
Journal of Modern Applied Statistical
Methods

Volume 14 | Issue 2 Article 3

11-1-2015

Vol. 14, No. 2 (Full Issue)
JMASM Editors

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Full Issue is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Editors, JMASM (2015) "Vol. 14, No. 2 (Full Issue)," Journal of Modern Applied Statistical Methods: Vol. 14 : Iss. 2 , Article 3.
DOI: 10.22237/jmasm/1446350520
Available at: http://digitalcommons.wayne.edu/jmasm/vol14/iss2/3

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss2/3?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss2/3?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages


 
Journal of Modern Applied Statistical Methods 
November 2015, Vol. 14, No. 2, ii-v 

Copyright © 2015 JMASM, Inc. 
ISSN 1538 − 9472 

 
 

 

ii 
 
 

Journal of 

Modern Applied 

Statistical Methods 

 

Shlomo S. Sawilowsky 

SENIOR EDITOR 

College of Education 
Wayne State University 

 

 

Harvey Keselman 

ASSOCIATE EDITOR EMERITUS 

Department of Psychology 

University of Manitoba 

 

Jack Sawilowsky 

EDITOR 

Reason Statistical Consulting 
 

 

 

Alan Klockars 

ASSISTANT EDITOR EMERITUS 

Educational Psychology 

University of Washington 

 

Bruno D. Zumbo 

ASSOCIATE EDITOR 

Measurement, Evaluation,  

& Research Methodology 

University of British Columbia 

 

Vance W. Berger 

ASSISTANT EDITOR 

Biometry Research Group 

National Cancer Institute 

 

 

Todd C. Headrick 

ASSISTANT EDITOR 

Educational Psychology 

& Special Education 

So. Illinois University− 
Carbondale 

Joshua Neds-Fox 

EDITORIAL ASSISTANCE 

Heather Marie Perrone 

EDITORIAL ASSISTANCE 

 
 
JMASM (ISSN 1538−9472, http://digitalcommons.wayne.edu/jmasm) is an independent, open access 
electronic journal, published biannually in May and November by JMASM Inc. (PO Box 48023, Oak Park, MI, 

48237) in collaboration with the Wayne State University Library System. JMASM seeks to publish (1) new 

statistical tests or procedures, or the comparison of existing statistical tests or procedures, using computer-

intensive Monte Carlo, bootstrap, jackknife, or resampling methods, (2) the study of nonparametric, robust, 
permutation, exact, and approximate randomization methods, and (3) applications of computer programming, 

preferably in Fortran (all other programming environments are welcome), related to statistical algorithms, 

pseudo- random number generators, simulation techniques, and self-contained executable code to carry out 

new or interesting statistical methods. 
 

Journal correspondence (other than manuscript submissions) and requests for advertising may be forwarded to 

ea@jmasm.com. See back matter for instructions for authors.  

http://digitalcommons.wayne.edu/jmasm
mailto:ea@jmasm.com


 
Journal of Modern Applied Statistical Methods 
November 2015, Vol. 14, No. 2, ii-vi 

Copyright © 2015 JMASM, Inc. 
ISSN 1538 − 9472 

 
 

 

iii 
 
 

Journal of Modern Applied Statistical Methods 

Vol. 14, No. 2 

  November 2015  

Table of Contents

 
Invited Articles 
 

 

2 – 8 R. WILCOX Inferences About the Skipped Correlation 

  Coefficient: Dealing with Heteroscedasticity 

  And Non-Normality 

 

9 – 26 D. W. ZIMMERMAN Resolving the Issue of How Reliability 

 B. D. ZUMBO Is Related to Statistical Power: 

  Adhering to Mathematical Definitions 

 

27 – 34 T. R. KNAPP In (Partial) Defense of .05 

 

Regular Articles 
 

 

35 – 52 I. SANGAIAH An Empirical Study on Different Ranking  

 A. V. A. KUMAR Methods for Effective Data Classification 

 A. BALAMURUGAN 

 

53 – 67 A. F. LUKMAN Two Stage Robust Ridge Method in a Linear  

 O. I. OSOWOLE Regression Model 

 K. AYINDE 

 

68 – 87 K. A. ADELEKE Semi-Parametric Non-Proportional Hazard  

 A. A. ABIODUN Model with Time Varying Covariate 

 R. A. IPINYOMI 

 

88 – 109 A. I. AL-OMARI New Entropy Estimators with  

  Smaller Root Mean Squared Error 

 

110 – 122 G. PRAKASH Bayesian Analysis Under Progressively  

  Censored Rayleigh Data 

 

  



 
Journal of Modern Applied Statistical Methods 
November 2015, Vol. 14, No. 2, ii-vi 

Copyright © 2015 JMASM, Inc. 
ISSN 1538 − 9472 

 
 

 

iv 
 
 

123 – 140 D. AYDIN Monte Carlo Comparison of the Parameter  

 B. ŞENOĞLU Estimation Methods for the Two-Parameter  

  Gumbel Distribution 

 

141 – 158 K. AHMAD Structural Properties of  

 S. P. AHMAD Transmuted Weibull Distribution 

 A. AHMED  

 

159 – 171 N. S. M. SHARIFF A Robust Panel Unit Root Test  

 N. A. HAMZAH In the Presence of Cross Sectional Dependence 

 

172 – 200 B. F. AJIBADE The Distribution of the Inverse Square Root  

 C. R. NWOSU Transformed Error Component of the  

 J. I. MBEGBU Multiplicative Time Series Model 

 

201 – 218 T. LEE The Bayes Factor for Case-Control Studies  

  With Misclassified Data 

 

219 – 235 Y. WOOLURU Approaches for Detection of Unstable Processes:  

 D. R. SWAMY.  A Comparative Study 

 P. NAGESH 

 

236 – 256 D. S. BARRON Contrails: Causal Interference  

 J. H. BROWN Using Propensity Scores 

 

257 – 274 T. TIKHOMIROVA Statistical Modeling of Migration Attractiveness  

 Y. LEBEDEVA Of the EU Member States 

 

Statistical Software Applications and Review 
 

 

275 – 281 A. J. LORENZ Caution for Software Use  

 B. S. MARKMAN Of New Statistical Methods (R) 

 S. S. SAWILOWSKY 

 

Algorithms and Code 
 

 

282 – 292 D. A. WALKER Two Group Program for Cohen's d, Hedges’ g,  

  η2, Radj
2, ω2, ɛ2, Confidence Intervals, and Power 



Journal of Modern Applied Statistical Methods 

November 2015, Vol. 14, No. 2, 2-8. 

Copyright © 2015 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Dr. Wilcox is Professor of Psychology at the University of Southern California. Email 
him at rwilcox@usc.edu. 

 

 

2 

Invited Article 
Inferences About the Skipped Correlation 
Coefficient: Dealing with Heteroscedasticity 
and Non-Normality

Rand Wilcox 
University of Southern California 

Los Angeles, CA 

 
 

 

 
A common goal is testing the hypothesis that Pearson’s correlation is zero and typically 
this is done based on Student’s T test. There are, however, several well- known concerns. 
First, Student’s T is sensitive to heteroscedasticity. That is, when it rejects, it is 
reasonable to conclude that there is dependence, but in terms of making a decision about 

the strength of the association, it is unsatisfactory. Second, Pearson’s correlation is not 
robust: it can poorly reflect the strength of the association. Even a single outlier can have 
a tremendous impact on the usual estimate of Pearson’s correlation, which can result in a 
poor indication of the strength of the association among the bulk of the points. Numerous 
robust correlation coefficients have been proposed that deal with outliers among the 
marginal distributions, but these methods do not take into account the overall structure of 
the data in terms of dealing with outliers. A skipped correlation addresses this concern 

and methods for testing the hypothesis that this correlation is zero have been studied. 
However, there are serious limitations associated with one of these methods and extant 
studies regarding an alternative percentile bootstrap method do not address practical 
concerns reviewed in the paper. A minor goal is to report situations where this percentile 
bootstrap method can be unsatisfactory. The main result is that an alternative percentile 
bootstrap method performs well in simulations. 
 

Keywords: Robust measures of association, level robust methods, non-normality, 
heteroscedasticity 

 

Introduction 

A basic goal is testing the hypothesis that the strength of the association between 

two random variables is zero. Certainly the best-known strategy is to test the 

hypothesis that Pearson’s correlation is zero, using Student’s T test. 

mailto:rwilcox@usc.edu
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0 : 0H     (1) 

 

There are, however, well known concerns with this approach. First, 

Student’s T assumes homoscedasticity. In practical terms, it provides a reasonable 

test of the hypothesis that two variables are independent, but in terms of making 

inferences about ρ, it can be unsatisfactory. For example, even when the null 

hypothesis is true, the probability of rejecting can increase as the sample size 

increases when there is heteroscedasticity (e.g., Wilcox, 2012). Roughly, the 

reason is that Student’s T uses the wrong standard error when there is 

heteroscedasticity, given the goal of testing (1).  

Another concern is that r, the usual estimate of ρ, is not robust. Even a 

single outlier can result in a poor reflection of the strength of the association 

among the bulk of the points. Numerous robust estimators have been proposed for 

dealing with outliers among the marginal distributions (e.g., Wilcox, 2012, 

chapter 9). Certainly the two best-known approaches are Kendall’s tau and 

Spearman’s rho. But a known concern with these measures of association is that 

they do not deal with outliers in a manner that takes into account the overall 

structure of the data. That is, based on the random sample (X1, Y1), …, (Xn, Yn), 

situations are encountered where no outliers are detected among X1, …, Xn, 

ignoring Y, and no outliers are detected among Y1, …, Yn, ignoring X, yet there are 

outliers that can have a substantial impact on Kendall’s tau, Spearman’s rho and 

other measures of association that do not deal with the overall structure of the data 

(e.g., Wilcox, 2012, chapter 9). A measure of the strength of an association that 

deals with this issue is the skipped correlation coefficient. The basic strategy is to 

use some outlier detection method that takes into account the overall structure of 

the data, remove any outliers that are found, and then compute Pearson’s 

correlation using the remaining data. 

There are many outlier detection methods that take into account the overall 

structure of the data. In the context of a skipped correlation, a projection type 

outlier detection method has been the focus of attention. No single outlier 

detection method dominates, but the projection-type method used here appears to 

perform relatively well in terms of avoiding masking and detecting truly unusual 

points (e.g., Wilcox, 2012). Masking refers to missing outliers due to their very 

presence. For example, in the univariate case, detecting outliers using the mean 

and standard deviation can result in masking. The basic problem is that outliers 

inflate the sample standard deviation, which in turn can result is missing even 

extreme outliers. 
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Based on the projection type method for detecting outliers, let ξ denote the 

population analog of the skipped correlation and consider the goal of testing 

 

 
0 : 0H     (2) 

 

A very simple approach is described in Wilcox (2012, Section 9.4.4). 

However, the method is limited to testing at the α = 0.05 level and it assumes 

homoscedasticity. More recently, Pernet, Wilcox and Rousselet (2013) studied a 

bootstrap method when sampling from a bivariate normal distribution. But the 

impact of non-normality and heteroscedasticity was not addressed. A minor goal 

in this paper is to report results indicating situations where the Pernet et al. 

method can be unsatisfactory when dealing with non-normality and 

heteroscedasticity. The primary goal is to report simulation results on an 

alternative bootstrap method that provides good control over the Type I error 

probability for a broader range of situations. 

Description of the methods to be compared 

This section describes the projection outlier detection method followed by the two 

percentile bootstrap methods that were studied when testing (2). For brevity, just 

an outline of the method is provided. Complete computational details can be 

found in Wilcox (2012, section 6.4.9). Included is an R function called outpro for 

applying it, which is used here. 

The projection method begins by estimating the center of the data cloud, say 

̂ . Here this is done using the marginal medians. Then for fixed i, project all n 

points onto the line connecting ̂  and (Xi, Yi). Based on the projected points, let 

Dj (j = 1, …, n) be the distance between the projection of (Xj, Yj) and the center, ̂ . 

Next, check for outliers using the usual boxplot rule based on the Dj values. That 

is, if q1 and q2 are estimates of the lower and upper quartiles, respectively, based 

on D1, …, Dn, declare Dj an outlier if Dj < 1.5(q2 − q1) or if Dj > 1.5(q2 − q1), in 

which case (Xj, Yj) is declared an outlier as well. This process is performed for 

each i (i = 1, …, n) and (Xj, Yj) is declared an outlier if its projected distance is 

flagged as an outlier for any i. 

The percentile bootstrap method used by Pernet et al. (2013) is applied as 

follows: 
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1. Remove any points flagged as outliers using the projection method. 

Let m denote the sample size after outliers are removed. 

2. Generate a bootstrap sample from the remaining data by resampling 

with replacement m points. 

3. Compute Pearson’s correlation based on this bootstrap sample 

yielding r*. 

4. Repeat steps 2-3 and B times yielding r1
∗ , …, rB

∗. 

5. Put the values r1
∗, …, rB

∗ in ascending order and label the results 

(1) ( )Br r   . 

6. Let l = αB/2, rounded to the nearest integer and u = B − l. Then the 

1 − α confidence interval for ξ is taken to be (r(l + 1), r(u)). This will be 

called method B1 henceforth. 

 

An unusual feature of method B1 is that the process of generating bootstrap 

samples does not exactly mimic the manner in which the data are generated and 

the skipped correlation is computed. A percentile bootstrap method that does 

mimic the way data are generated, labeled method B2 here, begins by generating 

a bootstrap sample from all n points, removing any points flagged as outliers and 

then computing *̂ , Pearson’s correlation based on the remaining data. That is, in 

the description of method B1, replace steps 1-3 with 

 

1. Generate a bootstrap sample by resampling with replacement n 

points from the entire sample of size n. 

2. Remove any points from the bootstrap sample in step 1 that are 

flagged as outliers using the projection method. 

3. Compute Pearson’s correlation using the points not flagged as 

outliers in step 2. 

 

As done in step 4 of method B1, this process is repeated B times only now 

the results are labeled 
* *

1
ˆ ˆ, , B  . The 1 − α confidence interval for ξ is taken to be 

  * *

1
ˆ ˆ, ul
 


. 

It is noted that a p-value is readily computed when testing (2), which is 

motivated by general results in Liu and Singh (1997). Let Q* be the proportion of 
*̂  values that are less than zero. Then a p-value is p = min(2Q*, (1 − 2Q*). 
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Simulation results 

Four types of distributions are considered: normal, symmetric and heavy-tailed 

(roughly meaning that outliers tend to be common), asymmetric and relatively 

light-tailed, and asymmetric and relatively heavy-tailed. More specifically, g-and-

h distributions (Hoaglin, 1985) are used, which arise as follows. Let Z be a 

random variable having a standard normal distribution and let 

 

 
 

 2
exp 1

exp / 2
gZ

W hZ
g


   

 

If g = 0 

 

 
2

exp
2

Z
W Z h

 
  

 
  

 

Then W has a g-and-h distribution, where g and h are parameters that 

determine the first four moments. The four distributions used here are the 

standard normal (g = h = 0), a symmetric heavy-tailed distribution (h = .2, g = 0), 

an asymmetric distribution with relatively light tails (h = 0, g = .2), and an 

asymmetric distribution with heavy tails (g = h = .2). Table 1 summarizes the 

skewness (γ1) and kurtosis (γ2) of these distributions. 

The number of bootstrap samples was taken to be B = 1000. Bradley (1978) 

suggests that as a general guide, when testing at the .05 level, the actual level 

should be between .025 and .075. Preliminary simulations based on B = 500 

indicated that method B2 does not satisfy this criterion; increasing B to 1000 gave 

more satisfactory results. 
 
 
Table 1. Some properties of the g-and-h distribution. 

 
g h κ2 κ1 

0.0 0.0 0.00 3.00 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 

 
 

Observations were generated according to the model Y = λ(X)ε, where both 

X and ε have one of the g-and-h distributions in Table 1 and λ(X) is used to model 
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heteroscedasticity. Three choices for λ(X) were used: λ(X) ≡ 1 (homosecdasticity), 

λ(X) = |X| + 1 (so the conditional variance of Y, given X, is smallest when X is 

close to its mean), and λ(X) = 1/(|X| + 1) (in which case the conditional variance of 

Y, given X, is largest when X is close to its mean. For convenience these three 

choices for λ will be called variance patterns (VP) 1, 2 and 3, respectively. 

The simulation estimates of the actual Type I error probabilities were based 

on 2,000 replications. A common suggestion is that ideally, simulation estimates 

be based on 10,000 replications. However, when using method B2, a single 

replication takes a little over 14 seconds using the software R on a MacBook Pro 

with a 2.5 GHz processor. So 10,000 replications would require over 38 hours of 

execution time. To add perspective on the precision of the estimates, assuming 

Bradley’s criterion is reasonable, consider the issue of whether the actual level is 

less than or equal .075. Using the method in Pratt (1968), it can be seen that based 

on a two-sided .95 confidence interval for the actual level, the confidence interval 

will not contain .075 if ̂  ≤ .063. In a similar manner, based on a two-sided .95 

confidence interval, the confidence interval for the actual level does not 

contain .025 if ̂   ≥ .0325. 
 
 
Table 2. Estimated Type I error probabilities, n = 40, α = .05 

 
g h VP B2 B1 

0.0 0.0 

1 0.022 0.066 

2 0.022 0.071 

3 0.028 0.055 

0.0 0.2 

1 0.022 0.070 

2 0.024 0.080 

3 0.024 0.046 

0.2 0.0 

1 0.027 0.066 

2 0.024 0.072 

3 0.030 0.056 

0.2 0.2 

1 0.021 0.072 

2 0.024 0.080 

3 0.022 0.045 

 
 

Table 2 shows the estimated Type I error probabilities when n = 40 and 

α = .05. As can be seen, method B2 tends to be conservative, meaning that the 

estimated Type I error probability is always less than the nominal .05 level. The 

estimates are consistently close to .025 over all of the situations considered. So 

there is some possibility that the actual level drops below .025, but there is no 

strong indication that this is the case. In contrast, the estimates using method B1 
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are always greater than or equal to .05 with the two largest estimates equal to .08. 

So all indication are that in terms of avoiding a Type I error probability greater 

than the nominal level, B2 performs better than B1. 

Concluding remarks 

Some positive features of method B1 are that it reduces execution time compared 

to method B2 and it performs reasonably well in simulations when there is 

homoscedasticity and sampling is from a bivariate normal distribution. For most 

situations, it was estimated that the actual level using method B1 is less than .075, 

but for variance pattern VP 2 this is not the case when dealing with distributions 

with heavy-tails. In contrast, method B2 avoids Type I error probabilities greater 

than .05 among all of the situations considered, the only concern being that the 

actual level was estimated to be as low as .022 with a sample size of n = 40. That 

is, there is some possibility that B2 does not satisfy Bradley’s criterion that the 

actual level should be at least .025. The main result for the goal of avoiding an 

actual level well above .05, all indications are that B2 is preferable to B1. 
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Resolving the Issue of How Reliability Is 
Related to Statistical Power: Adhering to 
Mathematical Definitions

Donald W. Zimmerman 
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Ottawa, ON, CAN 

Bruno D. Zumbo 
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Reliability in classical test theory is a population-dependent concept, defined as a ratio of 
true-score variance and observed-score variance, where observed-score variance is a sum 
of true and error components. On the other hand, the power of a statistical significance 
test is a function of the total variance, irrespective of its decomposition into true and error 

components. For that reason, the reliability of a dependent variable is a function of the 
ratio of true-score variance and observed-score variance, whereas statistical power is a 
function of the sum of the same two variances. Controversies about how reliability is 
related to statistical power often can be explained by authors’ use of the term “reliability” 
in a general way to mean “consistency,” “precision,” or “dependability,” which does not 
always correspond to its mathematical definition as a variance ratio. The present note 
shows how adherence to the mathematical definition can help resolve the issue and 

presents some derivations and illustrative examples that have further implications for 
significance testing and practical research. 
 
Keywords: Reliability, power, hypothesis test, error of measurement, true score, 
error score, observed score, difference score 

 

 

The relation between the reliability of measurement, as the concept is defined in 

classical test theory, and the power of statistical hypothesis tests, has been 

investigated for many years and has engendered controversy that has not been 

mailto:bruno.zumbo@ubc.ca
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completely resolved. Overall & Woodward (1975, 1976) observed that the paired-

samples t test based on difference scores can under some conditions have 

maximum power when the reliability of differences is zero. That finding led to 

discussion as to how the power of the t test and other familiar hypothesis tests 

depends on the reliability of dependent variables in experiments (Cleary & Linn, 

1959; Collins, 1996; Feldt & Brennan, 1989; Fleiss, 1976; Hopkins & Hopkins, 

1979; Kopriva & Shaw, 1991; Levin, 1986; Mellenbergh, 1996, 1999; Subkoviak 

& Levin, 1977; Sutcliffe, 1958; Zimmerman & Williams, 1986; Zimmerman, 

Williams, & Zumbo, 1993), with presentation of various inconsistent points of 

view. 

The methods introduced by Cohen (1988) have been applied widely to 

calculate the power of familiar hypothesis tests used in educational and 

psychological research. In the case of tests based on the normal distribution, such 

as the Student t and ANOVA F tests, those methods provide a good 

approximation to exact results obtained from noncentral t and F distributions. 

However, the concept of test reliability and validity defined in classical test theory 

has not been employed in power analysis with the same degree of precision (see 

Thomas & Zumbo, 2012). 

Researchers and test users often associate the concept of reliability with 

terms such as dependability, precision, repeatability, and so on, assuming they are 

consistent with the mathematical definition in classical test theory. The classical 

definition is based on the decomposition of scores in a population of individuals 

into true scores and error scores and the relative variability of those components. 

In the traditional theory, each individual’s test score is a sum of a true score and 

an error score, X = T + E, and the total variance (or observed-score variance) with 

respect to a population of individuals is a sum of the variances of the components, 
2 2 2

X T E    . Finally, reliability is defined as the ratio of the true-score variance 

and the total variance,  2 2 2 2 2/ / ,T X T T E         or equivalently as 

 2 , ,XX T  the squared correlation between observed scores and true scores 

(Gulliksen, 1950; Novick, 1966; Lord & Novick, 1968). It is also worth noting 

that the numerical value of reliability can always be found solely from the ratio of 

σT and σE, although the combined values of the two standard deviations may differ 

in size. This can be seen by defining ψ = σT / σE and dividing both the numerator 

and denominator of  2 2 2/T T E    by σT σE to obtain  1/      . 

The fact that reliability in classical test theory is a population-dependent 

concept has been emphasized by Mellenbergh (1996, 1999). The concept does not 
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apply to an individual examinee, and this fact is important in considering 

statistical power. Because reliability is defined as a ratio of two components of 

variance with respect to a population, a given numerical value of reliability can be 

associated with many different combinations of values of true-score variance and 

error-score variance. That fact has been at the root of many problems in analyzing 

how reliability is related to statistical power. 

Reliability and variance heterogeneity 

A familiar formula in classical test theory enables one to find reliability in one 

population with a particular observed-score variance when knowing reliability in 

another population with a different observed-score variance. The formula is  

 

  1

2

2

2 12
1 1

X

X


 


     (1) 

 

where the subscripts 1 and 2 denote the respective populations. This equation was 

derived under the assumption that the change in observed-score variance is 

accounted for by a change in true-score variance, while error-score variance 

remains constant (Gulliksen, 1950, p 111; Lord & Novick, 1968, p 130). 

In contrast to the familiar approach, if a change in observed-score variance 

is accounted for by a change in error-score variance, while true-score variance 

remains constant, the results are described by the equation 

 

 1

2

2

2 12

X

X


 


   (2) 

 

which can be derived easily, although equation (1) is prominent in test theory. 

Whether it is more reasonable to regard a difference in the observed scores of two 

groups as resulting from different true-score variances or different error-score 

variances is problematic. Curiously, test theorists have assumed constant error-

score variance in deriving equation (1), but when considering how reliability 

influences statistical power, have adopted implicitly the assumption underlying 

the relatively unknown equation (2).  

It is well understood in statistics that the power of an hypothesis test is 

inversely proportional to the variance of any dependent variable, assuming that 

other determinants, including significance level, sample size, and directionality of 
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the hypothesis, remain constant. Expressed otherwise, the power of an hypothesis 

test is inversely proportional to the observed-score variance considered in test 

theory, irrespective of how that variance is partitioned into true score variance and 

error-score variance. For this reason, if observed-score variance does not change, 

the power of a significance test remains the same, even when the value of the 

reliability coefficient changes extensively over a wide range. 

Although equations (1) and (2) show how reliability changes as observed-

score variance changes, for present purposes in considering statistical power, we 

need just the reverse, that is, equations showing how observed-score variance 

changes as reliability changes. Simply rearranging equations (1) and (2), we can 

write 

 

 2

1

2

1

2

2

1
,  and

1

X

X

 

 





  (3) 

 

 2

1

2

1

2

2

X

X

 

 
   (4) 

 

These forms show immediately that, if error-score variance is constant, 

observed-score variance is proportional to reliability, and, if true-score variance is 

constant, observed-score variance is inversely proportional to reliability. In turn, 

because of what is known about power functions, that means that, if error-score 

variance is constant, statistical power is inversely proportional to reliability, and, 

if true-score variance is constant, statistical power is directly proportional to 

reliability. 

It is possible for a test to have high reliability and still have low power, or, 

conversely, to have low reliability and have high power (see, for example, the 

paradox originally discussed by Overall and Woodward (1975, 1976) in the 

context of difference scores). Furthermore, it is possible for the same reliability 

coefficient to be associated with different degrees of power and for different 

reliability coefficients to result in the same power.  

A simple example illustrates some possibilities. Table 1 compares 

hypothetical tests, each having a large number of scores with distributions like 

those shown in the table. In section A, the test on the left apparently has high true 

scores and low error scores, so that its reliability might be expected to be high, but, 

because the variance of T1 is much higher than that of E1, reliability is only .096. 

In the test on the right, the reverse is true, and the reliability is .904, even though 
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the true scores at first glance look small. Nevertheless, despite the difference in 

reliability, the two tests have the same statistical power, because the observed-

score variances are the same. In section B, the two tests have the same 

reliability, .645, because the variances of T and E, although different, have the 

same ratio. However, the observed-score variances are different, and the statistical 

power of the test on the left is greater. 
 
 
Table 1. A) Score components of two tests having substantially different reliability 

coefficients and the same statistical power; B) Score components of two tests having the 
same reliability coefficients and substantially different statistical power. 
 

A 
 

B 

Score Components   Score Components   Score Components   Score Components 

T1 E1 X1 
 

T2 E2 X2 
 

T1 E1 X1 
 

T2 E2 X2 

100 1 101 
 

0 99 99 
 

50 5 55 
 

100 10 110 

101 6 107 
 

5 100 105 
 

52 6 58 
 

104 12 116 

100 2 102 
 

1 99 100 
 

51 4 55 
 

102 8 110 

102 7 109 
 

6 101 107 
 

53 6 59 
 

106 12 118 

101 2 103 
 

1 100 101 
 

52 4 56 
 

104 8 112 

100 7 107 
 

6 99 105 
 

50 6 56 
 

100 12 112 

102 1 103 
 

0 101 101 
 

53 5 58 
 

106 10 116 

100 6 106 
 

5 99 104 
 

51 6 57 
 

102 12 114 

               
Variance of T1 − 0.786 

 
Variance of T2 − 7.429 

 
Variance of T1 − 1.429 

 
Variance of T2 − 5.714 

Variance of E1 − 7.429 
 

Variance of E2 − 0.786 
 

Variance of E1 − 0.786 
 

Variance of E2 − 3.143 

Variance of X1 − 8.214 
 

Variance of X2 − 8.214 
 

Variance of X1 − 2.214 
 

Variance of X2 − 8.857 

               
Reliability − .096 

 
Reliability − .904 

 
Reliability − .645 

 
Reliability − .645 

                              

 

Power as a composite function of reliability  

For investigating the relation of reliability and power, it is more convenient to 

examine changes in reliability with changes in true-score variance and error-score 

variance, as opposed to changes in observed-score variance as given by equations 

(1) and (2). It is then possible to express observed-score variance as a 1-1 function 

of reliability, provided either true-score variance or error-score variance is held 

constant. Then, because power is a 1-1 function of observed-score variance, it is 

possible in turn to express power as a composite function. Under those conditions, 

power is a monotonic decreasing function of observed-score variance and a 

monotonic increasing or decreasing function of reliability depending on which 
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component is constant. Of course, the form of the functions depends on properties 

of the particular hypothesis test considered.  

First, begin with the equations  
1 1

2 2 2

1 1 /E T E       and 

 
2 2

2 2 2

2 1 /E T E      , solve both for 2

T , assumed to be constant, and set the 

two expressions equal. The result is  

 

 1 2

2 2

1 2

1 21 1

E E   

 


 
 

 

Then, solving for ρ2 gives the result  

 

 

2

1

2 2

2

1

1

1
1 1

E

E




 


 

  
 

  (5) 

 

This equation indicates how reliability changes as the variance of the error 

component changes, while the true-score variance remains fixed. 

Alternatively, if 2

T  changes while 2

E  is constant, a similar derivation give 

 
1 1

2 2 2

1 /T T E      and  
2 2

2 2 2

2 /T T E     , so that 

   
1 2

2 2

1 1 2 21 / 1 /T T        . Solving for ρ2 gives the result 

 

 

1

2

2 2

2

1

1

1
1 1

T

T




 


 

  
 

  (6) 

 

This equation indicates how reliability changes as true-score variance changes, 

while error-score variance is constant. Equations (5) and (6) clearly indicate that 

changes in reliability resulting from changes in either true-score variance or error-

score variance depend only on the ratios 
2 1

2 2/E E   or 
1 2

2 2/T T   relating the old and 

new score components and not on the individual variances considered separately.  
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Changes in observed score variability and power with 
changes in reliability 

Table 2 contains results found from equations (5) and (6). The first row at the top, 

labeled “Initial ρ” is the value of the reliability coefficient, denoted by ρ1 in the 

equations, and the entries in the right-hand section of the table are the values of 

the new reliability coefficient, ρ2, after a designated change in the error-score 

variance or true-score variance. The ratio of old-to-new error-score variance, 

1 2

2 2/E E  , is located in the first column, and the entry in the table gives the value 

of the new reliability after the change, assuming that true-score variance remains 

constant. The same entry in the table is also the value of the new reliability if a 

change shown by the adjacent entry in the second column is made in the ratio 

1 2

2 2/T T  , assuming that error-score variance remains constant. That is, the ratios 

in the second columns are inverses of those in the first column, and the same 

change in reliability corresponds to both ratios. 
 
 
Table 2. Modification of reliability and observed-score variance by changes in error-score 

variance ( E E1 2

2 2/ ) and in true-score variance ( T T1 2

2 2/ ). Entries in the five right-hand 

columns are the modified reliability values (ρ2) corresponding to variances and variance 
ratios in the first four columns. 
 

    
Initial Reliability (ρ1) 

 E E1 2

2 2/  σ2 
1 2

2 2/T T   σ2 .10 .30 .50 .70 .90 

0.250 5.000 4.000 1.250 .027 .097 .200 .368 .692 

0.286 4.500 3.500 1.286 .031 .109 .222 .400 .720 

0.333 4.000 3.000 1.333 .036 .125 .250 .438 .750 

0.400 3.500 2.500 1.400 .043 .146 .286 .483 .783 

0.500 3.000 2.000 1.500 .053 .176 .333 .538 .818 

0.667 2.500 1.500 1.667 .069 .222 .400 .609 .857 

1.000 2.000 1.000 2.000 .100 .300 .500 .700 .900 

1.500 1.667 0.667 2.500 .143 .391 .600 .778 .931 

2.000 1.500 0.500 3.000 .182 .462 .667 .824 .947 

2.500 1.400 0.400 3.500 .217 .517 .714 .854 .957 

3.000 1.333 0.333 4.000 .250 .562 .750 .875 .964 

3.500 1.286 0.286 4.500 .280 .600 .778 .891 .969 

4.000 1.250 0.250 5.000 .308 .632 .800 .903 .973 

 
 

The values of ρ2 in the right-hand section always increase as values of 

1 2

2 2/E E   increase and also as those of 
1 2

2 2/T T   decrease. At the same time, the 
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values of σ2 decrease (and therefore power increases), as those of ρ1 increase, and 

vice versa. Also, the same values of ρ2 are associated with different values of σ2 

(and therefore power). 

The relationship can be seen in more detail by plotting graphs of some 

power functions obtained from simulations. Figure 1 plots power functions of the 

one-sample Student t test under conditions where reliability was either increased 

or reduced by changing one component of the observed-score variance while the 

other remained constant. These simulations were programmed using Mathematica, 

version 4.1 (Wolfram, 1999), together with Mathematica statistical add-on 

packages. The program performed t tests on sums of “true-score” and “error-score” 

random variables, selected from N(0,1) and multiplied by constants in order to 

determine means, variances, and reliabilities. The means increased in increments 

of .32σ, and each data point in the figure was found from 20,000 iterations of the 

sampling procedure. 

In both sections of the figure, the true-score and error-score variances were 

initially equal, so that reliability was .50. The middle curves with filled circles 

represent these initial reliabilities. In the upper section, reliability was increased 

to .80 in two ways. In the top curve in that section (triangular symbols), error-

score variance was reduced, while true-score variance was constant. In the lower 

section (square symbols), true-score variance was increased while error-score 

variance was constant. 

In the lower graph, reliability was decreased to .20 in two ways. In the top 

curve (square symbols), true-score variance was reduced while error-score 

variance was constant. In the lower curve (triangular symbols), error-score 

variance was increased while true-score variance was constant. All these curves, 

with shapes typical of power curves, show that the sum of the two variance 

components, that is, the observed-score variance, determined the power of the 

hypothesis test irrespective of how reliability changed as a result of a change in 

the ratio of the two components. 
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Figure 1. Power functions of the one-sample t test when reliability was increased or 

decreased by changing component variances. Upper graph: reliability was increased 
from .50 to .80. The middle curve is for ρ = .50. In the upper curve, error-score variance 
was reduced while true-score variance remained constant. In the lower curve, true-score 
variance was increased while error-score variance remained constant. Lower graph: 
Reliability was reduced from .50 to .20. The middle curve is for ρ = .50. In the upper 
curve, true-score variance was reduced while error-score variance remained constant. In 
the lower curve, error-score variance was increased while true-score variance remained 
constant. 
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Relations, functions, and composite functions 

It is well known that statistical power is a function of several variables, some of 

which are under the direct control of an experimenter. These include sample size, 

N, the significance level, α, and the directionality of the hypothesis tested. Of 

course, different hypothesis tests, parametric and nonparametric, have different 

power characteristics under various conditions. The relations between N and 

power and between α and power are functional when the other variables are held 

constant; that is, each value in the domain of the relation is associated with a 

single value in its range. Some authors have considered it reasonable to add 

reliability to the list of determinants. However, as we have seen, reliability 

influences power only to the extent that it influences observed-score variance.  

The association between reliability and power, therefore, is a mathematical 

relation, but it is not a function or a functional relation. However, it becomes 

functional if the variance of one of the two variables determining reliability is 

held constant. In that case, if the variance of one score component is held constant, 

power is a composite of two functions, the one between a score component and 

observed-score variance, and the one between observed-score variance and power. 

The range of the first function is the domain of the second. 

As said before, still another way to express the same relationship is that, all 

other things equal, statistical power is a function of the sum of the variances of T 

and E, whereas reliability is a function of the ratio of those two variances. As 

noted earlier, reliability can be defined as ψ/(ψ+ψ−1), where ψ = σT/σE. That 

definition makes it clear that reliability can be either large or small at the same 

time the sum, which determines power, is either large or small, independently of 

the ratio. The fact that power is determined by the observed-score variance, which 

is comprised of the sum in the denominator of the expression  2 2 2/T T E      

shows that, for a fixed value of 2

E , power has its maximum value when ρ = 0. 

But for a fixed value of 2

T  power has a maximum when ρ = 1. 

Reliability of difference scores and statistical power 

In order to gain insight into paradoxes concerning difference scores, we shall 

pursue an approach similar to the above. Rather than directly seeking a 

relationship between the reliability of differences and the power of an hypothesis 

test employing differences, we first consider how both are related to observed-
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score variance and also the reliability coefficients of the two variables 

determining the differences.  

Once again, beginning with what is known, the power of tests on difference 

scores, X − Y, is certainly a decreasing function of the variance of the difference 

scores. However, reliability depends on partitioning that variance into true and 

error components and finding ratios, which in turn depend on the similar ratios of 

both X and Y. In all cases, both reliability and the power of an hypothesis test can 

be considered joint functions of the true-score variance and error-score variance 

of the difference scores. However, power is determined uniquely by their sum and 

reliability by their ratio, just as in the case of a single variable X.  

A familiar equation is  

 

 

2 2 2

2 2 2

2

2

D X Y X Y X YT T T T T T T

D

D X Y XY X Y

     


     

 
 

 
  (7) 

 

where D = X − Y, TX and TY are the true score components of X and Y, and ρD is 

the reliability of D. If 
2 2

X YT T   and 
2 2

X YE E  , this equation can be solved for 

2

D  and substitutions made using  2 2 2/
X X XX T T E     . The result is 

 

  
2

2
2

1X

X Y

T

D T T X

X


  


    (8) 

 

and an equivalent result is 

 

  2 2 22 1
X YD T T T E      

 
  (9) 

 

Although the assumption that variances of X and Y are equal is often unrealistic in 

practice, it suffices to indicate the form of the relation between reliability and 

statistical power. Next, the reliability of differences can be written in the form 

 

 
 1

,  or
1

X Y

X Y

X T T

D

T T X

 


 





  (10) 
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 

 

2

2 2

1

1

X Y

X Y

T T T

D

T T T E

 

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


 
  (11) 

 

Equation (10) indicates that, if 0
X YT T  , the reliability of differences is the same 

as the common reliability of the components. 

Equations (8), (9), (10), and (11) have the desirable feature that all 

combinations of values of the variables on the right-hand side of the equation 

yield meaningful values of ρD and 2

D . That is not true in the case of several well-

known formulas that involve both ρXY and ρX, because the Cauchy-Schwarz 

inequality places limits on the values the two can have together (Zumbo, 1999). 

For example, the relation    / 1D X XY XY       is not meaningful for all 

values of ρXY and ρX. 

The above equations provide a convenient way to exhibit the relation 

between the reliability of differences and statistical power. Table 3 shows results 

of calculations using equations (9) and (11), comparing the reliability of 

component scores (ρX), the reliability of difference scores (ρD), and the observed 

variance of difference scores ( 2

D ), as a function of 2

T  while 2

E  is constant 

(upper section) and of 2

E  while 2

T  is constant (lower section). 

If 2

E  is fixed, an increase in ρX comes from an increase in 2

T , and if 2

T  is 

fixed, it comes from a reduction in 2

E . Those outcomes are apparent in the table: 

As 2

T  increased from 0 to 1.8, the reliability coefficients ρX and ρD both 

increased, and also the variance of observed scores increased, so that statistical 

power decreased. The same was true for all three values of the correlation 

between true scores, ρ(TX,TY). On the other hand, as 2

E  increased from 0 to 1.8, 

ρX and ρD both decreased, but the variance of observed scores still increased, so 

that power again decreased. As 2

T  varied, power was greatest when the 

reliability of differences was 0. However, as 2

E  varied, power was greatest when 

the reliability of differences was 1. 
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Table 3. Changes in observed variance and reliability of difference scores associated 

with changes in reliability of component scores. 
 

  
ρ(TX,TY) = −.60 

 
ρ(TX,TY) = 0 

 
ρ(TX,TY) = .60 

  T

2
 ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
0.0 .000 .000 2.000 

 
.000 .000 2.000 

 
.000 .000 2.000 

 
0.2 .167 .242 2.640 

 
.167 .167 2.400 

 
.167 .074 2.160 

 
0.4 .286 .390 3.280 

 
.286 .286 2.800 

 
.286 .138 2.320 

 
0.6 .375 .490 3.920 

 
.375 .375 3.200 

 
.375 .194 2.480 

1 E

2
 0.8 .444 .561 4.560 

 
.444 .444 3.600 

 
.444 .242 2.640 

 
1.0 .500 .615 5.200 

 
.500 .500 4.000 

 
.500 .286 2.800 

 
1.2 .545 .658 5.840 

 
.545 .545 4.400 

 
.545 .324 2.960 

 
1.4 .583 .691 6.480 

 
.583 .583 4.800 

 
.583 .359 3.120 

 
1.6 .615 .719 7.120 

 
.615 .615 5.200 

 
.615 .390 3.280 

 
1.8 .643 .742 7.760 

 
.643 .643 5.600 

 
.643 .419 3.440 

                          

  
ρ(TX,TY) = −.60 

 
ρ(TX,TY) = 0 

 
ρ(TX,TY) = .60 

  
E 2

 ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
0.0 1.000 1.000 3.200 

 
1.000 1.000 2.000 

 
1.000 1.000 0.800 

 
0.2 .833 .889 3.600 

 
.833 .833 2.400 

 
.833 .667 1.200 

 
0.4 .714 .800 4.000 

 
.714 .714 2.800 

 
.714 .500 1.600 

 
0.6 .625 .727 4.400 

 
.625 .625 3.200 

 
.625 .400 2.000 

1T 2
 0.8 .556 .667 4.800 

 
.556 .556 3.600 

 
.556 .333 2.400 

 
1.0 .500 .615 5.200 

 
.500 .500 4.000 

 
.500 .286 2.800 

 
1.2 .455 .571 5.600 

 
.455 .455 4.400 

 
.455 .250 3.200 

 
1.4 .417 .533 6.000 

 
.417 .417 4.800 

 
.417 .222 3.600 

 
1.6 .385 .500 6.400 

 
.385 .385 5.200 

 
.385 .200 4.000 

  1.8 .357 .471 6.800   .357 .357 5.600   .357 .182 4.400 

 
 

Consider now the relation between increases in reliability and power, 

reading from top to bottom in the columns in the upper section of the table and 

from bottom to top in the lower section. When the reliability coefficients of the 

component tests increased, the reliability of differences also increased, as long as 

just one column is considered. However, note that the same reliability of the 

components in many cases is associated with decidedly unlike reliabilities of the 

differences, depending on whether the change is attributable to a change in true-

score variance or error-score variance. Often the values were far apart. 

Furthermore, the reliability of differences is either greater or less than that of the 

components, depending on whether the correlation between true scores, ρ(TX,TY), 

is positive or negative. As the absolute value of that correlation increases, the 

discrepancy is greater. 
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The observed scores of the differences, and hence the statistical power, 

increases as reliability increases if the change is attributable to a change in error-

score variance and decreases if it is attributable to a change in true-score variance. 

That means that simply selecting a value of reliability, either of differences or the 

component tests, does not in itself provide information about the statistical power 

of the differences as a dependent variable. Just as in the case of a single test, the 

relation between reliability and power is not a functional relation unless the 

variance of one of the components of the scores is held constant.  

These conclusions about the relation between power and the reliability of 

differences are consistent with results obtained by May & Hittner (2003), Overall 

& Woodward (1975, 1976), and Nicewander & Price (1978, 1983) using different 

methods. The so-called paradox of low reliability being associated with high 

power becomes more understandable from inspection of Table 3. That problem 

also is closely related to another issue that has been extensively treated in the 

literature, that of the reliability of differences often being considerably less than 

the reliability of the components. As the table shows, that is not always true, and 

again, looking at the reliability of the components alone, without further 

information, is one source of the trouble. The approach in Table 3, in which 

reliability coefficients are first related to the variances of true scores and error 

scores, makes it possible to focus on values that realistically would be likely to 

occur. At any rate, it is clear that an hypothesis test of differences can be powerful 

even if the reliability of a dependent variable is quite low. 

How to increase statistical power: some practical 
implications 

As mentioned before, a possible reason for the controversies surrounding the 

relation of reliability and statistical power is ambiguity about the precise meaning 

of the term “reliability” in practical research. The term often is used in a way that 

conforms to popular usage, and even to widespread usage in various scientific 

fields, but does not match the mathematical definition given in classical test 

theory. The root of the difficulty is the fact that reliability, as defined in test 

theory, is a property of populations of individuals, that is a ratio of statistics 

applicable to populations, but not to a single individual or experimental object. 

The “reliability” of a scientific instrument, especially in physical sciences, often 

refers to its consistency in measuring a single physical object of a certain kind, 

but that is not the way the term is used in classical test theory. 
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When one asks the question “How does reliability influence power?” 

investigators in psychology and education often assume the question is similar to 

“How does reliability influence validity?” or “How does test length influence 

reliability?” What is typically desired is a function relating changes in the first 

variable to changes in the second variable, and many such functions are known in 

test theory. On the other hand, a researcher in another field, or a statistician, may 

assume the question is similar to “How does sample size influence power?” or 

“How does the significance level influence power?” having in mind well-known 

functions relating those variables. 

As emphasized in the present note, there is not a unique way of making the 

increments in reliability needed to exhibit power as a function of reliability. We 

can conclude that increasing an instrument’s reliability will contribute to greater 

power in hypothesis testing only if the change occurs through a reduction of error-

score variance that exceeds any increase in true-score variance occurring at the 

same time.  

Suppose a researcher has a choice between two instruments, one with a 

known reliability coefficient of .90 and the other .80. Before assuming 

automatically that the first instrument is the better choice, it is prudent to look at 

the variance of scores that can be expected. If the instrument with lower reliability 

typically produces scores with considerably less variability, it could still be the 

better choice. That is especially true if the experiment is designed to detect 

possible differences among large groups of subjects with respect to an 

independent variable and is not concerned with short-term fluctuations in 

measures of individuals. 

Another way to look at the problem is to recall that an hypothesis test is 

essentially a determination, based on probability, of whether or not a difference 

found between samples can be attributed to chance variability. However, an 

hypothesis test is blind to the partitioning of variability into contributions from 

separate components, such as “true scores” and “error scores.” A test statistic such 

as t typically is computed as a ratio of an obtained value to an estimate of 

variability based on a sampling distribution. 

Recommending that the reliability coefficient be increased whenever 

possible is not always good advice in hypothesis testing, although the 

conventional emphasis on practical measures to reduce error variance still applies. 

All other things being equal, the more error of measurement can be avoided in an 

experiment, the better, and that task certainly should be considered along with 

other well-known methods of increasing power (see, for example, Wilcox, 2003) 

that are useful in research. But reducing error is productive, we have seen, only if 
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the same practical steps also reduce observed-score variance. If a more 

heterogeneous group is tested at the same time error of measurement is less, 

power does not necessarily increase. For practical usefulness, eliminating error 

and thereby increasing reliability for a particular population of examinees can be 

effective, provided the change is made without altering the population.  
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Introduction 

For the last 50 or 60 years it has been fashionable to deride the insistence on using 

an alpha level of .05 for testing the statistical significance of a sample finding. It 

is commonplace to read critical comments such as “The current obsession 

with .05” (Skipper, Guenther, & Nass, 1967, p. 16; see also Labovitz, 1968) and 

“God loves the .06 nearly as much as the .05” (Rosnow & Rosenthal, 1989, p. 

1277). In the spirit of Robinson, Funk, Halbur, and O'Ryan (2003) I would like to 

provide an explanation for ‘why .05?’ and an argument in favor of its prevailing 

use. Near the end of the paper I will give a similar argument for 95% confidence 

(.05's interval estimation counterpart), and I will conclude with a few cautionary 

statements regarding total devotion to .05 and/or 95%. 

A bit of history 

Although there is some evidence for earlier recommendations of .05 as a 

defensible level of statistical significance, most people claim that it was first 

suggested by Fisher (1926): 

 

[T]he evidence would have reached a point which may be called the 

verge of significance; for it is convenient to draw the line at about the 

mailto:tknapp5@juno.com
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level at which we can say 'Either there is something in the treatment or 

a coincidence has occurred such as does not occur more than once in 

twenty trials.' This level, which we may call the 5 per cent level point, 

would be indicated, though very roughly, by the greatest chance 

deviation observed in twenty successive trials... If one in twenty does 

not seem high enough odds, we may, if we prefer it, draw the line at 

one in fifty (the 2 per cent point) or one in a hundred (the 1 per cent 

point). Personally, the writer prefers to set the low standard of 

significance at the 5 per cent point, and ignore entirely all results 

which fail to reach this level. (p. 504) 

 

There are several things to note about what Fisher said: 

 

1. He used the interesting phrase “the verge of significance”. As far as I 

have been able to determine, none of his critics have commented 

about that choice of words.  

2. He did not insist on .05, as the second part of the quote indicated. 

Many of his critics unfairly charged him with being unwavering 

regarding .05. 

3. Surprisingly, he confused probability with odds (and high with low). 

The alpha level of .05 has to do with a probability of one in twenty; 

the corresponding odds are one to nineteen (in favor) or nineteen to 

one (against). 

 

Fisher didn’t write about .05 being the probability of making a Type I error. 

That concept (along with the probability of making a Type II error) was yet to 

come in the Neyman-Pearson approach to hypothesis testing. Also yet to come 

were several acrimonious arguments between Fisher and W. S. Gosset (who had 

previously developed the t-test), between Fisher and Karl Pearson, and between 

Fisher and both Jerzy Neyman and Egon Sharpe Pearson (Karl’s son), as 

documented by Fienberg and Tanur (1966), Cowles and Davis (1982), Inman 

(1994), Wainer and Robinson (2003), and others. 

In the intervening years between 1926 and the present there were several 

criticisms of .05, e.g., Cohen (1994), along with some defenders, e.g., Robinson, 

et al. (2003). Cohen (1994) was particularly puzzling (see the collection of 

comments regarding it in the December, 1995 issue of American Psychologist). 

The title is difficult to understand. Was he trying to be clever in considering “The 

earth is round” as a null hypothesis that should be rejected at the .05 level, 
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because it is actually slightly elliptical rather than perfectly round? He also made 

an error where he claimed many people believe a p-value is the probability that 

the null hypothesis is false. No; some people mistakenly believe that a p-value is 

the probability that the null hypothesis is true; no one believes p is the probability 

of a false null. 

After discussing some of the historical origins of the use of an alpha level 

of .05, Robinson, et al. (2003) provided the results of empirical studies in which 

students were asked how many heads in each of the first n flips of a coin would 

lead them to claim that the coin was not “fair”. The modal response in most of 

those studies was five. The probability of heads on the first five tosses of a fair 

coin is .03125, which is close to the traditional .05 (see Figure 1 below). 

A rationale for .05 

Although Fisher didn't use the following argument, some of the students in the 

Robinson, et al. (2003) studies apparently did, implicitly if not explicitly. 

(Comparable arguments have been made by Tintle, et al., 2014 and at the 

EMBstats website, http://www.embstats.com. See Figure 1 below for the latter.) 

Suppose you were asked your opinion about the fairness of a coin. You want to 

make a decision if its probability of landing as heads is equal to .5. How many 

heads would have to be obtained in the first five tosses for you to call a halt and 

conclude it’s not a fair coin? The probability of one head in one toss of a fair coin 

is .5. (You wouldn’t call a halt.) The probability of two heads in two tosses 

is .5 × .5 = .25, and the probability of three heads in three tosses 

is .5 × .5 × .5 = .125. (Still no clear decision to halt.) The probability of four heads 

in four tosses is .5 × .5 × .5 × .5 = .0625. (Perhaps the decision to halt is near, and 

note .0625 is close to .05.) If you want to wait for the result of one more toss, the 

probability of five heads in five tosses is .5 × .5 × .5 × .5 × .5 = .03125. At this 

point you are likely to claim that the coin is not fair. (The difference 

between .0625 and the .03125 is .046875, which is very close to .05.) However, 

you know you might be wrong. 

Figure 1 details the argument presented at the EMBstats website. Note the 

interpretations of “Unusual” (for 4 heads in 4 tosses), “Surprising” (for 5 heads in 

5 tosses), “Strange” (for 6 heads in 6 tosses), and “I don't believe it!” (for 7 heads 

in 7 tosses). Fisher’s .05 would come between “Unusual” and “Surprising”. He 

avoided the matter of proof and exhibited a commendable tolerance for 

uncertainty. Similarly, statisticians are so comfortable with uncertainty that they 

occasionally advocate the use of the randomized response technique for 

http://www.embstats.com/


THOMAS R. KNAPP 

30 

estimating a proportion where only some of the respondents to a survey actually 

answer the question of interest (Campbell & Joiner, 1973). 
 
 

 
 
Figure 1. EMBstats dialogue on tossing a coin (http://www.embstats.com). 

 

 

95% confidence intervals 

In the last 25 or 30 years there has been a pronounced shift from an emphasis on 

significance testing to a preference for confidence intervals. Some methodologists 

suggest reporting both; some journal editors require it. (Reporting both is not a 

good idea. See the third statistics commandment in Knapp & Brown, 2014). But 

the continuing choice of 95% for confidence (the interval estimation counterpart 

to .05 for hypothesis testing) has not been subject to the same sort of scrutiny that 

has been directed at .05. Why is that? 

Perhaps consumers are more convinced by a 95% confidence argument than 

by the .05 significance argument. Consider the coin-tossing problem above, but 

change it to a desire for estimating the degree of bias associated with the coin 

rather than testing its fairness. If the coin-tosser got five heads in five tosses and 

was interested in estimating the population proportion of heads for that coin, he 

could get a confidence interval by using Pezzullo’s online computing routine 

(http://www.statpages.org) based on Clopper and Pearson’s (1934) formulas, 

tables, and graphs.  

Testing: Is my coin fair? 

Formally: We want to make some inference about 
P(head) 

Try it: Toss coin several times (say 7 times). Assume 
that it is fair (P(head) = 0.5), and see if this 
assumption is compatible with the observations. 

# tosses # heads Comment Probability 

1 1 OK 0.50 

2 2 OK 0.25 

3 3 OK 0.12 

4 4 Unusual 0.06 

5 5 Surprising 0.03 

6 6 Strange 0.02 

7 7 I don't believe it! 0.01 

 

http://www.embstats.com/
http://www.statpages.org/
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For example, at http://www.statpages.org for Exact Binomial Confidence 

Intervals input 5 heads (the numerator) in 5 tosses (the denominator, chose 95% 

confidence (the default). The results returned are 1.0000 as the statistic and .4782 

to 1.0000 as the confidence interval. A choice of 99% confidence (corresponding 

to .01 significance) or 99.9% confidence (corresponding to .001 significance) 

serves only to reduce the lower limit (.3466 for 99% and .2187 for 99.9%) and 

therefore provides more confidence. Could it be that some people regard 99% 

confidence intervals and 99.9% confidence intervals to be too wide and are 

willing to stick with 95% for its greater precision despite its lesser confidence? 

Asterisks 

Consider the still-common practice of labeling with a single asterisk a finding for 

which p < .05, two asterisks for p < .01, and three asterisks for p < .001 (or what 

Leahey, 2005 refers to as the three-star system”, Abstract). That is not sound 

practice (see Slakter, Wu, & Suzuki-Slakter, 1991), because if an alpha of .05 has 

been used in a power analysis to select an appropriate sample size, then all that is 

necessary to determine is whether p is less than or greater than .05. (Similarly, for 

alphas of .01 and .001.) Some journal editors require the reporting of the actual p, 

and that is the preferred practice according to the American Psychological 

Association manual (APA, 2010), which is not perfect, but is more sound than 

using asterisks. 

To be consistent, why aren’t asterisks or similar symbols used in the tables 

where authors report 95%, 99%, or 99.9% confidence intervals? If this statistic is 

significant at the .05 level and that statistic is significant at the .01 level, doesn’t it 

make sense to put a 95% confidence interval around the first statistic and a 99% 

confidence interval around the second statistic? 

All of the references so far have been to journal articles. There are three 

books on this topic that are recommended: Fisher (1925), Salsburg (2001), and 

Moye (2006). These three authors addressed the choice of .05 for statistical 

significance. Fisher (1925) contained some of the same views later expressed in 

Fisher (1926). Salzburg related Fisher’s classic experiment regarding a lady’s 

ability to determine whether milk has been added to tea or tea added to milk. 

Moye provided a thorough discussion of the advantages and disadvantages of 

p-values (mostly disadvantages). Both Salzburg and Moye gave fascinating 

accounts of Fisher’s battles with Neyman and Pearson (and with Gosset). Moye 

noted that Fisher was not wedded to .05, as stated above. 

http://www.statpages.org/
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Some cautions 

Continuing to emphasize .05 as the cut-off between statistical significance and 

non-significance is not all that bad. The same holds for continuing to emphasize 

95% for confidence intervals. But there are exceptions. 

 

1. If there might be very serious consequences should a Type I error be 

made, a more stringent alpha is necessary. For example, suppose a 

randomized clinical trial (RCT) were to be carried out comparing the 

effectiveness of a new and very expensive drug with an existing 

much less expensive drug. Suppose further that a decision might be 

made to reject the null hypothesis of no effect because of a 

statistically significant effect in favor of the new drug, but in reality 

it is no better. That could lead to the adoption of a drug that is not 

only no better than the existing drug but could result in an 

unnecessary cost of thousands or millions of dollars. In that case an 

argument could be made to use .01 or .001 or an even smaller 

significance level. 

2. If the committing of a Type II error would have much greater 

consequences than a Type I error, the argument is reversed; i.e., 

change alpha to a more liberal level, such as .20. An example of this 

would be a medical diagnosis of no disease if a patient is in fact ill. 

Generally, it would be worse to not treat a patient who has a disease 

than to treat a patient when the disease is not present. 

3. If the estimate of a population parameter must be both precise and 

defendable, a confidence coefficient of 99.9% might be chosen, as 

well as a huge sample size. For example, if an estimate of the 

proportion of people who are below the poverty line is to be made, 

we might want to do that in order to have both politically defensible 

and morally desirable evidence for so doing. 
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Ranking is the attribute selection technique used in the pre-processing phase to 
emphasize the most relevant attributes which allow models of classification simpler and 
easy to understand. It is a very important and a central task for information retrieval, such 
as web search engines, recommendation systems, and advertisement systems. A 

comparison between eight ranking methods was conducted. Ten different learning 
algorithms (NaiveBayes, J48, SMO, JRIP, Decision table, RandomForest, 
Multilayerperceptron, Kstar) were used to test the accuracy. The ranking methods with 
different supervised learning algorithms give different results for balanced accuracy. It 
was shown the selection of ranking methods could be important for classification 
accuracy. 
 

Keywords: Feature selection, Ranking Methods, Classification algorithms, 
Classification accuracy 

 

Introduction 

Ranking is a crucial part of information retrieval. It is able to compute sorted 

score when given document as objects. Ranking is a central issue in information 

retrieval, in which, given a set of objects (e.g., Documents), a score for each of 

them is computed and the objects are sorted according to the scores. Depending 

on the applications the scores may represent the degrees of relevance, preference, 

or importance. Ranking is a very important topic in feature selection. Although 

algorithms for learning ranking models have been intensively studied, this is not 

the case for feature selection, despite of its importance. The reality is that many 

mailto:app_s@yahoo.com
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feature selection methods used in classification are directly applied to ranking. 

Because of the striking differences between ranking and classification, it is better 

to develop different feature selection methods for ranking. 

Feature selection has emerged as a successful mechanism in many machine 

learning applications. Feature selection is also desirable for learning to rank. First, 

as the numbers of useful features for ranking are continuously growing, the time 

of extracting such high-dimensional features has become a bottleneck in ranking.  

High-dimensional features may be redundant or noisy, which results in poor 

generalization performance. Also, a ranking model with only a small set of 

features has less computational cost in prediction. Recently, considerable efforts 

have been made on feature selection for ranking. The main aim of this paper was 

to experimentally verify the impact of different ranking methods on classification 

accuracy. 

The only way to be sure that the highest accuracy is obtained in practical 

problems is testing a given classifier on a number of feature subsets, obtained 

from different ranking indices. Diverse feature ranking and feature selection 

techniques have been proposed in the machine learning literature. The purpose of 

these techniques is to discard irrelevant or redundant features from a given feature 

vector. The usefulness of the following commonly used ranking methods in 

different datasets are considered: 

 

1. Relief. 

2. Gain Ratio (GR). 

3. Information Gain (IG). 

4. One-R. 

5. Symmetrical Uncertainty (SU). 

6. Chi-Squared. 

7. Support Vector Machine (SVM). 

8. Filter. 

 

The results were validated using different algorithms for classification. A 

wide range of classification algorithms is available, each with its strengths and 

weaknesses. There is no single learning algorithm that works best on all 

supervised learning problems. 
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Review of the literature 

A ranking is a task that applies machine learning techniques to learn good ranking 

predictors. It is a relationship between a set of items and a unit that refer to 

different values. Many learning-to-rank algorithms have been proposed. The two 

prime functions of ranking are to deliver highly relevant search results and to be 

fast in ranking results. Many feature selection and feature ranking methods have 

been proposed. Fuhr and Norbert (1989) introduced a Ranking OPRF method 

which uses the idea of Polynomial regression. Cooper, Gey and Dabney (1992) 

proposed a point wise SLR (Staged logistic regression ranking) method. A 

RELIEF ranking algorithm was proposed by Kira and Rendell (1992). 

The strengths of relief is that, it is not dependent on heuristics, it requires 

only linear time in the number of given features and training instances, and it is 

noise-tolerant and robust to feature interactions, as well as being applicable for 

binary or continuous data. However, it does not discriminate between redundant 

features, and low numbers of training instances fool the algorithm. Robnik-

Sikonja and Kononenko (2003), proposed some updates to the algorithm 

(RELIEF-F) in order to improve the reliability of the probability approximation, 

make it robust to incomplete data, and generalizing it to multi-class problems. 

Then the original Support Vector Machine algorithm (SVM) was invented by 

Vladimir N. Vapnik in 1992 (Cortes & Vapnik, 1995). This SVM is supervised 

learning models with associated learning algorithms that analyze data and 

recognize patterns, used for classification and regression analysis. SVMs are 

based on the concept of decision planes that define decision boundaries. A 

decision plane is one that separates between a set of objects having different class 

memberships. SVMs deliver state-of-the-art performance in real-world 

applications such as text categorization, hand-written character recognition, image 

classification, bio sequences analysis, etc., and are now established as one of the 

standard tools for machine learning and data mining. 

 

Information Gain Another ranking method called as Information Gain (IG) 

evaluates the worth of an attribute by measuring the information gain with respect 

to the class. An attribute selection measure, based on pioneering work by Claude 

Shannon on information theory, which studied the value of the information 

content of messages. It is given by 

 

    
Y X

IG H Y H H X H
X Y

   
      

   
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IG is a symmetrical measure. The information gained about Y after 

observing X is equal to the information gained about X after observing Y. A 

weakness of the IG criterion is that, it is biased in favour of features with more 

values even when they are not more informative. 

The attribute has the best score for the measure is chosen as the splitting 

attribute for the given tuple. Depending on the measure, either the highest or 

lowest score is chosen as the best attribute. The IG measure is biased toward tests 

with many outcomes. That is, it prefers to select attributes having large number of 

values. 

 

Gain Ratio But Gain Ratio is the extension of IG which attempts to overcome 

this bias. It evaluates the worth of an attribute by measuring the gain ratio with 

respect to the class. The Gain Ratio is the non-symmetrical measure that is 

introduced to compensate for the bias of the IG (Hall & Smith, 1998). Gain Ratio 

is given by 

 

    G R IG H X   

 

When the variable Y has to be predicted, we normalize the IG by dividing by 

the entropy of X, and vice versa. Due to this normalization, the GR values always 

fall in the range [0, 1]. A value of GR = 1 indicates that the knowledge of X 

completely predicts Y, and GR = 0 means that there is no relation between Y and X. 

In opposition to the IG, the GR favours variables with fewer values. 

 

Symmetrical Uncertainty The Symmetrical Uncertainty criterion compensates 

for the inherent bias of IG by dividing it by the sum of the entropies of X and Y 

(Hall & Smith, 1998). It is given by 

 

 
   

2
IG

SU
H Y H X

 
    

  

 

SU takes values, which are normalized to the range [0, 1] because of the 

Correction factor 2. A value of SU = 1 means that the knowledge of one feature 

completely predicts, and the other SU = 0 indicates, that X and Y are uncorrelated. 

Similar to GR, the SU is biased toward features with fewer values. 
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Chi-squared  Feature Selection via chi square test is another very 

commonly used method (Liu & Setiono, 1995). Chi-squared attribute evaluation 

evaluates the worth of a feature by computing the value of the chi-squared 

statistic with respect to the class. The initial hypothesis H0 is the assumption that 

the two features are unrelated, and it is tested by chi squared 

Formula: 

 

 
 

2

2

1 1

r c
ij ij

i j ij

O E
x

E 


   

 

where Oij is the observed frequency and Eij is the expected (theoretical) frequency, 

asserted by the null hypothesis. The greater the value of χ2, the greater the 

evidence against the hypothesis H0 is. 

 

One-R OneR is a simple algorithm proposed by Holte (1993). It builds 

one rule for each attribute in the training data and then selects the rule with the 

smallest error. It treats all numerically valued features as continuous and uses a 

straightforward method to divide the range of values into several disjoint intervals. 

It handles missing values by treating "missing" as a legitimate value. This is one 

of the most primitive schemes. It produces simple rules based on feature only. 

Although it is a minimal form of classifier, it can be useful for determining a 

baseline performance as a benchmark for other learning schemes. 

A pairwise RankSVM (Herbrich, Graepel & Obermayer, 2000) method was 

devised that out performs more naive approaches to ordinal regression such as 

Support Vector Classification and Support Vector Regression in the case of more 

than two ranks. In the year 2003, 2005 and 2006 a pairwise RankBoost, RankNet 

(Burges et al., 2005) and IR-SVM, Lambda Rank methods were developed. 

Subsequently, in 2007, the ranking methods Frank, GB Rank, ListNet, McRank, 

QBRank, RankCosine, RankGP, and RankRLS were innovated. In the year 2007 

a listwise ranking methods ListNet, RankCosine, RankGPand, SVMmap (Yue, 

Finley, Radlinski, & Joachims, 2007) were introduced. Ranking Refinement 

method (2008) is a semi-supervised approach to learning to rank that uses 

Boosting. Then a list wise ranking methods LambdaMART (Wu, Burges, Svore, 

& Gao 2008), ListMLE, PermuRank, SoftRank and a pairwise ranking methods 

Ranking Refinement (Rigutini, Papini, Maggini, & Scarselli, 2008) SSRankBoost 

(Amini, Troung, & Goutte, 2008), SortNet (Rigutini et al., 2008) were developed 

in 2008. In 2009 MPBoost, BoltzRank and BayesRank (Kuo, Cheng, & Wang, 
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2009) later in 2010 NDCG Boost (Valizadegan, Jin, Zhang, & Mao, 2010), 

Gblend, IntervalRank (Moon, Smola, Chang, & Zhen, 2010) and CRR (Sculley, 

2010) were discovered. 

 

Point wise approach It is assumed that each query-document pair in the 

training data has a numerical or ordinal score. Then learning-to-rank problem can 

be approximated by a regression problem-given a single query-document pair, 

predict its score. 

 

Pairwise approach  The learning-to-rank problem is approximated by a 

classification problem- learning a binary classifier that can tell which document is 

better in a given pair of documents. The goal is to minimize the average number 

of inversions in ranking. 

 

List wise approach These algorithms try to directly optimize the value 

of one of the above evaluation measures, averaged over all queries in the training 

data. This is difficult because most evaluation measures are not continuous 

functions with respect to ranking model's parameters, and so continuous 

approximations or bounds on evaluation measures have to be used. 

Proposed work and experimental results 

Weka tool Data mining or “Knowledge Discovery in Databases” is the 

process of discovering patterns in large data sets with artificial intelligence, 

machine learning, statistics, and database systems. The overall goal of a data 

mining process is to extract information from a data set and transform it into an 

understandable structure for further use. In its simplest form, data mining 

automates the detection of relevant patterns in a database, using defined 

approaches and algorithms to look into current and historical data that can then be 

analyzed to predict future trends. A data mining tools predict future trends and 

behaviours by reading through databases for hidden patterns; they allow 

organizations to make proactive, knowledge-driven decisions and answer 

questions that were previously too time-consuming to resolve.  

With Weka, Open Source software, patterns can be discovered in large data 

sets and extract all the information. It is a comprehensive tool for machine 

learning and data mining for predictive analytics. Weka is a collection of machine 

learning algorithms for data mining tasks. The algorithms can either be applied 

directly to a data set or called from your own JAVA code. It is also well suited for 
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developing new machine learning schemes. It also brings great portability, since it 

was fully implemented in the JAVA programming language, plus supporting 

several standard data mining tasks. It contains tools for data pre-processing, 

classification, regression, clustering, association rules, and visualization. Different 

ranking methods can also be implemented using the data pre-processing tool 

which is available in Weka. It is also well-suited for developing new machine 

learning schemes. 

Methodology 

Datasets used in experiments 

Five datasets are used: diabetes, segment-challenge, soybean, vote and ionosphere 

from the UCI data repository (Lichman, 2013). The first dataset is the diabetes 

data which has 768 instances and 9 attributes. The second data set segment-

challenge has 1500 instances and 20 attributes. Similarly soybean, vote and 

ionosphere datasets have 683,435,351 instances and 36, 17, 35 attributes 

respectively. In Weka a wide range of classification algorithms is available for 

data analysis. From this wide range of learning algorithms, eight different 

algorithms are chosen and applied on all the five datasets for our study. 
 
 
Table 1. Datasets used in the Experiment. 

 

Sl.No Name of the Dataset No. of attributes No. of Instances 

1 Diabetes 9 768 

2 segment-challenge 20 1500 

3 soybean 36 683 

4 vote 17 435 

5 ionosphere 35 351 
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Table 2. Classification accuracy of different Classification algorithm without Ranking. 

 

S. No. Dataset NB J48 SMO JRIP DT Rd.Frt Mul.pr Kstar 

1 Diabetes 76.3 73.82 77.34 76.04 71.22 73.82 75.39 69.14 

2 Segment-challenge 81.06 95.73 91.93 93.73 87.4 96.93 96.73 96.6 

3 soybean 92.97 91.5 93.85 91.94 84.33 92.09 93.41 87.99 

4 vote 90.11 96.32 96.09 95.4 94.94 95.63 94.71 93.33 

5 ionosphere 82.62 91.45 88.6 89.74 89.45 92.87 91.16 84.61 

Classification Average 84.61 89.76 89.56 89.37 85.47 90.27 90.28 86.33 

 
 
Table 3. Processing Time of different Classification algorithm without Ranking. 

 

S. No. Dataset NB J48 SMO JRIP DT Rd.Frt Mul.pr Kstar 

1 Diabetes 0.02 0.04 0.26 0.06 0.09 0.13 1.96 0.0 

2 Segment-challenge 0.02 0.09 1.85 0.55 0.49 0.26 17.06 0.0 

3 soybean 0.0 0.03 4.77 0.11 0.81 0.33 97.25 0.0 

4 vote 0.0 0.0 0.04 0.01 0.09 0.07 2.41 0.0 

5 ionosphere 0.01 0.04 0.08 0.07 0.15 0.01 6.59 0.0 

Average Processing Time 0.01 0.04 1.4 0.16 0.32 0.16 25.05 0 
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Table 4. Classification accuracy on selected features for Diabetes dataset. 

 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul. 
pr 

Kstar 
F.S. 
Avg. 

Relief 75.4 74.3 76.4 74.1 73.0 73.4 74.7 69.0 73.8 

GainRatio 75.5 74.9 76.2 75.9 72.4 72.0 76.3 71.4 74.3 

InfoGain 75.4 74.3 76.0 75.1 72.1 72.0 77.2 71.6 74.2 

OneR 75.5 74.9 76.2 76.2 72.4 72.6 76.0 71.4 74.4 

SU 75.4 74.3 76.0 75.1 72.1 72.0 77.2 71.6 74.2 

Chi-squared 75.4 74.3 76.0 74.9 71.6 71.2 76.7 71.6 74.0 

SVM 77.2 74.9 76.8 74.2 72.7 72.4 75.1 71.9 74.4 

Filter 75.4 74.3 76.0 75.1 72.1 72.0 77.2 71.6 74.2 

Classification 
Avg. 

75.7 74.5 76.2 75.1 72.3 72.2 76.3 71.3  

 
 
Table 5. Classification accuracy on selected features for segment-challenge dataset. 
 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul. 
pr 

Kstar 
F.S. 
Avg 

Relief 73.3 94.6 83.1 93.8 87.0 96.2 95.6 96.9 90.1 

GainRatio 66.4 89.2 77.4 86.6 82.8 90.6 86.3 92.1 84.3 

InfoGain 76.9 94.8 89.6 93.9 87.0 96.2 85.3 97.1 91.4 

OneR 75.0 94.9 87.6 93.6 87.0 96.4 95.5 97.0 90.9 

SU 76.9 94.9 89.6 93.2 87.0 96.8 95.5 97.1 91.3 

Chi-squared 66.4 89.2 77.6 88.0 95.6 82.8 88.9 95.1 85.5 

SVM 82.0 94.6 90.7 93.4 88.2 96.7 96.0 95.1 92.2 

Filter 76.9 94.8 89.6 93.9 87.0 96.2 95.3 95.7 91.4 

Classification 
Avg. 

74.2 93.4 85.7 92.1 87.7 94.4 93.9 96.0  
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Table 6. Classification accuracy on selected features for soybean dataset. 

 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul.
Pr 

Kstar 
F.S. 
Avg. 

Relief 89.5 88.6 92.8 87.8 80.1 89.0 92.1 88.3 88.5 

GainRatio 85.8 85.2 86.2 84.9 82.7 87.4 87.4 86.1 85.7 

InfoGain 89.9 88.3 93.0 88.7 80.1 86.8 93.3 88.9 88.6 

OneR 83.6 85.4 87.1 84.8 83.9 86.5 87.3 86.4 85.6 

SU 89.8 90.3 93.4 89.8 82.4 88.3 93.6 90.5 89.8 

Chi-squared 89.2 89.8 93.9 89.6 81.3 91.4 93.7 90.0 89.8 

SVM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Filter 89.9 88.3 93.0 89.9 80.1 86.8 93.3 88.9 88.8 

Classification 
Avg. 

88.2 88.0 91.3 87.9 81.5 88.0 91.5 88.4  

 
 
Table 7. Classification accuracy on selected features for vote dataset. 
 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul 
Pr 

Kstar 
F.S. 
Avg. 

Relief 90.3 96.3 95.6 95.9 95.9 95.9 93.8 94.9 94.8 

GainRatio 91.3 95.2 95.6 95.6 95.6 94.5 95.2 92.9 94.5 

InfoGain 91.3 95.2 95.6 95.6 95.6 94.5 95.2 92.9 94.5 

OneR 90.6 94.7 95.6 95.4 95.4 95.2 94.0 92.9 94.2 

SU 91.3 95.2 95.6 95.6 95.6 94.1 95.2 92.9 94.4 

Chi-squared 91.3 95.2 95.6 95.6 95.6 93.6 94.0 92.9 94.2 

SVM 91.5 96.3 95.9 96.3 94.7 95.9 94.9 94.0 94.9 

Filter 91.3 95.2 95.6 95.6 95.6 94.3 95.2 92.9 94.5 

Classification 
Avg. 

91.1 95.4 95.7 95.7 95.5 94.7 94.7 93.3  
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Table 8. Classification accuracy on selected features for ionosphere dataset. 

 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul 
Pr 

Kstar 
F.S. 
Avg. 

Relief 86.3 92.9 87.7 90.9 89.5 93.2 90.9 84.6 89.5 

GainRatio 87.5 90.3 87.7 91.7 89.5 93.4 92.6 85.2 89.7 

InfoGain 88.0 92.0 87.7 90.9 89.5 93.4 94.0 86.6 90.3 

OneR 88.0 92.0 87.7 90.9 89.5 93.4 91.5 84.6 89.7 

SU 88.0 92.0 87.7 90.9 89.5 93.4 92.0 86.3 90.0 

Chi-squared 88.0 92.0 87.7 90.9 89.5 93.4 94.6 86.6 90.3 

SVM 88.0 92.0 87.7 90.9 89.5 93.4 91.1 87.2 90.0 

Filter 88.0 92.0 87.7 90.9 89.5 93.4 94.0 86.6 90.3 

Classification 
Avg. 

87.7 91.9 87.7 91.0 89.5 93.4 92.6 86.0  

 
 
Table 9. Average Classification accuracy on Full set with ranking. 
 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul. 
Pr 

Kstar 
F.S. 
Avg 

Relief 84.51 89.65 89.56 
89.06

2 
85.65 89.89 72.53 86.82 85.96 

GainRatio 84.61 89.65 89.53 88.77 
85.08

4 
91.00 90.52 

87.08
2 

88.28 

InfoGain 84.61 89.70 89.37 89.46 85.22 90.62 90.33 86.82 88.27 

OneR 84.61 89.76 89.55 88.91 85.38 90.91 90.25 85.16 88.07 

SU 84.61 89.71 89.53 88.92 85.25 90.48 90.41 86.82 88.22 

Chi-squared 84.61 89.71 89.56 89.19 85.35 90.55 90.47 86.38 88.23 

SVM 82.52 89.33 88.49 88.60 85.81 90.45 89.39 85.81 87.55 

Filter 84.61 89.71 89.56 89.46 85.22 90.62 90.34 86.56 88.26 

Classification 
average 

84.34 89.65 89.39 89.05 85.37 90.57 88.03 86.43  
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Table 10. Average Classification accuracy on selected features with Ranking. 

 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul. 
Pr 

Kstar 
F.S 

Avg. 

Relief 84.77 89.25 86.33 88.68 84.82 89.44 89.34 86.83 87.43 

GainRatio 81.34 86.95 84.82 86.57 84.33 87.29 88.06 85.52 85.61 

InfoGain 83.84 88.81 88.24 88.46 84.76 88.63 91.00 87.42 87.65 

OneR 82.68 88.70 86.31 87.61 85.52 88.90 88.52 86.66 86.86 

SU 84.10 89.30 88.55 88.70 85.23 88.79 90.70 87.68 87.88 

Chi-squared 81.71 88.11 85.91 87.91 84.25 87.72 89.58 86.74 86.49 

SVM 84.17 88.67 87.86 87.69 86.45 88.86 89.32 87.27 87.54 

Filter 83.84 88.81 88.24 88.46 84.76 88.63 91.00 87.42 87.65 

Classification 
average 

83.31 88.58 87.03 88.01 85.02 88.53 89.69 86.94  

 
 
Table 11. Average processing time with ranking on Full set. 
 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul. 
Pr 

Kstar 
F.S. 
Avg 

Relief 0.02 0.06 2.67 0.22 0.34 0.19 24.90 0.00 3.55 

GainRatio 0.00 0.04 1.25 0.18 0.32 0.18 24.93 0.00 3.36 

InfoGain 0.01 0.04 1.39 0.16 0.33 0.18 24.99 0.00 3.39 

OneR 0.01 0.04 1.05 0.17 0.37 0.17 25.02 0.00 3.35 

SU 0.01 0.04 1.16 0.21 0.33 0.18 24.96 0.00 3.36 

Chi-squared 0.01 0.04 1.15 0.22 0.36 0.17 24.97 0.00 3.37 

SVM 0.01 0.03 0.41 0.18 0.17 0.11 5.61 0.00 0.82 

Filter 0.00 0.04 0.88 0.19 0.35 0.17 24.87 0.00 3.31 

Classification 
average 

0.01 0.04 1.25 0.19 0.32 0.17 22.53 0.00  
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Table 12. Average processing time with on selected features. 

 

Ranking 
Method 

NB J48 SMO JRIP DT 
Rd. 
Frt 

Mul. Pr Kstar 
F.S. 
Avg 

Relief 0.00 0.02 1.45 0.13 0.13 0.10 12.15 0.00 1.75 

GainRatio 0.00 0.04 0.93 0.13 0.12 0.10 9.36 0.00 1.34 

InfoGain 0.00 0.02 0.99 0.12 0.17 0.14 13.06 0.00 1.81 

OneR 0.00 0.02 0.98 0.12 0.17 0.10 10.72 0.00 1.51 

SU 0.00 0.02 1.23 0.11 0.14 0.13 13.04 0.00 1.83 

Chi-
squared 

0.00 0.02 1.00 0.13 0.13 0.11 12.59 0.00 1.75 

SVM 0.00 0.02 0.30 0.08 0.07 0.09 2.55 0.00 0.39 

Filter 0.00 0.02 0.80 0.11 0.13 0.11 12.99 0.00 1.77 

Classification 
average 

0 0.0225 0.96 0.11625 0.1325 0.11 10.8075 0  

 
 
Table 13. Average Classification Accuracy and Processing Time for classification 
Algorithms. 
 

Classification 
Algorithms 

Without Ranking on 
Full set 

With Ranking On 
Full set 

With ranking On 
selected set 

F.S 
Avg. 

Processing 
Time(S) 

F.S 
Avg. 

Processing 
Time(S) 

F.S 
Avg. 

Processing 
Time(S) 

NaiveBayes 84.61 00.01 84.34 0.01 83.31 00.00 

J48 89.76 00.04 89.65 0.04 88.58 00.02 

SMO 89.56 01.40 89.39 01.25 87.03 00.96 

JRIP 89.37 00.16 89.05 00.19 88.01 00.11 

Decision  
Tree 

85.47 00.32 85.37 00.32 85.02 00.13 

Random 
Forest 

90.27 00.16 90.57 00.17 88.53 00.11 

Multilayer 
Perceptron 

90.28 25.05 88.03 22.53 89.69 10.80 

Kstar 86.33 00.00 86.43 00.00 86.94 00.00 

 
 



SANGAIAH ET AL. 

48 

 
 
Figure 1. Performance of Classification Algorithms. 

 

 

 
 
Figure 2. Performance of Ranking based on feature selection Algorithms 

 

 

Performance of Classification Algorithms 

78

80

82

84

86

88

90

92

NB J48 SMO JRIP DT RF Mul.Pern Kstar

Classification Algorithms

P
e
r
fo

r
m

a
n

c
e
 (

%
)

Without Ranking With Ranking With Selected Features

Performance of Ranking Methods

84

85

86

87

88

89

Relief GR IG OneR SU Chi-Sq SVM Filter

Ranking Methods

P
e
rf

o
rm

a
n

c
e
 (

in
 %

)

With ranking With Selected features



STUDY ON DIFFERENT RANKING METHODS FOR CLASSIFICATION 

49 

 
 
Figure 3. Processing Speed of Classification Algorithms. 

 

 

 
 
Figure 4. Processing Speed of Ranking Methods. 
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Results 

Ranking from datasets is indeed a very important problem from both the 

algorithmic and performance perspective in data mining. Ranking methods with 

different classification algorithms gives different accuracy. Hence selection of 

ranking method is an important task for improving the classification accuracy. 

Not choosing the right ranking method for a dataset introduces bias towards 

selecting the best features. Furthermore predictive accuracy is not a useful 

measure when evolutionary classifies learned on datasets. In this study, out of 

eight ranking methods SVM scores the maximum accuracy for three datasets 

(vote, segment-challenge and diabetes) Chi-square scores for two datasets 

(ionosphere and soybean) and Filter, OneR, InfoGain scores for one datasets 

(ionosphere, diabetes). But it was found that Symmetrical Uncertainty (SU) which 

does not scores the maximum accuracy for any datasets give the maximum 

accuracy of 87.88 percentages comparing with other conventional ranking 

methods. The overall time taken by SU is higher when comparing with other 

ranking methods. 

Conclusion 

From this study, the following observations can be made: 

 

1. Multilayer Perceptron, Random Forest, J48, SMO and JRIP perform 

better than other classification algorithms with and without ranking 

and also on selected features. 

2. SVM ranking method will take a minimal processing time period 

with reasonable classification accuracy in comparison to other 

ranking methods. 

3. The selected features by Relief ranking method provides better 

performance compared with ranking with full dataset. 

4. With selected features, the performance of Gain Ratio is poorer than 

other ranking methods. 

5. SU based ranking method reduces the number of initial attributes 

with maximum time period, and increases the classification 

performance, in comparison with other methods. 
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Two Stage Robust Ridge Estimators based on robust estimators M, MM, S, LTS are 
examined in the presence of autocorrelation, multicollinearity and outliers as alternative 
to Ordinary Least Square Estimator (OLS). The estimator based on S estimator performs 
better. Mean square error was used as a criterion for examining the performances of these 
estimators. 

 
Keywords:  Two Stage Least Square, Ridge Estimator, Ordinary Least Square, 
Robust Estimators, Two Stage Robust Ridge Estimator. 

 

Introduction 

Multiple regressions routinely assess the degree of relationship between one 

dependent variable and a set of independent variables. The Ordinary Least 

Squares (OLS) Estimator is most popularly used to estimate the parameters of 

regression model. Under certain assumptions, the estimator has some very 

attractive statistical properties which have made it one of the most powerful and 

popular estimators of regression model. A common violation in the assumption of 

classical linear regression model is the non-normal error terms. OLS estimator 

produces unstable prediction estimates when the assumption of normality of 

errors is not met (Ryan, 1996). Multiple regression methods also yield unstable 

results in the presence of outlier data points. When outliers occur in the data, the 

assumption of normally distributed errors is violated. An alternative strategy to 

deal with outliers is to accommodate them. Accommodation is accomplished by 

using any one of several robust regression estimation methods. 

mailto:wale3005@yahoo.com
mailto:dosowole@yahoo.com
mailto:kayinde@lautech.edu.ng
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Also, the problem of autocorrelated error is another violation to the 

assumption of independence of error terms in classical linear regression model. 

The term autocorrelation may be defined as correlation between members of 

series of observations ordered in time as in time series data (Gujarati 1995). In the 

regression context, the classical linear regression model assumes that such 

autocorrelation does not exist in the disturbances εi. Symbolically 

 

   0i jE i j       (1) 

 

When this assumption breaks down, this is autocorrelation problem. A 

number of remedial procedures that rely on transformations of the variables have 

been developed. In order to correct for autocorrelation, one often uses Feasible 

Generalized Least Square (FGLS) procedures such as the Cochrane-Orcutt or 

Prais-Winsten two-step or the Maximum Likelihood Procedure or Two stage least 

Squares which are based on a particular estimator for the correlation coefficient 

(Green, 1993; Gujarati, 2003).  

Another serious problem in regression estimation is multicollinearity. It is 

the term used to describe cases in which the explanatory variables are correlated. 

The regression coefficients possess large standard errors and some even have the 

wrong sign (Gujarati, 1995). In literature, there are various methods existing to 

solve this problem. Among them is the ridge regression estimator first introduced 

by Hoerl and Kennard (1970). Keijan (1993) proposed an estimator that is similar 

in form but different from the ridge regression estimator of Hoerl and Kennard. 

Ayinde and Lukman (2014) proposed some generalized linear estimator (CORC 

and ML) and principal components (PCs) estimator as alternative to 

multicollinearity estimation methods. 

Inevitably, these problems can exist together in a data set. Holland (1973) 

proposed robust M-estimator for ridge regression to handle the problem of 

multicollinearity and outliers. Askin and Montgomery (1980) proposed ridge 

regression based on the M-estimates. Midi and Zahari (2007) proposed Ridge 

MM estimator (RMM) by combining the MM estimator and ridge regression. 

Samkar and Alpu (2010) proposed robust ridge regression methods based on M, S, 

MM and GM estimators. Maronna (2011) proposed robust MM estimator in ridge 

regression for high dimensional data. Eledum and Alkhaklifa (2012) proposed 

Generalized Two Stages Ridge Estimator (GTR) for the multiple linear model 

which suffers from both problem of autocorrelation AR (1) and multicollinearity.  
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The main objective of this study is to re-examine the study of Eledum and 

Alkhaklifa (2012). Efforts are made to correct the various assumptions violations 

of classical regression model which could have led into misleading conclusions. 

In this study, Two Stage Robust Ridge methods based on M, S, MM, LTS 

estimators are examined in the presence of outliers, autocorrelated errors and 

multicollinearity. A real life data considered in the study of Eledum and 

Alkhaklifa (2012) was used.  

Outliers in least square regression 

Barnett and Lewis (1994) define an outlier as an observation that appears 

inconsistent with the remainder of the data set. Outlier identification is important 

in OLS not only due to their impact on the OLS model, but also to provide insight 

into the process. These outlying cases may arise from a distribution different from 

the remaining data set. The distribution of the full dataset is contaminated in this 

instance. To statisticians, unusual observations are generally either outliers or 

‘influential’ data points. In regression analysis, generally they categorize unusual 

observation (outliers) into three: outliers, high leverage points and influential 

observations. In other words, Hawkins (1980) pointed out that, an outlier is an 

observation that deviates so much from other observations as to arouse suspicion 

that it was generated by a different mechanism.  

Outliers are classified in three ways: 

 

i. the change in the direction of response (Y) variable  

ii. the deviation in the space of explanatory variable(s), deviated points 

in X-direction called leverage points and are also referred to as 

exterior X-space observation in this research, and  

iii. The other is change in both directions (direction of the explanatory 

variable(s) and the response variable). According to Belsley, Kuh, 

and Welsch (1980), influential observations is one which either 

individual or together with several other observations have a 

demonstrably larger impact on the calculated values of various 

estimates than is the case for most of the other observations. 

Chatterjee and Hadi (1986) pointed out that, as with outliers, high 

leverage points need not be influential and influential observations 

are not necessarily high-leverage points. When an observation is 

considered to be both an outlier and influential, regression results are 

usually reported with and without the observation. When 
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observations are not outliers but are influential, it is less clear what 

should be done. 

Robustness ideas in regression 

One idea to deal with this problem is to identify outliers, remove them, and then 

to proceed as before assuming we now have an appropriate data set for the 

standard methods. If the true coefficients were known, then outliers would not be 

hard to detect. Look for the points corresponding to the largest residuals. The field 

of regression diagnostics attempts to address the issue of how to identify 

influential points and outliers, in the general case when we do not know the true 

coefficient values. When there is only have one outlier, some diagnostic methods 

work very well by looking at the effect of one at a time deletion of data points. 

Unfortunately it is much more difficult to diagnose outliers when there are many 

of them, especially if the outliers appear in groups. In these situations, it is 

necessary to deal with the phenomena of outlier masking. Outlier masking occurs 

when a set of outliers goes undetected because of the presence of another set of 

outliers. Often when outliers are used to fit the parameter values, the estimates are 

badly biased, leaving residuals on the true outliers that do not indicate that they 

actually are outliers. Once there are several outliers, deletion methods are no 

longer computationally feasible. Then it is necessary to look at the deletion of all 

subsets of data points below a suitably chosen maximum number of outliers. 

Another approach to dealing with outliers is robust regression, which tries to 

come up with estimators that are resistant or at least not strongly affected by the 

outliers. In studying the residuals of a robust regression, perhaps true outliers can 

be found. In this field many different ideas have been proposed, including Least 

Trimmed Squares (LTS), Least Median of Squares (LMS), M-estimators, and 

GM-estimators or bounded-influence estimators and S-estimators. 

Robust regression and outlier diagnostic methods end up being very similar. 

They both involve trying to find outliers and trying to estimate coefficients in a 

manner that is not overly influenced by outliers. What is different is the order in 

which these two steps are performed. When using diagnostics, look for the 

outliers first and then once they have been removed use OLS on this clean data set 

for better estimates. Robust regression instead looks to find better robust estimates 

first and given these estimates, we can discover the outliers by analyzing the 

residuals. 
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Methodology 

The data set was extracted from the study of Eledum and Alkhaklifa (2012); it 

represents the product in the manufacturing sector, the imported intermediate, the 

capital commodities and imported raw materials, in Iraq in the period from 1960 

to 1990. An econometric model for this study is specified as follows:  

 

 
1 1 2 2 3 3 , 1,2, ,31tY X X X t          (2) 

 

Where 

 

Y = Product value in the manufacturing sector 

X1 = The value of the imported intermediate 

X2 = Imported capital commodities 

X3 = Value of imported raw materials 

β1, β2, β3 are the regression coefficients. 

 

M-estimation procedure 

The most common general method of robust regression is M-estimation, 

introduced by Huber (1964) that is nearly as efficient as OLS. Rather than 

minimize the sum of squared errors as the objective, the M-estimate minimizes a 

function ρ of the errors. The M-estimate objective function is, 
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    (3) 

 

where s is an estimate of scale often formed from linear combination of the 

residuals. The function ρ gives the contribution of each residual to the objective 

function. A reasonable ρ should have the following properties:  

           0, 0 0, ,  and e  for i i i ie e e e e e               

the system of normal equations to solve this minimization problem is found by 

taking partial derivatives with respect to β and setting them equal to 0, yielding, 
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where ψ is a derivative of ρ. The choice of the ψ function is based on the 

preference of how much weight to assign outliers. Newton-Raphson and 

iteratively reweighted Least Squares (IRLS) are the two methods to solve the 

M-estimates nonlinear normal equations. IRLS expresses the normal equations as, 

 

 ˆX WX X Wy    (5) 

 

MM estimator 

MM-estimation is special type of M-estimation developed by Yohai (1987). 

MM--estimators combine the high asymptotic relative efficiency of M-estimators 

with the high breakdown of class of estimators called S-estimators. It was among 

the first robust estimators to have these two properties simultaneously. The ‘MM’ 

refers to the fact that multiple M-estimation procedures are carried out in the 

computation of the estimator. Yohai (1987) describes the three stages that define 

an MM-estimator: 

 

1. A high breakdown estimator is used to find an initial estimate, which 

we denote   the estimator need to be efficient. Using this estimate 

the residuals,   T

i i ir y x    are computed. 

2. Using these residuals from the robust fit and 
1

1 n
i

i

r
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n s



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 
  where 

k is a constant and the objective function 𝜌, an M-estimate of scale 

with 50% BDP is computed. This     , ,i ns r r   is denoted sn. 

The objective function used in this stage is labeled ρ0. 

3. The MM-estimator is now defined as an M-estimator of β using a 

redescending score function,  
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1

u
u
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

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, and the scale estimate 

sn obtained from stage 2. So an MM-estimator ̂  defined as a 

solution to  
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S estimator 

Rousseeuw and Yohai (1984) introduced S estimator, which is derived from a 

scale statistics in an implicit way, corresponding to s(θ) where s(θ) is a certain 

type of robust M-estimate of the scale of the residuals e1(θ), …, en(θ). They are 

defined by minimization of the dispersion of the residuals: minimize 

    1
ˆ, , nS e e   with final scale estimate     1

ˆˆ , , nS e e   . The 

dispersion     1
ˆ, , ne e   is defined as the solution of 
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K is a constant and ie

s

 
 
 

 is the residual function. Rousseeuw and Yohai (1984) 

suggest Tukey’s biweight function given by: 
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  (8) 

 

Setting c = 1.5476 and K = 0.1995 gives 50% breakdown point (Rousseeuw & 

Leroy, 1987). 

LTS estimator 

Rousseeuw (1984) developed the least trimmed squares estimation method. 

Extending from the trimmed mean, LTS regression minimizes the sum of trimmed 

squared residuals. This method is given by, 

 

  ˆ arg minLTS LTSQ    (9) 

 

where   2

1

h
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i
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sample size and number of parameters respectively. The largest squared residuals 

are excluded from the summation in this method, which allows those outlier data 

points to be excluded completely. Depending on the value of h and the outlier 

data configuration. LTS can be very efficient. In fact, if the exact numbers of 

outlying data points are trimmed, this method is computationally equivalent to 

OLS. 

Two Stage Robust Ridge Estimator 

Two Stage Ridge Regression approach used by Eledum and Alkhaklifa (2012) 

and Robust Ridge Regression Methods adopted by Samkar and Alpu (2010) are 

combined in this study to obtain Two Stage Robust Ridge Regression. This 

method is adopted to deal with the problem of autocorrelated error, outliers and, 

multicollinearity sequentially. Consider the Linear regression model: 

 

 
tY X u    (10) 

 

X is an n × p matrix with full rank, Y is a n × 1 vector of dependent variable, β is a 

p × 1 vector of unknown parameters, and ε is the error term such that E(ε) = 0 and 

E(εε’) = σ2I and assume that the error term follows the AR(1) scheme, namely, 

 

 
1 , 1 1t t tu u         (11) 

 

εt is a white noise error term such that εt ~ N(0, σ2I) 

Premultiply equation (10) by 𝑃 we obtain: 

 

 PY PX PU    (12) 

 

Equivalently, equation (12) becomes: 

 

 Y X U      (13) 

 

P is a non-singular matrix such that PΩP’ = I which implies PP’ = Ω-1, 

U* ~ N (0, σ2I), Y* = PY, X* = PX, and U* = PU. 

Therefore, we can apply Robust Estimators to the transformed model (5) 

and obtain Two Stage Robust Estimator. 
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    
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1ˆ
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
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The variance-covariance matrix becomes: 
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and the inverse of Ω is  
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Consider, (n – 1) × n matrix P* for transformation. 
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Therefore, P*’P* = P by adding a new row with 21   in the first position and 

zero elsewhere. 
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However, the estimate obtained from applying Robust Estimators to the 

transformed model is used to obtain the ridge parameter K which is used in the 

Ridge Estimator since the estimates obtain from OLS will be inefficient when we 

have the problem of outliers or non-normal error term. 

Results 

From Table 1, it can be seen that estimation based on the OLS estimator produces 

residuals that reveals the problem of autocorrelation (DW p-value=0.0005) and 

multicollinearity (VIF>10) simultaneously. The problem of multicollinearity 

might be the reason for the wrong sign in the value of imported raw materials. We 

handle the problem of autocorrelation in Table 2 by transforming the data set. The 

original data set is transformed using ˆ 0.547   (from Table 1) to correct the 

problem of autocorrelation by applying Two Stage Least Squares. Table 2 shows 

that the new data set obtain through transformation suffered the problem of non-

normal error term using Jarque-Bera Statistic and Table 3 also shows the presence 

of bad leverages using robust diagnostics which might be the reason for the non-

normality of the error term. The data set still suffered the problem of 

multicollinearity (VIF>10) as revealed in Table 2. Due to the presence of bad 

leverages OLS will not correctly estimate the parameters in the model. This 

prompts the use of the Two Stage Robust Estimators in Table 4. LTS and S 

estimators perform better than other estimators when we have leverages and 

outliers in y axis (bad leverages) in terms of the MSE (B). But the coefficient of 

LTS seems to be much different from the class of other estimators. We then prefer 

to consider S estimator in its stead. Due to the occurrence of both problem of 

multicollinearity and bad leverages in the new data set, we then use the Ridge 

combined with S estimator adopted from the concept of Samkar and Alpu (2010) 

to compute the ridge parameter. Geometric version of the ridge parameter 
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proposed by Kibria (2003) was used 
2

1

1

ˆˆ
GM

p p

i

i

K







 
 
 


 where 
2̂  is the variance 

obtained from S estimator and αi is the obtained coefficient.  
 
 
Table 1. Ordinary Least Square (OLS) 

 

Variable Coefficient Std. Error p-value VIF 
X1 0.208 0.218 0.348 128.26 
X2 0.921 0.196 0.000 103.43 
X3 -1.34 0.162 0.415 70.87 

R-squared 0.9896 DW  0.0005  
Jarque-Bera p-value 0.2493 σ2 0.0111  

RHO 0.547    

 
 
Table 2. Two Stage Least Square (TS) 

 

Variable Coefficient Std. Error p-value VIF 
X1T 0.200 0.160 0.2211 26.839 
X2T 0.963 0.191 0.0000 38.358 
X3T -0.1790 0.127 0.1687 16.904 

R-squared 0.9735 DW p-value 0.2332  
Jarque-Bera p-value 0.0732 σ2 0.028  

RHO 0.11    

 
 
Table 3. Robust Diagnostics 

 

Observation Mahalanobis 
Robust MCD 

Distance 
Leverage 

Standardized 
Robust Residual 

Outlier 

12 1.5024 5.8641 * 4.7737 * 
14 0.9716 3.0421  4.9055 * 
15 4.6559 29.4708 * 9.1178 * 
16 1.0615 8.2135 * 11.2653 * 
17 1.6992 8.6846 * 1.4033  
18 2.2534 19.0971 * -0.5591  
20 3.0865 24.3649 * -2.4415  
21 3.8595 26.6181 * 0.4649  
22 1.2315 8.8886 * 0.4301  
30 3.421 3.0381  16.2649 * 
31 1.2827 1.1007  -8.5191 * 
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Table 4. Two Stage Robust Estimators and OLS 

 

Variables OLS TS M MM S LTS 
X1T 0.208 0.200 0.329 0.328 0.346 0.032 
X2T 0.921 0.963 0.976 0.976 0.963 1.723 
X3T -1.34 -0.1790 -0.228 -0.228 -0.221 -0.648 

R-squared 0.9896 0.9735 0.7918 0.7939 0.8023 0.9951 
σ2 0.0111 0.028 0.0102 0.019 0.017 0.003 

MSE(B) 0.1122 0.0782 0.0324 0.0303 0.0272 0.029 

 
 
Table 5. Two Stage Robust Ridge Estimators 
 

Variables Coefficient VIF 
X1 0.3443 1.2972 
X2 0.4278 1.0011 
X3 0.1836 1.5526 

MSE(β) 0.071687  
K 0.097  

 

Conclusion 

OLS performs better than other estimators when there is no violation of 

assumptions in Classical Linear Regression Model. In this study the problem of 

autocorrelation was handled using Two Stage Least Square. The problem of 

multicollinearity and outlier are still presents. OLS will not be efficient because of 

the present of both problem therefore we apply Robust Methods to the 

transformed data. S and LTS estimators perform better than other Robust Methods 

in terms of the MSE. S estimator was chosen because LTS does not correctly 

estimate the model when compared with other estimators. Ridge parameter K is 

then obtained using the estimates obtain from S estimation. Robust ridge estimates 

was computed. Two stage robust ridge estimator performs better than the 

Generalized Two stage ridge regression proposed by Hussein et al (2012). This is 

because after the problem of autocorrelation was corrected in the study of Hussein 

et al (2012), the data sets still suffered the problem of multicollinearity and outlier. 

This was corrected in this study by obtaining the ridge parameter using a robust 

estimator instead of OLS. 
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The application of survival analysis has extended the importance of statistical methods 
for time to event data that incorporate time dependent covariates. The Cox proportional 
hazards model is one such method that is widely used. An extension of the Cox model 
with time-dependent covariates was adopted when proportionality assumption are 
violated. The purpose of this study is to validate the model assumption when hazard rate 
varies with time. This approach is applied to model data on duration of infertility subject 
to time varying covariate. Validity is assessed by a set of simulation experiments and 
results indicate that a non proportional hazard model performs well in the phase of 

violated assumptions of the Cox proportional hazards. 
 
Keywords: Survival time, non-proportional hazards, time-dependent covariate, semi 
parametric model. 

 

Introduction 

In survival or life testing experiments, the assumption of Cox model (1972), 

may not hold. Example of this is when effect of a treatment on survival 

diminishes in the course of time to event. Different systems have different 

prognostic factors, some are time fixed although some are time varying. One 

advantage of Cox proportional regression models is the ability to incorporate time 

varying coefficients and time varying covariates (Cox, 1972, Therneau & 

Grambsch, 2000). The former refers to a variable that is measured at baseline and 

whose values remain fixed to a variable whose value remains fixed over the 

duration of follow-up. Although, its effects on hazards is allowed to change over 

the follow-up period. The later refers to a variable whose value itself varies over 

time of follow-up. Example of time varying covariate includes the exposure of a 

pharmaceutical agent to cumulative dosage of radiation, duration of relationship 

mailto:aadeleke@oauife.edu.ng
mailto:ipinyomira@yahoo.co.uk
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as a measure of duration of infertility in marriage, the receipt of an organ 

transplant. The natures of time varying covariate are very important and take 

major role of this work. In the above example, the first and second are continuous 

time variates whose value is non-decreasing over the time, the third example 

which is the receipt of an organ is also a time varying covariate but dichotomous 

in nature because the subject may be exposed or unexposed to the treatment. 

Recently a number of studies have been directed towards modelling time 

varying covariates as well as stratification which are semi-parametric non-

proportional hazard models (Austin, 2012, Lehr, 2004, Abrahamowicz, 2007, 

Bender, Augustin, & Blettner, 2005, Ata & Sozer, 2007, Austin, 2012, Zhou, 

2001). A more advanced method of generating time varying covariate is the work 

of Zhou (2001) where the use of an exponential distribution was examined in 

conjunction with a transformation to the Cox model including time varying 

covariate. A piecewise exponential distribution was used to obtain a dichotomous 

or step function covariate which was in turn incorporated into the Cox model and 

analysed through a semi-parametric approach. 

Bender et al. (2005) generated survival data that follows Cox proportional 

hazard model using three parametric distributions namely: exponential, Weibull 

and Gompertz and limited his study to only time fixed covariate. New extensions 

of Cox model with time varying covariate have been developed by Sylvestre and 

Abrahmowicz (2007) due to an undiscovered and complicated nature of 

longitudinal data structure where validation is made through simulation. They 

described and evaluated two alternatives for generation of survival times 

conditional on time varying covariate. 

Applications of Cox model with time varying covariate are likely to 

continue to become increasingly important in medical research. The methods put 

forth by Sylvester and Abrahmowicz are however not presented in a close form. 

Leemis (1987), Leemis, Shih and Ryertson (1990), and Shih and Leemis, (1993) 

have offered different frameworks for generation of survival time that follow a 

Cox model with time varying following accelerated life and proportional hazards 

models where his procedures adopted one time varying covariate and no time 

fixed covariates. A recent study on Cox regression model in the presence of non-

proportional hazards was carried out by Ata and Sozer (2007), where they worked 

on alternative different models in the violation of proportional assumption. Our 

study extend the work of Bender et al. (2005), and Zhou (2001), with an 

additional argument that allows for a fixed covariate, continuous time varying 

covariate and a step function covariate using exponential model see Austin (2012). 
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Non-proportional hazards models 

Recall the Cox proportional hazards model with time fixed covariate x 

 

        0, expi ih t h t x h t x    (1) 

 

where h0(t) is a non-parametric baseline hazard function β’ = (β1, β2, …,βp) is a 

vector of regression coefficients, and xi = x1, x2,…,xp is a vector of time fixed 

covariates for ith subject. 

Although h0(t) is chosen arbitrarily with no distribution attached, the fact 

that  exp x  is a parametric exponential function that assumes parametric forms 

of the predictors on hazards makes model in (1) a semi-parametric model. 

Proportional hazard assumption 

In linear regression modelling, the measure of effect is usually regression 

coefficient β, in logistic regression the measure of effect is an odds ratio, Walker 

and Duncan(1976), Hosmer and Lemeshow (2000), Agresti (2007), Adeleke and 

Adepoju (2010), the log of which is β, but in survival analysis, the measure of 

effect is the hazard ratio (Tableman and Kim, 2004). Proportional hazards 

assumption states that the hazard ratio is constant over time or the hazard for an 

individual is proportional to the hazard for any other individual (Kleinbaum and 

Klein, 2005). For example, if 𝑥 and 𝑥∗ are the covariates for two individual then 
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  (2) 

 

The hazard ratio in (2) can also be expressed as HR  , which implies that 

the hazard ration is time-independent. 

Now let the effect of a time varying covariate on survival probability at a 

time t(βt) depend on the value of this variable at the same time, then an extended 

version of (1) by Cox (1972) can be given by 

 

       
1 2

0 1 1
, , exp

p p

i i i ih t z t x h t x z t      (3) 

 



ADELEKE ET AL. 

71 

which can be written as HR t  

Let the proportional hazard for a survival time T be given by 

 

      0expih T X x h t   (4) 

 

Then the cumulative distribution of Ti can be given as 
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Now if ST(t) = 1 - FT(t) 

 

  
 
1

exp
exp

i TT S t
x

 
   
 
 

  (7) 

 

Let Yi be a uniform random variable with cumulative distribution function F 

and density function f, then 
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Also 

 

      exp exp 0,1U H T x U  
 

  

 

    1 log expT H U x   
 

  (8) 

 

where U is a uniform random variable (Bender et al, 2005). However, the survival 

time T does not involve time varying variable(s). By introducing the second 

covariate with time change when covariate is dichotomous, following the 

formulation of Zhou (2001) and Austin (2012), we define 
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then the hazard function with dichotomous time changed covariate is 

 

       0 expg ih Y h t x z t      (9) 

 

A natural problem is when time varying covariate is not dichotomous or step 

function but continuous. Zhou (2001) did not consider this, and Sylvestre and 

Abrahamowicz (2007) found the method was limited in applicability. For a case 

open to both time fixed and time varying covariate which is flexible for both step 

function and continuous system, see Austin (2012).  

The cumulative hazard function and survival function H(.) and S(.) are: 
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      , , exp , ,S t z t x H t z t x  
 

  

 

Suppose the covariate follows a step function for t ≥ t0 i.e right censored data, 

then supposed the time is partitioned into two such that 
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   0

0

0,  for 

1,  fot 
i

t t
Z t

t t


 


  

 

Let D = domain and D1 = [0, t0) and D2 = [t0, ∞) then, 

for t < t0, 
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  (11) 

 

Using Bender et al. (2005), we obtain survival time 
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By Austin (2012), when t ≥ t0, using the condition above, the hazard function in 

(9) becomes  

 

When D2 = t ≥ t0, from 5, Z(u) = 1 then 6 becomes 

 

 

   

    

     

0

0

0

0

0 0

0

exp exp

exp exp

exp 1 exp exp

t

t
x du x du

x t x t t

x t x t

    

    

     

   

    

      

 

  

 

by transformation 

 

        0log exp 1 exp expU x t x T               
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The survival time obtained from the inverse cumulative hazards is 
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  (13) 

 

If however covariate is continuous the cumulative hazards is 
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Assume that  z s  is proportional to t such that  z s kt  where k > 0. Hence the 

cumulative hazard from the above becomes 
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Hence 
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so that  
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Equations (12) and (13) and (16) will be used to obtain survival times for 

dicotonomous time varying covariate and continuous time varying; U can be 

obtained from R. 
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Non-parametric estimation 

Follow the formulation of Kaplan and Meier (K-M) (1958) for estimating 

censored data. The method provides alternative way to life table approach where 

each interval contains only one observation. 

The idea of K-M estimator is given by the conditional probability (t ≤ t0) be 

the survival time of n randomly sampled individual study such that 

t1 ≤ t2 ≤ ,.., ≤ tn are of T1, T2, ..., Tn where S(t) ∼ b(n, p) and P = P(T ≥ t) then, 

for t ≤ ti+1 
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Assume that at the beginning of the study all subjects were alive so, 

P(T > t0 = 0) = 1, and  

 

  1

i i

i i

i

n d
P T t T t

n



     

 

The Kaplan Meier estimator is 
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For detail, see Greenwood (1926), Kaplan and Meier (1958), Adeleke (2012). 

Semi-parametric estimation 

For proportional hazard model of equation (1) where h0(t) is non-distributional 

and exp(β’x) is a parametric function, we use partial likelihood estimate of Cox 

(1975) 
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Application to a data of infertility 

Data on period of infertility among women were obtained from a survey 

conducted in 2011 at Ijebu North Local Government (INLG) area of Ogun state. 

Information on the duration of infertility in years before a woman to get pregnant 

together with the causes of infertility were collected, along with covariates: 

duration of relationship (drelation) in years, respondent’s age in years, marital 

status (married, cohabiting and single) and previous infertility treatment such as 

(ovulation induction, tubal surgery, antibiotic for infection, intercourse during 

fertile period and assisted conception). 

Duration of infertility was measured as the time from marriage/first date of 

diagnose till fertile/date of first conception or the end of the study. 

Let δi = 1 if a woman i = 1, 2, …, n become fertile at time ti and δi = 0, if 

otherwise; let the survival time T = min (ti, Ci), where ti is the observed time and 

Ci is the censored time. Censored if either lost to follow-up or does not observe 

the event of interest (get pregnant) within the period of follow-up. First, consider 

the model of eqn (1) where age and duration of relationship and others were 

considered to be time fixed. The estimated regression coefficients are given in 

Table 1 together with associated p-values and Schoenfeld test result. As observed, 

intensity of being fertile is much higher for previous infertility treatment using 

ovulation induction and antibiotic for treatment of infections than when assisted 

with conception. Almost all the factors are negatively related with the hazards for 

the period of infertility. The aim is to know if model (1) is better used for the data 

or model 3 (i.e whether PH model assumption is satisfied or not). Age and 

duration of relationship were found to be significant. 

Table 2 gives the estimates when age and duration of relationship are 

categorized as 1 if age less than 19 years, i.e (1-18), 2 if between (19-35) years 

inclusive and 3 if greater than 35 years. The result is not different much from 

what we had in Table 1. An indication of a significant variable implies the 

possibility of the variable varying with time and that implies violation of PH 

model assumption subject to some tests. The last column of the table is a report 
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from Schoenfeld test with their respective p-values. The p-values for the 

correlation coefficient between time and covariates (duration of relationship) 

shows a significant relationship, supported by the Schoenfeld plot see fig 2. 

Another graphical test is log cumulative hazard plot. Log-cumulative hazard 

curves in fig 1 shows that only age of mothers is violating the assumption. 

Following the numerical test of the correlation coefficient between variable age of 

mothers and duration of relationship and time in Table 3, the p-values for both 

coefficients and Schoenfeld residual test for age of mothers and duration of 

relationship with time are indication that both age of mothers and duration of 

relationship are time varying.  

Having detected this, an extended version of model (1) (i.e model 3) was 

introduced with age and duration of relationship categorized to see the effect 

within the age group (0-18, 19-34 and above 35) as shown in Table 4. Here the 

model is stable with the global test of Schoenfeld test showing a sign of 

proportionality.  

Next, compare the two models, using Akaike’s information criterion (AIC) 

or -2loglikelihood function (-2loglik). The values of AIC and -2loglik for Cox 

regression and Extended Cox are given in Table 5. According to the results, 

Extended Cox model gives most suitable result for modelling time to infertility 

data in the presence of non-proportional hazards followed by Cox model. 

Results from infertility data 

 
 
Table 1. Result from Cox model with Age, duration of relationship continuous 

 

Variables β (p-value) Schoenfeld Test (rho) )(p-value 

 Age  -0.086(1.4e-05) 0.169(0.198) 
married -1.67(0.108) -0.024(0.840) 

Cohabiting -18.0(0.996) -0.004(1.000) 
drelation  -0.065(0.007) 0.287(0.028) 

Ovulation 0.680(0.503) 0.066(0.591) 
Tubla.S  -18.2 (0.998) 0.112(0.999) 

Antibiotic 0.401 (0.697) 0.021(0.859) 
Intercourse -0.626 (0.659) 0.110(0.356) 

  Global (0.0368) 
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Table 2. Result from Cox model with Age, duration of relationship categorized. 

 
Variables β (p-value)  Schoenfeld Test (rho)(p-value) 

Age<=18 -0.777(0.460) 0.083(0.52) 
Age>35 -1.225(4.30E-05) -0.006(0.956) 
Married -1.69(0.103) -0.011(0.93) 

cohabiting -17.827(1.00) 0.031(1.00) 
dlv.cat1 0.447(0.110) -0.201(0.0146) 

Ovulation 0.862(0.400) 0.068(0.584) 
Tubla.S  -17.448(1.00) 0.127(1.00) 

Antibiotic 0.49(0.630) 0.026( 0.584) 
intercourse -0.38(0.790) 0.087(0.479) 

  Global (0.0506) 

 
 
Table 3. Test for age and duration of relationship as time varying covariates 

 
Variables β (p-value)  Schoenfeld Test (rho)(p-value) 

married -1.0271(0.320) -0.053(0.661) 
cohabiting -17.277(1.000) -0.053(1.00) 
Ovulation 0.94(0.360) 0.031(0. 802) 

Tubla.S  -18.594(1.000) 0.086(1.00) 
Antibiotic 0.617(0.550) 0.003(0. 980) 

intercourse -0.638(0.650) 0.130(0.283) 
Age* time -0.0187(0.000) 0.613(1.23E-09) 

Drelation*time -0.0055(0.021) 0.295(3.16E-03) 
  Global(1.41E-06) 

 
 
Table 4. Extended Cox model with age and duration of relationship as time varying. 

 
Variables β (p-value)  Schoenfeld Test (rho)(p-value) 

married -0.986(0.340) 0.0128(0.918) 
cohabiting -6.713(0.760) 0.0006(1.00) 
Ovulation 1.384(0.180) 0.078(0.528) 

Tubla.S  -8.640(0.940) 0.136(0.988) 
Antibiotic 1.0257(0.320) 0.049(0.689) 

intercourse -0.275(0.840) 0.12908(0.296) 
Age<=18*time  -4.612(1.70E-06) 0.194(0.548) 
age.cat2*time  -4.717(1.0E06) 0.183(0.56) 
Age>35*time  -4.713(9.70E-07) 0.198(0.544) 
Time*dlv.cat1 0.001(0.980) 0.102(0.366) 

  Global (0.982) 

 
 
Table 5. AIC and -2loglik values. 

 
 PHM NPHM Extended Cox 

AIC 525.813 311.6885 
Loglik 509.813 291.688 
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Results from Simulation 

 
Table 6. Mean values of the estimated regression coefficients for continuous time varying 

covariate model (16). 
 

% cens ̂   ̂   AIC loglik 

C=0.0 -0.849(0.007)  0.724(0.151) 473.392 -309.929 
C=0.5 -0.976(0.112) 2.016(0.0003) 158.962 -105.449 
C=0.8 -0.770(0.261) 2.389(0.049) 62.032 -50.788 

 
 
Table 7. Sample variances of the estimated regression coefficients for continuous time 

varying covariate model (16). 
 

% cens ̂  ̂  

C=0.0 0.0619 0.0552 
C=0.5 0.1793 0.2073 
C=0.8 0.4580 0.5744 

 
 
Table 8. Mean values of the estimated regression coefficients for dicotonomous time 

varying (t ≥ t0); model 13. 
 

% cens ̂  ̂  AIC loglik 

C=0.0 -0.363(0.211) 0.299(0.238) 625.857 -233.696 
C=0.5 -0.348(0.363) 0.692(0.201) 240.578 -75.969 
C=0.8 -0.184(0.411) 0.572(0.313) 107.576 -28.016 

 
 
Table 9. Sample variances of the estimated regression coefficients for dicotonomous 

time varying (t ≥ t0); model 13. 
 

% cens ̂  ̂  

C=0.0 0.0537 0.0457 
C=0.5 0.1271 0.1132 
C=0.8 0.2664 0.2086 

 
 
Table 10. Mean values of the estimated regression coefficients for time fixed covariate 
(t ≥ t0); model 12. 
 

% cens ̂  ̂  AIC loglik 

C=0.0 -0.998 (2e-16) 0.043 (0.165) 11619.89 -5807.947 
C=0.5 -1.058 (2e-16) 2.152 (2e-16) 5313.93 -2654.965 
C=0.8 -8.060(2.4e-15) -1.94(2e-16) 2585.184 -1290.592 
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Table 11. Sample variances of the estimated regression coefficients time fixed covariate 

(t ≥ t0); model 12. 
 

% cens ̂  ̂  

C=0.0 0.0047 0.00097 
C=0.5 0.0088 0.0061 
C=0.8 1.0365 0.0114 

 
 
Table 12. Absolute Bias continuous TVC model 16. 

 

% cens    Abs Bias MSE 

C = 0.0 
β = -1 0.150 0.069 

γ = 0 0.723 0.751 

C = 0.5 
β = -1 0.023 0.201 

γ = 2 0.015 0.257 

C = 0.8 
β = -1 0.229 0.659 

γ = 3 0.611 1.465 

 
 
Table 13. Absolute Bias for dicotonomous time varying (t ≥ t0); model 13. 

 

% cens   Abs Bias MSE 

C = 0.0 
β = -1 0.636 0.471 

γ = 0 0.298 0.143 

C = 0.5 
β = -1 0.651 0.611 

γ = 2 1.308 1.994 

C = 0.8 
β = -1 0.815 0.996 

γ = 3 2.428 6.143 
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Table 14. Absolute Bias for time fixed covariate (t ≥ t0); model 12. 

 

% cens   Abs Bias MSE 

C = 0.0 
β = -1 0.002 0.918 
γ = 0 0.043 0.211 

C = 0.5 
β = -1 0.058 0.221 
γ = 2 0.152 1.133 

C = 0.8 
β = -1 7.06 1.110 
γ = 3 4.94 2.720 

 
 

 
Figure 1. Log cumulative hazards for age and duration of relationship. 
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Figure 2. Schoenfeld Plots of residuals 

 

 

In purpose of the simulation was to investigate the violation of the 

assumption and the use of Non-proportional hazard Model for different values of 

the true parameters β and γ, at different level of censoring. Hypothesis about the 

regression coefficients β and γ of the model 1.0 in various situations was tested. 

Each simulation consists of 80 replicates. The set-up of the simulated data 

resembles that of right censored and truncated data. For each sample, 1000 

samples of survival times (months) were generated. 

Given a time *t , the time u were generated from a uniform  *0, t  

distribution although the baseline survival time ti were generated from an 

exponential distribution for fixed and time varying covariates in term of 

continuous and dichotomous covariates as define in eqn 12, 13 and 16. Two 

covariates; a time fixed and a binary with P(z = 0) = P(z = 1)= ½ and the other is 

distributed as normal and varies with time. Only the data that satisfy the condition

*i iu t t   were kept in the sample given rise to right truncated data. The survival 

time is not only right truncated but also right censored. The simulation was 

carried out at three different percentage of censoring viz: 0%, 50% and 80%.  
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The true values of regression coefficients β, γ were taken to be either (-1, 0), 

(-1, 2), (-1, 3) in the simulation each at different level or percentage of censoring. 

Comparison were made using absolute bias Tables 6 to 11 showed the estimated 

mean values of ̂  and ̂ , p-values as well as the sample variances. The result in 

Tables 6 and 9 are from the analysis of (3) through the use of survival time 

obtained in (16) for fixed and continuous time varying covariates of (3). The 

estimated coefficients ̂ is for the fixed covariate although ̂  is for the time 

varying (continuous or binary). The coefficients are significant at 50% and 80 % 

censoring and slightly overestimate its true value as percentage of censoring 

increases resulting in higher variance than the estimator of the other coefficient 

which appear to be more stable with lower variance than γ. Absolute Bias (AB) of 

Tables 12 to 14 showed the sensitivity of the model to change in percentage of 

censoring. At 0 percent censoring, model with time fixed covariate has the 

minimum AB followed by model with continuous time varying covariate. Also at 

50% censoring, model with continuous time varying covariate has the minimum 

AB, followed by model with time fixed covariate. At 80% censoring, model with 

continuous time varying covariate has the minimum AB next is model with 

dicotonomous time varying covariate and least is time fixed model. 

Checking the parameter of the time varying coefficient, as the values of the 

parameter γ increases from 0 to 3, At γ = 0, the AB of the parameter is minimum 

for model with time fixed covariate, followed by a model with dicotonomous time 

varying covariate and maximum for model with continuous time varying 

covariate. At γ = 2, AB is minimum for semi-parametric model via continuous 

time varying covariate (model 16), followed by a time fixed and maximum for 

semi-parametric model with dicotonomous time varying covariate. Lastly at γ = 3 

AB increases from model with continuous time varying covariate to semi-

parametric model with time fixed covariate. Hence, as parameter of time varying 

coefficient increase from 0-3, the semi-parametric model with continuous time 

varying covariate showed the minimum AB followed by dicotonomous time 

varying covariate and maximum with time fixed covariate model. This actually 

showed an evidence of time varying both in the coefficient and covariate. 

For Mean Square Error (MSE), Semi-parametric model with continuous 

time varying covariate has being the best (with min MSE) among the three 

models as percentage of censoring increases from 0% to 80 percent. Also as 

parameter of time varying coefficient increases from 0 to 3, parameters of the 

semi-parametric model with continuous time varying coefficient showed the 

minimum MSE, and perform best. Followed by the parameters of time fixed 
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covariate model and maximum MSE with model with dicotonomous time varying 

covariate. 

Discussion 

The result is more encouraging at 80% of censoring resulting from the outcome of 

the AIC and log-likelihood estimates of model selection criteria and generally 

accepted for all other results. Percentage of censoring contributes to the outcome 

and conclusion in that as the level of censoring increases from 0% through 50% to 

80%. The coefficients of time varying covariates varying from zero to three (0-3). 

See Tables 6 and 10, the result also give a good sign of a well satisfactory size 

and power. The higher the percentage of censoring, the more closely the violation 

of PHM. It implies that at 80% censoring which is generally accepted from the 

results of our simulated data there exist an outright violation of the assumption of 

proportionality and this assume a semi-parametric non proportional hazard model. 

In Tables 8, 9, 10, and 11 models 12 and 13 were used to generate survival 

time when both covariates are dichotomous and continuous, although time 

varying. The time varying covariate Z(t) is zero when t < t0 and 1 when t ≥ t0 as 

stated in the model, our t0 is the maximum time it takes a woman to conceive (i.e 

24 months), see Esther, Eunice , Kelly, CHESRenee, and Lee (2009), Ekwere, et 

al (2007) and Yusuff (2006). (When t < t0, we obtain our survival time as we have 

in (12) and when t ≥ t0, it resulted in survival time of (13) as we notice from the 

estimated mean values and variances of Tables 8 and 9. None of the coefficients 

at any level of censoring is significant judging from the PH values of the 

coefficient. An indication of satisfying PH model assumption, but when t ≥ t0 

(dicotonomous), the estimated mean values and sample variances of regression 

coefficient does not satisfy PH model assumption following parameters 

significant properties of the coefficients from the p-values. 

The model with continuous time varying covariate (model 16) performed 

better (min AB and MSE) followed by model with dicotonomous time varying 

covariate and least with model with time fixed covariate see Tables 12 to 14. The 

same result follows when parameters of the time varying coefficient increase from 

0-3. 
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New estimators of entropy of continuous random variable are suggested. The proposed 
estimators are investigated under simple random sampling (SRS), ranked set sampling 
(RSS), and double ranked set sampling (DRSS) methods. The estimators are compared 
with Vasicek (1976) and Al-Omari (2014) entropy estimators theoretically and by 

simulation in terms of the root mean squared error (RMSE) and bias values. The results 
indicate that the suggested estimators have less RMSE and bias values than their 
competing estimators introduced by Vasicek (1976) and Al-Omari (2014). 
 
Keywords: Shannon entropy; simple random sampling, ranked set sampling; double 
ranked set sampling; root mean square error. 

 

Introduction 

The ranked set sampling was first suggested by McIntyre (1952) to estimate a 

mean of pasture and forage yields. It is a cost efficient sampling procedure 

alternative to the commonly used simple random sampling scheme. The RSS is 

useful in situations where the visual ordering of a set of units can be done easily, 

but the exact measurement of the units is difficult or expensive. 

Let the variable of interest X has a probability density function (pdf) g(x) 

and a cumulative distribution function (cdf) G(x), with mean μ and variance σ2. 

Let g(i:n)(x) and G(i:n)(x) be the pdf and cdf of the ith order statistic, X(i:n), 

(1 ≤ i ≤ n) of a random sample of size n. The pdf and the cdf of X(i:n), respectively, 

are given by 

 

        1

( : )

1
1 ,  

1

n ii

i n

n
g x n G x G x g x x

i


 

          
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and 

 

 
       :

1

1 , 
n

n jj

i n
j

n
G x G x G x x

j





 
         

 
  , 

 

with mean      : :i n i n
x g x dx




   and variance         

2
2

: : :i n i n i n
x g x dx 




  .  

The ranked set sampling method can be describes as follows: 

 

Step 1. Randomly select n2 units from the target population. 

Step 2. Allocate the n2 selected units randomly into n sets, each of size n. 

Step 3. Without yet knowing any values for the variable of interest, rank 

the units within each set with respect to a variable of interest. This 

may be based on a personal professional judgment or based on a 

concomitant variable correlated with the variable of interest. 

Step 4. The sample units are selected for actual measurement by including 

the ith smallest ranked unit of the ith sample (i = 1, 2, …, n).  

Step 5. Repeat Steps 1 through 4 for r cycles to obtain a sample of size nr 

for actual measurement. 

 

It is of interest to note here that even if n2 units are selected from the 

population, but only n of them are measured for comparison with a simple random 

sampling of the same size n.  

Let the measured RSS units are denoted by X1(1:n), X2(2:n), …, Xn(n:n). The 

RSS estimator of the population mean is defined as 
 :

1

1 n

RSS i i n
i

X X
n



  . Takahasi 

and Wakimoto (1968) provided the mathematical theory of the RSS and showed 

that 

 

             
2 2

: : :2
1 1 1

1 1 1
,  ,  Var .

n n n

RSSi n i n i i n
i i i

g x g x X
n n n n


   

  

         

 

Al-Saleh and Al-Kadiri (2000) suggested double ranked set sampling 

(DRSS) method for estimating the population mean to increase the efficiency of 

the estimators for fixed sample size. The DRSS method can be described as: 
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Step 1. Randomly choose n2 samples of size n each from the target 

population. 

Step 2. Apply the RSS method described above on the n2 samples in Step 

1. This step yields n samples of size n each.  

Step 3. Reapply the RSS method again on the n samples obtained in Step 2 

to obtain a sample of size n from the DRSS data. The cycle can be 

repeated r times if needed to obtain a sample of size rn units. 

 

Let X be a continuous random variable with probability density function 

( )g x  and cumulative distribution function G(x). The entropy H [g(x)] of the 

random variable is defined by Shannon (1948a, 1948b) as 

 

      log .H g x g x g x dx



          (1) 

 

The problem of entropy estimation of a continuous random variable is 

considered by many authors. Vasicek's (1976) suggested an estimator of entropy 

based on spacing's as 

 

  
 1

1

0
log ,

dG p
H g x dp

dp

 
    

 
   (2) 

 

where the estimation is found by replacing the distribution function G(x) by the 

empirical distribution function Gn(x), and using the difference operator instead of 

the differential operator. Then the derivative  1d
G p

dp


 is estimated by a 

function of the order statistics. 

Let X1, X2, …, Xn be a simple random sample of size n from G(x) and 

X(1) < X(2) < …< X(n) be the order statistics of the sample. Then Vasicek's (1976) 

estimator of H [g(x)] is defined as 
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n m
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 
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   (3) 
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where m < n / 2 is a positive integer known as the window size, X(i - m) = X(1) if 

i ≤ m, and X(i + m) = X(n) if i ≥ n – m. He proved that  .P

mnHV H g x     as 

n , m , and 0
m

n
 . 

Van Es (1992) suggested an estimator of entropy based on spacings as 

 

 
        

1

1 1 1
log log 1

n m n

mn i m i
i k m

n
HVE X X m n

n m m k




 

 
      

  
    (4) 

 

and proved the consistency and the asymptotic normality of the estimator under 

some conditions. 

Ebrahimi, Pflughoeft, and Soofi (1994) adjusted the weights of Vasicek 

(1976) estimator to have a smaller weights and proposed an entropy estimator 

given by 

 

     
1

1
log

n

mn i m i m
i i

n
HE X X

n m  


 
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 
   (5) 

 

where 

 

 

1
1 , 1 ,

2, 1 ,

1 , 1 ,

i

i
i m

m

m i n m

n i
n m i n

m




  


    
 
     


  

 

where X(i-m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n – m. Ebrahimi et al. (1994) 

showed by simulation that their estimator has a smaller bias and mean squared 

error than Vasicek (1976) estimator. Also, they proved that  

 

  .  as ,  ,  0.P

mnHE H g x n m m n        

 

Noughabi and Noughabi (2013) suggested a new estimator of entropy of an 

unknown continuous probability density function as 
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   
1

1
log , ,

n

mn i

i

HNN s n m
n 

     (6) 

 

where 

 

  

  

   
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ˆ , 1 ,
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, , 1 ,
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g X i m

m n
s n m m i n m

X X

g X n m i n
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


    
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
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and  
1

1
ˆ

n
i j

i

j

X X
g X k

nh h

 
  

 
 , where h is bandwidth and k is a kernel function 

satisfies   1k x dx





 . They proved that  P

mnHNN H g x     as n → ∞, 

m → ∞, m / n → 0. Note that the kernel function in Noughabi and Noughabi 

(2013) is selected to be the standard normal distribution and the bandwidth h is 

chosen to be h = 1.06sn-1/5, where s is the sample standard deviation.  

To estimate the entropy H [g(x)] of an unknown continuous probability 

density function g(x), Noughabi and Arghami (2010) suggested an entropy 

estimator given by 

 

     
1

1
log

n

mn i m i m
i i

n
HN X X

n c m
 


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where 

 

 

1, 1 ,

2, 1 ,

1, 1 ,

i

i m

c m i n m

n m i n

 


    
    

  

 

and X(i-m) = X(1) if i ≤ m and X(i+m) = X(n) for i ≥ n – m. 

Correa (1995) suggested a modified entropy estimator to have smaller mean 

squared error in the form 

 



AMER IBRAHIM AL-OMARI 

93 

 

      
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log ,
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where    

1

2 1

i m

i j
j i m

X X
m



 



 . 

Al-Omari (2014) suggested three estimators of entropy of an unknown 

continuous probability density function g(x) using SRS, RSS, and DRSS methods. 

Based on SRS his first suggested estimator is defined as 

 

     
1

1
log

n

mn i m i m
i i

n
AHESRS X X

n m  

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 
   (9) 

 

where X(i-m) = X(1) for i ≤ m, X(i+m) = X(n) for i ≥ n – m, and 

 

 

1
1 , 1 ,

2

2, 1 ,

1
1 , 1 ,

2

i

i m

m i n m
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


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
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
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  (10) 

 

The second and third estimators suggested by Al-Omari (2014), based on RSS 

and DRSS respectively, are given by 

 

     * *

1
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log
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mn i m i m
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n
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and 
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1

1
log
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AHEDRSS X X
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where  
* *

(1)i m
X X


  for i ≤ m and  

* *

( )ni m
X X


  for i ≥ n – m, and 
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 
** **

(1)i m
X X


  for i ≤ m and  

** **

( )ni m
X X


  for i ≥ n – m. 

For more about entropy estimators, see Choi, Kim, and Song (2004), Park, 

Park (2003), Goria, Leonenko, Mergel, and Novi Inverardi (2005) and Choi 

(2008). 

The remaining part of this paper is organized as follows. The suggested 

entropy estimators are given in the section, “Proposed Estimators”. Next, a 

simulation study is conducted to compare the new estimators with their 

counterparts suggested by Vasicek (1976) and Al-Omari (2014). Finally, some 

conclusions and suggestions for further works.  

The proposed estimators 

The coefficient of the entropy estimators in Ebrahimi et al. (1994), Noughabi and 

Arghami (2010), and Al-Omari (2014) are adjusted. Let (0) (0) (0)

1 2, ,..., nX X X  be a 

simple random sample of size n from G (x). Based on SRS the first suggested 

estimator is given by 
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where 
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  (14) 

 

 
(0) (0)

(1)i m
X X


  for i m  and  

(0) (0)

( )ni m
X X


  for i ≥ n – m. Comparing (3) with (13), 

we have  
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Let 
(1) (1) (1)

(1: ) (2: ) ( : ), ,...,n n n nX X X  be a RSS of size n, Vasicek (1976) entropy 

estimator using RSS as considered by Mahdizadeh (2012) is given by 
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Based on the RSS units 
(1)

(1: ) ,nX  
(1)

(2: ) ,nX …, 
(1)

( : )n nX , the second suggested 

entropy estimator is  
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where i  is defined as in (14), and  
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i ≥ n – m. Comparing (16) with (17) to have  
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Assume that 
(2) (2) (2)

(1: ) (2: ) ( : ), ,...,n n n nX X X  is a DRSS sample of size n. The third 

suggested entropy estimator has the form 
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  for i ≤ m and  

(2) (2)

( )ni m
X X


  for 

i ≥ n – m. Based on DRSS method Mahdizadeh (2012) showed that Vasicek 

(1976) estimator will be 
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Comparing (19) with (20) to get  
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

   (21) 

 

Remark 1: The entropy  ME

nH f  of an empirical maximum entropy density 

ME

nf  which is related to HVSRS1n and SHESRS1n can be computed following 

Theil (1980) as: 

 

 

  1

1

1

2 2log 2

2 8 2 2log 2
log

5

2 4
1 log

5

ME

n n

n

n

H f HVSRS
n

SHESRS
n n

SHESRS
n


 


  

 
   

 

  (22) 

 

Remark 2: If n  in (22), then   1

ME

n nH f SHESRS . 

In the following two theorems, we compared the suggested estimators with 

Vasicek (1967) and Al-Omari (2014). 
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Theorem 1: The suggested estimators have the following properties: 

 

a) Let (0) (0) (0)

1 2, ,..., nX X X  be SRS of size n, then SHESRSmn > HVSRSmn. 

b) Let 
(1) (1) (1)

(1) (2) ( ), ,..., nX X X  be a RSS of size n, then SHERSSmn > HVRSSmn. 

c) Let 
(2) (2) (2)

(1) (2) ( ), ,..., nX X X  be a DRSS of size n, then SHEDRSSmn > 

HVDRSSmn. 

 

Proof: The proof of (a), (b), (c), is straightforward by using (15), (18), (21), 

respectively, where 
2 8

log 0
5

m

n
 . 

In the following theorem, we compare our suggested entropy estimators 

with their competitors in Al-Omari (2014). 

 

Theorem 2: Based on the suggested estimators and Al-Omari (2014) entropy 

respectively, we have  

 

 SHEjmn > AHEjmn, j = SRS, RSS, DRSS. 

 

Proof: Compare (9) with (13) based on SRS to obtain 

 

2 6
log

5
mn mn

m
SHESRS AHESRS

n
  , 

 

and since 
2 6

log 0
5

m

n
 , then the case of SRS holds. Also, compare (11) with (17) 

based on RSS, and (12) with (19) using DRSS to complete the proof of this 

theorem. 

The following theorem proves the consistency of the suggested estimators 

SHESRSmn, SHERSSmn, and SHEDRSSmn. 

 

Theorem 3: Let Ω be the class of continuous densities with finite entropies and 

let X1, X2, …, Xn be a random sample from g ∊ Ω. If n → ∞, m→ ∞, m/n → 0, 

then SHEjmn, (j = SRS, RSS, DRSS) converges in probability to H [g(x)]. 

 

Proof:  Based on the simple random sampling, from (15) we have  
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2 8
log

5
mn mn

m
SHESRS HVSRS

n
  , 

 

and Vasicek (1976) showed that HVSRSmn converges in probability to H [g(x)] 

and since 
2 8

log
5

m

n
 converges to zero as n goes to infinity, then we proved the 

case of the SRS. Follow the same approach and use (18) and (21) to prove the 

theorem for RSS and DRSS estimators, respectively.  

Methodology 

Simulation study 

A simulation was conducted to investigate the performance of the suggested 

entropy estimators with Vasicek (1976) and Al-Omari (2014) entropy estimators 

using sampling methods considered in this study. The comparison is based on the 

root mean squared errors (RMSEs) and bias values of the estimators for 10000 

samples generated from the uniform, exponential and the standard normal 

distributions using SRS, RSS and DRSS methods. The selection of the optimal 

values of the window size of m for a given value n is as yet an open problem in 

the entropy estimation. Therefore, we used the heuristic formula 0.5m n   

suggested by Wieczorkowski and Grzegorzewski (1999) to select m and to 

compute the RMSEs of entropy estimators. In this study, we considered the 

sample and window sizes as given in Table 1. 
 
 
Table 1. The sample and window sizes considered in this simulation 

 

Sample size  n = 10 n = 20 n = 30 

Window size 1 ≤ m ≤ 5 1 ≤ m ≤ 10 1 ≤ m ≤ 15 

 

Also, the performance of the RMSE of the suggested estimators for samples 

generated from the uniform, exponential and standard normal distributions is 

evaluated based on the quantity  

 

100,mn
N

mn

HVj N
Q

HVj


  , ,mn mnN SHEj AHEj  , ,j SRS RSS DRSS . 
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The results are summarized in Tables 2-6. Also, we compared the suggested 

estimators of entropy with their competitors suggested by Al-Omari (2014) and 

the results presented in Table 7 are taken from Al-Omari (2014). 

Based on these results observe the following. 

 

 The suggested entropy estimators using SRS, RSS and DRSS 

methods are more efficient than their competitors HVmn based on the 

same method for all cases considered in this study. As an example, 

from Table 3, with n = 10 and m = 3 for the exponential distribution 

with H [g(x)] = 1 using RSS method, the RMSE and bias value of 

SHERSSmn are 0.230412 and -0.052759 compared to 0.401125 

and -0.332760 the RMSE and bias of HVRSSmn. 

 The SHEDRSSmn is superior to the other suggested estimators, 

SHERSSmn and SHESRSmn under the uniform, exponential and 

normal distributions. From Table 1, consider the case of n = 20 and 

m = 4 under the uniform distribution when H [g(x)] = 0, it can be 

noted that the RMSE values of SHEDRSSmn, SHERSSmn, and 

SHESRSmn are 0.052373, 0.068747 and 0.114983, respectively. 

 The nature of the underlying distribution as well as the value of 

H [g(x)] affect on the efficiency of the estimator using the same 

method. As an example, the 
mnSHERSSQ values with n = 30 and m = 3 

for the uniform, exponential, and the standard normal distributions 

are 95.39025, 31.76442 and 32.75544, respectively. However, the 

values of 
mnSHEQ  for the uniform distribution with H [g(x)] = 0 are 

superior to their counterparts for the exponential and normal 

distributions. 

 Finally, the suggested entropy estimators are found to be more 

efficient than their competitors in Al-Omari (2014) entropy 

estimators using SRS, RSS and DRSS schemes for the same window 

and sample sizes. For illustration, assume that n = 30 and m = 8 

when the underlying distribution is the standard normal, from 

Table 4, the RMSE of SHERSSmn is 0.120242 compared to 0.157726 

which is the RMSE of AHERSSmn as shown in Table 7. 
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Table 2. The Monte Carlo RMSEs and bias values of HVmn and SHEmn for the uniform distribution with H [g(x)] = 0. 
 

  SRS RSS 

  
mnHV  mnSHE  

mnSHEQ  
mnHV  mnSHE  

mnSHEQ  

n m Bias RMSE Bias RMSE 
 

Bias RMSE Bias RMSE 
 

10 1 -0.519826 0.569537 -0.430151 0.490404 13.89427 -0.396308 0.443439 -0.303703 0.361606 22.63043 

  2 -0.415135 0.452358 -0.226627 0.290240 35.83843 -0.304078 0.329233 -0.116915 0.172961 90.35100 

  3 -0.422613 0.453818 -0.135797 0.213148 53.03227 -0.327681 0.343991 -0.045891 0.114159 201.3262 

  4 -0.458940 0.487054 -0.080015 0.179669 63.11107 -0.371538 0.383103 0.004574 0.093383 310.24920 

  5 -0.502063 0.527918 -0.032713 0.167982 68.18029 -0.425903 0.436521 0.042936 0.105150 315.14120 

20 1 -0.393900 0.418346 -0.349192 0.376728 9.94822 -0.343340 0.365754 -0.294874 0.320679 14.05611 

  2 -0.271880 0.290818 -0.177492 0.204940 29.52981 -0.217937 0.233026 -0.125116 0.150017 55.33306 

  3 -0.253931 0.270200 -0.112786 0.145519 46.14397 -0.205321 0.216879 -0.063859 0.093348 132.33380 

  4 -0.260596 0.274678 -0.074069 0.114983 58.13898 -0.214042 0.222524 -0.026611 0.068747 223.68540 

  5 -0.276800 0.288985 -0.043624 0.095299 67.02286 -0.235141 0.242179 0.000439 0.052744 359.15930 

  6 -0.299321 0.310256 -0.017934 0.085705 72.37604 -0.258899 0.264554 0.022973 0.059480 344.77810 

  7 -0.322084 0.332301 0.005663 0.082331 75.22397 -0.285310 0.290156 0.043299 0.067712 328.51490 

  8 -0.348254 0.357901 0.028228 0.087902 75.43958 -0.314138 0.318471 0.061191 0.081194 292.23460 

  9 -0.374620 0.383864 0.048022 0.097710 74.54567 -0.343410 0.347711 0.079914 0.096721 259.49900 

  10 -0.402840 0.411741 0.066866 0.108377 73.67836 -0.371780 0.375737 0.097578 0.112133 235.08160 

30 1 -0.352853 0.368369 -0.323835 0.340961 7.44037 -0.319230 0.333509 0.288992 0.305176 9.28415 

  2 -0.223356 0.235685 -0.161288 0.178121 24.42412 -0.190866 0.201625 -0.127419 0.142794 41.19991 

  3 -0.197719 0.208362 -0.104892 0.124359 40.31589 -0.165182 0.173360 -0.070574 0.088725 95.39025 

  4 -0.196240 0.205882 -0.071025 0.093814 54.43312 -0.162899 0.169841 -0.038020 0.061304 177.04720 

  5 -0.202003 0.210395 -0.046135 0.075603 64.06616 -0.172441 0.178293 -0.014997 0.046725 281.57950 

  6 -0.213804 0.221385 -0.024700 0.063205 71.45019 -0.185622 0.190458 0.002250 0.043550 337.33180 

  7 -0.226688 0.233521 -0.007941 0.057695 75.29344 -0.200036 0.204048 0.018588 0.045106 352.37440 

  8 -0.242599 0.248992 0.007775 0.057090 77.07155 -0.217704 0.221309 0.033174 0.051831 326.98190 

  9 -0.259471 0.265356 0.022036 0.060359 77.25358 -0.235661 0.238850 0.046793 0.060639 293.88840 

Table 2 continued on next page 
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  10 -0.276934 0.282548 0.036215 0.067383 76.15167 -0.254437 0.257257 0.058627 0.069646 269.37800 

  11 -0.295302 0.300725 0.049094 0.074862 75.10616 -0.273700 0.276336 0.072000 0.081003 241.14290 

  12 -0.313803 0.319255 0.062218 0.085295 73.28311 -0.293398 0.295911 0.083363 0.091704 222.68060 

  13 -0.332279 0.337432 0.075374 0.095536 71.68733 -0.311978 0.341101 0.095165 0.102770 231.90720 

  14 -0.351090 0.356205 0.087783 0.106535 70.09166 -0.332096 0.334518 0.106272 0.113446 194.86980 

  15 -0.370555 0.375518 0.099545 0.116477 68.98231 -0.352077 0.354327 0.118516 0.125081 183.27800 

 
 
Table 3. The Monte Carlo RMSEs and bias values of HVmn and SHEmn for the exponential distribution with H [g(x)] = 1. 
 

  SRS RSS 

  mnHV  mnSHE  
mnSHEQ  

mnHV  mnSHE  
mnSHEQ  

n m Bias RMSE Bias RMSE 
 

Bias RMSE Bias RMSE 
 

10 1 -0.552032 0.677001 -0.457584 0.600041 11.36778 -0.430553 0.505229 -0.342184 0.432785 14.33884 

  2 -0.442683 0.571820 -0.253108 0.442568 22.60362 -0.337494 0.404667 -0.148595 0.269907 33.30146 

  3 -0.435444 0.561640 -0.154607 0.391369 30.31675 -0.332760 0.401125 -0.052759 0.230412 42.55855 

  4 -0.451545 0.575390 -0.076188 0.371210 35.48550 -0.348029 0.420617 0.025378 0.233566 44.47062 

  5 -0.469437 0.597761 0.005489 0.372418 37.69784 -0.366628 0.445977 0.101893 0.270512 39.34396 

20 1 -0.414064 0.490107 -0.360711 0.445976 9.00436 -0.357765 0.398661 -0.312513 0.358752 10.01076 

  2 -0.285717 0.376086 -0.193143 0.310495 17.44043 -0.234959 0.280262 -0.140851 0.207405 25.99603 

  3 -0.260773 0.351341 -0.122104 0.272095 22.55530 -0.213397 0.261261 -0.072871 0.165700 36.57683 

  4 -0.256116 0.352810 -0.067569 0.251502 28.71461 -0.210620 0.259248 -0.017564 0.152350 41.23388 

  5 -0.262412 0.358638 -0.022414 0.244018 31.95980 -0.214122 0.265246 0.022190 0.156584 40.96650 

  6 -0.265650 0.360325 0.016823 0.248330 31.08166 -0.218028 0.272315 0.061287 0.174543 35.90401 

  7 -0.266934 0.365008 0.055461 0.256349 29.76894 -0.224596 0.282196 0.103601 0.200858 28.82323 

  8 -0.273952 0.377519 0.100674 0.274582 27.26671 -0.232629 0.293062 0.145963 0.231970 20.84610 

  9 -0.280123 0.381968 0.143573 0.293999 23.03046 -0.236125 0.302083 0.188596 0.267430 11.47135 

  10 -0.285183 0.391290 0.179545 0.322338 17.62171 -0.238413 0.310922 0.231203 0.303760 2.30347 

30 1 -0.367058 0.423423 -0.332016 0.394742 6.77360 -0.332526 0.361491 -0.303272 0.334033 7.59576 

Table 3 continued on next page 
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  2 -0.233677 0.306086 -0.173511 0.262016 14.39791 -0.203455 0.236001 -0.137679 0.182964 22.47321 

  3 -0.202277 0.281503 -0.108684 0.223191 20.71452 -0.170859 0.207468 -0.078000 0.141567 31.76442 

  4 -0.194424 0.275072 -0.067472 0.207505 24.56339 -0.160246 0.199410 -0.036059 0.123278 38.17863 

  5 -0.191705 0.272356 -0.033792 0.197718 27.40457 -0.159714 0.200465 -0.002510 0.122595 38.84469 

  6 -0.186870 0.272196 0.000772 0.195841 28.05148 -0.158702 0.202869 0.027994 0.128086 36.86270 

  7 -0.191094 0.275374 0.029066 0.198154 28.04186 -0.161705 0.206226 0.059517 0.141042 31.60804 

  8 -0.195662 0.280589 0.056849 0.208607 25.65389 -0.164468 0.212265 0.085540 0.160732 24.27767 

  9 -0.196983 0.282040 0.088082 0.220610 21.78060 -0.165511 0.217222 0.115128 0.182796 15.84830 

  10 -0.197171 0.283394 0.115949 0.235447 16.91885 -0.167152 0.220237 0.144441 0.205632 6.63149 

  11 -0.198853 0.286241 0.142656 0.253233 11.53154 -0.173076 0.229318 0.172966 0.220033 4.04896 

  12 -0.204089 0.293653 0.171742 0.274080 6.66535 -0.171555 0.232740 0.200259 0.214615 7.78766 

  13 -0.202908 0.298108 0.204980 0.228389 23.38717 -0.176996 0.240454 0.231487 0.232102 3.47343 

  14 -0.205700 0.300842 0.232277 0.290007 3.60156 -0.176922 0.244541 0.262425 0.211142 13.65780 

  15 -0.210699 0.305809 0.258234 0.300011 1.89595 -0.177959 0.248760 0.291253 0.239115 3.87723 

 
 
Table 4. The Monte Carlo RMSEs and bias values of HVmn and SHEmn for the standard normal distribution and H [g(x)] = 1.419. 
 

  SRS RSS 

  mnHV  mnSHE  
mnSHEQ  

mnHV  mnSHE  
mnSHEQ  

n m Bias RMSE Bias RMSE 
 

Bias RMSE Bias RMSE 
 

10 1 -0.598925 0.676499 -0.499469 0.434171 35.8208955 -0.484489 0.549750 -0.388446 0.466743 15.09905 

  2 -0.521455 0.591007 -0.335907 0.436633 26.1205028 -0.422169 0.471157 -0.238609 0.320258 32.02733 

  3 -0.563002 0.623188 -0.275063 0.382983 38.5445484 -0.462240 0.504378 -0.181597 0.269765 46.51531 

  4 -0.610651 0.663364 -0.236072 0.351842 46.9609445 -0.523019 0.557792 -0.149270 0.244690 56.13239 

  5 -0.671777 0.719069 -0.200702 0.325688 54.7069892 -0.584483 0.614209 -0.111978 0.218489 64.42758 

20 1 -0.435480 0.483459 -0.380981 0.434171 10.1948666 -0.382986 0.420310 -0.335512 0.377639 10.15227 

  2 -0.327145 0.375798 -0.231087 0.296133 21.1988888 -0.275716 0.313472 -0.182040 0.234712 25.12505 

  3 -0.317948 0.364927 -0.175301 0.251511 31.0790925 -0.268657 0.304811 -0.125104 0.189103 37.96057 

Table 4 continued on next page 
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  4 -0.327070 0.372436 -0.143556 0.230357 38.1485678 -0.285331 0.318855 -0.098619 0.172598 45.86944 

  5 -0.352658 0.395796 -0.117332 0.215233 45.6202185 -0.305555 0.337744 -0.073404 0.160748 52.40537 

  6 0.375996 0.416964 -0.098719 0.204234 51.0187930 -0.335066 0.365185 -0.051912 0.152608 58.21077 

  7 -0.404050 0.442997 -0.083445 0.199295 55.0121107 -0.363782 0.391748 -0.036080 0.148138 62.18538 

  8 -0.439618 0.475094 -0.061765 0.187822 60.4663498 -0.395221 0.421583 -0.020165 0.147835 64.93336 

  9 -0.467134 0.500777 -0.043230 0.186628 62.7323140 -0.428042 0.451680 -0.006860 0.144519 68.00412 

  10 -0.496926 0.527456 -0.029603 0.178984 66.0665534 -0.454818 0.477152 0.009882 0.145955 69.41121 

30 1 -0.378860 0.413455 -0.346828 0.384885 6.91006276 -0.343626 0.370512 -0.313688 0.342854 7.464805 

  2 -0.259105 0.299687 -0.196988 0.246877 17.6217187 -0.226914 0.255947 -0.163491 0.201857 21.13328 

  3 -0.236758 0.277238 -0.145212 0.203905 26.4512801 -0.204698 0.234358 -0.108571 0.157593 32.75544 

  4 -0.234369 0.275867 -0.108651 0.179817 34.8175026 -0.204765 0.234413 -0.081230 0.140863 39.90820 

  5 -0.244288 0.283027 -0.088572 0.166051 41.3303324 -0.214434 0.243683 -0.056181 0.127184 47.80760 

  6 -0.255248 0.293332 -0.068084 0.157937 46.1575962 -0.227340 0.255901 -0.038603 0.122294 52.21043 

  7 -0.269724 0.305134 -0.048333 0.151084 50.4860160 -0.241325 0.268228 -0.021655 0.120957 54.90516 

  8 -0.285713 0.321039 -0.036608 0.151194 52.9047873 -0.254983 0.282376 -0.008427 0.120242 57.41777 

  9 -0.304064 0.337563 -0.020683 0.147718 56.2398723 -0.274697 0.301420 0.010331 0.123468 59.03789 

  10 -0.320051 0.352764 -0.009717 0.148068 58.0263292 -0.295057 0.319933 0.018501 0.125482 60.77866 

  11 -0.339131 0.369866 0.005731 0.147483 60.1252886 -0.314201 0.339141 0.030498 0.129224 61.89667 

  12 -0.361226 0.392070 0.016315 0.149674 61.8246742 -0.333173 0.356224 0.042772 0.133458 62.53537 

  13 -0.382347 0.410463 0.027129 0.152493 62.8485393 -0.353582 0.375170 0.053690 0.138200 63.16337 

  14 -0.400618 0.428008 0.039711 0.155154 63.7497430 -0.375752 0.397462 0.064272 0.140967 64.53321 

  15 -0.423597 0.449968 0.048426 0.156576 65.2028590 -0.394363 0.414605 0.072957 0.147206 64.49488 

 
 
Table 5. The Monte Carlo RMSEs and bias values of HVmn and SHEmn for the uniform distribution with H [g(x)] = 0 and exponential 
distribution with H [g(x)] = 1 using DRSS. 
 

  SRS RSS 

  mnHV  mnSHE  
mnSHEQ  

mnHV  mnSHE  
mnSHEQ  

n m Bias RMSE Bias RMSE 
 

Bias RMSE Bias RMSE 
 

Table 5 continued on next page 
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10 1 -0.327408 0.369593 -0.230787 0.285326 22.7999448 -0.365854 0.425279 -0.267318 0.345821 18.68373 

  2 -0.260621 0.278731 -0.071592 0.121826 56.2926262 -0.288898 0.340618 -0.101687 0.207273 39.14796 

  3 -0.296104 0.306116 -0.014117 0.078474 74.3646199 -0.300393 0.351750 -0.018027 0.181245 48.47335 

  4 -0.346305 0.352712 0.029482 0.073990 79.0225453 -0.322839 0.377437 0.056521 0.201436 46.63056 

  5 -0.404121 0.409902 0.065862 0.095121 76.7942093 -0.335248 0.399189 0.134718 0.252269 36.80462 

20 1 -0.308453 0.329353 -0.260588 0.285042 13.4539537 -0.329105 0.363241 -0.278366 0.317530 12.58421 

  2 -0.189231 0.202666 -0.095093 0.119561 41.0058915 -0.204908 0.240316 -0.112945 0.168444 29.90729 

  3 -0.182095 0.191163 -0.041993 0.071976 62.3483624 -0.191216 0.228320 -0.050530 0.133863 41.37044 

  4 -0.197693 0.204342 -0.010391 0.052373 74.3699288 -0.190904 0.229986 -0.003685 0.126728 44.89752 

  5 -0.220876 0.225845 0.012711 0.049477 78.0924971 -0.197900 0.239789 0.036502 0.139896 41.65871 

  6 -0.247733 0.251580 0.035133 0.056178 77.6699261 -0.207032 0.251002 0.078413 0.161731 35.56585 

  7 -0.275808 0.278919 0.053697 0.068101 75.5839509 -0.209883 0.258152 0.118656 0.192217 25.54115 

  8 -0.303823 0.306608 0.071232 0.082285 73.1628007 -0.218701 0.271560 0.158069 0.224230 17.42893 

  9 -0.333903 0.336495 0.089491 0.098489 70.7309172 -0.223692 0.278728 0.200103 0.262984 5.648518 

  10 -0.363272 0.365731 0.106408 0.114566 68.6747910 -0.228126 0.290431 0.244783 0.283888 2.252859 

30 1 -0.298092 0.312767 -0.267592 0.283216 9.44824742 -0.308011 0.331033 -0.278838 0.304383 8.050557 

  2 -0.170745 0.180210 -0.107748 0.122162 32.2113090 -0.182416 0.207785 -0.118447 0.154790 25.50473 

  3 -0.146113 0.153646 -0.052193 0.070391 54.1862463 -0.152039 0.180708 -0.059074 0.114805 36.46933 

  4 -0.149143 0.154886 -0.023125 0.047458 69.3593998 -0.145325 0.176699 -0.019990 0.102139 42.19605 

  5 -0.159888 0.164564 -0.003052 0.038571 76.5617024 -0.146632 0.179028 0.009230 0.105307 41.17847 

  6 -0.174419 0.178204 0.013102 0.038421 78.4398779 -0.149443 0.184598 0.038407 0.115953 37.18621 

  7 -0.191854 0.194940 0.027534 0.046606 76.0921309 -0.150245 0.188158 0.068588 0.133307 29.15156 

  8 -0.209886 0.212509 0.040817 0.052754 75.1756396 -0.153441 0.194332 0.095598 0.152215 21.67270 

  9 -0.229010 0.231261 0.052824 0.061955 73.2099230 -0.157250 0.199936 0.123844 0.175122 12.41097 

  10 -0.248006 0.249993 0.065446 0.072283 71.0859904 -0.162854 0.208891 0.151295 0.198703 4.877185 

  11 -0.267506 0.269188 0.077163 0.082922 69.1955065 -0.163540 0.213175 0.182129 0.207543 2.641961 

  12 -0.287408 0.289018 0.088169 0.093391 67.6867877 -0.167660 0.221482 0.207757 0.202062 8.768207 

  13 -0.307160 0.308699 0.100118 0.104801 66.0507485 -0.171024 0.225764 0.239466 0.211883 6.148456 

  14 -0.327370 0.328890 0.111085 0.115458 64.8946456 -0.170880 0.232977 0.268159 0.210502 9.646875 

  15 -0.346997 0.348439 0.122960 0.126985 63.5560313 -0.169873 0.235173 0.299068 0.210721 10.397450 
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Table 6. The Monte Carlo RMSEs and bias values of HVmn and SHEmn for the standard 
normal distribution and H [g(x)] = 1.419. 
 

  
mnHV   

mnSHE   
mnSHEQ  

n m Bias RMSE  Bias RMSE 
  

10 1 -0.415021 0.472162 
 

-0.316672 0.385139 
 

18.43075 

  2 -0.373395 0.412666 
 

-0.186378 0.256423 
 

37.86185 

  3 -0.427401 0.459119 
 

-0.143329 0.218981 
 

52.30409 

  4 -0.492911 0.518275 
 

-0.115918 0.202153 
 

60.99503 

  5 -0.554351 0.577281 
 

-0.084253 0.181100 
 

68.62880 

20 1 -0.350703 0.383160 
 

-0.303014 0.340790 
 

11.05804 

  2 -0.245907 0.277809 
 

-0.152363 0.200155 
 

27.95230 

  3 -0.246496 0.276941 
 

-0.104439 0.162172 
 

41.44168 

  4 -0.262789 0.290545 
 

-0.078826 0.147712 
 

49.16037 

  5 -0.291340 0.317967 
 

-0.055774 0.138687 
 

56.38321 

  6 -0.316105 0.341597 
 

-0.037661 0.134214 
 

60.70984 

  7 -0.349246 0.373132 
 

-0.021199 0.132559 
 

64.47397 

  8 -0.384526 0.406764 
 

-0.008681 0.134158 
 

67.01822 

  9 -0.416151 0.436696 
 

0.006082 0.132054 
 

69.76066 

  10 -0.445901 0.465518 
 

0.023744 0.134764 
 

71.05074 

30 1 -0.321940 0.345223 
 

-0.292331 0.318084 
 

7.861300 

  2 -0.206709 0.231560 
 

-0.143028 0.177006 
 

23.55934 

  3 -0.187163 0.212774 
 

-0.094482 0.138090 
 

35.10015 

  4 -0.190073 0.215577 
 

-0.066854 0.122350 
 

43.24534 

  5 -0.199843 0.224569 
 

-0.044224 0.111818 
 

50.20773 

  6 -0.214636 0.239021 
 

-0.025579 0.108667 
 

54.53663 

  7 -0.231613 0.255278 
 

-0.012061 0.108224 
 

57.60543 

  8 -0.247340 0.271084 
 

0.001734 0.109348 
 

59.66269 

  9 -0.268298 0.291044 
 

0.014961 0.113895 
 

60.86674 

  10 -0.286538 0.308661 
 

0.027278 0.118811 
 

61.50761 

  11 -0.305310 0.326485 
 

0.040250 0.123778 
 

62.08769 

  12 -0.324892 0.346062 
 

0.051274 0.129747 
 

62.50759 

  13 -0.343097 0.363236 
 

0.061548 0.135452 
 

62.70964 

  14 -0.369990 0.388586 
 

0.070900 0.140756 
 

63.77739 

  15 -0.387740 0.406081 
 

0.080947 0.145418 
 

64.18990 
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Table 7. The Monte Carlo RMSEs and bias values of AHEjmn, j = SRS, RSS, DRSS (Al-Omari, 2014). 
 

  AHESRSmn QAHESRS AHERSSmn QAHERSS AHEDRSSmn QAHEDRSS 

n m Bias RMSE  Bias RMSE  Bias RMSE  

Uniform distribution with H [g(x)] = 0 

 10 2 -0.298609 0.350332 22.554260 -0.189664 0.228762 30.516686 -0.145388 0.176159 36.799638 

  3 -0.249056 0.298944 34.126897 -0.154894 0.186380 45.818350 -0.122180 0.144286 52.865580 

 20 4 -0.144016 0.167779 38.917933 -0.100304 0.118284 46.844385 -0.082268 0.096978 52.541328 

  5 -0.133179 0.157805 45.393360 -0.091608 0.108584 55.163743 -0.077708 0.091093 59.665700 

 30 7 -0.092957 0.109089 53.285144 -0.066053 0.077716 61.912883 -0.058041 0.067650 65.297015 

  8 -0.089259 0.105818 57.501446 -0.064713 0.076188 65.573926 -0.056421 0.065369 69.239420 

Exponential distribution with H [g(x)] = 1 

 10 2 -0.323532 0.483573 15.432654 -0.220406 0.315220 22.103853 -0.173991 0.251460 26.175364 

  3 -0.265713 0.443276 21.074710 -0.159787 0.276197 31.144406 -0.128545 0.223802 36.374698 

 20 4 0.141143 0.279706 20.720501 -0.098056 0.179990 30.572271 -0.075338 0.179771 21.833938 

  5 0.118697 0.271887 24.189015 -0.072456 0.172661 34.905333 -0.052175 0.145269 39.417988 

 30 7 -0.058550 0.205261 25.461009 -0.027194 0.130283 36.825134 -0.046556 0.115023 38.868929 

  8 -0.036080 0.200329 28.604115 -0.010631 0.136358 35.760488 -0.001239 0.120306 38.092543 

Standard normal distribution with H [g(x)] = 1.419 

 10 2 -0.409842 0.496627 15.969354 -0.308706 0.375690 20.262250 -0.262149 0.316029 23.417728 

  3 -0.386562 0.468471 24.826698 -0.291133 0.353844 29.845470 -0.254450 0.303820 33.825435 

 20 4 -0.214227 0.279269 25.015573 -0.168035 0.219922 31.027583 -0.148107 0.194728 32.978368 

  5 -0.205782 0.272804 31.074594 -0.160392 0.213700 36.727225 -0.145734 0.191755 39.693427 

 30 7 -0.132038 0.196792 35.506368 -0.105796 0.158654 40.851067 -0.095517 0.143483 43.793433 

  8 -0.129915 0.193509 39.724146 -0.102504 0.157726 44.143270 -0.094560 0.145579 46.297458 
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Conclusion 

Three entropy estimators are suggested using SRS, RSS, and DRSS methods. The 

consistency of these estimators is proved as well as some properties are reported. 

Based on theoretical and numerical comparisons the suggested entropy estimators 

are more efficient than Vasicek (1976) and Al-Omari (2014) entropy estimators. 

However, the suggested estimators of entropy in this paper can be extended by 

considering other sampling methods such as the multistage RSS and median RSS 

methods. 

Acknowledgements 

The author thanks the referees for their helpful and valuable comments that 

substantially improved this paper. 

References 

Al-Omari, A. I. (2014). Estimation of entropy using random sampling. 

Journal of Computation and Applied Mathematics, 261, 95-102. 

doi:10.1016/j.cam.2013.10.047 

Al-Saleh, M. F. & Al-Kadiri, M. A. (2000). Double ranked set sampling. 

Statistics and Probability Letters, 48(2), 205-212. 

doi:10.1016/S0167-7152(99)00206-0 

Choi, B. (2008). Improvement of goodness of fit test for normal distribution 

based on entropy and power comparison. Journal of Statistical Computation and 

Simulation, 78(9), 781-788. doi:10.1080/00949650701299451 

Choi, B., Kim, K., & Song, S. H. (2004). Goodness of fit test for 

exponentiality based on Kullback-Leibler information. Communication in 

Statistics-Simulation and Computation, 33(2), 525–536. 

doi:10.1081/SAC-120037250 

Goria, M. N., Leonenko, N. N., Mergel, V. V., & Novi Inverardi, P. L. 

(2005). A new class of random vector entropy estimators and its applications in 

testing statistical hypotheses. Journal of Nonparametric Statistics, 17(3), 277-297. 

doi:10.1080/104852504200026815 

http://dx.doi.org/10.1016/j.cam.2013.10.047
http://dx.doi.org/10.1016/S0167-7152(99)00206-0
http://dx.doi.org/10.1080/00949650701299451
http://dx.doi.org/10.1081/SAC-120037250
http://dx.doi.org/10.1080/104852504200026815


NEW ENTROPY ESTIMATORS 

108 

Correa, J. C. (1995). A new estimator of entropy. Communication in 

Statistics-Theory Methods, 24(10), 2439-2449. doi:10.1080/03610929508831626 

Ebrahimi, N., Pflughoeft, K., & Soofi, E. S. (1994). Two measures of 

sample entropy. Statistics & Probability Letters, 20(3), 225-234. 

doi:10.1016/0167-7152(94)90046-9 

Mahdizadeh, M. (2012). On the use of ranked set samples in entropy based 

test of fit for the Laplace distribution. Revista Colombiana de Estadística, 35(3), 

443-455. 

McIntyre, G. A. (1952). A method for unbiased selective sampling using 

ranked sets. Australian Journal of Agricultural Research, 3(4), 385-390. 

doi:10.1071/AR9520385 

Noughabi, H. A. & Noughabi, R. A. (2013). On the entropy estimators. 

Journal of Statistical Computation and Simulation, 83(4), 784-792. 

doi:10.1080/00949655.2011.637039 

Noughabi, H. A. & Arghami, N. R. (2010). A new estimator of entropy. 

Journal of the Iranian Statistical Society, 9(1), 53-64. 

Park, S. & Park, D. (2003). Correcting moments for goodness of fit tests 

based on two entropy estimates. Journal of Statistical Computation and 

Simulation, 73(9), 685-694. doi:10.1080/0094965031000070367 

Shannon, C. E. (1948a). A mathematical theory of communications. Bell 

System Technical Journal 27(3), 379-423. 

doi:10.1002/j.1538-7305.1948.tb01338.x 

Shannon, C. E. (1948b). A mathematical theory of communications. Bell 

System Technical Journal 27(4), 623-656. 

doi:10.1002/j.1538-7305.1948.tb00917.x 

Takahasi, K. & Wakimoto, K. (1968). On the unbiased estimates of the 

population mean based on the sample stratified by means of ordering. Annals of 

the Institute of Statistical Mathematics, 20(1), 1-31. doi:10.1007/BF02911622 

Theil, J. (1980). The entropy of maximum entropy distribution. Economics 

Letters, 5(2), 145–148. doi:10.1016/0165-1765(80)90089-0 

Van Es, B. (1992). Estimating functionals related to a density by class of 

statistics based on spacings. Scandinavian Journal of Statistics, 19(1), 61-72. 

Vasicek, O. (1976). A test for normality based on sample entropy. Journal 

of the Royal Statistical Society, B, 38, 54-59. 

http://dx.doi.org/10.1080/03610929508831626
http://dx.doi.org/10.1016/0167-7152(94)90046-9
http://dx.doi.org/10.1071/AR9520385
http://dx.doi.org/10.1080/00949655.2011.637039
http://dx.doi.org/10.1080/0094965031000070367
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1007/BF02911622
http://dx.doi.org/10.1016/0165-1765(80)90089-0


AMER IBRAHIM AL-OMARI 

109 

Wieczorkowski, R. & Grzegorzewsky, P. (1999). Entropy estimators - 

improvements and comparisons. Communication in Statistics-Simulation and 

Computation, 28(2), 541-567. doi:10.1080/03610919908813564 

http://dx.doi.org/10.1080/03610919908813564


Journal of Modern Applied Statistical Methods 

November 2015, Vol. 14, No. 2, 110-122. 

Copyright © 2015 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Gyan Prakash is an Assistant Professor in the department of Community Medicine at S. 
N. Medical College. Email him at ggyanji@yahoo.com. 

 

110 

Bayesian Analysis Under Progressively 
Censored Rayleigh Data 

Gyan Prakash 

Department of Community Medicine 
S. N. Medical College, Agra, U. P., India 

 

 
The one-parameter Rayleigh model is considered as an underlying model for evaluating 
the properties of Bayes estimator under Progressive Type-II right censored data. The 
One-Sample Bayes prediction bound length (OSBPBL) is also measured. Based on two 
different asymmetric loss functions a comparative study presented for Bayes estimation. 
A simulation study was used to evaluate their comparative properties. 

 
Keywords: Rayleigh model, Bayes estimator, Progressive Type-II right censoring 
scheme, ISELF, LLF, OSBPBL. 

 

Introduction 

The Rayleigh distribution is considered as a useful life distribution. It plays an 

important role in statistics and operations research. Rayleigh model is applied in 

several areas such as health, agriculture, biology and physics. It often used in 

physics, related fields to model processes such as sound and light radiation, wave 

heights, as well as in communication theory to describe hourly median and 

instantaneous peak power of received radio signals. The model for frequency of 

different wind speeds over a year at wind turbine sites and daily average wind 

speed are considered under the Rayleigh model. 

The probability density function and distribution function of Rayleigh 

distribution are 

 

  
2

2 2
; exp ; 0, 0

2

x x
f x     x 

 

 
    

 
  (1) 
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  
2

2
; 1 exp ; 0, 0.

2

x
F x x 



 
     

 
  (2) 

 

Here, the parameter σ is known as location parameter. The considered model 

is useful in life testing experiments, in which age with time as its failure rate and 

is a linear function of time. The present distribution also plays an important role 

in communication engineering and electro-vacuum device. 

The focus is on measurement of One-Sample Bayes prediction bound length 

based on Progressive Type-II right censored data. A comparative study of Bayes 

estimation under two different asymmetric loss functions is presented. For 

evaluation of performances of the proposed procedures, a simulation study carries 

out also. 

A great deal of literature is available on Rayleigh model under different 

criterions, such as Sinha (1990), Bhattacharya & Tyagi (1990), Fernandez (2000), 

Hisada & Arizino (2002), Ali-Mousa & Al–Sagheer (2005), Wu, Chen, and Chen 

(2006), Kim & Han (2009), Prakash & Prasad (2010), Prakash & Singh (2013). 

Soliman, Amin, and Abd-El Aziz (2010) presented results on estimation and 

prediction of inverse Rayleigh distribution based on lower record values. Recently, 

Prakash (2013) presented Bayes estimators for inverse Rayleigh model. Bayesian 

analysis for Rayleigh distribution was also discussed by Ahmed, Ahmad, and 

Reshi (2013). 

The progressive Type-II right censoring  

The progressive censoring appears to be a great importance in planned duration 

experiments in reliability studies. In many industrial experiments involving 

lifetimes of machines or units, experiments have to be terminated early and the 

number of failures must be limited for various reasons. In addition, some life tests 

require removal of functioning test specimens to collect degradation related 

information to failure time data. 

Progressive censored sampling is an important method of obtaining data in 

lifetime studies. Live units removed early on can be readily used in others tests, 

thereby saving cost to experimenter and a compromise can be achieved between 

time consumption and the observation of some extreme values. The Progressive 

Type-II right censoring scheme is describes as follows. 

Suppose an experiment in which n independent and identical units 

X1, X2, …, Xn are placed on a life test at the beginning time and first r; (1 ≤ r ≤ n) 

failure times are observed. At time of each failure occurring prior to the 
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termination point, one or more surviving units removed from the test. The 

experiment is terminated at time of rth failure, and all remaining surviving units 

are removed from the test. 

Let x(1) ≤ x(2) ≤ …≤ x(r) be the lifetimes of completely observed units to fail 

and R1, R2,…,Rr; (r ≤ n) are the numbers of units withdrawn at these failure times. 

Here, R1, R2,…,Rr; (r ≤ n) all are predefined integers follows the relation 

R1 + R2 + … + Rr + r = n. 

At the first failure time x(1), withdraw R1 units randomly from remaining 

n - 1 surviving units. Immediately after second observed failure time x(2), R2 units 

are withdrawn from remaining n – 2 –R1 surviving units at random, and so on. 

The experiments continue until at rth failure time xr, remaining units 
1

1

r

r j

j

R n r R




    are withdrawn. Here, 
     1 2 1 2 1 2, , , , , , , , ,

1: : 2: : : :, , ,r r rR R R R R R R R R

r n r n r r nX X X  be 

the r ordered failure items and (R1, R2,…,Rr) be progressive censoring scheme. 

Progressively Type-II right censoring scheme reduces to conventional 

Type-II censoring scheme when  

 

 0 1,2, , 1i rR i r R n r         

 

and for complete sample case when 

 

 0 1,2, , .iR i r n r       

 

Based on progressively Type-II censoring scheme the joint probability 

density function of order statistics 
     1 2 1 2 1 2, , , , , , , , ,

1: : 2: : : :, , ,r r rR R R R R R R R R

r n r n r r nX X X  is 

defined as 

 

 
         

1: : 2: : : :
( ), , ,

1

; 1 ; .
i

r n r n r r n

r R

p iiX X X
i

f x K f x F x  




    (3) 

 

Here, Kp is called as progressive normalizing constant and is defined as 

 

   
1

1 1 2

1

1 2 1
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K n n R n R R n R r
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Progressive Type-II censored sample is denoted by x ≡ (x(1) , x(2) , …, x(r)) and 

(R1, R2,…,Rr) being Progressive censoring scheme for the considered model. 

Simplifying (3) 

 

      
 

1: : 2: : : :

2

, , , 2
exp ;

r n r n r r n

rr

p rX X X

T x
f x K A x 




 

   
 

  (4) 

 

where    
1

r

r i

i

A x x


  and      
2

1

1
1 .

2

r

r i i
i

T x R x


    

The Bayes estimation  

There is no clear-cut way to determine if one prior probability estimate is better 

than the other. It is more frequently the case that attention is restricted to a given 

flexible family of priors, and one is chosen from that family that matches best 

with personal beliefs. However, there is adequate information about the parameter 

it should be used; otherwise it is preferable to use the non-informative prior. In 

present study, the extended Jeffrey’s prior proposed by Al-Kutubi & Ibrahim 

(2009) is considered: 

 

       
 2

2

log ,
; ,

c f x
I c R I nE


   




 

     
 

  (5) 

 

Thus, the extended Jeffrey’s prior for present model is 

 

   2
; .

c
n

c R 


 
  
 

  (6) 

 

Based on Bayes theorem, the posterior density is defined as 

 

        

     
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  (7) 

Using (4) and (6) in (7), the posterior density is obtain as 
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  (8) 

 

The selection of loss function may be crucial in Bayesian analysis. If most 

commonly used loss function, squared error loss function (SELF) is taken as a 

measure of inaccuracy, and then the resulting risk is often too sensitive to 

assumptions about behavior of tail of probability distribution. In Bayesian point of 

view, SELF is inappropriate in many situations. To overcome this difficulty, a 

useful asymmetric loss function based on SELF has selected. This asymmetric 

loss function is known as invariant squared error loss function (ISELF) and is 

defined for any estimate ̂  corresponding to the parameter σ as 
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The Bayes estimator ˆ
I  for location parameter σ under ISELF is obtained as 
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  (10) 

 

Some estimation problems overestimation is more serious than the 

underestimation, or vice-versa. In addition, there are some cases when the positive 

and negative errors have different consequences. In such cases, a useful and 
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flexible class of asymmetric loss function (LINEX loss function (LLF)) is defined 

as 

 

    
** * * 11; 0, .aL e a a             (11) 

 

The shape parameter of LLF is denoted by 'a'. Negative (positive) value of 

'a' gives more weight to overestimation (underestimation) and its magnitude 

reflect the degree of asymmetry. It is seen that, for a = 1 the function is quite 

asymmetric with overestimation being more costly than underestimation. For 

small values of | a |, LLF is almost symmetric and is not far from SELF. 

The Bayes estimator ˆ
L  of location parameter under LLF is obtain by 

simplifying following equality 
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A closed form of Bayes estimator ˆ
L  does not exist. A numerical technique 

is applied here for obtaining the risk for the Bayes estimator corresponding to 

their loss. 

One-sample Bayes prediction bound length 

Consider the nature of future behavior of the observation when sufficient 

information about the past and the present behavior of an event or an observation 

is known or given. The Bayesian statistical analysis to predict the future statistic 

from the considered model is based on the Progressive Type-II right ordered data. 

Let x(1), x(2),…, x(r) be the first r observed failure units from a sample of size 

n under the Progressive Type-II right censoring scheme from underlying model 

(1). If y ≡ (y(1), y(2),…, y(s)) be the second independent random sample of future 

observations from same model. Then Bayes predicative density of future 
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observation Y is denoted by  h Y x  and obtained by simplifying the following 

relation 
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Let l1 and l2 are the lower and upper Bayes prediction limits for the random 

variable Y and 1 - ϑ is called the confidence prediction coefficient. Then (l1, l2) be 

the 100(1 - ϑ) % prediction limits for future random variable Y, if 

 

  1 2Pr 1 .l Y l       (14) 

 

Now, the Central Coverage Bayes Prediction lower and upper limits are obtain by 

solving following equality 
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Solving (15), the lower and upper Bayes prediction limits for the future random 

observation Y are obtain as 
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The One-Sample Bayes Prediction bound length under the Central Coverage 

is obtained as 

 

 
2 1.I l l    (16) 

 

Numerical illustration  

The procedure is illustrated by presenting a complete analysis under a simulated 

data set in present section. A comparative study of Bayes estimators based on 

simulation in terms of risk ratios under Progressively Type-II right censored data 

is presented as follows: 

 

1) Random values of parameter σ are generated from prior density (6) 

for selected parametric values of c (= 0, 0.50, 1.50, 2.00, 5.00) and 

n = 20. 

2) The value of c = 0 is used for Uniform distribution. For the values of 

c = 0.50 and c = 1.50 the analysis corresponding to the Jeffrey’s 

prior and Hartigan’s prior (Hartigan (1964)) respectively.  

3) Using generated values of σ obtained in step (1), generate a 

Progressively Type-II censored sample of size m form given values 

of censoring scheme Ri ; i = 1, 2, …, m, for considered model, 

according to an algorithm proposed by Balakrishnan and Aggarwala 

(2000).  

4) The censoring scheme for different values of m is presented in Table 

1. 

5) The risk ratio of the Bayes estimators are calculated form 1,00,000 

generated future ordered samples each of size n = 20 of Rayleigh 

model. 

6) For selected values of shape parameter a (= 0.25, 0.50, 1.00, 1.50) of 

LLF, a risk ratio between the Bayes estimator ˆ
L  and ˆ

I  are 

obtained for considered parametric values and presented in Tables 2-

3 under ISELF and LLF respectively. 

7) From both tables, note the risk ratios are smaller than unity. This 

shows that the magnitude of risk with respect to LLF is smaller than 

the ISELF, when other parameters values considered to be fixed. 
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8) A decreasing trend has been seen for risk ratio when c increases in 

both cases. Similar behavior also seen when censoring scheme m 

changed.  

9) Further, it is noted also that the risk ratios tend to be wider as shape 

parameter 'a' increases when other parametric values are consider to 

be fixed. 

10) The magnitude of risk ratio will be wider for ISELF as compared to 

LLF when other parametric values considered to be fixed.  

11) Further, the magnitude of the risk ratio for both case are robust. 

 

The random samples are generated for One-Sample Bayes Prediction Central 

Coverage bound length. The procedure and results are as follows. 

 

1) A set of 1,00,000 random samples of size n = 20 was drawn from the 

model for similar set of parametric values as consider earlier in step 

(1) to (5). 

2) For the selected values of level of significance ϑ = 99%, 95%, 90%; 

the central coverage Bayes prediction lengths of bounds were 

obtained and presented them in Table 4. 

3) It is observed from Table 4 that the Central Coverage Bayes 

prediction bounds lengths under One–Sample plan tend to be wider 

as c increases when other parametric values are fixed (except for 

c = 5.00). 

4) The bound length expended also, when progressive censoring plan m 

changed. 

5) Note the length of bounds tends to be closer when level of 

significance ϑ decreases when other parametric values are fixed. 

6) The magnitudes of lengths are smaller or nominal. This shows that 

the central Coverage Bayes prediction criterion is robust. 
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Table 1. Censoring scheme for different values of m 
 

Case m Ri ; i = 1, 2, …, r 

1 10 1 2 1 0 0 1 2 0 0 0 

2 10 1 0 0 3 0 0 1 0 0 1 

3 20 1 0 2 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 1 0 

 
 

Table 2. Risk ratio between ˆ
L  and ˆ

I  under ISELF 

 

m ↓ c ↓ a → 0.25 0.5 1 1.5 

10 0 0.7765 0.7842 0.7915 0.7988 

 
0.5 0.7583 0.7659 0.773 0.7802 

 
1.5 0.7148 0.722 0.7287 0.7354 

 
2 0.6124 0.6186 0.6243 0.63 

 
5 0.385 0.3889 0.3925 0.3961 

10 0 0.7522 0.7597 0.7668 0.7738 

 
0.5 0.7346 0.742 0.7488 0.7556 

 
1.5 0.6924 0.6993 0.7059 0.7123 

 
2 0.5933 0.5992 0.6049 0.6104 

 
5 0.373 0.3767 0.3802 0.3837 

20 0 0.7288 0.7359 0.7429 0.7496 

 
0.5 0.7117 0.7187 0.7255 0.7322 

 
1.5 0.6707 0.6774 0.6838 0.6901 

 
2 0.5747 0.5803 0.5857 0.5912 

  5 0.3613 0.3649 0.3682 0.3717 
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Table 3. Risk ratio between ˆ
L  and ˆ

I  under LLF 

 

m ↓ c ↓ a → 0.25 0.5 1 1.5 

10 0 0.7741 0.7819 0.7891 0.7964 

 
0.5 0.7561 0.7636 0.7707 0.7776 

 
1.5 0.7125 0.7198 0.7265 0.7332 

 
2 0.6105 0.6166 0.6225 0.6281 

 
5 0.3838 0.3878 0.3913 0.3948 

10 0 0.6748 0.6815 0.6879 0.6941 

 
0.5 0.659 0.6655 0.6717 0.6778 

 
1.5 0.6211 0.6273 0.6332 0.6389 

 
2 0.5321 0.5375 0.5426 0.5475 

 
5 0.3346 0.3378 0.3411 0.3441 

20 0 0.5898 0.5957 0.6013 0.6068 

 
0.5 0.5759 0.5817 0.5871 0.5926 

 
1.5 0.5429 0.5483 0.5534 0.5585 

 
2 0.4651 0.4698 0.4742 0.4785 

 
5 0.2924 0.2952 0.2981 0.3008 

 
 
Table 4. One-Sample Central Coverage Bayes Prediction Bound Length 
 

m ↓ c ↓ ϑ → 99% 95% 90% 

10 0 0.4195 0.3246 0.2711 

 
0.5 0.6243 0.4796 0.4021 

 
1.5 0.7737 0.5961 0.4988 

 
2 1.0101 0.7785 0.6516 

 
5 0.385 0.3839 0.3825 

10 0 0.441 0.3409 0.2853 

 
0.5 0.637 0.4905 0.4115 

 
1.5 0.7859 0.6062 0.507 

 
2 1.0193 0.7864 0.6578 

 
5 0.373 0.3707 0.3682 

20 0 0.45 0.3465 0.2901 

 
0.5 0.6436 0.4958 0.4149 

 
1.5 0.7899 0.609 0.51 

 
2 1.0231 0.7885 0.6602 

 
5 0.3713 0.3699 0.3678 
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The performances of the seven different parameter estimation methods for the Gumbel 
distribution are compared with numerical simulations. Estimation methods used in this 
study are the method of moments (ME), the method of maximum likelihood (ML), the 
method of modified maximum likelihood (MML), the method of least squares (LS), the 
method of weighted least squares (WLS), the method of percentile (PE) and the method 
of probability weighted moments (PWM). Performance of the estimators is compared 
with respect to their biases, MSE and deficiency (Def) values via Monte-Carlo simulation. 

A Monte Carlo Simulation study showed that the method of PWM was the best 
performance the other methods of bias criterion and the method of ML outperforms the 
other methods in terms of Def criterion. A real life example taken from the hydrology 
literature is given at the end of the paper. 
 
Keywords: Gumbel distribution, estimation methods, Monte Carlo simulation, 
efficiency 

 

Introduction 

The Gumbel distribution was first proposed by E. J. Gumbel in 1941. It is a 

special case of the Generalized Extreme Value (GEV) distribution and is 

sometimes referred to as Extreme value type I distribution or just the log-Weibull 

distribution. It is widely used for modeling extreme events, or extreme order 

statistics. It has two forms, one for “minimum order statistics” and the other for 

“maximum order statistics.” In this study, we focus on the second form. 

The Gumbel distribution has many applications in practice, such as annual 

maximum flow of river, floods, rainfalls, earthquake magnitudes, annual sea-level 

prediction and so on. It is of considerable importance in many areas of 

mailto:demethanaydin@gmail.com
mailto:senoglu@science.ankara.edu.tr
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environmental sciences, e.g., hydrology, see Wallis and Wood (1985). 

Mathematical modeling of natural phenomena is becoming more and more 

important in this age of global warming, especially for public safety and 

economic issues. Therefore, estimating the model parameters precisely and 

efficiently is very important. There are various different estimation methods in the 

literature for estimating the parameters of the Gumbel distribution. The method of 

moments and the method of maximum likelihood (ML) are the most well known 

among them. There exist various studies in the literature identifying the most 

efficient method of estimation for the Gumbel distribution via Monte Carlo 

simulation study, see for example Landwehr et al. (1979) and Mahdi and Cenac 

(2004). 

In the present work, these studies were extended by including four other 

estimation methods, namely, modified maximum likelihood (MML), least squares 

(LS), weighted least squares (WLS) and method of percentile. This is the first 

study comparing these seven different methods of estimation in the same study. 

Gumbel distribution 

The probability density function (PDF) and the cumulative density function 

(CDF) of the two-parameter Gumbel distribution with the location parameter μ 

and the scale parameter σ are defined as follows: 
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  (2) 

 

respectively. 

To understand the basic characteristics of the Gumbel distribution, the mean, 

the variance, the skewness and the kurtosis values are given as follows: 
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respectively. Here, γ is the Euler’s constant, with approximate value 0.5772.  

It is seen that Gumbel distribution is positively skewed and moderately long 

tailed. See Figure 1 for the plot of the Gumbel distribution. 
 
 

 
Figure 1. Plot of the Gumbel distribution for various μ and σ values. 

 

 

The methods of estimation 

In this section, we briefly describe the methods of estimation for the Gumbel 

distribution used in this study. 

The method of moments 

Moment estimators of the location parameter μ and the scale parameter σ of the 

Gumbel distribution are found by equating the sample moments to the 

corresponding theoretical moments. 

In other words, they are the solutions of the following equalities 
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ME of μ and σ are then obtained as 
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respectively. 

The method of Maximum Likelihood 

ML estimators of the two-parameter Gumbel distribution in (1) are found by 

maximizing the following log-likelihood function with respect to the parameters 

of interest (i.e., with respect to μ and σ), 

 

  
1 1

ln ln
n n

i i

i i

L n z g z
 

       (6) 

 

where  
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First, we obtain the likelihood functions given below: 
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It is clear that likelihood equations do not have explicit solutions. Therefore, 

we apply numerical methods to solve the equations (7) and (8). Iterative solutions 

of these equations are the ML estimates of the location parameter μ and the scale 

parameter σ. 



COMPARISON OF PARAMETER ESTIMATION METHODS 

127 

The method of Modified Maximum Likelihood 

MML methodology was first introduced by Tiku (1967, 1968). It is used as an 

alternative to the well known ML methodology when the estimators of the 

parameters can not be obtained explicitly. Idea behind the MML methodology is 

based on the linearization of the nonlinear terms in the likelihood equations.  

MML methodology is based on the following steps: 

 

i) Likelihood equations given in (7) and (8) are written in terms of the 

order statistics, since complete sums are invariant to ordering, i.e., 
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where 
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ii) Linearize the nonlinear term in (9) and (10) by using the first two 

terms of the Taylor series expansion around the expected values of 

the order statistics 
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or equivalently 
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where 
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Here, t(i)’s (i = 1, 2, …, n) are the expected values of the standardized 

order statistics z(i), i.e., t(i) = E(z(i)), and are obtained from the 

following equality: 
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Equation (12) gives 
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iii) By incorporating (11) into (9) and (10), we obtain the modified 

likelihood equations given below 
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and 
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iv) Solutions of the modified likelihood equations in (13) and (14) with 

respect to the unknown parameters are the following MML 

estimators  
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where 
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MML estimators are asymptotically equivalent to the ML estimators. 

Therefore, they are asymptotically unbiased and minimum variance bound (MVB) 

estimators under the regularity conditions. However, in contrast to ML estimators, 

they are the explicit functions of the sample observations and avoid the 

computational difficulties encountered in the numerical solutions, such as 

multiple roots, nonconvergence of iterations or convergence to wrong values, see 

for example Barnett (1966). It should be noted that MML estimators are nearly 

unbiased and MVB estimators even for small samples.  

The method of Least Squares 

Let X1, X2, …, Xn be a random sample of size n from the distribution function F(.). 

LS estimators of the unknown parameters of F(.) are obtained by minimizing the 

following equation: 
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with respect to the parameters of interest. It is known that X(1) < X(2) < … < X(n) 

are the ordered random variables. 

Then the LS estimators of the parameters of the two-parameter Gumbel 

distribution are obtained by minimizing the function 
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with respect to the parameters μ and σ. 

 

The method of Weighted Least Squares 

Let, X1, X2, …, Xn be a random sample of size n from the distribution function F(.) 

and X(1) < X(2) < … < X(n) be the ordered random variables.  



AYDIN & ŞENOĞLU 

130 

WLS estimators of the unknown parameters are obtained by minimizing the 

function 
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with respect to the parameters of interest.  

In case of the Gumbel distribution, the WLS estimators of the model 

parameters are obtained by minimizing the following function 
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with respect to the parameters μ and σ. Here, 
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The method of percentile 

Percentile estimators of the unknown parameters of the distribution function 

( )ix
F





 
 
 

 are found by minimizing the equation 
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with respect to the unknown parameters. Here, X(i)’s are defined as the ith order 

statistics. For the Gumbel distribution, equation (20) reduces to 
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Solutions of the equation (21) are the following percentile estimators of the 

location parameter μ and the scale parameter σ 
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where 
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The method of Probability Weighted Moments 

The method of probability weighted moments has been defined by Greenwood et 

al. (1979). Similar to the traditional method of moments, parameter estimates are 

obtained by equating the analytical expressions for PWM to sample estimates.  

They defined the PWM as follows 
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where F(X) is the cdf of the random variable X and x(F) is the inverse distribution 

function. 

By adopting the convention M1,0,k = M(k), the PWM estimators of μ and σ are 

obtained as 
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respectively. ( )
ˆ

kM  in (24) is an unbiased estimate of M(k) and is given by  
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where x(i) are the ordered observations and k is a nonnegative integer. See 

Landwehr et al. (1979) for more detailed information about the method of PWM.  
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Methodology 1 

Monte Carlo simulation study 

An extensive Monte Carlo simulation study was conducted to compare the 

performance of the different estimators proposed in the previous section. 

Performances of the different estimators are compared with respect to their biases, 

MSE and Def values. Def is the natural measure of the joint efficiency of the pair 

( ˆ ˆ,  ), see Tiku and Akkaya (2004). It is defined as given below.  

Definition: Let 
1̂  and 

2̂  be the estimators of the parameters 
1  and 

2 , 

respectively. Def is a MSE based measure of the joint efficiency of estimators of a 

set of parameters of a probability distribution. Then, the Def of the estimators 
1̂  

and 
2̂  is defined as 
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where 
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Results 1 

The Mean, MSE and Def values of the parameter estimators were computed based 

on ⟦100000/n⟧ Monte Carlo runs for various sample sizes ranging from 5 to 1000 

(i.e., n = 5, 10, 50, 100 and 1000). Here, ⟦.⟧ shows the integer value function. The 

location parameter μ and the scale parameter σ are taken to be 0 and 1 without 

loss of generality throughout the study, since all the estimators are invariant under 

the linear transformations of the data. All the computations were conducted in 

MATLAB R2010a. Simulation results are presented in Table 1. 
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Table 1. Simulated Means, Variance, MSE and Def values for the different parameter 

estimators of μ and σ; μ = 0, σ = 1 
 

  
μ 

 
σ 

 
n   Mean Variance MSE   Mean Variance MSE Def 

5 

ML 0.0876 0.2365 0.2441 
 

0.8491 0.1221 0.1449 0.3890 

MML 0.1965 0.2508 0.2894 
 

0.9785 0.1989 0.1994 0.4888 

LS -0.0127 0.2869 0.2871 
 

1.2366 0.5363 0.5923 0.8794 

WLS -0.0238 0.5399 0.5404 
 

1.2688 2.0432 2.1155 2.6559 

PE 0.0033 0.2394 0.2395 
 

1.2715 0.3541 0.4278 0.6673 

ME 0.0569 0.2369 0.2401 
 

0.9178 0.1747 0.1815 0.4216 

PWM 0.0057 0.2324 0.2324 
 

1.0066 0.1976 0.1977 0.4301 

          

10 

ML 0.0358 0.1133 0.1146 
 

0.9197 0.0611 0.0675 0.1821 

MML 0.0957 0.1168 0.1260 
 

0.9741 0.0691 0.0697 0.1957 

LS -0.0088 0.1205 0.1206 
 

1.1031 0.1234 0.1341 0.2547 

WLS -0.0170 0.1249 0.1252 
 

1.1259 0.1432 0.1590 0.2842 

PE -0.0069 0.1140 0.1140 
 

1.1698 0.1395 0.1683 0.2823 

ME 0.0233 0.1154 0.1159 
 

0.9512 0.0920 0.0944 0.2103 

PWM -0.0031 0.1120 0.1120 
 

0.9970 0.0872 0.0872 0.1992 

          

50 

ML 0.0097 0.0224 0.0224 
 

0.9839 0.0122 0.0124 0.0349 

MML 0.0229 0.0226 0.0231 
 

0.9915 0.0124 0.0125 0.0356 

LS 0.0011 0.0248 0.0248 
 

1.0195 0.0190 0.0194 0.0442 

WLS -0.0015 0.0261 0.0261 
 

1.0273 0.0227 0.0235 0.0496 

PE -0.0035 0.0231 0.0231 
 

1.0617 0.0235 0.0273 0.0504 

ME 0.0084 0.0233 0.0233 
 

0.9884 0.0207 0.0208 0.0442 

PWM 0.0022 0.0224 0.0225 
 

0.9991 0.0164 0.0164 0.0389 

          

100 

ML 0.0037 0.0110 0.0110 
 

0.9930 0.0060 0.0060 0.0170 

MML 0.0106 0.0110 0.0111 
 

0.9962 0.0061 0.0061 0.0172 

LS -0.0001 0.0121 0.0121 
 

1.0119 0.0092 0.0093 0.0215 

WLS -0.0016 0.0128 0.0128 
 

1.0164 0.0111 0.0113 0.0242 

PE -0.0044 0.0114 0.0114 
 

1.0388 0.0112 0.0127 0.0241 

ME 0.0035 0.0115 0.0115 
 

0.9941 0.0105 0.0105 0.0220 

PWM 0.0001 0.0110 0.0110 
 

0.9999 0.0079 0.0079 0.0190 

          

1000 

ML 0.0000 0.0011 0.0011 
 

0.9990 0.0006 0.0006 0.0017 

MML 0.0007 0.0011 0.0011 
 

0.9992 0.0006 0.0006 0.0017 

LS -0.0003 0.0012 0.0012 
 

1.0008 0.0008 0.0008 0.0021 

WLS -0.0004 0.0013 0.0013 
 

1.0012 0.0011 0.0011 0.0024 

PE -0.0019 0.0012 0.0012 
 

1.0072 0.0011 0.0011 0.0023 

ME -0.0002 0.0012 0.0012 
 

0.9995 0.0011 0.0011 0.0022 

PWM -0.0003 0.0011 0.0011   0.9997 0.0007 0.0007 0.0019 
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The following conclusions are drawn from the results of the Monte Carlo 

simulation study. 

 

i) According to the bias comparisons of the estimators: 

As far as the location parameter μ is concerned, MML did not 

perform well especially for small n values (n = 5 and 10). PE and 

PWM estimators show the best performance among the others, since 

they are more or less unbiased even for small sample sizes. It is 

observed in Table 1 that biases of the different estimators considered 

in this study decrease as the sample size n increases.  

If our concern is the scale parameter σ, all the scale estimators 

(except PWM and MML) have substantial bias in cases where a 

small number of data samples (n = 5 and 10) are available. For these 

sample sizes, LS, WLS and PE overestimate σ while ML and ME 

underestimate. PWM shows the best performance and followed by 

the MML estimator for all the sample sizes. Similar to the comments 

made about the location estimators, bias of the scale estimators 

decreases as the sample size n increases. 

ii) According to the efficiency comparisons of the estimators:  

Simulation results show that the method of ML outperforms 

the other methods for estimating the location parameter μ in all cases 

except n = 5 and 10. For these sample sizes, the method of PWM 

shows the best performance among the other methods with the 

smallest MSE. 

For estimating the scale parameter σ, it is observed that ML 

works the best for all sample sizes. 

It should be noted that there is not much difference in the 

performances between ML and MML estimators especially for 

moderate (n = 50 and 100) and large (n = 1000) sample sizes as 

mentioned in the section on MML. 

iii) According to the joint efficiency (Def) comparisons of the 

estimators: 

It is clear from the simulation results presented in Table 1 that 

the method of ML provides the smallest Def values in all cases, 

therefore it is the best method for jointly estimating the location 

parameter μ and the scale parameter σ of the Gumbel distribution. 

Second best performance is shown by the method of MML for all 

values of n except n = 5. For n = 5, ME is the second most efficient 
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method of the seven. Third place (in terms of the joint efficiency) 

was taken by the method of PWM. 

Note that the simulation results presented in this study are in 

accordance with those of the Landwehr et al. (1979) who compared 

the methods of PWM, ME and ML. 

 

Methodology 2 

Asymptotic variances 

In this part, obtain the exact variances of the ML estimators as 
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by using the diagonal elements of I-1 (where 
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information matrix), see Panjer (2006). These variances are also known as the 

Rao-Cramer Lower Bounds (RCLBs) for the parameters μ and σ. Elements of the 

symmetric matrix I are given by 

 

 
2

11 2 2

ln L n
I E

 

 
   

 
  

  
2

12 2

ln
1

L n
I E 

  

 
     

  
  

  
2 2

2

22 2 2

ln
1

6

L n
I E




 

   
       

   
  

Results 2 

Table 2 shows that the RCLBs for the parameters and for various different sample 

sizes.  
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Table 2. RCLBs for the parameters μ and σ 

 

n  ˆV     ˆV    

5 0.2217 0.1215 

10 0.1108 0.0607 

50 0.0221 0.0121 

100 0.0110 0.0060 

1000 0.0011 0.0006 

 
 

It is seen that simulated variances of the ML estimators given in Table 1 are 

very close to the RCLBs even for small sample sizes. This is another indication of 

the fact that the ML estimators show the best performance for estimating the 

parameters of the Gumbel distribution. 

A real life example 

Meriç (Maritsa or Evros) is the longest river of the Balkan Peninsula and the 

second longest river of in South-Eastern Europe. Its length is 530 km with a 

catchments area of more than 53,000 square kilometers, see Sezen et al. (2007). It 

is a highly industrialized, highly agricultural and highly populated area with 

approximately 2 million inhabitants. The Meriç River basin is distributed over the 

territories of three countries, namely, Bulgaria (66%), Turkey (28%) and Greece 

(6%). The Meriç River has four main tributaries known as Ardas (Bulgaria and 

Greece), Tundzha (Bulgaria and Turkey), Erythropotamos (mostly in Greece) and 

Ergene (in Turkey), see Skiyas and Kallioras (2007). 

The main reason for analyzing the data belonging to the Meriç River is its 

high risk of flooding. It is known that one or two flooding events have occurred 

annually during the last decade. They have caused severe economic, 

socioeconomic and environmental impacts, see Skiyas and Kallioras (2007). 

The maximum daily flood discharge (annual) is measured in cubic meters 

per second (m3/s) for the Meriç River at Turkey, recorded during the period 1982-

2006. These measurements have been taken from the Kirişhane station, Edirne 

(Turkey), see Sezen et al. (2007). 

Discharge is defined as the volume of the water flowing through a specified 

point of a stream in a given interval of time. Therefore, especially in flood periods, 

identifying the distributional characteristics (such as mean and variance) of the 

maximum daily discharge data is extremely important for flood control, water 

resources planning, design of hydraulic structures, management and decision 

making (Chen & Chiu, 2004). 
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The aim is to fit a distribution to the maximum daily discharge (annual) data 

by using the Methods of Estimation described. To have an idea about the 

underlying distribution of the data, we use the Kolmogorov-Simirnov (KS) test. 

According to the KS test, we do not reject the null hypothesis 

 

H0: Distribution of the maximum daily discharge (annual) data is Gumbel since 

KScal = 1.1349 < KStab = 0.2376. 

For the maximum daily discharge (annual) data, estimates of the parameters 

of the Gumbel distribution are obtained as reported in Table 3. 
 
 
Table 3. Parameter estimates of the Gumbel distribution for the Meriç River during 1982-

2006. 
 

Estimator ̂  ̂   

ML 539.8018 302.2066 

MML 545.5504 303.8097 

LS 504.1084 314.3558 

WLS 497.1617 323.3498 

PE 509.0342 430.4036 

ME 509.4286 395.1687 

PWM 527.4405 363.9631 

 
 

See Figure 2 for the plots of the fitted densities based on these estimate values. It 

can be seen from the figure that the fitted densities based on the ML and the 

MML estimates provide better fit than the fitted densities based on the other 

estimates for the Meriç River data. 

Conclusion 

Seven estimation methods for estimating the parameters of the two-parameter 

Gumbel distribution were compared. Performance of the estimators is compared 

with respect to their biases, MSE and Def values. 

Comparing all the seven methods, it is clear that as far as bias is concerned, 

the method of PWM outperforms the other methods for all sample sizes. It can 

also be seen from the simulation results that all the estimators of the location 

parameter μ and the scale parameter σ are asymptotically unbiased. In terms of the 

joint efficiency, the method of ML works the best for all sample sizes. However, 
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Figure 2. Histogram of the maximum daily flood discharges (annual) for the Meriç River 

data and the fitted densities. 

 

 
 

the Def values of the MML estimators  ˆ ˆ,   are quite close to that of ML 

estimators especially for moderate and large sample sizes as expected. As far as 

computation is concerned, MML estimators are easy to compute and do not have 

the computational complexities of ML estimators. Therefore, their computation 

takes very little CPU time, see Kantar and Şenoğlu (2008). If our consideration is 

both efficiency and the CPU time, then we recommend to use the MML 

estimators for estimating the pair (μ, σ) for moderate and large sample sizes. 
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Introduction 

The Weibull distribution was introduced by the Swedish Physicist Waloddi 

Weibull in 1939. He applied this distribution to analyze the breaking strength of 

materials. This distribution has been extensively used in lifetime and reliability 

problem. The Weibull family is a generalization of the exponential family and can 

model data exhibiting monotone hazard rate behavior, i.e., it can accommodate 

three types of failure rates, namely increasing, decreasing and constant. Its 

application in connection with lifetimes of many types of manufactured items has 

been widely advocated (e.g., Weibull, 1951; Berrettoni, 1964), and it has been 

used as a model with diverse types of items such as vacuum tubes (Kao, 1959), 

ball bearings (Lieblein & Zelen, 1956), and electrical insulation. It is also widely 

used in biomedical applications. 

A simple explanation of the Weibull distribution and its applications can be 

found in Franck (1988). A comprehensive review of this model is available in 

Johnson, Kotz, and Balakrishnan (1995). A generalization of the Weibull 

distribution with application to the analysis of survival data is given by 

Mudholkar, Srivastava, and Kollia (1996). Inferences from grouped data in the 

three-parameter Weibull models is introduced by Hirose and Lai (1997). Lawless 

mailto:ahmadkaisar31@gmail.com
mailto:sprvz@yahoo.com
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(2002) provided statistical models and methods for lifetime data. Al-Athari (2011) 

and Hossain and Zimmer (2003) did some comparative studies on the estimation 

of Weibull parameters using complete and censored samples. Nadarajah and Kotz 

(2005) presented a procedure on some recent modifications of Weibull 

distribution. 

For deriving new moment estimators of three parameters transmuted 

Weibull distribution, a similar approach to that of Huang and Hwang (2006) was 

used. Nadarajah and Kotz (2005) discussed products and ratios of Weibull 

random variables. Gokarna and Tsokos (2009) proposed a method on the 

transmuted extreme value distribution with application. Ahmad and Ahmad 

(2013) presented a procedure of Bayesian analysis of Weibull distribution. 

A random variable x is said to have a Weibull distribution with parameters 

α > 0 and β > 0 if its pdf is given by 

 

   1 exp 0, 0, 0
x

g x x x



 

 

  
     

 
  

 

The cdf of Weibull distribution is given by 

 

    
0

x

G x g x dx    

 

   1

0

exp

x
x

G x x dx




 

  
  

 
   

 

 ⇒   1 exp
x

G x




 
   

 
  (1) 

 

Transmuted Weibull distribution 

In order to obtain the pdf of transmuted Weibull distribution, use the following 

cdf which is given by 

 

        
2

1F x G x G x      (2) 
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where G(x) is the cdf of base distribution. If λ = 0, we have the distribution of 

base random variable. 

Now using equation (1) in equation (2), 

 

    

2

1 1 exp 1 exp
x x

F x
 

 
 

      
            

      
  

 

 ⇒     21F x k k      

 

where  

 

 1 exp
x

k




 
   

 
  

 

 ⇒    1F x k k     

 

 ⇒     1 1F x k k    

 

 ⇒   1 exp 1 exp
x x

F x
 


 

       
         
       

 (3) 

 

This is the required cdf of Transmuted Weibull distribution. 

In order to find the pdf of Transmuted Weibull distribution, first 

differentiate equation (3) w.r.t. x which is given by 

 

     
d

f x F x
dx

   

 

 ⇒   1 exp 1 exp
d x x

f x
dx

 


 

        
          

         
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Figure 1. The cdfs of various transmuted Weibull distributions. 

 

 

After differentiating the above equation w.r.t. x, 

 

   1 exp 1 2 exp
x x

f x x
 


 

  


     

        
     

  (4) 

 

which is the required pdf of Transmuted Weibull distribution with parameters α, β 

and λ. 
 
 



STRUCTURAL PROPERTIES OF WEIBULL DISTRIBUTION 

145 

 
Figure 2. The pdfs of various Transmuted Weibull distributions. 
 

 

Special cases 

 

1) If λ = 0, then Transmuted Weibull distribution reduced to two 

parameter Weibull distribution with parameters α and β. 

 

   1; , exp 0 , 0
x

f x x x



   

 

  
    

 
  

 

2) If λ = 0 and β = 1, then Transmuted Weibull distribution reduced to 

exponential distribution with parameter 
1



 
 
 

, i.e. 

 

  
1

exp 0, 0
x

f x x 
 

 
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 
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3) If λ = 0 and α = β = 1, then Transmuted Weibull distribution reduced 

to standard exponential distribution, i.e. 

 

    exp 0f x x x     

Moments of Transmuted Weibull distribution 

Moments are the expected values of certain functions of a random variable. They 

serve to numerically describe the variable with respect to given characteristics for 

location, variation, skewness and kurtosis, to name a few. The expected value of 

xr is termed as rth moment about origin of the random variable x which is given by 

 

  
r

r E x    

 

Thus the rth moment of Transmuted Weibull distribution is given by 

 

  
0

; , ,r

r x f x dx   
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         
     

   

 

After solving the above equation, 

 

  1 1 2
r r

r

r
    



 
      

 
  (5) 

Mean of the Transmuted Weibull distribution 

Setting r = 1 in equation (5) leads to the mean of the Transmuted Weibull 

distribution, which is given by 

 

  
1 1

1

1
1 1 2    



 
      

 
  (6) 
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Second moment of the Transmuted Weibull distribution 

Setting r = 2 in equation (5),  

 

  
2 2

2

2
1 1 2    



 
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 
  (7) 

Variance of Transmuted Weibull distribution 

The variance of Transmuted Weibull distribution is given by  
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1 1 2 1 1 2       
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  (8) 

Third and fourth moments of Transmuted Weibull distribution 

Setting r = 3 in equation (5),  
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  (9) 

 

If r = 4 in equation (5), 
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thus  
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MGF of Transmuted Weibull distribution 

The mgf of Transmuted Weibull distribution is given by 
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Now by using the equation (5) in the above equation, we have 
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This is the required mgf of Transmuted Weibull distribution. 

Standard deviation of Transmuted Weibull distribution  

The positive square root of the variance is called standard deviation. Symbolically, 

σ = 2 . From equation (8), the variance of Transmuted Weibull distribution is 

given as 
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Coefficient of variation of Transmuted Weibull distribution  

This is the ratio of standard deviation and mean. Usually, it is denoted by C.V. 

and is given by  
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Skewness and kurtosis of Transmuted Weibull distribution 

The most popular way to measure the skewness and kurtosis of a distribution 

function rests upon ratios of moments. Lack of symmetry of tails (about mean) of 

frequency distribution curve is known as skewness. The formula for measure of 

skewness given by Karl Pearson in terms of moments of frequency distribution is 

given by  
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After using equation (8) and equation (9) in the above equation, we have 
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 ⇒ 
  
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2
2

3 1 2 1

1 3
2
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3   
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 



 

 

where 
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1

1 1 2k

k
  



 
     

 
 

 

Therefore  

 

 1 1    

 

 ⇒ 
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 
3
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2

3 1 2 1

1
2

2 1

3   


 

 



  

 

If γ1 < 0, then the frequency curve is negatively skewed. If γ1 > 0, then the 

frequency curve is positively skewed. 

 

Kurtosis 

The formula for measure of kurtosis is given by 

 

 4
2 2

2





   
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After using equation (8) and equation (10) in the above equation,  
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where 
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and 
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
  

 

If γ2 > 0, then the frequency curve is leptokurtic. If γ2 < 0, then the frequency 

curve is platykurtic. If γ2 = 0, then the frequency curve is mesokurtic, or we can 

say that there is no kurtosis. 
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Harmonic mean of Transmuted Weibull distribution 
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x x
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    
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After substitution, 
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1 1

0 0

11 1 1 2
exp 2 exp

z z
dz dz

H z z 

 

   
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      
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After solving the above equation  

 

  
1 11 1

1 1 2
H

   


 
     

 
  

 

 ⇒ 

 
1 1

1

1
1 1 2

H
   






 

    
 

  (14) 

New moment estimator of the Transmuted Weibull distribution 

For deriving new moment estimators of three parameters transmuted Weibull 

distribution, we need the following theorem obtained by using the similar 

approach of Huang and Hwang (2006). 

 

Theorem 1.  Let n ≥ 3 and let X1, X2, X3, …, Xn be n positive identical 

independently random variables having probability density function f (x). Then 

the independence of the sample mean nX  and the sample coefficient of variance 



AHMAD ET AL. 

154 

n
n

n

S
V

X
  is equivalent to that f (x) is a Transmuted Weibull density where Sn is the 

sample standard deviation. 

The next theorem requires the derivation of the expectation and the variance 

of 

2

2 n
n

n

S
V

X

 
  
 

, where nX  and Sn are respectively the sample mean and the 

sample standard deviation. 

 

Theorem 2.  Let X1, X2, X3, …, Xn be n positive identical independently 

distributed random samples drawn from a population having Transmuted Weibull 

density 
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Proof: Because the rth moment of a random variable x about origin is given by 
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After solving the above equation, 
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r r
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If r = 1 in the above equation, 
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Also if r = 2 in the above equation,  
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  (16) 

 

where nX  and 
2

nS  are respectively the sample mean and the sample variance. 

 

Theorem 3. Let X1, X2, X3, …, Xn be n positive identical independently 

distributed random samples drawn from a population having Transmuted Weibull 

density 
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where nX  and 
2

nS  are respectively the sample mean and the sample variance. 

 

Proof: By using the theorem (1), we have 
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Now using equations (15) and (16) in equation (17), we have 
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as n  and that this limit is the square of the population coefficient of 

variation. Thus, 
2

2

n

n

S

X
 is an asymptotically unbiased estimator of the square of the 

population coefficient of variation. 
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Problems arise in testing the stationarity of the panel in the presence of cross sectional 
dependence and outliers. The currently available panel unit root tests are very much 
affected by the presence of outliers. As such, this article introduces an alternative test which 
is robust to outliers and cross sectional dependence. The performance and robustness of 

the proposed test is discussed and comparisons are made to the existing tests via simulation 
studies. 
 
Keywords: Cross sectional dependence, outliers, unit root, robust test, panel model. 

 

Introduction 

The investigation of the stationary in panel data has received great attention in panel 

analysis for the past few decades. It is an important issue in modeling the panel 

with the involvement of times series dimension in this study. This investigation can 

be done via unit root test. The panel unit root tests can be found in Im et al. (2003), 

Levin and Lin (1992, 1993), Levin et al. (2002), Bai and Ng (2004), Philips and Sul 

(2003), Moon and Perron (2004), Pesaran (2007) and Choi (2001, 2002). Hurlin 

(2010) distinguished two generations of unit root tests on which the first generation 

tests relied on the assumption that all cross sectional units are independent. The 

first generation of unit root tests were those proposed by Quah (1994), Breitung 

and Meyer (1994) and Levin and Lin (1992, 1993).  

For the second generation of panel unit root tests, the presence of cross 

sectional dependence (hereafter CD) among the residuals is allowed within the 

panel. The assumption of CD is due to the evidence obtained on the strong co-

movements among the economic variables (Barbieri, 2009). The assumption that 

the individual time series in the panel are cross sectional independent is not 

practical in the context of cross country regressions. As argued by O’Connell, 

mailto:nurulsima@usim.edu.my
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(1998), the presence of such CD may affect the finite sample behaviour of the panel 

unit root test which subsequently results to the incorrect decision in a unit root test. 

Those who proposed the tests which incorporated the CD were: Pesaran (2007), 

Philips and Sul (2003), Bai and Ng (2004), Moon and Perron (2004) and Choi 

(2002). 

The existence of outliers implies that some shocks will only have temporary 

effects and thus, providing that they are sufficiently large or sufficiently frequent 

indicated that the series is stationary (Franses & Haldrup, 1994). Martin and Yohai 

(1986) showed via the simulation experiment that an additive outliers biases 

Ordinarily Least Squares (OLS) estimator downward for the parameter in a 

stationary first order autoregressive process. Hence, in some situations it could be 

expected that the additive outliers will establish the wrong impression that a time 

series is stationary when it is actually non-stationary. In addition, the presence of a 

cross sectional dependence may deteriorate the asymptotic distribution of the 

standard unit root test which is normally distributed (Philips & Sul, 2003; Banerjee, 

1999). Due to such interest, a robust unit root test in the panel data model is 

proposed which aims at reducing the effects of outliers in the presence of the CD. 

Specifically, the presence of the unit root will be tested when both the CD and 

outliers exist in the panel. The finite sample behaviour of the proposed test is 

studied and its performance is evaluated through the Monte Carlo simulation study. 

Model and Tests 

Pesaran Unit Root Test 

Specifically, in the presence of CD, the following model was considered by Pesaran 

(2007) to test the presence of the unit root: 

 

 1 ;    1,2, , .   1,2, ,it i i it i t ity b y f i N t T          (1) 

 

where Δyit = yit - yit-1; yit is an ith observation observed at a particular time t, αi is 

the intercept, and bi is a parameter for the variable of yit-1. The presence of CD is 

represented by γi ft where ft 
is the latent factor and γi is factor loadings that is 

common across cross sectional units i and it  is the random error. This model can 

be employed for a larger and complicated set of time series. In the absence of the 

unit root, negative values for bi are expected. Specifically, the hypothesis test for a 

unit root is defined as follows: 
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0

1

:   0;    for all 1,2,...,

:   0;    for some 1,2,...,

i

i

H b i N

H b i N

 

 
 (2) 

 

Rejecting the null explains that the panel is stationary (no unit root). Model (1) can 

be expressed as cross sectional Augmented Dickey-Fuller (CADF) model:  

 

 1 1 ;   1,2, , .   1,2, ,it i i it i t i t ity b y c y d y e i N t T            (3) 

 

where the standard of Augmented Dickey-Fuller (ADF) model is improved up to 

more variables in independent variables in model (3), that are; cross section 

averages of lagged levels ( 1ty  ) and first differences of the individual series ( ty ), 

i in the model. Pesaran has shown that the effect of CD can be eliminated by using 

model (3). Thus, let CADFi be the ADF statistics for the ith cross sectional unit 

given by the t-ratio of the OLS estimate ˆ
ib  of bi in the CADF regression (3). Then, 

the Pesaran unit root test is given by  

 

 
1

CADF

CIPS

N

i

i

N




 (4) 

 

where CIPS stands for cross sectional augmented IPS (Im et al. (1997) unit root 

test) . This CADFi is given by  

 

 
   

 

1

, 1 , 1 , 1

1
2

, 1 , 1

CADF ( , )

T T

i i i i

i i
T

i i i

t N T





  



 


 

y My y M y

y My

 (5) 

 

where  , 1 1 1, ,
T

i i iTy y y  ,  2 3, , ,
T

i i i iTy y y    y ; 

2

2 1

ˆ

4

it

T

t
i

e

T
 




,with 

ˆ ˆ
it it ite y y    and M  is defined as  

1
T T

t



 M I H H H H  and 1( , , )t t H 1 y y  . 

tI  is a unit matrix of order T T  and H  is the combination of the dummy 

variables, average of cross section of the first difference of yit and its first lagged 

value yit-1. The asymptotic distribution of this distribution is more skewed 
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compared to the ADF (asymptotically normal) distribution in the presence of CD 

(Philips and Sul, 2003). The critical value of the test statistics in (5) is given in 

Table 1 and those are obtained from the simulation experiment based on the CADF 

model. 

Proposed Unit Root Test 

The Pesaran’s unit root test uses the OLS procedure that is non-robust. It has been 

known in the literature that the OLS is sensitive to the influence of outliers in the 

data. Hence, to limit the influence of outliers in the data in investigating the 

presence of the unit root in the model, the Generalized M-estimator is applied and 

it is obtained by solving the following equation: 

 

    
 

 
1 1 1

1 1

ˆ
0;    for 1,2, ,

ˆ

T
it i

i it i it i it

t i i it

e b
u y v y y i N

v y



  

 

 
   

 
  (6) 

 

where   1 1i itu y    and  
 

1

1

1
.i it

it

v y
d y





  The  1itd y   is given as a measure of 

the outlying the yit-1 in the X-space from its mean value. Here, ψi (.) is the derivative 

of ρi (.), where ρi (.) is a differential convex function (with minimum at 0) and is 

known as the robustifying criterion function while  ît ie b  is the estimated 

residuals and ˆ
i  is the robust scale obtained from the first iteration of M-estimation. 

To test for a unit root, a similar hypothesis statement as in (2) is considered. 

Under H0 of no unit root, the generalization of the test is given by:  

 

 
ˆ

ˆ( )

i

i

i

ib b
t

Var b








  (7) 

 

where ˆ
i

b
 is the Generalized M-estimator where it is computed as follows: 

 

    
1

, 1 , 1 , 1
ˆ

i

T T

i i i i i ib




   y G y y G y  (8) 
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where  , 1 1 1, ,
T

i i iTy y y  ,  2 3, , ,
T

i i i iTy y y    y  and     i i itzG M W

with  
 

1

ˆ

ˆ

it i

it i it

i

e b
z d y


 . The ˆ( )

i
Var b

 is given by 
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y M y  (9) 

 

where   .iE   and   , .iE   are the expected values of robustifying criterion 

function  .i  and derivative of  .i , respectively. The 
M is computed as 

 
1

T T

t


     M I H H H H  ; tI  is an identity T by T matrix and 

    1, ,t ty y 

 H 1 . The value of  .  in 
H takes the form  
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 (10) 

 

where c and d are the critical values and computed as 
1

ˆ3
ty


and ˆ3
ty , respectively. 

The 
1

ˆ
ty


 and ˆ
ty   are robust scale with  

1 1 1
ˆ 1.4825 median median ,

ty t t
t t

y y
     

 ˆ 1.4825 median median
ty t t

t t
y y     , respectively. These robust scales are 

chosen to achieve specified level of efficiency and are called as the Median 

Absolute Deviation (MAD) with the tuning constant 1.4825 where 
1

ˆ
ty


 and ˆ
ty   

are consistent for σ at the normal distribution. 

The proposed unit root test is the average of 
i

t  which is given by  
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1RCIPS

i

i

N

i

t

t
N



  


 (11) 

 

where 
i

t  is given in (7). 

The asymptotic distribution of the test statistics given in (7) is obtained 

through the extensive simulation experiment. Based on Figure 1, the RCIPS unit 

root test tends to have an approximate t-distribution with a mean μ and a standard 

deviation, σ. As the sample size increase, it is believed that the RCIPS will approach 

to a standard normal distribution. This result is comparable with Pesaran (2007) 

under conditions where eit is normally distributed. 

To investigate the performance of the RCIPS, the critical region of test 

statistics is required. Therefore, the critical region of RCIPS test is obtained through 

simulation experiment at the 0.05 level of significance and it is given in Table 2. 

The data generating process (DGP) and results are given in the next section. 

Finite Sample Behavior of the Tests 

Following Pesaran (2007), the following DGP is considered: 

1(1 )it i i i it ity y e       ;
T

it i t ite f   ; ~ (0,1)i iidN ;
2~ (0, )it iiidN  ;

 2 ~ 0.5,1.5 .i iidU The presence of CD is characterized by the latent factor 

ft ~ iidN(0, 1) and strong CD, γi ~ iidU (0.5, 1.5). The performance of the tests is 

measured by setting: 1) φi = 1 and 2) φi ~ U [0.75, 0.95] for computing the size 

(incorrect detection) and power (correct detection) of the test, respectively. 

A panel contaminated by outliers is represented by    it it it
y y L I      

for i = 1, 2, …, N. t = 1, 2, …, T, where ity
 is the observed contaminated series, 

yit is the uncontaminated series, ξ (L) is the dynamic pattern of the outliers, ω is the 

magnitude of outliers. Iit (τ) is the indicator function of the presence of outlier and 

will takes the value of 1 at time t = τ (chosen at random) and 0 elsewhere. 
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Figure 1. The Density and QQ plots of t-statistics (RCIPS unit root test) 
 

*Note. Figure 1 provides results of the test statistic of the proposed unit root test (RCIPS) which is based on 
5,000 runs for a sample size (N, T) = (200, 200). Based on this figure, the RCIPS tends to have a approximate 

t-distribution with mean μ and a standard deviation σ. 

 

 

Two types of outliers are considered in this study; additive outliers (AO) and 

temporary change (TC). The AO only affect the level but leave the variance 

unaffected. The TC will produce an abrupt step and dies out gradually in time. 

Hence, in ity
,   1L   in the presence of AO and TC takes the form of 

 
1

1
L

L






where δ represents the velocity of the dynamic effect and is bounded 

by [0, 1] (Tsay, 1998). The performance of the tests is investigated at the 5% level 

of significance using the sample sizes N = (20, 30, 50) and 

T = (20, 30, 50, 100, 200) with 1,000 replications. 
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Results and Discussion 

The size and power of the unit root tests are investigated for the uncontaminated 

panel, the panel with AO and the panel with TC. These are tabulated in Tables 3 to 

4 for the size and power of the tests, respectively. The results of the tests are 

reported by rows: 1) CIPS and 2) RCIPS with three columns of the number of cross 

sectional units, N = (20, 30, 50). For each column of N = (20, 30, 50), results of the 

size and power of the unit roots tests are reported when the panel is 1) 

uncontaminated, 2) contaminated with AO, and 3) contaminated with TC. 

In the uncontaminated panel, the CIPS unit root test gives a smaller size for a 

small sample but attains a reasonable size as T increases whereas the RCIPS is 

slightly oversized even when N and T are large. In the presence of the AO and TC, 

the sizes for the CIPS test are all zeros for all sample sizes. The RCIPS has smaller 

size in the presence of AO but achieves a good size of the test in the presence of 

TC compared to CIPS. These results are comparable when the panel is free from 

the outliers effect (see column of “no cont” of Table 3). 

In investigating the power of the test in the uncontaminated panel, the CIPS 

gives slightly lower correct detection (power) of a unit root for T ≤ 50. The 

probability of correctly detect the presence of unit root however increasing (good 

power) as T increases and the result is comparable to those obtained in Pesaran 

(2007). The RCIPS outperforms the CIPS even for small sample. In the presence 

of the AO and TC the panel, the powers for the CIPS test are poor when  T ≤ 50. 

The power however increases for T ≥ 100 with an increasing N. The powers for 

both tests are good as N increases in the presence of TC in the panel. The RCIPS 

provides a sensible power when T ≤ 30 in the presence of the AO but outperforms 

the CIPS in the presence of the TC. Based on these results, the RCIPS provides a 

good reasonable size (close to 0.05) and power (greater than 0.95) in the presence 

of the AO and TC relative to CIPS especially when N and T are small. 

Conclusion 

An alternative approach to Pesaran unit root test is proposed in order to investigate 

the stationarity of the data when outliers occur in the panel. The proposed test is 

robust to the effect of spurious observation in data. The finite sample behaviour of 

the tests is studied and compared via the Monte Carlo experiments. The results 

show that the proposed unit root test provide comparable size and power of the test 

in uncontaminated panel and yield better results than Pesaran unit root test in the 

presence of outliers in the panel especially for the small pair of sample size. 
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Table 1. Critical Values of CIPS 

 

N 20 30 50 

Level of 
significance  

/ T 
1% 5% 10% 1% 5% 10% 1% 5% 10% 

20 -2.40 -2.21 -2.10 -2.32 -2.15 -2.07 -2.25 -2.11 -2.03 

30 -2.38 -2.20 -2.11 -2.30 -2.15 -2.07 -2.23 -2.11 -2.04 

50 -2.36 -2.20 -2.11 -2.30 -2.16 -2.08 -2.23 -2.11 -2.05 

100 -2.36 -2.20 -2.11 -2.30 -2.16 -2.08 -2.23 -2.12 -2.05 

200 -2.36 -2.20 -2.11 -2.30 -2.16 -2.08 -2.23 -2.12 -2.05 

 
 

These results are quoted from Pesaran (2007). The critical values are obtained 

from the estimates of 1 1it i i it i t i t itY bY c Y d Y e          with the test statistic is 

given by regression based on 10,000 runs. The test statistic is given by 

1

/
i i

N

i

t t N


  (the details of this expression can be referred in equation (5)) and the 

results of the test statistics are reported at 1%, 5% and 10% level of significance. 
 
 
Table 2. Critical Values of RCIPS 

 

N 20 30 50 

Level of 
significance 

/ T 
1% 5% 10% 1% 5% 10% 1% 5% 10% 

20 -1.6240 -1.3834 -1.2711 -1.5179 -1.3423 -1.2458 -1.4291 -1.2888 -1.2124 

30 -1.6565 -1.4592 -1.3637 -1.6139 -1.4300 -1.3319 -1.5264 -1.3843 -1.2931 

50 -1.7569 -1.5555 -1.4484 -1.6979 -1.4987 -1.4138 -1.6126 -1.4483 -1.3692 

100 -1.8267 -1.6090 -1.5238 -1.7662 -1.5894 -1.6866 -1.6866 -1.5242 -1.4575 

200 -1.8983 -1.6946 -1.5992 -1.8397 -1.6613 -1.5646 -1.7706 -1.6182 -1.5319 

 
 

Following the work of Im et al. (2003), the DGP computing critical values for 

RCIPS test is given by 1 ,it it ity y e   with ~ (0,1)ite iidN ; for 

i = 1, 2, …, N. t = 1, 2, …, T based on 5,000 runs. The test statistic is given by 

1

/
i i

N

i

t t N 



  (the details of this expression can be referred in equation (11)) and 

the results of the test statistics are reported at 1%, 5% and 10% level of significance. 
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Table 3. The size of the unit root tests 

 
CIPS 

 
no 

cont 
AO TC  

no 
cont 

AO TC  
no 

cont 
AO TC 

T/N 20  30  50 

20 0.006 0.000 0.000  0.003 0.000 0.000  0.006 0.000 0.000 

30 0.011 0.000 0.000  0.004 0.000 0.000  0.002 0.000 0.000 

50 0.012 0.000 0.000  0.014 0.000 0.000  0.009 0.000 0.000 

100 0.047 0.000 0.000  0.022 0.000 0.000  0.028 0.000 0.000 

200 0.034 0.000 0.008  0.035 0.000 0.000  0.025 0.000 0.000 

            

RCIPS 

 
no 

cont 
AO TC 

 no 
cont 

AO TC 
 no 

cont 
AO TC 

T/N 20  30  50 

20 0.041 0.008 0.039  0.058 0.006 0.038  0.056 0.004 0.056 

30 0.074 0.013 0.042  0.042 0.011 0.023  0.062 0.002 0.045 

50 0.053 0.004 0.030  0.049 0.026 0.032  0.059 0.021 0.054 

100 0.076 0.048 0.051  0.078 0.073 0.045  0.074 0.052 0.039 

200 0.069 0.081 0.042  0.057 0.076 0.052  0.080 0.073 0.044 

 
 

The values are the probability of rejecting the null of a unit root based on 1000 

replications in uncontaminated panel (column no cont), contaminated with AO 

(column AO) and contaminated with TC (column TC). The size (probability of 

rejecting the null of a unit root when the unit root is present in the data) of the test 

is computed for φi = 1. The H0 is rejected if the respective test statistics is greater 

than theirs critical values (tabulated in Tables 1 and 2) at 5% level of significance. 
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Table 4. The Power of the unit root tests 

 
CIPS 

 
no 

cont 
AO TC 

 no 
cont 

AO TC 
 no 

cont 
AO TC 

T/N 20  30  50 

20 0.002 0.000 0.000  0.022 0.000 0.000  0.018 0.000 0.000 

30 0.207 0.000 0.000  0.241 0.000 0.000  0.283 0.000 0.001 

50 0.862 0.011 0.026  0.952 0.005 0.023  0.999 0.007 0.022 

100 1.000 0.918 0.836  1.000 0.282 0.955  1.000 0.355 0.977 

200 1.000 0.981 1.000  1.000 0.993 1.000  1.000 1.000 1.000 

            

RCIPS 

 
no 

cont 
AO TC 

 no 
cont 

AO TC 
 no 

cont 
AO TC 

T/N 20  30  50 

20 0.793 0.422 0.788  0.912 0.481 0.833  0.952 0.683 0.961 

30 0.920 0.617 0.865  0.964 0.755 0.965  0.981 0.804 0.980 

50 0.994 0.834 0.968  1.000 0.922 0.988  1.000 0.986 1.000 

100 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

200 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

 
 

The values are the probability of rejecting the null of a unit root based on 1000 

replications in uncontaminated panel (column no cont), contaminated with AO 

(column AO) and contaminated with TC (column TC). The power (probability of 

correctly rejecting the null of a unit root when the unit root is absence in the data) 

of the test is computed for φi ~ U [1.75, 0.95]. The H0 is rejected if the respective 

test statistics is greater than theirs critical values (tabulated in Tables 1 and 2) at 

5% level of significance. 
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The probability density function, mean and variance of the inverse square-root 

transformed left-truncated  21,N   error component 
* 1
t

te
e
 
 
 
 

 of the 

multiplicative time series model were established. A comparison of key-statistical 

properties of 
*

te  and te  confirmed normality with mean 1 but with 

   * 1

4
t tVar e Var e  when 0.14  . Hence 0.14   is the required condition for 

successful transformation. 
 

Keywords: Multiplicative time series model, Error component, Left truncated 
normal distribution, Inverse square root transformation, Successful transformation, 
Moments  

 

Introduction 

The general multiplicative time series model for descriptive time series analysis is 

 

 , 1, 2 , ...tt t t tX T S C t ne    (1) 

 

where for time t, Xt denotes the observed value of the series, Tt is the trend, St, 

the seasonal component, Ct the cyclical term and et is the random or irregular 

component of the series. Model (1) is regarded as adequate when the irregular 

component is purely random. For a short period of time, the cyclical component is 

mailto:equalright_bright@yahoo.com
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superimposed into the trend (Chatfield, 2004) to yield a trend-cycle component 

denoted by Mt and hence 

 

 t t t tX M S e   (2) 

 

where et are independent identically distributed normal errors with mean 1 and 

variance 2 0    te   21,N   

According to Uche (2003), the left truncated normal distribution 

  2,N    
for X is 

 

  
1

2

2
*

0 0

0
2

x

x

f
ke

x

x




 

 
 
 




  



 
   


  (3) 

 

Using Equation 3, Iwueze (2007) obtained the left truncated normal distribution 

  2
1 ,N   for  t Xe   as  

 

  
1

2

2
1

0 0

0
1

2 1

LTN

x

x

ef
x

x 

 


 
 
 




  



    
   

    
  

  (4) 

 

with mean  

 

  
2

1

2

1
2 1

1LTN

e
E X








  
    

  

    (5) 

 

and 
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   
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1 1
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e e
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         
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 
 
  
       

            
       





 (6) 

 

 

Iwueze (2007) also showed that  LTNf x  > 0 provided  < 0.30. 

Data transformations are the application of mathematical modifications to 

values of a variable. There are a great variety of possible data transformations, 

including   2
2

1 1 1
log , , , , , andt t t

t t
e

t

X X X
X XX

. In practice many 

multiplicative time series data do not meet the assumptions of a parametric 

statistical analysis; they are not normally distributed, the variances are not 

homogenous or both. In analyzing such data, there are two choices: 

 

i. Adjusting the data to fit the assumptions by making a transformation, 

or 

ii. Developing new methods of analysis with assumptions which fit the 

data in its “original” form. 

 

If a satisfactory transformation can be found, it will almost always be easier and 

simpler to use it rather than developing new methods of analysis (Turkey, 1957). 

Hence the need for this work which aims at finding conditions for satisfactory 

inverse square root transformation with respect to the error component of the 

multiplicative time series model from a study of its distribution. A transformation 

is considered satisfactory or successful, if the basic assumptions of the model are 

not violated after transformation. (Iwueze et al., 2008)The basic assumptions of a 

multiplicative time series model placed on the error component are: (i) unit mean 

(ii) constant variance (iii) Normality. According to Roberts (2008), transforming 

data made it much easier to work with - It was like sharpening a knife. For more 

information on choice of appropriate transformations see Osborne (2002), 

Osborne (2010) and Watthanacheewakul (2012). 
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Data Classification 

For a time series data to be classified appropriate for inverse square root 

transformation, 

 

i. the data must be amenable to the multiplicative time series model. 

The appropriateness of the multiplicative model is accessed by (a) 

displaying the data in the Buy’s-Ballot Table. (b) Plotting the 

periodic (yearly) means (μi) and standard deviations σi against the 

period (year) i . If there is a dependency relationship between μi and 

σi, then the multiplicative model is appropriate.  

ii. the variance must be unstable. The stability of the variance of the 

time series is ascertained by observing both the row and column 

means and standard deviations. If the variance is not stable the 

appropriate transformation is determined using Bartlett (1947) as 

was applied by Akpanta and Iwueze (2009);  

 

 
1

log , 1

, 1

e X
Y

X 






 



  (7) 

 

The linear relationship between the natural log of periodic standard deviations 

(logeσi) and natural log of the periodic means (logeμi) is given as  

 

 log loge i e i       (8) 

 

The value of slope β according to Bartlett (1947) should be approximately 

1.5 for the inverse square root transformation (see Table 1). 

 
 

Table 1. Bartlett’s transformations for some values of β 
 

  0 
1

2
 1 

3

2
 2 3 -1 

Transformation 
No 

transformation X  loge X  
1

X
 

1

X
 

2

1

X
 2X  
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Background of the Study 

Since Iwueze (2007) investigated the effect of the logarithmic transformation on 

the error component, (et ~ N (1, σ2)) of the multiplicative time series model, a 

number of studies investigating the effects of data transformation on the various 

components of the multiplicative time series model have been carried out. (See 

Iwueze et al., 2008; Iwu et al., 2009; Otuonye et al., 2011; Nwosu et al., 2013; 

and Ohakwe et al., 2013). The overall aim of such studies is to determine the 

conditions for successful transformation. That is, to establish the conditions 

where: 

 

a. the required basic assumptions of the model are not violated after 

transformation, with respect to (i) the error term (ii) the seasonal 

component. 

b. with respect to the trend component, there is no alteration in the form 

of the trend curve. In other words the form of the trend curve in the 

original series is maintained in the transformed series. 

 

Iwueze (2007) found that the logarithmic transformation of the error 

component te  te   21,N   to  * logt e te e  is normal with mean 0 and 

variance 
2
1  provided 0.1  , in which case 1  . It was established that the 

assumption for the error term 
*
te , for the additive model obtained after the 

logarithmic transformation, is valid if and only if σ1 < 0.10. Observe from Table 1 

that β ≈ 1 for a time series data to be classified fit for logarithmic transformation.  

Otuonye et al. (2011) investigated the distribution and properties of the error 

component of the multiplicative time series model under square root 

transformation, and found that the square root transformed error component 

 *
t tee   is normally distributed with mean 1  and variance 

1

4
  times that of 

the untransformed error component. That is    * 1

4
t tVar Vare e     when 

0 < σ ≤ 0.3. Thus 0 < σ ≤ 0.3 is the recommended condition for successful square 

root transformation. Only time series data with 
1

2
   are classified fit for square 

root transformation. Similarly, Nwosu et al. (2013), while investigating the 

distribution of the inverse transformed error component of the multiplicative time 
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series model * 1

t
te

e

 
 
 
 , obtained that the desirable statistical properties of te  and 

*

te  were found to be approximately the same and normally distributed with unit 

mean for σ ≤ 0.10. Hence, σ ≤ 0.10 is the recommended condition for successful 

inverse transformation of the multiplicative time series model. Time series data 

classified fit for inverse transformation must have β ≈ 2. Also, Ohakwe et al. 

(2013) found that for the square transformation  2*
tt ee   that 

*

te   1,1N  in 

the interval 0 < σ ≤ 0.027. Hence, 0 < σ ≤ 0.027is the condition for successful 

square transformation. Observe that a time series data is classified fit for square 

transformation when β ≈ -1. 

Note that the overall aim of these works is to establish conditions for 

successful transformation, hence provide better choice of right transformation. 

According to Roberts (2008), choosing a good transformation improved his 

analyses in three ways: (i) increase in visual clarity as graphs were made more 

informative (ii). Reduction or elimination of outliers (iii). Increase in statistical 

clarity; his statistical test became more sensitive, F and t values increased making 

it more likely to detect differences when they exist. 

Justification for this Study 

The value of the slope, categorized time series data into mutually exclusive 

groups, in the sense that any time series data belongs exclusively to one and only 

one group hence can only be appropriately transformed by only one of the six 

transformations listed in Table 1. Thus despite the fact that Iwueze (2007), 

Otuonye et al., (2011), Nwosu et al. (2013), and Ohakwe et al. (2013) carried out 

similar studies with respect to the logarithmic, square root, inverse and square 

transformations respectively, this work on inverse square root transformation is 

still very necessary since results established for the above listed four 

transformations cannot be applied in the analysis of time series data requiring 

inverse square root transformation. 

Inverse Square Root Transformation 

When 
3

2
  , adopt inverse square root transformation on the multiplicative time 

series model given in Equation 2 to obtain 
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* * *1 1 1 1

t t t t

t t t t

Y M S
X M S e

e     (9) 

 

where 
* * *1 1 1

,t t t

t t t

M S and
M S

e
e

    , 0te   

Because et does not admit negative or zero values, the use of the left truncated 

normal distribution as the pdf of et shall be exploited.  

Thus, it will be of interest to find what the distribution of 
*

te  is. Is 
*

te  iid 

 1

21,N  . What is the relationship between 
2
1  and 

2 ? 

Aim and Objectives 

The aim of this work is to obtain the distribution of the inverse square root 

transformed error component of the multiplicative time series model and the 

objectives are: 

 

i. to examine the nature of the distribution. 

ii. to verify the satisfaction of the assumption on the mean of the error 

terms; μ = 1. 

iii. to determine the relationship between 
2
1  and 

2 . 

Methodology 

To achieve the above stated objectives the following were conducted: 

Let X = et and Y = 
* 1
t

t

e
e

  = 
1

X
 

1. Obtain the pdf of 
*
te , g(y). 

2. Plot the curves of the two pdfs, g(y) and fLTN(x) for various values of 

. 

3. Obtain the region where g(i) satisfies the following normality 

conditions (Bell-shaped conditions). 

 

i. Mode 1   Mean. 

ii. Median   Mean   1. 
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iii. Approved normality test, Anderson Darling’s test statistic 

(AD) was used to confirm the normality of the simulated 

error terms et and the inverse square root transformed 

error term. 

Y = 
* 1
t

t

e
e

  = 
1

X
 for some values of σ 

iv. Obtain and use the functional expressions for the mean 

and variance of 
*
te  to validate some of the results 

obtained using simulated data. 

The probability density function of 
1

,  ( )Y g y
x

  

Given the pdf of X in Equation 4 and the transformation 

 

 
1

Y
x

   

 

then  

 

 2 3

1
 and 

2dx

dy
X

y y
    

 

using the transformation of variable technique 

 

     | |LTN

dx
g y f x

dy
  

 

(see Freund & Walpole, 1986). Hence 

  

2

2 2

1 1
1

2

3

2
,0

1
2 1

0 0

y
e y

g y y

y



 


 
  

 


   
        

   


  

 (10) 
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Plot of the Probability density curves    *

LTNf x f x  and g(y) 

Using the pdf of the two variables given in Equation 4 and Equation 10, the 

curves  *f x  and g(y) were plotted for some values of   (0, 0.4]. For want of 

space only five are shown in Figures 1 to 5. 
 
 

 
 
Figure 1. Curve Shapes for σ = 0.06 

 

 
 

 
 
Figure 2. Curve Shapes for σ = 0.095 
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Figure 3. Curve Shapes for σ = 0.15 

 

 
 

 
 
Figure 4. Curve Shapes for σ = 0.3 

 

 
 

 
 
Figure 5. Curve Shapes for σ = 0.4 
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Observations: 

 

i. The curve g(y) is positively skewed for σ > 0.15 (see Figures 3-5). 

ii. f*(x) is positively skewed for σ > 0.30 (see Figure 5) as reported in 

Iwueze (2007). 

Normality Region for g(y) 

From Figures 1 to 5, it is clear that the curve g(y) has one maximum point, ymax 

(mode), and one maximum value, g(ymax), for all values of σ. To obtain the values 

of σ that satisfy the symmetric and bell-shaped condition of mode = mean, we 

invoke Rolle’s Theorem and proceed to obtain the maximum point (mode) for a 

given value of σ. 

Differentiating g(y) in Equation 10 gives 

 

    1 4 1
3 1

2

2 2

2 2 2 2

1 1 1 1
1 1

2 24 3

2 3 2
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1
2 1

y e y e

y y

y y
g y


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 
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 

 





 
 
 
 
 
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      
 
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 (11) 
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Equating g`(y) = 0, gives 

 

 

2

2 8 4

2(1 ) 3
0

y

y y


   

 

 
2 4 23 2 2 0y y     (12) 

 

Putting w = y2 in Equation 12, gives 
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2 23 2 2 0w w     (13) 

 

Solving Equation 13, gives 

 

2

2

1 1 6

3
w




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  

Because ymax is positive 

then 
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2

1 1 6

3
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hence 
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3
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and 

 

 

2

max 2

1 1 6

3
y





  
  

 

The bell-shaped condition would imply ymax ≈ 1, see Table 2 for the numerical 

computation of 

 

 max

2

2

1 1 6

3
y





  
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Table 2. Computation of 
max

2

2

1 1 6

3
y





  
  , for   [0.01, 0.3]   

 

 
 

Thus g(y) is symmetrical about 1 with Mode ≈ 1 ≈ Mean correct to two decimal 

places when 0 < σ < 0.045 and correct to one decimal place when 0 < σ < 0.045.  

  

  

max

2

2

1 1 6

3

y





  


 

max1 y      

max

2

2

1 1 6

3

y





  


 

max1 y  

0.010 0.99992502 0.000075 

  

0.155 0.94470721 0.055293 

0.015 0.99970031 0.000300 0.160 0.94163225 0.058368 

0.020 0.99932659 0.000673 0.165 0.93852446 0.061476 

0.025 0.99880501 0.001195 0.170 0.93538739 0.064613 

0.030 0.99813720 0.001863 0.175 0.93222440 0.067776 

0.035 0.99732519 0.002675 0.180 0.92903869 0.070961 

0.040 0.99637147 0.003629 0.185 0.92583333 0.074167 

0.045 0.99527886 0.004721 0.190 0.92261120 0.077389 

0.050 0.99405059 0.005949 0.195 0.91937505 0.080625 

0.055 0.99269018 0.007310 0.200 0.91612748 0.083873 

0.060 0.99120149 0.008799 0.205 0.91287093 0.087129 

0.065 0.98958860 0.010411 0.210 0.90960772 0.090392 

0.070 0.98785584 0.012144 0.215 0.90634001 0.093660 

0.075 0.98600775 0.013992 0.220 0.90306986 0.096930 

0.080 0.98404899 0.015951 0.225 0.89979918 0.100201 

0.085 0.98198438 0.018016 0.230 0.89652976 0.103470 

0.090 0.97981881 0.020181 0.235 0.89326328 0.106737 

0.095 0.97755725 0.022443 0.240 0.89000132 0.109999 

0.100 0.97520469 0.024795 0.245 0.88674534 0.113255 

0.105 0.97276613 0.027234 0.250 0.88349669 0.116503 

0.110 0.97024653 0.029753 0.255 0.88025665 0.119743 

0.115 0.96765082 0.032349 0.260 0.87702640 0.122974 

0.120 0.96498387 0.035016 0.265 0.87380702 0.126193 

0.125 0.96225045 0.037750 0.270 0.87059952 0.129400 

0.130 0.95945523 0.040545 0.275 0.86740484 0.132595 

0.135 0.95660279 0.043397 0.280 0.86422383 0.135776 

0.140 0.95369754 0.046302 0.285 0.86105729 0.138943 

0.145 0.95074378 0.049256 0.290 0.85790594 0.142094 

0.150 0.94774567 0.052254 0.295 0.85477043 0.145230 

      0.300 0.85165139 0.148349 
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Use of simulated error terms 

To find the region where the bell-shaped conditions (ii-iii) listed in methodology 

are satisfied, we made use of artificial data generated from  21,N   for te , 

subsequently transformed to obtain 
* 1
t

t

e
e

  for 0.05 0.20  . Values of the 

required statistical characteristics were obtained for each variable te  and 
*

te  as 

shown in Tables 3 to 6. For each configuration of (n = 100, 0.05 ≤ σ ≤ 0.15), 1000 

replications were performed for values of σ in steps of 0.01. For want of space the 

results of the first 25 replications are shown for the configurations, 

(n = 100, σ = 0.06), (n = 100, σ = 0.1), (n = 100, σ = 0.15), and (n = 100, σ = 0.2). 

Functional expressions for the mean and variance of g(y) 

By definition, the mean of Y, E(Y) is given by: 
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Table 3. Simulation Results when σ = 0.06 
 

 21, , 0.06tX e N      

 

 * 21
, 1, , 0.06t t

t

Y e e N
e

     

Mean StD Variance Median AD p-value 

 

Mean StD Variance  Median AD p-value 

1 0.06 0.0036 0.9927 .235 .788 
 

1.0013 0.0303 0.000918 1.0037 .206 .867 

1 0.06 0.0036 1.0009 .183 .908 

 

1.0013 0.0302 0.000914 0.9995 .298 .580 

1 0.06 0.0036 1.0002 .195 .889 
 

1.0013 0.0303 0.000916 0.9999 .275 .654 

1 0.06 0.0036 1.0029 .234 .790 
 

1.0013 0.0303 0.000917 0.9985 .334 .505 

1 0.06 0.0036 1.0037 .178 .918 
 

1.0013 0.0302 0.000915 0.9982 .312 .546 

1 0.06 0.0036 1.0045 .435 .294 
 

1.0013 0.0301 0.000908 0.9978 .364 .433 

1 0.06 0.0036 1.0037 .178 .918 
 

1.0013 0.0302 0.000915 0.9982 .312 .546 

1 0.06 0.0036 1.0013 .137 .976 
 

1.0013 0.0302 0.000910 0.9993 .213 .851 

1 0.06 0.0036 0.9941 .196 .888 
 

1.0013 0.0302 0.000911 1.0030 .302 .569 

1 0.06 0.0036 1.0017 .250 .739 

 

1.0014 0.0304 0.000924 0.9991 .453 .266 

1 0.06 0.0036 1.0004 .200 .880 
 

1.0013 0.0302 0.000915 0.9998 .314 .540 

1 0.06 0.0036 1.0045 .435 .294 
 

1.0013 0.0301 0.000908 0.9978 .364 .433 

1 0.06 0.0036 0.9991 .183 .908 

 

1.0013 0.0303 0.000916 1.0005 .214 .846 

1 0.06 0.0036 0.9983 .250 .739 
 

1.0013 0.0301 0.000908 1.0009 .206 .866 

1 0.06 0.0036 1.0010 .209 .859 
 

1.0013 0.0300 0.000901 0.9995 .241 .767 

1 0.06 0.0036 1.0028 .195 .889 
 

1.0013 0.0302 0.000913 0.9986 .284 .625 

1 0.06 0.0036 1.0031 .141 .972 
 

1.0013 0.0302 0.000911 0.9985 .208 .862 

1 0.06 0.0036 0.9975 .310 .550 
 

1.0013 0.0299 0.000894 1.0012 .232 .795 

1 0.06 0.0036 1.0006 .262 .699 
 

1.0014 0.0304 0.000924 0.9997 .385 .387 

1 0.06 0.0036 0.9983 .182 .911 
 

1.0013 0.0302 0.000913 1.0009 .318 .531 

1 0.06 0.0036 0.9958 .150 .962 

 

1.0013 0.0303 0.000916 1.0021 .218 .835 

1 0.06 0.0036 0.9938 .290 .606 
 

1.0013 0.0299 0.000896 1.0031 .185 .906 

1 0.06 0.0036 0.9931 .450 .270 
 

1.0013 0.0300 0.000903 1.0035 .336 .503 

1 0.06 0.0036 0.9950 .199 .882 

 

1.0013 0.0301 0.000907 1.0025 .390 .376 

1 0.06 0.0036 0.9987 .216 .841 
 

1.0013 0.0302 0.000914 1.0006 .315 .538 

1 0.06 0.0036 0.9942 .311 .546   1.0013 0.0300 0.000899 1.0029 .165 .940 
 

*Note. For each row, 

 

 
*

Var

Var

t

t

e

e
 equals 4. 
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Table 4. Simulation Results when σ = 0.1 
 

 21, , 0.1tX e N     

 

 * 21
, 1, , 0.1t t

t

e e N
e

Y     

Mean StD Variance Median AD p-value 

 

Mean StD Variance Median AD p-value 

1 0.1 0.01 0.9878 .235 0.788 

 

1.0038 0.0514 0.00265 1.0061 .298 .582 

1 0.1 0.01 1.0016 .183 0.908 

 

1.0038 0.0511 0.00262 0.9992 .457 .260 

1 0.1 0.01 1.0003 .195 0.889 

 

1.0038 0.0513 0.00263 0.9998 .428 .306 

1 0.1 0.01 1.0049 .234 0.790 

 

1.0038 0.0513 0.00264 0.9976 .502 .201 

1 0.1 0.01 1.0062 .178 0.918 

 

1.0038 0.0512 0.00262 0.9969 .495 .211 

1 0.1 0.01 1.0074 .435 0.294 

 

1.0038 0.0509 0.00259 0.9963 .424 .313 

1 0.1 0.01 1.0062 .178 0.918 

 

1.0038 0.0512 0.00262 0.9969 .495 .211 

1 0.1 0.01 1.0022 .137 0.976 

 

1.0038 0.0509 0.00259 0.9989 .357 .450 

1 0.1 0.01 0.9902 .196 0.888 

 

1.0038 0.0510 0.00260 1.0050 .464 .251 

1 0.1 0.01 1.0029 .250 0.739 

 

1.0038 0.0516 0.00267 0.9986 .685 .071 

1 0.1 0.01 1.0007 .200 0.880 

 

1.0038 0.0512 0.00262 0.9997 .495 .210 

1 0.1 0.01 1.0074 .435 0.294 

 

1.0038 0.0509 0.00259 0.9963 .424 .313 

1 0.1 0.01 0.9984 .183 0.908 

 

1.0038 0.0513 0.00263 1.0008 .326 .516 

1 0.1 0.01 0.9971 .250 0.739 

 

1.0038 0.0509 0.00259 1.0014 .272 .664 

1 0.1 0.01 1.0016 .209 0.859 

 

1.0037 0.0505 0.00255 0.9992 .359 .445 

1 0.1 0.01 1.0047 .195 0.889 

 

1.0038 0.0511 0.00261 0.9977 .446 .277 

1 0.1 0.01 1.0052 .141 0.972 

 

1.0038 0.0510 0.00260 0.9974 .346 .477 

1 0.1 0.01 0.9959 .310 0.550 

 

1.0037 0.0502 0.00252 1.0021 .278 .642 

1 0.1 0.01 1.0011 .262 0.699 

 

1.0038 0.0516 0.00266 0.9995 .554 .150 

1 0.1 0.01 0.9971 .182 0.911 

 

1.0038 0.0511 0.00261 1.0014 .499 .205 

1 0.1 0.01 0.9931 .150 0.962 

 

1.0038 0.0513 0.00263 1.0035 .368 .424 

1 0.1 0.01 0.9897 .290 0.606 

 

1.0037 0.0503 0.00253 1.0052 .221 .827 

1 0.1 0.01 0.9884 .450 0.270 

 

1.0037 0.0506 0.00256 1.0058 .366 .428 

1 0.1 0.01 0.9917 .306 0.559 

 

1.0038 0.0508 0.00258 1.0042 .547 .156 

1 0.1 0.01 0.9979 .199 0.882 

 

1.0038 0.0511 0.00261 1.0011 .497 .207 

1 0.1 0.01 0.9904 .216 0.841   1.0037 0.0504 0.00254 1.0048 .226 .815 

 

*Note. For each row, 

 

 
*

Var

Var

t

t

e

e
 equals 4. 
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Table 5. Simulation Results when σ = 0.15 
 

 21, , 0.15tX e N     

 

 * 21
, 1, , 0.15t t

t

Y e e N
e

    

Mean StD Variance Median AD p-value 

 

Mean StD Variance Median AD p-value 

1 0.15 0.0225 0.9818 .235 .788 * 1.0089 0.0803 0.00645 1.0092 .582 .126 

1 0.15 0.0225 1.0024 .183 .908 

 

1.0088 0.0791 0.00626 0.9988 .761 .046 

1 0.15 0.0225 1.0005 .195 .889 

 

1.0088 0.0798 0.00637 0.9997 .756 .047 

1 0.15 0.0225 1.0073 .234 .790 

 

1.0088 0.0798 0.00636 0.9964 .857 .027 

1 0.15 0.0225 1.0093 .178 .918 

 

1.0088 0.0792 0.00628 0.9954 .842 .029 

1 0.15 0.0225 1.0111 .435 .294 

 

1.0087 0.0788 0.00620 0.9945 .646 .089 

1 0.15 0.0225 1.0093 .178 .918 

 

1.0088 0.0792 0.00628 0.9954 .842 .029 

1 0.15 0.0225 1.0034 .137 .976 

 

1.0087 0.0786 0.00618 0.9983 .656 .085 

1 0.15 0.0225 0.9853 .196 .888 * 1.0087 0.0788 0.00621 1.0075 .785 .040 

1 0.15 0.0225 1.0043 .250 .739 

 

1.0089 0.0804 0.00646 0.9979 1.109 .005 

1 0.15 0.0225 1.0010 .200 .880 

 

1.0088 0.0793 0.00628 0.9995 .860 .026 

1 0.15 0.0225 1.0111 .435 .294 

 

1.0087 0.0788 0.00620 0.9945 .646 .089 

1 0.15 0.0225 0.9976 .183 .908 

 

1.0088 0.0796 0.00633 1.0012 .596 .119 

1 0.15 0.0225 0.9957 .250 .739 

 

1.0087 0.0788 0.00621 1.0022 .486 .221 

1 0.15 0.0225 1.0025 .209 .859 

 

1.0086 0.0775 0.00601 0.9988 .620 .104 

1 0.15 0.0225 1.0070 195 889 

 

1.0088 0.0791 0.00626 0.9965 .779 .042 

1 0.15 0.0225 1.0077 141 .972 

 

1.0087 0.0787 0.00619 0.9962 .635 .095 

1 0.15 0.0225 0.9938 .310 .550 

 

1.0085 0.0770 0.00593 1.0031 .450 .271 

1 0.15 0.0225 1.0016 .262 .699 

 

1.0089 0.0799 0.00639 0.9992 .880 .023 

1 0.15 0.0225 0.9957 .182 .911 

 

1.0087 0.0789 0.00622 1.0022 .838 .030 

1 0.15 0.0225 0.9896 .500 .962 

 

1.0088 0.0798 0.00636 1.0052 .701 .065 

1 0.15 0.0225 0.9846 .290 .606 

 

1.0085 0.0770 0.00593 1.0078 .398 .361 

1 0.15 0.0225 0.9826 .450 .270 

 

1.0086 0.0781 0.00609 1.0088 .545 .157 

1 0.15 0.0225 0.9876 .306 .559 

 

1.0087 0.0782 0.00611 1.0063 .868 .025 

1 0.15 0.0225 0.9968 .199 .882 

 

1.0088 0.0790 0.00624 1.0016 .860 .026 

1 0.15 0.0225 0.9856 .216 .841 

 

1.0085 0.0772 0.00596 1.0073 .419 .322 

 

*Note. For each row, 

 

 
*

Var

Var

t

t

e

e
 equals 4 except where indicated by *. For those rows, 

 

 
*

Var

Var

t

t

e

e
 equals 3. 
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Table 6. Simulation Results when σ = 0.2 

 

 21, , 0.2tX e N     

 

 * 21
, 1, , 0.2t t

t

e e N
e

Y     

Mean StD Variance Median AD p-value 

 

Mean StD Variance Median AD p-value 

1 0.2 0.04 0.9757 .235 0.788 
 

1.0167 0.1147 0.0132 1.0124 1.176 <0.005 

1 0.2 0.04 1.0032 .183 0.908 
 

1.0162 0.1107 0.0123 0.9984 1.220 <0.005 

1 0.2 0.04 1.0007 .195 0.889 
 

1.0165 0.1127 0.0127 0.9997 1.315 <0.005 

1 0.2 0.04 1.0097 .234 0.790 
 

1.0164 0.1124 0.0126 0.9952 1.435 <0.005 

1 0.2 0.04 1.0124 .178 0.918 
 

1.0163 0.1109 0.0123 0.9939 1.353 <0.005 

1 0.2 0.04 1.0148 .435 0.294 
 

1.0161 0.1105 0.0122 0.9927 1.097 0.007 

1 0.2 0.04 1.0124 .178 0.918 
 

1.0163 0.1109 0.0123 0.9939 1.353 <0.005 

1 0.2 0.04 1.0045 .137 0.976 
 

1.0161 0.1095 0.0120 0.9978 1.117 0.006 

1 0.2 0.04 0.9803 .196 0.888 
 

1.0161 0.1100 0.0121 1.0100 1.276 <0.005 

1 0.2 0.04 1.0057 .250 0.739 
 

1.0166 0.1133 0.0128 0.9971 1.734 <0.005 

1 0.2 0.04 1.0013 .200 0.880 
 

1.0163 0.1110 0.0123 0.9994 1.418 <0.005 

1 0.2 0.04 1.0149 .435 0.294 
 

1.0161 0.1105 0.0122 0.9927 1.097 0.007 

1 0.2 0.04 0.9968 .183 0.908 
 

1.0164 0.1120 0.0125 1.0016 1.072 0.008 

1 0.2 0.04 0.9943 .250 0.739 
 

1.0162 0.1107 0.0123 1.0029 0.915 0.019 

1 0.2 0.04 1.0033 .209 0.859 
 

1.0157 0.1072 0.0115 0.9984 1.026 0.010 

1 0.2 0.04 1.0094 .195 0.889 
 

1.0162 0.1109 0.0123 0.9953 1.293 <0.005 

1 0.2 0.04 1.0103 .141 0.972 
 

1.0161 0.1097 0.0120 0.9949 1.084 0.007 

1 0.2 0.04 0.9917 .310 0.550 
 

1.0156 0.1066 0.0114 1.0042 0.768 0.045 

1 0.2 0.04 1.0021 .260 0.699 
 

1.0165 0.1119 0.0125 0.9989 1.371 <0.005 

1 0.2 0.04 0.9942 .182 0.911 
 

1.0162 0.1100 0.0121 1.0029 1.331 <0.005 

1 0.2 0.04 0.9862 .150 0.962 
 

1.0165 0.1128 0.0127 1.007 1.267 <0.005 

1 0.2 0.04 0.9795 .290 0.606 
 

1.0156 0.1064 0.0113 1.0104 0.745 0.051 

1 0.2 0.04 0.9768 .450 0.270 
 

1.0159 0.109 0.0119 1.0118 0.933 0.017 

1 0.2 0.04 0.9835 .306 0.559 
 

1.0159 0.1084 0.0118 1.0084 1.348 <0.005 

1 0.2 0.04 0.9958 .199 0.882 
 

1.0162 0.1101 0.0121 1.0021 1.402 <0.005 

1 0.2 0.04 0.9808 .216 0.841 
 

1.0156 0.1066 0.0114 1.0097 0.766 0.045 

 

*Note. For each row, 

 

 
*

Var

Var

t

t

e

e
 equals 3. 
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Using the binomial expansion , 
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(Smith and Minton, 2008). 
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  (20) 
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To find the variance, first obtain the second moment; 
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1
u

y
  then 3
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y
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u
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
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where 
2

1
2 1

k

 



   
  

  

 

 

let 
1u

z



  then 1u z   and du dz  for 

1
z




    
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Using the binomial expansion on (1+zσ)-1, given in Equation 16 we have 
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 (23) 

 

Observe the following: 

 

1. Subsequent terms in series (20) and (23) for E(Y) and E(Y2) 

respectively all have 
2

1

2e 



 as a factor. 
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2. 2

1

2 0e 



  for σ ≤ 0.22 correct to 4 decimal places. (See Table 7, 

column 3) 

3. Conditions (1) and (2) imply that all subsequent terms for E(Y) and 

E(Y2) are all zeros for σ ≤ 0.22. 

 

Thus, without loss of generality 
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        
  

 (24) 
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Numerical computations of mean and variance of  *
tY e  

Now compute the values of E(Y) and Var(Y) for σ∈ [0.01,0.22] using the 

functional expressions obtained in Equations 24 and 26, respectively. Table 7 

shows the computations of E(Y) and Var(Y). For these computations we write 
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From Table 7, columns 4 and 5, A = 1 and B = 2 for  <0.22 
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8

E Y
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and 
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Equation 27 is the relationship observed with simulated data in Tables 3-6. 

Results 

The following results were obtained from the investigations carried out on the pdf 

of 
* 1
t

te
e
 
 
 
 

, ( )g y  where  21,te N  , left truncated at 0. 

 

i. The curve shapes are bell-shaped, with mode ≈ mean ≈ 1 when 

0 < σ ≤ 0.145 correct to 1 decimal place. 

 

Using simulated data, whenever σ < 0.15 

 

ii. Median ≈ Mean ≈ 1 

iii.   2* 3
1

8
tE e    

iv.  

 *
4

t

t

Var e

Var e
 , thus * 1

var( ) ( )
4

t te Var e  

v. 
*

te  is normally distributed when σ ≤ 0.14. It was observed that the 

normality of a pdf curve at a point b implied normality at points 

0 a b   . 

 

Using the functional expressions for mean and variance of 
*

te  

 

vi.   2* 3
1         0.22

8
tE e       

≈ 1 correct to 2 decimal places (dp) when σ ≤ 0.11 

correct to 1 dp when σ ≤ 0.22 

vii. 
2

2 2
* 3

( ) 0.22
4 8

tVar e
 


 

   
 

 

viii.  

 *
4

t

t

Var e

Var e
  

correct to 2 dp when σ ≤ 0.04 

correct to 1 dp when σ ≤ 0.14 
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Table 7. Computations of E(Y) & Var(Y) for σ ∊ [0.01, 0.3] 

 

  
2  2

1

2e 



 A  B  ( )E Y  ( )Var Y  VarX / Var Y 

0.01 0.0001 0.0000000 1.00000 2.00000 1.00004 0.0000250 4.00023 

0.02 0.0004 0.0000000 1.00000 2.00000 1.00015 0.0001000 4.00090 

0.03 0.0009 0.0000000 1.00000 2.00000 1.00034 0.0002249 4.00203 

0.04 0.0016 0.0000000 1.00000 2.00000 1.00060 0.0003996 4.00360 

0.05 0.0025 0.0000000 1.00000 2.00000 1.00094 0.0006241 4.00563 

0.06 0.0036 0.0000000 1.00000 2.00000 1.00135 0.0008982 4.00812 

0.07 0.0049 0.0000000 1.00000 2.00000 1.00184 0.0012216 4.01106 

0.08 0.0064 0.0000000 1.00000 2.00000 1.00240 0.0015942 4.01445 

0.09 0.0081 0.0000000 1.00000 2.00000 1.00304 0.0020158 4.01831 

0.10 0.0100 0.0000000 1.00000 2.00000 1.00375 0.0024859 4.02263 

0.11 0.0121 0.0000000 1.00000 2.00000 1.00454 0.0030044 4.02741 

0.12 0.0144 0.0000000 1.00000 2.00000 1.00540 0.0035708 4.03266 

0.13 0.0169 0.0000000 1.00000 2.00000 1.00634 0.0041848 4.03839 

0.14 0.0196 0.0000000 1.00000 2.00000 1.00735 0.0048460 4.04459 

0.15 0.0225 0.0000000 1.00000 2.00000 1.00844 0.0055538 4.05127 

0.16 0.0256 0.0000000 1.00000 2.00000 1.00960 0.0063078 4.05844 

0.17 0.0289 0.0000000 1.00000 2.00000 1.01084 0.0071075 4.06610 

0.18 0.0324 0.0000002 1.00000 2.00000 1.01215 0.0079524 4.07425 

0.19 0.0361 0.0000010 1.00000 2.00000 1.01354 0.0088417 4.08291 

0.20 0.0400 0.0000037 1.00000 2.00000 1.01500 0.0097750 4.09207 

0.21 0.0441 0.0000119 1.00000 2.00000 1.01654 0.0107515 4.10175 

0.22 0.0484 0.0000326 1.00000 1.99999 1.01815 0.0117706 4.11195 

0.23 0.0529 0.0000785 0.99999 1.99999 1.01984 0.0128315 4.12268 

0.24 0.0576 0.0001699 0.99998 1.99997 1.02160 0.0139334 4.13394 

0.25 0.0625 0.0003355 0.99997 1.99994 1.02344 0.0150757 4.14575 

0.26 0.0676 0.0006134 0.99994 1.99988 1.02535 0.0162574 4.15811 

0.27 0.0729 0.0010503 0.99989 1.99979 1.02734 0.0174777 4.17104 

0.28 0.0784 0.0016993 0.99982 1.99964 1.02940 0.0187356 4.18454 

0.29 0.0841 0.0026181 0.99972 1.99944 1.03154 0.0200304 4.19862 

0.30 0.0900 0.0038659 0.99957 1.99914 1.03375 0.0213609 4.21330 

 
 

From the probability density curves, the results obtained from simulated data and 

the functional expressions for the mean and variance, σ ≤ 0.14 (intersecting 

region) is the recommended condition for successful inverse square root 

transformation. 

The results of this investigation together with findings from similar 

investigations with respect to the error term  21,te N   under other types of  
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Table 8. Summary of this and similar findings with respect to the error term te  

 21,N   under different transformations 

*
te  

Distribution of 
*
te  

Condition for 
successful 
transformation 

Relationship 

between σ and σ1 

log te e   * 2
10,te N   0.1   1   

1

te
  * 2

11,te N   0.1   1   

te   * 2
11,te N   0.59   1

1

2
   

2
te   * 2

1

2
11, , 1te N     0.027   1   

1

te
  * 2

11,te N   0.14   1

1

2
   

 

Conclusion 

From the results of the investigations of the distributions of the error term  te  of 

the multiplicative time series model and its inverse square root transformed error 

term  *
te , it is clear that the condition for successful inverse square root 

transformation is σ < 0.14. This is because the two stochastic processes te  and 

*
te  are normally distributed with mean 1, but with the variance of inverse square 

root transformed error term being one quarter of the variance of the 

untransformed error component whenever σ < 0.14, outside this region 

transformation is not advisable since the basic assumption on the error term are 

violated after the transformation. This relationship between the two variances, 

   * 1

4
t t

e eVar Var , agrees with findings of Otuonye et al. (2011) under square 

root transformation, however the region of successful transformation obtained is 

closer to the region obtained for the logarithmic and inverse transformations by 

Iwueze (2007) and Nwosu et al. (2013). 
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The Bayes Factor for Case-Control Studies 
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The question of how to test if collected data for a case-control study are misclassified was 
investigated. A mixed approach was employed to calculate the Bayes factor to assess the 
validity of the null hypothesis of no-misclassification. A real-world data set on the 
association between lung cancer and smoking status was used as an example to illustrate 
the proposed method. 
 

Keywords: Bayes factor, Misclassification, p-value. 

 

Introduction 

Misclassification is a ubiquitous problem in epidemiologic studies. Particularly, it 

often occurs if the data are obtained from the proxy or surrogate (Nelson, 

Longstreth, Koesell, and van Belle 1990). Methods for dealing with misclassified 

data from case-control studies have been widely studied. See, for example, 

Kleinbaum, Kupper & Morgenstern (1982), Fleiss, Levin & Paik (2003), and 

Rothman, Greenland & Lash (2008). Almost all studies make an assumption in 

the beginning that the collected data are misclassified. Yet how to test the validity 

of this assumption has not been addressed. 

These issues can also be considered from a Bayesian perspective. First, the 

misclassification probabilities are included in both the null and alternative 

hypothesis. Second, bias-adjusted estimators for the proportion of exposure in 

cases or controls are presented. Third, the uniform and the Beta distributions are 

adopted respectively as the prior distribution for the misclassification probability 

and population proportion parameter in cases or controls. Finally, the 

lower-bound for the Bayes factor is calculated. A real-world data set was used as 

an example to illustrate the proposed method. A comparison between the p-value 

and the Bayes factor is made. 

mailto:leetzesan@gmail.com
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Methodology 

Consider the data for case-control studies given in Table 1. The random variable 

E* denotes the classified surrogate for the true exposure variable E, while the 

variable D indicates the disease status of the subjects with D = 1 and D = 0 

representing cases and controls respectively. Suppose that E* is misclassified, but 

D is not misclassified. 
 
 
Table 1. Case-control studies with misclassified data 

 

Classified exposure 
status 

Group of subjects 

D = 1 (cases) D = 0 (controls) 

E* = 1 (exposed) n11 n10 

E* = 0 (unexposed) n01 n00 

Sample size n[1] n[0] 

 
 

It is well known that the traditional sample proportion estimator of the 

exposed group given by 

 

 
 

ˆ ˆ ˆ, 1i ji i ii
p n n q p    (1) 

 

In terms of the sensitivity and specificity defined by 

 

  Pr 1 1, , 1i i iE E D i         (2) 

 

  Pr 1 0, , 1i i iE E D i         (3) 

 

it was shown (Lee, 2009) that 

 

    ˆ 1 1i i i i i i i iE p p q p           (4) 

 

    ˆ 1 1i i i i i i i iE q p q q           (5) 
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From Equations 4 and 5 it is seen that the traditional sample proportion 

estimators, ˆ
ip  and ˆ

iq , are no longer unbiased. By solving Equations 4 and 5 with 

the left-side ˆ( )iE p or ˆ( )iE q being replaced by ˆ
ip  or ˆ

iq , it follows  

 

  ˆ ,i i i ip q    (6) 

 

  ˆ ,i i i iq p    (7) 

 

where 

 

 1,    0,  1.i i i i       (8) 

 

Equations 6 and 7 are called the bias-adjusted proportion (BAP) estimators 

of pi and qi. The BAP estimators are said to be admissible if they are greater than 

zero but less than one plus their sum equals to one. Evidently, the following 

constraints are required to be imposed on the sensitivity and specificity in order 

for Equations 6 and 7 to be admissible (Lee, 2009): 

 

 

ˆ ,

ˆ ,

1.

i i

i i

i i

p

q





 





 

 (9) 

 

A concern is aimed at testing whether the given data in Table 1 are 

misclassified - whether the exposure rates for cases and control are the same. This 

can be tested through the hypothesis testing which is formulated as follows: 

 

 0 1: 0   versus   : 0,RD RDH H    (10) 

 

where 1 0RD p p   , the subscript “RD” means the rate difference. However, 

Equation 10 can’t be used to test whether the observed data of Table 1 are 

misclassified. In order to test if the data are misclassified, the hypotheses of 

Equation 10 has to be enlarged by including the misclassification probabilities 

associated with both cases and controls given as follows: 

 

 0 1: 0, 0 versus :   00, 0 ,  1,, 0,  RD i i RD i i iH H              (11) 
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To test the hypotheses of Equation 11, a mixed Bayesian approach is taken 

to tackle this problem (Kass & Raftery, 1995). 

 

Let 

 

 1 0RD RDp p      (12) 

 

It can be shown 

 

   0,RDE     (13) 

 

 

     

    

1 0

1
1

0

1 1

RD RD

i i i i i i i
i

Var Var p Var p

p q n

 

  



  

       
  (14) 

 

Define 

 

  2

RD RD RDx Var   (15) 

 

To assess the evidence in favor of supporting the null against the alternative 

hypothesis of Equation 11, the Bayes factor for favoring H0 relative H1 from using 

Equation 15 can be calculated as follows: 

 

  
 
 

0RDg

RD

g RD

f x H
B x

m x
  (16) 

 

where 

 

        
1

1 0

0

, ,g RD RD i i i i i i i i

iR

m x f x H h g p q d d dp dq   


   (17) 

 

 1|RDf x H  is the central chi-square distribution with one degree of freedom, 

       1 1,i i i ig p q p q            , the beta distribution with the 

parameters η and τ over [0, 1], and    
1

0 ,i i i ih   


 is the uniform distribution 
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over Ωi = [ai ,1] × [bi,1], where ai and bi are specified in the Appendix. Although 

the posterior marginal probability density function of mg (Equation 17) depends 

on two hyper-parameters η and τ, a Bayes/non-Bayes compromise rather than a 

type III hyper-distribution for η and τ is adopted to estimate η and τ (Good & 

Crook, 1974). As a result, the parameters η and τ are estimated by employing the 

likelihood method. The maximum likelihood estimators for η and τ and the 

relative maximum value of mg of Equation 17 are denoted respectively by 

 max max,   and  max

max max,g gm m   . Thus, define the lower bound of the Bayes 

factor (Equation 16) as follows: 

 

   max

0

g

RD gB f x H m   (18) 

 

The details of calculating Equation 18 are given in the Appendix. 

Example 

Although there is some evidence of a greater than average risk in some 

occupations to have the lung cancer, these occupations could not account for the 

general increase in pulmonary cancer. It is thought of interest to select a particular 

population group, homogeneous economically, with little occupational exposure 

to respiratory irritants and with equal access to diagnostic facilities. Physicians are 

believed to represent such a group. Wynder and Cornfield (1953) reported a study 

on the exposure to tobacco and other possible respiratory irritants of 63 physicians 

with lung cancer and 133 physicians with cancers in areas where respiratory 

irritants are not believed to play a part. Among these 133 physicians, 43 cases 

were cancer of stomach and kidney, 45 cases cancer of colon and lymphoma, and 

45 cases cancer of bladder, leukemia and sarcoma. The data in Table 2 is taken 

from Cornfield (1956) who only used 43 cases from cancer of stomach and 

kidney as a control group. The non-smoker is defined to be those who smoked the 

equivalent of less than 1 cigarette a day. Here it is of interest to test whether the 

data concerning the smoking status in Table 2 for both cases and controls are 

misclassified.  
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Table 2. The data of physicians with and without lung cancer by smoking status 

 

Smoking status Lung cancer patients Controls 

Smoker 60 32 

Nonsmoker 3 11 

Total 63 43 

 
 

Before calculating the Bayes factor, the data in Table 2 are first to be 

checked if the two required conditions are satisfied before using the formula 

derived in the Appendix. Because 

1 0

1 1

ˆ ˆ1 0 [1] 1 1 [0] 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0.952381 0.744186 and 0.027 0.067

p p
p p n p q n p q 

 
        , 

where n[1] = 63, n[0] = 43, the two required conditions are indeed being satisfied; 

hence it was free to use the formula in the Appendix. Let ˆ 0.005i ia p   and 

ˆ 0.005i ib q  , i = 0,1, be substituted into Equations A17 to A11, it follows that 

[1,1,0,0] 1.1011M  , [1,0,1,0] 0.0828M  , [1,0,0,1] 0.0037M   , [1,1,0,1] 0.0513M  , 

[1,0,1,1] 1.2369M  , [0,1,0,0] 1.1169M  , [0,0,1,0] 0.6287M  , [0,0,0,1] 0.0567M   , 

[0,1,0,1] 0.4819M  , and [0,0,1,1] 4.8652M  . Then, substituting the above information 

into Equations A12 and A14, this leads to that N0 = 0.1957, N1 = 5.4652, 

N2 = -31.4597, R0 = 0.0016, R1 = 0.1967, R2 = -0.0041, R3 = 0.0704, R4 = 0.234, 

R5 = -0.0252, R6 = -0.1988, and a = 133.5876. Again, by substituting the above 

information into Equations A13 and A16, it follows that 

 

 
   

 
   

  

 

1

0.003 0.002
400.8 5.97

0.017 0.002 0.009
,

322
gm

     
  

    
 

  

      
   

     


 (19) 

 

and 

 

 
   

   

 

2

2

3

2.33 2.23 3.82
,

2
gm

     
 

  

   


 
 

  (20) 

 

Consequently, mg (η, τ) was readily obtained from substituting Equations 19 

and 20 into Equation A17.  
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To find the relative maximum of mg (η, τ), the 2-dimensional unit square 

[0,1] × [0,1] was partitioned into 100 lattice points 

(0.1, 0.1), (0.1, 0.2), …, (1.0, 0.9), (1.0, 1.0) and then evaluated the function value 

of mg (η, τ) at these lattice points. After identifying the proximity of the relative 

maximum a finer neighborhood was then searched to locate it. Equation A17 was 

found to have a unique relative maxima:  max 0.14,1.0 2.15gm  . The value of 

 0|RDf x H  was evaluated directly from the probability density function of the 

central chi-square distribution with one degree of freedom; hence we have

  6

0| 6.4 10RDf x H   . After dividing the value of   6

0| 6.4 10RDf x H    by

max 2.15gm  , we thus obtained the lower bound of the Bayes factor given by 

  63.0 10
g

RDB x   . 

Since  2

0
ˆ ˆ ˆ 19.1RD RD D Dx H x p Var p    (p-value = 1.2×10-5), where

1 0
ˆ ˆ ˆ

Dp p p  , the null hypothesis H0 was rejected for Table 2. Yet, the evidence 

from the lower bound of the Bayes factor (  g

RDB x  = 3.0×10-6) was in favor of 

supporting H1 (Equation 11) by at most a factor of “3.3 × 105 to 1”. Hence the 

data in Table 2 are likely to be misclassified. 

Discussion 

Although both the p-value and the Bayes factor rejected the null hypothesis H0 

with respect to the data in Table 2, the p-value seemed much inclined to reject the 

null hypothesis H0 in Equation 10 rather than that in Equation 11. In other words, 

the p-value is inadequate to reject the null hypothesis in Equation 11. This study 

provides another example to corroborate the p-value fallacy (Goodman 1999a, 

Goodman 1999b).  

Because the Beta distribution which is the conjugate family of the binomial 

distribution was used as the prior distributions, the Bayes factor could of course 

change accordingly if other family of distributions is used as the prior distribution 

(Delampady & Berger, 1990).  

The derivation of the formula provided in the Appendix was based on the 

two assumptions: (i) 1 0p p , and (ii)    1 0

1 1

ˆ ˆ1 1 0 01 0p pn p q n p q     . These 

two assumptions can be verified if it is valid by substituting the crude prevalence 

estimator ( ˆ
ip , i = 0, 1) into the inequality. Should the both of the two assumptions 

fail to be satisfied, all we need to do is to switch the index accordingly for cases 
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and controls before using the formula provided in the Appendix. However, if only 

one of the assumptions is violated, Equation A4 has to be revised accordingly. 
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Appendix 

By applying the quadratic approximation to the probability density function of the 

central chi-square distribution with one degree of freedom in Equation 17, we 

have 

 

 

 

 

 

   

1 1
2 2

0 0 1 1

21 1

2 8

3

1 1

2 8

1
, , , ,

2

1 1
1

2

1
,

2

RDx

RD RD RD

RD RD

RD

RD RD RD

RD RD RD

f x x e

x x
x

Var

Var Var

    




  

  

 


   

  
    
  

   

 

 (A1) 

 

where RD  and ( )RDVar   are given by Equations 12 and 14, respectively.  

By using the linear approximation: 

    
1

1 1

1 0 1 01 1RD Rdp p p p 


      
  , 

it follows that 

 

http://dx.doi.org/10.1056/NEJM195303122481101
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  (A2) 

where 
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By using the quadratic approximation on 1

RD  , I-1 and I, we have by assuming that 
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For fixed i = 0, 1 let 
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where ˆ 0.005i ia p  , ˆ 0.005i ib q  , s(φi), t(φi) and u(φi) are all defined in 

Equation A3. Let us calculate some of Equation A5 which will be needed later. 

For j = 1, k = l = 0 we have 
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where 1i i ia b    , 1i ib b  , and 
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For j = l = 0, k = 1 we have 
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where 1i ia a  , and 
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For j = k = 0, l = 1 we have 
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For j = l = 1, k = 0 we have  
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For j = 0, k = l = 1 we have  
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Note that in all of the above calculations I first integrate with respect to ψi 

and then integrate with respect to φi by employing the Taylor’s series expansion 

to expand the function about 
i ib  or 0.  

Now we are ready to calculate the marginal probability density function of 

Equation A1 one by one 
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where for i, j, k, l = 0, 1  , , ,i j k
M  and  , , ,i j k

M are given respectively by Equations 
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On the other hand, by integrating the following equation with respect to 

φi, ψi, i = 0, 1 

 



TZESAN LEE 

217 

 

       

1 0

1 0 1 031

2

1 0 1 0

1
2

RD RD

RD

RD RD

p p J

AAVar

u u u u
I I J

 



   
 

   
  

 

   
        

      

 

 

This leads to 
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Further, we obtain by integrating Equation A15 with respect to pi, qi, i = 0, 1 
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where ς, N1, R0, and Rj, j = 3, 4, 5, 6 are given respectively by Equations A12 and 

A14, and  
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Note that in calculating Equations A13 and A16 I used an approximation on 

the Gamma function:     a bz a z b z       (Askey & Roy, 2010).  

By integrating Equation 12 with respect to ( , )i i   first and then ( , )i ip q for 

i = 0, 1 we obtain mg (η, τ) by substituting Equations A13 and A16 into Equation 

A17: 
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A process is stable only when parameters of the distribution of a process or product 
characteristic remain same over time. Only a stable process has the ability to perform in a 
predictable manner over time. Statistical analysis of process data usually assume that data 
are obtained from stable process. In the absence of control charts, the hypothesis of 
process stability is usually assessed by visual examination of the pattern in the run chart. 
In this paper appropriate statistical approaches have been adopted to detect instability in 
the process and compared their performance with the run chart of considerably shorter 
length for assessing its patterns and ensuring the process stability. 

 
Keywords: Process stability, run chart patterns, run test, unstable process 

 

Introduction 

The run chart is a most effective and widely used tool for monitoring the stability 

of a process by displaying the data to make process performance visible. As long 

as the series of points in time exhibit a random pattern, the process is assumed to 

have constant mean and standard deviation and no autocorrelation (i.e. stable). 

While run charts focus more on time pattern, a control chart focuses on acceptable 

limits of the process data. However, in many industrial situations, it becomes 

necessary to estimate process parameter whose stability cannot be monitored 

using control charts due to lack of data and time for establishing control limits. In 

the absence of properly established control charts, process stability can be 

evaluated with the help of run chart trend and its pattern, which can be detected 

by applying run rules and to conclude the assignable causes present in the process. 

In run chart, each observation of a sample have a time variable representing 

the time of each data point is measured when data have time related behavior, run 

charts are familiar tools to visualize the process behavior. Also Deming (1986) 

pointed that when processes ought to behave randomly overtime, run charts can 
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help to identify nonrandom behavior, which can unearth potential for 

improvement. Run charts can be used as one of the important tools for diagnosing 

and solving various industrial problems, nonrandom patterns are indicative of 

process instability. Depending on the causes of process instability the non-random 

patterns can be of different types. The SQC Handbook of Western Electric 

illustrated various types of unnatural or nonrandom patterns that may occur in the 

run chart (Western Electric, 1956). Among these, six types of non-random 

patterns of individual observations are upward shift, downward shift, increasing 

trend, decreasing trend, cyclic and systematic patterns. 

Various statistical tools, such as Regression analysis, ANOVA method, SR 

test, INSR test, and Levene’s test have been used to assess the process location 

and variation to detect statistical stability of the forging process. These tools have 

also been compared with run chart of considerably shorter length to assess the 

efficiency of the above statistical methods, and indicate the process stability. 

Methodology 

The methodology involves the following steps: 

 

1. Understanding the basic concepts and tools to detect process stability 

of a manufacturing process. 

2. Process data collection. 

3. Approaches used for assessing the statistical stability of the process 

are  

a. Regression Analysis, 

b. SR method, 

c. INSR method, 

d. Run test 

e. ANOVA method 

f. Levene’s test 

4. Construction of Run chart using statistical software MINITAB  

5. Compare the performance of the above approaches with Run chart. 

6. Conclusion about the performance of the above methods. 
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Data collection and analysis 

The data set pertaining to the critical quality characteristic i.e. inner diameter of 

piston rings for an automotive engine produced by forging process. The details of 

the operation and product specification are presented in Table 1. The required 

quality characteristic of 32 consecutive units are measured and presented in Table 

2. The basic sample statistics are calculated and presented in Table 3. 
 
 
Table 1. Product description 
 

Part Name Material Operation Specifications Measuring Device 

Piston ring Cast steel Forging  74.00 ± 0.05 Dial Gauge 

 

*All dimensions are in mm. 

 
 
Table 2. Measurements of Piston ring hole diameter in mm. 

 

Sl. no. Hole dia  Sl. no. Hole dia Sl. no. Hole dia Sl. no. Hole dia 

1 74.030 9 74.011 17 73.996 25 74.014 

2 74.002 10 74.004 18 73.993 26 74.009 

3 74.019 11 73.988 19 74.015 27 73.994 

4 73.992 12 74.024 20 74.009 28 73.997 

5 74.008 13 74.021 21 73.992 29 73.985 

6 73.995 14 74.005 22 74.007 30 73.993 

7 73.992 15 74.002 23 74.015 31 73.998 

8 74.001 16 74.002 24 73.989 32 73.990 

 
 
Table 3. Summary Statistics of the case study data. 

 

Sample size Mean Median Minimum Maximum Range Std. Deviation 

32 74.003 74.002 73.985 74.03 0.045 0.0115 

 

Statistical Approaches to Detect Instability 

Regression analysis 

One way to quantify the change in location is to fit a straight line to the data using 

an index variable as the independent in the regression. In this case, the observed 
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values are in the sequential run order and they are collected at equally spaced time 

intervals. In this study, index variable are X = 1, 2, 3,… N where N is the number 

of observations. If there is no significant drift in the location over time, the slope 

parameter would be zero. The scatter diagram of the data reveals a negative linear 

association. Therefore, it can be proceeded to find the equation of the regression 

line using MINITAB statistical software. 
 
 

 
Figure 1. Output of regression analysis table for case study data. 

 

 
 

The regression equation is Dia. of Hole = 74.0 - 0.000421 × (X) 

 
Analysis of Variance 

Source DF SS MS F P 
Regression 1 0.0004831 0.0004831 4.03 0.054 

Residual Error 30 0.0035964 0.0001199   
Total 31 0.0040795    

 

In the output of the regression analysis table for the case study data, the 

F-statistic is 4.03. The table value is 4.17 for F (0.05, 1, 30). Since Fcalculated is less 

than Ftable value, and the p-value is greater than 0.05. It may be concluded that 

there is evidence that slope is almost equal to zero and ensure the process is stable 

over time. 
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SR method (standard deviation ratio method) 

The SR test is derived from the square of the ratio of the standard deviation 

estimated using all the observations and the standard deviation estimated using 

sub group ranges/standard deviations/individual moving ranges. The basis of the 

SR test is that if the process is stable, all the approaches would yield similar 

estimates for the process standard deviation. In this case statistic, SR is computed 

as the ratio of the estimate of the long term variance and the estimate of the short 

term variance. The estimated sample variance based on the N observations will 

indicate the long term variance and the estimated variance based on the moving 

range (MR) method will reveal the short term variance. 

Thus, 
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Ramirez and Runger (2006) assumed that an approximate F-distribution for 

SR, where the effective degree of freedom associated with the numerator and 

denominator are considered as (N-1) and 0.62 × (N-1) respectively and 

accordingly, it is recommended as an approximate F-test for SR. 
  



APPROACHES FOR DETECTION OF UNSTABLE PROCESSES  

224 

Table 4. Calculation of Moving Range for the case study data. 

 

Sl. no. Hole dia (yi )  1i iMR y y   Sl. no. Hole dia (yi)  1i iMR y y   

1 74.030 - 17 73.996 0.006 

2 74.002 0.028 18 73.993 0.003 

3 74.019 0.017 19 74.015 0.022 

4 73.992 0.027 20 74.009 0.006 

5 74.008 0.016 21 73.992 0.017 

6 73.995 0.013 22 74.007 0.015 

7 73.992 0.003 23 74.015 0.008 

8 74.001 0.009 24 73.989 0.016 

9 74.011 0.010 25 74.014 0.025 

10 74.004 0.007 26 74.009 0.005 

11 73.988 0.016 27 73.994 0.015 

12 74.024 0.036 28 73.997 0.003 

13 74.021 0.003 29 73.985 0.007 

14 74.005 0.016 30 73.993 0.008 

15 74.002 0.003 31 73.998 0.005 

16 74.002 0.000 32 73.990 0.008 
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 d2 = 1.128, Statistical constant for n = 2 (Montgomery, 2009, p.702) 
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Because SR = 0.012, i.e., (F calculated), F (calculated) < F (table). Hence, it is 

concluded that the process is said to be stable. 

Instability ratio test (INSR) 

The instability ratio is defined as the ratio of the number of data points that have 

one or more violation of the Western Electric (1956) rules to the total number of 

data points plotted in the process behavior chart for the time period under 

assessment. The motivation for the INSR test is that if the process is stable, then it 

operates with common cause variation only and over time the observations move 

randomly about the central line and typically remain within the upper and lower 

control limits. The pattern exhibited in the run chart is called a random pattern. 

Appearance of a nonrandom pattern, which can be detected by applying run 

rules, is indicative that there is either an assignable cause present in the process or 

the process output’s variation has increased. Ramirez and Runger (2006) 

considered that the four most popular Western Electric (1956) rules for 

application of INSR method. Rules are as follows: 

 

 1 point out side of 3σ limits, 

 8 points in a row on one side of the central line, 

 2 of 3 points 2σ and beyond on the same side of the central line, 

 4 of 5 points 1σ and beyond on the same side of the central line. 

 

Then the test statistic, INSR, is noted as follows 

 

 
Total number of violations with respect to the four rules in the chart

100
Total number of observations plotted in the chart

INSR    (5) 
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Table 5. Calculation of Moving Range for the case study data. 

 

Sl. no.  iy   1i iMR y y   Sl. no.  iy   1i iMR y y   

1 74.030 - 17 0.006 0.006 

2 74.002 0.028 18 0.003 0.003 

3 74.019 0.017 19 0.022 0.022 

4 73.992 0.027 20 0.006 0.006 

5 74.008 0.016 21 0.017 0.017 

6 73.995 0.013 22 0.015 0.015 

7 73.992 0.003 23 0.008 0.008 

8 74.001 0.009 24 0.016 0.016 

9 74.011 0.010 25 0.025 0.025 

10 74.004 0.007 26 0.005 0.005 

11 73.988 0.016 27 0.015 0.015 

12 74.024 0.036 28 0.003 0.003 

13 74.021 0.003 29 0.007 0.007 

14 74.005 0.016 30 0.008 0.008 

15 74.002 0.003 31 0.005 0.005 

16 74.002 0.000 32 0.008 0.008 

 
 

 
Figure 2. Run chart with 1σ, 2σ and 3σ control limits. 
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Process mean (µ) that represents the central line and the standard deviation 

(σ) that determines the distances of the control limits from the central line are 

usually unknown, and so these may be estimated from the N observations. The 

process means (µ) and standard deviation (σ) are estimated using arithmetic mean 

and moving ranges respectively. 

 

Interpretation 

 

a) 1 point out side of 3σ limits, (in Figure 2 no points violate this rule). 

b) 8 points in a row on one side of the central line, (in Figure 2 no 

points violate this rule). 

c) 2 of 3 points 2σ and beyond on the same side of the central line, (in 

Figure 2 no points violate this rule). 

d) 4 of 5 points 1σ and beyond on the same side of the central line, (in 

Figure 2 no points violate this rule). 

e) As no points violating the above 4 rules, INSR = 0.00, cutoff value 

for Run chart length (N = 32) is 3.125% [8], so the process is said to 

be stable. 

Variation 

To detect a change in variation in the process, Levene’s test has been used it is 

based on the median rather than the mean. It assesses the assumptions that 

variance of the population from which different samples are drawn are equal. It 

tests the null hypothesis that the population variances are equal. If the resulting 

p-value of Levene’s test is less than critical value (0.05), the obtained differences 

in the sample variances are unlikely to have occurred based on random sampling 

from a population with equal variances thus the null hypothesis of equal variances 

is rejected and it is concluded that there is a difference between the variances in 

the population. It also tests whether two sub samples in a given population have 

equal or different variances based on p-values. 

Hypothesis Testing: Null hypothesis H0 ; σ1 = σ2 = σ3 = σ4 (There is no 

change in variance) 

Alternate hypothesis, H0 ; σ1 ≠ σ2 ≠ σ3 ≠ σ4 (There is change in variance) 

Levine’s Test has been carried out using the MINITAB software. Since the 

p-value is greater than 0.05, the null hypothesis is accepted and hence that there is 

no change in variance among the 4 sets in the sample data of 32 consecutive units. 
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ANOVA 

This approach is to compare within subgroup variation to between subgroup 

variation to detect a difference in subgroup means and aimed at detecting changes 

in the process mean only. In this case study, N=32 individual observations are 

collected and the ANOVA method is applied by forming subgroups of size 2 

using consecutive observations, i.e. there will be N/2 subgroups. Then the test 

statistic F is computed as the ratio of the mean sum of squares of subgroups (MS 

subgroup) and the mean sum of squares of errors (MS error). 
 
 
Table 6. Analysis of Variance 

 

Sl. no. 
1

x  
2

x  
i

x  x   
2

i
x x   

2

ji i
x x   

2

ji
x x  

1 74.030 74.002 74.016 73.996 0.0004 0.000392 0.001192 

2 74.019 73.992 74.0055 73.996 9.03E-05 0.000365 0.000545 

3 74.008 73.995 74.0015 73.996 3.02E-05 8.45E-05 0.000145 

4 73.992 74.001 73.9965 73.996 3.00E-07 4.05E-05 0.000041 

5 74.011 74.004 74.0075 73.996 0.000132 2.45E-05 0.000289 

6 73.988 74.024 74.006 73.996 0.0001 0.000648 0.000848 

7 74.021 74.005 74.013 73.996 0.000289 0.000128 0.000706 

8 74.002 74.002 74.002 73.996 0.000036 0.000000 0.000072 

9 73.996 73.993 73.9945 73.996 2.30E-06 4.50E-06 0.000009 

10 74.015 74.009 74.012 73.996 0.000256 0.000018 0.00053 

11 73.992 74.007 73.9995 73.996 1.23E-05 0.000113 0.000137 

12 74.015 73.989 74.002 73.996 0.000036 0.000338 0.00041 

13 74.014 74.009 74.0115 73.996 0.00024 1.25E-05 0.000493 

14 73.994 73.997 73.9955 73.996 3.00E-07 4.50E-06 0.000005 

15 73.985 73.993 73.989 73.996 0.000049 0.000032 0.00013 

16 73.901 73.87 73.8855 73.996 0.01221 0.000481 0.024901 

 
 
Table 7. Resulted values from the ANOVA Analysis. 

 

SSFactor = 0.0277684 MSFactor = 0.001 

SSE = 0.0026845 MSE = 0.002 

SST = 0.03045 Fo = 0.98 
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From Ftable, Fcritical = 2.39 and Fcalculated = 0.98. Since Fcal. < F0.05,15,16, the 

process position in time relating to a hole diameter data is not subjected to 

significant changes. 

Run test for randomness in the sequence. 

It tests the runs up and down or the runs above and below the mean by comparing 

the actual values to expect values. The statistic for comparison is the chi-square 

test [6]. All observations in the sample larger than the median value are given a 

positive sign and those below the median are given negative sign. A succession of 

values with the same sign is called a run and the number of runs ‘a’ in the 

sequence of data points is found and it from the test statistic. For n > 30, this test 

statistic can be compared with a normal distribution with mean and the variance, 

the test is two-tailed. Data: Sample size: 32 observations, Median: 74.002 
 
 
Table 8. Values above and below the median. 

 

74.030 74.002 74.019 73.992 74.008 73.995 73.992 74.001 
- + - + - - + + 

74.011 74.004 73.988 74.024 74.021 74.005 74.002 74.002 
- + + - - - - - 

73.996 73.993 74.015 74.009 73.992 74.007 74.015 73.989 
- + - - + + - + 

74.014 74.009 73.994 73.997 73.985 73.993 73.998 73.990 
- - + - + + + - 

 
 

H0: The sequence is produced in a random manner. 

H1: The sequence is not produced in a random manner. 

Number of observations, N = 32, Number of runs, a = 18 
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For N > 20, the distribution of ‘a’ (number of runs) is reasonably 

approximated by a normal distribution,  2,a aN   . This approximation can be 

used to test the independence of the observations. In this case the standardized 

normal test statistic is developed by subtracting the mean from the observed 

number of runs ‘a’ and dividing by the standard deviation. 

The test statistic is as follows. 
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Test statistic: Z0 = -1.30, Significance level: α = 0.05 

Critical value: Z1-α/2 = 1.96, Reject H0, if |Z| > 1.96.  

 

In this case, the test statistic (-1.30) is inside the critical region, the null 

hypothesis cannot be rejected and hence it is concluded that the data is random. 

The critical value Z0.025 = 1.96. Because |Z0| < Z0.025, the independence 

(randomness) of the sequence of the observations cannot be rejected. 

Run chart analysis 

A run chart is a line graph of data plotted over time. By collecting and charting 

data over time, trends or patterns in the process can be revealed. As run charts do 

not use control limits, they cannot exhibit if a process is stable. However, they can 

show that how the process is running. The run chart can be a valuable tool at the 

beginning of a manufacturing process, as it reveals important information about a 

process before collecting the enough data to create reliable control limits. Figure 3 

shows the Run chart for the case study data constructed using statistical software 

MINITAB to assess the stability of the process. 
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Figure 3. Construction of run chart using MINITAB-Statistical software. 

 

 
 

The two tests (actual number of runs about median and number of runs up 

and down) have been conducted to check the randomness. In both the tests i.e., 

actual number of runs about median and number of runs up and down are close to 

the expected number of runs. It implies that the data come from random 

distribution. Clusters are groups of points in one area of the charts, cluster 

indicate variation due to special causes such as measurement problem. In this case, 

approximate p-value is 0.39205, it is greater than 0.05, hence it may be concluded 

that there is no clustering in the data. Process stability can be assured by 

observing the oscillation of data above and below the center line rapidly. In this 

case, Approximate p-value is 0.80602, it is greater than 0.05, so it may be 

conclude that there is no oscillating pattern in the data. 

A mixture is characterized by an absence of points near the center line. It 

often indicates combined data from two populations or two processes operating at 

different levels. In this case, approximate p-value is 0.60795, it is greater than 

0.05, hence it may be conclude that the data does not come from different process. 

Observation
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73.98

Number of runs about median:

0.60795

16

Expected number of runs: 16.75000

Longest run about median: 4

Approx P-Value for Clustering: 0.39205

Approx P-Value for Mixtures:

Number of runs up or down:

0.80602

19

Expected number of runs: 21.00000

Longest run up or down: 6

Approx P-Value for Trends: 0.19398

Approx P-Value for Oscillation:

Run Chart  for the dimensions of" Hole dia"
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Trends are sustained and systematic sources of variation characterized by a 

group of points that drifts either up or down. Trends may warn that a process is 

about to go out of control and may be due to worn tools. In this case, approximate 

p-values is 0.19398, it is greater than 0.05, hence it is concluded that there is no 

trend in the data. The tests for non-random pattern are significant at the 0.05 level. 

All p-values for all the tests are greater than 0.05 (α) which suggests that the data 

come from a random distribution and process is stable. 

Discussion 

The data set pertaining to the quality characteristic i.e. inner diameter of piston 

rings for an automotive engine produced by forging process. Measurements for 

inner diameter of 32 consecutive units are measured and recorded. The various 

approaches have been used on the data in order to assess the stability of the 

forging process. Tests with respect to location, variation, randomness and 

sequence of data has been done through Regression analysis, ANOVA test, Run 

test, Levene’s test, SR test, INSR test. The scatter plot reveals a least magnitude 

of negative linear association (almost zero). 

In Regression analysis, R2 value is 11.8%; it is can be stated that 11.8% of 

the total variation in the hole diameter occurs because of the variation in the 

observations sequence and remaining 88.2% is due to randomness and other 

causes of variation and also reveals that the relationship between the variables i.e. 

hole diameter and time is not significant. Also the F-test indicates that there is no 

considerable slope in the line. 

In Levene’s test, P-valve is greater than 0.05, so the null hypothesis cannot 

be rejected that there is no change in variance among the 4 sets in the sample data 

of 32 consecutive units. 

In case of Instability ratio test, Calculated Instability Ratio (INSR) = 0.00, 

cutoff value for Run chart length (N = 32) is 3.125% [8], as instability ratio value 

is less than cutoff value, the process is said to be stable. In SR method, the test 

statistic SR is computed and compared with the F (table) value. F-Test for SR, 

conclude that the process is stable as SR = 0.012 i.e. (F calculated) is less than 

F (0.05, 31, 19.22) = 1.93 i.e., (F table). In case of ANOVA method, N = 32 

individual observations, it is applied by forming subgroups of size 2 using 

consecutive observations, i.e. there will be N/2 subgroups. 

Then the test statistic F is computed as the ratio of the mean sum of squares 

of subgroups (MS subgroup) and the mean sum of squares of errors (MS error). 

From Ftable, Fcritical = 2.39 and Fcalculated = 0.98. Since Fcalculated < F0.05,15,16, the 
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process position in time relating to a hole diameter is not subjected to significant 

changes. Run Test for randomness of the sequence is concluded that the data is 

random. The Table 9 presents the summary of results of the various statistical 

methods. 
 
 
Table 9. Summary results of the statistical method. 

 
 

Alternative approaches were presented to assess the stability of the process 

and compared with the run chart. Process stability has been detected using the 

approaches such as Regression analysis, SR method, INSR method, Levene’s test, 

ANOVA method. Even though all the approaches yield the same result (i.e., 

process is stable), above mentioned approaches have their own advantages and 

limitations. As the exact distribution of SR is not known and assumed an 

approximate F-distribution for SR, it can be applied only when the number of 

observations is larger than or equal to 32. The advantage of ANOVA approach is 

that the F-test conducted using the ‘between’ and ‘within’ sums of squares is well 

defined and it is applicable even when the available number of observations is 

small but it requires practitioner’s to have background in statistics. Run test 

indicated that the data points are independent and random, hence it is concluded 

that there is no shift in location. INSR Test is more effective test as it uses rules 

similar to run chart and it works well for large number of samples. For small 

number of samples like 32-100 subgroups it leads to a Type-I error (i.e. 

probability of declaring a stable process as unstable) as high as 0.35. Ramirez and 

Runger recommended taking the 95th percentile point of the distribution of INSR 

as the cutoff value. With aim to increase the effectiveness, it has been 

recommended using the ANOV and the INSR tests. All the statistical methods 

indicates the presence of statistical stability in the case study data but run chart 

using the statistical software MINITAB gives more effective and accurate result 

compared to the other methods for assessing stability of the process. 

Sl. no. Statistical method Result Stable/Unstable 
1 Regression F(calculated) < F(table), p > 0.05 Stable 
2 SR-method F(calculated) < F(table) Stable 
3 Instability Ratio method Instability ratio < cutoff value, Stable 
4 Levene’s Test p > 0.05 Stable 
5 ANOVA method F(calculated) < F(table), Stable 
6 Run Test Z0(calculated) < Z1-α/2(table), Stable 
7 Run Chart p > 0.05,All cases Stable 
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Contrails are clouds caused by airplane exhausts, which geologists contend decrease daily 
temperature ranges on Earth. Following the 2001 World Trade Center attack, cancelled 
domestic flights triggered the first absence of contrails in decades. Resultant exceptional 
data capacitated causal inference analysis by propensity score matching. Estimated 

contrail effect was 6.8981°F. 
 
Keywords: Contrails, contrails effect, airplane exhaust, causal inference, propensity 
score, resampling, logistic regression, regression, MCMC 

 

Introduction 

Contrails are the clouds formed as a result of the introduction of relatively warm 

water vapor from airplane engine exhausts into surrounding cold, moist, 

atmospheric air (the word "contrails" is a contraction of two words, "condensation 

trails.") Under salient conditions, such mixing within the airplane engine exhaust 

plume saturates the atmospheric air, causing condensation of water droplets upon 

the exhaust particles. In turn, these newly formed droplets freeze into ice particles 

that constitute contrails (Schumann, 2005; EPA, 2000). The process also depends 

on non-atmospheric factors, such as engine and fuel characteristics (Wendler & 

Stuefer, 2002). The contrail formation process typically occurs at altitudes over 

25,000 ft. and temperatures below −40°C. 

Geologists asserted that contrails (1) decrease the daily high temperature by 

blocking incoming sunlight, (2) increase nightly low temperatures by preventing 

escape of greenhouse gases, and, therefore (3) decrease the daily temperature 

range on the Earth's surface below (e.g., Meerkotter, et al., 1999). This contrails 

effect was estimated to be 1.98°F or 3.24°F (Travis, et al., 2002); the greater of 

these is hereafter referred to as the Travis estimate. 

mailto:dean@twobluecats.com
http://twobluecats.com/
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A contrail may dissipate quickly or linger for hours. Persistent contrails may 

grow expansively and then frequently morph or incorporate into cloud cover 

(EPA, 2000). Over individual geographic areas, the presence of contrails depends 

on existent conditions. 

Therefore, observing the actual temperature range in the absence of contrails 

was impossible in areas where contrails had always been present. After the World 

Trade Center attacks of 11 September 2001, however, all flights in the United 

States were suspended for several days. Thus, a complete absence of contrails 

prevailed, including those locations where contrails had been present continuously 

for decades. 
 

 

Figure 1. Contrail (Barron, 2013) 
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Purpose of the Study 

Data situations with such counterfactuals are precisely the forte of analysis using 

causal inference. A propensity score (PS) was modeled and then used to match 

from the control group without replacement for the treatment group. Additionally, 

regression analysis and Bayesian Markoff Chain Monte Carlo (MCMC) were 

performed. 

Data were obtained from The National Climatic Data Center (NCDC), 

which had daily historical data since 1929 from approximately 300 countries and 

30,000 cities. The treatment group was defined as United States (hereafter, 

referred to as, "domestic") stations data from September 12-13, 2001, taking 

advantage of the absence of contrails. The control group was defined as all 

non-treatment station readings, both domestic and international. The data was 

subjected to random sampling and quality control. 

The contrails effect, which, in causal inference terminology is the Average 

Treatment Effect on the Treated (ATT), was estimated to be 6.8981°F 

(p < 0.0001), compared with 6.5513°F (p < 0.0001) from the naive regression, 

and 6.5195°F (α = 0.05 HPD Interval 5.7795, 7.2552) from MCMC simulation. 

All were more than twice the Travis estimate. The propensity score matching 

approach was determined to be preferable due to its superior covariate 

characteristics. 

Methodology 

Data 

The NCDC weather-related database stores daily data as collected by the National 

Weather Service (NWS) Automated Surface Observing System (ASOS) in 

downloadable .txt format inside triple-compressed op-op.gz-tar formatted files 

(NCDC, 2010). The study data were restricted to measurements from stations that 

were operational in 2001. 

These observations were further limited to 0-4 weeks before and after each 

September 12-13 for each of the three superimposable calendar years 1990, 2001, 

and 2007. Treatment variable, CONTRAILS0, was defined: 

 

 




0 = 1,  treatment, domestic 12 SEP2001 and 13 SEP2001

  0,  control, otherwise

CONTRAILS
  (1) 
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Contrail formations above airports have different characteristics than above 

non-airport locations. Because contrails generally do not form until aircraft reach 

25,000 foot altitudes, contrails above airports typically derive from aircraft flights 

which had originated from other airports. Hence, airports might or might not have 

contrails (Mims, Chambers & Oostra, n.d.). Therefore, for this analysis, all 

airports were excluded from the control dataset only. 

A two-stage stratified random sampling scheme was then imposed. 

Domestic data formed the first group. The United States was the only nation that 

stopped flights, therefore, neighboring Mexico and Canada formed the second 

group. Belgium and France were chosen as European counterparts for the third 

group. All other countries constituted the fourth group. 

The first sampling stage selected 1,607 stations as treatment and 8,805 as 

control; from this, the second random sampling stage selected 278 and 440, 

respectively. The latter corresponded to a possible 3,214 and 478,250 

observations, respectively. This data sampling procedure was designed to 

facilitate the required manual identification and subsequent elimination of airport 

locations. 

Resultant samples sizes contained 556 treatment and 22,810 control 

observations, of which only 503 treatment and 4,737 control actually contained 

data. Further quality control on missing critical variables (dewp, slp, wdsp, visib, 

and temperature-related), dropped the final analysis dataset to 322 treatment and 

2,557 control observations. 

In addition to the variables contained in the NCDC database, the adjusted 

latitude was calculated using the formula (2) to correct for gravity (Bauer, et al., 

2000). Normal gravity is defined as the gravity which would be observed were 

planet Earth to be a perfect ellipsoid with associated perfect rotation. The 

corrected latitude reflects deviations from ideal conditions, and is a function of 

only the latitude. 

 

 
 

 

3 2

5

5 4

1 5.28 10 *sin
9.78 10 *

2.35 10 *sin

latitude
latitudecorr

latitude





  
   

   

  (2) 

 

Variables that were included in the propensity logistic regression model are 

described in Table 1.  
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Table 1. Variables 

 

ID Variable 
Required 

non-
missing 

Description 

1 CONTRAILS0  
1 = TREATMENT, Absence of contrails 

0 = CONTROL, contrails present / contrails effect 

2 temp YES mean temperature for the day in degrees Fahrenheit 

3 dewp YES mean dew point for the day in degrees Fahrenheit 

4 slp YES mean sea level pressure for the day 

5 visib YES mean visibility for the day in miles 

6 wdsp YES mean wind speed for the day in knots 

7 MXSPD  maximum sustained wind speed 

8 PRCP  total precipitation 

9 p133fog  fog / FRSHTT character 1 

10 p134rain  rain or drizzle / FRSHTT character 2 

11 p135snow  snow or ice pellets / FRSHTT character 3 

12 p137thun  thunder / FRSHTT character 5 

13 elev  elevation in meters 

14 latitudecorr  absolute value latitude in degrees 

15 latitudeabs  latitude correction for gravity in milligalileos 

16 temprange YES temperature range in degrees Fahrenheit 

 
 

Analysis 

Causal inference, regression analysis, and Bayesian MCMC were used. The 

several shades of each resulted in a total of 10 different methods, hereafter 

referred to as METHOD1 through METHOD10. 

Causal Inference 

The Propensity Score (PS) was the predicted value from the linear first order 

logistic regression model of CONTRAILS0 as a function of the covariates. All 

variables were retained to maximize R2. 

For METHOD1, the PS of a treatment observation was compared with the 

PS of any remaining unmatched control observation. Matching by the absolute 

smallest PS difference, a greedy strategy was implemented in descending PS 

order of treatment observations. The ATT estimate for CONTRAILS0 was equal to 

the temprange difference of treatment and control groups from the matched 

observation pairs, and evaluated by t test. 
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In METHOD2, resampling was performed to examine if the dataset perhaps 

had yielded a coincidentally favorable match. Nine treatment group sample sizes, 

ntrt, (288, 216, 162, 136, 108, 96, 81, 72, 68) were resampled (n = 180) at a 

corresponding specified control to treatment observational ratio 

(2, 3, 4, 5, 6, 7, 8, 9, 10, respectively). Because there was also potential for 

relative abundance of a control subregion to impact results, each of the four 

control subregions were equally represented, as calculated in (3). 

 

      subregionn 1 4 n control-to-treatment observational ratiocntl trt     (3) 

 

Care was taken to select whole numbers and ensure that ncntlsubregion < 174, 

because that was the sample size of the smallest subregion. 

For each individual resample, the ATT was calculated identically as in 

METHOD1. For each ntrt level, the ATT was calculated as the mean of its 180 

samples; the overall ATT was the mean of the 1,620 runs. 

In METHOD3, the tails of the dataset were trimmed to only the region of 

overlapping PS ranges of the treatment and control observations. The PS minima 

and maxima were determined for treatment (PSmintrt, PSmaxtrt) and control 

(PSmincntl, PSmaxcntl). A new PS range was set from the maximum minimum 

(max(PSmintrt, PSmincntl)) to the minimum maximum (min(PSmaxtrt, PSmaxcntl)) 

by dropping external values. In METHOD4, resampling was also performed. 

For the best among the four methods, the resultant matched pairs and 

frequency distributions of the selected countries were analyzed. Patterns of the 

matched pairs were noted. 

Regression 

Three regressions were conducted to provide baseline comparisons for the 

propensity matching results, and to provide parameter estimates for other 

variables (4, 5, 6). 

 

 temprange = f (CONTRAILS0, full model with all variables) (4) 

 

 temprange = f (CONTRAILS0, best stepwise/backward elimination result) (5) 

 

 temprange = f (CONTRAILS0) (6) 
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Hereafter these are referred to as METHOD5, METHOD6, and METHOD7, 

respectively. Resampling was performed on the best of the three, hereafter, 

referred to as METHOD8. 

Bayesian 

Two MCMC regression simulations were run, based upon (5) and (6), referred to 

as METHOD9 and METHOD10, respectively. Blocking strategy was determined 

by a correlations and resultant convergence characteristics. Non-informative 

priors were implemented first. When not feasible, the parameter estimates from 

the corresponding regression were to be used as informative priors. 

The CONTRAILS estimates from all methods and Travis were compared. 

The MCMC simulation METHOD9 posterior estimates for CONTRAILS0 were 

analyzed to determine the percentage that were greater than each CONTRAILS0 

estimate. The probability that a particular CONTRAILS0 estimate was an 

underestimation corresponds to this percentage. 

Covariate and contrail effect estimate comparisons 

Covariate differences between the matched treatment and control groups were 

calculated to reveal differences between the groups, which were compared with 

differences from the analysis dataset. Transition from significant to not significant 

was used as evidence of amelioration of covariate mean differences. 

Omnibus distribution tests 

Distributional differences between treatment and control groups were subjected to 

omnibus tests. These were Kolmogoroff-Smirnoff (KS), Cramér-von Mises (CM), 

and “oando” (see the Master’s thesis of the first author, Barron, 2007). 

Results 

Causal Inference 

Propensity Score Logistic regression for PS was performed including all 

covariates with intercept using the final dataset (nttl = 2879). The resultant model 

of CONTRAILS0 was statistically significant (Χ2 = 289.0694, df = 14, 

p-value < 0.0001). The area under the ROC curve c-value = 0.785, 

Somers' D = 0.570, Kendall's Tau-a = 0.113, and standard definition of 

percentage behavior explained by model, R2 = 0.1127. All correlations with 
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CONTRAILS0 and maximum likelihood parameter estimates are detailed in Table 

2. 
 
 
Table 2. Correlations and Propensity Score (PS) Logistic Regression Results 

 

ID Variable Correlation Parameter Estimate Wald Χ
2
 p-value 

0 Intercept N/A -68.1469 3.7370 0.0532 

1 CONTRAILS0 1 N/A N/A N/A 

2 temp 0.1267 0.1246 109.8874 <0.0001 

3 dewp 0.0225 -0.1089 89.6451 <0.0001 

4 slp 0.0989 0.0801 36.5800 <0.0001 

5 visib -0.0942 -0.0795 35.8712 <0.0001 

6 wdsp -0.0581 -6.6053E-03 0.1791 0.6721 

7 MXSPD -0.0439 -3.4946E-03 2.4711 0.1160 

8 PRCP -0.0217 -0.1344 0.3487 0.5549 

9 p133fog 0.0914 1.3716 49.4748 <0.0001 

10 p134rain -0.0449 0.2519 2.0147 0.1558 

11 p135snow -0.0404 -1.0575 1.0007 0.3171 

12 p137thun 0.0871 1.3485 21.3320 <0.0001 

13 elev 0.0063 -4.8630E-04 10.7487 0.0010 

14 latitudecorr 0.0003 -1.6200E-05 0.2089 0.6476 

15 latitudeabs -0.0895 -2.0420E-02 4.5209 0.0335 

16 temprange 0.3119 N/A N/A N/A 

 
 

To determine if there would be sufficient PS coverage to enable matching of 

treatment and control, the PS range was divided into four bins with equal 

n-treatment counts. Spread was adequate (Table 3). 
 
 
Table 3. Propensity Score (PS) Frequency Distributions by Bin 

 

  PS RANGE ntrt ncntl RATIO 

BIN1 0.0002, 0.1160 80 1790 22.38 

BIN2 0.1160, 0.1724 81 357 4.41 

BIN3 0.1724, 0.2725 81 267 3.30 

BIN4 0.2726, 0.8380 80 143 1.79 

TOTAL 0.0002, 0.8380 322 2557 7.94 
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METHOD1 / Matched Pairs, No Resampling, No Overlap Mean 

difference of temprange between matched pairs, the ATT estimate, was 6.8981 

(t = 9.91, p < 0.0001, 95%CI 5.5293, 8.2670). The mean absolute distance 

between matched propensity scores was 0.0035 (median < 0.0001, range < 0.0001, 

0.1033). 

METHOD2 / Matched Pairs, Resampling, No Overlap  The results 

consistently approximate the ATT estimate obtained with the non sampled data. 

The 1620 runs from the 9 different combinations had temprange mean = 6.7871 

(median = 6.7847, range 2.5779, 10.8118). The mean of PS matched mean 

absolute distances was 0.0194 (median = 0.0133, range 0.0005, 0.1040). The 

results of the runs of the ntrt and control to treatment observational ratios appear 

in Table 6. 

METHOD3 / Matched Pairs, No Resampling, Overlap Trimming down to 

the overlap region reduced the dataset to ntrt = 321 ncntl = 2525 nttl = 2846. 

Compared with the analysis dataset, this was a reduction of only one treatment 

and 32 control observations. The mean difference of temprange was 6.8931 

(t = 9.88, p < 0.0001), with a mean absolute distance between matched propensity 

scores of 0.0032 (median < 0.0001, range < 0.0001, 0.0978). 

METHOD4 / Matched Pairs, Resampling, Overlap The contrail effect 

estimates were slightly higher than those without the overlap strategy. The 9 

different combinations averaged temprange = 6.9654 (median = 6.9352, range 

3.2071, 10.7119). The mean of PS matched mean absolute distances was 0.0141 

(median = 0.0072, range 0.0005, 0.0960). The results of the runs of the various 

ntrt and control to treatment observational ratios are also summarized in Table 6. 

Analysis of the matches 

The majority of treatment - control pairs appeared either once or twice. There 

were 200 distinct ordered pairs within the 322 matches, of which 171 (85.50%) 

had fewer than three occurrences. Only four appeared five or more times, 

California-France (11), Texas-France (8), Texas-United States (6), and 

California-Mexico (5). 

All four strata of control country groups were represented in the matches. 

Despite the boost in percent observations secondary to designation as separate 

subgroups, the Relative Risk (RR) of selection for CANADA/MEXICO and 

BELGIUM/FRANCE were only somewhat lower than OTHER 
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INTERNATIONAL. Not surprisingly, the UNITED STATES group had the 

highest RR, as in Table 4. 
 
 
Table 4. Subgroup Counts in Control Data 

 

STRATUM COUNTRIES nmatch ncntl 
row % 

match 
RR 

column 
%match 

column 
%cntl 

1 UNITED STATES 41 174 23.56% 2.00 12.73% 6.80% 

2 CANADA/MEXICO 65 631 10.30% 0.77 20.19% 24.68% 

3 BELGIUM/FRANCE 102 851 11.99% 0.93 31.68% 33.28% 

4 OTHER INTL 114 901 12.65% 1.01 35.40% 35.24% 

  TOTAL 322 2557 12.59%       

 
 

Twenty-five countries were included in the control population. The highest 

percentage of matched control observations was 50% selected for Australia 

(nmatch = 9 ncntl = 18); the lowest was the lone 0% for Georgia (0/19). Over 

two-thirds had RR for selection between 1/3 and 3 (17/25). 

Regression 

METHOD5, METHOD6, AND METHOD7 / Naive Regression, No 

Resampling The full regression model (METHOD5) with all covariates was 

statistically significant (R2 = 0.5713, F = 254.32, p < 0.0001) with a parameter 

estimate for CONTRAILS0 of 6.5513. Both backward elimination and stepwise 

arrived at identical models with eight independent variables (METHOD6, forced 

CONTRAILS0 inclusion, R2 = 0.5698, F = 475.26, p < 0.0001). The parameter 

estimate for CONTRAILS0 was 6.5173 (standard error = 0.3769, t = 17.29, 

p < 0.0001). 

The minimal CONTRAILS0 only model, METHOD7, was also statistically 

significant but exhibited a much lower R2 = 0.0973 (F = 310.01, p < 0.0001) with 

a much higher parameter estimate of 9.3605 (standard error = 0.5316, t = 17.61, 

p < 0.0001). Among the three, METHOD6 was selected as preferred. Parameter 

estimates appear in Table 5.  
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Table 5. Regression and MCMC results 

 

ID Variable 
REGRESSION 

METHOD6 
Estimate 

p-value 
MCMC 

METHOD9 
Posterior Mean 

95% HPD Interval 

0 Intercept 17.5910 <0.0001 17.5903 16.1170 , 19.0984 

1 CONTRAILS0 6.5173 <0.0001 6.5195 5.7795 , 7.2552 

2 temp 0.5114 <0.0001 0.5112 0.4728 , 0.5493 

3 dewp -0.5473 <0.0001 -0.5471 -0.5857 , -0.5091 

4 slp ELIMINATED >0.05 NA NA 

5 visib ELIMINATED >0.05 NA NA 

6 wdsp -0.5771 <0.0001 -0.5770 -0.6207 , -0.5318 

7 MXSPD ELIMINATED >0.05 NA NA 

8 PRCP ELIMINATED >0.05 NA NA 

9 p133fog ELIMINATED >0.05 NA NA 

10 p134rain -1.8677 <0.0001 -1.8689 -2.4019 , -1.3160 

11 p135snow -3.9595 <0.0001 -3.9653 -5.7258 , -2.1473 

12 p137thun 1.5057 0.0278 1.5053 0.1708 , 2.8489 

13 elev 0.0026 <0.0001 0.0026 0.0023 , 0.0029 

14 latitudecorr ELIMINATED >0.05 NA NA 

15 latitudeabs ELIMINATED >0.05 NA NA 

16 temprange DEP VAR >0.05 DEP VAR NA 
 

*Note. Regression parameter estimates then served as MCMC priors 

 
 

METHOD8 / Naive Regression, Resampling Because METHOD6 was 

preferred over the reduced model, only the former was subjected to resampling. 

For the 1620 runs, the CONTRAILS0 estimate had mean = 6.6889 

(median = 6.6336, range 4.4486, 8.8783). The mean F was 150.6304, mean 

R2 = 0.5752. Each of the 1620 individual runs were statistically significant 

(p < 0.0001). The results of the runs of the various ntrt and control to treatment 

observational ratios are also summarized in Table 6.  
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Table 6. Resampling results 

 

    METHOD2 METHOD4 METHOD8 

    PROP / NO OVERLAP PROP / OVERLAP REGRESSION 

ntrt  Ratio Runs 
CONTRAILS0 

ESTIMATE 
|ΔPS| 

CONTRAILS0 

ESTIMATE 
|ΔPS| 

CONTRAILS0 

ESTIMATE 
R2 

136.3 4.8 1620 6.7871 0.0194 6.9654 0.0141 6.6889 0.5752 

288 2 180 7.0458 0.0615 7.1010 0.0545 6.5149 0.5750 

216 3 180 6.6921 0.0275 6.8047 0.0218 6.5790 0.5743 

162 4 180 6.6644 0.0181 6.8320 0.0125 6.6631 0.5750 

136 5 180 6.6833 0.0136 6.8779 0.0086 6.7120 0.5746 

108 6 180 6.6957 0.0123 6.9054 0.0074 6.7504 0.5741 

96 7 180 6.8237 0.0107 7.0324 0.0061 6.7797 0.5747 

81 8 180 6.8053 0.0108 7.0089 0.0058 6.7693 0.5753 

72 9 180 6.7258 0.0107 6.9667 0.0053 6.7130 0.5768 

68 10 180 6.9478 0.0098 7.1593 0.0046 6.7184 0.5771 

 

*Note: Top row is mean for all runs; other rows are means for that resample level 

 

Bayesian 

METHOD9 / MCMC, Best Model  The best model estimated 

CONTRAILS0 as 6.5195 (α = 0.05 HPD Interval 5.7795, 7.2552). The model was 

a normal posterior predictive distribution with normal priors for effects and 

inverse gamma for variance. Non-informative priors failed to generate a 

reasonable model, based upon diagnostic plots or Geweke. Therefore, informative 

priors were set as the estimates from the best model regression, METHOD6 

(Table 5). Variances were set at 100, except elev which was 5 × 10-8. The MCMC 

was performed with five blocks: (1) CONTRAILS0, (2) Intercept, temp, dewp, 

wdsp, (3) p134rain, p135snow, p137thun, (4) elev, and (5) σ2. The groups were 

based on correlations and commonality of data collection. 

Acceptance rates ranged from 0.2200 to 0.3040 at the end of the tuning 

period, 540k burn-in, and 648k sampling. Visually, the diagnostic plots revealed 

convergence of parameter means, increasingly diminished autocorrelations, and 

normal posterior density distributions (Table 5, Figure 2). Geweke diagnostic was 

0.6480 for CONTRAILS0, and ≥ 0.1181 for all others. All were ≥ 0.05, indicative 

that the final 50% of runs featured posterior parameter estimates that were not 

statistically different than of the initial 10%. 
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Figure 2. Diagnostic Plots, METHOD9 

 

 
 

METHOD 10 / MCMC, Minimal Model  The minimal model estimated 

CONTRAILS0 as 9.3609 (α = 0.05 HPD Interval 8.3327, 10.4145). The model 

was a normal posterior predictive distribution with normal priors for effects and 
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inverse gamma for variance. The MCMC was performed with three blocks, one 

for each of beta0 (intercept), beta1CAT0 (CONTRAILS0), and σ2. 

Non-informative priors were used because they proved sufficient. 

Acceptance rates were from 0.3528 to 0.3720 for end-tuning period, 72k 

burn-in, and 360k sampling. Visually, the diagnostic plots also revealed 

convergence of means, increasingly diminished autocorrelations, and normal 

posterior density distributions (Figure 3). Geweke diagnostics were all > 0.1700. 
 
 

 
INTERCEPT CONTRAILS0 
 

 
SIGMA2 
 
Figure 3. Diagnostic Plots, METHOD10 

 

 

  



CONTRAILS: CAUSAL INTERFERENCE 

250 

CONTRAILS0 Estimate Testing The CONTRAILS0 estimates from MCMC 

simulation METHOD9 analysis revealed that 15.65% were greater than the 

estimate from METHOD1. For any run, the minimum MCMC posterior estimate 

was 4.8125; the maximum was 8.2761. Thus, all 180k runs were greater than the 

Travis estimate (Table 7). 
 
 
Table 7. Comparison of CONTRAILS0 Estimates 

 

METHOD TYPE DESCRIPTION 
CONTRAILS0 

ESTIMATE 

METHOD9 
PERCENT 

>CONTRAILS0 

1 PROPENSITY  6.8981 15.65% 

2 PROPENSITY RESAMPLING 6.7871 23.79% 

3 PROPENSITY OVERLAP 6.8931 15.96% 

4 PROPENSITY RESAMPLING & OVERLAP 6.9654 11.79% 

5 REGRESSION FULL MODEL 6.5513 46.77% 

6 REGRESSION BEST MODEL 6.5173 50.41% 

7 REGRESSION MINIMAL MODEL 9.3605 0.00% 

8 REGRESSION BEST MODEL & RESAMPLING 6.6889 32.71% 

9 MCMC BEST MODEL 6.5195 50.15% 

10 MCMC MINIMAL MODEL 9.3609 0.00% 

  Travis estimate 3.24 100.00% 

 
 

Covariate and contrail effect estimate comparisons Of the 14 covariates, 

the original data had 10 with statistically significant mean differences between the 

treatment and control groups, as indicated by the bold figures in Table 8. With 

METHOD1, for all covariates, one fails to reject the H0 that the means in the 

treatment and control groups are equal.  
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Table 8. Comparison of Covariates of Original and Propensity Score Matched Data 

 

  ORIGINAL (nttl=2879) MATCHED (nttl=644) 

ID Variable variance df t-value p-value variance df t-value p-value 

1 CONTRAILS0     NA     NA 

2 temp Unequal 505 -9.02 <0.0001 Unequal 595 -0.18 0.8573 

3 dewp Unequal 439 -1.36 0.1746 Unequal 621 0.13 0.8983 

4 slp Unequal 453 -6.26 <0.0001 Equal 642 -0.16 0.8738 

5 visib Unequal 696 8.37 <0.0001 Unequal 518 -0.37 0.7148 

6 wdsp Unequal 750 5.34 <0.0001 Unequal 517 0.01 0.9933 

7 MXSPD Unequal 2614 6.60 <0.0001 Unequal 326 0.74 0.4586 

8 PRCP Unequal 455 1.38 0.1697 Unequal 582 -0.40 0.6861 

9 p133fog Unequal 366 -3.89 <0.0001 Equal 642 0.31 0.7530 

10 p134rain Equal 2877 2.41 0.0159 Equal 642 -0.77 0.4431 

11 p135snow Unequal 970 4.13 <0.0001 Unequal 578 0.58 0.5635 

12 p137thun Unequal 351 -3.22 0.0014 Equal 642 -0.79 0.4307 

13 elev Unequal 448 -0.39 0.6951 Unequal 634 -1.60 0.1106 

14 latitudecorr Equal 2877 -0.02 0.9859 Equal 642 -1.33 0.1845 

15 latitudeabs Unequal 518 6.50 <0.0001 Unequal 584 0.37 0.7111 

16 TEMPRANGE     NA     NA 

 
*Note. Differences that are statistically significant at α = 0.05 are in bold 

 
 

The CONTRAILS0 estimate from PS matching using all observations 

without overlap was 6.8981. This was a statistically significantly difference from 

the Travis estimate (t = 5.26, p < 0.0001). 

Except for the minimal models (METHOD7, METHOD10), the contrails 

effect estimate within the 95% confidence interval of METHOD1, and therefore 

did not represent statistical difference. Due to its simplicity, METHOD1 was 

preferred over the other causal inference methods; due to covariate egalities, it 

was preferred over the regression and MCMC methods. 

Omnibus distribution tests 

Distributional differences were tested by three omnibus tests, 

Kolmogoroff-Smirnoff (KS), Cramér-von Mises (CM), and oando (Barron, 2007). 

The control and treatment group distributional differences were statistically 

significant for KS for the analysis dataset (ntrt = 322, ncntl = 2557, D = 0.4412, 

p < 0.001) and propensity matched data subset (ntrt = ncntl = 322, D = 0.3571, 
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p < 0.001). CM also indicated statistical significance for both datasets 

(CM = 25.2482, p < 0.001 and CM = 8.6263, p < 0.001). 

Oando performed with resampling yielded inconclusive results. For 4000 

resampling runs, the mean p-value = 0.1988, 32.73% p-value ≤ 0.05, and 11.20% 

p-value > 0.50. For 180 resampling runs, the matched dataset had mean 

p-value = 0.2871, 22.22% p-value ≤ 0.05, and 20.56% p-value > 0.50. 

Due to the definition of oando which weights by the rank of the gap from 

the prior observation, the result is possibly reflective of a non-homogenous range. 

In response, the analysis dataset was partitioned according to temprange rank. 

The low and high ends were curves; the middle was linear. REGION1 was defined 

as the union of the low (REGION1A) and high (REGION1B); REGION2 was 

defined as the middle (Figure 4). 

The temprange difference between control and treatment represented the 

CONTRAILS0 estimate. For the entire analysis dataset, the union of REGION1 

and REGION2, the temprange difference was 9.3605. For mid-tempranges of 

12.20 to 20.22, the CONTRAILS0 estimate for REGION2 was not statistically 

different from zero. However, for REGION1 the contrails effect estimate was 

11.4521 (p-value < 0.0001). 
 

 
 
Figure 4. Partition of Ordered Observations of Analysis Dataset 
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Conclusion 

The contrail effect was estimated to equal a 6.8981°F decrease in the daily 

temperature range at ground level on planet Earth using propensity matching, 

METHOD1. This result was statistically different from the Travis estimate of 

3.24°F. 

Although rarely studied, daily temperature range does impact animal 

populations and population dynamics (Viterbi, et al., 2012). Smaller daily 

temperature ranges have been shown to decrease the black grouse bird population 

in Italy (Viterbi, et al., 2012) as well as to influence Moluccan Woodcock 

population density in Indonesia (Eden, et al., 2013). The impact upon other 

species may also be significant (Eden, et al., 2013). 

In pursuit of fuel economy, modern engines sport a greater efficiency of 

propulsion. However, aircraft equipped with such engines generate contrails 

starting at lower altitudes (Schumann, et al., 2000), and up to higher altitudes 

(Schumann, 2000). More persistent contrails could shadow even more of the 

Earth's surface than the 16% EPA estimation (EPA, 2000). 

Analysis variables were solely based upon the NCDC datasets. Other data 

might have been useful, for example, temperature and other atmospheric 

measurements taken at altitudes at 25,000 feet; NCDC measures only at ground 

level. The restriction to data from a single source obviated the need to judge 

relative reliability of different databases, measurement devices, and data 

collection procedures. 

Two omnibus tests, Kolmogoroff-Smirnoff and Cramér-von Mises, 

confirmed distributional differences between treatment and control groups, 

supportive of the propensity score matching results. The third, oando, revealed 

that the data might be an amalgam of two regions, center and extremes. Future 

explorations could introduce an indicator variable reflecting such a partition, or, 

fractionate into individual analyses. 

The correlation between daily mean temperature and CONTRAILS0 of 

0.1267 was consistent with an association of higher mean temperatures at ground 

level with absence of contrails. This was in agreement with the minority; most 

prior studies have indicated a net warming effect, but inconclusively (Mims, 

Chambers & Oostra, n.d.). The NCDC data calculates its reported daily mean 

temperatures based upon the actual operating hours for that specific station (Lott, 

2010). Mean temperature theoretically might also be defined as the mean of 24 

hourly readings, or many other possible variants. Alternatively, the median 

measurement might be a reasonable reflection of central tendency. These 
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considerations could cloud conclusions. Because the contrails effect upon daily 

mean temperature was not the focus of this analysis, techniques employed were 

not aimed at obtaining such an estimate. Therefore, although interesting, any 

inferences regarding daily mean temperature are merely ancillary. 

Author Contributions 

The seminal concept of subjecting contrail-related data to causal inference was by 

J.H.B., and subsequently developed and discussed by J.H.B. and D.S.B. The 

logistic regression was coded in SAS by J.H.B. The remainder of the research, 

SAS coding, and all writing was performed by D.S.B. 
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Identifying the relationship between the migration attractiveness of the European Union 
countries and their level of socio-economic development is investigated. An approach is 
proposed identify influences on migration socio-economic characteristics, by aggregating 
and reducing their diversity, and substantiating the cause-and-effect relationships of the 
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Introduction 

Migration is “one of the most important challenges of the 21st century” 

(Albertinelli et al., 2011; “Migrants in Europe”, 2012). This phenomenon, caused 

by rising unemployment, increasing crime, the destruction of the traditional 

indigenous way of life, increasing the burden on the budget, and many other 

negative consequences, particularly when unregulated or illegal urges 

governments of developed countries to take certain measures to regulate 

migration flows within the appropriate migration policies. 

The problems of developing an effective migration policy are also becoming 

more pressing in the European Union (EU), particularly because of the open 

borders within the framework of this community. In such a situation, the 

regulation of migration within the EU is usually associated with exposure to the 

factors generating the process and the living conditions of the population, of 

which, according to experts, the most important is the difference in the levels of 

living of the population and socio-economic development of the community. 

mailto:t_tikhomirova@mail.ru
mailto:live_wire@mail.ru
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An important stage of the development and validation of measures of 

migration policy in the EU is the clusterization of countries within homogeneous 

groups in terms of socio-economic development and identification of the main 

reasons - factors that determine the patterns of intra-group and between group 

processes. In this regard, the construction of a sustainable clusterization of EU 

countries in terms of the attractiveness of migration is considered, as well as the 

identification of factors that have an impact on migration, and cause the 

differences in the development of EU countries, is relevant.  

In this study, the 29 countries of the European Union: Austria, England, 

Belgium, Bulgaria, Hungary, Germany, Denmark, Greece, Ireland, Spain, Italy, 

Cyprus, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, 

Portugal, Romania, Slovakia, Slovenia, Finland, France, Croatia, Czech Republic, 

Sweden, Estonia were examined for the period of 2008 to 2010, on 84 social, 

economic and political indicators: compensation of employees, GDP per capita in 

PPS, life expectancy at birth by sex, the number of pupils and students, 

self-reported unmet need for medical examination or treatment by income quintile, 

etc. (Sartori, 2012; "Migration and migrant population statistics", 2015; Institul 

National de Statistica, n.d.; National Statistics Office, Malta, n.d.). All these 

characteristics are given in comparable units of measurement. 

In general, the source data set is a parallelepiped (see Figure 1), where the 

axis 
iP  belongs to EU member states 1.29i  , the axis Xj belongs the previously 

mentioned socio-economic and demographic characteristics of EU countries 

1.84j  , and the axis tk is time interval, 1.3t  . 

 
 

 
 
Figure 1. Parallelepiped of initial data on indicators of the attractiveness of the EU 

member states migration 
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When considering the information set numerous problems appear: 1) 

selecting the informative features that have a significant statistical effect on the 

migration, 2) reducing the dimensions of the array of information and the 

transition to the matrix representation of the data, 3) selecting the correct 

mathematical tools for analyzing small samples in which the number of signs 

exceeds the number of objects (29 × 84), making it impossible to construct the set 

econometric models, 4) recovering the gaps in the baseline data, 5) leveling the 

effect of multicollinearity between variables without significant loss of 

information content of the feature space (Tikhomirov, Tikhomirova, Oushmaev, 

2011).  

The first problem (the assessment of the relationship between factors and 

migration attractiveness of countries) was solved in several stages. With the help 

of multiple correlation analysis those features that have the greatest impact on 

statistical indicators of officially registered immigrants and emigrants were 

selected from the total number of socio-economic and demographic indicators. It 

was found that 32 of the 84 characteristic have a significant impact on 

immigration and 9 characteristic have a significant impact on emigration. 

In the next step the combined influence of selected characteristics on 

migration attractiveness of countries was investigated, using the approach 

proposed by the authors: scaling of countries by aggregated, randomized 

indicators. This approach lies in the fact that the selected indicators are assigned 

levels according to the following principle: if the data has a direct correlation to 

the corresponding endogenous variable, the number of officially registered 

emigrants, or the number of registered immigrants, i.e., the correlation coefficient 

between the factor variable and efficient variable is significant and positive, then 

the ranks assigned to each variable are as follows: the observation with the 

highest value is assigned the maximum rank and levels are in descending order.  

If the variable has an inverse relationship with the endogenous variable, i.e. 

the correlation coefficient is significant and negative, then the ranks are assigned 

to each variable in the reverse order: the observation with the largest value has a 

rank corresponding to one and then ranks are arranged in ascending order. Then 

the sum of the ranks corresponding to all variables influencing the emigration and 

immigration for each country is calculated: 

 

 i ijj
R R   (1) 
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where i is the serial number of the country 1.29i  ; j is the serial number of 

variable Xj, 1.9j   (for emigration) and 1.32j   (for immigration), Ri is the sum 

of the ranks in the country with the number of i, Rij is the rank assigned to the ith 

observation of the jth variable.  

In the next step, the percentage deviation of the sum of the rank of each 

country from the median level of emigration and immigration in the EU 

respectively is calculated: 

 

 
 

*100%
i

i

R M

M


    (2) 

 

where M is the median for all Ri. 

The scaling was produced with respect to values of percentage: from the 

largest percentage to the lowest value of percentage. The results of the 

calculations by the variables of the attractiveness of emigration are presented in 

Figure 2. Figure 3 shows the ranking of EU countries, which was built for the 

number of officially registered emigrants per thousand inhabitants. 

 

 
Figure 2. Distribution of the EU countries with respect of emigration attractiveness 
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Figure 3. The distribution of EU countries by number of registered emigrants per 

thousand inhabitants 

 

 

Comparing the histograms placed in Figure 2 and Figure 3 indicates that 

these extreme values are the same. This indicates that the selected explanatory 

variables are really informative and their joint effect on the attractiveness of 

emigration is significant. Moreover, in Figure 2 and Figure 3, heterogeneity of the 

EU countries by selected characteristics is observed (their scatter relative to the 

EU median level is greater than 70%), which leads to the need for clustering of 

countries by studied characteristics. Similar results were obtained during the 

distribution of countries by number of immigrants and the characteristics that 

affect the level of immigration. 

The next problem which we solved in this paper was caused by 

multicollinearity selected features. Statistics of Pearson has confirmed the 

presence of multicollinearity in features of emigration attractiveness 

 2 2

.60.8 50.9est tab    on 99% confidence level. It should be noted that the 

multicollinearity of the features of immigration attractiveness was not statistically 

established. 

Cluster analysis (see Figure 4), which was built for the 9 variables of 

emigration attractiveness, also shows a relationship between them. 
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Figure 4. Cluster analysis dendrogram constructed for the 9 variables of emigration 

attractiveness using method farthest neighbor (the square of the Euclidean metric) 

 

 
 

The dendrogram (Figure 4) shows that the variables numbered 3, 4, 9 are 

collinear. Step by step, we removed one variable, which had the least variation, 

from consideration. This meant that the space variables of emigration 

attractiveness of EU countries were reduced with no loss of informativity and the 

problem of multicollinearity was solved. Statistics of Pearson after the removal of 

collinear variables (no. 4 and 9) was:  2 2

. .32.8 38.9est tab    for α = 0.01. 

A similar approach was applied to reduce the feature space on the 

immigration attractiveness of EU countries. 
 
 

 
Figure 5. The dendrogram of the cluster analysis for the 32 features of immigration 

attractiveness of the EU (the square of the Euclidean metric) 
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As follows from the dendrogram (Figure 5), many of the characteristics are 

closely related, although the statistic of Pearson did not confirm the presence of 

multicollinearity for them, apparently, due to the excessive multi-dimensionality 

(the number of variables, in this case exceeds the number of observations). For 

example, variables number 1 and 3, as well as 5 and 6, are collinear so for further 

research it is advisable to leave only one of each pair, based on the principle that 

the most preferred variable is the one with higher variability. 

Reduction of the feature space of immigration attractiveness was conducted 

in several iterations. Moreover, in each iteration of the classification we built on a 

selected set of variables until the requirements of sustainability were met 

(Tikhomirov et al. 2011). In order to obtain a stable classification 9 iterations took 

place. The final dendrogram of cluster analysis of EU countries by immigration 

attractiveness based on many of its defining characteristics is represented in 

Figure 6. 
 
 

 
 
Figure 6. The dendrogram of cluster analysis of immigration attractiveness of the EU 

countries by using far neighbor method (the square of the Euclidean metric) 

 

 
 

From the obtained clustering of countries it follows that they can be divided 

into two groups of immigration attractiveness (see Table 1 and Figure 7). The first 

group includes countries of the former capitalist camp, and the second group has 

the countries of the former socialist camp. Luxembourg (the object no.15) is 

located out of the general mass of EU countries and cannot be added to either of 

the groups. 
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Table 1. The distribution of EU countries by immigration attractiveness by homogeneous 

groups 
 

1 group 
Belgium, Denmark, Germany, Ireland, Greece, Spain, 
France, Italy, Cyprus, Malta, the Netherlands, Austria, 
Portugal, Finland, Sweden, England, Norway. 

2 group 
Bulgaria, The Czech Republic, Estonia, Latvia, 
Lithuania, Hungary, Poland, Romania, Slovenia, 
Slovakia, Croatia. 

Unclassified country Luxembourg. 

 
 

On the map (Figure 7) these three groups are displayed. The blue color 

indicates the countries included in the first group, and the red indicates those in 

the second. Countries which are not included in the review are white. 
The quality of the classification was confirmed by discriminant analysis. 

The percentage of correctly classified cases (in the application of discriminant 

analysis) was 100%. From the results of the discriminant analysis, shown in 

Figure 8, it follows that the groups of countries are located far enough away from 

each other to indicate their significant differences in immigration attractiveness. 

As a result of the statistical analysis 15 variables which have an impact on 

immigration were selected from 84 variables, such as: final consumption 

expenditure of households and non-profit organizations serving households as a 

percentage of GDP, net national income as a percentage of GDP, direct 

investment flows abroad as a percentage of GDP, natural decline in population 

per thousand residents, the number of students in higher education per one 

thousand inhabitants (the number of graduates between the ages of 20-29 years in 

mathematics, science and technology per thousand population), employment rate 

by highest level of education attained (the percentage of age group 20-64 years), 

overcrowding rate by tenure status (the percentage of owner, with mortgage or 

loan), the percentage of individuals aged 16 to 74 using the Internet for ordering 

goods or services from other EU countries, the percentage of individuals in aged 

16 to 74 using a mobile phone via UMTS (3G) to access the Internet, number of 

deaths due to accidents, selected from standardized death rate by 100000 

inhabitants, individuals seeking information on the Internet with the purpose of 

learning, life expectancy at birth (healthy life years) and 7 variables which have 

an impact on emigration: the gross fixed capital formation, defined as 

investment’s percentage of GDP; the gross fixed capital formation, defined as 

investment’s  percentage  of  GDP;  population  of  foreigners  by  citizenship; the 
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Figure 7. The dendrogram of cluster analysis of immigration attractiveness of the EU countries by using far neighbor method (the 

square of the Euclidean metric) 
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Figure 8. The distribution of EU countries by immigration attractiveness in projections of 

the discriminant functions 

 

 
 

gender differences in the risk of poverty, the percentage from the group 65 years 

or over; the percentage of individuals aged 16 to 74 using the Internet for ordering 

goods or services from other EU countries; the volume of passenger transport 

relative to GDP. 

In order to construct models of immigration and emigration attractiveness in 

the EU countries, the method of principal components was applied to selected 

variables. At this stage, aggregate variables were built. They affect the 

attractiveness of immigration and emigration, and are used in econometric 

modeling as regressors. 

It should be noted that the classification of EU countries, held on principal 

components, retained their membership in the group (Figure 10). 
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Figure 9. The dendrogram of the cluster analysis of the EU immigration appeal, based on 

principal components 

 

 
 

This classification of countries is stable, which is confirmed by the results of 

the discriminant analysis (Figure 10). 
 
 

 
Figure 10. The distribution of the EU countries by main components of immigration 

attractiveness in projections of the discriminant functions 
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Similar calculations were carried out by emigration in EU countries. 

Classification of the EU countries of emigration attractiveness is robust and is 

presented in Figure 11 and Table 2. 
 
 

 
 
Figure 11. The distribution of the EU countries by main components of immigration 

attractiveness in projections of the discriminant functions 

 

 
 
Table 2. Distribution of the EU countries by emigration attractiveness by homogeneous 

groups 
 

1 group 

Austria, England, Belgium, Hungary, Germany, Greece, 
France, Italy, Cyprus, Latvia, Lithuania, Netherlands, 
Norway, Poland, Portugal, Finland, Croatia, Sweden, 
Estonia. 

2 group Denmark, Ireland, Malta. 

3 group 
Bulgaria, Spain, Romania, Slovakia, Slovenia, Czech 
Republic 

Unclassified country Luxembourg. 

 
 

Consider the results of principal component analysis for the characteristics 

of the immigration and emigration attractiveness of EU countries. The system of 

equations of principal components of immigration is as follows: 
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1 2 4 5 7 14 15 16 18

24 25 26 27 28 33 34

2 2 4 5 7 14 15 16 18

24 25 2

0.22 0.14 0.25 0.3 0.1 0.03 0.28 0.36

0.3 0.30 0.3 0.25 0.24 0.35 0.22

0.27 0.09 0.12 0.02 0.46 0.39 0.19 0.07

0.06 0.19 0.29

F x x x x x x x x

x x x x x x x

F x x x x x x x x

x x x

        

      

       

   6 27 28 33 34

3 2 4 5 7 14 15 16 18

24 25 26 27 28 33 24

4 2 4 5 7 14 15

0.39 0.32 0.19 0.28

0.34 0.62 0.42 0.27 0.15 0.04 0.34 0.01

0.01 0.16 0.08 0.04 0.25 0.07 0.04

0.47 0.03 0.13 0.39 0.32 0.49 0.

x x x x

F x x x x x x x x

x x x x x x x

F x x x x x x

   

       

      

       16 18

24 25 26 27 28 33 24

00 0.17

0.15 0.26 0.28 0.00 0.01 0.22 0.16

x x

x x x x x x x



      















  (3) 

 
In the component F1 the following variables have the greatest weight: 7 (the 

natural population change per 1000 inhabitants), 18 (the overcrowding rate by 

tenure status), 24 (the percentage of individuals aged 16 to 74 using the Internet 

for ordering goods or services from other EU countries), 25 (the percentage of 

individuals in aged 16 to 74 using a mobile phone via UMTS (3G) to access the 

Internet), and 26 (the percentage of the inhabitance from age 16 to 74 who use a 

laptop with wireless connection to access the Internet). Moreover, all variables 

except 18 have positive weights. It was decided that the F1 describes the technical 

equipment of the country. 

In the component F2 the following variables have the greatest weight: 14 

(the students in the tertiary education system per 1000 inhabitants), 15(science 

and technology graduates, defined as tertiary graduates in science and technology 

per 1000 of population aged 20-29 years and graduates in mathematics, science 

and technology per 1000 of population aged 20-29), 27 ( number of deaths due to 

accidents, selected from standardized death rate by 100000 inhabitants), and 28 

(individuals seeking information on the Internet with the purpose of learning, 

from individuals aged 16 to 74, who used the Internet within the last three months 

before the survey). All variables included in the component have negative 

weights. In this situation, it was assumed that F2 is responsible for the low level of 

skills of the economically active population. 

In the component F3 the following variables have the greatest weight: 2 (the 

final consumption expenditure of households and non-profit institutions serving 

households measured as percentage of GDP), 4 (the net national income), 16 (the 

employment rate by highest level of education attained, from the age group 20-64 

years. All variables included in this component have positive weights, so we 

considered it appropriate to characterize the F3 as the level of production. 
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In the component F4 the following variables have the greatest weight: 2 (the 

final consumption expenditure of households and non-profit institutions serving 

households as a percentage of GDP), 7 (the natural population change per 1000 

inhabitants), 14 (the students in the tertiary education system per 1000 

inhabitants), and 15 (science and technology graduates, defined as tertiary 

graduates in science and technology per 1000 of population aged 20-29 years and 

graduates in mathematics, science and technology per 1000 of population aged 

20-29). F4 can be interpreted as a country with a production oriented economy. 

Principal component analysis applied to the variables of emigration 

attractiveness identified the following factors: 

 

 

1 1 2 3 5 6 7 8

2 1 2 3 5 6 7 8

3 1 2 3 5 6 7 8

0.55 0.16 0.39 0.26 0.43 0.42 0.31

0.15 0.76 0.19 0.04 0.39 0.15 0.43

0.16 0.10 0.24 0.70 0.30 0.22 0.53

F x x x x x x x

F x x x x x x x

F x x x x x x x

      

      

      







  (4) 

 
In the component F1 the following variables have the greatest weight: 1 (the 

gross fixed capital formation, defined as investment’s percentage of GDP), 6 (the 

gender differences in the risk of poverty, the percentage from the group 65 years 

or over), 7 (percentage of individuals aged 16 to 74 using the Internet for ordering 

goods or services from other EU countries). The first variable has a positive 

weight, and the other two have negative. This suggests that F1 is responsible for 

the underdevelopment of the domestic market of a country. 

In the component F2 the following variables have the greatest weight: 2 (the 

net national income) and 8 (the volume of passenger transport relative to GDP). 

All variables included in this component have positive weights. In this regard, F2 

can be interpreted as the skill level of the economically active population in a  

country. 

In the component F3 the following variables have the greatest weight: 5 

(population of foreigners by citizenship) and 8 (the volume of passenger transport 

relative to GDP). It was decided that the component F3 is responsible for the 

shortage of labor in a country. 

For the studied countries, binary choice econometric models were built by 

panel data using principal components, which allowed us to quantify the degree of 

influence of identified factors in the migration attractiveness of the EU countries.  

The logit model for immigration in the EU countries, which is based on principal 

components (see Equation 3) is presented in Table 3. 
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As can be seen from the results of Table 3 coefficients of regressors F1 and 

F2 are statistically different from zero. In our case, confidence intervals for the 

parameter estimates 
1̂  and 

2̂  do not cover the zero on 95% confidence level. 

Factors F3 and F4 are not statistically significant, so on the second iteration of the 

modeling process they were removed from consideration (see Table 4). 
 
 
Table 3. Distribution of the EU countries by emigration attractiveness by homogeneous 

groups 
 

 
 
 
Table 4. Statistical characteristics of the quality of the logit model of immigration 
 

 
 
 

Logit model of immigration in EU countries has the form: 

 

    
1 2

1 2 1 2

0.9 0.3 0.6

0.9 0.3 0.6 0.9 0.3 0.6

1
1 1

1 1
И

F F

i i i iF F F F

e
P y x P y x

e e

 

   
   

 
  (5) 

 
Factors F1 and F2 have an impact on immigration in the EU countries. The 

first factor F1 has a positive impact, but factor F2 has a negative one. It can be 

reasonably argued that an increase in technical equipment (development of IT 
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technologies) and decrease of low-skilled economically active population 

increases the probability of a favorable immigration situation in the country. The 

level of well-being and the production orientation do not have a significant impact 

on the immigration attractiveness of the country. The logit model of emigration 

attractiveness, built on the principal components (see Equation 4) has the form: 

 

    
1 2 3

1 2 3 1 2 3

0.8 0.4 0.7 0.6

0.8 0.4 0.7 0.6 0.8 0.4 0.7 0.6

1
1 1И

1 1

F F F

i i i iF F F F F F

e
P y x P y x

e e

  

     
   

 
  (6) 

 

The results of the calculation of the migration logit model for our binary 

data are shown in Table 5. 
 
 
Table 5. Statistical characteristics of the quality of the logit model of emigration 
 

 
 
 

Components F1, F2, F3 and the constant have a significant impact on the 

amount of emigration. Econometric modeling of the attractiveness of emigration 

has revealed that with an increase in the production component of the economy 

and the labor shortage in the country, as well as a reduction of the development of 

the internal market, the probability of the country’s emigration attractiveness 

grows. 

Conclusions 

From 15 variables that influence the number of immigrants in the EU, we 

identified four latent factors of immigration attractiveness: F1 describes the 

technical equipment of the country; F2 – the low level of skills of the 

economically active population; F3 – level of production; F4 – as a production 

oriented economy of the country. From 9 variables that influence the number of 

immigrants in the EU, we identified three latent factors of immigration 



STATISTICAL MODELING OF MIGRATION ATTRACTIVENESS 

273 

attractiveness: F1 – underdevelopment of the domestic market of the country; F2 – 

a scientific backwardness of the country; F3 – the shortage of labor in the country. 

Using an iterative approach of cluster analysis, discriminant analysis, and 

factor analysis we have received the stable classification of countries by the level 

of immigration and emigration. The countries were divided into two groups 

according to the immigration attractiveness. The first group included former 

capitalist countries (Belgium, Denmark, Germany, Ireland, Greece, Spain, France, 

Italy, Cyprus, Malta, the Netherlands, Austria, Portugal, Finland, Sweden, 

England, Norway) and the second included ex-socialist countries (Bulgaria, 

Czech Republic, Estonia, Latvia, Lithuania, Hungary, Poland, Romania, Slovenia, 

Slovakia, Croatia). This result has great importance, since during the study it was 

revealed that the EU, which has long sought to achieve economic and social 

equality, has not been able to overcome the historically formed significant 

differences in the levels of development. Luxembourg was not identified in any 

group, which confirms that Luxembourg has the economic status of a free 

economic zone. 

According to the emigration attractiveness, EU countries were divided into 

three stable groups. The first group included Austria, Belgium, Great Britain, 

Hungary, Germany, Greece, Italy, Cyprus, Latvia, Netherlands, Norway, Poland, 

Portugal, Finland, France, Croatia, Sweden, Estonia, the second included 

Denmark, Ireland, Malta, and the third included Bulgaria, Spain, Romania, 

Slovakia, Slovenia, Czech Republic. Again Luxembourg was not identified in any 

group. 

Econometric modeling of the immigration attractiveness allowed us to 

explain that increasing in technical equipment (development of IT technologies) 

and increasing skills of the economically active population increases the 

likelihood of a successful immigration situation in the country. Immigration 

situation does not change with the growth of the welfare of a country and the 

industrial economy orientation.  

Econometric modeling of emigration attractiveness revealed that it is 

determined by an increase in the production component of the country's economy 

and labor shortages. With increasing underdevelopment of the domestic market 

the likelihood of a favorable emigration environment is decreased. The results of 

this study may be of practical interest for a variety of community and government 

organizations in making effective decisions in the field of migration policy by 

influencing the work of selected factors, as well as to predict the level of 

migration attractiveness in different countries. 
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Open source programming languages such as R allow statisticians to develop and rapidly 

disseminate advanced procedures, but sometimes at the expense of a proper vetting 
process. A new example is the least trimmed squares regression available in R’s lqs() in 
the MASS library. It produces pretty regression lines, particular in the presence of 
outliers. However, this procedure lacks a defined standard error, and thus it should be 
avoided. 
 
Keywords: R, lqs(), least trimmed squares regression 

 

Introduction 

As new methods appear software vendors race to disseminate them, providing a 

competitive edge in increasing sales. In the past half century there were numerous 

examples where this led to the inclusion of procedures that were inappropriate or 

destructive. For example, consider the mainframe version of SPSS’s general 

linear model command in the 1980’s. Option 9, a contrast coding least squares 

regression approach, due to Overall and Spiegel (1969), was subsequently shown 

to test no known statistical hypothesis (see, e.g., Blair & Higgins, 1978a; Blair, 

1978; Blair & Higgins, 1978b). Another example is the R aov () function “when 

conducting analysis of covariance” which “does not work correctly” (Schumacker, 

2015, p. 288). 

mailto:akiva@wayne.edu
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One of many modern approaches to regression is the least squared trimmed 

means, where the sum of squared residuals are replaced with the “sum of the q 

smallest squared residuals, where q is roughly n/2” (Verzani, 2004, p. 100). 

Hence, this is essentially an M (maximum likelihood) estimator. It is invoked in R 

via the lqs() function located in the MASS package.  

Rousseuw and Leroy (1987) indicated least trimmed means regression is 

resistant to outliers (see also Verzani, 2004, p. 100). Ripley (2004) noted that least 

trimmed squares is based on minimizing “the sum of squares for the smallest q of 

the residuals,” where q takes on various values (e.g., S+ and R sets q to 90% as 

the default). The result is a regression model that “maximizes accuracy to the q% 

of data. The quantile squared residual... [with] floor((n + p + 1)/2)“ (Ripley, n.d.), 

where n are data points and p are the regressors. lqs() is exact with one regressor. 

(For further details, see Fox, 2002. Note that this method is ill equipped to recover 

if there are no outliers, when ordinary regression should have been used. Once 

data are trimmed, they are removed from further calculations whether they should 

have been eliminated or not.) 

Unfortunately, the lqs () function is not associated with a defined standard 

error. (This is a common problem with maximum likelihood applications. For 

example, see Holford, (2002, p. 45) regarding a 2×2 table with zero frequencies in 

a cell). Hence, the purpose of this study is demonstrate this concern with respect 

to lqs(). 

Methodology 

The number of repetitions per experiment was 100,000, conducted on an Intel 

Sandy Bridge i7-2600K 3.4GHz CPU-based computer, with ultra-high speed 

Corsair Vengeance Low Profile 4x4GB RAM, Crucial M4 256GB solid state hard 

drive, and the Windows 7 Ultimate 64 bit operating system. This equipment was 

necessary due to the well known lack of speed of the R platform, and even so the 

results compiled in each table took more than 45 minutes to complete. Data were 

produced using R rnorm(). To determine the veracity of the coding, the normal 

theory ordinary least squares method was used for comparison using R’s lm(). 

Standard error of beta and the lqs() method. 

The t test is defined as beta divided by the standard error of beta (Brase & Brase, 

2013, p. 536; Mann, 1995, p. 667), which is then associated with df = N – 2 for 

the t (or Z for large samples) distribution. It is generally not optimal to use the 
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normal theory formula for the standard error (i.e., the standard deviation divided 

by the sample size), because it is not robust to non-normally distributed. (There 

are potential alternatives, such as the Winsorized sample standard deviation, or a 

jackknife or bootstrap approximation. See, e.g., Sawilowsky & Fahoome, 2003, p. 

22, 376 - 382. However, there are limitations to those alternatives.)  

Wilcox (1996) provided alternatives in computing the standard error for 

other hypothesis tests (e.g., the sample median), but that was only after a test was 

presented using the robust estimator in the numerator combined with the normal 

curve theory standard error in the denominator (see, e.g., p. 120). The same 

approach could be used here, with the p-value associated with beta obtained from 

lqs() determined via the normal curve theory standard error (i.e., which is 

produced by the lm() routine).  

Results 

Using the standard error under lm(y ~ x) (i.e., beta associated with the ordinary 

least squares regression) as the denominator for the test of beta obtained from 

lqs() was found to be unsatisfactory, with inflated Type I errors from between 7.3 

and 104 times nominal alpha, as noted in Table 1 below. 
 
 
Table 1. Type I error rates for n1 = n2 = 30; r = 0.0; 100,000 repetitions 

 

α 
Test 

lm() lqs() 

0.050 0.04972 0.36455 

0.010 0.01041 0.21966 

0.001 0.00102 0.10248 
 

Note: Values in bold exceed Bradley's (1978) liberal definition of robustness. 

 
 

An attempt was made to improve the standard error used in lqs() by 

replacing the original y values with the fitted values of y obtained from lqs(). The 

standard error of the estimate (SEE, or residual standard deviation) was based on  
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where y' was obtained as fitted values from lqs() instead of the fitted values from 

lm(). The standard error of beta (SEb) is determined by 
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Assembling the t test on beta as a ratio of beta divided by (2), 

 t =
b

SEb
  (3) 

 

the obtained t is significant if 
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Although as noted in Table 2 there was improvement in the Type I error rates, the 

inflation was nevertheless from between 5.8 and 39.4 times nominal alpha, which 

is not acceptable. (Note the values for lm() differed slightly from those in Table 1 

above due to the change in the seed number). 
 
 
Table 2. Type I error rates for n1 = n2 = 30; r = 0.0; 100,000 repetitions 

 

α 
Test 

lm() lqs() 

0.050 0.05029 0.29371 

0.010 0.01061 0.14499 

0.001 0.00109 0.04151 
 

Note: Values in bold exceed Bradley's (1978) liberal definition of robustness. 

 
 

Regarding the least median squares (lms) option (i.e., “method = lms” 

option in lqs (), which can be used to invoke a variety of robust methods), 

subsequent to a Monte Carlo simulation Paranagama (2010) concluded, "In 

practice, the use of LMS is limited by the absence of formulas for standard errors” 

(p. 35). This difficulty applies to the default method (least trimmed squares), and 

hence, lqs() must be abandoned if the purpose of conducting the linear model is to 
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compute a t test on beta until an adequate standard error for the least squares 

regression algorithm can be found.  

Conclusion 

An appropriate standard error has not been derived for the lqs() method. Because 

the t test on β requires the standard error, various options were considered: (1) the 

p-value associated with β obtained from lqs () was determined via the normal 

curve theory standard error via the lm() procedure, which failed because it 

produced Type I errors as large as 104 times nominal α, and (2) the standard error 

was obtained by replacing the original y values with the fitted values of y obtained 

from lqs(), which was an improvement, but also failed because it produced Type I 

errors as large as 39.4 times nominal α.  

The lqs() procedure produces pretty regression equations, and visually fits 

data in situations with outliers better than the normal theory lm(). However, the 

absence of a defined standard error precludes its usage in practice. Moreover, the 

method is not even being close to maintaining nominal alpha. The matter will 

become increasingly serious as applied researchers continue to be attracted to its 

highly publicized robustness regression lines, ease of availability in R, and 

implement it in applied work. For example, lqs() was used by Fan, Lu, Madnick, 

and Cheung (2001) in a study on data integration in information systems, Abo-

Khalil and Abo-Zied (2012) in a study of sensorless control of wind turbines, and 

Gidnaa and Domínguez-Rodrigo (2013) in a study of human femoral length from 

fragmented specimens. 

In conclusion, new methods should be avoided until such time that they are 

fully vetted. If this caution was true in the past with expensive, major commercial 

software such as SPSS, then how much more so caution should be invoked when 

using free, open source software such as R. 
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syntax program to determine an array of commonly-employed effect sizes and confidence 
intervals not readily available in SPSS functionality, such as the standardized mean 
difference and r-related squared indices, for a between-group design. 
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Introduction 

The purpose of this research is to provide an application for researchers and 

practitioners interested in a SPSS syntax program (Walker, 2015) to determine an 

array of commonly-employed effect sizes and confidence intervals not readily 

available in SPSS functionality, such as the standardized mean difference and 

r-related squared indices, for a between-group design using descriptive statistics: 

means, standard deviations, and sample sizes.  

As a brief précis, in the social sciences, there has been a sustained effort by 

researchers, editorial boards, and professional organizations for mandatory 

reporting of effect sizes with statistical significance testing (American 

Educational Research Association, 2006; American Psychological Association 

[APA], 2010; Cohen, 1992; Ferguson, 2009; Levine & Hullett, 2002; Thompson, 

1998; Wilkinson & The APA Task Force on Statistical Inference, 1999). Cohen 

(1988, p. 10) noted that an effect size, “…serves as an index of degree of 

departure from the null hypothesis.” When reported with statistically significant 

results, effect sizes can provide information, for example, pertaining to the extent  
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of the difference between means or the magnitude of a relationship in terms of the 

proportion of the total variance accounted for in an outcome (Cohen, 1988). 

Effect sizes can also be employed to indicate the functional, applied effect of an 

outcome (Nickerson, 2000). 

Ferguson (2009) and Thompson (2009) proposed that effect sizes 

differentiate generally into the subsequent categories: 1) variance accounted for 

measures such as squared indices of r; 2) corrected estimates, typically employed 

to reduce estimation bias, such as Radj
2; and 3) standardized mean differences, for 

example, Cohen’s d. The current study’s program will extrapolate effect sizes 

from all of these categories. 

Cohen (1988) suggested that for r-related squared indices, which indicate 

the proportion of variance in the dependent variable accounted for by the effect of 

the independent variable, values of .01, .06, and .14 should serve as markers of 

small, medium, and large effects, respectively. Further, Cohen (1988) defined the 

values of effect sizes for the standardized difference between means as 

small = .20, medium = .50, and large = .80. However, it should be appropriately 

noted that it is at the discretion of the researcher to determine the context in which 

qualifying labels such as “small,” “medium,” and “large” effects are being 

defined when using any effect size index. This caution has been stated by Glass, 

McGaw, and Smith (1981) with reiteration from Cohen (1988) and Thompson 

(2009). 

Lastly, there has been an emphasis in the literature (APA, 2010; Cohen, 

1994; Sapp, 2004; Vacha-Haase & Thompson, 2004; Wilkinson & The APA Task 

Force on Statistical Inference, 1999) that not only should effect sizes be reported 

with statistically significant results, but confidence intervals ought to complement 

said point estimate indices for more comprehensive analysis and interpretation of 

outcomes. As noted by Levin and Robinson (2003, p. 235), “Reporting and 

interpreting effect sizes (with corresponding confidence intervals) in multiple 

experiment studies where the effect of interest is replicated (i.e., its direction is 

confirmed) may provide readers with more useful information concerning the 

believability and magnitude of the effect…” 

Two group program 

The SPSS syntax program will create an internal matrix table to assist users in 

determining the effects pertaining to the standardized mean difference and/or the 

proportion of variance in the dependent variable accounted for by the effect of the 

independent variable for two groups. The preponderance of the ensuing formulas 
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are derived from Aaron, Ferron, and Kromrey (1998), Cohen (1988), Cohen and 

Cohen (1983), Cooper and Hedges (1994), and Richardson (1996).  

The variance accounted for effect size measures include eta squared (η2: 

Note equal to R2 (Beasley & Schumacker, 1995)), which is known to be a 

positively-biased index, particularly with small sample sizes, and is defined as: 
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where d = Cohen’s d value. 

Additionally, correction indices for η2, such as omega squared (ω2), epsilon 

squared (ε2), and Radj
2, all algebraically and theoretically-related measures (Cohen, 

1988), are part of the program and formulated as: 
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where t is the t value derived from the model as 
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M1, SD1, N1 and M2, SD2, N2 are the means, standard deviations, and sample sizes 

for Group 1 and Group 2, respectively. 

Finally, Cohen’s d is a measure of standardized mean difference and is 

defined as: 
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Note that Kraemer (1983) indicated the formula for d is optimal when both 

sample sizes are relatively equal and also large. Further, Cohen’s d is recognized 

as a biased estimate (Hedges, 1981) and; thus, Hedges’ g is a correction measure 

for this concern. It should be mentioned; however, that d and g are approximately 

equivalent when n = 30 (Hedges & Olkin, 1985). Hedges’ g is defined as: 
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For the syntax program, the squared indices’ estimated confidence intervals 

(CI) are set at 90% and based on the work of Cohen, Cohen, West, and Aiken 

(2003). For these estimated CIs, it is agreed that the sample size should be > 60, 

which, comparatively, assumes negligible error and; therefore, the absence of an 

adjustment for noncentrality. The error term for the approximated CI is defined 

as: 
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For the standardized mean difference CIs, these are set at 95%. The 

program’s estimated CI formula is based on previous research by Grissom and 

Kim (2005), Hedges and Olkin (1985), and Steiger (2004). Bird (2002) found that 

if d is < 2.00, which in social science research frequently can be the circumstance 

with middling-sized effects (Richard, Bond, & Stokes-Zoota, 2003; Rosnow & 

Rosenthal, 2003), adjustment for noncentrality is not compulsory. The error term 

for this approximated CI is defined as: 
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Note: For any CI within the program, the user can alter it by changing the Z value 

within the syntax, for example, to values such as 1.28 (80% CI), 1.645 (90% CI), 

1.96 (95% CI), or 2.58 (99% CI), where Cohen (1990, p. 1310) observed “I don't 

think that we should routinely use 95% intervals: Our interests are often better 

served by more tolerant 80% intervals.” 

Results 

As seen in Appendix A, the user would put the two-group descriptive data (M1, 

SD1, N1 for Group 1 and M2, SD2, N2 for Group 2) in the space between BEGIN 

DATA and END DATA along with the total sample size (N). Thus, these 

descriptive data in the example from the program are, in group order, 16.45 2.23 

30 11.77 4.66 34 64 and represent continuous data for the dependent variable 

(Depression Score) and categories for the independent variable Group (i.e., Group 

1 [Treatment] and Group 2 [Control]). 

Once the program is run, the results show that the matrix produced will 

cluster the effect sizes by the categories noted previously: standardized means 

difference, squared index, and corrected squared indices. Additionally, the matrix 

generates an overall model post-hoc power value, which is predicated on alpha 

established at .05 and the particular sample sizes for Group 1 and Group 2.  

As can be seen in the results from Table 1, the standardized mean difference 

effect size for Cohen’s d was 1.256 or a “large” effect of over one standard 

deviation difference in Depression Score between Group 1 and Group 2 with 95% 

CI at (1.109, 1.403) and overall model power = .999, where power ≥ .80 is desired 

in social science research (Nunnally, 1978). The correction for Cohen’s d, Hedges’ 

g, was very comparable in value at 1.241 (1.094, 1.387). 
 
 
Table 1. Standardized Mean Difference, Confidence Intervals, and Model Post-Hoc 

Power. 
 

Cohen's d 95%CIL 95%CIU 
 

Hedges' g 95%CIL 95%CIU 
 

Power 

1.256 1.109 1.403   1.241 1.094 1.387   0.999 
 

Note. CI = Confidence Interval; L = Lower; U = Upper. 

 
 

For the squared and corrected squared indices, the results in Table 2 

indicated that the proportion of variance in the dependent variable accounted for 

by the effect of the independent variable was “large” overall for all of the various 

indices. As would be expected, these effect size measures ranged from a low of 
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25.9% for the correction Radj
2 (90% CI .089, .430) to a high of 28.3% for the non-

corrected η2 (90% CI .107, .458). 
 
 
Table 2. Proportion of Variance in the DV Accounted for by the Effect of the IV and 

Confidence Intervals. 
 

η2 90%CIL 90%CIU 
 

Radj
2 90%CIL 90%CIU 

 
ω2 90%CIL 90%CIU 

 
ε2 90%CIL 90%CIU 

.283 .107 .458   .259 .089 .430   .274 .100 .448   .271 .098 .444 
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Appendix A: SPSS syntax two group program for Cohen's 
d, Hedges’ g, η2, Radj

2, ω2, ε2, confidence intervals, and 
power. 

DATA LIST LIST /M1 SD1 (2F9.3) N1 (F8.0) M2 SD2 (2F9.3) N2 N (2F8.0). 

*********************************************************************** 

Put your two-group data (M1, SD1, N1 for Group 1 and M2, SD2, N2 for Group 2) in 

the space between BEGIN DATA and END DATA along with the total sample size (N) 

***********************************************************************. 

BEGIN DATA          

16.45 2.23 30 11.77 4.66 34 64 

END DATA. 

COMPUTE POOLD = ((N1-1)*(SD1**2)+(N2-1)*(SD2**2))/((N1+N2)-2). 

COMPUTE COHEND = ABS((M1-M2)/SQRT(POOLD)). 

COMPUTE D1 = N/(N1*N2) + COHEND**2/(2*N). 

COMPUTE HEDGESG = COHEND*(1-(3/(4*(N1 + N2)-9))). 

COMPUTE G1 = N/(N1*N2) + HEDGESG**2/(2*N). 

COMPUTE CRITICAL = 0.05. 

COMPUTE K = 1. 

COMPUTE H = (2*N1*N2)/(N1+N2). 

COMPUTE NCP = ABS((COHEND*SQRT(H))/SQRT(2)). 

COMPUTE ALPHA = IDF.T(1-CRITICAL/2,N1+N2-2). 

COMPUTE POWER1 = 1-NCDF.T(ALPHA,N1+N2-2,NCP). 

COMPUTE POWER2 = 1-NCDF.T(ALPHA,N1+N2-2,-NCP). 

COMPUTE B = POWER1 + POWER2. 

COMPUTE ETA2 = COHEND**2/(COHEND ** 2 + 4).  

COMPUTE EPSILON = 1-(1-ETA2) * (N1  +  N2-1) / (N1  +  N2-2). 

COMPUTE TTEST = COHEND  * SQRT((N1  *  N2) /(N1  +  N2)). 

COMPUTE OMEGA = (TTEST**2-1)/(TTEST**2 + N1 + N2 -1). 

COMPUTE SEETA1 = (1-ETA2)/SQRT(N1 + N2-1). 

COMPUTE SEETA2 = 2/(N1 + N2 - 2). 

COMPUTE SEETA3 = SQRT(SEETA2 + 4*ETA2). 

COMPUTE SEETA = SEETA1 * SEETA3. 

COMPUTE TTEST = COHEND  * SQRT((N1  *  N2) /(N1  +  N2)). 

COMPUTE ADJR2 = ETA2 - ((1-ETA2)*(2/(N1 + N2 -3))). 

COMPUTE ADJR2A = (((4*ADJR2)*(1-ADJR2)*(N-K-1)**2)). 

COMPUTE ADJR2B = (N**2-1)*(N+3). 

COMPUTE ADJR2C = ADJR2A/ADJR2B. 
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COMPUTE ADJR21 = SQRT(ADJR2C). 

*********************************************************************** 

NOTE: Confidence Intervals can be altered below by changing the Z = value to 

either 1.96 = (95%) or 2.58 = (99%) For the squared indices, they are at 90% 

***********************************************************************. 

COMPUTE Z = 1.645. 

COMPUTE ADJR2L = (ADJR2-(Z*ADJR21)). 

COMPUTE ADJR2H = (ADJR2+(Z*ADJR21)). 

COMPUTE OMEGA = (TTEST**2-1)/(TTEST**2 + N1 + N2 -1). 

COMPUTE SEE1 = (1-EPSILON)/SQRT(N1  +  N2-1). 

COMPUTE SEE2 = 2/(N1 + N2 - 2). 

COMPUTE SEE3 = SQRT(SEE2 + 4*EPSILON). 

COMPUTE SEEPSILON = SEE1 * SEE3. 

COMPUTE SEO1 = (1-OMEGA)/SQRT(N1  +  N2-1). 

COMPUTE SEO2 = 2/(N1 + N2 - 2). 

COMPUTE SEO3 = SQRT(SEO2 + 4*OMEGA). 

COMPUTE SEOMEGA = SEO1 * SEO3. 

COMPUTE ETAA = (((4*ETA2)*(1-ETA2)*(N-K-1)**2)). 

COMPUTE ETAB = (N**2-1)*(N+3). 

COMPUTE ETAC = ETAA/ETAB. 

COMPUTE ETA1 = SQRT(ETAC). 

COMPUTE ETAL = (ETA2-(Z*ETA1)). 

COMPUTE ETAH = (ETA2+(Z*ETA1)). 

COMPUTE OMEGAA = (((4*OMEGA)*(1-OMEGA)*(N-K-1)**2)). 

COMPUTE OMEGAB = (N**2-1)*(N+3). 

COMPUTE OMEGAC = OMEGAA/OMEGAB. 

COMPUTE OMEGA1 = SQRT(OMEGAC). 

COMPUTE OMEGAL = (OMEGA-(Z*OMEGA1)). 

COMPUTE OMEGAH = (OMEGA+(Z*OMEGA1)). 

COMPUTE EPSILONA = (((4*EPSILON)*(1-EPSILON)*(N-K-1)**2)). 

COMPUTE EPSILONB = (N**2-1)*(N+3). 

COMPUTE EPSILONC = EPSILONA/EPSILONB. 

COMPUTE EPSILON1 = SQRT(EPSILONC). 

COMPUTE EPSILONL = (EPSILON-(Z*EPSILON1)). 

COMPUTE EPSILONH = (EPSILON+(Z*EPSILON1)). 

*********************************************************************** 

NOTE: Confidence Intervals for Cohen's d are at 95%  

***********************************************************************. 
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COMPUTE Z = 1.96. 

COMPUTE GH = (HEDGESG+(G1*Z)). 

COMPUTE GL = (HEDGESG-(G1*Z)). 

COMPUTE DH = (COHEND+(D1*Z)). 

COMPUTE DL = (COHEND-(D1*Z)). 

EXECUTE. 

FORMAT POOLD to DL (F9.3). 

VARIABLE LABELS COHEND 'Cohens d'/B 'Power'/ETA2 'Eta Squared'/OMEGA 'Omega 

Squared'/EPSILONL '90% CI Lower'/ 

EPSILONH '90% CI Upper'/OMEGAL '90% CI Lower'/ OMEGAH '90% CI Upper'/ETAL '90% 

CI Lower'/ADJR2L '90% CI Lower'/ 

GL '95% CI Lower'/ GH '95% CI Upper'/HEDGESG 'Hedges g'/ADJR2H '90% CI 

Upper'/ADJR2 'Adjusted R2'/DL '95% CI Lower'/ 

DH '95% CI Upper'/ETAH '90% CI Upper'/EPSILON 'Epsilon Squared'/. 

REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 

  /VARIABLES= COHEND DL DH HEDGESG GL GH B 

  /TITLE "Standardized Mean Difference, Confidence Intervals, and Model Post-Hoc 

Power". 

REPORT FORMAT=LIST AUTOMATIC ALIGN(LEFT) 

MARGINS (*,150) 

  /VARIABLES= ETA2 ETAL ETAH ADJR2 ADJR2L ADJR2H OMEGA OMEGAL OMEGAH EPSILON 

EPSILONL EPSILONH 

  /TITLE "Proportion of Variance in the DV Accounted for by the Effect of the IV 

and Confidence Intervals". 
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