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Reduction of the high dimensional classification using penalized logistic regression is 
one of the challenges in applying binary logistic regression. The applied penalized 
method, correlation based elastic penalty (CBEP), was used to overcome the limitation of 
LASSO and elastic net in variable selection when there are perfect correlation among 
explanatory variables. The performance of the CBEP was demonstrated through its 
application in analyzing two well-known high dimensional binary classification data sets. 
The CBEP provided superior classification performance and variable selection compared 

with other existing penalized methods. It is a reliable penalized method in binary logistic 
regression. 
 
Keywords: high dimensional, penalization, binary classification, correlation based 
penalty, LASSO, elastic net, ridge 

 

Introduction 

With advances in technology, data are becoming larger, resulting in high 

dimensional problems. One of these problems facing researchers in application is 

the number of variables p, exceeding the number of sample size n. In classical 

statistical theory, it is assumed that the number of observations is much larger 

than the number of explanatory variables, so that large-sample asymptotic theory 

can be used to derive procedures and analyze their statistical accuracy and 

interpretability. For high-dimensional data, this assumption is violated. 

To overcome this challenge, various penalized methods have been proposed 

beginning with ridge penalty (Hoerl & Kennard, 1970). It estimates the regression 
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coefficients through 2 -norm penalty. It is well known that ridge regression 

shrinks the coefficients of correlated predictor variables toward each other, 

allowing them to borrow strength from each other (Friedman, Hastie, & 

Tibshirani, 2010). The least absolute shrinkage and selection operator (LASSO) 

was proposed by Tibshirani (1996) to estimate the regression coefficients through 

1 -norm penalty. While demonstrating promising performance for many 

problems, the LASSO estimator does have some shortcomings (Zou & Hastie, 

2005). Firstly, the LASSO tends to have problems when explanatory variables are 

highly correlated. Secondly, it cannot select more explanatory variables than the 

sample size. 

Zou and Hastie (2005) proposed the elastic net penalty which is based on a 

combined penalty of LASSO and ridge regression penalties in order to overcome 

the drawbacks of using the LASSO and ridge regression on their own. Tutz and 

Ulbricht (2009) proposed correlation based penalty to encourage a grouping effect 

by using correlation between explanatory variables as weights through making a 

group of highly correlated explanatory variables to either be selected together or 

to left out altogether. Although this penalty does well when there is high 

correlation among explanatory variables, it doesn’t do as well when the 

correlation is perfect (Tan, 2012). This study applies a new penalized penalty 

proposed by Tan (2012), namely Correlation Based Elastic Penalty (CBEP), in 

penalized logistic regression, and compares it with elastic net, LASSO, and ridge 

penalties. We apply these four methods and test the classification performance on 

two well-known data sets. 

This paper is organized as follows. Methodology covers the penalized 

logistic regression methods. Data description is explained in the following section. 

The second to last section is devoted to results and discussions. Finally we end 

this paper with a conclusion. All implementations are done using elasticnet 

package in R. 

Methodology 

Penalized Logistic Regression Methods 

Logistic regression is considered one of the most important methods in several 

fields such as medicine, social science, and financial banking. It is widely used in 

binary classification problems, where the response variable has two values coded 

as 0 and 1. One of the problems that researchers face in applying logistic 

regression is the high dimensionality of the data, where the number of variables p, 
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exceeds the number of sample size n, in fields such as genomics, biomedical 

imaging, and DNA micro-arrays. Selecting an optimal subset of explanatory 

variables in order to improve the classification accuracy and to make the model’s 

interpretation easier is the main objective of the variable selection in high 

dimensional data (Pourahmadi, 2013). A procedure called penalization, which is 

always used in variable selection in high dimensional data, attaches a penalty term 

Pλ (β)
 
to the log-likelihood function to get a better estimate of the prediction error 

by avoiding overfitting. Recently, there is growing interest in applying the 

penalization method in logistic regression models. In order to extract the most 

important explanatory variables in classification problems, a series of penalized 

logistic regression methods have been proposed. For example, Shevade and 

Keerthi (2003) proposed the sparse logistic regression based on the LASSO 

penalty. Similar to sparse logistic regression with the LASSO penalty, Cawley 

and Talbot (2006) investigated sparse logistic regression with Bayesian penalty. 

Liang et al. (2013) did another investigation in the sparse logistic regression 

model using a 1
2
 penalty. There are varieties of different forms of the penalty 

term, depending on the application requirements. 

In a high dimensional classification using logistic regression, our goal is to 

classify the response variable y, which is coded as 0 and 1, from high dimensional 

explanatory variables 
px . In general, in logistic regression, the response 

variable y is a Bernoulli random variable, and the conditional probability that y is 

equal to 1 given x, which is denoted as π (x), is 
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Then, the log-likelihood becomes 
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The penalized logistic regression (PLR) is defined as 
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where λ is defined as a tuning parameter (λ ≥ 0). It controls the strength of 

shrinkage in the explanatory variables: when λ takes larger value, more weight 

will be given to the penalty term. Because the value of λ depends on the data, it 

can be computed using cross-validation method (James, Witten, Hastie, & 

Tibshirani, 2013). Before solving the PLR, it is worth centering to the y and 

standardizating to xj, so that 
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  for 

j = 1,2,…, p, in order to make the intercept (β0) equal zero. Many different forms 

of the penalty term have been introduced in the literature, including ridge penalty, 

LASSO, elastic net, and correlation based penalty. 

Ridge Regression 

One of the most popular penalties is ridge regression, which was introduced by 

Hoerl and Kennard (1970) as an alternative solution to ordinary least square when 

there is multicollinearity between explanatory variables. The ridge regression 

solves the logistic log-likelihood in Eq. (4) using 2 -norm penalized logistic log-

likelihood (i.e.,   2

1

p

j

j

P   


  ) 
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i j

PLR y x y x   
 

        (6) 

 

In ridge regression, the tuning parameter λ controls the amount of shrinkage, 

but never sets explanatory variable coefficients to be exactly equal zero. So, in 

high dimensional data when p > n, the ridge regression will not provide the 

sparsity model. Although ridge regression doesn’t have the sparsity property, it is 

preferred in high dimensional data because we expect high correlation between 

explanatory variables. The maximum likelihood solution of Eq. (6) is 
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   2

1

ˆ arg min ,
p

Ridge i j

j

y   


 
  

 
   (7) 

 

Least Absolute Shrinkage and Selection Operator  

Tibshirani (1996) proposed the least absolute shrinkage and selection operator  

(LASSO), as a penalty for variables selection by setting some variable 

coefficients’ to zero. It does both continuous shrinkage and automatic variable 

selection simultaneously. As with the ridge regression the LASSO estimates are 

obtained by maximizing the log-likelihood. Instead of using 2 -norm, the LASSO 

uses the 1 -norm on the logistic regression coefficients (i.e.,  
1

p

j

j

P   


  ). 

The penalized logistic regression using LASSO is 
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        (8) 

 

Depending on the property of the LASSO penalty, some coefficients will be 

exactly equal zero. Hence, LASSO does the variable selection. Consequently, 

LASSO has sparsity property. Although LASSO is widely used in many 

applications, it has some drawbacks. One of these drawbacks is that it is not 

robust to high correlation among explanatory variables and will randomly choose 

one of these variables and ignore the rest. Another drawback of LASSO is that in 

high dimensional data when p>n, it chooses at most n explanatory variables, 

whereas there may be more explanatory variable coefficients than n with non-zero 

values in the final model (Zhou, 2013). Solving Eq. (8) will depend on 

optimization methods. So, 

 

  
1

ˆ arg min ,
p

LASSO i j

j
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Elastic Net 

Elastic net is a penalized method for variable selection, which is introduced by 

Zou and Hastie (2005) to deal with the drawbacks of LASSO. Elastic net tries to 
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merge the 2 -norm and the 1 -norm penalties, by using ridge regression penalty 

to deal with high correlation problem while taking advantage of LASSO penalty 

in variable selection property. The elastic net logistic regression is defined by 

 

        2

1 2

1 1 1

log 1 log 1 .
p pn

i i i i j j

i j j

PLR y x y x     
  

          (10) 

 

As we observe from Eq. (10), elastic net is dependent on non-negative two tuning 

parameters λ1, λ2 and leads to penalized logistic regression solution  
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According to lemma 1 in Zou and Hastie (2005), to find the estimates of βElastic in 

Eq. (11), the given data set ( , )y X  is extended to an augmented data ( , ) y X and 

is defined by 
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As a result of this augmentation the elastic net can be written as a LASSO penalty 

and solved. Hence, the elastic net can select all p explanatory variables in the high 

dimensional when p > n and not only n explanatory variables as in the LASSO, 

because 
X  has rank p. 

Correlation Based Penalty 

Similar to elastic net, this penalty encourages a grouping effect by using 

correlation between explanatory variables as weights. This penalty is proposed by 

Tutz and Ulbricht (2009), their contribution is to make a group of highly 

correlated explanatory variables to be either selected together or to left out 

altogether. Tan (2012) reported that although the elastic net penalty does well 

when there is high correlation among explanatory variables, it doesn’t do well 

when there is perfect correlation. An extension of the correlation-based penalty to 

deal with this drawback was made in elastic net penalty. The penalty is defined as 
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where rj, j+1 is the correlation between xj and xj+1. The penalized logistic regression 

using this penalty and the estimate of βCBEP be, respectively 

 

 

      

 

1

1
2

2

1 2 , 1 1

1 1

log 1 log 1
n

i i i i

i

p p

j j j j j p

j j

PLR y x y x

r

 

     





 

 

   

 
    

 



 
  (14) 

 

    
1

2
2

1 2 , 1 1

1 1

ˆ arg min ,
p p

CBEP i j j j j j p

j j

y r       


 

 

   
      

   
    (15) 

 

CBEP is reduced to LASSO like elastic net after applying augmentation to the 

original data set for different values of λ2. 

Data Set Description 

To evaluate the four used methods, two binary classification microarray data sets 

are used: colon tumor data set and diffuse large B-cell lymphoma (DLBCL) data 

set. The colon tumor microarray data set describes the expression of 2000 genes 

in 40 tumor and 22 normal tissue samples, the aim being to construct a classifier 

capable of distinguishing between cancer and normal tissues. This set is described 

in Alon et al. (1999), and publicly available at 

http://genomics-pubs.princeton.edu/oncology/affydata/index.html. For the 

DLBCL data set, the gene expression values of 77 samples were measured by 

high-density oligonucleotide microarrays of the two most prevalent adult 

lymphoid malignancies which 58 samples of diffuse large B-cell lymphomas 

(DLBCL) and 19 samples of follicular lymphoma (FL). Each sample contains 

7,129 gene expression values. More information on this data can be found in 

Shipp et al. (2002) and it is freely available at http://www.genome.wi.mit.edu/cgi-

bin/cancer/datasets.cgi. To apply the binary classification using the four methods 

that we are considered, the type of the response variable for each data set is coded 

as a 0 and 1, where in colon data the normal equals 0 and tumor equals 1, while in 

http://genomicspubs.princeton.edu/oncology/affydata/index.html
http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
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DLBCL data, FL is set to code 0 and DLBCL is set to code 1. The classification 

function is defined as  ˆ 0.5I y  . 

Results 

To examine the performance of the correlation based elastic penalty we compare 

it with three well-known penalization methods; elastic net, LASSO, and ridge. We 

use a randomly drawn test data set. Each data set at hand was split into 10%, 20%, 

and 30% to form the test data set, respectively. This procedure is repeated 100 

times. The required tuning parameters by the ridge, LASSO, elastic net, and 

CBEP methods were performed by 10-fold cross-validation on the training data 

set. Specifically, for ridge and LASSO, the tuning parameter was 

λRidge = 5.460, 3.197, 5.590) and λLasso = (0.055, 0.091, 0.068) for each training 

data set respectively. For the tuning parameters of elastic net and CBEP, the 

solution is different, because these two methods require prior value of λ2 to 

transform the original training data set to the new augmented training data set. A 

sequence of values for λ2 is given, where 0 ≤ λ2 ≤ 100. For each value of λ2 a 

10-fold cross-validation was performed to select the remaining tuning parameters. 

Here the best value for λ2 is 0.01 for colon data set and 0.025 for DLBCL data set. 

Therefore, the tuning parameters for elastic net are (0.30, 0.15, 0.40) and 

(0.50, 0.40, 0.30) for colon and DLBCL data sets corresponding to each 

percentage of test data set, and for CBEP are (0.40, 0.30, 0.38) and 

(0.60, 0.50, 0.35) for colon and DLBCL data sets corresponding to each 

percentage of test data set. 

The deviance test error is computed as the criterion of evaluation. Figure 1 

displays the corresponding boxplots of the deviance test error for the four used 

methods for both data sets, (a) colon tumor and (b) DLBCL. It is clear that CBEP 

has less variability among the three penalization methods. Also, it can be seen that 

LASSO and ridge are more variable than CBEP and elastic net. Table 1 

summarizes the averaged deviance test error (Mean) and the standard deviation 

(Std. Dev.) of the estimation of the response variable. Furthermore, coefficient of 

variation (CV), classification accuracy, and the numbers of selected variables are 

listed. When the sample size of the test set increases, the mean of the deviance 

test error decreases for the CBEP and the other three methods in both data sets. 

For example, in colon data the means for CBEP are 0.108, 0.104, and 0.102 with 

the sample size of the test set 10%, 20%, and 30% respectively. 

Concerning the deviance test error, we observed that for colon and DLBCL 

data the CBEP method has mean with standard deviation smaller than the results 
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of the elastic net, LASSO, and ridge for all test set sizes. For example, in DLBCL 

data, when the test data size is 10%, the mean of the CBEP is 0.118 with standard 

deviation equal to 0.032, which is smaller than 0.124 (0.045), 0.340 (0.265), and 

0.292 (0.268) for the elastic net, ridge, and LASSO methods respectively. With 

both data sets and test set sizes, the results of CV show that the CBEP method 

yields less variation than the other three methods. Furthermore, we see that the 

CBEP method outperforms the elastic net, LASSO, and ridge for both colon and 

DLBCL data sets in term of accuracy classification. It can even classify with 

accuracy of 100% for colon data set at percentage 10% and 20% of test set, and 

also for DLBCL data set at 20% and 30% percentages of test set.  

In terms of the number of selected variables (model complexity), the 

penalized logistic regression using CBEP includes explanatory variables less than 

using elastic net, although in some cases CBEP includes variables same as elastic 

net. Moreover, LASSO selects more variables than CBEP and elastic, and of 

course penalized logistic regression using ridge includes the whole explanatory 

variables. Because of several correlation coefficients among explanatory variables 

above 0.5, we have seen that the CBEP and elastic net methods prevail against the 

LASSO. 

It is obvious that the CBEP method performs better in term of averaged 

deviance test error by obtaining smaller values of deviance error, classification 

accuracy, and the number of selected variables followed by elastic net, LASSO, 

and ridge for various percentages of test data sets for both colon and DLBCL data 

sets. 
 

 
Figure 1: Percentages comparison of the deviance test error 
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Table 1: Deviance test error, classification accuracy, and no. of variables selected over 

100 random split 
 

 

Colon DLBCL 

LASSO Ridge Elastic CBEP LASSO Ridge Elastic CBEP 

Deviance test error 

10% 

Mean 0.483 0.958 0.134 0.108 0.292 0.340 0.124 0.118 

Std. Dev. 0.295 0.785 0.079 0.069 0.268 0.265 0.045 0.032 

CV 1.154 2.687 0.277 0.226 0.806 0.724 0.198 0.176 

20% 

Mean 0.422 0.447 0.119 0.104 0.288 0.331 0.122 0.116 

Std. Dev. 0.297 0.552 0.067 0.060 0.227 0.218 0.042 0.023 

CV 0.829 1.968 0.200 0.187 0.589 0.810 0.172 0.155 

30% 

Mean 0.354 0.395 0.107 0.102 0.265 0.296 0.117 0.112 

Std. Dev. 0.337 0.375 0.066 0.069 0.220 0.186 0.053 0.054 

CV 1.088 1.237 0.208 0.248 0.538 0.558 0.203 0.195 

Classification Accuracy (%) 
10% 50.00 33.34 100.00 100.00 75.00 62.50 75.00 87.50 

20% 83.34 66.67 91.69 100.00 86.67 80.00 100.00 100.00 

30% 89.47 73.68 89.47 94.73 86.95 82.60 95.65 100.00 

No. of selected variables 
10% 28 All 21 21 42 All 40 40 
20% 26 All 23 24 44 All 39 38 

30% 24 All 16 14 40 All 40 38 

 
 

Finally, Figure 2 displays the path solution of the CBEP and elastic net for 

the colon tumor data set of 70% training data set in one run. The doted horizontal 

line represents the best value of elastic net (s = 0.40) and CBEP penalty (s = 0.38) 

that selected by cross-validation. The figure also shows, the elastic net path is 

very similar to CBEP path. 
 
 

 
Figure 2: Solution paths for 30% test of colon tumor 
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Conclusion 

A study of a new penalization method based on CBEP was done by application to 

binary logistic regression. Three penalization methods in addition to CBEP, 

including elastic net, LASSO, and ridge, were compared by applying two high 

dimensional real data sets. The results show that the CBEP outperforms the other 

three methods in term of deviance test error, classification accuracy, and model 

complexity. Also, the different percentages of the test data size do not affect the 

performance of CBEP. It was concluded the CBEP is more reliable in applying 

penalized binary logistic regression. 
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