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l)PASSENGERS, INFORMATION AND DISRUPTIONS

Passengers traveling in public transport generate a detailed digital track record of their
journey through using automated fare collection systems and carrying mobile devices. This
information on passenger behavior has only recently become available to public transport
operators. This thesis addresses the question how this new information can be used to
improve passenger service in case of disruptions in public transportation.

Major disruptions cause the current logistical schedule of the operator to be infeasible.
Adjusting this schedule to the disruption is a complicated planning problem. Passengers
will adjust their journeys to the new schedule, and may need to adjust their route choice
due to the route choice of other passengers in case of capacity shortages. Therefore the
passenger service results from a complex interaction between passengers themselves, and
between passengers and the schedule.

This thesis proposes new models for improving passenger service in case of major
disruptions by adjusting the schedule while anticipating passenger’s reactions, and also by
supporting passengers during disruptions through the provision of route advice. This
research is combined with a study on passenger behavior based on the new data sources.
The models are evaluated using data and case studies of the passenger rail network of
Netherlands Railways and the urban rail network of the Massachusetts Bay Transportation
Authority. It was found that indeed this new information, together with the option to
provide route advice to passengers, could significantly improve service during major
disruptions.
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Chapter 1

Introduction

1.1 Motivation

Public transportation is important as a sustainable alternative for private transport. To

be and remain competitive with other transport modes, it is important that it provides

a high level of service to its passengers, and that this service is reliable. Unfortunately,

disruptions occur frequently in public transport due to, for instance, malfunctioning in-

frastructure, malfunctioning rolling stock, extreme weather conditions or accidents. The

field of disruption management is dedicated to the mitigation of the negative effects of

a disruption. This thesis studies how new detailed data on passenger journeys can en-

able operators to improve service in the case of disruptions, given the limited flexibility

in the logistic planning. Specifically, research in the thesis focuses on obtaining relevant

information on passenger behavior from this new data, and on using this information to

improve passenger service during disruptions in public transport systems. The objective is

to assist passengers in making complex travel decisions during disruptions, as illustrated

by the following example.

Imagine you are at the beautiful new station ’Rotterdam Central’, and decide to travel

to the city of Utrecht. You plan to take the direct Intercity from Rotterdam, stopping

only at Rotterdam Alexander and Gouda before arriving 38 minutes later at Utrecht

Central. However, upon your arrival at Rotterdam it turns out that there are no trains

running between Rotterdam Central and Gouda because of infrastructure problems —

your planned Intercity has been canceled. You therefore need a new travel plan.

Rescheduling your journey may be a bit overwhelming, especially if you are an in-

experienced traveler. Will you reroute through the Hague, Leiden, or Schiphol? Are

there replacement shuttle buses to Gouda? Would it be better then, if these buses are

running, to follow your original geographical route and take a bus? Alternatively, you



14_Erim Hurk BW Stand.job

2 Introduction

could postpone your journey — to explore the new Markthal, for example — and maybe

upon your return the train service is back up and running so you could simply take the

planned Intercity later. You are pressured to make this decision quickly, because while you

are contemplating all these choices, time is ticking away, trains and buses on alternative

routes are departing, and your delay is increasing.

Although the smartphone application of the operator may help you to plan your route,

and may even give an indication of the crowding in the train, it is not able to predict

whether or not you will be able obtain a seat on a certain train. Indeed, you might be

inclined to choose the shortest route around the disruption. However, if this requires

standing shoulder-to-shoulder with your fellow passengers for an hour, you might prefer

a longer route which provides you with a seat. Even worse: the ‘shorter’ route could

actually turn out to be longer when there is insufficient capacity for all the passengers who

selected it. In this case passengers are competing to board the train, and passengers who

are unable to board the train are left at the station to incur even more delay. Information

about available capacity is therefore important to passengers, but is currently not always

available to them in the case of disruptions.

Operators, on the other hand, could estimate available capacity as they schedule

capacity and have information about the passenger demand thanks to new data generated

by automated fare collection systems, such as the smart card (OV-chipcard) system in

the Netherlands. These data contain information on the origin, destination and travel

time of individual journeys of passengers. Moreover, other technological advances have

lead to the wide adoption of smart phones and the availability of wireless communication

which allow immediate and direct communication with passengers — a communication

that can be personalized to the passenger’s specific journey.

However, operators are also limited in that they cannot dictate which routes passen-

gers take. The operator can only influence passenger route choice decisions by providing

advice, and by using the limited flexibility in the logistic schedule to support passenger

demand. Although new information on passenger journeys helps to anticipate the de-

mand, passengers themselves must decide whether or not to follow the advice. This is an

important limitation since the objective of the operator to provide the best overall service

within a limited budget for operational costs may conflict with the desire of the passengers

to follow paths that are in their personal best interest. Determining which path is best

for an individual passenger is complicated, as the quality of a path is influenced, be it

positively or negatively, by the route choice of other passengers because of the limited

available capacity.
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This thesis addresses the complex question of how operators can improve passenger

service during disruptions, given the limited, yet substantial, influence they have on pas-

senger flows through the provision of travel advice, and through adjusting the capacity

planning to the demand within operating constraints.

1.2 Complexity in Public Transport

One of the objectives of this thesis is to investigate the practical value of Complexity

Theory for disruption management in public transport. Boccara (2010) lists three common

characteristics of complex systems, namely (i) that the system can be described as a large

number of agents that interact, (ii) that certain properties emerge from this system, in

other words that the behavior of the system is not easy to predict or extrapolate from

the behavior of the agents individually, and (iii) that this behavior is not the result of

a central controller. Indeed, when agents have simple behavior and a central controller

orchestrates their actions and reactions, it does not, according to this definition, constitute

a complex system. However, we could argue that a system can still be complex if there is

a central controller who has only limited influence on the behavior of the agents, such as

in the case of a public transport system where passengers have free route choice.

One of the best-known examples of a system with emerging behavior is John Con-

way’s ‘Game of Life’ (Gardner, 1970). This game considers a grid where every rectangle

represents an agent with simple behavioral rules on birth, life and death. Playing (or

simulating) this game shows that these simple behavioral rules can give rise to intricate

patterns in the behavior of the system as a whole, which emerge from the interaction

among the individual agents. Later people found that such a model with few and simple

rules for the interaction between agents can explain the behavior of natural phenom-

ena, such as the flocking of birds or the behavior of fish schools. Indeed, Couzin (2007)

shows how simple behavioral rules for individual fish can explain the emergent behavior

of fish schools. The interaction between the components at the micro-level results in the

emerging macro-behavior of the system.

The travelers’ experienced service emerges from the interaction between the travelers

and the provided logistic network or schedule in systems where passengers have free route

choice. For example, the desire of passengers in traffic to take the same route may cause

traffic jams and therefore delays. Within public transport, a demand higher than the

available capacity causes delay for passengers who are unable to board their desired train.

Adding capacity to such systems with free route choice may therefore even decrease the
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quality of service experienced by passengers, as shown by Braess (1968) in what later

became famous as the Braess-paradox.

We distinguish between two streams within complexity research related to transport.

The first uses approaches common in physics, where the aim of the research is to describe

patterns and find common laws between different systems. For example, Barabási and Al-

bert (1999) study many different networks that are present in our world, from the internet

to social networks to transport networks, and find that many of them are similar in that

they have scale free properties. Watts and Strogatz (1998) introduce the concept of small

worlds in order to describe common structures across networks. These measures have

been used to qualify various networks such as the internet, social networks, and biological

networks. Within public transport, Derrible and Kennedy (2010) study the robustness

of rail-based public transport networks around the world by investigating whether or not

these networks are scale-free and have the property of small worlds. Thus they aim to

give a general qualification of what constitutes a robust network. Tero et al. (2010) study

the formation of networks in slime mould and compare this to the development of public

transport networks.

Networks are also formed by human mobility patterns. Both Song et al. (2010) and

González et al. (2008) use mobile phone location data to investigate the predictability

of a person’s location. Their objective is to determine whether this behavior could be

predicted by a model by determining to what extent a person’s behavior is either random

or shows some regularity, rather than actually proposing a specific model that provides

these forecasts. They indeed find that human behavior is highly “predictable”. Wang et al.

(2012) even go one step further in their study of human behavior for traffic patterns. In

addition to the previous, they conduct a what-if analysis through which they are able to

show that if a small portion of a select group of travelers postpone their journeys, a lot

of time could be saved by many other travelers in the system.

The second stream of research concerns the mimicking of these complex systems by

building large agent-based simulation models. Raney et al. (2002); Balmer et al. (2006)

and Arentze and Timmermans (2009) are examples of researchers who developed such

agent-based simulations to describe transport systems. These models often include activ-

ity programs of agents (travelers) that explain the travel decisions the agents make over

time in different situations. The travelers interact with each other during the simulation,

for instance when traffic jams form or when there is insufficient capacity available in a

public transport system. The simulation results serve the analysis of passenger service.

These models generally analyze transport systems in equilibrium. The inclusion of the

motivation for traveling, such as the inclusion of activity lists for agents, makes the model
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suitable for strategic planning and what-if analysis. As a result, however, these models

are commonly computationally expensive and large systems could easily need an hour (or

more)of computation.

1.3 Research Question

The main research question of this thesis is as follows:

How can public transport operators use new sources of information on passenger be-

havior to improve service in the case of disruptions, given the limited flexibility in the

logistic operations, and the limited influence on passenger’s route choice?

The term “new sources of information” refers to data on passenger journeys and lo-

cation that are generated (close to) real time for the entire (or a large part of) passenger

population. Such data is, for instance, generated by mobile phones and automated fare

collection systems such as smart card ticketing. These data are new in that they provide

information on both the geographical journey of the passenger and the time at which the

passenger is traveling, which did not exist in the detail scale until recently. Previous data

on passenger journeys, such as origin-destination matrices or numbers of passengers per

train, only contained information of one dimension, i.e. location or time. Although peak

and off-peak demand matrices were previously available, they do not represent the per-

second arrival times of passengers that are available with this new source of data. Other

sources that include both, such as travel diaries and surveys, only store such information

for a subset of passengers after which statistical models can be used to upscale the data

to the full population. The combination of location and time, as well as the large scale,

is what makes the new data different from that previously available.

The objective is to improve service quality for passengers during disruptions, thus

reducing the inconvenience resulting from disruptions by, for example, decreasing delay or

the number of additional transfers. To this end, the operator has limited means defined

by monetary, but also physical, constraints: for example, a spare unit of rolling stock

cannot immediately appear at the location where it is most needed, but will need to move

there. Furthermore, we will consider systems with free route choice, where an operator

may advise, but not dictate, a specific path in the network for an individual.

In answering the main research question, we want to draw upon the fields of both

complexity and Operations Research. Disruption management requires concrete solu-

tions such as alternative logistic schedules and travel advice to the passengers in real

time. Descriptive models for network structures or general predictability of passenger

flows cannot provide this. However, studying passenger service as emerging from the in-
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teraction between passengers and the logistic system may enable the modeling of the free

route choice of passengers. Within this thesis the focus is therefore on using agent based

simulation models within disruption management models.

We answer the main research question by studying three sub- questions. The first

is the question of what information on past passenger behavior can be obtained from

this new source of data. The second question is to what extent past information can be

used to make predictions in order for this information to be useful in decision support

tools for disruption management. Finally the third question is how this information

can be used in decision support models for disruption management in order to improve

passenger service. This last question is answered by considering two specific applications

and developing decision support models for each. The approach is further illustrated in

the description of the research framework below.

Framework

Figure 1.1 presents the three-step framework used in this thesis to answer the research

question. First of all, past passenger behavior is analyzed based on the available data on

passenger journeys and information on the logistic system. This was done by deducing

passenger’s route choice from smart card data as presented in Chapter 2. The outcome

of this model allows analysis of passenger service and passenger route preferences retro-

spectively.

To use the data in real-time applications, forecasts of passenger demand and behavior

are required. In Chapter 3 a framework for forecasting passenger flows in the case of a

disruption is presented.

Finally, in step 3, models that measure passenger inconvenience given realistic passen-

ger behavior are developed to support operators in minimizing passenger inconvenience

during a disruption. Two models for different applications are developed. The first (Chap-

ter 4) considers a planned closure of one (or more)link(s) in an urban public transport

network. Bus shuttle services are planned to mitigate the effect of this closure. Rather

than aiming to restore the previous network structure, this model aims to redesign the

network using the shuttle services so as to minimize the passenger inconvenience resulting

from the closure, given the expected travel demand.

The second application (Chapter 5) considers a real- time disruption with uncertain

duration in a passenger railway transport system. The model aims to reduce passenger

inconvenience resulting from the disruption by providing individual travel advice to pas-

sengers in combination with an alternative rolling stock circulation. The objective is to
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Disruption

Date & Time

Historic data:
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• Logistic operations
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Improved Passenger Service
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Chapter 3: Forecasting

Chapters 4: Shuttle Planning

Chapters 5: Passenger Guidance

Step 1:

Data Analysis

Prediction

Step 2:

Application in
Disruption Management

Step 3:

Chapter 2: Route Deduction

Figure 1.1: Analytical framework

improve service by advising passengers on their route, given the uncertain duration and

limited available capacity, and to accommodate demand through the new rolling stock

circulation.

Both models evaluate solutions given realistic assumptions about passenger behavior

using agent-based models. Indeed, we found that passenger service can be significantly

improved in comparison to standard practice (Chapter 4), and in comparison to not

providing individual route advice to passengers (Chapter 5).

Behavior

One of the objectives is to include realistic models of passenger behavior within disruption

management models. In systems with seat reservation, such as in the airline industry,

operators can assign passengers to new paths and thereby minimize overall inconvenience

resulting from a disruption. However, when passengers are free to select their own route,

such socially optimal solutions may not be feasible in practice. For example, passengers

are unlikely to disembark from a direct train to their destination in the interests of other

passengers if this is not in their own best interest. Thus, when aiming to minimize

passenger inconvenience, it is important to consider realistic behavior.
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This thesis draws upon new available data on passenger journeys for the analysis of

passenger behavior, and upon the field of complexity to model this behavior and thereby

evaluate the service as experienced by passengers as emerging from the interaction between

passengers and the logistic system. Solutions are evaluated under realistic passenger

behavior assumptions and, wherever possible, realistic passenger behavior constraints are

included in the disruption management models.

1.4 Contributions of this Thesis

This section summarizes the contributions of the individual chapters that together com-

prise the framework presented in Figure 1.1. The computational experiments in the

chapters were conducted for cases based on the networks of Netherlands Railways and the

Massachusetts Bay Transportation Authority (MBTA), USA.

Chapter 2: E. van der Hurk, G. Maróti, L.G. Kroon and P.H.M Vervest. Deduction

of passengers’ route choice from smart card data. IEEE Transactions on ITS, vol.16,

p430-440, 2015.

Chapter 2 analyzes if and how passenger route choice can be deduced from passenger

journey data. Deducing passenger route choice from smart card data provides public

transport operators with the opportunity to evaluate passenger service. This is an advan-

tage especially in the case of disruptions, when traditional route choice models may not

be valid. This chapter proposes a method for deducing the route chosen by passengers by

analyzing smart card data, and validates this method on a real life data set that includes

days with high punctuality as well as days with a modified service that were also prone to

minor and major disruptions. In our validation sample the method achieves an accuracy

of about 90 percent even on days with disruptions. Moreover, it is shown that the data

resulting from the passenger route deduction method allows retrospective evaluation of

passenger service.

Chapter 3: adaptation of E. van der Hurk, L.G. Kroon and G. Maróti, and P.H.M

Vervest. Network Reduction and Dynamic Forecasting of Passenger Flows for Disruption

Management. In the Proceedings of the 5th International Seminar on Railway Operations

Modeling and Analysis - 2013, Copenhagen, Denmark, 2013.

Automatic Ticketing Systems such as smart card systems provide detailed data on pas-

senger behavior that was not previously available at this detailed level. Such information

may assist operators in obtaining insight on the demand for travel. In the case of dis-

ruptions, information on the current location of passengers, and their destination, is of

great value in order to provide good service during, for instance, (planned) disruptions.
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This chapter proposes a three-step framework for forecasting passenger flows consisting of

(i) a data analysis to deduce the planned path of passengers, (ii) a statistical forecasting

model to predict the current number of passengers per planned path, and (iii) a simula-

tion model that calculates how passenger flows change from the planned situation due to

the disruption under realistic assumptions on passenger behavior. Furthermore, a prepro-

cessing step provides insight into when and where passengers need to reroute due to the

disruption. A computational experiment is conducted comparing four different forecast-

ing models using a 10-month smart card data set from Netherlands Railways generated

during the introduction of the smart card system. Although no definitive conclusions can

be drawn from the analysis, given the limitations of the data sample, results suggest that

accurate passenger forecasts may indeed be derived from smart card data.

Chapter 4: E. van der Hurk, H. Koutsopoulos, N.H.M Wilson, L.G. Kroon and G.

Maróti. Shuttle Planning for Link Closures in Urban Public Transport Networks. ERIM

Technical Report, Submitted to Transportation Science, 2014.

In Chapter 4 a new optimization model is proposed for shuttle planning during link clo-

sures in urban public transport networks. These transport networks must periodically

close certain links for maintenance, which can have significant effects on the service pro-

vided to passengers. In practice, the effects of closures are often mitigated by replacing

the link with a simple shuttle service. However, alternative shuttle services could re-

duce passenger inconvenience without increasing operating cost. This paper proposes

a model to select shuttle lines and frequencies subject to budget constraints. A new

formulation is proposed that allows a minimum frequency restriction on any line that

is operated and which minimizes passenger inconvenience cost, including transfers and

frequency-dependent waiting time. This model is applied to a real world shuttle network

design problem of the MBTA network of Boston (USA). The results show that additional

shuttle routes can reduce passenger delay in comparison to the standard practice at the

same operating budget, while also distributing delay more equally over passengers. More-

over, changing frequencies on existing lines could further reduce passenger inconvenience

within the same budget constraint. The results are robust under different assumptions

about passenger route choice behavior. Computational experiments show that the pro-

posed formulation, coupled with a preprocessing step, may be fast enough for real time

applications.

Chapter 5: E. van der Hurk, L.G. Kroon, G. Maróti and P.H.M Vervest. Passenger

Guidance and Rolling Stock Rescheduling under Uncertainty for Disruption Management.

ERIM Technical Report, to be submitted for peer review.

In Chapter 5 we investigate the potential benefits of providing individual travel advice to
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passengers in the case of major disruptions of uncertain duration. The operator may help

the passengers through travel advice to avoid the overcrowded part of the network and

anticipate the uncertain duration, using the operator’s knowledge of capacity bottlenecks

and possible lengths of the disruption. By combining the travel advice with appropriate

decisions on the rolling stock circulation, one can expect to decrease the overall passen-

ger delays. We propose a new optimization-based approach to simultaneously provide

individual travel advice and an updated rolling stock schedule. The approach consists of

mathematical programming models and a simulation module with realistic assumptions

on passenger behavior. We deal with the uncertain length of the disruption by modeling

it as a two-stage decision process. In the first stage, at the start of the disruption, initial

advice and a rolling stock schedule are developed. In the second stage, the actual length of

the disruption is revealed. Then passengers may change their path and the operator may

adjust the rolling stock schedule. Decisions in the first stage are selected such that the

expected inconvenience, given all possible disruption deviations and the allowed recovery

actions, is minimal. The model aims to provide travel advice that is in the best interest

of the passengers, and evaluates the solution under the assumption that not all passen-

gers may follow the advice. Our computational tests on realistic instances of Netherlands

Railways indicate that the addition of the travel advice effectively improves the service

quality to the passengers.

1.5 Contributions to this Thesis

The contributions of the various organizations and people involved in the research of this

thesis are summarized in this section.

Data

• Netherlands Railways provided the data for Chapters 2, 3, 5. These data consisted

of information on passenger demand, schedules, and rolling stock availability. Test

cases for Chapter 5 are based on test cases used in Kroon et al. (2014), which resulted

from discussion with, and data provided by, Netherlands Railways. Ownership of

these data has remained with Netherlands Railways.

• The Massachusetts Bay Transportation Authority provided the data for Chapter

4, consisting of information on passenger demand, schedules, and operational cost.

Ownership of these data has remained with the Massachusetts Bay Transportation

Authority.
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Research The majority of the work in this thesis has been done independently by the

author. The author has been responsible for formulating the research question, studying

relevant literature, conducting the data analysis, formulating and implementing the mod-

els, analyzing the results, and writing the chapters and belonging papers. While doing

so, the quality of the research has benefited significantly from the discussions with the

co-authors:

• Leo Kroon and Gábor Maróti on Chapters 2, 3, 4 and 5 on problem framing, method-

ology, results, and writing phase.

• Peter Vervest on Chapters 2 and 3, specifically on problem framing and writing.

Furthermore, Peter contributed on the strategic level of this thesis. Most impor-

tantly, Peter’s perseverance to include research on the topic of informing passengers

is the foremost reason Chapter 5 exists and is part of this thesis.

• Nigel Wilson and Harilaos Koutsopoulos on Chapter 4 on problem framing, method-

ology, results, and writing phase.

• The rolling stock model of Kroon et al. (2014) has been used in Chapter 5. The

passenger simulation in this chapter has been based on the passenger simulation of

Kroon et al. (2014).

Furthermore, the comments and suggestions of Leo Kroon and Peter Vervest have im-

proved Chapters 1 and 6.

1.6 Outline

The remainder of this thesis is organized as follows. Chapters 2 and 3 represent our

work on analyzing passenger behavior. Chapters 4 and 5 present new optimization based

models for minimizing passenger inconvenience in the case of major disruptions in systems

with free route choice for passengers. Finally, Chapter 6 summarizes results, presents

conclusions, and contains recommendations for future research. We have chosen to use

exact copies of the papers as Chapters 2, 4 and 5, in order to allow easy independent

reading of these chapters. Chapter 3 is an adaptation of a conference paper. As a result,

there might be some overlap in terms of introductions and definitions in the different

chapters.
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Chapter 2

Deduction of Passengers’ Route

Choices from Smart Card Data

This chapter has been published in IEEE Transactions on Intelligent Transportation Sys-

tems (Van der Hurk et al., 2015b). A preliminary version of the paper was nominated

for the Best Paper Award at the 2013 IEEE Conference on Intelligent Transportation

Systems in The Hague, The Netherlands.

Co-authors: L.G. Kroon, G. Maróti and P.H.M. Vervest

2.1 Introduction

Passenger route choice information is important for public transport operators. Indeed,

based on this information train utilizations can be calculated. Moreover, the experienced

journey of the passengers can be analyzed in detail in terms of waiting time, in-vehicle

time, and number of transfers, together resulting in a measure of passenger service.

Most passenger route choice models are based on utility maximization (Ben-Akiva,

1974) or regret minimization (Chorus et al., 2008). However, in case of sudden changes

in the timetable or disruptions in a public transport system, these models may not be

valid. For one, passengers may not travel as predicted by the existing models due to the

lack of up-to-date information. Secondly, the urgency to make quick decisions may result

in unexpected travel routes. Thus route choices based on the traditional models may be

incorrect in these specific situations. Therefore a different method is required to analyze

passenger route choice and passenger service in case of disruptions.

New data sources generated by automated fare collection systems allow for a data

driven study of passenger route choice. In contrast to classical data collection methods
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such as travel diaries and surveys, these recently introduced systems store all passengers’

journeys every day while they do not suffer from recall error.

An excellent overview of research on smart card data is provided by Pelletier et al.

(2011). We focus on those smart card systems that register the start and end of each full

journey. However, some smart card systems do not register the destination of the journey,

or may register different legs of a journey as separately, thus requiring the estimation of

destinations or the linking of journeys. In these cases, methods proposed by Zhao (2004),

Gordillo (2006), Trépanier et al. (2007) and Seaborn et al. (2009) could be used to enrich

these data.

Previous studies on passenger route choice deduction, that is the problem of deducing

the chosen route of passengers from smart card data, include the research of Sun et al.

(2012) who estimate the location of a passenger over time based on smart card data

containing origin and destination in the Singapore MRT system. They consider a single

metro line and estimate the location of passengers and the waiting time on the platform

directly from the smart card data, as timetable information is not available. This is

possible as consecutive trains will follow the same route and there are no transfers. Based

on data from the Oyster smart card of the London Overground, Frumin and Zhao (2012)

analyze arrival behavior, and Zhao et al. (2013) estimate excess journey time based on

the registered origin and destination stations. Routes are based on the planned timetable

and departure waiting time is estimated on the first reasonable departing route, while

excess time is estimated on the first arriving route. Also Kusakabe et al. (2010) consider

the problem of linking routes through the usage of a timetable for a rapid transit system.

However, they choose the route with the longest in-vehicle time rather than the earliest

departing route or the earliest arriving route. Routes are generated based on shortest

path computations, as by Frumin and Zhao (2012).

The contribution of this paper is that it proposes a new method for Route Deduction

and validates this method through additional data resulting from conductor checks for one

of the most complex public transport networks studied so far in this context: the complete

network of Netherlands Railways. This network contains stations connected to multiple

lines and contains different geographical routes for several origin-destination pairs, and,

as a result, is more complex than networks studied by, for instance, Sun et al. (2012) and

Kusakabe et al. (2010). Validation of the method is possible as conductor checks provide

partial information on route choice for a significant subset of all journeys made by smart

card. The results of our case study show that commonly made assumptions on route

choice behaviour, that is, that passengers either take the first departing route or the first

arriving route, do not hold true in our case study.
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We distinguish a Route Generation and a Route Selection step, following the tra-

ditional split of route choice models as proposed by Nguyen and Pallottino (1988) and

Spiess and Florian (1989). Our results show that both are equally important for successful

Route Deduction. Our best method for Route Generation contains a correct route for at

least 90 % of the journeys in our validation sample. Of this sample, the most successful

Route Selection rule selects the correct route for 95% of the journeys in our sample. For

our case study, we show how passenger service, defined in terms of added travel time due

to increased in-vehicle time, transfer time, or waiting time, can be compared between

normal and special days with reduced frequencies of trains.

The route data resulting from our Route Deduction method can be used to evaluate

and calibrate statistical route choice models, for instance similar to Schmöcker et al.

(2013), or to analyze passenger service, for example the effectiveness of different disruption

management methods such as proposed by Carrel et al. (2013).

The rest of this paper is organized as follows. In Section 2.2 the problem of passenger

route choice deduction is described. Section 2.3 provides an overview of the links between

the available data and of our three step method: (i) Route Generation, (ii) Route Selec-

tion, and (iii) Validation. The methods for these steps are described in Sections 2.4, 2.5

and 2.6, respectively. The data of our case study is described in Section 2.7. The results

for the case study based on the data of Netherlands Railways are presented in Section

2.8, which includes the results of the validation of the method as well as an analysis of

passenger service. Finally, Section 2.9 provides conclusions and discussions.

2.2 Problem Description

This paper describes methods for deducing passenger route choices based on smart card

and timetable data. This means that, for each journey that is made by a smart card, the

aim is to reconstruct the detailed route through space and time in the timetable that is

made by the corresponding passenger. Here a journey is defined as a registered check-in

and check-out time at respectively an origin and destination station. A route is defined

as an ordered set of train trips connecting the origin and destination through space and

time. A train trip is a train driving from one station to the next for which both a planned

and a realized timetable are available.

The data of a journey does not contain detailed information on the route the passenger

took, but contains only information about its origin (location and time) and destination

(location and time). Due to the high frequencies and the density of the Dutch railway

network, several routes can exist in the timetable leading from origin to destination within
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the time frame of the journey. In this paper we determine how to find a route in the

timetable that has a high probability of being the route that was actually used by the

corresponding passenger.

To that end, we need (i) methods for generating a set of potential routes in the

timetable that fit with a certain journey (Route Generation), and (ii) rules for selecting

the correct route from the set of potential routes (Route Selection). We propose several

methods for Route Generation and several rules for Route Selection, since it is not a priori

clear which method or rule will perform best. These methods and rules are discussed in

Sections 2.3.1 and 2.3.2, respectively.

A combination of a Route Generation method and a Route Selection rule is called a

Route Deduction method. Each Route Deduction method requires the coupling of two

data sets (the smart card journeys and the timetable) that are related, but that are not

linked directly. Thus a third data set that provides a link between journeys and routes is

needed to validate the Route Deduction method. Section 2.3.3 discusses this validation

based on conductor check data that does provide the required link between smart card

data and timetable.

2.3 Methodology

Figure 2.1 provides an overview of the process of Route Deduction for a specific day d of

data. The input data is listed on the left: the timetable, smart card data, and conductor

checks for this day, as well as data of conductor checks of earlier days. Moreover, we use

a set of Route Generation methods m ∈ M , which will be defined in Section 2.4, and

a set of Route Selection rules s ∈ S, which are defined in Section 2.5, thereby following

the common split between route generation and route choice in route choice models as

proposed by Nguyen and Pallottino (1988) and Spiess and Florian (1989).

• In the first step, Route Generation, a set of routes Rm is generated by each Route

Generation method m, based on the smart card data, the realized timetable, and

possibly conductor checks of earlier days. Routes are generated for all OD-pairs and

all possible departure times.

• In the second step, the route set Rm and the smart card data serve as input for

each of the Route Selection rules s selecting a single route rms
j for each journey j in

the smart card data. This is the route that, according to the used rule, has a high

probability of being the one that was actually used by the journey.
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• Finally, for the subset of journeys j with at least one conductor check, the perfor-

mance of the Route Generation method m together with Route Selection Rule s is

measured by determining per journey j in this set if the selected route rms
j is a likely

route given the conductor check. The performance pms is calculated as the average

performance over all journeys j with a conductor check. The validation is described

in detail in Section 2.6.
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check data
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T = d
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Figure 2.1: Overview of Route Deduction method for a single day d of data

2.3.1 Route Generation

In a system without seat reservation, like the Dutch railway system of our case study

and many urban transportation systems around the world, the journey information does

not contain information about the chosen route. In these systems passengers are free to

choose their own routes, within certain bounds. As a result, the set of routes chosen by

passengers is unknown and needs to be constructed.

Routes can be constructed based on timetable information of the operator containing

information on train trips, preferably the realized rather than the planned timetable. By

translating the timetable into an event-activity network, shortest paths algorithms like

Dijkstra’s (Dijkstra, 1959) or Bellman-Ford’s (Bellman, 1958; Ford Jr. and Fulkerson,

1962) algorithm are able to find minimum cost routes quickly.

However, passengers are known to not always travel along a unique minimum cost

path. Other routes may be more attractive because they contain fewer transfers, are
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carried out by different train types, have lower fares, or have a departure or arrival time

that is more convenient for the passenger. Moreover, two equally attractive routes could

exist in the network with different geographical routes associated to them. Thus the

Route Generation methods should find a diverse set of routes. We define a set of different

methods m ∈ M for the Route Generation step in Section 2.4.

2.3.2 Route Selection

Given a set of generated routes, each Route Selection rule selects one of these routes for

the registered journey. Based on the registered time and space dimensions of the journey,

routes are selected from the generated set of routes. There may be multiple routes that

fit this requirement in a dense network. Moreover, multiple routes may fit within the

time frame of check-in and check-out when passengers undertake other activities than

traveling between the registered time of departure and arrival, like for instance shopping.

Therefore, additional rules are required to select a single route for a journey.

A Selection Rule defines how to select a single route from a set of candidate routes

that fit within the registered time interval of the journey and connect its origin to its

destination. We define and compare different Selection Rules, and investigate if there is

a single rule that selects the correct route for the majority of all journeys. By making

these rules dependent on the check-in time, check out time, and in some occasions the

number of transfers, we aim to make very few a priori assumptions on the preference of

passengers for different routes. As a result, the resulting route data could be used for

analyzing passengers’ preferences for different routes.

A set of rules s ∈ S is defined in Section 2.5. Among the tested rules of this nature, we

find one that reconstructs a correct route for over 95% of the journeys in our validation

set by assigning the correct route to a journey.

2.3.3 Validation

Data used for validation is generated by conductors checking the smart cards of passengers

by using a Mobile Chipcard Reader (MCL, “Mobiele Chipkaart Lezer”). The resulting

data, internally known as MCL data, contains conductor checks that are centrally stored

and contain a time, train number, and smart card number per conductor check. Fig. 2.2

shows how MCL data forms the bridge between smart card data and timetable informa-

tion: the smart card number and time allow finding the specific journey corresponding

to the conductor check. The time and the train number of the conductor check enable

the selection of the specific train in the timetable the passenger was on. Because only a
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subset of all journeys is checked by a conductor, this data cannot be used for the Route

Deduction of all journeys.

Timetable
for all trains:
train number 
for all trips:

station 
departure & arrival time

Smart Card Data
for all journeys:

card number
departure & arrival time
departure & arrival station MCL data

for all checks:

card number 
time
train number

Figure 2.2: Conductor check data (MCL) link the timetable and the smart card data.

We therefore use these data to validate both Route Generation methods and Route

Selection rules using the MCL data. A Route Generation method is validated by deter-

mining the percentage of the checked journeys where there exists a matching route in

the generated route set that links the origin and destination of the journey within the

registered check-in and check-out time. Secondly, we define the performance of a Route

Selection rule as the percentage of the checked journeys where the assigned route matches

with the conductor check(s) of this journey. They match when the train number(s) and

time(s) of the conductor check(s) of a journey are the same as those of the train trip(s)

in the route assigned to this journey. A performance of 100% would mean that for all

checked journeys, all routes match with the registered conductor checks’ train numbers

and times.

Note that in this procedure three data sets are linked based on time. However, each

of these data sets have their own registration of time, and sometimes even multiple base

clocks exist within one data set, e.g. the clocks of the check-in and check-out devices.

Therefore, the assumption that there exists a true route in the timetable that matches

the MCL data, the route in the timetable, and the journey, may not be true. As part

of the validation, we pay specific attention to the possible errors due to unsynchronized

clocks and possible other registration errors in the data, in order to not confuse them with

the errors that may be due to the method.
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2.4 Route Generation

The objective of the Route Generation step is to find all time-dependent routes that

passengers use to travel from an origin to a destination. A route set ROD is constructed

per origin-destination pair (OD) containing a set of time dependent routes connecting

the origin with the destination. The routes are generated based on the translation of the

timetable into an event-activity network, as described in Section 2.4.1. We define two

translations of a timetable into an event-activity network and discuss their advantages

and disadvantages. Next, three different algorithms for route construction are defined in

Section 2.4.2.

The network definition together with the route construction algorithm define a Route

Generation method. We will compare the following 5 combinations in our case study:

1. Basic Network, Minimum Cost: BN-MC

2. Basic Network, Extended Search: BN-ES

3. Extended Network, Minimum Cost: EN-MC

4. Extended Network, Learn Links: EN-LL

5. Extended Network, Learn Links and Minimum Cost: EN-LL-MC

2.4.1 Definition of the Event-Activity Network

The timetable is translated into an event-activity-network N := (E ,A). This network

is a directed network, where E denotes the set of events (nodes) in the network, and A
represents the set of activities (arcs) in this network. A timetable consists of a list of

train trips. A trip is a train ride between two consecutive stations with a departure time

and an arrival time. This information is used in two ways to construct an event-activity

network: the Basic network (BN) and the Extended Network (EN).

Basic Network

In the Basic Network, each node e ∈ E represents a departure or an arrival of a train.

Thus each node is characterized by a time instant and a station. The time instant of

event e is denoted by t(e), and the station of event e is denoted by s(e).

The set of arcs A consists of a set of train arcs Atrain and a set of station arcs Astation.

Each train trip in the timetable is represented by a train arc (u, v) ∈ Atrain from node u



33_Erim Hurk BW Stand.job

2.4 Route Generation 21

to node v. These nodes are such that s(u) and t(u) are the departure station and time of

the train trip, and s(v) and t(v) are the arrival station and time of the train trip.

Each station arc Astation connects two nodes representing consecutive time instants at

the same station. Thus each arc (u, v) ∈ Astation connects nodes u and v, which are such

that s(u) = s(v) and t(u) < t(v), and for each other node w with s(w) = s(u) = s(v) we

have t(w) < t(u) or t(w) > t(v). Passengers can use the station arcs to board a train,

to leave a train, or to transfer from one train to another. The lengths of the arcs are

described in Section 2.4.2.

An example of a Basic Network is shown in Fig. 2.3a. A Basic Network is a compact

translation of the timetable into a network, which benefits the speed of the shortest path

computations. However, as we will describe below, the inability to distinguish transfers

of passengers from one train to another is a major disadvantage.

Extended Network

In contrast with the Basic Network, the Extended Network allows to distinguish the

transfers of the passengers. Therefore, the set of nodes consists of train nodes E train and

station nodes E station.

In the Extended Graph the complete path of a train consisting of train trips and

dwellings in stations are modeled. Therefore, train nodes v ∈ E train, again representing

arrivals and departures of trains, are characterized by a time instant, a station, and a train

number. Station nodes v ∈ E station represent time instants at which passengers board a

train departing from a station, or alight from a train arriving in a station. The boarding

time is earlier than the departure time of the train. The alighting time is later than the

arrival time of the train. Station nodes are characterized by a time instant and a station.

The set of arcs consists of train arcs Atrain, station arcs Astation, and transfer arcs

Atransfer. Each train arc (u, v) ∈ Atrain connects consecutive departures and arrivals of

trains at stations, not only connecting a departure with the next arrival of the train

(a train trip), but also connecting an arrival with the next departure (a dwelling in a

station). As before, each station arc Astation connects two nodes representing consecutive

time instants at the same station.

Finally, each transfer arc Atransfer represents the process of passengers boarding a train

or alighting from a train. A transfer arc (u, v) ∈ Atransfer representing boarding a train

connects a station node u ∈ E station with a train node v ∈ E train. The nodes u and v

are such that node v corresponds with a train departure, s(u) = s(v), and t(v) is the
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time the passengers departing with the train have to board the train. A transfer arc

(u, v) ∈ Atransfer for alighting from a train is defined similarly.

An example of an Extended Network is shown in Fig. 2.3b. The benefit of the Extended

Network is that, because transfers can be distinguished and penalized, important routes

can be found that cannot always be found in the Basic Network. This leads to a better

performance of the Route Deduction method. The disadvantage is that the numbers of

nodes and arcs are much larger, thereby increasing the computation time.

Example

We compare the two networks based on an example network with 4 stations and 3 trains,

for which the corresponding time-space diagram of the Basic Network is given in Fig.

2.3a and the Extended Network is given in Fig. 2.3b. Consider a passenger traveling from

station A to station D and the routes that exist connecting these two stations in the two

networks.

The Basic Network contains the fastest route that contains a transfer from Train 1 to

Train 2. However, the transfer time is very short - in fact zero minutes in our example -

not allowing for enough time to transfer.

Therefore in the Extended Network, the arrival of passengers from Train 1 in station

B is later than the departure of passengers from station B to Train 2. Thus this infeasible

transfer from Train 1 to Train 2 in station B does not exist in the Extended Network.

The direct route with Train 1 from station A to station D exists in both networks.

Finally a third route exists in both networks: Train 1 from A to B, Train 3 from B

to C, and finally again Train 1 from C to D. Such a route with two transfers and no

gain in time is inferior to the direct route with Train 1. However, in the Basic Network

the difference between these routes cannot be seen. Even worse, when preferring station

arcs over trip arcs in case of equal cost, the shortest path algorithm will find this inferior

route with a transfer and will not find the direct route.

Although preferring trip arcs over station arcs would solve this problem for this specific

case, it may lead to routes with unnecessary detours in case the actual route contains a

long transfer. In the Extended Network, even a very limited penalty on transfer arcs

would ensure that the direct route is found in this example.

2.4.2 Algorithm for Route Generation

The objective of Route Generation is to find all routes used by passengers to travel from

their origin to their destination. As these routes are unknown, we define a set of algorithms
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Figure 2.3: The Basic Network Formulation (a) and the Extended Network formulation

(b) of a 4 station network with 3 different trains.

aimed at finding a diverse set of paths. These algorithms are all based on the minimum

cost or shortest path problem: Given a directed network N := (E ,A) with node set E
and arc set A, source and sink nodes s and t, and cost ca for each arc a ∈ A, find the

shortest (or cheapest) route from node s to node t.
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For all shortest path computations we use the well-known Bellman-Ford algorithm

(Bellman, 1958; Ford Jr. and Fulkerson, 1962). By using a topological ordering of the

nodes in the event-activity network based on time, a single round of the Bellman-Ford

algorithm is sufficient to build a shortest path tree. The running time of Bellman-Ford’s

Algorithm is known to be O(|V | × |E|), and, because of the topological ordering, in our

case only O(|E|).
A shortest path tree contains information on shortest paths from the source node to

any node in the network (forward computation) or from any node in the network to the

sink (backward computation). A shortest path tree can be built from a set of sources or

to a set of sinks. As a result, it is computationally more efficient to pre-generate the set

of candidate routes for all OD-pairs, by computing shortest paths for the full time period

per OD-pair from a single shortest path tree, and ordering the OD-pairs by origin such

that shortest path trees can be re-used between OD-pairs with the same origin. Finally,

parallel computation of routes for different OD-pairs is used to increase the computation

speed further. A full set of shortest path routes for a full day for a single OD pair is

computed in 0.2 seconds on a standard server within NS for the Basic Network. Although

one could further speed up the algorithm by using more advanced shortest path algorithms

or an intricate ordering of OD-pairs and possible storage of popular shortest path trees,

our implementation was fast enough for the purpose of Route Deduction.

The 5 Route Generation methods defined at the beginning of this section differ in

the selection of sinks and sources used as a starting point for finding routes, and in the

network formulation used (Section 2.4.1). The results depend on the arc cost settings,

which we will discuss first.

Arc Cost The arc costs for station and train arcs are set equal to the time length of

the arc. This fully defines the costs of arcs in the Basic Network. The transfer arcs in

the Extended Network still require a specification of both a length and a cost, as these

do not follow directly from the timetable.

In the example of Fig. 2.3 we showed that at least a small penalty for the transfer arcs

is needed to assure that, in the case of equal length routes, a route with the least transfers

is found. The best settings of these parameters will depend on the network. To generate

all routes with a single setting of these parameters would require a deep knowledge of the

network and passenger behavior, which is not available for our case study. Therefore we

must be careful in making any assumptions here that influence the set of generated routes

- and thus the results of the Route Deduction method.
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We choose to run the Route Generation methods for multiple settings of the length

of the transfer arcs in the Extended Network. One setting allows passengers to make

a one-second transfer, the other setting requires at least a 4 minute transfer time, by

defining the length of each transfer arc as 2 minutes. The 4 minutes are sufficient to

make a transfer in any station in the Netherlands. Alternatively, one could use minimum

transfer times based on the walking time between platforms at stations and the arrival

platform of the specific trains in future research. Such a specification of train-to-train

transfer times is possible in this formulation. Moreover we penalize each transfer by 1

additional minute. The arrivals and departures of trains are given in minutes - thus 1

minute is the minimum gain in time a transfer should provide.

The settings for these parameters, as well as the number of instances one should run

to find a broad set of routes, depend on the network. For example, take a transfer station

with trains from two different lines arriving at 1 minute intervals. With a 2 minute margin

there are already three trains departing from the first line and three trains departing from

the second line, leading to 6 different possible routes: {(1, 1)(1, 2)(1, 3)(2, 2)(2, 3)(3, 3)}.
The usage of several settings of the transfer time in the Extended Network will allow to find

these different routes. Moreover, one might be able to find good values for these settings

through research on minimal transfer times. Our data set of 5 days was unfortunately

too limited to fine tune these settings based on the data.

Route Generation methods In the following, we describe the Route Generation

methods that are used for generating routes in the Basic Network and in the Extended

Network.

• Minimum Cost (MC): The MC method runs the Bellman-Ford algorithm forward

and backward. In a forward search, shortest paths are generated starting at any

time a train leaves the origin. In a backward search, shortest paths are generated

ending at any time a train arrives at the destination. Though both methods will

find minimum cost routes, one will find the earliest arriving routes, while the other

will find the latest departing routes.

• Extended Routes Search (ES): In an attempt to quickly find more diverse routes, we

use the ES method in the Basic Network. Given a source node for a route starting

in an origin station, we construct a new route based on every train arc that leaves

this source node: for each such train arc we find a shortest path from the arrival

station of this train arc to the destination station, while forbidding this route to

return to the origin station. Similarly we construct routes for all train arcs ending
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in a sink node of a route arriving in a destination station. The disadvantage of

this approach is that many initially selected train arcs are leading into the wrong

direction, thus resulting in unlikely routes or in routes that do not fit within the

ticket requirements. In an attempt to delete the most unlikely routes while keeping

a diverse set of routes, we delete all dominated routes. Domination is determined

based on the length and the number of transfers.

• Learn Links (LL): The LL method constructs routes based on conductor checks from

earlier days. A set of train trips is constructed per OD-pair: for every conductor

check the corresponding train trip is found in the timetable. Next, for each of these

train trips we find the shortest route from the origin to the destination of the OD-pair

including this train trip. The conductor check, and thus the trip, is time dependent.

Netherlands Railways has a cyclic timetable. Therefore we can translate all initially

found time dependent routes into time independent routes, using the cyclicity of the

timetable. Note that there is no dependency between this Route Generation method

and the validation of the methods, because only conductor checks from earlier days

are used.

2.5 Route Selection

In this step for each journey a single route is selected from the pre-generated route set

resulting from the Route Generation step. For each journey, first all routes in the gener-

ated route set are selected that lead from origin to destination of the journey within the

registered time horizon. In case multiple routes are contained in this set, we consider the

following Selection Rules:

1. First Departure (FD)

2. Earliest Arrival (EA)

3. Last Arrival (LA)

4. Least Transfers (LT )

5. Maximum Route Length (MRL)

6. Selected Least Transfers Last Arrival (STA)

We explain these rules by the example shown as a time-space diagram in Fig. 2.4.

Given is a journey from station A to station D. Within the time of check-in (ci) and



39_Erim Hurk BW Stand.job

2.6 Validation and Calibration 27

check-out (co) there are 5 routes from the candidate route set ROD that fit with the

journey. Note that there are many more routes in the network, but not all routes are in

the generated route set. The routes are denoted by Ri, i = 1, . . . , 5. All train trips are

represented by arrows. Trips B1 −C1, C1 −D1 are carried out by a different vehicle than

trip A1 − B1. Therefore they are dotted.

• The rule FD selects the route that departs closest to the time of check-in, R1,

minimizing the waiting time at the departure station.

• The rule EA selects the earliest arriving route, R1 thereby choosing the quickest

option.

• The rule LA selects the route arriving closest to the time of check-out, R5. This

route minimizes the waiting time at the arrival station.

• The rule LT selects the route with the smallest number of transfers. As there are two

direct routes, R3 and R4, a tie breaking rule is needed. These generic tie breaking

rules will be ordered, best performing first, as: LT, LA, FD. Thus LT selects R4.

• The rule MRL selects the route with the maximum length (time duration) that

fits within the check-in and check-out time of the journey, which is R2. This rule is

similar to the Route Selection rule proposed by Kusakabe et al. (2010) and therefore

included in our comparison.

• Finally, the rule STA selects R3. STA first selects routes where the sum of the

difference between the check-out and the route’s arrival, together with the check-

in and the route’s departure, is less than x minutes. If multiple routes remain, it

applies the generic tie-breaking rules: LT, LA and FD. If no routes remain after the

first selection, the tie breaking rules are applied to all routes within check-in and

check-out. Therefore STA is a combination between the MRL and LT rule. The

most suitable value of x depends on the frequency in the public transport network,

and on common entrance and egress times of passengers. By evaluating several

values, we found that x = 10 minutes works well in our case study.

2.6 Validation and Calibration

We discussed several Route Generation methods (Section 2.4) and Route Selection rules

(Section 2.5), together leading to 30 different settings for the Route Deduction: 5 Route
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Figure 2.4: Time-Space diagram of five candidate routes for a journey with a check-in

(ci) at station A and a check-out (co) at station D.

Generation methods together with 6 Route Selection rules. Thanks to the availability of

conductor checks, we are able to evaluate the performance of each of these settings.

These conductor checks provide a ground-truth data set for the subset of journeys

that were at least checked once. Based on the train number and the registered time of

the conductor check, we can find a train trip in the timetable. Based on the smart card

number and the time of the conductor check, a journey can be selected from the smart

card data that belongs to this conductor check.

If the train number of the conductor check is contained in the route assigned to the

journey around the time interval of the check, we conclude that the assignment of route to

journey was correct: the conductor check matches the assigned route. In case of multiple

conductor checks for one journey, an assignment is only considered correct if all conductor

checks match the assigned route. We define the performance as the number of journeys

with a conductor check that were assigned to the correct route.

Whether a route matches a conductor check depends on both the Route Generation

and the Route Selection step, which we will evaluate separately. The procedures for each

are discussed in respectively Section 2.6.1 and Section 2.6.2.
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2.6.1 Validation of Route Generation

A successful Route Generation method generates a route set that contains for each checked

journey j a matching route that leads from the origin to the destination of journey j and

is within the time between check-in and check-out registered for journey j.

In the following, we denote the set of all generated routes by RRG and define RRG
j as

the set of routes in RRG that connect the OD-pair of journey j within the time frame of

the journey. Furthermore, we use the term Rj for the set of all routes in the timetable

that connect the OD-pair of journey j within its time frame. The term RRG
OD is used for

the set of all routes in the generated route set that connect the OD-pair of journey j,

irrespective of time.

To evaluate the performance of the Route Generation methods we distinguish the

following 4 cases:

1. A matching route exists in the generated route set RRG
j .

2. A matching route exists in the set Rj of all routes in the timetable, but not in RRG
j :

there exists a route in the timetable that connects the OD-pair of journey j and

within its time frame, but this route is not generated.

3. A matching route does not exist in the set Rj of all routes in the timetable.

4. A matching route exists in the generated route set RRG
OD but not in RRG

j : there is a

route connecting the OD-pair of journey j, but not within its time frame.

For all Route Generation methods, and for all journeys with a conductor check on our

sample days, we determine which case applies for the generated routes. The more match-

ing routes are found in the set RRG
j (Case 1), the better the Route Generation method.

Case 2 gives an indication for possible improvements of the Route Generation method. In

principle, Cases 3 and 4 should not occur. However, in our data set they do occur. This

is mainly due to the fact that the clocks of the three data sets are not synchronized and

the fact that e.g. replacing bus services are not contained in the timetable.

For over 10% of the smart card journeys in our data set there does not exist a route in

the timetable that connects the origin and destination of the journey within the registered

time frame. However, a global correction of the smart card data, extending the check-out

time with three minutes, reduces the time-error in our case study from 10% to less than

1.5%. A global check-in time correction did not improve the results.
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2.6.2 Validation of Route Selection

To separate the data errors from the errors that result from the Route Selection rules, we

evaluate these rules based on the subset of journeys for which there exists a journey in

the generated route set RRG that falls within the registered check-in and check-out time

of the journey. The performance of a Route Selection rule is denoted as the percentage of

routes for which the rule selects a correct route: a route that matches with the conductor

checks.

2.7 Data

This section describes the data used in our case study: smart card data (Section 2.7.1),

timetable information (Section 2.7.2), and data from conductor checks (Section 2.7.3).

The comparison of passenger service for special and normal days is based on a larger data

set containing all journeys made by smart card on these days. We use a 5 day sample of

real life data of Netherlands Railways, who provides on average 1.2 million journeys per

day.

The selected 5 days contain two regular days and three special days with reduced train

frequencies due to expected extreme bad weather. On the special days, the changes in the

timetable were communicated to the passengers at 17:00h of the previous day. Due to the

relatively late communication, not all passengers were aware of the change in service at

their time of departure on those days. A changed timetable contains approximately 20%

less trains, and reduces the frequency of the trains by 50% on the main corridors. The

timetable is reduced in order to prevent major disruptions and add-on effects due to the

bad weather. Though it is clear that this reduced service decreases the probability of an

out-of-control situation during bad weather, the punctuality of the trains on these days

is significantly below average, and smaller and larger disruptions will likely have occurred

at a higher rate than on the normal days due to the bad weather. Therefore it provides a

good case study for testing the performance of the passenger route choice deduction and

analyzing passenger service in case of disruptions.

2.7.1 Smart Card Data

Netherlands Railways’ smart card system requires passengers to tap their smart card to

a device positioned at the station at the beginning and end of each journey, referred to

as checking-in and checking-out. This system is similar to such systems implemented for

metro, train and subway in respectively London, Tokyo, and Seoul. A journey contains a
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smart card number, a check-in time, a check-in station, a check-out time and a check-out

station.

Our data set contains all journeys paid for by smart card for the 5 selected days. Not

all passengers of Netherlands Railways were using the smart card system at this time, as

the smart card is still in its introduction phase. Specifically, most annual subscriptions

were excluded from this system, therefore regular travelers are less represented in our data

set. Still a significant portion of all journeys is made by smart card, and a significant

number of these journeys is checked by a conductor. Because of the sensitivity of this

information, we can only state that each of our data sets contains hundreds of thousands

of records. We cannot report more exact numbers.

From the data set, we select journeys that have both a check-in and a check-out, and

that do not have more than 5 routes fitting within the registered time interval. Finally, we

select only those 7000 origin-destination pairs that occurred at least once on each of these

days accounting for 95% of all journeys. The first two rules aim to eliminate passengers

who forgot to check-in or check-out. The second rule reduces the computation time while

allowing to compare the performance per OD-pair for each day.

Neither seat reservation nor reservation for a specific train is available in the Dutch

railway system, thus smart card data is the only source of rather exact time-dependent

journey information.

2.7.2 Timetable Information

The timetable contains the set of all train trips with arrival and departure times per station

and per train number. Here a train trip refers to a train connecting two consecutive stops

on its route. For our case study we use the realized timetable that contains the arrival

and departure times as realized on the 5 selected days. There are between 30,000 and

40,000 train trips connecting about 360 stations per day. Moreover, for the Learn Links

method we also used a planned timetable to generate a set of train trips per OD-pair as

described in Section 2.4, as realized timetables were not available to us for these specific

days. Emergency replacement busses are not contained in either the planned or realized

timetable.

2.7.3 Conductor Checks

Netherlands Railways employs conductors who, as part of their duty, check the validity

of tickets of passengers between stops of a train. The validity of a smart card ticket is

checked using a Mobile Chip smart card Reader (MCL). The device then stores the smart
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card number, the current time, and the train number of the current train. The conductor

checks the validity of only a sample of the passengers in a train, and only for a sample of

the trips of this train. Apart from the 5 selected days our method was evaluated on, the

Learn Links method was used over 30 earlier days of conductor checks to generate the set

of additional routes.

2.8 Results

In Section 2.8.1 we compare the performance of different Route Generation methods (Sec-

tion 2.4) and different Route Selection rules (Section 2.5) based on the realized timetable.

Next in Section 2.8.2 the Route Deduction data is used to compare passenger service

on normal and special days in terms of on-route time and departure waiting time of

passengers.

2.8.1 Evaluation of Route Deduction

We separately discuss results on Route Generation and Route Selection, which together

define the Route Deduction method. The Basic Network of the transportation network

has on average 50,000 nodes and 86,000 arcs. The Extended Graph is two to three times

larger than the Basic Network and has on average 144,000 nodes and 211,000 arcs.

Evaluation of Route Generation

Table 2.1 contains the percentage of journeys with a conductor check having a matching

route in the route set RRG
j , that is, a route that contains the train trips matching with the

conductor check associated with the journey. A 100% score would mean that the Route

Generation method finds a correct route for all journeys with a conductor check. Because

of the clock synchronization errors we observed in our data, we allow a time interval of

10 minutes around the time of the conductor check to find the correct train number in

the route.

Our tested Route Generation rules score between 75.5% to 93.3%. Route Generation

methods based on the Extended Network (EN) have the best performance. The method

that allows for penalizing transfers combined with the Learn Links method finds correct

routes for 93.3% of the all journeys with a conductor check. This is a great deal better than

the methods based on the Basic Network. The performance of the Learn Links method

alone is less than that of the minimum cost based methods. A possible explanation is
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that conductor checks are not a random sample of train trips nor of journeys, so some

Origin-Destination pairs may be not or under represented in this sample.

To examine whether it is possible to construct an even better Route Generation

method, we focus on the best performing method EN-LL-MC (top row of Table 2.1).

For 93.3% of the journeys with a check a matching route is contained in the data set.

Thus for 6.7% of these journeys no such route is found. For the majority of the 6.7%, at

least 4% of all journeys with a conductor check, no route can be found in the timetable.

For 2.3% a route exists in the set of OD-pairs, but this route does not fit within the reg-

istered check-in and check-out time. For only 0.4% of all journeys with a conductor check

a matching route can be found in the timetable, but was not contained in the generated

route set RRG. Thus we estimate the maximum gain of a new route generation method

to find matching routes for 0.4% more journeys. However, both in the construction of

the new routes and in the conclusion that there is no correct route, clock synchronization

errors influence the results. Therefore one must be careful in concluding that the 0.4%

journeys are actually missing. In any case, we conclude that only a marginal improvement

could be expected from different Route Generation methods.

One may notice that the percentage of journeys with no route in the timetable varies

over the generation methods in Table 2.1. The conclusion that there exists a route in the

generated route set is based on a time interval around the conductor check. However,

when no such route is contained in the generated set, the conclusion that there exists a

route in the timetable is based on finding a train trip at the exact time of the conductor

check. Due to clock synchronization errors this may be the wrong train trip, or a train

trip is not found at the time of the conductor check. As a result, the number of journeys

without a route in the timetable can only be estimated, and thus varies over the different

Route Generation methods.

Given the significant error due to time synchronization errors, one might wonder

whether the Learn Links method is actually better than the minimum cost method. Al-

though the EN-LL-MC method finds 1% more journeys with a route, no guarantee can

be given on the quality of these routes. The advantage of the Route Generation methods

based on minimum cost, together with the Extended Network, is that they find a broad

set of routes that can easily be considered as reasonable routes, as they are minimum cost

routes given some definition of cost.
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Table 2.1: Performance of the Route Generation methods.

Generation
Method

Journeys
with Route

No Route in
Timetable

Route in OD set-
Not in Journey Set

Route in Timetable-
Not in Generated Set

EN-LL-MC 93.3% 4.0% 2.3% 0.4%
EN-MC 92.3% 5.0% 1.2% 1.5%
EN-LL 88.4% 4.1% 5.9% 1.3%
BN-ES 89.0% 5.3% 1.0% 4.7%
BN-MC 75.5% 5.3% 10.3% 8.9%

Evaluation of Route Selection

In case there are multiple candidate routes for a journey in the generated route set, a

route is selected based on one of the 6 selection rules discussed in Section 2.5. Table 2.2

gives the number of correctly linked routes for the different selection rules (rows) and

different generation rules (columns). The presented percentages are the percentages of

the journeys deducted correctly based on the subset of journeys with a known existing

route. These are the 93.3% of the journeys with a route in the EN-LL-MC method, as

this is our best estimate of the actual number of journeys for which there exists a route

matching the conductor check.

We find that, independently of the Route Generation method, the selection rule STA

consistently performs best by comparing the performances within the columns in Table

2.2. Although there is no guarantee that a global selection rule will work well for all

journeys, STA reaches a performance of on average 95% in combination with the EN-MC

and EN-LL-MC generation methods, at least 3% better than any other selection rule.

Selection rules minimizing egress time and travel time, like FD and EA have generally a

poor performance.

The addition of routes does not necessarily result in a better performance: there is

hardly any difference between the EN-MC and EN-LL-MC generation methods. In fact

the difference is only in the second decimal (not given in the table). Thus generating

more routes does not necessarily increase the performance: if the generated route set is

larger, then also the probability of selecting the wrong route increases. Moreover, given

our previous discussion on the quality of the routes generated through Learn Links, one

might say that EN-MC is the better Route Generation method.

Note that Table 2.2 is based on the 93.3% of the journeys for which a correct route

was found by the EN-LL-MC generation method. The performance of the STA rule for

the full sample of all journeys with a conductor check is 88%. The analysis of the missing

journeys in the Route Generation step, discussed above, suggests that the majority of the



47_Erim Hurk BW Stand.job

2.8 Results 35

Table 2.2: Performance of the Route Selection rules, average over days, best performing

in bold.

Selection Method BN-MC BN-ES EN-LL EN-MC EN-LL-MC
FD 65% 84% 54% 86% 53%
EA 67% 84% 82% 86% 86%
LA 65% 84% 82% 86% 86%
LT 68% 87% 86% 90% 90%
MRL 70% 88% 84% 92% 89%
STA 73% 91% 90% 95% 95%

Table 2.3: Performance per day based on the Route Generation method EN-LL-MC.

Date FD EA LA LT MRL STA
Regular day 1 46% 83% 83% 88% 86% 93%
Regular day 2 49% 88% 88% 93% 91% 99%
Special day 1 64% 85% 85% 89% 89% 94%
Special day 2 52% 86% 86% 89% 89% 94%
Special day 3 53% 86% 86% 90% 88% 94%

12% journeys with an error are to be blamed on the synchronization errors in the data

and not on errors in the Route Deduction method. However, it would be good to confirm

this based on additional data, for example data on train utilization data.

Table 2.2 gives the average performance over all 5 days. Table 2.3 zooms in on the

scores per day. We present results for the selection rules in combination with EN-LL-MC,

the best performing Route Generation method. Results in Table 2.3 show that the STA

selection rule performs well for all days. The relatively good performance on special days

may be partly explained by the fact that, due to the reduction in train frequencies, the

choice set per journey is smaller, and hence the probability to choose the correct route is

higher. Regular day number 2, the latest date in our sample, has a remarkably high score

of 99%. Possibly the Learn Link method finds more interesting routes as the number of

earlier days with conductor checks increases. This issue is left for future research.

To analyze whether the accuracy depends on the OD-pair, we assigned a performance

score for each OD-pair defined as the percentage of correctly selected routes. This score

is weighed by the number of journeys corresponding to the OD-pair. We found that less

than 2% of all journeys have an OD-pair performance below 50%. Moreover, almost one
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third of all journeys have an OD-pair with a perfect score of 100%, while over two thirds

of the journeys have an OD-pair performance of 90% or more.

Note that, as these scores are calculated per OD-pair, they cannot directly be com-

pared to the number of options per journey. Fig. 2.5 shows the cumulative performance

score per OD-pair on the horizontal axis, and the percentage of journeys with this min-

imal score on the vertical axes. The overall good performance is indicated by the slow

decline of the line. The perfect score for over 30% of the journeys is indicated by the

end of the graph at (1, 0.33), indicating that 33% of the journeys has an OD-pair with a

performance of 100%.

Figure 2.5: Performance per OD-pair, weighted by the number of journeys.

2.8.2 Analyzing Changes in Passenger Service

Based on the passenger route choice deduction, we compare differences in travel time

between normal and special days. This comparison is based on all fully registered smart

card journeys on these days, and we consider weekdays only (no weekends). Still 5 days

are a very limited sample. Also, current results are likely not representable for weekends

where the majority of trips are known to be motivated by leisure activities, while during

the week the majority of jobs results from people commuting for work. Therefore the

results in this section are more an illustration of the possibilities of this data set than

aimed at drawing definitive conclusions.

We evaluate the passenger service as the difference in durations of identical journeys

(journey-time) between special days and normal days, and the difference in route-time du-

ration of identical routes (route-time) between special days and normal days. Differences

in route-time reflect delays due to disruptions, disturbances, and additional transfers.
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Differences in journey-time reflect the possible added waiting time of passengers in ad-

dition to increased on-route time. The journey-time can be calculated from the smart

card data directly, but the route-time can only be computed after the Route Deduction.

By comparing differences in route-time and journey-time, we can evaluate the change in

logistic service and the change in service experienced by passengers separately. Especially

with a reduction in frequency, this is important.

Differences are calculated per OD-pair, to prevent a change in the OD-matrix to cause

a change between special and normal days. Differences per OD-pair are weighed by the

number of journeys on the special days, to obtain the average change in service for all

journeys on the special days. To compare differences in passenger service between peak

and off-peak hours, the difference in route-time uses the departure time of the journey.

The journeys are distributed in 15 minute blocks per OD-pair based on the departure

time, in order to have large enough numbers of passengers per time-unit for comparison.

We find that, indeed, special days have both longer journey-times and a longer route-

times than regular days. The two regular days are not significantly different in this

respect. Fig. 2.6 contains graphs of the average difference in journey-time (left) and

route-time (right) for each of the three special days. Further analysis based on Route

Deduction shows that the longer journey times mostly result from longer waiting times at

the departure station, while the waiting time at the arrival station is statistically similar

for all days. Moreover, it seems that passengers learn over time to adjust their departure

time to the reduced timetable, while at the same time punctuality increased a bit, both

leading to better passenger service on later special days.

Figure 2.6: Difference in mean journey-time (left) and mean route-time (right) between

normal and special days.
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2.9 Conclusions and Discussion

This chapter proposes a method for passenger route choice deduction from smart card

data. The passenger route choice deduction is important for analyzing passenger service

in terms of travel time, which is dependent on route choice. Thanks to the unique data set

resulting from conductor checks, the passenger route choice deduction can be validated

at the journey specific level. The journey validation is of a higher accuracy than previous

validation methods based on train capacity utilization proposed by Kusakabe et al. (2010).

Especially when not all passengers travel by smart card, validation on a per journey level is

more accurate than validation on an aggregate level over all passengers. To our knowledge,

this is the first paper to include validation of this method, and to specifically evaluate

different methods for Route Generation and Route Selection. Evaluations are based on a

real life data set from Netherlands Railways.

We compared several Route Generation methods based on different network formula-

tions of the public transport network. We showed that the network formulation strongly

influences the ability of finding all reasonable routes. Although no Route Generation

method is known to find all reasonable routes (Fiorenzo-Caralano, 2007), our best method

finds routes for 93 % of the journeys in our validation sample. Route Generation methods

based on minimum cost searches in the Extended Network that allow penalizing transfers

perform significantly better than minimum cost searches in the Basic Network formula-

tion. Moreover, although the set of routes is increased by using data from earlier days

to learn routes from the conductor checks, a minimum cost based generation method

performs almost as well as this learning algorithm.

Through the implementation of 5 route Selection Rules we compare previously made

assumptions on passenger route choice including first departure by Frumin and Zhao

(2012), longest route by Kusakabe et al. (2010) and latest arrival by Sun et al. (2012), with

two additional rules of least transfers and a balancing rule between longest journey and

least transfers. We measure performance based on the subset of journeys that were checked

by a conductor during their journey. We find that previously assumed selection rules

perform poorly in a complex network such as that of Netherlands Railways. Especially

the first departure rule performs badly, as was also concluded by Schmöcker et al. (2013).

However, a single Route Selection Rule weighing travel time and transfers, STA, is

able to assign 95% of the journeys in our sample correctly. We find that this method

works well on both regular days and in case of disruptions. The resulting data is suitable

for analyzing passenger service, as illustrated by our case study, but could also be used

for, for instance, calibrating route choice models as done by Schmöcker et al. (2013).
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Currently conductor checks are used to broaden the route set. Alternatively, a learning

algorithm could be used to reduce the set of routes. Future research could develop statis-

tical arguments that define when to eliminate a route, or where to gather additional data

to validate the elimination of a route. Moreover, results of the Route Deduction method

could be used to fine-tune the parameter settings of the Extended Network, possibly aim-

ing to set them in such a way that, based on a single setting, all possible routes can be

found. This would increase the computational speed, reduce the number of candidate

routes, and possibly increase the performance of the method.
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Chapter 3

Forecasting Passenger Flows during

Disruptions based on Smart Card

Data

This Chapter is an adaptation of Van der Hurk et al. (2013), which was presented at the

IAROR Conference in Copenhagen, 2013.

Co-authors: L.G. Kroon, G. Maróti and P.H.M. Vervest.

3.1 Introduction

Although timeliness of operations is one of the key performance indicators of public trans-

port operators, disruptions causing delays unfortunately do occur in these systems. When

they do occur passengers expect quick solutions that minimize their inconvenience. De-

tailed data on passenger demand is required to minimize passenger inconvenience. Re-

cently introduced automated fare collection systems, such as smart card ticketing, generate

data on passenger journeys. These data are often not available in real-time, and therefore

forecasts of passenger demand are needed to anticipate passenger demand in disruption

management practices. This chapter presents a framework for forecasting passenger flows

in case of disruptions using these new data.

Traditionally, demand forecasts in (public) transport are split into two phases: in the

first phase, the origin-destination matrix (OD matrix) is estimated for a specific time

period, for instance for a day or a (peak) hour. In the second phase, the OD matrix

demand is assigned to paths through the public transport network. The assignment to

paths aims to estimate the choices of passengers according to a behavioral model. Nguyen
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and Pallottino (1988) and Spiess and Florian (1989) introduced the concepts of hyperpaths

and travel strategies to describe different observed path choices of passengers. Trozzi et al.

(2013) propose a model for assigning passengers to paths in networks with congestion.

Anderson et al. (2014) estimate a model for multi-modal route choice using survey data.

Schmöcker et al. (2013) formulate and calibrate a route choice model for bus passengers

based on smart card data. Generally these models are aimed at estimating passenger

route choices in undisrupted situations.

Newly available smart card data contains information on the OD matrix, and is suit-

able to deduce information on the routes chosen by passengers (Chapter 3. Unlike OD-

matrices, it does not aggregate journeys over time but rather contains information about

both the departure and arrival time of individual passengers. It is available for all pas-

sengers using smart cards, which is generally a much larger number of passengers than

the number of participants in a survey. Moreover, smart card data does not suffer from

inaccuracies due to errors made by survey participants in their recollection of past jour-

neys. Passenger counts per trip, either estimated by conductors, resulting from samplers

specifically counting the number of passengers on a specific trip, or from automatic sensors

in the vehicle, provide information on the crowdedness and overall demand per trip, but

not on the origin and destination of passengers. This information is especially important

when aiming to estimate a change in passenger flows due to a disruption. Consequently

smart card data provides a unique combination of detailed data per journey for a large

set of passengers.

The objective of this chapter is to propose a framework for forecasting demand during

disruptions. Specifically, the paper proposes a model to forecast the number of passen-

gers per planned path using smart card data, rather than to separate the estimation of

OD-matrix and path choice models. These forecasts could be more accurate than tra-

ditional methods, as they use the combined information of origin, destination and route

choice which can all be derived from smart card data. These forecasts for the number of

passengers per planned path will provide the likely location and destination of passengers

at the start of a disruption. Thereby these forecasts can assist in estimating the change

in passengers’ routes from the start of the disruption without changing route choices of

passengers before the start of this disruption. The derived estimates are also aimed at

supporting dispatchers in their decision making process during a disruption by providing

insight into the passenger inconvenience resulting from the disruption.

The framework consists of three steps (i) analyze the smart card data to derive the

combined OD matrix and path assignment over time, (ii) generate forecasts on the number

of passengers per planned path, and (iii) use a simulation model to evaluate the passenger
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inconvenience using the forecasts. Forecasts are intended to be detailed enough to evaluate

both individual passenger delay over time and the number of passengers per vehicle in

order to, for instance, signal crowding. Additionally, a preprocessing step is proposed

that provides insight to dispatchers on when and where passengers are affected by the

disruption, and could possibly provide computational benefits.

The forecast model is tested on a real-life smart card data set of Netherlands Railways

(NS), the largest passenger railway operator in the Netherlands. The forecasts can be used

both by computer-aided disruption management tools and by the dispatchers themselves

in order to improve the service level during and after the disruption. Moreover, they

can be used to obtain insight into how passengers are affected by a disruption. Our

future work on disruption management applications builds upon these detailed demand

forecasts. In particular, we are interested in using the forecasts in capacity rescheduling

and in providing travel advice to passengers with the objective of improving the overall

service quality.

The remainder of this chapter is organized as follows. Section 3.2 contains a literature

overview of related research on forecasting, smart card data and disruption management.

The three-step framework and the preprocessing step are described in Sections 3.3 and

3.4, respectively. Data and computational experiments are discussed in Section 3.5, and

results based on smart card data of NS are presented in Section 3.6. We conclude this

chapter with a discussion and comments on future research in Section 3.7.

3.2 Literature Review

In this section we give an overview of research related to short term forecasts of passenger

flows for disruption management. We start with literature on demand forecasting for

transport, followed by a short overview of research on the application of smart card data.

3.2.1 Forecasting OD flows and demand for transport

Before the existence of smart card data, demand forecasting models for public transport

usually relied on panel data or aggregate data, and focused on long term predictions of

demand and elasticities.

Some research focuses on long term predictions of demand, for example Gaudry (1975)

uses aggregated data on the demand for public transport in a specific urban area to

forecast future demand given the price of public transport, the price of alternatives to

public transport and the demographics of the population, such as the income distribution
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of its inhabitants. Wardman (2006) specifically focuses on forecasting railway demand in

the long run, using similar variables as Gaudry (1975).

Others focus on the elasticity of demand. Hsiao and Hansen (2011), for instance, focus

on predicting demand for air passengers, combining predictions for demand generation

and assignment in their model. They base their model on panel data, and they focus on

predicting the sensitivity of demand to both time and price of the journey. Rolle (1997)

also forecasts the elasticity of demand to price, specifically of railway demand, accounting

for the different kinds of services offered. Batley et al. (2011) focus explicitly on the long

term effects of lateness of trains on railway demand. He compares a market level model

with an individual level model given panel data, and comes to the conclusion that the

effects on the aggregate level in terms of elasticity is less severe than the individual level

models based on panel data suggest.

From the area of complexity research, González et al. (2008) show that human mobility

patterns are quite predictable, by analyzing US cell phone location data. The AURORA
1 project within NS focuses on predicting numbers of passengers per train, and combines

several data sources, including quite recently, smart card data.

The success of previous research in developing accurate prediction models suggests

that in general data on passenger journeys is regular enough to enable forecasting. The

focus of this chapter on short term forecasts is however slightly different from the focus

of the above literature aimed at medium and long term forecasts and the estimation of

elasticities.

3.2.2 Research on smart card data

Literature on smart card data and applications of smart card data mostly stem from the

start of the current millennium. Blythe (2004) was one of the first to give a functional

overview of smart card systems for ticketing in public transport. The recent paper by

Pelletier et al. (2011) provides a review of literature focused on analyzing smart card data.

They divide the literature into the categories of strategic level, tactical level, operational

level and commercialization. We use a different categorization of papers on smart card

data, and divide them into those on passenger behavior, on route choice and OD. We refer

the interested reader to Pelletier et al. (2011) for a broader review of smart card data.

1AURORA is the name of a series of projects at Netherlands Railways focused on medium term
predictions of the number of passengers per train, (Hoogenraad et al., 2013).
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Analysis of passenger behavior

One of the uses of smart card data is analyzing passenger travel behavior. Bagchi and

White (2005) are one of the first to use smart card data for this purpose. They use smart

card data of a UK bus company, where they analyze the passenger population of that

company. Similar is the work of Park and Kim (2008), who analyze the usage and mode

choice of passengers, using smart card data of the Seoul public transport system.

Morency and Trépanier (2007) and Agard et al. (2006) extend these analyses by us-

ing data mining techniques to deduce travel behavior for different groups of passengers.

They show that clustering techniques can reveal patterns of groups of passengers that are

valuable for the analysis of transport usage for a public transport operator. They focus

on the analysis of past performance and behavior of passengers. Moreover, in their data

sets the destination of the journey is not included.

Zureiqat (2008) focuses on the prediction of passenger travel behavior for revenue

management. He focuses on the prediction of product type choice together with the

number of journeys per passenger, and develops a model for forecasting the effect of

product and price changes of a public transport operator.

Route choice and ODs

A second stream of research exists on estimating route choice and ODs from historical

smart card data. These estimations are in general focused on constructing route choices

and ODs of passengers retrospectively, since the destination is not registered all smart card

system data. Seaborn et al. (2009) analyze smart card data of the London public transport

system, investigating transfer times between different legs and modes of transportation.

Kusakabe et al. (2010) focus on linking check-ins and check-outs to trains for the Tokyo

public transport system. In this system they focus on one line having different services.

Analyzing the check-ins and check-outs of passenger journeys, they deduce the route

choice as the (combination of) services the passenger has chosen for his journey. The

algorithm they propose is very similar to the algorithm used in practice by NS for linking

journeys to routes.

We also mention here the work of Zhao (2004) and Gordillo (2006) since they focus on

OD matrix estimation, although their problem setting is different from the one studied in

this chapter. In their papers, they do not aim to forecast the OD flows, but instead they

focus on deducing these from historical data, since the end destinations of trips are not

registered. From the estimated OD matrix, the routes of the passengers are then inferred.
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The article focuses on the London bus system in which, as opposed to the London subway

system, just check-in is required.

3.3 Framework

The framework presented here generates passenger flow forecasts that allow estimation

of both the number of passengers per trip as well as the inconvenience experienced by

individual passengers due to a disruption. Forecasts are calculated given the timetable ,

a disruption, and a set of smart card data.

A timetable is defined as a set of trips. A trip is a train ride between two consecutive

stops. The timetable graph G = (V , E) is an acyclic time-space graph. It contains a node

v ∈ V for the departure and arrival of each trip. The arc set E contains an arc for each

trip, together with arcs connecting the nodes at the same station to a time-line, where the

latter arcs represent the option of waiting at a station. A straightforward modification of

this intuitive graph allows us to account for transfers , for example using the definition

proposed in Chapter 2. A path refers to a path in the timetable graph consisting of a

sequence of time dependent arcs, that is equivalent to a sequence of timetable services

that can be taken by a passenger.

A disruption δ defines a set of arcs e ∈ E that are canceled in the graph G, thereby
defining the disrupted timetable graph Gδ. The disruption represents a cancellation of

service for a fixed time period on a limited part of the network. A journey j, charac-

terized by (u, v, t, p), represents a single passenger traveling from an origin station u, to

a destination station v, at a specific departure time t, following a specific path in the

timetable p. Furthermore, a passenger group q defines a number of passengers w making

a specific journey j on a specific date d, and is thus characterized by (u, v, t, p, d, w).

The framework consists of three steps, as presented in Figure 3.1. In Step (1) passen-

gers’ route choices are deduced from historical data defining a set of passenger groups Q,

as described in Section 3.3.1. Step (2) forecasts the number of passengers per planned

path using statistical forecasting models resulting in a set of forecast passenger groups Q′,

as presented in Section 3.3.2. Finally, Step (3) uses a simulation model to calculate the

change in passenger flows due to the disruption resulting in the set of passenger groups Q̃
with paths adjusted based on the disruption, as discussed in Section 3.3.3. A preprocess-

ing step, intended to provide insight to dispatchers on how to support passengers during

a disruption, and possibly decrease computation time of future applications, is proposed

in Section 3.4.
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Figure 3.1: Framework for forecasting.

3.3.1 Step 1: Route deduction

In the first step of the framework, passenger groups q are derived from the smart card

data. Thus, both the OD matrix and the route assignment are derived simultaneously

from this historical data and lead to the definition of the set of passenger groups Q. A

passenger group q ∈ Q represents a group of passengers that have a planned journey j on

date d. The smart card data contains the origin, destination, departure and arrival time

of each passenger on a specific date, but not the planned path. In the first step these

planned paths are derived from the smart card data, and timetable information.

Chapter 2 propose a method for deriving passenger route choices from smart card data.

Although others, like Kusakabe et al. (2010), propose similar methods. The research in

Chapter 2 is the first and, to the best of our knowledge so far the only, that have validated

their results. They are able to correctly deduce the routes for over 90% of the journeys

in their validation sample. One could therefore use their method to construct the set of

passenger groups Q.
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An important remark is that in Chapter 2 the objective is to deduce the realized

path. However, for the forecasting of passenger flows in case of a disruption, we need

the planned path – or more specifically, the planned path the passenger would choose

given the planned timetable on the date of interest d′. Although for the majority of the

passengers the planned and realized paths will be the same, small disturbances and larger

disruptions will cause changes in some passengers’ realized paths. The realized paths

deduced from the smart card data may in these cases be different from the planned path

of the passenger. Moreover, due to events and planned maintenance there may be small

changes between the planned timetables on different dates. As a result, a passenger’s

planned path on date d′ may differ from that on an other date d′′.

Several path deduction strategies could help in finding the planned routes during

disruptions. For example, within Netherlands Railways some applications estimate the

planned path to be the first departing path as recommended by the journey planner

application of the operator. Polman (2013) used a planned timetable to link a path to

a registered journey in the smart card data, which he translated next to a realized path

using the realized timetable to estimate passenger delay. The difficulty with deducing the

planned path is that it is an unobserved path, and therefore the smart card data provides

insufficient information for the validation of the planned path.

Alternatively, one could try to translate the realized path – which can be both deduced

and validated as proposed in Chapter 2 – to a planned path in any timetable. The advan-

tage of such an approach is that, unlike the planned path that is unobserved, the correct

selection of a realized path can be validated using the smart card data, timetable infor-

mation, and conductor checks. However, the realized path is influenced by disturbances

and disruptions, and depends on the information available to passengers on alternative

paths during their journey. Such an approach should therefore take the uncertainty about

the disruption length into account. Records on communication to passengers, such as for

example publicly available at rijdendetreinen.nl, could assists in such a reconstruction.

Furthermore, this question closely tied to the question of which paths in general pas-

sengers consider to travel from their origin to their destination – which choice set is

unobserved.

Developing such methods would require an extensive data analysis and validation for

which the data available to us, at the time of conducting this research, was insufficient.

Therefore developing such a method is left for future research.
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3.3.2 Step 2: Forecasting

The hypothesis is that passengers who chose journey j in the past are a good represen-

tation of the number of passengers who will choose this journey on the forecast day d′.

Input for the forecasting step is the set of passenger groups Q obtained in Step (1). We

denote qjd as the number of passengers that make journey j on date d. Output consists

of the forecast qjd’s given normal operations, together defining the set Q′. In Step (3) the

change in flows due to the disruption is estimated based on these forecasts.

Time series qj are constructed for all journeys j by aggregating and ordering all

passenger groups over time that have the same planned journey on a specific day in the

data set. Because of the large differences between weekdays, and high similarity on the

same weekday (e.g. Tuesdays), separate time series are formulated for each weekday.

Econometric forecasting models are used to predict the number of passengers planning to

make a specific journey on a specific day based on the time series.

The following notation is used in discussing the forecasting models: qjd and q′jd repre-

sent the actual and forecast number of passengers for journey j on date d, respectively.

Furthermore, d− 1 represents the previous period to date d. That is, in the case of fore-

casting demand for a Tuesday, d − 1 refers to the Tuesday the week before d. Finally,

ε denotes an error term, or the variation not captured by the forecasting model, where

qjd = q′jd + ε. An accurate forecasting model has small, or zero, ε. In the computa-

tional experiment the size of the error terms are used to compare the performance of the

forecasting models.

One could select any time series forecasting model for this task within the framework.

We selected a few models that are widely used in practice, as an intial test on predictability.

Future research could use more advanced models.

Average: As a simple base case, one could select the average over all previous periods

as the forecast for the date of interest d. Define Dd as the set of periods before d. The

average model can be written as:

qjd =
1

|Dd|
∑

d∈Dd

qjd + ε (3.1)

An advantage of this model is that it is easy to understand and implement, and it is also

very fast. It is, however, not a very sophisticated model, and might not use all information

that is available in the data for forecasting.
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Exponential smoothing: This method is slightly more advanced than averaging, as it

assigns a weight α to the most recent observation. It is thus a weighted average between

the forecast of the previous weekday, and the current observation:

qjd = αqj(d−1) + (1− α)αq′j(d−1) + ε (3.2)

The value of α lies between 0 and 1. It assigns an exponentially decreasing weight to

previous observations over time. The higher the weight α, the stronger the influence of

the most recent observation qj(d−1). To initialize the model a value must be selected for the

forecast of the first period, q′j0. Generally, either q′j0 is set equal to the first observation

qj0, or is calculated as the average over the first few observations. In any case, the

performance of the model generally increases after the first few values. Advantages of

the model are that it is intuitively easy to understand and computationally efficient, and

allows for slightly more customization to the time series than simply taking the average.

However, it is not a sophisticated statistical model, and there could still be information

in the data that could improve the accuracy of the forecasts, but which is not used by

this model.

AR(1) The AR(1) model, an auto regressive model with explanatory variables dating

one period back, is a model often used in financial and economic time series forecasting.

The model is defined as:

qjd = c+ βqj(d−1) + ε (3.3)

The auto regressive models allow more historical information to be included by adding

more terms. For example, an AR(3) model forecasts based on a linear combination of

the last three periods (e.g. 3 previous Tuesdays to date d). Moreover, cross terms can

be added, for example representing the number of passengers for journey j on previous

weekdays, or the total number of passengers for all journeys on day d− 1. However, the

required number of observations to estimate these models increases with the number of

terms included.

AR(1)T This model differs from the AR(1) model in that it allows estimating a trend

by including a dummy variable kd. This variable can represent a change in demand –

e.g. to model less demand in the holiday seasons. Moreover, kd can represent a linearly

increasing or decreasing trend over time. Therefore kd can be binary (in the first case) or

linearly increasing over time (in the second case). The value of the trend is represented
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by the value of γ, estimated in the model. The AR(1)T model is defined as:

qjd = c+ βqj(d−1) + γkd + ε (3.4)

One could include multiple trend variables to represent different trends or differently sized

trends. However, the number of variables needed to forecast the demand will increase.

There exist many other forecasting models one could evaluate. We have selected these

four since they represent models often used in practice. Moreover, the comparison of basic

models, such as the average and exponential smoothing, with more advanced statistical

models like the AR(1) and AR(1)T models, can suggest whether such more advanced

statistical models produce better results, or whether relatively simple models provide

sufficiently accurate forecasts already.

3.3.3 Step 3: Simulation

The simulation translates the number of passengers per planned path forecast in Step (2),

forming the set of passenger groups Q′, to the number of passengers per realized path

given the disruption, represented by the new passenger group set Q̃. The realized paths

result from the disruption, the location of passengers at the time of the disruption (based

on their planned path), and the behavioral model of how passengers react to a disruption.

This behavior could be obtained from other analyses or expert opinion, and could be

validated using the available smart card data.

Agent-based simulation models allow one to model the reactions of passengers to

a disruption in detail, and also define how passengers interact in case of a disruption.

Raney et al. (2002); Balmer et al. (2006), and Arentze and Timmermans (2009) have

developed large detailed agent-based simulation models for transportation systems, that

e.g. include activity plans for travelers and microscopic interactions between agents. So

far these models have been developed to study transportation systems in equilibrium. For

instance the simulation model of Raney et al. (2002) models the microscopic interactions

between passengers. A consequence of microscopic modeling is that these models are

generally computationally expensive.

Kroon et al. (2014), Cadarso et al. (2013) and Chapter 5 use simulation of passen-

ger flows in combination with combinatorial optimization models to support the logistic

scheduling of operators. These models are intended for use in real time, and therefore

computational efficiency is of great importance. The models adopted in these papers

strongly depend on minimum cost path computations (e.g. earliest arrival), model only
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the essential passenger behavior such as the desire to follow the minimum cost path (e.g.

earliest arriving path) and competition for seats, and are as a result more computationally

efficient than the above mentioned microscopic models.

The best choice between microscopic or macroscopic modeling of behavior of passen-

gers will depend on the application, and the available information on passenger behavior

that can serve as input for these models.

3.4 Preprocessing: Network Reduction

Network Reduction reduces the set of passenger groups by selecting only those passenger

groups that are affected by the disruption, and secondly by aggregating passenger groups

with similar rerouting options. The advantages of using this preprocessing step include:

• A reduction in the number of passenger groups resulting in less cluttered data and

facilitating manual validation and verification.

• The origin stations and times of the new passenger groups indicate where, and when,

passengers need to reroute:

– This allows practitioners to see when and where to support passengers with

route advice.

– This allows manual dispatchers to see if and when a few minutes difference in

announcing the end of the disruption can prevent passengers from starting an

unnecessary detour.

• The reduction in the number of passenger groups may increase the computational

speed of other applications, such as rolling stock rescheduling.

• Forecasts based on the aggregate passenger groups could be more accurate than

forecasts calculated for the initial groups.

Although we cannot prove that the last statement is always true, the results of compu-

tational experiments indicate that forecasts on aggregate passenger groups are generally

(slightly) better than forecasts for the initial passenger groups. For all the reasons staded

above, the preprocessing step may provide deeper insight into passenger flows and the

changes in passenger flows, in addition to perhaps having some computational advan-

tages.
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The Network Reduction algorithm consists of two phases: an initialization phase de-

scribed in Section 3.4.2 followed by a phase in which similar passenger groups are aggre-

gated as described in Section 3.4.3. This method is intended for time-dependent aggrega-

tion, and could easily be extended to take transfers into account. For ease of explanation,

the example of Section 3.4.1 explains Network Reduction based on a time independent

example without transfers.

3.4.1 Example

Consider the public transport network presented in Figure 3.2, where the segment between

stations C and E is disrupted with no service for the foreseeable future. Passengers

traveling to E from stations A, B or C therefore need to reroute through station D or F .

The proposed preprocessing step aggregates passenger groups (A to E), (B to E) and (C

to E) as they all have similar rerouting options.

A B C

D

E

F
Figure 3.2: Example public transport network with 6 stations.

Passengers starting at E and traveling to C, B or A also have the same rerouting

options: to reroute through station D or through station F . Therefore these groups are

aggregated into one new passenger group.

In total there are 30 different passenger groups that (time-independently) can be

defined for the example network in Figure 3.2. Of these, only 6 are affected by the

disruption, that is, they need to change their path due to the disruption. These groups

can be aggregated into 2 groups, again, independent of time. Moreover, the origin and

destination stations of these groups are stations C or E; these are the stations where

passengers need to decide on how to reroute. The preprocessing step thus reduces the
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number of passenger groups, and provides insight into where passengers are affected by

the disruption.

3.4.2 Initialization

The initialization defines a set Pq of rerouting options for all passenger groups q in Q
affected by a disruption δ. Each rerouting option is a path for a passenger group that

starts no earlier than their planned departure time t, and connects their origin u∗ to the

destination v∗ in the timetable graph Gδ, which is a timetable adjusted to the disruption

δ. A condition for the presented approach is therefore that there exist rerouting options

for passengers, although this may include the option to wait until the disruption is over.

Passengers unaffected by the disruption are not required to reroute, and therefore not

included in the algorithm.

Passengers are affected by a disruption when they need to change their originally

planned path due to the disruption. Passengers are directly affected when their planned

path contains one of the trips canceled due to the disruption. Passengers are indirectly

affected by the disruption in case of capacity shortages resulting from the disruption. In

this case, passengers fail to board a train on their planned path because there is insufficient

capacity for them to board this train. Although the description of the algorithm focuses

on passengers directly affected by the disruption, it can be extended to include indirectly

affected passengers as well.

In the initialization step, we collect all rerouting options for each of the affected pas-

senger groups. We use a set of passenger behavioral assumptions, intending to generate

all paths that could be attractive to passengers. For example, the generated rerouting

options may include the shortest path, the path with minimum transfers, and the earliest

arrival path. One could construct a rerouting set based on a set of criteria (e.g. containing

both the shortest path, and the path with minimum transfers). Moreover, one can define

the rerouting options by setting a budget value α: a path is declared to be a rerouting

option if its costs exceed the costs of the cheapest path by no more than α. Here the

inconvenience, or cost, of a path is defined by the weighted sum of the arcs in the path.

3.4.3 Constructing the reduced set of passenger groups

For all passenger groups affected by the disruption, this phase defines a new origin station

u∗, a new destination station v∗, and a new departure time t∗, and a set of sub-paths P∗
q of

the rerouting paths Pq. The sub-paths represent the part of the journey where passengers

deviate from their original planned path. These sub-paths are defined as time-dependent.
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Next, we aggregate passenger groups with similar rerouting options, represented by the

same set of time-dependent rerouting sub-paths. The procedure is described below.

Input consists of a set of forecast passenger groups Q′ for a specific date d, where

each passenger group has a weight w. Specifically, input consists of the passenger groups

affected by the disruption selected in the initialization, together with the generated set of

rerouting options Pq per passenger group.

For each of these passenger groups q characterized by (u, v, t, p, d, w), we define a new

origin station u∗ and a new departure time t∗. We follow the nodes along path p as well as

along the paths Pq from their common departure station u. We compare the paths node

and arc based, where a node represents a station at a specific time. The last common

node among the rerouting paths Pq and the planned path p before a change in the stop

sequence or arc sequence defines the new station u∗ and the new departure time t∗. All

arcs between u and u∗ are therefore contained in all paths in Pq, as well as in p. In

other words, between u and u∗ the passengers use the very same services in the disrupted

situation as they would do in the undisrupted situation.

The new destination station is defined according to a different rule. The disruption

will likely delay the passengers, and therefore it is unlikely that they can return to their

planned path after following the rerouting path in the disrupted situation. The tail of

the rerouting paths will therefore almost always contain different nodes than the tail of

the planned path, offering no opportunity for consolidation according to the rule used for

defining the origin. However, from some point on, the rerouting path may be very similar

to that of the planned path, e.g. by using the same train service lines and passing the

same stops. During this last part of the trip, a passenger is likely not in need of further

support and route advice. Therefore, we compare the rerouting paths and the planned

paths geographically.

Starting at the destination and moving back on the path, we define the new destination

station v∗ as the station of the last node that is geographically in all paths in Pq and in

p after a geographically identical set of arcs, and which is in p before the disrupted trip

arc in this planned path. Two nodes are geographically the same when they represent the

same physical station, possibly at different points in time. The arcs are geographically the

same if they represent a similar service with equal costs to connect two nodes representing

the same geographical stations. The last common node is obtained by geographically

comparing nodes and arcs between all paths in Pq and p starting from the destination

node and moving backwards. Node v∗ is found when either the next node or arc is not

geographically in all paths, or the next trip in p that ends in v∗ is the disrupted trip. By
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construction, all paths in Pq and in p are geographically similar between v∗ and v, thus

following a similar service, although not necessarily at the same time.

We define the new planned path p∗ as all arcs in the sub-path of p between u∗ and v∗.

The new set of rerouting paths P∗
q is constructed similarly from Pq by selecting all arcs in

the sub-path between u∗ and v∗ for every path p ∈ Pq. By construction, all paths p ∈ Pq

contain u∗ and v∗ and therefore all these paths contain sub-paths that connect the two

nodes. Moreover, by the definition of u∗, we have u∗ �= v∗, and therefore p∗ and the paths

in P∗
q are non-empty. That is, they contain at least one trip.

A new type of passenger group q∗ is defined for each q, where q∗ is characterized by

(u∗, v∗, t∗, p∗, d, w∗) together with the set of detour options P∗
q . All passenger groups in the

preprocessing have the same date d, as the input consists of a forecast of passenger groups

for one specific date d. Next, passenger groups q∗ are aggregated whenever they have the

same u∗, v∗, t∗, p∗, d and P∗
q . That is, the aggregate passenger groups are identical in all

properties apart from, possibly, the weight w. The weight w∗ of the aggregate passenger

group is defined by the sum of the weights of the initial passenger groups to be aggregate.

3.5 Data and Computational Exploration

In order to illustrate the practical value of the framework, we conduct an exploratory

computational study. The focus is on illustrating whether the passenger demand is pre-

dictable, and how successful is the proposed preprocessing step in reducing the number

of passenger groups.

At the time of analysis, the smart card system was still in its introduction phase in

the Netherlands and not all passenger journeys were therefore represented in our data

sample, since not all passengers were using this system. The introduction of the system

is currently close to complete, and as part of future research more thorough experiments

can be performed. Such a future study would preferably compare forecasts derived from

smart card data with forecasts calculated using alternative data sources, such as surveys

and passenger counts.

The presented study is intended as a proof of concept of the framework, rather than

a ready-to-use decision support tool. Full development of such a decision support tool

would require significant additional research and extensive calibration of all three steps,

as already discussed in Section 3.3 and further discussed in this section.

In this section we discuss the input data, specifically smart card data in Section 3.5.1

and timetable information in Section 3.5.2.
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3.5.1 Smart card data

We obtained 10 months of smart card data of Netherlands Railways, from January to

October 2012. These data were generated during the introduction of smart card ticketing

in the Netherlands. Although our data set contains tens of thousands of journeys, it is far

from being a complete representation of passengers traveling on Netherlands Railways.

Because ticketing through smart cards was introduced by ticket type, the sample is not

a good representation of the full passenger population – specifically, regular travelers are

not well represented in this data set. Moreover, during this 10-month period an increasing

number of passengers started using the smart card for ticketing. Thus there is likely thus

a trend in the data that can be explained by this introduction phase, which will disappear

when the introduction has been completed. We can therefore only conduct a computa-

tional exploration of the performance of this forecasting framework, without being able

to derive any definitive conclusions. Once the introduction of the smart card system has

been completed, one could thoroughly test and validate the proposed framework.

3.5.2 Timetable and disruptions

We use a single planned timetable for this period obtained from Netherlands Railways

for the route deduction. A disruption cancels a set of trips in the graph defined by the

timetable for the entire duration of the disruption, which we assume to be known.

Three disruption scenarios are included in the experimental study of Network Reduc-

tion, two of which are used for evaluating the performance of the forecasting model. The

scenarios are specifically chosen to be on busy and central parts of the network where one

would expect a high number of journeys to be affected by a disruption. These scenarios

consist of a disruption between Utrecht (Ut) and Breukelen (Bkl), a disruption between

Gouda(Gd) and Rotterdam(Rtd), and a disruption between Eindhoven (Ehv) and ’s Her-

togenbosch (Ht). Figure 3.3 provides an overview of the network of Netherlands Railways,

in which the above stations are marked. All scenarios consider a complete blocking of the

tracks, and are chosen such that passengers can divert to another route to get to their

destination. The fact that passengers can divert requires forecasts of passenger flows for

capacity rescheduling, and since it is beneficial for passengers to reschedule their routes,

it provides the opportunity for improved service by providing them with travel advice.
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Ut
Bkl

Gd

Rtd

Ehv

Ht

Figure 3.3: Netherlands Railways network.

3.6 Computational Results

In this section we present results for a ”proof of concept” implementation of the frame-

work.

Step (1) uses the proposed method of Chapter 2, and therefore we refer to this chap-

ter for a further discussion of this method. For the presented implementation a single

planned timetable was used for the route deduction. This adjustment guarantees that

journeys between dates are to a high extent comparable. For a practical implementation

a more detailed method that takes into account previous delays and uncertainty about

the disruption duration may be required. The data available at the time this research

was conducted was not sufficient yet to develop such a method, and therefore this is left

for future research.

First results of the preprocessing step are presented in Section 3.6.1. Next results for

Step (2) Forecasting are presented in Section 3.6.2, that compares all discussed forecasting
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models based on estimates derived from available smart card data. Section 3.6.3 discusses

some preliminary results for a simulation model of Step (3).

3.6.1 Preprocessing: Network Reduction

During the preprocessing step journeys affected by the disruption are selected and ag-

gregated given the available alternative routes, as described in Section 3.4. A general

measure of success is hard to define, since the result depends on the specific disruption

and on the network.

For the purpose of a proof of concept, we have chosen to perform the preprocessing

step on time-independent paths and passenger groups. Thus passenger groups are defined

as OD pairs, for which the planned path is defined as the shortest path in the timetable

graph G, and the detour set is defined as the shortest path in the disrupted timetable graph

Gδ, where a disruption δ cancels trips on the disrupted segment for the entire day. The

new departure and arrival stations u∗ and v∗ are defined by geographically comparing the

detour path and the planned path. For this proof of concept implementation, passenger

groups with the same u∗ and v∗ are aggregated into one group. However, for application

in practice the preprocessing step is intended to be executed time dependently and take

transfers into account, thus requiring a more detailed process for aggregation of passenger

groups.

We have limited the total set of passenger groups to those groups that had on average

at least 3 journeys a day in 2012. These 6500 groups are responsible for at least 95 percent

of all journeys in the network. Although the algorithm is capable of analyzing all 160,000

possible groups, the given comparison seems more fair in light of the practical application.

Moreover, we show that the preprocessing step on its own reduces the number of journeys

in a way that cannot be directly derived from data analysis.

Disruption Network Reduction Q Stations Reduction Percentage
Q Stations

Utrecht, Breukelen yes 190 52 23% 35%;
no 821 146

Gouda, Rotterdam yes 123 41 39% 47%
no 318 89

Eindhoven, ’s Hertogenbosch yes 12 7 4.3% 4.6%
no 276 151

Table 3.1: Summary of results of preprocessing step.
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Table 3.1 contains the results of the preprocessing step in the three scenarios. For the

experiments we defined the groups to be time-independent. Consequently, the number of

groups here is equal to the total number of different origin-destination pairs in the original

set of passenger groups. The table reports the number of affected (time independent)

passenger groups with and without preprocessing. Furthermore, it reports the number

of unique stations represented as either origin or destination in these groups. Finally, it

expresses the reduction in passenger groups and stations as a percentage of the group

size before preprocessing. For the example of Utrecht - Breukelen, the 23% reduction

percentage of passenger groups is calculated as the number of passenger groups after

reduction (190) divided by the number of affected passenger groups (821), times 100%.

Simlarly, the station reduction percentage (35%) is calculated as the number of stations

contained in either the origin or destination of the Network Reduction groups (52), divided

by the number of stations contained in the origin-destinations of all affected pasenger

groups before aggregation (146) times 100%. The lower the percentage, the fewer stations

or groups are left, thus signaling a better performance of the network reduction.

The first scenario is a blockage between Utrecht and Breukelen, blocking the connec-

tion Utrecht-Amsterdam, which is one of the busiest routes in the Dutch railway network.

The highest number of stations and journeys are affected by the disruption in this sce-

nario. The preprocessing step reduces the 821 groups to 190, which is less than one fourth

(23%) of the original set. In the second scenario the tracks between Gouda and Rotter-

dam Alexander are blocked, blocking the route to the east of Rotterdam. Due to the

introduction of a high speed line, there are numerous ways for rerouting, and the best one

depends on the specific origin and destination. This is probably why the reduction factor

is least for this scenario, 39%, although it still reduces the number of journeys by a factor

two. The third scenario considers a blockage between ’s Hertogenbosch and Eindhoven.

Both passenger groups and stations are reduced to less than 5% of the original sizes of

these sets, namely 4.3% and 4.6% respectively, which shows a reduction factor of over 20.

This is first of all because less passenger groups are affected by the disruption (276 versus

318 and 821 in the previous scenarios), but mostly because there only exist a very lim-

ited set of options for rerouting, which makes the network reduction very effective in this

situation. The reduction from 276 to 12 passenger groups shows that the preprocessing

step can greatly simplify the problem of rerouting passengers.
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3.6.2 Step 2: Forecasting

We forecast the number of passengers that plan to make a specific journey using the

time series constructed per passenger group per weekday in Step (1). We found that

the correlation between weekdays over the weeks is typically much stronger than the

correlation between consecutive days. As previously mentioned, we therefore decided to

construct separate time series for each passenger group q for each weekday. Thus, in the

computational exploration d− 1 refers to the previous similar weekday stored in the data

(i.e. 7 days earlier), and not to the previous day to date d. As a result, the time series

are significantly shortened, and a longer period of time is required to estimate the model.

Seasonal trends may therefore affect the forecasts relatively strongly.

The performance of the different statistical models are compared based on their fit

to the data. Unfortunately, the data set was too limited for a meaningful out-of-sample

forecast evaluation, specifically due to the constant increase in the part of the population

that used a smart card.

The forecasts are derived for both the original set of passenger groups (Full), and for

the reduced set of passenger groups (NR) after the preprocessing step. Moreover, forecasts

are presented for all models discussed in Section 3.3.2: Mean, Exponential Smoothing

(ES), AR(1) and AR(1)T. We compare the forecast performance on the aggregated level

as a result of the preprocessing step. In other words, in-sample forecasts for the full set

of passenger groups are aggregated to form the same groups as after the preprocessing

step, before statistics on performance are calculated. The difference between the two

approaches is that during the preprocessing step we first aggregate the separate series,

and thereafter we use this aggregate data to estimate the forecast model. The full-network

model forecasts the number for each initial planned path separately. To compare forecast

accuracy, after forecasting the full-network estimates are aggregated before calculating

the performance statistics, to allow comparison across models. Results depend on the

specific disruption location. Forecasts are evaluated on two of the scenarios presented in

Section 3.6.1.

We compare the in-sample forecasting errors of the two models, calculated as the

difference between the true and the forecast numbers of passengers, that follow a path

on a specific day. For each group and for each weekday, we calculate the Relative Root

Mean Squared Error, the Absolute Relative Error and the (Root) Mean Squared Error.

These measures are commonly used for the evaluation of forecast models and differ in the

weight they assign to large errors versus small errors. Table 3.2 represents the average

error over all time series for one disruption scenario. The smaller the error, the smaller

the value of these statistics, and the better the model.
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Disruption Scenario 1 Utrecht - Breukelen
Model Relative Root Absolute Mean Root Mean
Type Mean Squared Error Relative Error Squared Error Squared Error

NR Full NR Full NR Full NR Full
AR(1) 2.85 2.86 1.19 1.20 6.67 8.17 1.40 1.50
AR(1)T 2.87 2.88 1.02 1.01 8.47 8.83 1.51 1.53
Mean 2.87 1.22 14.78 1.77
ES 3.51 1.25 14.86 1.93

Disruption Scenario 3 Eindhoven - ’s Hertogenbosch
Model Relative Root Absolute Mean Root Mean
Type Mean Squared Error Relative Error Squared Error Squared Error

NR Full NR Full NR Full NR Full
AR(1) 1.76 1.79 0.89 0.92 18.80 28.61 4.34 5.35
AR(1)T 1.79 1.80 0.81 0.79 27.22 29.73 5.22 5.45
Mean 1.82 0.95 53.88 7.34
ES 2.20 0.97 48.96 7.00

Table 3.2: Different performance measures of forecast quality comparing full passenger

groups with Network Reduction (NR). Exponential Smoothing (ES) model with α = 0.7

Comparing results between forecasts with and without preprocessing in Table 3.2, we

find that the differences are small, but mostly in favor of the forecasts calculated after

the preprocessing step. This comparison is not made for the Exponential Smoothing

and Mean model since these forecasts are, by definition, the same for the preprocessing

step and for the full set of time series. By reducing the set of passenger groups in the

preprocessing step, we reduce the number of forecasting models that need to be estimated.

Given the time pressure in a disruption management situation, this could be beneficial.

However, our experience is that the estimation of the here proposed forecasting models is

very fast.

Comparing results of different forecasting methods in Table 3.2 the AR(1) and AR(1)T

models generally outperform the other models. Changing the α value for the ES model

did not change this finding, and only results for a single value for α in the ES model are

therefore reported in Table 3.2. This is an indication that more sophisticated models may

be able to further improve these forecasts. The modest size of the errors is an indication

that the forecasting quality of these models may be sufficient for the purpose of estimating

the demand per train.
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Figure 3.4: Change in passenger flows due to disruption. The thicker the line, the more

passengers are rerouting.

3.6.3 Step 3: Simulation

The forecasts of Step (2) define the expected number of passengers per planned path. In

Step (3) a simulation model is used to calculate how passengers react to the disruption,

i.e. how they reroute. This route choice has been modeled by a shortest path algorithm

that passengers call at the start time of the disruption given their current location, time,

and destination, to plan their new route. It thus assumes there will be sufficient capacity

available. Capacity constraints are not included in the current analysis, because no reliable

estimates of the true demand versus capacity could be obtained from the available data,

and errors in these estimates could significantly influence the results. The simulation in

Step (3) could however be easily adjusted to deal with capacity shortages. Later research

presented in this thesis aims to reduce the delay of passengers resulting from a disruption,

such as for instance through including shuttle services (Chapter 4) and through providing

individual route advice (Chapter 5). Both will include capacity constraints, which are

not included in this proof of concept.

We performed this simulation for the scenario where there is a disruption between

’s Hertogenbosch and Eindhoven. Input is the set of planned paths, the timetable, and

the definition of the disruption. Output consists of the set of realized paths resulting
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from the disruption, recognizing that passengers cannot anticipate the occurrence of the

disruption.

The passenger delay or inconvenience is calculated based on the difference between

the planned path and the realized path. Moreover, the change in demand per train is

also calculated based on this comparison. Figure 3.4 shows the additional demand in the

network due to a disruption between ’s Hertogenbosch and Eindhoven calculated using

the simulation results. The thin black lines with dots give an outline of the Dutch railway

network. The thicker lines represent additional demand, a thicker line and darker color

represent a larger volume of passengers. Although the majority of passengers selects a

detour that is the shortest path between ’s Hertogenbosch and Eindhoven, other passen-

gers choose different detour options. This shows that indeed the change in flows depends

on the Origin-Destination matrix, thus showing the value of this framework.

We find that the experienced delay in this example depends on the origin and destina-

tion of the passenger. Although almost half of the passenger groups experience delays of

30 minutes or less, over 20 percent of the passenger groups experience over an hour delay.

The delay can even differ depending on the departure time of the passenger. This indi-

cates that not only the path choice, but also the effect of a disruption strongly depends

on the journey of a passenger. Passenger group information is therefore important for

the purpose of estimating passenger service levels. These models can provide the essential

information as input for disruption management models in order to maximize this service.

3.7 Conclusion

Forecasts of passenger flows are required for disruption management policies which focus

on maximizing passenger service level. To this end, quick, comprehensible forecasts are

needed that provide sufficient information for the purpose of estimating passenger ser-

vice quality, forecasting additional demand per vehicle, and allowing the incorporation of

passenger behavior such as their preferred rerouting options.

In this chapter we presented a three step framework for forecasting these passenger

flows from smart card data. Within the framework (1) passenger groups are constructed

from smart card data, which represent the number of passengers intending to travel on a

specific path; (2) forecasts are made for the number of passengers per planned path on

the disrupted day; and (3) a simulation is used to calculate the change in flows due to the

disruption. Moreover, a preprocessing step is proposed, which can be called before either

Step (2) or (3). By aggregating passenger groups with similar rerouting options, this Net-

work Reduction preprocessing step, greatly reduces the number of passenger groups. This
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could lead to a reduction in computation time of the framework. Moreover, the reduc-

tion in the set of passenger groups due to Network Reduction enables manual validation,

and provides insight to dispatchers when and where passengers need to make rerouting

decisions.

We conducted computational experiments based on a real life data set of Netherlands

Railways. We used our experience of passenger route deduction of Chapter 2 for the first

step in the framework when passenger groups are constructed. For Step (2) we evaluated

a set of forecasting models commonly used in practice. Results indicated that we can

successfully forecast the number of passengers per group. However, these results are

based on a very limited sample of data that is incomplete and contains a trend as a result

of an increase in the number of passengers using the smart card. Due to the nature of this

data, results are only indicative (and not conclusive) of the possible benefits of using such

a framework, and specifically of using smart card data for forecasting, once the smart

card system has been fully introduced.

We found that the preprocessing step has great potential for reducing the number of

passenger groups. Applying the preprocessing before forecasting did not seem to reduce

forecast quality, and may even slightly improve it. Our experience is that the forecast-

ing models can be executed quickly. The need to apply the preprocessing step in the

framework is therefore not great: differences in passenger flows may also be computed by

comparing a full assignment in the non-disrupted and disrupted situations, which takes

only slightly more computation time. A benefit of the preprocessing step is, however,

that it provides insight to practitioners into when and where passengers need to make

rerouting decisions.

The preprocessing step may be beneficial in future research where more advanced mod-

els are used during Step (3), and where the aim is to minimize passenger inconvenience.

Indeed we applied a customized version of the preprocessing step to the shuttle planning

problem in Chapter 4 and obtained a significant reduction in computation time. This

suggests that there may also be other applications that involve flow assignment which

may benefit from the proposed preprocessing step.

Chapters 4 and 5 extend this chapter, using the concept of forecasts as input. Chapter

4 proposes a new optimization-based method for shuttle planning based on estimated

passenger, where a customized version of the preprocessing step is able to significantly

reduce computation times. Chapter 5 considers minimizing passenger inconvenience for

major disruptions through the provision of individual route advice to passengers, based

on demand forecasts, and rolling stock rescheduling. It is thus an optimization-based

replacement of Step (3) in the framework.
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Chapter 4

Shuttle Planning for Link Closures

in Urban Public Transport Networks

This chapter is the result of a 3 month research visit to the Department of Civil Engi-

neering and the Engineering Systems Division at Massachusetts Institute of Technology,

Cambridge, USA. This chapter has appeared as ERIM technical report Van der Hurk

et al. (2014), and is currently under review for Transportation Science.

Co-authors: H.N. Koutsopoulos, N.H.M. Wilson, L.G. Kroon and G. Maróti

4.1 Introduction

Rail systems such as Boston’s subway and surface rail system, London’s underground,

and Netherlands’ passenger rail network must periodically deal with link closures and

capacity limitations due to maintenance. Such link closures can cause significant delays

for passengers which in turn can have long-term effects on their perceptions of the service.

Passengers’ appreciation of the public transport system is often an important performance

measure in granting licenses to operate the network. Therefore limiting the negative effects

of these disruptions is extremely important for public transport operators.

Operators’ standard procedure when facing these major disruptions is to replace the

closed link with a shuttle service. However, additional shuttle services in the vicinity of

the disrupted area may reduce passenger inconvenience, determined by additional travel

time, additional wait time, and additional transfers, at similar operating cost.

This chapter studies the Shuttle Planning for Link Closures (SPLC ) problem that

concerns the location and service frequency of shuttle lines for link closures. The research

is meant to support operators in minimizing passenger inconvenience under budget con-
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straints when facing link closures. The aim is to develop a model that can solve realistic

cases comprising a large number of Origin Destination pairs (OD-pairs) fast.

We propose a new mixed integer programming formulation for the SPLC. Key fea-

tures of the model are that it includes a minimum operating frequency restriction for all

candidate shuttle lines, and frequency-dependent passenger inconvenience costs such as

transfers and waiting time costs, and it allows for changes in frequencies for both the

existing network and the shuttle lines. A path reduction process is proposed that reduces

the problem size significantly. Computational experiments indicate that the new formu-

lation, together with the path reduction process, is able to solve realistic problems with

large numbers of OD-pairs quickly.

The practical relevance of the proposed model is demonstrated based on a real world

case study. The results indicate that (1) solutions for realistic sized problems with a

large number of OD pairs can be generated fast, (2) allowing the selection of shuttles

beyond the disrupted area, and allowing changes of frequency in the full network, can

reduce both passenger inconvenience and operating cost, (3) inconvenience of the closure

is distributed more evenly over passengers, and worst case delays are reduced, and (4)

solutions are relatively robust with respect to different assumptions on passenger behavior.

The three key contributions of this chapter are summarized as:

• a novel mixed-integer formulation for the SPLC that a) allows specifying a mini-

mum operating frequency for lines and b) includes frequency dependent passenger

inconvenience costs.

• a proposed path reduction process that a) reduces problem size and therefore b)

allows including large numbers of OD-pairs in the model.

• demonstration that the proposed methodology proposes practically relevant solu-

tions quickly for realistic problem sizes based on a real world case study.

The proposed model and path reduction step may also be applicable for more general

line planning problems. Moreover, computational experiments indicate that the solution

speed may also be high enough for use in the case of real time occurrence of link closures

due to disruptions.

The remainder of this chapter is organized as follows. Section 4.2 provides a problem

description, Section 4.3 presents related work, and the problem formulation is described

in Section 4.4, together with the proposed model. Two important preprocessing steps, to

reduce problem size and increase speed, are presented in Section 4.5. Section 4.6 discusses

the results of the application of the proposed model to a real world case study. Finally,

Section 4.7 summarizes the paper and draws conclusions.
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4.2 Problem Description

Consider the public transport network in Figure 4.1 which consists of two lines: line

1 connecting stations A to G and line 2 connecting stations S to Z. A link closure

between stations E and X disconnects the northern branch of line 1 from the rest of

the network. Replacement shuttles are needed to restore the network connectivity while

providing sufficient capacity and minimizing the inconvenience experienced by passengers

due to the closure.

Standard practice introduces a single new shuttle line reconnecting stations affected by

the closure (line 3 in Figure 4.1). This default route is easy to implement as the required

capacity of the shuttle can be estimated from the expected demand on the closed link,

and passengers can easily find the replacement shuttle by following their standard route.

However, when the majority of trips originates beyond the disrupted area, this introduces

two additional transfers for most passengers: from the regular line to the shuttle bus, and

from the shuttle bus to continue on the regular line. The additional travel time depends

on the frequency of both the shuttle line and the regular line in addition to the extra

running time of the shuttle.

Other shuttle lines could be more convenient for passengers and have similar operating

cost. For example, if stations D and T are major demand generators, the opening of

an additional shuttle line (line 4 in Figure 4.1b) could significantly reduce passenger

inconvenience by providing a faster connection and reducing the number of transfers.

The attractiveness of such a line will depend on the shuttle frequency which determines

the waiting time of passengers boarding the line, and on the number of transfers of

passengers using this line. The proposed model specifically includes frequency-dependent

transfer and waiting time cost.

The SPLC model determines the optimal set of shuttle lines and their frequencies to

minimize passenger inconvenience within a budget constraint given passenger demand,

a transportation network, a set of candidate shuttle lines with minimum and maximum

frequencies, and a link closure. Alternatively the operating cost could be weighted against

the passenger inconvenience. The budget is defined as a maximum number of vehicles,

equal to the number of vehicles needed for the standard solution. Passenger inconvenience

is measured by the route assignment of passenger demand to paths, including transfers,

in the public transport network.

The SPLC model simultaneously assigns passengers to paths and selects frequencies

for the lines, as these are interdependent. The attractiveness of a path depends on the

service frequency, while the required frequency depends on the demand for that line.
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Figure 4.1: Example of a public transport network

However, including passenger assignment in the optimization model would lead to mini-

mizing inconvenience for all passengers, instead of for each individual. In a system with

free route choice and capacity constraints, the model’s passenger assignment may there-

fore differ from the actual passenger flows. Consequently, the assignment of passengers

to paths is restricted to a set of reasonable paths in the optimization model. A path

is reasonable if its cost is within a small increment of the shortest path in the network

defined by the regular lines, the closure, and the standard shuttle bus solution replac-

ing the closed link. Moreover, the solution’s quality is evaluated under several different

assumptions about passenger behavior.

4.3 Related Work

Link closures can cause significant disturbances in public transport networks. The differ-

ent models proposed to increase the robustness of public transport networks and timeta-

bles to relatively small delays (Cicerone et al., 2009; Fischetti and Monaci, 2009; Liebchen

et al., 2010) are aimed at the planning phase. Link closures however, are not, and cannot,

be taken into account in this planning of standard operations, as they occur infrequently

and require significant alterations from normal operations. Therefore, they are considered

within the broader category of real-time disruption management, even if they are planned.

At the same time, the problem of minimizing passenger inconvenience under planned clo-
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sures through the introduction of shuttles also has a strong link to the strategic problem

of line planning.

Disruption Management: Disruption management aiming at minimizing passenger

delay was first studied in the context of airlines. Lan et al. (2006) examined the problem of

reducing passenger delay through the rerouting and re-timing of flights. Jespersen-Groth

et al. (2009) discuss disruption management in rail transport focusing on the three sub-

problems of adjusting the timetable, rescheduling crews, and rescheduling rolling stock.

Initially research in the area of disruption management in high frequency public transport

focused on the complex questions of how to reschedule resources. For instance, Nielsen

et al. (2012) and Cacchiani et al. (2012) focus on rolling stock rescheduling in the case of

disruptions. Potthoff et al. (2010) and Veelenturf et al. (2014) present research on crew

rescheduling.

Recent focus is shifting to using passenger service quality explicitly as the objective.

Both Kroon et al. (2014) and Cadarso et al. (2013) incorporate passenger rerouting in the

optimization of capacity rescheduling. Kroon et al. (2014) present a model for rolling stock

rescheduling. Cadarso et al. (2013) also include timetabling decisions. Both studies use

minimization of passenger delay as the objective. Both papers assume that arrival times

of passengers are based on the schedule and thus delay is defined by the deviation from

the planned timetable. Veelenturf et al. (2013) extend the passenger-oriented disruption

management approach for resource rescheduling by studying the benefit of altering the

stop sequence of a line. They allow adding or removing a stop on a line. Cacchiani et al.

(2014) provide an extensive overview of real time rescheduling in passenger rail transport,

noting that most research is focused on small delays with little attention given to major

disruptions, such as link closures.

Line Planning: The introduction of shuttle services to minimize the negative effects of

a link closure is essentially a network re-design problem. Therefore, it is strongly linked

to the line planning problem. Ceder and Wilson (1986) present a framework that divides

the problem into two parts: the generation of a line pool, and the selection of lines from

this pool. This approach is followed by most research in this area. An excellent overview

can be found in Schöbel (2011).

Claessens et al. (1998) solve the line planning problem for the Dutch passenger railway

network. They assume the line pool is given and the demand per link is fixed. They

propose a branch- and -price method for selecting lines. Their formulation is unique in
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introducing separate, binary decision variables that not only represent the decision on

which line to include, but also at what capacity to operate it.

In contrast to Claessens et al. (1998), both Schöbel and Scholl (2006) and Borndörfer

et al. (2007) include continuous frequency variables, and include the dynamic routing of

passengers. Both suggest a column generation approach to solve the model, replacing the

multi-commodity flow model for the routing of passengers by a path formulation. This

greatly reduces the number of decision variables needed to solve the problem, as instead of

one decision variable per OD-group per edge in the network, a decision variable per path

is included. Column generation requires solving the LP relaxation of the main model.

However, this may result in operating some lines at a very low frequency, which makes

them unattractive to passengers. These models do not include a relation between the

frequency of a line and the cost of passengers traveling on the line, nor do they include

a minimum frequency restriction conditional on whether the line is operated. Both are

part of the proposed model in this chapter.

Finally Kaspi and Raviv (2012) present an alternative heuristic approach aiming at

overcoming the rounding problem while including the dynamic routing of passengers. The

heuristic solves the line planning problem simultaneously with the timetabling problem,

thereby minimizing passenger travel time including waiting time and transfers, as well as

operating cost.

Shuttle planning for link closures and link failures: Pender et al. (2013), in their

survey of disruption management practices, note that bus bridging is the most com-

mon approach to link closure or failure in rail networks. Pender et al. (2009) evaluated

crossovers in the context of bus bridging and link closures, but did not look at the optimal

selection of shuttle routes, which is the focus of this work. Kepaptsoglou and Karlaftis

(2009) present a methodological framework for what they call ‘the bus bridging problem’,

which is similar to the problem of shuttle planning for link closures. As is customary in

planning, they split the problem into two parts: the generation of possible bus bridging

routes and the capacity assignment to those routes. Their heuristic approach changes

possible routes found through a shortest path method.

The work of Jin et al. (2013) is closest to this work, presenting a three-step procedure:

(a) generating routes using column generation; (b) selecting the feasible routes; and (c)

assigning capacity to the selected routes. They show that adding ‘non-intuitive’ routes

can significantly reduce passenger delay. They focus on routes starting and ending at the

edges of the disruption, although the approach can be extended to include other stations.

In their most recent work, Jin et al. (2014), steps (b) and (c) are integrated into a single
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optimization model that includes a modest time-tabling component for shuttle buses, and

includes transfer-to-shuttle bus times in the calculation of passenger delay. The method

was applied in a network of around a 100 nodes, and a limited set of OD pairs (26).

The contribution of the current paper is the development of a method for link closures

with dynamic passenger routing that can solve real life problem instances with a large

number of OD-pairs (1397) thanks to a path reduction pre-processing step. The proposed

formulation combines the path-formulation of Schöbel and Scholl (2006) and Borndörfer

et al. (2007) with the capacity formulation of Claessens et al. (1998), and adds flexible

capacity assignment. The formulation allows specifying a frequency-dependent path cost,

thus including frequency-dependent passenger waiting time and transfer times. Further-

more, a minimum frequency restriction can be included on the condition that a line is

operated, preventing lines being included at very low frequencies. Finally, the concept

of reasonable paths is used to prevent the assignment of passengers to overly altruistic

paths, and indeed, solutions prove relatively robust under different passenger behavior

assumptions. Complex cases can be solved in one minute, making the model a candidate

for real-time application.

4.4 Problem Formulation

The SPLC problem is static, with the link closure lasting for the full planning horizon.

Full information about the location and duration of the closure, as well as the substitute

shuttle services is available to passengers in advance, which is a natural assumption in the

context of planned closures. The pool of candidate shuttle lines is given. Moreover, a set

of candidate frequencies is given for both shuttle lines and existing lines. The number and

type of vehicles assigned to a line define the passenger capacity per segment. The minimal

number of vehicles depends on the frequency and the length of the geographical route of

the line. The SPLC model solution selects those frequencies for existing lines and shuttle

lines that minimize passenger inconvenience at reasonable operating cost. The operating

cost depend on the number of assigned vehicles to a line.

The demand matrix is given and fixed, and passengers are assumed to arrive randomly

over time. The assumption of random arrivals is consistent with high-frequency networks

that do not operate according to a published timetable, for which Frumin and Zhao (2012)

find empirical support. A valid solution to the SPLC problem should provide sufficient

capacity for all passengers.

To define the SPLC problem formally, we use the Public Transport Network graph,

PTN, defined in Section 4.4.1. Section 4.4.2 defines the operating cost OC and Section
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4.4.3 defines passenger inconvenience, PI. Finally the model formulation is presented in

Section 4.4.4. An overview of notation and terminology is provided in Table 4.1.

Table 4.1: Notation and terminology

Symbol explanation Symbol explanation
PTN public transport graph with fre-

quency set F
PTNf public transport graph with a sin-

gle frequency per geoline
E set of arcs of PTN V set of nodes of PTN
G set of geolines Sg ordered list of stops of geoline g ∈

G
F set of frequencies δlg arc capacity for geoline g ∈ G pro-

vided by single vehicle l ∈ L
Q set of OD-groups wq passengers in OD-group q ∈ Q
sq origin station OD-group q tq destination station OD-group q
P set of paths in the PTN-graph Pq path set for OD-group q ∈ Q
cp cost of path p klg cost per vehicle of type l for geo-

line g
Pq(e) paths traversing arc e for OD-

group q, P(e) ⊆ Pq

Egf arcs associated with geoline g at
frequency f

Mg maximum passenger capacity ge-
oline g

φgf minimum number of vehicles for
geoline g at frequency f

L set of vehicle types Lg set of vehicle types accepted
β maximum number of shuttles for geoline g
xpq number of passengers of OD-

group q on path p
ygf decision to open (1) or close (0)

geoline g at frequency f
vlg number of vehicles of type l as-

signed to geoline g

4.4.1 The Public Transport Network

Consider a set of geographical transit lines, geolines G, containing both candidate shuttle

lines and existing lines, and the set of all frequencies F . For each geoline g ∈ G an ordered

list of stops Sg, and a set of potential frequencies Fg ⊆ F are defined. We extend the

concept of geoline to include the option of walking from one station to the next. Walk

arcs have infinite capacity, infinite frequency, and zero operating cost. Based on the set

of geolines G and the set of frequencies F the directed Public Transport Network Graph

(PTN), G(V , E), is defined as follows.

The node set Vline contains a node for each direction of a geoline g ∈ G, each stop of

this geoline s ∈ Sg and each frequency f ∈ Fg. The node set VOD contains an entry node
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and an exit node for each unique geographical stop s ∈ Sg, g ∈ G. Thus we define the

node set of the graph as V := VOD ∪ Vline.

The set of directed arcs E is composed of E := Eline ∪Etransfer ∪EOD. The arc set Eline
contains an arc for each consecutive pair of stops in Sg, for each direction of each geoline

g ∈ G, and each frequency f ∈ F . A separate arc for each direction of the geoline is

needed as capacity constraints are direction specific. The set of entry and exit arcs EOD

contains an arc connecting every entry node in VOD to any node in Vline serving the same

geographical station, and an arc from any node in Vline to the exit node in VOD in the

same geographical station. The set of transfer arcs Etransfer contains an arc for any pair

of geolines with a stop at the same geographical station. Note that because the nodes

Vline are frequency and geoline specific, the transfer arcs in Etransfer are also frequency

and geoline specific.
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(b) Public transport network - undirected representation

Figure 4.2: Example of a public transport network graph

Figure 4.2 illustrates the public transport graph PTN for the public transport network

in Figure 4.1(b). Figure 4.2(a) is the directed public transport graph for stations A, B

and C. It corresponds with one geoline at one frequency stopping at stations A, B and

C. Each physical station has an entrance and exit node. These nodes, together defining

VOD, form the sources and sinks in the passenger-flow model. Furthermore, each station
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has nodes for each frequency and direction of a geoline that stops at this station. These

nodes together represent Vline. There are arcs leading from the entrance nodes to the line

nodes and from the line nodes to the exit nodes that together form EOD. Arcs in Eline
are introduced between line nodes of stations that are consecutive stops of a geoline at a

specific frequency.

Figure 4.2(b) displays the full public transport graph for the network of Figure 4.1(b).

To prevent clutter, it displays geolines undirected: the two directions of one geoline at

a specific frequency are represented by one set of arcs and nodes. The network contains

four geolines: two metro lines and two shuttle lines, as indicated by numbers in Figure

4.2(b). The PTN in Figure 4.2(b) has a single frequency for the regular lines 1 and 2, and

four different frequencies for shuttle lines 3 and 4. Transfer arcs are introduced between

all black line nodes of the same physical station that represent different geolines, together

forming the set Etransfer.
Throughout this chapter PTN refers to the public transport network graph defined by

the full set of frequency options: PTNf refers to a graph with a single selected frequency

for each geoline, which may be 0. The solution of the SPLC defines a PTNf .

4.4.2 Operating Cost

The operating cost (OC ) is equal to the sum of the operating costs of all geolines g ∈ G.
The operating cost of a geoline g at a specific frequency is equal to the sum of the

costs of all vehicles assigned to the line. Since geolines include existing lines, a change

in frequencies on existing lines contributes to the OC. The objective of the SPLC is to

minimize Passenger Inconvenience using no more than the available operating budget.

Define L as the set of vehicle types, and Lg as the subset of vehicle types that can

be assigned to geoline g. Vehicle types distinguish between vehicles of different modes,

vehicles with different seat capacities, and vehicles with different operating cost. Further-

more, define klg as the operating cost per vehicle of type l ∈ L assigned to geoline g.

These costs may be vehicle type- and geoline-specific.

Operating geoline g at frequency f requires a minimum number of vehicles per hour

φgf , which depends on the run time of the geoline g, the turn around times for vehicles

assigned to this geoline, and the frequency f . Therefore the operating cost of a geoline g

at frequency f , defined as the sum of the cost over all assigned vehicles to this geoline,

depends on the route, the frequency, and the type of vehicle assigned to it.
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4.4.3 Passenger Inconvenience

The SPLC model aims at reducing delay of passengers affected by the closure while

providing sufficient capacity for all demand. Shuttle lines may attract passengers not

affected by the closure if they provide a shorter route. The SPLC model minimizes

Passenger Inconvenience (PI ) defined as the sum of the differences in costs of paths

with and without the closure. As the costs of paths in the planned network are fixed,

minimizing the costs of assigned paths in the network with the closure minimizes the sum

of the differences in cost.

If the PI is minimized over all passengers, PI can be reduced by improving service for

passengers not affected by the disruption. Therefore, in the SPLC model 1) all passengers

need to be assigned to a path, 2) this path needs to be reasonable, that is, the cost of the

path is within a small increment of the standard solution’s path cost, and 3) all candidate

shuttle lines should benefit affected passengers. Consequently, passengers affected by the

disruption are neither ignored nor significantly worse off than in the standard solution,

and geolines that only benefit passengers not affected by the disruption are excluded.

The solutions for the case study reduce delay of affected passengers. In the case where

solutions benefit passengers not affected by the disruption, the costs of paths could be

adjusted to reflect delay instead of absolute costs. This could however, fail to capture all

the demand attracted by shuttle lines in systems with free route choice.

The cost cp of a path in the public transport network is equal to the sum of the costs

of the arcs in the path representing waiting time, in-vehicle time, and transfers. Entry

arcs in EOD represent frequency-dependent waiting time for the first vehicle given random

arrivals of passengers. Costs of arcs in Eline are equal to the in-vehicle time between the

two stops connected by the arcs. Arcs in Etransfer represent transfer costs, which are

calculated as the expected waiting time to the transfer-to geoline as dependent on its

frequency, plus a fixed transfer penalty.

Costs of arcs in a path can be mode, geoline, frequency, and station-specific. For

instance, transfers at large stations can be penalized more than transfers at small stations,

transfers to shuttles can be more costly than transfers to the same mode, and in-vehicle

time cost can be geoline specific. Thus, the problem formulation allows for a realistic cost

representation without additional complexity.

Passengers are in the model assigned to a single path, as also common in the previously

discussed line planning models. A limitation of this model is that when two different

geolines travel between the same pair of stations, the model would likely overestimate the

expected waiting time of the passengers. Further research would be needed to deal with

this specific issue.
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4.4.4 Model

Required input for the SPLC model is a set of geolines G, a set of allowed frequencies F ,

and a set of OD-groups Q. A single OD-group q : (sq, tq, wq,Pq) is defined by an origin

node sq, a destination node tq, a (demand) weight wq, and a set of paths Pq connecting sq

to tq in PTN. The PTN is defined by G and F . The set of paths Pq is obtained through

the path generation method described in Section 4.5.1 and the path reduction method

described in Section 4.5.2.

Continuous decision variables xpq define the flow from OD-group q traveling on path p

in the PTN, with xpq defined only for paths p ∈ Pq, q ∈ Q. Binary decision variables ygf

represent the decision of opening geoline g at frequency f . Decision variables vlg define

the number of vehicles of type l assigned to geoline g, alongside which we define Lg as

the subset of vehicle types that can be assigned to geoline g. The choice of continuous or

integer vehicle variables did not significantly affect computation time in our case study.

Some further notation: δlg is the maximum number of passengers that can be trans-

ported by a single vehicle of type l assigned to geoline g, dependent on the vehicle capacity

of type l and the length of geoline g. Mg is the maximum number of passengers that can

be transported on geoline g over all selections of frequency f ∈ F and assignment of

vehicle types l ∈ Lg, and βl is the number of available vehicles of type l. Let Pq(e) denote

the set of paths in Pq traversing arc e, and Egf denote the set of arcs representing geoline

g at frequency f in PTN.
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The formulation of the SPLC problem is:

min
∑

q∈Q

∑

p∈Pq

cpxpq +
∑

g∈G

∑

l∈Lg

klgvlg

subject to:

∑

p∈Pq

xpq = wq ∀q ∈ Q (4.1)

∑

q∈Q

∑

p∈Pq(e)

xpq ≤
∑

l∈Lg

δlgvlg ∀g ∈ G, ∀e ∈ Eg (4.2)

∑

q∈Q

∑

p∈Pq(e)

xpq ≤ Mgygf ∀g ∈ G, ∀f ∈ Fg, ∀e ∈ Egf (4.3)

∑

f∈Fg

ygf ≤ 1 ∀g ∈ G (4.4)

∑

l∈Lg

vlg ≥ ygfφgf ∀g ∈ G, ∀f ∈ Fg (4.5)

∑

g∈G
vlg ≤ βl ∀l ∈ L (4.6)

xpq ≥ 0 ∀q ∈ Q, ∀p ∈ Pq (4.7)

vlg ≥ 0 ∀l ∈ L, ∀g ∈ G (4.8)

ygf ∈ {0, 1} ∀ygf ∈ L (4.9)

Objective: The objective function minimizes expected passenger inconvenience and

operating cost. By setting klg to zero, one can optimize passenger inconvenience, in

which case the model selects for each geoline the frequency f ∈ F such that the route

assignment in PTNf has minimal passenger inconvenience over all possible f ∈ F under

fleet size constraints.

Capacitated multi-commodity flow component: Constraint (4.1) requires that all

passengers are assigned to a path. Constraint (4.2) restricts the number of passengers

assigned to a geoline not to exceed the capacity of vehicles assigned to geoline g. The

constraint specifies that the sum of the number of passengers assigned to all frequency-

specific arcs representing the same connection between two consecutive stops must be no

larger than the capacity of the vehicles assigned to geoline g. Note that this constraint is

not frequency specific. Therefore constraint (4.3) restricts passengers to only use geolines

at their operated frequency f . This restriction is frequency dependent but not dependent
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on the number of vehicles assigned to the geoline, thus, both constraints (4.2) and (4.3)

are needed to fully specify the capacity constraints.

Together constraints (4.1), (4.2) and (4.3) form the capacitated multi-commodity flow

component of the model. A path formulation is chosen even though there exists an

exponential number of paths in the graph and an arc-based formulation contains the

large (but linear) number of |E| × |Q| decision variables. As the majority of existing

paths will never be included in an optimal solution, for most practical applications the

path-based formulation often leads to a significant reduction in the number of variables

in comparison to the arc-based formulation. This however, requires the identification of

the set of candidate paths, which we discuss in Section 4.5. The SPLC model could be

solved through column generation, however, for the case study here presented this was

not needed to obtain optimal solutions fast.

Geoline and frequency selection component: Constraints (4.4) to (4.6) define re-

strictions on the selection of geolines. Constraint (4.4) restricts the choice to at most one

frequency f per geoline g ∈ G. Thus, if a geoline is operated, it has to be at least at

the minimum frequency in F . Constraint (4.5) forces the number of vehicles assigned to

geoline g to be at least equal to the minimum number of required vehicles to operate the

geoline at frequency f , φgf , which depends on the run time of geoline g. Lastly, equation

(4.6) captures vehicle type dependent fleet size constraints.

The SPLC problem formulation contains two decision variables for the geoline and

frequency selection: ygf for the opening of geoline g at frequency f , and vlg for the number

of vehicles of type l assigned to geoline g. A single decision variable ygf combines the

choice of opening a geoline g with the selection of a frequency f , as proposed for railway

line planning in Claessens et al. (1998). This enables the formulation of an MIP that 1)

allows specifying a minimum frequency conditional on the opening of a geoline, and 2) can

include frequency-dependent passenger inconvenience costs, such as waiting and transfer

costs. The usage of ygf requires a discrete set of options, but there exists a continuous

set of frequencies. Moreover, included paths p are frequency-dependent. Therefore the

problem size grows rapidly with the number of frequency options included.

The choice of the set of frequencies F can change the model solution in the formulation

of the SPLC inspired by Claessens et al. (1998). Let us assume that the true optimal

solution given a continuous set of frequencies includes geoline and frequency selection

yg′f ′ . However, F includes only yg′(f ′−ε) and yg′(f ′+ε). Suppose yg′(f ′−ε) provides insufficient

capacity for all passenger demand, making it infeasible, and yg′(f ′+ε) requires more vehicles
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than are available, making this solution also infeasible. In this case the model will propose

a different solution, with different geolines than the true optimal solution.

Therefore, vehicle variables vlg are introduced so that more capacity can be assigned to

yg′(f ′−ε), making this feasible. The ygf variables define the minimum number of vehicles,

and the waiting and transfer time of passengers boarding this geoline at frequency f .

However, the vlg define the available (passenger) capacity and operating cost, instead of

the ygf . The inclusion of different types of vehicles that can be assigned to one geoline

can be included without the need to specify all possible combinations of assignments,

as would be required in the formulation inspired by Claessens et al. (1998). Thus the

problem of using vehicle variables can be solved using less frequency options, thereby

greatly reducing the problem size, without the issues described above. This comes at

the cost of slightly overestimating passenger transfer time and boarding time to geolines

where more vehicles are assigned than the minimum number required, as an assignment

of more vehicles leads to higher frequency and thus lower PI, which is not included in

the pre-computed path costs. By defining F based on small increments in headways, this

difference could be kept small, and results in a more accurate estimation of PI than in

the previous models of Borndörfer et al. (2007) and Schöbel and Scholl (2006) that do

not include frequency-dependent path costs.

Decision variables: Decision variables for passenger flow assigned to a path and num-

ber of vehicles assigned to a line are restricted to be positive by constraints (4.7) and

(4.8), respectively. The inclusion of geoline g at frequency f is a binary decision variable

due to constraint (4.9).

4.5 Solution Approach

This section defines two important pre-processing steps: Section 4.5.1 proposes an ap-

proach for the generation of a set of reasonable paths, which are required input for the

model defined in Section 4.4.4. Section 4.5.2 presents a path reduction procedure that

significantly reduces the number of paths and increases the computational speed, without

decreasing the quality of the solution. Together the generation of reasonable paths and

the path reduction generate input for the SPLC model, which is then solved to optimality

using CPLEX 12.6.
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4.5.1 Path Generation

Path generation constructs the set of reasonable paths Pq for each OD-group in a given

PTN. The concept of reasonable paths follows Ceder and Wilson (1986), who limit the

acceptable paths to some value above the absolute shortest path. We define a path as

reasonable if its cost does not exceed the cost of the standard path, rather than the shortest

path, by more than an increment α. The standard path is defined as the shortest path

in the solution to the link closure closest to normal operations: a graph defined by the

planned frequency of all geolines, the closure, and the standard replacement shuttle around

the closure at its maximum frequency. The standard path forms a natural reference point

for both passenger path lengths and the operating budget defined as the available fleet

size.

The criteria and construction method that lead to a set of reasonable paths are defined

for each OD-group, which contrasts with the global criteria generally used for column

generation. A column generation approach will stop adding a new path p∗ to the set of

candidate paths P when there exists no path p∗ ∈ PTNf , p
∗ �∈ P that would reduce the

overall passenger inconvenience. This global condition would allow adding paths that are

purely in the interest of the global social optimum but not in the interest of the OD-group

itself. Because passengers are allowed to freely choose their route in the network (within

certain limits), some of these altruistic paths p∗ may be unrealistic in practice. Using

the incremental cost α, one could consider the set of reasonable paths to be the set of

paths among which passengers are indifferent, and thus exclude purely altruistic paths.

Defining the path set per OD-group, and not at the system level, is a better reflection of

the assumption of free route choice for each passenger. As an additional advantage, this

specification allows to compute the path set Pq for each OD-pair independently of the

others, which could make calculation of these sets more efficient.

The construction uses the concept of a geopath. Given a path p ∈ PTN, the translation

of this path to a geopath pγ is defined by storing only the geoline information without

the frequency information for each arc in the path. The translation of a path pγ to the

corresponding set of paths in PTN is defined by the set of all possible paths in PTN

that contain the same geoarcs as path pγ. These paths can be constructed by finding all

frequency-specific arcs that match the geoarcs in pγ, and generating from these arcs all

possible paths that have the exact same ordering of geoarcs as pγ. Thus given a set of

geopaths, these paths can be translated into a set of paths in PTN.

The intuition behind our approach is the following. For each candidate shuttle ge-

oline we construct a graph consisting of the existing network, the line closure, and the

candidate shuttle service at its maximum frequency. Note that we do not include the
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standard shuttle line in these graphs. Shortest paths for all OD-groups are calculated.

The reasonable geopaths are then added to the candidate set, that is, all geopaths for

which the estimated cost does not exceed the cost of the standard path by more than α

units. Finally, the set of geopaths is translated to PTN to arrive at the full candidate set

Pq.

The concept of reasonable paths prevents passengers from being assigned to paths

that make them considerably worse off than in the standard solution. However, it is not

guaranteed that passengers are assigned to their shortest path. For instance, when both

the standard path and a shorter path exist in the final solution for an OD-group q, a

passenger from q may be assigned to either path based on what results in the lowest

global passenger inconvenience given certain budget constraints. Moreover, limiting the

choice set to reasonable paths, may result in a more expensive overall solution. However,

when choosing a small α, passengers can be considered to be indifferent between these

paths, as they are all part of the reasonable path set, and their costs differ by at most α.

4.5.2 Path Reduction

An OD-group consists of an OD-pair, a weight, and a path set. Given a set of OD-

groups Q for a PTN, the path reduction constructs a new set of OD-groups Q′. The

path reduction aims to reduce the number of paths and OD-groups contained in a new

OD-group set, without changing the outcome of the route assignment. Computational

results for the case study show that the path reduction reduces the set of OD-groups and

paths by at least a factor of two, and decreases the computation time even more.

The SPLC model includes demand for all OD-groups, as any of these may be affected

by the closure: some OD-groups have multiple paths to choose from to traverse the

closure, other OD-groups do not traverse the closure but find a faster alternative in one

of the candidate shuttles. Moreover, OD-groups can be affected by a change in demand

resulting from the closure or a change in frequency on the existing metro line. Thus, in

order to estimate passenger inconvenience and required capacity correctly, demand for all

OD-groups needs to be included.

Each path of each OD-group introduces a new decision variable in the SPLC formula-

tion. However, for the majority of OD-groups the path choice in terms of the geographical

lines and stops is fixed, but still several paths are included for the different frequencies.

For these OD-groups including demand per link leads to the same demand assignment

as including a set of candidate paths the demand of the groups needs to be assigned to.

The intuition behind the path reduction is to split passenger demand into demand that
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can be geolink-based since there is only one geopath, and demand for which there are

multiple geopaths available, which requires a path based assignment. This is done within

passenger groups. Although this does not necessarily reduce the number of paths and

passenger groups, our case study shows that significant practical benefits can result.

The path reduction process is based on the geopath-translation, including entrance

and transfer arcs, of the path set of OD-group q, which, to improve readability, we will

still denote by Pq in this section. Note that any geopath can be translated into a new set

of paths in PTN, as discussed in Section 4.5.1.

Definition and Properties

For an OD-group q ∈ Q we define s∗q as the last common node among geopaths Pq before

a change in the stop sequence, and t∗q as the first common node after s∗q, meaning that

all geopaths in Pq contain the arcs from s to s∗q and the arcs from t∗q to t. Let A∗ be the

set of all arcs between sq and s∗q and all arcs between t∗q and tq. Furthermore, we define

a new geopath set P∗ by adding the remaining sub-path of each geopath p ∈ Pq after

removing all arcs a ∈ A∗ from this path. Note that by the construction of A∗ and P∗ all

paths p∗ ∈ P∗ connect s∗q to t∗q. A new set of OD-groups Q′ is constructed by defining:

• a new OD-group q′ ∈ Q′ as sq′ = u, tq′ = v, wq′ = wq,Pq′ = a for each arc a =

(u, v) ∈ A∗

• a new OD-group q′ ∈ Q′ as sq′ = s∗q, tq′ = t∗q, wq′ = wq,Pq′ = P∗

These new OD-groups q′ are only defined for non-empty A∗ and P∗. A∗ is empty when

Pq contains multiple geopaths with fully disjoint arc sets, and therefore Pq = P∗. P∗ is

empty when all arcs in Pq are contained in all geopaths of Pq, thus when Pq contains

only one geopath. Paths are compared on an arc basis, thus including geoline-specific

transfers, and new OD-groups are defined on a node basis. Thus transferring passengers,

arriving passengers, and in-train passengers can be distinguished.

Observation I: the path set Pq′ is uniquely defined by the origin and destination node

of the new OD-groups q′ ∈ Q′. The cost of a path cp is the sum of the cost of all arcs

in the path. The cost of a single arc is independent of the cost of other arcs in the

path, consisting of geoline and frequency specific entrance arcs, geoline arcs, geoline and

frequency specific transfer arcs and exit arcs. Thus, for any new q′, q′′ ∈ Q′ that have

the same s∗q, t
∗
q, the additional inconvenience of an assignment to any path p in the subset

of paths P∗ of either q′, q′′ is equal for both q′, q′′ independent of the OD-pairs of q′, q′′.

Moreover any path p∗ ∈ P∗ will be part of both q′, q′′ as the concept of a reasonable path
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is defined as a fixed incremental cost on top of the standard path. Thus, any reasonable

path of q′ is a reasonable path of q′′ and vice versa, and therefore the path set Pq′ and

Pq′′ are the same. It is straightforward to see that the same holds true for any OD-group

defined by a single arc a ∈ A∗.

Therefore, whenever there are two OD-groups q′, q′′ with sq′ = sq′′ , tq′ = tq′′ we define

a new combined OD-group q′′′ := {sq′′′ = sq′ , tq′′′ = tq′ , wq′′′ = wq′ + wq′′ ,Pq′′′ = Pq′}
replacing q′, q′′ in Q′.

Observation II: The path reduction process will not increase the number of paths by

more than the number of arcs in PTN. By construction, paths are added for arcs in A∗

and paths in P∗. The maximum number of paths resulting from A∗ is smaller than, or

equal to the number of arcs in PTN (because of the first observation). Paths resulting

from P∗ are subpaths of the original path set of OD-group q, and therefore this number

is smaller than or equal to the number of paths in the original passenger group.

However, path reduction is likely to reduce the number of paths and the number of OD-

groups because of the first observation. The number of decision variables is determined

by
∑

q∈Q |Pq|. Thus, both a reduction in the number of groups and the number of paths

will lead to a reduction in the size of the mathematical programming problem defined in

Section 4.4.4.

Observation III: a minimum inconvenience route assignment is the same for Q and

Q′ given a PTN. By construction, paths are only split into multiple portions for those

arcs that occur in all paths of the passenger group. Fixing this part of the assignment

does not limit the path assignment model. Moreover, any path assignment of Q′ can thus

always be translated to a path in Q, and vice versa. The cost of a path is defined as the

sum of its arc costs, which contains transfer arcs and entrance arcs. The arc costs are

independent of their position in the path. Therefore the cost of assigning a passenger to

the full path in Q is equal to the cost of assigning a passenger to all disjunct subsets of

the path included in Q′. Therefore, the minimum inconvenience route assignments of Q
and Q′ are the same.

Remark : The path reduction process could be used independent of the concept of

reasonable paths. However, in that case the path sets may not be uniquely defined by the

origin and destination nodes s, t, possibly leading to a higher number of OD-groups.

Example

Consider the previously introduced public transport network and the associated graph

given in Figure 4.2. For this network all reasonable geopaths for the OD-groups in the set

Q, where Q contains all passengers traveling to node V , are shown in Figure 4.3(a). This



98_Erim Hurk BW Stand.job

86 Shuttle Planning for Link Closures in Urban Public Transport Networks

graph is again a schematic representation and arcs, nodes, and path segments representing

entry and exit are omitted for reasons of clarity. Path reduction will compare the set of

paths Pq for each OD-group q ∈ Q and then introduce the set of new OD-groups based

on the comparison.

Take for example (sq, tq) = (A, V ). There are two reasonable paths: One passing

through X and the other through T . Comparing these two paths, the last common node

is s∗q = D, while the first common node is t∗q = V . Thus new OD-groups are introduced

for (A,B), (B,C), (C,D) and (D, V ) that collectively replace the original group A, V .

Moreover an OD-group for the entry arc at station A is introduced (not shown in Figure

4.3(a)). A separate group for the exit arc at V will not be introduced as passengers may

arrive from different directions at V . Distinguishing boarding and transfer arcs is essential

to account for the waiting time and transfer time of passengers.

For each of the groups in Q we follow this procedure and find a new OD-group set Q′

for which the resulting paths are shown in Figure 4.3(b). The number of paths is reduced

by a factor of 5 in this example. In our case study we also find that the number of paths

is significantly reduced, and as a result the computational speed is increased.
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Figure 4.3: Example of path reduction

A quick look of the network in Figure 4.3(a) may simply suggest cutting off all

branches, such as branch A-D. However, there are several reasons why this should not

be done. First of all, it is important for the measurement of passenger inconvenience

to distinguish passengers transferring at D from passengers who are in a vehicle at D
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and passengers who originate at D. Secondly, when one allows changes in the frequency

on existing lines, this affects all passengers on the geoline, and thus requires considering

passengers traveling outside the area of the disruption. Finally, an existing metro line

could experience an increase in demand, which could lead to shortages of capacity for

passengers not affected by the disruption. Therefore it is important that any translation

will lead to the same passenger inconvenience as the full OD matrix. The path reduction

process satisfies this requirement.

4.6 Application

In this section we apply the SPLC model to a real life case study of a network closure in

the urban rail network of the Massachusetts Bay Transportation Authority (MBTA) in

Boston, Massachusetts, in the United States. We show that the SPLC model is able to find

better solutions than the standard practice at the MBTA which is to use a single shuttle

service to replace the track section being closed for repair. Moreover, through a sensitivity

analysis we show that the proposed model’s solutions are relatively robust to changes in

demand and changes in the trade off between passenger inconvenience and operating cost.

Finally we demonstrate that the model’s solutions are stable under different assumptions

about passenger behavior. Although the model formulation does not specifically optimize

for robustness, the use of reasonable paths, as defined in Section 4.5, contributes to this

property.

The case study is based on actual data which is described in Section 4.6.1. The

experimental design is presented in Section 4.6.2. The model’s solutions are discussed in

Section 4.6.3, and finally Section 4.6.4 reports computational performance demonstrating

the improvement in computation time of the model compared to prior formulations.

4.6.1 Data

The case study uses actual data from the MBTA urban rail network in Boston. Part

of the ‘Red Line’ will be periodically suspended on weekends between 2013-2017 due to

major maintenance work on the Longfellow Bridge. On such occasions, three stations

central in the network will no longer be connected by the rail line. One in eight of the

passengers traveling by metro in Boston on these days will be affected by this closure.

The following discusses the input data consisting of the Origin-Destination (OD) matrix,

public transport network, and candidate shuttle lines. The problem size is indicated in

Table 4.2.
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OD-matrix: The OD matrix is estimated based on fare payment data on five Saturdays

between August 31, 2013 and September 28, 2013. Peak hour demand is estimated from

the average peak demand between 2pm and 4pm on these days. The OD-demand matrix

contains 1397 OD-pairs.
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Figure 4.4: Core of MBTA network

Public Transport Network: The public transport network analyzed contains 113

stations, representing the full subway system of the MBTA with just two exceptions:

some stations on the Green Line were excluded due to lack of OD-information, together

with some stations at the southern end of the Red Line, where very few passengers travel

on the weekends. Stations are connected by 300 directed geographically distinct links

under normal operations.

The core of the MBTA network is depicted in Figure 4.4. Due to the closure of the

line between Kendall/MIT, Charles/MGH and Park Street, the Red Line is divided into

two parts: from Kendall north to Porter which continues to Alewife, and from Park Street

south to Broadway Ashmont which continues to Braintree. Thus the northern end of the

Red Line becomes disconnected from the rest of the network.
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Table 4.2: Problem size.

Network 113 stations, 300 trips
Shuttles 14 geolines
Passengers 1397 OD pairs

The travel times are based on the planned schedule. The translation of the network

to PTN for normal operations results in a graph with 405 nodes and 1543 directed arcs.

This graph includes nodes and arcs for transfers, entrances and exits for a single frequency

for each geoline. The size of PTN including shuttles is larger and depends on the size of

the candidate shuttle pool and the set of frequencies per geoline, as discussed in Section

4.4.1.

Candidate shuttle pool: The current strategy of the MBTA is to maintain connec-

tivity along the original Red Line route by connecting the Kendall, Charles, and Park

stations through a shuttle bus service running at 1 minute headways. We show that

considering a broader set of candidate shuttle lines can significantly reduce passenger

inconvenience with no increase in MBTA budget.

The candidate shuttle pool results from a demand analysis and an exploration of the

network. In the demand analysis we identified the main attractor stations of demand for

passengers traversing the link closures. The shuttle lines were constructed by connecting

all attractor stations within a maximum distance of each other and requiring the shuttle

lines to form one new direct connection between a station of the metro line affected by

the closure and a station of another metro line, or the other part of the split line.

This procedure resulted in 14 different geolines, connecting 2 to 5 stations per geoline.

Candidate shuttle lines are shown in Figure 4.5. Shorter versions of these geolines were

also included in the problem. The standard shuttle, that replaces the closed section of

the line, is included in this set. The 14 candidate geolines also include shuttles between

stations beyond the closure. Such shuttle lines were selected in the solution of the SPLC

model. Travel times for shuttle routes were estimated from vehicle location (AVL) data

when available. The other connections were estimated based on Google maps driving

times in dense traffic.

Finally, in addition to shuttle connections, we included the option of walking between

selected stations that are close together, that is, less than 10 minutes walking time. Al-

lowing passengers to walk between these stations acknowledges that the OD matrix is just

an estimate of the passenger’s true origin and destination, and prevents the assignment of

passengers to public transport routes for parts of their journey that are easily walkable.
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Figure 4.5: Core of MBTA network with candidate shuttle lines.

4.6.2 Experimental Design

All experiments are based on two cases: one scheduling shuttles, the second scheduling

shuttles and allowing a redistribution of vehicles on the Red Line, as well as changing the

frequencies on both parts of the Red Line. We evaluate different objective functions, differ-

ent demand levels, and the robustness of the solution under different passenger behavioral

assumptions. The quality of solutions is measured by the passenger inconvenience (PI ),

compared to PI of the standard solution (Sfst) of a single shuttle replacing the closed

links. OC is presented as the required number of shuttles for the solution, which de-

fines OC as all shuttles in our case study have equal cost. An overview of the complete

experimental design is provided in Table 4.3.

Shuttle Scheduling and Network Scheduling: We study two cases for the Longfel-

low Bridge closure. The first, Shuttle Scheduling (Cshut), considers only the introduction

of shuttle lines in the current network. The second, Network Scheduling (Cnetw), considers

both the introduction of new shuttle lines in the current network, and the redistribution

of vehicles and the frequency setting on both sections of the Red Line. The number of

vehicles assigned to the two disconnected sections of the Red Line is limited to the current
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number of available vehicles for the line. Moreover, a cost is included for the change in

the number of drivers a new frequency requires in comparison to the current 8 minute

headway schedule. A decrease in frequency of one section of the line can compensate for

the cost of an increase in frequency of the other section of the line. Finally, a budget

constraint is added so that the total operating costs do not exceed the budget available

for Cshut. The frequency candidate set contains headways between 4 and 10 minutes in 1

minute increments.

For each shuttle line we introduce a frequency such that the headway varies between

1 and 10 minutes in 1 minute increments. The operating cost increases nonlinearly with

decreasing in headways. The SPLC problem formulation allows assigning more vehicles

to a geoline than necessary to operate the selected frequency. However, PI depends on

the selected frequencies. Therefore it is more important to gradually change PI than OC

for the included set of frequencies. Although a continuous set of frequencies are feasible

per geoline, in Section 4.6.4 we establish that indeed the inclusion of 10 frequency options

is sufficient, that is, the optimal solution does not change when the set of frequencies is

defined at a finer level.

Objective function: The objective is to minimize PI due to the closure within a

budget constraint on OC. However, there may be good solutions using less vehicles, or

the maximum fleet size may not yet have been determined. Therefore three different

objectives are analyzed:

• ObL
PI: minimizing PI with a limited shuttle pool

• ObL
PI,OC: minimizing PI and OC with a limited shuttle pool

• ObN
PI,OC: minimizing PI and OC with an unlimited shuttle pool.

Both PI and OC are expressed in monetary terms. MBTA bus operating costs are

approximately $140 per hour. Passenger inconvenience is expressed in terms of value of

time, defined as the weighted total travel time, including waiting time, transfers, and

in-vehicle time, multiplied by an estimate of the hourly wage. We conduct a sensitivity

analysis for different assumptions about the value of time and different levels of demand.

This includes three levels for the hourly wage ω:= {$8, $16, $32}, ranging between the

minimum and average wage in Massachusetts, and four demand levels to scale the OD

matrix by σ:= {0.6, 0.8, 1.0, 1.2}, with σ= 1 equal to the current average (peak) demand.

These options reflect both a reduction in demand as the expected inconvenience may

result in some passengers postponing their trips or changing mode, and an increase in
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demand that may be caused by a major sporting event, such as a Boston Red Sox game.

Finally, the shuttle pool is limited to the number of shuttles required for the standard

solution Sfst under any demand scenario.

PI is defined as the weighted sum of the costs of the arcs in the paths assigned to

passengers. The waiting time to board a vehicle is defined as the expected waiting time

for the first arrival based on random passenger arrivals and the scheduled frequency. For

transfers between any metro or shuttle line, the waiting time is defined as the waiting

time for a random arrival at the transfer-to geoline plus a fixed transfer-penalty, which

reflects average transfer inconvenience in the MBTA network where arrivals of vehicles on

different geolines are not synchronized to enable easy transfers and penalizes additional

transfers (and waiting time) due to the closure. We define the costs of waiting time to be

three times the cost of in-vehicle time, as first proposed in Quarmby (1967). Wardman

(2004) lists more studies that find broadly similar results, although his results suggest

that the actual costs may depend on other variables such as the trip purpose.

The SPLC model minimizes overall PI, and consequently not necessarily all passengers

are assigned to their preferred path. The true preferred path of a passenger is unknown.

Common approaches to modeling path choice are that each passenger follows the shortest

path or that passengers choose one of a set of reasonable alternatives, based on some

probabilistic rule. To address this we evaluate the robustness of the solution obtained

under two different passenger behavior models. The first model, RAsp, assigns passen-

gers to their shortest path in the proposed network. The second model, RAprob, assigns

passengers probabilistically, based on a logit model to one of two candidate routes in the

proposed network: (1) the shortest path and (2) the geographical route that follows the

standard route most closely . The probability of choosing path pi, i ∈ {1, 2}, is defined
as:

P (pi) =
eθcpi

eθcp1 + eθcp2
∀i ∈ {1, 2}

Where cpi is the weighted travel time of the path, and θ = −0.2 such that even if the

difference between the pi’s is 15 minutes, 5% of the passengers still take the (longer)

standard path (for example, reflecting inertia).

Both assignments, unlike the route assignment in the SPLC model, do not consider

capacity constraints, but depend only on the ‘optimal’ set of geolines and their frequencies.

In order to make a fair comparison between the quality of the solutions, the OC is

recalculated such that sufficient capacity is provided for all passengers to follow their

preferred route, and that all geolines are operated at a frequency no less than specified
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in the solution of the SPLC model. However, the PI is not adjusted for the resulting

increases in frequency. Thus, conservative estimates are presented of both OC and PI,

Table 4.3: Notation for model applications.

Category Notation Description
Solutions Sfmod PTNf solution from SPLC model

Sfst PTNf standard solution with single shuttle bridging clo-
sure

Cases Cshut Optimizing shuttle lines operated
Cnetw Optimizing shuttle lines operated and reassignment of

Red Line capacity
Passenger RAmod Model solution, model route assignment
Behavior RAsp Model solution, shortest path assignment
Models RAprob Model solution, probabilistic path assignment
Objectives ObL

PI,OC PI and limited shuttle pool
ObL

PI PI, OC, and limited shuttle pool
ObN

PI,OC PI, OC, and unlimited shuttle pool

parameters ω Value of time
σ Demand factor (increase or decrease)

4.6.3 Results

This section discusses the results of the case study based on the experimental design

defined in Section 4.6.2. First the model solution is discussed, then the sensitivity analysis.

Solution

A solution for the SPLC problem defines the set of geolines to be operated and their

frequencies given PTN defined by the geolines, the set of closed links, and the set of

possible frequencies per geoline. Given the demand, a set of reasonable paths, and the

number of available vehicles, the model identifies the set of frequencies that minimize

the objective function: the weighted sum of passenger inconvenience and operating cost.

A solution’s quality is compared against current practice, and measures PI relative to

normal operations, so that it is possible to conclude that a solution is not just better than

the standard solution for line closures, but also a good overall solution in the event of

a line closure. This section presents results for the cases Cshut and Cnetw with objective

ObL
PI,OC, wage ω= $16, and demand scale σ=0.8, which we define as the base case1.

1Note: the MBTA expects a 20% decrease in demand due to the closure. So σ=0.8 is selected over
σ=1 as the base case.
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Figure 4.6: MBTA core network with shuttle lines operated in base case Cshut solution.

Two shuttle lines are operated in the Cshut solution. The resulting network is shown

in Figure 4.6. The solution includes shuttle (1) operated at a headway of slightly less

than 3 minutes, and shuttle (2) at a headway of 2 minutes. Shuttle (2) provides a direct

high frequency connection between Harvard, Central, and Hynes: three of the major

trip attractors in the network, thereby eliminating two transfers for these passengers and

reducing waiting time (headways on the metro lines are 8 minutes, the shuttle runs at 2

minutes). This illustrates how shuttles beyond the closed area can significantly reduce

delay, without increasing OC.

The solution for Cnetw operates the Northern branch of the Red Line at 4 minute head-

ways instead of 8 minutes. The 4 minute headway comes at the cost of a lower frequency

of 10 minute headways on the southern branch of the Red Line and the additional need for

(about) 4 drivers (based on length of route and turn around times, 8 hour shifts and the

increase in frequency). The total number of vehicles on the Red Line stays the same. The

solution operates shuttle (1) in Figure 4.6 at 2 minute headways, and a modified version of

shuttle (2) starting at Central (i.e. omitting the Harvard section) at 3 minute headways.

Although this introduces an additional transfer for all Harvard passengers, the higher

frequency on this part of the Red Line compensates for this increase in inconvenience.
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Table 4.4: PI percentage increase over normal operations, OC fleet size (shut= 64),

ObL
PI,OC, ω= 16, σ=0.8

Cshut Cnetw

PI OC PI OC
Sfmod 15.7 61 11.1 55
Sfst 25.7 64 25.7 64

Table 4.4 shows PI and OC for the Sfmod solution and the standard Sfst solution for

the Cshut and Cnetw base cases. PI is expressed as the percentage increase in passenger

inconvenience over standard operations. The OC is presented as the number of shuttle

buses required, given a fixed cost of $140 per bus the OC follows directly from this. The

OC of Cnetw represents the total cost for shuttles and additional drivers on the Red Line

in terms of shuttles. Lower values for PI and OC represent better solutions.

The model’s solution for Cshut, allowing bus deployment to shuttle services only, has

a lower OC than Sfst (61 instead of 64 buses) and a PI of 15.7%, reducing PI by 40%

compared to the standard solution. For example, for a passenger who makes a 40 minutes

trip under normal conditions and travels over the links which will be closed, in the standard

solution the journey would be 10 minutes longer (on average), and 6 minutes (on average)

longer in the model solution.

In the Cnetw solution, which allows redistribution of vehicles and selecting a new fre-

quency within a feasible range on the two Red Line sections, the passenger inconvenience

is reduced to 11.1% - a reduction of 57% compared to the standard solution. This results

in a delay of 4 minutes instead of 10 minutes in the previous example. The solution has

a lower operating cost than both the standard solution and Cshut (55 shuttle equivalent

instead of 64 or 61, respectively), while using the same number of cars on the Red Line.

The distribution of PI over passengers for the standard Cshut and the Cnetw solutions

respectively are given in Figure 4.7 as the weighted additional travel time per passenger

in comparison to normal operations. Passengers with no change in inconvenience in

comparison to normal operations are excluded from the graph. A unique translation of

the path reduction passenger assignment to an assignment per original OD-group does

not exist whenever a passenger group is assigned to multiple paths. Therefore we base

the analysis of per passenger inconvenience on a shortest path assignment in the network,

which has a similar PI as discussed in Section 4.6.3.

Both the Cshut and Cnetw solutions reduce worst case delays, and distribute delay more

evenly over passengers than the standard approach Sfst. In the standard solution most

passengers have a weighted delay of 25-30 minutes. The Cshut and Cnetw greatly reduce
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the number of passengers experiencing a delay of 25 minutes or more, and reduce delay

to under 15 minutes for most passengers. The Cnetw solution reduces worst case delays

for more passengers than the Cshut at a lower OC, although it also has a higher number

of passengers with small delays (between 0 and 5 minutes) than the Cshut solution.

Moreover, the Cnetw case benefits non-affected passengers by operating a higher fre-

quency on the Northern Branch of the Red Line, explaining the -5 minutes delay bar in

the graph. The percentage of passengers experiencing inconvenience from the closure is

28% for Sfst, 23% for Cshut and 22% for Cnetw. Thus the Cnetw reduces PI not only by pro-

viding better connections for non-affected passengers, but also by reducing inconvenience

for affected passengers
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Figure 4.7: Distribution of per passenger PI increase for Sfst, Cshutand Cnetw.

Sensitivity Analysis

This section discusses the quality of the solution for different objective functions, demand

levels, and its robustness under different passenger assignment models according to the

experimental design presented in Section 4.6.2.

Objectives: The SPLC model has the objective of minimizing passenger inconvenience

within a constrained operating cost. We compared three different formulations of the

objective function: ObL
PI,OC, ObL

PI and ObN
PI,OC. In ObL

PI,OC and in ObN
PI,OC PI is weighted

by the value of time, assuming three different values: ω:= {8, 16, 32} $/hr. For the

different objectives Table 4.5 presents the range of PI and OC over these three different

values of time for both the Cshut and Cnetw cases. PI is expressed as the percentage

increase over normal operations (with the same value of time), and OC as the number of

shuttle buses. The ObL
PI solutions do not depend on ω.
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The ObN
PI,OC uses a significantly higher number of shuttles for a relatively small increase

in PI : 69 buses for a reduction in PI of 0.8 percent (ObL
PI) or 0.9 percent (ObL

PI,OC), at a

cost of respectively 5 and 7 shuttles for Cshut. The Cnetw has a higher difference in OC for

a smaller difference in PI. An unconstrained fleet size thus can lead to a large variation

in the number of shuttles in a solution given the relative weights assigned to PI and

OC in the objective function. The advantage of ObL
PI,OC is that, because the fleet size

is constrained, different weights lead to smaller differences in solutions. Assigning zero

weight to the OC, as in ObL
PI, solutions may result in too many shuttles: 2 (Cshut) to 6

(Cnetw) shuttles could be saved by increasing PI by 0.1% , an OC reduction that is 5 to

9 times as high as the resulting increase in PI. Therefore, ObL
PI,OC can assist operators in

making the right trade-off between the PI and OC without high sensitivity to the chosen

weights. The results of the case study clearly illustrate that redesigning the network can

reduce both PI and OC.

Table 4.5: Different objective functions for Cshut and Cnetw cases, ω:= {8, 16, 32} $/hr,

ObL
PI and ObL

PI,OC, shut= 64.

Cshut Cnetw

PI OC PI OC
ObL

PI 15.5 64 10.4 64
ObL

PI,OC 15.6 - 17.7 50 - 62 10.5 - 12.0 54 - 58
ObN

PI,OC 14.7 - 17.7 50 - 69 10.1 - 11.7 54 - 81

Demand: The base case assumes a demand loss of 20% due to the closure. Although

this is MBTA’s best estimate, demand could be lower when passengers can easily post-

pone their trips, or have access to other modes. However, when the added passenger

inconvenience is small the resulting decrease in demand may also be small. Major sports

events could even increase demand. Because the demand is uncertain, we evaluate the

sensitivity of the solutions for demand scaled by σ= {0.6, 0.8, 1.0, 1.2}.
The PI and OC for all scenarios are given in Table 4.6 for the mixed objective with

limited fleet size, ObL
PI,OC. Both an increase and a reduction of demand (slightly) increases

PI in comparison to the base scenario (0.8) for both Cshut and Cnetw. The increase in

PI at higher demand levels is caused by the limited fleet size of 64 shuttles, which is not

enough to provide a similar service, especially at a 20% demand increase. Increasing the

fleet size reduces PI, but requires a significant extension of the fleet (77 and 84 buses

for σ= {1.0, 1.2} for Cshut). PI also increases when demand decreases, as a decrease

in demand reduces the relative benefit of operating lines at a higher frequency, and less
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vehicles are therefore employed than at higher demand levels, resulting in lower OC and

also a slightly higher PI for ObL
PI,OC and ObN

PI,OC.

In terms of shuttle services for Cshut, at σ= 0.6 the same lines are proposed as in the

base case (σ= 0.8), but operating at lower frequencies. The resulting public transport

network is shown in Figure 4.6. For σ= {1.0, 1.2} a third shuttle connecting the Red

Line to Lechmere station is proposed in addition to shuttle (1), and a shorter version of

shuttle (2) operating from Central Square to Hynes/Massachusetts Avenue is included.

The short lines (2) and (3) help cope with the increased demand using the same number of

shuttle buses. The PI and OC of the solutions with original shuttles (1) and (2), and the

solution with three shuttle lines, are fairly similar. Thus the base solution is satisfactory

even with higher demand, as long as the frequencies are adjusted accordingly. Results for

Cnetw are similar, with higher frequencies on shorter lines, and a connection to Lechmere

at high demand.

Table 4.6: Different demand levels for Cshut and Cnetw cases, shut=64.

Cshut Cnetw

OD scale PI OC PI OC
0.6 16.7 47 12.6 42
0.8 15.7 61 11.1 55
1.0 16.9 64 13 62
1.2 19 64 15.2 64

Route Assignment: The model optimizes over all PI. The path assignment is restricted

to reasonable paths, between which, one could argue, passengers are indifferent - but still

does not fully reflect free route choice. This section therefore investigates the robustness

of the solution under different assumptions on passenger route choice behavior.

The PI and OC for the model’s route assignment RAmod, the shortest path route

assignment RAsp, and the probabilistic route assignment RAprob in the network of the

model’s solution are shown in Table 4.7 for the base case Cshut. PI is not very sensitive

to the route assignment model. Actually PI is within 0.4% of the model’s estimated PI.

The OC for the two different route assignment models increases. However, the OC is a

conservative (upper bound) estimate of costs, as it estimates costs of geolines based on the

maximum vehicles per geoline needed for either the SPLC solution or the new passenger

assignment solution. If the frequency of geolines are reduced to mirror the decrease in

demand due to the changed route assignment models, the increase in OC would be lower.

In the standard solution all passengers are assigned to the shortest path in the network.

Also, in our case study, there exists in the standard solution only one path per passenger
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group. Therefore the PI (25,7) and OC (64) do not change for different route assignment

models. This could be different for networks that are more dense, where even in the

standard solution more paths could exist.

The delay distributions of RAsp and RAprob for the base case Cshut, shown in Figure

4.8, are similar. In comparison to the standard solution, both route assignment models

reduce passenger inconvenience by reducing the worst case delays. Results are similar

for both the Cshut and Cnetw cases at different levels of ω and σ, and for other objective

functions.

Table 4.7: Route Assignment Cshut

Cshut

PI OC
RAmod 15.7 61
RAsp 15.3 63
RAprob 15.8 65
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Figure 4.8: Distribution of per passenger PI increase for assignment in the Standard

Shuttle solution, and Shortest Path and Probabilistic Path assignment for the Cshut (shut=

64, ObL
PI,OC, ω= 16, σ=0.8) solution.

4.6.4 Computational Considerations

The computational benefits of the new formulation using vehicle variables and the path

reduction preprocessing step are evaluated in this section. Two formulations for the SPLC

problem are compared: 1) SPLC(y, v), containing both vehicle variables v and combined

geoline and frequency variables y, and 2) SPLC(y), containing the combined geoline and

frequency variables y only, which is a more straightforward adaption of Claessens et al.

(1998) to the SPLC problem. All computational experiments were run using CPLEX
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version 12.6 on an Intel I7 3.07GHz processor using the default settings assigning 0.5GB

of memory to the program.

Path reduction: The path reduction process reduces the number of OD groups by 75

% (from 1397 to 320). The number of different paths is reduced by more than 50 %. For

example, with 10 frequency options per shuttle line the number of paths is reduced from

59,237 to 25,179 (reduction of 57%), while with 40 frequency options per shuttle line the

number of paths is reduced from 224,666 to 99,726 paths (reduction of 56%). The number

of xpq decision variables is thus greatly reduced, thereby almost equally reducing problem

size as the great majority of decision variables result from xpq. Moreover, many of the

new paths are ‘simple’ paths that traverse a single geo-arc. This might further contribute

to decreasing the computation time.

The CPLEX optimization running time (Topt) and the total running time including

preprocessing (Ttot) for solving the problem with and without path reduction are given in

Table 4.8. The candidate frequency set for both the SPLC(y) and SPLC(y, v) formulations

are chosen such that the resulting solutions are comparable. For both formulations, the

path reduction process reduces computational time significantly: it is 58 times faster for

the SPLC(y) case and 10 times faster for the SPLC(y, v) case, without changing the

problem definition or optimal solution value. Therefore, in the discussion that follows, it

will be used in all reported computation times.

Table 4.8: Computation times (seconds) (Cshut , ObL
PI, ω=16, σ=0.8, shut = 64)

Path reduction:
Model Number of No Yes

Frequencies Topt Ttot Topt Ttot

SPLC(y) 40 3297 3517 56.6 82
SPLC(y, v) 10 96.4 115 9.53 12

Vehicle variables: We search for the number of frequency settings per model to arrive

at comparable solutions. We find that at 40 options the SPLC(y) and SPLC(y, v) models

propose the same shuttle lines, with a difference in objective value of only 0.1%. The

computation times for optimizing through CPLEX (Topt) and the total run time including

preprocessing (Ttot) shown in Table 4.9 are for different frequency options of the two

formulations SPLC(y) and SPLC(y, v). The SPLC(y, v) solves the model 5 times faster,

in 9.53 seconds instead of 56.6 seconds respectively, as it requires only 10 frequencies to

arrive at the same solution as the SPLC(y) formulation with 40 frequencies. The addition
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of vehicle variables itself does not speed up the computation time, solving SPLC(y, v) with

40 frequencies in 871 seconds is slower than SPLC(y). But the SPLC(y, v) formulation

with 10 frequencies finds the same solution as the SPLC(y, v) with 40 frequencies. Thus,

because the SPLC(y, v) requires less frequencies it is significantly faster than the SPLC(y)

formulation. The SPLC(y, v) formulation together with the path reduction are able to

solve the model 345 times faster, from 3297 seconds to 9.53 seconds as shown in Table

4.8.

Table 4.9: Computation times (seconds) (Cshut , ObL
PI, ω=16, σ=0.8)

Model Frequencies Topt Ttot

SPLC(y) 40 56.6 82
SPLC(y, v) 40 871 894
SPLC(y, v) 10 9.53 12

Cases and Objectives: Computation times for the Cshut and Cnetw cases are presented

in Table 4.10. For all objective functions, the SPLC(y, v) formulation is faster than the

SPLC(y) formulation. It computes Cshut in a minimum of 9.53 seconds, versus 39.48 for

the SPLC(y) formulation, thus 4 times faster. For the more complex case Cnetw computing

time is 28.2 seconds and 1192 seconds respectively, thus SPLC(y, v) computation time is

around 40 times faster than the SPLC(y) formulation, 10 times more than the speed

increase for the Cshut case. These results suggest that the benefit of the SPLC(y, v)

formulation increases as the problem complexity increases.

There are significant differences in computation times for different objective functions

as shown in Table 4.10. ObL
PI is fastest, ObL

PI,OC is 1.5 times as long and the ObN
PI,OC is

3 times as long as the ObL
PI. We were not able to solve the SPLC(y) formulation with

objective ObNPI,OC due to insufficient memory. By estimating an appropriate upper bound

on the number of vehicles, the ObN
PI,OC could be solved using the ObL

PI,OC for different

fleet sizes, thus increasing the computation speed.

4.7 Conclusion and Discussion

This chapter presents a new analytic model for the design of shuttle services for planned

closures in high frequency urban transportation networks. A new formulation is proposed

that allows the selection of the frequency for new and existing lines, while minimizing pas-

senger inconvenience, including frequency dependent transfer and waiting costs, within a
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Table 4.10: Computation times (seconds)(Sfmod, σ= 0.8, ω= 16). *-instances were not

solved due to insufficient memory.

Settings SPLC(y, v) SPLC(y)
Instance Cost Shuttle Topt Ttot Topt Ttot

Cshut ObL
PI 9.53 12.27 39.48 57.46

Cshut ObL
PI,OC 15.4 18.08 74.68 92.74

Cshut ObN
PI,OC 34.2 37.03 1436 1461

Cnetw ObL
PI 28.2 52.00 1192 2588

Cnetw ObL
PI,OC 36.2 60.33 1421 2790

Cnetw ObN
PI,OC 65.6 91.26 * *

budget for operating cost. A sensitivity analysis including different demand levels, differ-

ent objective functions, and different assumptions about passenger route choice behavior

is included. It is shown that the proposed formulation is able to find good solutions

quickly for real life cases of planned closures, making this model a candidate for real

time application. The solutions are better both in terms of passenger inconvenience and

operating cost in comparison to the standard practice.

The proposed model formulation combines the ideas of Borndörfer et al. (2007) of a

path formulation with the idea of Schöbel and Scholl (2006) to include transfers, and

the idea of Claessens et al. (1998) to combine the capacity assignment and the opening

of geolines’ (services having the same sequence of stops) into one decision variable. We

extend these ideas with the introduction of additional vehicle decision variables that relax

the assignment of capacity to a geoline, while still including integer decision variables for

which geolines to operate. This allows the specification of a minimum frequency for a

geoline that is operated, as well as frequency dependent costs of path assignments.

The model is somewhat limited by the assumption that demand and frequencies are not

time dependent. Although this assumption is fair and common in high frequency networks

with cyclic timetables, it might not be valid for all public transportation networks. Future

research could focus on extending the model formulation to time dependent problems. For

more complex problems, the proposed model could be combined with a dynamic column

generation approach. The combination of column generation with the proposed path

reduction process could be an interesting area of research for any multi-commodity flow

model. The proposed path reduction process assumes there is sufficient capacity available

to transport all demand. In real time disruptions capacity shortages may arise, leading to

competition amongst passengers for seats. How to include this competition in the model

and path reduction, specifically preventing unrealistic altruistic behavior of passengers to

reach a social optimum, is identified for future research.
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Finally, the introduction of the concept of reasonable paths is a first step towards

including realistic passenger behavior in systems with free route choice. Future research

could extend on this, for instance extending the ideas proposed in Schmidt (2012) for an

arc-formulation to the path formulation used in this chapter.
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Chapter 5

Passenger Guidance and

Rolling Stock Rescheduling

under Uncertainty

for Disruption Management

This chapter has appeared as the ERIM Technical report Van der Hurk et al. (2015a)

and will have been submitted for peer review by the time of publication of this thesis.

Co-authors: L.G. Kroon, G. Maróti

5.1 Introduction

Major disruptions resulting in the closure of one or more links in a public transportation

system can cause significant inconvenience for many passengers. These disruptions occur

several times a week in large networks such as Netherlands Railways (NS), Transport for

London, and the Massachusetts Bay Transportation Authority’s urban rail system. They

can be caused by malfunctioning rolling stock, infrastructure failure, or accidents. At

the start of a disruption the duration of the disruption is often unknown. Given this

uncertainty, passengers need to adjust their journeys, and the operator needs to adjust

its logistic schedule.

In this chapter we propose a model for minimizing passenger inconvenience through the

novel idea of combining individual route advice to passengers with rolling stock reschedul-

ing. We study a transportation system without seat reservation. That is, the passengers

are allowed to freely choose their route in the system and therefore they are not obliged
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to follow the advise provided. Consequently the train capacities may not be sufficient to

carry everyone on their preferred route.

The ability to provide individual support to passengers may become crucial to oper-

ators aiming to maintain their licence to operate, which is often based on their perfor-

mance. This performance is increasingly based on passenger service measures rather than

on-schedule performance. Indeed, new technologies, such as smart card ticketing, allow

direct measurement of actual service experienced by passengers. Other technological ad-

vancements, such as the wide adoption of smart phones and the availability of wireless

communication, allow for direct communication with passengers. In this chapter we will

demonstrate that operators can greatly improve passenger service by providing individual

route advice to passengers that anticipates a possible longer length of the disruption and

warns of overcrowded trains – and may even prevent overcrowding.

The operator does attempt to adjust the capacity provided by rescheduling their rolling

stock. However, these measures have a limited and delayed impact: even if there is spare

capacity (which is not always the case), it can take quite some time for the additional

rolling stock to arrive at the required location. In contrast, travel advice is communicated

instantly. Therefore passenger guidance can greatly reduce the inconvenience resulting

from a disruption.

Passenger Simulation +
Rolling Stock Optimization

Advice Initialization

Advice Optimization
+ Passenger Simulation

advice

capacity per trip advice

Figure 5.1: Solution Approach
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In this chapter we present an optimization based approach to Passenger Advice and

Rolling Stock Rescheduling under Uncertainty for Disruption Management. The model

is to be run by an operator when a disruption occurs. It provides passenger guidance in

the form of individual route advice, and an updated rolling stock schedule.

Uncertainty is captured by assuming a fixed set of disruption scenarios, where the

scenarios differ only in the length of the disruption. The exact length of the disruption is

unknown at the start, but is revealed at a fixed time during the disruption. Our approach

computes initial advice and an initial rolling stock schedule based on a first estimate of

the length of the disruption. When the true length is known, both the advice and the

rolling stock schedule are updated.

Passengers receive individual advice based on their origin, destination, and planned

departure time. The objective is to minimize the expected passenger inconvenience over

all possible disruption scenarios. A passenger’s inconvenience in a disruption scenario

depends on the difference in waiting time, in-vehicle time, and number of transfers between

the planned path and the realized path resulting from the advice, and the fact that the

length of the disruption is unknown.

The solution approach is shown schematically in Figure 5.1. After the initial advice,

we iterate between rolling stock optimization and advice optimization. Both optimization

modules are based on mathematical programming models. Both aimed at finding a social

optimum, minimizing overall passenger inconvenience. Real passengers, however, do not

behave altruistically, and will compete for seats in their preferred timetable services.

Therefore we evaluate the quality of each rolling stock schedule and of each passenger

advice in a passenger simulation module.

We want to emphasize that the iterative framework is modular: the passenger behavior

model, the underlying rolling stock rescheduling model, and even the advice optimization

model can be replaced. Therefore our approach can be adjusted to the disruption man-

agement problems at a wide variety of public transport operators. To illustrate the benefit

of the framework, we present computational results based on realistic problem instances

of Netherlands Railways, the largest passenger railway operator in the Netherlands.

The key contributions of this chapter can be summarized as follows

• We study the disruption management problem with an uncertain disruption dura-

tion.

• We present a novel optimization based approach aiming to minimize expected pas-

senger inconvenience by providing individual route advice and by rescheduling the

rolling stock.
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• We evaluate solutions under realistic assumptions on passenger behavior in a system

with free route choice, such as the competition for seats in case of capacity shortages

and the freedom to choose an alternative route rather than the one recommended.

• We carry out computational tests on realistic problem instances.

• We demonstrate that the provision of advice can greatly reduce passenger delays.

This chapter is organized as follows. Section 5.2 provides a literature overview. Sec-

tion 5.3 illustrates the problem by an example. Section 5.4 presents the formal problem

definition and framework, while in the next Sections 5.5, 5.6 and 5.7 the modules Pas-

senger simulation, Advice optimization, and Rolling stock rescheduling respectively are

discussed. Results for a case study based on data of Netherlands Railways are presented

in Section 5.8. Finally Section 5.9 provides conclusions and a discussion.

5.2 Literature Review

Disruption management aims to reduce passenger inconvenience and operational costs by

adjusting the pre-set schedules to the new circumstances. So far, both research and prac-

tice focus on resource rescheduling: adjusting the timetable, the rolling stock schedule and

the crew schedule to reduce the effects of the disruption, as described in Jespersen-Groth

et al. (2009). The overview of Cacchiani et al. (2014) shows that minimizing inconvenience

for passengers resulting from the disruption is commonly modeled by minimizing the devi-

ation from the planned schedule. However, minimizing the deviation does not necessarily

minimize passenger inconvenience, as passengers preferred paths may also change as a

result of changes in the timetable caused by the disruption.

Recent research has therefore modeled passenger behavior in more detail, distinguish-

ing between unplanned and planned disruptions. For unplanned disruptions, Kroon et al.

(2014) use an iterative framework for rolling stock rescheduling, where the passenger in-

convenience cost are estimated based on a detailed simulation of passengers traveling in

the system and competing for seats in case of insufficient capacity. Veelenturf et al. (2013)

adopt a similar framework for minimizing passenger inconvenience by also allowing mi-

nor changes to the timetable. Cadarso et al. (2013) present a model for timetable and

rolling stock rescheduling where passenger inconvenience is minimized based on a dynamic

assignment of demand in the resulting schedule.

In case of planned disruptions, such as result from planned maintenance of the in-

frastructure, often the introduction of alternative shuttle busses is considered. Jin et al.
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(2013) provide a model that combines the generation of candidate shuttle lines with the

selection of such lines. Van der Hurk et al. (2014) study a similar problem for which they

present a model that integrates the shuttle line selection and the frequency selection,

which they evaluate under different assumptions on passenger behavior.

An explanation for the recent attention to passengers and passenger behavior is the

increase in data on their behavior generated by automatic fare collection systems such

as ticketing through smart cards. Pelletier et al. (2011) provide a review of research on

smart card data. Sun et al. (2012) estimate the location of passengers over time based on

smart card data containing origin and destination in the Singapore MRT system. Both

Kusakabe et al. (2010) and Van der Hurk et al. (2015b) present methods for deducing

route choice from smart card data. Van der Hurk et al. (2015b) validate their method

based on a data sample of Netherlands Railways and thereby show that indeed route

choices can reliably be deduced from smart card data. Van der Hurk et al. (2013) further

demonstrate that passenger demand can be predicted reasonably accurately based on

this data. All this supports the assumption made in this chapter that information on

passenger demand and their preferred route is available.

5.3 Example

The concepts of passenger behavior and provision of advice to passengers are illustrated by

the following example. Figure 5.2 displays part of a public transport network containing

three lines: line � connects stations A, B, and D, line � connects station B with C, and

line � connects stations A, C and D. The travel time between any two stations is also

given in Figure 5.2.

A disruption occurs on line � between stations C andD, which prevents trains running

on this section. As a result, the operator needs to adjust the logistic schedule: the

timetable, the rolling stock circulation, and the crew schedule. Moreover, passengers

need to alter their routes. We will assume an adjusted timetable to be available based on

a contingency plan; our method adjusts only the rolling stock schedule.

The length of the disruption is unknown at its start. However, a discrete set of possible

lengths of the disruption is known by the operator, say, increasing by 30 minute intervals.

When the timetable adjustment is such that all trains with a departure time within the

length of the disruption are canceled, such a discrete set of scenarios is naturally defined

by the scheduled departure times of trains on the disrupted link. We assume that, when

time reaches the shortest possible disruption length, the exact length is revealed – for

instance after an inspection of the cause of the disruption. Once the actual length is
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Figure 5.2: Public Transport network

known, passengers may adjust their initially planned path and the operator may adjust

the initially adjusted rolling stock circulation.

Consider some passengers at A and C traveling to D who would normally travel on

line �. They need to decide whether to wait until the disruption is over, or to use lines

� and/or �. The route advice of the operator supports passengers in this decision when

the disruption length is still uncertain by recommending a specific sequence of timetable

services. The advice may depend on the origin, destination, and (planned) departure

times of the passengers.

The choice that passengers travelling from C to D need to make is illustrated by the

time-space diagram of Figure 5.3. The horizontal axis represents time, and the vertical

axis space. Trains, represented by the diagonal lines, connect stations in space and time.

During the disruption there are no trains between C and D.

The uncertainty about the length of the disruption concerns the 3 direct services

between C and D. In the shortest scenario (Scen 1), all 3 trains can run. In the scenario

with medium length (Scen 2), the earliest service is canceled, the two later ones run.

Finally, the long scenario (Scen 3) cancels the first 2 direct services, only the last one

runs.

The inconvenience a passenger will experience depends on the advice, the initially

chosen path at the start of the disruption, and on the actual length of the disruption.

Although passengers need to make an initial travel decision when they start their journey,

they are free to change their travel plan once the end of the disruption is announced. It

is assumed that the actual length is known at the earliest end time of the disruption. In
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B

C

D

D

Scen 1 Scen 2 Scen 3
Disruption

 length

Figure 5.3: Time-space representation of the timetable between stations C andD. (Note

that two time-lines are associated with station D in order to avoid crossing lines.)

the example this announcement is after the departure of the first detour option via B.

Passengers traveling from C to D that initially decided to wait, will embark on the first

departing direct train of line � in case of Scenario 1 or 2. However, in case of Scenario

3 with a longer disruption, they will change their planned path to reroute via B as this

leads to an earlier arrival time than waiting for line �.

Insufficient train capacities may also cause a difference between planned and realized

paths. Passengers waiting at C to take the direct line � to D may not be able to board

the train if it has already filled with passengers from A to D. As a result, passengers

waiting at C might only obtain a seat in the second train of line � running after the

disruption. In case of capacity shortages, delays may also arise for passengers not directly

affected by the disruption. The operator’s advice is a way to save unnecessary delay by

recommending routes with spare capacity.

Passenger inconvenience thus results from a complex interaction between passengers

themselves and the provided capacity. Because there is the interaction between capac-

ity and passengers, the problems of providing advice and rescheduling rolling stock are

integrated into a single framework.

5.4 Problem Definition and Framework

The starting point is a timetable, defined as a set of trips, where trip is a train ride

between two consecutive stops. The timetable graph G = (V , E) is an acyclic time-space
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graph. It contains a node v ∈ V for the departure and arrival of a trip at a station. The

arc set E contains an arc for every trip t ∈ T , and arcs connecting the nodes at the same

station to a time-line; the latter arcs represent the option of waiting at this station. A

straightforward modification of this intuitive graph allows us to account for transfers.

A disruption causes the cancelation of a set of trips during its length. As the length of

the disruption is uncertain, we define a set of disruption scenariosD, where each disruption

scenario δ ∈ D defines a possible length of the disruption. An adjusted timetable T δ is

given for each scenario. Note that the timetables T δ are identical between the start of

the disruption (denoted by τstart) and the earliest end time of the disruption (denoted by

τmin), and also after the end time of the longest scenario.

In this chapter it is assumed that it is known at the beginning of the disruption that

the actual length will be known at time τcom. In this chapter τcom is assumed equal to

the earliest end time of the disruption time τmin. The method allows however for a rolling

horizon approach to take additional uncertainty into account.

Passengers are given as a set Q of passenger groups where a passenger group q repre-

sents wq passengers, departing at time τq, traveling from the same origin station to the

same destination station. A rolling stock circulation defines the capacity for each trip

t ∈ T . An advice recommends a path in the timetable graph G for every passenger group

q ∈ Q. Thus a path contains an ordered set of arcs in G, which can be translated into a

sequence of trips t in the timetable.

At the start of the disruption, the actual disruption scenario δ is unknown, and con-

sequently the timetable T δ is uncertain. Therefore the calculation of the rolling stock

schedule at τstart requires an initial estimate of the disruption duration δIr ∈ D. We will

investigate whether it is better for this estimate to be optimistic or pessimistic .

The model for computing the advice minimizes the expected total passenger incon-

venience over all scenarios δ ∈ D. Based on the estimated inconvenience per disruption

scenario, the model selects a single recommended path per passenger group that will be

provided at τstart. The estimated inconvenience per passenger depends on the recom-

mended path, the disruption scenario, the available capacity per trip, and the recom-

mended paths for other passengers. The calculation of inconvenience recognize that the

actual disruption length is uncertain between τstart and τmin, and capacity shortages may

arise.

In addition, the same communicated disruption length δIq is supplied to all passengers

at τstart. Some passengers may need to deviate from the advice between τstart and τmin (for

reasons discussed in Section 5.3). These passengers replan their route themselves based

on the timetable graph for the communicated disruption length. In the case study we will
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investigate the best setting of δIq; note that δIq is not necessarily equal to the estimation

δIr used for rescheduling the rolling stock.

A solution is evaluated based on its performance over all scenarios δ ∈ D. In this

chapter we assume that every scenario has an equal probability of occurring. However,

one could assign specific probabilities to the scenarios, indeed a worst-case evaluation

would be possible within our framework.

Framework

The advice provision and rolling stock rescheduling problem is solved in the iterative

framework presented in Figure 5.4. Input is the set D of disruption scenarios, the pas-

senger demand defined by the set Q of passenger groups, the timetable T , an assumed

length of the disruption δIr for rolling stock scheduling, and a communicated length δIq.

Within the framework, advice will be calculated for each passenger, based on all possible

outcomes for δ.

Note that the values δIr and δIq can be considered as high-level decision variables. A

real-life implementation of our method could select the best settings over all possible

choices of these two variables by evaluating the framework over all possible settings, or

base this choice on pragmatic implementation considerations. A sensitivity analysis of

these settings is included in the computational study presented in Section 5.8.

The advice and rolling stock schedule are optimized iteratively, and evaluated through

a simulation model. The optimization model strives to find a social optimum. The

objective of the simulation model is to evaluate a solution defined by the advice and the

rolling stock schedule under more realistic assumptions on passenger behavior. Moreover,

the simulation model serves as a tool for generating columns for the advice optimization:

it generates candidate advice paths that can be provided to passengers. The simulation

framework is presented in Section 5.5.

The advice optimization minimizes expected passenger inconvenience over all scenarios

δ ∈ D, given the available rolling stock capacity and uncertainty on the length of the dis-

ruption, while the rolling stock schedule minimizes capacity shortages for the anticipated

per-trip demand. To initialize the model, the advice is optimized assuming an infinite

seat capacity on each trip. The advice for this initial solution represents the preferred

path for each individual passenger.

If the rolling stock module is able to find a solution without any capacity shortages

for all possible disruption scenarios δ ∈ D, then a solution with the absolutely minimal

expected passenger inconvenience has been found, and therefore further iterations can
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Rolling Stock Optimization

Passenger Simulation

Compute RS-schedule rI:

Passenger Simulation

Rolling Stock Optimization

Compute RS-schedule rIIδ ∀δ ∈ D:

demand per trip

rI
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demand per trip rIIδ

Advice Initialization,
infinite capacity

Initialize Advice:

advice,
A,P
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δIq
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capacity per trip,
A,P

Advice Optimization

Compute Advice:

Passenger Simulation

advice
A,P
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A,P

Figure 5.4: Solution Approach
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not improve it. A different choice of δIr or δIq would also not result in a better solution.

Indeed, the values δIq and δIr are only relevant in case of capacity shortages.

When capacity shortages do arise, advice optimization is invoked to warn passengers

about these shortages, thereby reducing their delay. After that, the rolling stock schedule

is adjusted to accommodate the changes in passenger flows due to the advice. Itera-

tions continue until no further improvements are found, or until a maximum number of

iterations is reached.

The following sections discuss the passenger simulation (Section 5.5), advice optimiza-

tion (Section 5.6), and rolling stock rescheduling (Section 5.7) in detail.

5.5 Passenger Simulation

The threefold goal of the simulation module is to (i) evaluate a solution under realistic

assumptions on passenger behavior, (ii) serve as a tool for generating columns for the

advice optimization, and (iii) provide input for the rolling stock rescheduling. The solu-

tion quality is calculated by summing the inconvenience of all passengers in all scenarios,

weighted by the probability of a scenario. A single passenger’s inconvenience is defined by

a weighted sum of the difference in waiting time, in-vehicle time, and transfers between

the realized path calculated in the simulation and in the planned path in the undisrupted

situation.

Input for the simulation consists of advice (providing recommended path to all passen-

gers), a rolling stock circulation (specifying the capacity per trip), and the communicated

length δIq. In essence, the simulation computes the realized paths of passengers in a spe-

cific scenario δ. By collecting additional information on the fly, the simulation provides

the following data for a specific scenario δ ∈ D:

• Solution quality of the advice and rolling stock schedule (derived from the path

decomposition).

• Input for Rolling Stock rescheduling:

– demand per trip (defined as the total flow on a trip arc).

• Input for Advice optimization:

– additional candidate paths for passenger groups q ∈ Q;

– realized paths for the recommended path to passenger group q ∈ Q.
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Section 5.5.1 describes the general outline of the simulation model, and passenger

behavior is defined in Section 5.5.2. The concept of advice and the role of the simulation

in the advice optimization are discussed in Section 5.6

5.5.1 Simulation Outline

The passenger simulation model is a discrete event simulation with three phases as shown

in Figure 5.5. In Phase 0, before the start of the disruption, passengers travel along

their planned paths, which may be derived and forecast based on smart card data, as

shown in Van der Hurk et al. (2015b) and Van der Hurk et al. (2013). Phase I starts at

τstart when the disruption occurs. At τstart the operator provides advice, which contains

a recommended path per passenger group, and adjusts the rolling stock circulation given

the disruption. Phase II starts at τcom, in this chapter assumed equal to τmin, when the

actual length δ∗ of the disruption is assumed known and the passengers update their

route, and the operator updates the rolling stock schedule. The adjustment of passenger

routes is calculated within the simulation, while the update of the rolling stock schedule is

calculated outside the simulation using a rolling horizon approach discussed in Section 5.7.

Phase II lasts until the end of the planning horizon.

The outcome of the simulation is deterministically defined by the input of the passenger

groups, the advice, the rolling stock schedules (for Phases 0, I, and II), the start of the

disruption τstart, the announcement time of the actual length τcom, the communicated

length δIq, and the actual length δ∗. Note that the latter three, together with the set of

possible disruption scenarios D, influence the resulting inconvenience, but are outside the

control of the operator and passenger.

time start com 

min max

Phase I{ { Phase 0 Phase II{ planned path I
r , I

q
*

Advice,
RSI

RSII

Figure 5.5: Passenger simulation
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5.5.2 Passenger Behavior

Every passenger group is associated with three types of path. The planned path is the

path passengers intend to travel on if there is no disruption, and is the base for mea-

suring inconvenience. The recommended path is provided to passengers by the operator

at the start of the disruption. Finally, the realized path is the path that represents the

actual journey of a passengergroup. This realized path results from a complex interaction

between previous components, and is therefore computed in the simulation. The simu-

lation computes a single realized path per passenger. The realized paths determine the

inconvenience of passengers, measured as the difference in the weighted sum of waiting

time, in-vehicle time, and numbers of transfers between the realized and the planned path.

Each passenger group has a single planned path, receives a single advice, but can have

multiple realized paths, as will be discussed below.

At the start of the disruption, all passenger groups receive a recommended path which

they may follow with a certain probability. Within the advice optimization model, we

assume that all passengers follow the advice. However, afterwards we perform a sensitivity

analysis in which the probability of following the advice is either fixed or depends on the

available alternatives. Any passenger not following the recommended path aims to travel

on a minimum inconvenience path in the current timetable graph, which is based on the

communicated length δIq between τstart and τmin, and on the actual duration δ∗ after τmin.

Passengers follow the path as long as there is sufficient capacity available. In case

of insufficient capacity, the entering passengers compete with each other for the empty

seats. All entering passengers then have an equal chance of boarding the train. Passengers

losing this competition will replan their path to a minimum inconvenience path in the

current timetable graph from their current location. That is, a passenger group is split

into two groups if some of its members can enter the train while others cannot. This

mechanism is identical to that of Kroon et al. (2014). For implementation reasons, we

assume passengers leave the system immediately when the expected inconvenience exceeds

a maximum tolerated inconvenience.

A simulation is run assuming a specific disruption scenario δ∗, and therefore the uncer-

tainty about the length is modeled according to the 3 phases defined in Section 5.5.1. At

the start, all passengers follow their planned path in the undisrupted timetable. At τstart

the disruption starts, passengers receive a recommended path and travel as described until

at τmin the actual length of the disruption is known. At τmin all passengers may update

their path to a minimum inconvenience path in the timetable graph of the actual length

δ∗ based on their location at τmin. The inconvenience resulting from a specific recommen-
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dation and rolling stock schedule is thus evaluated for a specific scenario δ∗ recognizing

the initial uncertainty about the duration.

5.6 Passenger Guidance and Advice Optimization

This section presents the mixed integer linear programming formulation for advice op-

timization in the framework of Figure 5.4. The advice optimization model is solved to

optimality for a given set of candidate paths and a given rolling stock schedule. The

solution for the advice is evaluated through the passenger simulation for all disruption

scenarios in D.

The advice optimization aims to model realistic passenger behavior by considering

only a limited set of candidate paths. These paths are discussed in Section 5.6.1. Section

5.6.2 presents the mathematical optimization model which is solved to optimality within

the framework. This model is solved using a column generation framework as described

in Section 5.6.3.

5.6.1 Candidate Paths

A candidate path is a consecutive set of trips in the timetable. Out of all available

candidates, the advice optimization selects a single recommended path per passenger

group. The recommended path may be individual based on the origin, destination, and

planned departure time of the passenger group. Passengers are not obliged to follow the

advice, because we consider a system with free route choice. Therefore, to increase the

chance of passengers accepting the advice, we restrict the set of candidate advice paths

to paths of the following two classes.

• Minimum inconvenience paths given a disruption scenario δ.

• Low inconvenience paths because they avoid overcrowded sections in the network.

Minimum inconvenience paths are minimum cost paths in at least one of the timetable

graphs defined by T δ, δ ∈ D. If capacities are infinite, all passengers can travel on

minimum inconvenience paths. In case of capacity shortages, a path avoiding the over-

crowded sections can lead to less inconvenience than a minimum inconvenience path in

the timetable. Paths of this second type are also good candidates for a recommended

path, we discuss them in detail in Section 5.6.3.

The operator’s objective to minimize the overall inconvenience conflicts with the pas-

sengers’ objective to find their personal minimum inconvenience path. Passengers may
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therefore not follow a recommendation that does not seem to be in their best interest.

However, it is extremely difficult for a passenger to determine the best path, as this de-

pends on the available capacity, the (unknown) length of the disruption, and the route

choice of all other passengers. Consequently, optimizing advice ignoring passengers’ reac-

tions may lead to a worse outcome.

By limiting the advice to paths that are arguably attractive to passengers, it is more

likely that passengers will follow the advice, and thereby it allows the operator to look for a

feasible social optimum. Thus we expected that the calculated passenger inconvenience in

the optimization model of Section 5.6.2 will be close to the actual passenger inconvenience

as measured in the simulation.

5.6.2 Model for Advice Optimization

A solution to the advice optimization model defines a recommendation, which contains

a single recommended path for each passenger group q ∈ Q such that the overall ex-

pected passenger delay is minimal over all scenarios. Per scenario capacity constraints

are considered within the optimization. The underlying model resembles a capacitated

multi-commodity flow model per disruption scenario δ ∈ D where the capacities are de-

fined by the rolling stock schedule. The flow assignment and passenger inconvenience

calculation are based on realized paths instead of recommended paths, to better reflect

the actual inconvenience. The assignment to realized paths depends on the selected advice

for passenger group q and the disruption scenario δ.

The advice optimization requires a set of disruption scenarios D, a set of passenger

groups Q, a candidate path set A, a set of realized paths P , and a rolling stock schedule

r. The rolling stock schedule defines the capacity kδ
tr of trip t in scenario δ. Note that the

sets P and A can be extended whenever the simulation module is executed, as described

in Section 5.6.3.

We use the following notation. Recall that wq denotes the number of passengers in

passenger group q. Let cqp be the inconvenience of a single passenger of group q when

traveling on realized path p. Let φδ be the probability that disruption scenario δ occurs,

with
∑

δ∈D φδ = 1. Furthermore, Aq denotes the set of all candidate paths for passenger

group q, Pδ
qa denotes the set all realized paths for candidate path a that are eligible for

passenger group q in scenario δ, and Pδ
t denotes the subset of all realized paths containing

trip t in scenario δ.

Decision variables. The binary decision variable yqa represents the decision to select

one candidate path a ∈ Aq per passenger group q. Continuous decision variables xqp
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represent the numbers of passengers of passenger group q traveling along realized path p

of the passenger assignment. Then the model is expressed as follows.

min
∑

δ∈D
φδ

∑

q∈Q

∑

a∈Aq

∑

p∈Pδ
q,a

cqpxqp

subject to:

∑

a∈Aq

yqa = 1 ∀q ∈ Q (5.1)

∑

a∈Aq

∑

p∈Pδ
qa

xqp = wq ∀q ∈ Q, ∀δ ∈ D (5.2)

∑

p∈Pδ
qa

xqp ≤ yqawq ∀q ∈ Q, ∀a ∈ Aq, ∀δ ∈ D (5.3)

∑

q∈Q

∑

p∈Pδ
t

xqp ≤ kδ
tr ∀t ∈ T , ∀δ ∈ D (5.4)

xqp ≥ 0,yqa ∈ {0, 1} ∀q ∈ Q, ∀p ∈ Pq, ∀a ∈ Aq (5.5)

Objective. The objective function minimizes the overall expected delay of the passen-

gers. Straightforward extensions include minimizing worst case delay (using a min max

formulation). The objective represents the operator’s desire to minimize overall inconve-

nience - the passenger’s interests are modeled by the limitation to recommended paths,

the assignment based on realized paths, and the evaluation based on the simulation, as

discussed in Section 5.5.

The objective function is calculated as the weighted sum of inconvenience over all

scenarios, thereby acknowledging that inconvenience is dependent on the disruption sce-

nario δ. For each scenario, the inconvenience is calculated based on the assignment of

passengers to realized paths rather than recommended paths. The recommended paths

are required to be the same independent of the scenario, as the scenario is unknown at

τstart when the advice is provided to passengers. The realized paths, which are scenario

specific, capture the inconvenience resulting from following the advice, including the fact

that passengers may change their route at τmin, in a specific scenario. Moreover, they

aim to reflect the paths that result from competition for space when there is insufficient

capacity for passengers on the recommended route.
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Constraints. Constraint (5.1) states that a single recommendation is made by the

operator for each passenger group. Constraint (5.2) distributes the passengers among all

possible realized paths in each scenario δ ∈ D. Constraint (5.3) links the path assignment

to the advice: the path assignment is limited to the set of realized paths belonging to

the provided advice Pδ
a for each scenario δ ∈ D. Constraint (5.4) ensures that the path

assignment does not exceed the available capacity per trip. The latter restriction could

result in an infeasible solution when P is incomplete. To make sure that a feasible solution

always exists, we extend the set of realized paths for each recommendation to include

paths that do not use capacity. These additional paths do incur a delay; they model the

journey of a passenger who is not able to board a train on the maximum inconvenience

path, thereby forced to wait for the next one.

Advice Initialization. The advice initialization, at the start of the framework of Fig-

ure 5.4, is a special case. The assumption of infinite capacity translates the capacitated

multi-commodity flow model into an uncapacitated one which is solved efficiently by inde-

pendent shortest path computations per passenger group. The sets A and P are initialized

by these shortest paths; this ensures that the true preferred paths of passengers are always

valid travel options.

5.6.3 Column Generation Framework

Motivation. The advice optimization model uses a path based formulation, instead of

an arc based formulation, for the multi-commodity flow component. An arc based assign-

ment requires a polynomially bounded, yet large number of decision variables, namely one

decision variable per arc per commodity, rendering the model slow or even intractable.

The number of possible paths per commodity may be even larger than this, possibly even

exponential. Still, dependent on the structure of the problem, the path based formulation

may be solved much faster by including only a selection of all paths. Therefore, dependent

on the structure of the problem, a path based formulation can be solved much faster than

an arc based formulation.

An alternative advantage of the path based formulation, is that it allows us to model

passenger behavior more realistically than an arc based formulation by using an alternative

method to generate paths. Altruistic behavior can be limited or prevented, to some

extent, by including only the candidate paths of the two classes defined in Section 5.6.1

and by basing the path assignment on realized paths. The inclusion of realized paths also

allows modeling the uncertainty about the disruption length, and thus the dependency of

the advice and the scenario in calculating the inconvenience. Therefore, the path based
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formulation allows us to model passenger behavior more realistically than an arc based

formulation.

Our heuristic solution approach iterates between generating more paths and solving the

mixed integer programming model described in Section 5.6.2. We use the simulation model

to generate the candidate advice path set A and the realized path set P , based on the

current solution for the master problem, as they result from a complex interaction between

passengers, the uncertain disruption length, and the rolling stock schedule. Thereby we

prevent the generation of implausible paths, like paths where passengers disembark their

direct train, thus contributing to modeling realistic passenger behavior.

Although the mixed integer programming problem is solved to optimality, there is no

guarantee that the solution found by this procedure is the optimal solution because of

the restricted set of paths, and because the generation of paths is done heuristically in

the simulation. In most column generation applications, new columns arise from solving

a pricing problem. Typically for flow models, this pricing problem corresponds to solving

a minimum cost path problem in a graph where the costs of the arcs depend on the

dual values of the current master problem solution. When no new paths are found, the

current solution is optimal. For this specific application, such an approach would not

allow to (easily) model passenger behavior constraints (like people not disembarking their

direct train). Moreover, the standard column generation approach would concern the

linear relaxation of the problem, which would require additional techniques to come to a

valid integer solution for the optimization model (Section 5.6.2). Therefore we leave the

exploration of a more traditional column generation approach for future research.

Method The set of candidate paths A and the set of possibly realized paths P , contain-

ing a mapping from candidate paths to realized paths in a specific scenario, are generated

in the simulation based on the current solution of the mixed integer programming model

(Section 5.6.2) including the rolling stock rescheduling solution. For P , each simulation

run computes at least one realized path for passenger group q in the evaluated scenario

δ∗ and the recommended path for this passenger group at τstart, according to the process

described in Section 5.5. Thus the method iterates between generating new paths and

solving the mixed integer programming model, until either no new paths are found in the

simulation, or a maximum number of iterations has been reached.

The candidate path set Aq of a passenger group q is extended by paths that avoid

overcrowded sections of the network for passengers that needs to compete for seats in

the simulation. For those passengers, a search algorithm is called that finds alternative

paths that would lead (in expectation) to less inconvenience than their current path,



135_Erim Hurk BW Stand.job

5.7 Rolling Stock Rescheduling 123

and avoids all so-far overcrowded trips in the timetable. Such paths can be found by a

standard shortest path search in the timetable graph. Note that these alternative paths

do not need to share any trips with the path realized (so-far) by the passengers currently

competing for space. We apply the search algorithm only for passengers who lose the

competition for space, thus the newly added path is available only for passengers who

may directly profit from the detour.

The sets A and P can be initialized straightforwardly outside the simulation by as-

suming infinite available capacity through a set of shortest path computations following

the three stages in the simulation to account for the uncertain disruption length. For any

new paths added to A a mapping in P can be calculated similarly. The addition of these

paths based on infinite capacity ensures that the true desired path of a passenger is part

of the possible set of realized paths.

5.7 Rolling Stock Rescheduling

In this section we discuss the rolling stock rescheduling model. We use the rolling stock

rescheduling model of Kroon et al. (2014) as a base model; it computes a rolling stock

schedule for a disruption of known length. This base model is solved iteratively, jumping

back and forth between passenger simulation and an integer programming model.

We embed the base model in a rolling horizon setting in order to deal with the uncertain

length of the disruption. We note that the rolling horizon approach is generic in that it can

be built around any deterministic base model for rolling stock rescheduling. Moreover, a

completely different rolling stock optimization model could be used within our framework

because the framework is fully modular.

5.7.1 Rolling Stock Rescheduling Model

When a disruption occurs, the current timetable and rolling stock schedule become in-

feasible and therefore need to be adjusted. The rescheduling is based on an adjusted

timetable, the planned rolling stock circulation, and the expected number of passengers

per trip. Within the context of this chapter, we assume the first two are available, and

compute the number of expected passengers per trip based on the passenger simulation,

including advice, as described in Section 5.5.

We have selected the rolling stock rescheduling model of Kroon et al. (2014) as the

base model because it minimizes both passenger inconvenience and operational cost when

calculating a new feasible circulation. Specifically, it allows minimizing passenger incon-
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venience based on a dynamic assignment that may be simulated or calculated outside the

optimization model itself. Because of this modular approach, the model of Kroon et al.

(2014) is very well suited for combination with the defined passenger behavior resulting

from advice and the uncertainty about the duration of the disruption.

This chapter follows the approach of Kroon et al. (2014) for constructing a new rolling

stock circulation. However, in Kroon et al. (2014) the disruption length is known at the

start of the disruption, and the option of passenger guidance is not included. Therefore

we make two important modification to the Kroon et al. (2014) model.

1. The number of passengers per trip is estimated based on the new simulation model

of Section 5.5, that includes advice and uncertainty on the disruption duration

2. The model is embedded in a rolling horizon setting, to deal with the uncertain

duration of the disruption.

As a result of the rolling horizon approach for rolling stock rescheduling, this process

contains two phases as presented in the framework in Figure 5.4. In the first phase, we

select an estimated duration δIr for rolling stock rescheduling, as the actual length of the

disruption is uncertain at time τstart. Based on this estimate and on the expected demand

per trip, we compute an initial rolling stock schedule rI that is feasible in scenario δIr from

τstart until the end of the planning horizon. The schedule rI is obtained from the base

rescheduling model. We report the sensitivity on the choice of δIr in Section 5.8.

In the second phase, the rolling stock schedule is updated at time τmin when the actual

length δ∗ is revealed. We use the base model again, yielding the schedule rIIδ∗ . For rolling

stock rescheduling only, one would need to compute rIIδ∗ only at time τstart. However,

the advice optimization at time τstart requires a rolling stock schedule rIIδ for all possible

scenarios δ ∈ D in order to calculate the expected inconvenience. That is, the rolling

stock optimization module results in a single solution δIr combined with |D| solutions rIIδ ,
as shown in Figure 5.6.

Similarly to Kroon et al. (2014), the iterations in the base model are terminated if a

maximum number of rounds occur with no improvement , or if a maximum number of

iterations has been reached. Kroon et al. (2014) find that solutions that are initialized

based on passengers’ preferred routes converge quickly. This is one of the reasons that

our framework starts with initialization of demand.
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rIIδ1

rIIδn
Figure 5.6: Schematic representation of rolling stock solution: a common part in Phase I

is followed by a scenario-dependent part in Phase II.

5.8 Computational Results

Results are obtained for a realistic case study based on data of NS, the largest passenger

rail operator in the Netherlands. We use the instances presented in Kroon et al. (2014),

which are based on the Intercity network of NS, covering the heavily used core part of

the Dutch network. It contains 14 Intercity stations and 2324 train trips. Over 10,000

passenger groups are included in the test instances, representing over 400,000 passengers.

5.8.1 Experimental Design

In the case study, we analyze the sensitivity to, and dependence on, the following four

components:

• disruption location,

• uncertain disruption length,

• passenger behavior, and

• advice.

We analyze 5 different disruption cases corresponding to the cases described in Kroon

et al. (2014), which, following their notation, are referred to by D1 to D5. These cases

represent disruptions at different locations in the network depicted in Figure 5.7. The

locations of the disruptions are as follows. D1 is between Rotterdam (Rtd) and The

Hague (Gvx), D2 is between Gouda (Gd) and Utrecht (Ut), D3 is between Utrecht (Ut)

and Amersfoort (Amf), D4 is between The Hague (Gvx) and Leiden (Ledn), and finally

D5 is between Amsterdam (Asd) and Utrecht (Ut). Note that D2 and D5 provide the most

opportunities for passengers to travel around the disruption, which explains why we will
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Figure 5.7: The network considered in the test instances, as included in Kroon et al.

(2014).

find that our approach of providing advice is most effective in these cases. We consider

disruptions during peak hours, as this is when capacity constraints become most stringent.

Although the results presented here are based on the cases described in Kroon et al. (2014),

they are not directly comparable due to the uncertain duration of the disruption added

in this chapter, and a few different assumptions in our passenger simulation model. To

study the uncertain duration of the disruption, three disruption scenarios are introduced

for each case: Short, Medium, and Long, reflecting a disruption duration of 2, 2.5, and

3 hours respectively. The choice of three scenarios allows us to compare an optimistic

estimate of the length at time τstart for δ
I
r and δIq with a pessimistic estimate or an average

estimate, each having (approximately) equal weight.

Our proposed framework provides Optimized Personalized Advice (OPA) to passen-

gers. This method minimizes expected inconvenience by providing a recommended recom-

mended route for each passenger group, taking into account both the uncertain disruption

duration and the limited available seat capacity per trip. To illustrate the value of this
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approach, we compare the OPA solutions to two different models: Uniform Advice (UA)

and Simple Personalized Advice (SPA).

UA contains no advice optimization and therefore also does not include any capacity

limitation when computing the advice. UA is a direct translation of the model of Kroon

et al. (2014) to include an uncertain disruption duration. In both models passengers

follow their personal minimum inconvenience path assuming infinite capacity. The only

difference is that in Kroon et al. (2014) passengers compute their minimum inconvenience

path knowing the exact duration of the disruption. Because the disruption duration is

uncertain in our problem setting between time τstart and τmin, passengers in UA follow a

minimum inconvenience path based on the communicated length δIq in this time interval.

They may update their paths once the actual disruption length becomes known at τmin.

Thus, given a fixed δIr and δIq, UA is a base case where advice is neither optimized for the

uncertain duration nor for the limited available capacity.

SPA optimizes advice given the uncertainty in the duration of the disruption, but

without the consideration of seat capacity constraints. It provides individual advice min-

imizing expected delay assuming infinite available capacity. Thus it reflects the true

individual preference of passengers. SPA is the advice resulting from the advice initial-

ization in the framework of Figure 5.4, which results from solving the advice optimization

model of Section 5.6 assuming infinite capacity per trip.

Thus, the value of individual advice follows from the comparison of UA with OPA

and SPA. The comparison of SPA and OPA allows an estimate of the benefit of taking

capacity constraints into account in addition to the uncertain duration of the disruption.

Within the framework of OPA it is assumed that all passengers follow the advice. This

is a plausible assumption given the restriction on the candidate paths aiming to make the

advice in the passengers’ best interest, as discussed in Section 5.6.1. Still it could be

that in practice not all passengers follow this advice. Therefore we perform a sensitivity

analysis evaluating the solutions under different assumptions on passenger behavior.

In total, 5 cases × 3 disruption scenarios × 3 advice optimization models (UA, SPA,

OPA) × 3 settings for δIr× 3 settings for δIq× 6 behavioral settings = 2430 solution values

are compared.

5.8.2 Solution Quality

We evaluate the solution quality based on the relative gap between the passenger in-

convenience PI in the solution and a lower bound LB. This lower bound is calculated

as the minimum passenger inconvenience given infinite capacity and perfect information
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about the disruption length. The PI and LB depend on the disruption scenario δ. The

relative gap, minimized in the objective function, is calculated as r =
∑

δ∈D(PIδ−LBδ)∑
δ∈D LBδ

,

where PIδ and LBδ represent the passenger inconvenience and lower bound in scenario

δ, respectively. Moreover we report the relative gap per scenario rδ =
PIδ−LBδ

LBδ
. The LB

represents absolutely unavoidable inconvenience. However, because of uncertainty in the

disruption duration and limited available capacity, it is likely that there does not exist a

solution with a 0% relative gap. Note that the gap does not represent an optimality gap,

but provides insight into the current quality of the solution, and an upper bound on the

maximum potential for improvement of the solution.

Settings Relative Gap (%) Mean Delay (min) Delayed Passengers (Nr)
Case Advice Total S M L S M L S M L
D1 UA 8.33 11.22 6.49 7.67 34.4 33.7 34.2 12942 14217 15342
D1 SPA 8.23 11.21 6.49 7.40 34.4 33.7 34.2 12945 14217 15325
D1 OPA 7.92 10.19 6.48 7.39 34.0 33.7 34.2 12949 14216 15324
D2 UA 35.83 45.16 32.26 31.54 53.8 53.4 54.4 26196 27214 28899
D2 SPA 33.63 36.03 31.33 33.78 51.9 52.4 54.9 25436 27534 29127
D2 OPA 14.31 14.57 13.45 14.91 48.4 50.0 52.0 22961 24936 26373
D3 UA 6.55 12.84 2.92 4.95 47.2 47.0 48.5 9223 9862 10831
D3 SPA 5.74 10.70 2.92 4.45 47.6 47.0 48.4 8976 9862 10792
D3 OPA 5.25 11.16 2.53 3.15 47.9 46.8 47.8 8954 9865 10795
D4 UA 8.86 14.16 6.36 6.88 41.9 42.3 43.3 17486 18358 19611
D4 SPA 8.58 13.53 6.36 6.63 42.1 42.3 43.2 17290 18358 19593
D4 OPA 6.13 10.44 3.89 4.71 42.0 42.3 43.3 16856 17967 19202
D5 UA 88.90 86.21 88.21 91.74 46.0 48.4 51.3 20496 22100 23117
D5 SPA 94.37 94.18 98.16 91.04 48.2 50.0 50.9 20397 22531 23191
D5 OPA 8.90 11.27 9.89 6.06 34.9 34.9 34.8 16128 17932 18854

Table 5.1: Summary of solution quality for UA, SPA, and OPA

Table 5.1 presents the relative overall gap, and relative gap per disruption duration

scenario for all cases (D1 to D5), and for each advice optimization model (UA, SPA and

OPA. The smaller the gap, the smaller the delay resulting from uncertainty and capacity

constraints. A lower relative gap within a column per case indicates a better solution.

Comparing relative gaps between cases and columns only indicates the difference in delay

resulting from the uncertain duration and the limited available capacity. However, here

a higher relative gap does not necessarily indicate a worse solution, as part of the delay

due to capacity constraints and uncertainty may be unavoidable. Furthermore, Table 5.1

includes the average delay per affected passenger per scenario, and the total number of

passengers affected by the disruption per scenario. A longer disruption duration doe

snot necessarily lead to longer average delays, but does increase the number of affected
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passengers. Results are presented for the best settings of δIq and δIr per case and per advice

optimization. The table thus allows comparison of the relative and absolute impact of

the proposed method on passenger inconvenience.

The results in Table 5.1 show that OPA provides consistently better solutions than

SPA and UA, and generally SPA performs slightly better than UA. Especially in case of

large inconvenience, as in scenarios D2 and D5, OPA solution provides solutions with a

much lower passenger inconvenience than SPA and UA. In case of D2, the OPA solution

significantly reduces inconvenience, in comparison to both SPA and UA, while SPA is

slightly better than UA. It reduces the average delay of affected passengers by up to 10%,

and also reduces the number of affected passengers by around 10%.

In case of D5, the OPA solution reduces delay dramatically, while SPA is slightly

worse than UA. It reduces the relative gap by a factor up to 10. The number of affected

passengers is reduced by 20%, while average delay of affected passengers is reduced by up

to 30%. An explanation of this dramatic difference is that the advice helps passengers to

avoid traveling into a bottleneck where capacity shortages lead to large delays. Indeed,

the number of passengers needing to compete for seats is much lower in the OPA solution

than in the SPA and UA solutions.

In cases D1, D3 and D4 the advantage of using OPA is small, and the benefit of using

SPA is even smaller. Improvements result from a small reduction in the average delay

of affected passengers, and/or a reduction in the number of affected passengers by the

disruption. Kroon et al. (2014) found that the delay reduction for these cases resulting

from rolling stock rescheduling is small, and therefore it is likely that not much more

improvement is possible, as the relative gaps are also fairly small. We can thus conclude

that the benefit of the method is dependent on the location of the disruption. A more

extensive case analysis would be required to conclude whether or not the methodology

provides a benefit in the majority of disruptions an operator experiences.

The results in Table 5.1 are based on the best settings for δIq and δIr selected per

case and per advice optimization model. These settings represent either an optimistic or

pessimistic estimate of the length of the disruption. In analyzing these settings we find

that the best choice for δIq and δIr depends both on the case and the optimization model.

The performance of UA depends most on these settings, with a difference of up to 24

percent points in the relative gap. It generally performs best on medium estimates for

both δIq and δIr, where the selection of δIq influences the results the strongest. SPA varies

the least over the selection of δIq and δIr. For most settings, therefore, SPA outperforms

UA by a much larger margin than based on the best settings, as presented in Table 5.1.

In contrast to UA, the performance depends most strongly on the selection of δIr rather
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Figure 5.8: Cumulative Delay distribution for Case D2, scenario S

than δIq. However, there is no dominant setting for δIr over all cases. Finally the sensitivity

of the OPA solution is in between those of UA and SPA. The OPA solutions also depend

strongly on δIr, and are generally not best for a medium selection for δIq and δIr. There is

however no dominant strategy, e.g. to be pessimistic or optimistic, in the selection of δIq

and δIr. Therefore, currently the best performance is obtained by analyzing all values for

δIq and δIr.

That OPA solutions perform better by reducing the number of affected passengers,

the average delay per passenger, and the worst case delay, can also by deduced from

the cumulative delay distribution represented in Figure 5.8. This graph represents the

cumulative delay distribution of solutions UA, SPA and OPA for the short scenario and

case D2, with the horizontal axis reflecting the delay per passenger, and the vertical axis

the percentage of passengers that have experienced at least this amount of delay. Results

for other cases and scenarios are similar. The OPA solution has a higher percentage of

passengers with zero minutes delay, and the left-shift in comparison to UA and SPA shows

that it also has fewer passengers with long delays.

5.8.3 Behavioral Sensitivity Analysis

As passengers are not obliged to follow the advice, we further evaluate the OPA solutions

in the simulation under two different behavioral assumptions:

• a fixed probability of passengers following the advice
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• a probability dependent on the quality of the alternative path relative to the rec-

ommended path

Passengers not following the advice compute the minimum inconvenience path based on

the expected length δIq. Each passenger group q is split into two groups according to the

probability of following the advice. The new path, computed by passengers not following

the advice, could still be the recommended path.

For the fixed probability, we evaluate the percentage of passengers following the advice

in the range of {0%, 20%, 40%, 80%, 95%, 100%}. For the probability dependent on the

quality of the alternative path, we use a logit model. The probability of choosing path

pi, i ∈ {1, 2}, is defined as:

P (pi) =
eθcpi

eθcp1 + eθcp2
∀i ∈ {1, 2}

Here cpi is the weighted travel time of the path, and θ is a externally defined parameter.

For our experiments, we have selected θ such that when two paths differ by 10 minutes,

95% of passengers select the shortest path, and 5% choose the longer path.

Table 5.2 presents the total relative gap per behavioral model over all disruption

scenarios for a single case: D1. Each column contains results for a single behavioral

model. The rows represent different settings for δIq and δIr. All settings of δIq and δIr are

included in the table because the best setting depends on the expected behavioral model

of passengers.

Comparing the logit model with the OPA solution (100% of passengers following the

advice), we find that the difference between the two solutions depends strongly on the

selection of δIq and δIr. Specifically, for the selection of δIq as long, the difference is small –

while if δIq is short, the difference is large. So large even that the solution is worse than

the best (not necessarily the same) setting solution of either UA or SPA for this case,

as provided in Table 5.1. Moreover, the best setting for OPA with 100% of passengers

following the advice does not necessarily have to be the best setting for the model with the

logit behavior. The small difference between the two behavioral models if δIq is long can be

intuitively understood from the fact that in this case the alternative path is less attractive

than in case δIq is short – and therefore when δIq is long more passengers are willing to

follow the advice, thus leading to a better solution. This small difference between the

logit model and all passengers following the advice also shows that indeed our solution

approach is capable of recommending paths to passengers that are attractive to them,

and reduce their delay in comparison to an non-optimized approach.
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Settings Passengers following the advice
δIq δIr Logit 100% 95% 80% 60% 40% 20% 0%

S S 14.24 8.51 8.69 9.35 10.44 11.75 13.59 15.42
S M 13.97 7.92 8.02 8.72 9.95 11.35 13.37 15.30
S L 12.86 8.09 8.11 8.54 9.50 10.69 12.32 13.94
M S 8.59 8.51 8.52 8.54 8.57 8.60 8.63 8.67
M M 8.00 7.92 7.93 7.99 8.08 8.16 8.25 8.35
M L 8.18 8.09 8.10 8.13 8.18 8.24 8.29 8.35
L S 8.52 8.51 8.55 8.67 8.82 8.98 9.13 9.29
L M 7.93 7.92 7.97 8.13 8.35 8.57 8.79 9.01
L L 8.10 8.09 8.13 8.27 8.45 8.64 8.82 9.01

Table 5.2: Summary of solution quality for different behavioral settings case D1.

When assuming a fixed rate of passengers following the advice, we see that the solution

quality slowly decays when fewer passengers follow the advice. Thus, for OPA to provide

better solutions, not all passengers need to follow, or even receive, an advice - although

the solution performs better when everyone does. As before, the choice of δIq is important

for the solution quality, where a long δIq leads to better solutions than a small δIq in case

of D1. This is generally true for all cases except for D2, where the selection of δIr is more

important. In some cases the OPA solution when no passengers follow the advice is even

better than UA and SPA. It may be that the alternative passenger flows, estimated based

on passengers following the advice, allows the rolling stock rescheduling model to find

better or more robust solutions. We leave this investigation for future research.

Results for other cases are similar to those of D1. Although differences between dif-

ferent behavioral models for D2 and D5 are slightly larger than for D1, the OPA solution

still outperforms the UA and SPA solutions given probabilistic route choice when a signif-

icant number of passengers follows the advice. An important observation is that the best

setting for δIq and δIr depends on the behavioral model. For example, the best settings for

the probabilistic logit model differ from the best settings for full compliance to the advice.

Hence when selecting the best solution for implementation, it is important to consider

the expected passenger behavior.

5.8.4 Convergence and Computation Time

In this section we discuss convergence and computational speed. All computational ex-

periments were run using CPLEX version 12.6 on an Intel I7 3.07GHz processor. The

algorithm is implemented in Java.
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Figure 5.9: Convergence over advice optimization loops

Convergence. OPA solutions are computed by iterating between advice optimization

and simulation in the inner advice optimization loop, and advice optimization and rolling

stock rescheduling in the outer optimization loop. To analyze convergence we allowed for

a maximum of 4 iterations for each of these loops. The process stopped when either no

improvements were found, or the maximum number of iterations was reached. Figure 5.9

presents the convergence over the advice optimization loops in the full solution process

on the horizontal axis, and the relative gap of the solution for the scenarios S, M , and

L. Thus, a maximum of 16 runs could be included on the horizontal axis. A straight

vertical drop or increase represents a change in the solution value due to the call to the

rolling stock rescheduling component. Our solution approach is heuristic. Therefore, the

best solution of the advice optimization is reported to the outer loop, which does not

necessarily result from the last run.

We note that for the majority of the solutions, the advice optimization finds the best

solution in the first, or second, iteration of the internal loop, and the first or second

iteration of the outer loop. Re-scheduling the rolling stock after the advice optimization

module often leads to the best solution. Both the advice optimization and the rolling

stock module therefore contribute to the improvement of the quality of OPA solutions.

Figure 5.9 shows two typical convergence patterns. In the case of D1, only small

improvements are found for the short scenario, while the medium and long scenarios are

relatively stable. As the initial solution is already relatively good, we do not expect that

large improvements are possible. Thus this result is expected. In case of D5 there is
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a large gain from the advice optimization. The advice optimization call causes quite

dramatic inconvenience decreases for all scenarios. In the outer loop, adjustment of the

rolling stock schedule contributes to an improvement in the solution (in the graph at

advice optimization run 4) after which the solution stabilizes. This thus indicates that,

specifically in case large delays result from the combination of uncertainty about the

disruption length and the limited available capacity, our framework can improve the

solution quality, – and that this improvement is obtained through the combination of

advice optimization and rolling stock rescheduling.

Computation time. Individual components of the framework are fast. Specifically,

the simulation runs average 6 seconds, with a range of 2 to 23 seconds. The advise

optimization model takes on average 46 seconds, with a range of 23 to 74 seconds. The

full advice optimization loop, including simulation, runs on average in 3 minutes, and

varies between 1 and 8.5 minutes. The rolling stock rescheduling runs on average in 2

minutes, with a range of 1.5 to 4 minutes.

The OPA solutions are on average computed in 20 minutes given the current setting

for the maximum number of iterations. However, for three out of four cases a solution

is found in less than 16 minutes. In one case, and one setting for the δI’s, however,

computation time was 54 minutes.

The long computation time is generally a result of the number of iterations, which,

given our convergence analysis, could be reduced as good solutions are found early. There-

fore, in case of time constraints, one could limit the number of iterations or computation

time, and still find good, and very likely the same, solutions. Indeed, the worst case com-

putation time was reduced from 54 minutes to around 20 minutes by bringing back the

number of iterations, while the solution stayed within one percent of the previously found

solution. For the other cases computation time was significantly shorter, and a fairly

standard computer was used. Moreover, further computational speed up can be obtained

from more efficient implementation than implemented by the authors for evaluation of the

method, e.g. using a parallel implementation of (some parts of) the algorithm. Therefore

we believe the presented framework, with some further focus on efficient implementation

and better stopping criteria, could and model to be sufficiently fast to be considered for

implementation in practice.
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5.9 Conclusion and Discussion

This chapter proposes a novel optimization based framework for providing individual route

advice to passengers, in combination with rolling stock rescheduling, for major disruptions

with an uncertain duration. The presented modular framework iteratively solves the

advice optimization and the rolling stock rescheduling model. Solutions are evaluated

under realistic passenger behavior assumptions in a simulation model. A computational

study based on realistic cases of Netherlands Railways shows that providing individual

travel advice that takes into account both the uncertainty in the disruption duration and

the limited available capacity can strongly reduce passenger inconvenience in terms of

average delay, worst case delay, and number of affected passengers, and that the solution

framework is fast enough for implementation in practice.

A key aspect of the proposed method is that it finds good quality solutions under

realistic passenger behavior assumptions in a system with free route choice. To prevent

the advice optimization from finding unrealistic socially optimal solutions, it is solved

in a column generation framework where the simulation generates new candidate paths

according to certain behavioral restrictions. The sensitivity analysis shows that, indeed,

our model is successful in finding good quality solutions with attractive paths for passen-

gers under different behavioral assumptions. That our method manages to find attractive

paths for passengers in the advice optimization, is demonstrated by the small difference

in passenger inconvenience between all passengers following the advice, and passengers

accepting the advice probabilistically, given careful consideration to the communicated

expected disruption length to passengers.

Our results suggest that the advice optimization finds solutions with lower passenger

inconvenience than solutions without advice optimization, even when the majority of

passengers do not follow the advice. Thus, it improves the rolling stock solution. This

may be a result of a different input in the rolling stock model, as the expected demand per

trip when assuming that passengers follow the advice may be different from a situation

where no passengers follow the advice. These flows that anticipate shortages of capacity

and a longer (or shorter) disruption duration increase the robustness of the rolling stock

rescheduling, and therefore the quality of the solution itself. Moreover, it may steer rolling

stock to provide additional capacity on alternative routes that would otherwise not have

been found. Future research could look into quantifying the cause of these differences,

and possibly improving the rolling stock rescheduling model itself.

The model assumes that all passengers can receive individual advice at the start of

the disruption. However, in practice, passengers will have to either actively ask for this
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advice, or have signed up for some service before the operator may be able to recommend

a path. Note however that at the start of the disruption, passengers need to adapt their

route. Therefore, it is plausible that they will actively ask for advice, e.g. by using an app

on their smart phone. The behavioral study also showed that when only a fraction of the

passengers follows (and therefore received) the advice, the solution quality is good. There

are however alternative ways in which an operator could actively contact passengers,

e.g. through the usage of broadcasting systems in trains and at stations. However, such

systems would not allow for as much personalization. Future research could focus on how

to provide advice to passengers when opportunities for personalization are limited, and

the cost of less available personalization in terms of passenger inconvenience.

The rolling stock is rescheduled according to a rolling horizon approach. The initially

estimated length of the disruption has the strongest influence on the solution quality, apart

from the behavioral model. This suggests that possibly robust rolling stock rescheduling

could further improve the quality of the full framework. Future research could focus on

including a robust optimization model for rolling stock rescheduling.

The proposed solution approach assumes that all possible disruption scenarios are

known and that also the probability distribution over these scenarios is known. In prac-

tice however often little is known about the possible set of disruption scenarios. Moreover,

even if this information is available, one could question whether in practice the expected

minimum inconvenience is the best measurement for passenger inconvenience. This mea-

sure implies that a route with a long travel time in one scenario can be less bad if it

has a shorter travel time in another scenario. In practice, passengers’ preferences may

be more binary: if the destination is not reached before a certain time limit, the journey

may have lost its purpose. Future research may look into how these types of constraints

could be taken into account, either in the pricing of the paths, or by for example taking

a quasi-robust optimization approach such as for instance proposed for crew rescheduling

in Veelenturf et al. (2015). Such a quasi-robust approach focuses on finding (almost) al-

ways feasible solutions, and therefore does not require a probability distribution over the

possible scenarios. So far we performed a sensitivity analysis of the solution under differ-

ent behavioral assumptions. One could however experiment with including this behavior

within the optimization framework, with possible new ways to update the column set for

the advice optimization. This updating could possibly consist not only of the extension of

this set, but also of the reduction of this set based on the alternatives found. Furthermore,

one could also study the personalization of the communicated length to passengers, as

well.
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We found that the relative gap between the presented lower bound and the passenger

inconvenience of the solution is small. However, it is unknown what the exact optimality

gap is. Future research could focus on calculating better lower bounds that take into

account the uncertain length of the disruption and realistic assumptions on passenger

behavior.
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Chapter 6

Summary and Conclusions

This thesis studies if, and to what extent, public transport operators can improve passen-

ger service during disruptions by using new sources of detailed information on passenger

journeys, given the limited flexibility in the logistic operations, and the limited influence

on passenger’s route choice. Automated fare collection systems generate large amounts

of detailed data on individual passenger journeys that was never available on this scale

before. Moreover, the wide adoption of smart phones and the availability of wireless

communication provide new opportunities for direct communication between the opera-

tor and passengers. This thesis shows that the availability of this information can have a

substantial positive impact on passenger service in case of disruptions.

Operators can anticipate passenger demand using the new data. Moreover, the oper-

ator can substantially influence passengers route choice through providing route advice

and through the adjustment of the logistics plan. This influence is however constrained

by the limited flexibility of the logistic schedule: for example, an additional vehicle must

be moved to the location in need of more capacity before it can be used.

Additionally, the operator’s influence is limited by the free route choice of passengers:

passengers are free to choose, within certain limits, their own route, which may differ

from the advice. The operators objective to reduce total passenger inconvenience may

not align with passengers’ desires to minimize their own inconvenience, specifically in case

of limited capacity. For example, overall passenger delay might be less if some passengers

disembark from their direct train in favor of others, but such altruistic behaviour is not

realistic. Still, in many cases it might be difficult for passengers to know which route is in

their best interest, as the available capacity on a route depends on the number of other

passengers that also select this route, and all passengers need to select their paths almost

simultaneously. Therefore route advice that aims to anticipate other passengers’ route

choices can help passengers to reduce their delay.
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In this thesis data analysis to derive (Chapter 2) and anticipate (Chapter 3) passenger

route choice is combined with the development of new quantitative models to help oper-

ators improve passenger service using this new information. The novelty of these models

is that they use detailed data on passenger demand to anticipate passengers’ reactions to

new capacity allocations, and aim to influence this demand, specifically the route choice,

through capacity rescheduling (Chapter 4) and individual travel advice for passengers

(Chapter 5).

The following sections provide an summary of the main findings of the thesis by

chapter, discuss scientific and managerial relevance, and provide suggestions for future

research.

6.1 Main Findings

Chapter 2 proposes a method for passenger route choice deduction from smart card data.

Smart card data from an automated fare collection system only registers the origin station,

destination station, and travel time of a journey. However, it does not record the route

the passenger traveled. Knowledge about route choice is important for evaluation of

service, both for evaluating service retrospectively and for developing passenger route

choice models that are used to evaluate alternative schedules. We therefore propose a

method that deduces the passenger’s chosen route by linking data on passenger journeys

with data on the realized timetable. We use a data set of conductor checks to validate

this method. We compare several methods for generating candidate passenger routes, and

various models for selecting a route. We find that our method is able to select the correct

route for about 90% of the journeys in our sample of journeys of Netherlands Railways.

A framework for forecasting passenger flows is proposed in Chapter 3. The framework

is specifically intended to support an operator during a disruption by obtaining insight into

where and how passengers are affected by a specific disruption. The three-step framework

proposes to (1) derive route choice from smart card data to determine the number of

passengers per path for previous dates; (2) forecast the number of passengers per planned

path, based on the data derived in (1), and (3) use a simulation model to calculate how the

flows change due to the disruption under realistic passenger behavior. The full framework

provides forecasts of the number of passengers per train. Additionally, a preprocessing

step is proposed that may provide insight into when and where passengers are affected by

the disruption and, for example, need route recommendation. Moreover it may help to

reduce computation time of future applications of the model. A computational experiment

was conducted on a 10-month smart card data sample from the introduction period of
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the smart card at Netherlands Railways. As a result, data quality was not yet sufficient

to derive definitive conclusions. Results based on this data are however indicative that

accurate forecasts on passenger demand can be derived from smart card data.

Chapter 4 concerns the planning of shuttle services during a planned link closure in

an urban public transport network. Link closures occur due to, for example, planned

maintenance. When closures cause a part of the network to become disconnected, stan-

dard practice is to use a shuttle to replace the closed link and thereby restore connectivity.

However, such shuttles have a lower speed and may require additional transfers. Therefore

better passenger service may be obtained when considering other possible shuttle locations

in the network to accommodate passenger demand as defined by the origin-destination

flows, rather than using them to accommodate the link-demand. Within this research a

new mixed integer programming formulation is proposed for the shuttle planning prob-

lem that includes a dynamic passenger assignment model. The model takes into account

inconvenience resulting from transfers, and aims to reflect passengers’ free route choice.

Solutions define both the location and frequency for the selected shuttles minimizing pas-

senger inconvenience under budget constraint. Computational experiments for a real life

case study of a link closure at the Massachusetts Bay Authority Transportation show

that the model provides solutions with much lower passenger inconvenience at the same

or lower operational costs as the standard practice solution. The solution quality is stable

under different passenger behavior assumptions. Moreover, our results show that, thanks

to a new formulation and the preprocessing step proposed in this chapter, solutions can

be generated quickly enough to consider the model for use in real time applications.

In Chapter 5 we evaluate the benefit of providing individual travel advice to passen-

gers, supported by rolling stock rescheduling, in case of large disruptions with uncertain

durations. We consider a public transport system with free route choice, where the op-

erator can guide passengers through route recommendations. Passengers need to decide

whether to wait to the end of the disruption, or to reroute. Moreover, passengers may

want to avoid overcrowded trains as they incur more delay when they are unable to board

a train in case of a capacity shortage. The route advice provided by the operator is meant

to help passengers anticipate the impact of different disruption durations, and helps them

to avoid capacity bottlenecks in the network. Although the objective of the model is to

minimize overall passenger inconvenience, our proposed model aims to recommend paths

that are in the passengers’ best interest. In practice passengers do not need to follow the

recommendations. Therefore the solution quality is evaluated under the assumption that

not all passengers follow the advice. An agent based simulation model is used to evaluate

the solution in terms of passenger service as it results from interaction between passengers
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and the logistic system, and the influence of the uncertainty about the disruption dura-

tion. Computational experiments for realistic cases of Netherlands Railways suggest that

the provision of advice can significantly reduce passenger inconvenience resulting from a

disruption, even when not all passengers follow the advice. Even more, sometimes the

overall passenger service is better when not all passengers follow the advice. In all of our

experiments, it was better to provide individual advice rather than providing the same

type of advice for all passengers. Moreover, the results suggest that, with future research

focused on a computational efficient implementation of the algorithm, the model might

be solved fast enough to be considered for implementation in practice.

6.2 Scientific Relevance

The objective of this thesis is to find how information now typically available on pas-

senger journeys can help public transport operators improve passenger service during

disruptions, given the limited flexibility in the logistic operations, and the limited influ-

ence on passenger’s route choice. In this research we intended to combine knowledge from

the field of Operations Research and complexity theory to answer this question. A three-

step framework is proposed to answer this question. First of all, past passenger behavior

is analyzed using the new data. Secondly,the question of whether future passenger flows

can be forecasted based on this data is investigated . Finally, the question of how this

information can be used in new models for disruption management aimed at supporting

operators in improving passenger service during disruptions is studied .

It was indeed found that data on passenger journeys, where only the origin, destination,

and travel time are registered, does provides sufficient information to deduce the route

choice of passengers retrospectively. Therefore this data can be used to obtain insight

into passenger behavior and the experienced service quality. Moreover, results based on

an early sample of smart card data suggest that forecasts can be derived from this data,

allowing the information on passenger demand to be used in applications for planned

or real time disruption management. The two applications in this thesis showed that

indeed passenger service could be improved by using detailed information about passenger

demand and by providing individual route recommendations to passengers.

The aim was to combine the fields of complexity and Operations Research to answer

this research question. It is difficult to say whether the research in this thesis would

have used different methods if there was no initial intention to combine these two fields

of complexity and Operations Research in the disruption management application. The

modeling of the central concepts of free route choice and emerging service levels through
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an agent based model fits with approaches in the field of complexity, that also often use

agent based models. However, the use of simulation is not new in Operations Research.

For example Chapter 5 extends previous research that used simulation to solve the rolling

stock rescheduling problem.

However, when considering complexity as a field that first of all brings a perspective

through which a problem is studied, rather than a set of field specific tools, one could

argue that indeed our research is a result of the combination of the fields of complexity and

Operations Research. A central topic in this thesis is the evaluation of passenger service

as it emerges from the interaction between the passengers and the capacity available in the

network. This interaction is complex due to the free route choice of passengers in a system

with limited capacity, in which a passengers’ experienced service may be positively or

negatively influenced by the route choices of other passengers. The strong emphasis on this

passenger behavior is new in comparison to previous research in disruption management.

To our best knowledge, Chapter 5 is the first to investigate the benefit of individual travel

advice in case of disruptions and to propose a model that supports the operator in what

advice to provide. Chapter 4 also aims at modeling free route choice of passengers and

includes a sensitivity analysis to different assumptions on passenger behavior.

The research has therefore made contributions to both fields. For the field of com-

plexity, the research shows that Operations Research techniques are valuable tools to

understand how to influence systems with emerging behavior in order to obtain better so-

lutions. This is an important addition to the field that so far rarely uses these techniques

and has mostly focused on descriptive models rather than decision support models. This

research thus forms an important contrast with the many descriptive models so far stud-

ied within the field of complexity that may increase understanding, but do not provide

concrete solutions to practitioners.

For the field of Operations Research, this research has shown that practically relevant

solutions for complex problems can be derived quickly by combining mathematical pro-

gramming formulations with simulation models for both the solution and evaluation of

these models. Although the general concept is not new, our research illustrates the prac-

tical relevance for a different application. Moreover, the use of the simulation to model

behavioral constraints in a column generation framework is to our best knowledge new,

at least in the field of disruption management. For this application our approach shows

that measuring passenger inconvenience under realistic passenger behavior indeed leads

to better solutions for passengers than previous models for this application.
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6.3 Managerial Relevance

This thesis shows that accurate data on passenger movements benefits passengers, as it

enables operators to improve passenger service in case of disruptions. Better passenger

service can be reached within the same operating constraints because these data help the

operator to better match the provided service to the demand and desires of the passengers.

First if all, this thesis shows that smart card data provides deep insight into passengers’

travel behavior. By linking different data sets, the actual route choice of passengers can

be deduced in hindsight (Chapter 2). These data therefore enable retrospective analysis

of the passengers’ experience of service. Chapter 3 proposes a model for forecasting

passenger demand based on smart card data, such that detailed information on passenger

demand can also be used in real-time applications. Results of computational tests on a

limited set of smart card data, derived from the introduction phase, are indicative that

accurate forecasts on passenger demand are likely to be derived from these data. Reliable

estimates of the expected number of passengers per train enable an operator to better

match the available capacity and the demand, thereby increasing the efficiency of the

capacity allocation. Data on passenger route choice allows one to define and calculate

performance measures based on the service experienced by passengers, rather than to

derive these from, for example, the punctuality of the operated vehicles. Combining smart

card data with other data sources, such as information on the number of passengers per

train, or the number of passengers embarking and disembarking a train at a station, could

further improve the information available on past passenger behavior, and thereby also

improve the forecasts derived for future passenger flows from these data. Moreover, the

increase in speed in which smart card data becomes available to the operator might enable

new real-time forecasting models to provide even better estimates of passenger demand.

Secondly, the provided passenger service during disruptions can be improved by adjust-

ing the operations to expected passenger demand, rather than to the previous schedule.

In case of link closures in public transport networks, it has been shown that employing

shuttle buses to accommodate expected passenger demand, rather than simply to restore

the original network structure, improves passenger service without increasing operational

costs. Computational results for a real-life case study, presented in Chapter 4, show that

using new available data on passenger journeys to adjust the network to the anticipated

demand can reduce both average and worst case passenger delays.

Finally, it is demonstrated that passenger service can be improved by providing indi-

vidual route recommendations to passengers in case of a disruption. Specifically in cases

when insufficient capacity is available, such advice may reduce passengers’ delays as indi-
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cated by the computational experiments for realistic test cases for Netherlands Railways in

Chapter 5. It may also help passengers to make decisions in case the disruption duration

is uncertain. The results show that combining individual travel advice with rolling stock

rescheduling can reduce worst case delay, average delay, and the number of passengers

affected by a disruption.

In summary, the research of this thesis has shown that especially passengers bene-

fit from a better knowledge of their desires and behavior, which can be obtained from

smart card data. Better passenger service can be obtained, within the same operating

constraints, when this information on passenger demand is taking into account in the

planning, management and operations of the public transport system.

A first step towards practical application would be to validate these results in practice.

For this validation, the proposed method of Chapter 2 could be used to evaluate passenger

service in hindsight using smart card data, if such data is available. Alternatively, more

extensive simulation models could be used to evaluate the practical value of the results,

which also take into account other parts of the disruption management process, such as

the adjustment of the timetable and the rescheduling of crew duties.

6.4 Future Research

We believe there are many promising directions for future research. In addition to the

suggestions made in each chapter, we list three general areas for extension here.

Behavior

Originally, we planned to deduce passengers’ reactions to a disruption from the passenger

journey data: do they wait, reroute, or not travel? Indeed Chapter 2 made a start on this

by proposing a method for route deduction from smart card data. Results allow analysis

of passengers’ route choice, and therefore also their experienced service, retrospectively.

However, to be able to deduce actual passengers’ reactions to a disruption in terms

of waiting, rerouting, or not traveling, more research and possibly more data are needed.

Deducing a route in hindsight (Chapter 2) does not explain why a passenger chose this

route. For example, a longer waiting time at the departure station could indicate both a

delay or a deliberate choice of a passenger to engage in a different activity, such as getting

a cup of coffee. Even the existing paths in the timetable are not an error free measure of

the delay of passengers, as in case of disruptions passengers may not have had sufficient

information to choose the shortest path. For regular travelers, a change in behavior could
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be an indication of the reaction to a disruption. This however requires forecasting models

that can predict individual passengers’ journeys.

There are three reasons for not studying this behavior further within this thesis. First

of all, at the time this research was started, data was incomplete and insufficient for anal-

ysis at this level of detail since the smart card system was still in the introduction phase.

However, now this data is of much better quality and may be sufficient to continue this

line of research. Secondly, analyzing this data in such detail, specifically the development

of models that forecast individual passenger behavior, should always be done taking great

care to protect the privacy of passengers. Whether the development of such forecasting

models by an operator is desirable is still in debate both within the operator holding this

data and in society as a whole. Therefore a method to improve passenger service during

disruptions with minimal invasion of passenger privacy is a preferred solution to the main

research question of this thesis. Finally, current passenger behavior may not result in the

travel choices that minimizes passengers’ own inconvenience in case of a disruption, for

example because passengers currently have insufficient information to make those deci-

sions that are in their best interest. Altering passenger route choices from their current

behavior, for instance by helping them to avoid capacity bottlenecks, may improve the

service experienced by passengers. Therefore better passenger service may result when the

proposed disruption management policy supports passengers in selecting the best travel

strategy, rather than estimating (and accommodating) current passengers’ imperfect re-

actions to a disruption. Consequently, such a model does not require knowledge of the

current reaction of passengers to a disruption.

Although current passenger reactions may not be needed to improve passenger service,

the models proposed in this thesis assume an understanding of passengers’ paths prefer-

ences. The models in Chapters 4 and 5 allow for different passenger behavior models. The

models were evaluated under different behavioral assumptions, such as the assumption

that passengers prefer the shortest path, prefer a path that is geographically similar to

the planned path, and a situation where passengers are divided among a set of attrac-

tive paths based on a logit model, as information on passengers’ preferences was not yet

available. This sensitivity analysis showed that even under slightly different passenger

behavioral assumptions, the models still provide good solutions.

Future research could focus on deriving passengers’ paths preferences. For exam-

ple, passengers’ preferences may be influenced by aspects other than travel time such

as crowdedness, number of transfers, or reliability of the arrival time. Moreover, these

preferences may differ over passengers. Further analysis of smart card data, possibly

combined with other sources, could define these preferences and show whether there are
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heterogeneous groups of passengers. These findings could be used to validate, adjust, or

extend the behavioral assumptions made in the models of Chapters 4 and 5. Extending

the behavioral models of passengers in these methods is possible because of the agent

based simulation approach. Alternatively, one could investigate to what extent different

behavioral assumptions change the results found in Chapters 4 and 5, thereby extending

the sensitivity analysis.

Furthermore, future research could include the study, and possible integration of,

multiple data sources. For example, data resulting from weighing in trains, the number

of people using the (often free) wifi connection in the train, passenger counts, and surveys

could together provide great insight into route choice, crowdedness, and real-time forecasts

of passenger demand. An important second branch of research is therefore how to combine

different data sources to obtain information on passenger behavior.

Disruption Management

The disruption management process consists of timetable adjustments, rolling stock reschedul-

ing, and the adjustment of crew schedules. The models in Chapters 4 and 5 do not con-

sider all these components. Future research could extend existing models for timetable

adjustments and crew rescheduling with a dynamic passenger assignment and realistic

behavior, as proposed in this thesis. The benefit of such an approach would be that

the then proposed disruption management actions are taken with more attention to the

effects on passenger service. The optimization in Section 5 could possibly be extended

to include the other components of timetable adjustment and crew rescheduling as well.

The challenge will be to integrate these models efficiently so that they are fast enough to

be considered in a real-time application.

Application beyond disruption management

The models in Chapters 4 and 5 both concern capacitated multi-commodity flow mod-

els. Other application areas dealing with network design and flow optimization could

profit from the models and techniques proposed in this thesis. Possible applications could

include goods logistics plannings, workforce scheduling that aims to optimize employee

satisfaction, and service logistics where packages are delivered at a time most convenient

for the customer.

The model of Chapter 4 could be valuable for network (re)design questions in trans-

portation in general. It would also be suitable for strategic network design planning

within and outside public transportation. The principle of the proposed preprocessing
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step in this chapter could also be used to reduce the number of commodities for other

applications when the number of paths available per commodity is very limited.

The model in Chapter 5 combines capacity assignment and flow assignment in a multi-

commodity flow network into a single model. However, the proposed model formulation

is more specific to the application of disruption management in public transport than the

model in Chapter 4. For example, the concept of passengers having free route choice is an

aspect likely unique to the application in public transportation. However, the proposed

solution approach, consisting of a combination of column generation and simulation, may

also be used in other applications when they involve restrictions on the flow that are

easy to reflect by limiting the path choice set, but hard to capture in constraints in an

optimization model.
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Summary in English

Around the world millions of passengers depend on public transportation systems, which

provide a relatively sustainable option for transportation. In the Netherlands around 1,1

million journeys are made by train every day. Unfortunately, disruptions happen regularly

due to malfunctioning rolling stock or infrastructure, extreme weather conditions, and

accidents. The most important choice a passenger needs to make when faced with a

disruption is whether to wait or reroute. As a student I commuted by train daily, and

selecting the best strategy became something of a sport. The best decision was not

obvious, especially as I did not yet have a smart phone with an Internet connection. On

my arrival at the station it was uncertain whether the disruption would last for hours

to come, or be over in the next ten minutes. However, I could be certain that a detour

would at least add an hour to my journey time, as well as two transfers. It was not only

the duration of the disruption, but also the routes chosen by my fellow passengers which

could affect the inconvenience of my journey: If we all chose the same route, the resulting

overcrowded trains would lead to further delay for passengers who were unable to board,

and a less pleasant journey for the passengers that did embark.

It was during disruptions like these that I often wondered: Why does Netherlands

Railways not help me to make good travel decisions? Disruption Management is the field

of research that aims to mitigate the effects of disruptions on passenger service. A decade

ago, Netherlands Railways didn’t have detailed information on where its passengers were

and where they were traveling to. Additionally, means of communicating with passengers

were limited to announcement systems in trains and on stations, which do not allow for

detailed and customized travel advice. This may explain why, at the time, route choice

support to passengers was very limited. However, recently detailed information on cus-

tomers’ journeys has become available through Automated Fare Collection Systems (such

as the OV-chipkaart in the Netherlands), and personalized communication has become

possible through the wide availability of wireless communication technology (for instance

through applications on smart phones). Thus, indeed, the personal support of passengers

during disruptions is possible nowadays.
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This thesis concerns the question of how new information on passenger behaviour,

such as that resulting from Automated Fare Collection Systems, can be used to improve

passenger service in case of major disruptions in public transportation systems. To im-

prove service, the operator can adjust the assignment of vehicles in the network, and

provide route advice to passengers. However, flexibility in the assignment of vehicles is

limited, and passengers are not obliged to follow the route advice of the operator. This

thesis combines research in extracting information from newly available data on passenger

demand and behaviour with research on how this information may be used to improve

passenger service during major disruptions in public transportation systems within the

above-mentioned limitations. Indeed it was found that this new information, together

with the option to provide route advice to passengers, could significantly improve service

during major disruptions.

Passengers

Collection of data on passenger behaviour in the Netherlands started with the introduction

of the OV-chipkaart , a smart card, although similar systems were already in use in, for

example, Hong Kong, Singapore, Tokyo and London. Smart card data is unique in that

it stores the origin, destination, and time of journey for all journeys made by smart

card. This information was never before available at this combined scale and level of

detail. However, the route which the passengers select is not stored. The route choice

is important, for example to calculate train occupancy or evaluate passenger service in

hindsight. In Chapter 2 a method is proposed to deduce the selected route of passengers

based on smart card data and information on the logistical operations. The validation

set shows that the proposed method is able to select the correct route for over 90% of

journeys in the sample.

Disruption management requires insight into current and near future demand for

travel. Chapter 3 proposes a framework for deriving forecasts based on historic smart

card data. At the time of analysis the data was incomplete as the card was still in the

introduction phase. However, results from this framework are indicative that sufficiently

accurate forecasts could indeed be derived from this data, and future studies using the

current data could provide more definite conclusions.

Information during Disruptions

Next, models have been developed that aim to improve passenger service during disrup-

tions, based on detailed information on passenger flows, by adjusting the logistic schedule
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to the anticipated passenger demand. These models support public transport operators to

best make use of the limited flexibility in the logistic schedule to reduce the inconvenience

passengers experience due to the disruption. Specifically, these models aim to take into

account the free route choice of passengers, and the fact that a change in the transport

schedule may also lead to passengers changing their route. Moreover, the models take into

account capacity constraints, and thus also that passengers route choice may be affected

by other passengers’ route choices in case of insufficient capacity. Models have been de-

veloped for two applications: (1) the scheduling of shuttle services during planned link

closures in public transport networks and (2) the adjustment of rolling stock scheduling

combined with the provision of personalized travel advice during real time disruptions.

Link closures, closing a segment of the network, are regularly necessary for mainte-

nance. Standard practice uses shuttle buses to replace the currently closed link in the

network. Although this ensures that all passengers will be able to reach their destination,

other shuttle lines may be better capable of reducing the inconvenience to passengers.

Deciding which set of shuttle lines to operate is a complicated problem, as the benefit

of one shuttle line depends on what other shuttle lines will also be operated. Passengers

will therefore only be able to choose their best route once the schedule of all shuttle lines

is available. Moreover, given a limited budget, the opening of one line will reduce the

options for opening other lines. Chapter 4 proposes a new mixed integer programming

model that can assist an operator in the decision of which shuttle lines to open and at

what frequency. The model includes a dynamic passenger assignment model that aims to

assign passengers to those paths that are in their personal best interest, rather than the

paths that, because of the limited capacity, would best suit the operator. Results from a

real-life case study of a link closure at the Massachusetts Bay Transportation Authority

indicate that different shuttle lines can provide a solution with a much lower passenger

inconvenience than standard practice.

Moreover, providing personalized route advice to passengers that helps them to avoid

capacity bottlenecks and anticipates an uncertain disruption duration is possible thanks

to the availability of information on current and future passenger demand. Chapter 5

proposes a new optimization-based model that combines rolling stock rescheduling with

the provision of personalized route advice to passengers. The rolling stock is rescheduled

with the aim of providing sufficient capacity for the demand of each trip. However,

flexibility in scheduling rolling stock is limited because there are few spare units, and it

may take a long time before re-assigned vehicles can arrive at the location where they are

needed. Therefore personalized route advice may be more effective in the short term, as

it can help passengers to avoid bottlenecks in which they would incur even more delay.
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This route advice should be such that it is attractive for the passengers to follow, as the

operator cannot force passengers to follow the advice. Computational experiments were

conducted based on realistic case studies of the Netherlands Railways network. Indeed it

is found that, even under different assumptions on passenger behaviour, route advice can

substantially reduce passenger inconvenience. In some cases, a better solution may even

be found if not all passengers follow the route advice.

Conclusies & Recommendations

In summary, this thesis has shown that new information on passenger behavior, such as

that resulting from automated fare collection systems, is extremely valuable for operators

to evaluate their service in hindsight, and can be used to improve passenger service in

case of disruptions in public transportation systems. Specifically, better service is obtained

when the transport schedule is adjusted to meet passenger demand as it reacts to the new

situation in a disrupted network. Moreover, the support of passengers during disruptions

through travel advice also substantially improves service, even in case of systems with

free route choice. The recommendation to the research field is therefore to strengthen

research in the area of demand-driven transportation planning. The recommendation to

public transport operators is to use the currently available data in daily planning and

evaluation of service, and increase effort in providing travel information and route advice

to passengers during disruptions in connection to the logistic rescheduling. The models

proposed in this thesis could be used to support public transport operators in this task

in practice.
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Nederlandse Samenvatting

(Summary in Dutch)

Miljoenen mensen maken elke dag gebruik van het openbaar vervoer, dat een belangrijke

duurzame optie is voor transport. In Nederland verzorgt de Nederlandse Spoorwegen (NS)

dagelijks circa 1,1 miljoen reizen. Helaas verlopen niet al deze reizen vlekkeloos. Defecten

aan het materieel of de infrastructuur, extreme weersomstandigheden en ongelukken zor-

gen regelmatig voor grote verstoringen die leiden tot veel vertraging en ongemak voor

reizigers. Een verstoring maakt een deel van de materieelplanning, dienstregeling en

personeelsdiensten onuitvoerbaar. Ook reizigers moeten hun reis aanpassen. Disruption

Management (management van verstoringen) is een onderzoeksveld dat zich bezighoud

hoe deze processen het beste aan te passen tijdens een verstoring. Voorheen was de focus

in dit onderzoeksveld voornamelijk op het aanpassen van de logistieke planning. In de

laatste jaren is steeds meer data beschikbaar gekomen over de reizen van de passagiers,

bijvoorbeeld door het gebruik van automatische ticketing systemen. In dit proefschrift

is onderzoek gedaan naar hoe deze informatie gebruikt kan worden om het ongemak van

passagiers tijdens een verstoring zo veel mogelijk te beperken.

Ten eerste is onderzocht welke informatie over reisgedrag verkregen kan worden uit

de nieuwe data die gegenereerd wordt door elektronische ticketing systemen zoals de OV-

Chipkaart. In Hoofdstuk 2 wordt een methode voorgesteld die uit de OV-chipkaart data

en de gereden dienstregeling de door reizigers gekozen route per reis afleidt. Deze methode

wist voor ruim 90% van de reizen in een validatie smart card data set van de NS de correcte

route af te leiden. In Hoofdstuk 3 wordt daarom een raamwerk voorgesteld om op basis

van smart card data van voorgaande dagen een voorspelling te maken voor de huidige

vraag. De positieve resultaten in dit hoofdstuk op basis van een eerste kleine test set zijn

een indicatie dat deze data inderdaad geschikt is om zulke voorspellingen op te baseren.

Vervolgens zijn modellen ontworpen die, gebruik makend van de gedetailleerde in-

formatie over reizigersstromen, tot doel hebben de reizigersservice te verbeteren tijdens

verstoringen. Er zijn wiskundig gemengd integer programmeringsmodellen ontworpen
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voor twee toepassingen: (1) het plannen van shuttle bus services in het geval van een

geplande, tijdelijke, sluiting van een gedeelte van het netwerk (in Hoofdstuk 4); en (2)

het aanpassen van materieel in combinatie met het geven van reisadvies tijdens grote,

onverwachte verstoringen (in Hoofdstuk 5). In beide gevallen wordt rekening gehouden

met het feit dat passagiers zelf hun route mogen kiezen en daarom reisadvies niet hoeven

op te volgen. Ook capaciteitsbeperkingen zijn gemodelleerd, net als de concurrentie onder

passagiers in het geval van capaciteitstekorten. De resultaten in Hoofdstuk 4 voor een

case studie op basis van het metro netwerk in de Boston regio laten zien dat het plannen

van shuttle bussen op basis van de reisvraag van passagiers leidt tot minder vertraging

voor reizigers zonder dat de operationele kosten daarvoor hoeven toe te nemen. Exper-

imenten op basis van realistische case studies voor de NS in Hoofdstuk 5 tonen aan dat

het geven van persoonlijk reisadvies aan passagier hun vertraging substantieel kan ver-

minderen in vergelijking met het uitsluitend aanpassen van de materieelomloop, zelfs als

niet alle reizigers het advies opvolgen.

Het onderzoek in dit proefschrift heeft laten zien dat de nieuw beschikbare informatie

over reizigersgedrag van grote waarde is om de reizigersservice tijdens verstoringen te ver-

beteren. De data is zeer geschikt voor het gedetailleerd analyseren van de geboden service

en reizigersroutekeuzes in het verleden. Tijdens verstoringen kan de reizigersservice sub-

stantieel verbeterd worden wanneer de logistieke planning wordt aangepast op basis van

de kennis van huidige en verwachte toekomstige reizigersstromen en door reizigers te on-

dersteunen met reisadvies. De hieruit volgende aanbeveling aan onderzoekers is om het

onderzoeksgebied omtrent vraag-gestuurde transportplanning te versterken. Openbaar

vervoerders wordt aanbevolen gebruik te maken van de beschikbare data en tijdens ver-

storingen de informatievoorziening aan reizigers een meer centrale plek te geven naast

de aanpassingen van de logistieke planning. De in dit proefschrift voorgestelde modellen

kunnen openbaar vervoerders daarbij in de praktijk ondersteunen.
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l)PASSENGERS, INFORMATION AND DISRUPTIONS

Passengers traveling in public transport generate a detailed digital track record of their
journey through using automated fare collection systems and carrying mobile devices. This
information on passenger behavior has only recently become available to public transport
operators. This thesis addresses the question how this new information can be used to
improve passenger service in case of disruptions in public transportation.

Major disruptions cause the current logistical schedule of the operator to be infeasible.
Adjusting this schedule to the disruption is a complicated planning problem. Passengers
will adjust their journeys to the new schedule, and may need to adjust their route choice
due to the route choice of other passengers in case of capacity shortages. Therefore the
passenger service results from a complex interaction between passengers themselves, and
between passengers and the schedule.

This thesis proposes new models for improving passenger service in case of major
disruptions by adjusting the schedule while anticipating passenger’s reactions, and also by
supporting passengers during disruptions through the provision of route advice. This
research is combined with a study on passenger behavior based on the new data sources.
The models are evaluated using data and case studies of the passenger rail network of
Netherlands Railways and the urban rail network of the Massachusetts Bay Transportation
Authority. It was found that indeed this new information, together with the option to
provide route advice to passengers, could significantly improve service during major
disruptions.

This research is part of the Netherlands Science Foundation (NWO) project ‘Complexity
in Public Transport’.
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relations, and its busi ness processes in their interdependent connections. 
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knowledge.
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