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Chapter One

Introduction

M
edical imaging plays an indispensable role in clinical research, biomedical
research, and clinical care. It enables the physicians and researchers to in-
spect the anatomy and function of the human body, in a non- or minimally

invasive manner, and to detect and inspect pathologies. Medical imaging is there-
fore widely applied, e.g., in disease detection, diagnosis, therapy planning, guidance
of intervention and therapy monitoring and follow-up. Image analysis plays an in-
creasingly important role in medical imaging, e.g., for the automated extraction of
quantitive information relevant for supporting diagnosis or to construct anatomical
and functional models for therapy planning and guidance. Often multiple imaging
datasets are available, in which case image registration can be used to spatially relate
imaging data. Registration can for example be used to align image data sets acquired
at different time points (e.g., dynamic lung computed tomography (CT) imaging),
from different subjects (e.g., intersubject brain study)), or from different imaging
modalities (e.g. functional of the imaging of the heart with magnetic resonance imag-
ing (MRI) or single-photon emission computed tomography (SPECT) complemented
with anatomical imaging with CT). Figure 1.1 shows a simple example of multimodal
registration on MRI brain images using rigid transformation. The registration process
estimates a rigid transformation required to align the brain structures in both scans.
In this thesis, we present novel methods for performing such image registrations, with
the aim to improve accuracy, robustness, and speed compared with existing methods.

Register

x

y

Registered moving image
x

y

Fixed image
x

y

Moving image

Figure 1.1. Example of multimodal brain MRI registration.
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Transformation
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Interpolator

OptimizerCost function

Moving image

Fixed image

Figure 1.2. Framework for intensity-based image registration.

1.1 Background

There exists a large body of literature on image registration, and extensive surveys
on the subject can be found in literature [20,35,61,94,107]. Generally, feature-based
and intensity-based algorithms are distinguished, which use either high-level feature
information or raw image intensities, respectively. In this thesis, we restrict our
attention to intensity-based methods, since they are most widely used.

Intensity-based image registration is typically formulated as an optimization prob-
lem, which aims to find the optimal spatial transformation(s) by minimizing a cost
function that measures the dissimilarity between two or more images. Figure 1.2
provides a schematic overview of the registration framework, explained below.

Let F (x) ∶ ΩF ⊂ RD → R and M(x) ∶ ΩM ⊂ RD → R denote the D-dimensional
fixed image and moving image where x represents an image coordinate, and ΩF and
ΩM are the domains of the fixed and moving images, respectively. During the reg-
istration process, the moving image M(x) is gradually transformed to fit the fixed
image F (x). The transformation is defined as a mapping from the fixed image to
the moving image, i.e. T(µ,x) ∶ RP ×ΩF → ΩM where µ ∈ RP is the parameter vec-
tor of the transformation model and P is the number of transformation parameters.
T(µ,x) could be a translation, rigid, affine or nonrigid (e.g., B-spline) transforma-
tion model. Different nonrigid transformation models have been summarized in [36].
To acquire samples from the fixed image, i.e., voxel coordinates xi ∈ ΩF with corre-
sponding image values F (xi), an image sampler is employed. According to different
sampling strategies, a full set or a subset of samples is extracted from the image data.
Computation time can be reduced by using a subset of image data. In [47], a more de-
tailed description of different sampling strategies is provided. During the registration
procedure, the sampled coordinates xi ∈ ΩF are transformed by T(µ,xi) to obtain
the corresponding locations in the moving image M . The transformed coordinate is
usually located at an off-grid position. Therefore, an image interpolator is used to
calculate the intensity value at that location, M(T(µ,xi)), by interpolation from the
voxel values in its neighbourhood. Extensive surveys of interpolation methods are
presented in [54, 65, 105]. The quality of alignment is defined by a cost function C
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which measures the dissimilarity between the fixed image F (x) and the transformed
moving image M(T(µ,x)). Examples of C are the sum of squared differences (SSD),
normalized correlation coefficient (NCC), and mutual information [21]. For instance,
if SSD is used as similarity measure, the cost function C is formulated as:

C (µ,ΩF ) = 1

∣ΩF ∣ ∑
xi∈ΩF

(F (xi) −M (T(µ,xi)))2
. (1.1)

The registration problem is defined as:

µ̂ = arg min
µ
C (µ,ΩF ) . (1.2)

Since Eq. (1.2) has no closed-form solution for many realistic tasks, an iterative
optimization procedure is commonly applied to find the optimal set of parameters
µ̂. Well-known instances of such optimizers are gradient descent [73], quasi-Newton
[25], and nonlinear conjugate gradient [22]. Finally, in many registration methods a
multiresolution strategy (not shown in Figure 1.2) is adopted to first achieve rough
alignment, which is subsequently refined.

The choice of numerical optimization procedure has a major impact on the perfor-
mance of the image registration algorithm. Most registration algorithms use iterative
gradient-based techniques, in which the derivative of the cost function with respect
to the transformation parameters is used to define the search direction in parameters
space. We can define an iterative optimization strategy to find the optimal set of
parameters µ̂,

µk+1 = µk − γkdk, k = 1,2, . . . ,K, µ̂ = µK (1.3)

where dk represents the “optimization direction” at iteration k, and γk controls the
step size along dk. In gradient-based optimization methods, the definition of dk is
based on the derivative of the cost function with respect to µ, ∂C/∂µ.

In [48] the performances of eight optimization methods were evaluated for image
registration: gradient descent (with two different step size selection algorithms) [73],
quasi-Newton [25], nonlinear conjugate gradient [22], Kiefer-Wolfowitz [41], simulta-
neous perturbation [96], Robbins-Monro (RM) [82], and evolution strategy [32]. The
first four methods evaluated in [48] belong to the deterministic category where the
derivative of the cost function is calculated in a deterministic manner. The second
three methods are stochastic gradient descent (SGD) optimizers where only approx-
imated gradients of the cost function are needed during the optimization. The last
method can be considered as a stochastic optimizer but it does not depend on gra-
dient information of the cost function. Through a systematic comparison, the RM
optimizer achieved competitive performance among deterministic and stochastic can-
didates in terms of computation time, registration accuracy and robustness. In [48],
the RM method was implemented by using in each iteration a newly selected random
subset of image data to calculate the cost function gradient. This is in contrast to
the deterministic optimization methods, in which a fixed set of image samples is used
throughout the optimization. In this thesis we focus on the RM method. So far, SGD
methods based on the RM have been widely applied in many registration problems,
e.g., [7, 24,28,42,49,66,69,91,97,118].
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1.2 Stochastic gradient descent based image regis-
tration

Since we focus on SGD based image registration methods in this thesis, below we
introduce this type of registration algorithm in more detail. SGD optimization is
described by the following iterative update process:

µk+1 = µk − γkg̃k, (1.4)

where g̃k is a stochastic approximation of the cost function derivative ∂C/∂µ, evalu-
ated at the current recovered transformation parameters µk, and γk is a scalar gain
factor that controls the step size along g̃k. To guarantee the convergence of SGD
optimization, a common choice of γk is

γk = a/(k +A)α, (1.5)

where a > 0, A ≥ 1, and 0 < α ≤ 1 are user-defined parameters. Kushner and Yin [52]
proved that α = 1 gives a theoretically optimal rate of convergence when k →∞.

In [48], the stochastic approximation g̃k was calculated by evaluating ∂C/∂µ on
a small random subset Ω̃kF ⊂ ΩF of image samples, hence reducing the computation
time per iteration. This subset Ω̃kF should be randomly refreshed in each iteration k,
to make the approximation stochastic. We thus can write:

g̃k = g̃(µk, Ω̃kF ) = ∂C
∂µ

(µk, Ω̃kF ) ≈ ∂C
∂µ

(µk,ΩF ). (1.6)

For example, if we choose SSD as a cost function C (see Eq. (1.1)), g̃k is computed
as:

g̃k =
2

∣Ω̃kF ∣
∑

xi∈Ω̃k
F

(F (xi) −M (T(µk,xi)))(
∂T

∂µ
∣
(µk,xi)

)
T

( ∂M
∂x

∣
T(µk,xi)

) . (1.7)

Although the SGD-based registration has been widely used in medical image
analysis, there are still several aspects which restrict its application. First, local
minima in the cost function may cause the optimization to converge to a suboptimal
solution. This is a common problem in gradient-based optimization methods (not
only SGD) and is often the cause of misregistration. Second, in nonrigid image
registration tasks, the computation time remains a bottleneck in many applications,
especially in large scale clinical and population-based studies, or if real-time image
registration is required, e.g., for image guidance in interventions, etc. Third, for the
SGD optimization itself, the issue of selecting a good sequence of step size γk is also a
major challenge in practice [52]. If the step size γk is chosen too small, the minimizing
process of the cost function will be too slow and easily get stuck at an early stage. If
γk is selected too large, the noise during the stochastic optimization will become too
large and the reliability of the optimization cannot be guaranteed.
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1.3 Purpose

As shown in Figure 1.2, and as described above, the registration framework con-
sists of different processing components. The performance of each component may
directly affect the result of image registration in terms of registration accuracy, ro-
bustness, transformation smoothness and computation time. This thesis presents
several advances in stochastic (SGD-based) medical image registration, aiming to im-
prove registration accuracy, robustness and speed. Specifically we address differerent
multiresolution strategies, transformation models, and optimization methods.

1.4 Overview

Below we provide a brief outline of each chapter:

Chapter 2 Multiresolution strategies are commonly used in nonrigid registration to
avoid local minima in the optimization space. Generally, a step-by-step hier-
archical approach is adopted, in which the registration starts on a level with
reduced complexity (downsampled images, global transformations), then con-
tinuing to levels with increased complexity, until the finest level is reached. In
Chapter 2 we propose two alternative multiresolution strategies, in which differ-
ent resolution levels are considered simultaneously instead of subsequently. By
combining different multiresolution strategies for imaging data and transforma-
tion model, a 3×3 multiresolution scheme is defined, including both existing and
novel methods. In extensive experiments we evaluate the different existing hi-
erarchical methods, finding that some of the novel simultaneous multiresolution
approaches outperform conventional approaches.

Chapter 3 Instead of stacking B-spline transformation levels in a redundant fash-
ion, wavelet analysis leads to a unique decomposition of a signal into its coarse-
and fine-scale components. Potentially, this could be useful for image registra-
tion. Therefore, we investigated whether a wavelet-based free-form deformation
(FFD) model has advantages over other models for nonrigid image registration
in Chapter 3. We used a B-spline based wavelet and this wavelet is expressed as
a linear combination of B-spline basis functions. Derived from the original B-
spline function, this wavelet is smooth, differentiable, and compactly supported.
The basis functions of this wavelet are orthogonal across scales in Sobolev space.
The wavelet transformation is essentially a (linear) reparameterization of the B-
spline transformation model. Experiments show that wavelet based registration
leads to smoother deformation fields than traditional B-splines based registra-
tion, while at the same time achieving better accuracy.

Chapter 4 In most literature on FFD based registration, a B-spline transformation
model is the method of choice. B-splines become smoother with increasing
spline order. However, a higher-order B-spline requires a larger support region
involving more control points, which means higher computational cost. In gen-
eral, the third-order B-spline is considered as a good compromise between spline
smoothness and computational cost. A lower-order function is seldomly used to
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construct the transformation model for registration since it is less smooth. In
Chapter 4 we investigate whether lower-order B-spline functions can be utilized
for more efficient registration, while preserving smoothness of the deformation
by using a novel random perturbation technique in combination with an SGD
optimization scheme. Experiments demonstrate that the novel randomly per-
turbed free-form deformation (RPFFD) approach improves the registration ac-
curacy and transformation smoothness. Meanwhile, lower-order RPFFD meth-
ods reduce the computational cost substantially.

Chapter 5 Due to the image content and transformation model, there are usually
many local minima in the optimization landscape of a typical registration prob-
lem. To avoid local minima and reach the global optimum, smoothing the
cost function would be desirable. In Chapter 5, we investigate the use of a
randomized smoothing (RS) technique for the SGD based registration, to ef-
fectively smooth the cost function. In this approach, Gaussian noise is added
to the transformation parameters prior to computing the cost function gra-
dient in each iteration of the SGD optimizer. The RS technique is applied
to translation, rigid, affine and B-spline transformation models. Experiments
demonstrate the effectiveness of the novel RS technique for stochastic image
registration on translation, rigid, affine and nonrigid B-spline transformations
in terms of registration accuracy and robustness.

Chapter 6 In SGD based registration algorithms, the optimization step size is an
important parameter. With larger step sizes, the risk of getting stuck at the
early stage is reduced, and convergence rate might be accelerated, but precision
after a finite number of iterations is reduced. To mitigate the last effect, Polyak
and Juditsky have proposed an iterate averaging technique, and have proven
that the averaged sequence converges to its limit at an optimal rate under
certain assumptions [79]. Based on this technique, we developed an averaged
SGD (Avg-SGD) optimization method for image registration. We evaluated the
method in rigid and nonrigid image registration applications, and compared it
to state-of-the-art conventional SGD methods. Experiments on simulated 2D
brain MRI data and real 3D lung CT scans demonstrate the effectiveness of the
Avg-SGD method in terms of convergence rate and registration precision.

Chapter 7 We conclude the thesis with a brief summary, a discussion of general
strengths and limitations of our work, and suggestions for future research.



Chapter Two

Simultaneous multiresolution
strategies for nonrigid image

registration

Abstract — Multiresolution strategies are commonly used in the nonrigid regis-
tration to avoid local minima in the optimization space. Generally, a step-by-step
hierarchical approach is adopted, in which the registration starts on a level with
reduced complexity (downsampled images, global transformations), then continuing
to levels with increased complexity, until the finest level is reached. In this chapter
we propose two alternative multiresolution strategies for both the data model and
transformation model, in which different resolution levels are considered simultane-
ously instead of subsequently. By combining the different strategies for data and
transformation, we systematically define 3 × 3 multiresolution schemes, including
both existing and novel methods. Experiments on 10 pairs of CT lung datasets
showed that the best performing strategy resulted in a reduction of the upper quar-
tile of the mean target registration error from 2 mm to 1.5 mm, compared with the
conventionally hierarchical multiresolution method, while achieving smoother de-
formations. Experiments with intersubject registration of 18 3D T1-weighted MRI
brain scans confirmed that simultaneous multiresolution strategies produce more ac-
curate registration results (median of mean overlap increased from 0.55 to 0.57) and
smoother deformation fields than the traditionally hierarchical method. Evaluation
of robustness indicated that the largest differences in accuracy between methods are
observed for structures with a relatively large initial misalignment.

Based upon: 1. W Sun, W J Niessen, S Klein, “Hierarchical vs. simultaneous multiresolution
strategies for nonrigid image registration”, In Biomedical Image Registration 2012, Lecture Notes in
Computer Science, pp. 60-69.
2. W Sun, W J Niessen, M van Stralen, S Klein, “Simultaneous multiresolution strategies for
nonrigid image registration”, IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 4905-
4917, 2013.
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2.1 Introduction

N
onrigid image registration is critical to many tasks in medical image analysis
[20, 35, 61, 107]. In this work we focus on intensity-based registration with a
parametric transformation model (using B-splines for example) [85]. In such

methods, the optimal parameter values of the transformation model are determined
by an iterative numerical optimization procedure, which maximizes the similarity
between the images. It is a well-known problem that undesired local minima may exist
in the optimization space. Also, when the number of parameters is very large (i.e.,
a high transformation complexity is allowed in the nonrigid registration), the image
information alone may not be sufficient to clearly indicate the optimum. Therefore,
nonrigid image registration is often considered as an ill-posed optimization problem
[27].

To guide optimization in nonrigid registration, various multiresolution strategies
have been proposed, which utilize a coarse-to-fine optimization. An extensive survey
of different multiresolution strategies is provided by Lester and Arridge [55]. In this
survey these strategies are classified into three groups: increasing data complexity,
increasing warp complexity, and increasing model complexity. One or more of these
strategies are used in many of the existing methods. For example, in case of a B-spline
transformation model [85], commonly the coarsest B-spline grid is first applied to the
most blurred image in the initial resolution level of the registration. In subsequent
resolution levels, the B-spline control point grid is refined and a less blurred image is
used, until the finest grid spacing is reached and the original non-smoothed image is
used.

In comparison to such a step-by-step hierarchical strategy, simultaneous multires-
olution strategies could have advantages. If the low and high resolution levels of data
are combined to guide the optimization, large-scale and small-scale image information
can be considered simultaneously. Similarly, a simultaneous multiresolution strategy
for the transformation model could be employed to distribute the whole deformation
to the different resolution levels of the transformation model. Ideally, large deforma-
tions should be represented by a coarser transformation level, and remaining smaller
deformations should be captured by the finer transformation levels. A number of
methods with simultaneous multiresolution ideas have been proposed. Van Stralen
and Pluim [116] encoded the image dissimilarity from different resolutions simultane-
ously into a directed acyclic graph (DAG), and then used dynamic programming to
find the best subgraph of DAG. Somayajula et al. [92] considered image features from
different resolution levels simultaneously, by using a feature vector derived from mul-
tiresolution information at each voxel in the registration. Most recently, Shi et al. [90]
added a L1 −norm sparsity term to a multi-level free-form deformation (FFD) model
to capture motion discontinuities more robustly. However, to the best of our knowl-
edge there is no literature which extensively compares the performances of different
mutiresolution strategies.

In this chapter, we define three multiresolution concepts, named Hierarchical (H),
Simultaneous (S) and Hierarchically Simultaneous (HS), respectively. These concepts
can be implemented both for the image data (D) and for the transformation model
(T). Table 2.1 provides an overview of the resulting strategies, which will be explained
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in detail in Section 6.2.

Table 2.1. Multiresolution strategies for image data and transformation. 3×3 com-
binations of multiresolution methods can be constructed based on these multires-
olution strategies, which will result in TH-DH, TH-DS, TH-DHS, TS-DH, TS-DS,
TS-DHS, THS-DH, THS-DS, and THS-DHS registration methods (see Section 6.2
for precise explanation).

� Image data

– DH: start with the most blurred image, then a less blurred image, and
so on, until the original image resolution;

– DS: use the entire scale stack of different resolutions at once;

– DHS: start with the most blurred image, then use the most blurred
and a less blurred images, and so on, until the entire scale stack is
used.

� Transformation model

– TH: start with the coarsest transformation level, next phase use a finer
transformation, and so on, until the finest transformation is used;

– TS: optimize the coarse and fine deformations simultaneously;

– THS: start with the coarsest transformation level, then add a finer
scale while still optimizing the coarsest scale, and so on, until all
scales are being optimized simultaneously.

Based on these strategies, we can construct 3 × 3 multiresolution combinations.
In addition, we propose two slightly different ways to implement the DS and DHS
strategies (‘Sum’ and ‘Union’). Excluding duplicate methods (see Section 2.2.3), this
results in a total of 10 different methods, which were evaluated and compared in this
study. The traditional multiresolution method which is still most commonly used,
is naturally included in this systematic study and can hence effectively be compared
with the other multiresolution strategies.

We implemented all methods using the FFD with B-splines [85]. FFD has been
successfully applied to many registration applications [36, 122]. Compared to other
registration methods, FFD produced competitive results [44,69]. In our experiments,
we used publicly available CT (computed tomography) lung and T1-weighted MRI
(magnetic resonance imaging) brain data in the evaluation study. The performances
of the different multiresolution strategies were evaluated in terms of both registration
accuracy and smoothness of transformation. On lung data, we used mean of target
registration error (mTRE) based on widely distributed landmarks as the measure of
the registration accuracy. To measure the accuracy of the brain data, overall mean
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overlap (MO) of 84 manually annotated labels was used. Because many small tissues
are labeled in these brain data, the overall mean overlap is a reliable measure of
registration accuracy [83]. On both lung and brain data, the determinant of the spatial
Jacobian (DSJ) was used to measure the smoothness of the estimated transformation.
A preliminary version of this work was reported in [98], but only five lung data sets
were used to evaluate the performance, and the results were only evaluated in terms
of accuracy.

This chapter is organized as follows. Section 6.2 explains the newly proposed
multiresolution methods. Section 2.3 provides some implementation details. In Sec-
tion 6.3, experiments are conducted to evaluate the performances of different com-
binations of multiresolution strategies. The experimental results are presented in
Section 6.4. In Section 6.5 the experimental results are interpreted and discussed.
Finally, the conclusions are drawn in the last section.

2.2 Method

We consider D-dimensional fixed and moving images F (x) ∶ ΩF ⊂ RD → R and
M(x) ∶ ΩM ⊂ RD →R, where x ∈ RD represents the image coordinates.

In nonrigid image registration, a nonrigid transformation Tµ is gradually recov-
ered by minimizing the dissimilarity C between the fixed image and the deformed
moving image:

µ̂ = arg min
µ
C(F,M ○Tµ), (2.1)

where µ denotes the parameter vector of the transformation model T, and Tµ(x) ∶
ΩF → ΩM . The dimensionality of the optimization space, which is reflected by the
length of the vector µ, is usually very high in nonrigid registration. To simplify the
notation, we denote Mµ(x) =M ○Tµ(x) =M(Tµ(x)).

2.2.1 Multiresolution Strategies for Image Data

To generate multiresolution data, we convolve the original fixed and moving images
with a Gaussian kernel s of varying widths:

⎧⎪⎪⎨⎪⎪⎩

F (x, s) = Gs ∗ F (x)
M(x, s) = Gs ∗M(x)

, (2.2)

where Gs denotes the Gaussian kernel, with standard deviation σs, which decreases
with increasing s.

Using the above notation, we can introduce different multiresolution strategies
for the image data by making the cost function C dependent on the resolution level
p of the registration process. In the following equations, we define the cost functions
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that correspond to DH, DS and DHS:

DH: Cp = C(F (x, p),Mµ(x, p)), (2.3)

DS:

⎧⎪⎪⎨⎪⎪⎩

Sum: Cp = ∑Ss=1 C(F (x, s),Mµ(x, s)),
Union: Cp = C(⋃Ss=1(F (x, s),Mµ(x, s))),

(2.4)

DHS:

⎧⎪⎪⎨⎪⎪⎩

Sum: Cp = ∑ps=1 C(F (x, s),Mµ(x, s)),
Union: Cp = C(⋃ps=1(F (x, s),Mµ(x, s))),

(2.5)

where S denotes the number of resolution levels, p ∈ [1, S] represents the current
resolution level of the registration process, Cp is the cost function at registration level
p, and the Sum and Union represent two different ways to integrate image information
from multiple resolution levels. Equation (2.3) reflects that in the traditionally used
hierarchical strategy DH in which only one image resolution level is considered at
a time in each registration resolution level p. In DS, all image resolution levels are
used simultaneously. In DHS, the image resolution levels up to level p are used
simultaneously.

If multi-level data are considered simultaneously, as in DS and DHS, it has to be
decided how to integrate the information from the different image scales into a single
cost function. In this work, we investigate two straightforward approaches, called Sum
and Union. In the Sum definition, the cost function is calculated for each resolution
level separately, and the overall cost is defined as their sum. In the Union defini-
tion, a single cost function is calculated by pooling the fixed-moving intensity pairs
(F (x, s),Mµ(x, s)) from the coarse and fine resolution levels. For sum of squared
intensity differences (SSD), the Sum and Union definitions become equivalent. How-
ever, if normalized correlation coefficient (NCC) or mutual information (MI) is chosen
as similarity metric, the Sum and Union approaches lead to different definitions of Cp.
Figure 2.1 illustrates the DH, DS and DHS strategies, when three resolution levels
are used.

2.2.2 Multiresolution Strategies for the Transformation

A FFD transformation model using B-splines [85] can be defined as follows:

Tµ(x) = x + ∑
xi∈Ix

ciβ
r((x − xi)/g), (2.6)

where xi represents a control point of the B-spline grid, Ix is the set of control points
within a compact support region of the B-splines around x, βr represents the rth
order multidimensional B-spline polynomial, g is the spacing between grid points,
ci is the B-spline coefficient vector of control point xi, and the parameter vector µ
is formed by the elements of all ci (µ = {ci}xi∈I). By making the definition of the
transformation model dependent on the resolution level p of the registration, we can
define the conventional hierarchical strategy TH, the simultaneous multiresolution
strategy TS, and the hierarchically simultaneous multiresolution strategy THS. In TS
and THS a dependence on s is also introduced, in order to couple the image scale to
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1p = 2p = 3p =

DH

DS

DHS

s=1

s=2

s=3

s=1

s=2

s=3

s=1

s=2

s=3

Figure 2.1. Multiresolution strategies of data: the most blurred, less blurred and
original images are marked in blue, orange and black, respectively. p represents the
resolution level of the registration process. The resolution level of data becomes
finer with increasing scale s.

the transformation complexity:

TH: Tp
µ(x, s) = Tp

µ(x) = x + ∑
xi∈I

p
x

cpi β
r((x − xi)/g(p)), (2.7)

TS: Tp
µ(x, s) = x +

s

∑
l=1

∑
xi∈Ilx

cliβ
r((x − xi)/g(l)), (2.8)

THS: Tp
µ(x, s) = x +

min(s,p)

∑
l=1

∑
xi∈Ilx

cliβ
r((x − xi)/g(l)), (2.9)

where Tp
µ(x, s) represents the transformation at registration level p for a given point

(x, s) in the scale stack defined by (5.11). l ∈ [1, S] denotes the B-spline grid level. cpi
and cli are the B-spline coefficient vectors at levels p and l, with corresponding grid
spacings g(p) and g(l); the grid spacing g(l) reduces with increasing l.

With TH, the transformation is upsampled after each resolution (i.e., cpi are de-

termined based on cp−1
i such that Tp

µ(x, s) = Tp−1
µ̂ (x, s) at the start of level p) and

only the currently finest level is being optimized, so µ at level p consists of the ele-
ments of cpi . In TS the transformation model is independent of registration level p.
The whole transformation is a summation of multiple B-spline models with different
grid spacings; the parameter vector µ consists of all elements of cli, ∀l ∈ [1, S]. With
THS, the transformation model is defined as a sum of multiple B-spline models; at
resolution level p, the parameter vector µ consists of all elements of cli, ∀l ∈ [1, p].
The THS model was called hierarchically simultaneous because it considers multiple
B-spline control point resolutions simultaneously, but the finer B-spline models are
only used in the later resolution levels. Figure 2.2 illustrates the TH, TS and THS
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1p = 2p = 3p =

TH

TS

THS

s=1

s=2

s=3

s=1

s=2

s=3

s=1

s=2

s=3

Figure 2.2. Multiresolution strategies of transformation: the coarsest, finer and
finest B-spline grid are marked in blue, orange and black, respectively. The resolu-
tion level of transformation becomes finer with increasing scale s.

strategies, in the case of three resolution levels. In Figure 2.2, the coarsest, finer and
finest B-spline grid are marked in blue, orange and black, respectively. In the TS row,
for example, we can see that the coarsest, finer and finest transformation levels are
used simultaneously in every registration phase p.

It should be noted that simultaneously using the B-spline basis functions of the
different resolution levels leads to an overcomplete representation in the cases TS
and THS. This could make the registration problem ill-posed, theoretically. The
next subsection explains how we can still obtain a relatively well-posed optimization
problem, thanks to selective coupling of transformation resolution levels and image
resolution levels.

2.2.3 Combinations of Multiresolution Strategies

We can construct 3 × 3 combinations of multiresolution methods based on the three
different multiresolution strategies for both data and transformation. Figure 2.3 shows
all of these combinations when S = 3. The traditionally hierarchical multiresolution
strategy is the combination of TH and DH. The coupling of transformation and image
resolution levels is visualized by the combination of ‘grids’ and ‘signal blobs’ in the
figure. Invalid combinations (to be discussed below) are marked by a red cross in the
upper right corner.

Figure 2.3 demonstrates that the TH-DS method optimizes the current trans-
formation level p using all data levels [p,S]. In a new registration level p + 1, the
transformation will be initialized as: Tp+1

µ (x, s) = Tp
µ̂(x, s), and only one level of

transformation works in one registration level. Differently, in TS-DS all levels of
data and transformation are optimized simultaneously in every registration level. In
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THS-DS, with its hierarchically simultaneous transformation model, the coarser trans-
formation levels [1, p − 1] continue being optimized in later registration levels [p,S],
and the final transformation, which is applied to the finest resolution level of data, is
the accumulative version of all resolution levels of transformation.

In Section 2.2.2 it was mentioned that the overcompleteness of the multi-level
B-spline model used in TS and THS could lead to an ill-posed optimization problem.
However, in combination with DS and DHS this problem is alleviated, by the coupling
of each transformation resolution level with a different (set of) image resolution levels.
For example, in TS-DS, the optimization problem is relatively well-posed, because the
fine resolution transformation only affects the fine resolution image data, while the
coarse resolution transformation affects both coarse and fine resolution levels of the
image.

The problem is further alleviated by restricting that transformation level l (with
the B-spline model with grid spacing g(l)) can only be applied to the finer image
resolutions s ∈ [l, S]. Through this rule, the unexpected transformation by combining
a finer grid spacing with a coarser resolution level of data will be eliminated. In
Figure 2.3, these invalid combinations are marked with the red crosses in the upper
right corners. As a result of this restriction, the combination of TH and DHS becomes
equivalent to TH-DH. In addition, TS-DH and TS-DHS are equivalent to THS-DH
and THS-DHS, respectively. To reflect this, we introduce the shorthand notation
T(H)S-DHS to refer to the equivalent methods TS-DHS and THS-DHS, and similar
notation for the other pairs of equivalent methods.

Only in the case T(H)S-DH, the problem remains ill-posed, since in the final
registration stage p = 3, only fine resolution image data is taken into consideration,
while all three transformation levels are being optimized simultaneously.

The combinations with DS and DHS strategies can be further distinguished by
Sum and Union definitions which are introduced in Section 2.2.1. Therefore, we finally
have the following 10 different multiresolution combinations: TH-DH, TH-DS (Sum
and Union), TS-DH, TS-DS (Sum and Union), TS-DHS (Sum and Union), THS-DS
(Sum and Union). Table 2.2 provides an overview of these combinations.

Table 2.2. Combinations of Multiresolution Strategies
DH DS DHS

TH a b∗ a
TS c d∗ e∗

THS c f∗ e∗

The equivalent combinations are represented by the same alphabets, and the asterisk
(*) indicates that Sum and Union definitions are possible.

2.3 Implementation details

The open source image registration package elastix [47] was used to implement our
work. Similarity measures SSD and NCC were used as dissimilarity term C on lung
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and brain data, respectively. For the transformation model, a third order (r = 3) B-
spline model was utilized. Trilinear interpolation was used to interpolate the moving
image. We used the adaptive stochastic gradient descent optimizer (ASGD) [45] as
optimization method, which uses only a small, randomly selected, subset of samples
(x, s) from the entire image in each optimization iteration. To facilitate the joint
optimization of the B-spline coefficients of different levels in TS and THS, a diagonal
preconditioning matrix B was defined to scale the parameters corresponding to the
different transformation levels:

µk+1 = µk − αkB
∂C
∂µ

(µk), (2.10)

where k is the current iteration number of optimization. µk+1 and µk represent the
new and current parameter vector, respectively, ∂C

∂µ
(µk) denotes the derivative of the

cost function with respect to µ, αk is a scalar gain factor that determines the step
size [45], and B is a diagonal matrix diag([b1,1b1,1b1,1 . . . bl,lbl,lbl,l . . . bS,SbS,SbS,S])
with bl,l = ε−(S−l). Based on initial trial-and-error experiments on 2D artificial images,
we set ε = 4. The matrix B works as a preconditioning strategy [5], which can enhance
the convergence rate of optimization. Intuitively, control points corresponding to
coarse scales are updated less aggressively, because they affect a larger portion of the
image, and thus have a larger effect on the cost function.

With ASGD as optimization method, the computational cost per iteration k is
dominated by the cost of calculating ∂C

∂µ
, which is linearly dependent on the number

of samples used. Thus, if we choose the number of samples the same for each mul-
tiresolution method, the computational costs do not differ between DH, DS and DHS.
The cost of transforming one sample, Tp

µ(x, s), scales with s and min(s, p) in TS and
TSH, respectively, compared with TH.

To investigate whether the differences in the performance of the multiresolution
methods are due to our specific choice of optimization method, we performed a subset
of experiments with a nonlinear conjugate gradient (NCG) [73] optimization method
instead of the ASGD. In previous work [48] this state-of-the-art deterministic opti-
mizer was shown to perform well in comparison with a wide range of other optimiza-
tion methods. In [48] it was also found that stochastic gradient descent optimizers,
such as ASGD, are more robust in the absence of a regularization term than conven-
tional deterministic methods such as quasi-Newton and NCG. For fair comparison,
experiments with NCG were therefore performed with a regularization term added
to the cost function. As a regularization term, we chose the common bending energy
(BE), as defined in [48]. The weighting value λ for the regularization term is an
important parameter, and was tested in a wide range (see next section). Note that,
since NCG is a deterministic optimization method, samples (x, s) are drawn once at
the beginning of optimization, and not refreshed in every iteration. Naturally, the
number of samples should be chosen considerably higher for NCG than for ASGD.

2.4 Experiments

In this section, the lung and brain imaging data are described first. Then, measures
for registration accuracy and transformation smoothness are introduced in order to
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evaluate the performances of different multiresolution combinations.

2.4.1 Lung data

DIR-Lab [15] provides 10 3D chest CT scans with 300 manually annotated landmarks
in the lung structure. Table 3.1 provides a description of these data. Lung masks were
created to limit the registration to the lung region [66]. The masks were created by
thesholding, 3D-6-neighborhood connected component analysis, and morphological
closing operation using a spherical kernel with a diameter of nine voxels.

Table 2.3. Description of DIR-Lab lung data.

Case No. Dimensions Voxelsize (mm) Initial mTRE(mm)
1 256 × 256 × 94 0.97 × 0.97 × 2.5 3.89
2 256 × 256 × 112 1.16 × 1.16 × 2.5 4.34
3 256 × 256 × 104 1.15 × 1.15 × 2.5 6.94
4 256 × 256 × 99 1.13 × 1.13 × 2.5 9.83
5 256 × 256 × 106 1.10 × 1.10 × 2.5 7.48
6 512 × 512 × 128 0.97 × 0.97 × 2.5 10.89
7 512 × 512 × 136 0.97 × 0.97 × 2.5 11.03
8 512 × 512 × 128 0.97 × 0.97 × 2.5 14.99
9 512 × 512 × 128 0.97 × 0.97 × 2.5 7.92
10 512 × 512 × 120 0.97 × 0.97 × 2.5 7.30

For all cases, the exhale phase (moving image) is registered to the inhale phases
(fixed image). In all test cases, S = 4 resolution levels were used. The image scale
stacks were generated using {σ1, . . . , σS} = {4,2,1,0.5} voxels. In the experiments the
finest grid spacing g(S) was set to 8mm, 10mm, 13mm, or 16mm, and the coarsest
grid spacing g(1) was consistently set to 64mm, isotropically. Based on the changing
g(S) and fixed g(1), the grid schedule for four transformation levels was calculated as
{g(1), g(S)(g(1)/g(S))2/3, g(S)(g(1)/g(S))1/3, g(S)}. For example, the grid schedule
for g(s) = 8mm is {64,32,16,8}. For each optimization iteration, the number of
random samples was set to 16000 for all combinations. Note that with the DS and
DHS approaches these samples are spread over multiple levels of the image scale
stack, whereas with DH all samples are placed in the current active level s = p. The
number of iterations was set to 2000 per registration phase. Because the moving
and fixed images are from the same patient, the intensity change between different
breathing phases is limited. Therefore, SSD is used as the similarity metric to drive
the registration. Since SSD is the similarity metric, the Sum and Union definitions,
which are introduced in Section 2.2.1, become equivalent. Thus the registration results
by the Sum and Union definitions are the same.

To evaluate the dependence on the optimization method, the experiments with
CT lung data were repeated with the NCG optimizer. In this case, we used 100000
samples, and limited the number of iterations to 100 per registration phase. Through
initial trial-and-error experiments, the optimum value of the weighting value λ for
the BE regularization term was estimated to be around 105 − 107, depending on the
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setting of g(S) and the particular multiresolution strategy. Therefore, we tested all
methods for a range of λ ∈ {103,104, . . . ,109}.

2.4.2 Brain data

The Internet Brain Segmentation Repository (IBSR v2.0) contains 18 T1-weighted
MRI 3D brain scans, which were also used to evaluate our multiresolution strategies.
These brain scans have been positionally transformed into Talairach space [102] and
have been processed by the CMA (Center for Morphometric Analysis) bias field cor-
rection routines [44]. The volumes of these images are 256× 256× 128mm. The voxel
sizes are divided into three groups (8: 0.94×0.94×1.5, 6: 0.84×0.84×1.5, 4: 1×1×1.5).

To evaluate the performance of different multiresolution strategies, intersubject
registration was carried out on these data, which resulted in 18 × 17 test cases.
As in the lung experiment, S = 4 resolution levels were used. The image scale
stacks were generated using {σ1, . . . , σS} = {4,2,1,0.5} voxels as well. Different
from the lung experiments, the finest grid spacing g(S) was set to 8mm and 5mm,
isotropically, and the grid schedule for four transformation levels was calculated as
{8 × g(S),4 × g(S),2 × g(S), g(S)}. For brain data, these are common settings. For
each optimization iteration, the number of random samples was set to 16000 for all
combinations as in the lung experiments, and the number of iterations was also set
to 2000 per registration phase. Since global intensity differences between moving
and fixed data may be present, NCC, which can handle linear intensity changes, was
used as the similarity metric to drive the registration. As described in Section 2.2.1,
the Sum and Union definitions will produce different cost functions when NCC is
used. Therefore, the registration results from different definitions could be different.
Because these data sets were acquired at different laboratories, and the ages of pa-
tients range from 7 to 71, the anatomical difference could be large between patients.
Therefore, initial affine registration was used to roughly align the data first, and then
these initialized results were utilized as the input data for the nonrigid registration
experiments with different multiresolution strategies.

2.4.3 Evaluation measures

In our evaluation, both registration accuracy and transformation smoothness were
considered. The mean of target registration error (mTRE) and segmentation over-
lap were utilized to compare the registration accuracy of multiresolution registration
methods. Moreover, the determinant of the spatial Jacobian DSJ was used to evaluate
the smoothness of the spatial Jacobian of the deformation.

2.4.3.1 mTRE

Since 300 manually marked landmarks were provided with the lung data, mTRE [115]
can be used to evaluate the registration accuracy:

mTRE = 1

n

n

∑
i=1

∥Tµ̂(pFi ) − pMi ∥, (2.11)
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where pFi and pMi represent the corresponding ground truth landmarks in fixed and
moving images, respectively. n = 300 is the number of landmarks in all test cases.

2.4.3.2 Overlap

In the brain data, 84 manually labeled regions are available. With these labels we
can use mean overlap (MO) [44] to measure the registration accuracy:

Mean Overlap = 2
∑r ∣Mr⋂Fr ∣

∑r(∣Mr ∣ + ∣ Fr ∣) , (2.12)

where r represents a certain label, and the MO is calculated over all labels.

2.4.3.3 Smoothness of deformation field

Besides the registration accuracy, the smoothness of transformation is an important
measure to evaluate the performance of a registration method. In this work, DSJ is
used to measure the smoothness of the transformation. For a given spatial location
x̃, DSJ can be calculated as:

DSJ = ∣∂Tµ

∂x
(x̃)∣ . (2.13)

If DSJ > 1, the deformation around x̃ is a local expansion. A local contraction
happens when 0 < DSJ < 1. If DSJ is negative, a folding region exists at that
location. In a folding region, the topological consistency is not preserved. In a smooth
transformation field, the fluctuation of DSJ will be relatively small. Therefore, we
utilized the standard deviation of DSJ to represent the smoothness of the deformation
field.

2.5 Results

In this section, we present the results of the different multiresolution methods on both
lung and brain data.

2.5.1 Lung data

Figure 2.4 shows the registration results of all multiresolution combinations on the
lung data using the ASGD optimizer. As described in Section 2.2.3, TH-DHS, TS-DH
and TS-DHS are actually equivalent to TH-DH, THS-DH and THS-DHS, respectively.
So the results of TH-DH, THS-DH and THS-DHS were assigned to their equivalent
combinations. Herewith, we facilitate the comparison among different multiresolution
strategies of data and transformation in a general view. From Figure 2.4, it can
be observed that the traditional TH-DH approach has relatively worse performance
than TH-DS and THS-DS in most cases. Especially in test cases c4, c6 and c8-9,
TH-DH yields unsatisfactory results. In c4, c6-7, and c9, the registration accuracy of
TH-DH deteriorates rapidly with decreasing grid spacing of the B-spline model. In
addition, the results by TS-DS are unstable when compared to the relatively consistent
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performance of TH-DS and THS-DS. Heinrich et al. [34] used a similar experimental
setting and the same lung data as in this study. If we compare the best results in both
researches, the simultaneous registration methods produced more accurate results on
7 lung cases. In the chapter by Metz et al. [66], the first five cases were also used in
the evaluation of their registration method. Compared with their results, our results
are comparable.

A box plot of the mTRE values using the ASGD optimizer for each multiresolution
method on different test cases is shown in Figure 2.5 (a). For each method, the
corresponding box plot covers all 4 different g(S). It can be seen that TH-DS and
THS-DS generate better registration accuracy than the other methods over all test
cases, especially looking at the upper quartile and the number of outliers. The upper
quartiles of mTRE produced by TH-DS, THS-DS, and TH-DH are 1.46mm, 1.47mm
and 2.05mm, respectively.

Figure 2.5 (b) shows a box plot of the standard deviation of DSJ for each multires-
olution method on different test cases using the ASGD optimizer. We can find that
THS-DS generates the smoothest transformations over all test cases. To visualize the
properties of the resulting transformation field, a color-encoded visualization method
was used in Figure 2.6. For each voxel on the selected slice, the corresponding DSJ

value was calculated. In Figure 2.6 the dark blue and red colors indicate least smooth
local contraction and expansion, respectively. This example shows that THS-DS pro-
duces the smoothest transformation field. The other multiresolution combinations
result in less smooth transformation fields, and TS-DS generates the most extreme
transformation field.

To make a further comparison among the different multiresolution combinations,
a two dimensional ranking of the 9 methods using the ASGD optimizer was made
for each test case. 10 × 4 test cases are generated by 10 lung data pairs with 4
different final grid spacings. The average rank of each method over all 10 × 4 test
cases is presented in Figure 2.7. In Figure 2.7 the X-axis indicates the ranking in
registration accuracy, and the Y-axis represents the ranking in smoothness. Here, the
lower ranking number means better performance. We can see that THS-DS has a
relatively better registration accuracy and smoothness than the other combinations.
Although the registration accuracy of TH-DS is a little better than THS-DS, its
smoothness only reaches the fifth ranking number among all 9 methods. Compared to
the other multiresolution combinations, TS-DS and traditional TH-DH(S) approaches
have relatively worse average ranking numbers in both registration accuracy and
smoothness. TS-DH and its equivalent THS-DH perform still better than TH-DH(S)
and TS-DS, but not as good as the combination THS-DS.

Figure 2.5 (c) shows a box plot of the mTRE values for all multiresolution meth-
ods using the NCG optimizer and the BE regularization term. For each method, the
corresponding box plot covers 4 different g(S) and 7 different λ values. Figure 2.5 (d)
shows the box plots of the standard deviation of DSJ . Similar as with ASGD, TH-DS
and THS-DS generate better registration accuracy (especially less outliers) than the
other methods, and THS-DS generates the smoothest transformations over all test
cases. Please note that the scales of the vertical axes are different, because the NCG
method with low regularization weight resulted in higher registration errors. Also in
previous work [48] it was found that stochastic gradient descent optimizers, such as
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Figure 2.5. Performances of accuracy and smoothness by all multiresolution meth-
ods on lung data. An asterisk (*) behind the label indicates the result is significantly
different (paired Wilcoxon signed rank test, p < 0.05) from TH-DH(S): (a) mTRE
by ASGD optimizer. Each box plot represents the mTRE values by each multireso-
lution method on 10 patients using 4 different g(S); (b) standard deviation of DSJ

using ASGD optimizer. Each box plot represents the standard deviation of DSJ

by each multiresolution method on 10 patients using 4 different g(S); (c) mTRE
of all multiresolution methods using NCG optimizer and BE term. Each box plot
represents the mTRE values by each multiresolution method on 10 patients using
4 different g(S) and 7 different λ; (d) standard deviation of DSJ using NCG op-
timizer and BE term. Each box plot represents the standard deviation of DSJ by
each multiresolution method on 10 patients using 4 different g(S) and 7 different λ.

ASGD, are more robust in the absence of a regularization term than conventional
deterministic methods such as quasi-Newton and NCG. For the highest weight of the
regularization term, all multiresolution strategies converged to an almost identical re-
sult, with relatively low accuracy, since any local nonrigid deformations are penalized
heavily.

Paired Wilcoxon signed rank tests [37] were performed to verify the statistical
significance of the registration results on lung data. The paired comparisons were
carried out between the TH-DH method and the other methods on registration accu-
racy and smoothness. In Figure 2.5, the methods that produced significantly different
(p < 0.05) results from TH(S)-DH are marked by asterisks.

To investigate in more detail in which cases the various methods lead to different
results, we plotted initial registration accuracy (before nonrigid registration) versus
final registration accuracy (after nonrigid registration), inspired by the robustness
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TH
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THS

DH DS DHS

Figure 2.6. An example DSJ map of the transformation fields by different mul-
tiresolution strategies on lung data from c9 using ASGD optimizer.

plots in [108]. Figure 2.8 (a) and (b) show the robustness analysis based on the regis-
tration results by ASGD optimizer, and NCG optimizer with BE regularization term,
respectively. The X-axes of Figure 2.8 represent the initial Euclidean distance (IED)
for each pair of corresponding landmarks, binned for every 5mm for a clearer display.
The Y-axes of Figure 2.8 show the registered Euclidean distance (RED) for each pair
of corresponding landmarks. Within each bin, the IED values and the resulting RED
values were averaged for each registration method. Figure 2.8 (a) and (b) demon-
strate that there is no clear correlation between the initial misregistration and the
resulting registration error for TH-DS and THS-DS. In Figure 2.8 (a), the robustness
of TH-DS and THS-DS are consistently good for various IEDs. However, we can find
that TS-DS, TH-DH(S), T(H)S-DH, and T(H)S-DHS become relatively unstable for
some landmark pairs with which are initially far away (i.e. have a high IED). It can
be found that the TS-DS method suffers most from this problem. Figure 2.8 (b)
confirms these results for the NCG optimizer with BE regularization.
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Figure 2.7. Two dimensional averaged ranking number of the 9 multiresolution
methods in 40 test cases using the ASGD optimizer.
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Figure 2.8. Robustness analysis, plotting Euclidean distance (in mm) between
corresponding landmarks before and after nonrigid registration for: (a) registra-
tion using the ASGD optimizer; (b) registration using the NCG optimizer and BE
regularization term with λ ∈ {103, . . . ,109}.

2.5.2 Brain data

Figure 2.9 shows the box plot of 18×17 MO values of different multiresolution methods
with finest grid spacing g(S) of 8mm and 5mm. We can see that the registration
accuracy of all methods is improved after g(S) was decreased to 5mm. Different from
the results in the lung experiments, TS-DS produced the best registration accuracy
on the brain data. Similar to the results in the lung experiments, TH-DS and THS-
DS obtained consistently better registration accuracy than the other multiresolution
methods except TS-DS. From Figure 2.9 we can also notice that the Sum and Union
definitions gave similar results.

The IBSR data in this study have been used in [44] as well. Although the ex-
perimental settings and accuracy measures are different between the two studies, the
registration accuracy presented in this work is comparable with the accuracy reported
in [44].
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The smoothness of the transformation is compared in Figure 2.10, which shows
box plots of the standard deviation of DSJ . It can been seen that THS-DS produces
the smoothest transformation. While giving the highest registration accuracy, the
smoothness of TS-DS performs much worse. In Figure 2.10 we can also notice that
THS produces smoother results than TH and TS.

As on lung data, we performed paired Wilcoxon signed rank tests for determin-
ing the statistical significance of the registration results on brain data. The paired
comparisons were carried out between the TH-DH method and the other methods on
registration accuracy and smoothness. In Figures 9 and 10, the methods that pro-
duced significantly different (p < 0.05) results from TH-DH are marked by asterisks.

A two dimensional ranking of the 14 multiresolution methods was made to further
compare these combinations for each g(S). In Figure 2.11, the X-axis represents the
ranking in registration accuracy, and the Y-axis indicates the ranking in smoothness.
As in Figure 2.7, a lower ranking number means better performance. We can see that
the Sum and Union definitions of TS-DS produce the best ranking in registration
accuracy. However, the smoothness of TS-DS is unsatisfactory. If both registration
accuracy and smoothness are considered as the criterion to measure registration per-
formance, THS-DS has a relatively better performance than the other methods in
Figure 2.11(b). Although the registration accuracy of TH-DS is a little better than
THS-DS, its smoothness is almost the worst among the 14 multiresolution methods.
Compared to the other multiresolution methods, the TH-DH(S) approach produces
relatively worse average ranking numbers in both registration accuracy and smooth-
ness. TS-DH and its equivalent THS-DH perform slightly better than TH-DH(S), but
still have a relatively high ranking number for smoothness, compared with THS-DS.

To investigate the relation between the overlap of each brain structure before
nonrigid registration and after nonrigid registration, a robustness analysis was per-
formed for each g(S). The X-axes of Figure 2.12 (a) and (b) represent the initial
overlap (IO) value for each brain structure before the nonrigid registration, binned
into bins of 0.05 for clearer display. The Y-axes of Figure 2.12 (a) and (b) represent
the registered overlap (RO) value after the nonrigid registration for each correspond-
ing brain label. Within each bin, the IO values and the corresponding RO values were
averaged for each registration method. The figure shows that the largest differences
in registration accuracy between multiresolution methods are observed for structures
with relatively low initial overlap. Again, the differences between methods are more
pronounced for g(S) = 5mm than for g(S) = 8mm.

2.6 Discussion

Multiple multiresolution strategies for both the data and the transformation model
in FFD image registration were defined and evaluated in this work. In two appli-
cations, we found that DS usually generates better registration accuracy than DH
and DHS. Compared to the traditionally hierarchical multiresolution strategy DH,
simultaneous multiresolution registration has the ability to consider the coarser and
finer resolutions simultaneously, so that global and local information can be combined
to avoid local minima. In this way, more accurate and robust registrations are ob-



26 2 Simultaneous multiresolution strategies for nonrigid image registration

tained. For the multiresolution strategy of the transformation, THS often produced
smoother transformations than TH and TS. In the traditionally hierarchical multires-
olution strategy of transformation, the finer transformation level is initialized with
the coarser transformation level, and only one level of transformation is being opti-
mized at once. In the THS strategy, the coarser transformation levels continue being
optimized, which apparently has a regularizing effect on the optimization. Similar to
our former work [98], Shi et al. [90] have proven that a multi-level FFD can recover
the discontinuous motion better than the traditionally hierarchical FFD.

The registration accuracy of TS-DS on the brain data is quite different from the
results on the lung data. In the TS-DS method, the fine-resolution data and transfor-
mation levels are active from the start of registration. This creates a chance for a large
deformation to be captured by a finer transformation level rather than a more suit-
able coarser transformation level. The consistently higher standard deviation of DSJ

produced by TS-DS confirms that this likely leads to less smooth deformation fields.
The small vessels in the lung scans can be influenced by this unsmooth transformation
field, which is reflected by the higher mTRE values for the anatomical landmarks that
are used to measure the registration accuracy. Rohlfing [83] has shown that overlap
scores can still be very high even for some discontinuous transformation fields. Al-
though the IBSR brain segmentations consist of 84 relatively small regions, this might
still not be sufficiently detailed to detect the irregularities in the deformation field.

As shown in the results of registration accuracy for the lung data, the TH-DH(S)
and TS-DS methods are sensitive to the spacing of B-spline control points. In many
cases, the results by TH-DH and TS-DS deteriorate rapidly with a decrease in g(S).
Compared to TH-DH and TS-DS, TH-DS and THS-DS are more robust to the change
of grid spacing.

Except for the registration accuracy by TS-DS, the experiments on the brain
data confirm the results on the lung data. Since NCC is used as similarity metric,
the Sum and Union definitions result in different registration methods. In Figure 2.9,
the Union definition generated slightly better results than the Sum definition, but the
differences are very small. THS-DS still produces the smoothest transformations on
brain data.

The robustness analyses on both lung and brain data indicate that most differ-
ences between multiresolution methods are observed for structures with a relatively
large initial misalignment.

Experiments on lung data with an alternative optimization method (NCG) showed
similar relative differences in performance between the various multiresolution meth-
ods. These consistent results suggest that the better performances of simultaneous
methods are relatively independent from the selection of optimizer.

If registration methods have similar registration accuracy, the one which results in
a smoother transformation would be more attractive. To obtain a smoother transfor-
mation, a regularization term is often added to the cost function to obtain a smoother
and more plausible transformation. Because the optimal weighting value of the reg-
ularization term could change for different image data or even different regions in a
certain image, determining the weighting factor of the regularization term is a chal-
lenging problem. There is much literature [58, 76, 81] which discusses how to choose
this weighting value. However, it might be more preferable to obtain regularized
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results without regularization term. In all our experiments, THS-DS generates the
smoothest transformation field with competitive accuracy among the multiresolution
strategies. With different patients and different g(S), the results of THS-DS are con-
sistently smoother than other combinations. THS-DS continues optimizing the coarse
transformation level in all registration phases, and the final transformation is the sum
of different resolution levels of B-spline grids. In this way, large deformations are ex-
pected to be recovered and represented by the coarse transformation level. Then, the
remaining detailed deformation can be captured by subsequent finer transformation
levels.

As introduced in Section 2.3, we fixed ε to 4 in all experiments, which was based
on initial tests on 2D artificial images. This value may not be optimal for 3D images
as the affected volume per B-spline control point changes by a factor of 8 between
adjacent scales. Also the use of a regularization may change the optimal value of ε.
In future work, it could be interesting to derive a data-driven method for setting ε.
Furthermore, as this study demonstrates the potential of using simultaneous multires-
olution strategies, this opens the door for future research on deriving more advanced
combination strategies, optimally combining the information from multiple scales.

2.7 Conclusion

In this chapter, different multiresolution strategies for data and transformation model
in nonrigid registration were presented and compared. CT lung and T1-weighted MRI
brain data were used to evaluate the multiresolution strategies in terms of accuracy
and deformation smoothness. The multiresolution methods using a simultaneous
data (DS) strategy had better registration accuracy than hierarchical (DH) and hi-
erarchically simultaneous data (DHS) strategies. For the smoothness of the transfor-
mation field, the hierarchically simultaneous transformation (THS) strategy produced
smoother transformation than the hierarchical (TH) and simultaneous strategies (TS).
Summarizing, a simultaneous multiresolution strategy of data can enhance the reg-
istration accuracy, and a hierarchically simultaneous transformation strategy leads
to smoother transformations. Analyses of robustness indicated that most differences
between multiresolution methods were observed for structures with a relatively large
initial misalignment, which corresponds to intuition. Considering different applica-
tions, registration accuracy and smoothness may have different importance. There-
fore, we cannot conclude which combination is to be preferred in general. However,
for both registration accuracy and smooth transformation, the method with hierar-
chically simultaneous transformation and simultaneous data strategies (THS-DS) is
a better choice than the traditionally hierarchical strategy. All of the multiresolu-
tion combinations discussed in this work will be available as part of the open source
registration package elastix for public application.
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Figure 2.9. Performance comparison of different multiresolution methods using
overall mean overlap: (a) g(S) = 8mm; (b) g(S) = 5mm. An asterisk (*) behind the
method label indicates the result is significantly different (paired Wilcoxon signed
rank test, p < 0.05) from TH-DH(S).



2.7 Conclusion 29
S
ta
n
d
ar
d
d
ev
ia
ti
o
n
o
f
D
S
J

(a)

(b)

S
ta
n
d
ar
d
d
ev
ia
ti
o
n
o
f
D
S
J

TH
DH DS DHS

TS
DH* DS DHS

THS
DH* DS DHS

Union* Sum* Union Sum Union* Sum* Union* Sum* Union* Sum*

TH
DH DS DHS

TS
DH* DS DHS

THS
DH* DS DHS

Union Sum Union* Sum* Union* Sum* Union* Sum* Union* Sum*

Figure 2.10. Standard deviation of DSJ in 306 test cases: (a) g(S) = 8mm;
(b) g(S) = 5mm. An asterisk (*) behind the method label indicates the result is
significantly different (paired Wilcoxon signed rank test, p < 0.05) from TH-DH(S).
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Figure 2.11. Two dimensional averaged ranking number of the 14 multiresolution
methods in 306 test cases: (a) g(S) = 8mm; (b) g(S) = 5mm.
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Figure 2.12. Robustness analysis, plotting initial overlap (before nonrigid regis-
tration) versus registered overlap (after nonrigid registration) of individual brain
structures, for (a) registration with g(S) = 8mm; (b) registration with g(S) = 5mm.



Chapter Three

Wavelet based free-form
deformations for nonrigid

registration

Abstract — In nonrigid registration, deformations may take place on the coarse
and fine scales. For the conventional B-splines based free-form deformation (FFD)
registration, these coarse- and fine-scale deformations are all represented by basis
functions of a single scale. Meanwhile, wavelets have been proposed as a signal
representation suitable for multi-scale problems. Wavelet analysis leads to a unique
decomposition of a signal into its coarse- and fine-scale components. Potentially, this
could therefore be useful for image registration. In this work, we investigate whether
a wavelet-based FFD model has advantages for nonrigid image registration. We use
a B-splines based wavelet, as defined by Cai and Wang [13]. This wavelet is expressed
as a linear combination of B-spline basis functions. Derived from the original B-
spline function, this wavelet is smooth, differentiable, and compactly supported.
The basis functions of this wavelet are orthogonal across scales in Sobolev space.
This wavelet was previously used for registration in computer vision, in 2D optical
flow problems [119], but it was not compared with the conventional B-spline FFD in
medical image registration problems. An advantage of choosing this B-splines based
wavelet model is that the space of allowable deformation is exactly equivalent to
that of the traditional B-spline. The wavelet transformation is essentially a (linear)
reparameterization of the B-spline transformation model. Experiments on 10 CT
lung and 18 T1-weighted MRI brain datasets show that wavelet based registration
leads to smoother deformation fields than traditional B-splines based registration,
while achieving better accuracy.

Based upon: W Sun, W J Niessen, S Klein, “Wavelet based free-form deformations for nonrigid
registration”, In SPIE Medical Imaging, pp. 90343N, 2014.
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3.1 Introduction

T
he classical B-splines based FFD registration [85] is a popular method for
nonrigid medical registration. Compared with other registration approaches,
B-spline FFD produces competitive results in different applications. In most

implementations, a hierarchical strategy is used, in which the detailed (small scale)
deformations are gradually estimated and added to the previously estimated global
(large scale) deformations. The large and small deformations are mixed together in
one B-spline transformation level, since they are all represented by B-spline basis
functions with a uniform grid spacing.

For a multi-scale signal, wavelet analysis has been proposed to decompose the
signal into different scales in a unique way. The wavelet decomposition could therefore
be useful in nonrigid registration. Since there are numerous wavelet models proposed
in the past, a suitable choice of desirable wavelet has to be made. As a nonrigid
transformation model, the wavelet should be differentiable, compactly supported and
orthogonal between different scales. Cai and Wang [13] proposed a B-splines based
wavelet model which fulfills our requirements in Sobolev space. This wavelet model
was previously used for 2D optical flow problems in computer vision [119]. The Cai-
Wang wavelet model is a linear combination of three cubic B-spline basis functions.
Therefore, a fair comparison is possible between this wavelet and the original B-
splines based FFD registration. The aim of this work is to investigate whether a
wavelet-based FFD model has advantages for nonrigid medical image registration.

(a) (b)

Figure 3.1. Redundant B-spline and non-redundant wavelet representations: (a)
B-spline; (b) wavelet.

3.2 Method

3.2.1 Background on B-spline wavelet

The FFD model is usually constructed based on the cubic B-splines φ(x) [85]. Fig-
ure 4.1 (a) shows the curve of φ(x) in the one-dimensional case. For any s, k ∈ Z and
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0 ≤ s ≤ S, we can define the scaling and translation of φ(x) as

φs,k(x) = φ(x/gs − k), (3.1)

where s represents the resolution level of one B-splines based FFD transformation
level, and k represents the control points on a regular grid. The grid spacing gs =
2S−sgS becomes finer as s increases, and gS is the finest spacing which is usually
chosen by the user.

Let I denote a finite interval, i.e., I = [0, L] , where L ∈ Z+. Then the Sobolev
space H2(I) which contains all continuous functions f(x) with finite energy norm up
to the second derivative can be described as

H2(I) = {f(x) ∣ x ∈ I, ∥f (i)∥2 < ∞, i = 0,1,2}, (3.2)

where H2(I) is also a Hilbert space with the inner product

⟨f, g⟩ = ∫
I
f ′′(x)g′′(x)dx, (3.3)

thus, ∥f∥ = ⟨f, f⟩(1/2) provides a norm for H2(I). For each resolution level s,{φs,k(x) ∣
0 ≤ k ≤ L/gs}, spans a closure Vs using norm ∥ ⋅ ∥. In previous research [13], it has
been proven that Vs forms a multiresolution analysis (MRA) for H2(I),

V0 ⊂ V1 ⊂ . . . ⊂ VS ⊂ . . . ⊂H2(I). (3.4)

Equation (3.4) shows that the conventional B-spline basis function has the ability to
represent a function in H2(I) in an MRA way.

To construct a wavelet decomposition of H2(I), Cai and Wang [13] presented a
wavelet function ψ(x) corresponding to φ(x),

ψ(x) = −3

7
φ(2x) + 12

7
φ(2x − 1) − 3

7
φ(2x − 2), (3.5)

where ψ(x) is orthogonal to φ(x) in H2(I), and φ(x) serves as the so-called “scale”
function corresponding to the wavelet function ψ(x). Figure 4.1 (b) plots the curve of
ψ(x), showing that ψ(x) is symmetrical and compactly supported. Similar to φ(x),
{ψs,k(x) = ψ(x/gs − k) ∣ 0 ≤ k ≤ L/gs} spans a closure Ws. It has been proven that
Ws is the orthogonal complement of Vs in Vs+1 under the inner product (3.3) (i.e.,
Vs+1 = Vs ⊕Ws) and H2(I) = V0 ⊕s∈Z+ Ws.

Based on the wavelet decomposition, any one-dimensional function f(x) ∈H2(I)
can be approximated as closely as needed by a function fS(x) ∈ VS = V0 ⊕W0 ⊕W1 ⊕
⋅ ⋅ ⋅⊕WS−1 for a sufficiently large S, and fS(x) has a unique orthogonal decomposition
using basis functions φ0(x) and {ψs,k(x) ∣ 0 ≤ k ≤ L/gs,0 ≤ s ≤ S − 1}.

Since higher dimensional data rather than one-dimensional data are used in med-
ical registration, the tensor product is used to extend the one-dimensional wavelet
approximation to two, three or even higher dimensions.
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Figure 3.2. One-dimensional cubic B-spline function and its corresponding wavelet
function: (a) φ(x); (b) ψ(x) marked in black, and its three components are (red:
− 3

7
φ(2x), green: 12

7
φ(2x − 1), blue: − 3

7
φ(2x − 2)).

3.2.2 Application to image registration

In this section, we provide the two different definitions of the FFD transformation
model: 1) using B-splines, and 2) using wavelets. For a 3D registration, let Φ(x) ∶
R3 → R denote the three-dimensional tensor product of (3.1), φ(x1)φ(x2)φ(x3) where
x = (x1, x2, x3), and Φs,ξ(x) = Φ(x/gs − ξ) where ξ represent control points on a 3D
grid. Then, the B-splines based FFD can be defined as follows

TS
µ(x) = x + ∑

ξ∈Z3

cS,ξΦS,ξ(x), (3.6)

where c are the coefficient vectors for control points ξ, and the parameter vector µ
is formed by the elements of all coefficient vectors (µ = {cS,ξ ∣ ξ ∈ Z3}).

Let Ψ(x) ∶ R3 → R7 denote a vector function which consists of seven different
three-dimensional tensor products of scale and wavelet basis functions on a given
resolution level,

Ψ(x) = [φ(x1)φ(x2)ψ(x3),
φ(x1)ψ(x2)φ(x3),
ψ(x1)φ(x2)φ(x3),
ψ(x1)ψ(x2)φ(x3),
ψ(x1)φ(x2)ψ(x3),
φ(x1)ψ(x2)ψ(x3),
ψ(x1)ψ(x2)ψ(x3)]. (3.7)

Then, the wavelet FFD is defined as

TS
ν(x) = x + ∑

ξ∈Z3

d0,ξΦ0,ξ(x) +
S−1

∑
s=0

7

∑
i=1

∑
ξ∈Z3

eis,ξΨ
i
s,ξ(x), (3.8)
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Table 3.1. Description of DIR-Lab lung scans.

Subject No. Voxelsize Dimensions (mm) Initial mTRE(mm)
1 0.97 × 0.97 × 2.5 256 × 256 × 94 3.89
2 1.16 × 1.16 × 2.5 256 × 256 × 112 4.34
3 1.15 × 1.15 × 2.5 256 × 256 × 104 6.94
4 1.13 × 1.13 × 2.5 256 × 256 × 99 9.83
5 1.10 × 1.10 × 2.5 256 × 256 × 106 7.48
6 0.97 × 0.97 × 2.5 512 × 512 × 128 10.89
7 0.97 × 0.97 × 2.5 512 × 512 × 136 11.03
8 0.97 × 0.97 × 2.5 512 × 512 × 128 14.99
9 0.97 × 0.97 × 2.5 512 × 512 × 128 7.92
10 0.97 × 0.97 × 2.5 512 × 512 × 120 7.30

where ξ again represent control points of the FFD grid, i is the index of vector Ψ(x), d
and e are the coefficient vectors of the scale (Φ0,ξ) and wavelet (Ψi

s,ξ) basis functions,

and the parameter vector ν is formed as ν = {d0,ξ,e
i
0,ξ, . . . ,e

i
S−1,ξ ∣ ξ ∈ Z3,0 ≤ s ≤

S − 1, i = 1 . . .7}.
Since the considered Cai-Wang wavelet is expressed in terms of the original B-

spline basis function, it follows by substitution of Eq. (3.5) in Eq. (3.8) that the FFD
models from Eq. (4.6) and Eq. (3.8) span the same space of deformations. This is
also expressed by the equality VS = V0 ⊕W0 ⊕W1 ⊕ ⋅ ⋅ ⋅ ⊕WS−1. This means ν can be
written as a linear transformation of µ

ν = Pµ, (3.9)

where the matrix P follows from the substitution. Therefore, the wavelet FFD model
is essentially a (linear) reparameterization of the original B-spline FFD model, which
has a preconditioning effect on the optimization procedure. An interesting property is
also that with the proposed wavelet model, solutions of large norm ∥ν∥ will tend to be
less smooth than solutions with small norm. For a conventional B-spline FFD model,
this does not always hold. For example, ∥µ∥ will be large for a global translation of
the image.

3.3 Experiments

3.3.1 Image data

Ten 3D chest CT scans of DIR-Lab [15] with 300 manually annotated landmarks in the
lung structure were utilized to evaluate the B-spline and wavelet FFD registrations.
For the lung data, the exhale phase was registered to the inhale phase. Table 3.1
provides an overview of these scans. To limit the registration to the lung region,
lung masks were created by thesholding, 3D-6-neighborhood connected component
analysis, and morphological closing operation using a spherical kernel with a diameter
of nine voxels.
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Besides the lung data, 18 T1-weighted MRI 3D brain scans of Internet Brain
Segmentation Repository (IBSR v2.0) [103] were used to evaluate the B-spline and
wavelet FFD registrations. These brain scans have been positionally transformed into
Talairach space [102] and have been processed by the CMA (Center for Morphometric
Analysis) bias field correction routines [16]. The voxel sizes are divided into three
groups (8: 0.94 × 0.94 × 1.5, 6: 0.84 × 0.84 × 1.5, 4: 1 × 1 × 1.5). The volumes of these
images are 256 × 256 × 128mm. For the brain data, 18 × 17 inter-subject registrations
were tested.

3.3.2 Registration settings

The open source image registration package elastix [47] was used to implement this
work. The sum of squared intensity differences (SSD) and the normalized correlation
coefficient (NCC) were used as the (dis)similarity metrics on lung and brain data,
respectively. We used a nonlinear conjugate gradient optimizer (NCG) [22,48] as the
optimization method. The number of iterations was limited to 100 per registration
phase. A common hierarchical multiresolution strategy was employed, increasing S in
each registration phase, and thereby the degrees of freedom of the FFD models TS

µ(x)
and TS

ν(x). Note that in the wavelet model, the transformation levels 0 ≤ s ≤ S−1 are
optimized simultaneously. In all experiments, resolution levels s = [0,3] were used.
The image scale stacks were generated using {σ0, . . . , σS} = {4,2,1,0.5} voxels. In the
CT lung experiments, the finest grid spacing gS was set to 8mm, 10mm, 13mm, or
16mm, isotropically. In the MRI brain experiments, gS was set to 3mm, isotropically.

3.3.3 Evaluation measures

The mean target registration error (mTRE) was used to evaluate the registration
accuracy on lung data, which calculates the mean distance between the ground truth
and registered landmarks. The mTRE can be calculated as

mTRE = 1

n

n

∑
i=1

∥T(pFi ) − pMi ∥, (3.10)

where pFi and pMi represent the corresponding ground truth landmarks in fixed and
moving images, respectively. n = 300 is the number of landmarks in all test cases.

In the brain data, 84 manually labeled regions are available. With these labels
we can use mean overlap (MO) to measure the registration accuracy

Mean Overlap = 2
∑r ∣Mr⋂Fr ∣

∑r(∣Mr ∣ + ∣ Fr ∣) , (3.11)

where r represents a certain label, and the MO is calculated over all labels.
Besides the accuracy, the smoothness of transformation is an important measure

to evaluate the performance of a registration method. In this work, the determinant
of spatial Jacobian DSJ was used to measure the smoothness of the transformation

DSJ = ∣∂T

∂x
(x̃)∣ . (3.12)
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For a given spatial location x̃, DSJ calculates the degree of local deformation around
it. In a smooth transformation field, the fluctuation of DSJ will be relatively small.
Therefore, we utilized the standard deviation of DSJ over the whole 3D image to
represent the smoothness of the deformation field.

3.4 Results

Figure 3.3 (a) shows the registration accuracy by B-splines and wavelet based FFD
registrations on CT lung data. Wavelet FFD registration produced lower mTRE than
B-spline FFD registration for all control point spacings gS . From Figure 3.3 (a) the
mTRE for both B-spline and wavelet models increased with decreasing gS . In the
absence of any additional regularization terms, the decreasing gS causes an unregular-
ized deformation field. This is the reason why the registration accuracy is decreased
with smaller finest grid spacing. However, the accuracy of wavelet is consistently
better than B-splines with different finest grid spacings. Besides the comparison of
accuracy, Figure 3.3 (b) shows the results of transformation smoothness. Here we see
that B-spline FFD registration with all different control point spacing gS yielded less
smooth deformations than the wavelet based FFD registration.

Figure 3.3. Lung data: (a) mean and standard deviation of mTRE on 10 datasets
using four different gS ; (b) mean and standard deviation of the determinant of DSJ

on 10 datasets using four different gS .

Figure 3.4 provides the registration accuracy and smoothness on brain data. Here,
we only evaluated the performances of B-splines and wavelet using the finest grid
spacing 3mm because the intersubject registration has a large number (306) of test
cases. From Figure 3.4 (a), wavelet produced better registration accuracy than B-
splines. For the smoothness of transformation, Figure 3.4 (b) shows that B-splines
generated worse smoothness than the smoothness by wavelet. Therefore, the results
on brain data further confirm the results on lung data.
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Figure 3.4. Brain data: (a) mean and standard deviation of MO on 306 test cases
using gS = 3mm; (b) mean and standard deviation of the determinant of DSJ on
306 test cases using gS = 3mm.

3.5 Conclusion

In this work, we investigate whether a wavelet-based FFD model has advantages for
nonrigid image registration. From the results on 10 CT lung and 18 T1-weighted MRI
brain datasets, wavelet model produced better accuracy than B-spline model using
all different finest grid spacings gS . For registration smoothness, wavelet model also
generated smoother transformation field than B-spline with different gS .

Theoretically, the B-spline and the wavelet models span the same space of defor-
mations. Yet, the experimental results are different. A potential explanation of this
lies in the preconditioning effect of the wavelet parameterization, which may yield
an implicit regularization. In the absence of any additional regularization terms, the
original B-spline FFD registration may produce worse results with decreasing grid
spacing. The wavelet based FFD registration appears more robust in this case.

In future work, the performance of wavelet based FFD registration in combination
with different multiresolution strategies for registration [?, 98] will be investigated.



Chapter Seven

Discussion and conclusion

To make optimal use of medical imaging data, advanced medical image processing and
analysis tools are needed, e.g., for the computation of quantitative imaging biomark-
ers, creation of anatomical and functional models, combination of multimodal images,
and comparison of baseline and follow-up images. Image registration is one of the
essential techniques in medical image processing, and is widely applied both in sup-
porting biomedical research and clinical practice. In this thesis, we address different
components of a registration framework, to improve registration robustness, accuracy
and speed. Specifically, our contributions cover different multiresolution strategies,
transformation models and optimization algorithms used in image registration. The
above components directly influence the performance of a registration approach.

In Chapter 2 we focused on various multiresolution strategies in image registra-
tion. In comparison to a conventional step-by-step hierarchical strategy, several novel
simultaneous multiresolution strategies were presented. If the low and high resolu-
tion levels of data are combined to guide the optimization, large-scale and small-scale
image information can be considered simultaneously. Similarly, a simultaneous mul-
tiresolution strategy for the transformation model can be employed to distribute the
whole deformation over different resolution levels of the transformation model. Ide-
ally, large deformations should be represented by a coarser transformation level, and
remaining smaller deformations should be captured by the finer transformation lev-
els. We implemented all methods using free-form deformations (FFD) with B-spline
registration [85]. In our evaluation experiments, we used publicly available computed
tomography (CT) lung and T1-weighted magnetic resonance imaging (MRI) brain
data. The performance of the different multiresolution strategies was evaluated in
terms of both registration accuracy and transformation smoothness. It was found
that a simultaneous multiresolution strategy of data can enhance registration accu-
racy, and a hierarchically simultaneous transformation strategy leads to smoother
transformations. In different applications, registration accuracy and smoothness may
have different importance and therefore we cannot conclude which combination is
to be preferred in general. Nevertheless, for both registration accuracy and trans-
formation smoothness, the method with hierarchically simultaneous transformation
and simultaneous data strategies is a better choice than the traditionally hierarchical
registration strategy.

In Chapter 3 we investigated whether a wavelet-based FFD model has advantages
for nonrigid image registration. Using wavelets, we can decompose signal into different
scales in a unique manner. To be used in the setting of a nonrigid transformation
model, the wavelet should be differentiable, compactly supported and orthogonal
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between different scales. Cai and Wang [13] proposed a B-splines based wavelet model
which fulfills our requirements in Sobolev space. We used a nonlinear conjugate
gradient (NCG) optimizer [22, 48] as the optimization method. In experiments on
10 CT lung and 18 T1-weighted MRI brain datasets, the results obtained with the
wavelet model were more accurate than with the B-spline model. With respect to
smoothness of the resulting deformation, the wavelet model also generated smoother
transformation field than B-spline model. Theoretically, the B-spline and the wavelet
models span the same space of deformations. However, the experimental results
were different. A potential explanation of this lies in the preconditioning effect of
the wavelet parameterization, which may yield an implicit regularization. In the
absence of any additional regularization terms, the original B-spline FFD registration
may produce worse results with decreasing grid spacing. The wavelet based FFD
registration appears more robust in this case. It would be interesting in future work
to evaluate the wavelet transformation also in combination with SGD methods. A
challenge here is that the current implementation of the initial step size estimation in
adaptive stochastic gradient descent (ASGD) is not optimal for use in combination
with the wavelet transformation model, leading to high computational cost. A possible
solution for this would be to use the fast ASGD optimizer proposed in [80].

Chapter 4 explored the use of lower-order B-splines. Inspired by the convolu-
tional definition of B-splines, we proposed to apply a random perturbation process
to an mth-order B-spline to approximate the original nth-order B-spline transforma-
tion with m ≤ n. The new randomly perturbed FFD (RPFFD) registration method
is embedded in an SGD-based registration framework [48]. By using the mth-order
B-spline rather than the original nth-order B-spline, the computational cost is inher-
ently reduced by a factor (m+1

n+1
)D thanks to the smaller support region and hence less

control points are involved in the computation. We evaluated the proposed method
for a range of B-spline of orders m and n. Experiments on simulated 2D brain data
with artificial deformations were performed to validate the registration accuracy in
a setting with known ground truth. Publicly available 3D lung CT and brain MRI
scans were used to verify the registration performance on real data. Methods were
compared in terms of registration accuracy, transformation smoothness, and compu-
tational efficiency. Experimental results indicated that the proposed RPFFD method
outperforms the standard third-order FFD method in terms of the registration accu-
racy and transformation smoothness. Besides the expected lower computational cost
of lower-order B-splines, it is interesting to observe that the first- and second-order
B-splines equipped with the random perturbation technique can achieve competitive
or even better registration accuracy and transformation smoothness than the third-
order B-spline. Possible explanations for this result were provided in the discussion
of Chapter 4.

Chapter 5 tackled the problem of getting stuck in local minima during the opti-
mization procedure of image registration. Local minima in the optimization landscape
can potentially be eliminated by smoothing the cost function. Multiresolution strate-
gies indirectly achieve some sort of cost function smoothing by blurring the images,
but in our approach we investigated the effect of directly smoothing the cost func-
tion. Conceptually, a straightforward way to smooth the cost function would be by
convolving with a smoothing kernel in the transformation parameter space. However,
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a major challenge here is the high dimensionality of the parameter space. Inspired
by [26], we proposed to inject Gaussian random noise into the transformation pa-
rameters during the optimization process of image registration. In contrast to the
costly multi-start algorithm by [39], which applies multiple perturbations to the ini-
tial transformation parameters, one (or just a few) random perturbation(s) is applied
to the transformation parameters in each iteration. This randomized smoothing (RS)
technique is combined with a SGD optimizer [45], which can naturally deal with the
random perturbations. The RS method could be seen as a computationally efficient
way that implicitly smooths the cost function, thus eliminating local minima in the
optimization landscape. In Chapter 5, translation, rigid, affine and nonrigid B-spline
transformation models were used in the validation. Experiments on two-dimensional
artificial images, two-dimensional cell images, three-dimensional lung CT, and brain
MRI scans were carried out to evaluate the effectiveness of the RS registration ap-
proach. The improvement in registration results proves the effectiveness of the RS
technique.

In Chapter 6, we proposed to use a constant optimization step size (instead of
a gradually decreasing step size), in combination with an iterative averaging tech-
nique, to improve the overall convergence speed. In SGD optimization, stochastic
approximations of the cost function derivative are used in each iteration to update
the transformation parameters. The stochastic approximation error leads to ran-
domness in the parameters. Therefore, convergence has to be enforced by gradually
decreasing the update step size. Polyak and Juditsky [79] proved that by simply
averaging of the parameters obtained by the SGD optimizer over several iterations,
the highest possible rate of convergence can be achieved. Therefore, we proposed an
averaged SGD (Avg-SGD) method for efficient image registration. For the Avg-SGD
approach, a constant step sequence of optimization could be used without sacrific-
ing the registration precision. We provided two definitions of the Avg-SGD method:
postponed and exponential. For the postponed definition the first k0 iterates are
skipped in computing the averaged µ. In the exponential definition, the effects of the
early iterations are exponentially decreased, avoiding the need to set a hard thresh-
old k0. The Avg-SGD method is suitable for both rigid and nonrigid registration
problems. Experiments on simulated 2D brain MRI data and real 3D lung CT scans
demonstrate the effectiveness of the Avg-SGD method in terms of convergence rate
and registration precision.

In summary this thesis introduced a number of improvements to different compo-
nents of the registration methodology. All proposed new approaches were evaluated
in extensive experiments, including both synthetic and public real biomedical data,
and comparisons with state-of-the-art conventional methods were made.

The methodological contributions are in principle independent of each other, so
they could be combined if desired in particular applications. For example, Chapter 5
introduced the RS technique for suppressing local minima of the cost function. The
RS technique involves the injection of random Gaussian noise into the transforma-
tion parameters at each iteration. This added noise may enlarge the randomness of
the SGD optimization, leading to reduced precision. By averaging the iterates of
optimization, i.e., using the Avg-SGD method as proposed in Chapter 6, we could
compensate for the amplified noise, while maintaining or even accelerating conver-
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gence rate. In Chapter 5, it was found that in some applications we need to average
multiple sets of perturbations in each iteration to alleviate the effect of large Gaussian
noise. However, the computation time of registration scales directly with the number
of averages. In contrast, the Avg-SGD requires almost no additional computation
time. No additional cost function gradient evaluations are needed. The averaging
over iterates is implemented in an efficient recursive way, which requires only one ad-
ditional vector of transformation parameters to be stored during optimization. Thus,
the computational cost could be reduced substantially by applying the Avg-SGD
approach to the RS technique.

As another example, multi-level B-spline FFD is utilized in Chapter 2 to model
simultaneous multiresolution strategies. The computational cost is increased in the
hierarchically simultaneous transformation. To avoid this disadvantage, Chapter 4
proposes to use more efficient lower-order B-splines to approximate higher-order B-
splines by using the novel random perturbation technique. Therefore, one solution
could be that we adopt the randomly perturbed first-order B-spline to model the
multi-level B-spline FFD for the hierarchically simultaneous transformation. In this
way, we may create a new registration approach which balances registration accuracy
and computational efficiency.

The methods proposed in this thesis do not make use of domain-specific knowl-
edge, and can thus be used in a wide variety of applications. In this thesis, we
evaluated the performances of the proposed registration methods mostly based on
public CT and MRI data. It could be interesting to validate the new techniques also
on other types of medical imaging data, such as ultrasound and positron emission
tomography (PET). Meanwhile, the new methods can be applied to more anatomical
structures, e.g., liver, prostate, etc.

In this thesis we focus on the methodological parts of the medical image registra-
tion. In-depth clinical evaluations and use of the proposed registration methods is an
important future direction of research. This is facilitated, as all of the new techniques
will be publicly available as part of the open source registration package elastix.
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Samenvatting

Optimaal gebruik van medische beeldgegevens vereist geavanceerde methodes voor
beeldverwerking en beeldanalyse, bijvoorbeeld voor het berekenen van kwantitatieve
biomarkers, het opstellen van anatomische en functionele modellen, het combineren
van multimodale beelden en het vergelijken van baseline- en follow-up-beelden. Beel-
dregistratie is hierbij een essentiële techniek die dan ook breed wordt toegepast, zowel
voor de ondersteuning van biomedisch onderzoek als in de klinische praktijk. In dit
proefschrift presenteren we verbeteringen voor verschillende onderdelen van een reg-
istratieframework, met als doel de robuustheid, de nauwkeurigheid en de snelheid
van de registratie te verbeteren. Onze specifieke bijdrages omvatten verschillende
multi-resolutie-strategieën, transformatiemodellen en optimalisatiealgoritmes die wor-
den gebruikt in beeldregistratie. Deze componenten hebben een directe invloed op de
prestaties van het beeldregistratieframework.

Hoofdstuk 2 behandelt verschillende multi-resolutie-strategieën voor beeldregis-
tratie. In een vergelijking met een conventionele, stapsgewijze, hiërarchische strategie
worden verschillende nieuwe simultane multi-resolutie-strategieën gepresenteerd. Als
in de optimalisatie de informatie van lage en hoge resolutieniveaus wordt gecombi-
neerd, kunnen grootschalige en kleinschalige beeldinformatie gelijktijdig (simultaan)
worden meegenomen. Op een soortgelijke manier kan een simultane multi-resolutie-
strategie voor de transformatie worden gebruikt om de deformaties te verdelen over
de verschillende resolutieniveaus van het transformatiemodel. Idealiter worden hi-
erbij de grote deformaties gerepresenteerd op een grof transformatieniveau en wor-
den de overgebleven kleinere deformaties gerepresenteerd op de fijnere transforma-
tieniveaus. We hebben alle methodes gëımplementeerd met free-form deformations
(FFD) in een B-spline-registratieframework [85]. De evaluatie-experimenten zijn uit-
gevoerd met publiek beschikbare long-CT-scans en T1-gewogen hersen-MRI-scans.
De prestaties van de verschillende multi-resolutie-strategieën zijn vergeleken op zowel
de nauwkeurigheid van de registratie als de gladheid van de transformatie. De re-
sultaten laten zien dat een simultane multi-resolutiestrategie voor de beeld-data tot
nauwkeurigere registraties leidt, en dat een hiërarchisch-simultane multi-resolutie-
transformatiestrategie tot gladdere transformaties leidt. De afweging tussen registra-
tienauwkeurigheid en transformatiegladheid hangt af van de toepassing, zodat we niet
kunnen concluderen welke combinatie in het algemeen de voorkeur heeft. Uit onze
experimenten blijkt echter dat de methode met een hiërarchisch-simultane transfor-
matiestrategie en een simultane data-strategie op zowel registratienauwkeurigheid als
transformatiegladheid beter presteert dan de traditionele hiërarchische registraties-
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trategie.

In hoofdstuk 3 onderzoeken we of een FFD-model gebaseerd op wavelets vo-
ordelen biedt voor niet-rigide beeldregistratie. Met wavelets kan een signaal worden
opgesplitst in verschillende schaalniveaus. Voor gebruik in een niet-rigide transfor-
matiemodel moet een wavelet differentieerbaar zijn, compact gedragen en orthogo-
naal tussen verschillende schaalniveaus. Cai and Wang [13] hebben een waveletmodel
in Sobolev-ruimte voorgesteld op basis van B-splines dat aan onze eisen voldoet.
We gebruiken een nonlinear conjugate gradient (NCG)-optimizer [22,48] als optimal-
isatiemethode. In experimenten met 10 datasets met long-CT-scans en 18 datasets
met T1-gewogen hersen-MRI-scans had het waveletmodel een grotere nauwkeurigheid
dan het model met B-splines. Het transformatiemodel van het waveletmodel was
ook gladder dan dat van het model met B-splines. In theorie hebben de wavelet-
en B-spline-modellen dezelfde transformatieruimte, maar de experimentele resultaten
waren toch verschillend. Een mogelijke verklaring hiervoor ligt in het preconditioning
effect van de waveletparametrisatie, dat voor een impliciete regularisatie kan zorgen.
Zonder aparte regularisatieterm kan het resultaat van de originele FFD-registratie
bij kleinere knooppuntsafstanden slechter uitvallen. De wavelet-gebaseerde FFD-
registratie lijkt in deze gevallen robuuster. Het kan interessant zijn om de wavelet-
transformatie ook in combinatie met stochastische gradiënt descent (SGD) optimal-
isatiemethodes te evalueren. In de huidige implementatie is dit lastig, omdat de
bepaling van de initiële stapgrootte in de veelgebruikte adaptive stochastic gradient
descent (ASGD) methode in de huidige implementatie niet optimaal is voor gebruik
in combinatie met het wavelettransformatiemodel, wat tot een lange rekentijd kan lei-
den. De snelle ASGD-optimizer uit [80] zou hiervoor mogelijk een oplossing kunnen
bieden.

Hoofdstuk 4 onderzoekt het gebruik van lagere-orde B-splines. Gëınspireerd door
de convolutionele definitie van B-splines stellen wij voor om door middel van een
random perturbatieproces een n-de orde B-spline-transformatie te benaderen met een
m-de orde B-spline, waarbij m ≤ n. Deze nieuwe registratiemethode op basis van
“randomly perturbed FFD” (RPFFD) wordt toegepast in een op SGD gebaseerd
registratieframework [48]. Door een m-de orde B-spline te gebruiken in plaats van
de oorspronkelijke n-de orde B-spline, worden de computationele kosten gereduceerd
met een factor (m+1

n+1
)D, omdat dankzij het kleinere draagvlak minder knooppun-

ten nodig zijn voor de berekeningen. De registratienauwkeurigheid is gevalideerd in
experimenten op gesimuleerde 2D hersenscans met gesimuleerde deformaties en een
bekende ground truth. Publiek beschikbare 3D long-CT-scans en hersen-MRI-scans
zijn gebruikt om de registratieresultaten op echte data te verifiëren. De methodes zijn
vergeleken op registratienauwkeurigheid, transformatiegladheid en computationele ef-
ficiëntie. De experimentele resultaten laten zien dat de voorgestelde RPFFD-methode
op registratienauwkeurigheid en transformatiegladheid beter presteert dan de stan-
daard derde-orde FFD-methode. De computationele kosten van lagere-orde B-splines
zijn zoals verwacht lager. Het is interessant om te zien dat de eerste- en tweede-orde
B-splines met de random perturbation-techniek een vergelijkbare of zelfs betere reg-
istratienauwkeurigheid en transformatiegladheid kunnen bereiken dan de derde-orde
B-splines. Mogelijke verklaringen voor dit resultaat worden besproken in de discussie
van hoofdstuk 4.
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Hoofdstuk 5 bespreekt een oplossing voor het probleem dat de optimalisatie van
de beeldregistratie kan vastlopen in een lokaal minimum. Lokale minima in het opti-
malisatielandschap kunnen mogelijk worden geëlimineerd door de kostenfunctie glad
te strijken. Multi-resolutie-strategieën bereiken dit deels indirect al doordat ze de
afbeelding blurren, maar in onze aanpak onderzoeken we het effect van een directe
smoothing van de kostenfunctie. Een conceptueel eenvoudige manier om dit te doen
zou zijn om de kostenfunctie in de transformatie-parameterruimte te convolueren met
een smoothing kernel. Dit is echter lastig vanwege de hoge dimensionaliteit van de
parameterruimte. Gëınspireerd door [26] stellen wij daarom voor om tijdens het
optimaliseren van de beeldregistratie Gaussische ruis toe te voegen aan de trans-
formatieparameters. Anders dan bij het bewerkelijke multi-start-algoritme van [39],
dat meerdere perturbaties toepast op de initiële transformatieparameters, worden
bij onze methode in iedere iteratie slechts één of slechts enkele random perturbaties
toegepast op de transformatieparameters. Deze randomized smoothing-techniek (RS)
wordt gecombineerd met een SGD-optimizer [45], die gemakkelijk kan omgaan met
de random perturbaties. De RS-techniek kan worden beschouwd als een computa-
tioneel efficiënte methode die impliciet de kostenfunctie gladstrijkt en op die manier
de lokale minima uit het optimalisatielandschap verwijdert. In hoofdstuk 5 wordt
de RS-techniek gevalideerd voor translatie-, rigide, affiene en niet-rigide B-spline-
transformatiemodellen. De effectiviteit van de RS-registratiemethode is geëvalueerd
in experimenten met synthetische tweedimensionale beelden, tweedimensionale cel-
beelden en driedimensionale long-CT-scans en hersen-MRI-scans. De verbetering in
registratieresultaten bewijst de effectiviteit van de RS-techniek.

In hoofdstuk 6 stellen we voor om tijdens de optimalisatie een constante stapg-
rootte te gebruiken (in plaats van een geleidelijk afnemende stapgrootte) in combinatie
met een iteratieve middelingstechniek, om zo de convergentiesnelheid te verbeteren.
In een SGD-optimalisatie wordt een stochastische benadering van de kostenfunctie
gebruikt om in iedere iteratie de transformatieparameters bij te werken. Fouten in
de stochastische benadering leiden tot randomness in de parameters. Convergentie
moet daarom worden afgedwongen door de stapgrootte van de updates geleidelijk te
verkleinen. Polyak en Juditsky [79] hebben bewezen dat de hoogste convergenties-
nelheid kan worden bereikt door de parameters die door de SGD-optimizer worden
verkregen te middelen over meerdere iteraties. Wij stellen daarom voor om een aver-
aged SGD (Avg-SGD)-methode voor efficiënte beeldregistratie te gebruiken. Met de
Avg-SGD-methode kan voor de optimalisatie een constante stapgrootte worden ge-
bruikt, zonder aan registratieprecisie te verliezen. We bespreken twee varianten van
de Avg-SGD-methode: een uitgestelde en een exponentiële variant. In de uitgestelde
variant worden de eerste k0 iteraties overgeslagen bij het berekenen van het gemid-
delde. In de exponentiële variant wordt het gewicht van eerdere iteraties exponentieel
verkleind, waardoor geen harde grens k0 meer nodig is. De Avg-SGD-methode is
geschikt voor zowel rigide als niet-rigide registratie. Experimenten met gesimuleerde
2D hersen-MRI-scans en echte 3D long-CT-scans demonstreren de effectiviteit van de
Avg-SGD-methode in termen van convergentiesnelheid en registratieprecisie.

Samengevat introduceert dit proefschrift een aantal verbeteringen voor verschil-
lende componenten van de registratiemethodologie. Alle voorgestelde nieuwe meth-
odes zijn geëvalueerd in uitgebreide experimenten, met zowel synthetische data als
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echte publieke biomedische data. De resultaten zijn vergeleken met die van state-of-
the-art conventionele methodes.

De methodologische bijdrages zijn in principe onafhankelijk van elkaar, waar-
door ze indien gewenst kunnen worden gecombineerd. Zo introduceert hoofdstuk 5
bijvoorbeeld de RS-techniek voor het onderdrukken van lokale minima in de kosten-
functie. Bij de RS-techniek wordt in iedere iteratie Gaussische ruis toegevoegd aan
de transformatieparameters. Deze toegevoegde ruis vergroot de randomness van de
SGD-optimalisatie en kan zo leiden tot een lagere precisie. Door tijdens de optimal-
isatie over meerdere iteraties te middelen, met behulp van de Avg-SGD-methode uit
hoofdstuk 6, kan de versterkte ruis worden gecompenseerd, terwijl de convergenties-
nelheid behouden blijft of zelfs kan worden vergroot. Hoofdstuk 5 laat zien dat het
soms nodig is om in iedere iteratie over meerdere perturbaties te middelen om zo
het effect van sterke Gaussische ruis te verminderen. De rekentijd van de registratie
neemt echter direct toe met het aantal gemiddelden. Met de Avg-SGD-methode is
daarentegen vrijwel geen extra rekentijd nodig. De gradiënt van de kostenfunctie
hoeft niet vaker te worden geëvalueerd. Het middelen over de iteraties is gëımple-
menteerd met een efficiënte recursieve methode, zodat tijdens de optimalisatie slechts
één extra vector met transformatieparameters hoeft te worden bewaard. Toepassing
van de Avg-SGD-methode zorgt daardoor voor een substantiële vermindering in de
rekentijd van de RS-techniek.

Als tweede voorbeeld: in hoofdstuk 2 wordt multi-level FFD gebruikt voor het
modelleren van simultane multi-resolutie-strategieën. De hiërarchisch-simultane trans-
formatie zorgt hierbij voor hogere computationale kosten. Dit kan mogelijk wor-
den gecompenseerd met de nieuwe random perturbation-techniek uit hoofdstuk 4,
waarmee hogere-orde B-splines kunnen worden benaderd met efficiëntere lagere-orde
B-splines. Het randomly perturbed eerste-orde B-spline-model zou bijvoorbeeld kun-
nen worden gebruikt om in de hiërarchisch-simultane transformatie de multi-level
B-spline FFD te modelleren. Op deze manier ontstaat een nieuwe registratiemethode
die registratienauwkeurigheid en computationele efficiëntie combineert.

De methodes die worden gepresenteerd in dit proefschrift gebruiken geen domein-
specifieke kennis en kunnen daarom voor veel verschillende toepassingen worden ge-
bruikt. In dit proefschrift hebben we de resultaten van de voorgestelde registratiemeth-
odes voornamelijk geëvalueerd op publieke CT- en MRI-scans. Het zou interessant
kunnen zijn om de nieuwe technieken ook te evalueren met andere soorten medische
beelden, zoals ultrasound en positron emission tomography (PET). De nieuwe meth-
odes kunnen ook worden toegepast op andere anatomische structuren, zoals de lever,
de prostaat et cetera.

In dit proefschrift beperken we ons tot het methodologische deel van de medis-
che beeldregistratie. Uitgebreide klinische evaluaties en het in de praktijk toepassen
van de voorgestelde registratiemethodes zijn een belangrijke richting voor toekomstig
onderzoek. Om dit te faciliteren worden de nieuwe technieken publiek beschikbaar
gemaakt als onderdeel van het open-source registratieprogramma elastix.
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