.

4.6.1 Simulated data experiments

For illustrative purposes we apply the predictive likelihood approach for the factor model

to simulated data. We consider a set simulated datasets with T = 100 and T = 250

observations. In order to see the effect of parameters p and r on the predictive likelihood

methodology, we consider r = 1, 2 common factors for p = 2, 4, 10, 20 data series. For each

simulation experiment, we apply the predictive likelihood approach with different sizes of

training samples, consisting of 5%, 10%, 20% and 50% of observations. In addition, we

replicate each simulation experiment 100 times to decrease the effect of simulation noise.

For all simulations, factors are generated from independent standard normal distributions.

Table 4.1 presents the posterior probabilities from all simulation experiments, where we

report the posterior model probabilities for different number of factors averaged over 100
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simulation experiments for each simulation setting. Posterior results are based on 4000

posterior draws, where the first 2000 draws are burn-in draws.

Table 4.1: Posterior probabilities. Average posterior probabilities from 100 simulation

replications with T observations, p variables and r factors. Highest probabilities are indicated

by boldface table entries.

5% training sample

T p r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -

100 10 1 0.96 0.02 0.00 0.02 0.00 0.00

250 4 2 0.00 1.00 0.00 0.00 - -

250 20 2 0.00 1.00 0.00 0.00 0.00 0.00

10% training sample

T p r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -

100 10 1 0.89 0.07 0.00 0.03 0.01 0.00

250 4 2 0.00 1.00 0.00 0.00 - -

250 20 2 0.00 1.00 0.00 0.00 0.00 0.00

20% training sample

T p r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -

100 10 1 0.77 0.14 0.05 0.02 0.01 0.00

250 4 2 0.01 0.98 0.01 0.00 - -

250 20 2 0.00 0.95 0.01 0.00 0.03 0.01

50% training sample

T p r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -

100 10 1 0.34 0.13 0.02 0.08 0.18 0.24

250 4 2 0.00 0.95 0.05 0.00 - -

250 20 2 0.00 0.88 0.02 0.02 0.01 0.07

The results in Table 4.1 indicate that the highest probabilities (indicated by boldface

entries) for each simulation experiment, indicated in rows, correspond to the true number

of factors. In most simulation studies, the posterior probability is very close to 1 for

the correct model specification. Hence the predictive likelihoods provide a clear choice

of models. Comparing the bottom panel of Table 4.1 with the other panels, we conclude

that the predictive likelihood approach with a smaller training sample than 50% provides

more clear indications of the correct number of factors, with posterior probabilities being

closer to 1 compared to the same simulation setting but a larger training sample (50%).
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Figure 4.1: Log-predictive likelihoods for different number of factors for two sets of simulated

data with T = 100 observations. The left panel corresponds to p = 2 series and r = 1 common

factor. The right panel corresponds to p = 10 series and r = 1 common factor. Each simulation

experiment is repeated 100 times, as shown in the x-axes. Predictive likelihoods are calculated

using 10 percent of the sample as the training sample.

Thus, the length of the training sample should not be chosen too large compared to the

total length of the sample and a sensitivity analysis with respect to the length of the

training sample will give more confidence in the results.

Figure 4.1 presents the details of predictive likelihoods for two sets of simulated data

and for each simulation. These data correspond to T = 100, p = 2, r = 1 on the left

panel of Figure 4.1 and T = 100, p = 10, r = 1 on the right panel of Figure 4.1. For both

simulation specifications, the correct number of factors r = 1, shown by the red lines in

the figure, has the highest posterior probability in almost all simulation replications. We

therefore conclude that the predictive likelihood approach accurately detects the number

of factors, even with a small sample size.

4.7 Application to ten industry portfolios

In the previous sections a Bayesian approach is outlined to choose the optimal number of

time-varying latent factors using the concept of predictive likelihood. In this section we

empirically evaluate the impact of modeling dynamic versus static factors as well as latent

factors versus Fama and French (1993) factors on the performance of a residual industry

momentum strategy. We use return data on ten industry portfolios between 1960M7 and

2015M6. The dataset, shown in Figure 4.1, includes monthly returns from each industry
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Figure 4.1: Monthly percentage returns for ten industry portfolios.

portfolio. The 10 industries are labeled as ‘non-durables’, ‘durables’, ‘manufacturing’,

‘energy’, ‘hi-tech’, ‘telecom’, ‘shops’, ‘health’, ‘utilities’ and the final category ‘others’ 1.

For convenience, we start to present results for a standard momentum strategy applied

to the ten industry portfolios. This strategy ranks the industries on their recent total

performance, skips a short period of time to overcome short-term return reversals and

subsequently buys the industry portfolio ranked first and short-sells the industry portfolio

ranked tenth. Jegadeesh and Titman (1993) find that this strategy is profitable when

applied to individual stocks and Chan et al. (1996) show that these standard momentum

returns cannot be fully explained by the Fama and French (1993) equity risk factors.

Moskowitz and Grinblatt (1999) find that the returns to this standard momentum strategy

applied to individual stocks are mainly ascribable to momentum in industry portfolios.

The empirical results of this standard industry momentum strategy are presented in the

top panel of Table 4.1b.

1These returns data are retrieved on 24.10.2015 from http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/ftp/10 Industry Portfolios CSV.zip. See http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/Data Library/det 10 ind port.html for definitions. The Fama and

French (1993) equity risk factors are also retrieved from this data library, see http://mba.tuck

.dartmouth.edu/pages/faculty/ken.french/data library.html
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Standard momentum’s risk and return vary over time as a consequence of the time-

varying exposures to the Fama and French (1993) equity risk factors, as documented by

Grundy and Martin (2001). (Hühn, 2015) confirms this time variation in the exposures for

industry momentum. Recently, Blitz et al. (2011) have come up with residual momentum.

This strategy ranks stocks on their recent residual returns from the regression of the stock

returns on the Fama and French (1993) equity risk factors. By ranking the stocks on their

residual returns rather than their total returns Blitz et al. (2011) are able to reduce these

time-varying exposures to the equity risk factors.

The purpose of our Bayesian modeling approach is twofold. We investigate the effect on

momentum performance of dynamic factor modeling versus static modeling by assessing

the effect of moving window estimation instead of estimation with a fixed sample together

with assessing gains from using a time-varying number of latent factors compared to a

fixed number of latent factors. Second, we compare latent factors versus Fama and French

(1993) equity risk factors.

The proposed estimation procedure using a moving window is an additional contribution

of our Bayesian estimation of a factor model. In order to assess the effect of this analysis,

we estimate two sets of models, namely with a fixed and a moving window estimation

sample and evaluate model parameters at each decision time. We apply this approach

to the model with latent and the model with Fama and French (1993) factors. Results

are presented for the fixed sample case at the top panel of Table 3 and for the moving

estimation sample at the bottom panel.

In order to allow for changes in the number of factors, we apply the moving window

estimation method as follows. Within one estimation period, the static factor model is

estimated for r = 2, . . . , 5 factors, and the optimal number of factors is chosen based

on the predictive likelihoods. The moving window estimation is based on a sample of

T = 240 observations. We consider two cases for the predictive likelihood calculation

with a ‘small training sample’ and a ‘large training sample’, consisting of 10% and 20%

of the full moving window sample, respectively.

Every year in July we rank the ten industry portfolios on the residual returns in the

most recent 12 months. These residuals are constructed as follows:
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• Sample 4000 matrices of factors F , matrices of factor loadings Λ and matrices Σ for

different numbers of factors r = 2, ..., 5 using the conditional posterior densities in

Section 4.3.

• Use the matrices from the model with the number of factors r with the highest

predictive likelihood according to the method described in Section 4.6. Use the

first 1000 sampled matrices for the burn-in period and use the last 3000 sampled

matrices to construct the average of the current in-sample forecasts of the industry

returns Ŷ = FΛ.

• The residual returns are then Ê = Y − Ŷ .

The ten industry portfolios are then sorted on their mean residuals in the last twelve

months, where the mean residuals are calculated using the model and the posterior

draws using equation (4.62) with L = 12 observations. Our residual industry momentum

strategy is then long in the industry with the highest residual return and short in the

industry with the lowest residual return and holds this position for 12 months. The first

investment months is July 1980, since we require 240 months since 1960 for the first

estimation of the model parameters.

4.7.1 Optimal number of factors based on moving window esti-

mates and predictive likelihoods

We first analyze the evolution of the number of factors through the moving windows, for

two training sample percentages. In order to ensure the existence of posterior densities,

a normal prior is used for F and Λ. As stated in Section 4.4, we follow the identification

restrictions together with the priors as given in Lopes and West (2004). A sensitivity

analysis with respect to the choice of the prior parameters did not affect the results.

Figure 4.2 presents the number of factors with the highest predictive likelihood for

each estimation sample under two training sample choices, where 10% and 20% of the

total sample is used as training samples. Figure 4.2 shows that the model with r = 3

factors is the most frequently chosen model using both training samples. Despite this

high frequency, the optimal number of factors according to predictive likelihoods changes

substantially over time. The obtained number of factors in the left and right panels of

Figure 4.2 are different, in particular, at the end of the sample period. On the one hand,

this difference indicates that the training sample choice should be made with care in order
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Figure 4.2: Optimal number of factors for 10 industry portfolios. The figure presents the number

of factors with highest predictive likelihood at each estimation sample for two training sample

choices. X-axes correspond to the final month in the estimation sample.
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to find the appropriate number of factors. On the other hand, this variation in the number

of factors may influence the gains from a trading strategy, like momentum. For the latter

reason, we next report the gains from trading strategies using both training samples.

One would expect that the number of optimal factors varies with the performance of equity

markets, in particular fewer factors are present in the model during market declines. We

have two major market declines in our sample: 2000-2002 and 2008 where equity markets

lost 56 and 38 percent respectively. We indeed find that during the equity market losses

in 2000 to 2002 the optimal number of factors was 2. For the 2008 crash we do not find

that a smaller number of optimal factors. This may be due to our small sample. The

effect of the small sample size on our results is not easy to determine and needs to be

explored in further research.

4.7.2 Performance of residual industry momentum strategy

In this section we report the performance of a residual industry momentum strategy

which uses the proposed latent factor model with changing number of factors over time.

In addition, we compare these results with the standard industry momentum strategy and

a set of alternative residual industry momentum strategies. The alternative strategies we

consider aim to separate the gains from the three contributions of the proposed latent

factor model: defining latent factors instead of fixed, Fama and French (1993), factors,

allowing for time-varying number of factors and model estimation using moving estimation

samples.

The first three strategies we consider do not use an updated estimation sample to obtain

model parameters. These strategies are shown on the top-panel of Table 4.1b. The

‘standard strategy’ is descriptive and by definition does not depend on an underlying

model or an estimation sample. The ’F-F (approximate)’ and ’F-F (exact)’ strategies

denote the factor model with known factors, where the residuals are calculated using

(4.62) and (4.63), respectively. The known factors in these models are the three equity

risk factors of Fama and French (1993), as explained in Section 4.5. Parameters of each

model are estimated only prior to the first investment period, July 1980, over the sample

from July 1960 to June 1980.

In addition, we consider a set of residual momentum strategies which are based on moving

estimation windows to obtain model parameters and residuals. The results of these
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strategies, together with the proposed latent factor model with two different training

samples are shown in the bottom panel of Table 4.1b. Specifically, we report the results

of residual strategies based on the factor models of F-F (approximate) and F-F (exact)

using moving estimation windows at each portfolio decision time. The comparison of these

results with their fixed estimation sample counterparts highlights the effect of moving

window estimation on returns from the residual momentum strategy. Finally, we report

the results from a latent factor model, estimated with moving windows but with a fixed

number of 3 latent factors. The comparison of this model and the proposed latent factor

model provides the gains from allowing the number of factors to vary over time. Finally,

the comparison between the latent factor model with three factors and both F-F models

provides the gains from latent factor modeling.

In Table 4.1b, we report the following risk and return measures for the returns of

each strategy: mean return, volatility, Sharpe ratio, largest loss encountered, maximum

drawdown, all measured in percentages, and maximum recovery period measured in

months. We stress that these values are based on the realized returns of each investment

strategy.

The standard industry momentum strategy does not yield positive average returns; its

average annual return is minus 1.1 percent. This empirical result is not in line with the

typical positive returns on industry momentum as found by Moskowitz and Grinblatt

(1999). The difference stems from, among other things, from the fixed estimation sample,

from different sample periods, from using 10 rather than 20 industry portfolios, selecting

1 instead of 3 winners and loser industries, and from the fact that we use 12 monthly

returns to rank the industries and the fact that we update the strategy once per year

rather than every month. We have chosen to do so, because additional industry portfolios,

a longer horizon and more frequent updates of the strategy would substantially increase

the computational workload of our model. More generally, the results for the top and

bottom panel show the importance of taking account of dynamic factors: Moving window

results are all superior to results using a fixed window, except for the length of the recovery

period. For the dynamic case the 20 percent Bayesian Factor Model scores better in five

of six criteria compared to residual industry momentum strategies using the Fama and

French (1993) risk factors.

We conclude that a Bayesian latent factor model with a time-varying number of factors is
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Figure 4.3: Mean returns over time

Figure 4.4: Volatility of returns over time

Figure 4.5: Sharpe ratios of returns over time
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Figure 4.6: Cumulative returns over time
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Figure 4.7: Mean returns for two strategies

Figure 4.8: Volatility returns for two strategies

Figure 4.9: Sharpe ratios of returns for two strategies
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Table 4.1: Risk and return characteristics of momentum strategies based on different

model specifications.

(a) Results for strategies with fixed estimation sample

Standard F-F F-F

(approx. ) (exact)

mean -1.13 -2.23 -3.40

volatility 21.54 21.11 21.41

Sharpe ratio -0.05 -0.11 -0.16

Largest loss -68.52 -58.06 -68.52

Max. drawdown 135.3 154.88 191.31

Max. recovery 15 16 16

(b) Results for strategies with moving window estimation

F-F F-F Latent Factor Models

(approx. ) (exact) 10% 20% 3 factors

mean 4.09 3.81 2.82 3.75 0.28

volatility 18.91 20.69 20.16 12.56 19.22

Sharpe ratio 0.22 0.18 0.14 0.30 0.01

Largest loss -29.05 -46.04 -68.52 -20.95 -68.52

Max. drawdown 66.55 108.12 68.52 35.19 91.01

Max. recovery 11 18 9 9 15

able to outperform the traditional three factor equity risk model in this particular setting

for several criteria but not for all. We also emphasize that the Bayesian model with

a training sample of 20 percent outperforms in four criteria the model with 10 percent

training sample. This may be due to the more complex data structure than the one

encountered in the simulation study.

Given the overall results showing that dynamic modeling is important for the performance

of residual momentum strategies, we also explore the behaviour over time. Results are

shown in Figures 3-9. Figures 3-5 show that in the period considered, namely from July

1980 until June 2015, there are some clear subperiods. In the nineties most procedures

did well. The occurrence of the two crashes around 2000 and 2008 have an important

influence on the return and volatility and therefore the Sharpe ratio. Apparently, the

Bayesian time-varying latent factor model adjusts relatively better to big shocks than the

model with the Fama and French (1993) equity risk factors. This result is even more

pronounced in the right hand panel of Figure 6. Given that the Bayesian time-varying
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latent factor model and the Fama and French (1993) equity risk factor model are the best

performing strategies, we compare their performance on risk and returns in Figures 7-9.

It seems a fair conclusion that in quiet periods the Fama and French (1993) equity risk

factor model is good to use and that in more turbulent times the Bayesian time-varying

latent factor model performs better. This is particularly shown in Figures 7-9 for the

final years of our data. Thus a second conclusion is that a time-varying combination of

model structures may give overall superior performance. To explore this topic is outside

the scope of the present chapter and left for further research.

4.8 Conclusions

We have specified in this chapter a Bayesian latent factor model with weak prior infor-

mation that leads to proper posterior distributions of factors and their loadings. Using

the predictive likelihood concept a straightforward approach is constructed to account for

time variation in the number of factors.

We have applied the Bayesian time-varying latent factor model to residual industry

momentum for the period 1980 to 2015 and find that our application outperforms a

residual industry momentum strategy based on residual returns from the standard Fama

and French (1993) equity risk factors in terms of several risk and return characteristics.

Our application outperforms in particular in turbulent times, for example, during the

crisis that started in 2008. A possible explanation is that a Bayesian latent factor model

adjust more quickly to big shocks than a model with the Fama and French (1993) equity

risk factors. We find that the optimal number of latent factors varies substantially over

time and that the number of optimal factors indeed decreases when the equity markets

experience large losses.

It is also seen that in quiet times like in the nineties, the Fama and French (1993)

equity risk factor model is good to use. Thus a major conclusion is that a time-varying

combination of model structures and momentum strategies may give overall superior

performance.

There is considerable room for extensions of the approach presented. We mention here

only two. First, a more formal model with time-varying factors that require filter methods

from time series analysis may be very useful; we refer to Billio, Casarin, Ravazzolo, and
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van Dijk (2013) for more details. See also Casarin, Grassi, Ravazzolo, and Van Dijk (2013)

and for a forecasting application see Aastveit, Ravazzolo, and Van Dijk (2014). Secondly,

a large panel of individual financial assets, instead of a small number of industry portfolios,

that are clustered in smaller batches may yield additional good information and better

results. This requires intense and probably parallel computing. Some new approaches are

explored in Casarin et al. (2015) for large data sets. These extensions would be of interest

to practitioners as well as researchers.
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Summary and Conclusions

Summary

This section briefly summarizes in which way we have investigated momentum in this

thesis. In Chapter 2 we alter the momentum strategy to improve its performance, while in

Chapter 3 we leave the strategy as is, but aim at improving its performance by hedging. In

Chapter 4 we develop a Bayesian latent factor model and apply this model to momentum.

In Chapter 2 we apply mean-variance optimization to the equity momentum strategy

and compare its performance to other alterations of the momentum strategy. Next to

comparing these strategies we test if combining these alterations, including our mean-

variance optimization, is able to further improve momentum’s performance. We evaluate

whether the optimized and other altered momentum strategies as well as their combina-

tions reduce momentum’s crash risk and its time-varying risks and returns.

In Chapter 3 we hedge equity momentum’s time-varying exposures to the three equity

risk factors. We determine the hedge coefficients in two different ways. First, we use

the estimated factor loadings of each stock in the momentum strategy at that time to

determine momentum’s exposures. Secondly, we use a conditional factor model to estimate

momentum’s exposures using momentum’s recent returns. We test whether these hedging

strategies reduce momentum’s time-varying risks and returns as well as its crash risk.

Finally, we investigate whether the bias in the estimated factor loadings used for hedging

varies over time.

In Chapter 4 we use a Bayesian latent factor model to investigate the time variation in the

comovements of stocks. In particular, we investigate how the optimal number of latent

factors varies over time. We determine this optimal number of factors by comparing the
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predictive likelihoods for models with different numbers of latent factors. Subsequently,

we apply the model in a residual industry momentum strategy.

Conclusions

In this section we summarize the main conclusions of this thesis. In the first two essays

we use a range of strategies to improve equity momentum’s performance and reduce

its time-varying risks and returns as well as its crash risk. By doing so, we enhance

momentum’s challenge for market efficiency as we weaken the crash risk explanation of

the positive average returns on the momentum strategy. In the third essay, we find that

the comovements of stocks varies over time and that an application to residual industry

momentum performs particularly well in turbulent times.

In the first two chapters of this thesis we do not only aim to improve momentum’s

performance, but also implicitly and explicitly address momentum’s time-varying risks.

The equity momentum strategy has by construction time-varying risks; when a risk factor

return has been negative during momentum’s ranking period the strategy is negatively

exposed to this particular risk factor and vice versa when the risk factor return has been

positive. If the risk factor return then reverses from negative during the ranking period to

positive in the investment period, the strategy suffers from its negative exposure to this

risk factor. These time-varying exposures do not only cause momentum’s time-varying

risks, but also cause momentum’s crash risk. For example, momentum’s largest losses

occurred in 1932 and 2009 when the equity markets strongly recovered after their largest

losses over the last 100 years. Momentum suffered in these particular years from its

negative exposures to the recovering equity markets; the momentum strategy had built

up these negative exposures as a consequence of the preceding losses on the equity markets.

In Chapter 3 we conclude that hedging the time-varying exposures of the momentum

strategy indeed reduces these exposures and as such also reduces momentum’s crash

risk. Hedging using factor loadings estimated from a conditional factor model that

captures momentum’s time-varying exposures turns out to perform better than the more

common hedging strategy that uses the estimated factor loadings of the individual stocks.

This underperformance of this common hedging strategy based on factor loadings of

the individual stocks stems from a systematic bias in the estimation of these factor

loadings. This systematic bias also varies with the factor returns during momentum’s
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ranking period.

In Chapter 2 we find that applying standard mean-variance optimization to the equity

momentum strategy results in a significant higher Sharpe ratio and reduces momentum’s

time-varying exposures and crash risk. Although mean-variance optimization is known

for its so-called ’error maximization’ that results in extreme portfolio weights and bad

out-of-sample performance, applying mean-variance optimization does work for equity

momentum. We ascribe this to the fact that mean-variance optimization mainly suffers

from errors in the estimation of the expected returns, while momentum is quite right about

the relative expected returns. We find that the mean-variance optimization benefits from

taking into account momentum’s top-bottom phenomenon. This is the phenomenon that

only the stocks in the top and bottom of momentum’s ranking exhibit the momentum

effect and out- and underperform, while the stocks in the middle of momentum’s ranking

do not.

When comparing mean-variance optimization with other improvements of the equity

momentum strategy, like residual and constant-risk momentum, we find that residual

momentum performs best in terms of the highest Sharpe ratio. The mean-variance

optimized momentum strategy turns out to have the least crash risk. Combining mean-

variance optimized, constant-risk and residual momentum enables to further improve the

Sharpe ratio and further reduce crash risk. This improvement does not come at the cost

of a substantial increase in the transaction costs; for moderate transaction costs for which

the Sharpe ratios of standard and residual momentum are positive, the Sharpe ratio of

the combined strategy is always higher.

Our findings in Chapter 2 hold for the full sample running from July 1929 to December

2014. When looking at different subsamples during this period we find that that the best

performing models are different in the various subsamples. Since the oil crisis and the start

of the deregulation in 1973 the residual momentum strategy performs best in terms of a

higher Sharpe ratio and less crash risk; however, its Sharpe ratio is not significantly higher

than those of the combined strategies. With respect to transaction costs, we find that

in this subsample mean-variance optimized and combined strategies outperform standard

equity momentum up to moderate transaction costs; for relatively high transaction costs

standard momentum outperforms the optimized and combined momentum strategies.
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In Chapter 4 we find that the comovements of stocks vary over time. This follows

from our finding that the optimal number of latent factors in our Bayesian latent factor

model varies over time. Applying our Bayesian latent factor model to residual industry

momentum turns out to improve the Sharpe ratio and reduce crash risk, in comparison

to both standard and residual industry momentum. In this chapter we also find that the

best performing model differs from time to time. In relatively quiet periods standard and

residual industry momentum perform well, while in turbulent times our Bayesian latent

factor model performs better. The flexibility to allow the number of latent factors to vary

over time seems valuable in this particular application.
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(Summary in Dutch)

Inleiding en motivatie

Aandelen momentum is het fenomeen dat aandelen die recent beter dan andere aandelen

hebben gepresteerd, ook de komende maanden weer beter dan andere aandelen zullen

presteren. Net zo zullen aandelen die relatief minder hebben gepresteerd, de komende

maanden ook relatief minder goed presteren. Jegadeesh and Titman (1993) hebben laten

zien dat een strategie die de aandelen koopt die recent relatief goed hebben gepresteerd

en de aandelen (ongedekt) verkoopt die relatief slecht hebben gepresteerd gemiddeld een

positief rendement oplevert, zonder dat een netto investering vereist is. Academici hebben

moeite om dit positieve rendement te verklaren als een vergoeding voor risico en op die

manier past momentum niet binnen de efficiënte markthypothese. Nobelprijswinnaar Eu-

gene Fama noemt momentum zelfs de grootste uitdaging van de efficiënte markthypothese.

Momentum’s positieve rendementen gaan overigens gepaard met een substantieel risico

op een crash. Slechts in enkele maanden kunnen jaren aan positieve rendementen verloren

gaan. Naast dit crash risico variëren de rendementen en risico’s van de momentum

strategie door de tijd, in het bijzonder over de verschillende fases van de conjunctuurcyclus.

Deze aspecten maken momentum onaantrekkelijk voor beleggers en zijn voor sommigen

het risico waar momentum’s gemiddelde positieve rendementen een vergoeding voor

ormen; op die manier zou momentum ook binnen de efficiënte markthypothese passen.

In dit proefschrift onderzoeken we verschillende methodes en modellen die het crash

risico en de variatie in de rendementen en risico’s van de momentum strategie weten

te reduceren. Deze strategieën weten eveneens het voor risico gecorrigeerde rendement

te verbeteren. Onze resultaten zijn dus interessant voor beleggers en academici; voor
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laatstgenoemden omdat het reduceren van de risico’s de verklaring van momentum als

vergoeding voor deze risico’s binnen de efficiënte markthypothese verzwakt.

Samenvatting

We onderzoeken aandelen momentum op verschillende manieren in dit proefschrift . In

Hoofdstuk 2 vergelijken en combineren we verschillende aanpassingen aan de momentum

strategie en in Hoofdstuk 3 laten we de strategie onaangepast, maar dekken we de

risico’s van de strategie naderhand af. Beide hoofdstukken hebben als doel momentum’s

crash risico en tijdsvariërende risico’s en rendementen te reduceren en tegelijkertijd het

positieve rendement te behouden of zelfs te verbeteren. In Hoofdstuk 4 onderzoeken we de

tijdsvariatie in de samenhang van aandelenrendementen met een Bayesiaans latent factor

model. Dit model passen we vervolgens ook toe in een momentum strategie die gebaseerd

is op aandelenportefeuilles van tien verschillende sectoren. Alle hoofdstukken gaan over

variatie in rendementen en risico’s in het algemeen en voor momentum in het bijzonder.

In Hoofdstuk 3 laten we zien dat het reduceren van momentum’s tijdsvariërende bloot-

stellingen aan risicofactoren ook het crash risico en de variatie van de rendementen over

de conjunctuurcyclus reduceert, omdat dit crash risico en de variatie van de rendementen

juist een gevolg zijn van deze tijdsvariërende blootstellingen. Hoewel de blootstellingen

van momentum aan de Fama and French (1993) aandelen risicofactoren gemiddeld onge-

veer nul zijn, variëren deze blootstellingen met de rendementen van deze risicofactoren

over de recente maanden. Als het rendement op een van deze risicofactoren recent

hoog is geweest, dan heeft de momentum strategie een positieve blootstelling aan deze

risicofactor, en vice versa. Na bijvoorbeeld een crash van de aandelenmarkten heeft de

momentum strategie bijvoorbeeld een negatieve blootstelling aan de aandelenmarkten;

als de aandelenmarkten vervolgens herstellen dan verliest momentum aan deze negatieve

blootstelling. Momentum’s grootste verliezen hebben zich dan ook voorgedaan in juli

1932 en maart 2009 nadat de aandelenmarkten zich sterk herstelden van de twee grootste

crashes van de aandelenmarkten in de afgelopen honderd jaar. In het algemeen ondervindt

de momentum strategie dus nadeel van omkeringen in het rendement op de risicofactoren;

deze omkeringen, zoals na de twee grootste crashes van de aandelenmarkten, vinden veelal

plaats (aan het einde) van recessies als aandelenmarkten zich al weer herstellen van hun

verliezen, vooruitlopend op herstel in de reële economie. Kortom, het afdekken van deze

tijdsvariërende blootstellingen reduceert het crash risico en de variatie van momentum’s
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rendementen over de conjunctuurcyclus.

De standaard aandelen momentum strategie is een relatief simpele strategie die gelijke

gewichten toekent aan de aandelen die ten opzichte van andere aandelen recent relatief

goed en slecht hebben gepresteerd. Het ligt voor de hand om binnen deze aandelen

de aandelen met een lager risico of een hoger verwacht rendement een hoger gewicht

toe te kennen, zoals Markowitz (1952) al heeft voorgesteld voor aandelenportefeuilles

in het algemeen. Michaud (1989) beschrijft een dergelijke optimalisatiemethode als

’foutenmaximalisatie’ en DeMiguel et al. (2009) laten zien dat aandelenportefeuilles

met gelijke gewichten geoptimaliseerde portefeuilles juist verslaan. Desondanks blijkt

in Hoofdstuk 2 dat optimalisatie van de aandelen momentum strategie wel degelijk de

strategie met gelijke gewichten verslaat. Daarbij is het van belang rekening te houden

met momentum’s ’top-bottom’ fenomeen dat niet altijd alle aandelen met een hoger

rendement de aandelen met een lager rendement verslaan in de komende maanden; dit

geldt voornamelijk alleen voor de aandelen die recent relatief het best hebben gepresteerd.

Voor aandelen die recent slecht hebben gepresteerd geldt hetzelfde; alleen aandelen die

recent relatief het slechts hebben gepresteerd zullen in de komende periode ook weer

slecht presteren. We laten in dit hoofdstuk ook zien dat optimalisatie de tijdsvariërende

blootstellingen van momentum reduceert, omdat de optimalisatie al lagere gewichten

toekent aan de risicovolle aandelen met hoge blootstellingen. Op die manier reduceert

optimalisatie van momentum ook het crash risico en de variatie van de rendementen over

de conjunctuurcyclus.

Er bestaan andere aanpassingen aan de momentum strategie die ook tot verbeteringen

hebben geleid, zoals residu momentum van Blitz et al. (2011) en constant risico momentum

van Barroso and Santa-Clara (2015). Residu momentum sorteert de aandelen op de

residuën van de regressie van de rendementen op de Fama and French (1993) risicofactoren

in plaats van op de totale rendementen zoals bij standaard momentum. Deze strategie

koopt vervolgens de aandelen met de hoogste recente residuële rendementen en verkoopt

(ongedekt) de aandelen met de laagste recente residuële rendementen. Constant risico

momentum past de blootstelling aan de standaard momentum strategie van tijd tot

tijd aan: als de rendementen van momentum recent volatiel zijn geweest dan verlaagt

deze strategie de blootstelling aan momentum en vice versa als de rendementen recent

minder volatiel zijn geweest. In Hoofdstuk 2 combineren we deze aanpassingen inclusief

optimalisatie tot verschillende momentum strategieën. Een strategie die optimalisatie,
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residu momentum en constant risico momentum combineert leidt tot significant hogere,

voor risico gecorrigeerde, rendementen en reduceert het crash risico. Hoewel optimalisatie

over het algemeen het aantal transacties sterk doet toenemen, laat deze combinatie

strategie het aantal transacties ten opzichte van standaard momentum niet substantieel

toenemen. Deze gecombineerde strategie presteert ook beter dan standaard en constant

risico momentum in verschillende subperiodes. Sinds 1973 weet residu momentum ove-

rigens beter te presteren dan de gecombineerde strategie, hoewel deze verbetering niet

significant is.

In dit proefschrift vormt tijdsvariatie een rode draad en in Hoofdstuk 4 benaderen we

tijdsvariatie vanuit het perspectief van de samenhang van aandelenrendementen. Door

middel van een Bayesiaans latent factor model laten we zien dat het aantal latente factoren

dat deze samenhang beschrijft varieert door de tijd. Met dit model adresseren we het

probleem in de gebruikelijke modellen dat het aantal latente factoren vast staat; met

behulp van een analyse van de voorspelverdelingen zijn we in staat het optimale aantal

latente factoren te selecteren. Vervolgens passen we dit model toe in een residu momentum

strategie op basis van aandelenportefeuilles van verschillende sectoren. Het Bayesiaans

latent factor model is in staat om hogere, voor risico gecorrigeerde, rendementen te

realiseren en het crash risico te reduceren ten opzichte van standaard en standaard residu

momentum. De prestatie van deze verschillende sectormomentum strategieën varieert

eveneens door de tijd. In de relatief rustige periodes in de jaren ’90 presteert de standaard

residu momentum strategie relatief goed, terwijl in de meer turbulente periodes sinds 2008

de toepassing van het Bayesiaans latent factor model beter presteert; de flexibiliteit om

het aantal latente factoren te laten variëren door de tijd blijkt dus waardevol in deze

sectormomentum toepassing.

Conclusies

Het reduceren van momentum’s crash risico en de variatie van de rendementen en risico’s

door de tijd in Hoofdstuk 2 en Hoofdstuk 3 verzwakt de verklaring dat momentum een

vergoeding voor deze risico’s is. Om die reden blijft aandelen momentum een uitdaging

vormen voor de efficiënte markthypothese. De samenhang van aandelenrendementen

varieert door de tijd en in Hoofdstuk 4 blijkt een Bayesiaans latent factor model deze

variatie te beschrijven.
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De optimalisatie van momentum en de combinatie van verschillende momentum stra-

tegieën in Hoofdstuk 2 weet niet alleen het crash risico te reduceren, maar verbetert

ook, statistisch significant, het voor risico gecorrigeerde rendement. De gecombineerde

strategie heeft een hoger voor risico gecorrigeerd rendement en minder crash risico dan

de afzonderlijke verbeteringen van momentum; deze verbetering gaat niet gepaard met

substantieel hogere transactiekosten. Deze conclusies gelden voor de volledige periode

van ons onderzoek van juli 1929 tot en met december 2014. Als we uitsluitend naar de

periode sinds de oliecrisis in 1973 kijken dan presteert de afzonderlijke residu momentum

strategie het best op de genoemde aspecten, maar dit verschil is niet statistisch significant.

Afzonderlijke optimalisatie of combinaties presteren wel beter dan standaard momentum

over deze periode.

Het direct afdekken van de tijdsvariërende blootstellingen van de standaard momentum

strategie in Hoofdstuk 3 reduceert eveneens het crash risico van de momentum strategie en

verbetert het voor risico gecorrigeerde rendement. We concluderen dat de gebruikelijke

afdekkingsstrategie via de historische blootstellingen van individuele aandelen minder

goed presteert dan een afdekkingsstrategie op basis van een conditioneel model op basis

van de historische afhankelijkheid van momentum’s blootstellingen aan de aandelenrisico-

factoren. We schrijven dit toe aan een systematische afwijking van de geschatte historische

blootstellingen die eveneens varieert met de recente rendementen op de risicofactoren.

Hoofdstuk 4 laat zien dat het optimale aantal latente factoren in een Bayesiaans latent

factor model varieert door de tijd en dit bevestigt dat de samenhang tussen aande-

lenrendementen eveneens varieert door de tijd. Een toepassing van dit model in een

sectormomentum strategie heeft hogere voor risico gecorrigeerde rendementen en lager

crash risico dan toepassingen van standaard en residu sectormomentum. Hoewel de

traditionele, meer statische, toepassingen van standaard en residu momentum relatief

goed presteren in de relatief rustige jaren ’90, heeft het meer flexibele Bayesiaans factor

model in de turbulente tijden sinds de financiële crisis in 2008 juist toegevoegde waarde.
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Zellner, A., Ando, T., Baştürk, N., Hoogerheide, L. F., & Van Dijk, H. K. (2014). Bayesian

analysis of instrumental variable models: Acceptance-rejection within Direct Monte

Carlo. Econometric Reviews , 33 , 3–35.



85B_Erim van Oord_StandV5.job



86A_Erim van Oord_StandV5.job

About the Author

Arco van Oord (1984) graduated in Quantitative Finance at

the Erasmus University Rotterdam in 2006. In this year he

also started as a Ph.D. student at the Erasmus Research

Institute of Management on ’Active Portfolio Selection with

Uncertainty in the Returns and Covariances’. Throughout

the years the focus of his research shifted to the application

of equity momentum. This has resulted in the publication

of Chapter 3 in the Journal of Empirical Finance. Arco has

presented his research at various international conferences. He

has supervised several master students during their financial

case studies and when writing their master thesis and has

lectured on portfolio management in the master Quantitative

Finance at the Erasmus University Rotterdam.

In 2010 Arco joined the expert center on Risk and Asset Liability Management of De

Nederlandsche Bank as a supervisor specialist on pension funds and insurance companies.

In 2015 he moved to the Supervision Policy Department on Insurance Companies as a

policy advisor. During his time at De Nederlandsche Bank Arco has also performed

research on the interest rate risk management of pension funds as well as Dutch pension

funds’ investments costs.



86B_Erim van Oord_StandV5.job



87A_Erim van Oord_StandV5.job

Portfolio

Ph.D. courses

Course Institution Grade ECTS

Real Option Theory ERIM 8.1 5

The Theory of Corporate Finance ERIM 9 5

English ERIM 4

Presentation Skills ERIM 2

Publishing Strategy ERIM 2

Continuous Optimization LNMB 10 6

Computational Econometrics Tinbergen 9 3

Bayesian Econometrics ESE 9 5

Quantitative Methods in International Finance

and Macroeconomics

ESE 9 5

ESRC Financial Econometrics PhD Training

Course

ESRC, Exeter 2

Recent Development of Nonparametric Methods

in Financial Econometrics

CASE,

Humboldt, Berlin

3

Teaching

• Portfolio Management (2006-2008): Lectures as well as assignments. This

course is part of the specialization Quantitative Finance within the master Econo-

metrics and Management Science.

• Financial Case Studies (2007-2009): Supervision of groups of students working

on a financial case in their master Econometrics and Management Science, also in

the specialization Quantitative Finance.

– Forecasting models for oil and energy commodity prices



87B_Erim van Oord_StandV5.job

– Multivariate GARCH models for portfolio Value-at-Risk: Model choice or

model combination?

– Predicting Style Factors, Optimal factors for stock selection

– Predicting Stock Returns using Business Cycle Indicators

• Master thesis (2007-2009): Supervising students writing their thesis to gradu-

ate from the master Econometrics and Management Science in the specialization

Quantitative Finance.

– Subjective views and stress-tests for optimization of credit risk of loan portfolio

(Liudvika Liubeckiene)

– Conservative Credits (Arja de Jager)

– Capital Structure Arbitrage: Can Debt-Equity Trading Be Profitable? (Raisa

Velthuis)

– Portfolio Construction: Linear versus Quadratic Optimization (Andries Blom)

Conferences

The author has presented his research at the following conferences

• CFE 2008: 2nd International Conference on Computational and Financial Econo-

metrics, 19-21 June 2008, Neuchatel, Switzerland

• CFE 2009: 3rd International Conference on Computational and Financial Econo-

metrics, 28-31 October 2009, Limassol, Cyprus

Other

Other research by the author includes the following working papers

• van Oord, A & Lin, H (2005). Modelling inter- and intraday payment flows. DNB

Working Paper 74.

• Broeders, D, van Oord, A & Rijsbergen, D (2015). Scale economies in pension fund

investments: A dissection of investment costs across asset classes. DNB Working

Paper 474.



88A_Erim van Oord_StandV5.job

ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT  (ERIM) 
 

ERIM PH.D. SERIES  RESEARCH IN MANAGEMENT 
The ERIM PhD Series contains PhD dissertations in the field of Research in Management defended at Erasmus 
University Rotterdam and supervised by senior researchers affiliated to the Erasmus Research Institute of 
Management (ERIM). All dissertations in the ERIM PhD Series are available in full text through the ERIM 
Electronic Series Portal: http://repub.eur.nl/pub. ERIM is the joint research institute of the Rotterdam School of 
Management (RSM) and the Erasmus School of Economics at the Erasmus University Rotterdam (EUR). 
 
 

DISSERTATIONS LAST FIVE YEARS 

 
Abbink, E.J., Crew Management in Passenger Rail Transport, Promotor(s): Prof.dr. L.G. Kroon & Prof.dr. 
A.P.M. Wagelmans, EPS-2014-325-LIS, http://repub.eur.nl/pub/76927 
 
Acar, O.A., Crowdsourcing for Innovation: Unpacking Motivational, Knowledge and Relational Mechanisms of 
Innovative Behavior in Crowdsourcing Platforms, Promotor(s): Prof.dr.ir. J.C.M. van den Ende, EPS-2014-321-
LIS, http://repub.eur.nl/pub/76076 
 
Akin Ates, M., Purchasing and Supply Management at the Purchase Category Level: strategy, structure and 
performance, Promotor(s): Prof.dr. J.Y.F. Wynstra & Dr. E.M. van Raaij, EPS-2014-300-LIS, 
http://repub.eur.nl/pub/50283 
 
Akpinar, E., Consumer Information Sharing, Promotor(s): Prof.dr.ir. A. Smidts, EPS-2013-297-MKT, 
http://repub.eur.nl/pub/50140 
 
Alexander, L., People, Politics, and Innovation: A Process Perspective, Promotor(s): Prof.dr. H.G. Barkema & 
Prof.dr. D.L. van Knippenberg, EPS-2014-331-S&E, http://repub.eur.nl/pub/77209 
 
Almeida e Santos Nogueira, R.J. de, Conditional Density Models Integrating Fuzzy and Probabilistic 
Representations of Uncertainty, Promotor(s): Prof.dr.ir. U. Kaymak & Prof.dr. J.M.C. Sousa, EPS-2014-310-
LIS, http://repub.eur.nl/pub/51560 
 
Bannouh, K., Measuring and Forecasting Financial Market Volatility using High-frequency Data, Promotor(s): 
Prof.dr. D.J.C. van Dijk, EPS-2013-273-F&A, http://repub.eur.nl/pub/38240 
 
Ben-Menahem, S.M., Strategic Timing and Proactiveness of Organizations, Promotor(s): Prof.dr. H.W. 
Volberda & Prof.dr.ing. F.A.J. van den Bosch, EPS-2013-278-S&E, http://repub.eur.nl/pub/39128 
 
Benning, T.M., A Consumer Perspective on Flexibility in Health Care: Priority Access Pricing and Customized 
Care, Promotor(s): Prof.dr.ir. B.G.C. Dellaert, EPS-2011-241-MKT, http://repub.eur.nl/pub/23670 
 
Benschop, N, Biases in Project Escalation: Names, frames & construal levels, Promotors: Prof.dr. K.I.M. 
Rhode, Prof.dr. H.R. Commandeur, Prof.dr. M.Keil & Dr. A.L.P. Nuijten, EPS-2015-375-S&E, 
hdl.handle.net/1765/79408 
 
Berg, W.E. van den, Understanding Salesforce Behavior using Genetic Association Studies, Promotor(s): 
Prof.dr. W.J.M.I. Verbeke, EPS-2014-311-MKT, http://repub.eur.nl/pub/51440 
 
Betancourt, N.E., Typical Atypicality: Formal and Informal Institutional Conformity, 
Deviance, and Dynamics, Promotor(s): Prof.dr. B. Krug, EPS-2012-262-ORG, http://repub.eur.nl/pub/32345 
 
Bliek, R. de, Empirical Studies on the Economic Impact of Trust, Promotor(s): Prof.dr. 
J. Veenman & Prof.dr. Ph.H.B.F. Franses, EPS-2015-324-ORG, http://repub.eur.nl/pub/78159 



88B_Erim van Oord_StandV5.job

 
Blitz, D.C., Benchmarking Benchmarks, Promotor(s): Prof.dr. A.G.Z. Kemna & Prof.dr. W.F.C. Verschoor, 
EPS-2011-225-F&A, http://repub.eur.nl/pub/22624 
 
Boons, M., Working Together Alone in the Online Crowd: The Effects of Social Motivationsand Individual 
Knowledge Backgrounds on the Participation and Performance of Members of Online Crowdsourcing 
Platforms, Promotor(s): Prof.dr. H.G. Barkema & Dr. D.A. Stam, EPS-2014-306-S&E, 
http://repub.eur.nl/pub/50711 
 
Brazys, J., Aggregated Marcoeconomic News and Price Discovery, Promotor(s): Prof.dr. W.F.C. Verschoor, 
EPS-2015-351-F&A, http://repub.eur.nl/pub/78243 
 
Burger, M.J., Structure and Cooptition in Urban Networks, Promotor(s): Prof.dr. G.A. van der Knaap & Prof.dr. 
H.R. Commandeur, EPS-2011-243-ORG, http://repub.eur.nl/pub/26178 
 
Byington, E., Exploring Coworker Relationships: Antecedents and Dimensions of Interpersonal Fit,Coworker 
Satisfaction, and Relational Models, Promotor(s): Prof.dr. D.L. van Knippenberg, EPS-2013-292-ORG, 
http://repub.eur.nl/pub/41508 
 
Camacho, N.M., Health and Marketing: Essays on Physician and Patient Decision-Making, Promotor(s): 
Prof.dr. S. Stremersch, EPS-2011-237-MKT, http://repub.eur.nl/pub/23604 
 
Cancurtaran, P., Essays on Accelerated Product Development, Promotor(s): Prof.dr. F. Langerak & Prof.dr.ir. 
G.H. van Bruggen, EPS-2014-317-MKT, http://repub.eur.nl/pub/76074 
 
Caron, E.A.M., Explanation of Exceptional Values in Multi-dimensional Business Databases, Promotor(s): 
Prof.dr.ir. H.A.M. Daniels & Prof.dr. G.W.J. Hendrikse, EPS-2013-296-LIS, http://repub.eur.nl/pub/50005 
 
Carvalho, L. de, Knowledge Locations in Cities: Emergence and Development Dynamics, Promotor(s): Prof.dr. 
L. Berg, EPS-2013-274-S&E, http://repub.eur.nl/pub/38449 
 
Cox, R.H.G.M., To Own, To Finance, and To Insure - Residential Real Estate Revealed, Promotor(s): Prof.dr. D. 
Brounen, EPS-2013-290-F&A, http://repub.eur.nl/pub/40964 
 
Deichmann, D., Idea Management: Perspectives from Leadership, Learning, and Network Theory, Promotor(s): 
Prof.dr.ir. J.C.M. van den Ende, EPS-2012-255-ORG, http://repub.eur.nl/pub/31174 
 
Deng, W., Social Capital and Diversification of Cooperatives, Promotor(s): Prof.dr. G.W.J. Hendrikse, EPS-
2015-341-ORG, http://repub.eur.nl/pub/77449 
 
Desmet, P.T.M., In Money we Trust? Trust Repair and the Psychology of Financial Compensations, 
Promotor(s): Prof.dr. D. de Cremer, EPS-2011-232-ORG, http://repub.eur.nl/pub/23268 
 
Dollevoet, T.A.B., Delay Management and Dispatching in Railways, Promotor(s): Prof.dr. A.P.M. Wagelmans, 
EPS-2013-272-LIS, http://repub.eur.nl/pub/38241 
 
Doorn, S. van, Managing Entrepreneurial Orientation, Promotor(s): Prof.dr. J.J.P. Jansen, Prof.dr.ing. F.A.J. 
van den Bosch, & Prof.dr. H.W. Volberda, EPS-2012-258-STR, http://repub.eur.nl/pub/32166 
 
Douwens-Zonneveld, M.G., Animal Spirits and Extreme Confidence: No Guts, No Glory? Promotor(s): Prof.dr. 
W.F.C. Verschoor, EPS-2012-257-F&A, http://repub.eur.nl/pub/31914 
 
Duca, E., The Impact of Investor Demand on Security Offerings, Promotor(s): Prof.dr. 
A. de Jong, EPS-2011-240-F&A, http://repub.eur.nl/pub/26041 



89A_Erim van Oord_StandV5.job

Duyvesteyn, J.G. Empirical Studies on Sovereign Fixed Income Markets, Promotor(s): Prof.dr P.Verwijmeren & 
Prof.dr. M.P.E. Martens, EPS-2015-361-F&A, hdl.handle.net/1765/79033 

Duursema, H., Strategic Leadership: Moving Beyond the Leader-Follower Dyad, Promotor(s): Prof.dr. R.J.M. 
van Tulder, EPS-2013-279-ORG, http://repub.eur.nl/pub/39129 
 
Eck, N.J. van, Methodological Advances in Bibliometric Mapping of Science, Promotor(s): Prof.dr.ir. R. Dekker, 
EPS-2011-247-LIS, http://repub.eur.nl/pub/26509 
 
Elemes, A, Studies on Determinants and Consequences of Financial Reporting Quality, Promotor: Prof.dr. 
E.Peek, EPS-2015-354-F&A, http://hdl.handle.net/1765/79037 
 
Ellen, S. ter, Measurement, Dynamics, and Implications of Heterogeneous Beliefs in Financial Markets, 
Promotor(s): Prof.dr. W.F.C. Verschoor, EPS-2015-343-F&A, http://repub.eur.nl/pub/78191 
 
Eskenazi, P.I., The Accountable Animal, Promotor(s): Prof.dr. F.G.H. Hartmann, EPS-2015-355-F&A, 
http://repub.eur.nl/pub/78300 
 
Essen, M. van, An Institution-Based View of Ownership, Promotor(s): Prof.dr. J. van Oosterhout & Prof.dr. 
G.M.H. Mertens, EPS-2011-226-ORG, http://repub.eur.nl/pub/22643 
 
Evangelidis, I., Preference Construction under Prominence, Promotor(s): Prof.dr. S.M.J. van Osselaer, EPS-
2015-340-MKT, http://repub.eur.nl/pub/78202 
 
Faber, N., Structuring Warehouse Management, Promotor(s): Prof.dr. MB.M. de Koster, Prof.dr. Ale Smidts, 
EPS-2015-336-LIS, http://repub.eur.nl/pub/78603 
 
Fernald, K., The Waves of Biotechnological Innovation in Medicine: Interfirm Cooperation Effects and a 
Venture Capital Perspective, Promotor(s): Prof.dr. E.Claassen, Prof.dr. H.P.G.Pennings & Prof.dr. H.R. 
Commandeur, EPS-2015-371-S&E, http://hdl.handle.net/1765/79120 
 
Fourne, S.P., Managing Organizational Tensions: A Multi-Level Perspective on Exploration, Exploitation and 
Ambidexterity, Promotor(s): Prof.dr. J.J.P. Jansen & Prof.dr. S.J. Magala, EPS-2014-318-S&E, 
http://repub.eur.nl/pub/76075 
 
Gharehgozli, A.H., Developing New Methods for Efficient Container Stacking Operations, Promotor(s): 
Prof.dr.ir. M.B.M. de Koster, EPS-2012-269-LIS, http://repub.eur.nl/pub/37779 
 
Gils, S. van, Morality in Interactions: On the Display of Moral Behavior by Leaders and Employees, 
Promotor(s): Prof.dr. D.L. van Knippenberg, EPS-2012-270-ORG, http://repub.eur.nl/pub/38027 
 
Ginkel-Bieshaar, M.N.G. van, The Impact of Abstract versus Concrete Product Communications on Consumer 
Decision-making Processes, Promotor(s): Prof.dr.ir. B.G.C. Dellaert, EPS-2012-256-MKT, 
http://repub.eur.nl/pub/31913 
 
Gkougkousi, X., Empirical Studies in Financial Accounting, Promotor(s): Prof.dr. G.M.H. Mertens & Prof.dr. E. 
Peek, EPS-2012-264-F&A, http://repub.eur.nl/pub/37170 
 
Glorie, K.M., Clearing Barter Exchange Markets: Kidney Exchange and Beyond, Promotor(s): Prof.dr. A.P.M. 
Wagelmans & Prof.dr. J.J. van de Klundert, EPS-2014-329-LIS, http://repub.eur.nl/pub/77183 
 
Hekimoglu, M., Spare Parts Management of Aging Capital Products, Promotor: Prof.dr.ir. R. Dekker, EPS-
2015-368-LIS, http://hdl.handle.net/1765/79092 
 



89B_Erim van Oord_StandV5.job

Heij, C.V., Innovating beyond Technology. Studies on how management innovation, co-creation and business 
model innovation contribute to firm’s (innovation) performance, Promotor(s): Prof.dr.ing. F.A.J. van den Bosch 
& Prof.dr. H.W. Volberda, EPS-2012-370-STR, http://repub.eur.nl/pub/78651 
 
Heyde Fernandes, D. von der, The Functions and Dysfunctions of Reminders, Promotor(s): Prof.dr. S.M.J. van 
Osselaer, EPS-2013-295-MKT, http://repub.eur.nl/pub/41514 
  
Heyden, M.L.M., Essays on Upper Echelons & Strategic Renewal: A Multilevel Contingency Approach, 
Promotor(s): Prof.dr.ing. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2012-259-STR, 
http://repub.eur.nl/pub/32167 
 
Hoever, I.J., Diversity and Creativity, Promotor(s): Prof.dr. D.L. van Knippenberg, EPS-2012-267-ORG, 
http://repub.eur.nl/pub/37392 
 
Hogenboom, A.C., Sentiment Analysis of Text Guided by Semantics and Structure, Promotor(s):Prof.dr.ir. 
U.Kaymak & Prof.dr. F.M.G. de Jong, EPS-2015-369-LIS,  
http://hdl.handle.net/1765/79034 
 
Hogenboom, F.P., Automated Detection of Financial Events in News Text, Promotor(s): 
Prof.dr.ir. U. Kaymak & Prof.dr. F.M.G. de Jong, EPS-2014-326-LIS, http://repub.eur.nl/pub/77237 
 
Hollen, R.M.A., Exploratory Studies into Strategies to Enhance Innovation-Driven International 
Competitiveness in a Port Context: Toward Ambidextrous Ports, Promotor(s) Prof.dr.ing. F.A.J. Van Den Bosch 
& Prof.dr. H.W.Volberda, EPS-2015-372-S&E, hdl.handle.net/1765/78881 
 
Hoogendoorn, B., Social Entrepreneurship in the Modern Economy: Warm Glow, Cold Feet, Promotor(s): 
Prof.dr. H.P.G. Pennings & Prof.dr. A.R. Thurik, EPS-2011-246-STR, http://repub.eur.nl/pub/26447 
 
Hoogervorst, N., On The Psychology of Displaying Ethical Leadership: A Behavioral Ethics Approach, 
Promotor(s): Prof.dr. D. de Cremer & Dr. M. van Dijke, EPS-2011-244-ORG, http://repub.eur.nl/pub/26228 
 
Hout, D.H. van, Measuring Meaningful Differences: Sensory Testing Based Decision Making in an Industrial 
Context; Applications of Signal Detection Theory and Thurstonian Modelling, Promotor(s): Prof.dr. P.J.F. 
Groenen & Prof.dr. G.B. Dijksterhuis, EPS-2014-304-MKT, http://repub.eur.nl/pub/50387 
 
Houwelingen, G.G. van, Something To Rely On, Promotor(s): Prof.dr. D. de Cremer & Prof.dr. M.H. van Dijke, 
EPS-2014-335-ORG, http://repub.eur.nl/pub/77320 
 
Hurk, E. van der, Passengers, Information, and Disruptions, Promotor(s): Prof.dr. L.G. Kroon & Prof.mr.dr. 
P.H.M. Vervest, EPS-2015-345-LIS, http://repub.eur.nl/pub/78275 
 
Hytonen, K.A., Context Effects in Valuation, Judgment and Choice: A Neuroscientific Approach, Promotor(s): 
Prof.dr.ir. A. Smidts, EPS-2011-252-MKT, http://repub.eur.nl/pub/30668 
 
Iseger, P. den, Fourier and Laplace Transform Inversion with Applications in Finance, Promotor(s): Prof.dr.ir. 
R. Dekker, EPS-2014-322-LIS, http://repub.eur.nl/pub/76954 
 
Jaarsveld, W.L. van, Maintenance Centered Service Parts Inventory Control, Promotor(s): Prof.dr.ir. R. Dekker, 
EPS-2013-288-LIS, http://repub.eur.nl/pub/39933 
 
Jalil, M.N., Customer Information Driven After Sales Service Management: Lessons from Spare Parts Logistics, 
Promotor(s): Prof.dr. L.G. Kroon, EPS-2011-222-LIS, http://repub.eur.nl/pub/22156 
 
Kappe, E.R., The Effectiveness of Pharmaceutical Marketing, Promotor(s): Prof.dr. S. Stremersch, EPS-2011-
239-MKT, http://repub.eur.nl/pub/23610 



90A_Erim van Oord_StandV5.job

 
Karreman, B., Financial Services and Emerging Markets, Promotor(s): Prof.dr. G.A. van der Knaap & Prof.dr. 
H.P.G. Pennings, EPS-2011-223-ORG, http://repub.eur.nl/pub/22280 
 
Khanagha, S., Dynamic Capabilities for Managing Emerging Technologies, Promotor(s): Prof.dr. H.W. 
Volberda, EPS-2014-339-S&E, http://repub.eur.nl/pub/77319 
 
Kil, J., Acquisitions Through a Behavioral and Real Options Lens, Promotor(s): Prof.dr. H.T.J. Smit, EPS-2013-
298-F&A, http://repub.eur.nl/pub/50142 
 
Klooster, E. van ’t, Travel to Learn: the Influence of Cultural Distance on Competence Development in 
Educational Travel, Promotor(s): Prof.dr. F.M. Go & Prof.dr. P.J. van Baalen, EPS-2014-312-MKT, 
http://repub.eur.nl/pub/51462 
 
Koendjbiharie, S.R., The Information-Based View on Business Network Performance: Revealing the 
Performance of Interorganizational Networks, Promotor(s): Prof.dr.ir. H.W.G.M. van Heck & Prof.mr.dr. 
P.H.M. Vervest, EPS-2014-315-LIS, http://repub.eur.nl/pub/51751 
 
Koning, M., The Financial Reporting Environment: The Role of the Media, Regulators and Auditors, 
Promotor(s): Prof.dr. G.M.H. Mertens & Prof.dr. P.G.J. Roosenboom, EPS-2014-330-F&A, 
http://repub.eur.nl/pub/77154 
 
Konter, D.J., Crossing Borders with HRM: An Inquiry of the Influence of Contextual Differences in the Adoption 
and Effectiveness of HRM, Promotor(s): Prof.dr. J. Paauwe & Dr. L.H. Hoeksema, EPS-2014-305-ORG, 
http://repub.eur.nl/pub/50388 
 
Korkmaz, E., Bridging Models and Business: Understanding Heterogeneity in Hidden Drivers of Customer 
Purchase Behavior, Promotor(s): Prof.dr. S.L. van de Velde & Prof.dr. D. Fok, EPS-2014-316-LIS, 
http://repub.eur.nl/pub/76008 
 
Kroezen, J.J., The Renewal of Mature Industries: An Examination of the Revival of the Dutch Beer Brewing 
Industry, Promotor(s): Prof.dr. P.P.M.A.R. Heugens, EPS-2014-333-S&E, http://repub.eur.nl/pub/77042 
 
Kysucky, V., Access to Finance in a Cros-Country Context, Promotor(s): Prof.dr. L. Norden, EPS-2015-350-
F&A, http://repub.eur.nl/pub/78225 
 
Lam, K.Y., Reliability and Rankings, Promotor(s): Prof.dr. Ph.H.B.F. Franses, EPS-2011-230-MKT, 
http://repub.eur.nl/pub/22977 
 
Lander, M.W., Profits or Professionalism? On Designing Professional Service Firms, Promotor(s): Prof.dr. J. 
van Oosterhout & Prof.dr. P.P.M.A.R. Heugens, EPS-2012-253-ORG, http://repub.eur.nl/pub/30682 
 
Langhe, B. de, Contingencies: Learning Numerical and Emotional Associations in an Uncertain World, 
Promotor(s): Prof.dr.ir. B. Wierenga & Prof.dr. S.M.J. van Osselaer, EPS-2011-236-MKT, 
http://repub.eur.nl/pub/23504 
 
Legault-Tremblay, P.O., Corporate Governance During Market Transition: Heterogeneous responses to 
Institution Tensions in China, Promotor: Prof.dr. B. Krug, EPS-2015-362-ORG, http://repub.eur.nl/pub/78649 
 
Lenoir, A.S. Are You Talking to Me? Addressing Consumers in a Globalised World, Promotor(s) Prof.dr. S. 
Puntoni & Prof.dr. S.M.J. van Osselaer, EPS-2015-363-MKT, , http://hdl.handle.net/1765/79036 
 
Leunissen, J.M., All Apologies: On the Willingness of Perpetrators to Apologize, Promotor(s): Prof.dr. D. de 
Cremer & Dr. M. van Dijke, EPS-2014-301-ORG, http://repub.eur.nl/pub/50318 
 



90B_Erim van Oord_StandV5.job

Li, D., Supply Chain Contracting for After-sales Service and Product Support, Promotor(s): Prof.dr.ir. M.B.M. 
de Koster, EPS-2015-347-LIS, http://repub.eur.nl/pub/78526 
 
Li, Z., Irrationality: What, Why and How, Promotor(s): Prof.dr. H. Bleichrodt, Prof.dr. P.P. Wakker, & Prof.dr. 
K.I.M. Rohde, EPS-2014-338-MKT, http://repub.eur.nl/pub/77205 
 
Liang, Q.X., Governance, CEO Identity, and Quality Provision of Farmer Cooperatives, Promotor(s): Prof.dr. 
G.W.J. Hendrikse, EPS-2013-281-ORG, http://repub.eur.nl/pub/39253 
 
Liket, K., Why ’Doing Good’ is not Good Enough: Essays on Social Impact Measurement, Promotor(s): Prof.dr. 
H.R. Commandeur & Dr. K.E.H. Maas, EPS-2014-307-STR, http://repub.eur.nl/pub/51130 
 
Loos, M.J.H.M. van der, Molecular Genetics and Hormones: New Frontiers in Entrepreneurship Research, 
Promotor(s): Prof.dr. A.R. Thurik, Prof.dr. P.J.F. Groenen & Prof.dr. A. Hofman, EPS-2013-287-S&E, 
http://repub.eur.nl/pub/40081 
 
Lovric, M., Behavioral Finance and Agent-Based Artificial Markets, Promotor(s): Prof.dr. J. Spronk & 
Prof.dr.ir. U. Kaymak, EPS-2011-229-F&A, http://repub.eur.nl/pub/22814 
 
Lu, Y., Data-Driven Decision Making in Auction Markets, Promotor(s): Prof.dr.ir. H.W.G.M. van Heck & 
Prof.dr. W. Ketter, EPS-2014-314-LIS, http://repub.eur.nl/pub/51543 
 
Manders, B., Implementation and Impact of ISO 9001, Promotor(s): Prof.dr. K. Blind, EPS-2014-337-LIS, 
http://repub.eur.nl/pub/77412 
 
Markwat, T.D., Extreme Dependence in Asset Markets Around the Globe, Promotor(s): Prof.dr. D.J.C. van Dijk, 
EPS-2011-227-F&A, http://repub.eur.nl/pub/22744 
 
Mees, H., Changing Fortunes: How China’s Boom Caused the Financial Crisis, Promotor(s): Prof.dr. Ph.H.B.F. 
Franses, EPS-2012-266-MKT, http://repub.eur.nl/pub/34930 
 
Mell, J.N., Connecting Minds: On The Role of Metaknowledge in Knowledge Coordination, Promotor: 
Prof.dr.D.L. van Knippenberg, EPS-2015-359-ORG, http://hdl.handle.net/1765/78951 
 
Meuer, J., Configurations of Inter-firm Relations in Management Innovation: A Study in China’s 
Biopharmaceutical Industry, Promotor(s): Prof.dr. B. Krug, EPS-2011-228-ORG, http://repub.eur.nl/pub/22745 
 
Micheli, M.R., Business Model Innovation: A Journey across Managers’ Attention and Inter-Organizational 
Networks, Promotor(s): Prof.dr. J.J.P. Jansen, EPS-2015-344-S&E, http://repub.eur.nl/pub/78241 
 
Mihalache, O.R., Stimulating Firm Innovativeness: Probing the Interrelations between Managerial and 
Organizational Determinants, Promotor(s): Prof.dr. J.J.P. Jansen, Prof.dr.ing. F.A.J. van den Bosch, & Prof.dr. 
H.W. Volberda, EPS-2012-260-S&E, http://repub.eur.nl/pub/32343 
 
Milea, V., News Analytics for Financial Decision Support, Promotor(s): Prof.dr.ir. U. Kaymak, EPS-2013-275-
LIS, http://repub.eur.nl/pub/38673 
 
Naumovska, I., Socially Situated Financial Markets: A Neo-Behavioral Perspective on Firms, Investors and 
Practices, Promotor(s): Prof.dr. P.P.M.A.R. Heugens & Prof.dr. A. de Jong, EPS-2014-319-S&E, 
http://repub.eur.nl/pub/76084 
 
Nielsen, L.K., Rolling Stock Rescheduling in Passenger Railways: Applications in short term planning and in 
disruption management, Promotor(s): Prof.dr. L.G. Kroon, EPS-2011-224-LIS, http://repub.eur.nl/pub/22444 
 



91A_Erim van Oord_StandV5.job

Nuijten, A.L.P., Deaf Effect for Risk Warnings: A Causal Examination applied to Information Systems Projects, 
Promotor(s): Prof.dr. G.J. van der Pijl, Prof.dr. H.R. Commandeur & Prof.dr. M. Keil, EPS-2012-263-S&E, 
http://repub.eur.nl/pub/34928 
 
Osadchiy, S.E., The Dynamics of Formal Organization: Essays on bureaucracy and formal rules, Promotor(s): 
Prof.dr. P.P.M.A.R. Heugens, EPS-2011-231-ORG, http://repub.eur.nl/pub/23250 
 
Ozdemir, M.N., Project-level Governance, Monetary Incentives, and Performance in Strategic R&D Alliances, 
Promotor(s): Prof.dr.ir. J.C.M. van den Ende, EPS-2011-235-LIS, http://repub.eur.nl/pub/23550 
 
Peers, Y., Econometric Advances in Diffusion Models, Promotor(s): Prof.dr. Ph.H.B.F. Franses, EPS-2011-251-
MKT, http://repub.eur.nl/pub/30586 
 
Peters, M., Machine Learning Algorithms for Smart Electricity Markets, Promotor(s): Prof.dr. W. Ketter, EPS-
2014-332-LIS, http://repub.eur.nl/pub/77413 
 
Porck, J., No Team is an Island: An Integrative View of Strategic Consensus between Groups, Promotor(s): 
Prof.dr. P.J.F. Groenen & Prof.dr. D.L. van Knippenberg, EPS-2013-299-ORG, http://repub.eur.nl/pub/50141 
 
Porras Prado, M., The Long and Short Side of Real Estate, Real Estate Stocks, and Equity, Promotor(s): Prof.dr. 
M.J.C.M. Verbeek, EPS-2012-254-F&A, http://repub.eur.nl/pub/30848 
 
Poruthiyil, P.V., Steering Through: How organizations negotiate permanent uncertainty and unresolvable 
choices, Promotor(s): Prof.dr. P.P.M.A.R. Heugens & Prof.dr. S.J. Magala, EPS-2011-245-ORG, 
http://repub.eur.nl/pub/26392 
 
Pourakbar, M., End-of-Life Inventory Decisions of Service Parts, Promotor(s): Prof.dr.ir. R. Dekker, EPS-2011-
249-LIS, http://repub.eur.nl/pub/30584 
 
Pronker, E.S., Innovation Paradox in Vaccine Target Selection, Promotor(s): Prof.dr. H.J.H.M. Claassen & 
Prof.dr. H.R. Commandeur, EPS-2013-282-S&E, http://repub.eur.nl/pub/39654 
 
Protzner, S. Mind the gap between demand and supply: A behavioral perspective on demand forecasting, 
Promotor(s): Prof.dr. S.L. van de Velde & Dr. L. Rook, EPS-2015-364-LIS, http://repub.eur.nl/pub/79355 
 
Pruijssers, J.K., An Organizational Perspective on Auditor Conduct, Promotor(s): Prof.dr. J. van Oosterhout & 
Prof.dr. P.P.M.A.R. Heugens, EPS-2015-342-S&E, http://repub.eur.nl/pub/78192 
 
Retel Helmrich, M.J., Green Lot-Sizing, Promotor(s): Prof.dr. A.P.M. Wagelmans, EPS-2013-291-LIS, 
http://repub.eur.nl/pub/41330 
 
Rietveld, N., Essays on the Intersection of Economics and Biology, Promotor(s): Prof.dr. A.R. Thurik, Prof.dr. 
Ph.D. Koellinger, Prof.dr. P.J.F. Groenen, & Prof.dr. A. Hofman, EPS-2014-320-S&E, 
http://repub.eur.nl/pub/76907 
 
Rijsenbilt, J.A., CEO Narcissism: Measurement and Impact, Promotor(s): Prof.dr. A.G.Z. Kemna & Prof.dr. 
H.R. Commandeur, EPS-2011-238-STR, http://repub.eur.nl/pub/23554 
 
Rösch, D. Market Efficiency and Liquidity, Promotor: Prof.dr. M.A. van Dijk, EPS-2015-353-F&A, 
http://hdl.handle.net/1765/79121 
 
Roza-van Vuren, M.W., The Relationship between Offshoring Strategies and Firm Performance: Impact of 
innovation, absorptive capacity and firm size, Promotor(s): Prof.dr. H.W. Volberda & Prof.dr.ing. F.A.J. van den 
Bosch, EPS-2011-214-STR, http://repub.eur.nl/pub/22155 
 



91B_Erim van Oord_StandV5.job

Rubbaniy, G., Investment Behaviour of Institutional Investors, Promotor(s): Prof.dr. W.F.C. Verschoor, EPS-
2013-284-F&A, http://repub.eur.nl/pub/40068 
 
Schoonees, P. Methods for Modelling Response Styles, Promotor: Prof.dr P.J.F. Groenen, EPS-2015-348-MKT, 
http://repub.eur.nl/pub/79327 
 
Shahzad, K., Credit Rating Agencies, Financial Regulations and the Capital Markets, Promotor(s): Prof.dr. 
G.M.H. Mertens, EPS-2013-283-F&A, http://repub.eur.nl/pub/39655 
 
Sousa, M.J.C. de, Servant Leadership to the Test: New Perspectives and Insights, Promotor(s): Prof.dr. D.L. van 
Knippenberg & Dr. D. van Dierendonck, EPS-2014-313-ORG, http://repub.eur.nl/pub/51537 
 
Spliet, R., Vehicle Routing with Uncertain Demand, Promotor(s): Prof.dr.ir. R. Dekker, EPS-2013-293-LIS, 
http://repub.eur.nl/pub/41513 
 
Staadt, J.L., Leading Public Housing Organisation in a Problematic Situation: A Critical Soft Systems 
Methodology Approach, Promotor(s): Prof.dr. S.J. Magala, EPS-2014-308-ORG, http://repub.eur.nl/pub/50712 
 
Stallen, M., Social Context Effects on Decision-Making: A Neurobiological Approach, Promotor(s): Prof.dr.ir. 
A. Smidts, EPS-2013-285-MKT, http://repub.eur.nl/pub/39931 
 
Tarakci, M., Behavioral Strategy: Strategic Consensus, Power and Networks, Promotor(s): Prof.dr. D.L. van 
Knippenberg & Prof.dr. P.J.F. Groenen, EPS-2013-280-ORG, http://repub.eur.nl/pub/39130 
 
Teixeira de Vasconcelos, M., Agency Costs, Firm Value, and Corporate Investment, Promotor(s): Prof.dr. P.G.J. 
Roosenboom, EPS-2012-265-F&A, http://repub.eur.nl/pub/37265 
 
Troster, C., Nationality Heterogeneity and Interpersonal Relationships at Work, Promotor(s): Prof.dr. D.L. van 
Knippenberg, EPS-2011-233-ORG, http://repub.eur.nl/pub/23298 
 
Tsekouras, D., No Pain No Gain: The Beneficial Role of Consumer Effort in Decision-Making, Promotor(s): 
Prof.dr.ir. B.G.C. Dellaert, EPS-2012-268-MKT, http://repub.eur.nl/pub/37542 
 
Tuijl, E. van, Upgrading across Organisational and Geographical Configurations, Promotor(s): Prof.dr. L. van 
den Berg, EPS-2015-349-S&E, http://repub.eur.nl/pub/78224 
 
Tuncdogan, A., Decision Making and Behavioral Strategy: The Role of Regulatory Focus in Corporate 
Innovation Processes, Promotor(s): Prof.dr.ing. F.A.J. van den Bosch, Prof.dr. H.W. Volberda, & Prof.dr. T.J.M. 
Mom, EPS-2014-334-S&E, http://repub.eur.nl/pub/76978 
 
Uijl, S. den, The Emergence of De-facto Standards, Promotor(s): Prof.dr. K. Blind, EPS-2014-328-LIS, 
http://repub.eur.nl/pub/77382 
 
Vagias, D., Liquidity, Investors and International Capital Markets, Promotor(s): Prof.dr. M.A. van Dijk, EPS-
2013-294-F&A, http://repub.eur.nl/pub/41511 
 
Veelenturf, L.P., Disruption Management in Passenger Railways: Models for Timetable, Rolling Stock and Crew 
Rescheduling, Promotor(s): Prof.dr. L.G. Kroon, EPS-2014-327-LIS, http://repub.eur.nl/pub/77155 
 
Venus, M., Demystifying Visionary Leadership: In search of the essence of effective vision communication, 
Promotor(s): Prof.dr. D.L. van Knippenberg, EPS-2013-289-ORG, http://repub.eur.nl/pub/40079 
 
Vermeer, W., Propagation in Networks:The impact of information processing at the actor level on system-wide 
propagation dynamics, Promotor: Prof.mr.dr. P.H.M.Vervest, EPS-2015-373-LIS, http://repub.eur.nl/pub/79325 
 



92A_Erim van Oord_StandV5.job

 
 
Visser, V.A., Leader Affect and Leadership Effectiveness: How leader affective displays influence follower 
outcomes, Promotor(s): Prof.dr. D.L. van Knippenberg, EPS-2013-286-ORG, http://repub.eur.nl/pub/40076 
 
Vlam, A.J., Customer First? The Relationship between Advisors and Consumers of Financial Products, 
Promotor(s): Prof.dr. Ph.H.B.F. Franses, EPS-2011-250-MKT, http://repub.eur.nl/pub/30585 
 
Waltman, L., Computational and Game-Theoretic Approaches for Modeling Bounded Rationality, Promotor(s): 
Prof.dr.ir. R. Dekker & Prof.dr.ir. U. Kaymak, EPS-2011-248-LIS, http://repub.eur.nl/pub/26564 
 
Wang, T., Essays in Banking and Corporate Finance, Promotor(s): Prof.dr. L. Norden & Prof.dr. P.G.J. 
Roosenboom, EPS-2015-352-F&A, http://repub.eur.nl/pub/78301 
 
Wang, Y., Information Content of Mutual Fund Portfolio Disclosure, Promotor(s): Prof.dr. M.J.C.M. Verbeek, 
EPS-2011-242-F&A, http://repub.eur.nl/pub/26066 
 
Wang, Y., Corporate Reputation Management: Reaching Out to Financial Stakeholders, Promotor(s): Prof.dr. 
C.B.M. van Riel, EPS-2013-271-ORG, http://repub.eur.nl/pub/38675 
 
Weenen, T.C., On the Origin and Development of the Medical Nutrition Industry, Promotor(s): Prof.dr. H.R. 
Commandeur & Prof.dr. H.J.H.M. Claassen, EPS-2014-309-S&E, http://repub.eur.nl/pub/51134 
 
Wolfswinkel, M., Corporate Governance, Firm Risk and Shareholder Value, Promotor(s): Prof.dr. A. de Jong, 
EPS-2013-277-F&A, http://repub.eur.nl/pub/39127 
 
Yang, S., Information Aggregation Efficiency of Prediction Markets, Promotor(s): Prof.dr.ir. H.W.G.M. van 
Heck, EPS-2014-323-LIS, http://repub.eur.nl/pub/77184 
 
Zaerpour, N., Efficient Management of Compact Storage Systems, Promotor(s): Prof.dr.ir. M.B.M. de Koster, 
EPS-2013-276-LIS, http://repub.eur.nl/pub/38766 
 
Zhang, D., Essays in Executive Compensation, Promotor(s): Prof.dr. I. Dittmann, EPS-2012-261-F&A, 
http://repub.eur.nl/pub/32344 
 
Zwan, P.W. van der, The Entrepreneurial Process: An International Analysis of Entry and Exit, Promotor(s): 
Prof.dr. A.R. Thurik & Prof.dr. P.J.F. Groenen, EPS-2011-234-ORG, http://repub.eur.nl/pub/23422 



92B_Erim van Oord_StandV5.job



A
R

C
O

 V
A

N
 O

O
R

D
-  E

ssa
y

s o
n

 M
o

m
e

n
tu

m
 S

tra
te

g
ie

s in
 Fin

a
n

ce

ERIM PhD Series
Research in Management

E
ra

sm
u

s 
R

e
se

a
rc

h
 I

n
st

it
u

te
 o

f 
M

a
n

a
g

e
m

e
n

t
-

380

E
R

IM

D
e

si
g

n
 &

 l
a

yo
u

t:
 B

&
T

 O
n

tw
e

rp
 e

n
 a

d
vi

e
s 

 (
w

w
w

.b
-e

n
-t

.n
l)

  
  

P
ri

n
t:

 H
a

ve
k

a
  

 (
w

w
w

.h
a

ve
k

a
.n

l)ESSAYS ON MOMENTUM STRATEGIES IN FINANCE

This thesis discusses several aspects and possible improvements of equity momentum strate -
gies in finance. Equity momentum is the phenomenon that stocks that have recently outperform -
ed continue to outperform, while underperformers will continue to underperform. Equity strate -
gies that exploit this phenomenon by buying the recent outperformers and short-selling the
recent underperformers have proven to be profitable for investors. In his Nobel prize lecture in
2013 Eugene Fama referred to this performance of the momentum strategy as being the biggest
challenge for the efficient market hypothesis.

Nevertheless, equity momentum is also known for its crash risk, wiping out years of average
positive returns in just a few months, and the fact that its risk and returns vary over time. In this
thesis different hedging strategies are applied to reduce momentum’s crash risk and time varying
exposures without reducing its positive average returns. Furthermore, different recent improve -
ments of momentum are combined in a mean-variance optimization set-up. Optimization also re -
duces momentum’s crash risk and its time varying exposures. Moreover it improves momentum’s
Sharpe ratio for moderate transaction costs.

Finally, this thesis addresses momentum’s time varying risks and returns in a different way. A
Bayesian latent factor model where the number of latent factors is allowed to vary over time is
derived. Using the predictive likelihood approach this model is then applied to a residual industry
momentum strategy. In turbulent times, like the crisis that started in 2008, the Bayesian latent
factor model performs well in terms of risk and return characteristics.
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