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Abstract. On thinking quantitatively of complex diseases, there are at least 

three statistical strategies for association study: single SNP on single trait, 

gene-or region (with multiple SNPs) on single trait and on multiple traits. The 



third of which is the most general in dissecting the genetic mechanism 

underlying complex diseases underpinning multiple quantitative traits. 

Gene-or region association methods based on partial least square (PLS) 

approaches have been shown to have apparent power advantage. However, 

few attempts are developed for multiple quantitative phenotypes or traits 

underlying a condition or disease, and the performance of various PLS 

approaches used in association study for multiple quantitative traits had not 

been assessed. We, from regression perspective, exploit association between 

multiple SNPs and multiple phenotypes or traits through exhaustive scan 

statistics (sliding window) using PLS and sparse PLS (SPLS) regression. 

Simulations are conducted to assess the performance of the proposed scan 

statistics and compare them with the existed method. The proposed methods 

are applied to 12 regions of GWAS data from the European Prospective 

Investigation of Cancer (EPIC)-Norfolk study. 

 

The well-documented successes (Stranger et al. 2011) in genome-wide 

association studies (GWASs) have greatly improved our understanding of the 

genetic architecture of complex traits. However, a notable issue with GWAS 

using case-control design, though discussed extensively in the literature, still 

needs to be addressed (Zhang and Liu 2007; Gayan et al. 2008). Such a design 



is usually furnished through division of a particular quantitative phenotype 

into case and control groups with a cutoff that may or may not relate to the 

underlying genetic variation. The issue stems from incomplete penetrance 

commonly seen in complex traits such that individuals not showing any 

symptoms selected as controls are not far from being cases. A number of 

examples can be given. The first of these is diabetes, where an individual can 

be defined as being diabetic (case) when the fasting plasma glucose is≥ 7 

mmol/L or non-diabetic (control) otherwise (Rowe et al. 2000). In this case, 

many of the so-called ‘controls’ can almost be cases phenotypically and 

genetically (say fast plasma glucose=6.8mmol/L). It is apparent that assigning 

an artificial cutoff to a continuous trait runs a risk of information loss, for the 

phenotypically similar individuals on either side of the cutoff are treated as 

being phenotypically different. In general, phenotypes of most complex 

diseases (obesity, hypertension, diabetes, etc.) are effectively quantitative. It is 

important to appreciate this point for which we will dwell on a bit more. First, 

it should be noted that quantitative traits sometimes can only be acquired 

through collection of a large sample from the population and that a 

well-designed case-control study can achieve comparable statistical power 

with smaller sample size when variances in the cases and controls differ 

greatly. Second, in the framework of treating common disorders as 



quantitative traits (Plomin et al. 2009), a complex disease is due to multiple 

genes with small effects, gene-gene and gene-environment interactions, Third, 

there may be obvious quantitative traits for some diseases as in the cases of 

body mass index (BMI)-obesity, blood pressure- hypertension, and 

mood-depression relationships, but the relevant quantitative traits may not be 

entirely clear for others in the cases of arthritis, autism, cancers, dementia and 

heart disease due to limited availability of biomarkers. As for obesity, BMI is 

understood to be merely a proxy since it crudely measures the mean body 

weight under given body surface area and varies with the amount of body fat 

but not its distribution. It has been shown that people with abdominal fat (with 

more weight around the waist) face more risks of cardiovascular diseases 

(Donahue and Abbott 1987; Ducimetiere et al. 1986) and other related 

diseases (hypertension, type 2 diabetes, and high cholesterol) than those with 

more fat around the hip (Bjorntorp 1988; Yusuf et al. 2005; Wells 2007), 

suggesting that a single measurement (BMI) may be ineffective marker of 

disease (obesity). 

 The consideration for quantitative trait(s) can lead to three statistical 

strategies for SNP-trait association: namely single SNP-single trait, 

gene/region (with multiple SNPs)-single trait, and gene/region-multiple traits. 

Among these, the first strategy is most susceptible to high false positive rate 



and low power in detecting modest effects owing to the ignorance of the 

linkage disequilibrium (LD) (Beyene et al. 2009; Buil et al. 2009). The second 

strategy, though may alleviate the problems of multiple testing and facilitate 

stable results and interpretation (Lo et al. 2008; Qiao et al. 2009), fails to 

account for multiple quantitative traits. The last strategy is most general and 

deserves more attention. 

 Many gene- and region-based association tests have been developed, 

which include but do not limit to haplotype-based (Tregouet et al. 2009), 

P-value or odds ratio combination (Yang et al. 2009; Li et al. 2009), 

PCA-based (Peng et al. 2010), scan statistic (sliding window) (Sun et al. 2009; 

Hoh et al. 2000) and partial least squares (PLS)-based methods (Zhang et al. 

2011; Turkmen et al. 2011; Chun et al. 2011; Xue et al. 2012). Among these, 

PLS-based methods have been shown to have apparent advantage in statistical 

power over others. Zhang et al. (2011) proposed a PLS regression-based 

multilocus association study for single quantitative traits, considering only the 

first component in their simulations. Turkmen and Lin (2011) considered 

methods to aggregate the signals of many SNPs within a gene for possible 

genetic effects from rare variants. As association may be contaminated by 

irrelevant markers in a gene or a region, Chun et al. (2011) considered sparse 

PLS (SPLS) regression for dimension reduction and derivation of components 



that are linear combinations of only relevant markers. Furthermore, Xue et al. 

(2012) introduced a partial least squares path modeling (PLSPM) framework 

for association between single or multiple SNPs and a latent trait that can 

involve single or multiple correlated phenotype(s), which naturally provides 

estimators of polygenic effect by appropriately weighting trait-attributing 

alleles. However, few attempts were made for multiple quantitative 

phenotypes or traits underlying a disease, and performances of various PLS 

approaches used in association study for multiple quantitative traits have not 

been assessed. Much work needs to be done in this respect since the final 

result may vary greatly with the way to summarize the association on a gene 

level involving multiple markers and the approach to consider multiple 

phenotypes and their correlation structure to achieve efficiency and validity. 

 We therefore exploited association between multiple SNPs and multiple 

phenotypes via exhaustive scan statistics (sliding window) using PLS and 

SPLS regressions, Simulations were conducted to assess the performance of 

the newly proposed scan statistics and compare them with existing PLSPM 

method (Xue. et al. 2012). The methods were then applied to 12 regions of 

GWAS data from the European Prospective Investigation of Cancer 

(EPIC)-Norfolk study (Loos et al. 2008). 

 



Material and Methods 

Study Samples. The EPIC-Norfolk study was a population-based, ethnically 

homogeneous, white Europe cohort study of 25,631 residents living in the city 

of Norwich, United Kingdom, and its surrounding area. Participants were 

39-79 years old during the baseline health check between 1993 and 1997. A 

case-cohort study was conducted in which 3867 individuals were assayed with 

Affymetrix 500K genechips among whom subcohort (N=2,566) was a random 

sample of the study cohort at baseline and cases were part of the remaining 

individuals with BMI bigger than 30 kg/m2 (N=1,301). We analyzed the 2,417 

individuals in the subcohort who passed the quality control and had complete 

genotype data for 446,861 SNPs on the whole genome. 

 

The Modeling Framework. We used the exhaustive scan statistics based on 

PLS and SPLS regressions for multiple phenotypes (Figure 1). A major 

concern over the sliding window approach related to how to determine the 

optimal window size. A large window may include too many non-informative 

markers while a small window may miss those which are informative, both 

reducing statistical power. We here employed a brute-force search strategy 

with variable window sizes to alleviate this problem, which is likely to be 

feasible with a multiprocessor and multithreading computing environment. 



Specifically, the strategy started with a pre-set largest window size L and was 

followed by exhausting search of the candidate region from the first SNP with 

sliding-window of all possible sizes s ranging from 1 to L. For a given window 

size (rectangle in Figure 1), a PLS or SPLS regression was used to detect 

association. 

 Cross validation was used to tune the number of latent components in PLS 

regression and the two parameters in SPLS regression (the number of latent 

components and the sparsity). Unlike the traditional multivariate hypothesis 

testing, the statistic obtained from PLS and SPLS regression does not follow 

Wilks’ lamda distribution since the latent component was derived from 

multiple phenotype information and therefore permutation test was used to 

assess the statistical significance by comparing the observed statistic to its 

empirical distribution generated from 5,000 permutations with permuted 

phenotypes. For each permuted data, we used the same number of components 

from the original data for both PLS and SPLS regressions, but different 

sparsity parameter tuned from the permuted data for SPLS (Chun et al. 2011). 

 

Simulation 

Design. Simulation was conducted as follows: (1) HapMap phase II CEU data 

at the brain-derived neurotrophic factor (BDNF) region (Chr 



11:27633610..27692970 with 31 SNPs) was chosen to generate simulated 

genotypes. The pair-wise r2 are shown in Figure 2. (2) From (1), 500,000 

individuals were generated via software gs 2.0 (Li and Chen 2008) with the 

10th SNP (minor allele frequency, MAF=36.7%) being the causal variant; (3) 

Multiple quantitative traits data was generated from a 

trivariate 1 2 3( , ,Y Y Y Y= ）normal distribution ),(~ ΣµNY , where the three 

variables formed the random vector (waist, hip, BMI) for ‘‘apple-shaped’’ 

types ( 355N = ) in EPIC-Norfolk GWAS subcohort with sample mean 

(105.2746,106.0051,29.2172Y = ）and sample covariance 

52.1991 36.8688 16.9545
36.8688 37.1419 13.7969
16.9545 13.7969 8.3859

S
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠  

For the case that the causal SNP had no effect ( 0H ), let 

(105.2746,106.0051,29.2172µ = ） to be invariant with all three genotypes (GG, 

GA, and AA), while for 1H , the causal SNP was assumed to have effects on 

waist but not hip with the single allele effect size on BMIδ , 

(105.2746,106.0051,29.2172 iµ δ= + ）, where 0,1,2i = for GG, GA and AA, 

respectively. The range of (0.10,0.15,0.20,0.25,0.30δ = ）was estimated by 

published data on genetic predisposition score (Li et al. 2010). Using the same 

‘‘apple-shaped’’data in the EPIC-Norfolk GWAS, estimation of waist under 

fixed hip was obtained by 



ˆ 10.20345 0.62138 0.99947waist hip BMI= + ⋅ + ⋅ ( 0.0001p < , 2 0.7635R = ); (4) 

Genotypic data were simulated under variable sample sizes 

( 500,1000,1500,2000,2500N = ) from the simulated CEU population 

(500000 individuals), and quantitative genetics models with a 

givenδ genereted by the R mvtnorm package. The window size was set to10 

SNPs from the 7th to the 16th SNP. Meanwhile, simulations with the 10th 

SNP and the 19th SNP (minor allele frequency, MAF=35%) being the causal 

variants have also been conducted, where one SNP have effect on waist and 

another have same effect on BMI. 1000 simulations were conducted under 

various sample sizes and various single allele effect sizesδ to assess the type I 

error and power. 

 To further investigate the performance of the proposed method on 

different LD structures in a gene or region, we also chose another two regions 

from FTO gene in the simulation, one in high LD (Figure 3a) and the other in 

low LD (Figure 3b) while keeping the window size and the MAF of the causal 

SNP (30% for high LD, 35.8% for low LD) nearly the same as above. 

Moreover, we removed the causal SNP to be in line with the more practically 

indirect association in all simulations. All procedures were implemented under 

Linux and involved R plspm, pls, spls and mvtnorm packages all available 

from CRAN (http://cran.r-project.org/). 



 

Type I Error. Results from the simulation under the null hypothesis are 

shown in Table 1, indicating that type I error rates of PLSPM, PLS1 (only 

capturing the first component in PLS regression), PLS and SPLS were close to 

given nominal values ( 0.05α = ) given different sample sizes. 

 

Power. Shown in Figure 4 are the statistical power under four different 

scenarios, regarding under different sample sizes at a given effect 

size 0.25δ = (4a), under different effect sizes but a fixed sample size 2,000 

(4b), with two causal SNPs (4c,d). As expected, the power was monotonically 

increasing functions of sample size and effect size for all the models. For a 

given sample size and a given effect size, PLS and SPLS regressions had 

comparable power while power for PLS1 regression, though higher than 

PLSPM, was not as high since it only extracted the first component. Table 2 

gives results involving both high and low LD under a fixed sample size of 

1,000 and an effect size of 0.25. SPLS and PLS generally had comparable 

power which were higher than other methods when there was high LD but all 

methods lost power when there was low LD. Besides, simulations given 

different correlation structures of phenotypes and causal SNP with lower MAF 

(8th SNP, MAF=17%) were considered and shown to have similar results 



(data not shown), though the power for each method was not quite high owing 

to the lower MAF of causal SNP. 

 

Computational Efficiency. The success of a GWAS requires computational 

efficiency and feasibility. Different PLS-based methods had different 

theoretical basis, and the computing time can be influenced by many factors 

such as numerical algorithm, sample size, window size, coding language and 

number of permutations required. Taking our multiprocessor and 

multithreading computational cluster as an example, 100 jobs can be submitted 

at a time (10 nodes and each with 10 concurrent processes). For a typical 

500,000 SNP GWAS and a fixed window size, nearly 500,000 scan statistics 

only required 5,000 times. Table 3 provides the estimated computing time in 

hours for a typical whole genome scan under a window size of 10 and 1,000 

permutations, with each node as Intel Xeon 5620 with 2.4GHz CPU and 16 

GB RAM. 

 

Application 

We employed both the proposed exhaustive scan statistics and the existing 

PLSPM to the EPIC-Norfolk data involving 12 genomic regions (NEGR1, 

SEC16B, TMEM18, ETV15, GNPDA2, BDNF, MTCH2, SH2B1, FAIM2, FTO, 



MC4R, KCTD15) and three obesity-related phenotypes waist, hip and BMI 

with sliding windows sized between 1 and 12 SNPs, 1000000 permutations 

were conducted to obtain the empirical p value. The proposed method for the 

single trait was also used for comparisons. 

 One region rs7204609~rs9939881 at the first intron of FTO gene was 

found to have strong association ( 62.86 10p −= × , window size=10) by the PLS 

regression with the three correlated traits (waist, hip, BMI) as response 

variables, compared to 43.8 10p −= × for waist, 31.1 10p −= × for hip and 

47.6 10p −= × for BMI as single traits. For this region, the results for SPLS 

were 51.2 10p −= × for three multiple traits, 0.55p = , 0.276,0.214 for waist, hip 

and BMI respectively. In contrast the results by PLSPM was 58 10p −= × for 

three multiple traits, 0.1p = , 0.283,0.5 for waist, hip and BMI respectively. 

 

Discussion 

Under the hypothesis of thinking quantitatively (Plomin et al. 2009), we have 

considered a general framework for association study on quantitative 

phenotype, which includes single SNP on single trait, gene or region (each can 

involve multiple SNPs) on single trait, and gene or region on multiple traits as 

the most reasonable in underlying genetic mechanism involving multiple 

quantitative phenotypes for complex diseases. We exploited the association 



through exhaustive scan statistics using PLS and SPLS, and compared the 

performances of various PLS-based approaches. Simulations based on real 

data from the EPIC-Norfolk study indicated that, under a variety of scenarios 

SPLS and PLS had comparable power higher than other methods when there 

was high or moderate LD, while all methods lost power when the LD was low. 

Furthermore, the power for PLS1 regression was not so high because it only 

extracted the first component and it was still more powerful than PLSPM. Xue 

et al. (2012) showed in their simulation that the PLSPM had good power when 

the causal SNP had not been removed, while the causal SNP had been 

removed in our simulation which is a more practical scenario involving 

indirect association between the traits and a genomic region. Similar PLSPM 

results were obtained if the causal SNP was kept (results not shown). 

 The computational efficiency and feasibility of an implementation were 

function of the numerical algorithm, sample size, window size, the coding 

language and the number of permutations required. We only provided 

estimates for computing time under a fixed window size and 1,000 

permutations (the threshold being 31 10p −= × ) in R. In a real-world GWAS, 

given that only a few genes or regions may be related to the traits in question, 

one can first use a somewhat lower threshold (e.g. 31 10−× ) to screen potential 

trait-related genes or regions, to be followed by a higher threshold (e.g. 51 10−× ) 



for further analysis on all genes or regions screened. SPLS essentially embeds 

variable selection into the PLS regression and would be preferred in order to 

alleviate the influence from unrelated variants when the region contains many 

variants, notwithstanding its highest computational burden among all the 

methods. 

 Analysis of the EPIC-Norfolk data suggested that the scan statistics for 

multiple quantitative traits were more powerful than those for single trait with 

the window size 10 providing the strongest evidence and in agreement with 

the literature regarding the optimality of 10-SNP window (Tregouet et al. 

2009). In particular, the region (rs7204609~rs9939811) detected within the 

first intron 1 of FTO gene was also identified earlier (Xue et al. 2012). 

 In conclusion, PLS and SPLS are valid and powerful gene-or region-based 

association method for multiple quantitative phenotypes. However, how to 

obtain its theoretical distribution rigorously remains a challenge for which 

further work is warranted. 
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Figure 1. Modeling framework of PLS or SPLS regression-based exhaustive 

scan statistics. Rectangle represents a fixed window size. 

 

 

Figure 2. Pair-wise r2 pattern among the 31 SNPs in the selected region. 

 



 

Figure 3. LD patterns for two regions in the FTO gene. (a) region in high LD. 

(b) region in low LD. 



 

 

 

Figure 4. Power of PLSPM, PLS1, PLS and SPLS under four scenarios. (a) 

power under different sample sizes but a given effect size of 0.25δ = for one 

causal SNP. (b) power under different effect sizes but a fixed sample size of 

2,000 for one causal SNP. (c) power under different sample sizes but a given 

effect size of 0.25δ = for two causal SNPs. (d) power under different effect 

sizes but a fixed sample size of 2,000 for two causal SNPs 



 

Table 1. Type I error as a function of sample size ( 0.05α = ) 

Sample size PLSPM PLS1 PLS SPLS 

500 0.058 0.058 0.046 0.061 

1000 0.046 0.060 0.044 0.046 

1500 0.046 0.062 0.048 0.054 

2000 0.050 0.048 0.054 0.058 

2500 0.044 0.060 0.054 0.060 

 

Table 2. Power in relation to LD for given a sample size of 1,000 and an effect 

size of 0.25 

 PLSPM PLS1 PLS SPLS 

High LD region  0.178 0.112 0.532                0.558 

Low LD region 0.070 0.058 0.074 0.064 

 

Table 3. Estimated computing time (hours) for a whole genome scan for a 

fixed window size of 10 and 1,000 permutations 

Sample size PLSPM PLS1 PLS SPLS 

500 20 12.5 15 240 

1,000 40 30 55 421 



1,500 81 70 90 680 

2,000 165 160 176 840 

2,500 260 251 255 1,000 
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