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The familywise Type I error rate is a familiar concept in hypothesis testing, whereas the 

per‑ family Type I error rate is rarely addressed. This article uses Monte Carlo 

simulations and graphics to make a case for the relevance of the per‑ family Type I error 

rate in research practice and pedagogy. 
 
Keywords: Type I error, multiple comparisons, simultaneous inference 

 

Introduction 

The familywise Type I error rate (FWER; Tukey, 1953), which is the probability 

of making at least one Type I error in a family of hypotheses, is a familiar concept 

in quantitative research. Much less frequently addressed is the per-family Type I 

error rate (PFER; Tukey, 1953), which is the number of Type I errors expected to 

occur in a family of hypotheses (in other words, the sum of probabilities of Type I 

error for all the hypotheses in the family). The unpopularity of the PFER may 

stem largely from the fact that it is a stricter standard than the FWER, so 

controlling it can be more costly in statistical power (potentially increasing the 

Type II error rate). Given the tremendous pressure on researchers to find 

statistically significant p-values, any reduction in statistical power is a hard sell. 

However, as noted by a previous article in this journal (Barnette & McLean, 

2005) and by others (Klockars & Hancock, 1994; Ryan, 1959, 1962), it is 

arguable that the PFER is often more relevant than the FWER in social and 

behavioral science research. The argument is essentially as follows: Committing 

multiple Type I errors simultaneously is worse than committing only one, yet 

unlike the PFER, the FWER does not distinguish between making one Type I 
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error in a family and making several Type I errors in a family. Moreover, one 

might reason that because both the maximum FWER and the maximum PFER are 

equal to α when there is only one comparison, both error rates should remain less 

than or equal to α when there are multiple comparisons if Type I error is to be 

considered uninflated. 

Readers may debate the comparative merits of the FWER and the PFER. 

The goal of this article is not to definitively advocate for one standard over the 

other, but rather to point out that although both error rates have merits, the PFER 

is almost universally ignored and may deserve more attention. For example, in 

statistics textbooks for the social and behavioral sciences, there is generally no 

mention of the PFER even when the FWER is addressed (e.g., Goodwin, 2010; 

Hinton, 2004; Howell, 2014; Mertler & Vannatta, 2010; Meyers, Gamst, & 

Guarino, 2006; Sirkin, 2006; Stevens, 2009; Tabachnick & Fidell, 2012; Wetcher-

Hendricks, 2011). And although some classic texts on simultaneous inference 

discuss the PFER (e.g., Hochberg & Tamhane, 1987; Miller, 1966; Tukey, 1953), 

many newer books on the subject do not (e.g., Dickhaus, 2014; Dmitrienko et al., 

2010; Hsu, 1996). 

This study briefly describes some popular Type I error rate controlling 

procedures, distinguishing PFER control from FWER control. Then examples 

from the applied statistics literature are used to show how widespread disregard of 

the PFER may be causing confusion. Then Monte Carlo simulations are used to 

demonstrate that in multivariate contexts the PFER can be substantially inflated 

even when the FWER is controlled, particularly when outcome variables are 

correlated. 

Controlling the PFER using the Bonferroni procedure 

The Bonferroni procedure caps the maximum PFER at α by testing each 

hypothesis at a nominal alpha level of α / m, where m is the number of hypotheses 

in the family. With rare exception (e.g., Harris, 2001), textbooks tend not to 

mention that the Bonferroni procedure controls the PFER, and instead recommend 

it only as a method for controlling the FWER. It is true that the Bonferroni 

procedure controls the FWER (as does any method that controls the PFER), but 

using a PFER controlling method to control the FWER prompts two questions: (1) 

If the objective is to control the PFER, then why not say so, and (2) if the 

objective is to control the FWER, then why not use a procedure that is more 

optimized for that purpose? After all, several methods for controlling the FWER 

are more powerful (meaning they can produce significance in more comparisons) 
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than the Bonferroni procedure. Among the most popular of these methods are 

stepwise procedures, such as the Holm and Hochberg procedures, which are 

described in the following section. 

Controlling the FWER using stepwise procedures 

Holm’s (1979) procedure first arranges the m hypotheses from lowest to highest 

p-value. Then the hypotheses are tested sequentially in that order, each at a 

nominal alpha level of α / (m – b + 1), where b is a number between 1 and m 

indicating the position of the given hypothesis in the sequence. Thus, the first 

hypothesis is tested at level α / m, the next at α / (m – 1), the next at α / (m – 2), 

and so on until the last hypothesis is tested at level α. Testing is conditional, 

meaning that if any p-value in the sequence is nonsignificant, then all larger 

p-values are also declared nonsignificant and testing stops. Holm’s method 

controls the FWER, is more powerful than the Bonferroni procedure, and requires 

only slightly more computation. Like the Bonferroni procedure, Holm’s method 

also allows computation of confidence intervals (Strassburger & Bretz, 2008; 

Guilbaud, 2008). 

Hochberg’s (1988) procedure is essentially the reverse of Holm’s: The 

hypotheses are arranged from highest to lowest p-value, then tested sequentially 

in that order, each at a nominal alpha level of α / b, where b is a number between 

1 and m indicating the position of the given hypothesis in the sequence. Thus, the 

first hypothesis is tested at level α, the second at α / 2, the third at α / 3, and so on 

until the last hypothesis is tested at level α / m. If any p-value in the sequence is 

significant, then all smaller p-values are also declared significant and testing stops. 

Hochberg’s procedure controls the FWER (except in certain situations; see 

Dmitrienko et al., 2010) and is more powerful than Holm’s, but generally does not 

allow computation of confidence intervals (Dmitrienko et al., 2010; Guilbaud, 

2012). 

Some other stepwise procedures for controlling the FWER are more 

powerful than Hochberg’s (e.g., Hommel, 1988; Rom, 1990), but they are more 

computationally complex and, like Hochberg’s method, generally do not allow 

computation of confidence intervals (Dmitrienko et al., 2010; Guilbaud, 2012). 

There are also methods that control the FWER in specific contexts. For example, 

Dunnett’s (1955) procedure and its variations (see Dmitrienko et al., 2010) can be 

used when comparing multiple treatment groups to a placebo group. There are 

also Šidák based methods (see Bird & Hadzi-Pavlovic, 2013), which are not 

necessarily applicable to one sided tests. 
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Given the variety of multiple comparisons procedures available, the 

simplicity and versatility of the Bonferroni procedure—which works for any 

p-values regardless of how they were obtained—make the Bonferroni procedure 

useful to teach as a default method of Type I error control (Harris, 2001). 

However, it is important to note that the Bonferroni procedure controls not only 

the FWER but also the PFER. Failing to understand this may lead to confusion 

such as that discussed in the following section. 

Confusion about the utility of the Bonferroni procedure 

The Bonferroni procedure is often described as “overly conservative” (as noted by 

Gordon, Glazko, & Yakovlev, 2007), or as being “improved” through 

modifications such as Holm’s and Hochberg’s (see Dickhaus, 2014; Posch & 

Futschik, 2008; Simes, 1986). This framing is legitimate if the goal is to control 

the FWER. However, if the goal is to control the PFER, then the Bonferroni 

procedure is not overly conservative (and hence is not improved by modifications 

that make it more liberal). Thus, the Bonferroni procedure is perhaps better 

depicted not as a “blunt tool (Miles & Banyard, 2007, p. 263)” for controlling the 

FWER—but rather as a precise and efficient tool for controlling the PFER. 

Psychological researchers that have touted the superior power of stepwise 

methods over the Bonferroni procedure (e.g., Blakesley et al., 2009; Eichstaedt, 

Kovatch, and Maroof, 2013; Seaman, Levin, & Serlin, 1991) have rarely 

mentioned that such methods—though useful—do not control the PFER and 

therefore are not adequate substitutes for the Bonferroni procedure when control 

of the PFER is desired. For example, Eichstaedt and colleagues (2013, p. 693) 

explicitly stated, “The Holm's sequential procedure corrects for Type I error as 

effectively as the traditional Bonferroni method”—which is only true if the PFER 

is not considered (see Barnette & McLean, 2005). In fact, the sometimes 

dramatically inflated PFERs associated with stepwise procedures are so widely 

unknown among researchers that Klockars and Hancock (1994) were moved to 

call inflated PFERs “the hidden costs” of stepwise procedures. 

In summary, lack of acknowledgment for the PFER may be causing 

unnecessary controversy and confusion: Some present the Bonferroni procedure 

as an appropriate method for controlling the FWER; others present the Bonferroni 

procedure as underpowered and obsolete; and neither of these opposing views 

takes into account the procedure’s usefulness for controlling the PFER. However, 

if the Bonferroni procedure were presented as a method for controlling the PFER, 

then there would be no dissonance between: (1) recommending the Bonferroni 
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procedure for controlling the PFER, and (2) recommending more powerful 

methods for controlling the FWER. 

The PFER may be more relevant now than in the past 

There was a time when choosing between the FWER and the PFER appeared to 

be relatively inconsequential. Miller (1966, p. 10) called the choice “essentially a 

matter of taste,” and acknowledged that he preferred the FWER “for feelings he 

[could not] entirely analyze.” Similarly, Tukey (1953, p. 5) wrote that either error 

rate could be used in practice and that the FWER merely had “theoretical 

advantages”. Ryan (1959, p. 40) called the choice between FWER and PFER 

"merely a matter of computational convenience." Indeed, the Bonferroni 

procedure’s maximum FWER is known to be only trivially different from its 

maximum PFER. However, selecting an error rate is no longer simply an 

inconsequential matter of personal preference, given the development of 

procedures—such as the Holm, Hochberg, and Hommel methods—that can 

control the FWER while allowing considerable inflation of the PFER. The 

following simulations demonstrate this inflation in multivariate designs (for 

demonstrations of analogous PFER inflation in other contexts, see Barnette & 

McLean, 2005; Klockars & Hancock, 1994; Shaffer, Kowalchuk, & Keselman, 

2013). 

Methodology 

Monte Carlo simulations were conducted in R (R Core Team, 2013) of two-group 

designs with 50 subjects per group. Three numbers of multivariate normal 

outcome variables were used: m = 2, m = 5, and m = 10. Equal population 

correlations (ρ) between outcome variables were set at 200 values between 0 and 

1. All effect sizes (i.e., population mean differences) were set at zero so that any 

statistically significant sample mean difference between groups would be a Type I 

error. There were 100,000 simulations for each combination of m and ρ. These 

simulations generated pseudorandom sample mean differences and sample 

covariance matrices. 

Two sided univariate tests of the sample mean differences were conducted at 

α = .05 using each of the following four procedures: Bonferroni, Holm, Hochberg, 

and Hommel. For each of these procedures at each combination of m and ρ, the 

FWER was computed by dividing the number of simulations in which 



ANDREW V. FRANE 

17 

significance occurred by 100,000, and the PFER was computed by dividing the 

number of significant tests by 100,000. 

Results 

At each value of m, each of the four procedures had a maximum FWER less 

than .050, but the PFER could differ notably from the FWER when outcome 

variables were correlated. For example, Figure 1B shows that for five outcome 

variables, even a moderate correlation of .6 inflated the Hommel procedure’s 

PFER to approximately 0.067. In other words, although the chance of making a 

Type I error in a given family remained less than one in 20, the rate of Type I 

errors per family was approximately one in 15. The stepwise procedures can 

allow even greater PFER inflation at higher values of m and ρ, but the Bonferroni 

procedure’s maximum PFER is always equal to α and is insensitive to correlation. 

Note that in Figures 1B and 1C, the maximum PFERs of the Hochberg and 

Hommel procedures are well beyond the upper limits of the graphs. At any value 

of m, the maximum PFER for both procedures approaches α × m as ρ goes to 1. 

However, extending the range of the vertical axes to accommodate the extremely 

inflated PFERs at impractically high correlations would have sacrificed detail in 

the busier portions of the graphs while adding little useful information. 

Discussion 

Previous studies (Barnette & McLean, 2005; Klockars & Hancock, 1994; Shaffer, 

Kowalchuk, & Keselman, 2013) showed that the PFER can be substantially 

inflated in multigroup designs even when the FWER is controlled. This article has 

built on those findings in three principal ways: (1) by demonstrating through 

simulation that those findings extend to multivariate designs, (2) by graphically 

illustrating how the population correlation between outcome variables can 

enhance the disparity between the PFER and the FWER, and (3) by using the 

applied statistics literature to show that inadequate acknowledgement of the PFER 

may be causing unnecessary controversy and confusion, particularly with regard 

to the utility of the Bonferroni procedure. 
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Figure 1. Per-family and familywise Type I error rates for the Bonferroni, Holm, Hochberg, 

and Hommel procedures in a two-group design with m outcome variables (α = .05, all null 
hypotheses true). Note that Hommel is equivalent to Hochberg for m = 2. 
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Implications for research practice 

This article proposes that, depending on the research situation, either the PFER or 

the FWER may be more relevant than the other. Controlling the PFER (i.e., using 

the Bonferroni procedure) is appropriate when every mistake hurts—as is 

frequently the case in social and behavioral science research. For example, if a 

psychological therapy is found to significantly improve multiple symptoms, then 

it would be worse for many of those purported improvements to be Type I errors 

than for only one to be a Type I error. If statistical power is of concern, then 

improving the measures and manipulations or increasing the sample size would be 

a better solution than using a more liberal error rate that increases the toleration of 

false findings. 

Controlling the FWER may be sufficient when, given one Type I error, 

additional Type I errors are not costly, or perhaps when dependency among the 

tests is known to be sufficiently low that FWER and PFER are only negligibly 

different. In such situations, a method more powerful than the Bonferroni 

procedure may be used, such as the Holm procedure (if confidence intervals are 

required), the Hochberg or Hommel procedure (if no confidence intervals are 

required), or a context specific method appropriate for the given situation (see 

Dmitrienko et al., 2010 for an extensive list). An important caveat is that the 

Hochberg and Hommel procedures do not necessarily control the FWER for one 

sided tests that can be negatively correlated (see Samuel-Cahn, 1996), whereas 

the Bonferroni and Holm methods do not have this limitation. 

Implications for applied statistics pedagogy 

If the PFER is to be addressed more in practice, then it must also be addressed 

more in pedagogy. Therefore, this article recommends that professors and 

textbook authors include discussion of the PFER along with discussion of the 

FWER. Additionally, when a multiple comparisons procedure is described, the 

specific error rates that it controls (and does not control) should be accurately 

identified. It is no longer sufficient to simply refer to “the Type I error rate.”  

Limitations 

This study did not examine every Type I error rate that has been defined. For 

example, the comparisonwise Type I error rate (Tukey, 1953) is the probability of 

Type I error for a single hypothesis irrespective of the number of hypotheses in 

the family. Thus, controlling Type I error at the comparisonwise level effectively 

means disregarding Type I error inflation altogether and simply conducting each 
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hypothesis test at the unadjusted alpha level. Another error rate that has been 

proposed is the false discovery rate (Benjamini & Hochberg, 1995), which is, 

loosely speaking, the expected proportion of significant hypothesis tests in the 

family that are Type I errors (except when all null hypotheses are true, in which 

case the false discovery rate is equivalent to the FWER). Both the 

comparisonwise Type I error rate and the false discovery rate are more liberal 

than the FWER and thus beyond the scope of this article, but there are contexts in 

which these error rates may be appropriate. 

It should also be acknowledged that the simulations examined neither a 

variety of alpha levels, nor an exhaustive variety of multiple comparisons 

procedures, nor an exhaustive variety of parameter combinations. However, to do 

so would have made exceedingly long and complex an article that required only a 

finite number of examples to support its conclusion that the PFER can be relevant. 

Future articles may examine in detail issues such as which Type I error rates are 

more relevant in particular contexts. 
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