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Chapter 1

Introduction

Networks have proven to be a useful representation of various systems. Social and

economic interactions, biological and ecological systems, the internet can be understood

better if modelled as networks. Intuitively, a network describes a collection of nodes and

the links between them. The notion of nodes is fairly general, they may be individuals

or firms or countries. A link between two nodes represents a direct relation between

them; for instance, a link could be a friendship tie between people, a research and

development agreement between firms, or, in the context of countries, a link may be a

mutual defense pact.

The study of networks spans across disciplines. A central field in sociology and

studied in depth by mathematicians over the past fifty years, networks have recently

received extensive attention in statistical physics, computer science, business strat-

egy and organization theory. While economists have occasionally showed interest in

networks, a literature has emerged only in the last decade.

This thesis brings two contributions. On the one hand, it aims to enhance the

role of network theories in solving economic issues, by proposing a network represen-

tation of financial systems. On the other hand, it aims to enrich the set of methods

used to analyze networks, by introducing economic microfoundations to a preferential

attachment model of network formation.

It has often been emphasized the contribution economists bring to the field of net-

works. However, it is less clear what contribution networks bring to economics. To

1
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have a relevant impact on the discipline, networks ought to be used as tools to tackle

economic questions. Applications of network theories to finance, industrial organiza-

tion, labor economics or marketing, for instance, will mark the role networks play in

economics. Chapter 2 and 3 of this thesis take a step in this direction and propose two

applications to financial systems.

The study of networks has generated both empirical studies of various networked

systems and the development of new techniques and models for their analysis and

interpretation. Economists, sociologists, computer scientists and physics theorists, each

have developed their own set of instruments for this purpose. I will explain in more

detail the developments in economics, since I will be using these tools, especially in

chapter 2.

The economic models of networks consider that social and economic phenomena

should ultimately be explained in terms of decisions made by individuals through

a rational deliberation of costs and benefits. A natural metric determines how an

agent benefits from another agent depending on their relative position in the network.

Agents choose with whom they interact by weighing the costs and benefits from being

connected. Externalities across players are network dependent. That individuals are

supposed to form or sever relationships, depending on the benefits they bring, can be

modeled through a game of network formation.

Various equilibrium concepts have been advanced in the past few years to analyze

the formation of bilateral connections in settings where agents are fully aware of the

shape of the network they belong to and of the benefits they derive from it.1 The

difficulty arises from the fact that bilateral connections require consent to be formed

from both sides involved (the vast majority of interactions falls within this category).

Hence, a non-cooperative concept, such as Nash equilibrium, is not very useful to solve

a network formation game.2 A simpler notion looks directly at stable networks and

1Jackson (2005) provides an extensive survey of the literature on network formation, while Bloch
and Jackson (2007) provide a comprehensive summary of stability and equilibrium definitions.

2Myerson (1991) attempted to model a noncooperative linking game in which agents independently
announce which links they would like to see formed and then standard game-theoretic equilibrium
concepts can be used to make predictions about which networks will form. There are at least two
drawbacks with this approach. The first is that there is a multiplicity of equilibria with different types
of network. There is also always an "empty network" equilibrium. It is always a Nash equilibrium for
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has been proposed by Jackson and Wolinski (1996). According to them, a network is

pairwise stable i) if a link between two individuals is absent from the network then

it cannot be that both individuals would benefit from forming the link and ii) if a

link between two individuals is present in a network then it cannot be that either

individual would strictly benefit from deleting that link. There are many alternatives

to this notion that have been proposed in the literature, mainly varying how many

relationships agents can manage at the same time. For example, Gilles and Sarangi

(2006) consider that individuals can change multiple relationships at the same time

rather than just one at a time, while Goyal and Vega-Redondo (2007) go one step

further by allowing pairs of individuals to coordinate on how they change relationships.3

Bloch and Jackson (2007) propose another linking game where players can offer or

demand transfers along with the links they suggest, which allows players to subsidize

the formation of particular links. For the cases when consent is not needed, so that

agents can unilaterally form new relationships, Bala and Goyal (2000) return to the

Nash equilibrium concept.4.

Our understanding of financial systems can benefit greatly from the recent devel-

opment of network theories. The ongoing turmoil in financial markets has shown that

financial systems are deeply intertwined. While the events unfolded, it became clear

that the consequences of such an interconnected system are hard to predict. What

initially was seen as difficulties in the US subprime mortgage market, rapidly escalated

and spilled over to debt markets all over the world. As markets plunged, investors

became more risk-averse. Banks became less willing to lend money as freely. Interbank

lending rates started to rise and soon the market for short-term lending dried-up. The

credit crunch ultimately triggered a bank run at the British mortgage lender Northern

Rock - something not seen in the UK for over 140 years and in Western Europe for the

last 15 years. The theory of networks applied to financial systems may contribute to-

each agent to say that he or she does not want to form any links, anticipating that the others will do
the same.

3This is a special case of the general setting that allows groups to coordinate their changes in
relationships - see Dutta and Mutuswami (1997) and Jackson and van den Nouweland (2005).

4The papers mentioned here are not exhaustive. The literature goes beyond a static equilibrium
approach to study dynamic processes where the network gradually evolves over time (Jackson and
Watts, 2002; Dutta et al. 2005; Page et al., 2005; Mauleon and Vannetelbosch, 2004).
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wards the regulation of interbank and security markets, and aid in limiting the spread

of future financial crises

Connections in the financial world are varied. The dependencies between financial

institutions stem from both the asset and the liability side of their balance sheet. A

network representation of financial systems may capture the intricate structure of link-

ages, whether they are created through mutual exposures between banks acquired on

the interbank market, by holding similar portfolio exposures or by sharing the same

mass of depositors. In this thesis, I argue that the theory of networks provides a con-

ceptual framework within which the various patterns of connections can be described

and analyzed in a meaningful way.

In the third chapter of this thesis (The Formation of Financial Networks), I develop

a model of network formation in the banking system. In this chapter I propose a setting

where the rationale behind the linkages in the banking system is given by the danger

of contagion. It is widely acknowledged that banks and other financial institutions

are linked in a variety of ways. The incentives for linking are driven by the benefits

these links bring. The same connections that, for instance, facilitate the transfer of

liquidity between banks, may expose the banking system to the risk of contagion. That

is, idiosyncratic shocks, which initially affect only a few institutions, may propagate

through the entire system.

I construct a model where banks form links with each other in order to reduce the

risk of contagion. A network is formed endogenously between banks and serves as an

insurance mechanism. In short, I consider a framework where negatively correlated

liquidity shocks affect the banking system. Banks can perfectly insure against individ-

ual risk by exchanging interbank deposits. Risk-sharing, however, involves a trade-off:

transfers create links between banks, exposing the system to the risk of contagion.

The model predicts a connectivity threshold above which contagion does not occur,

and banks form links to rich this threshold. Thus, in an equilibrium network, the

probability of contagion is virtually zero.

The fourth chapter of the thesis (Contagion Risk in Financial Networks) also con-

centrates on financial networks. This chapter explores the effect of incomplete infor-
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mation in banking systems, when financial institutions are connected under different

network structures. In particular, I study how the trade-off between the benefits and

the costs of being linked changes depending on the network structure. I show that

incomplete networks give rise to incomplete information. In this situation, the trans-

fers between banks that perfectly ensures against liquidity shocks increase, at the same

time, the contagion risk. The problem is solved when the network is complete, as the

liquidity can be redistributed in the system, such that the risk of contagion is minimal.

To better function as a tool to solve economic problems, the theory of networks

needs to further develop techniques, methods and measures of networks specifically

tailored to tackle economic issues. The development of game theory over the past

decades allowed the economists to formalize new techniques for analyzing networks.

Nevertheless, most of the measures of networks used by economists are borrowed from

sociology and theoretical physics. Clustering coefficients, that measure the tendency

of linked nodes to have common neighbors, betweenness centrality of a node, that

expresses how essential a node is for connecting other nodes, the degree distribution,

as the number of links per node, the maximum and the average distance between

nodes in a network, are all meaningful descriptive statistics of networks. However, it

is very difficult to replicate these measures in a network formation game solved with

the equilibria concepts surveyed above. The gap between network techniques used

by economists and the current set of measures of networks is, actually, not surprising.

These measures have been initially introduced to address specific questions in sociology

and statistical physics. To bridge the gap, both new methods that take into account

strategic behavior of agents and new measures of networks need to be formulated.

The second chapter of this thesis (Limited Connections) takes a step in this direc-

tion. Network formation models advanced by economists consider that networks are a

consequence of strategic linking behavior of rational agents. The modelling of networks

assumed in the other non-economic literatures starts from different premises: the net-

work formation is driven mainly by a stochastic process. While the first approach leads

to networks that stylize features like unequal connections and short distances, it is the

second that captures richer characteristics of the real-world networks. This chapter
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aims to replicate the predictive power of the second approach in a model where (i)

networks expand continuously by the addition of new nodes, (ii) new nodes form links

with already existent nodes in order to maximize their payoffs, and (iii) linking requires

consent of both agents involved. First, we provide a simple example that explains the

emergence of power-law networks when agents entering the network employ logistic

choice to form links. Further, we analyze various specifications for the benefits that

nodes gain from connections, both in a error-free and in a error-prone setting. The

key elements that lead to networks with high centrality and many levels of hierarchy

are (i) intermediary benefits to those connecting otherwise disconnected parts of the

network, and (ii) linking costs that increase with individual degree.



Part I

Theory
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Chapter 2

Limited Connections

2.1 Introduction

Empirical research done in the field of networks has revealed a set of common prop-

erties that describe many real-world networks. For example, the world-wide-web, the

film actors network, metabolic networks that determine the physiological and biochem-

ical properties of a cell, all seem to exhibit similar features. In particular, real-world

networks can be characterized through a series of variables as follows.

1. Short average distance. That is, the shortest path length between pairs of nodes

in a social network tends to be very low. The maximum distance between any

pair of nodes in a network is also small.

2. High clustering. Clustering coefficients measure the tendency of linked nodes to

have common neighbors. The level of clustering in a social network is very high

when compared to networks where links are formed at random.

3. Unequal connections. Social networks tend to exhibit high inequality, both in

the number of links nodes have as well as in the payoffs nodes get from being

connected. For instance, it has often been shown that the degree distribution of

nodes in a network follows a power-law distribution. That is, the probability that

a node in a network interacts with k other nodes decays as a power law. This

9
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suggests that very few nodes have a large number of links, while there exists a

large number of nodes with very few links.

4. Hierarchy. A rather disregarded feature of many real networks is their hierarchical

topology. As Girvan and Newman (2007) observe, networks often have a fractal-

like structure in which vertices cluster together into groups that then join to form

groups of groups, and so forth, from the lowest levels of organization up to the

level of the entire network.

5. Positive assortativity. The degrees of linked nodes tend to be positively corre-

lated: well connected nodes tend to have well connected neighbors, while less

connected nodes are more likely to be linked to other less connected nodes.1

Theoretical work has been considering these features when formulating models of

network formation. Two major approaches have been outlined, drawing primarily from

two sources: the economics literature and the random graph literature (and the subse-

quent statistical physics literature). While the first approach considers that networks

form depending on how agents respond to different incentives, the second one aims

to reproduce the empirical findings through various probabilistic rules of linking. Al-

though each of these approaches has strengths and limitations, the perspectives they

assume remain largely incompatible.

The economic modeling of networks considers that social and economic phenomena

should ultimately be explained in terms of choices made by rational agents. This ap-

proach to network formation focuses on using game-theoretic tools. Agents choose with

whom they interact by weighing the costs and benefits from being connected. The net-

work arises as a consequence of individual linking decisions. Various stability concepts

are employed to identify which networks emerge in equilibrium and their characteristics

(e.g. Bala and Goyal, 2000; Jackson and Wolinsky, 1996; Goyal and Vega-Redondo,

2007, Bloch and Jackson, 2007, for a comprehensive survey, see Jackson, 2006). The

strength of this approach is that it provides microfoundations to the network forma-

tion process. However, this research predicts simple network architectures, like stars
1These properties have empirically documented in various studies. For a comprehensive survey of

this work, see Newman (2003).
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and circles. Despite being highly stylized, these models have managed to explain some

features of real world networks, like short average distances and unequal connections

The modelling of networks assumed in the other non-economic literatures starts

from different premises. Since the empirical findings listed above appear to be uni-

versal for complex biological, social, and engineered systems, most of the research

has focused on explaining how they emerged. This approach is rather mechanical, as

the network is formed mainly through a stochastic process. For instance, Watts and

Strogatz (1998) develop a model by starting with a symmetric network and randomly

rewiring some links. In Price (1976) and Barabasi and Albert (1999) nodes form links

through preferential attachment: new nodes link to existing nodes with probabilities

proportional to the existing nodes’ degree. Recently, a few models have been advanced

to incorporate the hierarchical feature of networks (Ravasz and Barabasi, 2003; Clauset

et al., 2006). Models where network formation is driven by a stochastic process lie in

the statistical physics literature, overlapping with literature in sociology and computer

science. Although they perform better in approximating characteristics of real-world

networks, these models lack an economic reasoning. Moreover, one-sided link forma-

tion is commonly assumed, that is links are formed without requiring consent. While

this assumption may be justified for describing the formation of networks like the world

wide web or citation networks, consent is essential when formalizing social interactions.

This chapter explores the synergies that can result from bridging these two lines of

research. In particular, we formulate a model of network formation where (i) networks

expand by the sequential addition of new nodes, (ii) each new node forms one link

with an already existent node in order to maximize its payoff, and (iii) linking requires

consent of both agents involved. More specific, a link between two agents is established

only when each earns benefits that exceed the costs of the new link.

Our model retains features from both literatures. On the one hand we capture

the idea of rational deliberation with our assumption that agents entering the network

optimize their initial links. On the other hand we depart from an equilibrium approach,

and consider that networks form through a growth process.
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The assumption that the population of nodes grows over time and links are formed

sequentially, has recently been adopted also by the economics literature on network

formation. For instance, Jackson and Rogers (2007) employ a network growth model

to explain various features of real-world networks.2 In their model, nodes form links

uniformly at random, as well as, by searching locally through the current structure of

the network. They successfully fit their model to data about several real-world networks

by varying the ratio of connections formed at random to those formed through search.

In our setting, as in many network growth models, links cannot be removed after

they have been formed. Connections in social networks, such as friendship links, are

persistent over time. In fact, many real-world networks have been analyzed empirically

under the assumption of persistent links. One instance is the network of scientific

co-authorship in which a link between two scientists is assumed to exist when they

published a jointly written paper.3 In consequence, many of the above listed features

of real-world networks have been derived by considering that links persist over time.

Myopic optimization, our second assumption, is another typical assumption in the

literature on network formation, and can be justified with the complexity of predicting

the network dynamics. When forming links, individuals might find it substantially

easier to neglect the links that themselves or other individuals will establish in the

future. A correct prediction of the future dynamics of networks would require, among

else, a perfect understanding of other individuals’ reasoning. Indeed, many equilibrium

concepts assume a certain degree of myopia, when they allow players to deviate if they

have an immediate gain from deviations, without considering the consequent changes

in the network4.

The assumption of network growth combined with that of optimizing behavior of

agents can capture some striking features of real-world networks. We demonstrate in

Section 2 that a power-law network emerges when agents entering the network employ

2In previous work, Jackson and Rogers (2005) show that small-world features emerge in a simple
economic model of network formation, where agents benefit from indirect relationships.

3Goyal et al. (2006) provide a study of networks of co-authors in economics.
4Bloch and Jackson (2005) provide a comprehensive summary of stability and equilibrium defini-

tions. Some interesting investigations of network formation with forward-looking individuals can be
found in Dutta et al. (2005) or Mauleon and Vannetelbosch (2004).
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logistic choice to form links. We then proceed to analyze the network growth process

under four different payoff functions, both in a error-free and in a error-prone (discrete

choice) setting. The network architectures we find range from symmetric trees, where

distances are increasing to infinity, to networks where the path length between any pair

of nodes stays very short, like stars and hierarchical stars (see fig. 3). We identify two

key elements that lead to networks with high centrality and many levels of hierarchy (i)

intermediary benefits to those connecting otherwise disconnected parts of the network,

and (ii) linking costs that increase with individual degree. While, our findings remain

relatively stylized, they provide indications on the economic forces driving some of the

above features of real-world networks, in a preferential attachment framework.

The chapter is organized as follows. In the following section we show that error-

prone myopic linking can lead to the power-law degree distribution. In Section 3 we

describe our network growth model in detail. We investigate the resulting network

formation under deterministic and probabilistic linking in Sections 4 and 5. Section 6

contains a discussion of our results and possible extensions, and Section 7 concludes.

2.2 The Preferential Attachment Model Explained

Inequality in the number of links nodes have seems to be a very robust finding of many

real world networks. Moreover, several networks, such as collaborations between move

actors, co-authorship networks, or the World Wide Web are thought to exhibit a degree

distribution that follows a power-law. A power-law distribution implies that major hubs

are closely followed by smaller ones, and these ones are followed by other nodes with

an even smaller degree and so on. The network topology implied by such a heavy-

tailed distribution has several interesting properties. First it allows for fault tolerant

behavior: since failures occur at random and the vast majority of nodes are those with

small degree, the likelihood that a hub is affected is almost negligible(Albert et al,

2000). Second, and perhaps carrying more economic implications, diffusion of behavior

or transmission of information takes place at faster pace in power-law networks (Lopez-

Pintado, 2007, Pastor-Satorras and Vespignani, 2001). These properties motivated an
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entire body of research to seek models that predict a skewed degree distribution.

In a highly influential paper, Barabasi and Albert (1999) explain the emergence of

power-law networks as a consequence of two generic mechanisms: (i) networks expand

continuously by the addition of new nodes, and (ii) new nodes attach preferentially to

old nodes that are well connected. The growing character of the networks is modelled

through the following process: In a discrete-time setting, a new node is added to the

network every period with m links that connect the new node to m different nodes

already present in the system. Preferential attachment is modelled by considering that

the probability Π a new node will be connected to an existent node i depends on the

connectivity ηi of that node, so that Π(ηi) =
ηi

Σjηj
.

Although it has a high predictive power, the preferential attachment model has

hardly been adopted by economists as a network formation model. The main reason

for this standpoint is that the economic modeling of networks, like much of the economic

modelling in general, considers that social and economic phenomena should ultimately

be explained in terms of the choices made by rational agents. Agents choose with whom

they interact by weighing the costs and benefits from being connected. Thus, while the

growth component of the preferential attachment model may be regarded as another

dynamic process through which the network is formed (Jackson and Rogers, 2007), the

probability of attachment remains an unsatisfactory explanation of how agents form

links.

In this section we illustrate with a simple example how networks with a power-law

distribution can emerge through a growth mechanism, while nodes choose with whom

to link by considering costs and benefits from being connected.

When we model the benefits players gain from the network, we follow a standard

approach in the literature on the economics of networks. It is commonly assumed that

connections grant access to important information concerning, for instance, job vacan-

cies or ideas for research. Players benefit from the information they access through

their neighbors and through the other nodes they are indirectly connected to (Jackson

and Wolinsky, 1996; Bala and Goyal, 2000). In our setting, players can access the infor-

mation of others, as long as they are at most two links away in the network. Moreover,
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the value of information decreases logarithmically, depending on the number of links

between agents. For simplicity, we normalize the value of information to 1. Formally,

the marginal payoff a node i gains from linking with node j is given by

πi(g + ij)− πi(g) = 1 + ln[max(1, ηj)]− c (2.1)

where πi(g) is the payoff of i in the current network g, g+ ij is the network from g by

adding the link ij, and ηj is the number of neighbors j has in network g.

In other words, a player i gains 1 from a direct neighbor, logarithmically less from a

neighbor’s neighbors, while it has to pay a cost c for the connection. For convenience,

we assume that c = 1 in the remaining of the section.

The network is formed over time, sequentially, through the addition of new nodes

to the population. Time is a discrete set of dates t ∈ {1, 2, ...}. At each date t, a new
node is born. A node born at date t is denoted by its birthdate t. The set of nodes

existent at date t is denoted by Nt. Let gt be the network that is in place at time t.

Upon birth, node t can form at most one link with an existing node in Nt−1. Links are

formed as follows.

We first consider a deterministic setting. A new node, t, first proposes a link to

the existing node in Nt−1 that would give it the highest payoff. In principle, the node

which receives the proposal will either accept or reject the link depending on whether

the marginal benefit from being linked to the new node t exceeds, or at least equals

the cost of linking. However, the marginal payoff of any old node from linking to a

new node is 0, according to eq. (2.1). This implies that an old node always accepts a

link with a new node. Since a new node prefers to link to the old node that has the

highest degree, the network grows to be a star after 3 periods.

Next, we introduce a more realistic decision process and consider that new nodes

make errors when choosing with whom to link. Depending on the error structure

considered, different network architectures may emerge. Here we focus on a randomized

discrete choice framework, along the lines of Manski and McFadden (1981). In an

environment where agents must make a single selection from a set of discrete options,
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their deviations from optimal decisions are negatively correlated with associated costs.

In other words, agents are more likely to make better choices than worse choices, but

do not necessarily choose the best option. The agents estimate the relative benefits of

each choice and the probability individual i selects option k from a set ofm alternatives

is given by

Pr(xi = k) =
eρUi,k
mX
l=1

eρUi,l

where xi is the choice i makes, Ui,k indicates the utility value of option k for agent i,

and ρ is the intensity of choice parameter, such that when ρ = 0 choices are random

and when ρ →∞ choices are perfectly rational. Discrete choice models are described

in detail in Section 4.

In our setting, a new node t needs to make a choice with whom to link among the

previously born (t − 1) nodes. Each of the (t − 1) options gives it a utility Ut,k that

equals the marginal payoff t gains from linking to the node k: Ut,k = ln[max(1, ηk)].

Hence, for a particular case when ρ = 1, the probability node t links to node k in the

network gt−1 is given by

Pr(xt = k) =
ηk

t−1X
i=1

ηi

This implies that the probability a new node t will be connected to an existent node

k depends on the connectivity ηk of that node. This probability captures exactly the

preferential attachment feature of the Barabasi and Albert (1999) that yields, in the

limit, a power-law degree distribution.

A degree distribution that follows a power law arises only when ρ = 1. When the

intensity of choice, ρ, takes values above 1, Krapivsky et al. (2000) have shown that a

single node connects to nearly all other nodes. For ρ < 1, the number of nodes with k

links, varies as a stretched exponential.

We started by considering a network formation process based on growth, where

nodes are added sequentially to the network and form one link with a previously born

node. Although nodes form links in order to maximize their payoff, they do not always
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succeed in choosing the best option. Instead, the probability a new node links to an

old node depends on benefit the old node yields relative to the others. Ultimately,

this implies that the probability a new node will be connected to an existent node

depends on the connectivity of the respective old node. Barabasi and Albert (1999)

have shown that, in the limit, such a probability of attachment in a network growth

setting generates networks that have a power-law degree distribution.

2.3 The Model

In this section we proceed to analyze other specifications for the benefits agents acquire

through the network. We consider the same network growth model that was described

above. A new node first proposes a link to the existing node that would give it the

highest payoff. We first discuss a deterministic setting, and then we introduce errors in

how new nodes make choices. The node which receives the proposal will either accept

or reject the link depending on whether the marginal benefit from being linked to the

new node t exceeds, or at least equals the cost of linking. If the link is accepted, period

t ends and a new network gt is defined. If the link is rejected, the new node t proposes a

link to the node in Nt−1 that gives it the second highest payoff. The process is iterated

until the link is accepted or until all the nodes in Nt−1 have been exhausted.

Below we describe the payoff structure of this network growth model. When con-

structing the payoffs, we aim to model two types of benefits network embeddedness

may bring. On the one hand, as assumed in the previous section, connections act as

conduits for information. Information flows over links and players’ benefit from the

information that reaches them. It is commonly assumed that while these benefits are

non-rival, there exists a decay in the value of information from indirect connections.

On the other hand, in various instances players gain significant benefits from bridging

gaps in the network. The idea that some players may extract an additional benefit from

intermediating connections between other players is behind the concept of "structural

holes" developed by Burt (1994). In this setting benefits are rival and they are shared

among different players. We study the network growth process for the two types of
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benefits separately. Thus, in one case, players’ payoff is determined only by access ben-

efits. In the second case, players’ payoff includes intermediation benefits, in addition

to access benefits.

Links bring benefits against a cost. Again, we distinguish two cases. We first

consider that the marginal cost of establishing a link between players, c, is constant,

as commonly assumed in the network formation literature. However, there are settings

where assuming that the cost per link is increasing in the number of links is more

appealing. This captures the idea that individuals are subject to capacity constraints.

Thus, the second case we consider takes the marginal cost of linking to be increasing

in the number of links a node has.

A critical feature of our model is that, by construction, the resulting network can

only be minimally connected - a tree - or empty5. In other words, in any non-empty

network there exists a unique path between any pair of nodes. A path of length l

between i and j is a sequence of distinct agents (i, j1, ..., jl−1, j) such that ij1,j1j2,...,

jl−1j ∈ g.

These considerations lead us to study the dynamic of this network growth model

under four payoff functions:

The first payoff function is based on access benefits and constant marginal cost of

linking. Players get benefits from accessing other nodes in the network, and these ben-

efits decrease depending on the distance, as in Jackson and Wolinsky (1996). However,

instead of the usual geometric decay, we assume that the benefits decrease proportional

to the distance between players. At the same time, every player pays a cost c for each

link it is involved in. Explicitly, in our setting the payoff function takes the form:

πai (gt) =
X
j∈Nt

1

d(i, j; gt) + 1
− ηi(gt)c (2.2)

where ηi(gt) is the number of links i has in network gt, and d(i, j; gt) represents the

number of links on the shortest path that connects nodes i and j.

The second payoff function includes intermediation benefits in addition to access

5A new-born node is allowed to form at most one link.
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benefits, while keeping constant the marginal cost of linking. The intermediation bene-

fits are generated when the connection between two players is mediated by other players

as in Goyal and Vega-Redondo (2004). The primary assumption is that any two play-

ers that are connected create a surplus of 1. Situations when players are traders and

involved in exchanging goods are collected by this assumption. If the players are di-

rectly connected, that is when they know each other, each of them gets a half of the

surplus. If the players are indirectly connected, the allocation of the surplus depends

on the competition between intermediaries. To determine the intermediation rents, the

authors introduce the idea of "essential players". Basically, a player i is considered to

be essential for players j and k if i lies on every path that connects j and k in the net-

work. The allocation of the surplus depends on the number of intermediaries between

the two players in the following way. Non-essential players between j and k get a zero

share of the surplus, while the essential players and j and k divide the surplus equally.

Formally, the payoff function can be expressed as follows:

πei (gt) =
X
j∈Nt

1

d(i, j; gt) + 1
+
X
j,k∈Nt

I{i∈P (j,k)}
d(j, k; gt) + 1

− ηi(gt)c (2.3)

where I{i∈P (j,k)} takes value 1 or 0 depending on whether i lies on the path between j

and k, P (j, k), or not. Each link requires both players involved to pay a cost c.

The third payoff function considers again only access benefits, similarly to the first

one. However, the marginal cost of linking is increasing in the number of links a node

has. This conveys the idea that players become more selective with time when forming

links. The cost of linking should be interpreted as a fixed cost paid initially when the

link has been established. There is no further cost attached to maintaining the link.

Moreover, we consider that the marginal cost increases at a constant rate c, such that

the payoff function takes the following form.

πa+i (gt) =
X
j∈Nt

1

d(i, j; gt) + 1
−

ηi(gt)X
l=1

lc (2.4)

The fourth payoff function analyzed incorporates access benefits, intermediation
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benefits and increasing marginal cost. The access and the intermediation benefits are

constructed in the same way as for the second payoff function, while the cost is mar-

ginally increasing in the number of links.

πe+i (gt) =
X
j∈Nt

1

d(i, j; gt) + 1
+
X
j,k∈Nt

I{i∈P (j,k)}
d(j, k; gt) + 1

−
ηi(gt)X
l=1

lc (2.5)

2.4 Deterministic Analysis

In this section we identify the networks that are formed following the growth process

and characterize their properties. We analyze each of the four payoff functions sep-

arately, aiming to explain the differing results through differences in the benefit and

cost structures.

The network formation process is best explained in terms of marginal payoffs. Recall

that the network is formed through a growth mechanism: every period in time a

new node is added to the existent population of nodes. Thus, we need to distinguish

between the marginal payoff a new node obtains when it attaches to the network and

the marginal payoff an old receives when it accepts a new link. The marginal payoff

a new node gains determines where in the existent network it wants to attach. This

is the first step in the preferential attachment process. The second step consists in

the decision of older nodes to accept or reject links. The marginal payoff an old node

gains determines whether it accepts or rejects a new link. It is the decision of the older

node that mainly shapes the network. The differences in the network architectures that

emerge can be explained by the different incentives old nodes have when accepting a

new link in each of the four cases proposed.

2.4.1 Access benefits and constant marginal cost of linking

The case that considers that benefits are derived from accessing the information of the

other players in the network, while paying a cost c per link is straightforward. On the

one hand, the marginal payoff an old node i gains when accepting a new link stems
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only from the information it can access from the new-born node t.

πai (gt−1 + it)− πai (gt−1) =
1

2
− c (2.6)

On the other hand, a new node is able to access the information of everyone else in the

network through the link it forms. Thus, the marginal payoff that a new node t gains

when it links to an old node i is given by

πat (gt−1 + it)− πat (gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− c (2.7)

The marginal payoff of a new node is maximized when distances are short. This cre-

ates an agglomeration pressure that drives the formation of a star network. Moreover,

provided that the marginal cost of establishing a link, c, is small enough (c ≤ 1/2), an
old node always affords a new link. Based on these considerations we can formulate

the next result.

Proposition 2.1 For any t > 1, let gt be the network at time t. Consider that the

payoff of a node i in network gt is πai (gt) given by (2.2). If c <
1
2
then gt is a star. If

c > 1
2
then gt is the empty network.

Proof. See Appendix.

A similar case has been studied by Jackson and Wolinsky (1996). In the "connec-

tion model" they propose, both players have to agree to form a link and the value of

the information decays geometrically with the distance between players.6 The authors

model the network formation using a static equilibrium approach. They advance the

notion of pairwise stability in order to characterize the networks in equilibrium. Al-

though a full characterization of the set of equilibria turns out to be difficult, stars are

also found to be stable.
6Note that the geometric specification for modeling decay of information δx, behaves similarly as

1
x+2 , for small x and when δ ∈ (0, 1).
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2.4.2 Access benefits, intermediation benefits and constant

marginal cost of linking

We study now the case where network embeddedness creates opportunity for some

players to intermediate connections among other players. The payoffs players receive

have been adjusted to include benefits derived from intermediation in addition to access

benefits. However, since a non-empty network can only be a tree, only nodes that are

not terminal nodes receive intermediation benefits. This implies that an old node i

receives the following marginal payoff when accepting a new link.

πei (gt−1 + it)− πei (gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− c (2.8)

A new node when is born cannot serve as intermediary between other nodes in

the network. Thus, it only benefits from the surplus created by being connected with

other nodes. However, this surplus will be shared with other players that are essential

for a connection to take place. In particular, a new-born node t receives the following

marginal payoff from linking to an old node i

πet(gt−1 + it)− πet(gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− c (2.9)

The agglomeration pressure, that led previously to a star, continues to be the

driving force of the network formation process. This becomes clear if we notice that

same incentives act on a new-born node. In fact, a new-born node t receives the same

marginal payoff from linking to an old node i as in (2.7) in all the four cases considered

in our analysis.

Proposition 2.2 For any t > 1, let gt be the network at time t. Consider that the

payoff of a node i in network gt is πei (gt) given by (2.3). If c ≤ 1
2
then gt is a star. If

c > 1
2
then gt is the empty network.

Proof. See Appendix.

The same intuition developed for explaining Proposition 2.1 holds. A new node has

the incentive to shorten distances, while an old node will always accept a new link as
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long as the cost of linking c is small enough. Figure 2.1 illustrates networks described

by Proposition 2.1 and 2.2.

Goyal and Vega-Redondo (2007) analyze the network formation problem using game

theoretical tools. The authors use a notion of stability that allows pairs of players to

form and delete links simultaneously, and manage to isolate a star as the unique bilat-

eral equilibrium. However, when the less demanding concept of bilateral-proofness7 is

employed, any cycle containing all players can be supported in equilibrium.

2.4.3 Access benefits and increasing marginal cost of linking

This case considers again situations when network connections facilitate access to in-

formation, as discussed in section 2.4.1. The marginal cost of adding a new link a node

supports is now increasing linearly in the number of links it already has. However, this

does not change the marginal payoff a new node t receives when it attaches to a node

i in the existing network.

πa+t (gt−1 + it)− πa+t (gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− c (2.10)

The marginal payoff of an old node needs to be adjusted to account for the new

cost specification. In particular, any new link accepted costs c more than the previous

one. Thus, for a node i that has a degree ηi − 1, the marginal payoff from accepting

the ηith link becomes

πa+i (gt−1 + it)− πa+i (gt−1) =
1

2
− ηic (2.11)

Equation (2.11) indicates that an old node can afford only a limited number of links.

In particular, an old node accepts links as long as the marginal payoff stays positive.

The maximum degree of a node becomes bounded from above: ηi ≤ 1
2c
. The incentives

to shorten distances that drive the linking behavior of the new nodes are limited now

by the capacity constraints old nodes have.
7A bilateral-proof equilibrium is a two-person coaltion prof equilibrium, that allows for profitable

deviations from the agreed upon deviation. This only enlarges the set of equilibria, since only a subset
of bilateral deviations qualify as valid.
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Proposition 2.3 For any t > 1, let gt be the network at time t. Consider that the

payoff of a node i in network gt is πa+i (gt) given by (2.4). Then, the followings hold:

1. If c ≤ 1
2
, the network gt is a regular tree. That is, for any node i in gt, ηi = 1 or

ηi =
£
1
2c

¤
.8

2. If c > 1
2
, the network gt is empty.

Proof. See appendix.

This result follows as well from an inductive argument. For the first few periods,

the growth process shapes the network as a star. However, nodes are limited in the

number of links they can accept. Once the linking capacity of the center is reached,

new nodes start attaching to the neighbors of the center. The neighbors are bounded as

well in the number of links they can receive. Next, new nodes prefer to form links with

players at a distance of 2 from the initial center. As the growth process continues, the

network develops as a layered structure centered around the first node. Moreover, the

network is symmetric, as every node has the same number of links, except for terminal

nodes. Figure 2.2 illustrates the network that is formed when the cost c = 1
6
.

As before, the network formation process is governed by the tendency towards a

star. However, this force is dominated by capacity constraints old node have to receive

new link. It is, thus, the incentives of old nodes that shape the different networks

architectures across the four cases.

2.4.4 Access benefits, intermediation benefits and increasing

marginal cost of linking

Introducing intermediation benefits and increasing marginal cost of linking at the same

time adds complexity to the network growth process. The incentives new nodes have

when forming links are the same as in the previous three cases, since the marginal

payoff is calculated in the same way.

8We denote by [x] the closest integer to x, with [x] ≤ x.



CHAPTER 2. LIMITED CONNECTIONS 25

πe+t (gt−1 + it)− πe+t (gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− c (2.12)

The incentives of old nodes to accept link are more intricate. The increasing mar-

ginal cost does not allow nodes to accumulate links indefinitely. However, the marginal

benefit from linking to a newborn node is no longer constant, as considered in section

2.4.3. The intermediation component in the benefit structure allows it to increase with

the addition of new nodes to the population and depending on the evolution of the

network structure over time. The marginal benefit a node i with degree (ηi − 1) from
accepting the ηith link is given by:

πe+i (gt−1 + it)− πe+i (gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− ηic (2.13)

Proposition 2.4 For any t > 1, let gt be the network at time t. The payoff of a node

i in network gt is πe+i (gt) given by (2.5). Suppose that for the first t̄ periods, forming

links is costless. Then, the followings hold:

1. If c ≤ 3t̄+4
24

then there exists a period τ and a subnetwork hτ of the network gτ

such that any node t born afterwards (t ≥ τ) forms a link with a node in hτ .

Moreover, hτ is a star.

2. If c > 3t̄+4
24
, then gt is empty.

Proof. See appendix.

The network architecture is again a result of the incentives that drive old nodes to

accept links. The increase in the marginal benefit of an old node over time is dampened

by the increase in the marginal cost of linking. The interaction between these two forces

creates complicated dynamics. As links become marginally more expensive, there will

not be one single node that can afford to accept all the links proposed to it. However,

the effects of the agglomeration forces are not entirely driven out as it happens in

the third case we considered. For instance, an old node that cannot afford to form a

link in period t, might accept to link a few periods later, once the network has grown
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sufficiently. In particular, to afford a new link, any old node needs its marginal benefit

to increase by an amount ”c” since it received the last link.

There are two network properties that follow from Proposition 2.4. First, the

maximum distance in any network generated with the payoff functions given by eq.

(2.12) and (2.13) is at most 4. Thus, irrespective of the size of the network, the

distance between any pair of nodes is at most 4. Despite that the population of nodes

can grow at infinitum, there is always a path of finite length between any two nodes.

This property is a direct consequence of the network being dominated by a connected

group of nodes. Since there exists a subnetwork hτ of gt that receives all the links after

a certain period τ , the maximum distance in any network gt is given by the maximum

distance in hτ extended by 2 to account for nodes that attach at the extremities of hτ .

This concludes the argument, as hτ is a star and the diameter of a star is 2.

The second property concerns the global organization of the network. As in the case

that looks only at access benefits and increasing cost of linking, the network is shaped

in layers centered around the first node. Moreover, the network is characterized by a

well-defined hierarchical structure. That is, the network divides naturally into groups

and these groups divide themselves into subgroups until we reach the level of individual

vertices. In addition, any two nodes in the network are connected by a hierarchical

path: a path between nodes is called hierarchical if it consists of an "up path", where

one is allowed to step from node i to node j only if their degrees ηi, ηj satisfy ηi ≤ ηj,

followed by a "down path", where only steps of lower or equal degree are allowed.

Either the up or down path is allowed to have zero length.9 Intuitively, the formation

of the hierarchical network is driven initially by the preference of new nodes to form

links with the first-born node. The marginal benefit of the first node increases faster

with the addition of new nodes to the network than the marginal benefit of any other

node.10 Thus, it will accumulate links more frequently than other nodes. Consequently,

the preference of new-born nodes to attach to the first node is reinforced over time.

The dynamics of the growth process are not straightforward. Simulations of the

network formation are, therefore, able to provide further insights. We simulate the

9This definition of hierarchical path was proposed by Trusina et al. (2004).
10This happens since the first node is at the shortest distance from everyone else in the network.
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network growth model as described above for an arbitrarily large number of periods. In

order to allow the network formation process to start, we assume that links are costless

for the first few periods, depending on the value of the parameter c. In addition, we

assume that a new node attaches to the older node, when it must choose between two

old nodes that give the same marginal benefit.

By mean of simulations, we can easily plot the networks. Figures 2.3 (a,b,c) il-

lustrate what networks are formed after 1000 periods for various values of the cost

parameter c. There are two immediate observations that we see from the plots. First,

the networks are organized in a hierarchical structure, with one node that is a star

among other nodes that are stars in turn. Second, the numbers of stars in the network

is increasing with the parameter c. In fact, it the number of nodes in the subnetwork

hτ that increases with c.

Further, Table 2.1 shows a number of bar plots illustrating the degree distribution

of nodes for various values of the cost parameter c. The distributions were truncated

for the number of nodes that have degree 1 in order to have a better picture of the

tail. Simulations were run for 1000, 2000 and 3000 periods to show that once the

subnetwork hτ is formed, the number of nodes belonging to hτ stays constant over

time. The plots also indicate that there is a certain periodicity that determines how

often old nodes receive new links. Moreover, the node with the highest degree receives

links most frequently over intervals of 1000 periods.

2.5 Probabilistic linking choice

In this section, we introduce a more realistic decision process and consider that new

nodes make errors when choosing to whom to link. We use a discrete choice framework,

along the lines of Manski and McFadden (1981), to model how the new nodes form

links. The basic intuition is that individuals are more likely to select better choices

than worse choices, but do not always manage to choose the best option.
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Table 2.1: The evolution of the degree distribution over time
- access benefits, intermediation benefits, increasing marginal cost of linking -
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Probabilistic choice models, or random utility models, have long been used to in-

corporate stochastic elements in to the analysis of individual decisions. There is a vast

number of papers that use logit and probit models for empirical estimations. Recently,

however, discrete choice models have been adopted in other areas as well. For instance,

the quantal response equilibrium, introduced by McKelvey and Palfrey (1995), is the

analogous way to model games with noisy players. Brock and Hommes (1997) use as

well a discrete choice model to advance the concept of adaptive rational equilibrium.11

These models usually apply to study situations in which agents choose between a

finite number of discrete options. Consider a decision maker, labeled i, that faces a

choice among K alternatives. From each alternative k, the decision maker i is assumed

to obtain a certain level of utility Vi,k. Agents are utility maximizers, although they do

not necessarily choose the option that gives them the highest observed utility. This can

generally be attributed to either unmodelled idiosyncratic components of the agents’

utility function, or to a random component in individual preferences (McFadden, 1974

). In particular, the utility that a decision maker, i, obtains from alternative k can be

decomposed into: Vi.k = Ui,k+εi,k, ∀k, where Vi,k is the true utility, Ui,k is the observed

utility and εi,k is the idiosyncratic component. Agents estimate the relative benefit of

each choice, and choose alternative k if and only if Vi,k > Vi,j ∀j 6= k. This implies that

a decision maker i chooses alternative k with probability Pr(xi = k) = Pr(εi,j − εi,k <

Ui,k − Ui,j ∀j 6= k). When the random term εi,k is independently, identically Gumbel

distributed12, with a variance σ2(π2/6), the probability of an agent i choosing option

k becomes

Pr(xi = k) =
eρUi,kP
j e

ρUi,j

where ρ is an inverse function of σ. The greater the parameter ρ, the more likely agents

maximize the true utility. However, when the variance σ increases, the choices agents

make are nearly random.

We applying this model to our setting. A new node t needs to make a choice with

11The A.R.E. is a frequently emplyed tool for modeling the evolutionary process of a dynamic
population.
12The density function of a Gumbel distribution is f(εi,k) = e−εi,ke−e

−εi,k , and the cumulative
distribution is F (εi,k) = e−e

−εi,k . The variance of this distribution is π2/6.
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whom to link among the previously born (t − 1) nodes. Each of the (t − 1) options
gives it a utility Ut,k that equals the marginal payoff t gains from linking to the node

k: Ut,k = πt(gt−1 + tk)− πt(gt−1), where π is one given by either of the functions 2.7,

2.9, 2.10 or 2.12. However, since the marginal payoff of a new node is the same, for all

the four functions studied, we have that:

Ut,k =
1

2
+
X

j∈Nt−1

1

d(k, j) + 2
− c

Hence, the probability that a new node t proposes a link to an old node k is the same

for all four cases considered. This implies that it is, again, the decision of the older

node that mainly shapes the network.

We simulate the network growth process only for the fourth case, when nodes gain

intermediation benefits in addition to access benefits, while the marginal cost of linking

is increasing. Introducing errors in the decisions new nodes take does not affect the

shape of the network considerably in comparison with the deterministic case. Fig. 2.4

(a) and (b) show networks that results from simulating the process for ρ = 1. As

expected, the maximum distance in the network increases and is on average close to 8

for c = 1 and ρ = 1, to decrease when the cost c increases. However, the agglomeration

pressure still dominates the network formation process. Since the payoffs from linking

to the center are considerably higher than payoffs gained by linking with a node at the

periphery, new nodes are less likely to make a mistake and link to a terminal node. The

outcome is, again, a hierarchical star. The following table shows the degree distribution

for networks that have been formed after 2000 periods when new nodes make mistakes

with an intensity of choice parameter ρ = 1 and ρ = 0.5. The values are averages

taken after simulations were run for 20 times. The benchmark case of choice under full

rationality is represented by the first column, when ρ =∞.
The results can also be interpreted in the light of the findings of Krapivsky et

al. (2000). They show that when probability of attachment is non-linear in the de-

gree, a single node connects to nearly all other nodes. In our case, the probability of

attachment grows exponentially as a function of the degree.
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2.6 Discussions

In this section we discuss the results and possible extensions. In summary, we model

a network formation process based on preferential attachment, where nodes form links

to maximize their payoffs and links require consent to be established. Newborn nodes

will get higher payoffs from existing nodes that are highly linked for all the payoff

functions employed in our analysis. The temporal aspect of the model will generally

favor older nodes to have a higher degree. This explains the agglomeration pressure

that generates a star in the first two cases. The fact that links require consent might

lead to deviations from a star, as is evident in the last two cases. An old node accepts

a new link provided that the marginal benefit from a newborn node is higher than

the marginal cost of linking. Since in the first two cases, discussed in Sections 2.4.1

and 2.4.2 the marginal cost of linking is independent of the number of links, there

will be only one node that accumulates all the links ad infinitum. In the third case

discussed in Section 2.4.3, links are marginally more expensive. However, the marginal

benefit from linking to a new born node is fixed and independent of the population

size or of the network structure. Thus, nodes can accept to form links up to the point

where the marginal cost of linking at most equals the marginal benefit from linking to

a newborn node. In the fourth case, discussed in Section 2.4.4, the marginal benefit

from linking to a new-born node increases over time, with the addition of nodes to the

network. Hence, old nodes continue to receive new links over time, with a periodicity

that depends on the cost parameter c.

We construct a payoff function that generates networks with a power-law degree

distribution, when agents make errors in their linking choices. For more standard pay-

off functions we find networks that are still fairly stylized, especially when compared

to the models proposed by the statistical physics literature. However, the fourth case

suggests that allowing players to gain benefits from intermediation and introducing in-

creasing marginal cost of linking may yield interesting network architectures. Although

the degree distributions are jagged, the model can explain four out the five empirical

regularities identified in the beginning: short distances, unequal connections, hierarchy
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and positive assortativity.13 The results indicate that further analysis of the case based

both on access and intermediation benefits, with increasing marginal cost of linking is

likely to bring more insights.

We take a step in this direction by proposing two extensions based on alterations

of the cost function. First, we simulate the network growth process when the marginal

cost of linking increases linearly only after a certain number η̄ of links have been

accumulated. In particular, we consider that for any node i in the network, the first

η̄ links cost the same amount c. Thereafter, any additional link costs c more than the

previous. The marginal payoff of an old node becomes:

πi(gt−1 + it)− πi(gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− (ηi − η̄)c

The networks that follow from simulations exhibit the same features as before. They are

organized hierarchically as stars centered around another star. After a certain period, a

group of nodes shaped as a star seems to receive all the new links ad infinitum and the

size of the group stays constant over time. Hence, the maximum distance in a network

is bounded from above. Surprisingly however, when we simulate the network growth

for η̄ = 1, the maximum distance is 6, larger than in the networks found in section 3.4

for the same values of the cost parameter c. The maximum distance decreases with η̄,

such that for η̄ = 4 it reduces to 4. Figure 2.5 illustrates the network formed for η̄ = 1

and c = 3.

The second extension we briefly discuss takes the marginal cost of linking to be

quadratically increasing in the number of links. Thus, the marginal payoff of an old

node is given by:

πi(gt−1 + it)− πi(gt−1) =
1

2
+
X

j∈Nt−1

1

d(i, j) + 2
− η2i c

Introducing a convex marginal cost affects the dynamics of the network growth in

one particular way. Namely the size of the group that receives new links is no longer

13Since nodes can form only one link when they are born, the resulting network is a always a tree.
Thus, by construction, the model cannot account for clustering.
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constant, but increases over time. Old nodes are constantly incorporated in the group.

However, the size of the group increases relatively slowly, such that the maximum

distance remains very short. Table 2.3 shows several bar-plots illustrating the evolution

of the group on which most mass of the degree distribution is concentrated.
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Table 2.3: The evolution of degree distribution over time
- access benefits, intermediation benefits and quadratic marginal cost of linking -

2.7 Conclusions

The preferential attachment of Barabasi and Albert (1999) enables nodes to receive

new links with a probability proportional to their degree. Why new-born nodes prefer

to attach to highly linked nodes can be easily explained through incentives and opti-

mal behavior of agents. In fact, this aspect is captured by all game-theoretical models

of network formation that yield stars in equilibrium. Why the Barabasi and Albert

(1999) network does not ultimately converge to a star turned out to be more difficult to

interpret using economic reasoning. In this chapter we introduce payoff optimization

in a network growth model. We move away from the star towards a hierarchical struc-

ture by taking the marginal cost of linking to be increasing in the number of links.
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At the same time, we keep distances short by allowing agents to gain benefits from

intermediating connections between other nodes in the network.
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2.A Appendix

Proposition 2.1 For any t > 1, let gt be the network at time t. Consider that the

payoff of a node i in network gt is πai (gt) given by (2.2). If c ≤ 1
2
then gt is a star. If

c > 1
2
then gt is the empty network.

Proof. The case c > 1
2
is trivial. An old node will never accept to form a link, since

the cost of the link is larger than the benefit it brings. Thus, no links will be formed

since the first period. As nodes are added to the population, the only network that

emerges is the empty network.

When c ≤ 1
2
, the network settles as a star after the first few periods. We follow the

network formation for the first few periods and then we show the result holds for any

t using an inductive proof.

Period 1: node 1 is born.

Period 2: node 2 is born. Since πi(g1 + 12) ≥ πi(g1), ∀i ∈ {1, 2}, the link between
1 and 2 will be formed.

Period 3: node 3 is born. π3(g2 + 31) = π3(g2 + 32) ≥ π3(g2). Although 3 is

indifferent from linking with 1 or 2, we assume, for simplicity that 3 proposes a link to

1. As c ≤ 1
2
, the marginal payoff of an old node is always positive. The link between 1

and 3 is formed.

Period 4: node 4 is born. π4(g3+41) > π4(g3+4i) ≥ π4(g3), ∀i ∈ N3− {1}. Thus,
4 proposes a link to 1 and the link 14 is formed and g4 is a star.
...

Period m: node m is born. Suppose that πm(gm−1 + m1) > πm(gm−1 + mi) ≥
πm(gm−1), ∀i ∈ Nm−1 − {1}. The link m1 is formed and gm is a star.

Periodm+1: node (m+1) is born. We show that πm+1(gm+(m+1)1) > πm+1(gm+

(m + 1)i) ≥ πm+1(gm), ∀i ∈ Nm − {1}. Since gm is a star, πm+1(gm + (m + 1)1) =

1
2
+ m−1

3
− c and πm+1(gm+(m+1)i) = 1

2
+ 1
3
+ m−2

4
− c, ∀i ∈ Nm−{1}. The inequality

follows immediately. The link (m+ 1)1 is formed and g(m+1) is a star.

This step concludes the proof.
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Proposition 2.2 For any t > 1, let gt be the network at time t. Consider that the

payoff of a node i in network gt is πei (gt) given by (2.3). If c ≤ 1
2
then gt is a star. If

c > 1
2
then gt is the empty network.

Proof. The proof is the same as the one of the previous result. It is only the marginal

payoff of an old node that is different in the case of access benefits, intermediation

benefits and constant cost of linking. However, for the proof to hold we simply need

the marginal payoff of an old node to be positive. This holds for c ≤ 1
2
.

Corollary Let the payoff of a node i in network gt be πei (gt) given by (2.3). Suppose

that for the first t̄ periods, forming links is costless. If c ≤ 2t̄+1
6
then gt is a star. If

c > 2t̄+1
6
then gt is the empty network.

Proof. Since c = 0 for the first t̄ periods, Proposition ?? implies that gt̄ is a star,

centered around the first node. At time (t̄+ 1), the maximum marginal benefit an old

node gains from accepting a new link is 1
2
+ t̄−1

3
. The center of gt̄ receives the most,

while each of the spokes gets 1
2
+ 1

3
+ t̄−2

4
. Thus, when the cost c ≥ 1

2
+ t̄−1

3
neither the

center nor the spokes will afford to form new links. The network is virtually empty,

excepting the first t̄ nodes that are connected in a star. When c < 1
2
+ t̄−1

3
, the same

inductive argument applies and the network converges to a star.

Proposition 2.3 For any t > 1, let gt be the network at time t. Consider that the

payoff of a node i in network gt is πa+i (gt) given by (2.4). Then, the followings hold:

1. If c ≤ 1
2
, the network gt is a regular tree. That is, for any node i in gt, ηi = 1

or ηi =
£
1
2c

¤
.14

2. If c > 1
2
, the network gt is empty.

Proof. If c > 1
2
, an old node never accepts to form a link, hence the network is empty.

For c ≤ 1
2
, the proof is based on a recursive argument. An old node will accept

links as long as its marginal payoff is positive. The maximum number of links an old

can accept is
£
1
2c

¤
. As nodes are born they will form links with the first node, until

14We denote by [x] the closest integer to x, with [x] ≤ x.
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it reaches its maximum capacity. At date
£
1
2c

¤
+ 2, the new node forms a link with a

neighbor i of 1. For the next
£
1
2c

¤− 1 periods, i receives new links. Once i reaches its
capacity, new nodes propose links to other neighbors of 1. The formation process relies

on two principles that apply recursively:

• between two nodes i and j at the same distance from 1, a new node prefers to

attach to the one with the highest degree;

• between two nodes i and j with the same degree, a new node prefers to attach

to the one closer to 1.

Proposition 2.4 For any t > 1, let gt be the network at time t. The payoff of

a node i in network gt is πe+i (gt) given by (2.5). Suppose that for the first t̄ periods,

forming links is costless. Then, the followings hold:

1. If c ≤ 3t̄+4
24

then there exists a period τ and a subnetwork hτ of the network gτ

such that any node t born afterwards (t ≥ τ) forms a link with a node in hτ .

Moreover, hτ is a star.

2. If c > 3t̄+4
24
, then gt is empty.

Proof. Since links are costless for the first t̄ periods, gt̄ is a star centered around

the first node. The condition c ≤ 3t̄+4
24

ensures that at time (t̄ + 1) there exists at

least one node that can afford to receive a new link. The condition is equivalent to
1
2
+ 1

3
+ t̄−2

4
− 2c ≥ 0, which implies that the payoff of a spoke in the network gt̄ from

receiving a new link is positive.

At the same time, the condition c ≤ 3t̄+4
24
is sufficient to guarantee that the network

can grow ad infinitum. Re-written for t̄, the inequality becomes: t̄ ≥ 8c− 4
3
≥ 5(c− 1

3
).

Thus, the number of spokes in the initial network is sufficient to sustain the growth of

the network. Any new link received by a spoke increases the marginal benefit of the

others by 1
5
. Any node can afford a new link if its marginal benefit increased by (c− 1

3
)

since it received the last link. Hence, a spoke needs 5(c − 1
3
) periods to afford a new
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link since the last one it received. Suppose that each period a different spoke receives

a new link. Then the number of spokes that sustains the growth of the network is the

smallest integer larger than 5(c− 1
3
).

We sketch the steps of the proof. We first define a partition over the set of nodes.

Then we define a preferential attachment ranking for the old nodes. Finally, we show

how the subnetwork hτ forms.

Consider the following partition spans entirely the set of nodes.. The first born

node is denoted by 1.

P1(t) = {1}
P2(t) = {i ∈ Nt s.t. d(i, 1) = 1 and ηi ≥ 2}
P3(t) = {i ∈ Nt s.t. d(i, 1) = 1 and ηi = 1}
P4(t) = {i ∈ Nt s.t. d(i, 1) = 2}
We show that new nodes prefer to form links with nodes in P1, P2 and P3 in this

order. Thus, the most beneficial node is the first born, followed by its neighbors ranked

according to their degree. The ranking over partitions is independent of the time t.

A node i is preferred to node j if the marginal benefit a new node gains from linking

to i is higher than from linking to j. To show that 1 is preferred to any node i ∈ P2 at

date t we need to show that:

1

2
+

η1(t)

3
+

Σ(t)

4
>
1

2
+

ηi(t)

3
+

η1(t)− 1
4

+
Σ(t)− (ηi(t)− 1)

5
(2.14)

where Σ(t) =
X
j∈Nt

(ηj(t)− 1). Rewriting and dropping the index t we have

η1
3
− η1 − 1

4
+

Σ− (ηi − 1)
4

>
ηi
3
− ηi − 1

4
+

Σ− (ηi − 1)
5

(2.15)

Showing that η1 ≥ ηi for any t ensures the inequality above holds.

The links become costly as of period t̄+ 1. We exclude the trivial cases when c is

too small and the network converges to a star (for c ≤ 1
3
) or to an interlinked star (for

c ∈ (1
3
, 7
12
]). Hence, for c sufficiently large, the center of gt̄ cannot afford new links and

the new nodes will attach to the spokes.
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Suppose there exists a period δ and a node i ∈ P2 such that the degree of i becomes

ηi(δ) + 1 and ηi(δ) = η1(δ). This implies:

1

2
+

ηi(δ)

3
+

η1(δ)− 1
4

+
Σ(δ)− (ηi(δ)− 1)

5
≥ (ηi(δ) + 1)c (2.16)

Working out the inequality for Σ(δ) we obtain:

Σ(δ) ≥ (η1 + 1)(5c−
23

12
)− 1

3
≥ 4(η1 + 1)(c−

1

3
)− 2

3
(2.17)

This implies that
1

2
+

η1(δ)

3
+

Σ(δ)

4
≥ (η1(δ) + 1)c (2.18)

In other words, at time δ or even earlier, node 1 could afford to receive a new link.

A new node prefers to form a link with 1 rather than i, when η1 = ηi (see eq. 2.15).

Thus, if at time δ, node i receives the (ηi + 1)st link, that implies that a new node

skipped the opportunity of linking such that it gains the maximum benefit.

We showed that P1 is preferred to P2 at any period in the network formation process.

Moreover, P2 is preferred to P3, since new nodes gain more by linking to nodes with

higher degree, when everything else is equal. Nodes in P3 are preferred to nodes in P4,

since they have the same degree, but they are at a shorter distance from everyone else

in the network. In fact, the number of nodes in P2 ∪ P3 is sufficiently large, such that
nodes in P4 never receive links.

The subnetwork hτ forms as a response to the agglomeration pressure from the new

nodes. New nodes attach to the network forming links with older nodes according to

their rank and their availability. We showed that the ranking of partitions stays the

same over time. Any new node first proposes a link to the node in P1, followed by nodes

in P2 depending on their degree, and then by nodes in P3. The link is formed with the

first available old node. This stable ranking keeps the number of nodes that receive

links at the minimum required for the network to grow. If each period a different node

receives a new link, then a subnetwork, including node 1 and a subset of (5c − 5/4)
of its most connected neighbors, sustains the network growth. The growth process is

cyclical over time and old nodes receive new links with a periodicity that depends on

their rank.
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Motivation

Connections in the financial world are varied. Linkages between financial institutions

stem from both the asset and the liability side of their balance sheet. Frequently, banks

solve their liquidity imbalances by transferring funds from the ones that have a cash

surplus to those with a cash deficit. The supply and demand for liquidity connect

the financial institutions into a network. Connections in the financial world extend,

however, beyond the ones created by market forces. For instance, in the corporate

loan market, banks often prefer syndicating loans with other banks over being the sole

lender. In the primary equity and bond markets, banks tend to co-underwrite securities

offerings with banks with which they have long-standing relationships.

Broadly understood as a collection of nodes and links between nodes, networks

can be a useful representation of financial systems. By providing means to model the

specifics of economic interactions, network analysis can better explain certain economic

phenomena. In this thesis we argue that the use of network theories may enrich our

understanding of financial systems, as well. Given the intertwined nature of financial

systems, network theories may provide tools to better address several themes. One

theme to be explored is the issue of systemic risk. That a small shock in one institution

can destabilize the entire financial system is of major concern to both regulators and

academics. In this context, two questions arise: How resilient financial networks are

to contagion, and how financial institutions form connections when exposed to the risk

of contagion. Another theme that may benefit from the developments of networks

theories investigates the collapse of the interbank market of the type we have observed

in the second half of 2007. Likewise, meaningful insights can be gained from using a

network approach to explain how some financial institutions exploit their position as

intermediaries between other institutions. Financial institutions that bridge otherwise

disconnected parts of the network might gain significant payoff advantages. Financial

networks will, thus, be shaped by incentives that drive institutions to acquire the

intermediation gains.

Thus far, the literature has primarily adopted a network approach when exploring
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the issue of systemic risk. Only very recently a new line of research became concerned

with the effects of social networks on investment decisions and corporate governance.

We survey below the main theoretical contributions, as well as the empirical findings.

The theoretical literature takes two approaches. The first approach looks for con-

tagious effects via direct linkages. Pioneering work in the field that generated a stream

of subsequent articles is Allen and Gale (2000). The paper studies how the banking

system responds to contagion when banks are connected under different network struc-

tures. The authors show that incomplete networks are more prone to contagion than

complete structures. Specifically, they take the case of an incomplete network where

the failure of a bank may trigger the failure of the entire banking system. They prove

that, for the same set of parameters, if banks are connected in a complete structure,

then the system is resilient to contagious effects.

Freixas et al. (2000) considers the case of banks that face liquidity needs as con-

sumers are uncertain about where they are to consume. In their model the connections

between banks are realized through interbank credit lines that enable these institutions

to hedge regional liquidity shocks. The authors analyze different market structures and

find that a system of credit lines, while it reduces the cost of holding liquidity, exposes

the banking sector to gridlocks, even when all banks are solvent. Dasgupta (2004) also

discusses how linkages between banks represented by crossholding of deposits can be

a source of contagious breakdowns. Fragility arises when depositors, that receive a

private signal about banks’ fundamentals, may wish to withdraw their deposits if they

believe that enough other depositors will do the same. A unique equilibrium is iso-

lated and it depends on the value of the fundamentals. Eisenberg and Noe (2001) take

a more technical approach when investigating systemic risk in a network of financial

institutions. First the authors show the existence of a clearing payment vector that

defines the level of connections between banks. Next, they develop an algorithm that

allows them to evaluate the effects that small shocks have on the system. Similarly,

Minguez-Afonso and Shin (2007) use lattice-theoretic methods to study liquidity and

systemic risk in high-value payment systems, such as for the settlement of accounts

receivable and payable among industrial firms, and interbank payment systems. Leit-
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ner (2005) constructs a model that shows how agents may be willing to bail out other

agents, in order to prevent the collapse of the whole network. He is interested in the

design of optimal financial networks that minimize the trade-off between risk sharing

and the potential for collapse. Vivier-Lirimont (2004) addresses the issue of optimal

networks from a different perspective: He is interested in those network architectures

where transfers between banks improve depositors’ utility. He finds that only very

dense networks, where banks are very few links away from one another, are compatible

with the Paretto optimal allocation.

The second approach focuses on indirect balance-sheet linkages. Lagunoff and

Schreft (2001) construct a model where agents are linked in the sense that the return

on an agent’s portfolio depends on the portfolio allocations of other agents. Similarly,

de Vries (2005) shows that there is dependency between banks’ portfolios, given the fat

tail property of the underlying assets return distributions, and this caries the poten-

tial for systemic breakdown. Cifuentes et al. (2005) present a model where financial

institutions are connected via portfolio holdings. The network is complete as everyone

holds the same asset. Although the authors incorporate in their model direct linkages

through mutual credit exposures as well, contagion is mainly driven by changes in as-

set prices. These papers all share the same finding: Financial systems are inherently

fragile. Fragility not only arises exogenously, from financial institutions’ exposure to

macro risk factors, as it is the case in de Vries (2005). It also arises endogenously,

through forced sales of assets by some banks that depress the market price inducing

further distress to other institutions, as in Cifuentes et al. (2004).

Besides the theoretical investigations, there has been a substantial interest in look-

ing for empirical evidence of contagious failures of financial institutions resulting from

the mutual claims they have on one another. Most of these papers use balance sheet

information to estimate bilateral credit relationships for different banking systems.

Subsequently, the stability of the interbank market is tested by simulating the break-

down of a single bank. Upper and Worms (2004) analyze the German banking system.

Sheldon and Maurer (1998) consider the Swiss system. Cocco et al. (2005) present

empirical evidence for lending relationships existent on the Portuguese interbank mar-
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ket. Furfine (2003) studies the interlinkages between the US banks, while Wells (2004)

looks at the UK interbank market. Boss et al. (2004) provide an empirical analysis of

the network structure of the Austrian interbank market and discuss its stability when

a node is eliminated. In the same manner, Degryse and Nguyen (2007) evaluate the

risk that a chain reaction of bank failures would occur in the Belgian interbank market.

These papers find that the banking systems demonstrate a high resilience, even to large

shocks. Simulations of the worst case scenarios show that banks representing less than

five percent of total balance sheet assets would be affected by contagion on the Belgian

interbank market, while for the German system the failure of a single bank could lead

to the breakdown of up to 15% of the banking sector in terms of assets. Departing from

the simulation approach, Iyer and Peydro-Alcalde (2007) test for financial contagion

using data about interbank exposures at the time of the failure of a large Indian bank.

They find that banks with higher interbank exposure to the failed bank experience

higher deposit withdrawals, and that the impact of exposure on deposit withdrawals is

higher for banks with weaker fundamentals.

In addition to this literature, a recent trend of empirical research advances a new

important set of questions: the effects of social networks on investment decisions. on

investment decisions and corporate governance. Cohen et al. (2007) use social networks

to identify the transfer of information in security markets. Connections between mutual

fund managers and corporate board members via shared education institutions proxy

the social network. They find that portfolio managers place larger bets on firms they

are connected to through their network, and perform significantly better on these hold-

ings relative to their non-connected holdings. Hochberg et al. (2007) look at venture

capital forms that are connected through a network of syndicated portfolio company

investments. They find that better-networked VC firms experience significantly better

fund performance, as measured by the proportion of investments that are successfully

exited through an IPO or a sale to another company. Nguyen-Dang (2007) is concerned

with the impact of social ties between CEOs and directors within a board of directors

on the effectiveness of board monitoring. The paper investigates whether CEOs are

less accountable for poor performance depending on their position in the social net-
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work. To map the social network, the author uses data on educational background of

CEOs from the largest French quoted corporations. Social ties are also formed through

interlocking directorships. He finds that when some of the board members and the

CEO belong to the same social circles, the CEO is provided with a double protection.

She is less likely to be punished for poor performance and more likely to find a new

and good job after a forced departure. In a later work, Kramarz and Thesmar (2007)

run a similar analysis and find evidence to support that social networks may strongly

affect board composition and may be detrimental to corporate governance.

A comprehensive survey of the existent literature on financial networks, that also

suggests several directions for future research is given by Allen and Babus (2008).

There would appear to be many ways network analysis can be used to gain a better

understanding of financial systems. Despite this, the literature on financial networks

is still at an early stage. In this thesis, we contribute to the research on financial

networks, and propose two applications of network theories to financial systems. The

next two chapters of this thesis join the literature that focuses on the issue of systemic

risk. The next chapter studies the endogenous formation of networks in the banking

system, while the last chapter looks at network effects on contagion risk.





Chapter 3

The formation of Financial

Networks

3.1 Introduction

The modern financial world exhibits a high degree of interdependence. Banks and

other financial institutions are linked in various ways. For instance, banks are directly

connected through mutual exposures acquired on the interbank market. Likewise,

holding similar portfolios creates indirect linkages between financial institutions.

In this chapter we propose a different setting: The rationale behind the linkages in

the banking system is given by the threat of contagion. We develop a model where

banks form links with each other in order to reduce the risk of contagion. A network

is formed endogenously between banks and serves as an insurance mechanism.

Despite their obvious benefit, linkages between banks come at the cost that small

shocks, which initially affect only a few institutions, may propagate through the entire

system. Two questions can be explored. First, what network structures are resilient

to contagion? Second, and perhaps more importantly, how financial institutions form

connections?

This chapter addresses the second question. We investigate how banks form linkages

with each other, where a link represents a transfer of funds between two institutions.

In particular, we study a network formation process that is mainly driven by the risk of

59
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contagion. Identifying what networks emerge in equilibrium and how these structures

respond to contagion is of particular importance for emerging market economies. Lack-

ing the sound regulatory frameworks that characterize the developed financial systems,

the banking systems of developing economies have to rely on the ways banks take deci-

sions. The network formation process can be interpreted as decentralizing an insurance

scheme that a central planner would adopt.

We apply tools from the theory of networks to address this question. Situations,

such as the one we study, where agents form or severe connections depending on the

benefits they bring are modeled through a game of network formation. A rapidly

growing literature on network formation games has developed in the past few years,

introducing various approaches to model network formation and proposing several equi-

librium concepts (Bala and Goyal, 2000, Bloch and Jackson, 2007, Jackson and Wolin-

sky, 1996, Dutta et. al, 2005). Despite the recent developments, the applications to

financial networks are rather limited.

The paper that is closest related to ours is by Allen and Gale (2000). Allen and

Gale (2000) study how the banking system responds to contagion when banks are con-

nected under different network structures. In a setting where consumers have Diamond

and Dybvig (1983) type of liquidity preferences, banks perfectly insure against liquid-

ity shocks by exchanging interbank deposits. The connections created by swapping

deposits expose the system to contagion. The authors show that incomplete networks

are more prone to contagion than complete structures. Specifically, they take the case

of an incomplete network where the failure of a bank may trigger the failure of the

entire banking system. However, if banks are connected in a complete structure, then

the system is resilient to contagious effects.

The main innovation in our work is to endogenize the network formation of banks.

Although, we use the same framework to motivate interactions on the interbank market,

we no longer consider that the network of banks is given. We allow the endogenous

formation of links and analyze what are the implications for the stability of the banking

system. At the base of the link formation process lies the same intuition developed in

Allen and Gale (2000): better connected networks are more resilient to contagion. In
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fact, in our model there is a connectivity threshold above which contagion does not

occur. Thus, in order to insure against the risk of contagion, banks form links to reach

this threshold. However, an implicit cost associated to being involved in a link prevents

banks from forming connections more than required by the connectivity threshold. We

show that banks manage to form networks that are usually resilient to the propagation

of shocks.

This chapter is organized as follows. Section 2 presents an illustrative example of

a network formation process in a 4 - bank framework. The details of the model are

presented in Section 3. Section 4 introduces the payoffs banks have from forming links,

and models the network formation game. Section 6 analyses the efficiency of banks’

link formation decisions. Section 7 concludes.

3.2 Example

We explain with a simple example the incentives banks have when forming links. Con-

sider an economy that consists of two regions, and in each region there are two banks.

The banking system is subject to liquidity shocks, perfectly symmetric and negatively

correlated across regions. Thus, when each bank in one region has a liquidity surplus

+z, each bank in the other region has a liquidity shortage −z. Since liquidity shocks
are negatively correlated, banks are able to insure against illiquidity risk by transferring

funds across regions. For any pattern of links that connects banks in the two regions,

there exists at least one set of transfers that perfectly insures banks against liquidity

shocks. Fig. 3.1 (a), (b) shows two such instances, where banks 1 and 2 are in the same

region, while banks 3 and 4 are in the other region.

Transfers, however, create links between banks, exposing the system to the risk of

contagion. Explicitly, when a bank fails it induces a loss to all the neighboring banks.

If this loss is above a threshold, the banks that incur such a loss go bankrupt as well.

This way, the initial shock propagates to other banks via links.

Limiting contagion is the objective of both a social planner concerned with pre-

venting systemic risk, as well as, of banks interested in reducing spillovers from a failed
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Figure 3.1: The banking system under different networks

institution. The risk of contagion depends on the size of the loss a failed bank induces

to its neighbors. The loss has two important properties.1 First, it is increasing in

the size of deposits transferred between banks. The smaller the amount transferred

between two banks, the lower is the loss one bank faces if the other one fails. Second,

the loss is decreasing in the total number of links a bank has. Thus, increasing the

connectivity level in the banking system reduces its propensity to contagion.

We illustrate below how these two properties affect the banks’ link formation de-

cisions. Figure 3.1 shows different patterns of connections between banks and the

associated transfers schemes. Assume that the set of parameters is such that contagion

does not occur in the complete network in fig. 3.1 (c). We study how a social planner

would design a network in order to prevent contagion, in parallel to the decentralized

link formation process.

Social planner approach: A social planner that is able to organize transfers between

banks faces a trivial problem. Designing a fully connected banking system, as in fig.

3.1 (c), ensures that contagion does not occur. Moreover, in a partially connected

network, as shown in fig. 3.1 (b), the size of deposits that need to be transferred in

order fully insure banks against liquidity shocks can be reduced by half compared to

the network shown in fig. 3.1 (c). Lower amounts of transfers may bring the loss

produced when a bank fails below the contagion threshold. Thus, contagion need not

occur in the incomplete network 3.1 (b). If this is the case, a social planner that aims

to prevent systemic risk is indifferent between the two networks: 3.1 (b) and 3.1 (c).

1We show why the two properties hold in Section 3.3.
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Banks decentralized approach. Banks seek to reduce contagious spillovers from a

failed bank, while fully insuring against liquidity shocks. Links across regions provide

insurance against liquidity shocks, by allowing transfer of funds from banks with a

cash surplus to banks with a cash deficit. Links within a region serve solely to limit

contagion, by increasing the connectivity level in the banking system. Moreover, there

is an implicit cost associated to being involved in a link, that takes the form of the

loss one bank would face if the other one fails. Banks will weigh the costs and benefits

when deciding how to form links.

Consider a banking system connected as in fig. 3.2.1 (b) and assume that contagion

can occur. For example, if bank 1 fails, banks 3 and 4 go bankrupt as well. Furthermore,

the failure of bank 1 indirectly triggers the failure of 2, although there is no link between

the two. The loss that a bank spreads decreases with the number of links it has.

Provided the loss is lowered below the contagion threshold, both banks 1 and 2 will

agree to form a link. The same incentives induce bank 3 and 4 to link. The complete

network is, thus, formed.

In contrast, when the system in fig. 3.2.1 (b) is resilient to contagion, there is no

benefit for banks 1 and 2 to form a link. Suppose the link exists; then bank 2 incurs

a loss, for instance, when 1 fails. Links within the same region serve only to reduce

spillovers from a failed bank. Since contagion does not occur in the first place, the link

is detrimental for both banks.

3.3 The Model

3.3.1 Consumers and Liquidity Preferences

The economy is divided into 2n sectors, each populated by a continuum of risk averse

consumers. There are three time periods t = 0, 1, 2. Each agent has an endowment

equal to one unit of consumption good at date t = 0. Agents are uncertain about

their liquidity preferences: they are either early consumers, who value consumption

only at date 1, or they are late consumers, who value consumption only at date 2.

In the aggregate there is no uncertainty about the liquidity demand in period 1: on
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average, the fraction of early consumers is q. Each sector, however, experiences random

fluctuations in the need for liquidity of early consumers. With probability (1 − π)/2,

in each sector there is either a high proportion pH of agents that need to consume at

date 1 or a low proportion pL of agents that value consumption in period 1. Only

with a small probability π, the fraction of early consumers is the same across sectors,

q = pH+pL
2
.

All the uncertainty is resolved at date 1, when the state of the world is realized

and commonly known. At date 2, the fraction of late consumers in each region will be

(1− p) where the value of p is known at date 1 as either pH , pL or q.

3.3.2 Banks, Asset Investments and Idiosyncratic Shocks

In each sector i there is a competitive representative bank. Agents deposit their endow-

ment in the regional bank. In exchange, they receive a deposit contract that guarantees

them an amount of consumption depending on the date they choose to withdraw their

deposits. In particular, the deposit contract specifies that if they withdraw at date 1,

they receive C1 > 1, and if they withdraw at date 2, they receive C2 > C1.

Banks have two investment opportunities: a liquid asset with a return of 1 after one

period, or an illiquid asset that pays a return of r < 1 after one period, or R > 1 after

two periods. Let x and y be the per capita amounts invested in the liquid and illiquid

asset, respectively. Naturally, banks use the liquid asset to pay depositors that need

to withdraw in the first period and reserve the illiquid asset to pay the late consumers.

For convenience, we assume that the investment in the liquid asset, x, equals qC1, while

the investment in the illiquid asset, y, will cover (1 − q)C2/R.2 Thus, at date 1 each

bank has with probability (1− π)/2 either a liquidity shortage of zC1 = (pH − q)C1 or

a liquidity surplus of zC1 = (q − pL)C1.

The uncertainty in the liquidity preferences of consumers creates liquidity shocks

in the banking system. We assume that liquidity shocks are distributed across banks

such that there are two regions, A and B, in the banking system. In each region there

2Allen and Gale (2000) show in their paper that both the deposit contract and the investement in
liquid and illiquid asset are such that they maximize the expected utility of consumers.
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is a equal number of banks: A = {1, 2, ..., n} and B = {n+1, n+2, ..., 2n}. Moreover,
liquidity shocks are perfectly negatively correlated across regions. Hence, when banks

in region A receive a positive shock, for instance, banks in region B receive a negative

shock.

In addition, banks are subject to idiosyncratic shocks. In particular, one bank will

fail in period 1, when there are no liquidity imbalances. This implies that each bank

has an individual probability of π/2n of going bankrupt in period 1.

Table 1 summarizes the states of the world for the banking system and the associ-

ated probabilities.

Region A Region B

Probability State/Bank 1 2 ... n n+ 1 n+ 2 ... 2n

(1− π)/2 S1 +z +z +z +z −z −z −z −z
(1− π)/2 S2 −z −z −z −z +z +z +z +z

π/2n S̄1 fail 0 0 0 0 0 0 0

π/2n S̄2 0 fail 0 0 0 0 0 0

π/2n ... ... ... ... ... ... ... ... ...

π/2n S̄2n 0 0 0 0 0 0 0 fail

Table 3.1: Distribution of Shocks in the Banking System

3.3.3 Balance Sheet Linkages

The regional liquidity shocks create opportunities for risk-sharing. While there is no

aggregate liquidity shock, banks in either region have with probability (1−π)/2 either

a liquidity shortage or a liquidity surplus of zC1. As shocks are negatively correlated

across regions, individual risk can be completely hedged by exchanging interbank de-

posits between banks in different regions, at date 0. We assume each bank receives the

same return as the consumers for the amounts transferred as deposits: C1, if they with-

draw after one period, and C2 if they withdraw after two periods. These interactions

create balance sheet linkages between banks in the two regions.
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Thus, banks’ portfolios consist of three assets: the liquid asset, the illiquid asset

and the interbank deposits. Each of these three assets can be liquidated in either of the

last two periods. However, we assume that the costliest in terms of early liquidation is

the illiquid asset, followed by interbank deposits. This implies the following ordering

of returns:

1 <
C2
C1

<
R

r
(3.1)

Let aij denote the amount exchanged as deposits between banks i and j at date

0. We consider that deposit contracts are bilateral, hence we have aij = aji. Let Ni

be the set of banks that i is linked to and let N cross
i be a subset of Ni representing

the banks that i is linked to in the other region. Then, the total amount of deposits i

exchanges with its neighbors should balance out its liquidity shortage or excess. Since

the insurance against liquidity shocks is provided only through links with banks in a

different region, aij should satisfy the feasibility constraint :

X
j∈Ncross

i

aij ≥ z (3.2)

3.3.4 Losses Given Default

The non insurable idiosyncratic shocks bear the risk of contagion. That is, the shock

that initially affects only one institution can propagate through the entire system. In

our setting, shocks spread sequentially: an exogenous failure of a bank in period 1

might spill over first to any neighbor bank and next, via links, to all the other banks.

The contagion mechanism is detailed in the next section. As a measure to evaluate

contagion risk we use loss given default (henceforth LGD). LGD expresses the excess

of nominal liabilities over the value of the assets of the failed bank. In our setting,

LGD will be given by the loss of value a bank incurs on its deposits when one of its

neighbor banks is liquidated.

To calculate LGD, we need to determine the value of the assets of the failed bank.

When a bank i fails, its portfolio of assets is liquidated at the current value and
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distributed equally among creditors. The three assets in banks’ portfolio yield different

returns upon liquidation in period 1. First, the amount of x per capita banks invested

in the liquid asset pays a return of 1. Second, the amount y per capita banks hold in

the illiquid asset, pays a return of r < 1 if liquidated early. And lastly, the interbank

deposits, summing up to
P

k∈Ni
aik, yield a return of C1 per unit of deposit. On the

liability side, a bank has to pay its depositors, payment normalized to 1, and at the

same time to repay its interbank creditors that also add up to
P

k∈Ni
aik. This yields a

new return per unit of good deposited in a bank i equal to C̄i =
x+ry+ k∈Ni aikC1

1+ k∈Ni aik
< C1.3

The LGD of bank j given that bank i has failed is expressed as4:

LGDji = aji(C1 − C̄i) = aji
C1 − x− ry

1 +
P

k∈Ni
aik

(3.3)

LGD has two interesting properties that have important implications on the way

banks form links.

• First, the LGDji is increasing in the amount of deposits ajithat is exchanged

between banks. This gives banks an incentive to exchange the minimum amount

of deposits.

• Second, the LGDji is decreasing in (
P

k∈Ni−{j} aik). This implies that the more

connected one bank is, the smaller the loss it induces to its neighbors in case it

fails. In other words, the better connected banks are, the smaller the contagious

effects will be.

3.3.5 Contagion Threshold

In this section we describe the contagion mechanism. When a bank fails, its neighbors

incur a loss on the value of deposits exchanged with the failed bank. This implies that,

in period 1, affected banks hold the value of the liquid asset, qC1, less the size of LGD.

Hence, to meet its obligation, qC1, towards early consumers, a bank must liquidate an

amount of the illiquid asset that equals the LGD value. Liquidating the illiquid asset

3Eq. (3.1) ensures that the inequality holds.
4In principle LGDji 6= LGDij since it may be that

P
k∈Ni

aik 6=
P

k∈Nk
ajk
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prematurely, however, involves a penalty rate r < 1 and has negative consequences

for the late consumers. In fact, if too much of the illiquid asset is liquidated early,

the consumption of late consumers may be reduced to a level below C1. In this case,

the late consumers gain more by imitating the early consumers and withdrawing their

investment from the bank at date 1. This induces a run on the bank and, subsequently,

triggers its failure.

The maximum amount of illiquid asset that can be liquidated without causing a run

is b(q) and it depends on the fraction of late consumers, (1− q), and the return rates

for early and late liquidation of the illiquid asset, r and R. Equation (3.4) captures

the exact effect of these variables.

b(q) ≡ r

∙
y − (1− q)C1

R

¸
(3.4)

The maximum amount of illiquid asset that can be liquidated without causing a

run on the bank can be interpreted as a contagion threshold. Any bank that incurs a

LGD higher than b(q) will, inevitably, fail. A value of LGD below the threshold b(q)

will not trigger the failure of a bank. However, it will be costly for the late consumers,

given that their consumption is now reduced to C̃2 < C2.5 Thus, there is an implicit

cost associated with being involved in a link. Links are potentially conduits of LGD,

which is detrimental for banks that incur it, even when below the contagion threshold

b(q).

3.4 The Network Formation Game

3.4.1 Concepts and Notations

Let N = {1, 2, ..., 2n} denote the set of banks. A network g on the set N is a collection

of gij pairs, with the interpretation that i and j are linked. Thus, if i and j are linked

in the network g, then gij ∈ g.

5The consumption of late consumers at least equals the consumption of the early consumers:
C̃2 ≥ C1.
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The set of neighbors of bank i in the network g is Ni(g) = {j ∈ N | gij ∈ g}.
Let ηi(g) = |Ni(g)|, where |·| represents the cardinality of a finite set. The number
of neighbors, ηi(g), bank i has in the network g is called the degree of bank i. In

addition, let N inner
i (g) = {j ∈ N |gij ∈ g and i, j ∈ A or i, j ∈ B} and ηinneri (g) =

|N inner
i (g)|. The number of neighbor banks in the same region is defined as the inner

degree of bank i. A related notation is used for the set of banks in a different region,

N cross
i (g) = Ni(g)rN inner

i (g), and the number of neighbor banks in a different region

is ηcrossi (g) = |Ni(g)rN inner
i (g)|.

We use the notation g + gij to denote the new graph obtained from g by linking i

and j, if gij /∈ g. Similarly, we consider that g− gij represents the graph obtained from

g by deleting an existing link between i and j, when gij ∈ g

A path of length k between i and j is a sequence of distinct agents (i, j1, ..., jk−1, j)

such that gij1 , gj1j2 ,..., gjk−1j ∈ g. A network g is connected if there exists a path

between any two nodes i and j from N . A network g is complete if for any node i ∈ N ,

ηi(g) = n− 1. A network g is regular of degree k if for any node i ∈ N , ηi(g) = k.

3.4.2 Strategies, Objectives and Welfare

The interaction between banks on the interbank market can be modeled as a network

formation game. The network is formed as a result of banks’ actions, who decide how

to form links. Since deposits are exchanged on bilateral basis (i.e. bank i agrees to pass

its deposits to bank j if and only if bank j will pass its deposits to bank i in turn), the

network is undirected and the formation of a link requires the consent of both parties

involved. However, the severance of a link can be done unilaterally.

The strategy of bank i can be described as a linking vector si = (si1, si2, ..., si2n)

such that sij ∈ {0, 1} for each j ∈ N r{i} and sii = 0, where sij = 1 means that

i intends to form a link with bank j. A link between i and j is formed if and only

if sij = sji = 1.6 Links between banks in different regions provide insurance against

liquidity shocks. Links formed between banks in the same region serve solely to limit

6This condition capture that the formation of a link between two banks requires the consent of
both participants.
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contagion. In this chapter we explicitly model the network formation between banks

in the same region for a given pattern of interactions between banks across regions. In

particular we assume that between banks in the different regions there exists a complete

bipartite graph. Thus, for any bank i ∈ {1, 2, ..., n} the linking vector can be written
as si = (si1, si2, ..., sin, 1, 1, ..., 1), while for any bank j ∈ {n + 1, ..., 2n} the linking
vector is represented by sj = (1, 1, ..., 1, sjn+1, ..., sj2n). In essence, we study a network

formation process driven by the risk of contagion.

Since liquidity shocks are negatively correlated across regions, they are perfectly

insurable. Banks in one region can hedge their potential liquidity excess or shortage by

exchanging deposits with banks in the other region. Any linking pattern between banks

in different regions is sufficient for insurance purposes, as long as it allows banks to

exchange deposits which satisfy the feasibility constrain (3.2). However, idiosyncratic

shocks can spread through links and expose the banking system to contagion risk. The

risk of contagion, measured in terms of LGD, is reduced on the one hand when the

size of deposits exchanged per link is small, and, on the other hand, when the number

of links a bank has is high. If we only look at symmetric solutions, the amount of

deposits exchanged per link is minimal when each bank in one region is linked to all

the other banks in the other region. This is the rationale behind the assumption that

banks of a different type form a complete bipartite graph. Next, we investigate how

banks endogenously reduce contagion risk, by forming links with other banks in the

same region.

Lemma 3.1 Consider the states of the world S1and S2, when liquidity shocks are neg-

atively correlated across the two regions A and B. The minimization problem for LGD

associated to each link, under the feasibility constrain (3.2), has a symmetric solution

when each i ∈ A is linked to each i0 ∈ B, and aii0 = z
n
.

Proof. The proof is provided in the Appendix.

For simplicity, we normalize the amount of deposits exchanged between banks i and

j in the same region to aij = z
n
.

In a network where they can fully insure against liquidity shocks, banks need only

to prevent losses through contagion. Thus, banks’ primary objective is to minimize the
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probability of failure through contagion. Secondarily, banks seek to avoid losses, even

when LGD is below the contagion threshold. These two forces drive the link formation

process in different directions: The first motivates banks to form densely connected

networks, while the second limits the number of links that banks have.

Similarly, a social planner objective is to minimize the number of banks that fail

through contagion. The main concern of a social planner is the systemic risk. In our

framework, the systemic risk is given by the number of banks that fail, following a shock

in a single institution. Thus, banks’ and social planner’s incentives to form networks

are at least partially aligned.

3.4.3 Payoffs’ Properties

We briefly give the intuition behind the payoffs that banks gain from linking to other

banks. The contagion threshold we introduced in Section 3.3 is useful to describe the

trade-offs of the linking process. When a failed bank induces a value of LGD higher

than the contagion threshold, b(q), then all the the neighboring banks will fail in turn.

By assumption, each bank has at least n neighbors. Thus, the failure of a bank triggers

the failure of at least n other banks. This chain of failure will affect remaining banks,

causing, in the end, the failure of the entire system. However, if the LGD caused by a

failed bank is below the threshold b(q), only the neighboring banks experience a loss.

This reduces the consumption of the late consumers to a level C̃2 < C2, as explained

in Section 3.3.5. Any other bank is able to pay C1 to the early consumers and C2 to

the late consumers.

Whether LGD is above or below the contagion threshold, b(q), depends on how

well connected the respective bank is. The size of deposits exchanged between banks

in different regions is z/n, as shown by Proposition 3.1. The size of deposits exchanged

between banks in different regions is also, by assumption, z/n. This implies that the

LGD induced by a failed bank depends on how many neighbors the respective bank

has.

The contagion threshold, b(q), is identical for all banks and is independent of the

number of links a bank has. Thus we can identify a number t ∈ N that brackets b(q)
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as follows:
z

n

C1 − x− ry

1 + (n+ t) z
n

≤ b(q) <
z

n

C1 − x− ry

1 + (n+ t− 1) z
n

(3.5)

The left hand side of the inequality is exactly the LGD induced by a bank with (n+ t)

neighbors, and the right hand side is the LGD induced by a bank with (n + t − 1)
neighbors. Inequality 3.5 relates the contagious effects of a bank failure to the number

of links banks have. For a given value of the contagion threshold b(q), the failure of a

bank with (n+ t− 1) links or less triggers the failure of the entire system, through the
mechanism described above. The failure of a bank with at least (n+ t) links, however,

affects only neighboring banks, which incur a loss.

We discuss in detail the implications of a bank failure for the case t ∈ {1, 2, ..., n−1}.
Consider the failure of a bank j in a network g. Bank j is assumed to be linked to all

the banks in a different region, which implies ηcrossj = n. We distinguish the following

cases:

1. ηinnerj (g) < t. In this case, for any i ∈ Nj(g) we have LGDij > b(q). Conse-

quently, any bank k ∈ N will also fail.7

2. ηinnerj (g) ≥ t. In this case, for any i ∈ Nj(g) we have LGDij ≤ b(q). Thus, any

bank i ∈ Nj(g) will pay the early consumers C1. The late consumers, however,

will have their consumption reduced to C̃2 < C2. Any other non-neighboring

bank k ∈ N rNj(g) will not be affected in any way and will be able to pay its

consumers C1 at date 1 and C2 at date 2.

3.4.4 Payoffs

We formally introduce the payoff that a bank i gains from network g. Banks seek

to minimize the probability of failure through contagion. This creates incentives to

form links in order to bring the LGD below the contagion threshold, b(q). However,

there is an implicit cost of linking: Losses are transmitted through links, even when

LGD ≤ b(q).

7With this discussion, we are able to conclude that the existence of a single bank with insufficient
links may trigger the failure of the entire system.
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Let b(q) be the contagion threshold and t an integer that satisfies 3.5. Formally,

we can express the payoff of a bank i ∈ N as a function u, that is increasing in the

number of nodes with an inner degree higher than t and decreasing in the number of

neighbors with an inner degree higher than t:

ui(g) = f(|T | , |Ni(g) ∩ T |) (3.6)

where T = {j ∈ N
¯̄
ηinnerj (g) ≥ t} and |·| represents the cardinality of a set.

Moreover, for any node i and any inner degree ηinneri , the payoff ui has the following

properties:

1. ui(g + gij) = ui(g) and ui(g − gij) = ui(g), ∀j ∈ N s.t. ηinnerj (g) < t− 1

The explanation for this indifference relies on the fact that the failure of a node

with an inner degree below t will trigger the failure of the entire system. The

failure of j leads to the failure of i, regardless of i creating a link or severing an

existent link with j.

2. ui(g + gij) > ui(g), ∀j ∈ N s.t. ηinnerj (g) = t− 1

If ηinnerj (g) = t−1 and i creates a link with j, then the inner degree of j becomes
ηinnerj (g) = t. Thus, i trades a situation when the failure of j induces its own

failure, for a situation when the failure of j results in merely a lower utility for

i’s late consumers.

3. ui(g + gij) < ui(g), ∀j ∈ N s.t. ηinnerj (g) ≥ t

When j has already an inner degree sufficiently high, its failure will have only

effects for the neighbor banks. Linking with j does not bring i any benefits, but

it comes at the cost represented by the loss i might incur if j fails.

4. ui(g − gij) > ui(g), ∀j ∈ N s.t. ηinnerj (g) ≥ t+ 1

Severing an existent link with j, will leave j with an inner degree still sufficiently

high. It will, however, spare i from experiencing a loss in case j fails.
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3.4.5 Stable Networks

We are now ready to approach the main goal of this paper. We can characterize the

networks that arise in a banking system where financial players’ incentives to form links

are driven by the risk of contagion. The regional liquidity shocks in the banking system

are perfectly insurable through risk-sharing agreements. Banks in one region can hedge

their potential liquidity excess or shortage by exchanging deposits with banks in the

other region. We assume that transfers take place when each bank in a region is linked

to each bank in the other region, such that the amount of deposits exchanged per link

is minimal. However, an idiosyncratic shock that hits one bank can propagate through

the entire system. Banks can limit contagion by creating links with other banks in

the same region. We follow the network formation process between banks in the same

region.

To identify stable networks, we use the following concept introduced by Jackson

and Wolinsky (1996).

Criterion 3.1 Let gij = min(sij, sji) and consider that gij ∈ g when gij = 1. A

network g is pairwise stable if

1. for all gij ∈ g, ui(g) ≥ ui(g − gij) and uj(g) ≥ uj(g − gij) and

2. for all gij /∈ g, if ui(g) < ui(g + gij) then uj(g) > uj(g + gij).

where ui(g) is the payoff of bank i in the network g.

The first condition of the stability criterion states that a network is stable if there

is no bank that wishes to severe a link in which it is involved. The second condition

requires that in a stable network there are no two unconnected banks that would both

benefit by forming a link. In other words, a network is stable if there are no banks

that wish to deviate either unilaterally (by severing existent links), or bilaterally (by

adding a link between two banks).

The first result provides a necessary condition for a stable network to exist.8

8All results in this section hold under the assumption that the crossing degree of any bank i ∈ N ,
in the network g, is ηcrossi (g) = n.
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Proposition 3.1 Let b(q) be the contagion threshold and t an integer that satisfies 3.5.

If a network g is pairwise stable, then any bank i ∈ N has an inner degree ηinneri (g) ≤ t.

Proof. The proof follows immediately from the payoff properties 3 and 4 described

in the previous section. Suppose that there exists a bank i such that ηinneri (g) > t.

Then, any neighbor j ∈ Ni(g) has an incentive to severe the link that connects it with

i. Thus, g is no longer stable.

This result provides only a partial characterization of stable networks. In fact,

under payoffs that adhere to properties 1−4, there are many pairwise stable networks.
In fact, any network where each node i has an inner degree ηinneri (g) ≤ t−2 is pairwise
stable. This multiplicity of equilibria is mainly driven by the indifference in forming

or severing links as expressed by property 1. In what follows we alter property 1 in

order to restrict the set of stable networks. Namely, we consider that banks have a

weak preference to forming links with other banks. We keep the other properties as

described in Section 4.4.

Formally, if b(q) is the contagion threshold and t is an integer that satisfies the

inequality 3.5, then for any node i and any inner degree ηinneri , the payoff ui has the

following properties:

1’. ui(g + gij) = ui(g) + ε and ui(g − gij) = ui(g)− ε, ∀j ∈ N s.t. ηinnerj < t− 1;

2. ui(g + gij) > ui(g), ∀j ∈ N s.t. ηinnerj = t− 1;

3. ui(g + gij) < ui(g), ∀j ∈ N s.t. ηinnerj ≥ t;

4. ui(g − gij) > ui(g), ∀j ∈ N s.t. ηinnerj ≥ t+ 1.

Under this new set of properties we can comprehensively characterize the set of

stable networks and make a prediction about the stability of the banking system.

Identifying stable networks architectures is not a goal in itself, but rather the goal

is to evaluate their resilience to contagion. Contagion stems from banks that have

insufficient links. Recall that bank i has insufficient links when ηinneri < t. Hence, we

aim to characterize stable networks depending on the number of banks that have at
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least t neighbors in the same region (ηinneri = t). The following two results provide

necessary conditions for the existence of stable networks.

Proposition 3.2 Let g be a pairwise stable network and T = {i ∈ N |ηinneri (g) = t}.
Then |T | ≥ 2(n− t).

Proof. The proof is provided in the Appendix.

Proposition 3.2 has strong implications for the stability of the banking system,

especially when t is small. If t is small, proposition 3.2 shows that in equilibrium most

of the banks have sufficient links to prevent a shock in one of the institutions spreading

through contagion. For t large, however, the predictions are weaker. We thus need a

refinement for large values of t. The following proposition provides such a refinement.

Proposition 3.3 Let g be a pairwise stable network and T = {i ∈ N |ηinneri (g) = t}.
If t ≥ n/2, then |T | ≥ n.

Proof. The proof is provided in the Appendix.

Proposition 3.3 states that in a stable network, at least half the banks will have

a sufficiently large number of links such that the losses they may generate are small

enough.

The contagion threshold, b(q), depends positively on the early liquidation return

of the illiquid asset, r. Since t is the smallest integer such that b(q) < z
n

C1−x−ry
1+(n+t−1) z

n
,

a low value of the contagion threshold requires a large t. Hence, when the return

rate for early liquidation of the illiquid asset, r, is low, banks need a large number of

connections with banks in the same region, for the LGD to be below the contagion

threshold. Similarly, a high opportunity cost of liquidating early the illiquid asset, R
r
,

decreases the contagion threshold and increases the number of links a bank requires

not to be a source of contagion.

The following two results relate these findings to implications for the stability of

the system.

Corollary 3.1 Let g be a pairwise stable network and T = {i ∈ N |ηinneri (g) = t}. If
t < n/2, then the probability that the failure of a bank will spread through contagion is

at most tπ/n.
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Proof. The proof follows simply from Proposition 3.2.

Corollary 3.2 Let g be a pairwise stable network and T = {i ∈ N |ηinneri (g) = t}. If
t ≥ n/2, then the probability that the failure of a bank will spread through contagion is

at most π/2.

Proof. The proof follows simply from Proposition 3.3.

The first result implicitly insures that for high levels of the contagion threshold

the probability of contagion is significantly low. The intuition for this result relies on

the fact that the higher the contagion threshold is, the lower is the number of links

that banks need in order to prevent contagion. Proposition 3.2 indicates that a lower

connectivity of the banking system is easier to obtain. A low level of the contagion

threshold, however, requires a high connectivity in the banking system. Hence, the

probability of contagion is higher.

3.5 Efficient networks

For a given contagion threshold, b(q), and an integer t that satisfies 3.5, the failure of

a bank with at least (n + t) links does not propagate through contagion, although it

affects neighboring banks that incur a loss. Thus, there is a large number of efficient

networks a social planner can design in order to prevent contagion in the banking

system. The set of efficient networks is characterized in the following proposition.

Proposition 3.4 Let g be a network such that ηcrossi (g) = n and ηinneri (g) ≥ t , ∀
i ∈ N . Then g is efficient.

Proof. Since ηinneri ≥ t, ∀ i ∈ N then it follows immediately that ηi ≥ n+ t, ∀ i ∈ N .

Thus, for any pair ij it must be that LGDij ≤ z
n
C1−x−ry
1+(n+t) z

n
. As the limit loss b(q) satisfies

inequality 3.5, then LGDij ≤ b(q) for any pair of banks ij. Hence, in the network g

the failure of a bank will not trigger the failure of other banks in the system.

The conflict between efficient outcomes and individual incentives is a classical theme

in economics. In this model, however, the incentives are partially aligned. Indeed,
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the set of stable networks, described by proposition 3.2 and 3.3, includes an efficient

network. It is easy to check that a network g such that ηinneri (g) = t, ∀ i ∈ N is

pairwise stable and, by proposition 3.4, is also efficient.9

The set of pairwise stable networks, nevertheless, incorporates many non-efficient

networks, especially for large values of t. We show that we can restrict the set of

equilibria to the efficient one when we use a refinement of the pairwise stability concept,

that allows for deviations in which a pair of players each can delete one or more links

and/or add a link in a coordinated manner. For this purpose, we introduce the notion

of bilateral equilibrium.

Criterion 3.2 Let gij = min(sij, sji) and consider that gij ∈ g when gij = 1. A

network g∗ is a bilateral equilibrium if:

1. There is a Nash equilibrium strategy profile s∗ which yields g∗.

2. For any pair of players i, j ∈ N , and every strategy pair (si, sj),

ui(g(si, sj, s
∗
−i−j)) > ui(g(s

∗
i , s

∗
j , s

∗
−i−j))⇒ uj(g(si, sj, s

∗
−i−j)) < uj(g(s

∗
i , s

∗
j , s

∗
−i−j))

A network g is supported in a ‘bilateral equilibrium’ if no player or pair of players

can deviate and benefit from the deviation (at least one of them strictly). This equi-

librium concept allows a pair of players to deviate by forming a link, if the link did

not exist before, and, at the same time, by severing other links they are involved in.

The terminology of ‘bilateral equilibrium’ was introduced in Goyal and Vega-Redondo

(2007). Note that any bilateral equilibrium network is also pairwise stable.

The new equilibrium concept allows us to relax the assumption that the pattern of

interactions between banks in different regions is fixed. Thus far we have considered

a network formation game between banks in the same region, under the assumption

that each bank in one region is connected with all the other banks in the other region.

We can now study the network formation between banks in the same region, as well

as, between banks in different regions. However, we look only at cases when the

9The existence of such an equilibrium efficient network is conditional on the existance of a t-regular
network. Lovasz (1979) discusses in detail conditiond for the existence of a t-regular network with n
nodes.
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deposits exchanged between banks in different regions satisfy the feasibility constraint

3.2. Moreover, we consider only symmetric solutions, such that the amount a bank i

transfers on a link is the same for all links: aij = z
ηcrossi

, ∀j ∈ Ni(g).

Proposition 3.5 Let g be a bilateral equilibrium network. Then the probability that

the failure of a bank will spread through contagion is at most π/2n.

Proof. The proof is provided in the Appendix.

The basic intuition for this result relies on the idea that a bank can move from any

network to a network where it has exactly one link with another bank in the other

region. The concept of pairwise stability allows only one deviation at a time, either as

severing a link, or as creating a new link. For a network to be a bilateral equilibrium,

however, it needs to be robust to multiple deviations at the same time. Since multiple

deviations are allowed, a bank can severe all its links in a network and agree to form a

link with one other bank in the other region. This deviation is beneficial in any network

where there are at least two banks as possible sources of contagion. In contrast, in a

network where a bank has exactly one link with another bank in the other region,

there is only one source of contagion, while perfect insurance against liquidity shocks is

achieved as well. These deviations are possible for any pattern of connections between

banks across regions. Thus the concept of bilateral equilibrium allows us to solve the

network formation game between banks in different regions, as well as between banks

in the same region.

The bilateral equilibrium concept rules out all the inefficient equilibria, except for

one. For instance, a network such that for any j, ηcrossj = n, where a single node i that

has an insufficient number of links, ηinneri < t and ηinnerj∈N−{i} = t can be sustained in

equilibrium. In this network, although the probability of contagion is very low, π/2n,

the failure of bank i triggers the failure of the entire system. Thus, with probability

π/2n there will be (2n− 1) banks that will fail due to contagious effects.
In this paper we have discussed a particular set of equilibrium networks. Namely,

we have assumed that ηcrossi = n, ∀ i ∈ N and we have modeled the link formation

process that takes place between banks of the same type. In other words, we have
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studied the set of equilibrium networks for which each bank is linked to all the banks

of the other type. It is important to note, however, that the set of pairwise stable

networks is, by no means, restricted the set of networks for which ηcrossi = n, ∀ i ∈ N .

Due to the limitations of the pairwise stability concept, networks where there exist

nodes such that the crossing degree is smaller than n can be sustained in equilibrium.

The full characterization of the set of pairwise stable networks is possible. It is not,

however, of much interest since there is no efficient equilibrium that can emerge when

there exist nodes such that the crossing degree is smaller than n, for the given set of

parameters.

The bilateral equilibrium concept solves this problem and proposition 3.5 holds

without any prior assumption about the crossing degree of banks.

3.6 Conclusions

The problem of contagion within the banking system is a hot issue. Our main contri-

bution to the existing literature is that we endogenized the degree of interdependence

that exists between banks. In particular, we developed a model of network formation

for the banking system. We investigate how banks form links with each other, when

the banking system is exposed to contagion risk. The question we address is wether

banks form networks that are resilient to the propagation of small idiosyncratic shocks.

The message this paper transmits is rather optimistic. Banks respond to contagion

risk by forming links. The stable network architectures that emerge are very likely to

support systemic stability. For instance, when the probability of a shock is π, then the

probability that it will spread by contagion is at most π/2n. For large values of the

limit loss, the probability of contagion is virtually 0, if n is sufficiently large.
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3.A Appendix

In what it follows we will prove some results advanced in the main text.

Lemma 3.1 Consider the states of the world S1and S2, when liquidity shocks are

negatively correlated across the two regions A and B. The minimization problem for

LGD associated to each link, under the feasibility constrain (3.2), has a symmetric

solution when each i ∈ A is linked to each i0 ∈ B, and aii0 =
z
n
.

Proof. The optimization problem is:

∀ i ∈ N, i0 ∈ N cross
i , min

aii0
LGDii0, (3.7)

s.t.
X

i0∈Ncross
i

aii0 = z (3.8)

First we show that LGDii0 is decreasing in aii0. For this it is useful to express LGD

as

LGDii0 = aii0
C1 − x− ry

1 + aii0 +
P

k∈Ni(g)
k 6=i0

aik
(3.9)

The derivative of LGDii0 with respect to aii0 is given by

∂LGDii0

∂aii0
=
(C1 − x− ry)(1 +

P
k∈Ni(g)
k 6=i0

aik)

(1 + aii0 +
P

k∈Ni(g)
k 6=i0

aik)2
> 0 (3.10)

A positive sign for the derivative implies that LGDii0 is increasing in aii0.

The only restriction in minimizing LGDij is the feasibility constraint (3.2). Ac-

cording to the feasibility constraint, any bank i needs to insure that the amount of

deposits exchanged with banks of a different type sums up to z.

We impose that the solution is symmetric. That is aii0 = z
γ
. Since there are n

banks of a different type and the LGDii0 is increasing in the amount of deposits aij,

the solution to the minimization problem dictates that each bank creates links to all

the other banks of a different type. Subsequently, the amount exchanged on each link

is aij = z
n
.
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Proposition 3.2 Let g be a pairwise stable network and T = {i ∈ N |ηinneri (g) = t}.
Then |T | ≥ 2(n− t).

Proof. Consider the two regions in the banking system A = {1, 2, ..., n} and B = {n+
1, n = 2, ..., 2n}. Let T (A) = {i ∈ A |ηinneri (g) = t} and T (B) = {i ∈ B |ηinneri (g) = t}.
Clearly we have |T | = |T (A)|+ |T (B)|. In order to prove that |T | ≥ 2(n− t), we show

that |T (A)| ≥ n − t and |T (B)| ≥ n − t. Since the cases are symmetric, we prove

only that |T (A)| ≥ n − t. For this we assume the contrary in order to arrive to a

contradiction.

Suppose that |T (A)| < n− t. This implies that the set T (A) has at most n− t− 1
elements. Further, this implies that |A− T (A)| ≥ n− (n− t− 1). In other words, the
set of banks with an inner degree ηinneri (g) < t has at least t+1 elements. By property

1’ and 2 above we know that in a stable network all the banks such that ηinneri ≤ t− 1
must be directly linked with each other. Since the set of banks with this property is

at least t + 1, it must be that each bank in A− T (A) has an inner degree ηinneri ≥ t.

We thus arrived to a contradiction.

Proposition 3.3 Let g be a pairwise stable network and T = {i ∈ N |ηinneri (g) = t}.
If t ≥ n/2, then |T | ≥ n.

Proof. The proof follows similar steps as the proof for the previous result. Adopting

the same notations, we prove only that |T (A)| ≥ n/2.

Let |T (A)| = τ . If τ ≥ t, the proof is complete.

Consider the case when τ < t. By property 1’ and 2 above we know that in a stable

network all the banks in the set A − T (A) must be directly linked with each other.

This implies that the total number of links10 between banks of the same type with an

inner degree ηinneri < t must be (n − τ)(n − τ − 1). In addition, since τ < t, it must

be that each bank in T (A) has some links with banks in A− T (A). Assuming that all

banks in T (A) are directly linked with each other, there must be at least τ(t− τ + 1)

links with banks in A− T (A).

Since all the banks in A− T (A) have an inner degree ηinneri < t, the total amount

10Links here are counted twice for each node. However, we maintain the same double counting for
the rest of the proof, such that in the end it cancels out.
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of links these banks have should not exceed (n − τ)t. Thus, the following inequality

must hold:

(n− τ)(n− τ − 1) + τ(t− τ + 1) < (n− τ)t

This inequality can be rewritten as

(t− τ + 1)(2τ − n) < (n− τ)(2τ − n)

Since t− τ +1 < n− τ , it must be that 2τ −n > 0⇔ τ > n/2. This concludes the

proof.

Proposition 3.4 Let g be a bilateral equilibrium network. Then the probability that

the failure of a bank will spread through contagion is at most π/2n.

Proof. We show that in a bilateral equilibrium networks there exists at most one node

i such that ηinneri < t.

Suppose that in an equilibrium network there exist at least two nodes i and j

such that ηinneri < t, ηinnerj < t. In a network that there are at least two nodes with

an insufficient number of links, there are two sources of contagious failure. Thus the

probability a bank associates to failing by contagion is at least 2π/2n.

Let g̃ be such a network. Then there exist a pair ij of nodes of a different type

(i.e. i ∈ A and j ∈ B) such that it pays off to severe the links they are involved in

and form the link g̃ij, if g̃ij /∈ g̃. Formally, let s̃i and s̃j be the strategy profile bank i

and bank j follow, respectively, in network g̃.And let s∗i = (0, 0, ..., 0
1,...,j−1

, 1, 0, 0, ..., 0
j+1,...,n

) and

s∗j = (0, 0, ..., 0
1,...,i−1

, 1, 0, 0, ..., 0
i+1,...,n

). Then

ui(g̃(s
∗
i , s

∗
j , s̃−i−j)) > ui(g(s̃i, s̃j, s̃−i−j)) and uj(g̃(s

∗
i , s

∗
j , s̃−i−j)) > uj(g̃(s̃i, s̃j , s̃−i−j))

In the new network, the only link i and j have is g̃ij and thus they are exposed to

contagion stemming from only one source. If g̃ij is the only link banks i and j have,

this link will bear the entire amount of deposits necessary to provide insurance against

liquidity shocks z. Thus, if one of the banks fails, the other one fails by necessity, since
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the loss it incurs is above the limit loss threshold. However, the probability that one

of the two banks will fail is π/2n and smaller than in the network g̃. Hence, g̃ cannot

be an equilibrium.

Since, in a bilateral equilibrium there exists at most one node i such that ηinneri < t,

it follows that the probability that the failure of a bank will spread through contagion

is at most π/2n.



Chapter 4

Contagion Risk in Financial

Networks

A notable feature of the modern financial world is its high degree of interdependence.

The mutual exposures that financial institutions adopt towards each other connect the

banking system in a network. Despite the obvious benefits, such linkages come at a cost.

That is, shocks, which initially affect only a few institutions, can propagate through the

entire system. Since these linkages carry the risk of contagion, an interesting question

is whether the degree of interdependence in the banking system sustains systemic

stability. This paper addresses this issue. In particular, we investigate how the network

structure affects the cross institutional holdings and investigate the implications for

contagion risk.

We study a setting where the banking system is exposed to both liquidity and

idiosyncratic shocks. The connections between banks facilitate the transfer of liquidity

from the ones that have a cash surplus to those with a cash deficit. Banks can insure

against the liquidity shocks by exchanging deposits through links in the network. The

same connections, however, make the banking system prone to contagion. The risk of

contagion is increasing in the size of interbank deposits. We first investigate the size

of interbank deposits transferred between banks that provides full insurance against

liquidity shocks, while keeping the network structure fixed. Then we asses how the

banking network responds to contagion.

85
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We show that incomplete network structures create uncertainty about the distribu-

tion of liquidity shocks. As a result, the level of interbank deposits that insures against

liquidity shocks increases, at the same time, the contagion risk. In other words, to

achieve perfect insurance against liquidity shocks, banks need to accept a higher risk of

contagion. The problem is solved when the network is complete, as the level of deposits

that perfectly re-distribute the liquidity in the banking system, also minimizes the risk

of contagion.

The paper that is closest related to our work is by Allen and Gale (2000). In

particular, our paper uses the same framework as Allen and Gale (2000) to motivate

interactions on the interbank market. However, Allen and Gale (2000) study the bank-

ing system when there exist correlations between the shocks in the liquidity demand

that affect different regions. We extend their analyses and look at the banking sys-

tem without building in any correlations between liquidity shocks. Thus, we introduce

uncertainty about which regions have negatively correlated shocks. In addition, we in-

corporate one very important feature of real world banking systems. That is, relations

between banks, in general, and deposit contracts, in particular are private information.

Our setting captures this aspect and allows a link that exists between two banks not

to be observed by the other banks in the system. Thus, we analyze network effects on

systemic risk if these two sources of uncertainty are present.

Allen and Gale (2000) find that the losses caused by contagion in an incomplete

network are larger than in a complete network. We reinforce their result by showing

that incomplete networks have an additional effect. When the network is incomplete,

the allocation of interbank deposits that provides insurance against liquidity shocks is

unlikely at the level that minimizes contagion risk. This is no longer the case when

the network becomes complete. In a complete network the degree of interdependence

between banks is such that contagion risk is minimal.

The model is based on a framework introduced by Diamond and Dybvig (1983).

There are three periods t = 0, 1, 2 and a large number of identical consumers, each en-

dowed with one unit of a consumption good. Ex-ante, consumers are uncertain about

their liquidity preferences. They might be early consumers, who value consumption at
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date 1, or late consumers, who value consumption at date 2. The consumers find it

optimal to deposit their endowment in banks that invest on their behalf. In return,

consumers are offered a fixed amount of consumption at each subsequent date, depend-

ing when they choose to withdraw. Banks can invest in two assets: there is a a liquid

asset that pays a return of 1 after one period and there is an illiquid asset that pays

a return of r < 1 after one period or R > 1 after two periods. In addition, liquidity

shocks hit the economy randomly in the following way. Although there is no uncer-

tainty about the average fraction of early consumers, the liquidity demand is unevenly

distributed among banks in the first period. Thus, each bank experiences either a high

or a low fraction of early consumers. To ensure against these regional liquidity shocks,

banks exchange deposits on the interbank market in period 0.

Deposits exchanged this way constitute the links that connect the banks in a net-

work. This view of the banking system as a network is useful in analyzing the effects

that the failure of a bank may produce. If such an event occurs, the risk of contagion

is evaluated in terms of the loss in value for the deposits exchanged at date 0. It

becomes apparent that contagion risk depends on the size of these deposits. When

the probability of a bank failure is small, the size of the interbank deposits needs to

meet two criteria. First, interbank deposits should be large enough to insure perfectly

against any distribution of liquidity shocks realized at date 1. And second, interbank

deposits should not be larger than needed for insurance against liquidity shocks. In

other words, they need to minimize the risk of contagion by diversification.

The paper is organized as follows. Section 2 introduces the main assumptions about

consumers and banks and describes the interbank market as a network. We discuss

the linkages between banks and how contagion may arise in section 3. In Section 4

we show how banks set the interbank deposits and investigate if they are at the level

that minimizes contagion risk for different degrees of network connectedness. Section

5 considers possible extensions and ends with some concluding remarks.
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4.1 The Model

4.1.1 Consumers and Liquidity Shocks

We assume that the economy is divided into 6 regions, each populated by a continuum

of risk averse consumers (the reason for 6 will become clear in due course). There

are three time periods t = 0, 1, 2. Each agent has an endowment equal to one unit

of consumption good at date t = 0. Agents are uncertain about their liquidity pref-

erences: they are either early consumers, who value consumption only at date 1, or

they are late consumers, who value consumption only at date 2. In the aggregate

there is no uncertainty about the liquidity demand in period 1. Each region, however,

experiences different liquidity shocks, caused by random fluctuations in the fraction

of early consumers. In other words, each region will face either a high proportion pH

of agents that need to consume at date 1 or a low proportion pL of agents that value

consumption in period 1. There are
¡
6
3

¢
equally likely states of nature that distribute

the high liquidity shocks to exactly three regions and the low liquidity shocks to the

other three. Note that this set of states of the world does not build in any correlations

between the liquidity shocks that affect any two regions.

To sum up, it is known with certainty that on average the fraction of early consumers

in the economy is q = (pH+pL)/2. Nevertheless, the liquidity demand is not uniformly

distributed among regions. All the uncertainty is resolved at date 1, when the state of

the world is realized and commonly known. At date 2, the fraction of late consumers

in each region will be (1− p) where the value of p is known at date 1 as either pH or

pL.

4.1.2 Banks, Demand Deposits and Asset Investments

We consider that in each region i there is a competitive representative bank. Agents

deposit their endowment in the regional bank. In exchange, they receive a deposit

contract that guarantees them an amount of consumption depending on the date they

choose to withdraw their deposits. In particular, the deposit contract specifies that if

they withdraw at date 1, they receive C1 > 1, and if they withdraw at date 2, they
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receive C2 > C1.

There are two possibilities to invest. First, banks can invest in a liquid asset with a

return of 1 after one period. They can also choose an illiquid asset that pays a return

of r < 1 after one period, or R > 1 after two periods. Let x and y be the per capita

amounts invested in the liquid and illiquid asset, respectively. Banks will use the liquid

asset to pay depositors that need to withdraw in the first period and will reserve the

illiquid asset to pay the late consumers. Since the average level of liquidity demand

at date 1 is qC1, we assume that the investment in the liquid asset, x, will equal this

amount, while the investment in the illiquid asset, y, will cover (1 − q)C2/R.1. This

macro allocation will be relaxed later.

Banks are subject to idiosyncratic shocks that are not insurable. That means that,

with a small probability π, the failure of a bank will occur in either period 1 or 2.

This event, although anticipated, will have only a secondary effect on banks’ actions

for reasons that will become clear in section 4.

4.1.3 Interbank Market

Uncertainty in their depositors’ preferences motivates banks to interact in order to

ensure against the liquidity shocks that affect the economy. These interactions create

balance sheet linkages between banks, as described below.

At date 1 each bank has with probability half either a liquidity shortage of (pH−q)C1
or a liquidity surplus of (q−pL)C1. We denote by z the deviation from the mean of the
fraction of early consumers, which in turn makes the liquidity surplus or shortage of a

banks equal to zC1.2 As in the aggregate, the liquidity demand matches the liquidity

supply, all the regional imbalances can be solved by the transfer of funds from banks

with a cash surplus to banks with a cash deficit. Anticipating this outcome, banks will

agree to hedge the regional liquidity shocks by exchanging deposits at date 0. This way,

a contract is made between two banks that gives the right to both parts to withdraw

their deposit, fully or only in part, at any of the subsequent dates. For the amounts

1This allocation maximizes the expected utility of consumers, see Allen and Gale (2000).
2Since q = pH+pL

2 , than it must be that (pH − q)C1 = (q − pL)C1.



CHAPTER 4. CONTAGION RISK IN FINANCIAL NETWORKS 90

exchanged as deposits, each bank receives the same return as consumers: C1, if they

withdraw after one period, and C2 if they withdraw after two periods.

Banks’ portfolios consist now of three assets: the liquid asset, the illiquid asset and

the interbank deposits. Each of these three assets can be liquidated in any of the last

2 periods. However, the costliest in terms of early liquidation is the illiquid asset. This

implies the following ordering of returns:

1 <
C2
C1

<
R

r
(4.1)

An important feature of the model is that the swap of deposits occurs ex-ante,

before the state of the world is realized. Note, however, that this prevents lenders to

gain any monopoly power. For instance, in an ex-post market for deposits, lenders

might take advantage of their position as liquidity providers to extract money from

banks with a shortage of liquidity. To avoid this unfavorable situation, banks prefer to

close firm contracts that set the price of liquidity ex-ante.

An interbank market, as introduced above may be very well described as a network.

The network can be characterized by the pattern of interactions between banks, as

well as by the amount of interbank deposits that represent the links. In this paper,

we investigate how the size of interbank deposits, depends on the network structure.

In particular, we are interested in the effects complete and incomplete networks have

on banks’ decisions when setting the level of interbank deposits. In order to illustrate

the effects of incomplete structures, we restrict our analysis to regular networks (we

introduce definitions below). Thus, each bank in the network is a node and each node

is connected to exactly n < 6 other nodes. This means that each bank may, but need

not, exchange deposits with other n banks. Note that we do not model explicitly how

these connections are formed. Since the contracts are bilateral, and thus the amounts

exchanged between any two banks are the same, the network is undirected. Next, we

introduce a some important definitions.

A network g is, formally, a collection of ij pairs, with the interpretation that nodes

i and j are linked. A network is regular of degree n (or n-regular) if any node in the

network is directly connected with other n nodes. The complete network is the graph
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Figure 4.1: n-regular networks: a) n = 3; b) n = 4

in which all nodes are linked to one another. Any two nodes connected by a link are

called neighbors.

We now discuss the incomplete information structure. We incorporate in our frame-

work an important feature of real world banking systems. Namely, banks have incom-

plete information over the network structure. Although it is common knowledge that

the network is n-regular, banks do not know the entire network architecture. Thus,

they do not observe the linkages in the network, beyond their own connections. For

instance, B1 in figure 4.1 knows his set of neighbors: B2, B3 and B6. Nevertheless, it

cannot observe how they are connected neither between themselves, nor to the other

banks in the system.

For the purposes of our analyses we consider different values of n. However, since

modern banking systems are highly connected, we reasonably assume that n ≥ 3.3

In other words, each bank is connected to at least half of the other banks in the

system. At the same time the markets are not always complete structures. In a possible

interpretation, in a single country interbank market all the banks are connected to all

the other banks. The connections outside the home country are nevertheless rather

scarce.
3The cases n = 1 and n = 2 will be briefly discussed later in the paper.
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4.2 Contagion Risk

4.2.1 Balance Sheet Linkages

The main goal of our paper is to study which degree of interdependence arises between

banks and the implications for the fragility of the banking system. The interdependence

stems from two sources. First, there is a system-wide dependence that is reflected in

the size of z, the liquidity shortage or surplus of any bank. The larger z, the higher

is the degree of interdependence. Second, there is pairwise dependence that is given

by the size of deposits exchanged between any two banks. Since we assume z to be

fixed, for the moment, we focus on explaining pairwise dependence and its potential

contagious consequences.

An allocation rule for deposits is a mapping from the set of links to the real numbers

a : g → R that specifies the amount exchanged as deposits between banks i and j at

date 0. For simplicity we use the following notation a(ij) = aij. Since deposit contracts

are bilateral, we have aij = aji.

An allocation rule is feasible if in period 1 deposits can be withdrawn such that

there will be no bank with a liquidity surplus nor a liquidity shortage. Formally, let

dij represent the amount transferred from i to j in period 1, for any pair ij, and

Ni be the set of neighbors of bank i, for any i. Than, an allocation rule is feasi-

ble if, for any bank i and for any neighbor j of i, there exist dij and dji such that¯̄̄X
j∈Ni

dji −
X

j∈Ni

dij

¯̄̄
C1 = zC1 and 0 ≤ dij, dji ≤ aij.4

Lemma 4.1 For a n-regular network with n ≥ 3 there always exists a feasible alloca-
tion rule.

Proof. This holds true as in a n-regular network, when n ≥ 3, there is always a path
between every pair of nodes. A path is a sequence of consecutive links in a network.

Moreover, it can be shown that the length of this path it is at most 2. A general proof

follows in the appendix.

4Note that dij 6= dji in period 1. That is because when the state of the world is realized in period
1, liquidity will flow from banks that have in excess to banks that have a deficit. Hence, the network
becomes directed in period 1.
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The proof of Lemma 4.1 shows in fact that there exists a feasible allocation for any

connected network. A regular network with a degree larger than half the number of

nodes is a particular case of connected network.

Corollary 4.1 A feasible allocation ensures that there will be no bank with a liquidity

surplus nor a liquidity shortage in period 2 as well.

In period 2 each bank will have a fraction of (1 − p) late consumers where p has

been realized for each region in period 1. Thus, the transfer of deposits between any

banks i and j will simply be reversed.

4.2.2 Losses Given Default

In order to evaluate contagion risk we need to introduce a measure that quantifies it.

For this purpose, we apply the same procedure as the empirical literature on contagion:

We consider the event of a bank failure and analyze its implications for the banking

system. In our model, the failure of a bank will occur in either period 1 or 2 with

a small probability π. The risk of contagion is than evaluated in terms of loss given

default (henceforth LGD). LGD expresses the excess of nominal liabilities over the

value of the assets of the failed bank. In our setting, LGD will be given by the loss of

value a bank incurs on its deposits when one of its neighbor banks is liquidated.

This measure focuses only on the loss associated to a direct link between two banks.

It ignores any aspects related to the indirect effects the failure of a bank might have

on the system. For instance, it does not capture the problems that arise when a bank

that is a liquidity supplier fails.

Another aspect worth mentioning is that the failure of a bank might have contagious

effects only if this event is realized in period 1. Once each bank reaches period 2,

straightforward calculations show that the value of its assets is sufficiently large to

cover all its liabilities. Hence, there is no loss in value for deposits, and LGD will be 0.

To calculate LGD we need to determine the value of the assets of the failed bank.

If a bank fails, its portfolio of assets is liquidated at the current value and distributed

equally among creditors. Now, recall that a bank portfolio consists of three assets.
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First, banks hold an amount of x per capita invested in a liquid asset that pays a return

of 1. Second, banks have invested an amount y per capita in an illiquid asset that pays

a return of r < 1 if liquidated in the first period. And lastly, there are interbank

deposits summing up to
P

k∈Ni
aik that pay a return of C1 per unit of deposit. On

the liability side, a bank will have to pay its depositors, normalized to 1, and at the

same time to repay its interbank creditors that add up to
P

k∈Ni
aik. This yields a new

return per unit of good deposited in a bank i equal to C̄i =
x+ry+ k∈Ni aikC1

1+ k∈Ni aik
< C1.5

The LGD of bank j given that bank i has failed is easy now to express as6:

LGDji = aji(C1 − C̄i) = aji
C1 − x− ry

1 +
P

k∈Ni
aik

(4.2)

4.3 Deposits Allocation and their Optimality

4.3.1 Network Structures and Uncertainty

To understand how the allocation of deposits should be set in period 0, we need to

characterize the sources of uncertainty that dominate the environment in the banking

system.

In an incomplete network, there are two sources of uncertainty. On the one hand,

there is no prior information about the distribution of liquidity shocks. That is, any

of the
¡
6
3

¢
states of the world that allows a high liquidity demand in any 3 regions and

a low liquidity demand in the remaining 3 is equally likely. This further implies that

there is no ex-ante correlation between the fractions of early consumers in any two

regions. The lack of correlations between liquidity shocks is converted, for any bank i,

into uncertainty. First, there is uncertainty about how many neighbors from Ni will be

affected by a different liquidity shock than i at date 1. And second, there is uncertainty

about who these neighbors are. Note that the first type of uncertainty depends on the

network degree of completeness n and disappears when the network is complete. That

is because the condition n ≥ 3 guarantees that each bank has at least n− 2 neighbors
5Eq. (4.1) ensures that the inequality holds.
6In principle LGDji 6= LGDij since it may be that

P
k∈Ni

aik 6=
P

k∈Nk
ajk
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that will face a different liquidity demand in period 1.

Example 4.1 Suppose that the network degree is n = 3. Than a bank might have, as

seen from period 0, one, two or three neighbors that may experience a different fraction

of early consumers than itself in period 1.

B1 (L)

B2 (H)

B3 (H)

B5 (H)

B1 (L)

B2 (H)

B3 (H)

B5 (L)

B1 (L)

B2 (H)

B3 (L)

B5 (L)

B1 (L)

B2 (H)

B3 (H)

B5 (H)

B1 (L)

B2 (H)

B3 (H)

B5 (L)

B1 (L)

B2 (H)

B3 (L)

B5 (L)

Figure 4.2 (a): Uncertainty about the number of neighbours of a different type

Moreover, any of the banks in the neighbors set of a bank i, is equally likely to

experience a different liquidity shock than i.

B1 (L)

B2 (H)

B3 (H)

B5 (H)

B1 (H)

B2 (H)

B3 (H)

B5 (L)

B1 (H)

B2 (H)

B3 (L)

B5 (H)

B1 (L)

B2 (H)

B3 (H)

B5 (H)

B1 (H)

B2 (H)

B3 (H)

B5 (L)

B1 (H)

B2 (H)

B3 (L)

B5 (H)

Figure 4.2 (b): Uncertainty about which neighbours are of a different type

On the other hand, any link that connects two banks is private information for the

respective institutions. Even though it is common knowledge that each bank i has

n links, which nodes are at the end of these links is only known by i.7 This sort of

incomplete information generates uncertainty about the minimum number of links that

will connect banks of a different type. Banks are said to be of a different type if they

will experience different liquidity shocks in period 1. In particular, a bank is of type

7This motivates our choice of 6 banks. In the 4 - bank setting proposed by Allen and Gale (2000)
if n is common knowledge, each bank can make inferences and accurately guess the network structure.
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H if it will face a high liquidity demand and a bank is of type L if it will face a low

liquidity demand.

Example 4.2 Suppose that n = 3 and the network g is represented as.

B5 (H)

B1 (L)

B2 (H)

B3 (H)

B6 (L)

B4 (L)

B5 (H)

B1 (L)

B2 (H)

B3 (H)

B6 (L)

B4 (L)

For this structure, in period 1, there will be at most two banks each having exactly

one neighbor that experiences a different fraction of early consumers, regardless of the

states of the world realized. Hence, for any state of the world realized there will be at

least 5 links that connect the H nodes and the L nodes. From the perspective of any

bank i, however, it seems possible that each bank has exactly one neighbor of a different

type, and thus the minimum number of links connecting nodes of a different type is 3.

In the case of a complete network, banks’ environment simplifies considerably since

most of the uncertainty is resolved. When the network is complete each bank will have

with certainty 3 neighbors of a different type than itself. Moreover, every node is linked

to every other node and thus there will be exactly 9 links connecting the H nodes and

the L nodes, for any state of the world that is realized. The only uncertainty that

banks have to consider concerns which of their neighbors will be of a different type.

4.3.2 Deposit allocations

Liquidity imbalances that occur in period 1 can be solved by the transfer of funds from

banks of type L to banks of type H. When the probability of a bank failure is small,

the allocation rule for deposits needs to meet two criteria. First, interbank deposits

should be large enough to insure perfectly against any distribution of liquidity shocks

realized at date 1. That is, after the transfer of funds takes place, each bank’s cash



CHAPTER 4. CONTAGION RISK IN FINANCIAL NETWORKS 97

holdings will exactly match the liquidity demand. And second, given that the liquidity

shocks are hedged, the risk of a bank failure needs to be considered. Thus, the level of

interbank deposits needs to be low enough to minimize the risk of contagion.

In order to meet the first criterion, the interbank system is considered to be at

date 1 in the state when each bank has exactly n− 2 nodes of a different type. Note
that uncertainty about the state of the world allows one bank to have exactly n − 2
neighbors of a different type, while uncertainty about the network structure allows all

the banks, to have each exactly n− 2 neighbors of different type. Thus, the allocation
of deposits that ensure the transfer of liquidity from L nodes to H nodes, for any state

of the world is the allocation that permits the transfer when each bank has exactly

n−2 neighbors of a different type. To satisfy the second criterion, banks need to divide
z, the amount they will borrow (lend), among the n− 2 neighbors of a different type.
Moreover, each bank may have any of their neighbors of a different type than itself.

To summarize, the allocation of deposits should minimize the loss given default

associated with each link, for the worst case scenario.8 We consider the worst case

scenario to be the state of the world for which each bank has exactly n − 2 nodes of
a different type. Since for any pair ij, LGDij is decreasing in aij, the minimization

problem yields an ex-ante optimal allocation of deposits exchanged at date 0 between

any two banks of z
n−2 .

Proposition 4.1 Let g be a n-regular network of banks, with n ≥ 3. The allocation
rule for deposits that sets aij = z

n−2 , for any pair of banks ij ∈ g, is feasible.

Proof. The proof is provided in the appendix.

4.3.3 Optimality

In this section we examine whether the minimal feasible allocation rule for deposits

is optimal for the risk of contagion. Moreover, we discuss when the ex-ante optimal

allocation is also ex-post optimal. In other words, we are interested in how the network

8These loss averse actions are entirely consistent with the usual behavior of banks. The use of VaR
measure in practice is a sufficient evidence to support the assumption of loss aversion.
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structure affects the trade-off between perfect insurance against liquidity shocks and

contagion risk.

Given that banks choose an allocation rule for deposits that sets aij = z
n−2 , the loss

of any bank i given the default of any neighbor j of i is given by

LGD∗
ij =

µ
z

n− 2
¶

C1 − x− ry

1 + (nz)/(n− 2) = z
C1 − x− ry

n− 2 + nz

The following proposition relates the optimality of LGD∗ to the degree of network

completeness.

Proposition 4.2 Let g be an incomplete n-regular network (i.e. n = 3, 4) and consider

any realization of the liquidity shocks that allows at least one bank to have at least (n−1)
neighbors of a different type. Than there exists a feasible allocation of deposits aij such

that aij
C1−x−ry

1+ k∈Nj ajk
< LGD∗

ij, for any pair ij ∈ g.

Proof. The proof is provided in the appendix.

Proposition 4.2 tells us that the allocation of deposits is sub-optimal ex-post, for

any realization of the state of the world that is not the worst case scenario. In other

words, when the network is incomplete, the degree of interdependence between banks

does not insure that the corresponding losses are minimal.

Corollary 4.2 For n = 3, the allocations of deposits aij = 3z
5
, for any pair ij ∈ g,

satisfies proposition 4.2. For n = 4, the allocations of deposits that satisfies proposition

4.2 is aij = 3z
8
.

Proposition 4.2 discusses the case for n = 3, 4 and the next corollary treats the case

of complete networks. We briefly explain what happens for n = 1, 2 . A network degree

larger than 3 insures that the network is connected. For n < 3, however, the network

structure could be characterized by "islands"9. Moreover, the liquidity demand and

the liquidity supply in the separate islands might be mismatched. This would create

uncertainty about the aggregate fraction of early consumers as well. Anticipating this

outcome, it may be optimal for banks not to exchange deposits in the first place.
9For n = 2 the network could be structured in two 2-regular components. For n = 1 there is no

connected network structure.
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Corollary 4.3 Let g̃ be the complete network. Than, there is no feasible allocation of

deposits aij such that aij
C1−x−ry

1+ k∈Nj ajk
< LGD∗

ij, for all pairs ij ∈ g̃.

Proof. The proof is provided in the appendix.

To clarify, there is no allocation of deposits that reduces the loss of one bank without

increasing the loss of another bank. The intuition behind corollary 4.3 relies on the

fact that in a complete network the worst case scenario is realized for any distribution

of the liquidity shocks.

This result is particularly important since it states that the complete network is

the only network where the ex-ante optimal degree of interdependence is also ex-post

optimal.

4.3.4 Varying asset portfolio

We have discussed above what implications the interbank linkages have for contagion

risk, under the assumption that banks’ portfolio is fixed. We have considered that the

amount invested in the liquid asset, x, will be qC1, while the amount invested in the

illiquid asset, y, will cover (1−q)C2/R. In other words, up to now, we have constrained
banks to create linkages on the interbank market in order to insure against the liquidity

shocks that will hit the economy in period 1. Moreover, by fixing the cash holdings of

banks at date 1, we have imposed the dependency of each bank on the banking system

to z.

Our assumption was reasonable. In fact, Allen and Gale (2000) show that the dis-

tribution (x, y) of the initial wealth in the liquid and illiquid asset is such that the

expected utility of consumers is maximized. Any deviation from this distribution gen-

erates welfare losses for consumers. Nevertheless, it may be the case that, anticipating

the failure of a bank and the consequent contagious losses, banks might decide on a dif-

ferent portfolio distribution. For instance, the higher the probability of a bank failure,

the more banks prefer to hold cash reserves larger than qC1. A larger investment in

the liquid asset reduces the amount banks need to borrow from the interbank market.

Thus, banks might favor a lower degree of dependency, even though it means that they
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need to forgo for this consumers’ welfare.

Indeed, let the new portfolio distribution to be (x̄, ȳ), where x̄ > x and ȳ < y,

such that x̄ + ȳ = 1. This further implies that x̄ = q̄C1, with q̄ ∈ (q, pH ], and the
amount banks need to transfer on the interbank market will be z̄C1 = (pH − q̄)C1.

Note that z̄ > 0 provided that q̄ < pH . Hence, as long as banks hold a positive amount

of interbank deposits, the degree of interdependence in an incomplete network will be

sub-optimal.

4.4 Concluding Remarks

The problem of contagion within the banking system is a hot issue. This chapter studies

whether the degree of interdependence that exists between banks supports systemic

stability. In particular, we investigate how the network structure affects the trade-off

between perfect insurance against liquidity shocks and contagion risk. We know from

Allen and Gale (2000) that in an incomplete network the losses caused by contagion are

larger than in a complete network. In addition, we show that an incomplete network

generates uncertainty and this makes the ex-ante optimal allocation of deposits to be

sub-optimal ex-post. It is, indeed, usually the case that in an incomplete information

setting the ex-ante optimal outcomes are not also ex-post optimal. The point our paper

raises is that it is exactly in an incomplete network where this setting of incomplete

information is created. We show that in a complete network the uncertainty is resolved,

and we conclude that a complete network favors an optimal degree of interdependence.

To end, we discuss the robustness of our results and draw a parallel to the empirical

research on contagion. Our model extends naturally to more than 6 regions. Recall

that what drives the results is that the allocation of deposits ensures the banking

system perfectly against liquidity shocks, for any realization of the states of the world.

More precisely, the allocation rule for deposits is such that losses due to contagion are

minimal in the worst case scenario. When the network is incomplete, the allocation of

deposits turns out to be sub-optimal for any realization of the state of the world that is

not the worst case scenario. In a complete network, however, the allocation of deposits
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always minimizes contagion risk since any state of the world implies the worst case

scenario. This feature of complete networks versus incomplete network is independent

of the actual number of nodes (regions).

The message this paper transmits is rather optimistic. When the network is com-

plete, banks have the right incentives to choose the degree of interdependence for which

the contagion risk is minimal. In short, in a complete network the contagion risk is

very low. This result can be interpreted in the light of the empirical research on conta-

gion, which consistently finds that the banking system demonstrates a high resilience

to shocks. Recall that we use the same tool as the empirical papers to assess contagion

risk. At the same time, the analyses in these papers are usually limited to a single

country interbank market, where the network is likely to be complete. Our model can

thus account as an explanation to support the empirical evidence.
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4.A Appendix

In order to prove Proposition 4.1 and 4.2, respectively, we need to introduce further

notations.

Let Ω be the set of all possible state of the worlds10 and denote with ω an element

of this set. Let Hω denote the set of banks of type H and Lω the set of banks of type

L in the state of the world ω.

Let scri denote the number of neighbors of bank i that are of a different type than

i and sini denote the number of neighbors of bank i that are of the same type as i. For

the remainder of the paper, we call scri the crossing degree of bank i and sini the inner

degree of bank i. If the network degree is n, than for every bank i we have scri +s
in
i = n.

Moreover, since scri ≥ n− 2, the following condition holds n− 3 ≤ sini ≤ 2.
This notation is useful to understand that any state of the world can be expressed

in terms of inner and crossing degree. We distinguish the following cases, independent

of the network structure.

Case 1 n = 3.

For n = 3, any state of the world ω will be converted to one of the following 4

situations11:

1. For any bank i ∈ Hω, sini = 2.

2. There exists exactly one bank i ∈ Hω such that sini = 2 and for any bank j ∈
Hω − {i} we have sinj = 1.

3. There exists exactly one bank i ∈ Hω such that sini = 0 and for any bank j ∈
Hω − {i} we have sinj = 1.

4. For any bank i ∈ Hω, sini = 0.

Any other possibility is excluded. For instance, consider a situation that allows

two banks i and j to have a inner degree sini = sinj = 2. Suppose that the link ij

10We established that card(Ω) =
¡
6
3

¢
, where card(·) represents the cardinality of a set.

11We discuss only the case of banks of type H. Due to symmetry, the case of banks of type L is
analogous.
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is created, than each bank needs one more link with a bank of the same type. This

implies that the third bank k must have sink = 2, which falls under situation 1.

Case 2 n = 4.

For n = 4, any state of the world ω will be converted to one of the following 2

situations:

1. For any bank i ∈ Hω, sini = 2.

2. There exists exactly one bank i ∈ Hω such that sini = 2 and for any bank j ∈
Hω − {i} we have sinj = 1.

A similar reasoning as above applies to exclude any other situation.

Case 3 n = 5.

When the network is complete, any state of the world ω will be converted to the

following situation. For any bank i ∈ Hω, sini = 2.

It is easy to check that any other situation violates the regularity of the network.

Lemma 4.2 Let ω be the realized state of the world. Than for any bank i ∈ Hω with a

inner degree sini and a crossing degree s
cr
i there exists a bank k ∈ Lω such that sink = sini

and scrk = scri .

Proof. The proof is based on the fact that
P

i∈H scri =
P

j∈L s
cr
j . Consequently,P

i∈H sini =
P

j∈L s
in
j . This implies that when the banks in H

ω are in one of the

situation described above, than it is necessary that the banks in Lω are in exactly the

same situation.

We shall now continue with the proof of proposition 1 and 2, respectively.

Proposition 4.1 Let g be a n-regular network of banks, with n ≥ 3. The allocation
rule for deposits that sets aij = z

n−2 , for any pair of banks ij ∈ g, is feasible.

Proof. In order to prove that aij is feasible we need to show that for any bank i and for

any neighbor j of i there exist dij and dji such that
¯̄̄X

j∈Ni

dji −
X

j∈Ni

dij

¯̄̄
C1 = zC1

and 0 ≤ dij, dji ≤ aij.
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The proof is constructive. Let ω be the state of the world. Consider the network

ḡ = g − ({ij}i,j∈H ∪ {ij}i.j∈L), where ij represents the link between banks i and j.

In other words, ḡ is the network formed from the initial network by deletion of links

between banks of the same type. Thus, ḡ is the set of links that exist between banks

of a different type. The total number of links in the network ḡ is
P

i∈H scri =
P

j∈L s
cr
j

which is larger than 3(n− 2). In the network ḡ we further delete links such that each
bank has exactly (n − 2) neighbors. Let ĝ be the new network where each has bank
has exactly (n− 2) links. The reader may check that there exists a network ĝ for any
n ≥ 3.
For any link ij ∈ ĝ, we set dij = z

n−2 if i ∈ L and j ∈ H and dij = 0 otherwise.

Similarly, for any link ij ∈ g and ij /∈ ĝ, we set dij = 0. These transfers clearly satisfy¯̄̄X
j∈Ni

dji −
X

j∈Ni

dij

¯̄̄
C1 = zC1, q.e.d.

Proposition 4.2 Let g be an incomplete n-regular network (i.e. n = 3, 4) and

consider any realization of the liquidity shocks that allows at least one bank to have

minimum (n− 1) neighbors of a different type. Than there exists a feasible allocation
of deposits aij such that aij

C1−x−ry
1+ k∈Nj ajk

< LGD∗
ij, for any pair ij ∈ g.

Proof. We treat the two cases n = 3 and n = 4 separately.

For n = 3, we consider the following allocation of deposits: aij = 3z
5
for all pairs

ij. Clearly, this allocation satisfies aij
C1−x−ry

1+ k∈Nj ajk
< LGD∗

ij. We just need to show that

aij =
3z
5
is feasible for all the states of the world that allow at least one bank to have

minimum (n− 1) neighbors of a different type. In order for at least one bank to have
minimum 2 neighbors of a different type, the banking system needs to be in one of the

situations 2− 4 corresponding to case 1. Moreover, lemma 4.2 ensures that there are
at least 2 banks, one of type H and one of type H, each having minimum 2 neighbors

of a different type.

If the system is in situation 2, we construct the transfer of deposits in the following

way. Let k ∈ L be the bank such that scrk = 1, and let l ∈ H be the bank such that

scrl = 1. Consider the transfer of deposits dij =
3z
5
if i ∈ L and j ∈ H. Set dki = z

5
for

any i ∈ L − {k} and djl =
z
5
for any j ∈ H − {l}. For all the other links set d = 0.

These transfers satisfy
¯̄̄X

j∈Ni

dji −
X

j∈Ni

dij

¯̄̄
C1 = zC1 and 0 ≤ dij ≤ aij for any
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pair ij ∈ g.

If the system is in situation 3 and 4, in a similar manner as above, we construct

the networks ĝ3 and ĝ4, respectively. ĝ3 is the network where for each bank i, scri = 2,

while ĝ4 is the network where for each bank i, scri = 3. In situation 3, for any link

ij ∈ ĝ3 we set the transfers to be dij = z
2
if i ∈ L and j ∈ H and dij = 0 otherwise.

Similarly, for any link ij ∈ g and ij /∈ ĝ3, we set dij = 0. These transfers satisfy¯̄̄X
j∈Ni

dji −
X

j∈Ni

dij

¯̄̄
C1 = zC1 and 0 ≤ dij ≤ aij for any pair ij ∈ g. In situation

4, for any link ij ∈ ĝ4 we set the transfers to be dij = z
3
if i ∈ L and j ∈ H and dij = 0

otherwise. Similarly, for any link ij ∈ g and ij /∈ ĝ4, we set dij = 0. These transfers

satisfy
¯̄̄X

j∈Ni

dji −
X

j∈Ni

dij

¯̄̄
C1 = zC1 and 0 ≤ dij ≤ aij for any pair ij ∈ g.

For n = 4, we consider the following allocation of deposits: aij = 3z
8
for all pairs

ij. Clearly, this allocation satisfies aij
C1−x−ry

1+ k∈Nj ajk
< LGD∗

ij. We just need to show

that aij = 3z
8
is feasible for all the states of the world that allow at least one bank to

have minimum (n− 1) neighbors of a different type. In order for at least one bank to
have minimum 3 neighbors of a different type, the banking system needs to be in the

situation 2 corresponding to case 2. When the system is in situation 2, we construct

the transfer of deposits in the following way. Let k ∈ L be the bank such that scrk = 2,
and let l ∈ H be the bank such that scrl = 2. Consider the transfer of deposits dij =

3z
8

if i ∈ L and j ∈ H. Set dki = z
8
for any i ∈ L−{k} and djl = z

8
for any j ∈ H−{l}. For

all the other links set d = 0. These transfers satisfy
¯̄̄X

j∈Ni

dji −
X

j∈Ni

dij

¯̄̄
C1 = zC1

and 0 ≤ dij ≤ aij for any pair ij ∈ g. q.e.d.

Corollary 4.3 Let g̃ be the complete network. Than, there is no feasible allocation

of deposits aij such that aij
C1−x−ry

1+ k∈Nj ajk
< LGD∗

ij, for all pairs ij ∈ g̃.

Proof. We assume there is a feasible allocation of deposits aij such that aij C1−x−ry
1+ k∈Nj ajk

<

LGD∗
ij, for all pairs ij ∈ g̃. Since g̃ is the complete network

X
k∈Nj

ajk =
6X

k=1
k 6=j

ajk = Sj.

Since the inequality aij
C1−x−ry

1+ k∈Nj ajk
< LGD∗

ij holds, than we must have
aij

1+ k∈Nj ajk
<

z
3+5z

or (3+5z)aij < z+zSj, for any i, j ∈ {1, 2, ..., 6}. Keeping j fixed and aggregating

these inequalities after i , we obtain: (3 + 5z)
6X

i=1
i6=j

aij < 5z + 5zSj. This yields further
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Sj <
5z
3
, ∀j ∈ {1, 2, ..., 6}. In order for an allocation of deposits aij to be feasible a

necessary condition is that it exists a pair kl ∈ g̃ such that akl > z
3
. Since Sk < 5z

3
,

we must have akl
1+Sk

> z
3

1
1+5z/3

or akl
C1−x−ry
1+Sk

> LGD∗
kl which contradicts our initial

assumption. q.e.d.

In the end we give a general proof for the connectedness property of n-regular

networks that we employ in the proof of Lemma 4.1 .

Lemma 4.3 Let M = {1, 2, ...,m} be a set of nodes connected in a n-regular network

g. If n ≥ m/2, than the network g is connected and the maximum path length between

any two nodes is 2.

Proof. Consider the node i ∈ M and let N(i) = {i1, i2, ...in} be the set of nodes
directly connected with i. Than card(M−N(i)) ≤ m/2. Since any node j ∈M−N(i)
has degree n ≥ m/2 than for ∀j ∈M −N(i), ∃il ∈ N(i) such that j and il are directly

connected. This further implies that j and i are connected through a path of length 2.
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Nederlandse samenvatting

(Summary in Dutch)

Netwerken hebben zich bewezen als een nuttige weergave van verscheidene systemen.

Sociale en economische interacties, biologische en ecologische systemen én het internet

kunnen door modellering als netwerk beter begrepen worden. Een netwerk beschrijft

een verzameling knooppunten en connecties tussen deze knooppunten. Een vriend-

schap tussen individuen, een onderzoeksovereenkomst tussen bedrijven en een wederz-

ijds verdedigingspact tussen landen zijn voorbeelden van connecties.

Dit proefschrift levert twee belangrijke bijdragen. Aan de ene kant beoogt het de

toepasbaarheid van netwerktheoriën op economische vraagstukken te vergroten door

een netwerkweergave van financiële systemen. Aan de andere kant beoogt het de

beschikbare methodes om netwerken te analyseren te verrijken door een netwerkvorm-

ingsmodel met geprefereerde connecties van een microeconomische basis te voorzien.

De bijdragen van economen aan netwerktheoriën zijn al vaak benadrukt. De bij-

drage van netwerktheorie aan de economische wetenschap is daarentegen minder duidelijk.

Om een impact op het vakgebied te hebben dienen netwerken vaker gebruikt te wor-

den om economische vraagstukken op te lossen. Toepassingen in bijvoorbeeld finance,

industriele organisatie, arbeidseconomie of marketing zullen de positie van netwerken

in de economische wetenschap versterken. Hoofdstuk twee en drie van dit proefschrift

zetten en stap in deze richting door middel van een tweetal toepassingen op financiële

systemen.

De financiële wereld bevat een breed scala van connecties. De wederzijdse afhanke-

lijkheid van financiële instellingen komen voort uit zowel de activa als de passiva op

113



BIBLIOGRAPHY 114

hun balans. Een netwerkweergave van financiële systemen kan inzicht verschaffen in

de bestaande connecties, of deze nu zijn onstaan op de interbancaire markt, door het

aanhouden van gelijkaardige portfolio’s of door het delen van dezelfde groep rekening-

houders. In dit proefschrift betoog ik dat netwerktheorie een kader verschaft waarin

bovengenoemde connecties op een zinvolle wijze beschreven en geanalyseerd kunnen

worden.

In het derde hoofdstuk van dit proefschrift (’The Formation of Financial Networks’)

ontwikkel ik een model van netwerkvorming in het bankwezen. In dit hoofdstuk stel

ik een opzet voor waarin besmettingsgevaar de reden voor het vormen van connecties

tussen banken is. Het is breed onderkend dat banken en andere financiële instellingen

op verschillende wijzen met elkaar verbonden zijn. De prikkels voor het vormen van

een bepaalde connecties bestaan uit de voordelen die deze connecties opleveren. De

connecties die het verhandelen van liquiditeit tussen banken vergemakkelijken, kunnen

het bankwezen ook blootstellen aan besmetting. Hiermee bedoel ik dat idiosyncratische

schokken, waaraan een beperkt aantal instellingen is blootgesteld, zich door het gehele

systeem bankwezen kunnen verspreiden.

Ik zet een model op waarin banken connecties met elkaar vormen om het besmet-

tingsgevaar te verminderen. Een netwerk tussen banken komt endogeen tot stand

en dient als een verzekeringsmechanisme. In het kort onderzoek ik een kader waarin

negatief gecorreleerde liquiditeitsschokken het bankwezen beinvloeden. Banken kun-

nen zich perfect tegen hun individueel verzekeren door het onderling verhandelen van

interbancaire deposito’s. Het delen van risico brengt echter een afweging met zich

mee: transfers creeren connecties tussen banken die het systeem blootstellen aan be-

smettingsrisico. Het model voorspelt een ’connectiviteitsgrens’ (connectivity thresh-

old) waarboven besmetting niet zal optreden, en banken zullen trachten dit niveau te

bereiken. Daarom is de kans op besmetting in een volgroeid (equilibrium) netwerk

bijna nul.

Teneinde economische vraagstukken beter te kunnen benaderen, dient de netwerk-

theorie meer specifieke technieken, methodes en maatstaven voor dit doel te ontwikke-

len. De vooruitgang in de speltheorie over de laatste decennia heeft economen de mo-
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gelijkheid gegeven ook de technieken om netwerken te onderzoeken te formaliseren. De-

salniettemin zijn de meeste maatstaven die economen voor netwerken gebruiken afkom-

stig uit de sociologie en theoretische fysica. ’Clustering coefficients’, die de kans meten

dat verbonden knooppunten dezelfde buren hebben, ’betweeness centrality’ van een

knooppunt, wat aangeeft hoe cruciaal een knooppunt is voor het verbinden van andere

knooppunten, het aantal verbindingen per knooppunt en de gemiddelde afstand tussen

twee knooppunten in een netwerk zijn alle zinvolle maatstaven voor netwerken. Helaas

is het erg moeilijk om deze maatstaven te reproduceren in een kader met netwerkvorm-

ing tot het bereiken van een evenwicht, zoals hierboven beschreven. De kloof tussen de

huidige economische technieken en de maatstaven binnen de netwerktheorie zijn niet

verrassend, omdat deze maatstaven voor de sociologie en statische fysica bedacht zijn.

Om deze kloof te overbruggen dienen binnen de netwerktheorie zowel nieuwe methodes

gebaseerd op strategisch gedrag als nieuwe maatstaven geformuleerd te worden.

Het tweede hoofdstuk van dit proefschrift (’Limited Connections’) zet een stap in

deze richting. Economische modellen met netwerkvorming propageren netwerken als

het gevolg van strategisch verbindingsgedrag van rationele entiteiten. De modellering

in andere vakgebieden heeft een ander uitgangspunt: netwerkvorming is voornamelijk

een stochastisch proces. Hoewel het eerste uitgangspunt leidt tot gestyleerde uitkom-

sten als ongelijke connecties en korte afstanden, omvat het tweede uitgangspunt de

zeer diverse eigenschappen van bestaande netwerken beter. Dit hoofdstuk tracht om de

voorspellende kracht van het tweede uitgangspunt te dupliceren in een model waarin (i)

netwerken continu uitbreiden door de toevoeging van nieuwe knooppunten, (ii) nieuwe

knooppunten opbrengstmaximaliserende connecties vormen met al bestaande knoop-

punten en (iii) het tot stand komen van een connectie alleen kan met goedkeuring van

beide knooppunten. Ten eerste geven wij een simpel voorbeeld dat het ontstaan van

’power-law’ netwerken als toetreders tot het netwerk ’logistic choice’ bewerkstelligen bij

het vormen van connecties. Daarnaast analyseren we verschillende specificaties voor

het nut dat knooppunten afleiden uit connecties, in zowel een omgeving zonder als met

onzekerheid (en dus vergissingen). De cruciale elementen die leiden tot netwerken met

hoge ’centrality’ en andere vormen van hierarchie zijn (i) het bestaan van bemiddeling-
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sopbrengsten voor diegenen die anders onverbonden delen van het netwerken verbinden

en (ii) verbindingskosten die stijgen in het aantal verbindingen dat een knooppunt heeft.



The Tinbergen Institute is the Institute for Economic Research, which was founded

in 1987 by the Faculties of Economics and Econometrics of the Erasmus Universiteit

Rotterdam, Universiteit van Amsterdam and Vrije Universiteit Amsterdam. The In-

stitute is named after the late Professor Jan Tinbergen, Dutch Nobel Prize laureate in

economics in 1969. The Tinbergen Institute is located in Amsterdam and Rotterdam.
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