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Contrails: Causal Interference Using 
Propensity Scores 

Dean S. Barron 
twobluecats.com 

Long Beach, CA 

Joe H. Brown 
Irvine, CA

 

 
Contrails are clouds caused by airplane exhausts, which geologists contend decrease daily 
temperature ranges on Earth. Following the 2001 World Trade Center attack, cancelled 
domestic flights triggered the first absence of contrails in decades. Resultant exceptional 
data capacitated causal inference analysis by propensity score matching. Estimated 

contrail effect was 6.8981°F. 
 
Keywords: Contrails, contrails effect, airplane exhaust, causal inference, propensity 
score, resampling, logistic regression, regression, MCMC 

 

Introduction 

Contrails are the clouds formed as a result of the introduction of relatively warm 

water vapor from airplane engine exhausts into surrounding cold, moist, 

atmospheric air (the word "contrails" is a contraction of two words, "condensation 

trails.") Under salient conditions, such mixing within the airplane engine exhaust 

plume saturates the atmospheric air, causing condensation of water droplets upon 

the exhaust particles. In turn, these newly formed droplets freeze into ice particles 

that constitute contrails (Schumann, 2005; EPA, 2000). The process also depends 

on non-atmospheric factors, such as engine and fuel characteristics (Wendler & 

Stuefer, 2002). The contrail formation process typically occurs at altitudes over 

25,000 ft. and temperatures below −40°C. 

Geologists asserted that contrails (1) decrease the daily high temperature by 

blocking incoming sunlight, (2) increase nightly low temperatures by preventing 

escape of greenhouse gases, and, therefore (3) decrease the daily temperature 

range on the Earth's surface below (e.g., Meerkotter, et al., 1999). This contrails 

effect was estimated to be 1.98°F or 3.24°F (Travis, et al., 2002); the greater of 

these is hereafter referred to as the Travis estimate. 

mailto:dean@twobluecats.com
http://twobluecats.com/
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A contrail may dissipate quickly or linger for hours. Persistent contrails may 

grow expansively and then frequently morph or incorporate into cloud cover 

(EPA, 2000). Over individual geographic areas, the presence of contrails depends 

on existent conditions. 

Therefore, observing the actual temperature range in the absence of contrails 

was impossible in areas where contrails had always been present. After the World 

Trade Center attacks of 11 September 2001, however, all flights in the United 

States were suspended for several days. Thus, a complete absence of contrails 

prevailed, including those locations where contrails had been present continuously 

for decades. 
 

 

Figure 1. Contrail (Barron, 2013) 
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Purpose of the Study 

Data situations with such counterfactuals are precisely the forte of analysis using 

causal inference. A propensity score (PS) was modeled and then used to match 

from the control group without replacement for the treatment group. Additionally, 

regression analysis and Bayesian Markoff Chain Monte Carlo (MCMC) were 

performed. 

Data were obtained from The National Climatic Data Center (NCDC), 

which had daily historical data since 1929 from approximately 300 countries and 

30,000 cities. The treatment group was defined as United States (hereafter, 

referred to as, "domestic") stations data from September 12-13, 2001, taking 

advantage of the absence of contrails. The control group was defined as all 

non-treatment station readings, both domestic and international. The data was 

subjected to random sampling and quality control. 

The contrails effect, which, in causal inference terminology is the Average 

Treatment Effect on the Treated (ATT), was estimated to be 6.8981°F 

(p < 0.0001), compared with 6.5513°F (p < 0.0001) from the naive regression, 

and 6.5195°F (α = 0.05 HPD Interval 5.7795, 7.2552) from MCMC simulation. 

All were more than twice the Travis estimate. The propensity score matching 

approach was determined to be preferable due to its superior covariate 

characteristics. 

Methodology 

Data 

The NCDC weather-related database stores daily data as collected by the National 

Weather Service (NWS) Automated Surface Observing System (ASOS) in 

downloadable .txt format inside triple-compressed op-op.gz-tar formatted files 

(NCDC, 2010). The study data were restricted to measurements from stations that 

were operational in 2001. 

These observations were further limited to 0-4 weeks before and after each 

September 12-13 for each of the three superimposable calendar years 1990, 2001, 

and 2007. Treatment variable, CONTRAILS0, was defined: 

 

 




0 = 1,  treatment, domestic 12 SEP2001 and 13 SEP2001

  0,  control, otherwise

CONTRAILS
  (1) 
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Contrail formations above airports have different characteristics than above 

non-airport locations. Because contrails generally do not form until aircraft reach 

25,000 foot altitudes, contrails above airports typically derive from aircraft flights 

which had originated from other airports. Hence, airports might or might not have 

contrails (Mims, Chambers & Oostra, n.d.). Therefore, for this analysis, all 

airports were excluded from the control dataset only. 

A two-stage stratified random sampling scheme was then imposed. 

Domestic data formed the first group. The United States was the only nation that 

stopped flights, therefore, neighboring Mexico and Canada formed the second 

group. Belgium and France were chosen as European counterparts for the third 

group. All other countries constituted the fourth group. 

The first sampling stage selected 1,607 stations as treatment and 8,805 as 

control; from this, the second random sampling stage selected 278 and 440, 

respectively. The latter corresponded to a possible 3,214 and 478,250 

observations, respectively. This data sampling procedure was designed to 

facilitate the required manual identification and subsequent elimination of airport 

locations. 

Resultant samples sizes contained 556 treatment and 22,810 control 

observations, of which only 503 treatment and 4,737 control actually contained 

data. Further quality control on missing critical variables (dewp, slp, wdsp, visib, 

and temperature-related), dropped the final analysis dataset to 322 treatment and 

2,557 control observations. 

In addition to the variables contained in the NCDC database, the adjusted 

latitude was calculated using the formula (2) to correct for gravity (Bauer, et al., 

2000). Normal gravity is defined as the gravity which would be observed were 

planet Earth to be a perfect ellipsoid with associated perfect rotation. The 

corrected latitude reflects deviations from ideal conditions, and is a function of 

only the latitude. 

 

 
 

 

3 2

5

5 4

1 5.28 10 *sin
9.78 10 *

2.35 10 *sin

latitude
latitudecorr

latitude





  
   

   

  (2) 

 

Variables that were included in the propensity logistic regression model are 

described in Table 1.  
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Table 1. Variables 

 

ID Variable 
Required 

non-
missing 

Description 

1 CONTRAILS0  
1 = TREATMENT, Absence of contrails 

0 = CONTROL, contrails present / contrails effect 

2 temp YES mean temperature for the day in degrees Fahrenheit 

3 dewp YES mean dew point for the day in degrees Fahrenheit 

4 slp YES mean sea level pressure for the day 

5 visib YES mean visibility for the day in miles 

6 wdsp YES mean wind speed for the day in knots 

7 MXSPD  maximum sustained wind speed 

8 PRCP  total precipitation 

9 p133fog  fog / FRSHTT character 1 

10 p134rain  rain or drizzle / FRSHTT character 2 

11 p135snow  snow or ice pellets / FRSHTT character 3 

12 p137thun  thunder / FRSHTT character 5 

13 elev  elevation in meters 

14 latitudecorr  absolute value latitude in degrees 

15 latitudeabs  latitude correction for gravity in milligalileos 

16 temprange YES temperature range in degrees Fahrenheit 

 
 

Analysis 

Causal inference, regression analysis, and Bayesian MCMC were used. The 

several shades of each resulted in a total of 10 different methods, hereafter 

referred to as METHOD1 through METHOD10. 

Causal Inference 

The Propensity Score (PS) was the predicted value from the linear first order 

logistic regression model of CONTRAILS0 as a function of the covariates. All 

variables were retained to maximize R2. 

For METHOD1, the PS of a treatment observation was compared with the 

PS of any remaining unmatched control observation. Matching by the absolute 

smallest PS difference, a greedy strategy was implemented in descending PS 

order of treatment observations. The ATT estimate for CONTRAILS0 was equal to 

the temprange difference of treatment and control groups from the matched 

observation pairs, and evaluated by t test. 
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In METHOD2, resampling was performed to examine if the dataset perhaps 

had yielded a coincidentally favorable match. Nine treatment group sample sizes, 

ntrt, (288, 216, 162, 136, 108, 96, 81, 72, 68) were resampled (n = 180) at a 

corresponding specified control to treatment observational ratio 

(2, 3, 4, 5, 6, 7, 8, 9, 10, respectively). Because there was also potential for 

relative abundance of a control subregion to impact results, each of the four 

control subregions were equally represented, as calculated in (3). 

 

      subregionn 1 4 n control-to-treatment observational ratiocntl trt     (3) 

 

Care was taken to select whole numbers and ensure that ncntlsubregion < 174, 

because that was the sample size of the smallest subregion. 

For each individual resample, the ATT was calculated identically as in 

METHOD1. For each ntrt level, the ATT was calculated as the mean of its 180 

samples; the overall ATT was the mean of the 1,620 runs. 

In METHOD3, the tails of the dataset were trimmed to only the region of 

overlapping PS ranges of the treatment and control observations. The PS minima 

and maxima were determined for treatment (PSmintrt, PSmaxtrt) and control 

(PSmincntl, PSmaxcntl). A new PS range was set from the maximum minimum 

(max(PSmintrt, PSmincntl)) to the minimum maximum (min(PSmaxtrt, PSmaxcntl)) 

by dropping external values. In METHOD4, resampling was also performed. 

For the best among the four methods, the resultant matched pairs and 

frequency distributions of the selected countries were analyzed. Patterns of the 

matched pairs were noted. 

Regression 

Three regressions were conducted to provide baseline comparisons for the 

propensity matching results, and to provide parameter estimates for other 

variables (4, 5, 6). 

 

 temprange = f (CONTRAILS0, full model with all variables) (4) 

 

 temprange = f (CONTRAILS0, best stepwise/backward elimination result) (5) 

 

 temprange = f (CONTRAILS0) (6) 
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Hereafter these are referred to as METHOD5, METHOD6, and METHOD7, 

respectively. Resampling was performed on the best of the three, hereafter, 

referred to as METHOD8. 

Bayesian 

Two MCMC regression simulations were run, based upon (5) and (6), referred to 

as METHOD9 and METHOD10, respectively. Blocking strategy was determined 

by a correlations and resultant convergence characteristics. Non-informative 

priors were implemented first. When not feasible, the parameter estimates from 

the corresponding regression were to be used as informative priors. 

The CONTRAILS estimates from all methods and Travis were compared. 

The MCMC simulation METHOD9 posterior estimates for CONTRAILS0 were 

analyzed to determine the percentage that were greater than each CONTRAILS0 

estimate. The probability that a particular CONTRAILS0 estimate was an 

underestimation corresponds to this percentage. 

Covariate and contrail effect estimate comparisons 

Covariate differences between the matched treatment and control groups were 

calculated to reveal differences between the groups, which were compared with 

differences from the analysis dataset. Transition from significant to not significant 

was used as evidence of amelioration of covariate mean differences. 

Omnibus distribution tests 

Distributional differences between treatment and control groups were subjected to 

omnibus tests. These were Kolmogoroff-Smirnoff (KS), Cramér-von Mises (CM), 

and “oando” (see the Master’s thesis of the first author, Barron, 2007). 

Results 

Causal Inference 

Propensity Score Logistic regression for PS was performed including all 

covariates with intercept using the final dataset (nttl = 2879). The resultant model 

of CONTRAILS0 was statistically significant (Χ2 = 289.0694, df = 14, 

p-value < 0.0001). The area under the ROC curve c-value = 0.785, 

Somers' D = 0.570, Kendall's Tau-a = 0.113, and standard definition of 

percentage behavior explained by model, R2 = 0.1127. All correlations with 
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CONTRAILS0 and maximum likelihood parameter estimates are detailed in Table 

2. 
 
 
Table 2. Correlations and Propensity Score (PS) Logistic Regression Results 

 

ID Variable Correlation Parameter Estimate Wald Χ
2
 p-value 

0 Intercept N/A -68.1469 3.7370 0.0532 

1 CONTRAILS0 1 N/A N/A N/A 

2 temp 0.1267 0.1246 109.8874 <0.0001 

3 dewp 0.0225 -0.1089 89.6451 <0.0001 

4 slp 0.0989 0.0801 36.5800 <0.0001 

5 visib -0.0942 -0.0795 35.8712 <0.0001 

6 wdsp -0.0581 -6.6053E-03 0.1791 0.6721 

7 MXSPD -0.0439 -3.4946E-03 2.4711 0.1160 

8 PRCP -0.0217 -0.1344 0.3487 0.5549 

9 p133fog 0.0914 1.3716 49.4748 <0.0001 

10 p134rain -0.0449 0.2519 2.0147 0.1558 

11 p135snow -0.0404 -1.0575 1.0007 0.3171 

12 p137thun 0.0871 1.3485 21.3320 <0.0001 

13 elev 0.0063 -4.8630E-04 10.7487 0.0010 

14 latitudecorr 0.0003 -1.6200E-05 0.2089 0.6476 

15 latitudeabs -0.0895 -2.0420E-02 4.5209 0.0335 

16 temprange 0.3119 N/A N/A N/A 

 
 

To determine if there would be sufficient PS coverage to enable matching of 

treatment and control, the PS range was divided into four bins with equal 

n-treatment counts. Spread was adequate (Table 3). 
 
 
Table 3. Propensity Score (PS) Frequency Distributions by Bin 

 

  PS RANGE ntrt ncntl RATIO 

BIN1 0.0002, 0.1160 80 1790 22.38 

BIN2 0.1160, 0.1724 81 357 4.41 

BIN3 0.1724, 0.2725 81 267 3.30 

BIN4 0.2726, 0.8380 80 143 1.79 

TOTAL 0.0002, 0.8380 322 2557 7.94 
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METHOD1 / Matched Pairs, No Resampling, No Overlap Mean 

difference of temprange between matched pairs, the ATT estimate, was 6.8981 

(t = 9.91, p < 0.0001, 95%CI 5.5293, 8.2670). The mean absolute distance 

between matched propensity scores was 0.0035 (median < 0.0001, range < 0.0001, 

0.1033). 

METHOD2 / Matched Pairs, Resampling, No Overlap  The results 

consistently approximate the ATT estimate obtained with the non sampled data. 

The 1620 runs from the 9 different combinations had temprange mean = 6.7871 

(median = 6.7847, range 2.5779, 10.8118). The mean of PS matched mean 

absolute distances was 0.0194 (median = 0.0133, range 0.0005, 0.1040). The 

results of the runs of the ntrt and control to treatment observational ratios appear 

in Table 6. 

METHOD3 / Matched Pairs, No Resampling, Overlap Trimming down to 

the overlap region reduced the dataset to ntrt = 321 ncntl = 2525 nttl = 2846. 

Compared with the analysis dataset, this was a reduction of only one treatment 

and 32 control observations. The mean difference of temprange was 6.8931 

(t = 9.88, p < 0.0001), with a mean absolute distance between matched propensity 

scores of 0.0032 (median < 0.0001, range < 0.0001, 0.0978). 

METHOD4 / Matched Pairs, Resampling, Overlap The contrail effect 

estimates were slightly higher than those without the overlap strategy. The 9 

different combinations averaged temprange = 6.9654 (median = 6.9352, range 

3.2071, 10.7119). The mean of PS matched mean absolute distances was 0.0141 

(median = 0.0072, range 0.0005, 0.0960). The results of the runs of the various 

ntrt and control to treatment observational ratios are also summarized in Table 6. 

Analysis of the matches 

The majority of treatment - control pairs appeared either once or twice. There 

were 200 distinct ordered pairs within the 322 matches, of which 171 (85.50%) 

had fewer than three occurrences. Only four appeared five or more times, 

California-France (11), Texas-France (8), Texas-United States (6), and 

California-Mexico (5). 

All four strata of control country groups were represented in the matches. 

Despite the boost in percent observations secondary to designation as separate 

subgroups, the Relative Risk (RR) of selection for CANADA/MEXICO and 

BELGIUM/FRANCE were only somewhat lower than OTHER 
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INTERNATIONAL. Not surprisingly, the UNITED STATES group had the 

highest RR, as in Table 4. 
 
 
Table 4. Subgroup Counts in Control Data 

 

STRATUM COUNTRIES nmatch ncntl 
row % 

match 
RR 

column 
%match 

column 
%cntl 

1 UNITED STATES 41 174 23.56% 2.00 12.73% 6.80% 

2 CANADA/MEXICO 65 631 10.30% 0.77 20.19% 24.68% 

3 BELGIUM/FRANCE 102 851 11.99% 0.93 31.68% 33.28% 

4 OTHER INTL 114 901 12.65% 1.01 35.40% 35.24% 

  TOTAL 322 2557 12.59%       

 
 

Twenty-five countries were included in the control population. The highest 

percentage of matched control observations was 50% selected for Australia 

(nmatch = 9 ncntl = 18); the lowest was the lone 0% for Georgia (0/19). Over 

two-thirds had RR for selection between 1/3 and 3 (17/25). 

Regression 

METHOD5, METHOD6, AND METHOD7 / Naive Regression, No 

Resampling The full regression model (METHOD5) with all covariates was 

statistically significant (R2 = 0.5713, F = 254.32, p < 0.0001) with a parameter 

estimate for CONTRAILS0 of 6.5513. Both backward elimination and stepwise 

arrived at identical models with eight independent variables (METHOD6, forced 

CONTRAILS0 inclusion, R2 = 0.5698, F = 475.26, p < 0.0001). The parameter 

estimate for CONTRAILS0 was 6.5173 (standard error = 0.3769, t = 17.29, 

p < 0.0001). 

The minimal CONTRAILS0 only model, METHOD7, was also statistically 

significant but exhibited a much lower R2 = 0.0973 (F = 310.01, p < 0.0001) with 

a much higher parameter estimate of 9.3605 (standard error = 0.5316, t = 17.61, 

p < 0.0001). Among the three, METHOD6 was selected as preferred. Parameter 

estimates appear in Table 5.  
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Table 5. Regression and MCMC results 

 

ID Variable 
REGRESSION 

METHOD6 
Estimate 

p-value 
MCMC 

METHOD9 
Posterior Mean 

95% HPD Interval 

0 Intercept 17.5910 <0.0001 17.5903 16.1170 , 19.0984 

1 CONTRAILS0 6.5173 <0.0001 6.5195 5.7795 , 7.2552 

2 temp 0.5114 <0.0001 0.5112 0.4728 , 0.5493 

3 dewp -0.5473 <0.0001 -0.5471 -0.5857 , -0.5091 

4 slp ELIMINATED >0.05 NA NA 

5 visib ELIMINATED >0.05 NA NA 

6 wdsp -0.5771 <0.0001 -0.5770 -0.6207 , -0.5318 

7 MXSPD ELIMINATED >0.05 NA NA 

8 PRCP ELIMINATED >0.05 NA NA 

9 p133fog ELIMINATED >0.05 NA NA 

10 p134rain -1.8677 <0.0001 -1.8689 -2.4019 , -1.3160 

11 p135snow -3.9595 <0.0001 -3.9653 -5.7258 , -2.1473 

12 p137thun 1.5057 0.0278 1.5053 0.1708 , 2.8489 

13 elev 0.0026 <0.0001 0.0026 0.0023 , 0.0029 

14 latitudecorr ELIMINATED >0.05 NA NA 

15 latitudeabs ELIMINATED >0.05 NA NA 

16 temprange DEP VAR >0.05 DEP VAR NA 
 

*Note. Regression parameter estimates then served as MCMC priors 

 
 

METHOD8 / Naive Regression, Resampling Because METHOD6 was 

preferred over the reduced model, only the former was subjected to resampling. 

For the 1620 runs, the CONTRAILS0 estimate had mean = 6.6889 

(median = 6.6336, range 4.4486, 8.8783). The mean F was 150.6304, mean 

R2 = 0.5752. Each of the 1620 individual runs were statistically significant 

(p < 0.0001). The results of the runs of the various ntrt and control to treatment 

observational ratios are also summarized in Table 6.  
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Table 6. Resampling results 

 

    METHOD2 METHOD4 METHOD8 

    PROP / NO OVERLAP PROP / OVERLAP REGRESSION 

ntrt  Ratio Runs 
CONTRAILS0 

ESTIMATE 
|ΔPS| 

CONTRAILS0 

ESTIMATE 
|ΔPS| 

CONTRAILS0 

ESTIMATE 
R2 

136.3 4.8 1620 6.7871 0.0194 6.9654 0.0141 6.6889 0.5752 

288 2 180 7.0458 0.0615 7.1010 0.0545 6.5149 0.5750 

216 3 180 6.6921 0.0275 6.8047 0.0218 6.5790 0.5743 

162 4 180 6.6644 0.0181 6.8320 0.0125 6.6631 0.5750 

136 5 180 6.6833 0.0136 6.8779 0.0086 6.7120 0.5746 

108 6 180 6.6957 0.0123 6.9054 0.0074 6.7504 0.5741 

96 7 180 6.8237 0.0107 7.0324 0.0061 6.7797 0.5747 

81 8 180 6.8053 0.0108 7.0089 0.0058 6.7693 0.5753 

72 9 180 6.7258 0.0107 6.9667 0.0053 6.7130 0.5768 

68 10 180 6.9478 0.0098 7.1593 0.0046 6.7184 0.5771 

 

*Note: Top row is mean for all runs; other rows are means for that resample level 

 

Bayesian 

METHOD9 / MCMC, Best Model  The best model estimated 

CONTRAILS0 as 6.5195 (α = 0.05 HPD Interval 5.7795, 7.2552). The model was 

a normal posterior predictive distribution with normal priors for effects and 

inverse gamma for variance. Non-informative priors failed to generate a 

reasonable model, based upon diagnostic plots or Geweke. Therefore, informative 

priors were set as the estimates from the best model regression, METHOD6 

(Table 5). Variances were set at 100, except elev which was 5 × 10-8. The MCMC 

was performed with five blocks: (1) CONTRAILS0, (2) Intercept, temp, dewp, 

wdsp, (3) p134rain, p135snow, p137thun, (4) elev, and (5) σ2. The groups were 

based on correlations and commonality of data collection. 

Acceptance rates ranged from 0.2200 to 0.3040 at the end of the tuning 

period, 540k burn-in, and 648k sampling. Visually, the diagnostic plots revealed 

convergence of parameter means, increasingly diminished autocorrelations, and 

normal posterior density distributions (Table 5, Figure 2). Geweke diagnostic was 

0.6480 for CONTRAILS0, and ≥ 0.1181 for all others. All were ≥ 0.05, indicative 

that the final 50% of runs featured posterior parameter estimates that were not 

statistically different than of the initial 10%. 



CONTRAILS: CAUSAL INTERFERENCE 

248 

   
INTERCERPT CONTRAILS0 SIGMA2 
 

   
TEMP DEWP WDSP 
 

   
P134RAIN P135SNOW P137THUN 
 

 
ELEV 
 
Figure 2. Diagnostic Plots, METHOD9 

 

 
 

METHOD 10 / MCMC, Minimal Model  The minimal model estimated 

CONTRAILS0 as 9.3609 (α = 0.05 HPD Interval 8.3327, 10.4145). The model 

was a normal posterior predictive distribution with normal priors for effects and 
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inverse gamma for variance. The MCMC was performed with three blocks, one 

for each of beta0 (intercept), beta1CAT0 (CONTRAILS0), and σ2. 

Non-informative priors were used because they proved sufficient. 

Acceptance rates were from 0.3528 to 0.3720 for end-tuning period, 72k 

burn-in, and 360k sampling. Visually, the diagnostic plots also revealed 

convergence of means, increasingly diminished autocorrelations, and normal 

posterior density distributions (Figure 3). Geweke diagnostics were all > 0.1700. 
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Figure 3. Diagnostic Plots, METHOD10 
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CONTRAILS0 Estimate Testing The CONTRAILS0 estimates from MCMC 

simulation METHOD9 analysis revealed that 15.65% were greater than the 

estimate from METHOD1. For any run, the minimum MCMC posterior estimate 

was 4.8125; the maximum was 8.2761. Thus, all 180k runs were greater than the 

Travis estimate (Table 7). 
 
 
Table 7. Comparison of CONTRAILS0 Estimates 

 

METHOD TYPE DESCRIPTION 
CONTRAILS0 

ESTIMATE 

METHOD9 
PERCENT 

>CONTRAILS0 

1 PROPENSITY  6.8981 15.65% 

2 PROPENSITY RESAMPLING 6.7871 23.79% 

3 PROPENSITY OVERLAP 6.8931 15.96% 

4 PROPENSITY RESAMPLING & OVERLAP 6.9654 11.79% 

5 REGRESSION FULL MODEL 6.5513 46.77% 

6 REGRESSION BEST MODEL 6.5173 50.41% 

7 REGRESSION MINIMAL MODEL 9.3605 0.00% 

8 REGRESSION BEST MODEL & RESAMPLING 6.6889 32.71% 

9 MCMC BEST MODEL 6.5195 50.15% 

10 MCMC MINIMAL MODEL 9.3609 0.00% 

  Travis estimate 3.24 100.00% 

 
 

Covariate and contrail effect estimate comparisons Of the 14 covariates, 

the original data had 10 with statistically significant mean differences between the 

treatment and control groups, as indicated by the bold figures in Table 8. With 

METHOD1, for all covariates, one fails to reject the H0 that the means in the 

treatment and control groups are equal.  
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Table 8. Comparison of Covariates of Original and Propensity Score Matched Data 

 

  ORIGINAL (nttl=2879) MATCHED (nttl=644) 

ID Variable variance df t-value p-value variance df t-value p-value 

1 CONTRAILS0     NA     NA 

2 temp Unequal 505 -9.02 <0.0001 Unequal 595 -0.18 0.8573 

3 dewp Unequal 439 -1.36 0.1746 Unequal 621 0.13 0.8983 

4 slp Unequal 453 -6.26 <0.0001 Equal 642 -0.16 0.8738 

5 visib Unequal 696 8.37 <0.0001 Unequal 518 -0.37 0.7148 

6 wdsp Unequal 750 5.34 <0.0001 Unequal 517 0.01 0.9933 

7 MXSPD Unequal 2614 6.60 <0.0001 Unequal 326 0.74 0.4586 

8 PRCP Unequal 455 1.38 0.1697 Unequal 582 -0.40 0.6861 

9 p133fog Unequal 366 -3.89 <0.0001 Equal 642 0.31 0.7530 

10 p134rain Equal 2877 2.41 0.0159 Equal 642 -0.77 0.4431 

11 p135snow Unequal 970 4.13 <0.0001 Unequal 578 0.58 0.5635 

12 p137thun Unequal 351 -3.22 0.0014 Equal 642 -0.79 0.4307 

13 elev Unequal 448 -0.39 0.6951 Unequal 634 -1.60 0.1106 

14 latitudecorr Equal 2877 -0.02 0.9859 Equal 642 -1.33 0.1845 

15 latitudeabs Unequal 518 6.50 <0.0001 Unequal 584 0.37 0.7111 

16 TEMPRANGE     NA     NA 

 
*Note. Differences that are statistically significant at α = 0.05 are in bold 

 
 

The CONTRAILS0 estimate from PS matching using all observations 

without overlap was 6.8981. This was a statistically significantly difference from 

the Travis estimate (t = 5.26, p < 0.0001). 

Except for the minimal models (METHOD7, METHOD10), the contrails 

effect estimate within the 95% confidence interval of METHOD1, and therefore 

did not represent statistical difference. Due to its simplicity, METHOD1 was 

preferred over the other causal inference methods; due to covariate egalities, it 

was preferred over the regression and MCMC methods. 

Omnibus distribution tests 

Distributional differences were tested by three omnibus tests, 

Kolmogoroff-Smirnoff (KS), Cramér-von Mises (CM), and oando (Barron, 2007). 

The control and treatment group distributional differences were statistically 

significant for KS for the analysis dataset (ntrt = 322, ncntl = 2557, D = 0.4412, 

p < 0.001) and propensity matched data subset (ntrt = ncntl = 322, D = 0.3571, 
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p < 0.001). CM also indicated statistical significance for both datasets 

(CM = 25.2482, p < 0.001 and CM = 8.6263, p < 0.001). 

Oando performed with resampling yielded inconclusive results. For 4000 

resampling runs, the mean p-value = 0.1988, 32.73% p-value ≤ 0.05, and 11.20% 

p-value > 0.50. For 180 resampling runs, the matched dataset had mean 

p-value = 0.2871, 22.22% p-value ≤ 0.05, and 20.56% p-value > 0.50. 

Due to the definition of oando which weights by the rank of the gap from 

the prior observation, the result is possibly reflective of a non-homogenous range. 

In response, the analysis dataset was partitioned according to temprange rank. 

The low and high ends were curves; the middle was linear. REGION1 was defined 

as the union of the low (REGION1A) and high (REGION1B); REGION2 was 

defined as the middle (Figure 4). 

The temprange difference between control and treatment represented the 

CONTRAILS0 estimate. For the entire analysis dataset, the union of REGION1 

and REGION2, the temprange difference was 9.3605. For mid-tempranges of 

12.20 to 20.22, the CONTRAILS0 estimate for REGION2 was not statistically 

different from zero. However, for REGION1 the contrails effect estimate was 

11.4521 (p-value < 0.0001). 
 

 
 
Figure 4. Partition of Ordered Observations of Analysis Dataset 
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Conclusion 

The contrail effect was estimated to equal a 6.8981°F decrease in the daily 

temperature range at ground level on planet Earth using propensity matching, 

METHOD1. This result was statistically different from the Travis estimate of 

3.24°F. 

Although rarely studied, daily temperature range does impact animal 

populations and population dynamics (Viterbi, et al., 2012). Smaller daily 

temperature ranges have been shown to decrease the black grouse bird population 

in Italy (Viterbi, et al., 2012) as well as to influence Moluccan Woodcock 

population density in Indonesia (Eden, et al., 2013). The impact upon other 

species may also be significant (Eden, et al., 2013). 

In pursuit of fuel economy, modern engines sport a greater efficiency of 

propulsion. However, aircraft equipped with such engines generate contrails 

starting at lower altitudes (Schumann, et al., 2000), and up to higher altitudes 

(Schumann, 2000). More persistent contrails could shadow even more of the 

Earth's surface than the 16% EPA estimation (EPA, 2000). 

Analysis variables were solely based upon the NCDC datasets. Other data 

might have been useful, for example, temperature and other atmospheric 

measurements taken at altitudes at 25,000 feet; NCDC measures only at ground 

level. The restriction to data from a single source obviated the need to judge 

relative reliability of different databases, measurement devices, and data 

collection procedures. 

Two omnibus tests, Kolmogoroff-Smirnoff and Cramér-von Mises, 

confirmed distributional differences between treatment and control groups, 

supportive of the propensity score matching results. The third, oando, revealed 

that the data might be an amalgam of two regions, center and extremes. Future 

explorations could introduce an indicator variable reflecting such a partition, or, 

fractionate into individual analyses. 

The correlation between daily mean temperature and CONTRAILS0 of 

0.1267 was consistent with an association of higher mean temperatures at ground 

level with absence of contrails. This was in agreement with the minority; most 

prior studies have indicated a net warming effect, but inconclusively (Mims, 

Chambers & Oostra, n.d.). The NCDC data calculates its reported daily mean 

temperatures based upon the actual operating hours for that specific station (Lott, 

2010). Mean temperature theoretically might also be defined as the mean of 24 

hourly readings, or many other possible variants. Alternatively, the median 

measurement might be a reasonable reflection of central tendency. These 
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considerations could cloud conclusions. Because the contrails effect upon daily 

mean temperature was not the focus of this analysis, techniques employed were 

not aimed at obtaining such an estimate. Therefore, although interesting, any 

inferences regarding daily mean temperature are merely ancillary. 

Author Contributions 

The seminal concept of subjecting contrail-related data to causal inference was by 

J.H.B., and subsequently developed and discussed by J.H.B. and D.S.B. The 

logistic regression was coded in SAS by J.H.B. The remainder of the research, 

SAS coding, and all writing was performed by D.S.B. 
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