

Wayne State University

Wayne State University Dissertations

1-1-2016

Genome Wide Analysis Identifies Sphingolipid Metabolism As A New Target Of Valproic Acid

Shyamalagauri Jadhav Jadhav *Wayne State University,*

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the <u>Biology Commons</u>, and the <u>Molecular Biology Commons</u>

Recommended Citation

Jadhav, Shyamalagauri Jadhav, "Genome Wide Analysis Identifies Sphingolipid Metabolism As A New Target Of Valproic Acid" (2016). *Wayne State University Dissertations*. 1545. https://digitalcommons.wayne.edu/oa_dissertations/1545

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

GENOME WIDE ANALYSIS IDENTIFIES SPHINGOLIPID METABOLISM AS A NEW TARGET OF VALPROIC ACID

by

SHYAMALAGAURI JADHAV

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

In partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2016

MAJOR: BIOLOGICAL SCIENCES

Approved By:

Advisor Date

©COPYRIGHT BY

SHYAMALAGAURI JADHAV

2016

All Rights Reserved

DEDICATION

I would like to dedicate my dissertation to my late mother Chandrakala Jadhav who was a constant support and inspiration through the years.

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisor, Dr. Miriam L. Greenberg for her intellectual, moral, financial, and emotional support throughout my graduate journey. The realization of this thesis would have been impossible without her constant encouragement and strong support. I would like to thank her for the confidence she had in my ability to think and design the project through; and for her guidance when needed. She stood by my side and gave me the scientific freedom to explore my research endeavors. This has helped me to develop into a scientist with the ability to think critically and independently. I have seen her not just as my dissertation advisor, but a mentor whose guidance and advice I shall cherish forever. I am grateful for all the time and effort she has invested in educating and training me towards achieving my professional goals.

I would also like to extend my sincere gratitude to my committee members, Dr. Lori Pile, Dr. David L. Njus, and Dr. Menq-Jer Lee for their continuous support and valuable suggestions. Their constructive evaluation of my work helped me stay focused and productive. I would like to thank Dr. Ashley Cowart at Medical University of South Carolina (MUSC) for sphingolipid quantification and Jeff Landgraf at Michigan State University for performing the microarray analysis.

I would like to thank the past and current members of the Greenberg laboratory for their support, assistance, and for being such wonderful colleagues. I would especially like to thank Dr. Vinay Patil, Dr. Amit Joshi, Dr. Rania Deranieh, Dr. Cunqi Ye, Dr. Zheni Shen, Janani Ganesh, Vaishnavi Raja, Yiran Li, Jajia Ji, Wenxi Yu, Wenjia Lou, Keanna McCain, Dr. Christian Reynolds, and Michael Salsaa, with whom I spent a wonderful time in the laboratory. I thank each and every one for their scientific contribution and all

iii

the fun experiences and making the lab environment both intellectually stimulating and enjoyable. I would like to specially thank Vaishnavi Raja for being a great friend and support in lab.

I would also like to thank all the past and present biological science department faculty and staff for their assistance throughout my Ph.D. and for making graduate student life in the department a smooth sail. Special thanks to Dr. Victoria Meller, Dr. James Tucker, Dr. Edward Golenberg, Dr. Philip Cunningham, Dr. Choong-Min Kang, Krystyn Purvis and Charles Hogan for making my life as a graduate teaching assistant, a comfortable one. I acknowledge the Graduate School and the department for financial support in the form of graduate teaching assistantships and graduate travel awards.

I would not have made it this far without the unconditional love and support from my parents, Chandrakant and Chandrakala Jadhav. They have always encouraged me to do my best and invested all their energy and time towards the realization of my dreams and ambitions. I would like to thank my little brother, Mayur Jadhav, for his immense love and support. He has helped me get through the toughest of days by being my stress buster. Thank you for always being my side. I would like to acknowledge my aunt, Dr. Dhanashree Jagtap, for being my source of inspiration throughout. I would also like to acknowledge my parents-in-law, Jayant and Jyoti Supnekar, for being so loving and caring. Lastly, I am indebted to my husband, Vivek Supnekar, for his love, patience and support. He stood by my side through the tough times and good times and instilled in me a positive attitude and a sense of confidence.

I am grateful to my friends Dr. Rohan Kulkarni and Dr. Rajalakshmi S. Asur for being my guardians throughout my graduate school days. I feel immensely privileged to

iv

have received your guidance, love and support. I would like to specially thank my roommate and great friend Sonal Joshi for being there with me through all the ups and downs throughout graduate school days. I will cherish all the good times and memories forever. I am grateful to my friends Dr. Amit Joshi, Dr. Manasi Apte, Dr. Debashish Menon, Dr. Shalini Menon, Dr. Vinay Patil, Rohini Hiremath, Vaishnavi Raja, Ashlesha Chaubal, and Nikita Deshpande, for their love, care and kindness. They have been my family away from home. All of you have given me wonderful memories that I will treasure my whole life. I appreciate constant love and encouragement from my school and college friends all over the world without whom life would have been much less interesting. I shall be eternally grateful for the valuable service of my teachers, especially the entire faculty and staff at the Dept. of Microbiology, Ruia College, Mumbai, whose efforts have inspired me to follow my passion in science and research.

Dedication	ii
Acknowledgements	iii
List of Tables	viii
List of Figures	ix
CHAPTER 1- INTRODUCTION	1
CHAPTER 2- IDENTIFICATION OF GENES AND CELLULAR PATHWAYS AFFECTED BY ACUTE AND CHRONIC TREATMENT WITH VALPROIC ACID	
Introduction	40
Materials and Methods	41
Results and Discussion	43
CHAPTER 3- VALPROIC ACID INDUCES THE UNFOLDED RESPONSE IN CERAMIDE LEVELS	ICREASING
Introduction	143
Materials and Methods	145
Results	148
Discussion	162
CHAPTER 4- ACUTE VALPROIC ACID TREATMENT INCREASES LEVELS OF PHYTOSPHINGOSINE VIA INOSITOL DEPLETION	
Introduction	169
Material and Methods	173
Results	176
Discussion	
CHAPTER 5- FUTURE DIRECTIONS	
Appendix- IDENTIFICATION OF SYNTHETIC GENETIC INTERACTIONS O	F <i>LCB4</i> 198
References	

TABLE OF CONTENTS

Abstract	
Autobiographical Statement	

LIST OF TABLES

Table 1.1. Yeast and mammalian genes involved in sphingolipid metabolism 19
Table 2.1. Fold changes of genes that show more than 2 fold change in response to acute VPA treatment
Table 2.2. Fold changes of genes that show more that 2 fold change in response to chronic VPA treatment
Table 3.1. Yeast strains and plasmids used in Chapter 3
Table 3.2. Real time PCR primers used in Chapter 3 151
Table 3.4. Inositol depletion increases levels of ceramide spcies
Table 4.1. Yeast strains and plasmids used in Chapter 4
Table 4.2. Rela time PCR primers used in Chapter 4 177
Table A.1. Genes showing synthetic interaction with <i>lcb4</i> Δ at 30°C
Table A.2. Genes showing synthetic interaction with <i>lcb4</i> Δ at 39°C
Table A.3. Genes classified based on the cell process showing synthetic interaction with <i>lcb4</i> Δ at 30°C
Table A.3. Genes classified based on the cell process showing synthetic interaction with <i>lcb4</i> Δ at 39°C
Table A.3. Genes classified based on the cell process showing synthetic interaction with <i>lcb4</i> ∆ at 39°C
Table A.5. LCB4 interacts with genes involved in ER-Golgi transport

LIST OF FIGURES

Figure 1.1. Sphingolipid structure6
Figure 1.2. Fatty acid elongation pathway9
Figure 1.3. Synthesis and metabolism of sphingolipids in yeast and mammals
Figure 2.1. Differential effects on the regulation of gene expression in response to acute VPA treatment in the presence and absence of inositol48
Figure 2.2. Differential effects on the regulation of gene expression in response to chronic VPA treatment in the presence and absence of inositol
Figure 2.3. Genes that show more than 2 fold change in response to acute VPA treatment in I
Figure 2.4. Genes that show more than 2 fold change in response to acute VPA treatment in I+51
Figure 2.5. Genes that show more than 2 fold change in response to chronic VPA treatment in I
Figure 2.6. Genes that show more than 2 fold change in response to chronic VPA treatment in I+
Figure 3.1. VPA upregulates expression of fatty acid elongase genes
Figure 3.2. VPA sensitivity of fatty acid elongase and sphinganine C4-hydroxylase mutants
Figure 3.3. VPA increases levels of DHC and PHC156
Figure 3.4. VPA downregulates expression of nutrient transporters via ceramide 157
Figure 3.5. VPA increases expression of ER chaperones
Figure 3.6. VPA upregulates UPRE expression
Figure 3.7. VPA induces the UPR by inositol depletion
Figure 3.8. Model: VPA induces the UPR pathway by increasing intracellular ceramide levels
Figure 4.1. Sphingolipid metabolism in yeast171

Figure 4.2.	VPA increases the levels of RSB1	186
Figure 4.3.	VPA increases sensitivity of $rsb1\Delta$ to PHS	187
Figure 4.4.	VPA increases levels of PHS	188
Figure 4.5.	VPA increases the expression of YOR1 and DPL1	189
Figure 4.6.	VPA affects ORM expression	190
Figure 4.7.	VPA decreases the levels of FEN1 and SUR4	191
Figure 4.8. and	Inositol depletion downregulates ORM and fatty acid elongase genes upregulates <i>RSB1</i> and <i>YOR1</i>	192
Figure 4.9.	Proposed model	193
Figure A.1.	PCR confirmation of the SGA query strain	202
Figure A.2.	Synthetic genetic array (SGA)	203

CHAPTER 1 INTRODUCTION

Parts of this chapter have been published in Clinical Lipidology, Vol. 9, No. 5, Pages 533-551, 2014.

Despite decades of studies, little is known about the molecular mechanisms underlying the neuropsychiatric disorders schizophrenia, depression, anxiety, and bipolar disorder (BD), which contribute about 14% of the global burden of disease (Prince et al., 2007). The development of effective treatments for these devastating illnesses is hampered by the failure so far to elucidate the molecular mechanisms underlying their pathologies. Recent findings suggest that sphingolipids may play an important role in the pathophysiology of psychiatric disorders. Because sphingolipids are abundant in the brain and are involved in the regulation of processes essential for normal brain function, sphingolipids and sphingolipid metabolites may be promising targets for new treatments of psychiatric disorders.

Lipids constitute about 50% of the dry weight of the brain, which has the second highest lipid composition after adipose tissue (Watkins et al., 2001; Morrel and Toews, 1993). The mammalian nervous system is rich in sphingomyelin, glycosphingolipids, and molecules with ceramide backbones (Cutler and Mattson, 2001; Tettamanati, 2004). Sphingolipids are a ubiquitous, highly conserved, diverse group of bioactive lipids, comprising about 10-20% of cellular lipids (van Meer et al., 2008). Technical advances in lipidomics and mass spectrometry in the past two decades have greatly facilitated the quantification and characterization of sphingolipids (Ejsing et al., 2009; Skevchenko and Simons, 2010). The yeast model has been invaluable in identifying and characterizing the genes and enzymes that mediate sphingolipids in the regulation of

essential cellular functions, including growth, endocytosis, protein trafficking, calcium homeostasis, aging, nutrient uptake, maintenance of lipid rafts, regulation of heat stress, actin cytoskeleton, and cell wall synthesis and repair (Dickson et al., 2006; Funato et al., 2002; Cowart and Hannun, 2004; Sims et al., 2004). Several of these functions have been associated with psychiatric disorders, including cellular signaling, endocytosis, inflammation, secretion, apoptosis, and proliferation (Breslow, 2013). The new lipidomic technologies, combined with the powerful yeast system to generate genetic and molecular models of sphingolipid functions that can be tested in relevant mammalian systems may offer promising new avenues for drug design.

We begin with a comparison of sphingolipid metabolism in yeast and mammals. The very high degree of conservation of sphingolipid biosynthetic enzymes and of the functions of individual sphingolipids and metabolites underscores the utility of yeast to elucidate molecular mechanisms underlying sphingolipid function. We then discuss studies associating perturbation of sphingolipids with schizophrenia, depression, anxiety and BD. Finally, we suggest avenues whereby yeast can be exploited further to design drugs that may be used to modulate sphingolipid targets that are implicated in these disorders.

1. Sphingolipid structure

Sphingolipids contain two hydrophobic tails, including a long chain base (LCB) and a fatty acid chain, linked to a hydrophilic polar head group. The fatty acid is linked to the C-2 of the LCB via an amide bond, and the polar head group is linked to C-1 of the LCB via an OH group (Kihara et al., 2007). The basic sphingolipid structure is shown in Fig. 1.1.

In the yeast *Saccharomyces cerevisiae*, LCBs are linear alkanes containing hydroxyl groups on C-1 and C-3 and an amino group on C-2. The two major LCBs found in yeast are dihydrosphingosine (DHS) and phytosphingosine (PHS). PHS contains an extra hydroxyl group on C-4 compared to DHS. DHS in yeast contains 16, 18 or 20 carbons, and PHS contains 18 or 20 carbons (Lester and Dickson 2001). Sphingosine, the major LCB of mammals, is not found in yeast. Mammals also have minor amounts of DHS (Dickson and Lester 2002). The mammalian LCB, sphingosine, contains a 4,5- trans double bond, which is not found in yeast (Dickson and Lester, 1999).

The fatty acid linked to the LCB in yeast is generally a C26 saturated fatty acid containing zero to three hydroxyl groups, whereas the fatty acids in mammalian sphingolipids vary in chain length, degree of hydroxylation and saturation (Dickson et al., 2006). The hydrophilic polar head group also varies. In yeast, these groups are myo-inositol containing namely, phosphorylinositol, mannosyl phosphorylinositol, or polar mannosyl diphosphorylinositol. In mammals, the groups are mostly phosphorylcholine (sphingomyelin), galactose (galactosylceramide) or qlucose (glucosylceramide). Mammals contain more than 100 classes complex sphingolipids, while yeast contain only three (Kihara et al., 2007).

2. Comparative sphingolipid metabolism in yeast and mammals

Sphingolipids have long been known to play a structural role in cell membranes (Obeid et al., 2002). In addition, studies in yeast and mammals have shown that sphingolipids act as secondary messengers in several signaling pathways (Dickson et al., 1998). The sphingolipid synthesis pathway in yeast and mammals is highly

conserved through the synthesis of ceramide, with minor variations in chain length, hydroxylation and saturation (Epstein and Riezman, 2013). Ceramide is synthesized in the endoplasmic reticulum (ER) and transported to the Golgi, where complex sphingolipids are synthesized in both yeast and mammals (Breslow, 2013). The sphingolipid biosynthetic pathways of yeast and mammals are shown in Fig. 1.3.

2.1 Synthesis of long chain bases (LCBs)

The synthesis of LCBs, the precursors of sphingolipids, is highly conserved from yeast to mammals. Sphingolipid synthesis begins in the ER with the condensation of L-serine with fatty acyl-coenzyme A (CoA), primarily palmitoyl-CoA (but also stearoyl-CoA), catalyzed by serine palmitoyl transferase (SPT), which produces 3-ketodihydrosphingosine (KDHS) (Gable et al., 2003; Hanada, 2003; Lowther et al., 2012). The genes encoding these enzymes are shown in Table 1.1.

In the second reaction of sphingolipid synthesis, the short-lived product KDHS is reaction reduced to DHS in an NADPH-dependent catalyzed by 3ketodihydrosphingosine reductase (Dickson 2008; Beeler et al., 1998; Kihara and Igarashi 2004). PHS is synthesized in yeast via hydroxylation of C-4 of DHS, catalyzed by sphinganine C4-hydroxylase (Dickson, 2008). The reverse reaction, conversion of PHS to DHS, does not occur. PHS is also found in the skin epidermis of mammals where it regulates important functions such as apoptosis, inflammation, and differentiation (Kim et al., 2014).

2.2 Ceramide synthesis

Ceramide is the central intermediate of sphingolipid metabolism. Interestingly, altered ceramide levels have been associated with schizophrenia, depression, and BD,

as discussed below (Schwartzet al., 2008; Kornhuber et al., 2005). Ceramide exists as dihydroceramide or phytoceramide. DHS is linked to mostly a C26 fatty acid via an amide linkage at the C-2 position to form dihydroceramide. The ER-localized ceramide synthase catalyzes this reaction. In yeast, dihydroceramide is hydroxylated to phytoceramide by sphinganine C4-hydroxylase. Phytoceramide can also be synthesized by hydroxylating DHS to PHS, which is amide-linked to a C26 fatty acid (Dickson 2008). The yeast ceramide synthases Lag1 and Lac1 have overlapping functions, as single mutants of Lag1 and Lac1 are viable, while the double mutant is not (Cowart and Obeid 2007). Mammals contain six ceramide synthases, CerS1-6, which exhibit specificity for fatty acyl-CoAs. CerS1 exhibits specificity for C18, CerS2 and CerS4 for C22 and C24, and CerS5 and CerS6 for C16, while CerS3 utilizes a broad range of substrates (Mizutani et al., 2006). In mammals, dihydroceramide is desaturated by Δ 4-desaturase between C-4 and C-5 to phytoceramide (Ternes et al., 2002; Mizutani et al., 2004; Omae et al., 2004).

2.3 Fatty acid elongation pathway

Very long chain fatty acids required for ceramide synthesis are synthesized in the ER by the fatty acid elongation pathway. The fatty acid elongase complex adds two carbons to fatty acyl CoAs per cycle (Jakobsson et al., 2006). Each isoform of fatty acid elongase synthesizes a very long chain fatty acyl CoA of a characteristic length (Denic and Weissman 2007). The four steps of fatty acid elongation in yeast and mammals include condensation, reduction, dehydration, and a second reduction, as shown in Fig. 1.2. Malonyl-CoA is first condensed with acyl-CoA to synthesize 3ketoacyl-CoA, catalyzed by the highly conserved fatty acid elongase (Jakobsson et al.,

Figure 1.1. Sphingolipid structure. The sphingolipid backbone consists of a long chain base linked to a fatty acid chain via an amide link A polar head group R is linked to the OH of C-1 of the LCB via a OH bond R=H in a ceramide molecule; R= Phosphocholine in sphingomyelin; R= Sugar in glycosphingolipids. N Represents variations in the chain length.

2006). Three elongases in yeast exhibit specificity for fatty acids of specific chain length (Table 1.1). Elo1 catalyzes elongation of C14 to C16, Elo2/ Fen1 catalyzes elongation of C20 to C22 and C22 to C24, and Elo3/Sur4 catalyzes the elongation of C24 to C26 and, with a lower efficiency C22 to C24 (Oh et al., 1997). Mammalian fatty acid elongases are encoded by seven genes, ELOVL1-7, which also exhibit acyl chain specificity (Table 1.1).

ELOVL6 elongates saturated fatty acyl-CoA chains of C16 or shorter. ELOVL3 and ELOVL7 elongate both saturated and unsaturated fatty acyl-CoAs of C16 to C22 but have highest activity for C18 (Ohno et al., 2010). ELOVL1 elongates saturated C18-C26 and monounsaturated C20:1 n-9 and C22:1 n-9 (Ohno et al., 2010). ELOVL1 is the major elongase responsible for the synthesis of C24 containing sphingolipids, which are present in high amounts in mammals (Kihara, 2012). ELOVL4 elongates very long saturated fatty acids or polyunsaturated fatty acids with chains longer than C26. ELOVL2 and ELOVL5 exhibit specificity for polyunsaturated fatty acyl-CoAs. ELOVL2 elongates polyunsaturated fatty acyl CoAs with C22 and ELOVL5 with C18, and both can elongate polyunsaturated fatty acyl CoAs with C20 (Kihara, 2012). 3ketoacyl-CoA is reduced by 3-ketoacyl-CoA reductase to 3-hyroxyacyl-CoA, which is dehydrated to 2,3-trans-enoyl-CoA by 3-hydroxyacyl-CoA dehydratase. 3-hydroxyacyl-CoA undergoes another round of reduction catalyzed by enoyl reductase to yield an acyl-CoA with 2 more carbon chains than the original acyl-CoA (Kihara, 2012). The steps in the fatty acid elongation pathway as well as the fatty acid elongases are conserved from yeast to mammals (Kihara, 2012).

2.4 Complex sphingolipid synthesis

Complex sphingolipids differ from yeast to mammals primarily in their head groups. Mammals contain more than 100 different sphingolipid classes due to diverse head groups linked to ceramide, while yeast contain only three types of complex sphingolipids. Yeast sphingolipids are derived mostly from phytoceramide and, to a lesser extent, dihydroceramide (Perry et al., 2005; Vallee and Reizman 2005). In yeast, ceramides are transported to the Golgi via vesicular or nonvesicular ATP-independent transport (Funato et al., 2002). The ER and the Golgi membranes must be in contact with each other for transport to occur (Funato et al., 2002). It is proposed that an ATPindependent translocation protein transports ceramide to the Golgi at the contact sites (Funato et al., 2002). In the Golgi, a polar, hydrophilic head group is transferred to ceramide to form complex sphingolipids, which are transported to the plasma membrane where they are abundant (Dickson 2008; Sims et al., 2004; Funato et al., 2002). The three types of complex sphingolipids synthesized in the yeast Golgi are inositol phosphoceramide (IPC), mannose inositol phosphoceramide (MIPC), and mannose (inositol-P)₂ ceramide ($M(IP)_2 C$).

The synthesis of IPC, catalyzed by IPC synthase, occurs by the addition of phosphorylinositol to ceramide (Dickson 2008; Sims et al., 2004; Funato et al., 2002). MIPC is synthesized by the addition of mannose from guanosine diphosphate mannose to IPC via MIPC synthase. There are two MIPC synthase complexes in yeast, one containing Sur1p and Csg2p and the other composed of Csh1p and Csg2p (Dickson 2008; Sims et al., 2004). The most abundant complex sphingolipid, M(IP)₂C, is formed by the addition of a second phosphorylinositol to MIPC, catalyzed by inositolphosphotransferase (Dickson 2008; Sims et al., 2008; Sims et al., 2008).

Figure 1.2. Fatty acid elongation pathway. Step 1: Malonyl-CoA is condensed with acyl-CoA to synthesize 3-ketoacyl-CoA. **Step 2:** 3-ketoacyl-CoA is reduced by 3-ketoacyl-CoA reductase to 3-hydroxyacyl-CoA. **Step 3:** 3-hydroxyacyl-CoA is dehydrated to 2,3-trans-enoyl-CoA by 3-hydroxyacyl-CoA dehydratase. **Step 4:** 3-hydroxyacyl-CoA undergoes a round of reduction catalyzed by enoyl reductase to yield an acyl-CoA with 2 more carbon chains than the original acyl-CoA.

In mammals, the C-1 position of ceramide is linked to a hydrophilic group such as phosphorylcholine, galactose, or glucose to form complex sphingolipids. Mammalian cells also exhibit both vesicular and non-vesicular ceramide transport. Vesicular transport involves coat protein complex II (COPII), which mediates vesicular transport of ceramides from the ER to the Golgi (Perry and Ridgway, 2005; Van Meer and Holthius, 2000). Non-vesicular transport of ceramides from the lumenal surface of the ER to the outer leaflet of the Golgi is mediated by the transporter ceramide transfer protein (CERT) (Hanada et al., 2003; Kumagai et al., 2005). Ceramide is primarily converted to sphingomyelin via the addition of a phosphorylcholine to the ceramide backbone by sphingomyelin synthase. There are two sphingomyelin synthases SMS1 catalyzes the synthesis of SM in the Golgi. SMS2 is mainly responsible for the synthesis of sphingomyelin in the plasma membrane. In addition to its activity in the plasma membrane, SMS2 functions redundantly with SMS1 in the Golgi (Hanada et al., 2007). Ceramide can also be galactosylated to produce galactosylceramide in the ER galactosyltransferase (Holthuis et al., 2001). Galactosylceramide bv (galactocerebroside) is one of the predominant glycosphingolipid in the brain (Svennerholm et al., 1968).

Ceramide transported via vesicular or non-vesicular transport to the Golgi, is glucosylated to glucosylceramide via glucosylceramide synthase (Schulte and Stoffel 1993). Glucosylceramide and glycosylceramide act as precursors for the synthesis of glycosphingolipids, catalyzed by Golgi glycosyltransferases (Maccioni et al., 2011; Merill et al., 2011). These glycosyltransferases transfer a specific carbohydrate from a sugar nucleotide namely UDP-glucose, UDP-galactose, CMP-sialic acid to the acceptor molecule, ceramide or the non reducing end of a growing carbohydrate chain attached to a ceramide molecule. Glucosylceramide, is galactosylated to produce lactosylceramide by galactosyltransferase (Perry and Ridgway, 2005; Hanada et al., 2007). Lactosylceramide acts as a precursor for the synthesis of a number of complex glycosphingolipids such as GA2 (Nagata et al., 1992; Hidari et al., 1994), GM3 (Ishii et al., 1998), Gb3 (Kojima et al., 2000); and Lc3 (Merrill, 2011; Biellmann et al., 2008). GA2, GM3, Gb3 and Lc3 are then precursors for the synthesis of other complex glycosphingosphingolipids (Merrill, 2011). In addition, galactosylceramide is sialylated to produce GM4 ganglioside, or sulfated to produce sulfatides (Merrill, 2011). Sulfate esters of galactosylceramide, or sulfatides are thought to play a role in the function of myelin. Perturbation of complex sphingolipid synthesis (especially GM1 and sulfatides) has been described in schizophrenia, as discussed below.

2.5 Long chain base phosphate (LCBP)

In yeast, the LCBs, DHS and PHS are phosphorylated to dihydrosphingosine phosphate (DHS-1P) or phytosphingosine phosphate (PHS-1P) by sphingolipid base kinases Lcb4 and Lcb5 (Nagiec et al., 1998). Lcb4 contributes about 97% of the kinase activity. Lcb5, which contributes about 3% of activity, is important for phosphorylation during heat stress (Nagiec et al., 1998; Ferguson-Yankey et al., 2002). Although the double mutant lacking both kinases has aberrant sphingolipid base content, it is viable (Cowart and Obeid, 2007).

In mammals, sphingosine bases are phosphorylated at C-1 by two sphingosine kinases that are homologous to the yeast enzyme. Sphingosine-1-phosphate (S1P) is

the major product of the kinase but DHS-1P also exists (Kihara et al., 2007). S1P is an important signaling molecule, as discussed in 3.11.2.

2.6 Ceramide-1- phosphate (C1P)

In mammals, ceramides are phosphorylated at the C-1 position by the calciumstimulated ceramide kinase (CERK) to form ceramide-1-phosphate (C1P). C1P is a bioactive signaling molecule involved in macrophage migration, inflammation and vesicular transport (Chalfant and Spiegel, 2005; Misutake et al., 2005; Kihara et al., 2007). Ceramide kinase and C1P are not found in yeast (Sugiura et al., 2002).

2.7 Catabolism of complex sphingolipids

Isc1, the only sphingomyelinase (SMase) identified in yeast, hydrolyzes all three complex sphingolipids to phytoceramide. Isc1 is homologous to mammalian neutral SMase (Sawai et al., 2000). In mammals, five types of SMases degrade complex sphingolipids to ceramide. These include acid (aSMase), secretory (sSMase), alkaline (alk-SMase), Mg²⁺-independent neutral (nSMase), and Mg²⁺-dependent neutral SMases (Samet and Barenholz, 1999). A single gene, *ASM/SMPD1*, encodes both aSMase, which is targeted to the lysosomes, and sSMase, which is present in secretory vesicles (Wu et al., 2005; Duan, 2006). Alk-SMase is expressed in bile and intestinal tract (Wu et al., 2005; Duan, 2006). Very little is known about Mg²⁺-independent neutral SMases, and the gene encoding this enzyme has not been identified. Three Mg²⁺-dependent neutral SMases have been identified (Tomiuk et al., 1998, Hofmann et al., 2000; Krut et al., 2006).

2.8 Catabolism of ceramides

Figure 1.3. Synthesis and metabolism of sphingolipids in yeast and mammals. **Common synthesis pathway:** Sphingolipid synthesis begins in the ER in both yeast and mammals. Acyl-CoA is condensed with serine to form 3-ketohydrosphingosine, which is further reduced to dihydrosphingosine (DHS). C26 fatty acid is transferred to DHS to yield dihydroceramide. In yeast: DHS is hydroxylated to phytosphingosine (PHS), which is attached to a C26 fatty acid to synthesize phytoceramide. Dihydroceramide can also be hydroxylated to phytoceramide. Phosphatidylinositol is transferred to phytoceramide to produce inositolphosphorylceramide (IPC), which is mannosylated mannovlinositolphosphorylceramide (MIPC). to Another phosphatidylinositol group is added to MIPC to yield mannosyl(inositolphosphoryl)₂ ceramide [M(IP)₂C]. In mammals: DHS is N-acetylated to dihydroceramide, which is converted to ceramide. Different polar groups are added to the ceramide backbone to synthesize complex sphingolipids. including phosphorylcholine to produce sphingomyelin, and galactose and glucose to synthesize galactosylceramide and glucosylceramide, respectively. Glucosylceramide can be modified by the addition of sugars such as fucose, galactose, sialic acid, N-acetylglucosamine and Nacetylgalactosamine to produce several glycosphingolipids. Common cleavage pathway: Complex sphingolipids are catabolized to ceramide, which is cleaved to

LCBs. LCBs are phosphorylated to form LCBPs, which are dephosphorylated to LCBs or further cleaved to fatty aldehyde and phosphatidylethanolamine. In mammals, ceramide is phosphorylated to ceramide-1-phosphate (C1P). In yeast, Rsb1 transports sphingosine bases from the cytoplasmic side to the extra-cytoplasmic side of the membrane.

Ceramide that is synthesized de novo from sphingolipid bases or produced via the hydrolysis of complex sphingolipids is cleaved by ceramidases to LCBs, which can be phosphorylated or recycled for synthesis of ceramides (Ogretmen et al., 2002; Sultan e al., 2006). Reacylation of the cleaved sphingolipid bases to form ceramide is reported to be less efficient than the *de novo* synthesized sphingolipid bases, but it has been suggested that these cleaved bases can aid in the formation of ceramide with fatty acids of varying N-acyl chain length (Ogretmen et al., 2002; Sultan et al., 2006). Yeast contain two ceramidases, Ydc1 and Ypc1, while mammals contain three pH-dependent ceramidases. Acid ceramidases are located in the lysosomes (Koch et al 1996; Ferlinz et al., 2001). Neutral ceramidases are in the plasma membrane or secreted to the extracellular fluid following cleavage of the transmembrane region (Tani et al., 2003; Mao et al., 2001). Two alkaline ceramidases have been identified, one in the ER/Golgi, which selectively degrades phytoceramides (Mao et al., 2003).

2.9 Catabolism of LCBPs

In yeast, DHS-1P and PHS-1P are cleaved by the sphingolipid lyase Dpl1 to generate ethanolamine phosphate and fatty aldehydes (Saba et al., 1997). This is the only known route whereby a sphingolipid can be converted to a non-sphingolipid. Ethanolamine phosphate is shuttled to synthesize phosphatidylethanolamine through the Kennedy pathway (Panwar and Scott- Moye Rowley, 2006). DHS-1P and PHS-1P are dephosphorylated to DHS and PHS. In mammals, S1P is catabolized to fatty aldehyde and phosphatidylethanolamine by S1P lyase encoded by SPL, which is

homologous to yeast *DPL1* (Kihara et al., 2007). S1P regulates cell survival, cell proliferation and migration, and neurotransmitter release (Okada et al., 2009).

2.10 Sphingolipid base transporter

In yeast, deletion of sphingolipid lyase *DPL1* leads to accumulation of sphingosine base phosphates and inhibits cell growth (Kim et al., 2000). In a screen to identify suppressors of the *dpl1* mutant growth defect caused by the accumulation of sphingosine phosphates, the ATP dependent sphingosine transporter Rsb1p was identified (Kihara and Igarashi 2002). Rsb1p is thought to be a transporter or flippase that transports sphingosine bases from the cytoplasmic side to the extra cytoplasmic side of the membrane in order to maintain normal intracellular levels of LCBs and membrane composition (Kihara and Igarashi 2002). Homologs of Rsb1p have not been found in mammals.

2.11 Sphingolipids regulate essential functions

Metabolites and intermediates of sphingolipid metabolism, including (but not limited to) LCBs, ceramide, S1P, and C1P, are signaling molecules that regulate essential cellular processes that are required for the regulation for neuronal processes (Hannun and Obeid, 2008). These include SNARE complex formation, synaptic vesicle exocytosis at nerve terminals, neurogenesis, neural tube closure, apoptosis, neurodegeneration, and neurotransmitter release (Okada et al., 2009; Shinghal et al., 1993; Kajimoto et al., 2007; Van Brocklyn et al., 2012; Mizugishi et al., 2005; Darios et al., 2009).

2.11.1 LCBs and sphingosine

LCBs regulate actin cytoskeleton, heat stress, and endocytosis (Hannun and Obeid, 2008). Heat stress causes a transient 2-3-fold increase in the levels C18 DHS and C18 PHS and a 100-fold increase in levels of C20 DHS and C20 PHS (Dickson et al., 1997; Jenkins et al., 1997). LCBs are required for proper actin cytoskeleton organization (Schmelze et a., 2002) and for the regulation of endocytosis (deHart et al., 2002). LCBs also play a role in inhibiting uptake of uracil and amino acids tryptophan, leucine, and histidine (Chung et al., 2001). It is not understood how LCBs regulate amino acid transport, but PHS is important for ubiquitin-mediated breakdown of the uracil transporter Fur4 (Chung et al., 2000).

Sphingosine activates synaptobrevin in synaptic vesicles, facilitating SNARE complex assembly, implicated in membrane fusion. In addition, sphingosine increases synaptic vesicle exocytosis in nerve terminals and neuromuscular junctions (Darios et al., 2009).

2.11.2 S1P

S1P regulates cell survival, cell proliferation, migration and neurotransmitter release (Okada et al., 2009; Kajimoto et al., 2007), and rescues cells from ceramideinduced apoptosis (Cuvillier et al., 1996). The effect of S1P depends on the level of neuronal differentiation. Thus, S1P induces proliferation in neural undifferentiated progenitor cells (Harada et al., 2004) but it increases apoptosis in well-differentiated neurons (Moore et al., 1999). In addition to its role in cell proliferation, S1P is important for neural and vascular development (Mizugishi et al., 2005). Sphingosine kinase mutants (*SphK1* and *SphK2*) do not show any abnormalities, but the double mutant

exhibits embryonic lethality, perturbed neurogenesis, neural tube closure, and angiogenesis in mice (Mizugishi et al., 2005).

2.11.3 Ceramide

Ceramides are anti-proliferative and promote apoptosis (Van Brocklyn and Williams, 2012). Increased levels of ceramide cause cell death (Obeid et al., 1993), while depletion of ceramide reduces progression of apoptosis (Bose et al., 2005; Santana et al., 1996). Altered ceramide levels are linked to cancer, neurodegeneration and inflammation (Echten-Deckert and Herget, 2006). Maintaining normal ceramide levels is crucial for brain function. Ceramide is also known to regulate cell senescence. The genes LAG1 and LAC1, which encode ceramide synthase, regulate yeast life span (Schorling et al., 2005). The mammalian homolog of LAG1 (CerS1) is highly expressed in the brain (Pewzner-Jung et al., 2006). Overexpression of CerS1 leads to increased levels of C18 ceramide and induces apoptosis (Pewzner-Jung et al., 2006). CerS1generated C18 ceramide negatively regulates the human telomerase reverse transcriptase promoter (Blasco et al., 1995; Menacarelli and Martinez-Martinez, 2012). Telomerase is expressed in neurons in the early stages of development, in neural stem cells and progenitors, but is downregulated in developed cells. Telomerase protects post-mitotic neurons from stress-induced apoptosis and is important for survival of neurons in the developing brain. Therefore, C18 ceramide very likely contributes to neuronal vulnerability in age related neurodegenerative disorders (Menacarelli and Martinez-Martinez, 2012). Ceramide affects several signal transduction pathways. The signaling molecules Akt serine/threonine kinase and PP2A are known targets of ceramide (Mora et al., 2002; Qin et al., 2012; Wolff et al., 1994). Ceramide was shown

Enzymes	Genes		References
	Yeast	Mammals	
Serine palmitoyl transferase	LCB1, LCB2, LCB3	SPTLC1, SPTLC2, SPTLC3	(Gable et al., 2003; Hanada 2003; Lowther et al., 2012)
3- ketodihydrosphingosine reductase	TSC10	FVT-1	(Dickson 2008; Beeler et al., 19998; Kihara and Igarashi 2004)
Sphinganine C4- hydroxylase	SUR2	-	(Dickson 2008)
Ceramide synthase	LAG1, LAC1 LIP1	CERS1-6	(Cowart and Obeid 2006; Mizutani et al., 2006)
Dihydroceramide desaturase	-	DES1, DES2	(Ternes et al., 2002; Mizutani et al., 2004; Omae et al., 2004)
Fatty acid elongases	ELO1, ELO2/FEN1, ELO3 SUR4	ELOVL1-7	(Jakobsson et al., 2006; Ohno et al., 2010; Kihara 2011; Kihara, 2012)
3-ketoacyl-CoA reductase	Ybr159w, AYR1	KAR	(Kihara 2011)
3-hydroxyacyl-CoA dehydratase	PHS1	HACD1-4	(Kihara 2011)
Enoyl reductase	TSC13	TER	(Kihara 2011)
IPC synthase	AUR1	-	(Dickson 2008; Sims et al., 2004; Funato et al., 2002)
Sphingolipid alpha- hydroxylase	SCS7	-	(Dickson 2008; Sims et al., 2004; Funato et al., 2002)
MIPC synthase	SUR1, CSH1 and CSG2	-	(Dickson 2008; Sims et al., 2004)
Inositolphosphotransfer ase	IPT1	-	(Dickson 2008; Sims et al., 2004)
Sphingomyelin synthase		SMS1 and SMS2	(Hanada et al., 2007)
Glucosylceramide	-	GlcT-1	(Schulte and

Table 1.1. Yeast and mammalian genes involved in sphingolipid metabolism

synthase			Stoffel 1993)
Galactosyltransferase	-	CGT	(Schulte and Stoffel 1993)
Long chain base kinase	LCB4, LCB5	SPHK1 and SPKH2	(Kihara et al., 2007)
Ceramide kinase		CERK	(Sugira et al., 2002)
Sphingomyelinase	ISC1	aSMase, sSMase: ASM/SMPD1 alk-SMase: NPP7 Mg ²⁺ dependent neutral SMase: SMPD3, SMPD4, SMPD5 Mg ²⁺ independent neutral SMase: not known	(Sawai et al., 2000; Wu et al., 2005; Duan, 2006; Tomiuk et al., 1998, Hofmann et al., 2000; Krut et al., 2006)
Ceramidase	YDC1, YPC1	Acidic: ASAH1/AC Neutral: ASAH2/NCDase Alkaline: PHC, CER1/AAH3	(Ogretmen et al., 2002; Sultan e al., 2006; Koch et al 1996; Ferlinz et al., 2001). Tani et al., 2003; Mao et al., 2001; Mao et al., 2003)
Sphingolipid-1-P lyase	DPL1	SPL	(Kim et al., 2000; Kihara et al., 2007)
Long chain base phosphatase	LCB3, YSR3	SPP1, SPP2, LPP1-3	(Panwar et al.,2006; Kihara et al., 2007).
Sphingolipid transporter	RSB1	-	(Kihara and Igarashi 2002).

to reduce Akt phosphorylation at Ser473; this dephosphorylation was reversed after treatment with antidepressants (Gulbins et al., 2013). Ceramide induces mitochondrial outer membrane permeabilization (MOMP), important for induction of apoptosis, by forming ceramide channels. In addition, ceramide enhances the autophosphorylation of the kinase suppressor of Ras (KSR), which activates the RAF1/MEK/ERK MAPK cascade, inducing apoptosis (Zhang et al., 1997; Basu et al., 1998). Several studies have demonstrated that ceramide activates the JNK pathway (Westwick et al., 1995; Verheij et al., 1996; Nica et al., 2008). JNK activation regulates proteins of the Bcl-2 family, involved in apoptosis (Bogoyevitch et al., 2006). Ceramide also activates PKC-zeta and inhibits PKC-alpha (Muller et al., 1995), phenotypes that are reversed by antidepressants imipramine and amitriptyline (Kornhuber et al., 2005). These findings suggest that antidepressants may restore normal signaling that is perturbed by increased ceramide levels.

2.11.4 Ceramide-1-phosphate (C1P)

Phosphorylation of ceramide produces C1P, which decreases apoptosis in several ways. C1P blocks ceramide synthesis by inhibiting acid sphingomyelinase (Gomez-Munoz et al., 2004) and SPT activity (Granado et al., 2009). C1P also enhances the activity of anti-apoptotic protein kinase B and *NF-kappaB* (*NF-kB*) (Granado et al., 2009). While the function of C1P has not been definitively elucidated, an early study proposed that it plays a role in synaptic vesicle functioning and release of neurotransmitters (Shinghal et al., 1993).

3. Sphingolipid metabolism in psychiatric disorders

As discussed above, sphingolipids affect essential cellular processes that are crucial not only for cellular homeostasis such as apoptosis, cell survival and development, but also for neuronal functions. In particular, sphingosine is required for activation of exocytosis of the synaptic vesicles at the nerve terminal. Ceramide, S1P, and C1P regulate apoptosis, neurogenesis, and neurotransmitter release. In view of the key role of sphingolipids in neurogenesis, neuronal cell death and neurotransmission. It is not surprising that perturbation of sphingolipid metabolism is observed in depression, anxiety, schizophrenia, and BD.

3.1 Depression

Depression is a chronic, severe, life-threatening disorder characterized by depressed mood, insomnia, weight loss, loss of interest or pleasure in normal activities, feelings of worthlessness, and a high risk of suicide. The worldwide prevalence of depression is 10% (Belmaker and Agam, 2008). Recent studies suggest that depression is linked to a change in the levels of neurogenic and apoptotic factors in the hippocampus, leading to hippocampal atrophy and neurodegeneration (Santarelli, et al., 2003; David et al., 2009).

A number of studies indicate that depression is associated with altered sphingolipid synthesis. A recent lipidomic analysis identified significant alterations in plasma sphingomyelin species in patients with depression (Demirkan et al., 2013). Several studies, summarized below, report increased levels of ceramide and/or aSMase in depression, and decreased levels of these components following antidepressant treatment.

3.1.1 Increased ceramide and acid sphingomyelinase in depression

Several studies suggest that increased ceramide levels are associated with depression. Increased aSMase activity was observed in peripheral blood mononuclear cells of patients suffering from major depressive disorder who were free of therapy for at least 10 days (Kornhuber et al., 2005). As discussed above, aSMase converts sphingomyelin to ceramide and phosphorylcholine (Gublins and Kolesnick 2003; Perrotta et al., 2010). Therefore, this finding suggested that increased levels of ceramide might be associated with depression. Consistent with this possibility, increasing the levels of ceramide by injecting C16 ceramide directly in the hippocampus or by administrating D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP, a glycosyltransferase inhibitor that increases ceramide levels by inhibiting glycosylation of ceramide) induced depressive disorder-like symptoms in mice (Gulbins et al., 2013). Plasma ceramide levels were analyzed in Alzheimer disease patients with recent depression, past depression and no depression. Interestingly, ceramide levels were elevated in patients with recent depression compared to patients with past or no depression (Garcia-Garcia et al., 2011). Indirect evidence associating ceramide with depression comes from a report of increased activity of phospholipase A2, which is stimulated by ceramide, in patients with major depression (Nopnenm et al., 1993).

3.1.2 Antidepressants inhibit aSMase activity and decrease ceramide levels

If ceramide plays a causal role in depression, as suggested by the correlational studies cited above, antidepressants may exert their therapeutic effects by inhibiting aSMase, thus decreasing the release of ceramide from sphingomyelin. Consistent with this, treatment with antidepressants imipramine and amitriptyline caused a rapid

reduction of aSMase activity in peripheral blood mononuclear cells of depressive patients (Kornhuber et al., 2005). In addition, a therapeutic concentration of antidepressants amitriptyline and fluoxetine inhibited aSMase activity in cultured neurons (Gulbins et al., 2013). Wild type mice treated with antidepressants amitriptyline (a tricyclic drug) or fluoxetine (a serotonin reuptake inhibitor) exhibited decreased aSMase protein levels and activity (Gulbins et al., 2013). The high levels of ceramide present in mice heterozygous for mutant ceramidase were also decreased by antidepressants amitriptyline and fluoxetine (Gulbins et al., 2013). These studies suggest that antidepressants inhibit aSMase activity via the following mechanism. The inner leaflet of the lysosomal membrane is negatively charged due to the presence of the anionic lipid bis(monoacylglycero)phosphate (Schulze et al., 2009). Positively charged aSMase adheres to the inner lysosomal membrane leaflet electrostatically (Kolzer et al., 2004). Lipophilic compounds and weak bases such as antidepressants in the neutral form can pass passively through the cell and lysosomal membranes and accumulate in the lysosome, where they become protonated thus, trapped in the lysososme, increasing the antidepressant concentration in the lysosome (Duve et al., 1974; Trapp et al., 2008). This changes the physiology of the lysosome. The lipophilic part of the drug adheres to the membrane, and the positively charged part of the drug is facing the lumen. Accumulation of the drug prevents the aSMase from adhering to the lysosomal membrane (Kolzer et al., 2004). This results in proteolytic cleavage of the enzyme, thus inhibition of the aSMase activity and increasing the levels of ceramide in the lysosome (Hurwitz et al., 1994). This suggests that antidepressants decrease levels of ceramide due to inhibition of aSMase activity via degradation of the aSMase protein,
which normalizes the reduced neurogeneisis and neuronal maturation caused by increased ceramide levels.

Interestingly, amitriptyline and fluoxetine increased neurogenesis, neuronal maturation and survival in wild type but not in aSMase-deficient mice, suggesting that the mechanism of action of the drugs is by affecting aSMase. Treatment of antidepressants amitriptyline and fluoxetine or the aSMase inhibitor fendiline attenuated corticosterone-induced depressive-like behavior in wild type mice but had no effect on corticosterone-treated aSMase-deficient mice (Gulbins et al., 2013). These studies suggest that increased levels of ceramide may play a causal role in the pathophysiology of depression, and that a potential therapeutic mechanism underlying antidepressant efficacy is the reduction of ceramide levels by inhibition of aSMase activity. Reducing ceramide levels could be the central goal for the development of new antidepressants.

3.2 Anxiety

Anxiety disorders are characterized by severe and prolonged distress and fear with physiological symptoms, which are manifested early and recur throughout life (Baxter et al., 2014). They are the sixth leading cause of disability in both low and highincome countries (Baxter et al., 2014). Several studies suggest that sphingolipids may play a role in the pathophysiology of anxiety disorder. In particular, increased levels of S1P are associated with anxiety-like behavior while increased levels of GM1 may reduce anxiety and cause neuroprotection.

3.2.1 Increased levels of S1P

Chronic stress is known to cause anxiety-like behavior. In several models of stress-induced anxiety in rats, including daily immobilization for 3 weeks or electric shock followed by immobilization, serum S1P levels were increased (Jang et at., 2011). In the former model, increased expression of protein markers of neurodegeneration were also observed, including iNOS (inducible nitric oxide synthase), GFAP (glial fibrillary acidic protein) and NR1 (N-methyl-D-aspartate receptor channel). Infusion of S1P into the lateral cerebroventricle also led to increased expression of these protein markers, suggesting that stress-induced anxiety causes increased S1P, which leads to degeneration (Jang et al., 2008). However, an alternative possibility comes from a study using an elevated plus maze model of anxiety, in which S1P-treated animals spent significantly less time in the open arms of the maze, suggesting that S1P induces anxiety (Jang et al., 2011).

3.2.2 Perturbation of glycosphingolipid levels

Precocious weaning is known to induce anxiety-like behavior in male mice, which is more pronounced than that observed in precocious weaned female or normal weaned mice (Ono et al., 2008). Interestingly, precocious weaned male mice exhibited an accumulation of galactosylceramide in the amygdala (but not in the hippocampus or prefrontal cortex), along with an increase in number and reduction in the diameter of myelinated axons at 5 weeks. Galactosylceramide and sulfatide contribute about 30% of the lipid content of the myelin sheath (Noton, 1984). The developmental time of myelin formation differs for each brain region (Akiyama et al., 2002). In normal-weaned male mice, galactosylceramide increases linearly until 8 weeks of age in the amygdala, and saturates by 5 weeks in the prefrontal cortex and hippocampus. Therefore, early

weaning may induce precocious myelination. Decreased axonal diameter could be caused by precocious myelination induced by early weaning. This can cause changes in axonal structure and neural circuts in basolateral amygdala, a site controlling anxiety like behavior (LeDoux, 1993; Schafe et al., 2001; Spiga et al.,2006). Therefore, precocious myelination of the amygdala in early-weaned male mice might affect the development of an anxiety-related network and thereby increase anxiety-related behavior.

GM1 (monoamine ganglioside) is a neuroprotective sialic acid-containing glycosphingolipid (Ariga et al., 2008; Wallis et al., 1995). An early study suggested that GM1 improved memory but not anxiety. GM1 was administered to male rats containing electrolytic lesions in the left cortex. (Electrolytic lesions produce transient behavioral deficits (Reeves et al., 1997; Loesche et al., 1977). Working memory was measured in a Morris water maze and anxiety levels were tested in a plus maze. GM1 treatment led to improvement in the working memory, but not in the anxiety levels (Glasier et al., 1995). However, GM1 was effective in blocking anxiety-related responses to ethanol withdrawal, including hypolocomotion, tremors and other anxiety-like behavior (Wallis et al., 1995). Pretreatment with GM1 or its constituent sialic acid was also effective in reducing effects of ethanol intoxication, such as nose-poke exploration, decreased locomotion, and anxiety (Wallis et al., 1995). Pretreatment with lower anxiety (Wallis et al., 1995).

These studies suggest that cerebrosides may play a role in anxiety, as galactosylceramide accumulates in at least one model of anxiety. Galactosylceramide

and GM1 are required for proper myelination of the axon, thus exerting a protective role.

3.3 Schizophrenia

Schizophrenia is a debilitating mental disorder with drastic psychosocial consequences. It is characterized by defects in synaptic connectivity in the white matter tracts, leading to cognitive abnormalities (Fitzsimmons et al., 2013). Schizophrenic patients exhibit both positive symptoms (delusions and hallucinations) and negative symptoms (social withdrawal and loss of motivation) (Liddle, 1987). Schizophrenia is known to affect 1% of the world population (Capuano et al., 2002; Merikangas et al., 2007). Several neurochemical and neuropathlogical theories have been proposed to explain the pathology of schizophrenia, including perturbations in GABAergic (Lewis et al., 2005), dopaminergic (Carlsson, 1980), and glutamatergic signaling (Kim et al., 1980; Olney and Farber, 1985), and aberrations in neurodevelopment (Weinberger, 1987), prefrontal cortex function (Andreasen et al., 1986; Ingvar and Franzén, 1974), and inflammatory response (Lin et al., 1998; Rothermundt et al., 2001).

3.3.1 Perturbation of complex sphingolipids

Complex sphingolipids are required for myelination of neurons (Boggs et al., 2010). They play a role in carbohydrate-carbohydrate interactions between opposing membranes, cell-cell adhesion and transmembrane signaling, and communication between the axon and myelin sheath, which affects axonal and myelin functions and neurodegeneration (Boggs et al., 2008).

levels of complex sphingolipids, Decreased including sulfatides and cerebrosides were first observed in a postmortem schizophrenic brain in 1969 (Cheravil 1969). Subsequently, decreased levels of sphingomyelin and galactocerebrosides, which are required for myelin synthesis in the brain, were observed in post mortem brain samples of chronic schizophrenic patients (Schmitt et al., 2004). Consistent with decreased sphingomyelin, increased levels of phosphatidylserine, an activator of neutral sphingomyelinase, was observed in post mortem schizophrenic samples (Schmitt et al., 2004). Decreased levels of glycosphingolipids could result in decreased myelination and altered cell-cell adhesion and transmembrane signaling, leading to neurodegeneration. However, this conclusion is obscured by studies reporting increased levels of complex sphingolipids in schizophrenia, including glycosphingolipids, and gangliosides GM3 and GD3 (Haselhorst et al., 1988).

In a microarray analysis comparing post mortem brain samples of prefrontal cortex from schizophrenic patients and healthy controls, expression of a number of genes that encode enzymes of sphingolipid metabolism were observed. Changes were most notable in the early stages of the disorder (within 5 years of diagnosis) (Narayan et al., 2009). A significant reduction was observed in the expression of seven genes related to sphingolipid metabolism, including UDP glycosyltransferase 8 (UGT8), serine palmitoyltransferase, long-chain base subunit 2 (SGPP1). UDP-Gal:betaGlcNAcbeta1,4-galactosyltransferase polypeptide 6 (B4GALT6),galactosylceramidase (GALC), galactose-3-O-sulfotransferase 1(GAL3ST1), serine palmitoyltransferase, long-chain base subunit 2 (SPTLC2), and N-acylsphingosine

amidohydrolase (acid ceramidase)1 (*ASAH*) (Narayan et al., 2009). *UGT8* encodes UDP glycosyltransferase, which converts ceramide to galactosylceramide. The *GAL3ST1*-encoded enzyme, galactose-3-O-sulfotransferase, catalyzing the synthesis of sulfatides, Sulfatides and galactosylceramide are components of the myelin sheath, and altered levels of these lipids may lead to impaired myelination. Postmortem studies of schizophrenic patients have revealed abnormalities in myelination of oligodendrocytes (Davis et al., 2003). Consistent with the hypothesis of impaired myelination, oligodendrocyte dysfunction was observed in schizophrenic patients (Kubicki et al., 2005). However, chronic treatment with haloperidol was associated with decreased expression of myelin oligodendrocyte related genes in the white matter of mouse brain samples (Narayan et al., 2007). Therefore, the role of abnormal myelination in schizophrenia remains to be elucidated.

3.3.2 Aberrant ceramide levels

Several reports indicate that ceramide levels are altered in schizophrenia, although a consistent pattern of alteration is not apparent. In a study comparing epidermal lipid profiles of drug naïve (first episode) schizophrenics and healthy controls, several classes of ceramide were altered (Smesny et al., 2012). A significant increase of α -hydroxy and 6-hydroxysphingosine with C26 or C28 and nonhydroxy 6-hydroxysphingosine/ α -hyroxysphingosine with C26 or C28 fatty acid chains, and a decrease in ceramide containing ω -hydroxylated fatty acid greater than C30 esterified to linoleic acid and nonhydroxy phytosphingosine with C26 or C28 were observed in patients compared to the healthy controls (Smesny et al., 2012).

A high throughput mass spectrometry profile of lipid levels in prefrontal cortex white and grey matter showed significant changes in the levels of ceramides in samples from schizophrenic vs. normal controls (Schwarz et al., 2008). Levels of ceramides were increased in the white matter. However, ceramide 34:1 was decreased in RBC samples from first onset patients (Schwarz et al., 2008). This study only analyzed one species of ceramide in RBCs, therefore the data of ceramide levels is not conclusive. In addition, ceramides were significantly increased with drug treatment (Schwarz et al., 2008). Cationic amphiphilic drugs used for the treatment inhibit acid ceramidase activity. Acid ceramidase catalyses the breakdown of ceramide. Inhibition by these drugs could lead to an increase in the ceramide levels (Elojemy et al., 2006).

The microarray analysis of postmortem brain samples of schizophrenic patients discussed in the previous section identified altered expression of genes that metabolize ceramide (Narayan et al., 2009). Interestingly, genes encoding enzymes that decrease ceramide levels were downregulated in chronic schizophrenia, including *UGT8*, *GAL3ST1*, and *ASAH1*. *ASAH1* was also found to have strong linkage to schizophrenia in a genome wide metascan study (Lewis et al., 2003). In addition, two single nucleotide polymorphisms in *ASAH1* were found to be associated with schizophrenia (Zhang et al., 2012). In summary, while some studies suggest that increased ceramide may play a role in schizophrenia, conflicting findings preclude a definitive conclusion.

3.4 Bipolar disorder (BD)

BD, which is characterized by depression and mania, is a severe mood disorder that affects 1-2% of the world population (Weissman et al., 1988). A high throughput lipidomics study of postmortem brain samples from bipolar patients and normal

controls revealed statistically significant increased levels of ceramide in the white matter, not accompanied by decreased levels of phosphatidylcholine, suggesting that the increase in ceramide results from increased synthesis rather than increased breakdown of sphingomyelin (Schwarz et al., 2008). While these studies are very preliminary, they suggest that BD may be associated with altered ceramide levels and ceramide signaling. However, whether ceramide plays a role in the development and progression of BD or is simply an outcome of the disease remains unknown.

4. Future perspective: Exploiting yeast to elucidate sphingolipid functions and develop sphingolipid-modifying therapeutics

While the studies summarized above suggest that sphingolipid metabolism is perturbed in psychiatric disorders, the fundamental question – does perturbation of sphingolipid metabolism play a causal role, or is it a secondary effect of the disorder? – remains to be elucidated. The complexity of mammalian systems and the lack of suitable animal models that accurately reflect human psychiatric illness complicate the ability to effectively address this question. How, then, can a unicellular eukaryote shed light on these complex processes? The genetic tractability of yeast offers powerful advantages that can be exploited to elucidate the role of sphingolipids in essential and highly conserved cellular processes, as follows: 1) All the genes encoding the enzymes of the sphingolipid metabolism in yeast are well characterized, and most of the enzymes of sphingolipid metabolism have homologs or orthologs in mammals, as discussed above. The homology of yeast and mammalian genes has been exploited to clone mammalian sphingolipid genes by complementation of yeast mutants (Dickson, 2006; Modrak et al., 2006; Hannun and Obeid, 2002). The signaling pathways and

cellular processes that are controlled by sphingolipids are also conserved. Conservation of sphingolipid synthesis and function suggests that knowledge gleaned from the yeast system can shed light on similar processes in human cells. 2) A wealth of well-characterized yeast mutants can be exploited in *in vivo* experiments to address the role of specific sphingolipids in essential cellular processes, and to ascertain the global effects of targeted sphingolipid perturbations. 3) Yeast bioassays utilizing sphingolipid mutants can be developed to screen for drugs that target specific sphingolipid components. 4) Yeast genetic and metabolic databases can be utilized for *in vivo* and *in silico* experiments to determine the effects of sphingolipid perturbation on cell function.

4.1 Identifying inhibitors of ceramide and S1P synthesis

Increased levels of ceramide in depression, schizophrenia, and BD suggest that ceramide synthesis may be a potential therapeutic target. As discussed above, mammals have six different ceramide synthase enzymes that exhibit tissue specificity as well as specificity for fatty acyl CoAs (Levy et al., 2005). Creating and analyzing the effects of ceramide synthase knockouts would help to elucidate the role of specific ceramide species. Several knockout mice have already been described (Ebel et al., 2013; Imgrund et al., 2009). CerS6 knockout mice exhibited a decrease in C16:0 containing ceramide species relative to wild type mice. These knockout mice exhibit behavioural abnormalities, such as habituation deficit and clasping abnormalities of their hind limbs (Ebel et al., 2013). In addition, CerS2-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas (Imgrund et al., 2009).

Creating other CerS knockouts will enable the study of functional roles of the specific ceramide synthase and their products, ceramide species with fatty acyl CoA.

The available ceramide synthase inhibitors (fumonisin B, austalifugin) target the enzymes nonspecifically, but specific inhibitors would be useful in elucidating the functions of each enzyme. Yeast ceramide synthase mutants (*lag1, lac1*) exhibit growth defects that can be functionally complemented with mammalian homologs (Guillas et al., 2003). Therefore, inhibitors of specific ceramide synthases could be identified by inhibiting growth of yeast *lag1* or *lac1* mutants expressing the mammalian enzyme.

A similar approach could be used to identify inhibitors of S1P, the levels of which are increased in anxiety. FTY720, a sphingolipid analog, is currently approved for the treatment of the autoimmune disorder multiple sclerosis. In vertebrates, FTY720 is phosphorylated by sphingosine kinase 2 and acts as a S1P mimic (Hla et al., 2011). FTY720 inhibits sphingosine kinase 1 (Lim et al., 2011). Yeast was used to study the metabolism and possible cellular targets of FTY720 (Welsch et al., 2003). In yeast, FTY720 phosphorylation is not required for its action, suggesting that FTY720 may have other cellular effects, including mimicking sphingolipid bases, and controlling the ubiquitin pathway and amino acid permease trafficking (Lee et al., 2011; Welsch et al., 2004). In addition, FTY720 inhibits sphingosine phosphate lyase but it is not understood if this inhibition has a role in the mechanism of action of FTY720. In addition, siponimoid, a S1P1 agonist designed using FTY720 is currently completed phase 2 clinical trails for the treatment of relapsing-remiting multiple sclerosis (Pan et al., 2013). Identification of specific inhibitors of S1P kinase will help elucidate the cellular functions of S1P. In addition, these molecules could act as potential drugs for the treatment of psychiatric disorders.

Therefore, there is a need to identify new inhibitors of sphingosine kinases or sphingosine phosphatases. Inhibitors of these enzymes may be identified by loss of rescue of growth defects of yeast *lcb4* and *lcb5* mutants expressing the mammalian homologs.

Inhibitors of these specific steps in sphingolipid metabolism would be powerful tools to elucidate the cellular roles of ceramide and S1P, just as studies with the SPT and ceramide synthase inhibitors myriocin and fumonisin B1, respectively, have contributed greatly to our understanding of the roles of sphingolipids in autophagy, heat stress, life span, and apoptosis (Daquinag et al., 2007; Huang et al., 2013).

4.2 Mathematical modeling the effects of perturbation of ceramide and S1P on yeast cell homeostasis

Mathematical modeling is a powerful tool to organize and analyze high throughput data pertaining to biochemical pathways (Alvarez-Vasquez et al., 2005). Mathematical modeling has been exploited to generate complex network maps of sphingolipid metabolism in yeast (Alvarez-Vasquez et al., 2004; 2005; 2007). For example, a recent study simulated the action of drugs affecting sphingolipid metabolism in the ER to determine the effects of the drugs on ergosterol in the plasma membrane (Alvarez-Vasquez et al. 2011). Simulation of inhibition of IPC synthase, a step inhibited by aerobasidin, suggested that vesicular co-transport of ergosterol and complex sphingolipids is impaired, resulting in redistribution of ergosterol from the outer to the inner leaflet of the plasma membrane. Similarly, simulations with drugs such as myriocin, an inhibitor of serine palmitoyltransferase (SPT), suggested a decrease in vesicular ergosterol transport flux and an increase of the non-vesicular ergosterol flux. Mathematical modeling can be used to simulate perturbation of ceramide and S1P levels, generating *in silico* disease models in yeast. The predictions of these models can be validated easily in yeast and then translated to complex mammalian systems (Kemmmer et al., 2009).

4.3 Elucidating the global *in vivo* effects of perturbation of ceramide and S1P levels

Altered levels of ceramide or S1P in yeast can be achieved by genetic manipulation using mutants of ceramide synthase (LAG1, LAC1), sphingosine base kinases (LCB4 and LCB5), and sphingosine base phosphate (LCB3 and YSR3). The effects of perturbation can be analyzed in the context of the available yeast metabolome, transcriptome, proteome and interactome data (Ge et al., 2001; Humston et al., 2011; Ptacek et al., 2005; Schwikowski et al., 2000; Velculescu et al., 1997). Lipidomic analyses may identify specific (and unexpected) metabolites important in maintaining homeostasis that may be altered in disease conditions (Kemmer et al., 2009). Recent advances with mass spectrometric tools in the field of lipidomics have made it possible to identify and quantify several species of sphingolipids. In addition, recent developments in shotgun lipidomics enables the identification and quantification individual lipid species directly from lipid extracts of biological samples (Blanksby et al., 2010). Alterations in specific sphingolipid species may provide insights into the role in pathogenesis (Han et al., 2007). The results from these studies can be investigated and validated in mammalian systems.

5. Conclusion

There is a profound need to elucidate the molecular mechanisms underlying psychiatric disorders and to develop effective therapies to treat them. While many studies associate aberrant sphingolipid metabolism with the pathophysiology of psychiatric illnesses, the role of sphingolipids in the etiology of these disorders has not been established. The yeast model can be exploited to characterize the regulation of sphingolipid metabolism, the roles of specific sphingolipids in essential cell functions, and the global cellular consequences of perturbation of their synthesis. Because of the very high degree of conservation of function of these lipids between yeast and human cells, the data from studies in yeast can be used to generate testable hypotheses that can be experimentally addressed in appropriate mammalian systems. This knowledge has the potential to contribute to our understanding of the mechanisms underlying the pathophysiology of psychiatric disorders and to the development of new drugs that can be used in their treatment.

6. Project outline

The objective of the studies described in this thesis was to identify and characterize molecular targets of Valproic acid (VPA), a drug used for the treatment of BD, in order to gain insight into the therapeutic mechanism of action of the drug. Several pathways have been hypothesized to play a role in the therapeutic action of VPA, but the molecular mechanism is not understood. In order to accomplish this goal, I carried out the following studies:

Utilizing a genome-wide microarray analysis, I identified molecular targets and pathways that are affected by acute and chronic VPA treatment, as described in

Chapter 2. In this screen, I identified sphingolipid metabolism as a possible novel target of VPA, as further discussed in Chapters 3 and 4.

Studies in Chapter 3 focused on the chronic effects of VPA on sphingolipid metabolism. Chronic VPA-mediated inositol depletion increased expression of fatty acid elongases, which catalyze the synthesis of C24-C26 fatty acids utilized in ceramide synthesis. Consistent with this, phytoceramide with C24-C26 fatty acids were increased, and the expression of nutrient transporters decreased, inducing stress and activating the unfolded protein stress response (UPR) pathway. This study identified the UPR pathway as a possible new target of VPA, which could be important for the therapeutic action of the drug.

In experiments described in Chapter 4, I characterized the acute effects of VPA on sphingolipid metabolism. The gene *RSB1*, which encodes a transporter of the long chain bases (LCBs) dihydrosphingosine (DHS) and phytosphingosine (PHS), showed a striking high level of upregulation following acute VPA treatment. The *rsb1* Δ mutant exhibited sensitivity to PHS. This suggested that acute VPA causes accumulation of LCBs. In fact, I showed that *ino1* Δ starvation and acute VPA increase PHS levels, suggesting that VPA-mediated inositol depletion increases *de novo* synthesis of PHS.

LCB phosphates are lipid signaling molecules that are crucial for cell proliferation and differentiation. However, the role of these molecules in cellular functions is not understood. In the Appendix, I described a synthetic lethality screen with the major LCB kinase mutant, $lcb4\Delta$. Among many synthetic interactions observed, an interesting category of mutants identified genes required for transport

from the endoplasmic reticulum (ER) to the Golgi, suggesting for the first time that LCB phosphates play a role in ER-Golgi transport.

The studies described in this dissertation identified sphingolipid metabolism as a potential new target of VPA, characterized effects of chronic and acute treatment of VPA on sphingolipid metabolism, and identified new genetic interactions with the sphingosine kinase, Lcb4. Many interesting questions emerged from my work and remain unanswered. Chapter 5 summarizes potential exciting directions for future studies.

CHAPTER 2 IDENTIFICATION OF GENES AND CELLULAR PATHWAYS AFFECTED BY ACUTE AND CHRONIC TREATMENT WITH VALPROIC ACID

INTRODUCTION

Bipolar disorder (BD) is a psychiatric disease characterized by recurrent manic and depressive episodes. The World Health Organization (Cheng et al., 2005) ranks BD as the sixth leading cause of disability worldwide. BD affects at least 1% of the population and leads to suicide in 15% of the cases (Bostwick and Pankratz, 2000). Valproic acid (VPA), an FDA approved drug used for the treatment of BD, is a shortbranched chain fatty acid that was first synthesized by Burton in 1882. It was used as an organic solvent for about eighty years, and was serendipitously discovered to be an effective anticonvulsant (Meunier et al., 1963). VPA was first approved for the treatment of epilepsy in 1967, and since then has been used for the treatment of generalized and partial epilepsies. Later, VPA was found to be effective for the treatment BD (Calabresi et al., 2007; Emrich et al., 1981). VPA is effective in only 40-60% of BD cases and sometimes causes severe side effects, including hepatotoxicity and teratogenicity (Henry, 2003). The molecular targets underlying the therapeutic action of VPA are not known, nor are the underlying causes of the disease (Gould et al., 2004; Williams et al., 2002).

The inositol depletion hypothesis of the therapeutic action of drugs used for the treatment of BD was first proposed by Berridge, who showed that lithium inhibits inositol synthesis, possibly resulting in decreased inositol 1,4,5- triphosphate mediated signaling (Berridge, 1989). Our laboratory has shown that VPA, another drug used for the treatment of BD also decreases intracellular inositol in yeast and mammalian cells

(Vaden et al., 2001; Ye and Greenberg, 2015). The finding that both lithium and VPA, two structurally dissimilar drugs, cause inositol depletion suggests that this outcome may be important for the therapeutic action.

In yeast, VPA causes a decrease in intracellular inositol and a dramatic increase in expression of *INO1*, the gene encoding the enzyme catalyzing the rate-limiting step of *de novo* biosynthesis of inositol (Vaden et al., 2001). Interestingly, the drug exerts differential acute and chronic effects on *INO1* expression, although inositol depletion was apparent during both acute and chronic treatment (Ju and Greenberg, 2003). The expression of *INO1* decreased during acute treatment (30 minutes -1 hour), while chronic exposure to VPA resulted in increased expression of *INO1* (Ju and Greenberg, 2003). These data led me to speculate that acute and chronic treatment with VPA elicit differential effects on expression of target genes. I hypothesized that acute treatment affects the expression of signaling molecules while chronic treatment perturbs downstream pathways controlled by these signaling molecules.

In order to get a global picture of the effects of VPA, my study compared whole genome expression in response to acute and chronic treatment of VPA. To determine if the effect of VPA target gene expression was dependent on inositol depletion, the effects of VPA were determined in yeast cells grown in the presence or absence of inositol.

MATERIALS AND METHODS

VPA treatment

Wild type cells were pre-cultured in I+ (inositol-containing) medium, harvested, washed twice with sterile water, and grown in I+ medium until the cells reached the mid

log phase (A_{550} = 0.5). Cells were pelleted, washed twice with sterile water and inoculated in synthetic minimal I+ or I- to a final A_{550} of 0.05, and cultured until the cells reached the mid log phase (A_{550} = 0.5). Cells were then pelleted and suspended in fresh I+ or I- with or without 0.6 mM VPA and incubated for 30 minutes (acute treatment) or 5 hours (chronic treatment). Cells were pelleted and stored at -80°C. Each sample was processed in duplicate.

RNA extraction and microarray

Total RNA was isolated by hot phenol extraction (Kohrer and Domdey, 1991) and purified using an RNeasy kit from Qiagen. The quality of the RNA was determined using the Agilent 2100 Bioanalyzer. RNA was labeled using the Agilent Low Input Quick-Amp labeling kit (Agilent Technologies). Cy3 labeled cRNA was then hybridized to the 8x15K Agilent Yeast V2 Arrays (design ID 016322). Slides were scanned on an Agilent G2505B microarray scanner and the resulting image files were processed with Agilent Feature Extraction software (version 9.5.1). All procedures were carried out according to the manufacturer's protocols. Subsequent analysis was performed using the GeneSpring (v10.0) software. Microarray analysis was carried out at the Research Technology Support Facility in Michigan State University.

Data analysis

The Gene Spring 10.0 software package was used for data analysis. The fold change for each gene was calculated using the expression levels in the control (i.e. cells grown in medium without VPA under similar conditions) as the basal level. Genes that showed more than a two-fold change compared to the respective control were considered for further analysis. The gene list was subjected to a statistical Student T test and genes were grouped based on their biological function using the GO Slim Mapper program available on the *Saccharomyces cerevisiae* genome database (SGD).

Validation by qRT-PCR

Total RNA was extracted using the hot phenol method (Kohrer and Domdey, 1991) and purified using an RNeasy mini plus kit (Qiagen, Valencia, CA). Complementary DNA (cDNA) was synthesized using the first strand cDNA synthesis kit from Roche Applied Science as described in the manufacturer's manuals. qRT-PCR reactions were done in a 20 µl volume reaction using Brilliant III Ultra-Faster SYBR Green qPCR master mix (Agilent Technologies, Santa Clara, CA). Each reaction was done in triplicate. RNA levels were normalized to *ACT1* levels (internal control). Relative values of mRNA transcripts are shown as fold change relative to that of the indicated controls. Primers were validated as suggested in the Methods and Applications Guide (Agilent Technologies). All primers used in this study had primer efficiency between 85 and 105%. Optimal primer concentrations were determined, and primer specificity of a single product was monitored by a melt curve following the amplification reaction. PCR reactions were initiated at 95°C for 10 min for denaturation followed by 40 cycles consisting of 30 s at 95°C and 60 s at 55°C.

RESULTS AND DISCUSSION

The microarray analysis confirmed our earlier findings that acute and chronic VPA exhibit differential expression of *INO1*, which showed downregulation with acute VPA and upregulation with chronic VPA (Ju and Greenberg, 2003). The findings suggested intriguing possible targets of VPA, including sphingolipid metabolism, the unfolded protein response (UPR) pathway, and glycolysis, as discussed below. This

study identified sphingolipid metabolism for the first time as a target of VPA and showed that VPA exerts differential effects on this pathway. Chronic VPA-mediated inositol depletion upregulates the UPR pathway, suggesting that this pathway may be a new target for future drug development. In addition, this screen suggests that VPA increases glycolytic flux, which suggests that it may inhibit inositol synthesis by channeling the common substrate, glucose-6-phosphate, towards glycolysis.

a. Sphingolipid metabolism

This study revealed for the first time that sphingolipid metabolism is altered by VPA. Upon acute exposure, the gene that was most strikingly upregulated was *RSB1*, a long chain base (LCB) transporter (Table 2.1), which showed a 158-fold upregulation in I- and 108-fold upregulation in I+. In the studies described in Chapter 4, I characterized the acute effects of VPA and showed that acute VPA-mediated inositol depletion increases the levels of PHS (phytosphingosine), a signaling lipid molecule. In response to chronic VPA, *FEN1* and *SUR4*, which code for fatty acid elongases, exhibited about 2-fold upregulation in both I+ and I- (Table 2.2). Further studies show that chronic VPA-mediated inositol depletion increases the intracellular levels of ceramide, which induces the UPR pathway, suggesting a possible new target for drug development (Chapter 3).

b. The UPR pathway

As described in Chapter 3, chronic VPA induces the UPR pathway by depleting intracellular inositol. Interestingly, the microarray data revealed that ER chaperone proteins *KAR2, JEM1, LHS1, EUG1, PDI1,* and *SEC63*, markers of the UPR pathway, exhibited 2- to 5-fold increased expression with chronic VPA treatment in I- medium, but not in I+, further supporting that UPR induction was likely due to inositol depletion.

Previously, Shulin Ju showed that overexpression of Ubi4, which ubiquitinylates misfolded proteins and targets them for degradation, conferred VPA resistance. These studies indicate that VPA could induce the UPR pathway by inhibiting degradation of unfolded proteins (PhD thesis 2005).

Several studies support that the UPR dysfunction might be involved in the pathophysiology of BD. Expression of ER stress proteins such as GRP78, GRP94 and calreticulin are upregulated in rat brain samples in response to chronic treatment with VPA (Shao et al., 2005). In addition, the UPR pathway induction is impaired in lymphoblastoid cell lines derived from bipolar patients (So et al., 2007). The expression of genes coding for proteins of the ubiquitin–proteasome system that ubiqutinlyate and mark misfolded proteins for degradation is greatly decreased in the hippocampus of bipolar patients (Hayashi et al., 2009). In summary, these studies suggest that the antibipolar drugs induce the UPR pathway by depleting intracellular inositol levels.

c. Glycolysis

Glycolysis genes *ERR2*, *ENO2*, *HXK2*, *LAT1*, *ENO1*, *PFK1*, *TPI1*, *ERR3*, *ERR1*, *PFK2*, *GPM1* showed increased expression with chronic VPA treatment, suggesting that chronic VPA may increase glycolysis flux. Several other studies in our laboratory support an effect of VPA on glycolysis. Shi et al. (2005) showed that VPA increases accumulation of two glycolytic intermediates, dihydroxyacetone phosphate (DHAP) and glyceraldehyde3-phosphate (G-3-P), which inhibit the activity of MIPS, decreasing inositol synthesis. In addition, a cDNA overexpression screen showed that overexpression of glycolytic genes increased sensitivity to VPA (Rania Deranieh, 2014). Based on these data, as well as his finding that VPA causes increased production of

ethanol (unpublished), Michael Salsaa' hypothesized that VPA affects the metabolic flux of glucose-6-P to glycolysis, thereby decreasing inositol synthesis and causing inositol depletion. These studies suggest that inhibiting inositol synthesis may be a regulatory mechanism whereby cells respond to an increased requirement for glycolysis.

d. Other pathways

After acute VPA treatment, 597 genes exhibited more than a two-fold change in gene expression in I-, and 545 genes in I+ (Table 2.1). A functional classification of genes showing more than 2-fold change in response to VPA using GO SLIM MAPPER (SGD) is shown in Fig. 2.3 (VPA I-) and Fig. 2.4 (VPA I+). Genes required for amino acid metabolism, transmembrane transport, lipid metabolism, protein modification, and the cell cycle, exhibited a significant change in expression with acute VPA. Further analysis showed that 129 genes were upregulated only in I-, 136 only in I+, and 273 in both I+ and I-. 129 genes were down regulated only in I-, 70 only in I+, and 66 genes in both I+ and I- (Fig. 2.1). The relatively large number of that genes exhibited altered expression only in I- likely represent pathways that are regulated by inositol. In addition, a large number of genes exhibited upregulation in both I+ and I- in response to VPA, but the upregulation was higher in I- than in I+, suggesting that expression is partially dependent on inositol.

After chronic VPA treatment, 413 genes exhibited more than a two-fold change in gene expression when grown in I-, and 324 genes in I+ (Table 2.2). Classification of genes showing more than 2 fold change using GO SLIM MAPPER (SGD) is shown in Fig. 2.5 (VPA I-) and 2.6 (VPA I+). The highest number of genes belonged to transport, cellular amino acid metabolic process, and cell cycle in I-, and cell cycle, DNA repair,

transport, and protein modification in I+. Further analysis showed that 108 genes were upregulated only in I-, 119 only in I+, and 60 in both I+ and I- and 184 genes were downregulated only in I-, 84 only in I+ and 64 genes in both, I+ and I- (Fig. 2.2).

In studies described in Chapters 3 and 4, I characterized the effects of VPA on sphingolipid metabolism. This study unraveled possible novel targets of VPA that can be further used to develop newer and better drugs for the treatment of BD.

Figure 2.1. Differential effects on the regulation of gene expression in response to acute VPA treatment in the presence and absence of inositol (I). Genes showing differential expression (more than 2 fold), upregulated (A) and downregulated (B) in response to acute VPA treatment.

Figure 2.2. Differential effects on the regulation of gene expression in response to chronic VPA treatment in the presence and absence of inositol (I).Genes showing differential expression (more than 2 fold), upregulated (A) and downregulated (B) in response to chronic VPA treatment.

Figure 2.3. Genes that show more than 2 fold change in response to acute VPA treatment in I-

Figure 2.4. Genes that show more than 2 fold change in response to acute VPA treatment in I+

Figure 2.5. Genes that show more than 2 fold change in response to chronic VPA treatment in I-

Figure 2.6. Genes that show more than 2 fold change in response to chronic VPA treatment in I+

Table 2.1. Genes showing more than 2 fold change in response to acute VPAtreatment. (Gene descriptions are from Saccharomyces Genome Database).

	Gene	Description	Fold change VPA+/VPA-	
	name		Inositol+	Inositol-
YOR049C	RSB1	Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB- lyase mutation	108.14	158.2
YPL033C	SRL4	Protein of unknown function	70.44	68.69
YNR002C	ATO2	Putative transmembrane protein involved in export of ammonia	56	50.29
YAL018C	YAL018 C	Putative protein of unknown function	45.39	25.76
YPL058C	PDR12	Plasma membrane ATP-binding cassette (ABC) transporter	36.14	34.12
YGR035C	YGR035 C	Putative protein of unknown function, potential Cdc28p substrate	33.96	25.4
YCL026C- A	FRM2	Protein of unknown function, involved in the integration of lipid signaling pathways with cellular homeostasis	20.19	21.39
YGR224 W	AZR1	Plasma membrane transporter of the major facilitator superfamily, involved in resistance to azole drugs such as ketoconazole and fluconazole	18.78	-
YPR001W	CIT3	Dual specificity mitochondrial citrate and methylcitrate synthase	18.78	31.46
YOR153 W	PDR5	Plasma membrane ATP-binding cassette (ABC) transporter	18.78	19.34
YLR346C	YLR346 C	Putative protein of unknown function found in mitochondria	18.78	13.93
YHR126C	ANS1	Putative protein of unknown function; transcription dependent upon Azf1p	18.78	-
YMR279C	YMR279 C	Putative paralog of ATR1, but not required for boron tolerance	18.78	-
YBR040W	FIG1	Integral membrane protein required for efficient mating	18.78	_
YIR017C	MET28	Basic leucine zipper (bZIP) transcriptional activator in the Cbf1p- Met4p-Met28p complex, participates in the regulation of sulfur metabolism	11.35	13.04
YIL056W	VHR1	Transcriptional activator	10.74	13.74
YGR213C	RTA1	Protein involved in 7- aminocholesterol resistance	10.17	7.07
YLR099C	ICT1	Lysophosphatidic acid acyltransferase	10.06	9.41
YGL205W	POX1	Fatty-acyl coenzyme A oxidase, involved in the fatty acid beta- oxidation pathway; localized to the	9.55	6.08

		peroxisomal matrix		
YHR139C	SPS100	Protein required for spore wall maturation	9.40	19.68
YBL005W	PDR3	Transcriptional activator of the pleiotropic drug resistance network	9.30	10.21
YNR058W	BIO3	7,8-diamino-pelargonic acid aminotransferase (DAPA	8.54	10.49
YHR140W	YHR140 W	Putative integral membrane protein of unknown function	8.05	9.14
YKL217W	JEN1	Lactate transporter	8.03	12.70
YBR047W	FMP23	Putative protein of unknown function	8.01	8.99
YBR045C	GIP1	Meiosis-specific regulatory subunit of the Glc7p protein phosphatase	7.96	8.62
YKL132C	RMA1	Putative dihydrofolate synthetase	7.91	8.92
YAL061W	BDH2	Putative medium-chain alcohol dehydrogenase with similarity to BDH1	7.89	12.72
YER024W	YAT2	Carnitine acetyltransferase	7.76	9.32
YGL184C	STR3	Cystathionine beta-lyase, converts cystathionine into homocysteine	7.71	-
YPR078C	YPR078 C	Putative protein of unknown function	7.54	-
YOR100C	CRC1	Mitochondrial inner membrane carnitine transporter	7.41	13.67
YOR365C	YOR365 C	Putative protein of unknown function	7.40	4.16
YLL028W	TPO1	Polyamine transporter that recognizes spermine, putrescine, and spermidine	7.14	9.33
YDR446W	ECM11	Non-essential protein apparently involved in meiosis	7.04	-
YBR180W	DTR1	Putative dityrosine transporter	6.86	3.34
YLR307W	CDA1	Chitin deacetylase	6.74	6.37
YOR388C	FDH1	NAD(+)-dependent formate dehydrogenase	6.66	2.83
YOR152C	YOR152 C	Putative protein of unknown function	6.63	7.17
YBR250W	SPO23	Protein of unknown function	6.55	7.63
YGR281 W	YOR1	Plasma membrane ATP-binding cassette (ABC) transporter	6.53	5.75
YHL042W	YHL042 W	Putative protein of unknown function; member of the DUP380 subfamily of conserved, often subtelomerically- encoded proteins	6.49	-
YNR056C	BIO5	Putative transmembrane protein involved in the biotin biosynthesis pathway	6.40	8.21

YDR011W	SNQ2	Plasma membrane ATP-binding cassette (ABC) transporter	6.39	7.67
YOR351C	MEK1	Meiosis-specific serine/threonine	6.19	5.64
YLR348C	DIC1	Mitochondrial dicarboxylate carrier	6.11	6.91
YMR322C	SNO4	Possible chaperone and cysteine protease	6.09	6.62
YPL280W	HSP32	Possible chaperone and cysteine protease	5.89	6.13
YKR015C	YKR015 C	Putative protein of unknown function	5.86	6.24
YFR023W	PES4	Poly(A) binding protein, suppressor of DNA polymerase epsilon mutation, similar to Mip6p	5.85	7.40
YNR044W	AGA1	Anchorage subunit of a-agglutinin of a-cells, highly O-glycosylated protein with N-terminal secretion signal and C-terminal signal for addition of GPI anchor to cell wall, linked to adhesion subunit Aga2p via two disulfide bonds	5.77	_
YPL088W	YPL088 W	Putative aryl alcohol dehydrogenase	5.77	5.78
YOL151W	GRE2	3-methylbutanal reductase and NADPH-dependent methylglyoxal reductase (D-lactaldehyde dehydrogenase	5.76	4.38
YHR214C -D	YHR214 C-D	Putative protein of unknown function	5.75	5.21
YNL231C	PDR16	Phosphatidylinositol transfer protein (PITP) controlled by the multiple drug resistance regulator Pdr1p	5.73	6.13
YCR020C	PET18	Protein of unknown function, has weak similarity to proteins involved in thiamin metabolism; expression is induced in the absence of thiamin	5.62	6.23
YGL015C	YGL015 C	Putative protein of unknown function	5.60	_
YDR406W	PDR15	Plasma membrane ATP binding cassette (ABC) transporter	5.55	7.67
YOR011 W	AUS1	Transporter of the ATP-binding cassette family	5.47	7.02
YMR017 W	SPO20	Meiosis-specific subunit of the t- SNARE complex	5.46	4.49
YGR087C	PDC6	Minor isoform of pyruvate decarboxylase	5.35	5.74
YJL160C	YJL160 C	Putative protein of unknown function	5.20	6.79
YBR019C	GAL10	UDP-glucose-4-epimerase	5.19	-

YKL070W	YKL070 W	Putative protein of unknown function	5.19	-
YER106W	MAM1	Monopolin, kinetochore associated protein involved in chromosome attachment to meiotic spindle	5.18	-
YBR018C	GAL7	Galactose-1-phosphate uridyl transferase	5.17	6.81
YCL027W	FUS1	Membrane protein localized to the shmoo tip	5.04	5.61
YPL250C	ICY2	Protein of unknown function	5.04	-
YNL036W	NCE103	Carbonic anhydrase	4.97	5.35
YAL064W	YAL064 W	Protein of unknown function	4.95	4.87
YDR536W	STL1	Glycerol proton symporter of the plasma membrane	4.80	_
YER185W	PUG1	Plasma membrane protein with roles in the uptake of protoprophyrin IX and the efflux of heme	4.78	-
YNL279W	PRM1	Pheromone-regulated multispanning membrane protein involved in membrane fusion during mating	4.75	6.22
YDL138W	RGT2	Plasma membrane high glucose sensor that regulates glucose transport	4.72	5.59
YML066C	SMA2	Meiosis-specific prospore membrane protein	4.70	-
YDL114W	YDL114 W	Putative protein of unknown function with similarity to acyl-carrier-protein reductases	4.70	3.18
YDR402C	DIT2	N-formyltyrosine oxidase	4.61	4.80
YJL037W	IRC18	Putative protein of unknown function	4.60	7.55
YIL060W	YIL060 W	Putative protein of unknown function	4.41	3.74
YNR070W	PDR18	Putative transporter of the ATP- binding cassette (ABC) family, implicated in pleiotropic drug resistance	4.39	5.96
YHL043W	ECM34	Putative protein of unknown function	4.37	-
YAR029W	YAR029 W	Member of DUP240 gene family but contains no transmembrane domains	4.34	4.15
YDR242W	AMD2	Putative amidase	4.32	-
YOR186 W	YOR186 W	Putative protein of unknown function	4.31	5.12
YKL071W	YKL071 W	Putative protein of unknown function	4.29	_
YMR042 W	ARG80	Transcription factor involved in regulation of arginine-responsive genes: acts with Arg81p and Arg82p	4.27	-

YPL264C	YPL264	Putative membrane protein of	4.24	5.24
	С	unknown function		
YGR059 W	SPR3	Sporulation-specific homolog of the yeast CDC3/10/11/12 family of bud neck microfilament genes	4.24	-
YML116W	ATR1	Multidrug efflux pump of the major facilitator superfamily, required for resistance to aminotriazole and 4- nitroquinoline-N-oxide	4.22	5.05
YDL243C	AAD4	Putative aryl-alcohol dehydrogenase with similarity to P. chrysosporium aryl-alcohol dehydrogenase	4.21	-
YMR018 W	YMR018 W	Putative protein of unknown function with similarity to human PEX5Rp (peroxin protein 5 related protein)	4.18	5.45
YCR061W	YCR061 W	Protein of unknown function	4.17	3.78
YIL164C	NIT1	Nitrilase, member of the nitrilase branch of the nitrilase superfamily	4.17	5.58
YJL071W	ARG2	Acetylglutamate synthase	4.16	5.35
YFL003C	MSH4	Protein involved in meiotic recombination	4.13	6.05
YNL277W	MET2	L-homoserine-O-acetyltransferase	4.13	7.01
YPR167C	MET16	3'-phosphoadenylsulfate reductase, reduces 3'-phosphoadenylyl sulfate to adenosine-3',5'-bisphosphate and free sulfite using reduced thioredoxin as cosubstrate, involved in sulfate assimilation and methionine metabolism	4.11	3.97
YER187W	YER187 W	Putative protein of unknown function; induced in respiratory-deficient cells	4.04	7.16
YDR043C	NRG1	Transcriptional repressor that recruits the Cyc8p-Tup1p complex to promoters	4.03	3.73
YEL057C	YEL057 C	Protein of unknown function involved in telomere maintenance	4.02	-
YDR403W	DIT1	Sporulation-specific enzyme required for spore wall maturation	4.01	4.74
YDR317W	HIM1	Protein of unknown function involved in DNA repair	4.00	-
YNL117W	MLS1	Malate synthase, enzyme of the glyoxylate cycle	4.00	11.00
YDL170W	UGA3	Transcriptional activator necessary for gamma-aminobutyrate (GABA)- dependent induction of GABA genes	3.99	4.85
YHR015W	MIP6	Putative RNA-binding protein, interacts with Mex67p, which is a component of the nuclear pore	3.99	4.00

		involved in nuclear mRNA export		
YLL056C	YLL056 C	Putative protein of unknown function, transcription is activated by paralogous transcription factors Yrm1p and Yrr1p and genes involved in pleiotropic drug resistance (PDR	3.98	5.77
YOR393 W	ERR1	Protein of unknown function, has similarity to enolases	3.96	-
YDL054C	MCH1	Protein with similarity to mammalian monocarboxylate permeases	3.96	4.43
YML083C	YML083 C	Putative protein of unknown function	3.96	_
YJL089W	SIP4	C6 zinc cluster transcriptional activator that binds to the carbon source-responsive element (CSRE) of gluconeogenic genes	3.95	-
YPL281C	ERR2	Protein of unknown function, has similarity to enolases	3.93	4.29
YAR031W	PRM9	Pheromone-regulated protein with 3 predicted transmembrane segments and an FF sequence, a motif involved in COPII binding; member of DUP240 gene family	3.92	4.00
YJR155W	AAD10	Putative aryl-alcohol dehydrogenase with similarity to P. chrysosporium aryl-alcohol dehydrogenase	3.90	4.86
YGR251 W	YGR251 W	Essential protein required for maturation of 18S rRNA; green fluorescent protein (GFP)-fusion protein localizes to both the nucleus and the nucleolus	3.80	4.43
YDR223W	CRF1	Transcriptional corepressor involved in repression of ribosomal protein (RP) gene transcription via the TOR signaling pathway which promotes accumulation of Crf1p in the nucleus	3.80	_
YPR007C	REC8	Meiosis-specific component of sister chromatid cohesion complex	3.80	4.53
YNR071C	YNR071 C	Putative protein of unknown function	3.79	4.25
YMR102C	YMR102 C	Protein of unknown function	3.75	5.19
YIL165C	YIL165C	Putative protein of unknown function	3.74	5.28
YOR192C	THI72	Transporter of thiamine or related compound	3.71	4.03
YER085C	YER085 C	Putative protein of unknown function	3.70	-
YML042W	CAT2	Carnitine acetyl-CoA transferase present in both mitochondria and	3.70	5.11

		peroxisomes		
YOL162W	YOL162 W	Putative protein of unknown function	3.68	_
YJR130C	STR2	Cystathionine gamma-synthase, converts cysteine into cystathionine	3.64	4.17
YER174C	GRX4	Hydroperoxide and superoxide- radical responsive glutathione- dependent oxidoreductase	3.63	-
YDL020C	RPN4	Transcription factor that stimulates expression of proteasome genes	3.62	3.31
YMR118C	YMR118 C	Protein of unknown function with similarity to succinate dehydrogenase cytochrome b subunit; YMR118C is not an essential gene	3.61	_
YLR004C	THI73	Putative plasma membrane permease proposed to be involved in carboxylic acid uptake and repressed by thiamine	3.61	4.43
YNL128W	TEP1	Homolog of human tumor suppressor gene PTEN/MMAC1/TEP1 that has lipid phosphatase activity and is linked to the phosphatidylinositol signaling pathway	3.61	3.39
YLL057C	JLP1	Fe(II)-dependent sulfonate/alpha- ketoglutarate dioxygenase	3.60	5.09
YOL024W	YOL024 W	Putative protein of unknown function; predicted to have thiol-disulfide oxidoreductase active site	3.58	3.33
YDR534C	FIT1	Mannoprotein that is incorporated into the cell wall via a glycosylphosphatidylinositol (GPI) anchor	3.57	3.26
YOR269 W	PAC1	Protein involved in nuclear migration, part of the dynein/dynactin pathway	3.56	4.21
YDR218C	SPR28	Sporulation-specific homolog of the yeast CDC3/10/11/12 family of bud neck microfilament genes	3.56	-
YER176W	ECM32	DNA dependent ATPase/DNA helicase belonging to the Dna2p- and Nam7p-like family of helicases that is involved in modulating translation termination	3.54	4.33
YNL095C	YNL095 C	Putative protein of unknown function predicted to contain a transmembrane domain	3.52	4.36
YMR195 W	ICY1	Protein of unknown function	3.52	4.64
YCR104W	PAU3	Member of the seripauperin	3.50	-
		multigene family encoded mainly in		
-----------	---------	---	------	------
		alcoholic fermentation		
YOR391C	HSP33	Possible chaperone and cysteine	3 49	4 02
1010010	1101 00	protease with similarity to F coli	0.10	1.02
		Hsp31 and S cerevisiae Hsp31p		
		Hsp32p, and Sno4p		
YEL048C	TCA17	Protein that interacts with subunits of	3.48	-
	_	the TRAPP complex and may play a		
		role its assembly or stability		
YLL046C	RNP1	Ribonucleoprotein that contains two	3.48	4.58
		RNA recognition motifs (RRM)		
YKL187C	YKL187	Putative protein of unknown function	3.45	-
	С			
YMR323	ERR3	Protein of unknown function, has	3.43	-
W		similarity to enolases		
YHR022C	YHR022	Putative protein of unknown function	3.41	3.86
	С			
YJR120W	YJR120	Protein of unknown function	3.39	2.94
	W			
YNR068C	YNR068	Putative protein of unknown function	3.39	3.96
	С			
YGR144	THI4	Thiazole synthase	3.37	3.30
W				
YDL245C	HXT15	Protein of unknown function with	3.36	-
		similarity to hexose transporter family		
		members, expression is induced by		
		low levels of glucose and repressed		
		by high levels of glucose		
YNL269W	BSC4	Protein of unknown function	3.35	4.07
YHL044W	YHL044	Putative integral membrane protein	3.35	3.67
	W			
YBR104W	YMC2	Mitochondrial protein, putative inner	3.35	4.69
		membrane transporter with a role in		
		oleate metabolism and glutamate		
		biosynthesis		
YGR142	BTN2	v-SNARE binding protein that	3.34	3.36
W		facilitates specific protein retrieval		
)/// 0070		from a late endosome to the Golgi		1.10
YIL037C	PRM2	Pheromone-regulated protein	3.32	4.13
YJL106W	IME2	Serine/threonine protein kinase	3.32	3.93
		involved in activation of meiosis,		
YCR045C	RRT12	Probable subtilisin-family protease	3.32	-
		with a role in formation of the		
		dityrosine layer of spore walls		
YHR048W	YHK8	Presumed antiporter of the DHA1	3.30	-
		tamily of multidrug resistance		
		transporters		
YMR325	PAU19	Protein of unknown function	3.28	-

W				
YOR394 W	PAU21	Protein of unknown function	3.28	-
YJL077C	ICS3	Protein of unknown function	3.28	_
YPL282C	PAU22	Protein of unknown function	3.27	-
YPL095C	EEB1	Acyl-coenzymeA:ethanol O- acyltransferase	3.26	2.03
YGL192W	IME4	Probable mRNA N6-adenosine methyltransferase	3.26	-
YDR076W	RAD55	Protein that stimulates strand exchange by stabilizing the binding of Rad51p to single-stranded DNA	3.24	3.44
YNL211C	YNL211 C	Putative protein of unknown function	3.23	3.94
YBL103C	RTG3	Basic helix-loop-helix-leucine zipper (bHLH/Zip) transcription factor that forms a complex with another bHLH/Zip protein, Rtg1p, to activate the retrograde (RTG) and TOR pathways	3.23	4.27
YAL067C	SEO1	Putative permease, member of the allantoate transporter subfamily of the major facilitator superfamily	3.23	-
YCR099C	YCR099 C	Putative protein of unknown function	3.22	4.73
YCR100C	YCR100 C	Putative protein of unknown function	3.22	4.53
YNR066C	YNR066 C	Putative membrane-localized protein of unknown function	3.22	3.85
YOR273C	TPO4	Polyamine transport protein, recognizes spermine, putrescine, and spermidine	3.22	2.39
YNL270C	ALP1	Arginine transporter	3.21	3.95
YDL214C	PRR2	Serine/threonine protein kinase that inhibits pheromone induced signalling downstream of MAPK, possibly at the level of the Ste12p transcription factor	3.20	2.83
YDR114C	YDR114 C	Putative protein of unknown function	3.19	-
YDR256C	CTA1	Catalase A, breaks down hydrogen peroxide in the peroxisomal matrix formed by acyl-CoA oxidase (Pox1p) during fatty acid beta-oxidation	3.18	-
YML007C -A	YML007 C-A	Putative protein of unknown function	3.18	-
YOR130C	ORT1	Ornithine transporter of the mitochondrial inner membrane, exports ornithine from mitochondria	3.17	3.73

		as part of arginine biosynthesis		
YPL201C	YIG1	Protein that interacts with glycerol 3-	3.16	4.15
		phosphatase and plays a role in		
		anaerobic glycerol production		
YFR030W	MET10	Subunit alpha of assimilatory sulfite	3.16	3.82
		reductase		
YOR302	YOR302	CPA1 uORF, Arginine attenuator	3.13	3.08
W	W	peptide		
YIR041W	PAU15	Protein of unknown function	3.13	-
YJR078W	BNA2	Putative tryptophan 2,3-dioxygenase	3.10	-
		or indoleamine 2,3-dioxygenase,		
		required for de novo biosynthesis of		
)/5500014/		NAD from tryptophan via kynurenine		0.55
YFR022W	ROG3	Protein that binds the ubiquitin ligase	3.09	3.55
		Rsp5p via its 2 PY motifs	2.00	4 4 4
YBR148W	YSVV1	Protein required for normal prospore	3.09	4.11
VCD022C	VCD022	Vacualar membrane protein of	3.08	2 / 9
TCR023C	C.	unknown function	5.00	5.40
YIR018W	YAP5	Basic leucine zinner (bZIP)	3.07	_
	// 0	transcription factor	0.07	
YLL053C	YLL053	Putative protein: in the Sigma 1278B	3.06	2.56
	C	strain background YLL053C is		
		contiguous with AQY2 which		
		encodes an aquaporin		
YOR339C	UBC11	Ubiquitin-conjugating enzyme most	3.06	2.94
		similar in sequence to Xenopus		
		ubiquitin-conjugating enzyme E2-C		
YLR164W	YLR164	Mitochondrial inner membrane of	3.05	3.80
	W	unknown function		
YNR060W	FRE4	Ferric reductase	3.04	-
YPL188W	POS5	Mitochondrial NADH kinase	3.03	3.59
YOR328	PDR10	ATP-binding cassette (ABC)	3.03	3.47
W		transporter		
YNL116W	DMA2	Protein involved in ubiquitination	3.01	3.39
YLL052C	AQY2	Water channel that mediates the	3.01	2.45
		transport of water across cell		
		membranes, only expressed in		
		proliferating cells, controlled by		
		osmotic signals, may be involved in		
		freeze tolerance		
YNL311C	YNL311	F-box protein of unknown function	2.99	3.55
	С	predicted to be part of an SCF		
		ubiquitin protease complex		
YAL037W	YAL037	Putative protein of unknown function	2.96	3.46
	1.4.7			
VADADAC	W DALIZ	Mombor of the soriaguage	2.06	

		alcoholic fermentation, regulated by		
		anaerobiosis, inhibited by oxygen		
YKR097W	PCK1	Phosphoenolpyruvate carboxykinase	2.95	2.76
YKL178C	STE3	Receptor for a factor pheromone	2.95	-
YHR044C	DOG1	2-deoxyglucose-6-phosphate phosphatase,	2.95	2.13
YBR046C	ZTA1	NADPH-dependent quinone reductase	2.94	3.94
YNR065C	YNR065 C	Protein of unknown function	2.93	-
YNR057C	BIO4	Dethiobiotin synthetase	2.92	4.31
YMR201C	RAD14	Protein that recognizes and binds damaged DNA during nucleotide excision repair	2.90	3.28
YPL258C	THI21	Hydroxymethylpyrimidine phosphate kinase	2.90	3.55
YER184C	YER184 C	Putative zinc cluster protein	2.88	4.15
YIR005W	IST3	Component of the U2 snRNP, required for the first catalytic step of splicing and for spliceosomal assembly	2.84	3.34
YJR111C	YJR111 C	Putative protein of unknown function	2.83	3.51
YBL006C	LDB7	Component of the RSC chromatin remodeling complex	2.83	3.07
YHR122W	YHR122 W	Protein of unknown function required for establishment of sister chromatid cohesion	2.83	3.14
YJL219W	НХТ9	Putative hexose transporter that is nearly identical to Hxt11p, has similarity to major facilitator superfamily (MFS) transporters, expression of HXT9 is regulated by transcription factors Pdr1p and Pdr3p	2.80	2.30
YBR293W	VBA2	Permease of basic amino acids in the vacuolar membrane	2.80	2.99
YOR242C	SSP2	Sporulation specific protein that localizes to the spore wall	2.80	2.26
YDR523C	SPS1	Putative protein serine/threonine kinase expressed at the end of meiosis and localized to the prospore membrane	2.79	-
YGL116W	CDC20	Cell-cycle regulated activator of anaphase-promoting complex/cyclosome (APC/C)	2.79	-
YMR009 W	ADI1	Acireductone dioxygenease involved in the methionine salvage pathway; ortholog of human MTCBP-1	2.78	3.55

YOL159C-	YOL159	Putative protein of unknown function	2.76	2.70
A	C-A			
YJL043W	YJL043 W	Putative protein of unknown function	2.75	2.87
YHL046C	PAU13	Protein of unknown function	2.75	-
YHR029C	YHI9	Protein of unknown function	2.74	3.02
YHR047C	AAP1	Arginine/alanine aminopeptidase	2.73	3.19
YER128W	YER128 W	Putative protein of unknown function	2.72	3.67
YGL059W	PKP2	Mitochondrial protein kinase that negatively regulates activity of the pyruvate dehydrogenase complex by phosphorylating the ser-133 residue of the Pda1p subunit	2.71	-
YKL220C	FRE2	Ferric reductase and cupric reductase, reduces siderophore- bound iron and oxidized copper prior to uptake by transporters	2.71	-
YLR213C	CRR1	Putative glycoside hydrolase of the spore wall envelope	2.70	2.62
YMR096 W	SNZ1	Protein involved in vitamin B6 biosynthesis; member of a stationary phase-induced gene family	2.70	4.64
YAL068C	PAU8	Protein of unknown function, member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.69	2.21
YKL224C	PAU16	Protein of unknown function, member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.65	-
YBL108C- A	PAU9	Protein of unknown function, member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.65	-
YNL240C	NAR1	Component of the cytosolic iron- sulfur (FeS) protein assembly machinery	2.65	2.86
YDR249C	YDR249 C	Putative protein of unknown function	2.65	3.19
YHR214C -E	YHR214 C-E	Putative protein of unknown function	2.65	-
YGR286C	BIO2	Biotin synthase	2.64	3.55
YER040W	GLN3	Transcriptional activator of genes regulated by nitrogen catabolite repression	2.64	3.05
YDR542W	PAU10	Protein of unknown function	2.63	-
YGR131 W	YGR131 W	Protein of unknown function	2.63	2.51

YHR185C	PFS1	Sporulation protein required for prospore membrane formation at selected spindle poles, ensures functionality of all four spindle pole bodies during meiosis II	2.63	-
YGL224C	SDT1	Pyrimidine nucleotidase	2.62	2.60
YJL223C	PAU1	Member of the seripauperin multigene family encoded mainly in subtelomeric regions, active during alcoholic fermentation, regulated by anaerobiosis, negatively regulated by oxygen, repressed by heme	2.61	2.46
YOR381 W	FRE3	Ferric reductase	2.60	3.21
YMR306 W	FKS3	Protein involved in spore wall assembly, has similarity to 1,3-beta- D-glucan synthase catalytic subunits Fks1p and Gsc2p	2.60	2.79
YOR190 W	SPR1	Sporulation-specific exo-1,3-beta- glucanase; contributes to ascospore thermoresistance	2.60	-
YBR240C	THI2	Zinc finger protein of the Zn(II)2Cys6 type, probable transcriptional activator of thiamine biosynthetic genes	2.60	2.83
YLR081W	GAL2	Galactose permease, required for utilization of galactose	2.60	-
YCR020W -B	HTL1	Component of the RSC chromatin remodeling complex	2.59	2.96
YNR030W	ALG12	Alpha-1,6-mannosyltransferase localized to the ER	2.59	2.38
YGR288 W	MAL13	MAL-activator protein, part of complex locus MAL1	2.59	-
YDL177C	YDL177 C	Putative protein of unknown function	2.58	3.64
YCR060W	TAH1	HSP90 cofactor; interacts with Hsp82p, Pih1p, Rvb1 and Rvb2	2.57	3.59
YGL039W	YGL039 W	Oxidoreductase shown to reduce carbonyl compounds to chiral alcohols	2.57	3.66
YMR019 W	STB4	Protein that binds Sin3p in a two- hybrid assay	2.56	2.94
YJR079W	YJR079 W	Putative protein of unknown function; mutation results in impaired mitochondrial respiration	2.55	-
YIL176C	PAU14	Protein of unknown function	2.55	2.44
YBR068C	BAP2	High-affinity leucine permease	2.53	2.73
YER069W	ARG5,6	Protein that is processed in the mitochondrion to yield	2.53	2.28

		acetylglutamate kinase and N-acetyl- gamma-glutamyl-phosphate		
		reductase		
YKL211C	TRP3	Bifunctional enzyme exhibiting both indole-3-glycerol-phosphate	2.52	2.77
YOI 165C	AAD15	Putative aryl-alcohol dehydrogenase	2 52	2 77
VIL060C	GTT2	Glutathione S-transferase canable of	2.62	
TLLUUUC	0112	homodimerization	2.50	
YFR034C	PHO4	Basic helix-loop-helix (bHLH) transcription factor of the myc-family; binds cooperatively with Pho2p to the PHO5 promoter	2.49	3.33
YBL102W	SFT2	Non-essential tetra-spanning membrane protein found mostly in the late Golgi, can suppress some sed5 alleles; may be part of the transport machinery	2.48	2.85
YOL119C	MCH4	Protein with similarity to mammalian monocarboxylate permeases	2.48	3.28
YGR197C	SNG1	Protein involved in resistance to nitrosoguanidine (MNNG) and 6- azauracil (6-AU)	2.48	2.90
YIL117C	PRM5	Pheromone-regulated protein, predicted to have 1 transmembrane segment; induced during cell integrity signaling	2.48	2.31
YHR014W	SPO13	Meiosis-specific protein, involved in maintaining sister chromatid cohesion during meiosis I as well as promoting proper attachment of kinetochores to the spindle during meiosis I and meiosis II	2.47	_
YDL241W	YDL241 W	Putative protein of unknown function	2.47	-
YDL037C	BSC1	Protein of unconfirmed function, similar to cell surface flocculin Muc1p	2.46	-
YIR035C	YIR035 C	Putative cytoplasmic protein of unknown function	2.46	2.19
YKR069W	MET1	S-adenosyl-L-methionine uroporphyrinogen III transmethylase, involved in the biosynthesis of siroheme, a prosthetic group used by sulfite reductase; required for sulfate assimilation and methionine biosynthesis	2.45	3.45
YFL057C	AAD16	Putative aryl-alcohol dehydrogenase	2.45	2.94
YOL164W	BDS1	Bacterially-derived sulfatase required for use of alkyl- and aryl-sulfates as	2.45	2.45

		sulfur sources		
YLR363C	NMD4	Protein interacting with Nam7p, may be involved in the nonsense- mediated mRNA decay pathway	2.45	-
YBR301W	PAU24	Cell wall mannoprotein with similarity to Tir1p, Tir2p, Tir3p, and Tir4p; member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.44	-
YOR303 W	CPA1	Small subunit of carbamoyl phosphate synthetase	2.43	-
YPL272C	YPL272 C	Putative protein of unknown function	2.42	-
YPL047W	SGF11	Integral subunit of SAGA histone acetyltransferase complex	2.41	2.81
YNL331C	AAD14	Putative aryl-alcohol dehydrogenase with similarity to P. chrysosporium aryl-alcohol dehydrogenase	2.40	2.82
YFL028C	CAF16	Part of evolutionarily-conserved CCR4-NOT regulatory	2.39	2.48
YDL142C	CRD1	Cardiolipin synthase; produces cardiolipin, which is a phospholipid of the mitochondrial inner membrane that is required for normal mitochondrial membrane potential and function	2.39	2.36
YMR062C	ARG7	Mitochondrial ornithine acetyltransferase, catalyzes the fifth step in arginine biosynthesis	2.39	2.36
YBR076W	ECM8	Non-essential protein of unknown function	2.39	2.19
YIL166C	YIL166C	Putative protein with similarity to the allantoate permease (Dal5p) subfamily of the major facilitator superfamily	2.38	2.84
YPR048W	TAH18	Conserved NAPDH-dependent diflavin reductase, component of an early step in the cytosolic Fe-S protein assembly (CIA) machinery	2.38	-
YNR073C	YNR073 C	Putative mannitol dehydrogenase	2.38	-
YFL011W	HXT10	Putative hexose transporter, expressed at low levels and expression is repressed by glucose	2.38	-
YKL008C	LAC1	Ceramide synthase component, involved in synthesis of ceramide from C26(acyl)-coenzyme A and dihydrosphingosine or phytosphingosine, functionally equivalent to Lag1p	2.37	2.55

YBR256C	RIB5	Riboflavin synthase	2.37	2.62
YLL055W	YCT1	High-affinity cysteine-specific transporter with similarity to the Dal5p family of transporters	2.37	2.95
YGR294 W	PAU12	Protein of unknown function	2.36	-
YGL154C	LYS5	Phosphopantetheinyl transferase involved in lysine biosynthesis	2.36	-
YGL249W	ZIP2	Meiosis-specific protein involved in normal synaptonemal complex formation and pairing between homologous chromosomes during meiosis	2.36	_
YFL020C	PAU5	Member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.36	-
YKL072W	STB6	Protein that binds Sin3p in a two- hybrid assay	2.35	2.83
YKL086W	SRX1	Sulfiredoxin, contributes to oxidative stress resistance by reducing cysteine-sulfinic acid groups in the peroxiredoxin Tsa1p	2.34	2.70
YHL040C	ARN1	Transporter, member of the ARN family of transporters that specifically recognize siderophore-iron chelates	2.33	-
YPL165C	SET6	SET domain protein of unknown function	2.33	2.60
YGL180W	ATG1	Protein ser/thr kinase required for vesicle formation in autophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway	2.33	2.49
YGL117W	YGL117 W	Putative protein of unknown function	2.33	2.48
YGR110 W	CLD1	Mitochondrial cardiolipin-specific phospholipase	2.33	2.21
YOR114 W	YOR114 W	Putative protein of unknown function; null mutant is viable	2.32	-
YIR013C	GAT4	Protein containing GATA family zinc finger motifs	2.32	-
YJR039W	YJR039 W	Putative protein of unknown function	2.32	2.43
YMR187C	YMR187 C	Putative protein of unknown function	2.31	-
YDR263C	DIN7	Mitochondrial nuclease functioning in DNA repair and replication, modulates the stability of the mitochondrial	2.31	2.07
YPL135W	ISU1	Conserved protein of the mitochondrial matrix	2.31	2.79

YEL070W	DSF1	Deletion suppressor of mpt5 mutation	2.31	-
YIL120W	QDR1	Multidrug transporter of the major facilitator superfamily, required for resistance to quinidine, ketoconazole, fluconazole, and barban	2.31	2.17
YJR095W	SFC1	Mitochondrial succinate-fumarate transporter	2.30	3.72
YKL128C	PMU1	Putative phosphomutase,	2.30	2.26
YEL029C	BUD16	Putative pyridoxal kinase	2.30	3.16
YKL188C	PXA2	Subunit of a heterodimeric peroxisomal ATP-binding cassette transporter complex (Pxa1p-Pxa2p)	2.30	2.58
YHR006W	STP2	Transcription factor, activated by proteolytic processing in response to signals from the SPS sensor system for external amino acids	2.30	2.37
YER039C	HVG1	Protein of unknown function, has homology to Vrg4p	2.29	2.65
YGR250C	YGR250 C	Putative RNA binding protein; localizes to stress granules induced by glucose deprivation; interacts with Rbg1p in a two-hybrid	2.28	2.46
YNL125C	ESBP6	Protein with similarity to monocarboxylate permeases, appears not to be involved in transport of monocarboxylates such as lactate, pyruvate or acetate across the plasma membrane	2.27	2.26
YPR057W	BRR1	snRNP protein component of spliceosomal snRNPs, required for pre-mRNA splicing and snRNP biogenesis	2.27	2.50
YNL335W	DDI3	Protein of unknown function; expression is induced over 100-fold by DNA damage	2.26	-
YHL047C	ARN2	Transporter, member of the ARN family of transporters that specifically recognize siderophore-iron chelates	2.26	-
YHR212W -A	YHR212 W-A	Putative protein of unknown function	2.26	-
YFL061W	DDI2	Protein of unknown function; expression is induced over 100-fold by DNA damage; induction decreased in rad6 and rad18 mutants	2.25	-
YLL038C	ENT4	Protein of unknown function, contains an N-terminal epsin-like	2.25	2.44

		domain		
YLR031W	YLR031 W	Putative protein of unknown function	2.24	2.39
YKL222C	YKL222 C	Protein of unknown function that may interact with ribosomes	2.23	2.39
YKL052C	ASK1	Essential subunit of the Dam1 complex (aka DASH complex), couples kinetochores to the force produced by MT depolymerization thereby aiding in chromosome segregation	2.23	2.50
YLR211C	YLR211 C	Putative protein of unknown function	2.23	_
YGL248W	PDE1	Low-affinity cyclic AMP phosphodiesterase, controls glucose and intracellular acidification-induced cAMP signaling, target of the cAMP- protein kinase A (PKA) pathway	2.22	2.38
YLR461W	PAU4	Member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.22	-
YLR318W	EST2	Reverse transcriptase subunit of the telomerase holoenzyme, essential for telomerase core catalytic activity, involved in other aspects of telomerase assembly and function	2.21	-
YOR389 W	YOR389 W	Putative protein of unknown function	2.21	-
YER065C	ICL1	Isocitrate lyase, catalyzes the formation of succinate and glyoxylate from isocitrate, a key reaction of the glyoxylate cycle	2.21	-
YKR102W	FLO10	Lectin-like protein with similarity to Flo1p	2.20	_
YMR251 W	GTO3	Omega class glutathione transferase; putative cytosolic localization	2.20	_
YOR337 W	TEA1	Ty1 enhancer activator required for full levels of Ty enhancer-mediated transcription	2.20	-
YLR099W -A	YLR099 W-A	Putative protein of unknown function	2.20	2.18
YEL071W	DLD3	D-lactate dehydrogenase	2.20	2.99
YBR298C A	YBR298 C-A	Putative protein of unknown function	2.19	2.63
YCL066W	HMLAL PHA1	Silenced copy of ALPHA1 at HML, encoding a transcriptional coactivator involved in the regulation of mating- type alpha-specific gene expression	2.19	2.14
YJR010W	MET3	ATP sulfurylase	2.19	2.57

YLR037C	PAU23	Cell wall mannoprotein with similarity to Tir1p, Tir2p, Tir3p, and Tir4p; member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.19	-
YPR193C	HPA2	Tetrameric histone acetyltransferase with similarity to Gcn5p, Hat1p, Elp3p, and Hpa3p	2.18	2.84
YFL040W	YFL040 W	Putative transporter	2.18	-
YFR012W -A	YFR012 W-A	Putative protein of unknown function; identified by homology	2.17	-
YML005W	TRM12	S-adenosylmethionine-dependent methyltransferase of the seven beta- strand family	2.17	2.32
YMR066 W	SOV1	Mitochondrial protein of unknown function	2.17	-
YCR107W	AAD3	Putative aryl-alcohol dehydrogenase with similarity to P. chrysosporium aryl-alcohol dehydrogenase	2.17	-
YIL015W	BAR1	Aspartyl protease secreted into the periplasmic space of mating type a cells, helps cells find mating partners, cleaves and inactivates alpha factor allowing cells to recover from alpha-factor-induced cell cycle arrest	2.17	2.01
YLR228C	ECM22	Sterol regulatory element binding protein, regulates transcription of sterol biosynthetic genes	2.16	-
YCR040W	MATAL PHA1	Transcriptional co-activator involved in regulation of mating-type-specific gene expression	2.16	2.20
YOR245C	DGA1	Diacylglycerol acyltransferase, catalyzes the terminal step of triacylglycerol (TAG) formation, acylates diacylglycerol using acyl- CoA as an acyl donor, localized to lipid particles	2.16	2.61
YMR095C	SNO1	Protein of unconfirmed function, involved in pyridoxine metabolism;	2.16	3.92
YNL046W	YNL046 W	Putative protein of unknown function; expression depends on Swi5p;	2.16	2.17
YGL261C	PAU11	Putative protein of unknown function and member of the seripauperin multigene family encoded mainly in subtelomeric regions	2.16	-
YCR089W	FIG2	Cell wall adhesin, expressed specifically during mating; may be involved in maintenance of cell wall	2.15	_

		integrity during mating		
YGL251C	HFM1	Meiosis specific DNA helicase involved in the conversion of double- stranded breaks to later recombination intermediates and in crossover control	2.15	-
YBR131W	CCZ1	Protein involved in vacuolar assembly, essential for autophagy and the cytoplasm-to-vacuole pathway	2.15	2.40
YMR175 W	SIP18	Phospholipid-binding protein; expression is induced by osmotic stress	2.14	2.34
YJL088W	ARG3	Ornithine carbamoyltransferase (carbamoylphosphate:L-ornithine carbamoyltransferase), catalyzes the sixth step in the biosynthesis of the arginine precursor ornithine	2.14	2.51
YGL146C	RRT6	Putative protein of unknown function	2.14	-
YBR085C -A	YBR085 C-A	Putative protein of unknown function	2.14	2.30
YDL067C	COX9	Subunit VIIa of cytochrome c oxidase	2.14	-
YDR530C	APA2	Diadenosine 5',5"-P1,P4- tetraphosphate phosphorylase II (AP4A phosphorylase), involved in catabolism of bis(5'-nucleosidyl) tetraphosphates; has similarity to Apa1p	2.13	2.55
YMR056C	AAC1	Mitochondrial inner membrane ADP/ATP translocator, exchanges cytosolic ADP for mitochondrially synthesized ATP	2.13	2.04
YOL015W	IRC10	Putative protein of unknown function	2.12	-
YDR222W	YDR222 W	Protein of unknown function	2.12	-
YOR009 W	TIR4	Cell wall mannoprotein of the Srp1p/Tip1p family of serine-alanine- rich proteins; expressed under anaerobic conditions and required for anaerobic growth	2.12	-
YPL187W	MF(ALP HA)1	Mating pheromone alpha-factor, made by alpha cells	2.11	-
YHR161C	YAP180 1	Protein involved in clathrin cage assembly	2.11	-
YDR042C	YDR042 C	Putative protein of unknown function; expression is increased in ssu72- ts69 mutant	2.11	-
YKR099W	BAS1	Myb-related transcription factor involved in regulating basal and	2.10	2.56

		induced expression of genes of the		
		purine and histidine biosynthesis		
YOL001W	PHO80	Cyclin, interacts with cyclin-	2.10	2.14
		dependent kinase Pho85p		
YHR162W	YHR162 W	Putative protein of unknown function	2.10	2.16
YMR041C	ARA2	NAD-dependent arabinose dehydrogenase	2.10	2.28
YPL278C	YPL278 C	Putative protein of unknown function	2.10	2.36
YLR263W	RED1	Protein component of the axial elements of the synaptonemal complex	2.09	-
YFR029W	PTR3	Component of the SPS plasma membrane amino acid sensor system (Ssy1p-Ptr3p-Ssy5p), which senses external amino acid concentration and transmits intracellular signals that result in regulation of expression of amino acid permease genes	2.09	2.27
YMR106C	YKU80	Subunit of the telomeric Ku complex (Yku70p-Yku80p), involved in telomere length maintenance, structure and telomere position effect	2.08	2.57
YBL060W	YEL1	Guanine nucleotide exchange factor specific for Arf3p	2.08	2.41
YHR166C	CDC23	Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C	2.08	2.08
YMR020 W	FMS1	Polyamine oxidase, converts spermine to spermidine	2.07	2.31
YLL063C	AYT1	Acetyltransferase; catalyzes trichothecene 3-O-acetylation	2.07	2.51
YPL277C	YPL277 C	Putative protein of unknown function; localized to the membranes	2.07	2.19
YJR156C	THI11	Protein involved in synthesis of the thiamine precursor hydroxymethylpyrimidine (HMP)	2.07	-
YML097C	VPS9	A guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport	2.07	2.51
YGR239C	PEX21	Peroxin required for targeting of peroxisomal matrix proteins containing PTS2	2.06	-
YJR036C	HUL4	Protein with similarity to hect domain E3 ubiquitin-protein ligases, not essential for viability	2.06	2.14
YBR294W	SUL1	High affinity sulfate permease	2.06	-

YCL055W	KAR4	Transcription factor required for gene regulation in response to pheromones	2.06	2.03
YDR046C	BAP3	Amino acid permease involved in the uptake of cysteine, leucine, isoleucine and valine	2.06	2.47
YDR459C	PFA5	Palmitoyltransferase with autoacylation activity; likely functions in pathway(s) outside Ras	2.05	2.29
YJL045W	YJL045 W	Minor succinate dehydrogenase isozyme	2.05	2.26
YOR377 W	ATF1	Alcohol acetyltransferase with potential roles in lipid and sterol metabolism	2.05	2.31
YOR306C	MCH5	Plasma membrane riboflavin transporter	2.05	-
YDR481C	PHO8	Repressible alkaline phosphatase	2.05	-
YER130C	YER130 C	Protein of unknown function	2.04	2.43
YKR071C	DRE2	Conserved component of an early step in the cytosolic Fe-S protein assembly (CIA) machinery	2.04	2.13
YDR082W	STN1	Telomere end-binding and capping protein, plays a key role with Pol12p in linking telomerase action with completion of lagging strand synthesis, and in a regulatory step required for telomere capping	2.04	_
YNL210W	MER1	Protein with RNA-binding motifs required for meiosis-specific mRNA splicing; required for chromosome pairing and meiotic recombination	2.04	2.88
YLR214W	FRE1	Ferric reductase and cupric reductase	2.04	2.25
YPR002W	PDH1	Mitochondrial protein that participates in respiration	2.03	_
YIL020C	HIS6	Phosphoribosyl-5-amino-1- phosphoribosyl-4- imidazolecarboxiamide isomerase, catalyzes the fourth step in histidine biosynthesis	2.03	2.07
YDR366C	YDR366 C	Putative protein of unknown function	2.02	-
YNR076W	PAU6	Member of the seripauperin multigene family encoded mainly in subtelomeric regions, active during alcoholic fermentation, regulated by anaerobiosis, negatively regulated by oxygen, repressed by heme	2.02	_

YLL033W	IRC19	Putative protein of unknown function	2.02	_
YOL132W	GAS4	1,3-beta-glucanosyltransferase	2.02	_
YAR035W	YAT1	Outer mitochondrial carnitine acetyltransferase	2.01	2.12
YIL024C	YIL024C	Putative protein of unknown function	2.01	-
YCL069W	VBA3	Permease of basic amino acids in the vacuolar membrane	2.01	_
YGL144C	ROG1	Protein with putative serine active lipase domain	2.01	_
YDR531W	CAB1	Pantothenate kinase (ATP:D- pantothenate 4'-phosphotransferase	2.00	2.32
YPL241C	CIN2	GTPase-activating protein (GAP) for Cin4p	2.00	-
YMR272C	SCS7	Sphingolipid alpha-hydroxylase, functions in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids,	2.00	2.36
YEL066W	HPA3	D-Amino acid N-acetyltransferase,	-2.00	-2.35
YNL061W	NOP2	Probable RNA m(5)C methyltransferase	-2.01	-2.06
YFL037W	TUB2	Beta-tubulin; associates with alpha- tubulin (Tub1p and Tub3p) to form tubulin dimer, which polymerizes to form microtubules	-2.01	-2.48
YDL137W	ARF2	ADP-ribosylation factor, GTPase of the Ras superfamily involved in regulation of coated formation vesicles in intracellular trafficking within the Golgi	-2.01	-
YGR155 W	CYS4	Cystathionine beta-synthase, catalyzes synthesis of cystathionine from serine and homocysteine, the first committed step in cysteine biosynthesis	-2.02	-
YPL154C	PEP4	Vacuolar aspartyl protease (proteinase A), required for the posttranslational precursor maturation of vacuolar proteinases	-2.02	-
YEL039C	CYC7	Cytochrome c isoform 2, expressed under hypoxic conditions	-2.02	_
YOL126C	MDH2	Cytoplasmic malate dehydrogenase, one of three isozymes that catalyze interconversion of malate and oxaloacetate	-2.02	-
YIR038C	GTT1	ER associated glutathione S- transferase capable of homodimerization; expression induced during the diauxic shift and throughout stationary phase	-2.04	-

YLR223C	IFH1	Coactivator that regulates transcription of ribosomal protein (RP) genes;	-2.06	-
YDR516C	EMI2	Non-essential protein of unknown function required for transcriptional induction of the early meiotic-specific transcription factor IME1	-2.06	-
YHR148W	IMP3	Component of the SSU processome,	-2.06	-
YDR496C	PUF6	Pumilio-homology domain protein that binds the 3' UTR of ASH1 mRNA and represses its translation, resulting in proper asymmetric localization of ASH1 mRNA	-2.06	-
YDL022W	GPD1	NAD-dependent glycerol-3- phosphate dehydrogenase	-2.07	-2.97
YNL144C	YNL144 C	Putative protein of unknown function	-2.07	-
YOR239 W	ABP140	Nonessential protein that binds actin filaments and localizes to actin patches and cables, has similarity to S-adenosylmethionine (AdoMet)- dependent methyltransferases	-2.07	-2.69
YFL045C	SEC53	Phosphomannomutase, involved in synthesis of GDP-mannose and dolichol-phosphate-mannose; required for folding and glycosylation of secretory proteins in the ER lumen	-2.08	-2.94
YHR088W	RPF1	Nucleolar protein involved in the assembly and export of the large ribosomal subunit; constituent of 66S pre-ribosomal particles; contains a sigma(70)-like motif, which is thought to bind RNA	-2.09	_
YPL226W	NEW1	ATP binding cassette protein that cosediments with polysomes and is required for biogenesis of the small ribosomal subunit	-2.09	-2.34
YMR309C	NIP1	elF3c subunit of the eukaryotic translation initiation factor 3 (elF3), involved in the assembly of preinitiation complex and start codon selection	-2.10	-2.21
YDR155C	CPR1	Cytoplasmic peptidyl-prolyl cis-trans isomerase (cyclophilin	-2.10	-
YML060W	OGG1	Mitochondrial glycosylase/lyase that specifically excises 7,8-dihydro-8- oxoguanine residues located opposite cytosine or thymine residues in DNA, repairs oxidative damage to mitochondrial DNA,	-2.11	-2.05

		contributes to UVA resistance		
YNL102W	POL1	Catalytic subunit of the DNA	-2.12	_
		polymerase I alpha-primase		
		complex,		
YNR053C	NOG2	Putative GTPase that associates with	-2.13	_
		pre-60S ribosomal subunits in the		
		nucleolus and is required for their		
		nuclear export and maturation		
YPL256C	CLN2	G1 cyclin involved in regulation of the	-2.13	_
		cell cycle; activates Cdc28p kinase to		
		promote the G1 to S phase transition		
YPR138C	MEP3	Ammonium permease of high	-2.14	-
	_	capacity and low affinity		
YLR401C	DUS3	Dihydrouridine synthase, member of	-2.15	-
		a widespread family of conserved		
		proteins including Smm1p, Dus1p.		
		and Dus4p; contains a consensus		
		oleate response element (ORE) in its		
		promoter region		
YJR074W	MOG1	Conserved nuclear protein that	-2.16	_
		interacts with GTP-Gsp1p, which is a		
		Ran homolog of the Ras GTPase		
		family, and stimulates nucleotide		
		release, involved in nuclear protein		
		import, nucleotide release is inhibited		
		by Yrb1p		
YKL109W	HAP4	Subunit of the heme-activated,	-2.17	_
		glucose-repressed Hap2p/3p/4p/5p		
		CCAAT-binding complex, a		
		transcriptional activator and global		
		regulator of respiratory gene		
		expression		
YBR247C	ENP1	Protein associated with U3 and U14	-2.17	-
		snoRNAs, required for pre-rRNA		
		processing and 40S ribosomal		
		subunit synthesis		
YCL054W	SPB1	AdoMet-dependent	-2.19	-2.06
		methyltransferase involved in rRNA		
		processing and 60S ribosomal		
		subunit maturation; methylates		
		G2922 in the tRNA docking site of		
		the large subunit rRNA and in the		
		absence of snR52, U2921		
YER158C	YER158	Protein of unknown function, has	-2.19	-2.91
	С	similarity to Afr1p; potentially		
		phosphorylated by Cdc28p		
YDR101C	ARX1	Shuttling pre-60S factor; involved in	-2.20	-2.09
		the biogenesis of ribosomal large		
		subunit biogenesis		
YML008C	ERG6	Delta(24)-sterol C-methyltransferase,	-2.20	-2.23

		converts zymosterol to fecosterol in the ergosterol biosynthetic pathway		
		by methylating position C-24		
YKR077W	MSA2	Putative transcriptional activator, that interacts with G1-specific transcription factor, MBF and G1- specific promoters	-2.21	-
YCR034W	FEN1	Fatty acid elongase, involved in sphingolipid biosynthesis; acts on fatty acids of up to 24 carbons in length; mutations have regulatory effects on 1,3-beta-glucan synthase, vacuolar ATPase, and the secretory pathway	-2.21	-3.47
YGL171W	ROK1	ATP-dependent RNA helicase of the DEAD box family; required for 18S rRNA synthesis	-2.21	-
YFL052W	YFL052 W	Putative zinc cluster protein that contains a DNA binding domain	-2.21	-
YJL079C	PRY1	Protein of unknown function	-2.22	-
YGR271C -A	EFG1	Essential protein required for maturation of 18S rRNA	-2.22	-
YBR078W	ECM33	GPI-anchored protein of unknown function, has a possible role in apical bud growth; GPI-anchoring on the plasma membrane crucial to function; phosphorylated in mitochondria; similar to Sps2p and Pst1p	-2.22	-2.85
YLR056W	ERG3	C-5 sterol desaturase, catalyzes the introduction of a C-5(6) double bond into episterol, a precursor in ergosterol biosynthesis; mutants are viable, but cannot grow on non- fermentable carbon sources	-2.23	_
YIL136W	OM45	Protein of unknown function, major constituent of the mitochondrial outer membrane; located on the outer (cytosolic) face of the outer membrane	-2.24	-
YBL030C	PET9	Major ADP/ATP carrier of the mitochondrial inner membrane, exchanges cytosolic ADP for mitochondrially synthesized ATP	-2.25	-2.74
YGR079 W	YGR079 W	Putative protein of unknown function; YGR079W is not an essential gene	-2.26	-
YHR215W	PHO12	One of three repressible acid phosphatases, a glycoprotein that is transported to the cell surface by the secretory pathway: nearly identical to	-2.28	-2.49

		Pho11p		
YEL011W	GLC3	Glycogen branching enzyme,	-2.28	-
		involved in glycogen accumulation		
YGR180C	RNR4	Ribonucleotide-diphosphate	-2.28	-2.60
		reductase (RNR), small subunit; the		
		RNR complex catalyzes the rate-		
		limiting step in dNTP synthesis and is		
		regulated by DNA replication and		
		DNA damage checkpoint pathways		
		via localization of the small subunits		
YNR016C	ACC1	Acetyl-CoA carboxylase, biotin	-2.29	-2.88
		containing enzyme that catalyzes the		
		carboxylation of acetyl-CoA to form		
		maionyi-CoA	0.00	
IPRII2C	MRDT	Essential conserved protein that is	-2.29	-
		Putativo protoin of unknown function:	2.20	2.26
TINLUSOC	FINLU56	groop fluoroscopt protoin (CEP)	-2.29	-2.20
	C	fusion protein localizes to the		
YKR081C	RPF2	Essential protein involved in the	-2.29	_
	11112	processing of pre-rRNA and the	-2.25	
		assembly of the 60S ribosomal		
		subunit interacts with ribosomal		
		protein L11		
YHR052W	CIC1	Essential protein that interacts with	-2.30	-
		proteasome components and has a		
		potential role in proteasome		
		substrate specificity		
YGR060	ERG25	C-4 methyl sterol oxidase, catalyzes	-2.30	-2.24
W		the first of three steps required to		
		remove two C-4 methyl groups from		
		an intermediate in ergosterol		
		biosynthesis		
YGR271C	EFG1	Essential protein required for	-2.30	-
-A		maturation of 18S rRNA; null mutant		
		is sensitive to hydroxyurea and is		
		delayed in recovering from alpha-		
VOD404		Tactor arrest	0.05	0.47
YUR101	RAS1	G Pase involved in G-protein	-2.35	-2.47
vv		signaling in the adenyiate cyclase		
		cell proliferation		
V IR070C	Δ 1	Deoxybynusine hydroxylase	-2.35	-2.86
		HEAT-reneat containing	-2.55	-2.00
		metalloenzyme that catalyzes		
		hypusine formation		
YPI 093W	NOG1	Putative GTPase that associates with	-2 35	-2 14
		free 60S ribosomal subunits in the	2.00	_
		nucleolus and is required for 60S		

		ribosomal subunit biogenesis		
YJL026W	RNR2	Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate- limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits	-2.35	-3.23
YDR234W	LYS4	Homoaconitase, catalyzes the conversion of homocitrate to homoisocitrate, which is a step in the lysine biosynthesis pathway	-2.36	-2.28
YER003C	PMI40	Mannose-6-phosphate isomerase, catalyzes the interconversion of fructose-6-P and mannose-6-P; required for early steps in protein mannosylation	-2.36	-3.87
YJL173C	RFA3	Subunit of heterotrimeric Replication Protein A (RPA), which is a highly conserved single-stranded DNA binding protein involved in DNA replication, repair, and recombination	-2.37	-2.95
YHR153C	SPO16	Meiosis-specific protein involved in synaptonemal complex assembly; implicated in regulation of crossover formation	-2.38	-
YKR075C	YKR075 C	Protein of unknown function; similar to YOR062Cp and Reg1p	-2.38	-
YPL267W	ACM1	Pseudosubstrate inhibitor of the anaphase-promoting complex/cyclosome (APC/C), that suppresses APC/C [Cdh1]-mediated proteolysis of mitotic cyclins; associates with Cdh1p, Bmh1p and Bmh2p; cell cycle regulated protein	-2.39	_
YMR145C	NDE1	Mitochondrial external NADH dehydrogenase, a type II NAD(P)H:quinone oxidoreductase that catalyzes the oxidation of cytosolic NADH	-2.39	-2.72
YKL045W	PRI2	Subunit of DNA primase, which is required for DNA synthesis and double-strand break repair	-2.40	-
YCL025C	AGP1	Low-affinity amino acid permease with broad substrate range, involved in uptake of asparagine, glutamine, and other amino acids	-2.41	-2.46
YJR073C	OPI3	Phospholipid methyltransferase, catalyzes the last two steps in phosphatidylcholine biosynthesis	-2.42	-

YOR340C	RPA43	RNA polymerase I subunit A43	-2.43	-
YNL002C	RLP7	Nucleolar protein with similarity to large ribosomal subunit L7 proteins	-2.43	-
YHR128W	FUR1	Uracil phosphoribosyltransferase, synthesizes UMP from uracil; involved in the pyrimidine salvage pathway	-2.43	-2.84
YNL248C	RPA49	RNA polymerase I subunit A49	-2.45	-2.35
YPL186C	UIP4	Protein that interacts with Ulp1p, a Ubl (ubiquitin-like protein)-specific protease for Smt3p protein conjugates	-2.45	-2.63
YNL274C	GOR1	Glyoxylate reductase; null mutation results in increased biomass after diauxic shift	-2.46	-2.32
YMR196 W	YMR196 W	Putative protein of unknown function	-2.48	_
YLR134W	PDC5	Minor isoform of pyruvate decarboxylase, key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde	-2.51	-4.45
YDR497C	ITR1	Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily	-2.52	-3.86
YNR014W	YNR014 W	Putative protein of unknown function; expression is cell-cycle regulated, Azf1p-dependent, and heat-inducible	-2.52	-
YER145C	FTR1	High affinity iron permease involved in the transport of iron across the plasma membrane	-2.55	-
YDR097C	MSH6	Protein required for mismatch repair in mitosis and meiosis, forms a complex with Msh2p to repair both single-base & insertion-deletion mispairs; potentially phosphorylated by Cdc28p	-2.57	-2.01
YMR058 W	FET3	Ferro-O2-oxidoreductase required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases	-2.60	-
YBL039C	URA7	Major CTP synthase isozyme (see also URA8), catalyzes the ATP- dependent transfer of the amide nitrogen from glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines	-2.69	-3.64

YDR453C	TSA2	Stress inducible cytoplasmic	-2.70	-2.18
		thioredoxin peroxidase	0.74	
YER001W	MNN1	Alpha-1,3-mannosyltransferase, integral membrane glycoprotein of the Golgi complex, required for addition of alpha1,3-mannose linkages to N-linked and O-linked oligosaccharides, one of five S. cerevisiae proteins of the MNN1	-2.74	_
		family		
YOL084W	PHM7	Protein of unknown function, expression is regulated by phosphate levels	-2.77	-
YKL216W	URA1	Dihydroorotate dehydrogenase, catalyzes the fourth enzymatic step in the de novo biosynthesis of pyrimidines, converting dihydroorotic acid into orotic acid	-2.83	-4.34
YGR159C	NSR1	Nucleolar protein that binds nuclear localization sequences, required for pre-rRNA processing and ribosome biogenesis	-2.84	-
YGR121C	MEP1	Ammonium permease; belongs to a ubiquitous family of cytoplasmic membrane proteins that transport only ammonium (NH4+); expression is under the nitrogen catabolite repression regulation	-2.87	-2.69
YGR248 W	SOL4	6-phosphogluconolactonase with similarity to Sol3p	-2.87	-
YBR029C	CDS1	Phosphatidate cytidylyltransferase (CDP-diglyceride synthetase	-2.89	-4.85
YIL094C	LYS12	Homo-isocitrate dehydrogenase, an NAD-linked mitochondrial enzyme required for the fourth step in the biosynthesis of lysine	-2.92	-2.90
YCL024W	KCC4	Protein kinase of the bud neck involved in the septin checkpoint,	-2.93	-
YHR183W	GND1	6-phosphogluconate dehydrogenase	-2.93	-3.42
YPR184W	GDB1	Glycogen debranching enzyme containing glucanotranferase and alpha-1,6-amyloglucosidase activities, required for glycogen degradation; phosphorylated in mitochondria	-2.94	-
YJL200C	ACO2	Putative mitochondrial aconitase isozyme	-2.94	-
YMR076C	PDS5	Protein required for establishment and maintenance of sister chromatid condensation and cohesion	-2.97	-2.54

YER091C	MET6	Cobalamin-independent methionine	-3.08	-
		synthase		
YMR250 W	GAD1	Glutamate decarboxylase	-3.12	-3.46
YMR120C	ADE17	Enzyme of 'de novo' purine biosynthesis containing both 5- aminoimidazole-4-carboxamide ribonucleotide transformylase and inosine monophosphate cyclohydrolase activities, isozyme of Ade16p; ade16 ade17 mutants require adenine and histidine	-3.14	_
YOR074C	CDC21	Thymidylate synthase	-3.15	-3.29
YOL109W	ZEO1	Peripheral membrane protein of the plasma membrane that interacts with Mid2p	-3.16	-
YNL112W	DBP2	Essential ATP-dependent RNA helicase of the DEAD-box protein family, involved in nonsense- mediated mRNA decay and rRNA processing	-3.24	-
YDL003W	MCD1	Essential subunit of the cohesin complex required for sister chromatid cohesion in mitosis and meiosis	-3.29	_
YFR015C	GSY1	Glycogen synthase with similarity to Gsy2p, the more highly expressed yeast homolog	-3.30	-
YER043C	SAH1	S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L- homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor	-3.37	-4.10
YER026C	CHO1	Phosphatidylserine synthase, functions in phospholipid biosynthesis; catalyzes the reaction CDP-diaclyglycerol + L-serine = CMP + L-1-phosphatidylserine, transcriptionally repressed by myo- inositol and choline	-3.40	-5.43
YDL204W	RTN2	Protein of unknown function	-3.54	-
YPR037C	ERV2	Flavin-linked sulfhydryl oxidase localized to the endoplasmic reticulum lumen, involved in disulfide bond formation within the ER	-3.65	-4.55
YLR183C	TOS4	Forkhead Associated domain containing protein and putative transcription factor found associated with chromatin	-3.76	-4.56

YBR208C	DUR1,2	Urea amidolyase, contains both urea carboxylase and allophanate hydrolase activities, degrades urea to CO2 and NH3	-3.79	-
YOR315 W	SFG1	Nuclear protein, putative transcription factor required for growth of superficial pseudohyphae (which do not invade the agar substrate) but not for invasive pseudohyphal growth; may act together with Phd1p	-3.82	-5.06
YMR105C	PGM2	Phosphoglucomutase, catalyzes the conversion from glucose-1- phosphate to glucose-6-phosphate	-3.86	-
YLR327C	TMA10	Protein of unknown function that associates with ribosomes	-3.90	-
YLR180W	SAM1	S-adenosylmethionine synthetase, catalyzes transfer of the adenosyl group of ATP to the sulfur atom of methionine	-4.04	-2.26
YDL227C	НО	Site-specific endonuclease required for gene conversion at the MAT locus (homothallic switching) through the generation of a ds DNA break	-4.26	-
YFR053C	HXK1	Hexokinase isoenzyme 1, a cytosolic protein that catalyzes phosphorylation of glucose during glucose metabolism	-4.35	-
YBR291C	CTP1	Mitochondrial inner membrane citrate transporter, member of the mitochondrial carrier family	-4.42	-3.35
YOR348C	PUT4	Proline permease, required for high- affinity transport of proline	-4.47	-
YML128C	MSC1	Protein of unknown function; mutant is defective in directing meiotic recombination events to homologous chromatids	-4.73	-
YNL194C	YNL194 C	Integral membrane protein required for sporulation and plasma membrane sphingolipid content; has sequence similarity to SUR7 and FMP45; GFP-fusion protein is induced in response to the DNA- damaging agent MMS	-4.95	-6.45
YOR375C	GDH1	NADP(+)-dependent glutamate dehydrogenase, synthesizes glutamate from ammonia and alpha- ketoglutarate; rate of alpha- ketoglutarate utilization differs from Gdh3p; expression regulated by nitrogen and carbon sources	-4.98	-7.99

YPR192W	AQY1	Spore-specific water channel that mediates the transport of water across cell membranes, developmentally controlled; may play a role in spore maturation, probably by allowing water outflow, may be involved in freeze tolerance	-5.07	-3.08
YDR502C	SAM2	S-adenosylmethionine synthetase	-5.27	-14.85
YNL065W	AQR1	Plasma membrane multidrug transporter of the major facilitator superfamily, confers resistance to short-chain monocarboxylic acids and quinidine	-5.53	-3.28
YER070W	RNR1	Major isoform of the large subunit of ribonucleotide-diphosphate reductase	-5.60	-8.64
YPR160W	GPH1	Non-essential glycogen phosphorylase required for the mobilization of glycogen, activity is regulated by cyclic AMP-mediated phosphorylation,	-6.10	
YBR092C	PHO3	Constitutively expressed acid phosphatase similar to Pho5p	-6.21	-6.52
YNR050C	LYS9	Saccharopine dehydrogenase (NADP+, L-glutamate-forming	-6.39	-12.19
YNL142W	MEP2	Ammonium permease involved in regulation of pseudohyphal growth	-6.62	-3.89
YDR342C	HXT7	High-affinity glucose transporter of the major facilitator superfamily, nearly identical to Hxt6p	-8.35	_
YKL096W	CWP1	Cell wall mannoprotein that localizes specifically to birth scars of daughter cells, linked to a beta-1,3- and beta- 1,6-glucan heteropolymer through a phosphodiester bond; required for propionic acid resistance	-8.71	-10.09
YDR343C	HXT6	High-affinity glucose transporter of the major facilitator superfamily, nearly identical to Hxt7p, expressed at high basal levels relative to other HXTs, repression of expression by high glucose requires SNF3	-9.44	_
YKR039W	GAP1	General amino acid permease	-11.78	-11.21
YFL014W	HSP12	Plasma membrane localized protein that protects membranes from desiccation	-16.71	-
YMR011 W	HXT2	High-affinity glucose transporter of the major facilitator superfamily, expression is induced by low levels	-22.27	-58.00

		of glucose and repressed by high		
		levels of glucose		
YLR012C	YLR012 C	Putative protein of unknown function	-	10.42
YGL138C	YGL138 C	Putative protein of unknown function	-	10.37
YGL183C	MND1	Protein required for recombination and meiotic nuclear division	-	6.18
YER053C -A	YER053 C-A	Putative protein of unknown function	-	5.66
YNR062C	YNR062 C	Putative membrane protein of unknown function	-	5.12
YJR149W	YJR149 W	Putative protein of unknown function	-	4.93
YCR101C	YCR101 C	Putative protein of unknown function	-	4.89
YOR298 W	MUM3	Protein of unknown function involved in the organization of the outer spore wall layers	-	4.29
YJL072C	PSF2	Subunit of the GINS complex (Sld5p, Psf1p, Psf2p, Psf3p), which is localized to DNA replication origins and implicated in assembly of the DNA replication machinery	-	4.06
YOL131W	YOL131 W	Putative protein of unknown function	-	4.00
YNR004W	SWM2	Putative protein of unknown function	-	3.89
YCR005C	CIT2	Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate, peroxisomal isozyme involved in glyoxylate cycle; expression is controlled by Rtg1p and Rtg2p transcription factors	_	3.80
YGR243 W	FMP43	Putative protein of unknown function	-	3.68
YGR161C	RTS3	Putative component of the protein phosphatase type 2A complex	-	3.58
YCR106W	RDS1	Zinc cluster transcription factor involved in conferring resistance to cycloheximide	-	3.48
YIL029C	YIL029C	Putative protein of unknown function; deletion confers sensitivity to 4-(N- (S-glutathionylacetyl)amino) phenylarsenoxide (GSAO)	_	3.47
YJL213W	YJL213 W	Protein of unknown function that may interact with ribosomes;	-	3.46
YLR266C	PDR8	Transcription factor; targets include ATP-binding cassette (ABC)	-	3.24

		transporters, major facilitator superfamily transporters, and other		
		resistance (PDR) phenomenon		
YGL096W	TOS8	Homeodomain-containing protein and putative transcription factor found associated with chromatin	_	3.13
YGL170C	SPO74	Component of the meiotic outer plaque of the spindle pole body, involved in modifying the meiotic outer plaque that is required prior to prospore membrane formation	-	3.08
YGL219C	MDM34	Mitochondrial component of the ERMES complex that links the ER to mitochondria and may promote inter- organellar calcium and phospholipid exchange as well as coordinating mitochondrial DNA replication and growth	_	3.05
YGR287C	YGR287 C	Major isomaltase (alpha-1,6- glucosidase) required for isomaltose utilization; has specificity for isomaltose, palatinose, and methyl- alpha-glucoside; member of the IMA isomaltase family	-	2.97
YHR184W	SSP1	Protein involved in the control of meiotic nuclear division and coordination of meiosis with spore formation; transcription is induced midway through meiosis	-	2.92
YOR177C	MPC54	Component of the meiotic outer plaque, a membrane-organizing center which is assembled on the cytoplasmic face of the spindle pole body during meiosis II and triggers the formation of the prospore membrane; potential Cdc28p substrate	-	2.91
YEL023C	YEL023 C	Putative protein of unknown function	-	2.89
YOR012 W	YOR012 W	Putative protein of unknown function	-	2.88
YOR213C	SAS5	Subunit of the SAS complex (Sas2p, Sas4p, Sas5p), which acetylates free histones and nucleosomes and regulates transcriptional silencing; stimulates Sas2p HAT activity	-	2.87
YMR034C	YMR034 C	Putative transporter, member of the SLC10 carrier family	-	2.86
YDL039C	PRM7	Pheromone-regulated protein,	-	2.86

		predicted to have one transmembrane segment; promoter		
		contains Gcn4p binding elements		
YPL026C	SKS1	Putative serine/threonine protein	_	2.83
		kinase: involved in the adaptation to		
		low concentrations of glucose		
		independent of the SNE3 regulated		
		nathway		
	GUP2	Probable membrane protein with a		2.83
1110900	60F2	possible rele in proton symport of		2.05
		alwarel: member of the MROAT		
		family of putative membrane bound		
	14.00	O-acyliansierases		0.00
Y MRU35	IMP2	Catalytic subunit of the mitochondrial	-	2.82
vv		inner memorane peptidase complex,		
		required for maturation of		
		mitochondrial proteins of the		
		Intermembrane space		
YGL114W	YGL114	Putative protein of unknown function;	-	2.82
	W	predicted member of the oligopeptide		
		transporter (OPT) family of		
		membrane transporters		
YER039C	YER039	Putative protein of unknown function;	-	2.77
-A	C-A	YER039C-A is not an essential gene		
YMR135C	GID8	Protein of unknown function, involved	-	2.74
		in proteasome-dependent catabolite		
		inactivation of fructose-1,6-		
		bisphosphatase		
YJL058C	BIT61	Subunit of TORC2 (Tor2p-Lst8p-	-	2.69
		Avo1-Avo2-Tsc11p-Bit61p-SIm1p-		
		SIm2p), a membrane-associated		
		complex that regulates cell cycle-		
		dependent actin cytoskeletal		
		dynamics during polarized growth		
		and cell wall integrity		
YPL068C	YPL068	Protein of unknown function; green	_	2.64
	С	fluorescent protein (GFP)-fusion		
		protein localizes to the nucleus and		
		is induced in response to the DNA-		
		damaging agent MMS		
YIL009C-	EST3	Component of the telomerase	_	2.61
А		holoenzyme, involved in telomere		
		replication		
YLR205C	HMX1	ER localized heme oxvgenase.	_	2.60
		involved in heme degradation during		
		iron starvation and in the oxidative		
		stress response		
YGI 162W	SUT1	Transcription factor of the	_	2 60
		Zn[l]2Cvs6 family involved in sterol		2.00
		uptake; involved in induction of		

		hypoxic gene expression		
YAL064C-	YAL064	Putative protein of unknown function;	-	2.60
A	C-A	YAL064C-A is not an essential gene		
YDL039C	PRM7	Pheromone-regulated protein,	-	2.59
		predicted to have one		
		transmembrane segment; promoter		
		contains Gcn4p binding elements		
YNL314W	DAL82	Positive regulator of allophanate	-	2.53
		inducible genes; binds a		
		dodecanucleotide sequence		
		upstream of all genes that are		
		induced by allophanate; contains an		
		UISALL DNA-binding, a		
		transcriptional activation, and a		
		coiled-coil domain		
YNR074C	AIF1	Mitochondrial cell death effector that	-	2.53
		translocates to the nucleus in		
		response to apoptotic stimuli,		
		homolog of mammalian Apoptosis-		
		Inducing Factor, putative reductase		
YPL148C	PPT2	Phosphopantetheine:protein	-	2.52
		transferase (PPTase), activates		
		mitochondrial acyl carrier protein		
		(Acp1p) by phosphopantetheinylation		
YER073W	ALD5	Mitochondrial aldehyde	-	2.50
		dehydrogenase, involved in		
		regulation or biosynthesis of electron		
		transport chain components and		
		acetate formation		0.40
YFR025C	HIS2	Histidinolphosphatase, catalyzes the	-	2.49
		eighth step in histidine biosynthesis;		
		mutations cause nistidine auxotrophy		
		and sensitivity to Cu, Co, and Ni		
		sails, transcription is regulated by		
		Suburit of the Deed (Create) Tone		0.40
TPL024VV	RMIT	Suburil of the RecQ (SgsTp) - Topo	-	2.48
		in (Topop) complex, sumulates		
		binding activities of Ton3n		
	POP2	Dinding activities of Top3p		2 45
TINL042VV	BOFS	notontial Cdo28n substrate	_	2.45
VGI 150W/	VGL 150	Putative protein of unknown function	_	2 1 2
IGL139W	IGLIJ9			2.42
		Highly conserved iron-sulfur cluster		2/1
11200300	CIDI	hinding protein localized in the		2.41
		cytoplasm		
	YDI 109	Putative linase: involved in linid	_	2 41
	, <u>, , , , , , , , , , , , , , , , , , </u>	metabolism		6 . T I
YI R030W	YI R030	Putative protein of unknown function	_	2.38
	W			2.00

YIL152W	YIL152 W	Putative protein of unknown function	-	2.37
YGR146C	ECL1	Protein of unknown function, affects chronological lifespan	-	2.35
YFR035C	YFR035 C	Putative protein of unknown function, deletion mutant exhibits synthetic phenotype with alpha-synuclein	-	2.34
YOL133W	HRT1	RING finger containing subunit of Skp1-Cullin-F-box ubiquitin protein ligases (SCF); required for Gic2p, Far1p, Sic1p and Cln2p degradation; may tether Cdc34p (a ubiquitin conjugating enzyme or E2) and Cdc53p (a cullin) subunits of SCF	-	2.34
YJR094C	IME1	Master regulator of meiosis that is active only during meiotic events, activates transcription of early meiotic genes through interaction with Ume6p, degraded by the 26S proteasome following phosphorylation by Ime2p	_	2.33
YDL127W	PCL2	Cyclin, interacts with cyclin- dependent kinase Pho85p	-	2.33
YCL056C	YCL056 C	Protein of unknown function	-	2.32
YOL025W	LAG2	Protein that negatively regulates the SCF E3-ubiquitin ligase by interacting with and preventing neddyation of the cullin subunit, Cdc53p; longevity determinant that is preferentially expressed in young cells; similar to mammalian Cand1	_	2.30
YLR326W	YLR326 W	Putative protein of unknown function, predicted to be palmitoylated	-	2.30
YFR008W	FAR7	Protein involved in recovery from cell cycle arrest in response to pheromone, in a Far1p-independent pathway	-	2.30
YDR408C	4050	Dhaanharihaavlahvainamida		0.00
	ADE8	transformylase, catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway	-	2.28
YOR179C	ADE8	transformylase, catalyzes a step in the 'de novo' purine nucleotide biosynthetic pathway Subunit of the APT subcomplex of cleavage and polyadenylation factor, may have a role in 3' end formation of both polyadenylated and non- polyadenylated RNAs	-	2.28

YLR452C	SST2	GTPase-activating protein for Gpa1p, regulates desensitization to alpha factor pheromone	_	2.27
YOR201C	MRM1	Ribose methyltransferase that modifies a functionally critical, conserved nucleotide in mitochondrial 21S rRNA	-	2.26
YJR021C	REC107	Protein involved in early stages of meiotic recombination; involved in coordination between the initiation of recombination and the first division of meiosis; part of a complex (Rec107p- Mei4p-Rec114p) required for ds break formation	_	2.25
YPR083W	MDM36	Mitochondrial protein required for normal mitochondrial morphology and inheritance; proposed involvement in the formation of Dnm1p and Num1p-containing cortical anchor complexes that promote mitochondrial fission	_	2.24
YJR127C	RSF2	Zinc-finger protein involved in transcriptional control of both nuclear and mitochondrial genes, many of which specify products required for glycerol-based growth, respiration, and other functions	-	2.23
YJL163C	YJL163 C	Putative protein of unknown function	-	2.23
YPL252C	YAH1	Ferredoxin of the mitochondrial matrix required for formation of cellular iron-sulfur proteins; involved in heme A biosynthesis	-	2.23
YMR059 W	SEN15	Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p	-	2.23
YBR107C	IML3	Protein with a role in kinetochore function, localizes to the outer kinetochore in a Ctf19p-dependent manner, interacts with Chl4p and Ctf19p	-	2.23
YMR065 W	KAR5	Protein required for nuclear membrane fusion during karyogamy, localizes to the membrane with a soluble portion in the endoplasmic reticulum lumen, may form a complex with Jem1p and Kar2p; expression of the gene is regulated by pheromone	_	2.21

YJL100W	LSB6	Type II phosphatidylinositol 4-kinase that binds Las17p, which is a homolog of human Wiskott-Aldrich Syndrome protein involved in actin patch assembly and actin polymerization	-	2.21
YPL214C	THI6	Bifunctional enzyme with thiamine- phosphate pyrophosphorylase and 4- methyl-5-beta-hydroxyethylthiazole kinase activities, required for thiamine biosynthesis	_	2.20
YOR211C	MGM1	Chr XV from 741569-738924, reverse complement, Verified ORF, ""Mitochondrial GTPase, present in complex with Ugo1p and Fzo1p	-	2.20
YIL114C	POR2	Putative mitochondrial porin (voltage- dependent anion channel), related to Por1p but not required for mitochondrial membrane permeability or mitochondrial osmotic stability	-	2.19
YDR259C	YAP6	Putative basic leucine zipper (bZIP) transcription factor; overexpression increases sodium and lithium tolerance	-	2.19
YHL027W	RIM101	Transcriptional repressor involved in response to pH and in cell wall construction; required for alkaline pH-stimulated haploid invasive growth and sporulation; activated by proteolytic processing	-	2.17
YOR019 W	YOR019 W	Protein of unknown function that may interact with ribosomes, based on co- purification experiments	-	2.17
YLR193C	UPS1	Mitochondrial intermembrane space protein that regulates mitochondrial cardiolipin levels, null has defects in Mgm1p processing, integrity of mitochondrial inner membrane complexes, and mitochondrial morphology; ortholog of human PRELI	_	2.17
YFR005C	SAD1	Conserved zinc-finger domain protein involved in pre-mRNA splicing, required for assembly of U4 snRNA into the U4/U6 particle	_	2.17
YJR097W	JJJ3	Protein of unknown function, contains a J-domain, which is a region with homology to the E. coli DnaJ protein	_	2.16

YFL050C	ALR2	Probable Mg(2+) transporter; overexpression confers increased tolerance to Al(3+) and Ga(3+) ions; plays a role in regulating Ty1 transposition	_	2.16
YHR199C	AIM46	Putative protein of unknown function; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies; null mutant displays elevated frequency of mitochondrial genome loss	_	2.15
YFR036W	CDC26	Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C), which is a ubiquitin-protein ligase required for degradation of anaphase inhibitors, including mitotic cyclins, during the metaphase/anaphase transition	_	2.14
YBR063C	YBR063 C	Putative protein of unknown function; YBR063C is not an essential gene	-	2.14
YML002W	YML002 W	Putative protein of unknown function; expression induced by heat and by calcium shortage	_	2.13
YOR028C	CIN5	Basic leucine zipper (bZIP) transcription factor of the yAP-1 family, mediates pleiotropic drug resistance and salt tolerance	_	2.13
YKR106W	YKR106 W	Protein of unconfirmed function; displays a topology characteristic of the Major Facilitators Superfamily of membrane proteins; coding sequence 98% identical to that of YCL073C	_	2.13
YJR136C	TTI2	Putative protein of unknown function	-	2.12
YGR230 W	BNS1	Protein with some similarity to Spo12p; overexpression bypasses need for Spo12p, but not required for meiosis	-	2.11
YPR071W	YPR071 W	Putative membrane protein; YPR071W is not an essential gene	-	2.11
YBR004C	GPI18	Functional ortholog of human PIG-V, which is a mannosyltransferase that transfers the second mannose in glycosylphosphatidylinositol biosynthesis; the authentic, non- tagged protein was localized to mitochondria	-	2.11
YAL015C	NTG1	DNA N-glycosylase and apurinic/apyrimidinic (AP) lyase	_	2.10

r				
		involved in base excision repair; acts		
		in both nucleus and mitochondrion;		
		creates a double-strand break at		
		mtDNA origins that stimulates		
		replication in response to oxidative		
	-	stress		
YKR019C	IRS4	EH domain-containing protein	-	2.10
		involved in regulating		
		phosphatidylinositol 4,5-		
		bisphosphate levels and autophagy		
YOR383C	FIT3	Mannoprotein that is incorporated	-	2.10
		into the cell wall via a		
		glycosylphosphatidylinositol (GPI)		
		anchor, involved in the retention of		
		siderophore-iron in the cell wall		
YNR029C	YNR029	Putative protein of unknown function,	-	2.10
	С	deletion confers reduced fitness in		
		saline		
YOR079C	ATX2	Golgi membrane protein involved in	-	2.10
		manganese homeostasis;		
		overproduction suppresses the sod1		
		(copper, zinc superoxide dismutase)		
		null mutation		
YIL104C	SHQ1	Chaperone protein required for the	-	2.10
		assembly of box H/ACA snoRNPs		
		and thus for pre-rRNA processing,		
		forms a complex with Naf1p and		
		interacts with H/ACA snoRNP		
		components Nhp2p and Cbf5p;		
		homology with known Hsp90p		
		cochaperones		
YFL051C	YFL051	Putative protein of unknown function;	-	2.10
	С	YFL051C is not an essential gene		
YOR183	FYV12	Protein of unknown function, required	-	2.09
W		for survival upon exposure to K1		
		killer toxin		
YGR029	ERV1	Flavin-linked sulfhydryl oxidase of	_	2.09
W		the mitochondrial intermembrane		
		space (IMS), oxidizes Mia40p as part		
		of a disulfide relay system that		
		promotes IMS retention of imported		
		proteins; ortholog of human		
		hepatopoietin (ALR)		
YDR093W	DNF2	Aminophospholipid translocase	-	2.09
		(flippase) that localizes primarily to		
		the plasma membrane; contributes to		
		endocytosis, protein transport and		
		cell polarity; type 4 P-type ATPase		
YFL027C	GYP8	GTPase-activating protein for veast	-	2.08
_	-	Rab family members; Ypt1p is the		

		preferred in vitro substrate but also		
		acts on Sec4p, Ypt31p and Ypt32p;		
		involved in the regulation of ER to		
	VOL4CO	Golgi vesicle transport		0.07
YOL163W	YOL163	Putative protein of unknown function;	_	2.07
	VV	the major facilitator family		
	VI P125	Putative protein of unknown function		2.06
	W			2.00
YAR028W	YAR028	Putative integral membrane protein,	_	2.06
	W	member of DUP240 gene family;		
YOR268C	YOR268	Putative protein of unknown function	-	2.06
	С			
YPR061C	JID1	Probable Hsp40p co-chaperone, has	-	2.05
		a DnaJ-like domain and appears to		
		be involved in ER-associated		
		degradation of misfolded proteins		
		containing a tightly folded		
	0004	cytoplasmic domain		0.05
I GLU25C	PGDT	Subunit of the RNA polymerase if	_	2.05
		Alkaline phosphatase specific for p	_	2.05
IDL23000	FIIOTS	nitrophenyl phosphate		2.05
YOR107	RGS2	Negative regulator of glucose-	_	2.04
W		induced cAMP signaling		-
YMR303C	ADH2	Glucose-repressible alcohol	-	2.04
		dehydrogenase II, catalyzes the		
		conversion of ethanol to		
		acetaldehyde		
YCR073C	SSK22	MAP kinase kinase kinase of the	-	2.04
		HOG1 mitogen-activated signaling		
	0011	pathway		0.04
YIL099W	SGA1	Intracellular sporulation-specific	_	2.04
		degradation: induced during		
		staniation, induced during		
		sporulation but dispensable for		
		sporulation		
YGL179C	TOS3	Protein kinase, related to and	_	2.03
		functionally redundant with Elm1p		
		and Sak1p for the phosphorylation		
		and activation of Snf1p		
YDR073W	SNF11	Subunit of the SWI/SNF chromatin	-	2.03
		remodeling complex involved in		
		transcriptional regulation		
YDR191W	HST4	Member of the Sir2 family of NAD(+)-	-	2.03
		dependent protein deacetylases;		
		involved along with Hst3p in silencing		
	\4.0	at telomeres,		
YPR058W	YMC1	Nitochondrial protein, putative inner	-	2.03
		membrane transporter with a role in		
---------	--------	---	---	-------
		oleate metabolism and glutamate		
		biosynthesis		
YNL227C	JJJ1	Co-chaperone that stimulates the	_	2.02
		ATPase activity of Ssa1p, required		
		for a late step of ribosome		
		biogenesis; associated with the		
		cytosolic large ribosomal subunit		
YBR278W	DPB3	Third-largest subunit of DNA	_	2.01
		polymerase II (DNA polymerase		
		epsilon), required to maintain fidelity		
		of chromosomal replication and also		
		for inheritance of telomeric silencing		
YMR023C	MSS1	Mitochondrial protein, forms a	-	2.01
		heterodimer complex with Mto1p that		
		performs the 5-		
		carboxymethylaminomethyl		
		modification of the wobble uridine		
		base in mitochondrial tRNAs		
YMR176	ECM5	Non-essential protein of unknown	-	2.00
W		function. contains ATP/GTP-binding		
		site motif A; null mutant exhibits		
		cellular volume up to four times		
		greater than wild-type, also large		
		drooping buds with elongated necks		
YGR074	SMD1	Core Sm protein Sm D1; part of	_	2.00
W		heteroheptameric complex (with		
		Smb1p, Smd2p, Smd3p, Sme1p,		
		Smx3p, and Smx2p) that is part of		
		the spliceosomal U1, U2, U4, and U5		
		snRNPs; homolog of human Sm D1		
YPR013C	YPR013	Putative zinc finger protein;	-	2.00
	С	YPR013C is not an essential gene		
YML085C	TUB1	Alpha-tubulin; associates with beta-	-	-2.01
		tubulin (Tub2p) to form tubulin dimer,		
		which polymerizes to form		
		microtubules		
YOL030W	GAS5	1,3-beta-glucanosyltransferase	-	-2.01
YKL027W	YKL027	Protein of unknown function,	-	-2.02
	W	localized to the mitochondrial outer		
		membrane		
YHR123W	EPT1	sn-1,2-diacylglycerol ethanolamine-	_	-2.02
		and cholinephosphotranferase		
YJL177W	RPL17B	Protein component of the large (60S)	_	-2.02
		ribosomal subunit, nearly identical to		
		Rpl17Ap and has similarity to E. coli		
		L22 and rat L17 ribosomal proteins		
YNL280C	ERG24	C-14 sterol reductase, acts in		-2.02
		ergosterol biosynthesis		

YER031C	YPT31	Rab family GTPase, very similar to Ypt32p	_	-2.02
YML093W	UTP14	Subunit of U3-containing Small Subunit (SSU) processome complex involved in production of 18S rRNA and assembly of small ribosomal subunit	-	-2.02
YDR391C	YDR391 C	Putative protein of unknown function	-	-2.03
YLR172C	DPH5	Methyltransferase required for synthesis of diphthamide	-	-2.03
YBR189W	RPS9B	Protein component of the small (40S) ribosomal subunit	-	-2.03
YNL151C	RPC31	RNA polymerase III subunit C31	-	-2.03
YKR059W	TIF1	Translation initiation factor eIF4A, identical to Tif2p; DEA(D/H)-box RNA helicase that couples ATPase activity to RNA binding and unwinding	-	-2.04
YBR137W	YBR137 W	Protein of unknown function; localized to the cytoplasm	_	-2.04
YOR168 W	GLN4	Glutamine tRNA synthetase, monomeric class I tRNA synthetase	-	-2.04
YHL033C	RPL8A	Ribosomal protein L4 of the large (60S) ribosomal subunit, nearly identical to Rpl8Bp and has similarity to rat L7a ribosomal protein; mutation results in decreased amounts of free 60S subunits	_	-2.04
YBR025C	OLA1	P-loop ATPase with similarity to human OLA1 and bacterial YchF; identified as specifically interacting with the proteasome	-	-2.04
YGL200C	EMP24	Integral membrane component of endoplasmic reticulum-derived COPII-coated vesicles, which function in ER to Golgi transport	-	-2.05
YMR307 W	GAS1	Beta-1,3-glucanosyltransferase, required for cell wall assembly and also has a role in transcriptional silencing; localizes to the cell surface via a glycosylphosphatidylinositol (GPI) anchor	-	-2.05
YEL040W	UTR2	Chitin transglycosylase that functions in the transfer of chitin to beta(1-6) and beta(1-3) glucans in the cell wall	-	-2.05
YLR150W	STM1	Protein required for optimal translation under nutrient stress; perturbs association of Yef3p with ribosomes; involved in TOR signaling	-	-2.05

YEL031W	SPF1	P-type ATPase, ion transporter of the	_	-2.05
		ER membrane involved in ER		
		function and Ca2+ homeostasis		
YJL138C	TIF2	Translation initiation factor eIF4A,	-	-2.05
		identical to Tif1p; DEA(D/H)-box		
		RNA helicase that couples ATPase		
		activity to RNA binding and		
		unwinding		
YDL145C	COP1	Alpha subunit of COPI vesicle	_	-2.05
		coatomer complex, which surrounds		
		transport vesicles in the early		
		secretory pathway		
YEL054C	RPL12A	Protein component of the large (60S)	_	-2.06
		ribosomal subunit, nearly identical to		
		Rol12Bp: rol12a rol12b double		
		mutant exhibits slow growth and slow		
		translation: has similarity to E. coli		
		L11 and rat L12 ribosomal proteins		
YJR103W	URA8	Minor CTP synthase isozyme (see	_	-2.07
	•••••	also URA7) catalyzes the ATP-		
		dependent transfer of the amide		
		nitrogen from glutamine to UTP		
		forming CTP the final step in de		
		novo biosynthesis of pyrimidines		
Y.II 050W	MTR4	ATP-dependent 3'-5' RNA belicase of	_	-2 07
1020000		the Dead-box family involved in		2.07
		nuclear RNA processing and		
		degradation both as a component of		
		the TRAMP complex and in TRAMP		
		independent processes		
YAL003W	EFB1	Translation elongation factor 1 beta:	_	-2.07
		stimulates nucleotide exchange to		2.01
		regenerate EF-1 alpha-GTP for the		
		next elongation cvcle		
YDR002W	YRB1	Ran GTPase binding protein:	_	-2.07
101100211		involved in nuclear protein import		2.01
		and RNA export, ubiquitin-mediated		
		protein degradation during the cell		
		cvcle		
YFR014C	CMK1	Calmodulin-dependent protein	_	-2 09
	•	kinase: may play a role in stress		2.00
		response many CA++/calmodulan		
		dependent phosphorylation		
		substrates demonstrated in vitro		
		amino acid sequence similar to		
		Cmk2p and mammalian Cam Kinase		
YGR214	RPS0A	Protein component of the small (40S)	_	-2 09
W		ribosomal subunit nearly identical to		2.00
		Rps0Bp: required for maturation of		
1	1			

YHR113W YHR113 Cytoplasmic aspartyl -	-2.10
W aminopeptidase; cleaves unblocked	
N-terminal acidic amino acid	
residues from peptide substrates	
YPL247C YPL247 Putative protein of unknown function; –	-2.10
C green fluorescent protein (GFP)-	
fusion protein localizes to the	
cytoplasm and nucleus	
YLR249W YEF3 Gamma subunit of translational –	-2.10
elongation factor eEF1B, stimulates	
the binding of aminoacyl-tRNA (AA-	
tRNA) to ribosomes by releasing	
eEF1A (Tef1p/Tef2p) from the	
ribosomal complex; contains two	
ABC cassettes; binds and hydrolyzes	
YOR198C BFR1 Component of mRNP complexes –	-2.12
associated with polyribosomes;	
implicated in secretion and nuclear	
segregation; multicopy suppressor of	
BFA (Brefeldin A) sensitivity	0.40
YGR123C PP11 Protein serine/threonine –	-2.12
phosphatase with similarity to human	
phosphatase PP5; present in both	
the nucleus and cytoplasm	0.40
YJL080C SCP760 Essential RNA-binding G protein –	-2.12
effector of mating response pathway,	
mPNA dependent manner with	
translating ribosomes via multiple KH	
VMP260C TIE11 Translation initiation factor elE1A -	2 1 2
TMR200C TIFTT Translation initiation factor err rA,	-2.12
complex with Sui1p (elE1) and the	
40S ribosomal subunit and scaps for	
the start codon: C-terminus	
associates with Fun12p (eIF5B	
XIR115W XIR115 Putative protein of unknown function –	-2 13
	2.10
YJR133W XPT1 Xanthine-quanine phosphoribosvl –	-2.13
transferase, required for xanthine	
utilization and for optimal utilization	
of guanine	
YER110C KAP123 Karyopherin beta, mediates nuclear –	-2.13
import of ribosomal proteins prior to	
assembly into ribosomes and import	
of histones H3 and H4	
YLR133W CKI1 Choline kinase, catalyzing the first –	-2.14

		step in phosphatidylcholine synthesis via the CDP-choline (Kennedy pathway		
YOR230 W	WTM1	Transcriptional modulator involved in regulation of meiosis, silencing, and expression of RNR genes; required for nuclear localization of the ribonucleotide reductase small subunit Rnr2p and Rnr4p; contains WD repeats	_	-2.15
YLR153C	ACS2	Acetyl-coA synthetase isoform which, along with Acs1p, is the nuclear source of acetyl-coA for histone acetylation	_	-2.15
YBL042C	FUI1	High affinity uridine permease, localizes to the plasma membrane; also mediates low but significant transport of the cytotoxic nucleoside analog 5-fluorouridine; not involved in uracil transport	-	-2.16
YER131W	RPS26B	Protein component of the small (40S) ribosomal subunit; nearly identical to Rps26Ap and has similarity to rat S26 ribosomal protein	-	-2.17
YAR071W	PHO11	One of three repressible acid phosphatases, a glycoprotein that is transported to the cell surface by the secretory pathway; induced by phosphate starvation and coordinately regulated by PHO4 and PHO2	_	-2.17
YPL211W	NIP7	Nucleolar protein required for 60S ribosome subunit biogenesis, constituent of 66S pre-ribosomal particles; physically interacts with Nop8p and the exosome subunit Rrp43p	_	-2.17
YOR293 W	RPS10A	Protein component of the small (40S) ribosomal subunit; nearly identical to Rps10Bp and has similarity to rat ribosomal protein S10	_	-2.18
YFL022C	FRS2	Alpha subunit of cytoplasmic phenylalanyl-tRNA synthetase	-	-2.18
YLR347C	KAP95	Karyopherin beta, forms a complex with Srp1p/Kap60p	_	-2.19
YIR036C	IRC24	Putative benzil reductase;(GFP)- fusion protein localizes to the cytoplasm and is induced by the DNA-damaging agent MMS	-	-2.19
YKL093W	MBR1	Protein involved in mitochondrial	_	-2.19

		functions and stress response; overexpression suppresses growth defects of hap2, hap3, and hap4 mutants		
YKL073W	LHS1	Molecular chaperone of the endoplasmic reticulum lumen, involved in polypeptide translocation and folding	-	-2.19
YOR099 W	KTR1	Alpha-1,2-mannosyltransferase involved in O- and N-linked protein glycosylation; type II membrane protein	-	-2.19
YHR049W	FSH1	Putative serine hydrolase that localizes to both the nucleus and cytoplasm; sequence is similar to S. cerevisiae Fsh2p and Fsh3p and the human candidate tumor suppressor OVCA2	_	-2.19
YDL084W	SUB2	Component of the TREX complex required for nuclear mRNA export; member of the DEAD-box RNA helicase superfamily and is involved in early and late steps of spliceosome assembly	-	-2.19
YFR041C	ERJ5	Type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum	_	-2.20
YAL040C	CLN3	G1 cyclin involved in cell cycle progression; activates Cdc28p kinase to promote the G1 to S phase transition; plays a role in regulating transcription of the other G1 cyclins, CLN1 and CLN2	_	-2.20
YOL107W	YOL107 W	Putative protein of unknown function; green fluorescent protein (GFP)- fusion protein localizes to the cytoplasm and colocalizes in a punctate pattern with the early golgi/COPI vesicles	_	-2.20
YCR084C	TUP1	General repressor of transcription, forms complex with Cyc8p, involved in the establishment of repressive chromatin structure through interactions with histones H3 and H4, appears to enhance expression of some genes	-	-2.20
YNL110C	NOP15	Constituent of 66S pre-ribosomal particles, involved in 60S ribosomal subunit biogenesis	_	-2.21

YHL034C	SBP1	Putative RNA binding protein	-	-2.21
YDL148C	NOP14	Nucleolar protein, forms a complex with Noc4p that mediates maturation and nuclear export of 40S ribosomal subunits	-	-2.23
YOR310C	NOP58	Protein involved in pre-rRNA processing, 18S rRNA synthesis, and snoRNA synthesis; component of the small subunit processome complex, which is required for processing of pre-18S rRNA	-	-2.24
YPL106C	SSE1	ATPase that is a component of the heat shock protein Hsp90 chaperone complex; binds unfolded proteins; member of the heat shock protein 70 (HSP70) family; localized to the cytoplasm	-	-2.24
YBR106W	PHO88	Probable membrane protein, involved in phosphate transport	-	-2.25
YNL300W	TOS6	Glycosylphosphatidylinositol- dependent cell wall protein, expression is periodic and decreases in respone to ergosterol perturbation or upon entry into stationary phase	-	-2.25
YPL111W	CAR1	Arginase, responsible for arginine degradation, expression responds to both induction by arginine and nitrogen catabolite repression	-	-2.25
YMR315 W	YMR315 W	Protein with NADP(H) oxidoreductase activity	-	-2.26
YOL012C	HTZ1	Histone variant H2AZ	_	-2.26
YEL042W	GDA1	Guanosine diphosphatase located in the Golgi	_	-2.27
YGL077C	HNM1	Choline/ethanolamine transporter	_	-2.27
YJL012C	VTC4	Vacuolar membrane polyphosphate polymerase	-	-2.28
YML056C	IMD4	Inosine monophosphate dehydrogenase	1	-2.30
YNL209W	SSB2	Cytoplasmic ATPase that is a ribosome-associated molecular chaperone,	-	-2.30
YCL036W	GFD2	Protein of unknown function, identified as a high-copy suppressor of a dbp5 mutation	-	-2.30
YMR199 W	CLN1	G1 cyclin involved in regulation of the cell cycle	_	-2.30
YBR286W	APE3	Vacuolar aminopeptidase Y, processed to mature form by Prb1p	-	-2.30
YKL081W	TEF4	Gamma subunit of translational	_	-2.30

		elongation factor eEF1B		
YKR001C	VPS1	Dynamin-like GTPase required for vacuolar sorting	-	-2.35
YNL016W	PUB1	Poly (A)+ RNA-binding protein	_	-2.36
YOR176 W	HEM15	Ferrochelatase	-	-2.37
YER145C	FTR1	High affinity iron permease involved in the transport of iron across the plasma membrane	-	-2.38
YDL229W	SSB1	Cytoplasmic ATPase that is a ribosome-associated molecular chaperone,	-	-2.38
YMR003 W	AIM34	Protein of unknown function	-	-2.40
YKL069W	YKL069 W	Methionine-R-sulfoxide reductase	-	-2.41
YER023W	PRO3	Delta 1-pyrroline-5-carboxylate reductase, catalyzes the last step in proline biosynthesis	-	-2.42
YJL012C	VTC4	Vacuolar membrane polyphosphate polymerase	-	-2.43
YLR432W	IMD3	Inosine monophosphate dehydrogenase	-	-2.45
YDL014W	NOP1	Nucleolar protein	_	-2.47
YNL169C	PSD1	Phosphatidylserine decarboxylase of the mitochondrial inner membrane	-	-2.47
YMR186 W	HSC82	Cytoplasmic chaperone of the Hsp90 family	-	-2.50
YAL007C	ERP2	Protein that forms a heterotrimeric complex with Erp1p, Emp24p, and Erv25p	I	-2.52
YMR049C	ERB1	Constituent of 66S pre-ribosomal particles	-	-2.53
YJL091C	GWT1	Protein involved in the inositol acylation of glucosaminyl phosphatidylinositol (GlcN-PI) to form glucosaminyl(acyl)phosphatidylinosit ol (GlcN(acyl)PI)	-	-2.57
YAL005C	SSA1	ATPase involved in protein folding and nuclear localization signal (NLS)- directed nuclear transport	-	-2.58
YPL163C	SVS1	Cell wall and vacuolar protein	-	-2.58
YHL028W	WSC4	ER membrane protein involved in the translocation of soluble secretory proteins and insertion of membrane proteins into the ER membrane	-	-2.61
YHR096C	HXT5	Hexose transporter with moderate affinity for glucose	_	-2.64

YDL095W	PMT1	Protein O-mannosyltransferase	-	-2.66
YNL289W	PCL1	Cyclin, interacts with cyclin- dependent kinase Pho85p	-	-2.67
YKL182W	FAS1	Beta subunit of fatty acid synthetase	-	-2.70
YMR215 W	GAS3	Putative 1,3-beta- glucanosyltransferase	-	-2.74
YNL246W	VPS75	NAP family histone chaperone	-	-2.75
YGR244C	LSC2	Beta subunit of succinyl-CoA ligase	-	-2.78
YPR069C	SPE3	Spermidine synthase	-	-2.79
YGL120C	PRP43	RNA helicase in the DEAH-box family	_	-2.85
YPR183W	DPM1	Dolichol phosphate mannose (Dol-P- Man) synthase of the ER membrane	_	-2.94
YMR290C	HAS1	ATP-dependent RNA helicase	-	-2.95
YNL135C	FPR1	Peptidyl-prolyl cis-trans isomerase (PPlase	-	-2.96
YGL255W	ZRT1	High-affinity zinc transporter of the plasma membrane	_	-2.96
YJL034W	KAR2	ATPase involved in protein import into the ER	-	-3.03
YAL023C	PMT2	Protein O-mannosyltransferase	-	-3.04
YDR399W	HPT1	Dimeric hypoxanthine-guanine phosphoribosyltransferase	-	-3.27
YNL195C	YNL195 C	Putative protein of unknown function	-	-3.32
YJL073W	JEM1	DnaJ-like chaperone required for nuclear membrane fusion during mating	-	-3.37
YPL127C	HHO1	Histone H1, a linker histone required for nucleosome packaging at restricted sites	-	-3.46
YKL165C	MCD4	Protein involved in glycosylphosphatidylinositol (GPI) anchor synthesis	-	-3.46
YDL079C	MRK1	Glycogen synthase kinase 3 (GSK-3) homolog	-	-3.80
YNL044W	YIP3	Protein localized to COPII vesicles	-	-3.82
YHR216W	IMD2	Inosine monophosphate dehydrogenase,	-	-4.01
YDR034W -B	YDR034 W-B	Predicted tail-anchored plasma membrane protein containing a conserved CYSTM module	-	-4.20
YGR157 W	CHO2	Phosphatidylethanolamine methyltransferase (PEMT	-	-4.32
YNL141W	AAH1	Adenine deaminase (adenine aminohydrolase), converts adenine to hypoxanthine; involved in purine salvage	_	-4.43

YBR088C	POL30	Proliferating cell nuclear antigen (PCNA	-	-4.98
YDL227C	HO	Site-specific endonuclease required for gene conversion at the MAT locus (homothallic switching) through the generation of a ds DNA break	-	-5.27
YJL153C	INO1	Inositol-3-phosphate synthase	-	-21.48
YMR011 W	HXT2	High-affinity glucose transporter of the major facilitator superfamily,	_	-58.00

Table 2.2. Genes showing more than 2 fold change in response to chronic VPAtreatment. (Gene descriptions are from Saccharomyces Genome Database).

Systemic name	Gene name	Description	Fold change VPA+/VPA-	
			Inositol+	Inositol-
YCR034W	FEN1	Fatty acid elongase, involved in sphingolipid biosynthesis; acts on fatty acids of up to 24 carbons in length	2.46	2.86
YLR372W	SUR4	Elongase, involved in fatty acid and sphingolipid biosynthesis	2.77	2.47
YNR056C	BIO5	Putative transmembrane protein involved in the biotin biosynthesis pathway	-	-8.92
YCL025C	AGP1	Low-affinity amino acid permease with broad substrate range, involved in uptake of asparagine, glutamine, and other amino acids	-	-3.77
YKR039W	GAP1	General amino acid permease; localization to the plasma membrane is regulated by nitrogen source	-	-2.85
YBR068C	BAP2	High-affinity leucine permease, functions as a branched-chain amino acid permease involved in the uptake of leucine, isoleucine and valine	-	-6.22
YPL265W	DIP5	Dicarboxylic amino acid permease, mediates high-affinity and high-capacity transport of L- glutamate and L-aspartate	-2.22	-2.36
YDL210W	UGA4	Permease that serves as a gamma- aminobutyrate (GABA) transport protein involved in the utilization of GABA as a nitrogen source	-	-2.26
YEL063C	CAN1	Plasma membrane arginine permease	-	-2.31
YPL274W	SAM3	High-affinity S-adenosylmethionine permease, required for utilization of S-adenosylmethionine as a sulfur source	-	-13.79
YDR518W	EUG1	Protein disulfide isomerase of the endoplasmic reticulum lumen, function overlaps with that of Pdi1p	-	2.39
YJL073W	JEM1	DnaJ-like chaperone required for nuclear membrane fusion during mating, localizes to the ER membrane	-	5.81
YKL073W	LHS1	Molecular chaperone of the endoplasmic reticulum lumen, involved in polypeptide translocation and folding; nucleotide exchange factor for the ER lumenal Hsp70 chaperone Kar2p; regulated by the unfolded protein response pathway	-	3.50
YCL043C	PDI1	Protein disulfide isomerase, multifunctional protein resident in the endoplasmic reticulum lumen	_	2.83
YPL187W	MF(ALPH	Mating pheromone alpha-factor, made by alpha	11.29	-

	A)1	cells		
YOR153W	PDR5	Plasma membrane ATP-binding cassette (ABC) transporter, multidrug transporter actively regulated by Pdr1p	10.09	12.10
YLR307W	CDA1	Chitin deacetylase, together with Cda2p involved in the biosynthesis ascospore wall component, chitosan	8.54	8.31
YJL116C	NCA3	Protein that functions with Nca2p to regulate mitochondrial expression of subunits 6 (Atp6p) and 8 (Atp8p) of the Fo-F1 ATP synthase	7.43	-
YKL121W	DGR2	Protein of unknown function	5.55	2.68
YKL178C	STE3	Receptor for a factor pheromone, couples to MAP kinase cascade to mediate pheromone response	5.53	-
YBR040W	FIG1	Integral membrane protein required for efficient mating	5.37	-
YOL101C	IZH4	Membrane protein involved in zinc ion homeostasis, member of the four-protein IZH family, expression induced by fatty acids and altered zinc levels	5.35	5.88
YEL057C	YEL057C	Protein of unknown function involved in telomere maintenance	5.30	Ι
YNL289W	PCL1	Cyclin, interacts with cyclin-dependent kinase Pho85p	5.25	-
YJR078W	BNA2	Putative tryptophan 2,3-dioxygenase or indoleamine 2,3-dioxygenase, required for de novo biosynthesis of NAD from tryptophan via kynurenine	5.13	-
YGR225W	AMA1	Activator of meiotic anaphase promoting complex (APC/C	5.03	2.59
YOR315W	SFG1	Nuclear protein, putative transcription factor required for growth of superficial pseudohyphae (which do not invade the agar substrate) but not for invasive pseudohyphal growth	4.94	-
YDR317W	HIM1	Protein of unknown function involved in DNA repair	4.78	-
YML027W	YOX1	Homeodomain-containing transcriptional repressor, binds to Mcm1p and to early cell cycle boxes (ECBs) in the promoters of cell cycle-regulated genes expressed in M/G1 phase; expression is cell cycle-regulated	4.59	-
YGL055W	OLE1	Delta(9) fatty acid desaturase, required for monounsaturated fatty acid synthesis and for normal distribution of mitochondria	4.59	-
YER060W	FCY21	Putative purine-cytosine permease, very similar to Fcy2p but cannot substitute for its function	4.56	-
YPR119W	CLB2	B-type cyclin involved in cell cycle progression proteasome	4.54	-
YOL014W	YOL014W	Putative protein of unknown function	4.43	11.01

YHL028W	WSC4	ER membrane protein involved in the translocation of soluble secretory proteins and insertion of membrane proteins into the ER membrane	4.22	-
YLR183C	TOS4	Forkhead Associated domain containing protein and putative transcription factor found associated with chromatin	4.22	5.96
YBR021W	FUR4	Uracil permease, localized to the plasma membrane	4.20	-
YDL101C	DUN1	Cell-cycle checkpoint serine-threonine kinase required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage	4.19	-
YCL048W	SPS22	Protein of unknown function, redundant with Sps2p for the organization of the beta-glucan layer of the spore wall	4.12	2.53
YMR215W	GAS3	Putative 1,3-beta-glucanosyltransferase, has similarity to Gas1p	4.07	
YKL216W	URA1	Dihydroorotate dehydrogenase, catalyzes the fourth enzymatic step in the de novo biosynthesis of pyrimidines, converting dihydroorotic acid into orotic acid	3.93	4.66
YKR090W	PXL1	LIM domain-containing protein that localizes to sites of polarized growth, required for selection and/or maintenance of polarized growth sites, may modulate signaling by the GTPases Cdc42p and Rho1p	3.88	
YPL081W	RPS9A	Protein component of the small (40S) ribosomal subunit	3.88	3.15
YJL158C	CIS3	Mannose-containing glycoprotein constituent of the cell wall	3.85	3.06
YMR199W	CLN1	G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition	3.80	-
YPL256C	CLN2	G1 cyclin involved in regulation of the cell cycle; activates Cdc28p kinase to promote the G1 to S phase transition	3.80	-
YHL024W	RIM4	Putative RNA-binding protein required for the expression of early and middle sporulation genes	3.75	-
YMR076C	PDS5	Protein required for establishment and maintenance of sister chromatid condensation and cohesion, colocalizes with cohesin on chromosomes, may function as a protein-protein interaction scaffold	3.75	-
YHR184W	SSP1	Protein involved in the control of meiotic nuclear division and coordination of meiosis with spore formation	3.66	-
YLR012C	YLR012C	Putative protein of unknown function	3.64	-

YHR172W	SPC97	Component of the microtubule-nucleating Tub4p (gamma-tubulin) complex	3.56	-
YJL037W	IRC18	Putative protein of unknown function; expression induced in respiratory-deficient cells and in carbon-limited chemostat cultures	3.55	-
YLR103C	CDC45	DNA replication initiation factor	3.50	-
YHR154W	RTT107	Protein implicated in Mms22-dependent DNA repair during S phase, DNA damage induces phosphorylation by Mec1p at one or more SQ/TQ motifs	3.49	-
YHR153C	SPO16	Meiosis-specific protein involved in synaptonemal complex assembly	3.49	5.79
YDR451C	YHP1	One of two homeobox transcriptional repressors (see also Yox1p), that bind to Mcm1p and to early cell cycle box (ECB) elements of cell cycle regulated genes, thereby restricting ECB- mediated transcription to the M/G1 interval	3.37	-
YJL194W	CDC6	Essential ATP-binding protein required for DNA replication, component of the pre-replicative complex (pre-RC) which requires ORC to associate with chromatin and is in turn required for Mcm2-7p DNA association	3.36	-
YBR088C	POL30	Proliferating cell nuclear antigen (PCNA), functions as the sliding clamp for DNA polymerase delta	3.36	5.26
YJR053W	BFA1	Component of the GTPase-activating Bfa1p- Bub2p complex involved in multiple cell cycle checkpoint pathways that control exit from mitosis	3.34	2.67
YJR092W	BUD4	Protein involved in bud-site selection and required for axial budding pattern	3.33	-
YDR146C	SWI5	Transcription factor that activates transcription of genes expressed at the M/G1 phase boundary and in G1 phase	3.33	-
YDR042C	YDR042C	Putative protein of unknown function; expression is increased in ssu72-ts69 mutant	3.33	-
YPL231W	FAS2	Alpha subunit of fatty acid synthetase, which catalyzes the synthesis of long-chain saturated fatty acids	3.31	2.66
YMR101C	SRT1	Cis-prenyltransferase involved in synthesis of long-chain dolichols (19-22 isoprene units; as opposed to Rer2p which synthesizes shorter- chain dolichols	3.30	-
YNR030W	ALG12	Alpha-1,6-mannosyltransferase localized to the ER	3.30	-
YMR305C	SCW10	Cell wall protein with similarity to glucanases; may play a role in conjugation during mating based on mutant phenotype and its regulation by Ste12p	3.30	-

YOL151W	GRE2	3-methylbutanal reductase and NADPH-	3.26	-
		dependent methylglyoxal reductase (D-		
		lactaldehyde dehydrogenase)		
YNL301C	RPL18B	Protein component of the large (60S) ribosomal	3.19	2.86
		subunit, identical to Rpl18Ap and has similarity		
		to rat L18 ribosomal protein		
YNR073C	YNR073C	Putative mannitol dehydrogenase	3.17	-
YMR144W	YMR14W	Putative protein of unknown function; localized	3.11	-
		to the nucleus		
YDL003W	MCD1	Essential subunit of the cohesin complex	3.10	3.70
		required for sister chromatid cohesion in mitosis		
		and meiosis		
YCL026C-	HBN1	Putative protein of unknown function; similar to	3.05	2.68
В		bacterial nitroreductases		
YMR032W	HOF1	Bud neck-localized, SH3 domain-containing	3.03	-
		protein required for cytokinesis		
YER187W	YER18W	Putative protein of unknown function	2.98	-
YJL092W	SRS2	DNA helicase and DNA-dependent ATPase	2.93	-
		involved in DNA repair, needed for proper timing		
		of commitment to meiotic recombination and		
		transition from Meiosis I to II		
YBR078W	ECM33	GPI-anchored protein of unknown function, has	2.91	-
		a possible role in apical bud growth		
YLR054C	OSW2	Protein of unknown function proposed to be	2.89	2.17
		involved in the assembly of the spore wall		
YMR303C	ADH2	Glucose-repressible alcohol dehydrogenase II,	2.89	-
		catalyzes the conversion of ethanol to		
		acetaldehyde		
YDL114W	YDL114W	Putative protein of unknown function with	2.82	-
		similarity to acyl-carrier-protein reductases		
YGR286C	BIO2	Biotin synthase, catalyzes the conversion of	2.79	-
		dethiobiotin to biotin, which is the last step of		
	0101	the blotin blosynthesis pathway	0.77	
YOL132W	GAS4	1,3-beta-glucanosyltransferase, involved with	2.77	-
	00/10	Gaszp in spore wall assembly	0.70	
YALUGTVV	BDH2	Putative medium-chain alconol denydrogenase	2.70	-
		Brotain involved in regulation of coll well	0.75	
IDR528W	nlk i	protein involved in regulation of cell wall	2.75	-
		osmotic stress		
VII 122\//	SIM1	Distribute Stress	2.74	
TIL 123VV	311/1	Nca3n, Sun4n) that may participate in DNA	2.74	_
		replication promoter contains SCR regulation		
		box at -300 bp indicating that expression may		
		be cell cycle-regulated		
YJL080C	SCP160	Essential RNA-binding G protein effector of	2.72	_
		mating response pathway, mainly associated		
		with nuclear envelope and ER		
YBL031W	SHE1	Mitotic spindle protein that interacts with	2.71	2.20
		The second se		

effector Slif5p, and microtubule-associated protein Bim 1p effector Slif5p, and microtubule-associated protein Bim 1p YBR092C PH03 Constitutively expressed acid phosphatase similar to Pho5p 2.71 - YJL102W MEF2 Micchondral elongation factor involved in translational elongation factor involved in DNA replication, repair, and recombination 2.68 2.97 YLR131C <i>RCE2</i> Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation 2.66 - YER095W <i>RAD51</i> Strand exchange protein, forms a helical filament with DNA that searches for homology 2.66 - YDR049C <i>RSB1</i> Suppressor of sphingoid long chain base (LCB) 2.65 - YDR503C <i>LPP1</i> Lipid phosphate phosphatase, catalyzes meditivity of an LCB-lyase mutation 2.62 - YPL248C <i>GAL4</i> DNA-binding transcription factor required for the activation of the GAL genes in response to galactose 2.57 2.62 - YPL248C <i>SAH1</i> S-adenosyl-L-momocysteine hydrolase, catabolizes S-adenosyl-L-momocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-momocysteine hydrolase, catabolizes S			components of the Dam1 (DASH) complex, its		
YBR092CPHO3Constitutively expressed acid phosphatase similar to Pho5pYJL102WMEF2Mitochondrial elongation factor involved in translational elongation2.703.61YAR007CRFA1Subunit of heterotrimeric Replication Protein A (RPA), which is a highly conserved single- stranded DNA binding protein involved in DNA replication, repair, and recombination2.682.97YLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.66-YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.65-YDR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.62-YDR503CLPP1Lipid phosphatase, catalyzes activation of the GAL genes in response to galactose2.62-YPL248CGAL4DNA-binding transcription factor required for the and diacylgycerol pyrophosphation2.572.62YER043CSH11Myo-inositol transporter with strong similarity to an acceptor2.572.62YPL248CSAL4DNA-binding transcription factor required for the an acceptor2.56-YPL248CSH1Protein involved in 3' mRNA processing, in treats with Ref2p2.57-YPL248CHHO1Histone H1, a linker histone required for nucleosome packaging at restricted sites2.57-YPL127CHHO1 </td <td></td> <td></td> <td>effector Sli15p, and microtubule-associated</td> <td></td> <td></td>			effector Sli15p, and microtubule-associated		
YBR092C PH03 Constitutively expressed acid phosphatase similar to Pho5p 2.71 - YJL102W MEF2 Mitochondrial elongation factor involved in translational elongation 2.70 3.61 YAR007C <i>RFA1</i> Subunit of heterotrimeric Replication Protein A (RPA), which is a highly conserved single- stranded DNA binding protein involved in DNA replication, repair, and recombination 2.68 2.97 YLR131C ACE2 Transcription factor that activates expression of early G1-specific genes, localization is regulated by phosphorylation 2.66 - YER095W <i>RAD51</i> Supressor of sphingoid long chain base (LCB) 2.65 - YDR503C <i>LPP1</i> Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatilic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate 2.62 - YPL248C <i>GAL4</i> DNA-binding transcription factor required for the activation of the GAL genes in response to galactose 2.62 - YPL248C <i>SAH1</i> S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-homoc			protein Bim1p		
YJL102WMEF2Mitochondrial elongation factor involved in translational elongation2.703.61YAR007CRFA1Subunit of heterotrimeric Replication Protein A (RPA), which is a highly conserved single- stranded DNA binding protein involved in DNA replication, repair, and recombination2.682.97YLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.662.33YER095WRAD51Strand exchange protein, forms a helical filiament with DNA that searches for homology2.66-YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YPR1248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YPR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032WFIR1Protein involved in 3' mRNA processing, nucleosome packaging at restricted sites2.56-YPL278CVHD01Histone H1, a linker histone required for the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032WFIR1Protein involved in 3' mRNA processing, nucleosome packaging at restricted sites2.56-YER088W </td <td>YBR092C</td> <td>PHO3</td> <td>Constitutively expressed acid phosphatase</td> <td>2.71</td> <td>-</td>	YBR092C	PHO3	Constitutively expressed acid phosphatase	2.71	-
YJL102WMEF2Mitochondrial elongation factor involved in translational elongation2.703.61YAR007CRFA1Subunit of heterotrimeric Replication Protein A (RPA), which is a highly conserved single- stranded DNA binding protein involved in DNA replication, repair, and recombination2.682.97YLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.66-YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.65-YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphaticia caid (PA), lysophosphate2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62-YPL248CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62-YDR497CITR1Myo-inositol transporter superfamily y Trotein involved in 3' mRNA processing, interacts with Ref2p2.56YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.56YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.56YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.56- <td></td> <td></td> <td>similar to Pho5p</td> <td></td> <td></td>			similar to Pho5p		
YAR007CRFA1Subunit of heterotrimeric Replication Protein A (RPA), which is a highly conserved single- stranded DNA binding protein involved in DNA replication, repair, and recombination2.682.97YLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.662.33YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66-YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.62-YDR503CLPP1Lipid phosphate phospharylatise, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatide2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.57-YDR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter lit2p, member of the sugar transporter superfamily2.55-YER032WFIR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter lit2p, member of the sugar transporter superfamily2.55-YER032WFIR1Myo-inositol transporter with strong simila	YJL102W	MEF2	Mitochondrial elongation factor involved in	2.70	3.61
YAR007C <i>RFA1</i> Subunit of heterotrimeric Replication Protein A (RPA), which is a highly conserved single- stranded DNA binding protein involved in DNA replication, repair, and recombination2.682.97YLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter progression in daughters, localization is regulated by phosphorylation2.662.33YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66-YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation and diacylgiveerol pyrophosphate2.62-YDR503CLPP1Lipid phosphate phosphatase, catalyzes mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylgiveerol pyrophosphate2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CITR1Myo-inositol transporter with strong similarity to an acceptor2.572.62YDR497CITR1Myo-inositol transporter superfamily of the sugar transporter superfamily2.55-YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YER038WVBER08CVER085CPutative protein of unknown function2.54-YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28-YER038WVBER08CPutative prote			translational elongation		
(RPA), which is a highly conserved single- stranded DNA binding protein involved in DNA replication, repair, and recombinationYLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.662.33YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66-YDR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.62-YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatid acid, and diacylglycerol pyrophosphate2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-momcysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AddMet) to an acceptor2.57-YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the sugar transporter superfamily2.55-YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YER088WXBP1Active protein of unknown function2.54-YER088WXBP1Active protein of unknown function2.54- <td< td=""><td>YAR007C</td><td>RFA1</td><td>Subunit of heterotrimeric Replication Protein A</td><td>2.68</td><td>2.97</td></td<>	YAR007C	RFA1	Subunit of heterotrimeric Replication Protein A	2.68	2.97
Stranded DNA binding protein involved in DNA replication, repair, and recombinationYLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.662.33YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66-YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.62-YDR503CLPP1Lipid phosphate phosphatase, catalyzes mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YBR184WYBR18WPutative protein of nuknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.57-YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites nucleosome packaging at restricted sites-YER088WABP1Actin-binding protein of unknown function2.54-YER088WABP1Actin-binding protein of the cortical actin cytoskeleton ignizationYER088WABP1Actin-binding protein of the cortical			(RPA), which is a highly conserved single-		
YLR131CACE2Transcription factor that activates expression of 2.662.66YLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.66-YER095W <i>RAD51</i> Strand exchange protein, forms a helical filament with DNA that searches for homology2.65-YOR049C <i>RSB1</i> Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.62-YDR503C <i>LPP1</i> Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YBR184WYBR18WPutative protein of unknown function2.62-YPL248C <i>GAL4</i> DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-methionine (AdoMet) to an acceptor2.57-YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.55-YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YER088WABP1Actin-binding protein of unknown function cytoskeleton ignorization2.54-YER088WABP1Actin-binding protein of unknown function<			stranded DNA binding protein involved in DNA		
YLR131CACE2Transcription factor that activates expression of early G1-specific genes, localizes to daughter coll nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylation2.662.33YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66-YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.65-YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-momocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter superfamily2.57-YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.56-YER085CYER085CPutative protein of unknown function the cytoskeleton ing protein of the cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton ing protein of the cortical actin cytoskeleton ing protein of the cortical actin cytoskeleton ingentariation2.54-YER088WABP1 <td< td=""><td></td><td></td><td>replication, repair, and recombination</td><td></td><td></td></td<>			replication, repair, and recombination		
early G1-specific genes, localizes to daughter cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylationYER095W <i>RAD51</i> Strand exchange protein, forms a helical filament with DNA that searches for homology2.66-YOR049C <i>RSB1</i> Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.65-YDR503C <i>LPP1</i> Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YBR184WYBR18WPutative protein of unknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.56-YPL127C <i>HH01</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YER085CYER085CPutative protein of unknown function cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin cytoskeleton ingortant of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin cytoskeleton organization2.54-YR019W <i>ARE2</i> Acyl-CoA:stero	YLR131C	ACE2	Transcription factor that activates expression of	2.66	2.33
cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by phosphorylationYER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.65YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62YBR184WYBR18WPutative protein of unknown function2.62YPL248CGAL4DNA-binding transcription factor required for the galactose2.58YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.562.28YPL127CHH01Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YER085CYER085CPutative protein of unknown function2.54-YER088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin cytoskeleton inganization2.54-YER085CSTU2Microtubule-associated protein (MAP) of the Are1p2.51- <tr <td="">Y</tr>			early G1-specific genes, localizes to daughter		
Progression in daughters, localization is regulated by phosphorylationYER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.62YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62YBR184WYBR18WPutative protein of unknown function2.62YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.57YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497CITR1Myo-inositol transporter with strong similarity to interacts with Ref2p2.57-YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.56-YER085CYER085CPutative protein of unknown function2.54-YER088WABP1Actin-binding protein of the cortical actin cytoskeleton right at halays a key role actin in cytoskeleton organization2.54-YR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.522.74YR019WARE2MAD21Microtubule-associated protein (MAP) of the2.51-			cell nuclei after cytokinesis and delays G1		
YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homologyYOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.65YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62YBR184WYBR18WPutative protein of unknown function2.62YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.57YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-momocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.25-YPL127CHH01Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YCR088WABP1Actin-binding protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the2.51-			progression in daughters, localization is		
YER095WRAD51Strand exchange protein, forms a helical filament with DNA that searches for homology2.66-YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.65-YDR503CLPP1Lipid phosphate phosphatase, catalyzes phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YBR184WYBR18WPutative protein of unknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the galactose2.58-YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-momocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YER085CYER085CPutative protein of unknown function2.54-YER088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.54-YR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the Are1p2.51-			regulated by phosphorylation		
YOR049CRSB1Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.65-YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YBR184WYBR18WPutative protein of unknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.58-YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.57-YDR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.562.28YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28-YPL127CHH01Histone required for typeschaging at restricted sites2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the2.51-	YER095W	RAD51	Strand exchange protein, forms a helical	2.66	-
YOR049C <i>RSB1</i> Suppressor of sphingoid long chain base (LCB) sensitivity of an LCB-lyase mutation2.65-YDR503C <i>LPP1</i> Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YBR184WYBR18WPutative protein of unknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YER085CYER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the2.51-			filament with DNA that searches for homology		
YDR503CLPP1Lipid phosphate phosphatase, catalyzes Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphate2.62-YBR184WYBR18WPutative protein of unknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28-YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the Windotaf formity2.51-	YOR049C	RSB1	Suppressor of sphingoid long chain base (LCB)	2.65	-
YDR503CLPP1Lipid phosphate phosphatase, catalyzes2.62-Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphateYBR184WYBR18WPutative protein of unknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.58-YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the YLR045C2.51-			sensitivity of an LCB-lyase mutation		
Mg(2+)-independent dephosphorylation of phosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphateYBR184WYBR18WPutative protein of unknown function2.62YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.58YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton, organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the2.51-	YDR503C	LPP1	Lipid phosphate phosphatase, catalyzes	2.62	-
Pinosphatidic acid (PA), lysophosphatidic acid, and diacylglycerol pyrophosphateYBR184WYBR18WPutative protein of unknown function2.62YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.58YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YER085CYER085CPutative protein of unknown function2.54-YER088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the XMAP215 (Diot formit.2.51-			Mg(2+)-independent dephosphorylation of		
YBR184WYBR18WPutative protein of unknown function2.62YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.58-YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the WMR0194 for a family2.51-			phosphatidic acid (PA), lysophosphatidic acid,		
YBR184WYBR18WPutative protein of unknown function2.62-YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.58-YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YER085C <i>YER085C</i> Putative protein of unknown function2.54-YCR088W <i>ABP1</i> Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the WIRD1942.51-			and diacylglycerol pyrophosphate		
YPL248CGAL4DNA-binding transcription factor required for the activation of the GAL genes in response to galactose2.58-YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YCR088W <i>ABP1</i> Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.54-YNR019W <i>ARE2</i> Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.51-YLR045C <i>STU2</i> Microtubule-associated protein (MAP) of the WMD215 (Diel 4 femility-	YBR184W	YBR18W	Putative protein of unknown function	2.62	_
Activation of the GAL genes in response to galactose2.572.62YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the WAD214E/bind family2.51-	YPL248C	GAL4	DNA-binding transcription factor required for the	2.58	-
YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YER085C <i>YER085C</i> Putative protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045C <i>STU2</i> Microtubule-associated protein (MAP) of the WAD9345/Dia16 family2.51-			activation of the GAL genes in response to		
YER043CSAH1S-adenosyl-L-homocysteine hydrolase, catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptor2.572.62YDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.54-YER085C <i>YER085C</i> Putative protein of unknown function2.54-YCR088W <i>ABP1</i> Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045C <i>STU2</i> Microtubule-associated protein (MAP) of the WAD2015 (Dia1 family)2.51-			galactose		
Catabolizes S-adenosyl-L-homocysteine which is formed after donation of the activated methyl group of S-adenosyl-L-methionine (AdoMet) to an acceptorStressYDR497C <i>ITR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085C <i>YER085C</i> Putative protein of unknown function2.54-YCR088W <i>ABP1</i> Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045C <i>STU2</i> Microtubule-associated protein (MAP) of the XMAD215 (Dia1 family)2.51-	YER043C	SAH1	S-adenosyl-L-homocysteine hydrolase,	2.57	2.62
YDR497CITR1Myo-inositol transporter with strong similarity to an acceptor2.57YDR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127CHHO1Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the XMAP215 (Dia1 family)2.51-			catabolizes S-adenosyl-L-homocysteine which		
group of S-adenosyl-L-methionine (AdoMet) to an acceptorSecond Second S			is formed after donation of the activated methyl		
YDR497CITR1Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127CHHO1Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the VMAD215 (Dia 1 family)2.51-			group of S-adenosyl-L-methionine (AdoMet) to		
YDR497C <i>IIR1</i> Myo-inositol transporter with strong similarity to the minor myo-inositol transporter ltr2p, member of the sugar transporter superfamily2.57-YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085C <i>YER085C</i> Putative protein of unknown function2.54-YCR088W <i>ABP1</i> Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045C <i>STU2</i> Microtubule-associated protein (MAP) of the XMAD245(Dia1 family)2.51-		(75)	an acceptor		
YER032W <i>FIR1</i> Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085C <i>YER085C</i> Putative protein of unknown function2.54-YCR088W <i>ABP1</i> Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YLR045C <i>STU2</i> Microtubule-associated protein (MAP) of the VMAP215/Dia1 family2.51-	YDR497C	IIR1	Myo-inositol transporter with strong similarity to	2.57	-
YER032WFIR1Protein involved in 3' mRNA processing, interacts with Ref2p2.562.28YPL127CHHO1Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YNR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.51-YLR045CSTU2Microtubule-associated protein (MAP) of the XMAD215 (Dia1 family)2.51-			the minor myo-inositol transporter ltr2p, member		
YER032WFIR1Protein Involved in 3 mRNA processing, interacts with Ref2p2.562.28YPL127CHHO1Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.522.74YNR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.51-YLR045CSTU2Microtubule-associated protein (MAP) of the XMAD215/Dia1 family2.51-		5104	of the sugar transporter superfamily	0.50	0.00
YPL127CHHO1Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.54-YNR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the XMAD215/Dia1 family-	YER032W	FIR1	Protein involved in 3' mRNA processing,	2.56	2.28
YPL127C <i>HHO1</i> Histone H1, a linker histone required for nucleosome packaging at restricted sites2.55-YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.54-YNR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the XMAD215/Dia1 family2.51-				0.55	
YER085CYER085CPutative protein of unknown function2.54YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.54-YNR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the XMAD215 (Dia1 family)2.51-	YPL127C	HHO1	Histone H1, a linker histone required for	2.55	-
YER085CYER085CPutative protein of unknown function2.54-YCR088WABP1Actin-binding protein of the cortical actin cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization2.54-YNR019WARE2Acyl-CoA:sterol acyltransferase, isozyme of Are1p2.522.74YLR045CSTU2Microtubule-associated protein (MAP) of the XMAD215 (Dia1 family2.51-			nucleosome packaging at restricted sites	0.54	
YCR088W ABP1 Actin-binding protein of the cortical actin 2.54 - cytoskeleton, important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization 2.54 - YNR019W ARE2 Acyl-CoA:sterol acyltransferase, isozyme of Are1p 2.52 2.74 YLR045C STU2 Microtubule-associated protein (MAP) of the XMAD215/Dig1 family 2.51 -	YERU85C	YERU85C		2.54	_
YNR019W ARE2 Acyl-CoA:sterol acyltransferase, isozyme of Are1p 2.52 2.74 YLR045C STU2 Microtubule-associated protein (MAP) of the XMAD215 (Dia1 family 2.51 -	YCR088W	ABP1	Actin-binding protein of the cortical actin	2.54	-
Arp2/3 complex that plays a key role actin in cytoskeleton organization Arp2/3 complex that plays a key role actin in cytoskeleton organization YNR019W ARE2 Acyl-CoA:sterol acyltransferase, isozyme of Are1p 2.52 2.74 YLR045C STU2 Microtubule-associated protein (MAP) of the Are1p 2.51 -			cytoskeleton, important for activation of the		
YNR019W ARE2 Acyl-CoA:sterol acyltransferase, isozyme of Are1p 2.52 2.74 YLR045C STU2 Microtubule-associated protein (MAP) of the XMAD215/Dia1 family 2.51 -			Arp2/3 complex that plays a key role actin in		
YNR019VV ARE2 Acyl-CoA:sterol acyltransferase, isozyme of Are1p 2.52 2.74 YLR045C STU2 Microtubule-associated protein (MAP) of the XMAD215/Dis1 family 2.51 -		4550	cytoskeleton organization	0.50	0 = 1
Are1p YLR045C STU2 Microtubule-associated protein (MAP) of the 2.51	YNR019W	ARE2	Acyl-CoA:sterol acyltransferase, isozyme of	2.52	2.74
YLRU45C SIU2 Microtubule-associated protein (MAP) of the 2.51 –		07/10		0.54	
	YLR045C	5102	WICFOTUDUIE-ASSOCIATED PROTEIN (MAP) OF THE	2.51	_

YBR069C	TAT1	Amino acid transport protein for valine, leucine,	2.51	-
		isoleucine, and tyrosine, low-affinity tryptophan		
		and histidine transporter		
YEL070W	DSF1	Deletion suppressor of mpt5 mutation	2.50	-
YDR501W	PLM2	Forkhead Associated domain containing protein	2.50	-
		and putative transcription factor found		
		associated with chromatin		
YNL333W	SNZ2	Member of a stationary phase-induced gene	2.50	2.15
		family		
YIR033W	MGA2	ER membrane protein involved in regulation of	2.48	2.54
		OLE1 transcription, acts with homolog Spt23p		
YMR116C	ASC1	G-protein beta subunit and guanine nucleotide	2.48	2.55
		dissociation inhibitor for Gpa2p		
YER070W	RNR1	Major isoform of the large subunit of	2.47	7.99
		ribonucleotide-diphosphate reductase		
YAR018C	KIN3	Nonessential protein kinase with unknown	2.46	-
		cellular role		
YDR507C	GIN4	Protein kinase involved in bud growth and	2.46	-
		assembly of the septin ring, proposed to have		
		kinase-dependent and kinase-independent		
		activities		
YBR071W	YBR07W	Putative protein of unknown function	2.46	-
YEL040W	UTR2	Chitin transglycosylase that functions in the	2.46	-
		transfer of chitin to beta(1-6) and beta(1-3)		
		glucans in the cell wall		
YFL037W	TUB2	Beta-tubulin; associates with alpha-tubulin	2.46	2.34
		(Tub1p and Tub3p) to form tubulin dimer, which		
		polymerizes to form microtubules		
YML085C	TUB1	Alpha-tubulin	2.45	2.30
YBL063W	KIP1	Kinesin-related motor protein required for mitotic	2.44	-
		spindle assembly, chromosome segregation,		
		and 2 micron plasmid partitioning		
YPL163C	SVS1	Cell wall and vacuolar protein, required for wild-	2.43	-
		type resistance to vanadate		
YOR025W	HST3	Member of the Sir2 family of NAD(+)-dependent	2.43	-
		protein deacetylases		
YNL135C	FPR1	Peptidyl-prolyl cis-trans isomerase (PPlase),	2.43	2.31
		binds to the drugs FK506 and rapamycin		
YJR118C	ILM1	Protein of unknown function	2.41	2.05
YML028W	TSA1	Thioredoxin peroxidase, acts as both a	2.41	3.43
		ribosome-associated and free cytoplasmic		
		antioxidant		
YJL045W	YJL045W	Minor succinate dehydrogenase isozyme;	2.40	-
		homologous to Sdh1p, the major isozyme		
		reponsible for the oxidation of succinate and		
		transfer of electrons to ubiquinone		
YKL107W	YKL107W	Putative protein of unknown function	2.38	2.30
YLR413W	YLR413W	Putative protein of unknown function	2.38	4.85

YDR113C	PDS1	Securin, inhibits anaphase by binding separin	2.36	-
		Esp1p		
YNL067W	RPL9B	Protein component of the large (60S) ribosomal subunit, nearly identical to RpI9Ap and has	2.35	-
		similarity to E. coli L6 and rat L9 ribosomal proteins		
YPL255W	BBP1	Protein required for the spindle pole body (SPB) duplication, localized at the central plaque	2.35	2.17
VGI 242C	VGL 242C	Peripriery Putative protein of unknown function: deletion	2 35	1.01
1012420	1GL2420	mutant is viable	2.33	4.01
YJR047C	ANB1	Translation elongation factor eIF-5A, previously thought to function in translation initiation	2.33	-
YAL024C	LTE1	Protein similar to GDP/GTP exchange factors	2.32	_
YBR160W	CDC28	Catalytic subunit of the main cell cycle cyclin-	2.31	2.15
YMR179W	SPT21	Protein with a role in transcriptional silencing.	2 30	_
	0, 121	required for normal transcription at several loci including HTA2-HTB2 and HHF2-HHT2, but not	2.00	
		Protoin involved in glycosylphosphatidylinositel	2.30	6 10
TKL105C	MCD4	(GPI) anchor synthesis	2.30	0.19
YLL002W	<i>RTT10</i> 9	Histone acetyltransferase critical for cell survival in the presence of DNA damage during S phase; acetylates H3-K56 and H3-K9	2.30	-
YJL091C	GWT1	Protein involved in the inositol acylation of glucosaminyl phosphatidylinositol (GlcN-PI) to form glucosaminyl(acyl)phosphatidylinositol (GlcN(acyl)PI), an intermediate in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors	2.30	3.32
YML058W	SML1	Ribonucleotide reductase inhibitor involved in regulating dNTP production	2.29	2.11
YKR042W	UTH1	Mitochondrial outer membrane and cell wall localized SUN family member involved in cell wall biogenesis and required for mitochondrial autophagy	2.29	-
YBL035C	POL12	B subunit of DNA polymerase alpha-primase complex, required for initiation of DNA replication during mitotic and premeiotic DNA synthesis	2.29	-
YMR001C	CDC5	Polo-like kinase with multiple functions in mitosis and cytokinesis through substrate phosphorylation, also functions in adaptation to DNA damage during meiosis	2.27	_
YLR273C	PIG1	Putative targeting subunit for the type-1 protein phosphatase Glc7p that tethers it to the Gsy2p glycogen synthase	2.27	-

YHR061C	GIC1	Protein of unknown function involved in initiation of budding and cellular polarization, interacts with Cdc42p via the Cdc42/Rac-interactive binding (CRIB) domain	2.26	-
YGR260W	TNA1	High affinity nicotinic acid plasma membrane permease, responsible for uptake of low levels of nicotinic acid	2.26	-
YGR014W	MSB2	Mucin family member involved in the Cdc42p- and MAP kinase-dependent filamentous growth signaling pathway	2.24	-
YJL219W	НХТ9	Putative hexose transporter that is nearly identical to Hxt11p, has similarity to major facilitator superfamily (MFS) transporters, expression of HXT9 is regulated by transcription factors Pdr1p and Pdr3p	2.24	-
YOR071C	NRT1	High-affinity nicotinamide riboside transporter; also transports thiamine with low affinity; shares sequence similarity with Thi7p and Thi72p	2.21	-
YAR008W	SEN34	Subunit of the tRNA splicing endonuclease, which is composed of Sen2p, Sen15p, Sen34p, and Sen54p	2.21	2.59
YGR254W	ENO1	Enolase I, a phosphopyruvate hydratase that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis	2.20	2.67
YDR368W	YPR1	NADPH-dependent aldo-keto reductase, reduces multiple substrates including 2- methylbutyraldehyde and D,L-glyceraldehyde, expression is induced by osmotic and oxidative stress; functionally redundant with other aldo- keto reductases	2.20	2.25
YGL038C	OCH1	Mannosyltransferase of the cis-Golgi apparatus, initiates the polymannose outer chain elongation of N-linked oligosaccharides of glycoproteins	2.19	-
YOL120C	RPL18A	Protein component of the large (60S) ribosomal subunit, identical to RpI18Bp and has similarity to rat L18 ribosomal protein	2.19	_
YNL012W	SPO1	Meiosis-specific prospore protein; required for meiotic spindle pole body duplication and separation	2.19	-
YLR231C	BNA5	Kynureninase, required for the de novo biosynthesis of NAD from tryptophan via kynurenine; expression regulated by Hst1p	2.19	2.41
YGR049W	SCM4	Potential regulatory effector of CDC4 function, suppresses a temperature-sensitive allele of CDC4, tripartite protein structure in which a charged region separates two uncharged domains, not essential for mitosis or meiosis	2.19	-
YPR175W	DPB2	Second largest subunit of DNA polymerase II (DNA polymerase epsilon), required for normal	2.18	-

		yeast chromosomal replication		
YHR043C	DOG2	2-deoxyglucose-6-phosphate phosphatase, member of a family of low molecular weight phosphatases, similar to Dog1p, induced by oxidative and osmotic stress, confers 2- deoxyglucose resistance when overexpressed	2.18	3.70
YGR037C	ACB1	Acyl-CoA-binding protein, transports newly synthesized acyl-CoA esters from fatty acid synthetase (Fas1p-Fas2p) to acyl-CoA- consuming processes	2.16	2.74
YER154W	OXA1	Mitochondrial inner membrane insertase, mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane, interacts with mitochondrial ribosomes	2.16	-
YJL115W	ASF1	Nucleosome assembly factor, involved in chromatin assembly and disassembly, anti- silencing protein that causes derepression of silent loci when overexpressed	2.15	-
YDL164C	CDC9	DNA ligase found in the nucleus and mitochondria, an essential enzyme that joins Okazaki fragments during DNA replication	2.15	_
YPL158C	AIM44	Protein of unknown function; GFP-fusion protein localizes to the bud neck	2.14	-
YGL226C- A	OST5	Zeta subunit of the oligosaccharyltransferase complex of the ER lumen, which catalyzes asparagine-linked glycosylation of newly synthesized proteins	2.14	2.22
YBR243C	ALG7	UDP-N-acetyl-glucosamine-1-P transferase, transfers Glc-Nac-P from UDP-GlcNac to Dol-P in the ER in the first step of the dolichol pathway of protein asparagine-linked glycosylation	2.14	_
YMR198W	CIK1	Kinesin-associated protein required for both karyogamy and mitotic spindle organization, interacts stably and specifically with Kar3p and may function to target this kinesin to a specific cellular role	2.14	-
YDR309C	GIC2	Redundant rho-like GTPase Cdc42p effector; homolog of Gic1p; involved in initiation of budding and cellular polarization	2.14	-
YLR187W	SKG3	Protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cell periphery, cytoplasm, bud, and bud neck	2.14	-
YKR010C	TOF2	Protein required for rDNA silencing and mitotic rDNA condensation	2.13	-
YDR009W	GAL3	Transcriptional regulator involved in activation of the GAL genes in response to galactose	2.12	-
YPL227C	ALG5	UDP-glucose:dolichyl-phosphate glucosyltransferase, involved in asparagine- linked glycosylation in the endoplasmic	2.11	-

		reticulum		
YGR156W	PTI1	Essential protein that is a component of CPF	2.11	-
		(cleavage and polyadenylation factor		
YML078W	CPR3	Mitochondrial peptidyl-prolyl cis-trans isomerase	2.11	-
		(cyclophilin), catalyzes the cis-trans		
		isomerization of peptide bonds N-terminal to		
		proline residues		
YNL246W	VPS75	NAP family histone chaperone; binds to	2.10	-
		histones and Rtt109p, stimulating histone		
		acetyltransferase activity		
YLR084C	RAX2	N-glycosylated protein involved in the	2.10	-
		maintenance of bud site selection during bipolar		
		budding; localization requires Rax1p		
YLR209C	PNP1	Purine nucleoside phosphorylase, specifically	2.09	-
		metabolizes inosine and guanosine		
		nucleosides; involved in the nicotinamide		
		riboside salvage pathway		
YOL143C	RIB4	Lumazine synthase (6,7-dimethyl-8-	2.07	3.24
		ribityllumazine synthase, also known as DMRL		
		synthase		
YJL181W	YJL181W	Putative protein of unknown function;	2.07	-
		expression is cell-cycle regulated as shown by		
		microarray analysis		
YLR134W	PDC5	Minor isoform of pyruvate decarboxylase, key	2.07	3.16
		enzyme in alcoholic fermentation,		
		decarboxylates pyruvate to acetaldehyde,		
		regulation is glucose- and ethanol-dependent,		
		repressed by thiamine, involved in amino acid		
		catabolism		
YGR292W	MAL12	Maltase (alpha-D-glucosidase), inducible protein	2.07	-
		involved in maltose catabolism		
YAL062W	GDH3	NADP(+)-dependent glutamate dehydrogenase,	2.06	2.11
		synthesizes glutamate from ammonia and		
		alpha-ketoglutarate		
YFL045C	SEC53	Phosphomannomutase, involved in synthesis of	2.06	-
		GDP-mannose and dolichol-phosphate-		
		mannose		
YDR261C	EXG2	Exo-1,3-beta-glucanase, involved in cell wall	2.04	-
		beta-glucan assembly		
YKL113C	RAD27	5' to 3' exonuclease, 5' flap endonuclease,	2.04	-
		required for Okazaki fragment processing and		
		maturation as well as for long-patch base-		
		excision repair		
YLR293C	GSP1	Ran GTPase, GTP binding protein (mammalian	2.04	2.36
		Ranp homolog) involved in the maintenance of		
		nuclear organization, RNA processing and		
		transport		
YNL072W	RNH201	Ribonuclease H2 catalytic subunit, removes	2.03	2.49
		RNA primers during Okazaki fragment synthesis		
		and errant ribonucleotides misincorporated		

		during DNA replication		
YHR149C	SKG6	Integral membrane protein that localizes	2.03	_
		primarily to growing sites such as the bud tip or		
	DKM1	the cell periphery; potential Coc28p substrate	2.02	
TPLZUOVV		SET-00111111 IVSITE-IN-THEUTVILIATISTETASE,	2.03	-
		residues on the large ribsomal subunit protein		
		L23a (RPL23A and RPL23B)		
YGL251C	HFM1	Meiosis specific DNA helicase involved in the	2.03	-
		conversion of double-stranded breaks to later		
		recombination intermediates and in crossover		
		control		
YDL145C	COP1	Alpha subunit of COPI vesicle coatomer	2.02	2.15
		complex, which surrounds transport vesicles in		
VCD221C	TOSI	Ine early secretory patriway	2.02	2.00
TGRZZIC	1032	site of bud growth	2.02	2.09
YML009C	MRPL39	Mitochondrial ribosomal protein of the large	2.01	-
		subunit		
YJR048W	CYC1	Cytochrome c, isoform 1	2.00	3.06
YLR272C	YCS4	Subunit of the condensin complex	2.00	-
YDR361C	BCP1	Essential protein involved in nuclear export of	-2.01	-
		Mss4p, which is a lipid kinase that generates		
		phosphatidylinositol 4,5-biphosphate and plays		
		a role in actin cytoskeleton organization and		
	40004	Vesicular transport	2.01	
TML099C	ARGOI	$\sum (x_{0}) = \sum (x_{0}) + \sum (x$	-2.01	-
		in the regulation of arginine-responsive genes:		
		acts with Arg80p and Arg82p		
YGR030C	POP6	Subunit of both RNase MRP, which cleaves pre-	-2.01	-
		rRNA, and nuclear RNase P, which cleaves		
		tRNA precursors to generate mature 5' ends		
YLL056C	YLL056C	Putative protein of unknown function,	-2.02	-
		transcription is activated by paralogous		
		transcription factors Yrm1p and Yrr1p and		
		PDR		
YPR086W	SUA7	Transcription factor TEIIB, a general	-2.02	-2.18
	00/11	transcription factor required for transcription		
		initiation and start site selection by RNA		
		polymerase II		
YDL169C	UGX2	Protein of unknown function, transcript	-2.02	-
		accumulates in response to any combination of		
		stress conditions	0.00	0 = 0
YBR293W	VBA2	Permease of basic amino acids in the vacuolar	-2.03	-2.58
		Argining NE mothyltransforage: mothylates	2.04	
1054000		ribosomal protein Rpl12 (1 12) on Arg67	-2.04	-

YNL314W	DAL82	Positive regulator of allophanate inducible	-2.04	-
		genes		
YDL025C	YDL025C	Putative protein kinase, potentially phosphorylated by Cdc28p	-2.04	-
YPR157W	YPR157 W	Putative protein of unknown function	-2.05	-
YPL199C	YPL199C	Putative protein of unknown function, predicted to be palmitovlated	-2.06	-2.56
YDR244W	PEX5	Peroxisomal membrane signal receptor for the C-terminal tripeptide signal sequence (PTS1) of peroxisomal matrix proteins, required for peroxisomal matrix protein import	-2.07	-
YNL004W	HRB1	Poly(A+) RNA-binding protein, involved in the export of mRNAs from the nucleus to the cytoplasm; similar to Gbp2p and Npl3p	-2.07	-2.15
YBR297W	MAL33	MAL-activator protein, part of complex locus MAL3; nonfunctional in genomic reference strain S288C	-2.07	-
YHR066W	SSF1	Constituent of 66S pre-ribosomal particles, required for ribosomal large subunit maturation	-2.07	-4.63
YMR265C	YMR265C	Putative protein of unknown function	-2.08	-2.35
YDL121C	YDL121C	Putative protein of unknown function	-2.08	-2.47
YPR112C	MRD1	Essential conserved protein that is part of the 90S preribosome	-2.08	-
YNL119W	NCS2	Protein required for thiolation of the uridine at the wobble position of Lys(UUU) and Glu(UUC) tRNAs	-2.11	-
YOR213C	SAS5	Subunit of the SAS complex (Sas2p, Sas4p, Sas5p), which acetylates free histones and nucleosomes and regulates transcriptional silencing; stimulates Sas2p HAT activity	-2.11	-
YER015W	FAA2	Medium chain fatty acyl-CoA synthetase, activates imported fatty acids; accepts a wide range of fatty acid chain lengths with a preference for medium chains, C9:0-C13:0; localized to the peroxisome	-2.11	-2.09
YOR179C	SYC1	Subunit of the APT subcomplex of cleavage and polyadenylation factor, may have a role in 3' end formation of both polyadenylated and non- polyadenylated RNAs	-2.11	-
YLR161W	YLR161W	Putative protein of unknown function	-2.11	-
YPR048W	TAH18	Conserved NAPDH-dependent diflavin reductase, component of an early step in the cytosolic Fe-S protein assembly (CIA) machinery	-2.11	-
YDR312W	SSF2	Protein required for ribosomal large subunit maturation, functionally redundant with Ssf1p	-2.11	-
YHR166C	CDC23	Subunit of the Anaphase-Promoting Complex/Cyclosome (APC/C), which is a	-2.13	-2.12

		ubiquitin protein ligase required for degradation		
		of anonhoos inhibitors, including mitotic evolution		
		or anaphase minibilors, including milotic cyclins,		
		ouring the metaphase/anaphase transition	0.1.1	
YUL136C	PFK27	6-phosphotructo-2-kinase, catalyzes synthesis	-2.14	-
		of fructose-2,6-bisphosphate		
YOR101W	RAS1	GIPase involved in G-protein signaling in the	-2.14	-
		adenylate cyclase activating pathway, plays a		
		role in cell proliferation		
YDL223C	HBT1	Substrate of the Hub1p ubiquitin-like protein that	-2.14	-
		localizes to the shmoo tip (mating projection)		
YNL113W	RPC19	RNA polymerase subunit AC19, common to	-2.14	-
		RNA polymerases I and III		
YKL099C	UTP11	Subunit of U3-containing Small Subunit (SSU)	-2.15	-
		processome complex involved in production of		
		18S rRNA and assembly of small ribosomal		
		subunit		
YGL153W	PEX14	Peroxisomal membrane peroxin that is a central	-2.15	-
		component of the peroxisomal protein import		
		machinery		
YJL212C	OPT1	Proton-coupled oligopeptide transporter of the	-2.16	-3.25
		plasma membrane		
YLR407W	YLR407W	Putative protein of unknown function	-2.18	_
YLR159W	YLR159W	Putative protein of unknown function	-2.18	_
		Solf alucesylating initiator of alucegon	2.10	
111103000	GLGT	synthesis, also ducosylates n dodecyl beta D	-2.10	
		maltoside		
V II 112W/		Perinheral protein of the cytosolic face of the	-2 10	
10211200	NID V I	mitochondrial outer membrane, required for	-2.15	
		mitochondrial fission		
YCR100C	YCR100C	Putative protein of unknown function	-2 19	-2 34
			2.10	2.01
ILLUSIC	FRED	Putative terric reductase with similarity to Frezp;	-2.19	—
VODOOO		expression induced by low iron levels	0.00	
YGR202C	PCT1	Cholinephosphate cytidylyltransferase, also	-2.20	-
		known as CTP:phosphocholine		
		cytidylyltransferase, rate-determining enzyme of		
		the CDP-choline pathway for		
		phosphatidylcholine synthesis		
YDR030C	RAD28	Protein involved in DNA repair, related to the	-2.20	-
		human CSA protein that is involved in		
		transcription-coupled repair nucleotide excision		
	-	repair		
YGR081C	SLX9	Protein required for pre-rRNA processing;	-2.20	-2.57
		associated with the 90S pre-ribosome and 43S		
		small ribosomal subunit precursor		
YIL113W	SDP1	Stress-inducible dual-specificity MAP kinase	-2.20	-
		phosphatase, negatively regulates Slt2p MAP		
		kinase by direct dephosphorylation, diffuse		
		localization under normal conditions shifts to		
		punctate localization after heat shock		

YPL202C	AFT2	Iron-regulated transcriptional activator	-2.21	-
YER037W	PHM8	Protein of unknown function, expression is	-2.22	-
		induced by low phosphate levels and by		
		inactivation of Pho85p		
YBL033C	RIB1	GTP cyclohydrolase II	-2.22	-2.34
YGR129W	SYF2	Member of the NineTeen Complex (NTC) that	-2.22	-
		contains Prp19p and stabilizes U6 snRNA in		
		catalytic forms of the spliceosome containing		
		U2, U5, and U6 snRNAs		
YOR056C	NOB1	Essential nuclear protein involved in	-2.23	-
		proteasome maturation and synthesis of 40S		
VODOON		ribosomai subunits	0.00	
YOR262W	YOR26W	Protein of unknown function required for	-2.23	_
		establishment of sister chromatid conesion;		
	DUS1	tPNA:	2.24	_
IFL2120	F031	nseudouridines at positions 26-28, 34-36, 65	-2.24	_
		and 67 of tRNA		
YMR185W	YMR18W	Putative protein of unknown function	-2.25	-
YER184C	YER184C	Putative zinc cluster protein	-2.25	-3.03
YIR031C	DAL 7	Malate synthase role in allantoin degradation	-2 26	_
	27(27	unknown	2.20	
YJL072C	PSF2	Subunit of the GINS complex (Sld5p, Psf1p,	-2.26	-3.81
		Psf2p, Psf3p), which is localized to DNA		
		replication origins and implicated in assembly of		
		the DNA replication machinery		
YKL106W	AAT1	Mitochondrial aspartate aminotransferase,	-2.26	-
		catalyzes the conversion of oxaloacetate to		
		aspartate in aspartate and asparagine		
		Diosynthesis Dutativo S. adopagy/mathiopipa dopondont	2.26	_
101(1410	I DIVI 410	methyltransferase	-2.20	
YNI 221C	POP1	Subunit of both RNase MRP, which cleaves pre-	-2 29	-2.07
	1 01 1	rRNA and nuclear RNase P which cleaves	2.20	2.07
		tRNA precursors to generate mature 5' ends		
YOR004W	UTP23	Essential nucleolar protein that is a component	-2.30	-2.09
		of the SSU (small subunit) processome involved		
		in 40S ribosomal subunit biogenesis		
YHR150W	PEX28	Peroxisomal integral membrane peroxin,	-2.30	-
		involved in the regulation of peroxisomal size,		
		number and distribution		
YKR024C	DBP7	Putative ATP-dependent RNA helicase of the	-2.31	-
		DEAD-box family involved in ribosomal		
		biogenesis		
YLR284C	ECI1	Peroxisomal delta3,delta2-enoyl-CoA	-2.32	-
		isomerase, hexameric protein that converts 3-		
		nexenoyi-CoA to trans-2-nexenoyi-CoA,		
		fatty acids oleate-induced		
	1			

YDR421W	ARO80	Zinc finger transcriptional activator of the Zn2Cvs6 family	-2.32	-
YER137C	YER137C	Putative protein of unknown function	-2.35	-
YOR338W	YOR33W	Putative protein of unknown function	-2.35	-
YCR107W	AAD3	Putative aryl-alcohol dehydrogenase with similarity to P. chrysosporium aryl-alcohol	-2.35	-
YMR201C	RAD14	Protein that recognizes and binds damaged	-2.37	-
YBL054W	TOD6	PAC motif binding protein involved in rRNA and ribosome biogenesis	-2.37	-
YBR257W	POP4	Subunit of both RNase MRP, which cleaves pre- rRNA, and nuclear RNase P, which cleaves tRNA precursors to generate mature 5' ends	-2.38	-2.59
YBR105C	VID24	Peripheral membrane protein located at Vid (vacuole import and degradation) vesicles	-2.39	-3.67
YKL072W	STB6	Protein that binds Sin3p in a two-hybrid assay	-2.39	-2.55
YGR121C	MEP1	Ammonium permease; belongs to a ubiquitous family of cytoplasmic membrane proteins that transport only ammonium (NH4	-2.39	-2.92
YNL014W	HEF3	Translational elongation factor EF-3; paralog of YEF3 and member of the ABC superfamily	-2.40	-
YPL230W	USV1	Putative transcription factor containing a C2H2 zinc finger	-2.40	-
YLR312C	YLR312C	Putative protein of unknown function	-2.40	-2.10
YLR023C	IZH3	Membrane protein involved in zinc ion homeostasis, member of the four-protein IZH family, expression induced by zinc deficiency	-2.42	-
YMR009W	ADI1	Acireductone dioxygenease involved in the methionine salvage pathway	-2.42	-
YMR145C	NDE1	Mitochondrial external NADH dehydrogenase, a type II NAD(P)H:quinone oxidoreductase that catalyzes the oxidation of cytosolic NADH	-2.43	-
YHR046C	INM1	Inositol monophosphatase, involved in biosynthesis of inositol and in phosphoinositide second messenger signaling	-2.44	-2.11
YEL029C	BUD16	Putative pyridoxal kinase, a key enzyme involved in pyridoxal 5'-phosphate synthesis, the active form of vitamin B6	-2.44	-
YFL030W	AGX1	Alanine:glyoxylate aminotransferase (AGT), catalyzes the synthesis of glycine from glyoxylate, which is one of three pathways for glycine biosynthesis in yeast	-2.49	-2.27
YKL023W	YKL023W	Putative protein of unknown function, predicted by computational methods to be involved in mRNA degradation	-2.50	-3.03
YOR192C	THI72	Transporter of thiamine or related compound; shares sequence similarity with Thi7p	-2.52	-3.27

				1
YLR387C	REH1	Cytoplasmic 60S subunit biogenesis factor, associates with pre-60S particles	-2.52	-
YLL061W	MMP1	High-affinity S-methylmethionine permease, required for utilization of S-methylmethionine as a sulfur source; has similarity to S- adenosylmethionine permease Sam3p	-2.53	-
YBL069W	AST1	Peripheral membrane protein that interacts with the plasma membrane ATPase Pma1p and has a role in its targeting to the plasma membrane, possibly by influencing its incorporation into lipid rafts	-2.54	-
YPL017C	IRC15	Microtubule associated protein	-2.56	-2.27
YNL234W	YNL234W	Protein of unknown function with similarity to globins; has a functional heme-binding domain	-2.57	-
YOL165C	AAD15	Putative aryl-alcohol dehydrogenase with similarity to P. chrysosporium aryl-alcohol dehydrogenase; mutational analysis has not yet revealed a physiological role	-2.60	-2.72
YGR159C	NSR1	Nucleolar protein that binds nuclear localization sequences, required for pre-rRNA processing and ribosome biogenesis	-2.61	-
YDR120C	TRM1	tRNA methyltransferase; two forms of the protein are made by alternative translation starts	-2.65	-
YKL143W	LTV1	Component of the GSE complex, which is required for proper sorting of amino acid permease Gap1p	-2.68	_
YLR460C	YLR460C	Member of the quinone oxidoreductase family, up-regulated in response to the fungicide mancozeb	-2.71	_
YPR111W	DBF20	Ser/Thr kinase involved in late nuclear division, one of the mitotic exit network (MEN) proteins	-2.73	-3.36
YHR088W	RPF1	Nucleolar protein involved in the assembly and export of the large ribosomal subunit	-2.76	-2.13
YLL053C	YLL053C	Putative protein; in the Sigma 1278B strain background YLL053C is contiguous with AQY2 which encodes an aquaporin	-2.79	-2.85
YDR342C	НХТ7	High-affinity glucose transporter of the major facilitator superfamily, nearly identical to Hxt6p, expressed at high basal levels relative to other HXTs, expression repressed by high glucose levels	-2.80	-
YFL061W	DDI2	Protein of unknown function; expression is induced over 100-fold by DNA damage	-2.87	-5.18
YLR297W	YLR297W	Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the vacuole	-2.88	-
YLL052C	AQY2	Water channel that mediates the transport of water across cell membranes, only expressed in proliferating cells, controlled by osmotic signals,	-2.89	-3.13

		may be involved in freeze tolerance		
YOR363C	PIP2	Autoregulatory oleate-specific transcriptional activator of peroxisome proliferation, contains Zn(2)-Cys(6) cluster domain, forms heterodimer with Oaf1p, binds oleate response elements (OREs), activates beta-oxidation genes	-2.90	-
YMR189W	GCV2	P subunit of the mitochondrial glycine decarboxylase complex, required for the catabolism of glycine to 5,10-methylene-THF	-2.90	-5.24
YKR099W	BAS1	Myb-related transcription factor involved in regulating basal and induced expression of genes of the purine and histidine biosynthesis pathways	-2.91	-4.06
YIL019W	FAF1	Protein required for pre-rRNA processing and 40S ribosomal subunit assembly	-2.94	-
YHR033W	YHR03W	Putative protein of unknown function	-2.95	-
YGR239C	PEX21	Peroxin required for targeting of peroxisomal matrix proteins containing PTS2	-3.02	-4.21
YDR343C	HXT6	High-affinity glucose transporter of the major facilitator superfamily, nearly identical to Hxt7p, expressed at high basal levels relative to other HXTs, repression of expression by high glucose requires SNF3	-3.02	-
YLR152C	YLR152C	Putative protein of unknown function	-3.03	-4.74
YIL003W	CFD1	Highly conserved, iron-sulfur cluster binding protein localized in the cytoplasm	-3.03	-3.22
YDR533C	HSP31	Possible chaperone and cysteine protease with similarity to E. coli Hsp31	-3.03	-2.24
YER176W	ECM32	DNA dependent ATPase/DNA helicase belonging to the Dna2p- and Nam7p-like family of helicases that is involved in modulating translation termination	-3.05	-
YDL170W	UGA3	Transcriptional activator necessary for gamma- aminobutyrate (GABA)-dependent induction of GABA genes (such as UGA1, UGA2, UGA4	-3.18	-5.69
YOL158C	ENB1	Endosomal ferric enterobactin transporter, expressed under conditions of iron deprivation	-3.21	-3.60
YDR019C	GCV1	T subunit of the mitochondrial glycine decarboxylase complex, required for the catabolism of glycine to 5,10-methylene-THF	-3.24	-4.41
YNL162W	YNL162W	Putative protein of unknown function	-3.25	-
YNL279W	PRM1	Pheromone-regulated multispanning membrane protein involved in membrane fusion during mating	-3.29	-
YKL155C	RSM22	Mitochondrial ribosomal protein of the small subunit	-3.63	-
YER145C	FTR1	High affinity iron permease involved in the transport of iron across the plasma membrane	-3.64	-5.70
YNL142W	MEP2	Ammonium permease involved in regulation of	-3.66	-

		pseudohyphal growth		
YMR107W	SPG4	Protein required for survival at high temperature	-4.07	-
		during stationary phase		
YOR306C	MCH5	Plasma membrane riboflavin transporter	-4.11	-
YML123C	PHO84	High-affinity inorganic phosphate (Pi)	-4.19	-
		transporter and low-affinity manganese		
		transporter		
YNL112W	DBP2	Essential ATP-dependent RNA helicase of the	-4.19	-
		DEAD-box protein family, involved in nonsense-		
		mediated mRNA decay and rRNA processing		
YNR069C	BSC5	Protein of unknown function, ORF exhibits	-4.47	-
		genomic organization compatible with a		
		translational readthrough-dependent mode of		
		expression		
YJL213W	YJL213W	Protein of unknown function that may interact	-4.50	-13.17
		with ribosomes; periodically expressed during		
		the yeast metabolic cycle		
YPL092W	SSU1	Plasma membrane sulfite pump involved in	-4.79	-6.75
		sulfite metabolism and required for efficient		
		sulfite efflux		
YGR230W	BNS1	Protein with some similarity to Spo12p	-4.87	-3.61
YIR032C	DAL3	Ureidoglycolate hydrolase, converts	-5.20	-4.19
		ureidoglycolate to glyoxylate and urea in the		
		third step of allantoin degradation		
YPR192W	AQY1	Spore-specific water channel that mediates the	-5.28	-
		transport of water across cell membranes,		
1000	N/1 1/ (0	developmentally controlled		
YHR048W	YHK8	Presumed antiporter of the DHA1 family of	-5.55	-6.38
	VOTA	multidrug resistance transporters	F 00	
YLLU55VV	YCIT	High-affinity cysteine-specific transporter with	-5.99	-
		similarity to the Daisp family of transporters;		
		localizes to the endoplasmic reticulum		
VII 165C	VII 165C	Putative protein of unknown function	-6.03	-7 50
			-0.03	-7.53
TIL 164C		initiase, member of the nitilase branch of the	-0.31	-7.94
		Putative protein of unknown function: proper	6 27	6.03
TORTOOW	TORTOW	regulation of expression during heat stress is	-0.37	-0.03
		sphingolinid-dependent		
	EET3	Ferro-O2-ovidoreductase required for high-	-6.64	_11 07
11011(05000	1 2 1 3	affinity iron untake and involved in mediating	-0.04	-11.57
		resistance to copper ion toxicity belongs to		
		class of integral membrane multicopper		
		oxidases		
YFR055W	IRC7	Putative cystathionine beta-lyase: involved in	-6.82	-11.69
		copper ion homeostasis and sulfur metabolism		
YDR242W	AMD2	Putative amidase	-7.12	-8.88
YBI 043W	ECM13	Non-essential protein of unknown function:	-7 22	-9 22
		induced by treatment with 8-methoxypsoralen		J.22

		and UVA irradiation		
YHL016C	DUR3	Plasma membrane transporter for both urea and polyamines, expression is highly sensitive to nitrogen catabolite repression and induced by allophanate, the last intermediate of the allantoin degradative pathway	-7.66	-8.79
YPL095C	EEB1	Acyl-coenzymeA:ethanol O-acyltransferase responsible for the major part of medium-chain fatty acid ethyl ester biosynthesis during fermentation	-8.32	-3.60
YCL064C	CHA1	Catabolic L-serine (L-threonine) deaminase, catalyzes the degradation of both L-serine and L-threonine	-9.36	-12.61
YHR096C	HXT5	Hexose transporter with moderate affinity for glucose, induced in the presence of non- fermentable carbon sources, induced by a decrease in growth rate	-9.51	-8.23
YHR137W	ARO9	Aromatic aminotransferase II, catalyzes the first step of tryptophan, phenylalanine, and tyrosine catabolism	-16.37	-10.86
YKR034W	DAL80	Negative regulator of genes in multiple nitrogen degradation pathways; expression is regulated by nitrogen levels and by Gln3p	-22.06	-
YJL153C	INO1	Inositol-3-phosphate synthase, involved in synthesis of inositol phosphates and inositol- containing phospholipids	-	32.84
YER003C	PMI40	Mannose-6-phosphate isomerase, catalyzes the interconversion of fructose-6-P and mannose-6-P	-	8.04
YGR109C	CLB6	B-type cyclin involved in DNA replication during S phase; activates Cdc28p to promote initiation of DNA synthesis	-	6.29
YKL165C	MCD4	Protein involved in glycosylphosphatidylinositol (GPI) anchor synthesis	-	6.19
YGR256W	GND2	6-phosphogluconate dehydrogenase (decarboxylating), catalyzes an NADPH regenerating reaction in the pentose phosphate pathway	-	6.06
YOR387C	YOR387C	Putative protein of unknown function	-	5.85
YBR088C	POL30	Proliferating cell nuclear antigen (PCNA), functions as the sliding clamp for DNA polymerase delta	-	5.26
YML058W- A	HUG1	Protein involved in the Mec1p-mediated checkpoint pathway that responds to DNA damage or replication arrest, transcription is induced by DNA damage	-	5.03
YGR213C	RTA1	Protein involved in 7-aminocholesterol resistance	-	4.73
YNR016C	ACC1	Acetyl-CoA carboxylase, biotin containing	-	4.40

		enzyme that catalyzes the carboxylation of		
	ICT1	Lycophosphatidio acid acyltransforaco		1 22
ILR099C	1011	responsible for enhanced phospholipid	_	4.32
		synthesis during organic solvent stress		
	LIVKO	Herekingson inconstrume 2 that actalyzes		1 10
IGL255W		nexokinase isoenzyme z that catalyzes	_	4.10
VCD224W		Nitrie evide evidereducteee, flevehomeglebin		2.07
IGR234W	וסחז	initic oxide oxidoreductase, navonemoglobin	_	3.97
				0.04
YALU23C	PM12	Protein O-mannosyltransferase, transfers	-	3.84
		mannose residues from dolicnyl phosphale-D-		
		Dibudrovy costore kinese, required for		0.75
YNLU7UVV	DAKT	Dinydroxyacetone kinase, required for	-	3.75
VODAAAA	5014	detoxification of dinydroxyacetone (DHA		0.45
YOR388C	FDH1	NAD(+)-dependent formate denydrogenase,	-	3.45
		may protect cells from exogenous formate		
YML028W	TSA1	I hioredoxin peroxidase, acts as both a	-	3.43
		ribosome-associated and free cytoplasmic		
	= 1 0 /	antioxidant		
YKL182W	FAS1	Beta subunit of fatty acid synthetase, which	-	3.41
		catalyzes the synthesis of long-chain saturated		
		fatty acids		0.44
YJL167W	ERG20	Farnesyl pyrophosphate synthetase, has both	-	3.41
		dimethylallyltranstransferase and		
	D/D (geranyitranstransterase activities		0.04
YOL143C	RIB4	Lumazine synthase (6,7-dimethyl-8-	-	3.24
		ridityllumazine synthase, also known as DMRL		
		synthase		0.00
THR1/4W	EN02	Enolase II, a phosphopyruvale hydralase that	-	3.20
		catalyzes the conversion of z-phosphoglycerate		
		to phosphoenolpyiluvate during glycolysis and		
	DDCE	Miner ineferm of purpluste department/lease key		2.16
ILR 134VV	PDC5	inition isoloitti oi pyruvate decarboxylase, key	_	3.10
		enzyme in alconolic termentation,		
VOD221W	DMTO	Distance of the second se		2 15
TURSZIW	F IVI I 3	mannasa rasiduas from delichul phasabata D	_	5.15
		mannose residues norm dolicity phosphate-D-		
		6 phoenbooluoopata dabudroganaga		2 1 2
TURIOSW	GNDT	(decarboxylating), catalyzes an NADPH	_	5.15
		(decarboxylating), catalyzes an NADFTT		
		nathway		
	ΤΛΙ 1	Transaldolase, enzyme in the non-oxidative		3 10
1113340	IALI	nentose phosphate pathway		5.10
	RED1	Component of mPNP complexes associated	_	3.03
1011300		with polyribosomes		0.00
YOR303///	FRP1	Protein of unknown function	_	3 02
				0.02
TFLUTIV	HX 110	Putative nexose transporter, expressed at low	-	3.00
		lievels and expression is repressed by glucose		

YPL281C	ERR2	Protein of unknown function	-	3.00
YMR323W	ERR3	Protein of unknown function	-	2.98
YOR288C	MPD1	Member of the protein disulfide isomerase (PDI) family	-	2.96
YLR259C	HSP60	Tetradecameric mitochondrial chaperonin required for ATP-dependent folding of precursor polypeptides and complex assembly	_	2.81
YMR214W	SCJ1	One of several homologs of bacterial chaperone DnaJ, located in the ER lumen where it cooperates with Kar2p to mediate maturation of proteins	-	2.76
YPL240C	HSP82	Hsp90 chaperone required for pheromone signaling and negative regulation of Hsf1p	-	2.76
YOR176W	HEM15	Ferrochelatase, a mitochondrial inner membrane protein, catalyzes the insertion of ferrous iron into protoporphyrin IX	-	2.75
YNR019W	ARE2	Acyl-CoA:sterol acyltransferase, isozyme of Are1p	-	2.74
YGR037C	ACB1	Acyl-CoA-binding protein, transports newly synthesized acyl-CoA esters from fatty acid synthetase (Fas1p-Fas2p) to acyl-CoA- consuming processes	-	2.74
YJR030C	YJR030C	Putative protein of unknown function; expression repressed in carbon limited vs carbon replete chemostat cultures	-	2.72
YLR304C	ACO1	Aconitase, required for the tricarboxylic acid (TCA) cycle and also independently required for mitochondrial genome maintenance	-	2.72
YOL031C	SIL1	Nucleotide exchange factor for the endoplasmic reticulum (ER) lumenal Hsp70 chaperone Kar2p, required for protein translocation into the ER; homolog of Yarrowia lipolytica SLS1	-	2.69
YKL121W	DGR2	Protein of unknown function	-	2.68
YBR011C	IPP1	Cytoplasmic inorganic pyrophosphatase (PPase), homodimer that catalyzes the rapid exchange of oxygens from Pi with water	-	2.67
YBR029C	CDS1	Phosphatidate cytidylyltransferase (CDP- diglyceride synthetase	-	2.62
YPL058C	PDR12	Plasma membrane ATP-binding cassette (ABC) transporter, weak-acid-inducible multidrug transporter required for weak organic acid resistance	_	2.60
YNL102W	POL1	Catalytic subunit of the DNA polymerase I alpha-primase complex, required for the initiation of DNA replication during mitotic DNA synthesis and premeiotic DNA synthesis	-	2.60
YLR234W	TOP3	DNA Topoisomerase III, conserved protein that functions in a complex with Sgs1p and Rmi1p to relax single-stranded negatively-supercoiled	_	2.56

		DNA preferentially		
YHR104W	GRE3	Aldose reductase involved in methylglyoxal, d-	-	2.53
		xylose, arabinose, and galactose metabolism;		
		stress induced (osmotic, ionic, oxidative, heat		
		shock, starvation and heavy metals)		
YGL256W	ADH4	Alcohol dehydrogenase isoenzyme type IV,	-	2.51
		dimeric enzyme demonstrated to be zinc-		
		dependent despite sequence similarity to iron-		
		activated alcohol dehydrogenases		
YOR073W	SGO1	Component of the spindle checkpoint, involved	-	2.51
		in sensing lack of tension on mitotic		
		chromosomes		
YDR148C	KGD2	Dihydrolipoyl transsuccinylase, component of	-	2.49
		the mitochondrial alpha-ketoglutarate		
		dehydrogenase complex, which catalyzes the		
		oxidative decarboxylation of alpha-ketoglutarate		
VKI 102C		to succinyi-CoA in the TCA cycle		2.49
TKL103C			_	2.40
YOR247W	SRL1	Mannoprotein that exhibits a tight association	-	2.47
		with the cell wall, required for cell wall stability in		
		the absence of GPI-anchored mannoproteins;		
	VODIO	nas a nigh serine-threonine content		0.40
YOR385W	YOR385	Putative protein of unknown function; green	-	2.43
	VV	licestime to the extension		
VOP254C	SEC62	Eccontial subunit of Soc63 complex (Soc63n		2 4 2
10K254C	3EC03	Sec62n Sec66n and Sec72n	_	2.42
YDR050C	TPI1	Triose phosphate isomerase, abundant	_	2 41
		glycolytic enzyme		
YCL050C	APA1	Diadenosine 5',5"-P1,P4-tetraphosphate	_	2.40
		phosphorylase I (AP4A phosphorylase),		
		involved in catabolism of bis(5'-nucleosidyl)		
		tetraphosphates		
YDL103C	QRI1	UDP-N-acetylglucosamine pyrophosphorylase,	-	2.38
		catalyzes the formation of UDP-N-		
		acetylglucosamine (UDP-GlcNAc)		
YDL022W	GPD1	NAD-dependent glycerol-3-phosphate	-	2.38
		dehydrogenase, key enzyme of glycerol		
		synthesis, essential for growth under osmotic		
		stress		
YBL032W	HEK2	RNA binding protein involved in the asymmetric	-	2.38
	004.4	localization of ASH1 mRNA		0.00
YER103W	SSA4	Heat snock protein that is highly induced upon	-	2.38
	110000	Stress		0.07
TBRU/2W	HSP26	Small neat shock protein (SHSP) with	-	2.31
		Dratain O manneaultransferees, transfere		0.07
IJK143C	PIVI I 4	mannage residues from delicibul pheephote D	-	2.31
		mannose residues nom dolicity phospitale-D-		

ribosome biogenesis and, in partnership with Ssz1p and SSb1/2, as a chaperone for nascent polypeptide chains YGL137W SEC27 Essential beta'-coat protein of the COPI coatomer, involved in ER-to-Golgi and Golgi-to- ER transport; contains WD40 domains that mediate cargo selective interactions	
Ssz1p and SSb1/2, as a chaperone for nascent polypeptide chains - 2.34 YGL137W SEC27 Essential beta'-coat protein of the COPI coatomer, involved in ER-to-Golgi and Golgi-to-ER transport; contains WD40 domains that mediate cargo selective interactions - 2.34	
polypeptide chains polypeptide chains YGL137W SEC27 Essential beta'-coat protein of the COPI - 2.34 coatomer, involved in ER-to-Golgi and Golgi-to- ER transport; contains WD40 domains that mediate cargo selective interactions - 2.34	
YGL137W SEC27 Essential beta'-coat protein of the COPI - 2.34 coatomer, involved in ER-to-Golgi and Golgi-to- ER transport; contains WD40 domains that mediate cargo selective interactions - 2.34	
coatomer, involved in ER-to-Golgi and Golgi-to- ER transport; contains WD40 domains that mediate cargo selective interactions	
ER transport; contains WD40 domains that mediate cargo selective interactions	
mediate cargo selective interactions	
YBL002W HTB2 Histone H2B, core histone protein required for - 2.34	
chromatin assembly and chromosome function	
YLR131CACE2Transcription factor that activates expression of-2.33	
early G1-specific genes, localizes to daughter	
cell nuclei after cytokinesis and delays G1	
progression in daughters, localization is	
regulated by phosphorylation	
YGR240C PFK1 Alpha subunit of heterooctameric – 2.33	
phosphotructokinase involved in glycolysis,	
YKL152C <i>GPM1</i> [Tetrameric phosphoglycerate mutase, mediates] – 2.29	
the conversion of 3-phosphoglycerate to 2-	
phosphoglycerate during glycolysis and the	
YLR132C YLR132C Essential protein of unknown function – 2.28	
YNL082WPMS1ATP-binding protein required for mismatch-2.28	
repair in mitosis and meiosis	
YIL041W GVP36 BAR domain-containing protein that localizes to - 2.27	
both early and late Golgi vesicles	
YHR064C SSZ1 Hsp70 protein that interacts with Zuo1p (a DnaJ – 2.26	
homolog) to form a ribosome-associated	
complex that binds the ribosome via the Zuo1p	
YDR508C GNP1 High-affinity glutamine permease, also – 2.26	
Iransports Leu, Ser, Thr, Cys, Met and Ash	
YFL059VV S/V23 Member of a stationary phase-induced gene – 2.25	
YHLU18W YHLU18W Putative protein of unknown function – 2.24	
YOR083WWHI5Repressor of G1 transcription that binds to SCB-2.20	
binding factor (SBF) at SCB target promoters in	
early G1; phosphorylation of Whi5p by the CDK,	
Cin3p/Cdc28p relieves repression and promoter	
binding by Whi5; periodically expressed in G1	
YLR133W CKI1 Choline kinase, catalyzing the first step in – 2.19	
phosphatidyicholine synthesis via the CDP-	
Choine (Kennedy pathway)	
YINLU/TWV LATT Dinyarolipoamide acetyltransferase component - 2.19	
$(\Box z)$ or pyruvate denydrogenase complex, which	
pyruvale to acetyr-CoA VDL004W/ ATR16 Date subunit of the control stally of	
mitochondrial F1F0 ATP synthese which is a	

		large, evolutionarily conserved enzyme complex required for ATP synthesis		
YPR183W	DPM1	Dolichol phosphate mannose (Dol-P-Man) synthase of the ER membrane, catalyzes the formation of Dol-P-Man from Dol-P and GDP- Man	-	2.17
YFL053W	DAK2	Dihydroxyacetone kinase, required for detoxification of dihydroxyacetone (DHA	-	2.16
YOR388C	FDH1	NAD(+)-dependent formate dehydrogenase, may protect cells from exogenous formate	-	2.16
YDL192W	ARF1	ADP-ribosylation factor, GTPase of the Ras superfamily involved in regulation of coated vesicle formation in intracellular trafficking within the Golgi	-	2.14
YGL175C	SAE2	Endonuclease that processes hairpin DNA structures with the MRX complex	-	2.14
YBR053C	YBR053C	Putative protein of unknown function	-	2.13
YDL140C	RPO21	RNA polymerase II largest subunit B220, part of central core	-	2.12
YDL219W	DTD1	D-Tyr-tRNA(Tyr) deacylase, functions in protein translation, may affect nonsense suppression via alteration of the protein synthesis machinery	-	2.12
YDR226W	ADK1	Adenylate kinase, required for purine metabolism	-	2.11
YHR068W	DYS1	Deoxyhypusine synthase, catalyzes formation of deoxyhypusine, the first step in hypusine biosynthesis	-	2.10
YMR205C	PFK2	Beta subunit of heterooctameric phosphofructokinase involved in glycolysis, indispensable for anaerobic growth, activated by fructose-2,6-bisphosphate and AMP, mutation inhibits glucose induction of cell cycle-related genes	-	2.09
YDR432W	NPL3	RNA-binding protein that promotes elongation, regulates termination, and carries poly(A) mRNA from nucleus to cytoplasm; required for pre-mRNA splicing	-	2.08
YNL233W	BNI4	Targeting subunit for Glc7p protein phosphatase, localized to the bud neck, required for localization of chitin synthase III to the bud neck via interaction with the chitin synthase III regulatory subunit Skt5p	-	2.07
YMR027W	YMR027 W	Putative protein of unknown function	-	2.06
YDR111C	ALT2	Putative alanine transaminase (glutamic pyruvic transaminase)	-	2.06
YFL038C	YPT1	Rab family GTPase, involved in the ER-to-Golgi step of the secretory pathway)	-	2.05
YNR035C	ARC35	Subunit of the ARP2/3 complex, which is	-	2.04

		required for the motility and integrity of cortical		
		actin patches		
YGL105W	ARC1	Protein that binds tRNA and methionyl- and	-	2.04
		glutamyl-tRNA synthetases (Mes1p and		
		Gus1p), delivering tRNA to them, stimulating		
		catalysis, and ensuring their localization to the		
		cytoplasm		
YNL010W	YNL010W	Putative protein of unknown function with	-	2.04
		similarity to phosphoserine phosphatases;		
		green fluorescent protein (GFP)-fusion protein		
		localizes to the cytoplasm and nucleus		
YPL032C	SVL3	Protein of unknown function, mutant phenotype	-	2.02
		suggests a potential role in vacuolar function		
YDR510W	SMT3	Ubiquitin-like protein of the SUMO family,	-	2.01
		conjugated to lysine residues of target proteins		
YDL185W	TFP1	Subunit A of the eight-subunit V1 peripheral	-	2.01
		membrane domain of the vacuolar H+-ATPase		
YHL031C	GOS1	v-SNARE protein involved in Golgi transport,	-	2.01
		homolog of the mammalian protein GOS-		
		28/GS28		
YML054C	CYB2	Cytochrome b2 (L-lactate cytochrome-c	-	2.00
		oxidoreductase), component of the		
		mitochondrial intermembrane space, required		
		for lactate utilization		
YGR279C	SCW4	Cell wall protein with similarity to glucanases;	-	2.00
		scw4 scw10 double mutants exhibit defects in		
		mating		
YOL164W	BDS1	Bacterially-derived sulfatase required for use of	-	-2.00
		alkyl- and aryl-sulfates as sulfur sources		
YGR074W	SMD1	Core Sm protein Sm D1	-	-2.00
YMR126C	DLT1	Protein of unknown function, mutant sensitive to	_	-2.00
		6-azauracil (6AU) and mycophenolic acid (MPA)		
YLR266C	PDR8	Transcription factor; targets include ATP-binding	-	-2.01
		cassette (ABC) transporters, major facilitator		
		superfamily transporters, and other genes		
		involved in the pleiotropic drug resistance (PDR)		
		phenomenon		
YKR009C	FOX2	Multifunctional enzyme of the peroxisomal fatty	-	-2.01
		acid beta-oxidation pathway		
YIL046W	MET30	F-box protein containing five copies of the	-	-2.03
		WD40 motif, controls cell cycle function, sulfur		
		metabolism, and methionine biosynthesis as		
		part of the ubiquitin ligase complex		
YGR166W	KRE11	Subunit of TRAPPII, a multimeric guanine	_	-2.04
		nucleotide-exchange factor for Ypt1p		
YBR212W	NGR1	RNA binding protein that negatively regulates	-	-2.05
		growth rate; interacts with the 3' UTR of the		
		mitochondrial porin (POR1) mRNA and		
		enhances its degradation		
YDL231C	BRE4	Zinc finger protein containing five	-	-2.05
-----------	---------	--	---	-------
		transmembrane domains		
YFR046C	CNN1	Kinetochore protein of unknown function;	-	-2.06
		associated with the essential kinetochore		
		proteins Nnf1p and Spc24p		
YMR132C	JLP2	Protein of unknown function, contains sequence	-	-2.06
		that closely resembles a J domain (typified by		
		the E. coli DnaJ protein)		
YNL221C	POP1	Subunit of both RNase MRP, which cleaves pre-	-	-2.07
		rRNA, and nuclear RNase P, which cleaves		
		tRNA precursors to generate mature 5' ends		
YDL215C	GDH2	NAD(+)-dependent glutamate dehydrogenase,	-	-2.08
		degrades glutamate to ammonia and alpha-		
		ketoglutarate		
YER015W	FAA2	Medium chain fatty acyl-CoA synthetase,	-	-2.09
		activates imported fatty acids		
YOR004W	UTP23	Essential nucleolar protein that is a component	-	-2.09
		of the SSU (small subunit) processome involved		
		in 40S ribosomal subunit biogenesis		
YFR025C	HIS2	Histidinolphosphatase, catalyzes the eighth step	-	-2.10
		in histidine biosynthesis		
YLL048C	YBT1	Transporter of the ATP-binding cassette (ABC)	-	-2.10
		family involved in bile acid transport		
YER092W	IES5	Protein that associates with the INO80	-	-2.11
		chromatin remodeling complex under low-salt		
)(1)50710		conditions		0.11
YNR074C	AIF1	Mitochondrial cell death effector that	-	-2.11
		translocates to the nucleus in response to		
		apoptotic stimuli, nomolog of mammalian		
	10)(4	Apoptosis-inducing Factor, putative reductase		0.11
YJR050W	1541	Member of Nine Leen Complex (NTC) that	—	-2.11
		contains Prp 19p and stabilizes U6 snRNA In		
		Catalytic forms of spliceosome containing 02,		
		modulate splicing fidelity		
	CAT4	Protoin containing GATA family zing finger		2 1 2
TIKUISC	GA14	motifs		-2.12
VI R103C	LIPS1	Mitochondrial intermembrane space protein that		-2 12
TEICISSO	0/0/	regulates mitochondrial cardiolinin levels null		-2.12
		has defects in Mam1n processing integrity of		
		mitochondrial inner membrane complexes, and		
		mitochondrial morphology		
YGR280C	PXR1	Essential protein involved in rRNA and snoRNA	_	-2 15
10112000		maturation: competes with TLC1 RNA for		2.10
		binding to Est2p, suggesting a role in negative		
		regulation of telomerase		
YPR200C	ARR2	Arsenate reductase required for arsenate	_	-2.16
		resistance		-
YDR249C	YDR249C	Putative protein of unknown function	-	-2.16
		-		

YOL044W	PEX15	Phosphorylated tail-anchored type II integral peroxisomal membrane protein required for peroxisome biogenesis, cells lacking Pex15p mislocalize peroxisomal matrix proteins to	-	-2.19	
YBL049W	MOH1	Protein of unknown function, has homology to kinase Snf7p	-	-2.20	
YOR184W	SER1	3-phosphoserine aminotransferase, catalyzes the formation of phosphoserine from 3- phosphohydroxypyruvate, required for serine and glycine biosynthesis	-	2.20	
YOL047C	YOL047C	Protein of unknown function	-	-2.21	
YER040W	GLN3	Transcriptional activator of genes regulated by nitrogen catabolite repression (NCR), localization and activity regulated by quality of nitrogen source	-	-2.21	
YPR168W	NUT2	Subunit of the RNA polymerase II mediator complex	-	-2.21	
YLR130C	ZRT2	Low-affinity zinc transporter of the plasma membrane	-	-2.21	
YKL220C	FRE2	Ferric reductase and cupric reductase, reduces siderophore-bound iron and oxidized copper prior to uptake by transporters	-	-2.22	
YLR004C	THI73	Putative plasma membrane permease proposed to be involved in carboxylic acid uptake and repressed by thiamine	-	-2.22	
YOL084W	PHM7	Protein of unknown function, expression is regulated by phosphate levels	-	-2.23	
YNL046W	YNL046W	Putative protein of unknown function	-	-2.25	
YDR257C	RKM4	Ribosomal lysine methyltransferase specific for monomethylation of Rpl42ap and Rpl42bp (lysine 55)	-	-2.29	
YNL116W	DMA2	Protein involved in ubiquitination; plays a role in regulating spindle position and orientation	-	-2.30	
YEL065W	SIT1	Ferrioxamine B transporter, member of the ARN family of transporters that specifically recognize siderophore-iron chelates	-	-2.35	
YBR043C	QDR3	Multidrug transporter of the major facilitator superfamily, required for resistance to quinidine, barban, cisplatin, and bleomycin	_	-2.37	
YNL129W	NRK1	Nicotinamide riboside kinase, catalyzes the phosphorylation of nicotinamide riboside and nicotinic acid riboside in salvage pathways for NAD+ biosynthesis	-	-2.37	
YBL029W	YBL029W	Non-essential protein of unknown function	-	-2.38	
YPR128C	ANT1	Peroxisomal adenine nucleotide transporter	-	-2.41	
YBR166C	TYR1	Prephenate dehydrogenase involved in tyrosine biosynthesis, expression is dependent on phenylalanine levels	-	-2.41	

YLL027W	ISA1	Mitochondrial matrix protein involved in	_	-2.43
		biogenesis of the iron-sulfur (Fe/S) cluster of		
		Fe/S proteins, isa1 deletion causes loss of		
		mitochondrial DNA and respiratory deficiency		
YGL146C	RRT6	Putative protein of unknown function	-	-2.45
YIL117C	PRM5	Pheromone-regulated protein, predicted to have	-	-2.46
		1 transmembrane segment		
YBL103C	RTG3	Basic helix-loop-helix-leucine zipper (bHLH/Zip)	-	-2.46
		transcription factor that forms a complex with		
		another bHLH/Zip protein, Rtg1p, to activate the		
		retrograde (RTG) and TOR pathways		
YDR090C	YDR090C	Putative protein of unknown function	-	-2.46
YMR187C	YMR187C	Putative protein of unknown function	-	-2.46
YGR029W	ERV1	Flavin-linked sulfhydryl oxidase of the	_	-2.47
		mitochondrial intermembrane space (IMS),		
		oxidizes Mia40p as part of a disulfide relay		
		system that promotes IMS retention of imported		
	-	proteins		
YDL121C	YDL121C	Putative protein of unknown function; green	-	-2.47
		fluorescent protein (GFP)-fusion protein		
	=:	localizes to the endoplasmic reticulum		
YCR089W	FIG2	Cell wall adhesin, expressed specifically during	-	-2.48
		maling Protoin of unknown function, has homology to		2.52
TERUSSU	nvGi	Vrq4p	-	-2.52
YNL125C	ESBP6	Protein with similarity to monocarboxylate	_	-2.53
		permeases, appears not to be involved in		
		transport of monocarboxylates such as lactate,		
		pyruvate or acetate across the plasma		
		membrane		
YAL044C	GCV3	H subunit of the mitochondrial glycine	-	-2.53
		decarboxylase complex, required for the		
		catabolism of glycine to 5,10-methylene-THF		
YBL095W	YBL095W	Putative protein of unknown function	-	-2.54
YHR160C	PEX18	Peroxin required for targeting of peroxisomal	-	-2.54
		matrix proteins containing PTS2		
YBR115C	LYS2	Alpha aminoadipate reductase, catalyzes the	-	-2.55
		reduction of alpha-aminoadipate to alpha-		
		aminoadipate 6-semialdehyde, which is the fifth		
	50)((step in biosynthesis of lysine		0.50
YGL205W	POX1	Fatty-acyl coenzyme A oxidase, involved in the fatty acid bata oxidation nathway	-	-2.56
	VGL111/W	Putative protein of unknown function	_	2.62
	CAT4			-2.02
TFLUZIVV	GATT	nitrogen catabolite repression	_	-2.04
YCR023C	YCR023C	Vacuolar membrane protein of unknown	_	-2.64
		function		
YML097C	VPS9	A guanine nucleotide exchange factor involved	-	-2.66
		in vesicle-mediated vacuolar protein transport;		

		specifically stimulates the intrinsic guanine		
		nucleotide exchange activity of Vps21p/Rab5		
YOR221C	MCT1	Predicted malonyl-CoA:ACP transferase,	-	-2.68
		putative component of a type-II mitochondrial		
		fatty acid synthase that produces intermediates		
		for phospholipid remodeling		0.75
YKL033W-	YKL033W	Putative protein of unknown function	-	-2.75
		Fo(II) dependent oulfongto/alpha kataglutarata		0.76
TLL057C	JLPT	re(II)-dependent suitonate/alpha-ketoglutarate	-	-2.70
		for use as a sulfur source; contains soquence		
		that resembles a I domain (typified by the F		
		coli Dna. I protein): induced by sulphur starvation		
YMR019W	STB4	Protein that binds Sin3p in a two-hybrid assay	_	-2.78
VBR248C	HIS7	Imidazole alveerol phosphate synthese	_	_2.82
101/2400	11137	(dutamine amidotransferase cyclase) catalyzes		-2.02
		the fifth and sixth steps of histidine biosynthesis		
		and also produces 5-aminoimidazole-4-		
		carboxamide ribotide (AICAR), a purine		
		precursor		
YNR065C	YNR065C	Protein of unknown function	-	-2.84
YOR339C	UBC11	Ubiquitin-conjugating enzyme most similar in	-	-2.86
		sequence to Xenopus ubiquitin-conjugating		
		enzyme E2-C, but not a true functional homolog		
		of this E2; unlike E2-C		
YOR008C-	YOR008C	Putative protein of unknown function, includes a	-	-2.87
A	-A	potential transmembrane domain		
YDR384C	A103	Plasma membrane protein, regulation pattern	-	-2.89
		suggests a possible role in export of ammonia		
		2 deeve D grabing bentulggangte Z phoenbate		2.01
IDR249C	ARU4	(DAHP) synthese, estalyzes the first stop in	_	-2.91
		aromatic amino acid biosynthesis and is		
		feedback-inhibited by tyrosine or high		
		concentrations of phenylalanine		
YGR121C	MEP1	Ammonium permease: belongs to a ubiquitous	_	-2.92
		family of cytoplasmic membrane proteins that		-
		transport only ammonium (NH4+)		
YPL052W	OAZ1	Regulator of ornithine decarboxylase (Spe1p),	-	-2.95
		antizyme that binds to Spe1p to regulate		
		ubiquitin-independent degradation		
YBL071W-	KTI11	Zn-ribbon protein that co-purifies with Dph1 and	-	-2.96
A		Dph2 in a complex required for synthesis of		
		diphthamide on translation factor eEF2 and with		
		Elongator subunits Iki3p, Elp2p, and Elp3p		
		Involved in modification of wobble nucleosides		
		III IKINAS		2.07
	nis i	ATE phosphoniousylliansierase, a nexameric enzyme, catalyzes the first step in histidine	-	-2.97
1	1			

		biosynthesis; mutations cause histidine auxotrophy and sensitivity to Cu, Co, and Ni		
		salts		
YIR034C	LYS1	Saccharopine dehydrogenase (NAD+, L-lysine-		-2.98
		saccharopine to L-lysine, which is the final step in the lysine biosynthesis pathway		
YER184C	YER184C	Putative zinc cluster protein	-	-3.03
YDR487C	RIB3	3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBP synthase), required for riboflavin biosynthesis from ribulose-5- phosphate	-	-3.03
YDR076W	RAD55	Protein that stimulates strand exchange by stabilizing the binding of Rad51p to single-stranded DNA	-	-3.05
YNL311C	YNL311C	F-box protein of unknown function predicted to be part of an SCF ubiquitin protease complex; involved in regulating protein levels of sulfur metabolism enzymes	-	-3.11
YPL135W	ISU1	Conserved protein of the mitochondrial matrix, performs a scaffolding function during assembly of iron-sulfur clusters, interacts physically and functionally with yeast frataxin (Yfh1p	-	-3.13
YGR197C	SNG1	Protein involved in resistance to nitrosoguanidine (MNNG) and 6-azauracil (6- AU)	-	-3.13
YLR090W	XDJ1	Putative chaperone, homolog of E. coli DnaJ, closely related to Ydj1p	-	-3.14
YGL154C	LYS5	Phosphopantetheinyl transferase involved in lysine biosynthesis	-	-3.23
YLR348C	DIC1	Mitochondrial dicarboxylate carrier, integral membrane protein, catalyzes a dicarboxylate- phosphate exchange across the inner mitochondrial membrane	-	-3.25
YOR192C	THI72	Transporter of thiamine or related compound	-	-3.27
YJR010W	MET3	ATP sulfurylase, catalyzes the primary step of intracellular sulfate activation, essential for assimilatory reduction of sulfate to sulfide, involved in methionine metabolism	-	-3.33
YGR154C	GTO1	Omega-class glutathione transferase	-	-3.34
YHR208W	BAT1	Mitochondrial branched-chain amino acid aminotransferase, homolog of murine ECA39	-	-3.37
YER039C	YER039C	Putative protein of unknown function	-	-3.37
YGL186C	TPN1	Plasma membrane pyridoxine (vitamin B6) transporter; member of the purine-cytosine permease subfamily within the major facilitator superfamily	-	-3.38
YHR122W	YHR12W	Protein of unknown function required for establishment of sister chromatid cohesion	-	-3.41

YKL211C	TRP3	Bifunctional enzyme exhibiting both indole-33 glycerol-phosphate synthase and anthranilate		-3.43
YPR078C	YPR078C	Putative protein of unknown function	-	-3.45
YDL054C	MCH1	Protein with similarity to mammalian – monocarboxylate permeases, which are involved in transport of monocarboxylic acids		-3.51
YLR042C	YLR042C	Protein of unknown function; localizes to the cytoplasm	-	-3.58
YOR161C	PNS1	Protein of unknown function	-	-3.59
YJR155W	AAD10	Putative aryl-alcohol dehydrogenase with similarity to P. chrysosporium aryl-alcohol dehydrogenase	-	-3.59
YPL188W	POS5	Mitochondrial NADH kinase, phosphorylates NADH; also phosphorylates NAD(+) with lower specificity	-	-3.60
YGL059W	PKP2	Mitochondrial protein kinase that negatively regulates activity of the pyruvate dehydrogenase complex by phosphorylating the ser-133 residue of the Pda1p subunit	-	-3.63
YBR105C	VID24	Peripheral membrane protein located at Vid (vacuole import and degradation) vesicles	-	-3.67
YKR071C	DRE2	Conserved component of an early step in the cytosolic Fe-S protein assembly (CIA) machinery	-	-3.70
YBR104W	YMC2	Mitochondrial protein, putative inner membrane transporter with a role in oleate metabolism and glutamate biosynthesis	-	-3.74
YJL072C	PSF2	Subunit of the GINS complex (Sld5p, Psf1p, Psf2p, Psf3p), which is localized to DNA replication origins and implicated in assembly of the DNA replication machinery	-	-3.81
YDR158W	HOM2	Aspartic beta semi-aldehyde dehydrogenase, catalyzes the second step in the common pathway for methionine and threonine biosynthesis	-	-3.82
YPL273W	SAM4	S-adenosylmethionine-homocysteine methyltransferase, functions along with Mht1p in the conversion of S-adenosylmethionine (AdoMet) to methionine to control the methionine/AdoMet ratio	-	-3.83
YPL033C	SRL4	Protein of unknown function	_	-3.84
YCL030C	HIS4	Multifunctional enzyme containing phosphoribosyl-ATP pyrophosphatase, phosphoribosyl-AMP cyclohydrolase, and histidinol dehydrogenase activities	-	-3.85
YNL036W	NCE103	Carbonic anhydrase; poorly transcribed under aerobic conditions and at an undetectable level	-	-3.86

		under anaerobic conditions		
YBR045C	GIP1	Meiosis-specific regulatory subunit of the Glc7p	-	-3.88
		protein phosphatase, regulates spore wall		
		formation and septin organization		
YER056C	FCY2	Purine-cytosine permease, mediates purine	-	-4.04
		(adenine, guanine, and hypoxanthine) and		
		cytosine accumulation		
YMR321C	YMR321C	Putative protein of unknown function	-	-4.07
YHR018C	ARG4	Argininosuccinate lyase, catalyzes the final step	-	-4.10
		in the arginine biosynthesis pathway		
YPR058W	YMC1	Mitochondrial protein, putative inner membrane	-	-4.10
		transporter with a role in oleate metabolism and		
		glutamate biosynthesis		
YOL141W	PPM2	AdoMet-dependent tRNA methyltransferase	-	-4.15
		also involved in methoxycarbonylation		
YKL218C	SRY1	3-hydroxyaspartate dehydratase, deaminates L-	-	-4.31
		threo-3-hydroxyaspartate to form oxaloacetate		
	00001	and ammonia		1.00
YOLU91W	SPO21	Component of the melotic outer plaque of the	-	-4.32
		spinale pole body, involved in modifying the		
		prespore membrane formation		
	MET22	Zing finger DNA binding protein, involved in		1 25
TDR255C	IVIE I SZ	transcriptional regulation of the methionine	_	-4.55
		biosynthetic genes, similar to Met31p		
VPI 252C	VAH1	Ferredoxin of the mitochondrial matrix required	_	_4 30
11 22020		for formation of cellular iron-sulfur proteins		-1.00
YII 056W	VHR1	Transcriptional activator, required for the vitamin	_	-4 41
11200011	VIIICI	H-responsive element (VHRE) mediated		
		induction of VHT1 (Vitamin H transporter) and		
		BIO5 (biotin biosynthesis intermediate		
		transporter) in response to low biotin		
		concentrations		
YOR303W	CPA1	Small subunit of carbamoyl phosphate	-	-4.45
		synthetase, which catalyzes a step in the		
		synthesis of citrulline, an arginine precursor		
YDR354W	TRP4	Anthranilate phosphoribosyl transferase of the	-	-4.58
		tryptophan biosynthetic pathway, catalyzes the		
		phosphoribosylation of anthranilate		
YOR130C	ORT1	Ornithine transporter of the mitochondrial inner	-	-4.59
		membrane, exports ornithine from mitochondria		
		as part of arginine biosynthesis		
YER060W-	FCY22	Putative purine-cytosine permease, very similar	-	-4.59
	DIO (to Fcy2p but cannot substitute for its function		4.00
YNRU57C	BIO4	Dethiopiotin synthetase, catalyzes the third step	-	-4.68
	0074	In the bloth blosynthesis pathway		4.00
I GL224C	3011	r ynmume nucleolluase, overexpression	-	-4.09
		elongation factor S-II as well as resistance to		
	1	Elongation lactor off, as well as resistance to		

		other pyrimidine derivatives		
YNL095C	YNL095C	Putative protein of unknown function predicted –		-4.94
		to contain a transmembrane domain		
YMR062C	ARG7	Mitochondrial ornithine acetyltransferase.	_	-4.99
		catalyzes the fifth step in arginine biosynthesis		
YJL198W	PHO90	Low-affinity phosphate transporter: deletion of	_	-5.08
		pho84, pho87, pho89, pho90, and pho91		
		causes synthetic lethality		
YOR302W	YOR302	CPA1 uORF, Arginine attenuator peptide,	_	-5.18
	W	regulates translation of the CPA1 mRNA		
YOL058W	ARG1	Arginosuccinate synthetase, catalyzes the	_	-5.19
		formation of L-argininosuccinate from citrulline		
		and L-aspartate in the arginine biosynthesis		
YBR256C	RIB5	Riboflavin synthase; catalyzes the last step of	_	-5.28
		the riboflavin biosynthesis pathway		
YDL198C	GGC1	Mitochondrial GTP/GDP transporter, essential	_	-5.29
		for mitochondrial genome maintenance		
YOR032C	HMS1	Basic helix-loop-helix (bHLH) protein with	_	-5.29
		similarity to myc-family transcription factors		
YIR017C	MET28	Basic leucine zipper (bZIP) transcriptional	_	-5.33
		activator in the Cbf1p-Met4p-Met28p complex,		
		participates in the regulation of sulfur		
		metabolism		
YLR089C	ALT1	Alanine transaminase (glutamic pyruvic	-	-5.33
		transaminase)		
YJR111C	YJR111C	Putative protein of unknown function; green	-	-5.38
		fluorescent protein (GFP)-fusion protein		
		localizes to the mitochondria		
YJR154W	YJR154W	Putative protein of unknown function	-	-5.49
YJR137C	MET5	Sulfite reductase beta subunit, involved in	-	-5.66
		amino acid biosynthesis, transcription repressed		
		by methionine		
YNL104C	LEU4	Alpha-isopropylmalate synthase (2-	-	-5.87
		isopropylmalate synthase		
YER174C	GRX4	Hydroperoxide and superoxide-radical	-	-5.88
		responsive glutathione-dependent		
		oxidoreductase; monothiol glutaredoxin		
		subfamily member along with Grx3p and Grx5p		
YPR167C	MET16	3'-phosphoadenylsulfate reductase, reduces 3'-	-	-5.95
		phosphoadenylyl sulfate to adenosine-3',5'-		
		bisphosphate and free sulfite using reduced		
		thioredoxin as cosubstrate, involved in sulfate		
		assimilation and methionine metabolism		
YJR109C	CPA2	Large subunit of carbamoyl phosphate	-	-6.23
		synthetase, which catalyzes a step in the		
) / A == -	synthesis of citrulline, an arginine precursor		<u> </u>
YER024W	YAT2	Carnitine acetyltransterase; has similarity to	-	-6.25
		Yat1p, which is a carnitine acetyltransferase		
1		associated with the mitochondrial outer		

		membrane		
YNR068C	YNR068C	Putative protein of unknown function	-	-6.35
YKR069W	MET1	S-adenosyl-L-methionine uroporphyrinogen III – transmethylase, involved in the biosynthesis of siroheme, a prosthetic group used by sulfite reductase		-6.40
YER069W	ARG5,6	Protein that is processed in the mitochondrion to yield acetylglutamate kinase and N-acetyl- gamma-glutamyl-phosphate reductase, which catalyze the 2nd and 3rd steps in arginine biosynthesis	-	-6.44
YKL029C	MAE1	Mitochondrial malic enzyme, catalyzes the oxidative decarboxylation of malate to pyruvate, which is a key intermediate in sugar metabolism and a precursor for synthesis of several amino acids	-	-6.47
YML116W	ATR1	Multidrug efflux pump of the major facilitator superfamily, required for resistance to aminotriazole and 4-nitroquinoline-N-oxide	-	-6.51
YGR065C	VHT1	High-affinity plasma membrane H+-biotin (vitamin H) symporter	-	-6.60
YJR130C	STR2	Cystathionine gamma-synthase, converts cysteine into cystathionine	-	-6.63
YLR092W	SUL2	High affinity sulfate permease; sulfate uptake is mediated by specific sulfate transporters Sul1p and Sul2p, which control the concentration of endogenous activated sulfate intermediates	-	-6.83
YMR108W	ILV2	Acetolactate synthase, catalyses the first common step in isoleucine and valine biosynthesis and is the target of several classes of inhibitors, localizes to the mitochondria	-	-6.90
YOL140W	ARG8	Acetylornithine aminotransferase, catalyzes the fourth step in the biosynthesis of the arginine precursor ornithine	-	-7.11
YPL264C	YPL264C	Putative membrane protein of unknown function	-	-7.16
YOL119C	MCH4	Protein with similarity to mammalian monocarboxylate permeases, which are involved in transport of monocarboxylic acids across the plasma membrane	-	-7.39
YPR027C	YPR027C	Putative protein of unknown function	-	-7.46
YGR224W	AZR1	Plasma membrane transporter of the major facilitator superfamily, involved in resistance to azole drugs such as ketoconazole and fluconazole	_	-7.62
YFR030W	MET10	Subunit alpha of assimilatory sulfite reductase, which converts sulfite into sulfide	_	-7.71
YHR071W	PCL5	Cyclin, interacts with and phosphorylated by Pho85p cyclin-dependent kinase (Cdk), induced by Gcn4p at level of transcription, specifically	-	-7.71

		required for Gcn4p degradation, may be sensor of cellular protein biosynthetic capacity		
YNR058W	BIO3	7,8-diamino-pelargonic acid aminotransferase – -8. (DAPA), catalyzes the second step in the biotin		-8.23
YBR296C	PHO89	Na+/Pi cotransporter, active in early growth phase	-	-9.20
YHR029C	YHI9	Protein of unknown function; null mutant is defective in unfolded protein response	-	-9.30
YER175C	TMT1	Trans-aconitate methyltransferase, cytosolic enzyme that catalyzes the methyl esterification of 3-isopropylmalate, an intermediate of the leucine biosynthetic pathway, and trans- aconitate, which inhibits the citric acid cycle	-	-9.72
YGL117W	YGL117W	Putative protein of unknown function	-	-9.72
YGL184C	STR3	Cystathionine beta-lyase, converts cystathionine into homocysteine	-	-9.83
YBR148W	YSW1	Protein required for normal prospore membrane formation	-	-10.31
YBR047W	FMP23	Putative protein of unknown function	-	-12.46
YJL088W	ARG3	Ornithine carbamoyltransferase (carbamoylphosphate:L-ornithine carbamoyltransferase), catalyzes the sixth step in the biosynthesis of the arginine precursor ornithine	_	-14.12
YMR096W	SNZ1	Protein involved in vitamin B6 biosynthesis	-	-17.82
YPL250C	ICY2	Protein of unknown function	-	-18.06
YDR380W	ARO10	Phenylpyruvate decarboxylase, catalyzes decarboxylation of phenylpyruvate to phenylacetaldehyde, which is the first specific step in the Ehrlich pathway	-	-25.87
YMR095C	SNO1	Protein of unconfirmed function, involved in pyridoxine metabolism	-	-33.55
YBR294W	SUL1	High affinity sulfate permease	-	-39.15

CHAPTER 3 VALPROIC ACID INDUCES THE UNFOLDED PROTEIN RESPONSE BY INCREASING CERAMIDE LEVELS

INTRODUCTION

Bipolar disorder (BD), one of the most severe forms of mood disorder, is characterized by recurrent episodes of depression and mania (Belmaker, 2004; Goodwin and Jamison, 2007). BD is ranked as the sixth leading cause of disability worldwide. It affects about 1-2% of the total world population (Belmaker, 2004; Goodwin and Jamison, 2007, Cheng et al., 2005) and leads to suicide in 15% of cases (Bostwick and Pankratz, 2000). Valproic acid (VPA), a branched short-chain fatty acid, is one of the most widely used drugs for the treatment of BD. However, it is effective in only 40-60% of cases and results in serious side effects, including hepatotoxicity and teratogenicity (Henry et al., 2003). Although many hypotheses have been postulated to explain its efficacy, the therapeutic mechanism of the drug is not understood, nor is the underlying cause of the disease (Gould et al., 2004; Williams et al., 2002; Yu and Greenberg, 2016). This knowledge gap hampers the development of more effective drugs to treat BD.

The inositol depletion hypothesis has had a major impact on research in BD. Berridge proposed that lithium, widely used to treat BD, inhibits inositol monophosphatase (IMPase), causing inositol depletion and subsequently decreasing inositol 1,4,5-triphosphate mediated signaling (Berridge, 1989; Hallcher and Sherman 1980). Previous studies show that VPA, similar to lithium, causes a decrease in intracellular inositol in yeast and mammalian cells (Shaltiel et al., 2004; Vaden et al., 2001; Ye and Greenberg, 2015). VPA indirectly inhibits *myo*-inositol-3-phosphate synthase (MIPS), the enzyme responsible for the rate-limiting step of *de novo* synthesis of inositol, suggesting that MIPS is post-translationally regulated (Ju et al., 2004). More recent findings show that yeast and human MIPS are phosphorylated, (Deranieh., et al 2013; Jesch et al., 2005) and that phosphorylation of conserved sites affects enzymatic activity (Deranieh., et al 2013). These findings suggest that the mechanism by which VPA causes inositol depletion is conserved in yeast and mammals, supporting the yeast model for genetic and molecular studies of the mechanism of the drug.

In yeast, supplementation of inositol triggers a change in the expression of hundreds of inositol-regulated genes, including genes for lipid synthesis (Cox et al., 1997; Chang et al., 2002; Jesch et al., 2010). Inositol containing lipids, including inositol phosphoinositides, glycosylphosphatidylinositol, and sphingolipids, play crucial structural and functional roles in regulating membrane biogenesis, membrane trafficking, cytoskeletal organization, and gene expression (Santiago and Mamoun, 2003; Jesch et al., 2005; Henry et al., 2014). Hence, inositol depletion exerts profound effects on cellular function (Deranieh and Greenberg, 2009). Inositol depletion not only alters lipid biosynthesis (Gaspar et al., 2006), but also activates stress response pathways, including the protein kinase C and unfolded protein response (UPR) pathways (Cox et al., 1997; Chang et al., 2002; Jesch et al., 2010). Cells grown in the absence of inositol exhibit induction of the UPR pathway (Cox et al., 1997; Promlek et al., 2011), which is reversed by inositol supplementation (Jesch et al., 2005). These studies suggest that decreasing the intracellular levels of inositol induces the UPR pathway by a mechanism not yet characterized.

Interdependence of the UPR pathway and ceramide synthesis has been demonstrated in yeast and mammals. Induction of the UPR increases ceramide levels

and viability in yeast (Han et al., 2010). In mammals, activation of the UPR increases the expression of ceramide synthase CerS6, leading to increased synthesis of ceramides containing C16 fatty acids (Han et al., 2010). Perturbation of *de novo* synthesis of sphingolipids activates the UPR in yeast (Mousley et al., 2008; Epstein et al., 2012), and defective ceramide homeostasis leads to UPR failure (Guenther, et al 2010). Ceramide also decreases the transcription of nutrient transporters, including amino acid transporter *mCAT-1*, glucose transporter *GLUT-1* (Payet, et al., 2013), glucose transporter *HXT4*, and uracil permease *FUR4* (Guenther, et al 2010). Therefore, the interrelationship between ceramide levels and the UPR pathway maintains cell homeostasis.

In the current study, I show for the first time that VPA mediated inositol depletion induces the UPR pathway by increasing *de novo* synthesis of ceramide, especially C24-C26 containing phytoceramide. These findings have implications for the therapeutic mechanism of VPA.

MATERIALS AND METHODS

Yeast strains, growth media and conditions

Strains used in this study are summarized in Table 3.1. Cells were maintained on YPD medium (2% glucose, 1% yeast extract, 2% bactopeptone). Deletion mutants were maintained on medium supplemented with G418 (200 µg/ml). Synthetic minimal medium without inositol (I-) contained all the essential components of Difco yeast nitrogen base (minus inositol), 2% glucose, 0.2% ammonium sulfate, vitamins, the four amino acids histidine (20 mg/liter), methionine (20 mg/liter), leucine (60 mg/liter), and lysine (20 mg/liter), and the nucleobase uracil (40 mg/liter). Where indicated, inositol (I) was added at a concentration of 75 μ M. For selection of plasmids, uracil was omitted. Liquid and solid media were supplemented with 0.6 mM and 1 mM VPA, respectively, when indicated. Fumonisin B1 (Sigma) and aureobasidin A (Clontech) were used at a concentration of 100 μ M and 0.5 μ g/ μ l, respectively. For solid media, 2% agar was added. Absorbance was measured at 550 nm to monitor growth in liquid cultures. All incubations were at 30°C.

VPA treatment

Wild type cells were pre-cultured in synthetic minimal medium with inositol (I+), harvested, washed twice with sterile water, and grown in I+ until the cells reached the mid log phase (A_{550} = 0.5). Cells were pelleted, washed twice with sterile water and inoculated in I+ or I- to a final A_{550} of 0.05 and cultured until the cells reached the mid log phase (A_{550} = 0.5). Cells were then pelleted and suspended in fresh I- or I+ medium with or without 0.6 mM VPA and incubated for 5 hours.

ino1∆ starvation

ino1 Δ cells were pre-cultured in I+, harvested, washed twice with sterile water, and grown in I+ until the cells reach mid log phase (A₅₅₀= 0.5). Cells were pelleted, washed twice with sterile water and transferred to fresh I- (inositol starvation) or I+ (control) for 3 hours.

Microarray analysis

Total RNA was isolated by hot phenol extraction Kohrer and Domdey, 1991) and purified using an RNeasy kit from Qiagen. Quality of RNA was determined using Agilent 2100 Bioanalyzer. RNA was labeled using the Agilent Low Input Quick-Amp labeling kit (Agilent Technologies). Cy3 labeled cRNA was then hybridized to the 8x15K Agilent Yeast V2 Arrays (design ID 016322). Slides were scanned on an Agilent G2505B microarray scanner and the resulting image files were processed with Agilent Feature Extraction software (version 9.5.1). All procedures were carried out according to the manufacturer's protocols. Subsequent analysis was performed using GeneSpring (v10.0) software. Microarray analysis was carried out at the Research Technology Support Facility in Michigan State University.

Quantitative real time PCR (qRT-PCR) analysis

Total RNA was extracted using the hot phenol method Kohrer and Domdey, 1991) and purified using an RNeasy mini plus kit (Qiagen, Valencia, CA). Complementary DNA (cDNA) was synthesized using the first strand cDNA synthesis kit from Roche Applied Science as described in the manufacturer's manuals. gRT-PCR reactions were done in a 20 µl volume reaction using Brilliant III Ultra-Faster SYBR Green gPCR master mix (Agilent Technologies, Santa Clara, CA). Each reaction was done in triplicate. The primers used for the qRT-PCR reactions are listed in Table 3.2. RNA levels were normalized to ACT1 levels (internal control). Relative values of mRNA transcripts are shown as fold change relative to that of the indicated controls. Primers were validated as suggested in the Methods and Applications Guide (Agilent Technologies). All primers used in this study had primer efficiency between 85 and 105%. Optimal primer concentrations were determined, and primer specificity of a single product was monitored by a melt curve following the amplification reaction. PCR reactions were initiated at 95°C for 10 min for denaturation followed by 40 cycles consisting of 30 s at 95°C and 60 s at 55°C.

Ceramide measurement

Cells were grown and treated with VPA as described above for 5 hours, pelleted and stored at -80°C. Extraction of lipids from yeast pellets and lipid quantification by LC/MS/MS was performed as previously described (Brice et al., 2009).

Western blot

Cells were broken in the presence of acid-washed glass beads in lysis buffer containing 50 mM Tris, 125 mM sodium chloride, 1% Nonidet P-40, 2 mM EDTA, and 1× protease inhibitor mixture (Roche Applied Science). Extracts were centrifuged twice for 5 min at 13,000 × g at 4°C to remove cell debris and glass beads. Protein concentration was determined using the Bradford assay (Pierce Protein), with bovine serum albumin as the standard protein. Proteins were separated on 10% SDS-PAGE and electrotransferred to a polyvinylidene difluoride (PVDF) membrane (Millipore). The membrane was incubated with antibodies (1:3000 anti-HA; 1:3000 anti-actin; 1:10000 appropriate secondary antibodies conjugated with HPR) and visualized using ECL Plus substrate (Pierce Protein), with α -actin as the loading control.

β-Galactosidase assays

Cells expressing the *UPRE-LacZ* reporter plasmid provided by Dr. Susan Henry (Chang et al., 2004) were precultured in Ura-I+, and grown in Ura-I+ to an A_{550} of 0.5, washed and transferred to Ura-I- medium with or without VPA for 5 hours at 30°C. Cells were harvested, and β -galactosidase was assayed as described (Fu and Xiao, 2006).

RESULTS

VPA increases the expression of fatty acid elongases

To determine candidate pathways that may be important for the therapeutic role of VPA, we performed a genome-wide microarray analysis of cells treated with 0.6 mM VPA for 5 hours in the presence or absence of inositol, as described under "Material and methods" (Chapter 2). VPA treatment resulted in altered expression (>2-fold) of 324 genes in the presence of inositol and 413 genes in the absence of inositol (Table 2.2). Interestingly, fatty acid elongase genes FEN1 and SUR4 exhibited 2-fold increased expression in response to VPA (Table 2.2). qRT-PCR analysis of fatty acid elongase genes in wild type cells treated with VPA validated these findings. As seen in Fig. 3.1, mRNA levels of FEN1 and SUR4 were increased 6- and 4-fold in the absence of inositol, and to a lesser extent (3- and 2-fold) in the presence of inositol. Fen1 and Sur4 catalyze the synthesis of very long chain fatty acids, including C22 and C24 (Fen1), and C24 and C26 (Sur4) (Oh et al., 1997), which are used for the synthesis of ceramide. Mutants fen1 Δ and sur4 Δ exhibited sensitivity to VPA, as did the sphinganine C4hydroxylase mutant, sur2 Δ (Fig. 3.2). VPA sensitivity was partially rescued by inositol. The VPA-mediated increase in expression of these genes, and VPA sensitivity of Fen1, Sur4, and Sur2 mutants suggested that VPA induces an increase in ceramide containing C24-C26 fatty acids and PHS (phytosphingosine) (the product of Sur2).

VPA increases ceramide levels and downregulates amino acid transporters

To determine if VPA increases ceramide levels, DHC (dihydroceramide) and PHC (phytoceramide) ceramide species were analyzed by mass spectrometry. VPA increased PHC levels in wild type cells but did not significantly alter levels of DHC (Fig. 3.3). Interestingly, VPA treatment for 30 min upregulated the expression of *RSB1* (data

Strains/Plasmid	Genotype/Description	Source/Ref.
Wild type	MATa, his 3Δ1, leu 2Δ0, met 15Δ0, ura3Δ0	Invitrogen
fen1∆	MATa, his 3Δ1, leu 2Δ0, met 15Δ0, ura 3Δ0, fen1Δ::KanMX4	Invitrogen
sur4∆	MATa, his 3∆1, leu 2∆0, met 15∆0, ura 3∆0, sur4∆::KanMX4	Invitrogen
rsb1∆	MATa, his 3Δ1, leu 2Δ0, met 15Δ0, ura 3Δ0, rsb1Δ::KanMX4	Invitrogen
ino1∆	MATa, his 3Δ1, leu 2Δ0, met 15Δ0, ura 3Δ0, ino1Δ::KanMX4	Invitrogen
RSB1-HA	pRS316-RSB1∆335–382- 3×HA	Johnson et al., 2010
UPRE-LacZ	pJC104, containing UPRE- CYC-lacZ	Chang et al., 2004

Table 3.1. Yeast strains and plasmids used in this study

		-
GENE	Primers	Sequence (5' to 3')
ACT1	Forward	ACGTTCCAGCCTTCTACGTTTCCA
ACT1	Reverse	ACGTGAGTAACACCATCACCGGAA
FEN1	Forward	TGGGTTCAACAACTGCCACCTTTG
FEN1	Reverse	TCATTAACCTTTGCGGCAACACCG
SUR4	Forward	TGTTATGGTACTCAGGCTGCTGCT
SUR4	Reverse	AGTAGAAGAACCGGATGCAACGGA
RSB1	Forward	TTGCCCTCTCCAATGGCGTATTCT
RSB1	Reverse	ACATGATTGCCGGTTGTTGTGGAC
ELO1	Forward	AGAAAGCCTCTAGGTTTCGCCCAA
ELO1	Reverse	AAAGGCTGCTTCCCAACGGTAAAC
BIO5	Forward	GCATCCGGACTACGAGTTAAAG
BIO5	Reverse	GGGCAACGGAGTTGAATAAATG
AGP1	Forward	GAACGATCTTACGTCGGCTATC
AGP1	Reverse	GACCTGTATTAGCGCCTATGTT
GAP1	Forward	GTGACACTCCAGGTGCTAAA
GAP1	Reverse	GCAGCAAGACCAACCAATTC
BAP2	Forward	GAGGATGGCGTTGAGTCTATC
BAP2	Reverse	GTCCCAATACCTGTCCCTAAAG
DIP5	Forward	TCATTTCTTGGGCTGGTTACA
DIP5	Reverse	GGTCCTTCATTCTTCCCTCTTC
UGA4	Forward	TGGTGGTCCAGCAACATTAG
UGA4	Reverse	AGCGGTAGGAATGGAACTTG
CAN1	Forward	GAACGCTGAAGTGAAGAGAGAG
CAN1	Reverse	GTTGGTCAGAGGTGTGGATAAA
SAM3	Forward	GATGTATCTGCCTCTCCCTTTG
SAM3	Reverse	CACAACCGCAACAAGGATAAC
EUG1	Forward	TGGTCAAGTCTATCGCGGTGTCAA
EUG1	Reverse	CATTCAAGCCTGTCAAGCCTCTGT
JEM1	Forward	TGGGACAAGGTGCATCAGAAGGAT
JEM1	Reverse	GCGTTATGCGTAGCAGCTCAGAAA
KAR2	Forward	AAAGATGGGAAGCCCGCTGTAGAA
KAR2	Reverse	ACAGCATGGGTAACCTTAGTGCCT
LHS1	Forward	GCGCGGAAGTGCTTATCCAAACAA
LHS1	Reverse	ACGCAACTCCTGACGAGCACTTAT
SEC63	Forward	AGCAAAGGGCCTAACACCTGATGA
SEC63	Reverse	TGGGCCATCTGGATGACCGTATTT
PDI1	Forward	TGCCATCCACGACATGACTGAAGA
PDI1	Reverse	ACTCCAACACGATCTTGTCGCTCA

Table 3.2. Real time PCR primers used in this study

Figure 3.1. VPA upregulates expression of fatty acid elongase genes. Wild type cells were pre-cultured in I+ medium, harvested, washed twice with sterile water, and grown in I+ or I- medium until cells reached the mid log phase (A_{550} = 0.5). Cells were pelleted and suspended in fresh I- medium with or without 0.6 mM VPA and incubated for 5 hours. mRNA levels of fatty acid elongases were quantified by qRT-PCR in wild type cells grown in the presence or absence of VPA. Values are reported as fold change in expression in cells grown in VPA relative to cells grown without VPA, in the absence (A) or presence of inositol (B). Expression was normalized to the mRNA levels of the internal control *ACT1*. Data shown are mean ± SD (n=6) (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Figure 3.2. VPA sensitivity of fatty acid elongase and sphinganine C4-hydroxylase mutants. Cells were pre-cultured in I+, counted using a hemocytometer, and washed with sterile water. 3-µl aliquots of a series of 10-fold dilutions were spotted onto I+ or I– plates in the presence or absence of 1 mM VPA and incubated for 3 days at 30°C.

not shown), which transports LCBs, (long chain bases) (including DHS (dihydrosphingosine) and PHS (phytosphingosine) across the plasma membrane (Kihara and Igarashi, 2002). In wild type cells, upregulation of *RSB1* increases the transport of LCBs, reducing the intracellular levels of these ceramide precursors. Therefore, we measured the effect of VPA on ceramide levels in *rsb1* Δ cells. VPA increased both DHC and PHC in *rsb1* Δ (Fig. 3.3). Specific ceramide species were increased, including DHC with C16, C18:1, C20, C20:1, and C22, and PHC with C16, C18, C22, C22:1, C24, C26, C28 in *rsb1* Δ cells (Table 3.3). The highest increase was observed in C26 and C26:1 species of PHC, suggesting that VPA specifically increases levels of C26 containing PHC.

Previous studies have shown that increased levels of ceramide cause a decrease in the transcription of nutrient permeases leading to reduced intake of nutrients and induction of stress (Guenther et al., 2008; Payet et al., 2013). Consistent with this, the microarray analysis revealed decreased expression of amino acid transporter genes *BIO5, AGP1, GAP1, BAP2, DIP5, UGA4, CAN1,* and *SAM3* in response to VPA in the absence of inositol. The expression of these transporters was not altered in I+ medium (Table 2.2). Decreased expression of amino acid transporters was confirmed by qRT-pCR in both wild type and *rsb1* Δ cells (Fig. 3.4). Downregulation was greater in *rsb1* Δ than in wild type cells, consistent with the increase in ceramide levels. To determine if decreased expression of amino acid transporters resulted from increased ceramide, cells were treated with 100 µM fumonisin, a ceramide synthase inhibitor (Wu et al., 1995; He et al., 2006; Merill et al., 2000). Fumonisin reversed the downregulation of the amino acid transporters in both wild type and *rsb1* Δ cells (Fig.

3.4). Taken together, these findings suggest that VPA increases levels of specific ceramide species, resulting in decreased expression of nutrient permeases.

VPA induces the UPR by increasing ceramide levels

Decreased expression of nutrient transporters is expected to induce stress due to nutrient starvation (Guenther et al., 2008). In agreement with this, VPA increased the expression of ER chaperone genes EUG1, JEM1, KAR2, LHS1, SEC63, and PDI1 in Imedium (Table 2.2 and Fig. 3.5), suggesting that the UPR pathway was induced. To test this, we analyzed the UPR response in wild type and rsb1 Δ cells expressing a UPRE-lacZ reporter plasmid. Increased lacZ activity was observed in response to VPA in I- medium (Fig. 3.6A). The increase was more pronounced in $rsb1\Delta$ than in wild type cells. Fumonisin restored *lacZ* activity to normal levels. In contrast, aureobasidin, which inhibits the conversion of ceramide to complex sphingolipids, did not affect UPRE expression (Fig. 3.6B). Increased UPRE expression was not observed in I+ medium (Fig. 3.6C). These findings suggest that VPA induced the UPR pathway via increased de novo synthesis of ceramide, and not by inhibiting the conversion of ceramide to complex sphingolipids. Consistent with previous reports showing that inositol starvation induces the UPR pathway (Cox et al., 1997; Promlek et al., 2011), UPRE expression was increased in inositol-starved *ino1* Δ mutant cells (Fig. 3.7A). Treatment with fumonisin decreased UPRE expression to levels observed in control cells, indicating that inositol starvation of ino1 Δ cells induces the UPR pathway by increasing ceramide levels.

Similar to VPA treatment, *ino1* Δ cells starved for inositol for 3 hours also exhibited decreased expression of amino acid transporter genes *BIO5*, *AGP1*, *GAP1*,

Figure 3.3. VPA increases levels of DHC and PHC. Wild type and *rsb1* Δ cells were grown as described in the legend of Fig. 3.1. Cells were pelleted and total DHC and PHC levels were quantified by mass spectrometry. Data shown are mean ± SD (n=6 *, p < 0.05).

Figure 3.4. VPA downregulates expression of nutrient transporters via ceramide. mRNA levels of nutrient transporters were quantified by qRT-PCR in wild type (A) and *rsb1* Δ (B) cells grown in the presence or absence of VPA and fumonisin, as indicated. Values are reported as fold change in expression in cells grown in VPA relative to cells grown without VPA. Expression was normalized to the mRNA levels of the internal control *ACT1*. Data shown are mean ± SD (n=6) (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Table 3.3 A

	Wild type		rsb1∆	
Dihydroceramide	-VPA	+VPA	-VPA	+VPA
dhC12-Cer	0.56 ± 0.23	0.82 ± 0.15	0.9 ± 0.15	1.68 ± 0.62
dhC14-Cer	0.78 ± 0.21	1.74 ± 0.29	1.78 ± 0.34	3.9 ± 1.03
dhC16-Cer	1.7 ± 0.11	2.48 ± 0.36	2.42 ± 0.43	5.51 ± 0.92
dhC18-Cer	12.4 ± 1.09	16.61 ± 2.8	23.77 ± 2.19	50.76 ± 3.26
dhC18:1-Cer	17.25± 0.98	13.73 ± 2.42	22.88 ± 0.25	37.3 ± 2.27
dhC20-Cer	28.7± 1.48	38.69 ±6.74	56.31 ± 9.72	111.24 ± 9.93
dhC20:1-Cer	25.04 ± 2.38	18.95 ±3.95	31.54 ± 3.24	55.81 ± 6.74
dhC22-Cer	1.02 ± 0.04	1.39 ± 0.21	1.61 ± 0.14	3.07 ± 0.32
dhC22:1-Cer	0.26 ± 0.04	0.31 ±0.09	0.67 ± 0.17	1.15 ± 0.12
dhC24-Cer	0.3 ± 0.16	0.45 ± 0.05	0.55 ± 0.07	0.84 ± 0.29
dhC24:1-Cer	0.02 ± 0.01	0.05 ± 0.031	0.05 ± 0.01	0.09 ± 0.05
dhC26-Cer	0.8 ± 0.18	1.11 ± 0.23	2.01 ± 0.23	2.87 ± 0.37
dhC26:1-Cer	0 ± 0	0 ± 0	0.03 ± 0.03	0 ± 0

Table 3.3 B

	Wild type		rsb1∆	
Phytoceramide	-VPA	+VPA	-VPA	+VPA
PhytoC14-Cer	0 ± 0	0.15 ± 0.079	0.47 ± 0.12	0.79 ± 0.03
PhytoC16-Cer	1.76 ± 0.07	5.67 ± 1.63	5.05 ± 1.5	18.75 ± 4.24
PhytoC18-Cer	0.14 ± 0.14	0.81 ± 0.5	1.24 ± 0.43	5.45 ± 1.2
PhytoC18:1-Cer	0 ± 0	0.56 ± 0.33	0.44 ± 0.22	1.23 ± 0.48
PhytoC20-Cer	0.43 ± 0.22	0.93 ± 0.31	0.27 ± 0.19	1.09 ± 0.39
PhytoC20:1-Cer	0.83 ± 0.36	2.12 ± 0.95	1.31 ± 0.38	3.03 ± 1.25
PhytoC22-Cer	0.66 ± 0.34	1.29 ± 0.44	0.36 ± 0.2	1.55 ± 0.33
PhytoC22:1-Cer	0.92 ± 0.49	0.62 ± 0.33	1.28 ± 0.61	0.63 ± 0.63
PhytoC24-Cer	1.32 ± 0.32	1.56 ± 0.71	1.24 ± 0.4	3.45 ± 0.43
PhytoC24:1-Cer	0 ± 0	0.7 ± 0.5	0.84 ± 0.71	2.64 ± 1.03
PhytoC26-Cer	19.63 ± 0.86	36.52 ± 11.65	70.66 ± 14.26	139.67 ± 19.08
PhytoC26:1-Cer	9.16 ± 1.45	17.75 ± 8.32	38.5 ± 5.25	87.27 ± 16.92
PhytoC28-Cer	6.55 ± 1.22	10.29 ± 3.06	12.63 ± 4.82	39.36 ± 6.36
PhytoC28:1-Cer	0.25 ± 0.25	0.8 ± 0.63	0.14 ± 0.14	0.84 ± 0.42

Table 3.3. VPA increases C24-C26 ceramide species. Wild type and *rsb1* Δ cells were grown as described in the legend of Fig. 3.1. Cells were pelleted and DHC (A) and PHC (B) species with the indicated fatty acids were quantified by mass spectrometry. Data shown are mean \pm SD (n=6).

Figure 3.5. VPA increases expression of ER chaperones. Wild type cells were grown as described in Fig. 3.1. mRNA levels of chaperone genes were quantified by qRT-PCR in wild type cells grown in I- medium in the presence or absence of VPA. Values are reported as fold change in expression in cells grown in VPA relative to cells grown without VPA. Expression was normalized to the mRNA levels of the internal control *ACT1*. Data shown are mean \pm SD (n=6). (*, p < 0.05; **, p < 0.01; ***,p < 0.001).

Figure 3.6. VPA upregulates *UPRE* **expression.** Wild type and *rsb1* Δ cells expressing a *UPRE-lacZ* plasmid were pre-cultured in Ura-I+ medium and then grown in (A,B) Ura-I- medium with or without 100 µM fumonisin or 0.5 µg/µI aureobasidin; or (C) Ura-I+ medium. 0.6 mM VPA was added when indicated. *LacZ* activity is quantified as indicated. Data shown are mean ± SD (n=6) (*, p < 0.05; **, p < 0.01).

BAP2, DIP5, UGA4, CAN1, and SAM3 (Fig. 3.7B). This decrease was partially ceramide dependent, as it was blocked by fumonisin. Decreased expression of amino acid transporter genes BAP2, GAP1 and UGA4 was partially rescued by fumonisin (Fig. 3.7B), suggesting that inositol depletion decreased the expression of amino acid transporter genes, at least in part, by increasing ceramide levels. To directly test the hypothesis that inositol depletion decreased the expression of amino acid transporters and induced the UPR by increasing the intracellular ceramide levels, ino 1Δ cells were starved for 3 hours and ceramide levels were quantified (Table 3.4). Inositol starvation increased levels of total DHC and PHC (Fig. 3.7C). Most notable were increases in DHC with C20 and PHC with C24, C26, and C26:1 (Table 3.4). The highest increase was observed in C26 and C26:1 species of PHC, similar to the response to VPA (Table 3.3). Expression of fatty acid elongases FEN1 and SUR4 was also increased during inositol starvation (Fig. 3.7D). Taken together our findings indicate that inositol depletion mediated by VPA or by starvation of *ino1* Δ cells led to increased expression of fatty acid elongases (elongating C24-C26), resulting in increasing ceramide levels with C24-C26 fatty acids. Increased ceramide synthesis led to downregulation of transporters and induction of the UPR pathway. These findings are the first to show that VPA mediated inositol depletion induces the UPR by increasing ceramide levels.

DISCUSSION

In this study, we show that VPA induces the UPR by increasing ceramide levels via inositol depletion. Our specific findings indicated that VPA: 1) increased expression of fatty acid elongases synthesizing C24 and C26 fatty acids; 2) increased ceramide

Table 3.4 A

Dihydroceramide	ino1∆ l+	ino1∆ I-
dhC12-Cer	1.08±0.02	0.92±0.28
dhC14-Cer	2.40±0.34	2.10±1.08
dhC16-Cer	2.07±0.40	1.72±0.02
dhC18-Cer	4.15±0.36	6.99±0.24
dhC18:1-Cer	2.85±0.27	3.51±0.16
dhC20-Cer	7.32±1.16	15.21±0.93
dhC20:1-Cer	4.14±0.47	4.69±0.39
dhC22-Cer	0.20±0.06	0.33±0.14
dhC22:1-Cer	0.05±0.01	0.064±0.02
dhC24-Cer	0.26±0.11	0.28±0.16
dhC24:1-Cer	0.04±0.03	0.046±0.01
dhC26-Cer	0.62±0.28	0.80±0.36
dhC26:1-Cer	0.03±0.02	0.02±0.008

Table 3.4 B

Phytoceramide	ino1∆ l+	ino1∆ I-
PhytoC14-Cer	0.11±0	0.23±0
PhytoC16-Cer	0.61±0.13	1.2±0.24
PhytoC18-Cer	0.09±0.05	0.11±0.10
PhytoC18:1-Cer	5.66±3.52	3.52±1.26
PhytoC20-Cer	0.26±0.14	0.85±1.13
PhytoC20:1-Cer	6.92±4.7	5.27±2.70
PhytoC22-Cer	0±0	0.02±0.01
PhytoC22:1-Cer	0.04±0	0.07±0.05
PhytoC24-Cer	0.086±0.06	0.1±0.02
PhytoC24:1-Cer	0.25±0.11	1.19±0.13
PhytoC26-Cer	4.39±0.77	8.41±1.51
PhytoC26:1-Cer	9.76±3.01	26.76±2.54
PhytoC28-Cer	0.01±0	0±0
PhytoC28:1-Cer	0.18±0	0±0

Table 3.4. Inositol depletion increases levels of ceramide species. *ino1* Δ cells were starved for inositol as described in materials and methods. Levels of DHC (A) and PHC (B) species were quantified by mass spectrometry.

Figure 3.7. VPA induces the UPR by inositol depletion. *ino1* Δ cells expressing the *UPRE-lacZ* reporter plasmid were pre-cultured and grown in Ura-I+ medium until the cells reached mid log phase (A₅₅₀= 0.5). Cells were washed and transferred to Ura-I-medium with or without 100 µM fumonisin for 3 hours. (A) *LacZ* activity. Data shown are mean ± SD (n=6) (*, p < 0.05; **, p < 0.01; ***,p < 0.001). (B) Total DHC and PHC levels were quantified by mass spectrometry. Data shown are mean ± SD (n=6) (*, p < 0.001). mRNA levels of nutrient transporters (C) and fatty acid elongases (D) were quantified by qRT-PCR as indicated. Values are reported as fold change in expression in cells grown in I- medium relative to cells grown in I+ medium. Expression was normalized to the mRNA levels of the internal control *ACT1*. Data shown are mean ± SD (n=6) (*, p < 0.05; **, p < 0.01; ***,p < 0.001).

levels, particularly PHC with C24 and C26 fatty acids; 3) decreased the expression of amino acid transporters; and 4) induced the UPR pathway. These outcomes were abrogated atleast partially by inhibition of *de novo* ceramide synthesis or by supplementation of inositol. Ceramide can be synthesized via two pathways, de novo synthesis by ceramide synthase or breakdown of complex sphingolipids by inositol phosphosphingolipid phospholipase C. Our findings suggest that VPA induces the UPR pathway by increasing *de novo* synthesis of ceramide (Fig. 3.6) as a result of increased expression of fatty acid elongases, as induction did not occur in the presence of the ceramide synthase inhibitor fumonisin (He et al., 2006; Merill et al., 2000). In contrast, aureobasidin, which inhibits inositol phosphorylceramide synthase, did not affect VPAmediated induction of the UPR (Fig. 3.6C). Our findings are consistent with studies showing that inositol starvation induces the UPR. UPR target genes were found to be significantly upregulated in cells grown in the absence of inositol Jesch et al., 2005). In addition, inositol supplementation alters the expression of UPR pathway genes (Jesch et al., 2006). Although initial studies showed that accumulation of unfolded proteins in the ER induces the UPR pathway (Cox et al., 1993; Nikawa et al., 1996; Nikawa and Yamashita, 1992; Sidrauski et al., 1996, Villa-Garcia et al., 2011), it was since determined that Ire1p, the transmembrane kinase that senses ER stress (Cox and Walter, 1996; Mori et al., 2000), induces the UPR pathway in response to changes in membrane lipid composition (Cox and Walter, 1996; Mori et al., 2000). In this light, inositol starvation may trigger the UPR as a result of lipid related membrane changes in the ER, including perturbation of sphingolipid metabolism. The addition of inositol induces changes in the synthesis and levels of numerous lipids, including sphingolipids

Figure 3.8. Model: VPA induces the UPR pathway by increasing intracellular ceramide levels. In the proposed model, VPA mediated inositol depletion leads to increased expression of fatty acid elongases and ceramide levels, especially PHC containing C24-C26 fatty acids. Increased ceramide levels decrease expression of nutrient transporters, stressing the cell due to lack of nutrients and inducing the UPR pathway.

(Alvarez-Vasquez et al., 2005; Jesch et al., 2010). Recent studies show that perturbation of sphingolipid metabolism may affect ER membrane homeostasis. Mutant cells lacking ORM1 and ORM2, negative regulators of sphingolipid metabolism (Breslow et al., 2010; Han et al., 2010), exhibit constitutive induction of the UPR response (Han et al., 2010). In addition, $orm1\Delta orm2\Delta$ cells contain elevated levels of sphingolipids (Breslow et al., 2010; Han et al., 2010) and are hypersensitive to stress induced by inositol starvation (Han et al., 2010). Similarly, UPR expression is constitutive in *isc1* Δ mutant cells, which contain elevated sphingolipids due to a block in sphingolipid turnover (Sawai et al., 2000; Gururaj et al., 2013). Conversely, inhibiting sphingolipid synthesis with myriocin treatment suppresses activation of the UPR induced by inositol starvation (Promlek et al., 2011). Elevated sphingolipids in the ER may lead to membrane aberrancy that activates the UPR pathway independent of accumulation of unfolded protein. The role of specific sphingolipids in activation of the UPR is not known. Our study suggests that accumulation of ceramide, specifically C24-C26 containing PHC, induces the UPR upon inositol depletion.

We have previously shown that VPA decreases intracellular inositol levels (Shaltiel et al., 2004; Vaden et al., 2001; Ye and Greenberg, 2015; Ju et al., 2004). VPA induction of the UPR occurred only in I- conditions, suggesting that the response to VPA was mediated by inositol depletion. Consistent with this, inositol starvation of *ino1* Δ cells caused similar effects, including increased expression of fatty acid elongases, increased intracellular levels of ceramides, especially PHC with C24 and C26, downregulation of nutrient transporters, and induction of the UPR. Based on these data, we propose the following model (Fig. 3.8). VPA decreases intracellular inositol levels causing an

increase in C24 and C26 PHC species as a result of upregulation of expression of fatty acid elongases (*FEN1* and *SUR4*). This results in increased ceramide synthesis, which causes downregulation of expression of nutrient transporters, inducing stress and the UPR.

Several studies suggest that the UPR pathway may be involved in the pathophysiology of BD. Lymphoblasts from bipolar patients show an aberrant ER stress response (Hayashi et al., 2009; So et al., 2007). Compared to cells from healthy controls, lymphoblasts from bipolar patients had lower expression of *XBP1* (mammalian homologue of yeast *HAC1*), the spliced form of which binds the *UPRE* element and induces the UPR pathway in response to ER stress inducers (So et al., 2007). A polymorphism ($-116C \rightarrow G$) in the *XBP1* promoter that is associated with lower gene transcription was observed in BD lymphoblastoid cells (Kakiuchi et al., 2003). These findings suggest that the UPR pathway may be perturbed in bipolar patients, and activation of this pathway may be important for the therapeutic action of VPA. In this light, the UPR pathway may be a possible new target for BD therapy.
CHAPTER 4 ACUTE VALPROIC ACID TREATMENT INCREASES LEVELS OF PHYTOSPHINGOSINE VIA INOSITOL DEPLETION

INTRODUCTION

Valproic acid (VPA) is one of the most widely used drugs for the treatment of bipolar disorder (BD). Several targets are hypothesized to be important for the therapeutic action of VPA; however, the mechanism of action is not understood (Gould et al., 2004). Inositol depletion is one of the major hypotheses of the therapeutic action of VPA. Sir Michael Berridge first proposed the inositol depletion hypothesis in 1989, based on the finding that the antibipolar drug, lithium, causes inositol depletion by inhibiting inositol monophosphatase (IMPase) (Berridge, 1989). This was hypothesized to result in decreased levels of inositol, an increase in inositol phosphates, and subsequent downregulation of the phosphoinositide cycle.

Although many studies showed that antibipolar drugs lead to inositol depletion, this hypothesis was not universally accepted (Jope, 1999; Ikonomov et al., 1999; Agranoff and Fisher, 2001). Several findings argue against this hypothesis. First, although lithium depletes inositol with acute treatment, the therapeutic effects of the drug are observed with chronic administration (Pollack et al., 1994; Moore et al., 1999). However, this does not completely oppose the hypothesis, as acute inositol depletion could activate downstream signaling pathways important for the therapeutic efficacy. Second, studies show that lithium does not deplete inositol in the temporal lobe of human brain (Moore et al., 1999). Third, disruption of the sodium-dependent inositol transporter (SMIT1), which decreases intracellular inositol levels, in mice, does not mimic the effects of lithium (Shaldubina et al., 2001; Shaldubina et al., 2007). Finally, it remains unclear how inositol depletion could treat mania and depression, two opposing

phases of BD. To this end, Cheng et al, have shown that VPA inhibits prolyl oligopeptidase enzyme activity (Cheng et al., 2005), which enhances PI signaling and mimics the effect of addition of exogenous inositol (Willams et al., 2002). Based on this, they proposed a model for the dual action of VPA. According to their proposed model, VPA inhibits *de novo* synthesis of inositol, depleting intracellular inositol, which stabilizes mood in the manic phase, whereas, during the depressive phase it inhibits prolyl oligopeptidase enzyme activity, leading to enhancement of the PI cycle (Cheng et al., 2005). In summary, while many studies support inositol depletion as a therapeutic mechanism of action, conflicting reports challenge the significance of inositol depletion in the therapeutic action of BD.

Interestingly, VPA decreases intracellular inositol levels in yeast and mammalian cells, although not by inhibiting IMPase (Vaden et al., 2001; Shaltiel et al., 2004; Ye and Greenberg, 2015). Actually, VPA indirectly inhibits the enzyme catalyzing the *de novo* synthesis of inositol, *myo*-inositol-3-phosphate synthase (MIPS). This suggests that MIPS is post-translationally regulated in response to the drug (Ju et al., 2004). More recent findings show that yeast and human MIPS are regulated by phosphorylation (Deranieh et al., 2013). The finding that lithium and VPA, two structurally dissimilar drugs, cause inositol depletion, albeit by affecting different enzymes, suggests that inositol depletion may be important for the therapeutic mechanism of action.

In yeast, a decrease in intracellular inositol leads to a subsequent increase in the expression of *INO1*, which codes for MIPS (Hirsch and Henry, 1986; Henry et al., 2014).

170

Figure 4.1 Sphingolipid metabolism in yeast. Serine is condensed with palmitoyl-CoA by serine palmitoyl transferase (SPT) to form 3-ketodihydrosphingosine, which is reduced to DHS. Orm1 and Orm2 negatively regulate SPT enzyme activity. DHS is hydroxylated on C-4 to produce PHS. Ceramide synthase catalyzes the linkage of very long chain fatty acids produced by fatty acid elongases to long chain bases (LCBs) DHS and PHS to form ceramide. DHS and PHS are also phosphorylated to DHS-1P and PHS-1P. Rsb1 and Yor1 transport LCBs and LCBPs, respectively, across the plasma membrane. DHS-1P and PHS-1P are metabolized by Dpl1 to generate ethanolamine phosphate and fatty aldehydes. (Abbreviations: SPT, Serine palmitoyl transferase; DHS, Dihvdrosphingosine: PHS. Phytosphingosine; DHS-1P, Dihydrosphingosine-1phosphate PHS-1P, Phytosphingosine-1-phosphate; LCB, Long chain base; LCBP, Long chainbase-1-phosphate)

Consistent with this finding, VPA causes a decrease in intracellular inositol and an increase in *INO1* expression (Vaden et al., 2001). Inositol depletion is apparent with acute VPA treatment (30 minutes - 1 hour) and continues to decrease (Ju and Greenberg, 2003). However, the normal response of UAS_{INO}-containing genes (target of Ino2-Ino4) to inositol depletion is abrogated with acute VPA, as expression of *INO1*, *INO2* and *CHO1* decreases with acute VPA even though inositol depletion is apparent (Ju and Greenberg, 2003). Conversely, chronic VPA increases the expression of UAS_{INO}-containing genes. These results suggest that VPA exerts differential acute and chronic responses.

Studies in this chapter focus on the acute response to VPA. In order to determine the acute effect of VPA on gene expression, I performed a genome wide microarray analysis (Chapter 2). In this study, I identified sphingolipid metabolism as a pathway that showed altered expression in response to VPA. *RSB1*, the transporter of long chain bases (LCBs), which are sphingolipid precursors, exhibited the highest upregulation in response to acute VPA.

Sphingolipids play a structural role in cell membranes (Obeid et al., 2002), and also act as second messengers in signaling pathways (Dickson et al., 1998). Sphingolipid synthesis (Fig. 4.1) begins in the endoplasmic reticulum with the condensation of L-serine with palmitoyl-CoA, catalyzed by serine palmitoyl transferase (SPT), to produce 3-ketodihydrosphingosine (KDHS), which is reduced to dihyrdrosphingosine (DHS) (Gable et al., 2002; Hanada, 2003; Lowther et al., 2012; Dickson 2008; Beeler et al., 1998; Kihara and Igarashi 2004). Orm1 and Orm2 are negative regulators that physically interact and inhibit serine palmitoyltransferase (SPT)

(Han et al., 2010; Breslow et al., 2010). Phytosphingosine (PHS) is synthesized in yeast via hydroxylation of C-4 of DHS, catalyzed by sphinganine C4-hydroxylase (Dickson, 2008). DHS and PHS are the two LCBs in yeast. Very long chain fatty acids synthesized by fatty acid elongases are linked to LCBs via an amide linkage at the C-2 position to form ceramide by ceramide synthase (Dickson 2008). LCBs are also phosphorylated by sphingolipid base kinases (Lcb4 and Lcb5) to DHS-1P and PHS-1P (Nagiec et al., 1998). Rsb1 and Yor1 transport LCBs and LCBPs, respectively, across the plasma membrane, which maintains normal intracellular levels of these metabolites (Kihara and Igarashi 2002; Boujaoude et al., 2001). DHS-1P and PHS-1P are cleaved by the sphingolipid lyase, Dpl1, to generate ethanolamine phosphate and fatty aldehydes (Saba et al., 1997).

There are no published studies to date indicating that VPA affects sphingolipids. The current study shows for the first time that acute VPA-mediated inositol depletion decreases levels of Orm proteins, inhibitors of *de novo* synthesis of LCBs and fatty acid elongases, thereby increasing intracellular PHS levels.

MATERIALS AND METHODS

Yeast strains, growth medium and conditions

Strains used in this study are summarized in Table 4.1. Cells were maintained on YPD medium (2% glucose, 1% yeast extract, 2% bactopeptone). Deletion mutants were maintained on medium supplemented with G418 (200 µg/ml). Synthetic minimal medium without inositol (I-) contained all the essential components of Difco yeast nitrogen base (minus inositol), 2% glucose, 0.2% ammonium sulfate, vitamins, the four amino acids histidine (20 mg/liter), methionine (20 mg/liter), leucine (60 mg/liter), and lysine (20 mg/liter), and the nucleobase uracil (40 mg/liter). Where indicated, inositol (I) was added at a concentration of 75 µM. For selection of plasmids, uracil was omitted. Liquid and solid medium were supplemented with 0.6 mM and 1 mM VPA, respectively, when indicated. For solid media, 2% agar was added. Absorbance was measured at 550 nm to monitor growth in liquid cultures. All incubations were at 30°C.

VPA treatment

Wild type cells were precultured in synthetic minimal medium with inositol (I+), harvested, washed twice with sterile water, and grown in I+ until the cells reached the mid log phase (A_{550} = 0.5). Cells were pelleted, washed twice with sterile water and inoculated in I+ or I- to a final A_{550} of 0.05 and cultured until the cells reached the mid log phase (A_{550} = 0.5). Cells were then pelleted and suspended in fresh I- or I+ medium with or without 0.6 mM VPA and incubated for 30 minutes.

ino1∆ starvation

ino1 Δ cells were precultured in I+ medium, harvested, washed twice with sterile water, and grown in I+ until the cells reached the mid log phase (A₅₅₀= 0.5). Cells were pelleted, washed twice with sterile water and cultivated in fresh I- (inositol starvation) or I+ (control) for 30 minutes.

Microarray analysis

Total RNA was isolated by hot phenol extraction (Kohrer and Domdey, 1991) and purified using an RNeasy kit from Qiagen. Quality of RNA was determined using Agilent 2100 Bioanalyzer. RNA was labeled using the Agilent Low Input Quick-Amp labeling kit (Agilent Technologies). Cy3 labeled cRNA was then hybridized to the 8x15K Agilent Yeast V2 Arrays (design ID 016322). Slides were scanned on an Agilent G2505B microarray scanner and the resulting image files were processed with Agilent Feature Extraction software (version 9.5.1). All procedures were carried out according to the manufacturer's protocols. Subsequent analysis was performed using GeneSpring (v10.0) software. Microarray analysis was carried out at the Research Technology Support Facility in Michigan State University.

Quantitative real time PCR (qRT-PCR) analysis

Total RNA was extracted using the hot phenol method (Kohrer and Domdey, 1991) and purified using an RNeasy mini plus kit (Qiagen, Valencia, CA). Complementary DNA (cDNA) was synthesized using the first strand cDNA synthesis kit from Roche Applied Science as described in the manufacturer's manuals. gRT-PCR reactions were done in a 20 µl volume reaction using Brilliant III Ultra-Faster SYBR Green qPCR master mix (Agilent Technologies, Santa Clara, CA). Each reaction was done in triplicate. The primers used for the qRT-PCR reactions are listed in Table 4.2. RNA levels were normalized to ACT1 levels (internal control). Relative values of mRNA transcripts are shown as fold change relative to that of the indicated controls. Primers were validated as suggested in the Methods and Applications Guide (Agilent Technologies). All primers used in this study had primer efficiency between 85 and 105%. Optimal primer concentrations were determined, and primer specificity of a single product was monitored by a melt curve following the amplification reaction. PCR reactions were initiated at 95°C for 10 minutes for denaturation followed by 40 cycles consisting of 30 s at 95°C and 60 s at 55°C.

Long chain base measurement

Cells were grown and treated with VPA as mentioned in the above section for 30 minutes, pelleted and stored at -80°C. Extraction of lipids from yeast pellets and lipid quantification by LC/MS/MS was performed as previously described (Brice et al., 2009). LC/MS/MS experiments were performed by Dr. Ashley Cowart, Medical University of South Carolina.

Western blot

Cells were broken in the presence of acid-washed glass beads in lysis buffer containing 50 mM Tris, 125 mM sodium chloride, 1% Nonidet P-40, 2 mM EDTA, and 1× protease inhibitor mixture (Roche Applied Science). Extracts were centrifuged twice for 5 minutes at 13,000 × g at 4°C to remove cell debris and glass beads. Protein concentration was determined using the Bradford assay (Pierce Protein), with bovine serum albumin as the standard protein. Proteins were separated on 10% SDS-PAGE and electrotransferred to a polyvinylidene difluoride (PVDF) membrane (Millipore). The membrane was incubated with antibodies (1:3000 anti-HA; 1:3000 anti-actin; 1:10000 appropriate secondary antibodies conjugated with HPR) and visualized using ECL Plus substrate (Pierce Protein), with α -actin as the loading control.

RESULTS

Acute VPA increases the expression of *RSB1*

In order to identify pathways that are affected by acute VPA treatment, I carried out a genome wide microarray study of cells treated with 0.6 mM VPA for 30 minutes in the presence or absence of inositol (Chapter 2). After acute VPA treatment, 592 genes exhibited more than two-fold change in gene expression when grown in the absence of inositol and 542 genes in the presence of inositol, as summarized in Table 2.1. VPA

Strains/Plasmid	Genotype/Description	Source/Ref.		
Wild type	MATa, his 3Δ1, leu 2Δ0, met 15Δ0, ura3Δ0	Invitrogen		
rsb1∆	MATa, his 3Δ1, leu 2Δ0, met 15Δ0, ura 3Δ0, rsb1Δ::KanMX4	Invitrogen		
ino1∆	MATa, his 3Δ1, leu 2Δ0, met 15Δ0, ura 3Δ0, ino1Δ::KanMX4	Invitrogen		
3xFlag-Orm1 / 3xHA-Orm2	BY4741; 3xFlag-ORM13xHA-ORM2	Breslow et al., 2010		
3xFlag-Orm2 / 3xHA-Orm1	BY4741; 3xFlag-ORM2 3xHA- ORM1	Breslow et al., 2010		
RSB1-HA	pRS316-RSB1∆335–382-3XHA	Johnson et al., 2010		
pRS316	pRS316	Johnson et al., 2010		

Table 4.1. Yeast strains and	plasmids used in this study
------------------------------	-----------------------------

GENE	Primers	Sequence (5' to 3')
ACT1	Forward	ACGTTCCAGCCTTCTACGTTTCCA
ACT1	Reverse	ACGTGAGTAACACCATCACCGGAA
FEN1	Forward	TGGGTTCAACAACTGCCACCTTTG
FEN1	Reverse	TCATTAACCTTTGCGGCAACACCG
SUR4	Forward	TGTTATGGTACTCAGGCTGCTGCT
SUR4	Reverse	AGTAGAAGAACCGGATGCAACGGA
RSB1	Forward	TTGCCCTCTCCAATGGCGTATTCT
RSB1	Reverse	ACATGATTGCCGGTTGTTGTGGAC
ELO1	Forward	AGAAAGCCTCTAGGTTTCGCCCAA
ELO1	Reverse	AAAGGCTGCTTCCCAACGGTAAAC
YOR1	Forward	TCTCCCAAGGCATCTGCTTCTTCA
YOR1	Reverse	TGCACACCAGTCAGTTGGGATGTA
DPL1	Forward	TTGTCGTAGGTTGTTGGGCCACTA
DPL1	Reverse	TTGCTGCACCGACTATTTCTTGGC
ORM1	Forward	GGCGTTCTTCCAGCATAATTTC
ORM1	Reverse	TTGGTCTACCCAAGTAGCATTC
ORM2	Forward	GACGGTCATCCAGCGTAATATC
ORM2	Reverse	CCCACGTAGCGTTCATGTT

Table 4.2. Real time PCR	primers	used in	this	study
--------------------------	---------	---------	------	-------

treatment perturbed sphingolipid metabolism genes, as shown in Table 2.1. Interestingly, *RSB1* exhibited the highest upregulation in response to VPA, showing 158-fold and 108-fold upregulation in I- and I+ medium, respectively. qRT-PCR analysis of *RSB1* in wild type cells treated with VPA confirmed the increased expression, as mRNA levels of *RSB1* were increased 47-fold in I- (Fig. 4.2A), and 13-fold in I+ medium (Fig. 4.2B). The greater increase in I- than in I+ medium suggests that the induction was at least partially a response to inositol limitation. To determine if increased RNA levels resulted in increased protein, wild type cells harboring a plasmid expressing the *RSB1* gene, a transporter of LCBs with an HA tag were treated with VPA. Similar to the mRNA increase, Rsb1 protein levels were increased to a greater extent in I- than I+ (Fig. 4.2 C). Increased intracellular levels of LCBs are toxic to yeast cells, which respond by inducing Rsb1 (Kihara and Igarashi, 2002). Increased levels of Rsb1 suggest that VPA increases intracellular levels of LCBs.

Acute VPA increases PHS levels

Increased intracellular levels of LCBs are expected to increase sensitivity to added PHS. To determine if VPA increases the sensitivity to PHS, wild type and *rsb1* Δ cells expressing a plasmid containing *RSB1* or empty vector were grown in the presence or absence of VPA and plated on synthetic medium with or without 20 µM PHS. Wild type cells did not exhibit sensitivity to PHS in the presence of VPA, suggesting that Rsb1 maintains sub-toxic levels of PHS. However, VPA caused an increase in sensitivity of *rsb1* Δ cells to PHS, which was rescued by overexpression of *RSB1* (Fig. 4.3). These findings are consistent with increased intracellular levels of PHS in VPA treated cells.

In order to directly determine if VPA increases the levels of LCBs, I measured LCBs and LCBPs in cells treated with VPA using mass spectrometry. Wild type cells showed a slight increase in PHS levels in response to VPA (Fig. 4.4A), and *rsb1* Δ cells exhibited an increase in PHS and PHS-1P. DHS-1P levels were decreased in *rsb1* Δ cells (Fig. 4.4B). These findings showed that levels of PHS increase in response to acute VPA, suggesting that VPA may increase *de novo* synthesis of PHS.

Acute VPA increases the expression of genes that aid in maintaining sub-toxic PHS levels

Acute VPA led to a small increase in PHS levels relative to the increase in Rsb1 levels. In addition to exporting LCBs by Rsb1, cells maintain low levels of LCBs by metabolizing them to other species and transporting them across the plasma membrane. Thus, as mentioned in the Introduction, LCBs are phosphorylated to LCBPs (DHS-1P and PHS-1P) by sphingolipid base kinases (Nagiec et al., 1998). LCBPs are cleaved by a lyase encoded by Dpl1 to generate fatty aldehyde and ethanolamine phosphate (Saba et al., 1997). Yor1, a transporter protein that belongs to the ATP binding cassette family, transports LCBPs across the plasma membrane (Fig. 4.1). Interestingly, VPA increased expression of *YOR1* and *DPL1* by 11-fold and 6-fold, respectively in I-. In the presence of inositol, the increase in expression was somewhat less, 6-fold and 3-fold in *YOR1* and *DPL1*, respectively (Fig. 4.5). This suggests that VPA induces expression of *YOR1* and *DPL1* in response to increased levels of LCBs to maintain low PHS levels.

VPA decreases ORMs and fatty acid elongases

Orm proteins negatively regulate LCB synthesis by physically interacting with and inhibiting SPT (Fig.4.1) (Han et al., 2010; Breslow et al., 2010). Phosphorylation of Orm proteins inhibits their association with SPT and increases the *de novo* synthesis of LCBs (Liu et al., 2012; Roelants et al., 2011). VPA decreased the expression of *ORM1* and *ORM2* in I-, and to a lesser extent in I+ (Fig. 4.6). In addition, VPA decreased the protein levels of Orm2 in I- (Fig. 4.6 C).

In addition to Orm negative regulators, LCB levels are also controlled by Fen1 and Sur4, which catalyze the synthesis of very long chain fatty acids of C24-C26 (Oh et al., 1997). Mutants of these fatty acid elongases (*fen1* Δ and *sur4* Δ) accumulate LCBs (Oh et al., 1997). As stated earlier (Chapter 3), *fen1* Δ and *sur4* Δ mutants exhibited VPA sensitivity. Here I showed that acute VPA downregulated the expression of *FEN1* and *SUR4* in I- medium, and to a lesser extent also in I+ (Fig. 4.7). Fatty acid elongases catalyze the synthesis of fatty acids that are linked to an LCB by ceramide synthase to synthesize ceramide. Downregulation of the fatty acid elongases by VPA may account for the observed increase in PHS (Fig. 4.4) as a result of decreased fatty acids required for ceramide synthesis. These results suggest that acute VPA decreases ORM levels and fatty acid elongases, which lead to an increase in PHS levels.

Inositol depletion downregulates the expression of *ORM* and fatty acid elongase genes and upregulates PHS and PHS-1P transporters

VPA affects the expression of sphingolipid metabolism genes to a greater extent in I- compared to I+, suggesting that VPA exerts effects on sphingolipid metabolism via inositol depletion. To test the effects of inositol depletion on sphingolipid gene expression, *ino1* Δ cells were cultured in I+ media, transferred to I- media for 30 minutes,

181

and gene expression was quantified. Acute inositol starvation of *ino1* Δ cells decreased expression of fatty acid elongases (*FEN1 and SUR4*) and Orm genes (*ORM1* and *ORM2*) (Fig. 4.7). In addition, inositol starvation of *ino1* Δ cells increased expression of *RSB1* and *YOR1*. These results suggest that the effects of VPA on sphingolipid metabolism genes can be explained by inositol depletion.

DISCUSSION

This study shows that acute VPA increases *de novo* synthesis of PHS by inositol depletion. Our specific findings indicated that acute VPA: 1) decreased expression of *ORM* and fatty acid elongase genes, 2) increased levels of PHS, and 3) increased expression of genes that transport *(RSB1, YOR1)* and metabolize *(DPL1)* PHS. These outcomes were partially dependent on supplementation of inositol.

My findings are consistent with studies showing that cells lacking *ORM1* and *ORM2* exhibit increased levels of the LCB, PHS and Rsb1 protein (Han et al., 2010). A greater increase in PHS levels in the *rsb1* Δ mutant compared to wild type (Fig. 4.3), and rescue of this phenotype by overexpression of *RSB1* (Fig. 4.2), further support a mechanism whereby VPA increases PHS levels and induces *RSB1* by decreasing *ORM* expression. Mutants of fatty acid elongases *fen1* Δ and *sur4* Δ are known to accumulate high levels of PHS (Oh et al., 1997). Decreased expression of *FEN1* and *SUR4* in VPA treated cells is also consistent with increased PHS levels. In summary, acute VPA increases PHS levels by downregulation of two key regulators of PHS, *ORM* and fatty acid elongase genes.

ORM2 is a UAS_{INO}-containing gene, whose expression is controlled by inositol (Han et al., 2010). Chronic VPA-mediated inositol depletion increases expression of

genes containing UAS_{INO} in their promoters (Ju and Greenberg, 2003). However, acute VPA-mediated inositol depletion decreases expression of UAS_{INO}-containing genes, including *INO1* and *INO2* (Ju and Greenberg, 2003). The current study shows that acute VPA downregulates the expression of *ORM* genes, similar to other UAS_{INO}-containing genes, via acute inositol depletion. This confirms the earlier finding that acute and chronic VPA-mediated inositol depletion differentially regulate expression of UAS_{INO}-containing genes (Ju and Greenberg, 2003).

Lithium, another antibipolar drug that also causes inositol depletion, does not decrease *INO1* expression in response to acute treatment. This suggests that the decrease in expression of UAS_{INO}-containing genes may be mediated via a mechanism other than inositol depletion. Ju and Greenberg (2003) proposed a mechanism to explain this abrogated expression in response to acute VPA. Their study showed that acute VPA causes a decrease in the level of phosphatidylserine, a protein kinase C activator. Decreased activity of PKC causes an increase in unphosphorylated Opi1 (active), which leads to a decrease in *INO1* expression (Sreenivas et al., 2001). Consistent with this, acute VPA does not affect expression of UAS_{INO}-containing genes in *opi1Δ* mutant cells. This model is consistent with my observations and suggests that acute VPA may downregulate expression of Orm2, a UAS_{INO}-containing gene, via Opi1.

Acute VPA decreases the expression of *ORM* and fatty acid elongase genes and increases the expression of *RSB1*, *YOR1*, and *DPL1*. The fold change of expression is greater in I- than in I+ medium, suggesting that the response to VPA was partially mediated by inositol depletion. Consistent with this, acute inositol starvation of *ino1* Δ cells caused similar effects, including decreased expression of *ORM*, *FEN1*, and *SUR4*

genes and increased expression of *RSB1* and *YOR1*. Based on these data, I propose that the VPA-mediated decrease in intracellular inositol levels causes a decrease in the expression of fatty acid elongase (*FEN1* and *SUR4*) and *ORM* genes, decreased Orm2 protein levels, and an increase in levels of PHS. To remediate the toxic effects of PHS, expression of *RSB1*, *YOR1*, and *DPL1* is increased, and PHS is either transported from the cell or degraded to other metabolites (Fig. 4.8).

This study shows for the first time that acute VPA-mediated inositol starvation increases intracellular levels of the signaling sphingolipid molecule, PHS, which regulates actin cytoskeleton, heat stress, and endocytosis (Hannun and Obeid, 2008). Heat stress induces a transient 2-3-fold increase in the levels of C18 PHS and a 100fold increase in levels of C20 PHS (Dickson et al., 1997; Jenkins et al., 1997). PHS is required for regulation of actin cytoskeleton organization (Schmelze et al., 2002) and endocytosis (deHart et al., 2002). PHS also inhibits uptake of uracil and amino acids tryptophan, leucine, and histidine (Chung et al., 2001). The exact role of PHS in the regulation of amino acid transport remains unknown; however, PHS is important for ubiquitin-mediated breakdown of the uracil transporter Fur4 (Chung et al., 2000). Sphingosine, the mammalian equivalent of PHS, activates synaptobrevin in synaptic vesicles, facilitating SNARE complex assembly and membrane fusion. In addition, sphingosine plays a crucial role in increasing synaptic vesicle exocytosis at nerve terminals and neuromuscular junctions (Darios et al., 2009). In summary, PHS is an important signaling lipid crucial for maintaining actin cytoskeleton, heat stress, endocytosis and exocytosis, and neurotransmitter release in mammals. Perturbation of PHS/sphingosine by VPA might affect neurotransmitter release and other processes that affect neural function and may, thus, be a novel mechanism of action of VPA.

Figure 4.2. VPA increases the levels of RSB1. *RSB1* mRNA levels were quantified by qRT-PCR from wild type cells grown in the presence or absence of VPA for 30 minutes. Values are reported as fold change in expression of cells grown in the presence of VPA compared to cells grown in the absence of VPA, in I+ (A) or I- (B). Expression was normalized to the mRNA levels of *ACT1* (internal control). Data shown are mean of \pm SD (n=6). C, Western blot analysis of Rsb1 protein. *rsb1* Δ *cells* expressing a plasmid containing *RSB1* tagged with HA were grown in the presence and absence of inositol and VPA, harvested and lysed for protein extraction. 30 µg total cell extract from each sample were subjected to Western blot analysis using 10% SDS-PAGE gel. Data shown are mean \pm SD (n=6).

Figure 4.3. VPA increases sensitivity of *rsb1* Δ **to PHS.** Wild type and *rsb1* Δ cells expressing a plasmid containing *RSB1* or empty vector (EV) were precultured in I+ medium, diluted, and spotted on I- medium containing VPA (1mM) or PHS (20 µM) as indicated.

Figure 4.4. VPA increases levels of PHS. Wild type (A) and *rsb1* Δ (B) cells were pre-cultured in I+ medium, harvested, washed twice with sterile water, and grown in I-medium until cells reached the mid log phase (A₅₅₀= 0.5). Cells were pelleted and suspended in fresh I- medium with or without 0.6 mM VPA and incubated for 30 minutes. Cells were pelleted and DHS, PHS, DHS-1P, and PHS-1P levels were quantified by mass spectrometry. Data shown are mean ± SD (n=6 *, *, p < 0.05; **, p < 0.01; ***, p < 0.001).

Figure 4.5. VPA increases the expression of YOR1 and DPL1. mRNA levels were quantified by qRT-PCR from wild type cells grown in the presence or absence of VPA. Values are reported as fold change in expression in cells grown in the presence of VPA compared to cells grown in the absence of VPA, in I- and I+ medium, for YOR1 (A) and DPL1 (B). Expression was normalized to the mRNA levels of ACT1 (internal control). Data shown are mean \pm SD (n=6).

Figure 4.6. VPA affects ORM expression. (A) *ORM1* and *ORM2* mRNA levels were quantified by qRT-PCR from wild type cells grown in the presence or absence of VPA in I- (top) or I+ (bottom). Values are reported as fold change in expression in cells grown in the presence of VPA compared to cells grown in the absence of VPA. Expression was normalized to the mRNA levels of *ACT1* (internal control). Data shown are mean \pm SD (n=6). (B) Western blot analysis of Orm2 protein levels in wild type cells expressing *ORM2* tagged with HA. Cells were grown in the presence and absence of VPA in I-, harvested and lysed for protein extraction. 60 µg total cell extract from each sample were subjected to Western blot analysis using 12% SDS-PAGE gel.

Figure 4.7. VPA decreases the levels of *FEN1* **and** *SUR4***.** mRNA level*FEN1* **and** *SUR4* were quantified by qRT-PCR from wild type cells grown in the presence or absence of VPA in I- (top) or I+ (bottom), as described in Fig. 4.2.

Figure 4.8. Inositol depletion downregulates *ORM* and fatty acid elongase genes and upregulates *RSB1* and *YOR1*. *ino1* Δ cells were precultured in I+ medium, harvested, washed twice with sterile water, and grown in I+ until the cells reached the mid log phase (A₅₅₀= 0.5). Cells were pelleted, washed twice with sterile water and cultivated in fresh I- (inositol starvation) or I+ (control) for 30 minutes. mRNA levels were quantified by qRT-PCR as described in Fig. 4.2.

Figure 4.9. Proposed model. In the proposed model, acute VPA mediated inositol depletion leads to decreased expression of fatty acid elongases (*FEN1* and *SUR4*) and *ORM* genes. This increases the *de novo* synthesis and accumulation of the signaling sphingolipid molecule, PHS, which is toxic at high levels. Cells respond by increasing expression of *RSB1* (transporter of PHS), *YOR1* (transporter of PHS-1P), and *DPL1* (breaks down PHS-1P), which aid in maintaining non-toxic levels of PHS. (Abbreviations: SPT, Serine palmitoyl transferase; DHS, Dihydrosphingosine; PHS, Phytosphingosine; DHS-1P, Dihydrosphingosine-1-phosphate PHS-1P, Phytosphingosine-1-phosphate)

CHAPTER 5 FUTURE DIRECTIONS

The studies in this thesis identified and characterized sphingolipid metabolism as a new target of VPA, which could be important in the therapeutic action of the drug. While my work has shed light on the effect of VPA on sphingolipid metabolism, a number of fascinating unanswered questions remain to be explored. In this chapter, I suggest challenging and interesting directions for future studies that could lead to a better understanding of the mechanisms underlying the therapeutic action of VPA.

Does VPA induce the UPR pathway in mammals?

In Chapter 3, I showed that, in yeast, chronic VPA-mediated inositol depletion induces the UPR by increasing intracellular ceramide levels. This major finding identifies the UPR as a possible new target of VPA. However, It is not known if VPA induces the UPR pathway in mammals.

VPA is known to cause inositol depletion in yeast as well as mammalian cells (Vaden et al., 2001; Shaltiel et al., 2004; Ye and Greenberg, 2015). I suggest future experiments to determine if VPA induces the UPR pathway in mammalian cells, as determined by the effect of VPA on: 1) intracellular levels of ceramide, 2) induction of the UPR pathway, and 3) the role of ceramide in UPR induction.

My findings demonstrate that chronic VPA specifically increases levels of C24and C26-containing phytoceramide. Future experiments should determine if VPA specifically increases C24-C26-ceramides in mammalian cells.

If experiments confirm the findings in yeast and reveal that VPA induces the UPR pathway in mammals, this will suggest that the UPR pathway is an important

194

target of VPA. Drugs that induce the UPR pathway can be tested for their antibipolar efficacy.

What is the mechanism that causes inositol depletion to increase ceramide levels and induce the UPR?

As stated previously, I showed that chronic VPA causes inositol depletion, which increases ceramide levels and induces the UPR pathway. However, the mechanism by which inositol depletion leads to increased ceramide levels remains unknown. VPA mediated inositol starvation increased the expression of fatty acid elongases *FEN1* and *SUR4*, which catalyze the synthesis of C24-C26 fatty acids and levels of C24- and C26-containing phytoceramide. I suggest future experiments to determine the effect of VPA and inositol starvation on the enzyme activity of fatty acid elongases and ceramide synthase. Solving this mystery will not only aid in elucidating the mechanism by which VPA increases ceramide levels, but also uncover a novel regulatory mechanism of ceramide synthesis.

What is the mechanism that causes acute VPA to increase PHS levels?

In Chapter 4, I showed that acute VPA-mediated inositol depletion increases *de novo* synthesis of PHS. However, the mechanism by which VPA increases PHS levels is not known. My studies revealed that acute VPA decreases expression of *ORM* and fatty acid elongases, suggesting that VPA increases *de novo* synthesis of PHS. I suggest further studies to determine if VPA: 1) increases the activity of serine palmitoyl transferase (SPT), the enzyme catalyzing *de novo* synthesis of PHS; 2) increases phosphorylation of Orm proteins, which regulate SPT activity; 3) decreases activity of

fatty acid elongases; and/ or 4) decreases ceramide synthase activity, which is expected to cause accumulation of the precursor, PHS.

PHS acts as a second messenger that controls a wide range of cellular processes, including growth, cell wall integrity, stress resistance, endocytosis, and aging (Liu et al., 2005). Future experiments should determine if VPA increases levels of sphingosine, the homolog of PHS in mammals. Further, characterizing the effect of acute VPA on: 1) sphingosine levels, 2) Orm protein and phosphorylation levels, 3) SPT activity, and 4) fatty acid elongation in mammalian cells would aid in determining if acute effects of VPA are conserved in yeast and mammals. Determining this will not only aid in elucidating the mechanism by which acute VPA mediated inositol depletion increases PHS levels, but may also uncover a novel regulatory mechanism of PHS synthesis via inositol.

Identify new targets of VPA that could play a role in the therapeutic action of the drug

In order to identify targets of VPA, I performed a genome wide microarray analysis with acute and chronic VPA treatment, as described in Chapter 2. Previous studies showed that acute VPA *decreases* and chronic VPA *increases* expression of *INO1* (Ju and Greenberg, 2003), which was confirmed by my microarray study. This indicates that VPA exhibits differential perturbation of gene expression in response to acute vs. chronic VPA treatment.

I focused my studies on the effect of VPA on sphingolipid metabolism. However, the screen revealed that VPA affects a number of pathways, including lipid metabolism, glycolysis, amino acid metabolism, and transmembrane transport as potential targets of VPA. Further experiments to characterize the effect of VPA on these cellular pathways remain to be done. As an example, Michael Salsaa' has systematically analyzed this microarray data and determined that chronic VPA increases glycolytic genes in I-medium. His observations led to the exciting hypothesis that VPA-mediated inositol depletion diverts glucose-6-phosphate from inositol synthesis to glycolysis. I am certain that his hypothesis will result in a fascinating dissertation project. I invite my colleagues to continue to mine my microarray database to further explore the mechanism of action of VPA.

In conclusion, VPA is a drug that has been used for the treatment of BD for years, in spite of not understanding the molecular mechanism that elicits its therapeutic mode of action. The identification and characterization of cellular targets will aid in understanding the mechanisms of action of VPA and the pathophysiology of BD, which remains poorly understood.

Now that we are at the end of this thesis, we have certainly not finished identifying all the targets of VPA, nor do we completely understand the molecular mechanism of the drug. I am sure my lab mates will continue to explore and contribute to the understanding of VPA as a bipolar drug. I hope you enjoy the research and time in the lab as I did. Good luck!!!

APPENDIX

IDENTIFICATION OF SYNTHETIC GENETIC INTERACTIONS OF *LCB4* INTRODUCTION

Sphingolipids are primarily found in the plasma membrane and can be metabolized to signaling molecules (Pitman et al., 2015). Among these, sphingosine-1-phosphate (S1P) is a signaling molecule that is known to play a role in the development of cancer, obesity, anxiety disorders, diabetes, and cardiovascular disorders (Pyne et al., 2016). S1P is synthesized by phosphorylation of sphingosine, catalyzed by sphingosine kinases SphK1 and SphK2 (Pitman et al., 2015). S1P regulates several important cellular functions, including cell proliferation, cell survival, cell migration, and neurotransmitter release (Okada et al., 2009; Zhang et al., 2001; Spiegel and Merrill, 1996; Spiegel et al., 1996; Meyer zu Heringdorf et al., 1999). The functional roles of S1P were discovered in the last several years and remain an exciting focus of current research.

Sphingolipid synthesis and metabolism are complex. The sphingolipid synthesis pathway is highly conserved in yeast and mammals (Epstein and Riezman, 2013). The two major yeast long chain bases (LCBs), dihydrosphingosine (DHS) and phytosphingosine (PHS), are homologous to mammalian sphingosine (Nagiec et al., 1998). DHS and PHS are phosphorylated to DHS phosphate (DHS-1P) or PHS phosphate (PHS-1P) by sphingolipid base kinases Lcb4 and Lcb5, which account for 97% and 3% of sphingolipid base kinase activity, respectively (Nagiec et al., 1998). In this study, I carried out a genetic screen to elucidate functions of *LCB4* by identifying synthetic lethal interactions of the *lcb4Δ* mutant. Synthetic lethality is a genetic

phenomenon in which deletion of two or more genes causes lethality, while deletion of only one gene is viable. Synthetic lethality suggests that the gene products carry out similar functions in a common pathway or in alternative pathways. The genetic screen known as Synthetic Genetic Array (SGA), currently possible only in yeast, identifies genetic interactions with all non-essential yeast genes (Tong et al., 2006).

Using the SGA approach, I identified genetically interacting mutants in several functional categories. Among these, especially interesting was ER-Golgi transport, suggesting for the first time that LCBPs generated by Lcb4 may play a role in this process. In addition to ER-Golgi transport, carbohydrate metabolism, cell cycle, cytoskeletal organization, cellular amino acid metabolic processes, and transmembrane transport mutants exhibited synthetic interactions with *lcb4* Δ . Synthetic interaction suggests a possible overlapping role of Lcb4 in these cellular functions.

MATERIALS AND METHODS

Growth medium

Synthetic complete medium contained adenine (20.25mg/l), arginine (20mg/l), histidine (20mg/l), leucine (60mg/l), lysine (200mg/l), methionine (20mg/l), threonine (300mg/l), tryptophan (20mg/l) and uracil (20mg/l), vitamin mix, yeast base (Difco), ammonium sulphate 5gm/l, glucose 20gm/l, 75µM inositol. Synthetic drop out medium contained all these components but lacked the indicated amino acid. G418 (400mg/ml) and 5-fluoroorotic acid (FOA) (2gm/l) were added when indicated. Sporulation medium contained yeast extract (1.25gm/l), glucose (1gm/l), potassium acetate (10gm/l), leucine (60mg/l), uracil 920mg/l), histidine (20mg/l), tryptophan (20mg/l) and methionine

(20mg/l). YPD medium contained yeast extract (1%), peptone (2%), and glucose (2%). Agar (2%) was added in solid medium.

Construction of the starting strain for the synthetic lethality screen

The starting strain was constructed in three steps: disruption of LCB4, confirmation of disruption by PCR, and genetic analysis of the phenotype. The disruption cassette containing the URA marker was amplified from the pUGK plasmid using forward primer 5'AGGTTATCAAGAACACAAAAGTCTAGCAGCGAAAAGTACGCGAAGAATCTACTAT AGATACAGCTGAAGCTTCGTACGC3' and primer reverse 5'TTTCGATGTAGTATTTCTTTTACAAAAAATCATTTTTGAAGGAAAATATAACG3' using polymerase chain reaction (PCR). The PCR product was electrophoresed on an agarose gel and cleaned using a Qiagen gel purification kit. The wild type SGA strain $Mat\alpha can1\Delta$::STE2pr-LEU2 lyp1 Δ his3 Δ leu2 Δ ura3 Δ met Δ (Tong and Boone, 2006) was transformed with the purified PCR product by electroporation and recombinants were selected on Ura⁻ medium. Disruption of the LCB4 gene and insertion of the URA cassette were confirmed by PCR (Fig. A.1). The recombinants were also tested for mating type (*Mat* α) and Ura⁺, Leu⁻, Met⁻, and His⁻ phenotypes.

SGA design

The *MATa* can1 Δ lcb4 Δ was crossed to the array of deletion mutants in the *MATa* background, in which the deletions are linked to the dominant selectable marker for geneticin resistance, *KanMx4*. Diploids were selected on Ura⁻ G418 medium and sporulation was induced. Haploid spore progeny were transferred to synthetic medium lacking leucine, which allowed for selective germination of *MATa* cells by virtue of the

STE2pr-LEU2 reporter. Following two rounds of selection on Leu⁻ G418 medium, double mutant *MATa* progeny were selected on Leu⁻ medium supplemented with G418. Synthetic interaction between *lcb4* Δ and deletion mutants was determined by examining growth of the double mutant on Leu⁻ Ura⁻ G418 compared to that of wild type and to single mutants on Leu⁻ FOA. Mutants that exhibited growth on Leu⁻ FOA but exhibited no growth or less growth on Leu⁻ Ura⁻ G418 were categorized as synthetically lethal or sick.

RESULTS AND DISCUSSION

An SGA screen was performed to identify mutants that synthetically interact with the *lcb4* Δ mutant in order to identify pathways that share a common or overlapping function with *LCB4*. As expected, the SGA screen identified a large number of synthetic interactions. Fifteen mutants showed a sick interaction with *lcb4* Δ at 30°C and one hundred and twenty four mutants at 37°C (Tables A.1 and A.2). Interacting genes were grouped based on their associated cellular processes (Tables A.3 and A.4) using the GO Slim Mapper program available on the Saccharomyces Genome Database (SGD).

Previous studies have shown that sphingosine kinase may play a role in ER-Golgi transport. Consistent with these studies, $lcb4\Delta$ interacted with genes involved in this process (Table A.5). *ECM21* was the only gene that showed a synthetic sick interaction at the optimal growth temperature of 30°C, suggesting that an essential function is not compensated by other genes in cells lacking Lcb4 and Ecm21. Mutants of *ERV15*, *VPS54*, *GGA1*, *EMP24*, *SLY41*, *ECM21*, *SUR7*, *CSR2*, *STP22*, *VPS54*, and

Figure A.1. PCR confirmation of the SGA query strain. Query strain DNA was subjected to PCR amplification using the following primers 1: primers for *LCB4*; 2: forward primer upstream and reverse primer downstream of LCB4; 3: forward primer upstream of *LCB4* and reverse primer within the gene; 4: forward primer upstream of the *LCB4* and reverse primer within the *URA* cassette; 5: primers for the *CAN1* gene.

Figure A.2. Synthetic genetic array (SGA) (modified from Tong et al., 2001). *Matacan1A::STE2pr-LEU2 lyp1Ahis3Aleu2Aura3AmetAlcb4A::URA3* was crossed to about 4,800 *MATa* yeast deletion mutants, each carrying a deletion mutation linked to a kanamycin-resistance marker (*KanMX*), to form diploids. Haploid meiotic spores were formed following transfer of heterozygous diploids to sporulation medium. Haploid spore progeny were transferred to synthetic medium lacking leucine, which allows for selective germination of *MATa* cells because these cells express the *STE2pr-LEU2* reporter. The selected *MATa* meiotic progeny were transferred to Leu⁻ G418-containing medium. Leucine auxotrophy and kanamycin resistance identified the double mutant progeny.

GGA1 were synthetic sick at the stress temperature of 39°C. These genes function in ER-Golgi transport. Synthetic lethality of *lcb4* and genes encoding for ER-Golgi transport proteins suggest that Lcb4 generated LCBP is required for efficient ER-Golgi transport. Ceramide is synthesized in the ER and transported to the Golgi by ER-Golgi transport proteins. Deletion of genes for ER-Golgi transport increases ceramide levels in the ER, resulting in ceramide induced apoptosis. S1P is known to rescue cells from ceramide-induced apoptosis (Cuvillier et al., 1996). In addition, overexpression of sphingosine kinase 1 (SphK1) rescues defective ER-Golgi protein trafficking (Veret at al., 2013), suggesting that S1P is required for efficient ER-Golgi transport. However, the mechanism by which S1P rescues defective ER-Golgi trafficking remains unknown. Lcb4 and ER-Golgi transport proteins may genetically interact because deletion of LCB4 decreases S1P levels and deletion of ER-Golgi transport proteins increases ceramide levels inducing apoptosis. I hypothesize that S1P inhibits accumulation of ceramide in the ER by promoting its efficient transport to Golgi or by decreasing ceramide synthesis. This would identify a novel function of S1P.
Table A.1. Genes showing synthetic interaction with *lcb4*∆ at 30°C (Gene descriptions are from Saccharomyces Genome Database)

ORF	GENE	FUNCTION			
		CPA1 uORF; Arginine attenuator peptide, regulates			
YOR302W	Orf verified	translation of the CPA1 mRNA			
		Protein of unknown function; green fluorescent protein			
		(GFP)-fusion protein localizes to the cytoplasm and the			
YOR342C	Orf verified	nucleus			
		Zinc finger transcription factor; contains a Zn(2)-Cys(6)			
		binuclear cluster domain, positively regulates			
		transcription of URA1, URA3, URA4, and URA10,			
		which are involved in de novo pyrimidine biosynthesis,			
	0004	in response to pyrimidine starvation; activity may be			
YLR014C	PPR1	modulated by interaction with Tup1p			
		Protein of unknown function; protein increases in			
	500000500	abundance and relative distribution to the nucleus			
IDR132C	5000002539	Subusit of Elegator complex: Elegator is required for			
		modification of wobble nucleosides in tPNA: maintains			
	ואו	structural integrity of Elongator			
	11(15	Subunit of the beterobeyameric cochanerone prefoldin			
		complex: prefoldin binds specifically to cytosolic			
YMI 094W	GIM5	chaperonin and transfers target proteins to it			
		Chorismate mutase catalyzes the conversion of			
		chorismate to prephenate to initiate the			
		tyrosine/phenylalanine-specific branch of aromatic			
YPR060C	ARO7	amino acid biosynthesis			
		Protein involved in regulating endocytosis of plasma			
		membrane proteins; identified as a substrate for			
YBL101C	ECM21	ubiquitination by Rsp5p and deubiquitination by Ubp2p			
		Homeobox transcriptional repressor; binds to Mcm1p			
		and to early cell cycle boxes (ECBs) in the promoters			
		of cell cycle-regulated genes expressed in M/G1			
	1014	phase; expression is cell cycle-regulated; potential			
YML027W	YOX1	Cdc28p substrate			
	00000047	Putative protein of unknown function; deletion mutant			
YGL159W	500000317	nas no detectable phenotype			
		NADER-dependent aldenyde reductase; Utilizes			
		aromatic and alophatic aldenyde substrates; member			
	A D 11	or the short-chain denydrogenase/reductase			
		Vacualar alpha mannasidases involved in frac			
YGI 156\//	AMS1	$\int vacuula alpha mannusluase, involveu in inee oligosaccharide (fOS) degradation$			
IGLIDOW					

YER149C	PEA2	Coiled-coil 12S polarisome subunit; required for polarity establishment, apical bud growth, shmoo formation, filamentous differentiation; involved in Bni1p localization at sites of polarized growth, controlling polarized assembly of actin cables
YER109C	FLO8	Transcription factor; required for flocculation, diploid filamentous growth, and haploid invasive growth; forms a heterodimer with Mss1p that interacts with the Swi/Snf complex during transcriptional activation of FLO1, FLO11, and STA1
YER110C	KAP123	Karyopherin beta; mediates nuclear import of ribosomal proteins prior to assembly into ribosomes and import of histones H3 and H4

Table A.2. Genes showing synthetic interaction with *lcb4*∆ at 39°C (Gene descriptions are from Saccharomyces Genome Database)

ORF	GENE	FUNCTION		
YLL032C	ORF, verified	Protein of unknown function		
YLR046C	ORF, Uncharacteri zed	Putative membrane protein; member of the fungal lipid- translocating exporter (LTE) family of proteins		
YLR062C	BUD28	Dubious open reading frame		
YLR092W	SUL2	High affinity sulfate permease		
YLR063W	BMT6	Methyltransferase required for m3U2843 methylation of the 25S rRNA		
YML052W	SUR7	Plasma membrane protein of unknown function involved with endocytosis		
YMR157C	AIM36	Protein of unknown function		
YMR25W	GTO3	Omega class glutathione transferase; putative cytosolic localization		
YMR282C	AEP2	Mitochondrial protein; likely involved in translation of the mitochondrial OLI1 mRNA;		
YOL054W	PSH1	E3 ubiquitin ligase targeting centromere-binding protein Cse4p		
YPL261C	ORF, verified	Dubious open reading frame; unlikely to encode a functional protein, based on available experimental and comparative sequence data		
YPL254W	HFI1	Adaptor protein required for structural integrity of the SAGA complex		
YPL244C	HUT1	Protein with a role in UDP-galactose transport to the Golgi lumen		
YPL198W	RPL7B	Ribosomal 60S subunit protein L7B; required for processing of 27SA3 pre-rRNA to 27SB pre-rRNA during assembly of large ribosomal subunit; depletion leads to a turnover of pre-rRNA		
YPL186C	UIP4	Protein that interacts with Ulp1p; a Ubl (ubiquitin-like protein)-specific protease for Smt3p protein conjugates		
YPL192C	PRM3	Protein required for nuclear envelope fusion during karyogamy		
YPL141C	FRK1	Protein kinase of unknown cellular role; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm		
YBR197C	ORF, Verified	Protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm and nucleus		
YBR199W	KTR4	Putative mannosyltransferase involved in protein		

		glycosylation			
		Protein involved in export of proteins from the			
		endoplasmic reticulum; ERV15 has a paralog, ERV14,			
YBR210W	ERV15	that arose from the whole genome duplication			
YOR307C	SLY41	Protein involved in ER-to-Golgi transport			
		Gamma-glutamyl phosphate reductase; catalyzes the			
YOR323C	PRO2	second step in proline biosynthesis			
		Dubious open reading frame; unlikely to encode a			
	ORF,	functional protein, based on available experimental and			
YOR343C	verified	comparative sequence data			
		Topoisomerase I; nuclear enzyme that relieves torsional			
		strain in DNA by cleaving and re-sealing the			
YOL006C	TOP1	phosphodiester backbone			
YOL007C	CSI2	Protein of unknown function			
YOL014W	YOL014W	Putative protein of unknown function			
YOL015W	IRC10	Putative protein of unknown function			
YPL261C	S000006182	Dubious open reading frame			
		Protein with a role in UDP-galactose transport to the			
YPL244C	HUT1	Golgi lumen			
YPL240C	HSP82	Hsp90 chaperone; redundant in function with Hsc82p			
		Small subunit of the heterodimeric cap binding complex			
YPL178W	CBC2	with Sto1p			
YPL136W	S000006057	Dubious open reading frame			
		ATPase component of heat shock protein Hsp90			
		chaperone complex; plays a role in determining prion			
YPL106C	SSE1	variants			
		Protein required for nuclear envelope fusion during			
YPL192C	PRM3	karyogamy			
		Protein that interacts with Ulp1p; a Ubl (ubiquitin-like			
YPL186C	UIP4	protein)-specific protease for Smt3p protein conjugates			
YDR358W	GGA1	Golgi-localized protein with homology to gamma-adaptin			
		Component of the NuA4 histone acetyltransferase			
YDR359C	EAF1	complex			
		Sumo-like domain protein; prevents accumulation of toxic			
		intermediates during replication-associated			
		recombinational repair; roles in silencing, lifespan,			
		chromatid cohesion and the intra-S-phase DNA damage			
YDR363W	ESC2	checkpoint; RENi family member			
		Component of the ESCRI-I complex; ESCRI-I is			
		the endeependent sorting of proteins into			
		arrostin related protein Dimon thereby directing its			
	STP22	monoubiquitination by Ren5n			
	1.11577				
	MSC2	Protoin of unknown function			
YLR219W	MSC3	Protein of unknown function			

		· · · · · · · · · · · · · · · · · · ·			
YOR137C	SIA1	Protein of unassigned function			
		High affinity methionine permease; integral membrane			
		protein with 13 putative membrane-spanning regions;			
YGR055W	MUP1	also involved in cysteine uptake			
		DNA 5' AMP hydrolase involved in DNA repair; member			
		of the histidine triad (HIT) superfamily of nucleotide-			
YOR258W	HNT3	binding proteins			
		Protein that regulates signaling from G protein beta			
YJL170C	ASG7	subunit Ste4p			
YLR357W	RSC2	Component of the RSC chromatin remodeling complex			
YLR362W	STE11	Signal transducing MEK kinase			
		Subunit of Elongator complex; Elongator is required for			
YLR384C	IKI3	modification of wobble nucleosides in tRNA			
		Fructose-1,6-bisphosphatase; key regulatory enzyme in			
		the gluconeogenesis pathway, required for glucose			
YLR377C	FBP1	metabolism			
		Chitin deacetylase; together with Cda1p involved in the			
YLR308W	CDA2	biosynthesis ascospore wall component, chitosan			
		Dubious open reading frame; unlikely to encode a			
		functional protein, based on available experimental and			
YLR322W	VPS65	comparative sequence data			
YGL196W	DSD1	D-serine dehydratase (aka D-serine ammonia-lyase)			
		SIR protein involved in assembly of silent chromatin			
		domains; silent information regulator (SIR) along with			
YDR227W	SIR4	SIR2 and SIR3			
		Component of the p24 complex; role in misfolded protein			
YGL200C	EMP24	quality control			
	0000000000	Dubious open reading frame; unlikely to encode a			
YGL214W	S000003182	functional protein			
		RNA-binding protein that activates mRNA decapping			
		directly; binds to mRNA substrate and enhances activity			
		of decapping proteins DcpTp and DcpZp; has a role in			
I GL222C	EDCT	Liansiation during neat stress			
		Alcohol demonstrated to be zine dependent deprite			
		enzyme demonstrated to be zinc-dependent despite			
		debydrogenases			
	ADI 14	Dutative and cleaned debudrageness			
TPLU88VV	5000000009	Putative aryl alconol denydrogenase			
		subulit beta of the hascent polypeptide-associated			
	EGD1	with extendesmic ribosomes			
		Component of the ESCRT L complexy complex is			
		involved in ubiquitin dependent sorting of protoing into			
	VPS28	the endosome			
		Vacualar membrana protein			
TPLUUDVV	NURI				

YBL053W	S000000149	Dubious open reading frame			
YGL081W	S000003049	Putative protein of unknown function			
		Putative gluconokinase; sequence similarity to bacterial			
YDR248C	S000002656	and human gluconokinase			
YKR033C	S000001741	Dubious open reading frame			
YDR276C	PMP3	Small plasma membrane protein			
		Protein involved in nucleotide excision repair (NER);			
YDR314C	RAD34	homologous to RAD4			
		Karyopherin; involved in nuclear import and export of			
		proteins, including import of replication protein A and			
	MONE	export of Fairp and transcription factors Swipp, Swipp, Men2n and Pho4n			
TDR355W	INISING	Recentor for alpha-factor pheromone: seven			
		transmembrane-domain GPCR that interacts with both			
		pheromone and a heterotrimeric G protein to initiate the			
		signaling response that leads to mating between haploid			
YFL026W	STE2	a and alpha cells			
YFL054C	S000001840	Putative channel-like protein; similar to Fps1p			
		Mitochondrial inner membrane localized ATP-dependent			
YOL095C	HMI1	DNA helicase			
		Non-canonical poly(A) polymerase; involved in nuclear			
		RNA degradation as a component of TRAMP; catalyzes			
		and rRNA precursors: required for mRNA surveillance			
		and TRINA precursors, required for mixing surveillance			
	PAP2	between RNA and DNA metabolism			
TOLITON	1742	Component of the dynactin complex: dynactin is required			
YLL049W	LDB18	for dynein activity			
		Subunit of hexameric RecA-like ATPase Elp456			
YMR312		Elongator subcomplex; which is required for modification			
W	ELP6	of wobble nucleosides in tRNA			
YMR316C					
-A	S000004933	Protein of unknown function			
YMR316C	0000004004	Dubieve en en die e franz			
-B	5000004934	Dublous open reading frame			
	CIM5	subunit of the neteronexamenc cochaperone preioidin			
TIVIL094VV	GINIS	Protein required for sorting proteins to the vacuale:			
		Myn1n and Vns1n act in concert to promote membrane			
YMR004		traffic to the vacuole: participates in transcription initiation			
W	MVP1	and/or early elongation of specific genes			
		Ribosomal 60S subunit protein L15B; binds to 5.8 S			
		rRNA; homologous to mammalian ribosomal protein L15,			
YMR121C	RPL15B	no bacterial homolog			
YPR027C	S000006231	Putative protein of unknown function			

YML117W		
-A	S000004586	Putative protein of unknown function
YPR030W	CSR2	Nuclear ubiquitin protein ligase binding protein; may regulate utilization of nonfermentable carbon sources and endocytosis of plasma membrane proteins
YPR075C	OPY2	Integral membrane protein that acts as a membrane anchor for Ste50p; involved in the signaling branch of the high-osmolarity glycerol (HOG) pathway and as a regulator of the filamentous growth pathway
YJL030W	MAD2	Component of the spindle-assembly checkpoint complex; delays onset of anaphase in cells with defects in mitotic spindle assembly; forms a complex with Mad1p
YJR108W	ABM1	Protein of unknown function
YLR436C	ECM30	Putative protein of unknown function
YAL047C	SPC72	Component of the cytoplasmic Tub4p (gamma-tubulin) complex
YDL243C	AAD4	Putative aryl-alcohol dehydrogenase; involved in oxidative stress response
YMR136		
W	GAT2	Protein containing GATA family zinc finger motifs
YDR042C	S000002449	Putative protein of unknown function; expression is increased in ssu72-ts69 mutant
YDR027C		Component of the GARP (Golgi-associated retrograde protein) complex; GARP is required for the recycling of proteins from endosomes to the late Golgi, and for mitosis after DNA damage induced checkpoint arrest
	\$00000354A	Dubious open reading frame
1320070	3000003344	Protein involved in transcription-coupled nucleotide
YJR035W	RAD26	excision repair; repairs UV-induced DNA lesions
YDL109C	S000002267	essential gene
YDL136W	RPL35B	Ribosomal 60S subunit protein L35B; homologous to mammalian ribosomal protein L35 and bacterial L29
YDL155W	CLB3	B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly
YDL184C	RPL41A	Ribosomal 60S subunit protein L41A; comprises only 25 amino acids; rpl41a rpl41b double null mutant is viable; homologous to mammalian ribosomal protein L41, no bacterial homolog; RPL41A has a paralog, RPL41B, that arose from the whole genome duplication
YBL101C	ECM21	Protein involved in regulating endocytosis of plasma membrane proteins
YBR019C	GAL10	UDP-glucose-4-epimerase; catalyzes the interconversion of UDP-galactose and UDP-D-glucose in galactose

		metabolism			
YBR030W	RKM3	Ribosomal lysine methyltransferase			
YBR065C	ECM2	Pre-mRNA splicing factor			
		Amino acid transporter for valine, leucine, isoleucine, and			
YBR069C	TAT1	tyrosine			
		AdoMet-dependent methyltransferase; involved in a			
		novel 3-methylnisticine modification of ribosomal protein			
		Rpiop			
YILU99VV	SGAT	Discrete L2 establishes where it			
YNLU72VV	RNH201	Ribonuclease H2 catalytic subunit			
		involved in transcriptional regulation of PHO5			
TINLUGTO	111023	Subunit of the Isw1a complex: Isw1a has nucleosome-			
		stimulated ATPase activity and represses transcription			
		initiation by specific positioning of a promoter proximal			
YFR013W	IOC3	dinucleosome			
YJL160C	PIR5	Putative protein of unknown function			
		Protein of unknown function that may interact with			
YJL213W	S000003749	ribosomes			
		Member of the heat shock protein 70 (HSP70) family;			
		may be involved in protein folding; localized to the			
	0050	cytoplasm; SSE2 has a paralog, SSE1, that arose from			
YBR169C	55E2	the whole genome duplication			
		subunit: preferentially binds DNA ends protecting them			
YDI 002C	NHP10	from exonucleatic cleavage			
YDL001W	RMD1	Cytoplasmic protein required for sporulation			
YDL026W	S000002184	Dubious open reading frame			
YDL027C	S000002185	Putative protein of unknown function			
YDL041W	S000002199	Dubious open reading frame			
		Vacuolar protein involved in vacuolar membrane fusion			
YDL077C	VAM6	tethering			
YDR440W	DOT1	Nucleosomal histone H3-Lys79 methylase			
YGL101W	S000003069	Protein of unknown function			
YGL109W	S000003077	Dubious open reading frame			
YGL110C	CUE3	Protein of unknown function			
YGL147C	RPL9A	Ribosomal 60S subunit protein L9A			
YGL157W	ARI1	NADPH-dependent aldehyde reductase			
YGL159W	S000003127	Putative protein of unknown function			
		Coiled-coil 12S polarisome subunit; required for polarity			
		establishment, apical bud growth, shmoo formation,			
		filamentous differentiation; involved in Bni1p localization			
		at sites of polarized growth, controlling polarized			
YER149C	PEA2	assembly of actin cables			

YDR483W	KRE2	Alpha1,2-mannosyltransferase of the Golgi		
YJL028W	S000003565	Protein of unknown function		
		Minor isoform of large subunit of ribonucleotide-		
YIL066C	RNR3	diphosphate reductase		
		2-hexaprenyl-6-methoxy-1,4-benzoquinone		
YML110C	COQ5	methyltransferase		

GO term	Frequency	Gene(s)
Transcription from RNA	33.30%	FLO8.PPR1.IKI3.YOX1.GIM
polymerase II promoter		5
Pseudohyphal growth	20%	FLO8,KAP123,PEA2
Carbohydrate metabolic	13.30%	FLO8,AMS1
process		
Mitotic cell cycle	13.30%	PEA2,YOX1
DNA-templated transcription, elongation	6.70%	GIM5
Cytoskeleton organization	6.70%	PEA2
Cytokinesis	6.70%	PEA2
Cellular amino acid metabolic process	6.70%	ARO7
Cell morphogenesis	6.70%	PEA2
RNA modification	6.70%	IKI3
Nucleobase-containing small	6.70%	PPR1
molecule metabolic process		
Protein complex biogenesis	6.70%	GIM5
Nuclear transport	6.70%	KAP123
Response to chemical	6.70%	PEA2
Invasive growth in response to glucose limitation	6.70%	FLO8
Cell budding	6.70%	PEA2
Endocytosis	6.70%	ECM21
Regulation of organelle organization	6.70%	PEA2
Oligosaccharide metabolic	6.70%	AMS1
process		
Conjugation	6.70%	PEA2
Regulation of translation	6.70%	YOR302W
tRNA processing	6.70%	IKI3
Protein targeting	6.70%	KAP123

26.70%

biological process unknown

YOR342C

YDR132C,ARI1,YGL159W,

Table A.3. Genes classified based on the cell process showing synthetic interaction with $lcb4\Delta$ at 30°C

Table A.4. Genes classified based on the cell process showing synthetic
interaction with <i>lcb4</i> ∆ at 39°C

GO term	Frequency	Gene(s)
Chromatin organization	8.10%	NHP10,SIR4,EAF1,DOT1,IOC3,RA D26,RSC2,PHO23,TOP1,HFI1
Mitotic cell cycle	8.10%	SPC72,ERV15,CLB3,ESC2,DOT1, PEA2,MAD2,LDB18,BUD28,TOP1
Cellular response to DNA damage stimulus	7.30%	NHP10,RAD34,EAF1,ESC2,DOT1, RAD26,RSC2,PAP2,HNT3
Transcription from RNA polymerase II promoter	7.30%	RSC2,IKI3,GIM5,GAT2,ELP6,PHO 23,TOP1,HFI1,CSR2
DNA repair	6.50%	NHP10,RAD34,EAF1,ESC2,DOT1, RAD26,RSC2,PAP2
Regulation of organelle organization	5.60%	SPC72,VAM6,CLB3,DOT1,PEA2,M AD2,HSP82
Protein targeting	5.60%	STP22,GGA1,VPS65,MVP1,EGD1, VPS28,HSP82
DNA recombination	5.60%	NHP10,ESC2,DOT1,MSC3,RSC2,T OP1,PAP2
Organelle fission	5.60%	SPC72,ESC2,DOT1,MAD2,MSC3, TOP1,PAP2
Regulation of cell cycle	4.80%	SPC72,CLB3,ESC2,DOT1,MAD2,O PY2
Conjugation	4.80%	PEA2,STE2,ASG7,STE11,PRM3,O PY2
Protein complex biogenesis	4.80%	SPC72,VAM6,EAF1,STE2,GIM5,H SP82
Meiotic cell cycle	4.80%	VPS54,DOT1,MSC3,CDA2,SUR7,P AP2
Ion transport	4.80%	TAT1,PMP3,MUP1,SUL2,SIA1,HU T1
Cytoskeleton organization	4.00%	SPC72,CLB3,PEA2,ABM1,LDB18
Carbohydrate metabolic process	4.00%	GAL10,KTR4,KRE2,SGA1,FBP1
Response to chemical	4.00%	PMP3,PEA2,STE2,STE11,OPY2
Cell wall organization or biogenesis	4.00%	VPS54,KRE2,CDA2,STE11,CSR2
Chromosome segregation	4.00%	SPC72,ESC2,MAD2,RSC2,TOP1
Proteolysis involved in cellular protein catabolic process	4.00%	STP22,GGA1,MAD2,PSH1,VPS28
Cytoplasmic translation	4.00%	RPL35B,RPL41A,RPL9A,RPL15B, RPL7B

Golgi vesicle transport	4.00%	ERV15,VPS54,GGA1,EMP24,SLY4 1
RNA modification	3.20%	BMT6,IKI3,ELP6,PAP2
Regulation of protein	3.20%	STP22,CLB3,ESC2,STE11
modification process		
Cellular amino acid	3.20%	DSD1,ADH4,GTO3,PRO2
metabolic process	0.000/	
Protein folding	3.20%	SSE2,EGD1,SSE1,HSP82
Protein modification by	3.20%	STP22,ESC2,ELP6,PSH1
small protein conjugation or		
Protein phosphorylation	2 40%	
Endosomal transport	2.40%	STP22 VPS54 CCA1
	2.40%	
DNA carlination	2.40 /0	
DNA replication	2.40%	
modification	2.40%	
Response to osmotic stress	2 40%	STE11 HSP82 OPY2
Cytokinesis	2.10%	FRV15 PEA2 BUD28
Protein alkylation	2.40%	RKM3 DOT1 HPM1
Generation of precursor	2.40%	
metabolites and energy	2.4070	7,0114,007,11,0000
Regulation of DNA	2.40%	TOP1,PAP2,HSP82
metabolic process		, ,
Sporulation	2.40%	VPS54,CDA2,SUR7
Mitochondrion organization	2.40%	AEP2,HMI1,HSP82
tRNA processing	2.40%	IKI3,ELP6,PAP2
DNA-templated	2.40%	RSC2,GIM5,TOP1
transcription, elongation		
rRNA processing	2.40%	RPL35B,BMT6,RPL7B
Endocytosis	2.40%	ECM21,SUR7,CSR2
Signaling	2.40%	STE2,STE11,OPY2
mRNA processing	1.60%	ECM2,CBC2
RNA splicing	1.60%	ECM2,CBC2
Transmembrane transport	1.60%	TAT1,YFL054C
Histone modification	1.60%	DOT1,HFI1
Protein glycosylation	1.60%	KTR4,KRE2
Lipid metabolic process	1.60%	YDL109C,NCR1
Cell budding	1.60%	ERV15,PEA2
Nucleobase-containing	1.60%	MSN5,HUT1
compound transport		
Vesicle organization	1.60%	VAM6,EMP24
Pseudohyphal growth	1.60%	PEA2,STE11

Invasive growth in response	1.60%	STE11,PHO23
Response to heat	1 60%	
	1.00%	
	1.00%	
biogenesis	1.00%	RPL35B,RPL7B
Telomere organization	1.60%	NHP10,HSP82
Organelle fusion	1.60%	VAM6,PRM3
Membrane fusion	1.60%	VAM6,PRM3
Translational initiation	0.80%	AEP2
Nucleus organization	0.80%	PRM3
Cell morphogenesis	0.80%	PEA2
Membrane invagination	0.80%	VAM6
Nuclear transport	0.80%	MSN5
Transposition	0.80%	STE11
snoRNA processing	0.80%	PAP2
Response to starvation	0.80%	OPY2
Transcription from RNA	0.80%	PHO23
polymerase I promoter		
Cellular respiration	0.80%	COQ5
Vacuole organization	0.80%	VAM6
Mitochondrial translation	0.80%	AEP2
Oligosaccharide metabolic	0.80%	KRE2
process		
Cofactor metabolic process	0.80%	COQ5
Regulation of transport	0.80%	VAM6
Protein maturation	0.80%	MAD2
Protein acylation	0.80%	HFI1
Nucleobase-containing	0.80%	RNR3
small molecule metabolic		
process		5504
Regulation of translation	0.80%	EDC1
Biological process unknown	29.00%	YBL053W,YBR197C,RMD1,YDL02
		6W,YDL027C,YDL041W,YDR042
		C, 10R248C, 1GL081W, 1GL101W,
		YGL 214W/ Y II 007C Y II 028W/ Y II
		160C V II 213W VKI 177W VKP03
		3C YI I 032C YI R046C ECM30 Y
		ML116W-A.AIM36 YMR316C-
		A.YMR316C-
		B,CSI2,YOL014W,IRC10,YOR343
		C,YPL136W,UIP4,YPL261C,YPR0

2	2	n
Z	L	υ

		27C
Other	1.60%	AAD4,YPL088W

Function	Interaction at 30°C	Interaction at 39°C
Golgi vesicle transport		ERV15,VPS54,GGA1,EMP2 4, SLY41
Endocytosis	ECM21	ECM21,SUR7,CSR2
Endosomal transport		STP22,VPS54,GGA1

Table A.5. LCB4 interacts with genes involved in ER-Golgi transport

REFERENCES

- Agranoff, B.W., and S.K. Fisher. 2001. Inositol, lithium, and the brain. *Psychopharmacol Bull*. 35:5-18.
- Alvarez-Vasquez, F., H. Riezman, Y.A. Hannun, and E.O. Voit. 2011. Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae. *PLoS One*. 6:e28344.
- Alvarez-Vasquez, F., K.J. Sims, L.A. Cowart, Y. Okamoto, E.O. Voit, and Y.A. Hannun. 2005. Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae. *Nature*. 433:425-430.
- Alvarez-Vasquez, F., K.J. Sims, Y.A. Hannun, and E.O. Voit. 2004. Integration of kinetic information on yeast sphingolipid metabolism in dynamical pathway models. *J Theor Biol.* 226:265-291.
- Alvarez-Vasquez, F., K.J. Sims, E.O. Voit, and Y.A. Hannun. 2007. Coordination of the dynamics of yeast sphingolipid metabolism during the diauxic shift. *Theor Biol Med Model*. 4:42.
- Andreasen, N., H.A. Nasrallah, V. Dunn, S.C. Olson, W.M. Grove, J.C. Ehrhardt, J.A.
 Coffman, and J.H. Crossett. 1986. Structural abnormalities in the frontal system in schizophrenia. A magnetic resonance imaging study. *Arch Gen Psychiatry*. 43:136-144.
- Ariga, T., K. Suetake, M. Nakane, M. Kubota, S. Usuki, I. Kawashima, and R.K. Yu. 2008. Glycosphingolipid antigens in neural tumor cell lines and anti-

glycosphingolipid antibodies in sera of patients with neural tumors. *Neurosignals*. 16:226-234.

- Auluck, P.K., G. Caraveo, and S. Lindquist. 2010. alpha-Synuclein: membrane interactions and toxicity in Parkinson's disease. *Annu Rev Cell Dev Biol*. 26:211-233.
- Balla, T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. *Physiol Rev.* 93:1019-1137.
- Basu, S., S. Bayoumy, Y. Zhang, J. Lozano, and R. Kolesnick. 1998. BAD enables ceramide to signal apoptosis via Ras and Raf-1. *J Biol Chem*. 273:30419-30426.
- Baxter, A.J., T. Vos, K.M. Scott, A.J. Ferrari, and H.A. Whiteford. 2014. The global burden of anxiety disorders in 2010. *Psychol Med*:1-12.
- Beaulieu, J.M., S. Marion, R.M. Rodriguiz, I.O. Medvedev, T.D. Sotnikova, V. Ghisi,
 W.C. Wetsel, R.J. Lefkowitz, R.R. Gainetdinov, and M.G. Caron. 2008. A betaarrestin 2 signaling complex mediates lithium action on behavior. *Cell*. 132:125-136.
- Beeler, T., D. Bacikova, K. Gable, L. Hopkins, C. Johnson, H. Slife, and T. Dunn. 1998.
 The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Delta mutant. *J Biol Chem*. 273:30688-30694.

Belmaker, R.H. 2004. Bipolar disorder. N Engl J Med. 351:476-486.

Belmaker, R.H., and G. Agam. 2008. Major depressive disorder. *N Engl J Med*. 358:55-68.

- Berridge, M.J. 1989. Inositol 1,4,5-trisphosphate-induced calcium mobilization is localized in Xenopus oocytes. *Proc R Soc Lond B Biol Sci*. 238:235-243.
- Blasco, M.A., W. Funk, B. Villeponteau, and C.W. Greider. 1995. Functional characterization and developmental regulation of mouse telomerase RNA. *Science*. 269:1267-1270.
- Boggs, J.M., W. Gao, and Y. Hirahara. 2008. Signal transduction pathways involved in interaction of galactosylceramide/sulfatide-containing liposomes with cultured oligodendrocytes and requirement for myelin basic protein and glycosphingolipids. *J Neurosci Res.* 86:1448-1458.
- Boggs, J.M., W. Gao, J. Zhao, H.J. Park, Y. Liu, and A. Basu. 2010. Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes. *FEBS Lett*. 584:1771-1778.
- Bogoyevitch, M.A., and B. Kobe. 2006. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. *Microbiol Mol Biol Rev.* 70:1061-1095.
- Bostwick, J.M., and V.S. Pankratz. 2000. Affective disorders and suicide risk: a reexamination. *Am J Psychiatry*. 157:1925-1932.
- Boujaoude, L.C., C. Bradshaw-Wilder, C. Mao, J. Cohn, B. Ogretmen, Y.A. Hannun, and L.M. Obeid. 2001. Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. *J Biol Chem*. 276:35258-35264.
- Breslow, D.K. 2013. Sphingolipid homeostasis in the endoplasmic reticulum and beyond. *Cold Spring Harb Perspect Biol.* 5:a013326.

Breslow, D.K., S.R. Collins, B. Bodenmiller, R. Aebersold, K. Simons, A. Shevchenko,C.S. Ejsing, and J.S. Weissman. 2010. Orm family proteins mediate sphingolipid homeostasis. *Nature*. 463:1048-1053.

- Brice, S.E., C.W. Alford, and L.A. Cowart. 2009. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae. *J Biol Chem*. 284:7588-7596.
- Brunngraber, E.G., L.G. Davis, C. Rieser, and M.V. Reddy. 1981. Urinary glycoconjugates in schizophrenic patients. *Biol Psychiatry*. 16:741-751.
- Calabresi, P., F. Galletti, C. Rossi, P. Sarchielli, and L.M. Cupini. 2007. Antiepileptic drugs in migraine: from clinical aspects to cellular mechanisms. *Trends Pharmacol Sci.* 28:188-195.
- Capuano, B., I.T. Crosby, and E.J. Lloyd. 2002. Schizophrenia: genesis, receptorology and current therapeutics. *Curr Med Chem*. 9:521-548.
- Carlsson, A., and M.L. Carlsson. 2006. A dopaminergic deficit hypothesis of schizophrenia: the path to discovery. *Dialogues Clin Neurosci*. 8:137-142.
- Chalfant, C.E., and S. Spiegel. 2005. Sphingosine 1-phosphate and ceramide 1phosphate: expanding roles in cell signaling. *J Cell Sci*. 118:4605-4612.
- Chang, H.J., S.A. Jesch, M.L. Gaspar, and S.A. Henry. 2004. Role of the unfolded protein response pathway in secretory stress and regulation of INO1 expression in Saccharomyces cerevisiae. *Genetics*. 168:1899-1913.

- Chang, H.J., E.W. Jones, and S.A. Henry. 2002. Role of the unfolded protein response pathway in regulation of INO1 and in the sec14 bypass mechanism in Saccharomyces cerevisiae. *Genetics*. 162:29-43.
- Chapman, R., C. Sidrauski, and P. Walter. 1998. Intracellular signaling from the endoplasmic reticulum to the nucleus. *Annu Rev Cell Dev Biol*. 14:459-485.
- Cheng, L., M. Lumb, L. Polgar, and A.W. Mudge. 2005a. How can the mood stabilizer VPA limit both mania and depression? *Mol Cell Neurosci*. 29:155-161.
- Cheng, R.S., C. Lin, M.L. Fok, and C.M. Leung. 2005b. Shoplifting in the mentally ill: the role of bipolar affective disorder and mental retardation. *Med Sci Law*. 45:317-320.
- Cherayil, G.D. 1969. Estimation of glycolipids in four selected lobes of human brain in neurological diseases. *J Neurochem*. 16:913-920.
- Chung, N., G. Jenkins, Y.A. Hannun, J. Heitman, and L.M. Obeid. 2000. Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. *J Biol Chem*. 275:17229-17232.
- Chung, N., C. Mao, J. Heitman, Y.A. Hannun, and L.M. Obeid. 2001. Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae. *J Biol Chem*. 276:35614-35621.
- Colombaioni, L., and M. Garcia-Gil. 2004. Sphingolipid metabolites in neural signalling and function. *Brain Res Brain Res Rev.* 46:328-355.
- Cowart, L.A., and Y.A. Hannun. 2005. Using genomic and lipidomic strategies to investigate sphingolipid function in the yeast heat-stress response. *Biochem Soc Trans*. 33:1166-1169.

- Cowart, L.A., and L.M. Obeid. 2007. Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. *Biochim Biophys Acta*. 1771:421-431.
- Cox, J.S., R.E. Chapman, and P. Walter. 1997. The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. *Mol Biol Cell*. 8:1805-1814.
- Cox, J.S., C.E. Shamu, and P. Walter. 1993. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. *Cell*. 73:1197-1206.
- Cutler, R.G., and M.P. Mattson. 2001. Sphingomyelin and ceramide as regulators of development and lifespan. *Mech Ageing Dev.* 122:895-908.
- Cuvillier, O., G. Pirianov, B. Kleuser, P.G. Vanek, O.A. Coso, S. Gutkind, and S. Spiegel. 1996. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. *Nature*. 381:800-803.
- D'Angelo, G., S. Capasso, L. Sticco, and D. Russo. 2013. Glycosphingolipids: synthesis and functions. *Febs J*. 280:6338-6353.
- Daquinag, A., M. Fadri, S.Y. Jung, J. Qin, and J. Kunz. 2007. The yeast PH domain proteins SIm1 and SIm2 are targets of sphingolipid signaling during the response to heat stress. *Mol Cell Biol*. 27:633-650.
- Darios, F., C. Wasser, A. Shakirzyanova, A. Giniatullin, K. Goodman, J.L. Munoz-Bravo,J. Raingo, J. Jorgacevski, M. Kreft, R. Zorec, J.M. Rosa, L. Gandia, L.M.Gutierrez, T. Binz, R. Giniatullin, E.T. Kavalali, and B. Davletov. 2009.

Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. *Neuron*. 62:683-694.

- David, D.J., B.A. Samuels, Q. Rainer, J.W. Wang, D. Marsteller, I. Mendez, M. Drew,
 D.A. Craig, B.P. Guiard, J.P. Guilloux, R.P. Artymyshyn, A.M. Gardier, C. Gerald,
 I.A. Antonijevic, E.D. Leonardo, and R. Hen. 2009. Neurogenesis-dependent and
 -independent effects of fluoxetine in an animal model of anxiety/depression. *Neuron*. 62:479-493.
- Davis, K.L., D.G. Stewart, J.I. Friedman, M. Buchsbaum, P.D. Harvey, P.R. Hof, J.
 Buxbaum, and V. Haroutunian. 2003. White matter changes in schizophrenia:
 evidence for myelin-related dysfunction. *Arch Gen Psychiatry*. 60:443-456.
- deHart, A.K., J.D. Schnell, D.A. Allen, and L. Hicke. 2002. The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. *J Cell Biol*. 156:241-248.
- Demirkan, A., A. Isaacs, P. Ugocsai, G. Liebisch, M. Struchalin, I. Rudan, J.F. Wilson,
 P.P. Pramstaller, U. Gyllensten, H. Campbell, G. Schmitz, B.A. Oostra, and C.M.
 van Duijn. 2013. Plasma phosphatidylcholine and sphingomyelin concentrations
 are associated with depression and anxiety symptoms in a Dutch family-based
 lipidomics study. *J Psychiatr Res.* 47:357-362.
- Denic, V., and J.S. Weissman. 2007. A molecular caliper mechanism for determining very long-chain fatty acid length. *Cell*. 130:663-677.
- Deranieh, R.M., and M.L. Greenberg. 2009. Cellular consequences of inositol depletion. *Biochem Soc Trans*. 37:1099-1103.

- Deranieh, R.M., Q. He, J.A. Caruso, and M.L. Greenberg. 2013. Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis. *J Biol Chem*. 288:26822-26833.
- Dickson, R.C. 1998. Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. *Annu Rev Biochem*. 67:27-48.
- Dickson, R.C. 2008. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. *J Lipid Res*. 49:909-921.
- Dickson, R.C., and R.L. Lester. 1999. Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae. *Biochim Biophys Acta*. 1438:305-321.
- Dickson, R.C., and R.L. Lester. 2002. Sphingolipid functions in Saccharomyces cerevisiae. *Biochim Biophys Acta*. 1583:13-25.
- Dickson, R.C., E.E. Nagiec, M. Skrzypek, P. Tillman, G.B. Wells, and R.L. Lester. 1997.
 Sphingolipids are potential heat stress signals in Saccharomyces. *J Biol Chem*. 272:30196-30200.
- Dickson, R.C., C. Sumanasekera, and R.L. Lester. 2006. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. *Prog Lipid Res.* 45:447-465.
- Dickson, R.C., G.B. Wells, A. Schmidt, and R.L. Lester. 1990. Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids. *Mol Cell Biol*. 10:2176-2181.
- Duan, R.D. 2006. Alkaline sphingomyelinase: an old enzyme with novel implications. *Biochim Biophys Acta*. 1761:281-291.

- Ebel, P., K. Vom Dorp, E. Petrasch-Parwez, A. Zlomuzica, K. Kinugawa, J. Mariani, D. Minich, C. Ginkel, J. Welcker, J. Degen, M. Eckhardt, E. Dere, P. Dormann, and K. Willecke. 2013. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. *J Biol Chem*. 288:21433-21447.
- Ejsing, C.S., J.L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos, R.W. Klemm, K. Simons, and A. Shevchenko. 2009. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. *Proc Natl Acad Sci U S A*. 106:2136-2141.
- Emamian, E.S., M. Karayiorgou, and J.A. Gogos. 2004. Decreased phosphorylation of NMDA receptor type 1 at serine 897 in brains of patients with Schizophrenia. *J Neurosci*. 24:1561-1564.
- Emrich, H.M., D. von Zerssen, W. Kissling, and H.J. Moller. 1981. Therapeutic effect of valproate in mania. *Am J Psychiatry*. 138:256.
- Epstein, S., C.L. Kirkpatrick, G.A. Castillon, M. Muniz, I. Riezman, F.P. David, C.B. Wollheim, and H. Riezman. 2012. Activation of the unfolded protein response pathway causes ceramide accumulation in yeast and INS-1E insulinoma cells. *J Lipid Res.* 53:412-420.
- Epstein, S., and H. Riezman. 2013. Sphingolipid signaling in yeast: potential implications for understanding disease. *Front Biosci (Elite Ed)*. 5:97-108.
- Ericson, E., M. Gebbia, L.E. Heisler, J. Wildenhain, M. Tyers, G. Giaever, and C.
 Nislow. 2008. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. *PLoS Genet*. 4:e1000151.

- Fagone, P., and S. Jackowski. 2009. Membrane phospholipid synthesis and endoplasmic reticulum function. *J Lipid Res*. 50 Suppl:S311-316.
- Fenton, W.S., J. Hibbeln, and M. Knable. 2000. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. *Biol Psychiatry*. 47:8-21.
- Ferguson-Yankey, S.R., M.S. Skrzypek, R.L. Lester, and R.C. Dickson. 2002. Mutant analysis reveals complex regulation of sphingolipid long chain base phosphates and long chain bases during heat stress in yeast. *Yeast*. 19:573-586.
- Ferlinz, K., G. Kopal, K. Bernardo, T. Linke, J. Bar, B. Breiden, U. Neumann, F. Lang,
 E.H. Schuchman, and K. Sandhoff. 2001. Human acid ceramidase: processing,
 glycosylation, and lysosomal targeting. *J Biol Chem*. 276:35352-35360.
- Fitzsimmons, J., M. Kubicki, and M.E. Shenton. 2013. Review of functional and anatomical brain connectivity findings in schizophrenia. *Curr Opin Psychiatry*. 26:172-187.
- Fu, Y., and W. Xiao. 2006. Study of transcriptional regulation using a reporter gene assay. *Methods Mol Biol.* 313:257-264.
- Funato, K., B. Vallee, and H. Riezman. 2002. Biosynthesis and trafficking of sphingolipids in the yeast Saccharomyces cerevisiae. *Biochemistry*. 41:15105-15114.
- Futerman, A.H., and H. Riezman. 2005. The ins and outs of sphingolipid synthesis. *Trends Cell Biol.* 15:312-318.

- Gable, K., S. Garton, J.A. Napier, and T.M. Dunn. 2004. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. *J Exp Bot*. 55:543-545.
- Gable, K., G. Han, E. Monaghan, D. Bacikova, M. Natarajan, R. Williams, and T.M.
 Dunn. 2002. Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase. *J Biol Chem*. 277:10194-10200.
- Gaspar, M.L., M.A. Aregullin, S.A. Jesch, and S.A. Henry. 2006. Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae. *J Biol Chem*. 281:22773-22785.
- Ge, H., Z. Liu, G.M. Church, and M. Vidal. 2001. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. *Nat Genet*. 29:482-486.
- Gilmore, N., L. Cherian, and W.R. Klemm. 1991. Ganglioside or sialic acid attenuates ethanol-induced decrements in locomotion, nose-poke exploration, and anxiety, but not body temperature. *Prog Neuropsychopharmacol Biol Psychiatry*. 15:91-104.
- Glasier, M.M., R.L. Sutton, and D.G. Stein. 1995. Effects of unilateral entorhinal cortex lesion and ganglioside GM1 treatment on performance in a novel water maze task. *Neurobiol Learn Mem*. 64:203-214.
- Gomez-Munoz, A. 2004. Ceramide-1-phosphate: a novel regulator of cell activation. *FEBS Lett.* 562:5-10.

- Goni, F.M., and A. Alonso. 2002. Sphingomyelinases: enzymology and membrane activity. *FEBS Lett*. 531:38-46.
- Goodwin, G.M. 2007. Quetiapine more effective than placebo for depression in bipolar I and II disorder. *Evid Based Ment Health*. 10:82.
- Gould, T.D., J.A. Quiroz, J. Singh, C.A. Zarate, and H.K. Manji. 2004. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. *Mol Psychiatry*. 9:734-755.
- Gracia-Garcia, P., V. Rao, N.J. Haughey, V.V. Ratnam Banduru, G. Smith, P.B.
 Rosenberg, A. Lobo, C.G. Lyketsos, and M.M. Mielke. 2011. Elevated plasma ceramides in depression. *J Neuropsychiatry Clin Neurosci*. 23:215-218.
- Granado, M.H., P. Gangoiti, A. Ouro, L. Arana, and A. Gomez-Munoz. 2009. Ceramide 1-phosphate inhibits serine palmitoyltransferase and blocks apoptosis in alveolar macrophages. *Biochim Biophys Acta*. 1791:263-272.
- Guenther, G.G., E.R. Peralta, K.R. Rosales, S.Y. Wong, L.J. Siskind, and A.L. Edinger. 2008. Ceramide starves cells to death by downregulating nutrient transporter proteins. *Proc Natl Acad Sci U S A*. 105:17402-17407.
- Guillas, I., J.C. Jiang, C. Vionnet, C. Roubaty, D. Uldry, R. Chuard, J. Wang, S.M.
 Jazwinski, and A. Conzelmann. 2003. Human homologues of LAG1 reconstitute
 Acyl-CoA-dependent ceramide synthesis in yeast. *J Biol Chem*. 278:37083-37091.
- Gulbins, E., and R. Kolesnick. 2003. Raft ceramide in molecular medicine. *Oncogene*. 22:7070-7077.

- Gulbins, E., M. Palmada, M. Reichel, A. Luth, C. Bohmer, D. Amato, C.P. Muller, C.H.
 Tischbirek, T.W. Groemer, G. Tabatabai, K.A. Becker, P. Tripal, S. Staedtler,
 T.F. Ackermann, J. van Brederode, C. Alzheimer, M. Weller, U.E. Lang, B.
 Kleuser, H. Grassme, and J. Kornhuber. 2013. Acid sphingomyelinase-ceramide
 system mediates effects of antidepressant drugs. *Nat Med.* 19:934-938.
- Gururaj, C., R.S. Federman, and A. Chang. 2013. Orm proteins integrate multiple signals to maintain sphingolipid homeostasis. *J Biol Chem*. 288:20453-20463.
- Hallcher, L.M., and W.R. Sherman. 1980. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. *J Biol Chem*. 255:10896-10901.
- Han, S., M.A. Lone, R. Schneiter, and A. Chang. 2010. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein guality control. *Proc Natl Acad Sci U S A*. 107:5851-5856.
- Hanada, K. 2003. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. *Biochim Biophys Acta*. 1632:16-30.
- Hanada, K., K. Kumagai, N. Tomishige, and M. Kawano. 2007. CERT and intracellular trafficking of ceramide. *Biochim Biophys Acta*. 1771:644-653.
- Hannun, Y.A., and L.M. Obeid. 2002. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. *J Biol Chem*. 277:25847-25850.
- Hannun, Y.A., and L.M. Obeid. 2008. Principles of bioactive lipid signalling: lessons from sphingolipids. *Nat Rev Mol Cell Biol*. 9:139-150.

- Harada, J., M. Foley, M.A. Moskowitz, and C. Waeber. 2004. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. *J Neurochem*. 88:1026-1039.
- Haselhorst, U., H. Schenk, I. Beyer, R. Uebelhack, E. Franke, and V. Kielstein. 1988.
 Abnormality of gangliosides in erythrocyte membranes of schizophrenic patients.
 Clin Physiol Biochem. 6:281-284.
- Hayashi, A., T. Kasahara, M. Kametani, T. Toyota, T. Yoshikawa, and T. Kato. 2009. Aberrant endoplasmic reticulum stress response in lymphoblastoid cells from patients with bipolar disorder. *Int J Neuropsychopharmacol*. 12:33-43.
- He, Q., H. Suzuki, N. Sharma, and R.P. Sharma. 2006. Ceramide synthase inhibition by fumonisin B1 treatment activates sphingolipid-metabolizing systems in mouse liver. *Toxicol Sci.* 94:388-397.
- Henry, C.A., L.S. Zamvil, C. Lam, K.J. Rosenquist, and S.N. Ghaemi. 2003. Long-term outcome with divalproex in children and adolescents with bipolar disorder. *J Child Adolesc Psychopharmacol*. 13:523-529.
- Henry, S.A., M.L. Gaspar, and S.A. Jesch. 2014. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. *Chem Phys Lipids*. 180:23-43.
- Hill, C.H., S.C. Graham, R.J. Read, and J.E. Deane. 2013. Structural snapshots illustrate the catalytic cycle of beta-galactocerebrosidase, the defective enzyme in Krabbe disease. *Proc Natl Acad Sci U S A*. 110:20479-20484.

Hirsch, J.P., and S.A. Henry. 1986. Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. *Mol Cell Biol*. 6:3320-3328.

- Hofmann, K., S. Tomiuk, G. Wolff, and W. Stoffel. 2000. Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. *Proc Natl Acad Sci U S A*. 97:5895-5900.
- Horrobin, D.F. 1998. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. *Schizophr Res.* 30:193-208.
- Horrobin, D.F. 2001. Phospholipid metabolism and depression: the possible roles of phospholipase A2 and coenzyme A-independent transacylase. *Hum Psychopharmacol.* 16:45-52.
- Horrobin, D.F., and C.N. Bennett. 1999. New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. *Prostaglandins Leukot Essent Fatty Acids*. 60:141-167.
- Huang, W.C., M. Nagahashi, K.P. Terracina, and K. Takabe. 2013. Emerging Role of Sphingosine-1-phosphate in Inflammation, Cancer, and Lymphangiogenesis. *Biomolecules*. 3.
- Huang, X., B.R. Withers, and R.C. Dickson. 2014. Sphingolipids and lifespan regulation. *Biochim Biophys Acta*. 1841:657-664.
- Humston, E.M., K.M. Dombek, B.P. Tu, E.T. Young, and R.E. Synovec. 2011. Toward a global analysis of metabolites in regulatory mutants of yeast. *Anal Bioanal Chem*. 401:2387-2402.

- Ikonomov, O.C., and H.K. Manji. 1999. Molecular mechanisms underlying mood stabilization in manic-depressive illness: the phenotype challenge. *Am J Psychiatry*. 156:1506-1514.
- Ingvar, D.H., and G. Franzen. 1974. Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. *Acta Psychiatr Scand*. 50:425-462.
- Jadhav, S., and M.L. Greenberg. 2014. Harnessing the power of yeast to elucidate the role of sphingolipids in metabolic and signaling processes pertinent to psychiatric disorders. *Clin Lipidol*. 9:533-551.
- Jakobsson, A., R. Westerberg, and A. Jacobsson. 2006. Fatty acid elongases in mammals: their regulation and roles in metabolism. *Prog Lipid Res*. 45:237-249.
- Jang, S., D. Kim, Y. Lee, S. Moon, and S. Oh. 2011. Modulation of sphingosine 1phosphate and tyrosine hydroxylase in the stress-induced anxiety. *Neurochem Res.* 36:258-267.
- Jang, S., S.H. Suh, H.S. Yoo, Y.M. Lee, and S. Oh. 2008. Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1phosphate in serum after immobilized stress. *Neurochem Res.* 33:842-851.
- Jenkins, G.M., A. Richards, T. Wahl, C. Mao, L. Obeid, and Y. Hannun. 1997. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. *J Biol Chem*. 272:32566-32572.
- Jesch, S.A., M.L. Gaspar, C.J. Stefan, M.A. Aregullin, and S.A. Henry. 2010. Interruption of inositol sphingolipid synthesis triggers Stt4p-dependent protein kinase C signaling. *J Biol Chem*. 285:41947-41960.

- Jesch, S.A., P. Liu, X. Zhao, M.T. Wells, and S.A. Henry. 2006. Multiple endoplasmic reticulum-to-nucleus signaling pathways coordinate phospholipid metabolism with gene expression by distinct mechanisms. *J Biol Chem*. 281:24070-24083.
- Jesch, S.A., X. Zhao, M.T. Wells, and S.A. Henry. 2005. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. *J Biol Chem*. 280:9106-9118.
- Johns, D.G., J.S. Jin, D.W. Wilde, and R.C. Webb. 1999. Ceramide-induced
 vasorelaxation: An inhibitory action on protein kinase C. *Gen Pharmacol*. 33:415421.
- Jope, R.S. 1999. A bimodal model of the mechanism of action of lithium. *Mol Psychiatry*. 4:21-25.
- Ju, S., and M.L. Greenberg. 2003. Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. *Mol Microbiol*. 49:1595-1603.
- Ju, S., G. Shaltiel, A. Shamir, G. Agam, and M.L. Greenberg. 2004. Human 1-D-myoinositol-3-phosphate synthase is functional in yeast. *J Biol Chem*. 279:21759-21765.
- Kajimoto, T., T. Okada, H. Yu, S.K. Goparaju, S. Jahangeer, and S. Nakamura. 2007. Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. *Mol Cell Biol.* 27:3429-3440.
- Kakiuchi, C., K. Iwamoto, M. Ishiwata, M. Bundo, T. Kasahara, I. Kusumi, T. Tsujita, Y. Okazaki, S. Nanko, H. Kunugi, T. Sasaki, and T. Kato. 2003. Impaired feedback

regulation of XBP1 as a genetic risk factor for bipolar disorder. *Nat Genet*. 35:171-175.

- Kemmer, D., L.M. McHardy, S. Hoon, D. Reberioux, G. Giaever, C. Nislow, C.D.
 Roskelley, and M. Roberge. 2009. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis. *BMC Microbiol*. 9:9.
- Keshavan, M.S., A.G. Mallinger, J.W. Pettegrew, and C. Dippold. 1993. Erythrocyte membrane phospholipids in psychotic patients. *Psychiatry Res*. 49:89-95.
- Ketter, T.A., P.W. Wang, C. Nowakowska, and W.K. Marsh. 2004. New medication treatment options for bipolar disorders. *Acta Psychiatr Scand Suppl*:18-33.
- Kihara, A. 2012. Very long-chain fatty acids: elongation, physiology and related disorders. *J Biochem*. 152:387-395.
- Kihara, A., and Y. Igarashi. 2002. Identification and characterization of a Saccharomyces cerevisiae gene, RSB1, involved in sphingoid long-chain base release. *J Biol Chem*. 277:30048-30054.
- Kihara, A., and Y. Igarashi. 2004. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. *J Biol Chem*. 279:49243-49250.
- Kihara, A., S. Mitsutake, Y. Mizutani, and Y. Igarashi. 2007. Metabolism and biological functions of two phosphorylated sphingolipids, sphingosine 1-phosphate and ceramide 1-phosphate. *Prog Lipid Res.* 46:126-144.

Kim, J.S., H.H. Kornhuber, B. Holzmuller, W. Schmid-Burgk, T. Mergner, and G. Krzepinski. 1980. Reduction of cerebrospinal fluid glutamic acid in Huntington's chorea and in schizophrenic patients. *Arch Psychiatr Nervenkr*. 228:7-10.

- Kim, S., H. Fyrst, and J. Saba. 2000. Accumulation of phosphorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae. *Genetics*. 156:1519-1529.
- Knodler, A., G. Konrad, and P. Mayinger. 2008. Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate. *BMC Mol Biol*. 9:16.
- Koch, J., S. Gartner, C.M. Li, L.E. Quintern, K. Bernardo, O. Levran, D. Schnabel, R.J. Desnick, E.H. Schuchman, and K. Sandhoff. 1996. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification Of the first molecular lesion causing Farber disease. *J Biol Chem.* 271:33110-33115.
- Kohrer, K., and H. Domdey. 1991. Preparation of high molecular weight RNA. *Methods Enzymol.* 194:398-405.
- Kornhuber, J., A. Medlin, S. Bleich, V. Jendrossek, A.W. Henkel, J. Wiltfang, and E. Gulbins. 2005. High activity of acid sphingomyelinase in major depression. *J Neural Transm.* 112:1583-1590.
- Kornhuber, J., M. Muehlbacher, S. Trapp, S. Pechmann, A. Friedl, M. Reichel, C.
 Muhle, L. Terfloth, T.W. Groemer, G.M. Spitzer, K.R. Liedl, E. Gulbins, and P.
 Tripal. 2011. Identification of novel functional inhibitors of acid sphingomyelinase. *PLoS One*. 6:e23852.

- Kornhuber, J., M. Reichel, P. Tripal, T.W. Groemer, A.W. Henkel, C. Muhle, and E. Gulbins. 2009. The role of ceramide in major depressive disorder. *Eur Arch Psychiatry Clin Neurosci*. 259 Suppl 2:S199-204.
- Kornhuber, J., P. Tripal, M. Reichel, L. Terfloth, S. Bleich, J. Wiltfang, and E. Gulbins.
 2008. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. *J Med Chem*. 51:219-237.
- Krut, O., K. Wiegmann, H. Kashkar, B. Yazdanpanah, and M. Kronke. 2006. Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a Ctail-anchored protein. *J Biol Chem*. 281:13784-13793.
- Kubicki, M., R.W. McCarley, and M.E. Shenton. 2005. Evidence for white matter abnormalities in schizophrenia. *Curr Opin Psychiatry*. 18:121-134.
- Kumagai, K., S. Yasuda, K. Okemoto, M. Nishijima, S. Kobayashi, and K. Hanada. 2005. CERT mediates intermembrane transfer of various molecular species of ceramides. *J Biol Chem*. 280:6488-6495.
- Lester, R.L., and R.C. Dickson. 2001. High-performance liquid chromatography analysis of molecular species of sphingolipid-related long chain bases and long chain base phosphates in Saccharomyces cerevisiae after derivatization with 6aminoquinolyl-N-hydroxysuccinimidyl carbamate. *Anal Biochem*. 298:283-292.
- Levy, M., and A.H. Futerman. 2010. Mammalian ceramide synthases. *IUBMB Life*. 62:347-356.
- Lewis, C.M., D.F. Levinson, L.H. Wise, L.E. DeLisi, R.E. Straub, I. Hovatta, N.M. Williams, S.G. Schwab, A.E. Pulver, S.V. Faraone, L.M. Brzustowicz, C.A. Kaufmann, D.L. Garver, H.M. Gurling, E. Lindholm, H. Coon, H.W. Moises, W.

Byerley, S.H. Shaw, A. Mesen, R. Sherrington, F.A. O'Neill, D. Walsh, K.S.
Kendler, J. Ekelund, T. Paunio, J. Lonnqvist, L. Peltonen, M.C. O'Donovan, M.J.
Owen, D.B. Wildenauer, W. Maier, G. Nestadt, J.L. Blouin, S.E. Antonarakis, B.J.
Mowry, J.M. Silverman, R.R. Crowe, C.R. Cloninger, M.T. Tsuang, D. Malaspina,
J.M. Harkavy-Friedman, D.M. Svrakic, A.S. Bassett, J. Holcomb, G. Kalsi, A.
McQuillin, J. Brynjolfson, T. Sigmundsson, H. Petursson, E. Jazin, T. Zoega, and
T. Helgason. 2003. Genome scan meta-analysis of schizophrenia and bipolar
disorder, part II: Schizophrenia. *Am J Hum Genet*. 73:34-48.

- Lewis, D.A., T. Hashimoto, and D.W. Volk. 2005. Cortical inhibitory neurons and schizophrenia. *Nat Rev Neurosci*. 6:312-324.
- Liddle, P.F. 1987. Schizophrenic syndromes, cognitive performance and neurological dysfunction. *Psychol Med*. 17:49-57.
- Lin, A., G. Kenis, S. Bignotti, G.J. Tura, R. De Jong, E. Bosmans, R. Pioli, C. Altamura,
 S. Scharpe, and M. Maes. 1998. The inflammatory response system in
 treatment-resistant schizophrenia: increased serum interleukin-6. *Schizophr Res*.
 32:9-15.
- Liu, K., X. Zhang, C. Sumanasekera, R.L. Lester, and R.C. Dickson. 2005. Signalling functions for sphingolipid long-chain bases in Saccharomyces cerevisiae. *Biochem Soc Trans.* 33:1170-1173.
- Liu, M., C. Huang, S.R. Polu, R. Schneiter, and A. Chang. 2012. Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast. *J Cell Sci*. 125:2428-2435.
- Loesche, J., and O. Steward. 1977. Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: recovery of alternation performance following unilateral entorhinal cortex lesions. *Brain Res Bull*. 2:31-39.
- Loewen, C.J., M.L. Gaspar, S.A. Jesch, C. Delon, N.T. Ktistakis, S.A. Henry, and T.P. Levine. 2004. Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. *Science*. 304:1644-1647.
- Lowther, J., J.H. Naismith, T.M. Dunn, and D.J. Campopiano. 2012. Structural, mechanistic and regulatory studies of serine palmitoyltransferase. *Biochem Soc Trans*. 40:547-554.
- Mao, C., R. Xu, Z.M. Szulc, A. Bielawska, S.H. Galadari, and L.M. Obeid. 2001. Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. *J Biol Chem*. 276:26577-26588.
- Mao, C., R. Xu, Z.M. Szulc, J. Bielawski, K.P. Becker, A. Bielawska, S.H. Galadari, W.
 Hu, and L.M. Obeid. 2003. Cloning and characterization of a mouse endoplasmic reticulum alkaline ceramidase: an enzyme that preferentially regulates metabolism of very long chain ceramides. *J Biol Chem*. 278:31184-31191.
- Mayinger, P. 2009. Regulation of Golgi function via phosphoinositide lipids. *Semin Cell Dev Biol*. 20:793-800.
- Mencarelli, C., and P. Martinez-Martinez. 2013. Ceramide function in the brain: when a slight tilt is enough. *Cell Mol Life Sci.* 70:181-203.
- Merikangas, K.R., and A. Kalaydjian. 2007. Magnitude and impact of comorbidity of mental disorders from epidemiologic surveys. *Curr Opin Psychiatry*. 20:353-358.

Meunier, H., G. Carraz, Y. Neunier, P. Eymard, and M. Aimard. 1963. [Pharmacodynamic properties of N-dipropylacetic acid]. *Therapie*. 18:435-438.

- Meyer zu Heringdorf, D., H. Lass, I. Kuchar, R. Alemany, Y. Guo, M. Schmidt, and K.H. Jakobs. 1999. Role of sphingosine kinase in Ca(2+) signalling by epidermal growth factor receptor. *FEBS Lett*. 461:217-222.
- Mitsutake, S., and Y. Igarashi. 2005. Calmodulin is involved in the Ca2+-dependent activation of ceramide kinase as a calcium sensor. *J Biol Chem*. 280:40436-40441.
- Mizugishi, K., T. Yamashita, A. Olivera, G.F. Miller, S. Spiegel, and R.L. Proia. 2005. Essential role for sphingosine kinases in neural and vascular development. *Mol Cell Biol*. 25:11113-11121.
- Mizutani, Y., A. Kihara, and Y. Igarashi. 2004. Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. *FEBS Lett.* 563:93-97.
- Mizutani, Y., A. Kihara, and Y. Igarashi. 2006. LASS3 (longevity assurance homologue
 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. *Biochem J.* 398:531-538.
- Modrak, D.E., D.V. Gold, and D.M. Goldenberg. 2006. Sphingolipid targets in cancer therapy. *Mol Cancer Ther*. 5:200-208.
- Monaghan, E., K. Gable, and T. Dunn. 2002. Mutations in the Lcb2p subunit of serine palmitoyltransferase eliminate the requirement for the TSC3 gene in Saccharomyces cerevisiae. *Yeast*. 19:659-670.

- Moore, A.N., A.W. Kampfl, X. Zhao, R.L. Hayes, and P.K. Dash. 1999a. Sphingosine-1phosphate induces apoptosis of cultured hippocampal neurons that requires protein phosphatases and activator protein-1 complexes. *Neuroscience*. 94:405-415.
- Moore, G.J., J.M. Bebchuk, J.K. Parrish, M.W. Faulk, C.L. Arfken, J. Strahl-Bevacqua, and H.K. Manji. 1999b. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. *Am J Psychiatry*. 156:1902-1908.
- Mora, A., G. Sabio, A.M. Risco, A. Cuenda, J.C. Alonso, G. Soler, and F. Centeno.
 2002. Lithium blocks the PKB and GSK3 dephosphorylation induced by ceramide through protein phosphatase-2A. *Cell Signal*. 14:557-562.
- Morell, P., and A.D. Toews. 1996. Schwann cells as targets for neurotoxicants. *Neurotoxicology*. 17:685-695.
- Mori, K., N. Ogawa, T. Kawahara, H. Yanagi, and T. Yura. 2000. mRNA splicingmediated C-terminal replacement of transcription factor Hac1p is required for efficient activation of the unfolded protein response. *Proc Natl Acad Sci U S A*. 97:4660-4665.
- Mousley, C.J., K. Tyeryar, K.E. Ile, G. Schaaf, R.L. Brost, C. Boone, X. Guan, M.R. Wenk, and V.A. Bankaitis. 2008. Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. *Mol Biol Cell*. 19:4785-4803.
- Muhle, C., M. Reichel, E. Gulbins, and J. Kornhuber. 2013. Sphingolipids in psychiatric disorders and pain syndromes. *Handb Exp Pharmacol*:431-456.

Muller, G., M. Ayoub, P. Storz, J. Rennecke, D. Fabbro, and K. Pfizenmaier. 1995. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. *Embo J.* 14:1961-1969.

- Nagiec, M.M., M. Skrzypek, E.E. Nagiec, R.L. Lester, and R.C. Dickson. 1998. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. *J Biol Chem*. 273:19437-19442.
- Narayan, S., S.R. Head, T.J. Gilmartin, B. Dean, and E.A. Thomas. 2009. Evidence for disruption of sphingolipid metabolism in schizophrenia. *J Neurosci Res*. 87:278-288.
- Narayan, S., K.E. Kass, and E.A. Thomas. 2007. Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain. *J Neurosci Res*. 85:757-765.
- Nica, A.F., C.C. Tsao, J.C. Watt, T. Jiffar, S. Kurinna, P. Jurasz, M. Konopleva, M. Andreeff, M.W. Radomski, and P.P. Ruvolo. 2008. Ceramide promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving caspase-8 and JNK. *Cell Cycle*. 7:3362-3370.
- Nikawa, J., M. Akiyoshi, S. Hirata, and T. Fukuda. 1996. Saccharomyces cerevisiae IRE2/HAC1 is involved in IRE1-mediated KAR2 expression. *Nucleic Acids Res*. 24:4222-4226.
- Nikawa, J., and S. Yamashita. 1992. IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. *Mol Microbiol*. 6:1441-1446.

- Noponen, M., M. Sanfilipo, K. Samanich, H. Ryer, G. Ko, B. Angrist, A. Wolkin, E. Duncan, and J. Rotrosen. 1993. Elevated PLA2 activity in schizophrenics and other psychiatric patients. *Biol Psychiatry*. 34:641-649.
- Nowak, M., P. Dziegiel, J. Madej, and M. Ugorski. 2013. Ceramide galactosyltransferase (UGT8) as a molecular marker of canine mammary tumor malignancy. *Folia Histochem Cytobiol*. 51:164-167.
- Obeid, L.M., C.M. Linardic, L.A. Karolak, and Y.A. Hannun. 1993. Programmed cell death induced by ceramide. *Science*. 259:1769-1771.
- Obeid, L.M., Y. Okamoto, and C. Mao. 2002. Yeast sphingolipids: metabolism and biology. *Biochim Biophys Acta*. 1585:163-171.
- Ogawa, C., A. Kihara, M. Gokoh, and Y. Igarashi. 2003. Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. *J Biol Chem*. 278:1268-1272.
- Ogretmen, B., B.J. Pettus, M.J. Rossi, R. Wood, J. Usta, Z. Szulc, A. Bielawska, L.M. Obeid, and Y.A. Hannun. 2002. Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. Role for endogenous ceramide in mediating the action of exogenous ceramide. *J Biol Chem.* 277:12960-12969.
- Oh, C.S., D.A. Toke, S. Mandala, and C.E. Martin. 1997. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. *J Biol Chem*. 272:17376-17384.

Ohno, Y., S. Suto, M. Yamanaka, Y. Mizutani, S. Mitsutake, Y. Igarashi, T. Sassa, and
A. Kihara. 2010. ELOVL1 production of C24 acyl-CoAs is linked to C24
sphingolipid synthesis. *Proc Natl Acad Sci U S A*. 107:18439-18444.

- Okada, T., T. Kajimoto, S. Jahangeer, and S. Nakamura. 2009. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. *Cell Signal*. 21:7-13.
- Olney, J.W., and N.B. Farber. 1995. Glutamate receptor dysfunction and schizophrenia. *Arch Gen Psychiatry*. 52:998-1007.
- Omae, F., M. Miyazaki, A. Enomoto, M. Suzuki, Y. Suzuki, and A. Suzuki. 2004. DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. *Biochem J*. 379:687-695.
- Ono, M., T. Kikusui, N. Sasaki, M. Ichikawa, Y. Mori, and K. Murakami-Murofushi. 2008. Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice. *Neuroscience*. 156:1103-1110.
- Pahl, H.L. 1999. Signal transduction from the endoplasmic reticulum to the cell nucleus. *Physiol Rev.* 79:683-701.
- Panwar, S.L., and W.S. Moye-Rowley. 2006. Long chain base tolerance in Saccharomyces cerevisiae is induced by retrograde signals from the mitochondria. *J Biol Chem*. 281:6376-6384.

Parthasarathy, R.N., J. Lakshmanan, M. Thangavel, R.S. Seelan, J.I. Stagner, A.J.
Janckila, R.E. Vadnal, M.F. Casanova, and L.K. Parthasarathy. 2013. Rat brain myo-inositol 3-phosphate synthase is a phosphoprotein. *Mol Cell Biochem*. 378:83-89.

Payet, L.A., L. Pineau, E.C. Snyder, J. Colas, A. Moussa, B. Vannier, J. Bigay, J.
Clarhaut, F. Becq, J.M. Berjeaud, C. Vandebrouck, and T. Ferreira. 2013.
Saturated fatty acids alter the late secretory pathway by modulating membrane properties. *Traffic*. 14:1228-1241.

- Perrotta, C., L. Bizzozero, D. Cazzato, S. Morlacchi, E. Assi, F. Simbari, Y. Zhang, E. Gulbins, M.T. Bassi, P. Rosa, and E. Clementi. 2010. Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. *J Biol Chem*. 285:40240-40251.
- Perry, R.J., and N.D. Ridgway. 2005. Molecular mechanisms and regulation of ceramide transport. *Biochim Biophys Acta*. 1734:220-234.
- Pewzner-Jung, Y., S. Ben-Dor, and A.H. Futerman. 2006. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. *J Biol Chem*. 281:25001-25005.
- Pitman, M.R., J.A. Powell, C. Coolen, P.A. Moretti, J.R. Zebol, D.H. Pham, J.W. Finnie,
 A.S. Don, L.M. Ebert, C.S. Bonder, B.L. Gliddon, and S.M. Pitson. 2015. A
 selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer
 properties. *Oncotarget*. 6:7065-7083.
- Pollack, S.J., J.R. Atack, M.R. Knowles, G. McAllister, C.I. Ragan, R. Baker, S.R.
 Fletcher, L.L. Iversen, and H.B. Broughton. 1994. Mechanism of inositol
 monophosphatase, the putative target of lithium therapy. *Proc Natl Acad Sci U S*A. 91:5766-5770.

- Ponizovsky, A.M., I. Modai, Y. Nechamkin, G. Barshtein, M.S. Ritsner, S. Yedgar, S. Lecht, and L.D. Bergelson. 2001. Phospholipid patterns of erythrocytes in schizophrenia: relationships to symptomatology. *Schizophr Res.* 52:121-126.
- Prince, M., V. Patel, S. Saxena, M. Maj, J. Maselko, M.R. Phillips, and A. Rahman. 2007. No health without mental health. *Lancet*. 370:859-877.
- Promlek, T., Y. Ishiwata-Kimata, M. Shido, M. Sakuramoto, K. Kohno, and Y. Kimata.
 2011. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. *Mol Biol Cell*. 22:3520-3532.
- Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, H. Guo, G. Jona, A.
 Breitkreutz, R. Sopko, R.R. McCartney, M.C. Schmidt, N. Rachidi, S.J. Lee, A.S.
 Mah, L. Meng, M.J. Stark, D.F. Stern, C. De Virgilio, M. Tyers, B. Andrews, M.
 Gerstein, B. Schweitzer, P.F. Predki, and M. Snyder. 2005. Global analysis of
 protein phosphorylation in yeast. *Nature*. 438:679-684.
- Pyne, S., D.R. Adams, and N.J. Pyne. 2016. Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. *Prog Lipid Res*. 62:93-106.
- Qin, J., E. Berdyshev, C. Poirer, N.B. Schwartz, and G. Dawson. 2012. Neutral sphingomyelinase 2 deficiency increases hyaluronan synthesis by up-regulation of Hyaluronan synthase 2 through decreased ceramide production and activation of Akt. *J Biol Chem*. 287:13620-13632.
- Rao, R.V., and D.E. Bredesen. 2004. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. *Curr Opin Cell Biol*. 16:653-662.

- Reeves, T.M., and D.C. Smith. 1987. Reinnervation of the dentate gyrus and recovery of alternation behavior following entorhinal cortex lesions. *Behav Neurosci*. 101:179-186.
- Roelants, F.M., D.K. Breslow, A. Muir, J.S. Weissman, and J. Thorner. 2011. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. *Proc Natl Acad Sci U S A*. 108:19222-19227.
- Ron, D., and P. Walter. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. *Nat Rev Mol Cell Biol*. 8:519-529.
- Rothermundt, M., U. Missler, V. Arolt, M. Peters, J. Leadbeater, M. Wiesmann, S. Rudolf, K.P. Wandinger, and H. Kirchner. 2001. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. *Mol Psychiatry*. 6:445-449.
- Saba, J.D., F. Nara, A. Bielawska, S. Garrett, and Y.A. Hannun. 1997. The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. *J Biol Chem*. 272:26087-26090.
- Samet, D., and Y. Barenholz. 1999. Characterization of acidic and neutral sphingomyelinase activities in crude extracts of HL-60 cells. *Chem Phys Lipids*. 102:65-77.
- Santana, P., L. Llanes, I. Hernandez, I. Gonzalez-Robayna, C. Tabraue, J. Gonzalez-Reyes, J. Quintana, F. Estevez, C.M. Ruiz de Galarreta, and L.F. Fanjul. 1996. Interleukin-1 beta stimulates sphingomyelin hydrolysis in cultured granulosa

cells: evidence for a regulatory role of ceramide on progesterone and prostaglandin biosynthesis. *Endocrinology*. 137:2480-2489.

- Santarelli, L., M. Saxe, C. Gross, A. Surget, F. Battaglia, S. Dulawa, N. Weisstaub, J. Lee, R. Duman, O. Arancio, C. Belzung, and R. Hen. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. *Science*. 301:805-809.
- Santiago, T.C., and C.B. Mamoun. 2003. Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. *J Biol Chem*. 278:38723-38730.
- Sawai, H., and Y.A. Hannun. 1999. Ceramide and sphingomyelinases in the regulation of stress responses. *Chem Phys Lipids*. 102:141-147.
- Sawai, H., Y. Okamoto, C. Luberto, C. Mao, A. Bielawska, N. Domae, and Y.A. Hannun.
 2000. Identification of ISC1 (YER019w) as inositol phosphosphingolipid
 phospholipase C in Saccharomyces cerevisiae. *J Biol Chem*. 275:39793-39798.
- Schmelzle, T., S.B. Helliwell, and M.N. Hall. 2002. Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. *Mol Cell Biol*. 22:1329-1339.
- Schmitt, A., K. Wilczek, K. Blennow, A. Maras, A. Jatzko, G. Petroianu, D.F. Braus, and
 W.F. Gattaz. 2004. Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. *Biol Psychiatry*. 56:41-45.
- Schorling, S., B. Vallee, W.P. Barz, H. Riezman, and D. Oesterhelt. 2001. Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. *Mol Biol Cell*. 12:3417-3427.

- Schulte, S., and W. Stoffel. 1993. Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression. *Proc Natl Acad Sci U S A*. 90:10265-10269.
- Schwarz, E., S. Prabakaran, P. Whitfield, H. Major, F.M. Leweke, D. Koethe, P.
 McKenna, and S. Bahn. 2008. High throughput lipidomic profiling of
 schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty
 acids, phosphatidylcholines, and ceramides. *J Proteome Res.* 7:4266-4277.
- Schwikowski, B., P. Uetz, and S. Fields. 2000. A network of protein-protein interactions in yeast. *Nat Biotechnol.* 18:1257-1261.
- Shaldubina, A., G. Agam, and R.H. Belmaker. 2001. The mechanism of lithium action:
 state of the art, ten years later. *Prog Neuropsychopharmacol Biol Psychiatry*.
 25:855-866.
- Shaldubina, A., R. Buccafusca, R.A. Johanson, G. Agam, R.H. Belmaker, G.T. Berry, and Y. Bersudsky. 2007. Behavioural phenotyping of sodium-myo-inositol cotransporter heterozygous knockout mice with reduced brain inositol. *Genes Brain Behav*. 6:253-259.
- Shaltiel, G., A. Shamir, J. Shapiro, D. Ding, E. Dalton, M. Bialer, A.J. Harwood, R.H. Belmaker, M.L. Greenberg, and G. Agam. 2004. Valproate decreases inositol biosynthesis. *Biol Psychiatry*. 56:868-874.
- Shao, L., L.T. Young, and J.F. Wang. 2005. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. *Biol Psychiatry*. 58:879-884.

- Shevchenko, A., and K. Simons. 2010. Lipidomics: coming to grips with lipid diversity. *Nat Rev Mol Cell Biol*. 11:593-598.
- Shinghal, R., R.H. Scheller, and S.M. Bajjalieh. 1993. Ceramide 1-phosphate phosphatase activity in brain. *J Neurochem*. 61:2279-2285.
- Sidrauski, C., J.S. Cox, and P. Walter. 1996. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. *Cell*. 87:405-413.
- Sims, K.J., S.D. Spassieva, E.O. Voit, and L.M. Obeid. 2004. Yeast sphingolipid metabolism: clues and connections. *Biochem Cell Biol*. 82:45-61.
- Smesny, S., C.E. Schmelzer, A. Hinder, A. Kohler, C. Schneider, M. Rudzok, U.
 Schmidt, B. Milleit, C. Milleit, I. Nenadic, H. Sauer, R.H. Neubert, and J.W. Fluhr.
 2013. Skin ceramide alterations in first-episode schizophrenia indicate abnormal sphingolipid metabolism. *Schizophr Bull*. 39:933-941.
- So, J., J.J. Warsh, and P.P. Li. 2007. Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. *Biol Psychiatry*. 62:141-147.
- Spiegel, S., and A.H. Merrill, Jr. 1996. Sphingolipid metabolism and cell growth regulation. *Faseb J*. 10:1388-1397.
- Sreenivas, A., M.J. Villa-Garcia, S.A. Henry, and G.M. Carman. 2001. Phosphorylation of the yeast phospholipid synthesis regulatory protein Opi1p by protein kinase C. *J Biol Chem*. 276:29915-29923.
- Sugiura, M., K. Kono, H. Liu, T. Shimizugawa, H. Minekura, S. Spiegel, and T. Kohama. 2002. Ceramide kinase, a novel lipid kinase. Molecular cloning and functional characterization. *J Biol Chem*. 277:23294-23300.

- Sultan, I., C.E. Senkal, S. Ponnusamy, J. Bielawski, Z. Szulc, A. Bielawska, Y.A. Hannun, and B. Ogretmen. 2006. Regulation of the sphingosine-recycling pathway for ceramide generation by oxidative stress, and its role in controlling c-Myc/Max function. *Biochem J*. 393:513-521.
- Suzuki, Y., M. Suzuki, E. Ito, N. Goto-Inoue, K. Miseki, J. Iida, Y. Yamazaki, M. Yamada, and A. Suzuki. 2006. Convenient structural analysis of glycosphingolipids using MALDI-QIT-TOF mass spectrometry with increased laser power and cooling gas flow. *J Biochem*. 139:771-777.
- Tabatadze, N., A. Savonenko, H. Song, V.V. Bandaru, M. Chu, and N.J. Haughey.
 2010. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid
 balance and spatial memory in mice. *J Neurosci Res*. 88:2940-2951.
- Tanabe, F., S.H. Cui, and M. Ito. 1998. Ceramide promotes calpain-mediated proteolysis of protein kinase C beta in murine polymorphonuclear leukocytes. *Biochem Biophys Res Commun*. 242:129-133.
- Tani, M., H. Iida, and M. Ito. 2003. O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. *J Biol Chem*. 278:10523-10530.
- Ternes, P., S. Franke, U. Zahringer, P. Sperling, and E. Heinz. 2002. Identification and characterization of a sphingolipid delta 4-desaturase family. *J Biol Chem*. 277:25512-25518.
- Tettamanti, G. 2004. Ganglioside/glycosphingolipid turnover: new concepts. *Glycoconj J*. 20:301-317.

- Tomiuk, S., K. Hofmann, M. Nix, M. Zumbansen, and W. Stoffel. 1998. Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? *Proc Natl Acad Sci U S A*. 95:3638-3643.
- Tong, A.H., and C. Boone. 2006. Synthetic genetic array analysis in Saccharomyces cerevisiae. *Methods Mol Biol*. 313:171-192.
- Tong, A.H., M. Evangelista, A.B. Parsons, H. Xu, G.D. Bader, N. Page, M. Robinson, S. Raghibizadeh, C.W. Hogue, H. Bussey, B. Andrews, M. Tyers, and C. Boone.
 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. *Science*. 294:2364-2368.
- Toro, C., and J.F. Deakin. 2005. NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. *Schizophr Res.* 80:323-330.
- Travers, K.J., C.K. Patil, L. Wodicka, D.J. Lockhart, J.S. Weissman, and P. Walter.
 2000. Functional and genomic analyses reveal an essential coordination
 between the unfolded protein response and ER-associated degradation. *Cell*.
 101:249-258.
- Vaden, D.L., D. Ding, B. Peterson, and M.L. Greenberg. 2001. Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. *J Biol Chem*. 276:15466-15471.
- Vallee, B., and H. Riezman. 2005. Lip1p: a novel subunit of acyl-CoA ceramide synthase. *Embo J.* 24:730-741.
- Van Brocklyn, J.R., and J.B. Williams. 2012. The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress

and the seesaw of cell survival and death. *Comp Biochem Physiol B Biochem Mol Biol.* 163:26-36.

- van Echten-Deckert, G., and T. Herget. 2006. Sphingolipid metabolism in neural cells. *Biochim Biophys Acta*. 1758:1978-1994.
- van Meer, G., and J.C. Holthuis. 2000. Sphingolipid transport in eukaryotic cells. *Biochim Biophys Acta*. 1486:145-170.
- van Meer, G., D.R. Voelker, and G.W. Feigenson. 2008. Membrane lipids: where they are and how they behave. *Nat Rev Mol Cell Biol*. 9:112-124.
- Velculescu, V.E., L. Zhang, W. Zhou, J. Vogelstein, M.A. Basrai, D.E. Bassett, Jr., P. Hieter, B. Vogelstein, and K.W. Kinzler. 1997. Characterization of the yeast transcriptome. *Cell*. 88:243-251.
- Veret, J., N. Coant, I.A. Gorshkova, P. Giussani, M. Fradet, E. Riccitelli, A. Skobeleva, J. Goya, N. Kassis, V. Natarajan, B. Portha, E.V. Berdyshev, and H. Le Stunff.
 2013. Role of palmitate-induced sphingoid base-1-phosphate biosynthesis in INS-1 beta-cell survival. *Biochim Biophys Acta*. 1831:251-262.
- Verheij, M., R. Bose, X.H. Lin, B. Yao, W.D. Jarvis, S. Grant, M.J. Birrer, E. Szabo, L.I.
 Zon, J.M. Kyriakis, A. Haimovitz-Friedman, Z. Fuks, and R.N. Kolesnick. 1996.
 Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. *Nature*. 380:75-79.

Villa-Garcia, M.J., M.S. Choi, F.I. Hinz, M.L. Gaspar, S.A. Jesch, and S.A. Henry. 2011. Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling. *Mol Genet Genomics*. 285:125-149.

- Wallis, C.J., S.M. Rezazadeh, and H. Lal. 1995. GM1 ganglioside reduces ethanol intoxication and the development of ethanol dependence. *Alcohol.* 12:573-580.
- Watkins, B.A., Y. Li, and M.F. Seifert. 2001. Lipids as modulators of bone remodelling. *Curr Opin Clin Nutr Metab Care*. 4:105-110.
- Weinberger, D.R. 1987. Implications of normal brain development for the pathogenesis of schizophrenia. *Arch Gen Psychiatry*. 44:660-669.
- Weissman, M.M., V. Warner, K. John, B.A. Prusoff, K.R. Merikangas, P.
 Wickramaratne, and G.D. Gammon. 1988. Delusional depression and bipolar spectrum: evidence for a possible association from a family study of children.
 Neuropsychopharmacology. 1:257-264.
- Westwick, J.K., A.E. Bielawska, G. Dbaibo, Y.A. Hannun, and D.A. Brenner. 1995.
 Ceramide activates the stress-activated protein kinases. *J Biol Chem*.
 270:22689-22692.
- Williams, R.S., L. Cheng, A.W. Mudge, and A.J. Harwood. 2002. A common mechanism of action for three mood-stabilizing drugs. *Nature*. 417:292-295.
- Wolff, R.A., R.T. Dobrowsky, A. Bielawska, L.M. Obeid, and Y.A. Hannun. 1994. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. *J Biol Chem*. 269:19605-19609.
- Wu, J., G.H. Hansen, A. Nilsson, and R.D. Duan. 2005. Functional studies of human intestinal alkaline sphingomyelinase by deglycosylation and mutagenesis. *Biochem J.* 386:153-160.

- Wu, W.I., V.M. McDonough, J.T. Nickels, Jr., J. Ko, A.S. Fischl, T.R. Vales, A.H. Merrill,
 Jr., and G.M. Carman. 1995. Regulation of lipid biosynthesis in Saccharomyces
 cerevisiae by fumonisin B1. *J Biol Chem*. 270:13171-13178.
- Yao, X., X. Ma, and Z. Zhang. 2000. [The repairment of the condylar cartilage defect by transplantation of chondrocytes embedded in the collagen membrane]. *Zhonghua Kou Qiang Yi Xue Za Zhi*. 35:138-141.
- Ye, C., and M.L. Greenberg. 2015. Inositol synthesis regulates the activation of GSK-3alpha in neuronal cells. *J Neurochem*. 133:273-283.
- Zhang, H., D. Li, Y. Su, S. Jiang, Y. Xu, K. Jiang, and D. Cui. 2012. Identification of the N-acylsphingosine amidohydrolase 1 gene (ASAH1) for susceptibility to schizophrenia in a Han Chinese population. *World J Biol Psychiatry*. 13:106-113.
- Zhang, X., M.S. Skrzypek, R.L. Lester, and R.C. Dickson. 2001. Elevation of endogenous sphingolipid long-chain base phosphates kills Saccharomyces cerevisiae cells. *Curr Genet*. 40:221-233.
- Zhang, Y., B. Yao, S. Delikat, S. Bayoumy, X.H. Lin, S. Basu, M. McGinley, P.Y. Chan-Hui, H. Lichenstein, and R. Kolesnick. 1997. Kinase suppressor of Ras is ceramide-activated protein kinase. *Cell*. 89:63-72.

ABSTRACT

GENOME WIDE ANALYSIS IDENTIFIES SPHINGOLIPID METABOLISM AS A NEW TARGET OF VALPROIC ACID

by

SHYAMALAGAURI JADHAV

August 2016

Advisor: Dr. Miriam L. Greenberg

Major: Biological Sciences

Degree: Doctor of Philosophy

Bipolar disorder (BD), which is characterized by depression and mania, affects about 1% of the total world population. Current treatments are effective in only 40-60% of cases and cause severe side effects. Valproic acid (VPA), a branched short-chain fatty acid, is one of the most widely used drugs for the treatment of BD. Although many hypotheses have been postulated to explain the molecular mechanism of action of this drug in BD, the therapeutic mechanism is not understood. This knowledge gap has hampered the development of new drugs to treat this disorder. To identify candidate pathways affected by VPA, I performed a genome wide expression analysis in yeast cells grown in the presence or absence of the drug. Many genes and pathways showed altered expression in response to VPA. Among these, sphingolipid metabolism genes showed altered expression in response to both chronic and acute VPA treatment.

Chronic VPA caused upregulation of *FEN1* and *SUR4*, encoding fatty acid elongases that catalyze the synthesis of very long chain fatty acids (C24 to C26) required for the synthesis of ceramide. Interestingly, *fen1* Δ and *sur4* Δ mutants exhibited

VPA sensitivity. Consistent with this, VPA increased levels of ceramides, especially those that contain C24 and C26 fatty acids. As expected with an increase in ceramide, VPA decreased the expression of amino acid transporters, increased the expression of ER chaperones, and activated the unfolded protein response element (UPRE), suggesting that VPA induces the UPR pathway. These effects are rescued by supplementation of inositol and are similarly observed in inositol-starved *ino1* Δ cells. Starvation of *ino1* Δ cells increased expression of *FEN1* and *SUR4*, increased ceramide levels, decreased expression of nutrient transporters, and induced the UPR. These findings suggest that VPA-mediated inositol depletion induces the UPR by increasing the *de novo* synthesis of ceramide.

In response to acute VPA, the gene that exhibited the highest upregulation was *RSB1*, which encodes a transporter of the long chain bases (LCBs) dihydrosphingosine (DHS) and phytosphingosine (PHS). In addition to increased mRNA, acute VPA increased Rsb1 protein levels. The *rsb1* Δ mutant exhibited increased sensitivity to PHS in the presence of VPA, suggesting that VPA increases PHS levels. Consistent with this, acute VPA increased PHS levels, especially in *rsb1* Δ cells. LCBs are precursors of ceramide synthesis, which begins in the endoplasmic reticulum by the conversion of palmitoyl-CoA to PHS or DHS. These intermediates are converted to ceramide via ceramide synthase by addition of a fatty acid synthesized by the fatty acid elongation pathway. Orm proteins are negative regulators of de novo synthesis of PHS, which was shown to function as a signaling molecule. My findings indicate that acute VPA downregulates *ORM* and fatty acid elongases *FEN1* and *SUR4*. This leads to increased PHS levels and increased expression of *RSB1* as well as genes that transport and

261

metabolize PHS, including YOR1 and DPL1. Inositol starvation of the *ino*1 Δ mutant for 30 minutes increased expression of *RSB*1 and *YOR*1 and decreased expression of *FEN*1, *SUR4*, *ORM*1, and *ORM*2. This study shows for the first time that acute VPA-mediated inositol depletion increases levels of PHS.

In summary, I identified sphingolipid metabolism as a new target of VPA. My studies showed that VPA exerts inositol depletion-mediated differential effects on sphingolipid species. Chronic VPA increases ceramide levels and induces the UPR pathway, whereas, acute VPA increases the levels of PHS. These findings suggest that sphingolipid metabolism is a potential target of VPA that could be important for the therapeutic action of this drug.

AUTOBIOGRAPHICAL STATEMENT

SHYAMALAGAURI JADHAV

EDUCATION:

- 2009-2016: Ph.D. in Biology, Wayne State University, Detroit, USA
- 2006-2008: M.S in Life Sciences, Sophia College, University of Mumbai, Mumbai, India

2003-2006: B.S in Microbiology, Ramnarain Ruia College, University of Mumbai, Mumbai, India

HONORS AND AWARDS:

ASBMB 2016 Graduate/Postdoctoral Travel Award, 2016

Best poster (Second place), Biological Sciences Departmental retreat, WSU, 2015

Outstanding Graduate Research Assistant award, WSU, 2015

WSU Graduate Student Professional Travel Award, 2015

Best poster (Third place), 5th Annual Graduate School Research day, WSU, 2014

WSU Graduate Student Professional Travel Award, 2014

PUBLICATIONS:

Jadhav S and Greenberg M. L 2014, Harnessing the power of yeast to elucidate the role of sphingolipids in metabolic and signaling processes pertinent to psychiatric disorders. Clinical Lipidology, Vol. 9, No. 5, Pages 533-551.

Jadhav S, Russo S, Cowart A, Greenberg ML, Valproic acid increases levels of ceramide inducing unfolded protein response (In preparation).

Jadhav S, Russo S, Cowart A, Greenberg ML, Acute valproic acid increases the de novo synthesis of long chain bases in yeast (In preparation).

263