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2 Chapter 1

1.1 Introduction

Despite advances in diagnosis, treatment and interventions, cardiovascular disease
remains a major health problem in the western world. Owing to the ageing soci-
ety and changing lifestyle, cardiovascular disease affects an increasing number of
individuals [92, 110]. Often, there are no symptoms prior to clinical cardiovascular
disease related events such as myocardial infarction (heart attack), and irreversible
damage or death may occur prior to any medical intervention [183]. Advances in
imaging technology have great potential to improve the management of cardio-
vascular disease through early detection, improved diagnosis and treatment mon-
itoring [30]. This requires not only advanced techniques to image cardiovascular
anatomy and function, but also robust methods to extract relevant (quantitative)
parameters from these imaging data and novel techniques that effectively visualize
diagnostically relevant image information.

This thesis describes the development and validation of quantitative image anal-
ysis and visualization methods, which are essential steps towards improved image-
based diagnosis and prognosis of cardiovascular disease. In the subsequent sections
we will introduce the cardiac anatomy, coronary artery disease, CT angiography
(CTA) imaging of the coronary arteries, and methods for quantitative CTA image
analysis. Following the introduction, we will provide an outline of this thesis in
Section 1.2.

1.1.1 The heart and the coronary arteries

Figure 1.1: A schematic visualization

of the human heart.

The heart is a vital organ that pumps oxygen-
deficient blood from the body to the lungs and
oxygen-rich blood from the lungs to the body.
It consists of four chambers, the left and right
atrium and the left and right ventricle, of which
the left ventricle pumps the oxygen-rich blood
through the body (see Figure 1.1). Approxi-
mately 5% of the blood is pumped through the
coronary arteries to the myocardium (the heart
muscle) to feed it with oxygen and nutrients
[100]. The coronary arteries are composed of
two vessel trees that cover the complete my-
ocardium (see Figure 1.2). It is of key impor-
tance that the flow of blood through the coro-
naries is maintained, as the heart will lose its
pumping function in case of insufficient blood
supply. The left coronary tree is responsible for
most of the oxygen supply to the left ventricle
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Left main coronary
artery (LM)
Left circumflex 
artery (LCX)

Left anterior 
descending (LAD)

Right coronary 
artery (RCA)

Figure 1.2: A schematic visualization of the four main coronary arteries.

and the right coronary arteries mainly feed the right ventricle. Both trees bifurcate
into many small branches and the topology of these trees can differ significantly be-
tween patients. Four main branches can be differentiated in virtually all people: the
left main coronary artery (LM), the left ascending artery (LAD), the left circumflex
(LCX), and the right coronary artery (RCA).

1.1.2 Coronary artery disease

Normal artery

Diseased artery
plaque

Healthy
cross-section

Stenotic
cross-section

Figure 1.3: A schematic illustration

of coronary artery disease. The top

figure shows an artery with normal

blood flow. The bottom figure shows an

artery after plaque buildup.

Coronary artery disease (CAD), or coronary
atherosclerosis, is a major cause of death.
Worldwide, approximately 1 out of every 5
people die of coronary artery disease [182].
Risk factors for atherosclerosis include hyper-
tension (high blood pressure), hypercholes-
terolemia (high cholesterol), diabetes mellitus,
obesity, and tobacco use. Atherosclerosis is a
complex disease that affects the vessel wall,
and results in a thickening or hardening of the
vessel wall that eventually may compromise
blood flow through the coronaries. Atheroscle-
rosis is thought to be caused by an inflamma-
tion between the two inner layers of the ves-
sel wall, causing a buildup of plaque, consist-
ing of lipids, such as cholesterol, and fibrous tis-
sue, in the vessel wall [90]. Calcifications (calci-
fied parts of atherosclerotic plaque in the ves-
sel wall) may develop in these plaque regions,
and traditionally these calcifications have been
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an important marker for CAD. Plaque build-up and associated thickening of the
coronary vessel wall can cause a stenosis (narrowing of the vessel lumen; the area
where blood flows through the arteries), resulting in insufficient blood supply to
the myocardium (see Figure 1.3). Moreover, after plaque build-up, even without
vessel lumen narrowing, the vessel wall can rupture, causing release of thrombo-
genic plaque into the vessel lumen and subsequent occlusion of the vessel, result-
ing, in most cases, in acute myocardial infarction [90] .

1.1.3 Computed Tomography Angiography

Figure 1.4: A CT scanner (SOMATOM

Definition Flash, Siemens Healthcare).

A patient is placed on the table that

moves through the gantry aperture

around which X-ray source and detec-

tors rotate.

Currently image-based diagnosis of CAD fo-
cuses mainly on stenotic (i.e. narrowed) ves-
sels. The gold standard for the assessment of
the coronary lumen is conventional coronary
angiography (CCA) [29], an invasive catheter-
based X-ray medical image modality. How-
ever, because of its invasive nature, CCA has
a low, but non-negligible, risk of procedure re-
lated complications [189]. Moreover, it is a two-
dimensional modality and only provides infor-
mation on the coronary lumen and can not be
used to visualize the coronary plaque. Figure
1.5 shows an example of a CCA image.

Computed Tomography (CT) and Com-
puted Tomography Angiography (CTA) are po-
tential alternatives for CCA [109]. CT images
the attenuation of X-rays by the human body
using attenuation measurements made with
an X-ray source and detector array that rotate
around the patient (see Figure 1.4). After measuring the X-ray attenuation along
a large number of paths dedicated software calculates the attenuation in a large
grid of small volumetric picture elements (voxels), thereby providing a detailed 3-
dimensional picture of the human heart. Since the first commercial deployment of
a CT scanner, which was designed to image the human brain, in the early 1970s
[67], technological advances in CT scanner hard- and software have been tremen-
dous. The number of axial slices acquired simultaneously has increased from 1
to 320, the resolution has increased significantly with voxel sizes being reduced
from approximately 3 cm to less than half a millimeter, the radiation dose has been
decreased significantly, and the rotation time has decreased from approximately
2 minutes to 0.3 seconds [3, 138]. These developments have made CT the imag-
ing modality of choice for visualizing the rapidly moving coronary arteries with
high resolution. Moreover, recently dual-source CT scanners have been clinically
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introduced, which has further increased the temporal resolution of the CT acqui-
sition and provides dual-energy possibilities, such as better material differentia-
tion [69]. All these developments have made CT and CTA very promising imag-
ing modalities for three-dimensional minimally-invasive imaging of the heart [42].
With CT calcified plaques can be visualized. Coronary calcifications can be appre-
ciated as small, high density spots in the vessel wall in CT scans. Several studies
have demonstrated the prognostic value of the amount of calcium quantified with
CT for future cardiac events [118, 122].

In CTA, intravenously injected iodine-based contrast fluid is used to highlight
the coronary lumen. This imaging modality is expected to allow, next to the assess-
ment of the coronary lumen morphology, the evaluation of the presence, extent,
and type (non-calcified or calcified) of coronary plaque [2, 82, 148]. This may be
relevant for improving risk stratification when combined with current non-image
based risk factors, such as hypertension, hypercholesterolemia, traditional image-
based measures such as the severity of stenosis and the amount of calcium [29], and
genetic risk factors [151].

A disadvantage of CTA is that the resolution, although 3D, is lower than the 2D
resolution of CCA. In Figure 1.5 we show an example of CCA, CT and CTA of the
same lesion in left circumflex artery (LCX).

1.1.4 Advanced visualization and quantitative image analysis

On average, a modern clinical cardiac CTA image contains approximately 512 ×
512× 300 voxels (i.e. approximately 75 megavoxels). Inspecting these images can be
labour-intensive for a radiologist or physician. Therefore, advanced post-processing
techniques are being developed to support effective diagnosis with CTA data. For
example, techniques have been developed to reformat vascular data such that the
lumen, wall, and surrounding tissue of a vessel can be appreciated in one plane [73]
(see Figure 1.5(d)).

Besides techniques for improved visual inspection, a major step towards im-
proved diagnosis and prognosis of CAD is a more objective and automated assess-
ment of the state and presence of CAD. This has lead to development of quantita-
tive image analysis (QIA) techniques. These techniques allow the automated extrac-
tion of quantitative measurements, such as absolute measures of morphology and
function, from images with computerized image processing techniques [50]. The ro-
bust extraction of accurate and objective image-based measurements indicating the
presence or severity of disease (the so-called ’Quantitative Imaging Biomarkers’), is
expected to have significant influence on the clinical decision making process [162].

Quantitative image analysis finds its application in two major areas. First, QIA
approaches are continuously improving the functionality of computer aided diag-
nosis systems because QIA allows more objective, cost efficient establishment of the
presence and severity of disease, potentially with higher sensitivity and specificity
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Lumen

Non-calcified
plaque

Calcified plaque

Figure 1.5: Examples of different techniques for the visualization of the same coronary lesion

in the left circumflex (LCX) artery. (a) conventional coronary angiography (CCA), (b) Computed

tomography (CT), (c) Computed tomography angiography (CTA), and (d) a planar reformation of

the CTA dataset in (c) showing a magnification of the lesion and its components.

than human experts [50]. For example, in the diagnosis of coronary artery disease
already for over two decades QIA methods are being used to quantify the coro-
nary lumen morphology in conventional coronary angiography (CCA) [128] and
new and improved systems are continuously being proposed for this application
[124, 159]. In addition, an increasing interest in quantitative imaging biomarkers
for treatment monitoring, and in the discovery and development of novel drugs is
foreseen, as potentially they can be used as surrogate end points [125, 131, 161, 162].



Introduction 7

1.1.5 Coronary artery lumen segmentation in CTA

Nowadays, the quantification of cardiovascular disease in CTA is still very much
under investigation. Sophisticated software tools are available to manually outline
the coronary arteries in CTA, but this process is too time-consuming for clinical
practice and prone to inter- and intra-observer variability. Several automated meth-
ods are available for the quantification of the coronary lumen, but only very few
of these systems have been evaluated thoroughly [142]. Recently, commercial CT-
based computer aided detection systems have been presented with promising re-
sults (see e.g. [6]), but extensive validation of these systems is often lacking and
quantification results differ significantly between commercial systems [59]. More-
over, at this point no system has been presented which includes a well-validated
accurate plaque differentiation and quantification method.

The quantification of cardiovascular disease in cardiac CTA images in general
starts with the delineation, or segmentation, of the coronary lumen. Subsequently
the topology and morphology of the coronary lumen can be quantified, plaque can
be delineated, and lumen and plaque parameters can be quantified [37, 75, 178,
187].

The segmentation of the vascular lumen from the image is often tackled in a
two-step coarse-to-fine fashion (see e.g. [75, 101, 178]): first a method is used to lo-
cate the coronary arteries in the CTA image and then the vessel is segmented given
its location. In the first step the algorithm uses the complete image to extract a set
of curves running through the center of the vascular lumen. This step is referred to
as centerline extraction. In the second step an algorithm uses local image informa-
tion around these curves to segment the vessels. Especially centerline extraction in
medical images has received considerable attention, as it can be used as a prepro-
cessing step for vessel segmentation, but also to visualize cardiac CTA data with
multi-planar reformatting (MPR) and curved planar reformatting (CPR) visualiza-
tion techniques [73]. These reformatted images can for example be used to diagnose
CAD, but also in interventional cardiology, to plan the type of intervention and size
of stents [57]. Although several commercial systems exist for coronary segmenta-
tion, up to now no well-validated systems are described in scientific literature. For
an extensive review of existing literature on coronary centerline extraction and seg-
mentation we would like to refer to Chapters 2 and 5.

Coronary centerline extraction and lumen segmentation are both challenging
tasks owing to the small size of the coronary arteries visible in cardiac CTA (their
diameter ranges from less than 1 mm to approximately 5 mm in diameter), the
limited spatial resolution of CT (approximately 0.7 mm to 1.4 mm [132]), motion
induced blurring, high intensity calcium close to the coronary lumen, and the pres-
ence of severe stenoses.
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1.2 This thesis

The purpose of the work described in this thesis was the development and evalu-
ation of techniques for the quantification and improved visualization of cardiovas-
cular disease in CTA images. In this thesis, we focus on four aspects of cardiovas-
cular CTA image processing: 1) we introduce methods for the objective evaluation
of different coronary centerline extraction techniques; 2) we propose a probabilis-
tic centerline tracking technique; 3) we propose two novel methods for coronary
segmentations; 4) we propose an efficient method for noise reduction in CTA for
improved 3D visualization.

In Chapter 2 we focus on the objective evaluation of different approaches for
(semi-)automatically extracting coronary centerlines from cardiac CTA data. Many
methods have been proposed for this task, but almost none of these have been
thoroughly evaluated. It is therefore difficult to assess the performance of these
methods. We present a publically available standardized evaluation framework for
these algorithms. The framework consists of a representative set of cardiac CTA
datasets, an accurate manually annotated reference standard, an appropriate set of
evaluation measures, and an accessible web-based framework for easy comparison
of different algorithms.

Probabilistic, or multiple hypotheses, centerline extraction methods have re-
cently been presented in order to circumvent problems common with standard
path tracking methods [45, 48]. Chapter 3 presents several improvements in the
field of probabilistic centerline extraction. These methods allow easy incorporation
of prior information about the geometry and appearance of the vessel of interest in
the image. By jointly optimizing these probabilities the path is found that is optimal
according to both the geometrical and appearance prior information.

Because of their probabilistic optimization strategy, these algorithms, in contrast
to many existing algorithms, can find optimal solutions to the objective function de-
scribed by advanced geometrical and appearance priors. Of course, the geometric
and appearance model are essential for these approaches: the structure of interest
will be incorrectly segmented if the assumptions underlying these models are vi-
olated. In this chapter we present a new appearance model that can better handle
situations when the vessel is running through areas with significantly changing
background intensities. Furthermore, because probabilistic centerline extraction al-
gorithms are computationally expensive, steps towards a computationally efficient
implementation are suggested in this chapter.

After centerline extraction, the second step of coronary artery disease quantifi-
cation in cardiac CTA is often the segmentation of the coronary arteries. We present
two different approaches for the segmentation of the coronary lumen. Chapter 4
presents a method based on a combination of graph-cut optimization and robust
kernel regression. Graph-cut optimization is used to find a surface surrounding an
initial coronary centerline that is most probable according to the intensity change
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perpendicular to the surface. Then we remove any possible outliers from the result-
ing segmentation with a robust kernel regression technique.

In the next chapter we propose a supervised approach that can learn plausible
vessel shapes and their appearance in annotated medical image data and subse-
quently apply this knowledge for the segmentation of unseen data. This machine
learning-based segmentation approach, presented in Chapter 5, is more generic
than the method presented in Chapter 4 and is expected to have a wider applica-
bility.

Chapter 6 presents a noise reduction method that can be used to improve the di-
agnostic quality of advanced 3D visualizations of CTA scans. The method is based
on the well-known anisotropic diffusion equation. Anisotropic diffusion has the
disadvantage of being computationally complex and thereby relatively slow, which
hampers its introduction into clinical practice. In order to overcome this problem
we present a new speed optimized implementation for anisotropic diffusion. This
optimized anisotropic diffusion implementation is used in a novel image enhance-
ment method that improves the diagnostic quality of reconstructed CT image data.

The thesis is concluded with a summary in Chapter 7 and a short description of
several additional CT angiography image processing contributions in Chapter 8.





Chapter 2

Evaluation of Coronary Artery Centerline

Extraction Algorithms.

Based on:

M. Schaap, C.T. Metz, T. van Walsum, A.G. van der Giessen, A.C. Weustink, N.R.
Mollet, C. Bauer, H. Bogunović, C. Castro, X. Deng, E. Dikici, T. O’Donnell, M.
Frenay, O. Friman, M. Hernández Hoyos, P.H. Kitslaar, K. Krissian, C. Kühnel, M.A.
Luengo-Oroz, M. Orkisz, Ö. Smedby, M. Styner, A. Szymczak, H. Tek, C. Wang, S.K.
Warfield, S. Zambal, Y. Zhang, G.P. Krestin, W.J. Niessen
Standardized Evaluation Methodology and Reference Database for Evaluating Coronary
Artery Centerline Extraction Algorithms, Medical Image Analysis, 2009.

Efficiently obtaining a reliable coronary artery centerline from computed to-
mography angiography data is relevant in clinical practice. Whereas numerous
methods have been presented for this purpose, up to now no standardized eval-
uation methodology has been published to reliably evaluate and compare the per-
formance of the existing or newly developed coronary artery centerline extraction
algorithms. This chapter describes a standardized evaluation methodology and ref-
erence database for the quantitative evaluation of coronary artery centerline extrac-
tion algorithms. The contribution of this work is fourfold: 1) a method is described
to create a consensus centerline with multiple observers, 2) well-defined measures
are presented for the evaluation of coronary artery centerline extraction algorithms,
3) a database containing thirty-two cardiac CTA datasets with corresponding refer-
ence standard is described and made available, and 4) thirteen coronary artery cen-
terline extraction algorithms, implemented by different research groups, are quan-
titatively evaluated and compared. The presented evaluation framework is made
available to the medical imaging community for benchmarking existing or newly
developed coronary centerline extraction algorithms.

PubMedID
HYPERLINK "/pubmed/19632885"Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms.
Schaap M, Metz CT, van Walsum T, van der Giessen AG, Weustink AC, Mollet NR, Bauer C, Bogunović H, Castro C, Deng X, Dikici E, O'Donnell T, Frenay M, Friman O, Hernández Hoyos M, Kitslaar PH, Krissian K, Kühnel C, Luengo-Oroz MA, Orkisz M, Smedby O, Styner M, Szymczak A, Tek H, Wang C, Warfield SK, Zambal S, Zhang Y, Krestin GP, Niessen WJ.
Med Image Anal. 2009 Oct;13(5):701-14. Epub 2009 Jun 30.PMID: 19632885 [PubMed - indexed for MEDLINE]HYPERLINK "/sites/entrez?db=pubmed&cmd=link&linkname=pubmed_pubmed&uid=19632885"Related citations
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2.1 Introduction

Coronary artery disease (CAD) is currently the primary cause of death among
American males and females [134] and one of the main causes of death in the world
[183]. The gold standard for the assessment of CAD is conventional coronary an-
giography (CCA) [29]. However, because of its invasive nature, CCA has a low,
but non-negligible, risk of procedure related complications [189]. Moreover, it only
provides information on the coronary lumen.

Computed Tomography Angiography (CTA) is a potential alternative for CCA
[109]. CTA is a non-invasive technique that allows, next to the assessment of the
coronary lumen, the evaluation of the presence, extent, and type (non-calcified or
calcified) of coronary plaque [82]. Such non-invasive, comprehensive plaque as-
sessment may be relevant for improving risk stratification when combined with
current risk measures: the severity of stenosis and the amount of calcium [29]. A
disadvantage of CTA is that the current imaging protocols are associated with a
higher radiation dose exposure than CCA [40].

Several techniques to visualize CTA data are used in clinical practice for the di-
agnosis of CAD. Besides evaluating the axial slices, other visualization techniques
such as maximum intensity projections (MIP), volume rendering techniques, multi-
planar reformatting (MPR), and curved planar reformatting (CPR) are used to re-
view CTA data [29]. CPR and MPR images of coronary arteries are based on the
CTA image and a central lumen line (for convenience referred to as centerline)
through the vessel of interest [73]. These reformatted images can also be used dur-
ing procedure planning for, among other things, planning the type of intervention
and size of stents [57]. Efficiently obtaining a reliable centerline is therefore relevant
in clinical practice. Furthermore, centerlines can serve as a starting point for lumen
segmentation, stenosis grading, and plaque quantification [75, 101, 178].

This chapter introduces a framework for the evaluation of coronary artery cen-
terline extraction methods. The framework encompasses a publicly available data-
base of coronary CTA data with corresponding reference standard centerlines de-
rived from manually annotated centerlines, a set of well-defined evaluation mea-
sures, and an on-line tool for the comparison of coronary CTA centerline extraction
techniques. We demonstrate the potential of the proposed framework by compar-
ing thirteen coronary artery centerline extraction methods, implemented by differ-
ent authors as part of a segmentation challenge workshop at the Medical Image
Computing and Computer-Assisted Intervention (MICCAI) conference [105].

In the next two sections we will respectively describe our motivation of the
study presented in this chapter and discuss previous work on the evaluation of
coronary segmentation and centerline extraction techniques. The evaluation frame-
work will then be outlined by discussing the data, reference standard, evaluation
measures, evaluation categories, and web-based framework. The chapter will be
concluded by presenting the comparative results of the thirteen centerline extrac-
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tion techniques, a discussion of these results, and a conclusion about the work pre-
sented.

2.2 Motivation

The value of a standardized evaluation methodology and a publicly available im-
age repository has been shown in a number of medical image analysis and general
computer vision applications, for example in the Retrospective Image Registration
Evaluation Project [179], the Digital Retinal Images for Vessel Extraction database
[153], the Lung Image Database project [5], the Middlebury Stereo Vision evaluation
[145], the Range Image Segmentation Comparison [66], the Berkeley Segmentation
Dataset and Benchmark [102], and a workshop and on-line evaluation framework
for liver and caudate segmentation [164].

Similarly, standardized evaluation and comparison of coronary artery centerline
extraction algorithms has scientific and practical benefits. A benchmark of state-of-
the-art techniques is a prerequisite for continued progress in this field: it shows
which of the popular methods are successful and researchers can quickly appre-
hend where methods can be improved.

It is also advantageous for the comparison of new methods with the state-of-
the-art. Without a publicly available evaluation framework, such comparisons are
difficult to perform: the software or source code of existing techniques is often not
available, articles may not give enough information for re-implementation, and if
enough information is provided, re-implementation of multiple algorithms is a la-
borious task.

The understanding of algorithm performance that results from the standard-
ized evaluation also has practical benefits. It may, for example, steer the clinical
implementation and utilization, as a system architect can use objective measures to
choose the best algorithm for a specific task.

Furthermore, the evaluation could show under which conditions a particular
technique is likely to succeed or fail, it may therefore be used to improve the acqui-
sition methodology to better match the post-processing techniques.

It is therefore our goal to design and implement a standardized methodology for
the evaluation and comparison of coronary artery centerline extraction algorithms
and publish a cardiac CTA image repository with associated reference standard. To
this end, we will discuss the following tasks below:

• Collection of a representative set of cardiac CTA datasets, with a manually
annotated reference standard, available for the entire medical imaging com-
munity;

• Development of an appropriate set of evaluation measures for the evaluation
of coronary artery centerline extraction methods;
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• Development of an accessible framework for easy comparison of different
algorithms;

• Application of this framework to compare several coronary CTA centerline
extraction techniques;

• Public dissemination of the results of the evaluation.

2.3 Previous work

Approximately thirty papers have appeared that present and/or evaluate (semi-
)automatic techniques for the segmentation or centerline extraction of human coro-
nary arteries in cardiac CTA datasets. The proposed algorithms have been evalu-
ated by a wide variety of evaluation methodologies.

A large number of methods have been evaluated qualitatively [12, 22, 31, 43, 45,
58, 81, 93, 96, 116, 129, 141, 156, 167, 177, 185, 187]. In these articles detection, extrac-
tion, or segmentation correctness have been visually determined. An overview of
these methods is given in Table 2.1. Other articles include a quantitative evaluation
of the performance of the proposed methods [27, 28, 37, 75, 80, 84, 88, 101, 104, 121,
178, 186]. See Table 2.2 for an overview of these methods.

None of the abovementioned algorithms has been compared to another and
only three methods were quantitatively evaluated on both the extraction ability (i.e.
how much of the real centerline can be extracted by the method?) and the accuracy
(i.e. how accurately can the method locate the centerline or wall of the vessel?).
Moreover, only one method was evaluated using annotations from more than one
observer [104].

Four methods were assessed on their ability to quantify clinically relevant mea-
sures, such as the degree of stenosis and the number of calcium spots in a vessel
[37, 75, 178, 187]. These clinically oriented evaluation approaches are very appro-
priate for assessing the performance of a method for a possible clinical application,
but the performance of these methods for other applications, such as describing the
geometry of coronary arteries [94, 192], can not easily be judged.

Two of the articles (Dewey et al. [37] and Busch et al. [28]) evaluate a commer-
cially available system (respectively Vitrea 2, Version 3.3, Vital Images and Syngo
Circulation, Siemens). Several other commercial centerline extraction and stenosis
grading packages have been introduced in the past years, but we are not aware of
any scientific publication containing a clinical evaluation of these packages.

2.4 Evaluation framework

In this section we will describe our framework for the evaluation of coronary CTA
centerline extraction techniques.
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2.4.1 Cardiac CTA data

The CTA data was acquired in the Erasmus MC, University Medical Center Rotter-
dam, The Netherlands. Thirty-two datasets were randomly selected from a series
of patients who underwent a cardiac CTA examination between June 2005 and June
2006. Twenty datasets were acquired with a 64-slice CT scanner and twelve data-
sets with a dual-source CT scanner (Sensation 64 and Somatom Definition, Siemens
Medical Solutions, Forchheim, Germany).

A tube voltage of 120 kV was used for both scanners. All datasets were acquired
with ECG-pulsing [180]. The maximum current (625 mA for the dual-source scan-
ner and 900 mA for the 64-slice scanner) was used in the window from 25% to 70%
of the R-R-interval and outside this window the tube current was reduced to 20%
of the maximum current.

Both scanners operated with a detector width of 0.6 mm. The image data was
acquired with a table feed of 3.8 mm per rotation (64-slice datasets) or 3.8 mm to
10 mm, individually adapted to the patient’s heart rate (dual-source datasets).

Diastolic reconstructions were used, with reconstruction intervals varying from
250 ms to 400 ms before the R-peak. Three datasets were reconstructed using a
sharp (B46f) kernel, all others were reconstructed using a medium-to-smooth (B30f)
kernel. The mean voxel size of the datasets is 0.32 × 0.32 × 0.4mm3.

2.4.1.1 Training and test datasets

To ensure representative training and test sets, the image quality of and presence
of calcium in each dataset was visually assessed by a radiologist with three years
experience in cardiac CT.

Image quality was scored as poor (defined as presence of image-degrading ar-
tifacts and evaluation only possible with low confidence), moderate (presence of
artifacts but evaluation possible with moderate confidence) or good (absence of
any image-degrading artifacts related to motion and noise). Presence of calcium
was scored as absent, modest or severe. Based on these scorings the data was dis-
tributed equally over a group of 8 and a group of 24 datasets. The patient and scan
parameters were assessed by the radiologist to be representative for clinical prac-
tice. Table 2.3 and 2.4 describe the distribution of respectively the image quality and
calcium scores in the datasets.

The first group of 8 datasets can be used for training and the other 24 datasets
are used for performance assessment of the algorithms. All the thirty-two cardiac
CTA datasets and the corresponding reference standard centerlines for the training
data are made publicly available.

2.4.2 Reference standard

In this work we define the centerline of a coronary artery in a CTA scan as the
curve that passes through the center of gravity of the lumen in each cross-section.
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Table 2.3: Image quality of the training and test datasets.

Poor Moderate Good Total

Training 2 3 3 8

Testing 4 8 12 24

Table 2.4: Presence of calcium in the training and test datasets.

Low Moderate Severe Total

Training 3 4 1 8

Testing 9 12 3 24

Figure 2.1: An example of the data with corresponding reference standard. Top-left: axial view

of data. Top-right: coronal view. Bottom-left: sagittal view. Bottom-right: a 3D rendering of the

reference standard.
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We define the start point of a centerline as the center of the coronary ostium (i.e. the
point where the coronary artery originates from the aorta), and the end point as the
most distal point where the artery is still distinguishable from the background. The
centerline is smoothly interpolated if the artery is partly indistinguishable from the
background, e.g. in case of a total occlusion or imaging artifacts.

This definition was used by three trained observers to annotate centerlines in
the selected cardiac CTA datasets. Four vessels were selected for annotation by one
of the observers in all 32 datasets, yielding 32 × 4 = 128 selected vessels. The first
three vessels were always the right coronary artery (RCA), left anterior descending
artery (LAD), and left circumflex artery (LCX). The fourth vessel was selected from
the large side branches of these main coronary arteries and the selection was as
follows: first diagonal branch (14x), second diagonal branch (6x), optional diagonal
coronary artery (6x), first obtuse marginal branch (2x), posterior descending artery
(2x), and acute marginal artery (2x). This observer annotated for all the four selected
vessels points close to the selected vessels. These points (denoted with ’point A’)
unambiguously define the vessels, i.e. the vessel of interest is the vessel closest to
the point and no side-branches can be observed after this point.

After the annotation of these 128 points, the three observers used these points to
independently annotate the centerlines of the same four vessels in the 32 datasets.
The observers also specified the radius of the lumen at least every 5 mm, where the
radius was chosen such that the enclosed area of the annotated circle matched the
area of the lumen. The radius was specified after the complete central lumen line
was annotated (see Figure 2.4).

The paths of the three observers were combined to one centerline per vessel
using a Mean Shift algorithm for open curves: The centerlines are averaged while
taking into account the possibly spatially varying accuracy of the observers by it-
eratively estimating the reference standard and the accuracy of the observers. Each
point of the resulting reference standard is a weighted average of the neighbor-
ing observer centerline points, with weights corresponding to the locally estimated
accuracy of the observers [165].

After creating this first weighted average, a consensus centerline was created
with the following procedure: The observers compared their centerlines with the
average centerline to detect and subsequently correct any possible annotation er-
rors. This comparison was performed utilizing curved planar reformatted images
displaying the annotated centerline color-coded with the distance to the reference
standard and vice-versa (see Figure 2.2). The three observers needed in total ap-
proximately 300 hours for the complete annotation and correction process.

After the correction step the centerlines were used to create the reference stan-
dard, using the same Mean Shift algorithm. Note that the uncorrected centerlines
were used to calculate the inter-observer variability and agreement measures (see
section 2.4.5).

The points where for the first time the centerlines of two observers lie within
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Figure 2.2 (see page 145 for a color-version): An example of a color-coded curved planar

reformatted images used to detect possible annotation errors.

the radius of the reference standard when traversing over this centerline from re-
spectively the start to the end or vice versa were selected as the start- and end point
of the reference standard. Because the observers used the abovementioned center-
line definition it is assumed that the resulting start points of the reference standard
centerlines lie within the coronary ostium.

The corrected centerlines contained on average 44 points and the average dis-
tance between two successive annotated points was 3.1 mm. The 128 resulting ref-
erence standard centerlines were on average 138 mm (std. dev. 41 mm, min. 34 mm,
max. 249 mm) long.

The radius of the reference standard was based on the radii annotated by the
observers and a point-to-point correspondence between the reference standard and
the three annotated centerlines. The reference standard centerline and the corrected
observer centerlines were first resampled equidistantly using a sampling distance
of 0.03 mm. Dijkstra’s graph searching algorithm was then used to associate each
point on the reference standard with one or more points on each annotated cen-
terline and vice versa. Using this correspondence, the radius at each point of the
reference standard was determined by averaging the radius of all the connected
points on the three annotated centerlines (see also Figure 2.3 and Figure 2.4). An
example of annotated data with corresponding reference standard is shown in Fig-
ure 2.1. Details about the connectivity algorithm are given in section 2.4.3.

2.4.3 Correspondence between centerlines

All the evaluation measures are based on a point-to-point correspondence between
the reference standard and the evaluated centerline. This section explains the mech-
anism for determining this correspondence.

Before the correspondence is determined the centerlines are first sampled equi-
distantly using a sampling distance of 0.03 mm, enabling an accurate comparison.
The evaluated centerline is then clipped with a disc that is positioned at the start of
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Figure 2.3: An illustrative example of the Mean Shift algorithm showing the annotations of the

three observers as a thin black line, the resulting average as a thick black line, and the correspon-

dence that are used during the last Mean Shift iteration in light-gray.

Figure 2.4: An example of the annotations of the three observers in black and the resulting

reference standard in white. The crosses indicate the centers and the circles indicate the radii.

the reference standard centerline (i.e. in or very close to the coronary ostium). The
centerlines are clipped because we define the start point of a coronary centerline
at the coronary ostium and because for a variety of applications the centerline can
start somewhere in the aorta. The radius of the disc is twice the annotated vessel
radius and the disc normal is the tangential direction at the beginning of the ref-
erence standard centerline. Every point before the first intersection of a centerline
and this disc is not taken into account during evaluation.

The correspondence is then determined by finding the minimum of the sum
of the Euclidean lengths of all point-point connections that are connecting the two
centerlines over all valid correspondences. A valid correspondence for centerline
I, consisting of an ordered set of points pi (0 ≤ i < n, p0 is the most proximal
point of the centerline), and centerline II, consisting of an ordered set of points qj

(0 ≤ j < m, q0 is the most proximal point of the centerline), is defined as the ordered
set of connections C = {c0, . . . , cn+m−1}, where ck is a tuple [pa, qb] that represents
a connection from pa to qb, which satisfies the following conditions:

• The first connection c0 connects the start points: c0 = [p0, q0].

• The last connection cn+m−1 connects the end points: cn+m−1 = [pn−1, qm−1].
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• If connection ck = [pa, qb] then connection ck+1 equals either [pa+1, qb] or
[pa, qb+1].

These conditions guarantee that each point of centerline I is connected to at least
one point of centerline II and vice versa.

Dijkstra’s graph search algorithm is used on a matrix with connection lengths
to determine the minimum Euclidean length correspondence. See Figure 2.3 for an
example of a resulting correspondence.

2.4.4 Evaluation measures

Coronary artery centerline extraction may be used for different applications, and
thus different evaluation measures may apply. We account for this by employing
a number of evaluation measures. With these measures we discern between ex-
traction capability and extraction accuracy. Accuracy can only be evaluated when
extraction succeeded; in case of a tracking failure the magnitude of the distance
to the reference centerline is no longer relevant and should not be included in the
accuracy measure.

2.4.4.1 Definition of true positive, false positive and false negative points

All the evaluation measures are based on a labeling of points on the centerlines as
true positive, false negative or false positive. This labeling, in its turn, is based on
a correspondence between the points of the reference standard centerline and the
points of the centerline to be evaluated. The correspondence is determined with the
algorithm explained in section 2.4.3.

A point of the reference standard is marked as true positive TPRov if the distance
to at least one of the connected points on the evaluated centerline is less than the
annotated radius and false negative FNov otherwise.

A point on the centerline to be evaluated is marked as true positive TPMov if
there is at least one connected point on the reference standard at a distance less
than the radius defined at that reference point, and it is marked as false positive
FPov otherwise. With ‖.‖ we denote the cardinality of a set of points, e.g. ‖TPRov‖
denotes the number of reference points marked true positive. See also Figure 2.5 for
a schematic explanation of these terms and the terms mentioned in the next section.

2.4.4.2 Overlap measures

Three different overlap measures are used in our evaluation framework.

Overlap (OV) represents the ability to track the complete vessel annotated by the
human observers and this measure is similar to the well-known Dice coefficient. It
is defined as:

OV =
‖TPMov‖+ ‖TPRov‖

‖TPMov‖+ ‖TPRov‖+ ‖FNov‖+ ‖FPov‖
.
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Overlap until first error (OF) determines how much of a coronary artery has been
extracted before making an error. This measure can for example be of interest for
image guided intra-vascular interventions in which guide wires are advanced based
on pre-operatively extracted coronary geometry [127]. The measure is defined as
the ratio of the number of true positive points on the reference before the first error
(TPRof) and the total number of reference points (TPRof + FNof):

OF =
‖TPRof‖

‖TPRof‖+ ‖FNof‖
.

The first error is defined as the first FNov point when traversing from the start of
the reference standard to its end while ignoring false negative points in the first
5 mm of the reference standard. Errors in the first 5 mm are not taken into account
because of the strictness of this measure and the fact that the beginning of a coro-
nary artery centerline is sometimes difficult to define and for some applications
not of critical importance. The threshold of five millimeters is equal to the average
diameter annotated at the beginning of all the reference standard centerlines.

Overlap with the clinically relevant part of the vessel (OT) gives an indication of
how well the method is able to track the section of the vessel that is assumed to be
clinically relevant. Vessel segments with a diameter of 1.5 mm or larger, or vessel
segments that are distally from segments with a diameter of 1.5 mm or larger are as-
sumed to be clinically relevant [87, 133]. The point closest to the end of the reference
standard with a radius larger than or equal to 0.75 mm is determined. Only points
on the reference standard between this point and the start of the reference standard
and points on the (semi-)automatic centerline connected to these reference points
are used when defining the true positives (TPMot and TPRot), false negatives (FNot)
and false positives (FPot). The OT measure is calculated as follows:

OT =
‖TPMot‖+ ‖TPRot‖

‖TPMot‖+ ‖TPRot‖+ ‖FNot‖+ ‖FPot‖
.

2.4.4.3 Accuracy measure

In order to discern between tracking ability and tracking accuracy we only evaluate
the accuracy within sections where tracking succeeded.

Average inside (AI) is the average distance of all the connections between the refer-
ence standard and the automatic centerline given that the connections have a length
smaller than the annotated radius at the connected reference point. The measure
represents the accuracy of centerline extraction, provided that the evaluated cen-
terline is inside the vessel.
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Figure 2.5: An illustration of the terms used in the evaluation measures (see section 2.4.4).

The reference standard with annotated radius is depicted in gray. The terms on top of the figure

are assigned to points on the centerline found by the evaluated method. The terms below the

reference standard line are assigned to points on the reference standard.

2.4.5 Observer performance and scores

Each of the evaluation measures is related to the performance of the observers by a
relative score. A score of 100 points implies that the result of the method is perfect,
50 points implies that the performance of the method is similar to the performance
of the observers, and 0 points implies a complete failure. This section explains how
the observer performance is quantified for each of the four evaluation measures
and how scores are created from the evaluation measures by relating the measures
to the observer performance.

2.4.5.1 Overlap measures

The inter-observer agreement for the overlap measures is calculated by compar-
ing the uncorrected paths with the reference standard. The three overlap measures
(OV, OF, OT) were calculated for each uncorrected path and the true positives, false
positives and false negatives for each observer were combined into inter-observer
agreement measures per centerline as follows:

OVag =
∑ (‖TPRi

ov‖+ ‖TPMi
ov‖)

∑ (‖TPRi
ov‖+ ‖TPMi

a‖+ ‖FPi
ov‖+ ‖FNi

ov‖)

OFag =
∑ ‖TPRi

of‖
∑ (‖TPRi

of‖+ ‖FNi
of‖)

OTag =
∑ (‖TPRi

ot‖+ ‖TPMi
ot‖)

∑ (‖TPRi
ot‖+ ‖TPMi

ot‖+ ‖FPi
ot‖+ ‖FNi

ot‖)
,

where i = {0, 1, 2} indicates the observer.
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(a) Overlap to score (b) Accuracy to score

Figure 2.6: (a) shows an example of how overlap measures are transformed into scores. (b)

shows this transformation for the accuracy measures.

After calculating the inter-observer agreement measures, the performance of the
method is scored. For methods that perform better than the observers the OV, OF,
and OT measures are converted to scores by linearly interpolating between 100 and
50 points, respectively corresponding to an overlap of 1.0 and an overlap similar to
the inter-observer agreement value. If the method performs worse than the inter-
observer agreement the score is obtained by linearly interpolating between 50 and
0 points, with 0 points corresponding to an overlap of 0.0:

ScoreO =

{

(Om/Oag) ∗ 50 Om ≤ Oag

50 + 50 ∗ Om−Oag
1−Oag

Om > Oag,

where Om and Oag define the OV, OF, or OT performance of respectively the method
and the observer. An example of this conversion is shown in Figure 2.6(a).

2.4.5.2 Accuracy measures

The inter-observer variability for the accuracy measure AI is defined at every point
of the reference standard as the expected error that an observer locally makes while
annotating the centerline. It is determined at each point as the root mean squared
distance between the uncorrected annotated centerline and the reference standard:

Aio(x) =
√

1/n ∑ (d(p(x), pi))2,

where n = 3 (three observers), and d(p(x), pi) is the average distance from point
p(x) on the reference standard to the connected points on the centerline annotated
by observer i.

The extraction accuracy of the method is related per connection to the inter-
observer variability. A connection is worth 100 points if the distance to the ref-
erence standard is 0 mm and it is worth 50 points if the distance is equal to the
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inter-observer variability at that point. Methods that perform worse than the inter-
observer variability get a decreasing amount of points if the distance increases.
They are rewarded per connection 50 points times the fraction of the inter-observer
variability and the method accuracy:

ScoreA(x) =

{

100 − 50(Am(x)/Aio(x)) Am(x) ≤ Aio(x)

(Aio(x)/Am(x)) ∗ 50 Am(x) > Aio(x),

where Am(x) and Aio(x) define the distance from the method centerline to the ref-
erence centerline and the inter-observer accuracy variability at point x. An example
of this conversion is shown in Figure 2.6(b).

The average score over all connections that connect TPR and TPM points yields
the AI observer performance score. Because the average accuracy score is a non-
linear combination of all the distances, it can happen that a method has a lower
average accuracy in millimeters and a higher score in points than another method,
or vice versa.

Note that because the reference standard is constructed from the observer cen-
terlines, the reference standard is slightly biased towards the observer centerlines,
and thus a method that performs similar as an observer according to the scores
probably performs slightly better. Although more sophisticated methods for calcu-
lating the observer performance and scores would have been possible, we decided
because of simplicity and understandability for the approach explained above.

2.4.6 Ranking the algorithms

In order to rank the different coronary artery centerline extraction algorithms the
evaluation measures have to be combined. We do this by ranking the resulting
scores of all the methods for each measure and vessel. Each method receives for
each vessel and measure a rank ranging from 1 (best) to the number of participat-
ing methods (worst). A user of the evaluation framework can manually mark a
vessel as failed. In that case the method will be ranked last for the flagged vessel
and the absolute measures and scores for this vessel will not be taken into account
in any of the statistics.

The tracking capability of a method is defined as the average of all the
3(overlap measures) × 96 (vessels) = 288 related ranks. The average of all the 96
accuracy measure ranks defines the tracking accuracy of each method. The average
overlap rank and the accuracy rank are averaged to obtain the overall quality of
each of the methods and the method with the best (i.e. lowest) average rank is
assumed to be the best.
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2.5 Algorithm categories

We discern three different categories of coronary artery centerline extraction algo-
rithms: automatic extraction methods, methods with minimal user interaction and
interactive extraction methods.

2.5.1 Category 1: automatic extraction

Automatic extraction methods find the centerlines of coronary arteries without user
interaction. In order to evaluate the performance of automatic coronary artery cen-
terline extraction, two points per vessel are provided to extract the coronary artery
of interest:

• Point A: a point inside the distal part of the vessel; this point unambiguously
defines the vessel to be tracked;

• Point B: a point approximately 3 cm (measured along the centerline) distal of
the start point of the centerline.

Point A should be used for selecting the appropriate centerline. If the automatic
extraction result does not contain centerlines near point A, point B can be used.
Point A and B are only meant for selecting the right centerline and it is not allowed
to use them as input for the extraction algorithm.

2.5.2 Category 2: extraction with minimal user interaction

Extraction methods with minimal user interaction are allowed to use one point per
vessel as input for the algorithm. This can be either one of the following points:

• Point A or B, as defined above;

• Point S: the start point of the centerline;

• Point E: the end point of the centerline;

• Point U: any manually defined point.

Points A, B, S and E are provided with the data. Furthermore, in case the method
obtains a vessel tree from the initial point, point A or B may be used after the cen-
terline determination to select the appropriate centerline.

2.5.3 Category 3: interactive extraction

All methods that require more user-interaction than one point per vessel as input
are part of category 3. Methods can use e.g. both points S and E from category 2, a
series of manually clicked positions, or one point and a user-defined threshold.
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2.6 Web-based evaluation framework

The proposed framework for the evaluation of CTA coronary artery centerline ex-
traction algorithms is made publicly available through a web-based interface at
(http://coronary.bigr.nl). The thirty-two cardiac CTA datasets, and the correspond-
ing reference standard centerlines for the training data, are available for download
for anyone who wishes to validate their algorithm. Extracted centerlines can be
submitted and the obtained results can be used in a publication. Furthermore, the
website provides several tools to inspect the results and compare the algorithms.

2.7 MICCAI 2008 workshop

This study started with the workshop ’3D Segmentation in the Clinic: A Grand
Challenge II’ at the 11th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) in September 2008 [105]. Approxi-
mately 100 authors of related publications, and the major medical imaging compa-
nies, were invited to submit their results on the 24 test datasets. Fifty-three groups
showed their interest by registering for the challenge, 36 teams downloaded the
training and test data, and 13 teams submitted results: five fully automatic meth-
ods, three minimally interactive methods, and five interactive methods. A brief de-
scription of the thirteen methods is given below.

During the workshop we used two additional measures: the average distance of
all the connections (AD) and the average distance of all the connections to the clini-
cal relevant part of the vessel (AT). In retrospect we found that these accuracy mea-
sures were too much biased towards methods with high overlap and therefore we
do not use them anymore in the evaluation framework. This resulted in a slightly
different ranking than the ranking published during the MICCAI workshop [105].
Please note that the two measures that were removed are still calculated for all the
evaluated methods and they can be inspected using the web-based interface.

2.7.1 Fully automatic methods

• AutoCoronaryTree [52, 157]: The full centerline tree of the coronary arteries
is extracted via a multi-scale medialness-based vessel tree extraction algo-
rithm which starts a tracking process from the ostia locations until all coro-
nary branches are reached.

• CocomoBeach [76]: This method starts by segmenting the ascending aorta
and the heart. Candidate coronary regions are obtained using connected com-
ponent analysis and the masking of large structures. Using these components
a region growing scheme, starting in the aorta, segments the complete tree. Fi-
nally, centerlines within the pre-segmented tree are obtained using the Wave-
Prop [101] method.
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• DepthFirstModelFit [188]: Coronary centerline extraction is accomplished by
fitting models of shape and appearance. A large-scale model of the com-
plete heart in combination with symmetry features is used for detecting coro-
nary artery seeds. To fully extract the coronary artery tree, two small-scale
cylinder-like models are matched via depth-first search.

• GVFTube’n’Linkage [14]: This method uses a Gradient Vector Flow [184]
based tube detection procedure for identification of vessels surrounded by ar-
bitrary tissues [13, 15]. Vessel centerlines are extracted using ridge-traversal
and linked to form complete tree structures. For selection of coronary arteries
gray value information and centerline length are used.

• VirtualContrast [168]: This method segments the coronary arteries based on
the connectivity of the contrast agent in the vessel lumen, using a competing
fuzzy connectedness tree algorithm [167]. Automatic rib cage removal and
ascending aorta tracing are included to initialize the segmentation. Centerline
extraction is based on the skeletonization of the tree structure.

2.7.2 Semi automatic methods

• AxialSymmetry [38]: This method finds a minimum cost path connecting the
aorta to a user supplied distal endpoint. Firstly, the aorta surface is extracted.
Then, a two-stage Hough-like election scheme detects the high axial symme-
try points in the image. Via these, a sparse graph is constructed. This graph is
used to determine the optimal path connecting the user supplied seed point
and the aorta.

• CoronaryTreeMorphoRec [32]: This method generates the coronary tree iter-
atively from point S. Pre-processing steps are performed in order to segment
the aorta, remove unwanted structures in the background and detect calcium.
Centerline points are chosen in each iteration depending on the previous ves-
sel direction and a local gray scale morphological 3D reconstruction.

• KnowledgeBasedMinPath [79]: For each voxel, the probability of belonging
to a coronary vessel is estimated from a feature space and a vesselness mea-
sure is used to obtain a cost function. The vessel starting point is obtained
automatically, while the end point is provided by the user. Finally, the center-
line is obtained as the minimal cost path between both points.

2.7.3 Interactive methods

• 3DInteractiveTrack [190]: This method calculates a local cost for each voxel
based on eigenvalue analysis of the Hessian matrix. When a user selects a
point, the method calculates the cost linking this point to all other voxels.
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If a user then moves to any voxel, the path with minimum overall cost is
displayed. The user is able to inspect and modify the tracking to improve
performance.

• ElasticModel [61]. After manual selection of a background-intensity thresh-
old and one point per vessel, centerline points are added by prediction and
refinement. Prediction uses the local vessel orientation, estimated by eigen-
analysis of the inertia matrix. Refinement uses centroid information and is
restricted by continuity and smoothness constraints of the model [60].

• MHT [49]: Vessel branches are in this method found using a Multiple Hy-
pothesis Tracking (MHT) framework. A feature of the MHT framework is that
it can traverse difficult passages by evaluating several hypothetical paths. A
minimal path algorithm based on Fast Marching is used to bridge gaps where
the MHT terminates prematurely.

• Tracer [155]: This method finds the set of core points (centers of intensity
plateaus in 2D slices) that concentrate near vessel centerlines. A weighted
graph is formed by connecting nearby core points. Low weights are given to
edges of the graph that are likely to follow a vessel. The output is the shortest
path connecting point S and point E.

• TwoPointMinCost [106]: This method finds a minimum cost path between
point S and point E using Dijkstra’s algorithm. The cost to travel through
a voxel is based on Gaussian error functions of the image intensity and a
Hessian-based vesselness measure [47], calculated on a single scale.

2.8 Results

The results of the thirteen methods are shown in Table 2.5, 2.6, and 2.7. Table 2.6
shows the results for the three overlap measures, Table 2.7 shows the accuracy mea-
sures, and Table 2.5 shows the final ranking, the approximate processing time, and
amount of user-interaction that is required to extract the four vessels. In total 10
extractions (< 1%) where marked as failed (see section 2.4.6).

We believe that the final ranking in Table 2.5 gives a good indication of the rel-
ative performance of the different methods, but one should be careful to judge the
methods on their final rank. A method ranked first does not have to be the method
of choice for a specific application. For example, if a completely automatic approxi-
mate extraction of the arteries is needed one could choose GVFTube’n’Linkage [14]
because it has the highest overlap with the reference standard (best OV result). But
if one wishes to have a more accurate automatic extraction of the proximal part of
the coronaries the results point you toward DepthFirstModelFit [188] because this
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method is highly ranked in the OF measure and is ranked first in the automatic
methods category with the AI measure.

The results show that on average the interactive methods perform better on the
overlap measures than the automatic methods (average rank of 6.30 vs. 7.09) and
vice versa for the accuracy measures (8.00 vs. 6.25). The better overlap performance
of the interactive methods can possibly be explained by the fact that the interactive
methods use the start- and/or end point of the vessel. Moreover, in two cases (MHT
[49] and 3DInteractiveTrack [190]) additional manually annotated points are used,
which can help the method to bridge difficult regions.

When vessels are correctly extracted, the majority of the methods are accurate
to within the image voxel size (AI < 0.4mm). The two methods that use a tubular
shape model (MHT [49] and DepthFirstModelFit [188]) have the highest accuracy,
followed by the multi-scale medialness-based AutoCoronaryTree [52, 157] method
and the CocomoBeach [76] method.

Overall it can be observed that some of the methods are highly accurate and
some have great extraction capability (i.e. high overlap). Combining a fully auto-
matic method with high overlap (e.g. GVFTube’n’Linkage [14]) and a, not neces-
sarily fully automatic, method with high accuracy (e.g. MHT [49]) may result in an
fully automatic method with high overlap and high accuracy.

2.8.1 Results categorized

Separate rankings are made for each group of datasets with corresponding image
quality and calcium rating to determine if the image quality or the amount of cal-
cium has influence on the rankings.
Separate rankings are also made for each of the four vessel types. These rankings
are presented in Table 2.8. It can be seen that some of the methods perform rela-
tively worse when the image quality is poor or an extensive amount of calcium is
present (e.g. CocomoBeach [76] and DepthFirstModelFit [188]) and vice versa (e.g.
KnowledgeBasedMinPath [79] and VirtualContrast [168]).

Table 2.8 also shows that on average the automatic methods perform relatively
worse for datasets with poor image quality (i.e. the ranks of the automatic methods
in the P-column are on average higher compared to the ranks in the M- and G-
column). This is also true for the extraction of the LCX centerlines. Both effects can
possibly be explained by the fact that centerline extraction from poor image quality
datasets and centerline extraction of the (on average relatively thinner) LCX is more
difficult to automate.

2.8.2 Algorithm performance with respect to ostium distance

For a number of coronary artery centerline extraction applications it is not impor-
tant to extract the whole coronary artery; only extraction up to a certain distance
from the coronary ostium is required (see e.g. [65, 170]).
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(a) Fully automatic coronary artery centerline
extraction methods
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(b) Semi automatic coronary artery centerline
extraction methods
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(c) Interactive coronary artery centerline extrac-
tion methods

Figure 2.7 (see page 146 for a color-version): The algorithm performance of each method

with respect to the distance from the ostium averaged over all 96 evaluated vessels over the

first 175ṁm. Overlap: the fraction of points on the reference standard marked as true positive.

Accuracy: the average distance to the centerline if the point is marked true positive. Each of the

three graphs shows in light-gray the results of all the thirteen evaluated methods and in color the

results of the respective algorithm category. The graphs also show in black the average accuracy

and overlap for all thirteen evaluated methods.
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Table 2.5: The overall ranking of the thirteen evaluated methods. The average overlap rank, ac-

curacy rank and the average of these two is shown together with an indication of the computation

time and the required user-interaction.

Method Cat. Avg. Ov. Avg. Acc. Avg. Computation User-
rank rank rank time interaction

MHT [49] 3 2.07 1.58 1.83 6 min. 2 to 5 pts.
Tracer [155] 3 4.21 2.52 3.37 30 min. Pt. S and pt. E
DepthFirstModelFit [188] 1 6.17 3.33 4.75 4-8 min.
KnowledgeBasedMinPath [79] 2 4.31 8.36 6.34 7 hours Pt. E
AutoCoronaryTree [157] 1 7.69 5.18 6.44 < 30 seconds
GVFTube’n’Linkage [14] 1 5.39 8.02 6.71 10 min.
CocomoBeach [76] 1 8.56 5.04 6.80 70 seconds
TwoPointMinCost [106] 3 5.30 8.80 7.05 12 min. Pt. S and pt. E
VirtualContrast [168] 1 8.71 7.74 8.23 5 min.
AxialSymmetry [38] 2 6.95 9.60 8.28 5 min. Point E
ElasticModel [61] 3 9.05 8.29 8.67 2-6 min. Global thresh. + 1

pt. per axis
3DInteractiveTrack [190] 3 7.52 10.91 9.22 3-6 min. 3 to 10 pts.
CoronaryTreeMorphoRec [32] 2 10.42 11.59 11.01 30 min. Pt. S

In order to evaluate the performance of the methods with respect to the distance
from the ostium, charts are generated that demonstrate the average performance
over all 96 evaluated centerlines for each of the methods at a specific distance from
the ostium (measured along the reference standard). Figure 2.7(a) shows these re-
sults for the automatic methods, Figure 2.7(b) shows the results for the methods
with minimal user-interaction, and Figure 2.7(c) shows the results for the semi au-
tomatic methods.

The graphs show that all the evaluated methods are better able to extract the
proximal part of the coronaries than the more distal part of the vessels. Moreover,
they show that after approximately 5 cm the accuracy of almost all the methods
is relatively constant. Furthermore, the graphs again demonstrate the fact that the
automatic methods are on average more accurate than the semi automatic or inter-
active methods.

2.8.3 More statistics available online

Space limitations prevent us to incorporate more statistics here, but the on-line
evaluation framework (http://coronary.bigr.nl) provides the possibilities to rank the
methods based on different measures or scores, create statistics on a subset of the
data and create overview tables for specific measures, categorized on image qual-
ity or score. It is for example possible to create Table 2.5, 2.6, and 2.7 for a specific
subset of the data or to create Table 2.8 with a measure or score of choice, instead of
the overall ranks. The website also contains the most recent version of the results.
The on-line results are different from the results reported in this chapter because of
recent submissions and improvements in implementation of the different methods.
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Table 2.6: The resulting overlap measures for the thirteen evaluated methods. The average over-

lap, score and rank is shown for each of the three overlap measures.

Method Cat. OV OF OT
% score rank % score rank % score rank

MHT [49] 3 98.5 84.0 1.74 83.1 72.8 2.64 98.7 84.5 1.83
Tracer [155] 3 95.1 71.0 3.60 63.5 52.0 5.22 95.5 70.2 3.81
DepthFirstModelFit [188] 1 84.7 48.6 7.29 65.3 49.2 5.32 87.0 60.1 5.90
KnowledgeBasedMinPath[79] 2 88.0 67.4 4.46 74.2 61.1 4.27 88.5 70.0 4.21
AutoCoronaryTree [157] 1 84.7 46.5 8.13 59.5 36.1 7.26 86.2 50.3 7.69
GVFTube’n’Linkage [14] 1 92.7 52.3 6.20 71.9 51.4 5.32 95.3 67.0 4.66
CocomoBeach [76] 1 78.8 42.5 9.34 64.4 40.0 7.39 81.2 46.9 8.96
TwoPointMinCost [106] 3 91.9 64.5 4.70 56.4 45.6 6.22 92.5 64.5 4.97
VirtualContrast [168] 1 75.6 39.2 9.74 56.1 34.5 7.74 78.7 45.6 8.64
AxialSymmetry [38] 2 90.8 56.8 6.17 48.9 35.6 7.96 91.7 55.9 6.71
ElasticModel [61] 3 77.0 40.5 9.60 52.1 31.5 8.46 79.0 45.3 9.09
3DInteractiveTrack [190] 3 89.6 51.1 7.04 49.9 30.5 8.36 90.6 52.4 7.15
CoronaryTreeMorphoRec [32] 2 67.0 34.5 11.00 36.3 20.5 9.53 69.1 36.7 10.74

Table 2.7: The accuracy of the thirteen evaluated methods. The average distance, score and rank

of each is shown for the accuracy when inside (AI) measure.

Method Cat. AI
mm score rank

MHT [49] 3 0.23 47.9 1.58
Tracer [155] 3 0.26 44.4 2.52
DepthFirstModelFit [188] 1 0.28 41.9 3.33
KnowledgeBasedMinPath [79] 2 0.39 29.2 8.36
AutoCoronaryTree [157] 1 0.34 35.3 5.18
GVFTube’n’Linkage [14] 1 0.37 29.8 8.02
CocomoBeach [76] 1 0.29 37.7 5.04
TwoPointMinCost [106] 3 0.46 28.0 8.80
VirtualContrast [168] 1 0.39 30.6 7.74
AxialSymmetry [38] 2 0.46 26.4 9.60
ElasticModel [61] 3 0.40 29.3 8.29
3DInteractiveTrack [190] 3 0.51 24.2 10.91
CoronaryTreeMorphoRec [32] 2 0.59 20.7 11.59

Table 2.8: Ranks per image quality; poor(P), moderate(M) or good(G), calcium score; low(L),

moderate(M) or severe(S) and vessel type. The numbers indicate the rank of each team if only

the specified datasets or vessels would have been taken into account.

Method Cat. Image quality Calcium score Vessel
P M G L M S RCA LAD LCX 4th

MHT [49] 3 1 1 1 1 1 1 1 1 1 1
Tracer [155] 3 2 2 2 2 2 2 2 2 2 2
DepthFirstModelFit [188] 1 5 4 3 4 3 5 5 4 5 3
KnowledgeBasedMinPath [79] 2 3 3 4 3 4 3 3 6 3 4
AutoCoronaryTree [157] 1 7 8 7 8 7 6 6 9 6 9
GVFTube’n’Linkage [14] 1 6 5 6 6 6 4 4 3 7 6
CocomoBeach [76] 1 12 7 9 9 8 8 8 8 10 8
TwoPointMinCost [106] 3 4 6 5 5 5 7 7 5 4 5
VirtualContrast [168] 1 9 11 12 12 10 9 11 10 12 10
AxialSymmetry [38] 2 8 9 8 7 9 12 10 11 8 7
ElasticModel [61] 3 11 12 10 10 12 11 9 12 11 12
3DInteractiveTrack [190] 3 10 10 11 11 11 10 12 7 9 11
CoronaryTreeMorphoRec [32] 2 13 13 13 13 13 13 13 13 13 13
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2.9 Discussion

A framework for the evaluation of CTA coronary artery centerline extraction tech-
niques has been developed and made available through a web-based interface at:
(http://coronary.bigr.nl). Currently thirty-two cardiac CTA datasets with correspond-
ing reference standard centerlines are available for anyone how wants to bench-
mark a coronary artery centerline extraction algorithm.

Although the benefits of a large-scale quantitative evaluation and comparison
of coronary artery centerline extraction algorithms are clear, no previous initiatives
have been taken towards such an evaluation. This is probably because creating a
reference standard for many datasets is a laborious task. Moreover, in order to get
a good reference standard, annotations are needed from multiple observers and
combining annotations from multiple observers is known to be difficult [172] and
until recently unexplored for three-dimensional curves [165]. Furthermore, an ap-
propriate set of evaluation measures has to be developed and a representative set
of clinical datasets have to be made available. By addressing these issues we were
able to present and use the proposed framework.

A limitation of the current study is the point-based vessel selection step for fully
automatic methods. Because the coronary artery tree contains more vessels than
the four annotated vessels this selection step had to be included, but it introduced
the problem that fully automatic methods can extract many false-positives but still
obtain a good ranking. This fact combined with the presented results of the fully
automatic methods for the four evaluated vessels makes us believe that a future
evaluation framework for coronary artery extraction methods should focus on the
complete coronary tree. An obvious approach for such an evaluation would be to
annotate the complete coronary artery tree in all the 32 datasets, but this is very
labor intensive. An alternative approach would be to use the proposed framework
for the quantitative evaluation of the four vessels and to qualitatively evaluate the
complete tree. In this qualitative evaluation an observer should score if any vessels
are falsely extracted and if all vessels of interest are extracted.

A further limitation of this study is that all the data have been acquired on two
CT scanners of the same manufacturer in one medical center. We aim to extend
the collection of datasets with datasets from different manufacturers and different
medical centers. Further studies based on this framework could extend the frame-
work with the evaluation of coronary lumen segmentation methods, coronary CTA
calcium quantification methods or methods that quantify the degree of stenosis.

2.10 Conclusion

A publicly available standardized methodology for the evaluation and comparison
of coronary centerline extraction algorithms is presented in this chapter. The poten-
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tial of this framework has successfully been demonstrated by thoroughly compar-
ing thirteen different coronary CTA centerline extraction techniques.



Chapter 3

Probabilistic Tracking of Elongated Structures

in 3D Images.

Based on:

1) M. Schaap, I. Smal, C.T. Metz, T. van Walsum, W.J. Niessen.
Bayesian tracking of elongated structures in 3D images, Proceedings of Information Pro-
cessing In Medical Imaging, 2007.

2) M. Schaap, R. Manniesing, I. Smal, T. van Walsum, A. van der Lugt, W.J. Niessen
Bayesian Tracking of Tubular Structures and its Application to Carotid Arteries in CTA,
Proceedings of the International Conference on Medical Image Computing and Computer
Assisted Intervention, 2007.

Tracking of tubular elongated structures is an important goal in a wide range of
biomedical imaging applications. This chapter presents a probabilistic tube extrac-
tion algorithm that can better overcome data deficiencies in the tracking process
than deterministic approaches and allows to easily incorporate a priori knowledge
about the geometry and appearance of the elongated structure of interest. A key
element of our approach is a dedicated observation model for tubular structures in
regions with varying intensities. Furthermore, because probabilistic tube tracking
algorithms are computationally complex, steps towards a computationally efficient
implementation are suggested in this chapter.

The algorithm is quantitatively evaluated on synthetic data and on clinical CTA
data of the internal carotid artery in 14 patients (28 carotids). Tracking of the inter-
nal carotid artery through the skull base in CT angiography data is a challenging
problem, owing to the close proximity of bone, overlap in intensity values of lu-
men voxels and (partial volume) bone voxels, and the tortuous vessel paths. The
tracking was successful in 25 cases, and the extracted paths were found to be close
(< 1.0mm) to manually traced paths by two observers. The approach also showed
good performance on synthetic data with high levels of Gaussian noise.
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3.1 Introduction

Tracking of tubular elongated structures is an important goal in a wide range of
biomedical imaging applications [85]. For example, vessel tracking in medical im-
ages has received considerable attention, as it can be used as a preprocessing step
towards stenosis evaluation and grading, by generating multi-planar reformatted
images [33].

Vessel centerline extraction methods can roughly be divided into two groups;
bottom-up approaches and tracking methods. Bottom-up approaches (e.g. [155,
168]) detect centerline segments in the image and connect them to obtain the vascu-
lar centerlines. Tracking methods find paths in the image from a certain start-point
to a manually specified, or automatically determined, end-point of the vessel of in-
terest. In deterministic tracking methods (e.g. [8]) the algorithm starts at a given
seed point and extends the path in the most probable direction at each iteration of
the method, according to local image information. Since in these methods only one
assumption of the path configuration is taken into account, this may lead to incor-
rect results if the path direction cannot be derived from imaging data locally, e.g.
owing to pathologies or corrupted imaging data. State-of-the-art centerline track-
ing methods circumvent this problem by taking into account multiple hypotheses
during tracking. These methods can be sub-divided into dynamic programming
methods and probabilistic methods. In dynamic programming methods, minimum
cost paths X̂S,E are found that optimally connect a specificed start region S with an
end region E, according to a cost function C(X(s), X′(s)):

X̂S,E = argmin
XS,E

∫

C(X(s), X′(s))ds, (3.1)

with XS,E : [0..L] → ℜd a path with length L running from the specified start region
S to the end region E in the d-dimensional image space. Often, the dependency on
the tangent of the path X′(s) is ignored, leading to an isotropic cost function that can
be solved efficiently with the Fast Marching algorithm [121, 181] or discretely ap-
proximated with Dijkstra’s algorithm [52, 105]. Recently, work has been presented
on finding minimum cost paths with an anisotropical cost function [103]. This re-
quires computationally more demanding optimization algorithms, such as the Fast
Sweeping algorithm, but can lead to significantly better results [103]. For all min-
imum cost path methods the cost function should be low on (and for anisotropic
cost function, in the direction of) vessel centerlines, and high in other areas. Exam-
ples of cost functions include the reciprocal of Frangi’s well-known vesselness mea-
sure [107, 181] and anisotropic oriented medial-based measures [52, 86]. In recent
work attempts have been made to find minimal cost paths in a 4-dimensional space
describing the 3-dimensional position and radius of a vessel of interest [18, 88],
thereby obtaining next to the position of the vessels also their radius. The com-
bination of 4D minimum cost paths and anisotropic costs has received only little
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attention [18].

A disadvantage of minimum cost path methods is that often a large amount of
locations in the d-dimension space have to be processed, and, because of Bellman’s
principal of optimality [17], the cost function can only depend on the position and
tangent in the d-dimensional space. If, for example, the curvature of the path has
influence on the likelihood of a path, the direction of the path should be added to
the d-dimensional state vector X(s), thereby increasing its dimensionality and often
leading to computationally intractable situations.

In probabilistic, or multiple hypotheses, centerline extraction the d-dimensional
space is sparsely sampled, requiring the evaluation of less points in the state vector
space [45, 114]. Therefore, in these approaches it is possible to add additional vari-
ables to the state vector in order to incorporate advanced prior information, which
can result in more robust results. In this work we present a probabilistic tracking
approach in which we add the radius, intensity and direction of the path to the state
vector.

One of the important considerations when developing a tubular structure track-
ing algorithm is an observation model that describes the appearance of the tubular
structures in the image, given the parameters of the tube (e.g. position and ori-
entation). Often, probabilistic centerline extraction techniques use an observation
model that is based on the assumption that vessels have, relative to their surround-
ing tissue, a bright intensity [45, 114]. This model is not suited for situations where
the background contains both lower and higher intensities than the tube, which is
e.g. the case for carotid arteries in CT angiography, which are surrounded by low
intensity soft tissue and high intensity bone.

We present a probabilistic iterative tracking approach for tracking of elongated
structures in 2D and 3D images. The novelty of this work is twofold. First, we
present a generic and intuitive observation model to overcome the problems as-
sociated with the bright vessel observational model. The new observation model
is specifically tailored for tracking homogeneous tubular structures through back-
grounds with varying intensities. Second, to overcome the computational complex-
ity of probabilistic tracking algorithms, several computational optimizations are
proposed.

The presented method is evaluated by tracking elongated structures in synthetic
data and by tracking the internal carotid artery through the skull base in CT angiog-
raphy data of 14 patients. This is a challenging clinical problem, owing to the close
proximity of bone, overlap in intensity values of lumen voxels and (partial volume)
bone voxels, and the tortuous path of the vessels. The success rate and accuracy of
the tracking are assessed quantitatively by comparing results on 14 datasets (28
carotids) to tracings by two observers.
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Figure 3.1: Fig. (a) shows a part of the tube configuration x0:t. Fig. (b) visualizes the region in

the tube S(xi
t) and the region in the band B(xi

t) around the tube. The prediction of new tubular

segments, as explained in Section 3.2.5, is presented in Fig. (c).

3.2 Method

The iterative probabilistic tracking approach searches for the track that is best ex-
plained by the data, given an observation model (which is based on our model of
a tube), and prior information on the shape and appearance of the vessel (mod-
eled via e.g. transition priors). The posterior probability density function (PDF) of a
track, given the data, is recursively estimated. This is achieved by iteratively creat-
ing a set of currently most likely hypotheses. At the end, the maximum of the PDF
determines the track that best represents the vessel of interest.

3.2.1 Tube model

Our tracking method considers an elongated structure as a series of straight tube
segments (i.e. cylinders). A tube segment at iteration t is described by its location
pt = (xt, yt, zt)T , orientation vt = (θt, φt), radius rt, and intensity It. Thus each tube
segment is characterized by a state vector xt = (pt, vt, rt, It)T and a complete tube
is described by x0:t , {x0, . . . , xt}, see Figure 3.1(a).

With every tube segment we associate a region of interest (ROI) U(xt), defined
by the components pt, rt, and vt of xt (see Figure 3.1). Subsequently, we let zt de-
note the image measurements (i.e. image intensities) within this ROI. Hence, all
measurements corresponding to tube x0:t are denoted with z0:t. S(xt) defines the
set of spatial coordinates that lie within the hypothesized tube and B(xt) = U\S
defines the set of spatial coordinates in the band around the tube, see Figure 3.1(b).
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3.2.2 Representing the posterior probability density function

Using Bayes’ theorem, the probability density function (pdf) p(x0:t|z0:t), that de-
scribes the posterior probability of the tube configuration, having all the observa-
tions up to iteration t can be estimated with the following recursion [39]:

p(x0:t|z0:t) ∝ p(xt|xt−1)p(zt|xt)p(x0:t−1|z0:t−1), (3.2)

where the transition prior p(xt|xt−1) is assumed to be Markovian (xt only depends
on xt−1 and not on any other past states). The observation model p(zt|xt) relates
the conditionally independent measurements at iteration t to the state xt.

The PDF can be represented with a set of Nt weighted states (also called parti-
cles):

p(x0:t|z0:t) =
Nt

∑
i=1

wi
tδ(x0:t − xi

0:t), (3.3)

where δ(·) is the Dirac delta function.
Because the dimension of the joint space p(x0:t|z0:t) increases at every iteration

the variance of the weights wi
t also increases continuously [39]. In order to perform

estimation in such high dimensional space a large number of particles is necessary,
which would increase the computational complexity. Several techniques exist to
counter-act this problem, of which the Sequential Importance Resampling particle
filter (SIR) is well-known [7, 39, 51]. With SIR in each iteration a fixed number of
particles is used which are efficiently redistributed in order to describe the pdf. In
this work we propose a similar approach with the addition that we determine in
each iteration the optimal number of particles (see section 3.2.6), requiring signifi-
cantly less hypotheses in areas with conspicuous image information.

An additional optimization can be obtained by modeling the intensity in the
marginal space, instead of in the joint space:

p(q0:t, It|z0:t) = p(It|q0:t, z0:t)p(q0:t|z0:t). (3.4)

This results in a lower dimension of the state space and thereby in less computa-
tional cost. Here, p(q0:t|z0:t) is calculated similarly to Equation 3.2. The marginal
posterior intensity distribution p(It|q0:t, z0:t) is calculated as follows:

p(It|q0:t, z0:t) ∝

∫

p(It|It−1)p(zt, qt|It)p(It−1|q0:t−1, z0:t−1)dIt−1. (3.5)

Because this integral can be computationally difficult to calculate with the particle
description in Equation 3.3 we assume that for each position, direction and radius
qt the intensities can be described with a normal distribution. By further assuming
a linear Gaussian transition and observation model for the intensity component
(see Section 3.2.3 and Section 3.2.3) the integral in Equation 3.5 can be calculated
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analytically and very efficiently with the Kalman filter (see section 3.2.6). Thus, the
PDF is described as follows:

p(q0:t, It|z0:t) =
Nt

∑
i=1

wi
tδ(q0:t − qi

0:t)N (It, Pt), (3.6)

with N (.|µ, σ2) a real normal distribution with mean µ and variance σ2, and Pt the
modeled variance of the intensities.

The weights are normalized such that ∑
Nt
i=1 wi

t = 1. Each hypothesis (qi
0:t, It)

now represents a path x0:t, the directions v0:t, and radii r0:t, and an associated nor-
mal distribution for the intensity at the end of the path N (It, Pt). The corresponding
weight wi

t determines how likely this path-hypothesis is.
We will give two examples of different observation models in Section 3.2.3 and

we describe our transition model in Section 3.2.4. Next, the method for generating
new states, or hypotheses, is explained (’prediction’) (Section 3.2.5), and lastly the
mechanism to update the PDF is explained (’update’) (Section 3.2.6).

3.2.3 Observation model

We present two different models for the observation model p(zt|xt) in Equation 3.2.
The first model is a common model designed for bright tubes in dark backgrounds,
and the second is designed for tracking tubular structures through backgrounds
with varying intensities, which can be both lower and higher than the tube of inter-
est. In this last model we also incorporate an additional geometric prior.

For both models we define Iin as the average intensity of the intensities inside
the tube (i.e. in the region S(xt)). Moreover, we assume that the observation model
for the intensity It is a linear (conditional on the rest of the state parameters) Gaus-
sian model given by:

Iin = It + ςt, (3.7)

where ςt ∼ N (ς|0, σ2
im), and σ2

im denotes the variance of the expected measurement
error of the intensity Iin. In both observation models we use this model to determine
what the conditional probability of the measured intensities is, given the predicted
intensities It.

3.2.3.1 Bright-tube Observation Model

In this first observation model, we assume tubes to be bright relative to their back-
ground. Given the tube segment xt and the measurements zt, the conditional prob-
ability of the measurements given the state xt, p(zt|xt), is constructed as follows:

p(zt|xt) = p(zt|pt, vt, rt, It) ∝ p(Iin, Iout)N (Iin|It, ςt), (3.8)
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where

p(Iin, Iout) ∝

{

( Iin−Iout
Ic

)s, Iin > Iout,

0, Iin ≤ Iout.
(3.9)

with Iout the average intensity of the intensities in the band outside the tube (i.e. in
the region B(xi

t)), and Ic and s contrast regulating parameters. The term p(Iin, Iout)
describes the probability that the observed intensities inside and outside the tube
segment are representative for a bright tube. Finally, N (Iin|It, σ2

im) describes the
probability that the measured average inside intensity Iin resembles the modeled
intensity.

3.2.3.2 Bhattacharyya Observation Model

The second observation model is similar to the first; the likelihood of the state vec-
tor given the observations depends on 1) how much the inside and outside inten-
sities differ, and 2) how much the measured intensities differ from the predicted
intensities.

This model is different from the first in how the intensities are compared. Im-
plicitly, we assume in the first model that the distributions of the inside and out-
side intensities are mono-modal and that they have similar variation. In the second
model we assume a Gaussian distribution for the inside intensity, but no specific
distribution for the outside intensity. This makes it possible to use this model in
situations when the only a priori appearance information about the tubes is that
the intensities in the tube have a homogeneous intensity with additive Gaussian
disturbance, which differs from the intensity of surrounding tissue.

With p(I|S(xt)) and p(I|B(xt)) we describe the normalized intensity histograms
of the voxels at the inside and outside of the tube segment respectively. These dis-
tributions are constructed by sampling from the ROI defined by xt using nearest
neighbor interpolation. Given the tube segment xt and the measurements zt, the
conditional probability of the observation given the state p(zt|xt) is given by:

p(zt|xt) = p(zt|pt, vt, rt, It, σt) ∝ Dcp,t (1 − Dsb,t), (3.10)

where Dcp,t and Dsb,t denote respectively the similarity between the measured in-
side intensity and the modeled intensity It and the similarity between the intensity
distribution inside and outside of the tube. These two intensity measures are calcu-
lated as follows:

Dcp,t = D(N (I| Îs,t, σ̂2
s,t), p(I|It, σ2

im))c1 (3.11)

Dsb,t = D(N (I| Îs,t, σ̂2
s,t), p(I|B(xt)))c2 , (3.12)

where Îs,t and σ̂2
s,t describe respectively the mean and variance of the intensity his-

togram p(I|S(xt)), and c1 and c2 are parameters to regulate the influence of the
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different components. Several methods have been suggested in literature to cal-
culate the similarity between two distributions. We use the Bhattacharyya Metric
(BM) [158], defined by:

D(p1, p2) = BM(p1, p2) =
∫ √

p1(x)p2(x)dx. (3.13)

3.2.4 Transition model

The transition model p(xt|xt−1) in Equation 3.2 describes the conditional probabil-
ity of a state xt given its previous state xt−1. In our case we assume that the transi-
tion for the position, radius and intensity are indepedent. Therefore the transition
model can be factorized as:

p(xt|xt−1) = p(pt, vt|pt−1, vt−1)p(rt|rt−1)p(It|It−1). (3.14)

We define the transition density p(pt, vt|pi
t−1, vi

t−1) to be proportional to a Gaus-
sian distribution with zero mean and standard deviation σ2

ϕ on the angle between
the tube axes, i.e.:

p(pt, vt|pi
t−1, v

i
t−1) =

Ni
t−1

∑
j=0

ω̃jδ(pt − p
j
t), (3.15)

where the weight ω̃j of a given enclosed angle φj between vt and vt−1 is given by:

ω̃j =
ω(φj)

∑
Ni

t
k=0 ω(φk)

(3.16)

ω(ϕ) = N(ϕ|0, σ2
ϕ), (3.17)

with σϕ a pre-defined parameter. We also model the transitions of rt and It as linear
Gaussian models:

rt = rt−1 + ηt, (3.18)

It = It−1 + ξt, (3.19)

where ηt and ξt are uncorrelated Gaussian random variables with variances σ2
r and

σ2
I , respectively. Thus:

p(rt|rt−1) = N (rt|rt−1, σ2
r ) (3.20)

p(It|It−1) = N (It|It−1, σ2
I ) (3.21)

Additionally we propose an optional spatial term pM(qt|q0:t−1) in the transi-
tion prior in order to prevent loops in the tracked tube. For this we do not model
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the transition prior as being Markovian. Instead, we determine the posterior prob-
ability pM(qt|q0:t−1) of a tube segment qt given all previous tube segments and
we incorporate this term in the transition prior, thereby obtaining the following
modified (non-Markovian) transition prior:

p(xt|x0:t−1) = pM(qt|q0:t−1)p(xt|xt−1). (3.22)

For the term pM(qt|q0:t−1) we create a spatial map Mt(x) which stores for each
image voxel the probability that the voxel has not been identified as being part of
the tubular structure. This map is initialized with M0(x) = 1. Then, in each iteration
the map is updated according to the current hypotheses and their likelihood. This
update step is described in section 3.2.7. In the calculation of the transition prior
the term pM(qt|q0:t−1) is constructed by averaging over all values of this map that
fall within the inside of the tube (S(qt)):

pM(qt|q0:t−1) =
∑p∈S(qt) Mt(p)

|S(qt)|
, (3.23)

where |.| defines the set size operator.

3.2.5 Prediction

In the prediction step we create Ni
t new hypotheses x

j
t : j ∈ {1..., Nt−1} for each

hypothesis xi
t−1 from the previous iteration t− 1. In the update step both the transi-

tion model and observation model are used to calculate new weights and intensity
distributions for these new hypotheses.

First, new positions p
j
t and directions v

j
t are determined by sampling for each

hypothesis xi
t a set of wi

t−1Nt−1 new hypotheses on the half sphere (with radius li
t)

in front of pi
t−1 oriented in the direction of vi

t−1. They are sampled according to:

p
j
t = p

i
t−1 + li

tv
i
t (3.24)

v
i
t = Rz(θ

i
t−1)Ry(φ

i
t−1)Rz(ϑ

j
t)Ry(ϕ

j
t)(0, 0, 1)T (3.25)

where Rz(.) and Ry(.) are rotation matrices around the z- and y-axis [176]. The

angles (ϑ
j
t, ϕ

j
t) describe a point in the local spherical coordinate system with the

z-axis orientated in the direction of vi
t−1 and origin at pt−1. They are chosen with

an algorithm that uniformly distributes points on the half sphere, as described by

Saff and Kuijlaars [139]. Because the angle ϕ
j
t is equal to the enclosed angle between

vi
t−1 and v

j
t the transition probability in Equation 3.15 can efficiently be calculated.

Depending on the application of choice, the length of a tube segment li
t can be set

to a constant value or be dependent on the radius of the tube ri
t−1 and a predefined
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parameter α:

li
t =

ri
t−1

tan(α)
. (3.26)

Figure 3.1(c) provides a schematic explanation of the position transition in eq. (3.25).
The transition model for the radius and intensity will be discussed in the next sec-
tion.

3.2.6 Update

In the update step the weights {wi
t} and the intensity descriptors (Ii

t ,P
i
t ) in iteration

t are calculated according to the observation model and the observations zt.
First we associate with each position,direction, radius (pi

t−1, vi
t−1, ri

t−1) a dis-

crete set of K radii ri,k
t , sampled uniformly between ri

t−1 − ∆r and ri
t−1 + ∆r. Then

we collect for each radius ri,k
t image statistics zi,k

t , and we calculate weights accord-
ing to the observation and transition models:

wi,k
t = wi

t−1 p(zi,k
t |xi

t)p(xi,k
t |xi

t). (3.27)

Because the transition and observation model for the intensity component are both
modelled as linear Gaussian models (see Equation 3.19 and 3.7) the intensity pre-
diction and update can be solved analytically using the Kalman filter[39]. First the
intensity mean and variance are predicted:

Ii
t|t−1 = Ii

t−1

Pi
t|t−1 = Pi

t−1 + σ2
I

and then they are updated:

Ii,k
t = Ii

t|t−1 + Kt(Ii,k
in − It|t−1)

i,

Pi,k
t = (1 − Kt)Pi

t|t−1

where Kt denotes the Kalman gain Kt =
Pi

t|t−1

Pi
t|t−1+σ2

im
. In the first iteration, when no

a priori knowledge about the image intensity distribution is available, the Kalman
filter is not used and Ii

1 is set to Iin and Pi
1 to σ2

im. After calculating all radius weights,
the radius of the new particle ri

t is updated by selecting the radius with the highest
weight wi,k

t :

ri
t = ri,k̂

t (3.28)
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with k̂ = argmaxk w
j,k
t . Finally, we set the weight and intensity descriptors to the

values associated with the radius with maximum weight: wi
t = wi,k̂

t , Ii
t = Ii,k̂

t , Pi
t =

Pi,k̂
t .

3.2.7 Tube probability update

The spatial prior pM(xt) uses the map Mt(x) that describes for each position the
probability that it (still) can be traversed. For the first iteration this map is set to
Mt(x) = 1, meaning that hypotheses are plausible at all positions. Given this first
initialization, the map is updated in each iteration as follows:

Mt+1(p) = Mt(p)(1 − ∑
∀i:p∈S(xi

t)

wi
t). (3.29)

3.2.8 Keeping the effective hypotheses

For improved efficiency we use in each iteration the variance of the (normalized)
weights wi

t to determine how many and which hypotheses should be kept in the
next iteration. The Nt most probable hypotheses are kept according to the weights
wi

t, i ∈ {1, ..., Nt}, where:

Nt =
1

∑
Nt
i (wi

t)
2

. (3.30)

From each of these states, Ni
t = max(nint(wi

tN), Nmax) new states are created,
where nint(.) denotes a nearest integer round, N is pre-defined and describes the
maximum total number of hypotheses created and Nmax describes the maximum
number of hypotheses created from one hypothesis. This approach will keep only
the relevant hypotheses and effectively distributes them according to the described
pdf.

3.3 Synthetic Evaluation

The developed probabilistic tracking algorithm has been evaluated on 2D and 3D
synthetic data and simulated computed tomography angiography (CTA) data.

3.3.1 Parameters and initialization

For all the experiments on the synthetic data we used the bright tube model with
tubes of variable tube lengths (see Section 3.2.5) and we used fixed parameter set-
tings that were empirically selected based on experiments on synthetic data not
belonging to the test set. In this empirical optimization study it was observed that
the method was not sensitive to parameter changes.
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The following parameter settings were used: maximum number of hypotheses
N = 500, maximum number of hypotheses created from an hypothesis Nmax =
50, observation model parameters Ic = 1.0 and s = 1.0, and (in arbitrary units):
direction transition variance σ2

ϕ = 1.5, radius transition variance σ2
r = 2, intensity

transition variance σ2
I = 1000, intensity measurement error σ2

im = 10, variable tube
length parameter α = 0.25.

The algorithm is initialized with a seed point and a radius estimation. The initial
set of state vectors X0 contains two hypotheses, with locations p0

0 and p1
0 equal to the

seed point and radii r0
0 and r1

0 equal to the estimated radius. The orientations were
initialized in two arbitrarily, and opposing, directions: v0

0 = (0, 0) and v1
0 = (π, 0).

3.3.2 2D synthetic data

In order to investigate the accuracy of the developed method as a function of image
noise, a quantitative study on 2D synthetic data was carried out. In this synthetic
study we use the distinguishability measure MD = CNR

√
A, where CNR is the ra-

tio of the contrast between an object and its background and the standard deviation
of the noise in the image and A denotes the amount of voxels of the object [135].
Four random tubes were created with radii and distinguishability values of respec-
tively r = {2.5, 5.0, 7.5, 10} pixels and MD =

√
2{0.5, 1.0, 1.5, 2.0} pixels, resulting

in 64 different test images.
These synthetic tubes were created by fitting 3rd order splines through five ran-

domly selected points in a 2D grid of 512×512 pixels. Tubes were excluded if a part
of the tube had a distance to other parts of the tube, not being direct neighbors, of
less than 100 pixels, or if the maximum curvature of the tube centerline was higher
than 0.04 pixels−1. See Figure 3.3(a) for an example tube.

The tubes were both tracked automatically and manually which allows compar-
ison between the obtained accuracy and the human capabilities of tracking tubes in
noisy data. Four observers each annotated centerlines in 16 of the 64 images. The
different radii and noise levels were equally distributed over the four observers.

In the automatic tracking, the radius was initialized at the average size of the
synthetic tubes evaluated, being 6.25 pixels. It is believed that this simulates typical
a priori knowledge of an expected tube size.

As an evaluation criterion we use the root mean squared distance (RMSD) be-
tween the automatically or manually tracked tube and the centerline of the golden
standard. This number is divided by the radius of the tube in order to present the
accuracy of tracking relative to the tube size (RMSD/r).

Only distances for paths where at least 95% of the track is found at a distance
within twice the radius of the golden standard are taken into account. In this way
the ability of tracking the tube and the accuracy of tracking is presented.
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3.3.3 3D synthetic data

A 3D synthetic evaluation was carried out to evaluate the performance of the al-
gorithm for tracking 3D tubes with varying radius and high image noise. A 3D
synthetic tube with varying radius from r = 4 voxels to r = 10 voxels is created
and Gaussian noise is added, resulting in a CNR value of 0.25 and thereby distin-
guishability measures of MD = 1.8 to MD = 4.4 voxels. The algorithm was initial-
ized with a seed point at the beginning of the tube and radius was set to the average
radius of 7 voxels. The performance of the algorithm is evaluated by measuring the
RMSD to the centerline of the synthetic tube.

3.3.4 Simulated CTA data

To simulate clinical data with high noise, a computed tomography angiography
(CTA) artery was manually segmented from CTA data. The segmentation was given
a contrast of 200 intensity units to its background, similar to the contrast of arter-
ies in CTA. This segmentation was smoothed with a Gaussian kernel with standard
deviation of 1 voxel, similar to the point spread function of CT. Afterward Gaussian
noise was added, with a standard deviations of 240 intensity units, approximately
eight times higher than the clinical noise value of 30 intensity units. The algorithm
was initialized with a seedpoint at the approximate beginning of the tube and the
radius was set to approximately twice the average radius of the simulated vessel.
The RMSD difference to a manual tracked centerline is used as a performance mea-
sure.

3.4 Evaluation on clinical CTA data

The second part of our evaluation consisted on an evaluation on clinical CTA data.
In order to evaluate the additional value of the Bhattacharyya observation model
we used a clinical problem that is difficult with standard bright-tube observation
models; tracking the internal carotid arteries (ICAs) in CTA data covering the anat-
omical region containing the skull base. In these areas a vessel segment can be sur-
rounded by both lower and higher intensities.

3.4.1 Data acquisition and parameter settings

Fourteen consecutive patients suffering from a transient ischemic attack underwent
a CTA examination. The data, acquired on a 16-slice CT scanner (Siemens Somatom
Sensation 16, Forchheim, Germany) were reconstructed using a B46f kernel, and re-
sampled in-plane with linear interpolation to a 256 × 256 matrix, resulting in voxel
sizes of 0.5 × 0.5 × 1.2mm. Visual inspection showed that 24 out of 28 carotids con-
tained some form of pathology; 16 carotids showed mild calcifications, stenoses or
aneurysms and eight carotids contained severe calcifications and/or stenoses.
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In this evaluation the following parameter settings were used: maximum num-
ber of hypotheses N = 1000, maximum number of hypotheses created from an
hypothesis Nmax = 50, observation model parameters c1 = 10, c2 = 30, direction
transition variance σ2

ϕ = 2.0, radius transition variance σ2
r = 0.5, intensity transition

variance σ2
I = 1000, intensity measurement error σ2

im = 1000.

3.4.2 Carotid tracking

The method is evaluated by tracking the internal carotid arteries (ICAs) in CTA
data covering the anatomical region containing the skull base. A possible approach
is to acquire an additional unenhanced CT scan to mask high intensity structures,
but this is associated with increased radiation dose for the patient and increased
acquisition time. Recently, methods have appeared that directly track the vessels in
carotid CTA, [99, 150, 154], but either lack methodological details [154] and/or an
extensive validation [99, 150]. The method described in [99] seems to be the most
promising to date, but evaluation was limited to visual inspection by observing
whether the tracked path was fully contained within the ICAs. In this work we
quantitatively compare the results of our method to manually traced paths by two
observers.

The algorithm is initialized by placing a small vector in the vessel just after the
carotid bifurcation. The method then iterates until a vessel length of at least 180
mm is tracked to ensure that each tracked path goes beyond the region containing
the skull base and reaches the Circle of Willis. The segment length lt was set to 4
mm, therefore the final path will contain 46 points. For comparison, two observers
manually traced both ICAs in each patients (resulting in a total of 56 manually
traced paths). For this manual tracing, points were first annotated on the axial slices
and then visually inspected on multiplanar reformatted (MPR) images to determine
whether the point was properly centralized. Points could be corrected on the MPR
images if needed.

A comparison between two paths is made segment-wise, by finding the mini-
mum distances of two neighboring points on the first path to the second path. The
radii of ICAs are approximately in the range of 1.0mm-2.5mm. If both distances are
found to be smaller than 2.5 mm, than this path segment is considered to be corre-
sponding. For the corresponding path segments the average distance is computed.
In this way we evaluate both the tracking success rate and tracking accuracy. Both
criteria are applied in the path comparisons between the method and observers
M → O{1,2}, and between the observers O1 ↔ O2.

3.4.3 Coronary tracking

The algorithm was also used to track two coronary arteries in a cardiac CTA dataset.
One of the arteries had a chronic total occlusion, meaning that an artery was blocked



Probabilistic Tracking of Elongated Structures in 3D Images. 51

Manual Automatic
MD√

2
#found RMSD RMSD/r #found RMSD RMSD/r

0.5 14/16 3.12 0.40 5/16 2.85 0.39
1.0 16/16 1.37 0.25 16/16 1.72 0.31
1.5 16/16 1.11 0.21 16/16 1.60 0.30
2.0 16/16 1.05 0.19 16/16 1.52 0.28

Table 3.1: Evaluation results for the evaluation with 2D synthetic data. A tube is said to be found if

at least 95 percent of the length of the path was tracked at a distance to the golden standard of less

than two times the radius of the tube. For tubes that were found both manually and automatically,

the root mean squared difference (RMSD, in pixels) and the root of the average of the squared

ratio between distance and radius RMSD/r is shown.

and (almost) no blood was passing the point of occlusion. Such a dataset is prob-
lematic for conventional deterministic algorithms, because locally the image is lack-
ing sufficient contrast. The algorithm was initialized by putting a seedpoint in the
vessels and setting the radius to approximately twice the radius of the vessel.

3.5 Results

3.5.1 2D synthetic data

The results of the evaluation on 2D synthetic data are shown in Figure 3.2 and
Table 3.1. Figure 3.2 shows the relation between the accuracy of the manually and
automatically tracked paths. Table 3.1 shows the performance of the manual and
automatic trackings, for the four different distinguishability measures. An example
of the input data and the automatic tracking is presented in Figure 3.3. For the
automatically tracked paths that had an overlap of less than 95%, the overlap was
always less than 45%. Two of these tracks were also not found manually with an
overlap of at least 95% (respectively 85% and 88%).

3.5.2 3D synthetic data

The algorithm tracked the full length of the path in the 3D synthetic tube. The
RMSD to the golden standard was 2.3 voxels. Figure 3.4 visualizes this result.

3.5.3 Simulated CTA data

In the simulated CTA dataset the track was found automatically with an RMSD
of 1.7 voxels to the manually annotated reference standard. Figure 3.5 shows the
simulated CTA dataset, found path and reference standard.
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Figure 3.2 (see page 145 for a color-version): Scatter plot demonstrating the relation between

the accuracy, measured in RMSD/r (in pixels), of the manually and automatically tracked tube

centerlines. The different symbols denote different radii (♦ = 2.5, � = 5.0, © = 7.5, △ = 10.0, all

in voxels), and different colors denote different noise levels.

(a) (b) (c)

Figure 3.3: An example of the data and results of the 2D synthetic evaluation. Figure (a) is a

randomly created tube with radius of 5 voxels and 200 intensity units contrast. Figure (b) is the

image after Gaussian noise with a standard deviation of 894 was added, resulting in CNR = 0.224
and Md = 0.5

√
2. Figure (c) shows the tracking result of the algorithm.
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(a) (b)

Figure 3.4: A demonstration of tracking with the developed algorithm of a 3D synthetic tube with

radius varying between 5 and 10 voxels and CNR of 0.25. In (a) the tracking result in 3D is shown

with the tube without noise and a slice of the volume with noise. (b) shows the noisy slice in 2D.

(a) (b)

Figure 3.5: (a) An automatically found track (shown with arrows) in a simulated CTA dataset

displayed together with the simulated dataset without noise, manual reference standard (white

dots), and a slice from the dataset with noise. (b) shows the slice with noise in 2D.
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M → O1 M → O2 O1 → O2 O2 → O1

Overlap 0.95% 0.95% 0.99% 0.99%
Avg. Dist. 0.69 0.67 0.46 0.47

Table 3.2: The results of the comparison between observer 1 (O1), observer 1 (O1), and the

method (M). ’Overlap’ shows the percentage of the total length of all 14 tracks found within 2.5mm.

’Avg. Dist.’ shows for all corresponding segments the average distance in millimeters to the refer-

ence track, weighted by segment length.

M → O1 M → O2

100% 23 22
90-100% 1 2

80-90% 2 3
<80% 3 2

Table 3.3: The automatic tracks (M) categorized on the percentage found within 2.5mm of the

reference standard, respectively observer 1 (O1) and 2 (O2).

3.5.4 Carotid artery tracking

The results of tracking the carotid artery through the skull base are summarized in
Table 3.2 and 3.3. An example of the results is shown in Figure 3.6. Overall, 95%
of the tracked segments was found within 2.5 mm of the annotated centerlines and
for these segments the average distance was approximately 0.7 mm, which only is
0.2 mm larger than the interobserver variability. Furthermore, the average distance
of the corresponding segments per track was always smaller than 1.0 mm.

Seven tracks had an overlap of less than 100% with the track of one of the ob-
servers. Visual inspection showed that an annotation error was made by observer
two, causing one of these cases. The other six tracks with less than 100% correspon-
dance can be divided in a group of three tracks (> 80%) where the track has some
minor localization errors in the distal parts of the ICA and a group of three (< 80%)
where the method failed to track from the seedpoint to the Circle of Willis. For these
vessels, respectively 57, 72 and 78% was tracked.

3.5.5 Coronary artery tracking

The two clinical examples are shown in Figure 3.7. Both trackings were visually
evaluated and found to be well within the boundary of the vessel.
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Figure 3.6: An example of an automatically generated curved planar reformatted image. The

image shows calcifications in the internal carotid artery in the region after the skull base, depicted

on the right side of the image.

(a) (b)

Figure 3.7: Examples of a clinical application of the probabilistic tracking algorithm. (a) shows a

tracked right coronary artery in a CTA dataset. In (b) it is shown that an artery with a chronic total

occlusion (CTO) in a CTA dataset is successfully tracked.

3.6 Discussion and Conclusion

In this chapter we have presented a tubular tracking approach within a probabilis-
tic framework. The method is flexible, since prior information can easily be incor-
porated. In our case, important prior information is incorporated through a novel
observation model. Second, its non-deterministic character increases robustness of
the method. Finally, because probabilistic tube tracking algorithms are computa-
tionally complex, several computational improvements are suggested in this chap-
ter. We presented the use of the Kalman filter for the intensity component of the
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state vector. This continuous representation of the intensity reduces the amount of
necessary hypotheses significantly in comparison to a discrete representation. The
second computational contribution is to adapt the amount of hypotheses on the
conspicuity of the image information according to the variance of the importance
weights.

The algorithm was evaluated on 2D synthetic data. Synthetic tubes in images
with high additive Gaussian noise (CNR

√
radius = 1.0) were successfully tracked

with accuracies that were in the same order of magnitude as the tracking results of
the human observers. The evaluation on 2D synthetic data showed that the algo-
rithm was capable of tracking tubes with a distinguishability measure MD of 1.4
with accuracies that were in the same order of magnitude as the tracking results
of the human observers. As a reference for values of MD we would like to refer to
[8, 97] for respectively tube enhancement and tracking. In [97] it is reported that
straight tubes were successfully enhanced at MD > 5.3. The values presented in [8]
are more difficult to compare, because varying tube radii were used, but indicative
values can be obtained from this article. The algorithm was also applied to 3D syn-
thetic data (with a CNR of 0.25) and simulated high noise CTA data. Both tracks
were found automatically with a RMSD of approximately 2 voxels to the reference
standard.

The method has also been applied to the tracking of carotid and coronaries in
CTA data. 28 ICAs were successfully tracked through the difficult region of the
skull base. The resulting paths were found to be close (< 1.0mm) to manually traced
paths by two observers.

The development of automatic stopping criteria, bifurcation detection, and a
comparison with existing deterministic and probabilistic algorithms are subject to
future work. The results are already promising for a wide variety of applications,
and it should be noted that when using the presented algorithm for a specific ap-
plication more a priori knowledge can be incorporated, such as expected intensity
distributions and more specific observation models.
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Graph Cuts and Robust Kernel Regression for

Coronary Segmentation

Based on:

M. Schaap, L. Neefjes, C.T. Metz, A.G. van der Giessen, A. Weustink, N. Mollet,
J. Wentzel, T. van Walsum, W.J. Niessen. Coronary Lumen Segmentation using Graph
Cuts and Robust Kernel Regression, Proceedings of Information Processing In Medical
Imaging, 2009.

This chapter presents a novel method for segmenting the coronary lumen in
CTA data. The method is based on graph cuts, with edge-weights depending on
the intensity of the centerline, and robust kernel regression. A quantitative evalua-
tion in 28 coronary arteries from 12 patients is performed by comparing the semi-
automatic segmentations to manual annotations. This evaluation showed that the
method was able to segment the coronary arteries with high accuracy, compared to
manually annotated segmentations, which is reflected in a Dice coefficient of 0.85
and average symmetric surface distance of 0.22 mm.

PubMedID
HYPERLINK "/pubmed/19694291"Coronary lumen segmentation using graph cuts and robust kernel regression.
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Inf Process Med Imaging. 2009;21:528-39.PMID: 19694291 [PubMed - indexed for MEDLINE]HYPERLINK "/sites/entrez?db=pubmed&cmd=link&linkname=pubmed_pubmed&uid=19694291"Related citations
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4.1 Introduction

Coronary artery disease (CAD) is one of the leading causes of death worldwide
[134]. One of the imaging methods for diagnosing CAD is Computed Tomography
Angiography (CTA) (see Figure 4.1(a) for a volume rendering of a CTA dataset), a
non-invasive technique that allows the assessment of the coronary lumen and the
evaluation of the presence, extent, and type (non-calcified or calcified) of coronary
plaque [82]. Cardiac CTA therefore has large potential to improve risk stratification
of CAD, requiring methods for objective and accurate quantification of coronary
lumen and plaque parameters.

Since manual annotation of the lumen, calcium and soft plaque is very labor
intensive, (semi-)automatic techniques are needed to efficiently quantify these pa-
rameters in cardiac CTA data. In this chapter we focus on semi-automatic coronary
lumen segmentation.

Coronary lumen segmentation is a challenging task owing to the small size of
the coronary arteries (their size ranges from approximately 5 mm to less than 1 mm
in diameter), the limited spatial resolution of CT (approximately 0.7 mm to 1.4 mm
[132]), motion induced blurring, high intensity calcium close to the coronary lumen,
and the presence of severe stenoses.

Existing coronary segmentation methods can roughly be divided into two cate-
gories: methods that segment the coronaries in one pass and methods that first find
the vessel centerline and then segment the vessel. The methods that segment the
vessels in one pass can further be divided into methods that use region-growing
or a combination of different morphology operators [21, 22, 96], methods that track
the centerline and the radius of the vessel [84, 88, 177], and methods that evolve
implicit surfaces [116, 186].

The second group of methods first finds the centerline and then segments the
vessel. A number of these methods uses the extracted centerline to segment the
vessel with thresholding based on the image intensities on the centerline [81, 129]
or by finding multiple minimal cost paths along the vessel boundary in curved
planes constructed with the centerline [101, 152].

Most of the published coronary segmentation methods have been evaluated vi-
sually. Although a large body of centerline extraction methods have been quantita-
tively evaluated (see Chapter 2), to the best of our knowledge only Li et al. [88],
Yang et al. [186], and Wesarg et al. [75, 178] have evaluated their segmentation
method quantitatively. The quantitative evaluation in these papers is done with the
Dice coefficient [88], the average and maximum contour distance [186], and by as-
sessing the performance of the method for calcium and stenosis detection [75, 178].

In this chapter we present a new semi-automatic coronary CTA lumen segmen-
tation method. The method is based on graph cuts, with edge-weights depending
on the intensity of the centerline, and robust kernel regression. A vessel centerline
is used for initialization of the method. From recent work it has become clear that
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automatic coronary centerline extraction can be achieved with high precision and
robustness [105].

A second major contribution of this chapter is the quantitative evaluation of
the method on 28 manually annotated coronary artery lumen boundaries from 12
patients. In this chapter we quantitatively evaluate our method with the Dice coef-
ficient and the average and maximum contour distance, the measures used by Li et
al. [88] and Yang et al. [186].

4.2 Problem formulation

Large CT intensity gradients can be observed on the boundary of the coronary lu-
men in CTA, while the CT intensity within the lumen varies smoothly. Therefore
the problem of coronary lumen segmentation is similar to many image segmenta-
tion problems: find the strongest edge surrounding an area with relatively similar
intensities. Formalizing such a problem quickly leads to balancing a gradient and
an intensity term, while often the intensity term should only be used to prevent the
segmentation of structures with very different intensities.

Because we segment the lumen given a centerline, we can tailor this approach to
our task: find the strongest edge surrounding areas with intensities locally similar
to the centerline intensity, while not segmenting areas with intensities dissimilar to
the centerline intensity. The intensity information should only be used to steer the
segmentation towards the regions with appropriate intensity values; the gradient
information should be used to accurately detect the border.

An additional application specific constraint that we incorporate is that we aim
to segment the vessel that contains the centerline; side branches of this vessel should
not be segmented. This is specifically important for subsequent quantification of the
degree of stenosis in a coronary artery. The surface should interpolate the bound-
ary of the vessel of interest and not take into account the image information arising
from the side-branch.

4.3 Method

In view of the above, we propose a two step approach for segmenting the coronary
lumen given a centerline:

1. Segment the lumen using the strong edge and similar intensity prior. This is
done by solving a Markov Random Field with image terms locally depending
on the intensity of the centerline.

2. Remove falsely segmented regions not belonging to the vessel of interest
using the fact that the segmented lumen should not contain any holes, the
surface should be smooth, and side-branches should not be segmented. This
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Figure 4.1 (see page 147 for a color-version): (a) A 3D rendering of a cardiac CTA dataset with

in yellow a manually annotated Left Anterior Descending (LAD) Coronary Artery. (b) A graph of

the CT intensities Ix along the centerline of the LAD, a graph of the intensities after Gaussian

kernel regression Îx and the expected background intensity Ibg (see section 4.3.1).

is done by robust kernel regression on a cylindrical parameterization of the
lumen boundary.

4.3.1 Step 1: Segmenting the lumen with a Markov Random Field

In this first step we aim to find an optimal binary voxel labeling of the lumen and
background. We do this by formalizing a binary Markov Random Field (MRF),
which is solved using graph cuts [23, 25, 78].

A labeling f = { fx|x ∈ X}, with fx = {0, 1}, is determined that has the maxi-
mum a posteriori probability given the CTA image I = {Ix|x ∈ X}, with X being
the set of voxels in the image. A labeling fx = 1 corresponds to a voxel being
lumen and fx = 0 corresponds to a voxel being background. Each voxel x is asso-
ciated with a set of neighborhood voxels N = {Nx|x ∈ X}. The MRF is solved by
factorizing the posterior Pr( f |I) as follows:

Pr( f |I) ∝ Pr(I| f )Pr( f ),

Pr( f |I) ∝ (∏x Pr(Ix| fx)) Pr( f ), (4.1)

with (see e.g. [25]):

Pr( f ) = exp



−∑
x

∑
y∈ fNx

ωx,y(1 − δ( fx − fy))



 (4.2)
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and subsequently rewriting it to the following energy functional that needs to be
minimized:

E( f ) = ∑
x

− log(Pr(Ix| fx)) + ∑
x

∑
y∈ fNx

ωx,y(1 − δ( fx − fy)), (4.3)

with Pr(Ix| fx = 1) and ωx,y defined for our application below.
The minimization of the energy functional can be done with graph cuts [25]. In this
approach a graph is constructed where each node corresponds to a voxel x. Each
voxel is connected (with t-links) to two additional nodes denoted respectively as
’source’ and ’sink’. A weight of ωs = − log(1 − Pr(Ix| fx = 1)) is assigned to the
source connection and a weight of ωt = − log(Pr(Ix| fx = 1)) is assigned to the
sink connection.

Each voxel is also connected (with n-links) to 34 neighboring voxels y ∈ Nx and
weights of ωx,y are assigned to these connections (see section 4.3.3 for a description
of the 34-connected neighborhood model Nx). We subsequently find a cut in the
graph with minimal summed weight that separates the source and the sink. This
cut corresponds to the global minimum of E( f ) [23, 25, 78]. Voxels still connected
to the source are labeled as lumen.

4.3.1.1 Image dependent voxel likelihood

We let the likelihood of a voxel being lumen Pr(Ix| fx = 1) depend on the differ-
ence between the voxel intensity and a local estimate of the lumen intensity, and a
local estimate of the intensity difference between the lumen and the surrounding
tissue. For notational purposes we ignore the dependency on these local estimates
in Pr(Ix| fx = 1).

The local lumen intensity is estimated with a Nadaraya-Watson estimator [115]:
image intensities Ix=c(s) are sampled along the centerline, with x = c(s) a position
on the centerline and s the geodesic length from the start of the centerline c. This
1D function is smoothed with a Gaussian function with standard deviation σc to
obtain a local estimate Îx of the lumen intensity.

Background tissue is modeled with a fixed intensity of Ibg, resulting in an esti-
mated difference between the lumen and the background of D̂x′ = Îx′ − Ibg (see Fig-
ure 4.1(b)). Here x′ denotes the position on the centerline closest to x, Dx = |Ix − Îx′ |
is the absolute difference between the intensity of a voxel Ix and the local intensity
estimate, and D̂x = D̂x′ describes the estimated local contrast in the image.

Using these local estimates we formalize the likelihood of a lumen voxel given
its intensity (and the intensities on the centerline) with a smooth step function (see
also Figure 4.2(a)):

Pr(Ix| fx = 1) = −0.5
(

0.75 − 0.25erf
(

Dx − Tin

σi

))(

erf
(

Dx − Tout

σi

)

− 1
)

,
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Figure 4.2: (a) Pr(Ix| fx = 1) with Tin = 25, Tout = 250, and σi = 15. (b) A randomly selected

cross-sectional image. (c) The application of Pr(Ix| fx = 1).

with Tout = λD̂x. It can be appreciated that this function has two soft thresholds;
differences Dx smaller than Tin correspond to a high lumen likelihood and differ-
ences higher than Tout correspond to a low lumen likelihood. The parameter Tin is
user-defined and Tout depends locally on the contrast of the vessel with its back-
ground tissue.

By setting Tin relatively low and λ relatively high we make sure that the voxel
term is only used to steer the segmentation towards the regions with appropriate
intensity values; the edge term is used to accurately find the border in this region.
In Figure 4.2 we show an example of Pr(Ix| fx = 1) applied to a randomly selected
cross-sectional image.

4.3.1.2 Edge term

For the edge term we use a Gaussian function of the squared gradient magnitude
on the boundary between voxel y and x |∇I|(y, x). A high gradient magnitude
corresponds to a high probability of a label switch between lumen and background:

Pr( fx 6= fy) ∝ 1 − exp

(

−|∇I|2(x, y)

2σ2
g

)

. (4.4)

Therefore we assign the following weight to a label switch between voxel x and y:

ωx,y = − log

(

1 − exp

(

−|∇I|2(x, y)

2σ2
g

))

. (4.5)

4.3.1.3 Segmentation after the first step

In this first step of the algorithm a binary segmentation of the lumen is obtained.
This segmentation is close to the optimal solution but it contains several false pos-
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itives, corresponding to side-branches of the vessel of interest and other contrast-
filled regions, regions with a similar intensity as lumen while being (blurred) cal-
cium, and some mis-segmentations caused by image artifacts. The result of step 1
can be seen in Figure 4.3(b).

4.3.2 Step 2: Removing outliers from the segmentation.

In the second step of the algorithm we detect and remove regions not belonging to
the vessel of interest with an iterative weighted kernel regression approach.

The segmented lumen is parameterized with cylindrical coordinates r(φ, s) by
calculating the intersection of the boundary of the segmented lumen with a series
of radial lines perpendicular to the centerline. We do this by extracting values from
the masks obtained in step 1 with normalized Gaussian interpolation [77] and cal-
culating the intersection point by linear interpolation (see Figure 4.3(c)).

Outliers are then removed from this parameterization by a simplified version
of the reweighted kernel regression approach reviewed by Debruyne et al. in [36].
To each point r(φ, s) in the parameterization we iteratively assign a weight w(φ, s)
describing the belief in this point. We use a Gaussian loss function, resulting in:

w(φ, s)t = exp

(−(r(φ, s)t − r(φ, s)t=0)2

2σ2
r

)

(4.6)

These weights are then used to improve the estimation of r(.):

r(φ, s)t+1 =
∑φ′,s′ Gσφ,σs(φ

′ − φ, s′ − s)w(φ′, s′)tr(φ′, s′)t=0

∑φ′,s′ Gσφ,σs(φ
′ − φ, s′ − s)w(φ′, s′)t

(4.7)

with Gσφ,σs(.) a 2D Gaussian kernel with standard deviations in the angular and
longitudinal direction of respectively σφ and σs. This process is repeated until con-
vergence (t = T). See Figures 4.3(d) and 4.3(e) for an example of r(φ, s)T .

4.3.3 Implementation

All segmentations are carried out in a region of 7.5 mm (approximately 50% larger
than the maximum radius of a coronary arteries) around the centerlines to reduce
computation time and memory requirements. Cross-sectional images of 128 × 128
pixels are created every 0.5 mm along the centerline (resulting in a voxelsize of 0.1
× 0.1 × 0.5 mm3).

We use a 34 connected neighborhood region Nx, with 26 connections corre-
sponding to all the neighborhood connections in a 3 × 3 × 3 region and 8 connec-
tions corresponding to the 8 possible knight-moves in the cross-sectional plane.
Using these knight-moves significantly improved the smoothness of the resulting
segmentation (see also [24]).
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(a) (b) (c)

(d) (e)

Figure 4.3: A representative example (Dice=0.85, ASSD=0.18mm, AMCD=0.42mm, see section

4.4.3). (a) shows a cross-sectional slice of the input image, (b) shows the result after step 1, (c)

shows the initialization of step 2, (d) shows the final segmentation, and (e) shows the automatic

segmentation (white) together with the reference standard (black).

4.3.4 Parameters

The parameters were empirically chosen by the authors; no extensive parameter-
tuning was performed, with the exception of σφ and σs. These two parameters were
tuned on one of the 28 vessels.

The following parameter settings were used for all the experiments in this chap-
ter: σc =2 mm, σi =15 HU, Tin = 25 HU, Tbg = 50 HU, λ = 0.75, σg =15 HU,
σr =0.1 mm, σφ = 0.2 rad, and σs = 1 mm.

4.4 Quantitative evaluation

The method is quantitatively evaluated by comparing the segmentations with man-
ually annotated lumen surfaces of 28 coronary arteries. The coronary arteries were
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segmented using manually annotated centerlines. These centerlines were also used
to manually annotate the lumen boundary (see section 4.4.2).

4.4.1 Data

The cardiac CTA data of twelve patients was used for this study. Two main coronary
arteries (RCA, LAD or LCX) were annotated in each dataset and an additional side-
branch was annotated in four of the datasets. The observer annotated in total 8
RCAs, 8 LADs, 8 LCXs, and 4 side-branches.

The twelve CTA datasets were acquired in the Erasmus MC, University Medical
Center Rotterdam, The Netherlands. The datasets were randomly selected from a
series of patients who underwent a cardiac CTA examination between June 2005
and June 2006. The datasets were acquired with a 64-slice CT scanner and a dual-
source CT scanner (Sensation 64 and Somatom Definition, Siemens Medical Solu-
tions, Forchheim, Germany). The datasets were reconstructed using a sharp (B46f)
kernel or a medium-to-smooth (B30f) kernel.

4.4.2 Manual annotation

One observer annotated the coronary arteries from the coronary ostium (i.e. the
point where the coronary artery originates from the aorta), until the most distal
point where the artery is still distinguishable from the background. On average the
28 coronary arteries were 147 mm long.

A tool was specifically designed for the manual annotation. The tool was devel-
oped in the free software package MeVisLab (http://www.mevislab.de) and has
a workflow similar to the automatic approach used by Marquering et al. in [101].
After annotating a centerline the user annotates the lumen outlines longitudinally
with B-splines in curved planar reformatted images created at three different an-
gles. These curves are then intersected with planes perpendicular to the centerline
spaced regularly with a distance of 1 mm. In the second annotation step the points
resulting from the intersections are connected with closed B-splines to form initial
contours in the cross-sectional planes. These contours can then be modified by the
observer, resulting in the final annotation.

4.4.3 Evaluation measures

The Dice measure, the average symmetric surface distance (ASSD), and the average
maximum contour distance (AMCD) are used to quantify the difference between
the manual annotations and the automatically extracted lumen surface (see [88]
and [186] for the application of these measures on coronary artery segmentation
evaluation).

http://www.mevislab.de
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Table 4.1: An overview of the quantitative results. The Dice measure, average symmetric sur-

face distance (ASSD), and the average maximum contour distance (AMCD) are reported for the

complete vessel and for the first 90 mm of the vessel.

Complete vessel First 90 mm
Dice ASSD AMCD Dice ASSD AMCD

LAD (8) 0.852 0.188 0.378 0.860 0.212 0.445
LCX (8) 0.831 0.250 0.514 0.862 0.229 0.495
RCA (8) 0.854 0.221 0.466 0.860 0.241 0.542
Side branch (8) 0.846 0.222 0.479 0.858 0.205 0.456

All (28) 0.846 0.220 0.456 0.859 0.226 0.491

The Dice measure represents the fraction of the volume of the overlap of the two
segmentations and the average volume of the two segmentations:

Dice =
2 × TP

2 × TP + FP + FN
(4.8)

The ASSD measure is determined by calculating for each point on both segmen-
tations the distance to the closest point on the other segmentation and averaging
these distances. The AMCD distance is calculated by averaging the maximum of
all these distances per cross-sectional contour.

4.4.4 First 90 mm of the vessel

Correctly segmenting the complete coronary shows the capability of the method
to segment very small vessels, but segmenting the distal part of the vessel is not
always needed in clinical practice, because disease occurs for more than 95% in the
first 90 mm of the coronary arteries [65]. Therefore we also evaluate the capability
of the method to segment the first 90 mm of the vessel.

4.5 Results

Table 4.1 shows the quantitative results. Figure 4.4 shows a series of cross-sectional
images with the manual annotation and an intersection of the automatic segmenta-
tion. Figure 4.5 shows two segmentations in 3D, color-coded with the distances to
the reference standard.

4.6 Discussion

We have presented a new CTA coronary lumen segmentation method, which uses
a vessel centerline for initialization. The method accurately aligns the boundary of
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(a) [0.95,0.11,0.27] (b) [0.89,0.19,0.38] (c) [0.82,0.18,0.41] (d) [0.36,0.75,2.04]

Figure 4.4: Cross-sectional segmentation examples (15×15 mm2) (in white) with corresponding

reference standard (in black) and measures [Dice, ASSD in mm, AMCD in mm]. The error in (d)

was caused by the false segmentation of a stent.

Figure 4.5 (see page 147 for a color-version): A 3D example of a coronary segmentation color-

coded with the distance to the reference standard. Red corresponds to the segmentation being

locally 0.5 mm larger than the reference standard, green corresponds to a perfect fit, and blue

corresponds to a 0.5 mm under-segmentation.

the segmentation with the strongest edge surrounding areas with intensities that
are locally similar to the centerline intensity, while not segmenting intensities that
are dissimilar to the centerline intensities. A successive robust regression step is
used to remove outliers from the segmentation.

The method is quantitatively evaluated on 28 vessels in 12 cardiac CTA data-
sets. The average symmetric surface distance between the method and the manual
reference is 0.22 mm, and the average maximum contour distance is 0.46 mm, with
a mean voxel size of 0.32 × 0.32 × 0.40 mm3. Furthermore, the method obtains
an average Dice coefficient of 0.85. As a rough reference one could compare these
numbers to the quantitative results obtained by Li et al. and Yang et al. Li et al. ob-
tain a Dice coefficient of 0.58 [88] and Yang et al. [186] obtain an ASSD of 0.37 mm
and an AMCD of 1.36 mm. However, it should be noted that these two methods are
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evaluated in different patients and the datasets are most probably acquired with a
different type of CT scanner. Furthermore, our method is initialized with a center-
line in contrary to the methods of Li et al. and Yang et al. To objectively compare
different coronary artery segmentation methods a standardized evaluation frame-
work for coronary artery segmentation methods should be developed, e.g. using a
similar approach as the coronary artery tracking evaluation framework [105].

A limitation of this study is that our algorithm uses the same centerlines as
were used by the observers for annotating the coronary lumen, which may bias the
results. In the future we will investigate the effect of perturbations of the centerline
on the segmentation results.

Using the presented method for lumen segmentation can already reduce the
amount of user-interaction with a factor of 10 (the manual annotation of a center-
line takes approximately 5 minutes, while annotating the coronary lumen outline
can take up to 50 minutes). A further reduction seems feasible, as results from the
coronary artery tracking evaluation framework [105] show that semi-automated
and fully automatic coronary artery centerline tracking methods that achieve high
robustness and accuracy (comparable to inter-observer variability) are available. In
the future we will also evaluate our method with (semi-)automatically extracted
centerlines.

Another limitation is that at this moment we only have coronary lumen annota-
tions of one observer. Manual annotations by multiple clinical experts are currently
planned, and in future work we will therefore also relate the performance of the
method to the inter-observer variability. Finally, we will investigate the possibility
to quantify clinically relevant measures (such as the degree of stenosis) with the
proposed method.

4.7 Conclusion

A high-precision coronary lumen segmentation method is presented. The method is
based on graph cuts and robust kernel regression and segments the coronary lumen
given a centerline. The method has been successfully applied for the segmentation
of 28 coronary arteries. A quantitative evaluation showed that the method was able
to segment the coronary arteries with high accuracy, compared to manually anno-
tated segmentations.
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Supervised Shape-based Coronary

Segmentation

Based on:

M. Schaap, T. van Walsum, M. de Bruijne, L. Neefjes, C. Metz, E. Capuano, W.J.
Niessen. Robust Shape Regression for Supervised Vessel Segmentation and its application
to Coronary Segmentation in CTA, Submitted, 2010.

This chapter presents a vessel segmentation method which learns the geometry
and appearance of vessels in medical images from annotated data and uses this
knowledge to segment vessels in unseen images.

Vessels are segmented in a coarse-to-fine fashion. First the vessel boundaries
are estimated with multi-variate linear regression using image intensities sampled
in a region of interest around an initialization curve. Subsequently the position of
the vessel boundary is refined with a robust non-linear regression technique us-
ing intensity profiles sampled across the boundary of the rough segmentation and
information about plausible cross-sectional vessel shapes.

The method was evaluated by quantitatively comparing segmentation results
to manual annotations of 229 coronary arteries. On average the difference between
the automatically obtained segmentations and manual contours was smaller than
the inter-observer variability, which is a strong indicator that the method outper-
forms manual annotation. The method was also evaluated by using it for center-
line refinement on 24 publicly available datasets of the Rotterdam Coronary Artery
Evaluation Framework. Centerlines are extracted with an existing method and re-
fined with the proposed method. This combination is currently ranked 2nd out of
17 evaluated methods. An additional qualitative expert evaluation in which 250 au-
tomatic segmentations were compared to manual segmentations showed that the
automatically obtained contours were rated on average better than manual con-
tours.

PubMedID
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5.1 Introduction

Accurately quantifying the vessel lumen in medical images is beneficial for the di-
agnosis and treatment planning of a wide range of cardiovascular diseases. This
chapter presents a segmentation method which learns the geometry and appear-
ance of the vessel lumen in medical images from annotated data and uses this
knowledge for the segmentation of an unseen vessel.

We demonstrate the applicability of the proposed method to a challenging ves-
sel segmentation task: the segmentation of coronary arteries in Computed Tomog-
raphy Angiography (CTA) data. Furthermore, we demonstrate that the proposed
method can also be used for the refinement of inaccurate central lumen lines. Coro-
nary artery lumen segmentation and central lumen line extraction in CTA are both
challenging because of the small size of the vessels compared to the image reso-
lution, the presence of (motion) artifacts in the data, the presence of neighboring
structures with similar intensities as the vessel, and pathologies such as severe ste-
noses and calcifications. Figure 5.1 shows a cardiac CTA image and examples of
coronary lumen segmentations.

Coronary artery lumen segmentation methods can be divided into two cate-
gories: methods that first determine a central lumen line (manually or automati-
cally) and then segment the vessel of interest, and methods that segment the vessel
in one pass. Coronary segmentation methods that use a centerline for initializa-
tion incorporate thresholding techniques [81, 129], minimal cost path approaches
in longitudinal reformatted images [101], or minimal surface techniques [143, 152].
Methods that segment the vessels in one pass can be divided into methods that
use region-growing or a combination of different morphological operators [21, 22,
96, 104], methods that use vessel tracking in 4D to directly find the centerline and
the radius of the vessel [44, 84, 88, 89, 144, 177], and methods that evolve implicit
surfaces [116, 186]. The highest accuracy was reported in previous work from our
group [143]. A surface distance to manual annotations of approximately half the
size of a voxel was obtained with a method based on graph cuts and robust re-
gression, but an accurate centerline was needed as initialization. Moreover, it was
observed that low contrast between the inside and outside of the lumen sometimes
caused errors in the segmentation of vessels with a very small radius.

All the existing coronary artery segmentation methods as well as almost all
other vessel segmentation methods are unsupervised; vessels are segmented us-
ing a variety of hand-tailored assumptions. In a recent overview of Lesage et al.,
vessel segmentation methods are classified according to their assumptions on ge-
ometry and appearance of the vessel [85]. Examples of geometric assumptions are
the vessel’s tubularity (e.g. [9, 144]), and smoothness of the centerline (e.g. [95]).
Examples of appearance assumptions are homogeneity of the vessel’s image in-
tensities (e.g. [21, 143, 160]), strong image gradients on the vessel boundary (e.g.
[15, 95, 101]), and a relative high intensity of the vessel compared to its surround-
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ing (e.g. [9, 44, 144]). Although these assumptions hold for healthy vessels, vessel
disease affects the morphology and the appearance of vessels in medical images,
which often breaks these assumptions. For example, calcified plaque in the vessel
wall makes the vessel lumen in CTA appear darker than its neighboring tissue.

In this work we propose a supervised approach to vessel segmentation which
replaces the hand-tailored assumptions with models learnt from annotated training
data. In a coarse-to-fine robust shape regression approach we jointly fit a set of lo-
cal shape models to image data in order to segment the vessel of interest. Both the
shape and appearance information are learnt from annotated training data with
respectively local point distribution models and a non-linear boundary intensity
model. By incorporating shape information in the segmentation process the result-
ing boundary does not necessarily have to be supported by image information;
sections of the image with strong image information (e.g. sharp edges) can steer
the segmentation with weak image information (e.g. low contrast).

Appearance information has been used previously in a supervised fashion to
detect and segment vessels in 2D and 3D vascular images [130, 153, 193]. The com-
bination of statistical shape and appearance models of tubular anatomical struc-
tures has been applied to the segmentation of large vessels, such as the abdominal
aorta in CTA [26, 35]. However, the combination of shape-based boundary delin-
eation of small vessels with supervised appearance information in 3D images, as
proposed in this chapter, has, to the best of our knowledge, not been addressed
previously. Moreover, in the cases where elongated structures are segmented by fit-
ting a series of local shape models to the image data [35, 68], these local models are
generally fitted sequentially, whereas we propose to fit all local shapes simultane-
ously to the image data in one global optimization strategy.

The next section explains the method, followed by a description of the experi-
ments in Section 5.3, in which the method is evaluated both qualitatively and quan-
titatively on a large number of datasets. In total 107 cardiac CTA datasets were used
for the evaluation. The results of these experiments are discussed in Section 5.4
and the chapter is concluded by discussing possible improvements of the proposed
method in Section 5.5.

5.2 Method

The proposed vessel segmentation method is initialized with an approximate cen-
terline, which can, for example, be found with an existing centerline extraction tech-
nique or by manually clicking a few points in the vessel (see Figure 5.1). Previous
work showed that coronary centerline extraction can be done robustly with a vari-
ety of existing techniques [142].

In the next two sections we define respectively the local coordinate system and
region of interest in which the vessel is segmented and our vessel shape represen-
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Figure 5.1 (see page 148 for a color-version): Left: a 3-dimensional visualization of a cardiac

CTA image with in red a coronary artery. Middle: four circular images sampled cross-sectionally

to the coronary artery (sample radius=7.5 mm and sample distance=0.5 mm.) overlaid with the

position of an initialization centerline and manually annotated coronary lumen contours. Right:

The intensity sample pattern, as described in Section 5.2.1.

tation. Subsequently we explain the segmentation process. The vessel is segmented
in two steps in a coarse-to-fine fashion. First the vessel is segmented with multi-
variate linear regression using image intensities sampled in a region of interest
around the initialization centerline (see Section 5.2.3). Subsequently the position of
the vessel boundary is refined with a robust non-linear regression technique using
image intensities on the boundary of the rough segmentation (see Section 5.2.4).

5.2.1 Local coordinate systems and region of interest

The segmentation process is formulated in a set of local coordinate systems that are
defined according to the initialization centerline. First, the initialization centerline
is sampled equidistantly, resulting in a set of L points {pz} : z ∈ {1, .., L}. These
points are used to define local 2D coordinate systems at each centerline point us-
ing a rotation minimizing frame (RMF) technique [171]. For this, the normalized
tangent vector tz = (pz+1 − pz)/‖pz+1 − pz‖ is calculated for each point and two
normalized orthogonal vectors {vz, wz} are determined perpendicular to these vec-
tors. The first frame {v0, w0} is chosen arbitrarily in the plane perpendicular to t0
and all other frames are calculated recursively by rotating vz and wz with the angle
between tz and tz−1:

vz = Rot(tz−1 × tz, acos(tz · tz−1)) · vz−1 (5.1)

wz = vz × tz,

where Rot(x, α) is a rotation matrix describing a rotation with angle α around axis
x.
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In each of the cross-sectional planes R, image intensities are sampled at regular
grid positions in a circular region of interest, resulting in a set of image intensities
I = {iz,r} : z ∈ {1, .., L}, r ∈ {1, .., R} (see Figure 5.1). The algorithm uses these
image intensities to segment the vessel.

5.2.2 Shape representation

It is challenging to model the shape and appearance of vessels with a statistical
shape model because of the wide variety in shapes and appearances. Vessels can
have different lengths, and vessel disease and bifurcations can be present at a vari-
ety of locations in the vasculature. Moreover, landmark correspondence between
annotated shapes is required for statistical shape models, which is difficult for
vessels with varying length. Even with a model representation that can represent
vessels in all their variety, modeling this highly diverse information in one global
model would require an impractical large amount of training data. We circumvent
this shape modeling problem by learning the relevant information about the ves-
sel’s appearance and shape with a combination of local shape models, instead of
one global model.

In contrast to much of the existing work on shape-based image segmentation,
in this work we use the term ’shape’ to refer to a set of points without invariance to
the similarity transformation, i.e. we consider a shape different if it is scaled, moved
or rotated. The complete shape of the vessel S = {sz,a} : z ∈ {1, .., L}, a ∈ {1, .., D}
is represented by a set of 2-dimensional landmarks sz,a in the cross-sectional planes
described by {vz, wz}, with z the position along the centerline and a the cross-
sectional landmark index. During training, landmarks are sampled on the (man-
ually annotated) 3D surface of the lumen. Correspondence between the landmarks
is obtained by sampling them according to fixed angles from the center of the cross-
sectional contours. First, the center of mass of the intersections between each cross-
sectional plane and the annotated 3D surface of the lumen is calculated:

cz = pz + Pz
∑i ‖s′z,i − s′z,i+1‖(s′z,i + s′z,i+1)

2 ∑i ‖s′z,i − s′z,i+1‖
, (5.2)

with s′z,i a point on the cross-sectional curve S′
z = {s′z,i}, Pz = [vz wz] a matrix con-

taining the axes of the local coordinate frame, and cz the resulting center position.
Subsequently landmarks sz,a are obtained at the intersection between the annotated
surface and rays p(r) from the central point:

p(r) = cz + rPz

(

cos( 2πd
D )

sin( 2πd
D )

)

, (5.3)

with r ≥ 0.
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During the segmentation the vessel is described with L overlapping local shapes,
each describing the shape of 2W + 1 adjacent cross-sectional shapes. Each local
shape Sx, with x ∈ {1, .., L}, is composed of the landmarks {sz,a}|z−x|≤W as fol-
lows:

Sx =(sT
x−W,1, sT

x−W,2, ... , sT
x+W,D−1, sT

x+W,D)
T , (5.4)

We use border clamping to obtain landmark coordinates or image intensity values
at positions before the centerline (z < 1) and after the centerline (z ≥ L). The
thickness of each local shape was set to 5 (W = 2) to capture the first and second
order variations of the cross-sectional shapes along the course of the vessel and
D = 32 landmarks were sampled in each cross-section of the vessel (see Figure 5.2).
More details about this and other parameter choices can be found in Section 5.3.3.

The dimensionality of the local shapes (F = 2(2W + 1)D) is reduced with a set
of annotated training data (see section 5.3.3). The mean and modes of variation of
this set of training shapes is calculated and used to represent the F-dimensional
local shapes with an M-dimensional parameter vector βx containing the first M
principal components of the local shape:

Sx ≈ S̄ + Φβx, (5.5)

with Φ an F × M dimensional matrix containing the first M eigenvectors of the
covariance matrix of all annotated local shapes and S̄ their mean. The construction
of Φ and S̄ is explained in detail in Section 5.3.3. During the segmentation, the
parameter vector βx, instead of the complete shape Sx, is estimated. This forces the
resulting shape to lie on the subspace spanned by the first M modes of variation.

5.2.3 Coarse shape estimation via Ridge Regression

In the first step of the vessel segmentation, the boundary of the vessel, described
by the local shape parameters βx, is estimated in the proximity of the true vessel
boundary. Several regression approaches are possible in this coarse shape estima-
tion step and we have chosen to use ridge regression (RR), a linear multivariate
regression technique.

Because very bright calcium spots are sometimes present in the proximity of
the lumen, the relation between the image intensities and the shape parameters βx

can be highly non-linear. In order to remove these nonlinearities we propose an
application-specific pre-processing of the images. In this step we aim to make all
the bright calcium spots neighboring the coronary lumen darker than the lumen
intensity, thereby making the lumen appear as a bright spot in the image, which
makes the intensity-shape relation more linear.
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Figure 5.2 (see page 148 for a color-version): A visualization of the intensity samples Ix and a

local shape Sx. Top left: a 3D surface of the lumen, the initialization centerline, and a tubular image

patch Ix (see Section 5.2.3.2). Top right: the surface, initialization centerline, and a local shape Sx

(see Section 5.2.2). Bottom: Ix overlaid with Sx and the rays (Equation 5.3) used for calculating

the landmarks. The numbers indicate the cross-sectional landmark index d for D = 32. In the

coarse segmentation Ix is used to estimate Sx with linear regression. During shape refinement

all cross-sectional images of the vessel are used to estimate all cross-sectional shapes.

5.2.3.1 Image pre-processing

Image pre-processing is done with an adaptive thresholding approach under the
assumption that the majority of the cross-sections do not contain calcifications. In
each cross-sectional image the maximum image intensity lmax

z is determined. This
intensity is a good approximation of the lumen intensity, except at cross-sectional
images with calcifications. A 1D function describing the lumen image intensity lz
along the centerline is then fitted through the measured intensities lmax

z with a ro-
bust re-weighted kernel regression approach [36]. The regression approach works
iteratively; given a set of weights wt

z and the measured image intensities the func-
tion is approximated with weighted Gaussian kernel regression:

lt
z =

∑z′ N (z′|z, σz)w
t−1
z′ lt−1

z′

∑z′ N (z′|z, σz)w
t−1
z′

(5.6)

and subsequently the weights are updated as follows:

wt
z = N (lt

z|lmax
z , σi), (5.7)
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Figure 5.3: Robust reweighted kernel regression results. The parameters described in section

5.3.2 were used to obtain these results. The red line with crosses shows the measured image

intensity lmax
z , the black dashed lines the intermediate regression results lt

z at t = {1, 5, 10, 15},

and the thick blue line shows the regression results at convergence (T = 45).

with N (x|µ, Σ) the value of the normal distribution with mean µ and covariance
Σ at position x. A low weight implies that the point is considered to be an outlier.
After convergence at t = T, image intensities significantly (more than c HU) above
the lumen intensity are set to intensities c HU below the lumen intensity:

i∗z,q =

{

lt=T
z − c, if iz,q > lt=T

z + c

iz,q, else .
(5.8)

The pre-processing step has three free parameters; σz, σi, and c, whose values are
discussed in Section 5.3.2. Figure 5.3 shows an example of the estimation of the lu-
men intensities with the proposed robust reweighted kernel regression and Figure
5.4 shows examples of the image pre-processing results.

5.2.3.2 Ridge regression

Ridge regression is applied to learn a linear model that predicts the local shape
parameters βx from local image intensities. To describe the local appearance, we
introduce Ix, which consists of all image intensities within a 2W + 1 slices thick
region of interest, i.e. all intensities in the set {iz,q}|z−x|≤W :

Ix =(ix−W,0 , ix−W,1 , ..., ix+W,R−1 , ix+W,R)
T . (5.9)
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Figure 5.4: Image pre-processing results. The top row shows the original images and the bottom

row shows the images after pre-processing.

An example of Ix can be found in Figure 5.2. The training data is composed of a set
of N training samples: {θi}, with θi = (Ii, βi) a tuple with a tubular image patch
Ii ∈ ℜQ, with Q = R(2W + 1), and its corresponding shape parameters βi ∈ ℜM.
Details about the training samples are given in Section 5.3.3. The goal is now to
learn from the training data the (linear) relation between the tubular image patches
and the annotated shapes.

Given an L2 loss function, the M × Q dimensional matrix Ĥ that maps a tubular
image patch to shape parameters can be found as follows:

Ĥ = argmin
H

N

∑
i=1

‖βi − HĨi‖2, (5.10)

where Ĩi = Ii − Ī denotes a centralized version of an image patch and Ī = 1
N ∑

N
i=1 Ii

the mean of the training patches. This linear regression matrix Ĥ will be optimal
for the training data. However, it does not necessarily have to be optimal for un-
seen data (i.e. overfitting can occur). Therefore, in ridge regression, the system is
regularized by penalizing the sum of all squared regression coefficients:

ĤRR = argmin
H

N

∑
i=1

‖βi − HĨi‖2 + λ|H|2. (5.11)

After setting the derivative of the objective function in Equation 5.11 to zero we
find:

ĤRR = (
N

∑
i=1

βi Ĩ
T
i )(

N

∑
i=1

Ĩi Ĩ
T
i + λI)−1. (5.12)

Given an unseen image Ix the coarsely estimated shape parameters β∗
x can now be

determined as follows:
β∗

x = ĤRR(Ix − Ī). (5.13)
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Figure 5.5: A visualization of ĤRR as used for the experiments described in Section 5.3. Top

row: the center slice of the first three rows of ĤRR. Bottom row: the center slice of the mean

shape and the corresponding modes of shape variation. The first mode of variation describes the

cross-sectional size of the vessel, and the second and third describe its position relative to the

initialization curve. In the regression, the contour points are moved in the direction of the modes of

shape variation (the arrows in the bottom image) according to the filter response of the respective

row of ĤRR (top image). For visualization the regression coefficient images were resampled with

cubic b-spline interpolation.

Figure 5.6: Example results of the coarse segmentation step. Top row: input image. Bottom row:

the segmentations after image pre-processing and ridge regression. These images show that the

position and scale of the vessel are estimated correctly, but the linear model failed to estimate the

complete shape accurately.

And the first coarse estimate of the local shape S∗
x can be obtained with Equation

5.5:

S∗
x = S̄ + Φβ∗

x. (5.14)

Figure 5.5 visualizes the first three rows of ĤRR and Figure 5.6 shows several exam-
ples of the results of the coarse vessel segmentation step.
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5.2.4 Robust supervised shape refinement

In the second and final step of the segmentation the landmark coordinates are op-
timized by shifting them to their most likely position given the image data across
the boundary of the shapes estimated in the previous step, and the available train-
ing data. In this step the orginal image data is used without the pre-processing.
The refinement step is further decomposed into two sub-steps: the independent es-
timation of the landmark positions based on boundary profiles and the statistical
inference of a lumen segmentation from these landmark positions with information
about plausible local vessel shapes.

5.2.4.1 Landmark estimation with KNN principal component regression

The location of each landmark is refined with local image information surrounding
the coarsely estimated landmark using a non-linear regression approach, which
learns the relation between the intensity profiles across an inaccurate boundary
and the shift required to bring the boundary point in the correct position. From the
estimated local shape parameters β∗

x we first obtain an estimate of each landmark
position s∗p by averaging the 2W + 1 estimates of the landmark position from the
previous step:

s∗z,a =
1

2W + 1 ∑
S∗

x :|x−z|≤W

Ψ(z − x, a)S∗
x, (5.15)

with Ψ(d, a) a 2 × F matrix that extracts the 2D landmark at index {x + d, a} from
the F-dimensional vector S∗

x. The elements of this matrix are defined as follows:

Ψ(d, a)i,j =

{

1, if j = 2((d + W)D + a) + i

0, else .
(5.16)

After determining the initial position of each landmark, intensity profiles are sam-
pled around the landmarks. The intensity profiles consist of G equidistantly sam-
pled intensities in a region of interest (ROI) around the landmark s∗p. We use a 3D
rectangular profile oriented in the direction of the normal of the estimated contour
from the RR step. This local intensity information is used to improve the initial
landmark estimation by searching in an annotated database with training data for
similar profiles with known boundary shifts.

The training data T = {(bj, dj)} consists of boundary profiles bj ∈ ℜG and the
associated in-plane shift of the landmark to its true position dj ∈ ℜ2. This training
data is created by performing for all training samples the first steps of the algo-
rithm (sampling image intensities around an inaccurate centerline, pre-processing
the data, applying RR, and averaging the landmark estimates), and subsequently
sampling for each landmark s∗j the boundary profile bj, and calculating the differ-
ence dj between the landmark s∗j and its closest point on the annotated reference
standard. See Figure 5.7 for an example of bj and dj.
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dj
dj

bj

Figure 5.7 (see page 149 for a color-version): A visualization of a boundary profile and dis-

placement vector. Left: a cross-sectional image with the reference standard in solid orange, ridge

regression result in black and white, the boundary profile bj in transparent gray, and the displace-

ment vector dj in purple. Middle and right: zoomed-in versions of the left image.

During the segmentation process we search for the K nearest neighbors (KNN)
of the boundary profile bz,a, sampled at the landmark s∗z,a, in the training database
by comparing the principal components of the training samples with those of the
boundary profile. This is accomplished by finding the K nearest samples according
to the following distance function:

D(bj, bz,a) = |Θ(bj − bz,a)|2, (5.17)

with Θ a P × G matrix containing the first P eigenvectors of the covariance matrix
of the boundary profiles. With the resulting samples K refined landmark positions
are created as follows:

uk
z,a = s∗z,a + dk

z,a, (5.18)

with s∗z,a the estimated position from the RR step and dk
z,a the 2D shift obtained

from the kth KNN sample. These K estimates of each landmark position will be
combined into a segmentation of the vessel in the next step of the algorithm.

5.2.4.2 Robust Shape fitting

This section explains how the landmark estimates uk
z,a are used to improve the es-

timates of the local shape parameters β∗
x. First each refined landmark position uk

z,a
is associated with a covariance matrix describing the expected error of the KNN
estimation. In this work we have chosen to use a diagonal covariance matrix:

Σk
z,a = σknn I, (5.19)

with σknn a free parameter of the method, describing the expected error for each
KNN landmark estimate. The landmark estimates and covariance matrices together
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describe L × D × K sparse estimates (with associated uncertainty) of the lumen
boundary:

U = {(uk
z,a, Σk

z,a)} : z ∈ {1, .., L}, a ∈ {1, .., D}, k ∈ {1, .., K}, (5.20)

where each tuple (uk
z,a, Σk

z,a) gives a sparse estimate of the 2W + 1 shapes containing
the respective landmark.

Similar to the robust regression approach in the image preprocessing step (see
Section 5.2.3.1) we propose to use an iterative reweighted regression approach in
this step. Here we employ this technique to statistically infer the complete shape
from all the KNN landmark estimates and, at the same time, estimate a weight
for each KNN landmark that describes how close to the true border the landmark
was estimated. A low weight means the KNN estimate is classified as an outlier
and a weight of 1 denotes that the landmark is assumed to be estimated correctly
(i.e. it lies exactly on the resulting segmentation). Here we have, in contrast to the
univariate case presented in Section 5.2.3.1, multiple measurements per value that
needs to be estimated; each KNN estimate gives a sparse estimate of the shape
parameters and (2W + 1) × D × K of these estimates are available per shape. We
propose to estimate in each iteration the shape parameters with weighted linear
regression from the corresponding landmark estimates. The proposed regression
approach can therefore be seen as a robust iterative reweighted variant of the well-
known local linear regression approach [55].

At iteration t the estimates U and the associated weights wkt
z,a are used to cal-

culate the shape parameters β̂t
x with weighted linear regression by minimizing the

following weighted residual sum of squares (WRSS):

WRSS(βt
x) = ∑

(z,a)∈N(βx)

K

∑
k=1

wkt
z,ad(uk

z,a, βt
x)Σ

k−1

z,a d(uk
z,a, βt

x), (5.21)

with N(βx) the set of landmark indices that are part of the shape described by βx

and d(uk
z,a, βx) the 2D difference between a landmark estimate uk

z,a and the position
of that specific landmark described by the shape parameters βx:

d(uk
z,a, βx) = uk

z,a − Ψ(z − x, a)(Φβx + S̄). (5.22)

By setting the derivative of WRSS(βt
x) to zero we find:

β̂t
x =



 ∑
(z,a)∈N(βx)

K

∑
k=1

wkt
z,aΦTΨTΣk−1

z,a ΨΦ





−1

∑
(z,a)∈N(βx)

K

∑
k=1

wkt
z,aΦTΨTΣk−1

z,a (uk
z,a −ΨS̄)

(5.23)
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with Ψ , Ψ(z − x, a) for notational purposes. After this weighted least-squares
estimation new weights are calculated by assessing the quality of each landmark
uk

z,a in relation to the current boundary estimate:

wkt+1
z,a =

1
2W + 1 ∑

βx∈N(z)

exp(−1
2

d(uk
z,a, βt

x)Σ
k−1

z,a d(uk
z,a, βt

x)), (5.24)

with N(z) the set of shape parameters that describe shapes containing landmarks
in slice z.

The regression starts with βt=0
x = β∗

x from the RR step and all the shape param-
eters and weights are updated simultaneously. Convergence at t = T is declared
when |βt

x − βt−1
x | < ǫ for all βx. In the experiments convergence was declared on

average at approximately t = 7. After convergence the position of each landmark
on the vessel boundary sz,a can be determined with Equation 5.5 and 5.15 using the
refined shape parameters βt=T

z . Figure 5.8 shows several examples of the complete
segmentation procedure.

5.3 Experiments

The proposed method was evaluated both quantitatively and qualitatively. The
quantitative evaluation consisted of the assessment of the segmentation perfor-
mance, by comparing segmentations of 229 coronary arteries in cardiac CTA data
from 83 patients with manual annotations, and by the assessment of the ability to
refine inaccurate centerlines. The method was qualitatively evaluated by a clinical
expert who rated the segmentation quality of 250 automatic cross-sectional seg-
mentations and compared the quality of these segmentations with manual annota-
tions.

5.3.1 Data and manual annotation

We collected 83 cardiac CTA datasets acquired in the Erasmus MC, University
Medical Center Rotterdam, The Netherlands. These datasets were randomly se-
lected from a series of patients who underwent a cardiac CTA examination be-
tween May 2005 and December 2008. Forty-eight datasets were acquired with a
64-slice CT scanner and 35 datasets with a dual-source CT scanner (Sensation 64
and Somatom Definition, Siemens Medical Solutions). The average voxelsize was
0.37 × 0.38 × 0.40mm3. In 72 of these datasets in total 195 coronary arteries were
annotated by one expert observer. In the remaining 11 datasets 34 coronary arter-
ies were annotated by two expert observers. On average the annotated coronaries
were 12.6 cm long.

The annotation was done in three steps; first a centerline was annotated, then in
six different views curved planar reformatted images were generated in which the
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(a) (b) (c) (d) (e) (f)

Figure 5.8: Robust shape fitting results. a) Input image. b) Ridge Regression result. c) KNN result.

d) Shape fitting at t = 1. e) Segmentation result (approximately t = 7). f) Manual annotation.
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vessel boundary was annotated longitudinally. In the last step cross-sectional im-
ages were generated every 1.0 mm containing the intersection of the longitudinally
annotated mesh. These contours were inspected and modified if necessary.

5.3.2 Parameter settings

The radius of the region of interest was fixed to 7.5 mm, to accommodate for the
largest coronary diameters of approximately 5.0 mm and an inaccurate centerline
with an error of approximately 1.0 mm. In view of the image resolution (approxi-
mately 0.5 mm to 1.0 mm [132]), intensities were sampled every 0.5mm, both longi-
tudinally along the centerline and in-plane.

The remaining parameters were optimized in pilot experiments using CTA data-
sets of 10 patients that were not included in any of the experiments. The image
pre-processing parameter σz = 15 mm, σi = 250 HU, and c = 200 HU were em-
pirically chosen by visually inspecting the calcium removal results. The boundary
profile size (7.5 mm × 3.0 mm), the parameter that describes the expected error of
the KNN estimate σknn = 0.15 mm, the number of shape parameters M = 12, the
number of principal components for the KNN search G = 32, and the number of
neighbors K = 16 in the KNN search were optimized with a parameter optimiza-
tion using a series of line searches.

5.3.3 Training procedure

The regression models and samples were obtained from the available training data
in three steps. First four random centerlines were created for each of the manu-
ally annotated centerlines by adding uniform spatial noise with a magnitude of
0.5 mm to the annotated centerline. This magnitude of noise is approximately twice
the accuracy attainable with existing coronary artery centerline extraction methods
[142]. In this way the method is trained on inaccurate centerlines and is expected
to be sufficiently robust to segment vessels with existing centerline extraction tech-
niques. Subsequently, local coordinate frames were created with the steps described
in Section 5.2.1 with a random rotation of the first local coordinate.

In the second step the image intensities were extracted in the ROI around the
centerline, the image pre-processing was applied (see Section 5.2.3.1), and the inter-
section of the cross-sectional planes with the manual annotations were calculated.
The cross-sectional images and corresponding annotations were then assembled in
local shapes of 5 cross-sections, and the regression matrix ĤRR was calculated using
this set of training data according to the steps described in Section 5.2.3.2.

After estimating the regression matrix ĤRR coarse shape estimates of the shape
parameters β∗

x were determined. Given these estimates and the reference standard
we calculated the boundary profiles and associated shifts {(bj, dj)} for all the land-
marks. Because this resulted in too many training samples for efficient computa-
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Figure 5.9 (see page 149 for a color-version): A segmentation of the lumen of a right coronary

artery showing a 3D mesh of the automatic segmentation, the initialization curve in white, and 8

selected cross-sections with results of automatic segmentation in red and reference standard in

blue.

tion, 2 million boundary profiles were randomly selected and used as KNN sam-
ples in the experiments.

5.3.4 Evaluation of segmentation accuracy and robustness

The segmentation accuracy was evaluated with a leave-one-patient-out study. For
each of the 83 patients we built a training database with the 82 other patients using
the steps presented in Section 5.3.3. This database was subsequently used to seg-
ment all the annotated vessels with the 4 random initialization curves described in
Section 5.3.3. This resulted in 263 × 4 = 1052 coronary segmentations with each on
average 252 cross-sectional planes, sampled every 0.5 mm.

The segmentation accuracy was assessed with the root mean squared landmark-
to-surface distance (RMSD) for all the estimated landmark positions. Moreover, the
cross-sectional lumen area was estimated using the resulting segmentation and this
area was compared with the area manually quantified. For the 34 coronaries with
two annotations we also determined the inter-observer variability and we quan-
tified the difference of the automatic segmentations with each of the two manual
annotations.

In this quantitative evaluation we also evaluated the robustness of the method
for different initialization centerlines. For each coronary we determined the RMSD
between the 3D surfaces obtained with the 4 different random initialization center-
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lines and the average of these 4 surfaces.

5.3.5 Evaluation of centerline accuracy

A second quantitative evaluation was performed by assessing the resulting cen-
terlines after segmentation and subsequent centerline extraction. For this purpose
we used the Rotterdam Coronary Artery Evaluation Framework [142]. This frame-
work allows easy evaluation of centerline extraction methods with standardized
evaluation measures. We tested our method on the 24 testing datasets provided
by the framework. In each of these datasets four coronary arteries were extracted
and evaluated. We used the start- and end-point of these 96 vessels, as provided
by the organizers of the framework. These points were connected with the minimal
cost path technique and parameters described in [107]. Subsequently the extracted
centerlines were visually inspected and in the case of complete extraction failures
additional points were annotated. Given these centerlines the coronary lumen was
segmented with the proposed technique, and centerlines were extracted from the
resulting segmentations by calculating the center of the contours with Equation
5.2. The resulting centerlines were submitted to the online evaluation framework†.
The method was evaluated and compared to 15 existing methods according to the
four evaluation measures provided by the framework, which measure both track-
ing success and accuracy [142].

5.3.6 Qualitative evaluation

For the qualitative evaluation of the proposed method we randomly selected 250
cross-sections from the segmentations obtained in the first quantitative evaluation
(Section 5.3.4). These cross-sections and the manual and automatic contour were
shown, together with four neighboring cross-sectional images to provide longitu-
dinal context, to one of the two observers responsible for the manual annotation.
The manual contour and automatic contour were randomly displayed above or be-
low the cross-sectional images.

Without showing the bottom contour the top contour was scored on a 5-point
scale (very good, good, moderate, poor, very poor). Subsequently the bottom con-
tour was also shown and the top contour was scored relative to the bottom on a
5-point scale (much better, better, equally good, worse, much worse). In this com-
parative study the expert observer was asked to try and select the ’equally good’
rating as little as possible. This procedure was repeated one week later after ran-
domly re-ordering the images. Moreover, the bottom image was now set on top
and vice versa. In this way the 250 manual and automatic contours were twice
qualitatively compared with each other and each image was scored on the absolute
scale once. Two of the images used during this evaluation are shown in Fig. 5.10.

†http://coronary.bigr.nl
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Figure 5.10: Examples of the images used for the qualitative evaluation. Left: Image used for the

absolute rating (showing a manual contour). Right: Image used for the relative rating (automatic

contour is shown at the bottom). See Section 5.3.6 for details about these figures.

5.4 Results

5.4.1 Segmentation accuracy

Figure 5.11 shows the results of the quantitative evaluation of the segmentation ac-
curacy based on 195 annotated coronaries in 72 cardiac CTA datasets (23128 cross-
sectional contours). Here, the automatic segmentations were compared to manual
annotations made by one observer. The results show that the average root mean
squared difference (RMSD) between automatic and manual contours is approxi-
mately 0.21 mm, and that 97% of the automatically generated landmark positions
have an error smaller than the average voxelsize of the images (0.39 mm). Further-
more, 5.11 shows the results for the cross-sectional area estimation. If the coronary
cross-section is circular, the difference in area has a quadratic relation with the ra-
dius of the vessel if a similar surface inaccuracy is observed. Therefore before com-
parison of the manually and automatically estimated area we first approximated

the lumen radius from these numbers (radius =
√

area
π ). These approximated radii

were compared using Bland-Altman plots [19]. It can be seen that in 95% of the
cases the manually quantified radius can be approximated with an error of maxi-
mally 0.44 mm (approximately the size of a voxel).

Figure 5.12 shows the results for the robustness experiment. For the 195 coro-
naries the average surface difference between the four segmentations with different
initialization and the average segmentation was 0.07 mm. The 95% confidence inter-
val for radius estimation with different initialization centerlines was also 0.07 mm.

Figure 5.13 and Fig. 5.14 show the results of the comparison of the segmentation
results with the inter-observer variability. This comparison is performed with man-
ual annotations of the lumen of 34 coronary arteries in 11 datasets drawn by 2 ob-
servers. The figures show that the surface difference between manual annotations
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(b) Bland-Altman plot for the cross-sectional
area estimation.

Figure 5.11: The accuracy of the segmentation method, quantified by comparing segmentations

of 195 coronaries with manual annotations made by 1 observer.

and automatic segmentations is on average slightly better than the inter-observer
variability (0.22 mm and 0.21 mm vs. 0.24 mm) and a similar effect can be seen for
the cross-sectional area estimation.
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(b) Bland-Altman plot for the cross-sectional
area estimation.

Figure 5.12: The robustness of the segmentation method, quantified by comparing segmenta-

tions of 195 coronaries with 4 random initialization centerlines to the average of these segmenta-

tions.
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Figure 5.13: The accuracy of the segmentation method and the inter-observer variability. The

dashed green and red line show the accuracy of the method compared to manual annotations

and the solid blue line shows the inter-observer variability. Quantified with segmentations of 34

coronaries made by 2 observers.

5.4.2 Centerline extraction

Table 5.1 shows the results on the Rotterdam Coronary Artery Evaluation Frame-
work [142] when deriving the centerlines from the coronary segmentations with the
proposed method. The table shows results for four evaluation measures for the 24
testing datasets of the evaluation framework. Three of these measures describe the
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(b) Observer 1 vs. Observer 2

Figure 5.14: Bland-Altman plots for the accuracy of the cross-sectional area estimation and the

inter-observer variability. Quantified with segmentations of 34 coronaries made by 2 observers.
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Table 5.1: Summary of the results obtained on the 24 testing datasets of the Rotterdam Coronary

Artery Evaluation Framework. See http://coronary.bigr.nl/preview/346785 for more details.

Measure % / mm score rank
min. max. avg. min. max. avg. min. max. avg.

OV 77.7% 100.0% 96.9% 42.3 100.0 79.2 1 12 3.35
OF 4.4% 100.0% 72.5% 2.2 100.0 66.3 1 17 4.40
OT 77.9% 100.0% 97.1% 41.8 100.0 79.2 1 12 3.40
AI 0.09 mm 0.53 mm 0.23 mm 33.8 63.2 49.6 1 7 1.97

Total 1 17 2.84

Table 5.2: Results of the comparison of the proposed method to 15 existing coronary

centerline extraction methods. The best 5 competing methods, the results for the semi-

automatic initialization curves, and the results of the proposed method are shown. See

http://coronary.bigr.nl/preview/346785 for results on all 15 other methods and detailed results for

all vessels.

Method Avg Avg Avg. Computation User-
overlap accuracy rank time interaction

rank rank

Friman et al.[49] 2.87 2.42 2.65 6 minutes Inter. - 2.6pts.
Proposed method 3.70 1.97 2.84 12 + 10 minutes 2.2pts
Wang and Smedby[168] 4.69 4.83 4.76 2 minutes Inter. - 3pts.
Szymczak[155] 6.01 3.96 4.99 30 minutes Inter. - 2pts.
Lesage et al.[86] 3.28 7.46 5.37 4 minutes Inter. - 2pts.
Zambal et al.[188] 8.78 5.01 6.90 4-8 minutes Auto.
Initialization curves [107] 6.93 8.07 7.50 12 minutes 2.2pts.
.. .. .. .. .. ..

overlap or extraction capability (i.e. how much of the centerline can be found?) in a
similar fashion as the well-known Dice similarity metric. They represent the ability
to find the complete centerline (OV), the ability to find the centerline without mak-
ing errors (OF), and the ability to find the clinically relevant part of the vessel (OT).
The accuracy is assessed with one measure describing the extraction accuracy if the
centerline is located within the vessel (AI). We would like to refer to [142] for fur-
ther details about these measures and other values in Table 5.1. Table 5.2 compares
the overall results to the currently 5 highest ranked methods, the centerlines before
refinement (which we used as initialization), and the centerlines after refinement.
A comparison to the 10 other methods currently evaluated with the framework and
detailed results of all vessels can be found at: http://coronary.bigr.nl/.

5.4.3 Qualitative evaluation

Table 5.3(a) and 5.3(b) show the results for the qualitative evaluation. Table 5.3(a)
shows that 151 of the 250 automatically obtained segmentations were twice judged
to be better than manual annotations and 42 manual contours were twice scored
better than automatic segmentations. The remaining 57 segmentations were incon-
sistently scored. Figure 5.15 shows several example of the images used for the quali-
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Table 5.3: Results of the qualitative evaluation. (a) Comparison study. Horizontal: First compar-

ison. Vertical: Second comparison. Each cell shows the amount of couples in the comparitive

study that were scored in the two runs in a specific combination (+ + = method much better than

the manual contours, + = method better, . = equally good, - = method worse, - - = method much

worse. (b) The independent qualitative rating showing the percentage per rating type.

(a) Comparison study

+ + + . - - -

+ + 6 16 0 0 0
+ 12 117 0 25 1
. 0 1 2 2 1
- 0 23 2 29 4
- - 0 0 0 7 2

(b) Independent rating

Manual Method

Very good 1.2% 10.8%
Good 31.2% 52.4%
Moderate 34.0% 19.6%
Poor 26.8% 12.4%
Very poor 6.8% 4.8%

(a) ++ & ++ (b) ++ &+ (c) +& equal (d) −− &− (e) −− & −−

Figure 5.15: Examples of images used for the qualitative evaluation with corresponding score for

the first and second rating (see caption of Table 5.3(a)). Top row: manual annotation. Bottom row:

automatic segmentation.

tative evaluation with the corresponding rating. The absolute scoring in Table 5.3(b)
confirms that the automatic segmentations are on average better rated than manual
annotations.

5.5 Discussion and Conclusion

We have proposed a supervised vessel segmentation approach which learns the re-
lation between image intensities and vessel shape from an annotated dataset. The
method has been successfully applied to the segmentation of coronary arteries in
CTA data. Our quantitative experiments showed that the method is highly accu-
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rate. On average the difference between the automatically obtained segmentations
and manual contours is smaller than the inter-observer variability, which is a strong
indicator that the method outperforms manual annotations. Moreover, in a qualita-
tive expert evaluation the automatically obtained contours were rated on average
better than manual contours. Very good results were also obtained on the data of
the Rotterdam Coronary Artery Evaluation Framework [142] when resulting seg-
mentations were used for centerline refinement. The proposed method is currently
ranked 2nd out of 17 evaluated methods. Because the method learns the geometry
and appearance of the vessel lumen in 3D images from annotated data we believe
that the method, if provided with enough representative training data, can readily
be applied to vessels with a wide variety of shapes and appearances. The method
is currently evaluated with segmentations of complete vessels. In future work we
would like to investigate the relation between pathology and segmentation accu-
racy.

Although the presented method showed high accuracy and robustness, we be-
lieve that several aspects of the method can still be improved. The method can
handle centerlines with an inaccuracy up-to approximately 0.5 mm. During the
centerline refinement experiment we observed that in very few cases the semi-
automatically obtained initialization curves were not satisfactory, resulting in a lo-
cally failed segmentation. This problem can be solved by using a better centerline
extraction method or by improvements of the coarse segmentation step. This can,
for example, be achieved with a similar technique as presented in the shape regres-
sion work of Zhou et al. [191]. Before the ridge regression step we would add a
position regression step that classifies a series of translated cross-sectional tubular
image patches based on its presence of a vessel in the center of the image. The trans-
lated image patches with the highest response are then used as input for the ridge
regression step and all the resulting shapes can then used for the shape refinement
step.

During shape refinement, each KNN estimate is now fixed to a specific land-
mark. If the difference between the center of the coarse segmentation and the final
segmentation is large the KNN estimate can correspond to a significantly different
angle and thereby a different landmark. Although we only noticed very few cases
where this could have caused problems, we believe that the shape-refinement step
can possibly be improved with a correspondence-free approach, such as presented
in the work by Saragih et al. [140].

In conclusion, a novel supervised vessel segmentation approach that fits a set of
local shape models to image data in a coarse-to-fine approach has been presented.
The applicability of the method to a challenging clinical problem, the segmentation
of the coronary lumen in CTA data, was demonstrated with excellent results on
both quantitative and qualitative experiments.
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Noise Reduction in CTA for Improved 3D

Visualization

Based on:

M. Schaap, A.M.R. Schilham, K.J. Zuiderveld, E.P.A. Vonken, M. Prokop and W.J.
Niessen
Fast Noise Reduction in Computed Tomography for Improved 3D Visualization, IEEE
Transactions on Medical Imaging, 2008

Computed tomography (CT) has a trend towards higher resolution and higher
noise. This development has increased the interest in anisotropic smoothing tech-
niques for CT, which aim to reduce noise while preserving structures of interest.
However, existing smoothing techniques are computationally demanding, which
makes clinical application difficult. Furthermore, the published methods have lim-
itations with respect to preserving small details in CT data. This chapter presents
a widely applicable speed optimized framework for anisotropic smoothing tech-
niques. A second contribution of this chapter is an extension to an existing smooth-
ing technique aimed at better preserving small structures of interest in CT data.
Based on second order image structure, the method first determines an importance
map, which indicates potentially relevant structures that should be preserved. Sub-
sequently an anisotropic diffusion process is started. The diffused data is used in
most parts of the images, while structures with significant second order informa-
tion are preserved. The method is qualitatively evaluated against an anisotropic
diffusion method without structure preservation in an observer study to assess the
improvement of three-dimensional visualizations of CT series and quantitatively
by determining the reduction of the difference between low and high dose CT scans
of in vitro carotid plaques.

PubMedID
HYPERLINK "/pubmed/18672429"Fast noise reduction in computed tomography for improved 3-D visualization.
Schaap M, Schilham AM, Zuiderveld KJ, Prokop M, Vonken EJ, Niessen WJ.
IEEE Trans Med Imaging. 2008 Aug;27(8):1120-9.PMID: 18672429 [PubMed - indexed for MEDLINE]HYPERLINK "/sites/entrez?db=pubmed&cmd=link&linkname=pubmed_pubmed&uid=18672429"Related citations
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6.1 Introduction

Computed X-ray tomography (CT) is a widely used imaging modality for, among
others, the diagnosis of cancers, infectious diseases, trauma, and cardiovascular
diseases. A major disadvantage of CT is the use of ionizing radiation, which may
induce cancer in the exposed individual after a latent period of up to a few decades
[163].

Cancer induction by ionizing radiation is a probabilistic process. Reduction of
radiation dose used in CT will therefore lead to a reduction in the number of in-
duced cancer cases. Dose reduction is therefore an important topic, especially for
low-risk patients with a long life expectancy. Reduction of the radiation dose, how-
ever, will increase the amount of photon noise in CT images, which will degrade the
image quality. While there are several other effects that influence CT image qual-
ity, such as background noise and subject movement, photon noise contributes the
most to CT image quality degradation [16, 62, 64]. Extensive research has been per-
formed on the relation between image quality and diagnostic value [53, 54, 70, 113].
The results of these studies show that there is a clear relation between an increase
in noise and a reduction in diagnostic accuracy and vice versa, i.e. a lower amount
of noise will improve the diagnostic quality. Furthermore, a higher intrinsic resolu-
tion will lead to improved tissue differentiation and thereby improved diagnostic
quality. However, increasing the spatial resolution at a constant radiation dose will
also increase the amount of photon noise per voxel.

Owing to the constant demand for lower dose and increasing resolution in CT,
several methods have been explored to lower the relative amount of noise per voxel
at constant resolution and dose. A major concern when developing an image en-
hancement method is preservation of structures of interest. This is one of the key
aspects of the method that is presented in this chapter. A well-known group of im-
age enhancement methods is based on the principle of anisotropic diffusion [173].
Anisotropic diffusion has the disadvantage of being computationally complex and
thereby relatively slow, which hampers its introduction into clinical practice. In or-
der to overcome this problem we present a new speed optimized implementation
for anisotropic diffusion. This optimized anisotropic diffusion implementation is
used in a novel image enhancement method that improves the diagnostic qual-
ity of reconstructed CT image data with constant spatial resolution and radiation
dose. The method combines the well-known anisotropic diffusion technique edge
enhancing diffusion (EED) [173] with structure preservation. The achieved speed
optimization is determined by comparing the computation time of the new opti-
mized method with a standard implementation. The newly developed image en-
hancement method is qualitatively and quantitatively compared to EED without
structure preservation.
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6.2 Previous work

Photon noise reduction methods for CT can be divided into two groups. Noise re-
duction in the measured data (the projection data) and noise reduction in the 3D
attenuation map that is determined from these measurements (the reconstructed
image).

Noise reduction methods in the projection data can have the advantage that a
priori information about the projection data, such as the Poisson distribution of
the measurement noise, can easily be incorporated in the noise reduction process.
However, filtering in projection data has the disadvantage that it is very difficult to
use reconstructed shape information in the noise reduction process. Furthermore,
projection data is stored differently for each CT vendor, while the reconstructed
image is stored according to strict guidelines. Therefore most methods, including
the one presented here, focus on noise reduction in the reconstructed CT image.

The first articles about noise reduction in CT were published shortly after the
invention of CT. The methods were based on low-pass filtering [34, 137]. Low-pass
filtering removes high frequencies from the image, thereby reducing noise and im-
proving the detectability of large objects in the image. However, there are problems
associated with these methods. Low-pass filtering reduces the intrinsic resolution
of the image; it smoothes edges and decreases the detectability of small structures.

A method which included the prior knowledge that large differences between
neighboring voxels are unlikely to be caused by noise, by weighing neighboring
voxels during smoothing, depending on the intensity differences, is presented by
Okada [120]. Less important structures are smoothed with this method; the CT im-
ages maintain their spatial resolution better.

Lee et al. presented the sigma filter, this filter assumes a Gaussian distribution of
CT noise [63, 83]. The method estimates the standard deviation of noise throughout
the image and averages voxels in local neighborhoods that are within an intensity
range depending on this global intensity variation.

This noise dependent averaging achieves a higher spatial resolution with an
equal level of smoothing. A recent extension to this method is the NOVA method
presented by Schilham et al. [147]. The NOVA filter estimates iteratively the stan-
dard deviation of noise on each position in a CT volume and uses this local measure
to perform a weighted average between neighboring voxels.

Noise reduction methods that preserve specific structures of interest give even
better results [71, 72, 74]. These methods take the magnitude and the direction of
the difference between neighboring voxels into account and outperform undirected
methods because of this anisotropic character.

A popular framework that enables inhomogeneous and anisotropic blurring is
called anisotropic diffusion. A large body of literature has been devoted to aniso-
tropic diffusion (e.g. [174]). Anisotropic diffusion is based on the diffusion equation
in which the diffusion coefficient is made image dependent. Specific image struc-
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tures can be directionally smoothed with anisotropic diffusion. An example of a CT
noise reduction method that uses anisotropic diffusion is described by Frangakis et
al. [46]. The method filters CT data with a specifically tuned algorithm that reduces
noise, enhances edges, and improves elongated (vessel like) structures. Recently
two 3D anisotropic CT image enhancement methods specifically designed for en-
hancement of elongated structures have been proposed [98, 117]. However, because
these methods only enhance vessel like structures in the image they are not suited
for generic image enhancement.

6.3 Method description

The proposed image enhancement method is specifically aimed at improving the
diagnostic quality of CT images within the framework of anisotropic diffusion. Nu-
merical implementations of anisotropic diffusion are computationally demanding
and hence a speed optimized implementation will be introduced in section 6.4.

In this section we will first outline the requirements that we impose on our im-
age enhancement method. Whereas image quality is a subjective measure, the two
most important aspects of diagnostic image quality are considered to be low noise
and high resolution [41]. Image quality is expected to improve if noise is reduced on
and around important structures and if the resolution of these structures is main-
tained or improved. We formulate our prior knowledge on the important struc-
tures in CT images as follows: they consist both of large structures such as bones,
the aorta lumen, and liver and small structures, such as small vessels, calcifications
and bronchi. It is our believe that preservation of resolution is especially important
for the smallest structures. Intensity variation reduction is important in the large
structures, because these structures are disturbed by noise structures that can not
be distinguished from the real intensity variations in these structures.

The requirements of the new method are therefore formalized as:

• Reducing the intensity variation within the large scale structures.

• Improvement of detectability of the edges between large scale structures.

• Preservation of the important small scale structures.

6.3.1 Edge enhancing diffusion

The first two requirements can be fulfilled by the anisotropic diffusion technique
edge enhancing diffusion (EED) [173]. Anisotropic diffusion can be described as
an extension of the linear diffusion equation, by introducing a direction dependent
conduction coefficient D(u):

∂u

∂t
= ∇ · (D(u)∇u). (6.1)
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The interpretation of this equation is that the image u is diffused over time t (in
voxels2), where the diffusion is steered by the diffusion tensor D(u) that is based
on local image geometry. Equation (6.1) states that the intensity change per voxel
is equal to the divergence of the intensity gradient after a diffusion tensor transfor-
mation. EED expresses the diffusion tensor in terms of its eigenvectors and eigen-
values; the first eigenvector of D(u) V1 is parallel to the gradient, calculated at scale
σ:

V1 ‖ ∇uσ. (6.2)

The eigenvalues µi are defined as follows:

µ1 =

{

1 (|∇u| = 0)

1 − exp
(

−Cm
(|∇u|/λeed)m

)

(|∇u| > 0)

µ[2..n] = 1 (6.3)

where n is the dimension of the image. The constants m = 4 and C4 = 3.31488
are predefined in [173]. The parameter λeed is a contrast parameter related to the
expected gradient magnitude at diagnostically important edges. When |∇u| >>

λeed the diffusion will be anisotropic, while isotropic blurring occurs at |∇u| < λeed
[166].

6.3.2 Structure controlled edge enhancing diffusion (SCEED)

Our extension to EED fulfills the third stated requirement, the preservation of small
scale structures. This implies that noise on the small structures is not reduced with
the proposed method. This approach is chosen for two reasons: an attempt to re-
duce noise in the small structures is expected to reduce conspicuousness of these
details, as it is too difficult to differentiate between noise and the important details
on this small scale. Secondly, enhancement of the small structures can only be done
if the undisturbed shape is known and this a priori information is not available.

The new method interpolates between the original image and its EED filtered
version. It uses the original image data at locations with small important structures,
edge enhancing diffusion if there are no small important structures, and a linear
transition between these two in the intermediate regions. The weight factors of the
interpolation are based on an importance map that is derived using second order
information.

Construction of the importance map The measure of total curvature is used to
indicate diagnostically important structural information [47]. Because important
structures can exist on multiple scales, a multi-scale approach is used to construct
this importance map.
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The importance Sα of each voxel at scale α is calculated as α2 times the total
curvature at scale alpha [91]:

Sα = α2
√

µ2
1 + µ2

2 + µ2
3, (6.4)

where µi refers to the ith eigenvalue of the Hessian matrix calculated at scale α.
The maximum response of the importance measures Sα is selected by

S = max
αmin≤α≤αmax

Sα, (6.5)

where αmin and αmax correspond to the minimum and maximum scale of the Hes-
sian calculation. The range αmin to αmax is based on the expected scale of the small
structures in the image and it is divided exponentially in discrete steps.

Based on the calculated value for S, the importance measure T is calculated with
the following exponential function

T(S) = 1 − exp

(

−
(

S

γ

)β
)

. (6.6)

The threshold-like function T(S) has a range from 0 to 1, tending to 1 when S
is large. The position and the steepness of the transition between important and
unimportant structures is controlled by β and γ.

Blending There are several ways to incorporate an importance map in a traditional
anisotropic diffusion scheme. We opt for linearly blending the original and the dif-
fused image. In order to have spatially smooth transitions between the original
image and the edge enhanced image, we blend using Tρ(S), a Gaussian smoothed
version of the importance measure T(S). Using this approach, the final voxel inten-
sity is calculated as follows:

Iout = Tρ(S)Iin + (1 − Tρ(S))Ieed,

Tρ(S) = T(S) ∗ K(ρ).
(6.7)

Iin, Iout and Ieed are respectively the input image, output image and the EED dif-
fused image. The scale of the Gaussian kernel K is ρ.

6.4 Implementation

The conventional EED implementation is a very time consuming algorithm because
of its iterative nature. Furthermore, the additions of SCEED increase the compu-
tational complexity of the image enhancement method. We therefore introduce a
novel approach which considerably speeds up anisotropic smoothing techniques.
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6.4.1 Standard implementation of anisotropic diffusion

A discretization of equation (6.1) is required in order to apply anisotropic diffusion
on discrete images. Let U denote the discretized version of the continuous image u
in equation (6.1). The scale-space axis is divided in steps of ∆t with discrete scale
parameter k, where t = k∆t and U0 denotes the original image. Iterative methods
can be used to calculate an image at a specific scale t in the scale-space by choosing
a specific ∆t and by performing t/∆t iterations; during each iteration, Uk+1 is cal-
culated using the previous iteration Uk as input. Generally, the discrete anisotropic
diffusion equation is solved in the following explicit way:

Uk+1 − Uk

∆t
= A(Uk)Uk, (6.8)

where A(Uk)Uk is a linear discretization of the operation ∇ · (D(Uk)∇Uk).
The discrete equation can also be solved as follows

Uk+1 − Uk

∆t
= A(Uk)Uk+1. (6.9)

Since this requires solving a linear system of equations and A(Uk) is a function
of Uk and not Uk+1, this scheme is called semi-implicit. Explicit and semi-implicit
discretization of the anisotropic diffusion equation differ on various points. With
explicit schemes the step in scale-space ∆t has the restriction of ∆t <

1
2n , where n

is the image dimension; the solution becomes numerically unstable above this step
size [173]. A widely-used step size in the explicit 3D implementation (n = 3) is
∆t = 0.15 which provides numerical stability, speed and reasonable accuracy [173].

With semi-implicit schemes it is not necessary to take small steps in scale-space
and ∆t can be set equal to the desired scale t. This means that the semi-implicit
method can be made non-iterative and the diffusion tensors have to be calculated
only once [173, 175]. A semi-implicit solution results in a linear solution of the ani-
sotropic diffusion equation, which is often satisfactory in practice. The non-iterative
character of the semi-implicit method is especially advantageous for anisotropic
diffusion schemes that require complex calculations to obtain the diffusion tensors.

However, semi-implicit schemes are assumed to be too time-consuming, be-
cause of the extremely large system of linear equations that needs to be solved.
Therefore, most existing anisotropic diffusion methods use the explicit scheme with
∆t = 0.15 to calculate discrete solutions to the anisotropic diffusion equation.

The values for A(Uk) can be calculated, for both approaches, with a finite differ-
ences scheme described in [173]. This scheme uses forward-, backward-, and central
differences for calculating the different discrete derivatives. The result of this dis-
cretization of the 3D diffusion equation is that matrix A(Uk) has 19 coefficients on
each row that can be nonzero. Those coefficients are on fixed distances from the
diagonal. The required 19 voxels span a 3 × 3 × 3 neighborhood in 3D excluding
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the 8 corner voxels of this cube. These coefficients are based on the values of the 7
diffusion tensors at the position of the current voxel and its direct neighbors in the
x,y and z directions.

6.4.2 Existing optimization methods

Several authors have described methods for fast nonlinear isotropic diffusion. We-
ickert’s additive operator splitting (AOS) and Acton’s multigrid method [4, 175]
yield a significant performance increase. However, these methods can not be ap-
plied to anisotropic diffusion. Although Acton named the multigrid paper ‘multi-
grid anisotropic diffusion’, this paper describes an optimization to nonlinear iso-
tropic diffusion, not anisotropic diffusion.

Mrázek presented a method for anisotropic AOS, but this method has limita-
tions to the degree of anisotropy that can be applied [111]. Standard methods for
solving large systems of linear equations like the Gauss-Seidel method have also
been used for solving discrete semi-implicit diffusion equations [11, 175], but none
of these methods have been tailored to anisotropic diffusion.

Besides these generically applicable speed optimizations, a number of authors
have published methods to quickly solve partial differential equations on graphical
processing units (GPUs). These methods are used to efficiently perform anisotropic
diffusion with modern GPUs. An overview of these methods can be found in [136]
and [123]. Because of the limited availability of these modern graphical cards, we
focused on generically applicable speed optimizations.

To our knowledge, there are no generically applicable methods that outperform
the standard explicit iterative anisotropic diffusion implementation.

6.4.3 New optimization of the anisotropic diffusion implementation

The newly developed optimization of anisotropic diffusion equations contains two
parts. The first part is an optimization for the discretization of the diffusion pro-
cess, which can also be used for an explicit implementation, and the second is an
optimized semi-implicit implementation.

6.4.3.1 Optimized anisotropic diffusion discretization

To update voxel intensities during the explicit or semi-implicit diffusion process
requires for each voxel, in the standard linear discretization method, the diffusion
tensors in its seven connected neighborhood [173]. If these 7 diffusion tensors are
all equal to the identity matrix the diffusion changes locally from anisotropic to iso-
tropic. In this case it is not necessary to access the values of the diffusion tensors;
the discretized anisotropic diffusion calculation simplifies to a simple weighted av-
erage of the input voxel value and the values of its 6 neighbors. Owing to this
potential speed up, a mask is created during the calculation of the diffusion tensors
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indicating all ‘identity’ diffusion tensors. A diffusion tensor is marked as being
identity if the difference of each element with an identity matrix is smaller then
ǫidentity.

This mask is eroded with a 7 points kernel, equal to the described neighbor-
hood. The eroded mask is used during the diffusion process to switch between the
straightforward isotropic diffusion equation and the standard discretization of the
diffusion equation.

6.4.3.2 Optimized semi-implicit diffusion

The second part of the optimization is a method which is specifically developed
to quickly solve the linear system of equations for the semi-implicit anisotropic
diffusion process. The method is inspired by the successive overrelaxation (SOR)
method [11].

The discretized semi-implicit diffusion equation from equation (6.9) can be writ-
ten as

Uk+1 = (I − ∆tA(Uk))
−1Uk. (6.10)

A solution to this equation can be obtained with several iterations of the SOR
method. For that purpose equation (6.10) is rewritten as

A′X = B (6.11)

where A′ is equal to (I − ∆tA(Uk)), B is equal to Uk and X is the solution Uk+1. The
SOR method iteratively calculates the solution X in the following way

xk
i = ω

bi − ∑
j<i

a′ijx
k
j − ∑

j>i
a′ijx

k−1
j

a′ii
+ (1 − ω)xk−1

i (6.12)

where ω < 2 describes the amount of extrapolation. The coefficients a′ij are calcu-
lated as follows

a′ii = 1 − ∆tAii (6.13)

a′ij = −∆tAij (6.14)

where Aij is computed using isotropic diffusion (averaging) if it is part of the
eroded identity mask, and computed using the discretized diffusion tensors oth-
erwise. Because the matrix A′ is diagonal dominant [173], the SOR method will
converge to a solution [10].

For the 3D anisotropic diffusion equation, there are 19 nonzero values of a′ij.
From equation (6.12) it follows that it is not necessary to evaluate the coefficients
that are zero. Also, if all 19 xk

j terms associated with the nonzero elements of a′ij are

equal to xk−1
j , the value of xi will not change between iterations.
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Figure 6.1: The number of active voxels per iteration while solving the semi-implicit EED diffusion

equation of a characteristic 1403 voxels CT image. The graph shows the number of active voxels

for the 19-points dilation method and for the method with the 27-points dilation. The parameters

were as described in section 6.5.1.4 with t = 2
.

If a voxel changes during an iteration, the voxel is marked in a so-called active
voxel mask. A voxel is marked as changed if the absolute difference with the pre-
vious value is above a certain threshold ǫsor. This threshold is set to a very small
value, in order to ensure that the speed optimization does not result in a less accu-
rate solution. Convergence is achieved if all voxels change less than ǫsor. The active
voxel map is dilated with a kernel of the described 19 points neighborhood, result-
ing in a map that indicates the voxels that can change in the next SOR iteration.
Because dilation with a 3 × 3 × 3 kernel can be computed fast with a separable fil-
ter, the dilation is done with a 27 points kernel, instead of the described 19 points
kernel. Fig. 6.1 shows how the number of active voxels for a 140 × 140 × 140 sub-
volume of a typical CT dataset decreases with a 19 and 27 points kernel. After five
iterations, the number of active voxels decreases approximately exponentially. A 19
point dilation is comparable to a 27 points dilation on a densely populated mask,
therefore the results of the first few iterations are comparable. The 27 points dilation
results in a slight increase in the number of iterations, but because of the increased
efficiency the overall processing time is lower.

It should be noted that the resulting optimization method with active voxel
masking and dilation does not have exactly the same convergence as an unmodified
successive overrelaxation method because not all of the elements of xk−1 are eval-
uated every iteration. With the successive overrelaxation method, the new value xk

i

of a voxel xk−1
i influences the calculation of the elements xk

j where j > i and Aij 6= 0.
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The SOR method can be seen as an extended version of the Jacobi method [11]. With
the Jacobi method, the new value of xk

i has only influence on the calculation of the
values of xk+1. It is possible with the presented method that xi is active and that one
or more elements xj are inactive. If all the elements xj are inactive the newly devel-
oped method resembles the Jacobi method locally. If all the xj elements are active,
the new method resembles the successive overrelaxation method locally. Therefore,
the presented method can be interpreted as a hybrid of the Jacobi method and the
successive overrelaxation.

6.4.4 Implementation details

The Hessian was calculated using Gaussian derivative operators [47]. Five discrete
steps were used to divide the range between αmin and αmax exponentially. An ex-
periment with 32 different CT images showed that a value for the SOR parameter
ω of 1.33 gave the highest convergence speed. This parameter setting was used in
all experiments. The threshold ǫsor in the optimized SOR method was set to 0.001.
The threshold ǫidentity in the creation of the identity mask was set to 0.0001.

With these values the resulting images have a negligible small difference with
the result of an un-optimized implementation; when rounded to the nearest integer,
0.04% of the voxels have a difference of 1HU and no voxels have a difference of
more than 1HU, for an intensity range of -1000HU to 4000HU.

6.5 Evaluation

SCEED was evaluated qualitatively with an observer study and quantitatively by
assessment of the reduction of the root mean squared difference (RMSD) between
the intensity values of the low and high dose data after low dose data processing
with SCEED.

The performance of the optimized semi-implicit method was evaluated by de-
termining the reduced computation time of the new optimized method in compar-
ison with a standard explicit EED implementation.

6.5.1 Qualitative evaluation

In thoracic and abdominal CTA, electrocardiogram (ECG) gating can be used to re-
duce motion artifacts caused by heart motion or to detect and quantify motion due
to heart or vessel pulsation [56, 112, 119, 146]. With this technique, CT projection
data and ECG-recordings are combined to reconstruct images at different phases
of the heart cycle. ECG-gated reconstruction is always necessary in anatomical re-
gions with severe movement, like the area of the coronary arteries. The term ‘gated
scan’ will be used to refer to one reconstructed phase of such a retrospectively gated
CT scan.
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(a) (b)

Figure 6.2 (see page 150 for a color-version): A section of a volume rendering of (a) gated and

(b) ungated AAA CTA images. Note the difference in quality between, for example, the visualiza-

tion of small vessels.

The separate phases of an ECG gated scan contain only approximately 10% to
20% of the projection data, therefore they contain more noise than an ungated CT
scan. As a result, 3D visualizations of gated CT studies are of a lesser quality than
3D visualizations of ungated CT studies in anatomical areas with limited move-
ment (Fig. 6.2).

One of the application of CTA is the diagnosis of an abdominal aortic aneurysm
(AAA). An AAA is a focal dilation of the abdominal aorta usually below the level of
the renal arteries. The diagnosis of AAAs requires a clear insight in the size and ori-
entation of the aneurysm and the aorta. Volume rendering has become widely used
for this purpose [20]. Because the area of the abdominal aorta undergoes limited
motion, ungated images are most often used for this purpose.

In this study we evaluated whether SCEED noise reduction improves 3D vol-
ume renderings of gated CTA AAA images. As 3D volume rendering of ungated
reconstructions is currently the prevalent method, we use these ungated scans as a
reference standard. 3D visualization of noise reduced gated images were compared
with those of unfiltered gated images and ungated images. Noise reduction was
performed with SCEED and EED.

6.5.1.1 Scan protocol

Ten CTA data sets were randomly selected from patients who were referred for pre-
or post-operative CTA AAA examinations. Retrospectively ECG gated CTA scans
were acquired in the University Medical Center Utrecht with a 64 slice CT scanner
(Brilliance CT, Philips Medical Systems, Best, The Netherlands) using a dose of 300
mAs and tube voltage of 120kV. Images were reconstructed with a slice thickness
of 1.4 mm, slice spacing of 0.7 mm, a field of view of 300 mm and a resolution of
512×512; resulting in an in-plane resolution of approximately 0.6 mm. Both stan-
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dard ungated and eight-phase gated reconstructions were made. The gated recon-
structions were reconstructed at 70% between two consecutive R-peaks of the ECG
[108].

6.5.1.2 Volume renderings

Three-dimensional visualizations of the CTA AAA datasets were created with Vi-
tal Images’ Vitrea 2 workstation using the default 3D vessel preset; except for the
window width, all settings were kept at their default values.

Volume renderings from two different viewing directions were made for each
of the four different images (gated, ungated, EED, and SCEED); because of the ex-
cellent reproducibility, a standard anteroposterior and an orthogonal lateral view
were used. To increase the visibility of the aorta, a part of the hip bone was trimmed
from each lateral image. This resulted in a total of 10× 2 × 4 = 80 different 3D ren-
derings.

The optimal window level for 3D visualization depends on the goal of the vi-
sualization and the noise characteristics of the image. Appropriate window width
values were calculated using grey level intensities from areas in the background tis-
sue and their standard deviation. Visual inspection by a team of experts suggested
that a lower bound of the intensity window of two times the standard deviation of
the liver above the average liver intensity yields a good compromise between the
visibility of details of interest and low disturbance by unconnected noise voxels, for
3D visualizations of AAAs. The window level was set to its default value of 270HU.
Therefore the window width value (in Hounsfield units) was selected with:

W = 2(270 − (HUliver + 2SDliver)), (6.15)

where HUliver is the average intensity of the liver and SDliver the standard deviation
of the liver, both measured in Hounsfield units.

6.5.1.3 Observation study

For both visualization directions, the four different pictures of each patient were
compared side-by-side. All the six combinations of the four pictures were scored
relatively on a 3 points scale (left better, equal, or right better).

Each of the pairs of visualizations were scored using four aspects which expe-
rienced radiologists judged to be important for diagnostic value; the four aspects
were:

• Detail visibility: The expected amount of correctly visualized small details
and the visibility of these small details; the preservation of structures known
to be present by anatomical knowledge.
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• Structural sharpness: The sharpness, low blurriness, and expected accuracy
of the edges between the important structures, like calcifications and stents,
and their surroundings.

• Smoothness of surfaces: The low graininess on the hip bone and aorta.

• Overall impression: The preferability for a normal clinical work flow.

Three observers (two radiologists and a fourth year radiology resident) graded
the 3D visualizations. Each observer scored a total of 10 (patients) ×2 (directions)
×4 (aspects) ×6 (combinations) = 480 pairs of pictures. All of the 480 pairs were
ordered using patient, direction, and aspect. The six combinations and the position
of the images within each pair were randomly ordered and the resulting combi-
nations were shown sequentially. The observers were blinded for the method that
was used to generate the volume renderings.

6.5.1.4 Parameters

The noise filtering parameters for the qualitative evaluation were found empiri-
cally; an expert panel determined the parameter settings for the two algorithms by
tuning them for the specific task of three-dimensional visualization of gated AAA
CT images. Three CT AAA datasets were used for this purpose. These datasets were
not used in the qualitative evaluation. The parameters were determined as follows.

EED Scale parameter t = 0.8, gradient scale σ = 4.0 mm, preservation function
parameter λeed = 6.0.

SCEED Scale parameter t = 3.0, Hessian calculation from αmin = 0.9 mm to αmax =
3.0 mm, importance function parameters β = 5 and γ = 26.5, scale of importance
map blurring: ρ = 0.5 mm. σ = 4.0 mm, and λeed = 6.0.

Explicit and optimized semi-implicit EED diffusion solutions were visually com-
pared by the expert panel on the reduction of intensity variations in the large scale
structures and the improvement of the detectability of edges between the large
structures. These aspects were judged to be similar. Therefore, only the semi-implicit
solutions were used in the rest of the study in order to reduce the necessary comp-
utation time and workload of the observers.

6.5.2 Quantitative evaluation

To quantitatively compare SCEED and EED, their ability to reduce the root mean
square difference (RMSD) of low dose and high dose CT imaging data was as-
sessed.
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6.5.2.1 Data

Five ex-vivo carotid plaque samples were placed in a 16 cm water-filled neck phan-
tom to achieve a realistic noise level. Ten scans of the phantom were acquired on
a Siemens Sensation 64 with 120 kVp, slice thickness and spacing of 0.6 mm, and
the following exposures: 25, 60, 90, 120, 150, 180, 210, 240, 270, and 427mAs. Ex-
posures of 25 and 427mAs were respectively the minimum and maximum possible
mAs settings with the specified slice thickness and spacing. The acquired data was
reconstructed to datasets with cubic voxels of (0.6mm)3. The ‘golden’ standard for
the quantitative evaluation was created by averaging the five highest dose scans
(Fig. 6.6(b)). Only the five highest dose scans were used because the lower dose
series contained noticeable streaking artifacts.

6.5.2.2 Implementation and parameters

To achieve optimal parameter settings for minimization of the RMSD between the
low dose scans and the golden standard, filter parameter optimization was carried
out with the Powell optimization technique [126]. This was done for both SCEED
and EED in a region of interest of about 1200 mm3 around two carotid plaques. The
following parameters were optimized for EED: t, σ, and λ. SCEED was optimized
by varying the following parameters: t, σ, λ, αmin, αmax, β, γ, and ρ. The optimal
parameter settings were subsequently used to measure the RMSD around the three
remaining carotid plaques in the image.

6.5.3 Speed-optimization evaluation

To evaluate the time required for EED filtering using both a normal explicit and
the optimized semi-implicit method, both methods were implemented in C++ and
the code was compiled with the Intel® compiler 8.1 on the highest optimization
level. The resulting programs were executed on a workstation with a dual Xeon 2.8
gigahertz and 4 gigabytes of internal memory using 512×512×256 CTA images as
input data.

Two different scale-space steps were used for the explicit method. ∆t = 0.01
provided a solution with a high accuracy while ∆t = 0.15 provided a more practical
balance of accuracy, stability, and speed. To demonstrate the relation between scale
and computation time, the comparison was done for multiple evolution times t,
varying from 0.15 to 4.0. Ten different 512×512×256 CTA images were diffused
with all these evolution times.

The overall processing time of the SCEED method was also determined; the
method contains several additional steps compared to the EED method. It calcu-
lates the Hessian matrix for every voxel, constructs an interpolation factor from the
calculated matrix, and blends the EED image with the original image. These extra
steps do not depend on the scale parameter, therefore only one setting of the scale
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Table 6.1: Rankings for the four qualitative aspects for the lateral and anteroposterior direction.

A lower ranking number means a better ranking. The rankings were identical for the two volume

rendering directions and the analysis also produced the same results if the observations of the

two viewing directions were combined. TODO: lijn

Rank
Aspect Ungated Gated EED SCEED

Detail visibility 1 4 3 2
Smoothness of surfaces 1 4 3 2

Structural sharpness 1 2 3 3
Overall impression 1 4 3 2

parameter was necessary for this measurement. An evolution time of t = 3 was
chosen, i.e. the same evolution time as used for the qualitative evaluation.

6.6 Results

6.6.1 Qualitative results

In total 1440 observations were made by the three observers. These observations
were used to create rankings per aspect and viewing direction.

The scores for each filter combination and aspect were combined into 48 lists
for each of the six combination, four aspects and two directions. Each list contained
three (observers) × ten (patients) = 30 measurements. A sign-test, with a signifi-
cance threshold of 0.01, determined whether one of the two combinations scored
significantly better [1].

These statistics were used to create rankings for each aspect and direction. A
filter is ranked higher than another filter if it is significantly better according to the
sign-test. The resulting rankings are listed in table 6.1.

The rankings show that both evaluated noise reduction methods were consid-
ered beneficial for improved detail visibility, surface smoothness, and overall im-
pression of gated scans. Furthermore, it shows that the observers ranked the visu-
alizations of the ungated scans the highest.

Fig. 6.3 contains examples of volume renderings used for the qualitative evalu-
ation. All three observers ranked these images for the aspect overall impression in
the increasing order of gated (worst), EED, and SCEED (best). In order to demon-
strate the preservation of real structures and variation reduction in axial slices, fig-
ure 6.4 shows the effect of SCEED on a low dose ungated scan.
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(a) (b) (c)

Figure 6.3 (see page 150 for a color-version): (a) 3D visualization of a gated dataset. (b) Vi-

sualization after EED filtering. (c) Visualization after SCEED filtering. Note the improved visibility

of the small vessels in the SCEED visualization in comparison with the EED visualization. The

unimproved structural sharpness in the EED and SCEED scan can be seen in the region of the

stent, located in the bifurcation of the abdominal aortic artery in the center of the image.

Figure 6.4: Left: A section of an unfiltered axial CTA slice. Right: The same section filtered with

SCEED. Note the improved detectability of the small vessels anterior to the aorta and calcifica-

tions in the aorta.
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Table 6.2: Inter-observer agreement. (a) The three observers scored a pair the same. (b) Two

observers rated a combination the same and the third was one category off. (c) Two observers

scored a pair the same and the third observer was two categories off. (d) The observers had all

different scores.

Aspect (a) (b) (c) (d)

Detail visibility 85% 10% 3% 3%
Surface smoothness 89% 5% 5% 1%
Structural sharpness 68% 14% 13% 5%
Overall impression 82% 9% 8% 2%
Total 81% 10% 7% 3%

6.6.1.1 Inter-observer variability

Table 6.2 shows the relation between the scores from the different observers; the
table shows that image pairs are scored identically in more than 80% of the cases.
The table also shows that observers agreed most on the surface smoothness aspect
and least on the structural sharpness aspect.

6.6.1.2 Intra-observer statistics

Table 6.3 shows statistics on the ability of observers to make consistent rankings
and the differences between their lateral and anteroposterior observations of the
same pair. These numbers give additional information about the reliability of the
observer study. Ranking consistency determines the percentage of the observations
where an observer made a consistent scoring. An example of an inconsistent ob-
servation is that an observer scored for a specific patient, direction and aspect EED
better than ungated, ungated better than SCEED, and SCEED better than EED. The
directional consistency indicates the percentage of the observations in which the
observer scored a pair identical in the lateral and anteroposterior direction. The
table shows that observers made a consistent ranking 90% of the cases; it also indi-
cates that the structure sharpness aspect has the highest variability. The same can
be concluded for the directional consistency aspect, with even higher percentages.

6.6.2 Quantitative results

The RMSD around the three carotid plaques decreased considerably with both EED
and SCEED in all the low dose scans. Fig. 6.5 shows the unprocessed RMSD and
the RMSD after EED and SCEED noise reduction. In all scans the lowest RMSD was
achieved with SCEED, which was statistically significant (p < 0.0001), assessed
with a one-tailed paired Student’s t-test. Fig. 6.6 shows an example of the data that
was used for quantitative evaluation.
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Table 6.3: Average consistency of the three observers. The percentage of the observations when

the observer made a consistent ranking and the percentage of the cases when an observer

scored a pair the same for the lateral and anteroposterior direction.

Aspect Ranking Directional
consistency consistency

Detail visibility 91% 98%
Surface smoothness 94% 100%
Structural sharpness 86% 93%
Overall impression 88% 98%
Total 90% 98%
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Figure 6.5: Quantitative results. The RMSD in areas around the carotid plaques before and after

noise reduction with EED and SCEED.

(a) (b) (c) (d)

Figure 6.6: Examples of the quantitative evaluation data. (a) A section of the 25mAs scan. (b) A

section of the ‘golden’ standard. (c) A section of the low dose image after SCEED filtering. (d) A

section of the low dose image after EED filtering.
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6.6.3 Speed-optimization results

6.6.3.1 EED computation time

Linear regression was used to model the relation between the scale t and the comp-
utation time in seconds s for the explicit, semi-implicit and optimized semi-implicit
method. The computation time of the explicit method with ∆t = 0.15 can be ap-
proximated with s = 2.2 · 102t − 2.0. The explicit method with ∆t = 0.01 can be ap-
proximated with s = 3.9 · 103t + 52 and the fully optimized semi-implicit method
with s = 31t + 27. The Pearson’s coefficient of regression R2 was larger than 0.99
for all three linear approximations.

For scales around t = 1, the optimized semi-implicit method is approximately
52 times faster than the explicit method with ∆t = 0.01 and 3.2 times as fast as the
explicit method with ∆t = 0.15. The optimized method is approximately 5.6 times
faster than the explicit method with ∆t = 0.15 for the scale (t = 3) which was used
in the qualitative evaluation of the SCEED method.

6.6.3.2 SCEED computation time

The SCEED filter operation takes on average 257.6 seconds, this means that, for a
512 × 512 × 256 image, the total computation time of SCEED is still more than a
factor of two less than EED with the standard explicit implementation and without
structure preservation.

6.7 Discussion and conclusion

An image enhancement method has been developed, with the aim to improve CT
images in clinically more acceptable computation times. The two main novelties
of the approach are a new implementation for anisotropic diffusion which is op-
timized for speed and an extension to an existing anisotropic image diffusion ap-
proach, namely edge enhancing diffusion (EED), to better preserve structures of in-
terest. The new implementation achieves a considerable speed up and the new im-
age enhancement method SCEED outperforms EED, both qualitatively and quan-
titatively.

Both SCEED and EED improve the quality of 3D visualizations of gated CTA im-
ages for three of the four evaluated aspects, namely detail visibility, surface smooth-
ness and overall impression. SCEED outperforms EED on all these aspects. The vi-
sualizations of ungated images were qualitatively judged better compared to visu-
alizations of the noise reduced gated images. However, gated images are preferred
when anatomical regions with severe movement, like the area of the coronary arter-
ies, are imaged. SCEED is expected to improve diagnosis if these images are filtered
prior to evaluation.
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There was a high inter-observer agreement and intra-observer consistency for
the three improved qualitative aspects. This, together with the low value for the
significance threshold of the sign-test, suggests that the results are very reproduca-
ble.

In contrast, the structural sharpness aspect had a lower inter- and intra-observer
agreement. This may be explained by the fact that images with a high amount of
noise can have good structural sharpness and yield a bad overall impression. It is
conceivable that observers were sometimes biased towards the image with highest
overall impression, which would explain the lower inter- and intra-observer vari-
ability of the structural sharpness aspect.

SCEED and EED both reduce the difference between a high dose scan and low
dose scans of ex vivo carotid plaque samples considerably and SCEED outperforms
EED significantly on this quantitative aspect, which further demonstrates the supe-
riority of SCEED over EED.





Chapter 7

Summary and Discussion
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In this thesis we proposed and evaluated algorithms towards quantitative im-
age analysis of CTA data, namely automated techniques for centerline extraction
and coronary lumen segmentation. In addition, a noise reduction method for im-
proving the diagnostic quality of 3D visualization of CTA images has been pre-
sented and evaluated. In this chapter we summarize the main contributions of the
work presented and discuss future research directions.

7.1 Summary

7.1.1 Evaluation of coronary centerline extraction techniques

Efficiently obtaining a reliable coronary artery centerline from computed tomog-
raphy angiography data is relevant in clinical practice. Although a large number
of authors have proposed methods for automated coronary centerline extraction a
method for the objective evaluation of different algorithms has been lacking.

In Chapter 2 we have described the development and employment of a stan-
dardized evaluation framework for the quantitative evaluation of coronary center-
line extraction techniques. We presented a method to create a reliable consensus
coronary centerline with multiple observers, introduced well-defined measures for
the evaluation of tracking accuracy and success, and we publically released and
disseminated an annotated image database. This validation database comprises
thirty-two cardiac annotated CTA datasets with corresponding reference standard
of which 8 are made available for algorithm training purposes, and 24 reference
standards are kept blind for objective quantitative evaluation. Thirteen coronary
artery centerline extraction algorithms, implemented by different research groups,
were quantitatively evaluated and compared. The presented evaluation framework
is made available to the medical imaging community for benchmarking existing or
newly developed coronary centerline extraction algorithms.

7.1.2 Probabilistic centerline extraction

In Chapter 3 we proposed a probabilistic centerline extraction technique. Com-
pared to other state-of-the art centerline extraction methods, often based on dy-
namic programming, probabilistic methods have the advantage that more sophis-
ticated priors on the appearance and geometry of the vessel centerlines can be in-
corporated. Moreover, because of the inherent Monte Carlo based approach, these
methods are capable of finding global optima of objective functions defined by
complex appearance and geometric priors. For the method described in Chapter
3 we have incorporated prior information on the path curvature in the geomet-
ric model and priors on the intensity homogeneity along the centerline in the ap-
pearance model, respectively. Both of these priors are very hard to incorporate in
dynamic programming approaches that underly minimum cost path techniques,
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because of the very large increase in computational resources associated with the
integration of these priors.

Probabilistic methods can also be computationally very demanding, because of-
ten a large number of hypotheses needs to be taken into account for correct path
extraction. Moreover, if too few hypotheses are kept in the optimization the high-
dimensional space representing all the possible paths can be sampled too sparsely,
resulting in incorrect path extractions. We therefore also implemented optimiza-
tions that made these approaches computationally less intensive, while maintain-
ing the robustness of probabilistic tracking.

We demonstrated that the presented approach can extract elongated structures
in synthetic images with very high noise levels and that it can find central lumen
lines of the coronary arteries and the internal carotid artery passing through the
skull base in CTA data. This latter clinical problem was chosen to demonstrate the
potential of the novel observation model. In this application the lumen is some-
times brighter than its surrounding tissue and sometimes it is in close proximity
to bone, which has higher intensity values or overlaps in intensity values with the
lumen voxels. A quantitative clinical evaluation, which was performed by compar-
ing extracted centerline of 28 carotid arteries to manual tracings of two observers,
demonstrated good results.

7.1.3 Unsupervised and supervised coronary lumen segmentation

Coronary lumen assessment is important for quantifying coronary artery disease
(e.g. stenosis quantification) and as a pre-processing step for coronary plaque anal-
ysis. Two coronary lumen segmentation techniques have been presented in Chapter
4 and 5 of this thesis. The first method, proposed in Chapter 4, is based on graph-
cuts and robust kernel regression. It is computationally efficient and an evaluation
with 28 manually annotated coronaries from 12 patients showed that the method
can be applied with good results in situations where accurate centerlines are avail-
able.

Chapter 5 presents the second coronary lumen segmentation algorithm. Whereas
the method in Chapter 4 is hand-tuned and specifically designed by us, the method
in Chapter 5 is developed using a generic machine learning method that learns
the geometry and appearance of plausible vessels from annotated data and subse-
quently applies this knowledge to unseen data. Therefore this method, if provided
with enough representative training data, can readily be applied to vessels with
a wide variety of shapes and appearances. The latter method achieved better re-
sults than the unsupervised method and was less sensitive to inaccurate centerlines,
which makes the method also applicable to situations where less accurate, for ex-
ample automatically extracted, centerlines are available. The method was evaluated
by quantitatively comparing segmentation results to manual annotations of 229
coronary arteries. On average the difference between the automatically obtained
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segmentations and manual contours was smaller than the inter-observer variabil-
ity, which is a strong indicator that the method outperforms manual annotation.
The method was also evaluated with the evaluation framework presented in Chap-
ter 2 by using it for centerline refinement, resulting in a 2nd place ranking out of
all evaluated methods. An additional qualitative expert evaluation in which 250
automatic segmentations were compared to maual segmentations showed that the
automatically obtained contours were rated better than manual contours. A draw-
back of this method is that it is computationally more demanding than the first
method, and that it requires a substantial amount of representative training data.

7.1.4 Noise reduction for improved diagnostic quality

A major disadvantage of CT is the use of ionizing radiation, which may induce
cancer in an exposed individual after a latent period of up to a few decades [163].
Therefore, there is a constant demand for lowering the radiation dose while pre-
serving the diagnostic quality of CT. This has resulted in the development of CT
noise reduction methods that allow to lower the radiation dose by reducing the
image noise while maintaining the resolution and image quality. A major concern
when developing a noise reduction method is the preservation of small structures
in the image. In Chapter 6 we presented a method for noise reduction in CTA im-
ages that preserves small structures of interest. The developed method can im-
prove the diagnostic quality of 3D CTA visualizations while preserving the re-
quired amount of radiation dose. The method has been evaluated qualitatively with
10 in-vivo CTA datasets of abdominal aortic aneurysms and quantitatively with
CTA data of five excised carotid artery plaques. In the qualitative evaluation a panel
of radiologists judged the 3D visualizations of CTA abdominal aortic aneurysms
before and after noise reduction with our approach and a standard edge enhancing
diffusion (EED) technique; the results demonstrated that the noise-reduced images
were diagnostically of statistically significant better quality than 3D visualizations
of original images and EED-filtered images. Moreover, the quantitative evaluation
showed that the proposed method reduced the difference between a high dose scan
and low dose scans of ex-vivo carotid plaque samples considerably better than
EED.

7.2 Discussion

In this thesis, we have not only developed image processing techniques for cardio-
vascular CTA, but we have also focused on extensive validation of such techniques.
Thorough evaluation of medical image analysis techniques was not addressed sys-
tematically in the field of medical imaging until the first MICCAI ’Grand Chal-
lenge’ Workshop in 2007, where a ground truth database and evaluation metrics
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were presented for three specific medical imaging segmentation problems. We con-
tributed to this important trend with our coronary centerline extraction framework
(see Chapter 2), which was presented at the 2nd Grand Challenge workshop at
MICCAI 2008. The fully automated web-based evaluation framework allowes an
on-going comparison of novel techniques, fulfilling an apparent need, which is wit-
nessed by the numerous times it has been used by the medical imaging community.
At the time of writing this thesis 88 research groups have registered for the frame-
work and downloaded the evaluation data, and 21 groups uploaded results to the
online framework in order to validate their method. Several publications have ap-
peared with results from the framework (see e.g. [169] , [86]) and we believe that
this evaluation framework has set a new standard for coronary centerline extraction
methods. At this point the community has accepted the framework as the standard
for the evaluation of coronary centerline extraction techniques and it is almost not
possible anymore (it should not be!) to publish a new method without evaluating
the method with our evaluation framework.

A disadvantage of the current evaluation framework is that not all false-positive
extractions are taken into account during the evaluation of fully automatic meth-
ods. Therefore, it does not accurately measure to what extent complete vascular
trees can be extracted automatically. In future work we potentially would like to
improve this aspect of the evaluation framework. Moreover, we aim to extend
the framework to evaluation of coronary lumen segmentation methods using the
large body of manual lumen segmentation acquired during the development of the
method in Chapter 5, we aim to include multi-vendor data, and we would like to
create evaluation possibilities for the extraction of quantitative imaging biomark-
ers, such as the degree of stenosis.

The algorithms proposed in this thesis are a substantial step towards improved
diagnosis and automated analysis of coronary arteries in CTA images. The pro-
posed noise reduction method has shown to be capable of improving the diagnos-
tic quality of 3D CTA visualizations and we have demonstrated how probabilistic
and machine-learning techniques can be used to develop robust algorithms for re-
spectively tracking and segmentation of vascular structures, such as the coronary
arteries.

The next step towards automation would be a fully automated centerline track-
ing algorithm, which is able to find the centerlines of all major coronary arter-
ies from a standard clinical CTA dataset. Good results for fully automatic center-
line extraction have been demonstrated with the evaluation framework presented
in Chapter 2. However, at the moment, several semi-automatic methods achieve
significantly better results and it is not completely clear to what extent complete
vascular trees can be extracted automatically. Based on our experiences with ma-
chine learning methods in Chapter 5, we are confident that machine learning ap-
proaches can also be applied to improve fully automated centerline extraction.
Whereas state-of-the-art centerline approaches are almost all unsupervised and uti-
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lize explicit appearance and geometric models, we believe that spatial priors and
geometric and appearance models learned from annotated datasets are important
components of robust algorithms for centerline extraction in clinically obtained car-
diac CTA datasets with a variety of pathologies.

The combination of a robust centerline extraction technique and the coronary
lumen segmentation technique presented in Chapter 5 would yield a fully auto-
matic supervised coronary lumen segmentation technique. Because accurate train-
ing data is very important for this approach, an active learning approach [149] may
be required to boost the available training data and thereby further increase the
performance of the method.

Fully automatic coronary artery segmentation of data acquired in clinical rou-
tine, which we think can be realized in the near future, will provide an ideal envi-
ronment for addressing many clinically relevant questions. First of all, automated
extraction of coronaries allows quantification of lumen morphology, such as ste-
noses, vessels lengths and lumen diameters, which are relevant for diagnosis and
therapy planning. Furthermore, techniques to detect and analyze calcified and non-
calcified plaques can be built on the results of the coronary extraction.

By applying coronary lumen segmentation, quantification and plaque detection
methods on large volumes of routinely acquired clinical data, or in the context of
large scale studies, insights can be gained in the appearance and variation of coro-
nary artery disease on CTA. Combined with medical patient records, these tech-
niques can be used to relate image-derived parameters such as coronary topology,
morphology and plaque parameters to gender, age, body-mass-index, and other
risk factors. Moreover, these parameters can be related to clinical outcomes (e.g.
mortality or left ventricle ejection fraction) in order to gain insights into the value
of these CTA-based quantifications for the diagnosis and risk stratification of CAD,
thereby facilitating imaging based personalized prognosis and therapy.
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Additional work

Other contributions in CTA image processing

This chapter presents summaries of four additional 2nd-author Computed To-
mography Angiography (CTA) image processing contributions. Section 8.1 presents
the development and evaluation of a minimal user-interaction coronary centerline
extraction technique, Section 8.2 the evaluation of atlas-based segmentation of the
heart chambers, Section 8.3 the development and evaluation of a method for the
segmentation of the carotid arteries, and Section 8.4 describes research into im-
proved separation between iodine and calcium with dual-energy CTA.
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8.1 Coronary centerline extraction with minimal user-

interaction

C.T. Metz, M. Schaap, A.C. Weustink, N.R.A. Mollet, T. van Walsum, W.J. Niessen.
Coronary centerline extraction from CT coronary angiography images using a minimum
cost path approach, Medical Physics, 2009.

Coronary centerlines are important for the analysis of cardiac computed tomog-
raphy angiography CTA datasets as they can facilitate visual inspection of coronary
pathology and they can be used as initialization for automated coronary lumen seg-
mentation and plaque quantification (see Chapter 1).

In this work we developed and evaluated a semi-automatic minimal cost path
method for coronary centerline extraction from CTA data. The method is evaluated
using two different cost functions. The first cost function is based on a frequently
used vesselness measure and intensity information, and the second is a recently
proposed cost function based on region statistics. User interaction is minimized to
one or two mouse clicks distally in the coronary artery. The starting point for the
minimum cost path search is automatically determined using a newly developed
method that finds a point in the center of the aorta in one of the axial slices. This
step ensures that all computationally expensive parts of the algorithm can be pre-
computed.

The performance of the aorta localization procedure was demonstrated by a
success rate of 100% in 75 images. Both the extraction capability (overlap) and ac-
curacy of centerline extraction was quantitatively evaluated on 48 coronary arteries
in 12 images by comparing extracted centerlines with a manually annotated refer-
ence standard. The method was able to extract 88% and 47% of the vessel center-
lines correctly using the vesselness/intensity cost function and region statistics cost
function, respectively. For only the proximal part of the vessels these values were
97% and 86%, respectively (see Figures 8.1 and 8.2). Accuracy of centerline extrac-
tion, defined as the average distance from correctly automatically extracted parts of
the centerline to the reference standard, was 0.64 mm for the vesselness/intensity
and 0.51 mm for the region statistics cost function. The interobserver variability was
99% for the overlap measure and 0.42 mm for the accuracy measure. Qualitative
evaluation using the best performing cost function resulted in successful centerline
extraction for 233 out of the 252 coronaries (92%) in 63 additional CTA images.

In conclusion, the presented results, in combination with minimal user inter-
action and low computation time, show that minimum cost path approaches can
effectively be applied as a preprocessing step for subsequent analysis of coronary
artery disease.
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Figure 8.1 (see page 151 for a color-version): Examples of successfully extracted coronary

artery centerlines using the vesselness/intensity cost function. The first column shows the refer-

ence standard light gray tubes and the automatically extracted centerlines. The other columns

show the automatically extracted centerlines projected onto CPR images based on the reference

standard centerline. The greyscale coding of the extracted centerline indicates the distance from

the automatically extracted centerline to the reference standard. Arrows in the CPR images in-

dicate: 1) Successfully crossed low contrast region caused by extreme pathology, 2) decreased

extraction accuracy at a location where the radius of the vessel is relatively large.
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8.2 Fully automatic cardiac chamber segmentation

H.A. Kirisli, M. Schaap, S. Klein, S.L. Papadopoulou, M. Bonardi, C.H. Chen, A.C.
Weustink, N.R. Mollet, E.J. Vonken, R.J. van der Geest, T. van Walsum, W.J. Niessen
Evaluation of a multi-atlas based method 1 for segmentation of cardiac CTA data: a large-
scale, multicenter and multivendor study, Medical Physics, 2010.

Computed tomography angiography (CTA) is increasingly being used for the
diagnosis of coronary artery disease (CAD). Whereas CTA is not commonly used
for the assessment of ventricular and atrial function, this information could poten-
tially improve its diagnostic value. Because the extraction of ventricular and atrial
functional information, such as stroke volume and ejection fraction, requires accu-
rate delineation of cardiac chambers, objective and accurate techniques are neces-
sary for cardiac chamber segmentation.

In this work, we presented and evaluated a fully automatic method for segment-
ing the whole heart (i.e. the outer surface of the pericardium) and cardiac chambers
from CTA datasets. The method uses a multi-atlas based approach, in which eight
manually labeled atlas images are registered to a cardiac CTA scan, followed by a
per voxel majority voting procedure, to obtain a cardiac segmentation. See Figure
8.3 for examples of the resulting segmentations.

We evaluated our method on a multicenter/multivendor database, consisting
of: 1) a set of 1380 Siemens scans, from 795 patients, and 2) a set of 60 multivendor
scans (Siemens, Philips and GE) from different patients, acquired in 6 different in-
stitutions worldwide. A leave-one-out 3D quantitative validation was carried out
on the eight atlas images, resulting in a mean segmentation error of 0.94 ± 1.12
mm and an average Dice coefficient of 0.93. A 2D quantitative evaluation was per-
formed on the 60 multivendor datasets. Here, a mean segmentation error of 1.26 ±
1.25 mm and an average Dice coefficient of 0.91 were measured. In addition to this
quantitative evaluation, a large scale 2-D and 3-D qualitative evaluation was per-
formed on 1380 images. Experts evaluated that 49% of the 1380 image were very
accurately segmented (< 1 mm error) and that 29% were accurate (error between 1
and 3 mm), which confirms the robustness of the method (see Figure 8.4).

In conclusion, a fully automatic method for whole heart and cardiac chamber
segmentation was evaluated, using a multicenter/multivendor CTA database. By
successfully applying the method to 1420 multicenter/multivendor datasets we
demonstrated that automatic segmentation method could be used to replace man-
ual outlining by experts.
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Figure 8.3 (see page 152 for a color-version): Fully automatic segmentation results from three

patients out of the 1380 CTA datasets. Axial view (top), coronal view (middle) and sagittal view

(bottom). Segmentations: epicardium left ventricle (pink), endocaridum left ventricle (purple), right

ventricle (blue), left atrium (green), right atrium (yellow) and aorta (red).

Figure 8.4: Results of the large-scale qualitative evaluation study using 1380 CTA images. Show-

ing side-by-side the results for a 5-point expert qualitative grade classification for 7 cardiac struc-

tures. Grade 1: Very accurate: Deviation up to 1 mm, Grade 2: Most regions accurate: 1-2 regions

may deviate up to 3mm, Grade 3: Most regions accurate: 1 region may deviate up to 1cm or >2 re-

gions may deviate up to 3mm, Grade 4: A significant region (up to 50%) has not been segmented

or has been incorrectly segmented, Grade 5: Segmentation failed.
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8.3 Semi automatic carotid artery segmentation

R. Manniesing, M. Schaap, S. Rozie, K. Hameeteman, D. Vukadinovic, A. van der
Lugt and W.J. Niessen
Robust CTA Lumen Segmentation of the Atherosclerotic Carotid Artery Bifurcation in a
Large Patient Population, Medical Image Analysis, 2010.

The carotid arteries are responsible for blood supply to the head and neck. They
bifurcate in the neck into the internal and external, which respectively supply blood
to the brain and other parts of the head and neck. A widely-used modality for diag-
nosis of atherosclerosis in the carotid artery is computed tomography angiography
(CTA). Clinical, longitudinal and epidemiological studies on the atherosclerotic bi-
furcation, imaged using CTA, often require a robust lumen segmentation method.

In this work we proposed and evaluated a semi-automatic method for lumen
segmentation of the carotid bifurcation in CTA. First, the central vessel axis is ob-
tained using path tracking between three user-defined points. Second, starting from
this path, a segmentation is automatically obtained using a level set. The cost and
speed functions for path tracking and segmentation make use of intensity and ho-
mogeneity slice-based image features. The method is validated on a large data set
of 234 carotid bifurcations of 129 ischemic stroke patients with atherosclerotic dis-
ease. The results are compared to manually obtained lumen segmentations. Param-
eter optimization is carried out on a subset of 24 representative carotid bifurcations.
With the optimized parameter settings the method successfully tracked the central
vessel paths in 201 of the remaining 204 bifurcations (99%) which were not part of
the training set.

Comparison with manually drawn segmentations shows that the average over-
lap between the semi-automatic segmentations and manual segmentation is simi-
lar to the inter-observer variability (92% vs. 87%) and the intra-observer variability
(94% vs. 94%). Therefore the method has potential to replace the manual procedure
of lumen segmentation of the atherosclerotic bifurcation in CTA. See Figures 8.5
and 8.6 for examples of segmentation obtained with the proposed method.

In conclusion, we have presented a semi-automatic lumen segmentation method
that has potential to replace manual segmentation of the lumen of atherosclerotic
carotid bifurcations in CTA.
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Figure 8.5: Three-dimensional visualization of carotid lumen segmentations of the carotid bifur-

cation from 24 CTA images.

Figure 8.6 (see page 152 for a color-version): Right: Representative examples of the segmen-

tation results obtained by the proposed method in case of the presence of severe calcified and

non-calcified (soft) plaque (rows 1 to 3) and stenosis (bottom row).
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8.4 Dual-energy bone removal

M. van Straten, M. Schaap, M.L. Dijkshoorn, M.J. Greuter, A. van der Lugt, G.P.
Krestin, W.J. Niessen
Automated Bone Removal in CT Angiography: Additional Value of Tin Filtration in Dual-
Energy Based Methods and Comparison to Single Energy Methods, Submitted, 2010.

Recently, dual-energy CT has been presented in clinical practice using a dual-
source CT scanner. Dual-source dual-energy CT uses simultaneously acquires data
with two X-ray sources operating at different x-ray tube voltages, i.e. energies. Be-
cause the amount of X-ray attenuation (and thereby the CT intensity) is a function
of the density and the effective atomic number of a specific tissue, but also of the
effective energy of the X-ray signal, this technique is expected to allow better differ-
entiation between iodine and bone, or calcified plaque. Iodine is commonly used to
highlight the vascular lumen. Lack of differentiation between iodinated blood and
calcified plaques can cause problems in the assessment of the lumen morphology.

In this work we focused on the performance of different methods for bone re-
moval in CTA images and we investigated the added value of tin-filtration, a re-
cent development in dual-energy CT. In a phantom study, we investigated dual-
energy based masking and subtraction methods for bone removal and compared
these methods with single-energy masking and subtraction methods that use an
additional, non-enhanced, CT scan (dual-scan based methods). The bone removal
methods were applied to CT scans of an anthropomorphic thorax phantom con-
taining parts which mimic vessels of various diameters in direct contact with bone
(see Figure 8.7). Image quality was quantified by the contrast-to-noise ratio (CNR)
normalized to the dose (CNRD). At locations where vessels touch bone, the quality
of the bone removal and the vessel preservation were visually assessed as well.

All methods removed the bone successfully. Single-energy based methods had
a higher CNRD value than the corresponding dual-energy based methods and
CNRD values were higher for the masking based methods than for the subtrac-
tion based methods. For the subtraction based dual-energy method (see Figure 8.8),
tin-filtration improved the CNRD value with approximately 50%. Compared to the
dual-scan based methods, the dual-energy based methods have the advantage that
all data is acquired within a single scan. Therefore there is no need for image reg-
istration, and the method might be implemented more easily in clinical practice,
especially if applied to the imaging of coronary arteries.

We concluded that, in general, dual-scan based methods that use a single, op-
timized, tube voltage for CTA, have a higher CNR than the dual-energy based ap-
proaches at the same dose level. Tin-filtration improves the ability to differentiate
between iodine and bone for the dual-energy based masking method. In clinical
practice, the advantages of the dual-energy masking method might outweigh its
disadvantage of a slightly higher dose penalty compared to the conventional dual-
scan masking method.
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Figure 8.7: Anthropomorphic thorax phantom with homemade insert for the evaluation of bone

removal techniques. The insert contains six cylinders which can be filled with iodinated contrast

agents and bony structures.

(a) (b)

Figure 8.8: An example of enhanced contrast between iodine and calcium with dual-energy CT.

(a) Image before bone removal (image intensity remapping window width/center [W/C] 510/330

HU). Image after bone removal by dual-energy subtraction (W/C 510/-930 HU).
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C. Bauer, H. Bogunović, C. Castro, X. Deng, et al. Standardized evaluation methodol-
ogy and reference database for evaluating coronary artery centerline extraction algo-
rithms. Medical Image Analysis, 13(5):701–714, 2009.

[143] M. Schaap, L. Neefjes, C. Metz, A. van der Giessen, A. Weustink, N. Mollet, J. Wentzel,
T. van Walsum, and W. Niessen. Coronary Lumen Segmentation using Graph Cuts
and Robust Kernel Regression. In Proceedings of IPMI, pages 528–539, 2009.

[144] M. Schaap, I. Smal, C. Metz, T. van Walsum, and W. Niessen. Bayesian Tracking of
Elongated Structures in 3D Images. In Proceedings of IPMI, volume 4584, pages 74–85,
2007.

[145] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47:7–42, 2002.

[146] T. Schepis, O. Gaemperli, P. Koepfli, I. Valenta, K. Strobel, A. Brunner, S. Leschka,
L. Desbiolles, L. Husmann, H. Alkadhi, and P. A. Kaufmann. Comparison of 64-slice
CT with gated SPECT for evaluation of left ventricular function. Journal of Nuclear
Medicine, 47(8):1288–1294, 2006.

[147] A. Schilham, B. van Ginneken, H. Gietema, and M. Prokop. Local Noise Weighted
Filtering for Emphysema Scoring of Low-dose CT Images. IEEE Transactions on Medical
Imaging, 25:451–463, 2006.

[148] S. Schroeder, A. F. Kopp, A. Baumbach, C. Meisner, A. Kuettner, C. Georg, B. Ohne-
sorge, C. Herdeg, C. D. Claussen, and K. R. Karsch. Noninvasive detection and evalua-
tion of atherosclerotic coronary plaques with multislice computed tomography. Journal
of the American College of Cardiology, 37(5):1430–1435, 2001.

[149] B. Settles. Active Learning Literature Survey. Machine Learning, 15(2):201–221, 1994.

[150] H. Shim, I. D. Yun, K. M. Lee, and S. U. Lee. Partition-Based Extraction of Cerebral
Arteries from CT Angiography with Emphasis on Adaptive Tracking. In Proceedings
of IPMI, volume 3565 of LNCS, pages 357–368, 2005.

[151] N. L. Smith, J. F. Felix, A. C. Morrison, S. Demissie, N. L. Glazer, L. R. Loehr, L. A. Cup-
ples, A. Dehghan, T. Lumley, W. D. Rosamond, W. Lieb, F. Rivadeneira, J. C. Bis, A. R.



142 References

Folsom, E. Benjamin, Y. S. Aulchenko, T. Haritunians, D. Couper, J. Murabito, Y. A.
Wang, B. H. Stricker, J. S. Gottdiener, P. P. Chang, T. J. Wang, K. M. Rice, A. Hofman,
S. R. Heckbert, E. R. Fox, C. J. O’Donnell, A. G. Uitterlinden, J. I. Rotter, J. T. Willer-
son, D. Levy, C. M. van Duijn, B. M. Psaty, J. C. M. Witteman, E. Boerwinkle, and R. S.
Vasan. Association of genome-wide variation with the risk of incident heart failure
in adults of European and African ancestry: a prospective meta-analysis from the co-
horts for heart and aging research in genomic epidemiology (CHARGE) consortium.
Circulation: Cardiovascular Genetics, 3(3):256–266, 2010.

[152] M. Sonka, M. D. Winniford, and S. M. Collins. Robust simultaneous detection of coro-
nary borders in complex images. IEEE Transactions on Medical Imaging, 14(1):151–161,
1995.

[153] J. Staal, M. Abràmoff, M. Niemeijer, M. Viergever, and B. van Ginneken. Ridge-based
vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging,
23(4):501–509, 2004.

[154] S. Suryanarayanan, R. Mullick, Y. Mallya, V. Kamath, and N. Nagaraj. Automatic Parti-
tioning of Head CTA for enabling Segmentation. In Proceedings of SPIE Medical Imaging,
volume 5370, pages 410–419, 2004.

[155] A. Szymczak. Vessel Tracking by Connecting the Dots. The Midas Journal, 2008.

[156] A. Szymczak, A. Stillman, A. Tannenbaum, and K. Mischaikow. Coronary vessel trees
from 3D imagery: a topological approach. Medical Image Analysis, 10(4):548–559, 2006.

[157] H. Tek, M. A. Gulsun, S. Laguitton, L. Grady, D. Lesage, and G. Funka-Lea. Automatic
Coronary Tree Modeling. The Midas Journal, 2008.

[158] N. A. Thacker, F. J. Aherne, and P. I. Rockett. The Bhattacharyya Metric as an Absolute
Similarity Measure for Frequency Coded Data. In Proceedings of TIPR, volume 34,
pages 363–368, 1998.

[159] S. Tu, Z. Huang, G. Koning, K. Cui, and J. H. C. Reiber. A novel three-dimensional
quantitative coronary angiography system: In-vivo comparison with intravascular ul-
trasound for assessing arterial segment length. Catheterization and Cardiovascular Inter-
ventions, 76(2):291–298, 2010.

[160] J. Tyrrell, E. di Tomaso, D. Fuja, R. Tong, K. Kozak, R. Jain, and B. Roysam. Robust 3-D
modeling of vasculature imagery using superellipsoids. IEEE Transactions on Medical
Imaging, 26(2):223–237, 2007.

[161] R. S. Uppoor, P. Mummaneni, E. Cooper, H. H. Pien, A. G. Sorensen, J. Collins, M. U.
Mehta, and S. U. Yasuda. The use of imaging in the early development of neurophar-
macological drugs: a survey of approved NDAs. Clinical Pharmacology and Therapeutics,
84(1):69–74, 2008.

[162] B. van Beers, C. Cuenod, L. Marti-Bonmati, C. Matos, W. Niessen, and A. Padhani.
White paper on imaging biomarkers. White paper of the European Society of Radiology
(ESR), 2010.

[163] R. E. van Gelder, H. W. Venema, J. Florie, C. Y. Nio, I. W. O. Serlie, M. P. Schutter, J. C.
van Rijn, F. M. Vos, A. S. Glas, P. M. M. Bossuyt, J. F. W. Bartelsman, J. S. Laméris, and



References 143

J. Stoker. CT colonography: feasibility of substantial dose reduction–comparison of
medium to very low doses in identical patients. Radiology, 232(2):611–20, 2004.

[164] B. van Ginneken, T. Heimann, and M. Styner. 3D Segmentation in the Clinic: A Grand
Challenge. In Proceedings of 3D Segmentation in the Clinic: A Grand Challenge, MICCAI
workshop, pages 7–15, 2007.

[165] T. van Walsum, M. Schaap, C. Metz, A. van der Giessen, and W. Niessen. Averaging
Center Lines: Mean Shift on Paths. In Proceedings of MICCAI, 2008.

[166] F. Voci, S. Eiho, N. Sugimote, and H. Seikguchi. Estimating the gradient threshold in
the Perona-Malik equation. IEEE Signal Processing magazine.

[167] C. Wang and O. Smedby. Coronary Artery Segmentation and Skeletonization Based
on Competing Fuzzy Connectedness Tree. In Proceedings of MICCAI, volume 4791 of
Lecture Notes in Computer Science, pages 311–318, 2007.

[168] C. Wang and O. Smedby. An Automatic Seeding Method For Coronary Artery Seg-
mentation and Skeletonization in CTA. The Midas Journal. The Midas Journal, 2008.

[169] C. Wang and O. Smedby. Integrating automatic and interactive methods for coronary
artery segmentation: let the PACS workstation think ahead. International Journal of
Computer Assisted Radiology and Surgery, 5(3):275–285, 2010.

[170] J. C. Wang, S.-L. T. Normand, L. Mauri, and R. E. Kuntz. Coronary artery spatial dis-
tribution of acute myocardial infarction occlusions. Circulation, 110(3):278–284, 2004.

[171] W. Wang, B. Jüttler, D. Zheng, and Y. Liu. Computation of rotation minimizing frames.
ACM Transactions on Graphics, 27(1):1–18, 2008.

[172] S. Warfield, K. Zou, and W. Wells. Simultaneous truth and performance level estima-
tion (STAPLE): an algorithm for the validation of image segmentation. IEEE Transac-
tions on Medical Imaging, 23(7):903–921, 2004.

[173] J. Weickert. Anisotropic diffusion in image processing,. PhD thesis, Dept. of Mathematics,
University of Kaiserslautern, Germany, 1996.

[174] J. Weickert. A Review of Nonlinear Diffusion Filtering. In Proceedings of Scale-Space
Theory in Computer Vision, volume 1252, pages 3–28, 1997.

[175] J. Weickert, B. Romeny, and M. Viergever. Efficient and Reliable Schemes for Nonlinear
Diffusion Filtering. IEEE Transactions on Image Processing, 7(3):398–410, 1998.

[176] E. W. Weisstein. Rotation Matrix. From MathWorld–A Wolfram Web Resource.

[177] S. Wesarg and E. Firle. Segmentation of Vessels: The Corkscrew Algorithm. In Proceed-
ings of SPIE, Medical Imaging, volume 9, page 10, 2004.

[178] S. Wesarg, M. F. Khan, and E. A. Firle. Localizing calcifications in cardiac CT data sets
using a new vessel segmentation approach. Journal of Digital Imaging, 19(3):249–257,
2006.

[179] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. Maurer, R. M. Kessler, R. J.
Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes, P. Suetens, D. Vandermeulen,
P. A. van den Elsen, S. Napel, T. S. Sumanaweera, B. Harkness, P. F. Hemler, D. L.



144 References

Hill, D. J. Hawkes, C. Studholme, J. B. Maintz, M. A. Viergever, G. Malandain, and
R. P. Woods. Comparison and evaluation of retrospective intermodality brain image
registration techniques. Journal of Computer Assisted Tomography, 21(4):554–566, 1997.

[180] A. C. Weustink, N. R. Mollet, F. Pugliese, W. B. Meijboom, K. Nieman, M. H.
Heijenbrok-Kal, T. G. Flohr, L. A. E. Neefjes, F. Cademartiri, P. J. de Feyter, and G. P.
Krestin. Optimal electrocardiographic pulsing windows and heart rate: effect on im-
age quality and radiation exposure at dual-source coronary CT angiography. Radiol-
ogy, 248(3):792–798, 2008.

[181] O. Wink, W. Niessen, B. Verdonck, and M. Viergever. Vessel axis determination using
wave front propagation analysis. In Proceedings of MICCAI, pages 845–853, 2001.

[182] World Health Organization. The world health report 2004 - changing history. Annex
Table 2: Deaths by cause, sex and mortality stratum in WHO regions, estimates for
2002., 2004.

[183] World Health Organization. The top ten causes of death - Fact sheet 317, 2009.

[184] C. Xu and J. L. Prince. Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on
Image Processing, 7(3):359–369, 1998.

[185] G. Yang, A. Bousse, C. Toumoulin, and H. Shu. A multiscale tracking algorithm for the
coronary extraction in MSCT angiography. In Proceedings of EMBS, pages 3066–3069,
2006.

[186] Y. Yang, A. Tannenbaum, D. Giddens, and A. Stillman. Automatic Segmentation of
Coronary Arteries Using Bayesian Driven Implicit Surfaces. In Proceedings of ISBI,
pages 189–192, 2007.

[187] Y. Yang, L. Zhu, S. Haker, A. R. Tannenbaum, and D. P. Giddens. Harmonic skeleton
guided evaluation of stenoses in human coronary arteries. In Proceedings of MICCAI,
volume 8, pages 490–497, 2005.

[188] S. Zambal, J. Hladuvka, A. Kanitsar, and K. Bühler. Shape and Appearance Models for
Automatic Coronary Artery Tracking. The Midas Journal, 2008.

[189] P. Zanzonico, L. N. Rothenberg, and H. W. Strauss. Radiation exposure of computed
tomography and direct intracoronary angiography: risk has its reward. Journal of the
American College of Cardiology, 47(9):1846–1849, 2006.

[190] Y. Zhang, K. Chen, and S. Wong. 3D Interactive Centerline Extraction. The Midas
Journal, 2008.

[191] S. Zhou and D. Comaniciu. Shape regression machine. In Proceedings of IPMI, pages
13–25, 2007.

[192] H. Zhu, Z. Ding, R. N. Piana, T. R. Gehrig, and M. H. Friedman. Cataloguing the ge-
ometry of the human coronary arteries: A potential tool for predicting risk of coronary
artery disease. International Journal of Cardiology, 2008.

[193] F. Zhuge, G. Rubin, S. Sun, and S. Napel. An abdominal aortic aneurysm segmentation
method: level set with region and statistical information. Medical physics, 33:1440, 2006.



Color image section 145

Color image section

Chapter 2 & 3

Figure 2.2 (see page 20): An example of one of the color-coded curved planar reformatted

images used to detect possible annotation errors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

M
a
n
u
a
l 

a
n
n
o
ta

ti
o
n
 (

R
M

S
D

/r
)

Automatic method (RMSD/r)

MD=1.5 voxels
MD=1.0 voxels
MD=2.0 voxels
MD=0.5 voxels

Figure 3.2 (see page 52): Scatter plot demonstrating the relation between the accuracy, mea-

sured in RMSD/r, of the manually and automatically tracked tube centerlines. The different sym-

bols denote different radii (♦ = 2.5, � = 5.0, © = 7.5, △ = 10.0, all in voxels), and different colors

denote different noise levels.
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(a) Fully automatic coronary artery centerline
extraction methods
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(b) Semi automatic coronary artery centerline
extraction methods
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(c) Interactive coronary artery centerline extrac-
tion methods

Figure 2.7 (see page 32): The algorithm performance of each method with respect to the dis-

tance from the ostium averaged over all 96 evaluated vessels over the first 175ṁm (only 10% of

the vessels were longer than 175ṁm). Overlap: the fraction of points on the reference standard

marked as true positive. Accuracy: the average distance to the centerline if the point is marked

true positive. Each of the three graphs shows in light-gray the results of all the thirteen evaluated

methods and in color the results of the respective algorithm category. The graphs also show in

black the average accuracy and overlap for all thirteen evaluated methods.
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Chapter 4
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Figure 4.1 (see page 60): (a) A 3D rendering of a cardiac CTA dataset with in yellow a manually

annotated Left Anterior Descending (LAD) Coronary Artery. (b) A graph of the CT intensities Ix

along the centerline of the LAD, a graph of the intensities after Gaussian kernel regression Îx and

the expected background intensity Ibg (see section 4.3.1).

Figure 4.5 (see page 67): A 3D example of a coronary segmentation color-coded with the dis-

tance to the reference standard. Red corresponds to the segmentation being locally 0.5 mm larger

than the reference standard, green corresponds to a perfect fit, and blue corresponds to a 0.5 mm

under-segmentation.
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Chapter 5

Figure 5.1 (see page 72): Left: a 3-dimensional visualization of a cardiac CTA image with in red

a coronary artery. Midle: four circular images sampled cross-sectionally to the coronary artery

(sample radius=7.5 mm and sample distance=0.5 mm.) overlaid with the position of an initializa-

tion centerline and manually annotated coronary lumen contours. Right: The intensity sample

pattern, as described in Section 5.2.1.

Figure 5.2 (see page 75): A visualization of the intensity samples Ix and a local shape Sx.

Top left: a 3D surface of the lumen, the initialization centerline, and a tubular image patch Ix

(see Section 5.2.3.2). Top right: the surface, initialization centerline, and a local shape Sx (see

Section 5.2.2). Bottom: Ix overlaid with Sx and the rays (Equation 5.3) used for calculating the

landmarks. The numbers indicate the cross-sectional landmark index d for D = 32. In the coarse

segmentation Ix is used to estimate Sx with linear regression. During shape refinement all cross-

sectional images of the vessel are used to estimate all cross-sectional shapes.
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dj
dj

bj

Figure 5.7 (see page 80): A visualization of a boundary profile and displacement vector. Left: a

cross-sectional image with the reference standard in solid orange, ridge regression result in black

and white, the boundary profile bj in transparent gray, and the displacement vector dj in purple.

Middle and right: zoomed-in versions of the left image.

Figure 5.9 (see page 85): A segmentation of the lumen of a right coronary artery showing a

3D mesh of the automatic segmentation, the initialization curve in white, and 8 selected cross-

sections with results of automatic segmentation in red and reference standard in blue.
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Chapter 6

(a) (b)

Figure 6.2 (see page 104): A section of a volume rendering of (a) gated and (b) ungated AAA CTA

images. Note the difference in quality between, for example, the visualization of small vessels.

(a) (b) (c)

Figure 6.3 (see page 109): (a) 3D visualization of a gated dataset. (b) Visualization after EED

filtering. (c) Visualization after SCEED filtering. Note the improved visibility of the small vessels

in the SCEED visualization in comparison with the EED visualization. The unimproved structural

sharpness in the EED and SCEED scan can be seen in the region of the stent, located in the

bifurcation of the abdominal aortic artery in the center of the image.
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Chapter 8

Figure 8.1 (see page 123): Examples of successfully extracted coronary artery centerlines using

the vesselness/intensity cost function. The first column shows the reference standard light gray

tubes and the automatically extracted centerlines. The other columns show the automatically

extracted centerlines projected onto CPR images based on the reference standard centerline.

The greyscale coding of the extracted centerline indicates the distance from the automatically

extracted centerline to the reference standard. Arrows in the CPR images indicate: 1) Successfully

crossed low contrast region caused by extreme pathology, 2) decreased extraction accuracy at a

location where the radius of the vessel is relatively large.
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Figure 8.3 (see page 125): Fully automatic segmentation results from three patients out of the

1380 CTA datasets. Axial view (top), coronal view (middle) and sagittal view (bottom). Segmen-

tations: epicardium left ventricle (pink), endocaridum left ventricle (purple), right ventricle (blue),

left atrium (green), right atrium (yellow) and aorta (red).

Figure 8.6 (see page 127): Right: Representative examples of the segmentation results obtained

by the proposed method in case of the presence of severe calcified and non-calcified (soft) plaque

(rows 1 to 3) and stenosis (bottom row).
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Samenvatting voor niet-ingewijden

Introductie

De kransslagaders voorzien ons hart van bloed. Ziekte in deze bloedvaten kan
daarom ernstige problemen veroorzaken. Op dit moment is kransslagaderziekte,
ook wel coronaire atherosclerose genoemd, één van de belangrijkste doodsoorza-
ken. Wereldwijd sterven ongeveer 1 op de 5 mensen aan deze aandoening.

Dit proefschrift gaat over de ontwikkeling van beeldverwerkingsmethoden die
gebruikt kunnen worden om snel en nauwkeurig atherosclerose te diagnostiseren
op basis van medische beelden. Het grootste deel van dit proefschrift staat in het
teken van automatische kwantificatie technieken met computer tomografie angi-
ografie (CTA), een beeldvormende techniek voor 3-dimensionaal bloedvatonder-
zoek. Daarnaast is er aandacht voor verbeterde visualisatie van CTA-beelden. In
deze samenvatting beschrijf ik, na een korte introductie, de bijdragen en uitkom-
sten van de verschillende hoofdstukken.

Atherosclerose van de kransslagaders

Gezond bloedvat

Ziek bloedvat plaque
Cross-sectie

Lumen Plaque

Figuur 1: Schematische illustra-

tie van atherosclerose. Boven:

een gezond bloedvat. Onder: een

bloedvat na plaque-ophoping.

De wand van de kransslagaders bestaat uit drie la-
gen; een elastische buitenlaag, een gespierde tus-
senlaag en een dunne binnenwand. Ziekte aan de
kransslagaders ontstaat door een chronische ontste-
king tussen de binnen- en buitenwand. Door deze
ontsteking hopen vetcellen zich op in de vaatwand.
In een later stadium van de ziekte hoopt ook cal-
cium zich op; daarom wordt coronaire atheroscle-
rose ook wel aderverkalking genoemd. Na verloop
van tijd kan de ophoping van plaque (vet en cal-
cium) resulteren in een vernauwing van het bloed-
vat (zie figuur 1) en daarmee vermindert bloed-
voorziening van het hart. Dit kan, met name bij
inspanning, een drukkend en zwaar gevoel in het
midden van de borst veroorzaken. Wanneer het
bloedvat zover verstopt raakt dat het achterlig-
gende hartspierweefsel niet meer van voldoende
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bloed wordt voorzien, kan dit resulteren in een hartinfarct (het afsterven van een
deel van de hartspier). Het is ook mogelijk dat plaque zich ophoopt zonder dat het
vat problematisch vernauwt. Als bij zo’n plaque-ophoping de binnenwand scheurt
komt er ineens plaque in het bloedvat en dit resulteert vaak in een complete ver-
stopping van het bloedvat en in een acuut hartinfarct.

Computer Tomografie Angiografie (CTA)

Figuur 2: Een CT-scanner

(SOMATOM Definition Flash, Siemens

Healthcare).

Computer Tomografie Angiografie (CTA) is op
dit moment de meest nauwkeurige minimaal-
invasieve (geen ingreep vereist) beeldvor-
mende techniek voor de diagnose van coronaire
atherosclerose. Het is met deze techniek moge-
lijk om te meten hoe vernauwd een kransslag-
ader is en wat de samenstelling van de plaque
is. Na injectie van contrastvloeistof bij een pa-
tiënt maakt een CT-scanner vanuit vele hoeken
rond het lichaam röntgenfoto’s en combineert
die vervolgens met een geavanceerd computer-
programma tot een 3-dimensionaal beeld. Fi-
guur 2 toont een CT-scanner en figuur 3 een
voorbeeld van een CTA-beeld van het hart.

Figuur 3: Links: een CTA-beeld van het hart. De pijl wijst naar een kransslagader met plaque.

Rechts: een uitvergrote (en gedraaide) versie van de kransslagader in het linker beeld.
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Kwantitatieve beeldanalyse van

CTA-beelden

Beeldanalyse van CTA kan gebruikt worden in de diagnose van coronaire athero-
sclerose door de verschijningsvorm van atherosclerose (bijvoorbeeld de mate van
vaatvernauwing en de hoeveelheid plaque) te kwantificeren. Het grote voordeel
van automatische kwantitatieve beeldanalyse, in vergelijking met manuele kwan-
tificatie, is dat een computermethode altijd hetzelfde rapporteert, niet vermoeid
raakt, en mogelijk zelfs nauwkeuriger kan zijn. Hierdoor kan de diagnose snel-
ler en goedkoper worden. Daarnaast is het mogelijk om grote hoeveelheden data
snel te analyseren. Hierdoor kunnen bijvoorbeeld relaties gevonden worden tussen
bestaande risicofactoren (zoals roken en overgewicht) en coronaire atherosclerose,
maar het is ook mogelijk om efficiënt onderzoek te doen naar nieuwe risicofactoren.

In dit proefschrift wordt kwantitatieve beeldanalyse van CTA-scans van het hart
in twee stappen gedaan: eerst analyseert een computerprogramma op een grove
manier de CTA-scan en bepaalt het de positie van de bloedvaten. Daarna volgt
een meer gedetailleerde stap waarin het programma de beeldinformatie rondom
de bloedvaten gebruikt om exacte informatie over de bloedvaten te verkrijgen en
deze informatie uit te drukken in getallen. Beide stappen zijn complexe taken voor
een computer omdat cardiale CTA-beelden door de beweging van het hart en de
beperkte hoeveelheid straling die toegediend wordt enigszins uitgesmeerd, ruizig
en onscherp zijn. Daarnaast zijn de kransslagaders zeer klein (maar ongeveer 2
tot ongeveer 20 beeldpunten groot) en cardiale CTA-beelden bevatten soms opna-
mefouten, zoals verschoven beeldinformatie (door een onregelmatige hartslag) en
strepen door het beeld (door b.v. pacemakers). Ook wordt er een hoge nauwkeu-
righeid verwacht van computermethodes. Als twee radiologen de kransslagaders
intekenen variëren de intekeningen gemiddeld gezien 0,2 mm (ongeveer een half
CTA-beeldpunt) en dat is ook de nauwkeurigheid die verwacht wordt van compu-
termethoden.

Evaluatie van vaatasextractietechnieken

In de grove analyse stap van CTA-beelden worden lijnen gevonden door het mid-
den van de bloedvaten in het beeld; dit wordt ook wel vaatasextractie genoemd.
In 2006 waren er ongeveer 40 verschillende methoden voor het vinden van deze
vaatassen in CTA-beelden beschreven in de literatuur en daarnaast bestonden er
verschillende commerciële programma’s voor deze taak. Sommige methoden wer-
den als superieur aangeprezen en van andere had men het vermoeden dat ze niet
goed werkten, maar niemand wist precies welke methode het beste was en hoe
goed die methodes precies werken.

Daarom hebben wij een gestandaardiseerde evaluatie methode voor coronaire
vaatasextractietechnieken geïntroduceerd. Hoofdstuk 2 beschrijft deze ontwikke-
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(a) (b)

Figuur 4: Links: een visualisatie van een gevonden vaatas door een kransslagader met een

complete verstopping. Rechts: een visualisatie van een gevonden vaatas door een halsslagader.

ling. We hebben 32 CTA datasets van het hart (en dus de kransslagaders) verza-
meld en deze op een website (http://coronary.bigr.nl) openbaar beschikbaar ge-
steld. Ook hebben we representatieve evaluatiematen ontwikkeld. Ontwikkelaars
van vaatasextractie methoden kunnen de beelden downloaden, hun computerpro-
gramma op de beelden uitvoeren en de resultaten terugsturen naar de website.
Deze extractieresultaten worden dan geanalyseerd en evaluatieparameters wor-
den teruggestuurd naar de ontwikkelaar. De gestandaardiseerde resultaten kun-
nen geïnspecteerd worden op de website en ze kunnen opgenomen worden in een
wetenschappelijke publicatie. Op deze manier kan objectief beoordeeld worden op
welk aspect welke methode goed (of slecht) werkt.

Op dit moment is onze evaluatiemethode de standaard voor de evaluatie van
nieuwe coronaire vaatasextractiemethoden. In nieuwe publicaties wordt nu altijd
ons raamwerk gebruikt en er zijn al ongeveer 20 publicaties verschenen met resul-
taten van onze evaluatiemethode. Dit heeft ervoor gezorgd dat nu alle vaatasex-
tractiemethoden goed met elkaar te vergelijken zijn.

Probabilistische vaatasextractietechniek

In hoofdstuk 3 presenteren we een nieuwe generieke vaatasextractie methode. De
voornaamste kracht van de methode is dat zij probabilistisch werkt. Dat betekent
dat tijdens het vinden van de optimale vaatas met vele mogelijke vaatassen reke-
ning gehouden wordt. Dit in tegenstelling tot andere methoden die maar met één
vaatas of een beperkte set rekening houden. De nieuwe methode voorkomt op een
efficiënte manier dat een lokale opnamefout, vaatverstopping of ruis het vinden
van vaatassen verstoort. Daarnaast kan de methode zeer gemakkelijk aangepast
worden voor andere bloedvaten en andere beeldvormende technieken. We hebben
de methode met succes toegepast op synthetische computerbeelden, CTA-beelden
van de halsslagaders en CTA-beelden van de kransslagaders. Figuur 4 toont hier-
van twee voorbeelden.
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(a) (b) (c)

Figuur 5: (a) Een gedeelte van een CT-scan met in het midden een kransslagader. (b) Het re-

sultaat na de minimale snede stap. (c) In wit de resulterende vaatholtesegmentatie met daarbij in

zwart de manuele intekening van een expert.

Segmentatietechnieken voor de kransslagadervaatholte

Na de extractie van de vaatassen volgt de tweede stap: de gedetailleerde analyse.
In dit proefschrift hebben we ons gericht op de kwantificatie van de vorm van de
vaatholte (het gebied waar het bloed stroomt) van de kransslagaders. Deze kwanti-
ficatie begint met het uittekenen (segmentatie) van de vaatholte in het CTA-beeld.
Met behulp van de vaatassen uit de eerste stap tekent een computerprogramma au-
tomatisch een oppervlak rond de vaatholte. Met deze uittekening kan het compu-
terprogramma vervolgens de vorm van de vaatholte kwantificeren en bijvoorbeeld
aangeven hoe dik het bloedvat is op een bepaald punt.

Hoofdstuk 4 presenteert een nieuwe techniek voor de segmentatie van de vaat-
holte van de kransslagaders. De techniek combineert twee relatief nieuwe technie-
ken in de medische beeldverwerking; de zogenaamde minimale-snede graafana-
lyse (’graph-cut’) techniek en robuuste kernelregressie. Met de inimale-snede graaf-
analyse techniek kan, op basis van bijvoorbeeld de sterkte van intensiteitsovergan-
gen, een beeld zeer efficiënt in twee gedeeltes verdeeld worden; in ons geval de
beeldpunten die horen bij de kransslagader en die van omliggend weefsel. Daarna
volgt robuuste kernelregressie. Dit is een techniek uit de statistiek die gebruikt kan
worden om mogelijke fouten van de minimale-snedesegmentatie te detecteren en te
verwijderen. De combinatie van deze twee methoden resulteert in een efficiënte en
nauwkeurige segmentatiemethode voor de kransslagadervaatholte. Figuur 5 toont
een illustratie van het segmentatieproces.

In Hoofdstuk 5 presenteren we een tweede aanpak voor de segmentatie van
de kransslagadervaatholte. Deze techniek is, in tegenstelling tot de techniek gepre-
senteerd in hoofdstuk 4, niet regelgebaseerd, maar zelflerend. Met regelgebaseerd
wordt bedoeld dat wij alle keuzes van de software expliciet geprogrammeerd heb-
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Figuur 6 (zie pagina 149 voor een kleurenversie): Een voorbeeld van een 3D segmentatie van

de coronaire vaatholte: een kransslagader en 8 geselecteerde dwarsdoorsnedes met daarop de

automatische segmentatie in rood en een intekening van een expert in blauw.

ben. We hebben de methode in hoofdstuk 4 gemaakt, getest op beelden en daarna
aangepast tot zij optimaal werkte. De methode in hoofdstuk 5, daarentegen, leert
van segmentaties gemaakt door medische experts. De computersoftware analyseert
de beelden en de manuele intekeningen en leert op basis daarvan hoe een krans-
slagader er uit ziet in een CTA-beeld. Deze kennis gebruikt de methode volgens om
de kransslagaders in een nieuw CTA-beeld te segmenteren. Een groot voordeel van
deze methode is dat het, door haar zelflerende karakter, zeer makkelijk toepasbaar
is op andere bloedvaten en beelden van andere beeldvormende technieken.

De methode is geëvalueerd door automatische intekeningen te vergelijken met
intekeningen van experts. Daarnaast hebben we ook automatische kwantificaties
van de (dwarsdoorsnede) oppervlakte van de vaatholte vergeleken met die van
experts. Het bleek dat de methode vaak resultaten oplevert die nauwkeuriger zijn
dan die van experts. In de toekomst kan deze methode daarom gebruikt worden
tijdens de diagnose van coronaire atherosclerose om automatisch en nauwkeurig
de mate van vaatvernauwing te kwantificeren. Figuur 6 toont een voorbeeld van
een vaatholtesegmentatie met deze methode. De omslag van dit proefschrift toont
dezelfde segmentatie met daarbij een aantal kwantificaties van de dwarsdoorsnede
vaatholteoppervlaktes.
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Figuur 7: Links: Een gedeelte van een CTA-scan van een verwijde buikslagader. Rechts: Het-

zelfde gedeelte van de CTA-scan na ruisreductie met de nieuwe methode. De ruis is onderdrukt

en hierdoor zijn randen en kleine details beter zichtbaar.

Geavanceerde visualisatie van CTA-beelden

Naast de kwantificatie van beeldparameters kan beeldverwerking ook gebruikt
worden om de visualisatie van medische beelden te verbeteren. In hoofdstuk 6
wordt een techniek gepresenteerd om de diagnostische kwaliteit van CTA-beelden
te verbeteren door de ruis in deze beelden te onderdrukken. De methode verwijdert
de ruis uit het beeld, terwijl het de diagnostisch belangrijke structuren zo goed mo-
gelijk probeert te behouden. De methode is geëvalueerd op CTA-beelden van de
buikslagader en het bleek beter te werken dan andere veelgebruikte ruisreductie
methoden. Figuur 7 toont een voorbeeld van de resultaten.

Additioneel CTA-beeldverwerkingsonderzoek

Naast het werk wat ik hierboven heb beschreven heb ik ook meegewerkt aan ander
beeldverwerkingsonderzoek met CTA. Hoofdstuk 8 geeft een korte samenvatting
van vier van deze CTA projecten: (i) De ontwikkeling en evaluatie van een speci-
fieke methode om de coronaire vaatassen te vinden in een CTA-beeld van het hart,
(ii) de ontwikkeling en evaluatie van een methode om automatisch alle hartkamers
uit te tekenen in een CTA-beeld van het hart, (iii) onderzoek naar een nieuwe me-
thode om CTA te maken met meerdere röntgenbronnen, en (iv) de ontwikkeling
en evaluatie van een methode om de halsslagaders te segmenteren in CTA-beelden
van de nek.
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