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Introduction and Outline 

Oral cancer is the sixth most common cancer in the world. It accounts for approximately 

4% of all cancers and 2% of all cancer deaths worldwide. Malignant tumors of the oral 

cavity account for approximately 30% of all head and neck cancers. With an incidence rate 

of invasive lip and oral cavity tumors in The Netherlands rising to 6.6%, oral cancer is a 

common malignancy that often requires resection of the tumor followed by reconstruction 

(1 ,2). 

In oral reconstruction, availability of mucosa is extremely restricted. Large intraoral 

defects are ideally reconstructed using like-with-like principles, with non-keratinizing, thin, 

pliable and well-vascularized tissue without significant wound contraction. Unfortunately 

mucosa is scarce and can only be reconstructed using skin using free or pedicled skin or 

musculocutaneous flaps from arm or leg. These techniques are well-established and 

successful. However, they have drawbacks such as donor site defects, bulkiness, sweating 

and hair bearing of the flaps (3-5). Therefore, a demand exists for further refinement using 

thin, non-keratinizing mucosa. 

In order to develop thin mucosal flaps, tissue engineering strategies were explored for 

expanding mucosa in vitro. Techniques are based on the Rheinwald and Green technique for 

culturing keratinocyte sheaths of keratinizing keratinocytes from skin on a feeder layer of 

lethally irradiated fibroblasts. This technique grows 1m2 of keratinocyte sheath from 1 cm2 

biopsied skin within 3 weeks (6) and is used to produce keratinizing skin substitutes for 

treatment of e.g. large burns. Similar to burns tissue is scarce in mucosal reconstruction. 

Using tissue engineering strategies, it proved possible to take a small biopsy of mucosa, 

isolate and culture keratinocytes and fibroblasts in vitro, seed them onto a dermal carrier 

and produce a Cultured Mucosal Substitute (CMS) to reconstruct the defect. The protocol 

takes approximately 4 weeks to produce a CMS from biopsy to a graft with a multi-layered, 

differentiated epidermis and has been tested clinically. 

The first clinical trials used collagen gels and membranes as dermal carriers and 

reported significant contraction of the CMS as a challenging problem (7-9). Other problems 

include infection, variable graft take (1 0) and high production costs. A number of problems 

can possibly be reduced by further in vitro and in vivo optimisation of protocols. 

In design and optimisation of protocols of CMS, a number of in vitro conditions have to 

be met for successful transplantation (table 1) . The choice of the dermal carrier is one of 

the key decisions to take in design of a CMS. Protocols should minimise culturing times using 
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optimised isolation protocols and culture media. Furthermore, culturing protocol must be 

robust with minimum variability in outcome and infection rates. After transplantation, goals 

are achievement of maximum take and survival. The constructs must be easy to handle and 

easy to suture in place by the surgeon. After grafting, hypoxia occurs as CMS is a-vascular. 

The first days after transplantation of a CMS cells are supported by plasmic imbibition and 

diffusion of nutrients and oxygen to the cells. During these first days after transplantation 

grafts are under hypoxic conditions until vasculature invaded the CMS from the wound 

bed by means of angiogenesis. The process of angiogenesis should be optimized. Finally, 

contraction of the CMS should be minimized and, as a vast majority of patients receive post

operative radiotherapy, it should have reduced radiosensitivity. 

Table 1: Determinants of successful culturing and clinical application of CMS 

Factors for success 

In vitro Isolation protocol - Straight-forward surgical protocol 
- Communication between laboratory and surgeon 
- Planning of isolation before reconstructive procedure 
- Bacterial and fungal contamination rates 
- Fibroblast contamination 
- Cells/ cm2 biopsy 
- % stem cells/ cm2 biopsy 

Costs - Culture time 
- Isolation protocol 
- Technical difficulty protocol 
- % of successfully produced CMS 
- Infection rates 

In Vivo Surgery - Communication between laboratory and surgeon 
- Logistics, e.g. transportation to OR 
- Mechanical properties, handling of CMS for surgeon 
- Resistance of CMS to handling by the surgeon 
- Straight-forward surgical protocol 
-Straight-forward wound protocol for surgical and nursing staff 

Graft take - Angiogenesis 
- Resistance to hypoxia 
- Resistance to shearing forces 
- Susceptibility to Infection 

Long term - Wound contraction 
- Resistance to radiation 
- Impairment of intra-oral functions such as speech 

As mentioned, the choice of a dermal carrier is important for successful culturing and 

grafting. Dermal carriers reduce wound contraction and blistering compared to the use of 
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keratinocyte sheets alone. Various types of carriers are available and, such as collagen gels 

and acellularized, immunoligically inert, cadaver skin. To date, clinically used CMS were 

prepared using collagen gels. Clinical application of collagen gels, however is limited due to 

a number of problems. A collagen gel is mechanically weak; it cannot be sutured in place, 

in particular in the oral cavity where the tongue as well as the cheek is constantly moving. 

Secondly, a collagen gel contracts more than other dermal scaffolds, and is therefore less 

feasible for transplantation. On the other hand, cadaver skin that is acellularized and 

therefore immunologically inert, is commercially available as Alloderm® and clinically 

approved. Acellularisation is achieved by removal of the epidermis and subsequent radiation 

or soap treatment. Importantly, the basement membrane proteins remain present at the 

basal membrane site of the dermo-epidermal junction (DEJ), as well as in the remnants 

of the vascular basal membranes. This facilitates in vitro keratinocyte attachment and 

migration e.g. in wound margins (11, 12). Furthermore, the DEJ is responsible for resistance 

to shear forces that could separate the epidermis from the dermis, resulting in blister 

formation. Also, endothelial cells invade the dermis using basement membrane proteins at 

the remnants of capillaries as guides (13). 

Traditionally, acellularized cadaver skin is used for CMS in cultures without the 

supplementation of fibroblasts to the dermis. However, fibroblasts have various beneficial 

effects on the quality of CMS both in vitro as well as in vivo. Abdoel el Ghalbzouri, (LUMC 

Leiden, the Netherlands) developed a technique to centrifuge fibroblasts into a-cellular 

dermis (14). A clear improvement of epidermal morphology and a better formation of 

the DEJ as a result of the incorporation of fibroblasts in skin substitutes were seen using 

keratinizing skin keratinocytes. Moreover, fibroblasts made the addition of growth factors, 

such as Keratinocyte Growth Factor (KGF) and Epidermal Growth Factor (EGF) unnecessary 

(14, 15). In addition, in vivo studies have shown that fibroblasts enhance angiogenesis (16). 

Clinical reports in patients with extensive skin loss, such as in burns, report reduced wound 

contraction and enhanced wound healing upon the addition of fibroblasts to a dermal matrix 

(16-18). These results suggest that incorporation of fibroblasts in non-keratinizing mucosal 

substitutes might lead to important improvement of the quality and clinical performance of 

CMS. 

For clinical performance the behavior of CMS in hypoxia and its resistance to 

radiotherapy need to be studied. It has been demonstrated that epidermal hypoxia occurs 

frequently under physiological conditions (19). For example, wound margins become hypoxic 

immediately after wounding due to a reduced dermal blood supply by intravascular cloth 



Introduction and Outline 

formation (20). Upon transplantation the a-vascular CMS becomes hypoxic as oxygen has 

to diffuse from woundbed to the cells. Semi- occlusive dressings render oxygen levels to 

a minimum in anticipation of angiogenesis to provide new vasculature with oxygen and 

nutrients. 

Hypoxia has a number of well-documented effects on cells and tissues. It enhances the 

secretion of survival enhancing factors such as Hypoxia Inducible Factor 1 (HIF-1 ), which 

in turn induces the secretion of angiogenic factors, such as VEGF i-NOS and PDGF-B(21) 

(22). Furthermore, hypoxia induces metabolic changes enhancing production of glycolytic 

enzymes favouring anaerobic glycolysis and cell survival (23,24). The effect of hypoxia in 

vitro on cell morphology, proliferation, survival and growth factor secretion is not known. 

Resistance or response of CMS to radiation therapy is another important clinically 

relevant issue as the vast majority of patients receive post-operative radiotherapy. In order 

to radiate this tissue, as a side effect, healthy mucosa is also irradiated. A major side effect 

of radiation therapy is oral mucositis. Clinical symptoms may vary from a mild erythema to 

severe, extremely painful ulcers in the mouth resulting in malnutrition and placement of a 

feeding tube (25). Incidences of 60% in patients receiving radiotherapy have been reported. 

For quite a few of these patients it requires breaks in therapy for periods up to several days 

or weeks and pain relief using morphine (26). This allows the defects to heal, while on the 

other hand oncological therapy is compromised and tumor cells can repopulate (27). Also, 

long term effects of radiation therapy, e.g. osteoradionecrosis, mucosal atrophy are related 

to the severity of the acute radiation response (28,29) 

The aim of this thesis was to develop, improve and test a Cultured Mucosal Substitute as a 

step towards clinical application, to take a step from lab bench towards bedside. 

Goals were to: 

Study the performance of current reconstructive techniques to identify possible issues 

that can be improved and challenges that the CMS will meet upon transplantation. 

Choose an optimal isolation protocol. 

Choose an optimal design of the CMS by choosing a dermal carrier and decide on the cell 

types included. 

Test our constructs behavior in vitro to clinically relevant environments and conditions 

such as hypoxia and gamma irradiation. 
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Various goals are discussed into detail in subsequent chapters of this thesis; Chapter 2 

reports functional and quality of life outcomes of the use of Free Radial Forearm Flaps, 

a commonly used flap in reconstruction of oral defects in the Erasmus Medical Centre 

in Rotterdam. The advantages and shortcomings of these reconstructions with skin flaps 

replacing mucosa are reported. 

An overview of techniques and Tissue Engineering strategies are discussed into further 

detail in chapter 3 of this thesis. 

Chapter 4 describes the comparison of two widely used techniques for keratinocyte 

isolation using histology and cell size analysis to minimize culture time of keratinocytes and 

our CMS. 

In chapter 5 the effect in vitro of adding fibroblast to the CMS is decribed in order 

to enhance morhphology and performance while once again reduce production times. Cell 

morphology, cell differentiation, proliferation and apoptosis were studied. 

Chapter 6 describes the effect of hypoxia on epidermal morphology, proliferation and 

apoptosis, as well as secretion of angiogenic growth factors in CMS. 

Chapter 7 describes the effect of radiation on CMS in vitro, and the development and 

validation of a quantitative model for damage to CMS in vitro. Gross morphology as well as 

various markers for DNA damage and DNA repair were used. 

Finally, in chapter 8, results are summarized and discussed with special focus on future 

directions of the (clinical) use of CMS in reconstructive procedures. 
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Abstract 

Purpose: Evaluation of objective and subjective functional follow-up results of intraoral 

radial forearm free flap reconstructions. 

Methods: A total of 149 patients had received radial forearm free flaps between January 

1996 and December 2005. Seventy-two patients completed an EORTC H&N35 questionnaire 

in the follow-up study. Patients were divided according to location of defect (anterior 

or posterior) or irradiation. Thirty-nine patients with anterior positioned flaps received 

standardized physical examinations. 

Results: Flap survival was 99.3%. Complications were divided in early (< 2 weeks; 23%) 

and late complications (20%). Most common complications were dehiscence or fistula, 

responding well to conservative treatment. Analysis of questionnaire subscales showed 

no statistically significant differences between anterior and posterior defects. Irradiation 

showed significant impairment for the ability to smell and taste. No important donor site 

impairment was found. 

Conclusion: The radial forearm free flap is an adequate method for reconstructions after 

resection of intraoral malignancies. Subjective functional outcome seemed to be defined 

by adjuvant radiotherapy, patient coping, and to a lesser extent flap bulk for anterior 

defects. 

Keywords: radial forearm free flap, head and neck cancer, quality of life, microsurgery 
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Introduction 

Radial forearm free flaps for intraoral reconstructions have been investigated extensively (1 )

Versatility of the radial forearm free flap in combination with low flap loss and complication 

rates traditionally have been the most important factors for choosing this flap to restore 

inner lining if no bulk was needed(2). In contrast, others have emphasized the benefit of 

radial forearm free flap bulk, which is necessary for swallowing after partial glossectomy or 

soft palate reconstruction(3). 

Over the years, however, the classic radial forearm free flap for intraoral reconstruction 

has been under scrutiny due to newer flaps (4,5). Concerns with the radial forearm free 

flap consisted of excessive flap bulkiness due to replacement of very thin oral mucosa 

by skin and subcutaneous tissue, or insufficient bulk when reconstructing large defects of 

the area involved with deglutition. To overcome excessive bulkiness, efforts have been 

made to decrease flap thickness by applying oral mucosa to fascial forearm flaps without 

the skin component (6). To overcome insufficient bulk, alternate donor sites have been 

investigated (4,5). Donor site concerns consisted of the need to sacrifice the radial artery, 

decreased sensation in the course of the superficial radial nerve, decreased overall function 

of the hand and an unsightly donor site scar. A few studies have addressed these issues, 

generally showing acceptable cosmesis and normal function, especially after suprafascial 

radial forearm flap harvest (7,8). 

In literature, emphasis exists on technical refinements of reconstructive procedures to 

optimize functional results; however, little has been published on long-term subjective 

or objective functional outcome and associated quality of life with respect to individual 

reconstructive techniques (9, 10). 

The purpose of the current study was to evaluate perioperative flap complications, as well 

as oral functional outcomes and quality of life in patients who had radial forearm free flap 

reconstructions after resection of intraoral malignancies. In this fashion, the validity of its 

continuing use in head and neck reconstruction was evaluated. 

Patients and methods 

Patient and Tumor Characteristics 

A database search resulted in 149 patients who had received a radial forearm free flap for 

intraoral reconstruction after resection of an intraoral malignancy between January 1996 and 
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December 2005. Medical files were used to retrospectively retrieve patient characteristics, 

medical history, surgical data, and complications. Tumor characteristics are presented in 

table 1. The group consisted of 86 male and 63 female patients with an average age at 

time of operation of 58 ± 11 years (± SD; range 22 to 82 years). Risk factors in this group 

consisted mainly of smoking (59%), alcohol abuse (26%), cardiovascular impairment (28%), 

and pulmonary impairment (9%). In 52 patients (35%) more than one of these risk factors was 

present. The entire group of 149 patients was evaluated for perioperative complications. 

Follow-up Study Population Characteristics 

Since 64 of 149 patients had died, 85 patients were potentially available for inclusion 

in the follow-up study. Thirteen patients either declined to participate or were no longer 

traceable. The follow-up study group, therefore, consisted of 72 patients (44 male, 28 

female) with a mean age of 57± 11 years (± SD; range 33 to 79 yrs). Patients were divided 

into two groups according to the location of the defect. Group I with a tumor located at the 

floor of mouth and/or mobile tongue consisted of 39 patients (25 male and 14 female) with 

a mean age of 57± 12 years(± SD; range 33 to 78 yrs). Group II with a tumor location in the 

posterior oral cavity consisted of 33 patients (19 male and 14 female) with a mean age of 

58± 9 years(± SD; range 41 to 71 yrs). Risk factors in the follow-up study group consisted of 

smoking (I, 51%; II, 58%), alcohol abuse (I, 18%; II, 9%), cardiovascular impairment (I, 31%; 

II, 36%), and pulmonary impairment (I, 8%; II, 12%). In 33% of patients in each group more 

than one of these risk factors was present. Radiotherapy had been used as adjuvant therapy 

in 79% of patients included in the study (79% in group I and 79% in group II). 

To rule out a possible selection bias, several patient characteristics (age, sex, location 

of defect, flap size, radiotherapy, and postoperative complications) between 72 responders 

and 77 non-responders were compared. Chi-square and Fisher's exact tests, Mann-Whitney U 

tests and Student's t-tests did not reveal statistically significant differences (p-values > .05; 

data not shown) between-responders and non-responders, so we presume that participants 

are representative of the total group. 

Procedure 

All patients (n = 85) were invited by a letter explaining the study and asking them to 

participate after approval of the ethical committee of the local research institution. An 

EORTC HEtN35 questionnaire was sent, which they were requested to complete and return 

by means of a stamped envelope. The questionnaire was returned by 72 patients (85%). 
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All patients (n=39) in group I also visited the outpatient clinic. During this visit, a standardized 

physical examination of the oral cavity was performed. Patients with a radial forearm free 

flap reconstruction of the posterior part of the oral cavity (group II) were not invited to 

the outpatient clinic since it was felt that reliable inspection of these flaps would be too 

invasive and add no further information to that given in the questionnaire. 

Tablet: Tumour characteristics and staging in study group patients 

Tumour characteristics 

Tumour type 

Squamous cell carcinoma 

Adenoid cystic carcinoma 

Carcinoma in situ 

Muco-epidermoi"d carcinoma2 

Adenocarcinoma 

Undifferentiated carcinoma 

Osteosarcoma 

Tumour stage classification) 

0 

T na0 

N 64 

M 139 

•na, not applicable. 

4 

27 

0 

No. of Patients 

139 

2 

2 

2 

60 

46 

na 

2 

3 

57 

3 

na 

Follow-up Study of Functional Outcome and Satisfaction 

4 

20 

na 

na 

X 

8 

8 

10 

Differences in functional outcome and satisfaction were studied between group I and II, 

as well as between irradiated and non-irradiated patients. Subjective functional outcome 

and patient satisfaction after radial forearm free flap reconstruction in the oral cavity 

were studied by using the EORTC H&N 35 questionnaire. This questionnaire was specifically 

designed for patients with a malignancy of the head and neck region (11 ). It is a validated 

instrument for measuring functional outcome and satisfaction, which assesses symptoms 

directly related to site of reconstruction. It also comprises items concerning side effects of 

treatment, social function, body image, and sexuality. Results are given on a scale from 0 

(no limitations) to 100 (severe limitations). A change of 10 units on these response scales 

have been regarded as clinically important(11 ). Functional outcome and satisfaction were 

evaluated in general as well as in relationship to various risk factors. 
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Standardized physical examination of the oral cavity was performed by an independent 

investigator to prevent inter-observer bias. Flap appearance and consistency, and tongue 

mobility were assessed. Sensitivity was tested with static and moving two-point discrimination 

using a previously developed set of intraoral two-point discriminators (12). 

Statistical Analysis 

Chi-square tests, Fisher's exact tests, Mann-Whitney U tests, and Student's t-tests were 

used. Two-tailed p-values :.:;. .05 were accepted as statistically significant. 

Results 

Medical Data 

Patient characteristics 

Defects that were reconstructed with radial forearm free flaps were located in the anterior 

floor of the mouth and/or mobile tongue in 90 cases, and in the posterior part of the oral 

cavity in 52 cases. The remaining 7 defects were located on the inner cheek (Table 2). 

In 10 cases an osteocutaneous radial forearm free flap was used because of a segmental 

mandibular defect. The superior thyroid (54%) or facial (25%) arteries were mainly chosen 

as recipient vessels. Venous anastomoses were mainly made to the internal jugular (67%) 

or superior thyroid (12%) veins. Total operating theatre time for the combined ablative 

and reconstructive operation was on average 11.4 hours ± x (± SD; range 6 to 18 hours). 

Donor site closure was originally by split thickness skin graft exclusively, but changed to 

full thickness graft V-to-Y transposition (8) in most defects during the second half of the 

study period because of surgeon preference. Postoperative radiotherapy of 66 or 70 Gy was 

administered to 108 patients (72%) according to the protocol of the multidisciplinary head 

and neck team of our hospital. 

Post-operative complications 

Post-operative complications were divided into early (within two weeks) and late 

complications. Eighty-nine patients (60%) had an uneventful postoperative course. Critical 

review showed early complications in 34 patients (23%) and late complications in 30 patients 

(20%). One patient had insufficient perfusion of the hand requiring intraoperative placement 

of an interposition vein graft. Twelve patients (8%) required re-operation within 24 hours 
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because of compromised flap vascularization. In five patients venous thrombosis was found 

and in four patients both the artery and vein were occluded, which prompted microvascular 

revision resulting in one partial and one total flap necrosis. Persistent post-operative 

bleeding and/ or hematoma compromising flap vascularization required re-operation in 

the remaining three cases. Overall flap survival was 99.3%, with one total flap loss. Other 

early complications were partial wound dehiscence and/or fistula formation (n = 17) and 

hematoma (n = 3), which responded well to conservative treatment. Late complications 

consisted of mandibular osteoradionecrosis requiring further reconstructive surgery with 

fibula free flaps (n = 3) and one neck abscess which had to be drained. One patient required 

removal of infected internal fixation material. Late complications, responding well to 

conservative treatment, were dehiscence and/or fistula formation (n = 16). In one case a 

permanent tracheostomy was necessary. 

Table 2: Tumour location in study group patients 

Tumour Location 

Anterior 

Floor of mouth 

Mobile tongue 

Floor of mouth combined with tongue 

Posterior 

Tonsil 

Soft palate 

Retromolar trigonum 

Posterior alveolus 

Pharyngeal waLL• 

Base of tongue 

Other 

Inner cheek 

No. of Patients 

41 

38 

11 

21 

9 

8 

5 

6 

3 

7 

•combined with one or more of the above mentioned structures. 

Subjective Follow-up Results of Functional Outcome and Satisfaction 

The average follow-up was 43 ± 27 months (± SD; range 2 to 120 months). Analysis of the 

EORTC H&N35 questionnaires resulted in the following individual results of oral function. 
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Speech 

No difference in mean speech impairment between groups I (38 ± SD 26) and II (28 ± SD 

21) with different defect locations were seen (Mann-Whitney U test; p>0.05). Speech scale 

scores around 30 indicate moderate speech problems. 

Mastication and swallowing 

No statistically significant differences were found between the mean scores for 'swallowing' 

in groups I (30 ± SD 32) and II (28 ± SD 23) (Mann-Whitney U test; p>0.05). The scores of two 

other items of importance for mastication 'dry mouth' and 'sticky saliva' also showed no 

significant differences. 

Effect of postoperative radiotherapy 

Postoperative radiotherapy was administered to 57 of 72 patients (31 in group I, 26 in 

group II). In 15 patients no radiotherapy was necessary (8 in group I, 7 in group II). EORTC 

HEtN35 questionnaires showed a statistically significant difference for the subscale 'senses' 

(problems with smelling and tasting), which scored worse in the irradiated group (mean 31 

± SD 29) versus the non-irradiated group (mean 13 ± SD 22) (Mann-Whitney U test p<0,05). 

The subscale 'speech' scored worse in irradiated patients (mean 36 ± SD 24 versus mean 

12 ± SD 24), however, only a trend was seen since no statistical significance was reached 

(Mann-Whitney U test; p=0.07). 

EORTC HEtN35 questionnaires did not show significant correlations between dysfunction 

and follow-up time since their reconstruction. In addition, no significant relationships 

between known risk factors and functional outcome were found in the study group (data 

not shown). 

Objective Data 

Physical examination 

Intraoral inspection in 27 of 39 patients from the group with anterior defects showed the 

flap had blended into the surrounding mucosa. Ten of 39 patients had a bulky flap for that 

anterior location. These bulky flaps seemed to further decrease tongue mobility. Moving 

two-point discrimination reflected protective sensitivity in 24 patients, but was larger than 

12 mm in all patients. No reproducible data were obtainable in 8 patients. Three patients 

had hypersensitivity in their flaps causing a burning intraoral sensation. 
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Donor site outcome 

All donor sites have been extensively investigated previously. There was no decline in range 

of motion of wrist and fingers. Grip strengths were within normal range in accordance to 

age (8). 

Discussion 

The current study presents perioperative flap complications as well as objective and subjective 

oral functional outcomes in patients who had a radial forearm free flap reconstruction 

after resection of intraoral malignancies over a 1 0-year period. The radial forearm free flap 

was investigated to validate its continuing use in head and neck reconstruction. The radial 

forearm free flap has not been fully embraced by all reconstructive surgeons mainly due to 

the perceived donor site limitations, but also due to excessive or limited bulk for specific 

indications. Alternative flaps such as the lateral arm flap or the anterolateral thigh flap have 

been proposed as workhorse flaps (4,5). 

In this study almost two-thirds of the defects were located in the anterior part of the 

oral cavity (i.e. floor of the mouth, mobile tongue) and one third was used for posterior 

oral cavity reconstruction. Microsurgery related complications were very low with the need 

to reoperate due to arterial and/or venous thrombosis in 6% of cases leading to an overall 

flap survival rate of 99.3% (13, 14). This indicates that the radial forearm free flap is a 

reliable and safe flap to perform. Postoperative complications like dehiscences, fistulas, 

and hematomas were well within the range of previously reported data using different flaps 

for head and neck reconstruction (15, 16). Donor site complications had been thoroughly 

investigated in part of this group previously and shown no serious problems (8). 

The EORTC H8:N 35 questionnaire was used to evaluate subjective functional outcome 

and satisfaction of the study population, since reported validity and reliability are adequate 

and the various subscales are highly sensitive to difference within and between groups 

of patients (11 ). This is different from previous reports, which have mentioned objective 

functional outcome results in small groups for speech, deglutition, and swallowing as 

evaluated by videofluoroscopy (17). In our experience these objective results often do not 

match subjective satisfaction. We hypothesized that the group with anterior defects would 

have more speech problems and that the group with the posterior defects would have more 

swallowing problems. Both groups scored moderate impairment of speech and swallowing, 
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however, no significant differences were found. The lack of statistically significant differences 

most likely was caused by difference in individual coping of patients with their situation. 

This has been pointed out previously as well from patient data where defects and objective 

outcome data completely contradicted subjective outcome expectations (14). 

In addition, all patients who had been irradiated were compared to those who had not 

received radiotherapy. Irradiated patients showed a statistically significant deterioration 

in their ability to smell or taste as well as a strong trend for impaired speech. Here too 

individual coping of patients seemed to play an important role for outcome. In line with 

Smith et al. (9) the negative effects of irradiation on functional outcome and satisfaction, 

however, seemed clearly present. 

Non-invasive physical examination was performed in patients with anterior radial 

forearm free flap reconstructions only. Inspection revealed too bulky flaps, which additionally 

limited tongue mobility in 25.6%. Sensitivity testing proved difficult, as experienced 

previously (12). Protective sensitivity was not evident in every third patient, however, 

recurrent intraoral defects were not reported to be major a problem by patients. This 

unclear recovery of sensation indicates a potential benefit of using sensate flaps, which is 

not routinely performed at our institution. 

The major flaw in this study is the diversity of the defects and associated treatments. 

It is impossible to perform statistical analysis for all different subgroups since they would 

become too small. Also, the difference in coping of different patients with a similar 

situation makes that some patients will be satisfied with the exact same situation with 

which other patients will be very dissatisfied. Nevertheless, we believe that due to the 

rather high number of similar reconstructions some conclusions can be justified from the 

present findings. 

The radial forearm free flap is an easy and versatile flap with minimal donor site 

morbidity. It is still a valid method for reconstruction after resection of intraoral 

malignancies. Patient coping and postoperative irradiation influence functional outcome 

and patient satisfaction. Flap bulkiness plays a more limited role for anterior defects. 
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1. Introduction 

Substitution of lost tissue due to trauma, congenital defects, or resections is a challenge 

that plastic reconstructive surgeons are confronted with on a daily basis. Technical advances 

in the fields of microsurgery, allogeneic and autologous grafting has put the plastic surgeon 

at the forefront of medical science. 

A recent and rapidly growing set of tools for the reconstructive surgeon is being 

developed in a field known as tissue engineering. The goal of tissue engineering is to develop 

biological substitutes to restore, maintain or improve functionality of tissue (1 ). In other 

words; replacement of lost or damaged tissue by tissue grown in a laboratory. Engineered 

tissue can be manipulated and formed in a way that it meets the specific needs of a patient. 

Clinical use of for example cultured skin substitutes (2-4) in burn therapy and cartilage cells 

for repair of hyaline cartilage defects in the knee joint {5,6), illustrates the fact that tissue 

engineering is moving from lab bench to bed side. 

The basic technique of tissue engineering can be broken down into two ingredients; 

cells and scaffolds (figure 1 ). 

Transplantation into defect 

Figure 1: Basic principles of tissue engineering. Cells are isolated from a biopsy, cultured to 

expand cell numbers and combined with a three dimensional scaffold in vitro. Subsequently, this 

construct is transplanted to the patient. 
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Cells are typically isolated from a biopsy and are grown in vitro before use. Cell culturing 

times are related to dividing times of the cells and culture techniques, and will be discussed 

later in this chapter. For example, epidermal keratinocytes from a skin biopsy of an area of 

1 cm2 have a doubling time of approximately 24 hours and can be grown to a surface of about 

1m2 in approximately three weeks. 

Cultured cells are often combined with the second major component, a three

dimensional matrix or scaffold. Scaffolds can be composed of a number of materials with 

distinctive characteristics that influence the behavior of the matrix (e.g. degradation times) 

and of the seeded cells (e.g. cell attachment), and will be discussed later in this chapter. 

After settling and attachment, the cells are guided by the scaffold to establish an organized 

three-dimensional tissue structure. 

The first part of this chapter will focus on the two basic components of tissue 

engineering, cells and scaffolds. The second part will discuss the current techniques used 

to grow and fabricate these two components into specific tissues of interest to the plastic 

reconstructive surgeon. 

2. Scaffolds 

Scaffolds in tissue engineering are either temporary or permanent three-dimensional 

frameworks used as a matrix for cells to attach and grow on. They are biocompatible and 

are usually comprised of materials that are natural or synthetic in origin. Some scaffolds 

are non degradable, such as Dacron or Teflon vascular constructs seeded with endothelial 

cells. However, most scaffolds used for implantation purposes, are composed of degradable 

materials. There are many scaffold materials used in tissue engineering, we will discuss some 

of the most popular biodegradable scaffolds, composed of natural or synthetic materials. 

A. Natural scaffolds 

1. Acellular tissue scaffolds 

Tissue, which has been treated to remove all cells in a process known as decellularization, is 

used as a scaffold to seed cells. Sources of the starting tissue can be allogeneic or xenogenic 

in origin. Procedures such as freeze-thaw cycles and washes with detergent are used to kill 

and remove all immunogenic living cells in the tissue. What remains is the immunologically 

inert extracellular matrix of the tissue. Most of the structural proteins (e.g. collagen, and 
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elastin) remain intact. This acellular material can subsequently be seeded with the cells of 

choice. For example, acellular dermis has been used as a skin replacement in treatment of 

burn wounds and reconstructive procedures (7,8). 

2. Type I collagen 

Collagen is the major component of the mammalian extracellular matrix. It provides tensile 

strength, and flexibility in tissues, such as skin, tendon and bone. Of the 14 types described, 

collagen type I makes up approximately 90% of all fibrous proteins, thereby being the most 

abundant type. Collagen has long been used in the medical setting in the form of sponges, 

fleece or fibers for haemostatic purposes. 

Collagen is often isolated from bovine skin, bovine tendons or rat-tail tendons by 

an acid extraction procedure. In vitro, after neutralizing the pH, the collagen can be re 

associated to form fibers or gels. Resorption of collagen polymers occurs by lysosomal 

enzymes, secreted by surrounding cells. 

To adjust the characteristics of collagen fibers to specific needs, the fibers can be 

cross-linked to various extends to provide additional strength. Besides adding strength, 

cross-linking increases the degradation time. Cross-linking reduces the rate of in growth of 

tissue into the collagen-based scaffolds and also reduces the ability of the polymer to absorb 

water (9). The collagen I polymers can be crosslinked with glycosaminoglycans. Addition of 

glycosaminoglycans provides a tool to optimize degradation times, pore sizes and elastic 

characteristics of the newly formed tissue after grafting (1 0-13). This technique is used in 

the case of the dermal substitute Integra® (Integra I LifeSciences corp.) (figure 2). 

Glycosaminoglycans are large, negatively charged molecules in the extracellular 

matrix. The GAG's provide compressive strength, shock absorption and turgor to the tissue 

by attracting water to the extracellular matrix. In the body, they are abundant in tissues 

such as cartilage and dermis. 

Examples of GAGs are hyaluronic acid, chondroitin sulphate, dermatan sulfate, 

keratan sulfate and chitin. GAGs are isolated from shark cartilage (chondroitin-

6-sulfate), rooster combs or are produced by a microbial fermentation process. 
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Figure 2: Highly porous sponge of bovine collagen type I and glycosaminoglycans (Picture courtesy 

of Integra UfeSciences Inc.) 

B. Synthetic scaffolds 

Certain synthetic polymers have been used to fabricate bioabsorbable sutures, pins, and 

fibers long before their use as a scaffold material in tissue engineering. They are usually 

fabricated from monomers that are of natural metabolites. Most commonly used are 

members of the a-hydroxy-acid family, such as glycolic acid (forming poly (a-glycolyc-acid) 

or PGA), lactic acid (forming poly (lactic acid) or PLA). For use in tissue engineering, the 

monomers can be polymerized into the form of fibers, fleeces, foams or gels. 

Copolymers of two or more monomers are often used. By varying the percentages of 

the components, characteristics of the resulting material can be changed. For instance, 

PGA is hydrophilic, and has a short degradation time. PLA however, has a longer degradation 

time and has a more hydrophobic character. PLA has better mechanical properties than PGA. 

When making a copolymer of the two molecules (forming the copolymer lactic-co-glycolic 

acid, or PLGA), these properties can be mixed, resulting in a polymer with the mechanical 

properties of PLA, and the hydrophilic and resorption properties of PGA. This product is on 

the market as Vicril© (Johnson & Johnson). 
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Once placed in the body, exposure to body fluids and cells leads to degradation of the 

polymers by hydrolization. The degradation products of the polymers are their monomers, 

lactic acid or glycolic acid, which are eventually converted into C02 and water by the 

Krebs cycle (14, 15). The acidic metabolites however, can cause lowering of the pH in the 

local environment of the scaffold, which can result in an inflammatory reaction in the 

surrounding tissue (16, 17). Furthermore, if the surrounding tissue is not capable of removing 

the byproducts due to insufficient vascularization, the accumulation of osmotically active 

degradation products can lead to hyperosmolarity of the tissue, leading to fluid accumulation 

and non-specific foreign body reactions. This problem is documented in the use of PLGA 

screws used in bone fixation. The degradation of the PLGA was associated with a non

specific foreign body reaction in 7.9% of a population of 516 patients (18). 

C. Design of scaffolds 

For the design or choice of a scaffold, various aspects are taken into consideration (table 1 ). 

Optimization of these variables results in ideal cell seeding, cell attachment, cell growth, 

diffusion of nutrients, revascularization and degradation times of constructs. 

For example, an increase in the total number of pores and surface area of pores per 

volume provides a larger surface area for cells to attach (11 ). Coating scaffold materials 

with substances, such as collagen, fibrin, or other surface adhesion proteins further improves 

attachment of cells. Porous structures make it possible for cells to grow into multi layers, 

facilitates diffusion of nutrients and ingrowth of vasculature from the surrounding tissue. 

Pore sizes can be varied using salt-leaching techniques. In this process, scaffold material is 

mixed with water-soluble salt crystals that have a size similar to the desired pore size. After 

polymerization, the crystals remain in the matrix and can subsequently be washed out with 

water, leaving behind a porous structure. The resulting pores are relatively homogenous in 

size and distribution. Pore sizes and shapes can be changed by using different salts . 

Diffusion of nutrients is required for survival of cells in a scaffold. In vitro, nutrients 

from the culture medium feed the cells. Since tissue engineered constructs are typically 

avascular, during the first days after transplantation, the supply of nutrients for transplanted 

cells in vivo depends solely on diffusion from the wound bed. After grafting, formation of a 

new vascular network occurs by ingrowth of vasculature from surrounding tissue, providing 

a more solid nutrient supply to the cells. This limited distance of diffusion severely reduces 

the maximal size of the constructs. 
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Tablet: Some considerations in designing and choosing scaffold materials 

Biological properties 

Mechanical properties 

Chemical properties 

Manufacturing properties 

Biocompatibility 

Cell attachment 

Immunologic responses of host to scaffold materials 

Risk of disease transmission 

Sensitization host for scaffold material 

Possible bioactive properties (e.g. BMP inclusion into matrix) 

Stress-strain behaviour 

Pore size 

Surface area per volume 

Number of pores per volume 

Inter-pore connections 

Surface chemistry (e.g. coating with cell adhesion molecules) 

Degradation rate 

Byproducts of degeneration (e.g. Lactic acid in PLA degradation) 

Technical demands and costs of production 

Reproducibility of morphology and biological properties 

Possibilities for Large-scale production 

Costs of raw material 

Sterility 

Degradation rates vary from days to years depending on the size, structure and chemical 

components of the materials used (9). Half-lives of scaffolds can be adjusted to the time cells 

need to deposit sufficient autologous extracellular matrix material to support themselves 

in a three dimensional structure. Procedures, such as cross-linking and co-polymerization 

provide ways of manipulating this important characteristic of scaffolds. 

3. Cell isolation and culture 

The ability to culture and grow mammalian cells in a controlled and aseptic environment has 

made countless advances in research possible and has opened up the use of new, cell-based, 

therapies. In this part of the chapter, we describe how cells are obtained from various 

tissues sources, how cell cultures are initiated and kept in culture for extended periods of 

time and how complex liquid media that make cell culture possible are formulated. 
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A. Cell isolation 

For isolation of a specific cell type a small piece of normal tissue is obtained by biopsy, 

and minced up into small pieces. These pieces are subsequently treated with proteolytic 

enzymes, such as trypsin or collagenase, to digest proteins involved in cell-cell contacts and 

in the extracellular matrix. This process frees the cells from the surrounding extracellular 

matrix and generates a suspension of single cells. 

B. Cell culture 

Cell suspensions isolated from tissues are plated into a tissue culture dish, along with a rich 

liquid culture medium. Cells settle, attach and spread on the surface of the tissue culture 

dish. This is the first or primary cell culture. After an initial lag time of 1-2 weeks, the cells 

become adapted to the culture environment and begin to undergo cell division that can 

continue for many weeks depending on the cell type. 

As cell numbers increase, a state of confluence is reached, and the cells need to be 

plated onto new dishes. This process is known as serial passage or subculture. By using serial 

passage of cells, cell division can continue at a relatively constant rate for many weeks 

and give rise to many subcultures and a large number of cells. For example, normal diploid 

human dermal fibroblasts of the skin can be readily cultured in vitro. From only a 1cm2 

skin biopsy it's possible to establish a primary culture of a few thousand dermal fibroblasts. 

Under appropriate culture conditions, human fibroblasts can be serially passaged about 10 

times, which yields to a total of approximately 1016 cells. 

Cells in culture are able to perform a wide range of highly differentiated activities 

characteristic of their respective roles in vivo. For example, dermal fibroblasts secrete 

and assemble collagen fibers in culture. However, cell strains may differ in their inherent 

ability to perform these differentiated functions under certain in vitro conditions. For 

example, unlike the fibroblasts, chondrocytes lose these differentiated functions rapidly 

in a two dimensional culture. The cells lose their ability to produce collagen type II and 

start producing collagen type I, a process known as dedifferentiation, discussed later in the 

chapter. 

A wide variety of culture media and culture conditions have been developed over the 

years to facilitate the culture of specific cell types. In fact, each cell type has its preferred 

medium formulation and culture conditions, nevertheless, there are some fundamental 

common features. 
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Table2: Some components of a typical culture medium 

Basal medium components 

Sodium chloride 

Inorganic salts 

Sodium bicarbonate 

D-glucose 

Amino acids 

Vitamins 

Phenol red 

Serum 

Growth factors, hormones 

Antibiotics 

Function 

Osmotic pressure 

Provide electrolyte balance similar to blood 

Provides buffering capacity; with appropriate C02 level in the 
gas phase, maintains pH at 7.4 

Source of energy, carbon 

Source of nitrogen for protein synthesis 

Co-factors in various intracellular biochemical reactions 

Visual pH indicator 

Provides cell growth and attachment factors, hormones, 
carrier proteins 

Stimulate growth, function 

Prevent contamination by microorganisms 

The major components of a typical liquid medium to culture cells are summarized in Table 

2. Some aspects of the medium's composition (osmolarity, pH) are clearly meant to mimic 

blood and other physiological solutions. However, in many cases, the concentrations of 

nutrients and hormones/growth factors can be several folds higher than blood. Overall, 

culture media are typically very rich in nutrients in order to sustain growth and provide cells 

with an ideal culture environment. Through a process of trial and error, culture media have 

been optimized for the growth of different cell types. 

One of the main functions of medium is to provide sources of energy to the cell. The 

most important sources of energy in the medium are glucose, Pyruvate, and the amino acid 

glutamine. Glutamine, the essential amino acids in the medium and the other amino acids 

are also used for protein synthesis. Addition of non-essential amino acids is often desirable 

since intracellular synthesis of these amino acids can be a significant drain on the cell's 

energy pool. Complex medium preparations may also contain nucleosides, critic acid cycle 

intermediates, and lipids, which may be necessary when very low serum levels are used. 

One of the most common and important growth supplements is serum. Although serum 

is not a well-defined component and may exhibit batch-to-batch variation, it contains a 

wealth of factors that aid cell attachment and growth. In addition, the large load of carrier 

proteins provided by serum can help scavenge toxic impurities inadvertently supplied by 

the water, reagents, or cell culture apparatus. Serum is widely used and is generally added 

to the basal medium formulation in a proportion of 1 to 20% of the volume. The type of 
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serum most widely used is calf bovine serum, followed by fetal bovine serum that is used 

for more demanding cell lines. Human serum can be used for human cell lines, and can be 

autologous, to prevent transmission of disease. 

Cells in culture can be divided into two groups, anchorage dependent and anchorage 

independent cells. Anchorage dependent cells grow attached to a substrate. The nature and 

composition of this substrate is critical for cell function, these cells do not grow unless they 

are attached. Chondrocytes and some blood cells are able to grow without attachment. In 

these cases, the cells are referred to as anchorage independent. These cells grow embedded 

in a semi-solid agarose gel or as small spheroids or aggregates of cells in suspension in the 

liquid medium. For the majority of cells, attachment and spreading on a substrate are 

required for survival, growth and cell function. 

Knowledge of the two components has of tissue engineering has resulted in various 

products that are in clinical use or in development. We will describe some tissue-engineered 

products that are currently in use. 

4. Tissue engineered skin 

The standard for treating large skin defects is still closure with a full thickness or a split

thickness autograft. Harvesting sites for autologous skin can be scarce, especially in the 

severely burned patient, and so, ways of growing and expanding cell numbers in vitro have 

been of interest. Research towards bioengineering skin substitutes has proceeded along two 

important lines; (1) the optimization of in vitro methods for the culture and proliferation of 

cells of the skin and (2) the development of biomaterials which mimic important properties 

of the skin. 

A. In vitro culture of epidermal keratinocytes 

Since new techniques of isolating and culturing keratinocytes were discovered, it has 

become a standard practice to grow keratinocytes in large numbers. Keratinocytes are 

readily available and expansion of an epidermal surface from a biopsy size of 1 cm2 to 1m2 

is realized in about 3 weeks. 

Keratinocytes are isolated from a full thickness biopsy of skin, approximately 1-2 cm2• 

After enzymatic digestion using Dispase®, the epidermis can be separated from the dermis 

as an epidermal sheet. The separated sheet is further digested with the enzyme trypsin. 

This typically results in a single cell suspension of keratinocytes. 
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Epidermal keratinocytes can be cultured in vitro using various methods (19,20). One method 

widely used for the clinic employs a feeder layer of murine fibroblasts (20) that have been 

lethally irradiated or treated with mitomycin C to prevent their proliferation. The feeder 

layer forms an optimal environment for the growth of keratinocytes by conditioning the 

medium through the secretion of growth factors and providing insoluble extracellular 

matrix proteins that are required for the clonal growth of keratinocyte colonies. Using this 

method, small colonies of 2-4 cells form within a few days after plating the keratinocytes. 

Doubling times for the keratinocytes are approximately 24 hours. As the cells proliferate, 

the colonies continue to expand until adjacent colonies merge and form a confluent sheet 

of keratinocytes. 

B. Skin substitutes 

There are three basic types of tissue engineered skin substitutes; the epidermal sheet, a 

dermal substitute, or a composite skin graft composed of a dermal substitution with a top 

layer of cultured keratinocytes. Substitutes for the epidermis and dermis are numerous 

(table 3). Some of the more popular ones will be described. 

Table3: Overview of commercially available skin substitutes 

Company 

Epidermal substitutes Genzyme Biosurgery, 
Cambridge, MA 

Dermal substitutes Integra LifeSciences, 
Plainsboro, NJ 

Product 

Epicel® 

Integra® 

Description 

Autologous cultured keratinocyte 
sheets. 

Composed of an upper epidermal 
silicone sheet and a collagen-GAG 
copolymer dermal substitute. 

LifeCell, Branchberg, NJ AlloDerm® Acellular allogeneic dermis. 

Advanced Tissue 
Sciences, LaJolla, CA 

Advanced Tissue 
Sciences, LaJolla, CA 

Composite substitutes Organogenesis Inc, 
Canton, MA 

Transcyte® Extracellular matrix proteins 
deposited by allogeneic human 
fibroblasts on a non-degradable 
matrix. Cells are killed prior to use. 
Top layer is a nonporous, silicone 
sheet. 

Dermagraft® Living, cultured allogeneic fibroblasts 
on a biodegradable matrix. 

Apligraf® Allogeneic cultured keratinocytes, 
seeded onto a dermal layer composed 
of allogeneic fibroblasts in a collagen 
gel. 
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1. Substitutes for epidermis 

Epidermal sheets are made of keratinocytes that have been cultured in vitro using the 

method described above. After growing the keratinocyte colonies to confluence, the final 

sheet of keratinocytes is a multi-cell layered sheet of epithelium approximately 2-8 cells 

thick. To detach this epithelium from the culture dish, the cultures are treated with Dispase®. 

This results in epithelial sheets of approximately 30cm2 in size and 2 to 8 cell layers thick. 

These grafts of autologous keratinocytes are attached to petrolatum gauze, and shipped 

to the hospital to be transplanted back to the patient. Genzyme Biosurgery (Cambridge, 

Massachusetts) provides Epicel®, a service that expands autologous keratinocytes into 

epidermal sheets with a surface area enough to cover the entire body in 16 days. The 

company reports that since 1988, over 600 patients have been treated using their epidermal 

sheets. 

Drawbacks of this technique are variable take, susceptibility of infection, fragility of 

the sheet during handling, and spontaneous blistering for periods up to a few months, due 

to the lack of a good dermal-epidermal junction. 

2. Substitutes for dermis 

There are several substitutes currently on the market. We will discuss two of the most 

important ones, lntegra®(lntegra LifeSciences, Plainsboro, NJ) and AlloDerm® (LifeCell, 

Branchburg, NJ). 

Integra® is a bilayer construct of a porous collagen-GAG polymer sponge as a substitute 

for the dermis, covered with a thin silicone membrane as a substitute for the epidermis 

(1 0,11) (figure 3 ). The dermal component is a suspension of extracellular matrix molecules: 

bovine collagen (isolated from bovine tendon), cross-linked with glycosaminoglycans from 

shark cartilage during the manufacturing process. Cross-linking optimizes pore structure 

and pore size of 70-200 microns and degradation times and furthermore increases elasticity 

of newly formed the skin after healing. The product is freeze-dried and stored in 70% 

isopropyl alcohol until usage. The collagen-GAG dermis is not immunogenic. However, 

after transplantation and subsequent invasion with autologous fibroblasts and endothelial 

cells, it induces a mild inflammatory reaction, which degrades the matrix in about 30 days. 

Autologous matrix deposited by the migrated fibroblasts, replaces the degraded material. 
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7 days after application 

14+ days after application 14+ days after application 

Figure 3: The two-step use of Integra® as a skin substitute. The substitute is placed on the 

wound (a), revascularization takes place (b) and after two weeks, the silicone layer can be 

replaced by a meshed split skin autograft (c,d) (Pictures courtesy of Integra LifeSciences Inc.) 

The epidermal component is composed.of a thin (0.009 inches) silicone layer. In addition to 

providing mechanical strength, this synthetic "epidermis" acts as a barrier to control loss of 

moisture and prevents bacterial contamination. 

A major advance in the care of serious burns has been the practice of early excision 

therapy. However, with extensive burns these excised areas require coverage and sufficient 

autograft may not be available. By providing a temporary substitute for skin, Integra® 

Artificial Skin aids the practice of early excision therapy. Integra® is particularly useful for 

children and elderly patients whose skin is thin and not easily harvested for repeat auto 

grafting. 

In a typical application, the burn wound is excised, covered with Integra® Artificial Skin, 

and over time the collagen-GAG dermal template promotes the formation of a vascularized 

neodermis. The silicone layer is peeled away (14-21 days after grafting) and the wound site 

is covered with an ultra thin (0.005 inches) epidermal autograft or a cultured epithelial 

sheet. 
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Another dermal substitute is AlloDerm®. This product is based on acellularized human cadaver 

skin. Since rejection of allogeneic skin grafts is based on immunological responses of the 

host immune system to the cellular components of skin, removal of the cellular components 

results in an immunologically inert structure, composed mainly of ECM molecules (21 ). 

Screened cadaver allografts obtained from tissue banks are first treated with a high 

salt solution and the epidermis is removed and discarded. The de-epidermalized dermis is 

further treated with a detergent containing a de-cellularizing solution, which also serves 

to inactivate potential contaminating viruses. The resulting acellular dermis is washed in 

a freezing medium and freeze-dried under controlled conditions to avoid disruption of the 

matrix proteins. This material still has its rete ridges and contains collagen and elastin. 

Very importantly, the epidermal side still contains many of the proteins of the basement 

membrane such as laminin, and collagen types IV & VII, which are important for the 

attachment and migration of epidermal keratinocytes (22). 

For usage, the acellular dermis can be meshed if necessary and is placed on a debrided 

wound bed, either in combination with an ultra thin meshed autograft or with a cultured 

epidermal layer (8). Two-step procedures are also used, where the epidermis is placed on 

the dermis only after initial revascularization of the dermis has taken place. 

3. Cultured composite skin grafts 

Composite skin grafts are composed of cultured keratinocytes and a dermal substrate (figure 

4). Typically, the surface of a dermal substrate is seeded with a single cell suspension of 

trypsinised keratinocytes in medium. This construct is submerged in medium for a few days. 

Keratinocytes attach to the dermis and grow into a confluent epidermal layer. As a next step, 

the dermis, with keratinocytes, is raised to the air liquid interface of the culture system. 

Exposure to air results in a stratified differentiated epidermis, complete with granular and 

cornified layers (23). 

After grafting, on a freshly debrided wound bed, fibro vascular structures invade the 

dermis. The keratinocytes secrete angiogenic factors (VEGF, FGF) and chemo attractant 

substances that support and accelerate this process (24,25). 
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lOOum 

c 

Figure 4: Histology of normal human skin (a) compared to composite skin substitutes in the form 

of, Apligraf® (b), or a composite skin substitute of acellular dermis with cultured keratinocytes 

(c). (Pictures a and b, courtesy of Organogenesis Inc., picture c by courtesy of J.Cusick, 

Massachusetts General hospital! Shriners Burns Hospital Boston) 

Organogenesis, Inc. of Canton, MA, produces another type of composite skin graft. The 

product, Apligraf® (figure 4), has an epidermal layer of cultured allogeneic keratinocytes 

and a dermal analogue of cultured allogeneic fibroblasts in a collagen gel. When cultured 

fibroblasts are mixed with a solution of bovine collagen, they form a gel. The fibroblasts 

remain metabolically active and over time, begin to reorganize the bovine collagen as well 

as produce their own collagen and matrix proteins. The cells used for Apligraf® are isolated 

from neonatal foreskins. The surface of this dermal equivalent is seeded with cultured 

allogeneic keratinocytes that spread and proliferate to form a partially differentiated 

epidermal covering. This bilayered skin equivalent is raised to the air-liquid interface, 

resulting in the differentiation of the epidermis. 

According to the company, the cells obtained from one foreskin of approximately 1 cm2 

can be proliferated in vitro to manufacture approximately 1600 m2 of the Apligraf® product. 
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Unlike grafts of autologous cells, which require 2-3 weeks preparation time for each patient, 

grafts of allogeneic cultured cells can be made available for immediate use. However, due 

to the immunological mismatch, the engraftment of allogeneic cells is not permanent, but 

can provide temporary coverage, which promotes wound healing. 

Apligraf® is FDA approved for the treatment of venous and diabetic ulcers. Prospective 

randomized studies show thatApligraf® plus compression therapy improved complete wound 

closure compared to compression therapy alone in the case of venous ulcers. In treatment 

of diabetic foot ulcers, a significant increase in wound closure is observed when Apligraf® is 

used (26-28). 

C. Future perspectives 

Tissue engineered skin was one of the first tissues to enter clinical trials. Over two decades 

ago, the first coverage of large burn wounds with lab grown skin was reported (29). Since 

then, use of tissue-engineered skin has increased. However, there is still a long way to go, 

as illustrated by the current problems of variable take rates, long production times and high 

costs (30). 

Research continues in the field of bioengineered skin substitutes. Many labs, as well 

as physicians, are searching for the ideal combination of biomaterials and cultured cells 

that can provide reliable, definitive wound closure. Moreover, as the clinical success of the 

currently available skin substitutes increases, the issues of cosmetics of the healed skin, 

especially for the burned patient, will grow in importance. 

Efforts to reduce production times are found by use of allogeneic keratinocytes, 

or by mixing allogeneic cells with autologous cells in a so-called chimeric culture (31 ). 

Also, procedures where the collagen-GAG matrix has keratinocytes seeded in the pores of 

the matrix have been described (32,33). After grafting, the keratinocytes migrate up and 

repopulate the dermis, reducing production time and reducing cells necessary for providing 

a new epidermis. 

In the future, genitally modified skin substitutes may be useful for the local synthesis, 

secretion and delivery of wound healing growth factors or other therapeutic agents. 

Keratinocytes are relatively easy to genetically modify, and have been shown to produce 

high levels of various growth factors; human Growth Hormone (hGH) (34), Platelet Derived 

Growth Factor (PDGF) (35-37), Keratinocyte Growth Factor (KGF) (38), and Vascular 

Endothelial Derived Growth Factor (VEGF) (39), have been described. 
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5. Tissue engineering of bone 

Currently, bone replacement is usually accomplished by autologous or allogeneic bone 

grafting. Donor sites for autologous tissues are scarce and procedures, such as vascularized 

bone transplantation are technically challenging and time consuming. Complications of 

concern include unpredictable bone resorption, donor site morbidity, and infection (40). 

Tissue engineered bone constructs can provide an alternative source for bone. 

In the following part of this chapter we describe cell types used for bone healing 

purposes, followed by a description of currently used scaffold materials and developing 

materials. 

A. Cells producing bone 

Cells producing bone (e.g. osteoblasts) or cells that are capable of differentiating into bone 

producing cells (e.g. mesenchymal stem cells) are called osteogenic cells. Mesenchymal 

stem cells are multipotent and can differentiate into osteoblasts, chondrocytes and other 

cell types of connective tissues, such as fat or muscle cells (41-46 ). Differentiation of 

mesenchymal stem cells into bone phenotype is regulated by osteoinductive factors (e.g. 

fibroblast Growth Factor, bone morphogenetic proteins (BMP) (47·50). 

In bone, osteogenic cells are located in the bone marrow and periosteum. Osteogenic 

cells can be isolated by bone marrow aspiration, a relatively non-invasive, fast, simple, 

procedure with a high yield of osteogenic cells. The marrow can be used immediately or the 

mesenchymal stem cells (MSC) can be isolated and cultured in vitro (49,51 ,52). MSC can be 

cultured for 30 doublings, expanding cell numbers over one billion fold without losing their 

osteogenic potential (41 ). Alternative sources of osteogenic cells are periost and cancellous 

bone (53,54). 

Bone marrow has long been recognized for its osteogenic and osteoinductive 

properties. It is used in the clinic for treatment of non-healing bone fractures since the 

1980s (53). It can be injected into the surrounding bone as a cell suspension or combined 

with a carrier, such as demineralized bone. This prevents diffusion of the cell suspension, 

provides mass for correction of defects and in addition, the demineralized bone adds 

osteoconductive properties to the construct (54-57). Clinical reports describe similar 

mechanical and functional results using bone marrow in combination with demineralized 

bone compared with autologous grafting (56,58), however, more data are needed to confirm 

these observations. 
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B. Scaffold materials for bone substitutes 
Two widely used scaffolds for bone substitutes are allogeneic bone and demineralized bone 

matrix (DMB). The latter is obtained by a hydrochloric acid treatment of bone to extract the 

minerals. Both materials have clear osteoconductive characteristics, meaning the material 

guides bone healing by enhancing attachment, migration and distribution of cells responsible 

for the bone healing response. Furthermore, the allogeneic bone can be produced in various 

forms and shapes, such as blocks, chips and powders. It is porous, has many adhesion sites 

for osteogenic cells that invade the material from the surrounding host tissue. In addition, 

the matrix material contains osteoinductive factors, embedded in the extracellular matrix, 

such as Bone Morphogenetic Proteins (BMPs) (59,60). For survival of these osteoinductive 

factors processing techniques of the bone are important. This is illustrated by the fact that 

if donor bone is left at room temperature for more than 24 hours before harvesting, the 

biological activity is lost (61 ). 

Although allogeneic bone can be considered to be one of the optimal bone substitute 

by virtue of its mechanical and osteoconductive properties, drawbacks such as costs, 

variability of performance (e.g. resorption, incidence of stress fractures (62)), sensitization 

of recipients to graft specific histocompatibility antigens (63,64) and risk of transmission of 

disease, are significant. Therefore, alternative sources of bone replacement materials have 

been developed. 

Materials widely used are composed of ceramic materials, such as hydroxyapatite (calcium 

phosphate salt) and tricalcium phosphate (TCP). Hydroxyapatite can be derived from coral. 

Two kinds of coral are suitable for osteoconductive bone replacement materials. Both 

substitutes are highly porous, with a void volume up to 66%. One type has morphology 

similar to cancellous bone whereas the morphology of the second type is similar to cortical 

bone with parallel longitudinal pores and interconnecting pores (65,66). Native coral is 

composed of brittle calcium carbonate, but treatment by hydrothermal exchange at 900°C 

results in a very pure form of hydroxyapatite, with superior mechanical properties (65). 

Hydroxyapatite is a natural part of bone and after the hydrothermal reaction the product is 

protein free, making it an immunogenically inert material. 

Hydroxyapatite has a resorption rate of approximately 5 to 15% per year and therefore 

can be considered as a non-degradable material. It has shown its use in the clinic as an 

osteoconductive bone substitute (67-69) and is on the market as Pro Osteon® (Inter pore 

Cross, Irvine CA) (figure 5). Pro Osteon® is FDA approved for repair of metaphyseal defects, 

long bone cysts and tumor defects. Upon placement of this very porous substitute, it becomes 
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repopularized with fibrovascular cells, and osteogenic cells that deposit their matrix on the 

insoluble hydroxyapatite scaffold. 

a 

FigureS: A Higly porous coral based product (Pro osteon 200®) is shown in low magnification (a) 

and scanning electron microscope (b). It can be used to augment frontal cranium (c). After 11 

months, newly formed bone (gray) is deposited on the hydroxyapatite structure (white)(d). 

To shorten the long half-life of this material, the hydrothermal conversion can be partially 

completed, resulting in a concentric outer layer of slowly resorbed hydroxyapatite around an 

inner layer of more rapidly absorbing calcium carbonate. The outer layer of hydroxyapatite 

provides mechanical support and its slow resorption gives ingrowing cells time to attach and 

deposit extracellular matrix. After a few months, the outer layer becomes eroded, exposing 

the calcium carbonate that is resorbed at a faster rate. In a perfect setting, the newly 

formed bone will be matured enough to provide mechanical support before the outer layer 

is resorbed. Other ways of shortening resorption times include making co polymers with the 

more readily absorbable tricalcium phosphate. 

Another scaffold material used in bone substitutes is collagen type I. Collagen type I 

is the most abundant extracellular matrix protein in bone and has properties that facilitate 
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mineral deposition in the extracellular matrix. It has been mixed with hydroxyapatite, 

and is currently on the market (Collagraft® I Neu Coll inc., Palo Alto, CA). This product 

consists of bovine skin collagen type I mixed with hydroxyapatite. Prospective, randomized 

trials validated the use of this product in combination with autologous bone marrow cells. 

The trial showed no difference between use of autologous bone transfer and the use of 

hydroxyapatite in combination with autogenous marrow with respect to rates of union and 

prevalence of complications. Twelve of the 213 patients showed positive antibodies to bovine 

collagen. The authors conclude that use of hydroxyapatite in combination with marrow as 

an alternative to autogenous bone grafts for healing fractures in long bones is justified (70). 

According to the company, Collagraft® has been used successfully in the combination with 

autologous marrow as an osteoconductive, osteoinductive, and osteogenic cancellous bone 

replacement in more than 150,000 patients since 1994. 

C. Future perspectives. 

Research and development of new bone substitutes is focusing on several areas. One area 

focuses on increasing osteoinductive properties by incorporating osteoinductive growth 

factors, such as BMP into various scaffold materials (71-75). Another area of interest is the 

development of injectable ceramics and polymers that polymerize in situ. After mixing with 

a catalytic agent the polymerization process is started and the polymer is injected into the 

site of interest. A variable period of viscosity follows, when the material can be adjusted 

to fit the defect while the materials harden with minimal production of heat and without 

producing any harmful byproducts (76). Some of the newly developed polymers secrete C02 

during the process of in situ polymerization, resulting in a porous structure. In addition, the 

pressure generated by the C02 generates forces the scaffold to fit the defect seamlessly 

(77). 

Further areas of research include in the development of in vitro seeded natural and 

synthetic scaffolds (78-81 ). Bone constructs using cultured periosteal osteogenic cells 

seeded into a PLGA and PGA polymer scaffold have shown increase of bone formation in 

femoral shaft reconstructions (82) and in reconstruction of calvarial defects (83) in rats and 

rabbits. Cultured MSCs, in a coralline scaffold, have shown to increase bone regeneration in 

a femoral shaft defect in sheep (84). 
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6. Tissu~ engineering of cartilage 

Cartilage has many characteristics that make it suitable for tissue engineering purposes. 

Ease of isolation and the discovery of techniques for cell expansion in vitro have made 

it possible to obtain and grow cells for transplantation purposes. Lack of vascularization, 

low metabolic demands and possibilities to store for long periods of time make this tissue 

appropriate for usage in an engineered construct and for purposes of transplantation. There 

is a large demand for autologous cartilage due to its limited availability and marginal capacity 

to repair and regenerate in vivo. This has led to extensive research efforts into discovering 

ways of in vitro expansion and engineering of cartilage. Tissue engineered cartilage can be 

used in many ways in reconstructive plastic surgery. Treatment of nose septum defects or 

reconstructions of the external ear are only a few of the possible uses. 

A. Isolation and culture of chondrocytes 

There are three types of cartilage; elastic, hyaline and fibrocartilage. Elastic cartilage 

can be isolated from ears, nose septum and ribs. Fibrocartilage has more collagen I in its 

extracellular matrix, whereas the other two have more collagen type II in their extracellular 

matrix. The abundance of collagen type I makes fibrocartilage less water attracting, and 

gives it a more fibrous character than the other two. Formation of fibrocartilage is often 

observed as a healing response of hyaline cartilage after trauma. Hyaline cartilage is 

typically isolated from joints. Enzymatic digestion using Collagenase II and trypsin is used 

to remove the extracellular matrix and isolate the cells for subsequent culturing (88-91 ). 

Chondrocytes are slow growing cells; dividing only once or twice a week. In vitro, growth 

can be increased using growth factors, such as fibroblast growth factor (85,86). 

Cartilage mainly consists of extracellular matrix and water. This extracellular matrix is 

produced by chondrocytes and is composed of large polymers such as glycosaminoglycans, 

proteoglycans, and Collagen II and forms 95% of the tissue weight. As described earlier, these 

molecules are responsible for the turgor of cartilage by their ability to attract water. Cells 

in culture produce these molecules, such as collagen II and large aggregating proteoglycans. 

Production rate of these substances is used to monitor cell and tissue quality and can also 

be up regulated by certain growth factors, such as TGFB (85,87). 

An important process in chondrocyte culture is called dedifferentiation (88). 

Dedifferentiation is a morphological and functional change of the cells that occurs in 

monolayer cultures. Cells take on a fibroblast morphology and start to secrete collagen type 
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I instead of collagen type II, resulting in a more fibrous tissue than the normal cartilage 

(89). Dedifferentiation is a reversible process. Three-dimensional culture systems, such as 

cell suspensions, agarose gels (87,90,91), collagen gels (92) or collagen sponges (90,91), 

can prevent this process or even initiate differentiation of chondrocytes. The capacity of 

cartilage cells to redifferentiate however is limited. Due to the problem of dedifferentiation, 

cells can be passed only four to six times (86). 

A. Clinical applications and future perspectives 

There are three tissue engineering based strategies for repairing cartilage. One uses 

autologous cell expansion and subsequent transplantation back into the patient (Carticel®, 

Genzyme Biosurgery Inc /Cambridge, MA), the second uses scaffold materials that are 

placed in the defect in the cartilage. Healing of the cartilage occurs by migration of the 

surrounding tissue into the defect. The third approach uses a combination of scaffold and 

cells, combined in vitro and placed into the organism. Only the first strategy has reached 

the clinic. 

In 1994, the first clinical application of autologous, cultured chondrocytes for the repair 

of hyaline cartilage was described (6). Currently, Genzyme Biosurgery Inc (Cambridge, MA), 

provides Carticel® (figure 6), a service that cultures autologous chondrocytes commercially, 

using a similar approach. A healthy, autologous piece of cartilage is isolated from the 

patient by biopsy during an arthroscopic procedure. This piece of cartilage is shipped to 

the company where chondrocytes are isolated and cell numbers are expanded in vitro, 

approximately 10 fold. After cell expansion, chondrocytes are suspended in DMEM and 

shipped to the hospital, where the cells are placed back into the defect of the damaged 

joint. After accessing the knee by a small arthrotomy, the defect is debrided and covered by 

a periosteal flap sutured to the surrounding cartilage. This is done to seal off the defect and 

prevent spreading of the cells (6). Than, the cell suspension is injected under the periosteal 

flap. Genzyme Biosurgery reports that the Carticel® chondrocytes have been used to treat at 

least 3, 952 patients. Recently, promising long-term results of the use of autologous cultured 

chondrocytes in hyaline cartilage repair have been published (5, 93). Transplantation of 

autologous chondrocytes produces a durable and effective repair of full thickness cartilage 

lesions. New hyaline cartilage was observed by arthroscopic and histologic evaluation. 

However, comparison to other techniques requires prospective, randomized studies that 

are not yet available. 
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Figure 6: Carticel®, Chondrocytes are isolated from a biopsy, expanded in culture, placed back 

into the injured joint, covered by a flap of periost. (Picture courtesy of Genzyme Biosurgery) 

The other two mentioned techniques are still under investigation. The first places a scaffold 

in a defective area of cartilage (94). Chondrocytes from the wounds edge migrate into the 

scaffold where they deposit their extracellular matrix. Eventually the scaffold is degraded 

and new functional cartilage is formed. This approach is thought to be of use especially 

in the healing of hyaline cartilage defects. Another approach used synthetic (e.g. PLGA 

or PGA (94-98)) or natural (e.g. collagen gels and sponges (100, 105)) scaffolds materials, 

seeded with chondrocytes in vitro. The technique forms a tissue with similar mechanical, 

structural and histological properties as normal cartilage in vitro (1 00) as well as in vivo 

(1 01 ). Cartilage produced using PGA or PLGA polymers can be shaped into various forms, 

following the shape of the scaffold (97). An example of this is the fabrication of tissue

engineered cartilage in the shape of an ear (1 02). Laboratory studies using these techniques 

are promising with respect to culturing techniques; construct designs and transplantability 

of the substitutes in animals. Potential use in a clinical setting is recognized, but more 

research is necessary to reach this goal. 
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7. Future perspectives of tissue engineering 

The basic principles of tissue engineering have been described in this chapter, as well as 

some tissue-engineered products that are currently available or will be in the near future. 

The potential of this emerging field is considerable, especially for the plastic reconstructive 

surgeon. However, there is still a long way to go until use of tissue-engineered constructs is 

accepted as a standard procedure. Improvements are needed in the fields of cell isolation, 

cell culture, scaffold design and transplantation of constructs before tissue engineering 

becomes widespread. 

In order to provide sufficient numbers of high quality cells for the formation of tissue 

engineered constructs, improvements in cell isolation and cell expansion in two dimension 

cultures, as well as in three-dimensional cultures are necessary. Stem cells are an exciting 

new area of research for tissue engineering. Development of isolation techniques for stem 

cells from various tissues, their high proliferative potentials and possibilities to differentiate 

into various cell types such as cartilage, bone, fat and muscle make them theoretically 

ideal candidates for use in tissue engineered constructs. Another exciting area of research 

for tissue engineering includes the genetical modification of cells. Genetic modification 

of cells can be used to improve the function and performance of many types of cells. The 

overproduction of growth factors for wound healing or factors that improve the function of 

cells and tissues are being tested. 

Research is also active in the development of new scaffold materials that are optimized 

with respect to cell adhesion. Polymers are produced that incorporate RGD (arg-gly-asp) 

adhesion sequences into their structures. These amino acid sequences are binding sites for 

a number of cell integrins involved in cell attachment. Incorporation of these sequences 

results in enhanced attachment of cells. The fabrication of injectable, in situ polymerizing 

polymers that can be used in a minimally invasive way, mixed with cells, and moldable 

before complete polymerization are also under development. 

In the area of transplantation, issues such as cell density, culture time, and scaffold variables 

are being optimized for each individual construct. In order to transplant larger constructs, 

or even tissue engineered organs, ways of inducing angiogenesis and innervation are areas 

of active investigation. 

Of the tissues discussed, skin is the only clinically approved tissue that is commercially 

produced in a three dimensional construct. In order to increase the number of commercially 

available tissue engineered cell seeded scaffold products, production costs will need to be 
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reduced, production times need to be shortened and new ways for large scale production 

need to be developed. Future products need to be practical, easy to handle and competitive 

if not superior in performance to the current modalities of treatment. If the field of tissue 

engineering meets these challenges it may reach its full potential. 

Websites for Tissue Engineering 

Tissue Engineering and Regerative Medicine network: 

www. termis.org 

wikipedia http: I I en. wikipedia.orglwikiiTissue_engineering 
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Abstract 

Introduction: New reconstructive techniques for reconstructing large defects of the floor of 

the mouth include the use of cultured mucosal substitutes. The purpose of this study was to 

compare dispase and thermolysin for keratinocyte isolation. 

Materials and methods: Keratinocyte yield per surface area of rabbit buccal mucosa was 

assessed by histology, cytokeratin 13 staining, seeding efficiency analysis and cell diameter 

quantification. Surface areas of cultured mucosa were calculated. 

Results: Histology showed that treatment by thermolysin resulted in incomplete separation 

of epidermis from dermis. Also, the absolute number of keratinocytes per cm2 isolated 

mucosa, cell yield, cell size and seeding efficiencies was higher in the dispase group. A 3.45 

fold larger graft could be reconstituted using dispase. 

Conclusion: The use of dispase to isolate cells from buccal mucosa is favourable to 

thermolysin. 
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Introduction 

In vitro culture of oral keratinocytes is used to study various processes, such as carcinogenesis 

(1), or effects of e.g. tobacco (2). Moreover, this technique has been used for clinical 

purposes, to culture keratinocyte onto a dermal carrier in repair of intra oral defects 

resulting from oncological resections (3). Oral cancer is the sixth most common cancer 

in the world. It accounts for approximately 4% of all cancers and 2% of all cancer deaths 

worldwide (4).Malignant tumors of the oral cavity account for approximately 30% of all 

head and neck cancers. With an incidence rate of invasive lip and oral cavity tumors in 

The Netherlands rising to 6.6%, oral cancer is a common malignancy that often requires 

resection of the tumor followed by reconstruction (5). 

Reconstruction is typically performed using free skin flaps such as the radial forearm flap 

(6 ). Drawbacks to the use of skin flaps include donor site defects, bulkiness and hairbearing 

of flaps (7). Alternative reconstructive approaches using cultured mucosa as a substitute are 

being developed (3). These involve the culture of keratinocytes and subsequent combination 

of these cells with a biomaterial that serves as a dermal carrier. The most important factor 

delaying clinical implementation is the culturing time necessary to expand cells to cover 

the average defect size of approximately 30-45 em (8,3) Culture time, therefore, needs to 

be minimized. An important factor determining culture time is the number and the quality 

of cells harvested from the biopsy. 

The predominant cell type of the epidermis is the keratinocyte. The keratinocytes 

located in the basal layer, are the cells with the highest proliferative capacities in vitro 

and are therefore the cells that need to be isolated to establish successful primary 

cultures (9, 10). Basal keratinocytes have a number of characteristics that can be used for 

identification. They are small and have capacities to form colonies if cultured in vitro. 

Suprabasal keratinocytes, on the other hand, are larger, express cytokeratin 13 and are less 

efficient in forming colonies (11-13). 

Widely used cell isolation techniques include explantation and enzymatic dissociation. 

Enzymatic protocols often involve a two-step procedure, using either dispase or thermolysin 

(14-18) to separate the epidermis from the dermis. Keratinocytes are typically cultured on 

a feeder layer of lethally irradiated fibroblasts (19). Advantages of the use of an enzymatic 

protocol include reduced fibroblast contamination; higher cell yields and reduced risk of 

bacterial contamination. Although various cell isolation procedures have been reported 

in the literature for skin keratinocytes, there are no reports on direct comparison of 
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cell qualities between dispase or thermolysin isolation for oral mucosal keratinocytes. 

Therefore, the goal of this study was to compare two enzymatic protocols for quality of 

mucosal keratinocyte retrieval. By histology, measuring cell size, colony forming efficiencies 

and expression of keratins in basal keratinocytes with high proliferative capacities were 

identified. Furthermore, the presence of fibroblast contamination was evaluated. 

Materials and methods 

Upon approval of the local animal ethics committee, keratinocytes were isolated from 

biopsies of buccal mucosa from four rabbits. The samples were treated using either 

thermolysin or dispase to separate epidermis from dermis. Cell characteristics, such as cell 

yield, size and CK13 expression were analyzed using one rabbit. As mucosal substitutes are 

typically fabricated using cells at passage one to two, the cell populations were analyzed 

again at the first passage. 

Keratinocyte isolation and cell culture 

Buccal mucosa was harvested from the cheek of four New-Zealand white rabbits. The 

mucosa was incubated in antibiotic cocktail for 1 hour (Penicillin/Streptomycin (100 U/ml I 

100 j.Jg/ml), Gentamycin (50 j.Jg/ml), Amphotericin B (2.5 j.Jg/ml), all Invitrogen, Breda, The 

Netherlands). Subsequently, six 6mm punch biopsies (0,28 cm2) were cut from the samples. 

Half of the biopsies were transferred to dispase (2.5 mg/ml, (Invitrogen)) in Dulbeco's Modified 

Eagle Medium (DMEM (Invitrogen)) the other half in thermolysin 500ug/ml (Invitrogen) in 

DMEM, at 4°C overnight. Enzyme concentrations and diluents were chosen according to the 

manufacturers instructions. The next day, biopsies in enzyme solutions were put in 37°C for 

20 minutes prior to separation of the epidermal sheath from the dermis. Subsequently, the 

epidermal sheaths were put in Trypsin-EDTA, 0.25% (Sigma, Zwijndrecht, The Netherlands) 

at 37°C for 15 minutes to obtain a single cell suspension. From two rabbits, two samples 

were used for histological evaluation. Three million cells of each of the three biopsies used 

for cell analysis were divided into three T-25 culture flasks (25 cm2) with a feeder layer 

of lethally irradiated 3T3 fibroblasts (a kind gift from dr. von den Hoff, Department of 

Orthodontics and Oral Biology, University Medical Centre, Nijmegen, The Netherlands) in 

seeding medium, according to the Howard & Green protocol (19,20). Keratinocyte seeding 

medium was composed of a 3:1 mixture of DMEM and Ham's F12 (Invitrogen), supplemented 
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with 10% FBS; adenine, 1.8x1 o-4M (Sigma); cholera toxin, 10-10 M (VWR international, 

Amsterdam, The Netherlands); hydrocortisone, 0.4 tJg/ml (VWR); insulin, 5tJg/ml (Eli Lily, 

Houten, the Netherlands); triiodo-L-thronine, 2x1 o-9 M (Sigma) and penicillin-streptomycin, 

1001U/ml-100tJg/ml (Invitrogen). 24 Hours after seeding, mouse epidermal growth factor 

(EGF, Sigma) was added to a concentration of 100ng/ml. This keratinocyte culture medium 

(KCM) was changed every other day. 

Subconfluent keratinocyte cultures were subcultured by first removing the fibroblast 

feeder layer with 5mM EDT A and treating the keratinocytes with trypsin-EDTA. 3T3 Fibroblasts 

were routinely passaged in DMEM (high glucose) supplemented with 10% FBS and penicillin

streptomycin (1001U/ml-100tJg/ml) and incubated at 37°C with 10% C02• 

Colony forming efficiency was investigated by seeding 1000 isolated cells from each of 

the three biopsies of one animal in triplicate onto 6 well dishes with a feeder layer in KCM. 

Fibroblast contamination was studied by seeding 1000 isolated cells isolated cells from each 

of the three biopsies in triplicate on a 6 well dish in DMEM with 10% FBS. After 21 days, 

6 well dishes were rinsed using PBS and stained using eosin for 1 minute and subsequent 

rinsing using tap water. The number of round, single colonies was counted. 

Cell count and cell size analysis 

Viable cell numbers were counted after the addition of trypan blue using a haemocytometer. 

Cell suspensions of one representative rabbit studied into further detail by reconstituting 

cells to 1 million cells per millilitre. Cell size analysis was performed using a CASY® cell 

counter (Scharfe systems, Reutlingen, Germany). Triplicates of 75tJl cell suspension (75.000 

cells) per biopsy were analyzed. Cell sizes were normalized to facilitate comparison. 

Histology 

Samples of biopsied mucosa, as well as remnants of dermis and the epidermal sheath after 

enzyme treatment were used for histology. Haematoxylin and Eosin staining was performed. 

For immunohistochemical staining for differentiated keratinocytes, Cytokeratin 13 (CK13) 

was used. The CK13 protocol was as follows. Paraffin sections were deparafinnized and 

cooked in citric acid buffer (2.15g citric acid monohydrate in 750ml of water). Endogenous 

peroxidases were blocked using citric acid phosphate buffer with 30% Hz02 (Fluka, 

Zwijndrecht, The Netherlands). After a blocking step using 10% normal rabbit serum (NRS, 

Sanquin blood bank, Rotterdam, The Netherlands) and 10% normal goat serum (NGS, 

Sanquin blood bank) diluted in first step buffer (1 0% NRS (Sanquin blood bank) in PBS, the 
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primary antibody was added, mouse anti human CK13 monoclonallgG2a (Euro Diagnostica, 

Arnhem, The Netherlands). The next day, samples were washed using washing buffer (0.1% 

tween in PBS) and incubated with the secondary antibody, biotin labelled goat anti mouse 

immunoglobulins (Dako, Glostrup, Denmark) in secondary buffer (2% NGS, 2% NRS and 5% 

Bovine Serum Albumin in PBS). Following a washing step, streptavidin-HRP complex (Dako) 

was added in secondary buffer followed by another washing step. Next, the substrate (241.ll 

of 30% Hz02 in PBS in 1.2ml 5% DAB (Sigma)) was added and the reaction was stopped using 

tap water. Counterstaining was performed using haematoxylin. Samples were mounted 

using Vectamount (Dako). Statistical analysis For comparison of the cell yield of the two 

protocols, we used a non-parametric Mann-Whitney test. Significance was reached with 

P-values <0.05. 

Results 

Dispase isolates more cells per biopsy than thermolysin 

In two out of 10 biopsies treated with thermolysin the digestion was incomplete. The 

epidermis did not separate from the dermis, which is why these were excluded from 

analyses. 

Cell counts were performed on in totalS 6mm punch biopsy specimens after thermolysin 

and 10 biopsies after dispase treatment (figure 1 ). Dispase isolation resulted in cell yields 

of 12.07 (±2.5 (SD)) million/cm2 whereas thermolysin isolation resulted in an average of 

3.70 (±1.9 (SD)) million/cm2, a 3.26 fold decrease (p = 0.02,). Colony forming efficiencies, 

expressed as % of keratinocytes seeded onto a feeder layer forming a colony were 0.38% 

(± 0.13 (SEM)) for dispase and 0.31% (± 0.10 (SEM)) for thermolysin. This difference was not 

significant. No fibroblast colonies were found in both isolation protocols. 

After seeding 1 million cells per biopsy and culturing these to passage 1, cells were 

counted per flask at 80% confluency. The dispase treated group had significantly more cells 

per flask (average 8.3 million cells) than the thermolysin treated group figure 1 C (6.3 million 

P = 0.04). Average culture time to the first passage was 8.6 and 9.3 days for the dispase 

and thermolysin treated mucosa respectively and did not reach a statistically significant 

difference (Figure 1 D). 
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Figure 1: Dispase isolates more cells per biopsy than thermolysin. 1A; The number of isolated 

cells per surface area using the dispase protocol (black, n = 8, the two biopsies where separation 

was Impossible were excluded) or the thermolysin protocol (grey, n = 10). 1 B; Colony forming 

efficiencies per protocol, expressed in %of 1000 seeded keratinocytes forming colonies (n = 9). 

1 C: Cell yield per T25 culture dish at passage 1 (n = 3). 1 D: Days between seeding 1 million cells 

and first passage per isolation protocol (n = 3). * P < 0.05 

Thermolysin results in incomplete separation of epidermis and dermis As shown on H8:E 

staining of pieces of dermis treated with dispase or thermolysin, the epidermis was separated 

from the dermis. Dissociation using thermolysin however, resulted in the epidermis partly 

remaining attached to the dermis (figure 2 A-D), in particular basal cells in the papillae of 

the dermis. Also, it was noted that all epidermises of the dispase treated biopsies were 

easily separated from the dermis. This is in contrast to the thermolysin treated biopsies, 

where 2 out of 10 of the epidermises did not separate at all. Moreover, the epidermises 

separated by thermolysin were macroscopically thin (data not shown). 
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Cytokeratin 13 (CK13) is expressed in suprabasal, differentiated keratinocytes of mucosa. 

These keratinocytes have less proliferative potential than the CK13 negative cells at the 

basal layer of the epidermis. For analysis of the keratinocytes remaining attached to 

the dermis after thermolysin treatment, biopsies were stained for CK13 expression. The 

remaining cells at the dermis proved to be CK13 negative, suggesting them to be basal cells 

with a high proliferative potential (figure 2). 

Figure 2: Thermolysin results in incomplete separation of epidermis and dermis. 2A: 

Haematoxyllin and Eosin staining (H&:E) of dermis after dispase treatment, all but a few cells 

are removed upon separation of the epidermal sheath. The Line of separation is the derma

epidermal junction. 2B: H&:E of dermis after thermolysin treatment. Large quantities of basal 

cells remain attached in the papillae of the dermis. The Line of separation seems to be the 

suprabasal Layer of the epidermis. Immunohistochemical staining for differentiation marker 

CK13 shows basal, CK13 negative, cells remaining attached to the dermis of the thermolysin 

treated dermis (2D), whereas the dispase treated dermis (2C) shows hardly any attached CK13 

negative keratinocytes. (magnification 200x) 
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Figure 3: Cell Sizes. 3A: CASYanalysis was performed to measure cell diameters of dispase treated 

biopsies (dark grey) or thermolysin treated biopsies (light grey) at isolation . 3B: Cell diameter 

distributions for both enzymatic protocols were compared at passage1. Similar distributions 

were observed in both protocols. Figure 3C and D show a cell diameter increase upon upon in 

vitro propagation of keratinocytes isolated by dispase or thermolysin treatment respectively. 

Bars represent the SEM of triplicate measures of three biopsies, a total of 9 measurements per 

protocol. Measurements were expressed as percentages to assess relative size distributions. 

Dispase results in an increased number of small keratinocytes per cm2 Basal keratinocytes 

with high proliferative potentials are small. Typically their diameters are less than 14 IJm. 

In figure 3, cell sizes of the cell population less than 151Jm are plotted as percentages at 

isolation and first passage of the cells. As illustrated in figure 3A size distributions at isolation 

are similar between the dispase protocol and the thermolysin protocol. The absolute amount 

of small keratinocytes per surface area of biopsy therefore is 3.26 fold higher. 
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Upon isolation, cells are cultured and start to differentiate and cell size should increase. 

This was confirmed by our data (figures 3C and D). However, similar cell size distributions 

between the two isolation groups were observed at passage 1 (figure 3B), indicating no 

influence of isolation protocol on cell size differentiation during culture. 

Discussion 

In establishing primary cultures from epidermis a number of problems can be encountered. 

Fibroblast overgrowth occurs as a result of fibroblasts isolated as passenger cells. Other 

problems include bacterial contamination as sterilizing the contaminated oral cavity 

prior to the biopsy is technically challenging. Several approaches in tackling these issues 

have been developed. The use of specific media formulations (21 ), as well as the use of a 

radiated fibroblast feeder layers have been developed to discourage fibroblast growth and 

selectively stimulate the keratinocytes to proliferate (19). Also, the use of proteases that 

cleave the epidermis from the dermis at the derma-epidermal junction were introduced 

(17). After cleaving the epidermis from the dermis, the epidermis is trypsinized separately. 

This approach results in a decrease in fibroblast contamination, and is less laborious than 

previous enzymatic protocols where biopsies are minced rigorously and processed in trypsin 

in spinning flasks for long times. Moreover, it is the experience of our laboratory that 

bacterial contamination is reduced, as clumps of cells and matrix are removed prior to 

culture facilitating the antibiotics to penetrate the tissues. 

In order to choose an optimal protocol to isolate mucosal keratinocytes for expansion in 

vitro, thermolysin and dispase were tested. These enzymes have been well characterized for 

their use in isolation from keratinizing skin and are routinely used by many well-established 

laboratories (17). Unlike the use for keratinocyte isolation from keratinizing epidermises, a 

comparative study using the two most popular enzymes for non-keratinizing epidermises has 

not been found. 

In the present study, both enzymes proved to be convenient and suitable for cell 

isolation shortly after harvesting of biopsies, ensuring optimal viability of the cells. 

Keratinocytes were successfully cultured using either of the two enzymes. Additionally, no 

fibroblast contamination was observed in any of the protocols. 

The results of this study show a clear advantage of the use of dispase. First of all, cell 

yields per surface area of biopsy were 3.26 times higher in the dispase treated groups. This 
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was shown by cell counts and confirmed by histology. Moreover, the decrease in cell yield 

per surface area of biopsy seemed to be caused by a supra-basal separation level of the 

epidermis and dermis. Analysis of expression levels of differentiation marker CK13 (11) in 

the keratinocytes remaining attached to the dermis upon thermolysin treatment proved the 

remaining keratinocytes to be basal cells with high proliferative capacities. Also, the enzyme 

proved to be unpredictable in its effectiveness as only part of the epidermises separated 

following overnight incubation. Other reports on the use of thermolysin in keratinizing skin 

report separation at the dermo-epidermal junction. Supra-basal split of the epidermis using 

thermolysin in keratinizing skin has been reported previously (14). No histological analysis 

has been reported on the use of thermolysin for non-keratinizing mucosa. 

The data indicating no relative difference in proliferative capacities were confirmed 

by the data obtained by measuring the colony forming efficiencies and cell size analysis. 

The colony forming efficiency test showed a non-significant increase in number of colonies 

using the dispase protocol. Percentages correspond to previous reports using cultured 

keratinocytes isolated from skin biopsies (15, 16). 

Cell size has been a long used method to identify basal keratinocytes. Small cells with 

diameters between 9 and 141Jm have high nucleus/cytoplasm ratios and are considered 

keratinocyte stem cells with high proliferative potentials. Although DNA content as well as 

nuclear size remain constant, a differentiation dependent increase in cell diameter concurs 

with appearance of differentiation specific proteins such as involucrin and differentiation

specific keratins, as well as the disappearance of basal cell markers such as B1 intergrins 

(12,13). In the present study, an increase in size was seen as a result of culturing the 

cells as cells differentiate, corresponding to earlier reports on cell diameter changes of 

keratinocytes in culture (22,23). Our data show similar cell size distributions between both 

tested protocols suggesting that no differences occur upon culture in vitro. 

In conclusion, we measured the differences between two enzymatic protocols in isolation 

of mucosal keratinocytes. Although relative differences between cell populations were 

minimal, the 3.26 fold difference in cell yields per surface area and the significant increase 

in surface area of cultured keratinocytes justify the use of dispase over thermolysin. 
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Abstract 

Reconstruction of large mucosal defects of the floor of the mouth is typically performed 

with keratinizing skin. Drawbacks include donor site defects and hair bearing of the 

flaps. Cultured mucosal substitutes (CMS) have been developed for clinical use to replace 

keratininzing skin. A-cellular dermis is often used as a dermal carrier for autologous cells, as 

it reduces wound contraction and is easier to handle by the surgeon than e.g. collagen gels. 

A major problem of CMS using a-cellular dermis is variation in epidermal quality. 

To improve the quality of the CMS, human fibroblasts were incorporated into the a-cellular 

dermis and seeded with human keratinocytes. To study the role of the fibroblasts on epidermal 

morphology and basement mebrane formation, CMS were stained for differentiation 

markers 131 integrin, cytokeratin 10 and involucrin after one and two weeks in culture. 

Basement membrane formation was analysed by laminin 5 and collagen IV and VII staining, 

proliferation by Ki-67 staining. 

Epidermis of fibroblast-containing CMS matured faster into a well-organized epithelium. 

A 52.7% increase in basal cells, a 53.5% increase in mitosis index and a 78% increase in 

keratinocyte cell-layers was observed. 

Addition of fibroblasts reduced culturing time, enhanced proliferation, maturation and 

quality of the epidermis. 
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Introduction 

Oral cancer is the sixth most common cancer in the world. It accounts for approximately 

4% of all cancers and 2% of all cancer deaths worldwide. Malignant tumors of the oral 

cavity account for approximately 30% of all head and neck cancers. With an incidence rate 

of invasive lip and oral cavity tumors in The Netherlands rising to 6.6%, oral cancer is a 

common malignancy that often requires resection of the tumor followed by reconstruction 

(1 ,2). 

Reconstruction of large defects of mucosa in the mouth is typically performed using 

free or pedicled skin flaps. Drawbacks to the use of skin flaps include donor site defects, 

bulkiness, sweating and hair bearing of the flaps (3,4). The feasibility of culturing oral 

mucosa in vitro for use in reconstructive surgery has been described. The first successful 

clinical trials, using collagen gels and membranes, report significant contraction of the 

cultured mucosal substitutes (CMS) as a challenging problem (5-7). 

Dermal carriers reportedly reduce contraction compared to the use of keratinocyte 

sheets alone. Moreover, clinical reports on the use of cultured skin substitutes in patients 

with extensive skin loss, such as in burns, report reduced wound contraction and enhanced 

wound healing upon the addition of fibroblasts to a dermal matrix (8-10). Furthermore, 

the addition of fibroblast to the dermal carrier seems to enhance quality of the cultured 

epidermis and determines the phenotype of keratinocytes (11, 12). In addition, in vivo 

studies have shown that fibroblasts enhance angiogenesis (8). 

In case of cultured mucosal substitutes, the effect of fibroblasts on reconstituted 

epidermis has been illustrated using collagen gels. Clinical application of collagen gels, 

however is limited due to a number of problems. A collagen gel is mechanically weak; it 

cannot be sutured in place, in particular in the oral cavity where the tongue as well as the 

cheeks are constantly moving. Secondly, a collagen gel contracts more than other dermal 

scaffolds, such as a-cellular cadaver skin, and is therefore less feasible for transplantation. 

On the other hand, a-cellular cadaver skin is commercially available as Alloderm® and is 

clinically approved. Basement membrane proteins remain present at the basal membrane 

site of the dermo-epidermal junction (DEJ), as well as in the remnants of the vascular basal 

membranes. This facilitates in vitro keratinocyte attachment (13), as well as migration of 

endothelial cells invading the dermis upon transplantation (14). The DEJ is responsible for 

resistance to shear forces that could separate the epidermis from the dermis, such as in 

the case of a blister. Furthermore, DEJ proteins facilitate migration of keratinocytes e.g. 

in wound margins (15). Recently, one of the authors developed a technique to centrifuge 
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fibroblasts into a-cellular dermis(16). A clear improvement of epidermal morphology and a 

better formation of the DEJ as a result of the incorporation of fibroblasts in skin substitutes 

were seen using keratinizing skin keratinocytes. Moreover, fibroblasts obsoleted the addition 

of growth factors, such as KGF and EGF (16, 17). These results suggest that incorporation of 

fibroblasts in non-keratinizing mucosal substitutes, might lead to important improvement of 

the quality of the cultured mucosa. 

To date, no reports on the specific effects of bioactivation of a-cellular dermis using 

viable autologous fibroblasts on the epidermis was found in the literature. Therefore, the 

aim of this study was to evaluate whether incorporation of fibroblasts affects mucosal 

epidermal morphogenesis. This was done by evaluating the expression of several keratin, 

integrin and proliferation markers and the expression of basement membrane proteins. 

Materials and methods 

Culture of human keratinocytes 

Upon approval of the local medical ethics committee, healthy human buccal mucosa was 

harvested. The mucosa was incubated in an antibiotic cocktail for 1 hour (Penicillin/ 

Streptomycin (100 U/ML/100 !Jglml), Gentamycin (50 !Jg/ml), Amphotericin B (2.5 !Jg/ml), 

all Invitrogen, Breda, The Netherlands). The biopsy was transferred to dispase (2.5 mg/ 

ml, (Invitrogen)) in Dulbeco's Modified Eagle Medium (DMEM (Invitrogen)), at 4°C overnight. 

Next day, the biopsy in dispase was put in 37° for 20 minutes prior to gentle separation 

of the epidermal sheet from the dermis. The dermis was used to isolate fibroblasts as 

described below. Subsequently, the epidermal sheet was put in Trypsin-EDTA, 0.25% (Sigma, 

Zwijndrecht, The Netherlands) at 37°C for 15 minutes. After neutralisation of the trypsin 

by DMEM with 10% Fetal Bovine Serum (FBS) (Sigma) a single cell suspension was obtained 

by gentle pipetting. Cells were seeded in a T75 culture flask onto a feeder layer of lethally 

irradiated 3T3 fibroblasts (a kind gift from dr. von den Hoff, Department of Orthodontics and 

Oral Biology, St. Radboud University Medical Centre, Nijmegen, The Netherlands) in seeding 

medium, according to the Rheinwald &Green protocol (18-20). Keratinocyte seeding culture 

medium was composed of a 3:1 mixture of DMEM, high glucose and Ham's F12 medium 

(Invitrogen), supplemented with 10% FBS; adenine, 1.8x1Q-4M (Sigma); cholera toxin, 10·10 

M (VWR international, Amsterdam, The Netherlands); hydrocortisone, 0.4 !Jg/ml (VWR); 

insulin, 5 !Jg/ml (Eli Lily, Houten, the Netherlands); triiodo-L-thronine, 2x1 o-9 M (Sigma) 
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and penicillin-streptomycin, 1 OOIU/ml-1 001-Jg/ml (Invitrogen). 24 Hours after seeding, 

proliferation medium was added to the cells. Proliferation medium is composed of seeding 

medium supplemented with 10 ng/ml mouse epidermal growth factor (EGF, Sigma). The 

medium was changed every 2 days. 

Isolation and culture of human fibroblasts 

Upon separation of the epidermis from the dermis, the dermis was washed once more in 

PBS, minced and put into DMEM with 1.5 mg/ml collagenase I and 2.5 mg/ml dispase at 

3T C for 90 minutes. Subsequently, the enzyme solutions were filtered using a 100 IJm cell 

strainer prior to centrifugation at 1200 RPM (200 G) for 5 minutes. Next, cells were seeded 

onto culture dishes in 10% FBS in DMEM and cultured at 37°C, 10% C02. Fibroblasts at passage 

three to five were used for seeding into a-cellular dermis. 

Preparation of a-cellular dermis 

Human cadaver skin (CMV, HIV and HBV negative), cryopreserved in 10% glycerol, was 

obtained from the European Skin Bank, Beverwijk, The Netherlands. The epidermis was 

pealed off the dermis after overnight incubation in 1 Ox PBS with antibiotic cocktail and 

ethylene-diamine-tetra-acetic-acid (EDTA). The remaining dermis was acellularized using 

irradiation of the skin by 35Gy using gamma irradiation. Next, the dermis was maintained in 

antibiotic cocktail at 4°C for an additional week prior to centrifugal seeding of fibroblasts. 

Centrifugal seeding of fibroblasts 

To incorporate mucosal fibroblasts into the acellular dermis, a centrifugal seeding technique 

for fibroblasts was used, as described elsewhere (16, 17). In short, 1.3 cm2 pieces of dermis 

were placed with their basal membrane side down onto 35ml of DMEM I 1% agarose gel 

in a 50 ml Falcon tube (BD biosciences, Alphen aan den Rijn, The Netherlands) at room 

temperature. Next, 1 ml of fibroblast suspension containing 800.000 cells was added. Grafts 

were centrifuged at 200g for 60 minutes before keratinocytes were seeded onto the papillary 

side of the dermis. In order to estimate the number of cells incorporated into the dermis, 

cells in the supernatant were counted. 

Culturing mucosal substitutes 

After centrifugal seeding of fibroblasts, pieces of a-cellular dermis were placed with the 

papillary side up into 6 well dishes. A stainless steel seeding ring with a 1 em diameter 



ChapterS------------------------------------------------------------

was placed on the dermis and subsequently filled with keratinocyte suspension containing 

250.000 third passage keratinocytes in seeding medium (composed of DMEM/F12 (3:1), 

FBS 1%, cholera toxin 10·10M, hydrocortisone 200 ng/ml, insulin 51Jg/ml, ascorbic acid 50 

J..lg/ml (Sigma) and penicillin-streptomycin 1001U/ml-100 J..lg/ml, as described elsewhere 

(21 ,22)). Grafts were produced in duplicate for two separate experiments. The next day, 

culture medium was changed to priming medium, which was the same as seeding medium 

but supplemented with bovine serum albumin (BSA) 24 1-1M (Sigma), fatty acid cocktail 

(oleic acid 251JM. linoleic acid 15 IJM, arachidonic acid 7 1-1M, palmitic acid 25 1-1M) (Sigma), 

L-carnitine 10 1-1M (Sigma l) and L-serine 1 mM (Sigma). Grafts were maintained in this 

medium submerged for an additional 2 days. The next day, grafts were placed on a stainless 

steel mesh in a 6 well dish and were raised to the air-liquid interface for 7 or 14 days 

to generate an epidermis. The air-liquid interface medium was composed of serum-free 

priming medium supplemented with 1 ng/ml EGF (Sigma). The medium was changed every 

2 days. 

Morphology and Immunohistochemistry 

Duplicate grafts per group of two separate experiments were harvested and cut in half. 

Subsequently, one half was snap frozen and one half embedded in paraffin. Paraffin sections (6 

J..lm) were deparafinized, rehydrated and prepared for morphological or immunohistochemical 

analysis of K10, K13, B1 chain, involucrin and vimentin. Immunohistochemical analysis of 

K16, K17, K10, a6 chain, B4 chain, laminin 5, and collagen type IV and VII was performed 

using 5 1-1m frozen section, which after sectioning at -20°(, were air-dried overnight, fixed 

in acetone for 10 minutes. The primary antibodies used in the present study are listed in 

table 1. 

In brief, the following procedure was used for the paraffin sections: for the 51- integrin 

antigen retrieval was done by cooking in citric acid buffer (2.15g citric acid monohydrate 

in 750ml of water) for 15 minutes in a microwave. After a cooling down for a period of 60 

minutes in the citric acid buffer, sections were washed in PBS. For the vimentin and K1 0 

protocols, a protease digestion step was introduced by exposing the samples to 0.5mg/ml 

trypsin in PBS for 10 seconds before neutralizing using 1% FCS in PBS for 5 seconds. After 

washing, endogenous peroxidases were blocked for 15 minutes using citric acid phosphate 

buffer with 30% H20 2 (Fluka, Zwijndrecht, The Netherlands. Thereafter, another washing 

step using PBS, aspecific binding was blocked using blocking buffer, composed of 10% normal 

rabbit serum (Sanquin blood bank, Rotterdam, The Netherlands) and 10% normal goat serum 
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(Sanquin blood bank) diluted in first step buffer (1 0% normal human serum (Sanquin blood 

bank) in PBS, for 30 minutes at room temperature. 

Table 1: Primary antibodies used for immunohistochemical staining of tissue section 

Sections Antibody designation Source* 

Paraffin embedded B1 chain(CD29) 

CK13 

Lab Vision, Duiven, The Netherlands 

Euro Diagnostica, Arnhem, The Netherlands 

Euro Diagnostica 

Frozen 

CK10 

lnvolucrin 

Vimentin 

Ki-67 

K16 (LL0025) 

K17 (CK-E3) 

K10 (DE-K10) 

B6 chain (JEB5) 

Lab Vision 

Euro Diagnostica 

DAKO, Heverlee, Belgium 

Dr. I.M. Leigh, London, England 

Sigma, Saint Louis, Missouri 

ICN Biochemicals Inc, Ohioa 

Dr. A. Sonnenberg, Amsterdam, The Netherlands 

B4 chain(3E1) Biomol, Hamburg, Germany 

Laminin 5 (P3E4) Chemicon, Temecula, CA 

Collagen type IV (PHM12) Chemicon 

Collagen typeVII (LH7.2) Dr. I.M. Leigh 

•Antibodies not purchased from indicated sources were personal gifts from the investigator named. 

All primary antibodies are listed in table 1. All primary antibodies were monoclonals. Mouse

anti-human-CD29-IgG1 (1 :200 dilution, Lab Vision, Duiven, The Netherlands) for B1-integrin, 

CK13 (1 :25 mouse anti human CK13 monoclonal lgG2a (Euro Diagnostica, Arnhem, The 

Netherlands), CK1 0 (Mouse- anti-human-keratin 10 lgG1 (1 :50, Euro Diagnostica), involucrin 

(1 ;1600, mouse-anti-human-involucrin lgG1 , Lab Vision) vimentin (1 :100, mouse-anti-human

vimentin lgG1, Euro Diagnostica) and Kl-67 (1 :200, mouse-anti-human-Ki-67 lgG1, Heverlee, 

Belgium) were added in first step buffer and incubated at 4°C overnight. As controls, isotype 

controls were added as a primary antibody, as well as no primary antibody. 

The next day, samples were washed using washing buffer (0.1% tween in PBS) and 

incubated with the secondary antibody, biotin labelled goat anti mouse immunoglobulins 

(Dako) in secondary buffer (2% normal goat serum, 2% rabbit serum and 5% Bovine Serum 

Albumin in PBS) for 30 minutes at room temperature. Biotin labelled goat anti-mouse lg-G 

was used for B1-integrin staining under the same conditions. Following a washing step using 

washing buffer, streptavidin-HRP complex (Dako) was added 1:300 in secondary buffer for 
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30 minutes at room temperature followed by a washing step with washing buffer. In the case 

of vimentin, streptavidin-ABC-HRP (Dako) was used under the same conditions. Next, the 

substrate (24).Jl of 30% H20 2 in PBS was added to 1.2ml 5% DAB (Sigma)) was added to the 

samples for 5 minutes before stopping the reaction using tap water. Next, counterstaining 

was performed using haematoxylin for 10 seconds. The samples were mounted using 

Vectamount (Dako) after drying. 

Cell counting and statistical analysis 

For analysis of cell layers and number of basal cells, 6 fields of view per graft were counted 

using a 100x magnification. Duplicate grafts of two separate experiments were quantified. 

For statistical analysis a non-parametric Mann-Whitney test was used. 

Results 

Fibroblasts remain present in the dermis upon centrifugation 

Success of the seeding protocol was confirmed by vimentin staining to identify the fibroblasts 

in the dermis. Fibroblasts were homogeneously incorporated in the seeded dermises (Figure1 

A, B). High power magnification of the incorporated fibroblasts in the dermis show vialble 

cells with normal nuclear morphology and nucleus/cytoplasma ratios (figure 1C). Control 

samples without fibroblasts showed no dermal vimentin staining. Quantification of the 

number of fibroblasts in supernatant of centrifuged cell suspensions showed 220.000 cells 

remained in the dermis per cm2 graft. 

Fibroblasts Enhance Epidermal Morphology 

Fibroblasts were centrifuged into the reticular side of acellular dermis to study the effect 

of fibroblast on epidermal quality. This was followed by seeding of keratinocytes onto de 

papillary side of the dermis and rising of mucosal constructs to the air-liquid interface. 

Histological analysis of 7 days samples revealed a clear epidermis of differentiated 

keratinocytes with basal, spinal and granular layers. 
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Figure 1: Fibroblasts remain present in the dermis upon centrifugation. Vimentin staining shows 

fibroblast incorporation in to the a cellular dermisat at dayl and day 14 of culture at the air

liquid interface (magnification A and 8, 40x). Color images available online at www.liebertpub. 

com/ten. 

Histogenesis of mucosal constructs in the presence of fibroblasts at the 7th and 14th day at 

air-liquid interface (figure 2 a and b) showed a much more developed epidermis than samples 

without fibroblasts. Quantification of the number of basal cells per surface area showed an 

increase in grafts with fibroblasts incorporated of 52.7% at the 7th day (P = 0.03) and 41.1% 

at the 14th day (P = 0.02). In addition, the number of cell layers increased 78.2% (P = 0.03) 

and 49.0% (P = 0.02) respectively (figure 3a and b) as a result of fibroblast incorporation. 

Furthermore, it was noted that the number of basal cells had significantly decreased after 

14 days in the grafts without fibroblasts (P = 0.02). Fibroblast addition resulted in a stable 

number of basal cells per surface area. A significant decrease in cell layers of keratinocytes 

was observed (P = 0.02) in the constructs without fibroblast. Fibroblast incorporation, on 

the other hand, resulted in a significant increase in cell layers over time (P = 0.05). 
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NoMbrobbsts. With fibroblasts 

Figure 2: Histology of cultured mucosal substitutes at 14 day sculturing at the air-liquid 

interface. The left column indicates grafts without fibroblasts, and the right column has 

fibroblasts incorporated into the dermis. (A, B) Hematoxylin and eosin staining showing a better· 

organized epidermis upon fibroblast incorporation. (C,D) and (E,F) Cytokeratin 10 and involucrin 

staining for differentiated keratinocytes showing fibroblast incorporation delays keratinocyte 

differentiation. (G,H) and (l,J) f31 integrin and its a6 subunit staining confirming delayed 

keratinocyte differentiation in the fibroblast-incorporated group of dermises (magnification 

A-J, 200x).Color images available online at www.liebertpub.com/ten. 
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Fibroblasts Delay Differentiation 

The role that fibroblasts play in epidermal regulation of differentiation was investigated by 

examining expression of proteins related to keratinocyte differentiation. K10 and involucrin 

expression (figure 2 c-f) in mucosal constructs containing fibroblasts showed suprabasal 

expression in all samples, as can be observed in natural mucosal tissues. In contrast, 

fibroblast free cultures showed expression of K1 0 in the basal cells as well as in suprabasal 

keratinocytes. 

Expression of integrin subunits flp a6 and 54 was evaluated as well (figure 2 g-j). A 

clear increase in number of positive cells per cm2 of graft and expression levels of these 

cells at the basal layer was observed in the CMS with fibroblasts. In addition, expression of 

the integrin at suprabasal levels of the epidermis was observed in the fibroblast containing 

CMS. 

Fibroblasts Enhance Proliferation in the Epidermis 

Ki-67, a marker expressed in proliferating cells, was used to quantify the number of 

proliferating basal cells (figure 4). The mitosis index (MI), expressed as % of basal cells 

positive for Ki-67 was calculated. This showed that fibroblast incorporation leads to an 

increase in Ml of 52.8% at day 7 and 53.5% at day 14. These differences were statistically 

significant with P values of 0.03 and 0.02 respectively. Other indicators of hyper proliferation 

include suprabasal cells expression of Ki-67 as well as 51 integrin or its subunits. This was 

only observed in grafts with fibroblasts. 

Concurring with these data are the levels of expression of hyperproliferation-associated 

marker K17 (figure 5 f·h). At day 7, K17 is expressed less in grafts without fibroblasts than in 

the grafts with fibroblasts. At day 14, K17 expression was noted in both groups, although a 

decreased expression of K17 at the basal segment of the epidermis in fibroblast containing 

CMS was observed compared to its day ?·time point. 
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Figre 3: Quantification of the number of basal cells pe rhigh-power field (A) and the number 

of epidermal cell layers (B). At all time points, the incorporation of fibroblasts into the dermis 

resulted in an increase in basal cells, as well as an increase in cell layers. Data represent mean 

±standard error of the mean. Six fields of view were counted in duplicate grafts per time point 

of 2 separate experiments. 
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100~-------------------------, 

E IIIII Without Fibroblasts 
With Fibroblasts 

Day 7 Day 14 

Figure 4: Ki-67 staining at day 7 (A, B) and day 14 (C,D) shows that the incorporation of fibroblasts 

(rightcolumn) results in enhanced proliferation in the basal cells. Furthermore, suprabasal 

proliferation was observed in the fibroblast group. Quantification of the prolife rating basal 

cells (E) using high-power magnification showed an increase of up to 30% as a result of fibroblas 

tincorporation. Data represent mean standard error of the mean. Six fields of view we recounted 

in duplicate grafts per time point of 2separate experiments (magnification A-D, 200x). Color 

images available online at www.liebertpub.com/ten. 

Fibroblasts Enhance Basement Membrane Protein Deposition 

Several proteins were evaluated to study whether fibroblasts played a role in basement 

membrane development. Staining for basal membrane components, such as collagen type 

IV and laminin-5 showed that the incorporation of fibroblasts did not affect expression of 

these basement membrane markers. Collagen type VII at day 7 however (figure 5 a-d), was 

expressed only in fibroblast containing CMS. In 7 days old fibroblast-free constructs collagen 

type VII is not expressed. At day 14 this difference was less pronounced. The expression 

of all analysed BM proteins was confined to the DEJ. In addition, presence of laminin-5 

was noted in the remnants of vasculature basement membrane proteins in the a-cellular 

dermis. 
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Figure 5: Staining for basal membrane componen tcollagen VII and cytokeratin 17. Cultured 

mucosal substitutes without fibroblasts are indicated in the left column, and grafts with fibroblast 

are shown in the right column. Collagen VII staining showed that, at day 7, the air-liquid interface 

(A, B) and, at day 14 (C,D), the incorporation of fibroblasts results in enhanced deposition of this 

protein at the basal membrane. Hyperproliferation- associated marke rcytokeratin 17 (E-H) was 

enhanced as well as are sultof incorporation of fibroblasts. At day 14, however, the fibroblast 

group showed less expression in the basal cells (magnification A-J, 200x). Color images available 

on line at www.liebertpub.com/ten. 
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Discussion 

The objective in mucosal engineering is to have a well-differentiated epidermis, which is 

firmly attached to the dermal carrier at the basement membrane. Furthermore, certain 

in vivo characteristics play key roles in successful transplantation. Contraction should be 

minimal and angiogenesis maximal for optimal vascularisation ensuring the delivery of 

nutrients, cells and antibiotics to the grafted tissue. For successful clinical application the 

graft should be easily handled and sutured in place by the surgeon. Finally, culture time 

should be minimized. 

Problems of blistering, fragility and wound contraction in early ventures for clinical 

use of cultured epidermal substitutes without dermal carriers showed the necessity 

of a dermal component for clinical use (23). The use of collagen gels as dermal carriers 

encountered problems in handling and wound contraction. Of the various clinically approved 

dermal analogues, an a-cellular dermis ensures minimum wound contraction and optimal 

mechanical properties. Furthermore, the vasculature can invade into the dermis from the 

wound bed using the basement membrane proteins present in the remaining proteins of 

basal membranes of the donor vasculature (12, 14,24,25). A problem encountered in our 

laboratory in producing CMS using a-cellularized cadaver skin, however, is varying quality of 

the newly formed epidermis. 

Studies using collagen gels showed the beneficial effects of addition of fibroblasts 

on epidermal quality of a construct (12, 17). Incorporation of fibroblasts into an a-cellular 

dermis, however, has proved to be technically challenging and its effects have not been 

described for mucosal substitutes. From our study, a number of observations illustrate the 

extent to which fibroblast determine the quality of the epidermis. 

In this study it became clear that fibroblasts incorporated into an a-cellular dermis improves 

epidermal morphogenesis. A better-organized epidermis at day 7 and day 14 in the fibroblast 

supplemented grafts, as well as a higher number of cell layers and better cell alignment at 

the basal layer illustrated this. Another indication of improved epidermal development by 

the addition of fibroblast was the increase in cell layers and stable number of basal cells 

over time. 

Evaluation of integrin subunits 81, a6 and 84 revealed suprabasal integrin expression 

while in the fibroblast free matrices expression was confined to the basal layer. Also Ki-67 

staining for proliferative cells showed suprabasal proliferation in the CMS with fibroblasts 

incorporated. In addition, it showed a significant increase in Ml of the basal keratinocytes. 
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Finally, hyperproliferation associated marker K17 was expressed, irrespective of the 

absence or presence of fibroblasts. These results indicated a hyperproliferative state of the 

epidermis. This finding indicates that the grafts are in an activated state. Hyperproliferation 

of the epidermis is commonly seen as the first phase in wound healing and is considered 

beneficial to the process (15,26,27). Moreover, decreased proliferation in the epidermis, 

one of the effects of ageing, is correlated to impaired wound healing (28,29). 

The observed activated state of the epidermis might be caused by paracrine factors 

secreted by the fibroblasts. A number of studies described the paracrine pathway by changing 

the phenotype of epidermis by heterotypical recombination experiments. Examples include 

studies performed by Okazaki et al. (11 ,30), where nail matrix fibroblasts were combined 

with skin keratinocytes. The keratinocytes started to express nail specific keratins. Also, 

they have shown the expression of mucosa specific keratins when mucosal fibroblasts were 

combined with skin keratinocytes and vice versa (30,31). An important paracrine growth 

factor that is known to affect the epidermis is Keratinocyte Growth Factor (KGF). KGF is 

a member of the FGF family and is also known as FGF-7. It is produced by fibroblasts, not 

by keratinocytes and it affects keratinocytes through the receptor that is expressed on 

keratinocytes. It is cytoprotective and known to be a mitogen and motogen (21 ,32,33). 

Another growth factor that might be responsible for the activated epidermis is EGF 

(Epidermal Growth Factor). This growth factor has been supplemented to the culture media 

and documented earlier as an epidermal activator (34,35). Interestingly, the epidermis 

formed in fibroblast-seeded matrices resembled the epidermis that can be seen in cultured 

skin substitutes, which are stimulated using EGF or KGF (20,21 ,33). One more explanation 

might be the high amount of fibroblasts incorporated into the matrices. El Ghalbzouri et al. 

(16) has shown in skin substitutes that a specific number of fibroblasts incorporated per 1 

ml collagen results in epidermal normalization (absence of K6, K16 and K17). For mucosal 

substitutes the optimal fibroblast concentration should be established as well. As for the 

preparation of C. M.S., hyperproliferation is probably advantageous to the fabrication 

process, as it reduces culture time. Expression of hyperproliferative markers is expected to 

normalize upon transplantation (24). 

Fibroblasts promoted early maturation of the derma-epidermal junction (DEJ). The 

DEJ plays an important role in prevention of separation of the epidermis from the dermis. In 

disorders such as inherited Junctional Epidermolysis Bullosa, the deposition and attachment 

of keratinocytes to basal membrane proteins, such as laminin 5 is disturbed (36). Here the 

D.E.J. is incomplete, resulting in blisters. Additionally, basement membrane components 
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play a role in re-epitheliasation. Proteins, such as laminin 5 and collagen VII, a component of 

the anchoring fibrils, are deposited by fibroblasts and keratinoctytes (37,38). Furthermore, 

laminin 5 plays an important role in the restoration of the basement membrane, as it 

stimulates keratinocyte migration and proliferation (39,40). In our in vitro study a more 

rapid maturation of the DEJ was observed as a result of fibroblasts being present in the 

dermis. This concurs with data from other authors. El Ghalbzouri showed this effect for 

keratinizing skin by culturing grafts in fibroblast-conditioned medium (37,38). This suggests 

that this phenomenon is of a paracrine origin. The observation has clinical implications as a 

more mature DEJ might result in a firmer anchoring of the epidermis to the dermis, resulting 

in reduced problems of blistering or loss of the epidermis upon transplantation into the 

mechanically challenging oral environment. 

Another positive in vivo effect can be expected from seeding dermal carriers with 

dermis-derived fibroblasts in vitro, as it provides a carrier for the proper type of fibroblast 

to the wound upon transplantation. In the case of a construct without fibroblasts, fibroblasts 

migrate into the dermis from the wound bed. The wound bed derived fibroblasts often 

originate from fat or scar tissue, which contains a large number of myofibroblasts. Others 

have shown, that addition of fat derived fibroblast or myofibroblasts to a dermis leads to 

enhanced dermal contraction by a-smooth-musle actin expressing myofibroblasts (8-10). 

Therefore, the addition of dermal fibroblasts to our CMS prior to transplantation could 

result in reduced scar contraction and better wound healing (12). In addition, Erdag et al 

have shown that the addition of fibroblasts to the constructs enhances angiogenesis and 

improves graft survival. 

Conclusion 

From these observations presented in this study we conclude that the addition of fibroblasts 

to an acellular dermal carrier resulted in a clear improvement of epidermal morphology. 

Addition of fibroblast resulted in an increase of basal cells per surface area and early 

ripening of the DEJ, facilitating early transplantation. The in vitro data predict a possible 

improvement of in vivo behavior of these grafts. From our data it can be concluded that 

development of epidermis and basal membrane takes significantly less time, which is an 

important step forward towards clinical implementation of these techniques (41 ). his 

might have consequences for the culture time prior to transplantation. Further studies 
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will be performed looking at the optimal time for transplantation for the construct with 

fibroblasts. 
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Abstract 

Cultured mucosal substitutes (CMS) have been developed for clinical use. Upon transplantation 

of CMS, a period of hypoxia occurs as vasculature invades the a-vascular dermis. This makes 

the CMS fragile and susceptible to e.g. infection. 

In this report, the effect of hypoxia on epidermal morphology, proliferation and differentiation 

was studied using reconstructed mucosal substitutes as a three-dimensional model. Hypoxia 

was shown using a pimonidazole staining after 24 up to 72 hours in hypoxic culture using 

1.5% oxygen. CMS were stained for the differentiation marker cytokeratin 10 (K1 0) and the 

integrin subunit P.l1• Epidermal proliferation was examined by a Ki-67 staining. Finally, the 

secretion of VEGF was examined by ELISA 

The results show that hypoxia disturbed epidermal architecture and decreased B1 integrin 

expression in basal keratinocytes, while the differentiation program (K10 expression) was 

altered as well. In addition, mitotic indices decreased after hypoxic treatment. Finally, a 

transient upregulation of VEGF secretion was observed the first 48 hours. 

In conclusion hypoxia delays differentiation, reduces proliferation, and decreases metabolic 

activitity. 
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Introduction 

Oral cancer is the sixth most common cancer in the world. It accounts for approximately 

4% of all cancers and 2% of all cancer deaths worldwide. Malignant tumors of the oral 

cavity account for approximately 30% of all head and neck cancers. With incidence rates of 

invasive lip and oral cavity tumors in the Netherlands rising to 6.6%, oral cancer is a common 

malignancy that often requires resection of the tumor followed by reconstruction (1 ,2). 

Reconstruction of large intraoral mucosal defects is typically performed using free or 

pedicled skin or muscle flaps. Drawbacks to the use of skin flaps include donor site defects, 

bulkiness, sweating and hair bearing (3,4). The feasibility of culturing oral mucosa in vitro 

for use in reconstructive surgery has been described. Clinically used Cultured Mucosal 

Substitutes (CMS) typically are composed of cultured mucosal keratinocytes seeded onto an 

a-vascular dermal carrier such as a-cellularized cadaver skin. 

Clinical use of CMS using non-keratinizing keratinocytes have been troubled by problems 

such as infection and partial graft take. Upon transplantation, a phase of plasmatic inbibition 

occurs prior to vasculature invading the a-vascular dermis. Cells are depending on diffusion 

to provide oxygen and nutrients. During this period grafts are hypoxic and vulnerable to 

infection. 

Hypoxia has a number of well-documented effects on cells and tissues. It enhances 

the secretion of survival enhancing factors such as Hypoxia Inducible Factor 1 (HIF-1 ), 

which in turn induces the secretion of angiogenic factors, such as VEGF i-NOS and PDGF-B 

(5,6). Furthermore, hypoxia induces metabolic changes enhancing production of glycolytic 

enzymes favouring anaerobic glycolysis and cell survival (7,8). On the other hand, hypoxia 

induces cell cycle arrest (9) and finally apoptosis through e.g. P53 pathways (1 0,11 ). 

In contrast to hypoxia, hyperbaric oxygen therapy seems to be beneficial to survival of 

skin grafts by increasing oxygen tension in the grafts and reducing bacterial contamination 

(14-17). Also, overexpression of VEGF by genetic modification of cultured skin grafts has 

been shown to result in enhanced survival of grafts and angiogenesis (18, 19). 

To date, published reports discussed changes in two-dimensional systems. No data 

have been published on the effect of hypoxia on three-dimensional CMS. Therefore the 

aim of this study was to characterize the CMS in hypoxic conditions in vitro as a model for 

the early period post transplantation. More specifically, the effect of hypoxia on epidermal 

morphology, differentiation and proliferation, as well as secretion of angiogenic growth 

factors in CMS has been evaluated. 
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Materials and methods 

Culture of human keratinocytes 

Upon approval of the local medical ethics committee, human buccal mucosa was harvested 

from patients during scheduled ablative intra oral procedures. The mucosa was incubated in 

an antibiotic cocktail for 1 hour (Penicillin/Streptomycin (1 00 U/ ML/1 00 tJg/ml), Gentamycin 

(50 tJg/ ml), Amphotericin B (2. 5 tJg/ ml), all Invitrogen, Breda, The Netherlands). Biopsies were 

transferred to dispase (2.5 mg/ ml, (Invitrogen)) in antibiotic cocktail, at 4°C overnight. After 

which they were put at 37° for 10 minutes prior to gentle separation of the epidermal sheets 

from dermis. The dermis was used to isolate fibroblasts as described below. Subsequently, 

epidermal sheets were put in Trypsin-EDTA, 0.25% (Sigma, Zwijndrecht, The Netherlands) at 

37°C for 20 minutes. After neutralisation of trypsin by DMEM with 10% Fetal Bovine Serum 

(FBS) (Sigma) a single cell suspension was obtained by gentle pipetting. Keratinocytes were 

seeded into a T75 culture flask onto a feeder layer of lethally irradiated 3T3 fibroblasts (a 

kind gift from dr. von den Hoff, Department of Orthodontics and Oral Biology, University 

Medical Centre, Nijmegen, The Netherlands) in seeding medium, according to the Howard 

&. Green protocol (20-22). Keratinocyte seeding culture medium was composed of a 3:1 

mixture of DMEM, high glucose and Ham's F12 medium (Invitrogen), supplemented with 10% 

FBS; adenine, 1.8x10-4M (Sigma); cholera toxin, 1 o-10 M (VWR international, Amsterdam, 

The Netherlands); hydrocortisone, 0.4 tJg/ml (VWR); insulin, 5tJg/ml (Eli Lily, Houten, the 

Netherlands); triiodo-L-thronine, 2x10·9 M (Sigma) and penicillin-streptomycin, 100 IU/ml-

100tJg/ml (Invitrogen). 24 Hours after seeding, proliferation medium was added to the cells. 

Proliferation medium was composed of seeding medium supplemented with 10ng/ml mouse 

epidermal growth factor (EGF, Sigma). The medium was changed every 2 days. 

Isolation and culture of human fibroblasts 

Upon separation of epidermis from dermis, the dermis was minced and put into DMEM 

with 1.5 mg/ml collagenase I and 2.5 mg/ml dispase at 3JOC for 90 minutes. Subsequently, 

enzyme solutions were filtered using a 1 OOtJm cell strainer prior to centrifugation at 1000 

RPM (200 g) for 5 minutes. Next, cells were seeded onto culture dishes in 10% FBS, penicillin

streptomycin 1001U/ml-100tJg/ml and gentamycin (50 tJg/ml) in DMEM and cultured at 37°C, 

10% C02• Fibroblasts at passage three to five were used for experiments. 
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Preparation of a-cellular dermis 

Human cadaver skin, cryopreserved in 80% glycerol, and CMV, HIV, HBV negative, was 

obtained from the European Skin Bank, Beverwijk, the Netherlands. The epidermis was 

pealed off the dermis after overnight incubation in 1 Ox PBS with antibiotic cocktail and 

ethylene-diamine-tetra-acetic-acid (EDTA). Remaining dermis was acellularized by gamma 

irradiation (35Gy) and cut into pieces of 1.5 cm2 and stored in DMEM supplemented with 

penicillin-streptomycin and gentamicin. 

Centrifugal seeding of fibroblasts 

To seed mucosal fibroblasts into the acellular dermis, a protocol was optimized using a 

centrifugal seeding technique and a-cellular dermis, as described elsewhere (23,24). 1.5 cm2 

pieces of dermis were placed with their basal membrane side down onto 40 ml of DMEM I 1% 

agarose gel in a 50 ml Falcon tube (BD biosciences, Alphen aan den Rijn, The Netherlands) at 

room temperature. Next, 1 ml of fibroblast suspension containing 800,000 cells was added. 

Grafts were centrifuged at 200 g for 90 minutes. 

Culturing mucosal substitutes 

Upon centrifuging fibroblasts into dermis, pieces were placed with basal membrane side up 

onto 6 well dishes. Grafts were produced in duplicate. A stainless steel seeding ring with a 1 

em diameter was placed on the dermis and subsequently filled with keratinocyte suspension 

containing 250,000 third passage keratinocytes in seeding medium, composed of DMEM/F12 

(3:1), FBS 1%, cholera toxin 10·10 M, hydrocortisone 200 ng/ml, insulin 5 1-Jg/ml, ascorbic 

acid 50 1-Jg/ml (Sigma) and penicillin-streptomycin 100 IU/ml-1001-Jg/ml, as described 

elsewhere (25,26). Next day, priming medium, which is seeding medium supplemented with 

bovine serum albumin (BSA) 241-JM (Sigma), was added, fatty acid cocktail (oleic acid 25 1-JM, 

linoleic acid 15 1-JM, arachidonic acid 7 1-JM, palmitic acid 251JM) (Sigma), L -carnitine 10 11M 

(Sigma) and L-serine 1 mM (Sigma). Grafts were maintained in this medium submerged for 

an additional 2 days. Next, grafts were placed on a stainless steel mesh in a 6 well dish and 

were raised to the air-liquid interface for 7 or 14 days. Air-liquid interface medium was 

composed of serum-free priming medium supplemented with 1 ng/ml epidermal growth 

factor (EGF)(Sigma). Medium was changed every 2 days. 
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Hypoxia protocol 

After 14 days at air-liquid interface, medium was changed and 5ml of medium was added 

to CMS on grids in 6 well plates remaining at the air-liquid interface. Next, six grafts were 

placed in 1.5% oxygen, 5% C02, and six grafts were placed in a regular stove using 20% 

oxygen, 5% C02• At time points 24, 36, 48, 60 and 72 hours media samples (1.5ml) were 

harvested from all CMS cultures and 1.5ml of fresh media was added. Harvested media 

samples were centrifuged and stored in -20°C until analysis using ELISA was performed. At 

time points 0, 24, 48, and 72 hours, duplicate grafts were harvested and cut in two parts for 

paraffin embedding and cryosectioning. 

Morphology and Immunohistochemistry 

Protocols for morphology and immunohistochemistry were performed according to protocols 

as published earlier (27,28). In short, harvested mucosa cultures were snapfrozen or washed 

in PBS, fixed in 4% paraformaldehyde, dehydrated and embedded in paraffin. Sections (6 

11m) were cut, deparaffinized in ethanol and rehydrated in preparation for morphological 

or immunohistochemical analysis of keratin 10, 16, integrin subunit B1 and Ki67. 

Immunohistochemical analysis of K16 and K1 0 was performed using 5 11m frozen sections, 

which after sectioning at -20°(, were air-dried overnight, fixed in acetone for 10 minutes. 

The primary antibodies used in the present study are listed in Table 1. 

Table 1: Primary antibodies used for immunohistochemical staining of tissue sections 

Antibody designation 

Paraffin-embedded 

Frozen 

Keratin 10 (CK-10) 

B1 chain (CD29) 

Hypoxiprobe-1 

Ki67 (Mb67) 

Keratin 1 6 (LL0025) 

Sourcea 

Euro Diagnostica, Arnhem, The Netherlands 

Lab Vision, Duiven, The Netherlands 

Chemicon International, Huizen, The Netherlands 

DAKO, Heverlee, Belgium 

Dr.I.M.Leigh, London, England 

•Antibodies not purchased from indicated sources were personal gifts from the investigator named. 

After incubation with primary antibodies, sections were stained with avidin-biotin-peroxidase 

complex system (streptABcomplex/HRP, DAKO), as described by the suppliers with the 

following minor modifications: phosphate-buffered saline was used instead of Tris-buffered 
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saline and for Ki67 staining antigen retrieval was performed by immersing slides in 0.1 M 

citrate buffer (pH 6.0) for 30 min at 100°( followed by slow cooling to room temperature 

for at least 3 hours prior to staining of the sections. All sections were counterstained with 

hematoxylin. 

Visualization of Hypoxic Cells 

For visualization of hypoxic cells, a Hypoxiprobe-1 kit was used (Chemicon international, 

Huizen, The Netherlands). This kit contains Pimonidazole and stains hypoxic cells using 

immunohistochemistry. Parafinized slides were used according to company's instructions. 

ELISA for FGF and VEGF 

Culture media were assayed for basic Fibroblast growth factor (bFGF) and vascular endothelial 

growth factor (VEGF) using duo sandwich ELISA kits (R&D systems, Abbingdon, UK). Samples 

of each 12 hours were assayed in triplicate, according to the company's instructions. 

Mitosis Index 

For analysis of proliferation, Ki-67 positive cells in the basal layer of 6 fields of view per 

graft were counted using a 1 OOOx magnification. Duplicate grafts per group were quantified. 

The resulting data were expressed as the mean ±SD. 

Statistical analysis 

For statistical analysis a non-parametric Mann-Whitney test was used for both Ki-67 and 

ELISA data. 

Results 

Mucosal grafts are hypoxic in 1.5% oxygen 

Grafts were cultured at air liquid interface for 14 days. After 14 days one half of the grafts 

were cultured under hypoxic conditions in 1.5% oxygen up to 72 hours. To test whether this 

treatment resulted in hypoxia a pimonidazole staining was used. Normoxic cultures (figure 

1A) showed no hypoxic cells. After 24 hours hypoxic cultures show an intense staining in 

epidermis as well as in dermal fibroblasts that were centrifuged into the dermis, indicating 

intracellular hypoxia in 1.5% oxygen (figure 1 B), 
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E F 

Figure 1: A-B:Hypoxic cultures show intense staining, even after 24 hours, pimonidazole, 

indicating hypoxia (figure 18). Normoxic cultures showed no hypoxic cells (figure 1A). C-D: 

Hematoxyllin and Eosin stainging showed a disturbed architecture of basal cell/ayers in hypoxic 

grafts, Normoxic grafts (left column) displayed 1-2 well aligned rows of basal cells with round-
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shaped nuclei. Hypoxic grafts (right column) seemed to have only 1 row of basal cells after 

24 hours. This row was not well-organized and showed reduced numbers of cells per layer of 

keratinocytes. Moreover, after 72 hours in hypoxic culture the number of cell layers in hypoxic 

grafts proved to be more than in the epidermises of normoxic grafts. E-F: lntegrin [31 was 

expressed at the suprabasal cell layers of normoxic CMS. Hypoxic conditions on the other hand 

induce differentiation after 48 hours 81 expression was reduced to the basal layer. Figure 1G-H: 

K10 expression in mucosal constructs showed suprabasal expression in all normoxic mucosal 

tissues. Hypoxic cultures showed increased differentiation of the epidermis as jugged by the 

expression of K10 in the basal cells as well as in suprabasal keratinocytes. Magnification 200x 

Hypoxia reduces number of viable cell layers 

After confirming hypoxia, morphologic analyses were performed. H&E staining showed a 

disturbed architecture of basal cell layers in hypoxic grafts. While normoxic grafts (figure 

1 C) displayed 1-2 well-aligned rows of basal cells with round-shaped nuclei; hypoxic grafts 

seemed to have only 1 row of basal cells (figure 1 D). This row was not well-organized and 

showed reduced numbers of cells per layer of keratinocytes. Moreover, after 72 hours in 

hypoxic culture the total number of cell layers in epidermises of hypoxic grafts proved to be 

less than those of normoxic grafts. 

Hypoxia enhances K10 expression and reduces B1 integrin expression 

After showing altered morphology, epidermal differentiation patterns were studied. lntegrin 

subunit B1 was used as a marker for basal cells while K10 was used to show differentiation. 

The integrin B1 was expressed at basal and suprabasal cell layers of normoxic CMS as 

was described previously (27). However, after 48 hours hypoxia, B1 levels were reduced, 

indicating differentiation (figure 1 E,F). 

K1 0 expression (figure 1 G ,H) in mucosal constructs showed suprabasal expression in all 

norm oxic mucosal tissues. Concurring with our B1 data, K1 0 staining showed hypoxia induced 

differentiation of keratinocytes as K1 0 was expressed in basal as well as in suprabasal 

keratinocytes. Both K1 0 and B1 are correlated to proliferative qualities of keratinocytes, 

hence results indicated a decrease in keratinocyte proliferation. 

Hypoxia results in a decrease in proliferation 

To evaluate whether hypoxia affects the epidermal proliferation process, we examined 

the expression of Ki-67 and K16 (hyper-proliferation associated keratin) in hypoxic and 
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normotoxic cultures (figure 2 A and B). Kertinocyte proliferation was only observed in the 

basal cell layers under both conditions. Mitosis index (MI) was calculated and showed a 

significant decrease in percentage of proliferating basal keratinocytes per surface area after 

24 hours of hypoxia from 88.8% (±1.19) in normoxia to 55.1% (± 0.57) in hypoxia (P<0.05). 

This difference increased up to a 51.6% reduction, from 84% (± 5. 79) in normoxia to 40.7% 

(± 1.35) after 72 hours (P < 0.05, figure 3c). No differences were observed in the expression 

of the hyperproliferation associated protein K16 in hypoxic and norm oxic cultures (data not 

shown). 
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Figure2: Proliferation marker Ki-67 showed proliferation confined to the basal cell/ayers (Figure 

2A). From gross morphology at 100x magnification after 72hrs in hypoxic culture (figure 28), 

a obvious decrease in proliferation can be observed. Mitosis indices (MI) were calculated and 

confirmed a significant decrease after 24 hours of hypoxia up to a 51% reduction after 72 hours 

(figure 2c, magnification 200x, *= P < 0. 05). 

Hypoxia transiently upregulates VEGF expression 

The effect of hypoxia on secretion of angiogenic growth factors that play a role in 

vascularisation was studied, since hypoxia is thought to stimulate angiogenesis partly by 
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up-regulation of VEGF, We analyzed the presence of VEGF and FGF in the medium of the 

cultures using ELISA (figure 4). Results showed an immediate difference in VEGF secretion 

by hypoxia. This difference was significant up to 48 hours (P < 0.05). Differences were up to 

1. 72 fold after 24 hours in hypoxic culture conditions. Concentrations of VEGF in the media 

of hypoxic cultures rises rapidly in the first 24 hours after which concentrations remain 

stable. The VEGF concentrations in normoxic culture media on the other hand rises until 72 

hours, resulting in a reduction of the difference between normoxic and hypoxic conditions 

to 2%. Concentrations of FGF did not differ between normoxic and hypoxic conditions (data 

not shown). 
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Figure 3: Culture medium was analyzed for VEGF concentration. The results show an immediate 

and significant increase in VEGF secretion in hypoxia within the first 48hrs of up to 1.72 fold. 

VEGF Concentrations in normoxic culture media rise over time, resulting in reduction of these 

differences to 2% at 72 hours(, *= P < 0.05). 

Discussion 

The aim of this study was to characterize responses of three-dimensional cultured mucosal 

substitutes to hypoxic conditions. This is the first report on the clinically highly relevant 

behavior of CMS under hypoxic conditions. Others have reported on the effect of hypoxia 

using two dimensional cell culture. In contrast to a two-dimensional system, a three

dimensional construct, has a natural multi-layered structure, where cells interact with 
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eacht other as well as with the extracellular matrix. Also exposure of individual cells to 

their environment is different, depending on cell position in the epidermis. 

It has been demonstrated that epidermal hypoxia occurs frequently under physiological 

conditions (29). For example, wound margins become hypoxic immediately after wounding 

due to a reduced dermal blood supply by intravascular cloth formation (30). Also, in bone 

marrow, progenitor cells are physiologically subjected to hypoxic conditions (31 ). In vitro, 

keratinocytes in the CMS survive on diffusion of oxygen from the air and culture media. 

Upon transplantation oxygen levels will decrease while the (semi) occlusive dressings render 

oxygen levels to a minimum. 

Pimonidazole staining showed epidermises to be hypoxic in the 1.5% oxygen culture 

conditions. Pimonidazole is a marker for hypoxia, forming protein adjuncts in hypoxic cells. 

It has been well-established to study hypoxia wound healing (32) tumors (33) and tissue 

engineered constructs (34). 

Hypoxia altered epidermal morphology. Architecture of the epidermis was disturbed 

and thickness of the epidermis was reduced as less cell layers were formed. This may be a 

result of reduced proliferation, a hypothesis that was confirmed by our immunohistological 

data. Expression of the integrin subunit B1 was reduced while differentiation marker 

K1 0 was enhanced. B1 expression is typically considered to be confined to proliferative, 

basal cells in the epidermis while K10 expression concurs with differentiation and loss of 

proliferative capacities (35), On top of this our Ki-67 data showed a decrease in mitosis 

indices by hypoxia. K16, a marker for hyper proliferation, was equally expressed by the 

keratinocytes, indication that this process is not altered by hypoxia. An explanation for this 

observation might be the presence of EGF in the medium. EGF is considered to activate 

the epidermal proliferation program (24). Our data on proliferation concur with others who 

have shown in two-dimensional cell culture that hypoxia in vitro leads to growth arrest of 

cultured keratinocytes. Moreover, some groups have shown this arrest to be temporary and 

reversible upon re-oxygenation (9). 

In our three-dimensional model, FGF was not enhanced by hypoxic conditions, which 

concurs with recent data on mesenchymal stem cells in hypoxic culture (37). No reports 

on skin or CMS have been published on this subject. VEGF secretion on the other hand was 

increased in hypoxic cultures and reached its maximum after 36 hours in culture. At later 

time points, VEGF levels remained constant while secretion in normoxic grafts seems to 

increase. This observation is in line with data obtained by others on cultured keratinocytes 

(6,38,39). 
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The current study validated the use of CMS under hypoxic conditions as a model for the early 

period post transplantation. From our data it was seen that hypoxia results in decreased 

metabolism as well as differentiation. Also, VEGF was rapidly but transiently up regulated. 

Whether these two effects enhance survival by decreasing demand for nutrients and oxygen 

while angiogenesis is enhanced in the wound bed is one hypothesis that warrants further 

research. 
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Abstract 

Oral mucositis is a major side effect of radiation therapy. Development of strategies 

for reduction of this problem calls for quantitative models. The goal of the present 

study was to test the feasibility of detecting double·strandbreaks (DSBs) and DSB repair 

proteins upon radiation of mucosa in a 3-dimensional culture system using morphology and 

immunohistochemistry. 

Human oral keratinocytes and fibroblasts were seeded onto and into anacellular dermal 

carrier to produce a cultured mucosal substitute (CMS). CMSs were gamma-irradiated with 

0,2, and 12Gy. One group received 4 Gythrough 2 Gyfractions with a 24-h interval. 

Radiation-induced damage was quantified using hematoxylinandeosin (H&.E). DSBs and DSB 

repair proteins were visualized and quantified using antibodies against P53 binding protein 

1 (53BP1 }, MRE11, and RAD51. As in cell culture, CMSs showed intranuclear loci of damage 

and repair, mostly in the proliferative basal cell layers. Maximum percentages of damaged 

basal layer keratinocytes were 54.8% using H&.E (12Gy) up to 78.9% (12Gy )for 53BP1. 

This study shows the feasibility of DNA repair markers to quantify radiation damage. This 

is an important step forward in the study of mucositis and the development of treatment 

and prevention strategies, proving once more the power and clinica limportance of tissue 

engineering. 
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Introduction 

Oral mucositis is considered a major side effect and complication in patients receiving 

chemotherapy, bone marrow transplantation, and radiotherapy for head and neck tumors. 

Clinical symptoms may vary from mild erythema to severe, painful ulcers in the mouth, 

resulting in malnutrition and placement of a feeding tube (1 ). Incidences of 60% in patients 

receiving radiotherapy have been reported. For many of these patients, it necessitates 

breaks in therapy for periods up to several days or weeks and pain relief using morphine 

(2). This allows the defects to heal, although at the same time, oncological therapy is 

compromised because of repopulation by tumor cells (3). Also, long-term effects of radiation 

therapy (e. g., osteoradionecrosis, mucosal atrophy) are related to the severity of the acute 

radiation response (4,5). 

Mucositis is a clinical diagnosis of multifactorial origin (4-6). Damage to the epidermis 

is a result of direct DNA damage from radiation or indirect DNA damage from re-active 

oxygen species released upon radiation. Other causes of indirect damage include the 

release of cytokines and matrix metalloproteinases by epidermal and dermal cells, such 

as endothelial cells and fibroblasts, inducing an inflammatory response and edema. This 

reduces tissue vascularization and oxygenation. The final result is ulceration of the mucosa 

and colonization of the ulcer by the commensal bacteria that are present in large quantities 

in the oral cavity. No in vitro model is available to study radiation-induced damage to 

mucosa. Such a model potentially holds a large number of advantages over in vivo models. 

Tissue engineering might be useful in the development of an in vitro model. 

Radiation primarily affects proliferating cells, causing highly proliferative tumor cells 

to be more radiosensitive than non-dividing cells in healthy tissues. Mucosa, however, is 

a tissue with a physiologically high cell turnover rate, mak-ing the cells susceptible to 

radiation damage. Damage can be observed especially in the basal layer of the epidermis, 

where proliferation of the epidermis occurs. Radiation re-sults in a number of different 

DNA lesions, the DNA double-strand break (DSB) being a particularly genotoxic one. A DSB 

induces cell-cycle arrest, giving time for the cell to recruit repair proteins. Alternatively, 

the cell goes into apoptosis and dies. 

Cells have a number of guarding mechanisms that locate damage and initiate a suitable 

repair mechanism (7). One of the proteins involved in the detection of DSB is P53 binding 

protein 1 (53BP1), a protein that rapidly locates at the site of a DSB, as early as 5 min after 

irradiation. Generally, 12 to 14 h after irradiation, protein localization returns to normal 

(8). 
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DSBs are repaired using processes of the error-prone non-homologous end joining (NHEJ) or 

the error-free homo-logous recombination (HR) (9). The choice of mechanism depends in 

part on the phase of the cell cycle or, more spe-cifically, the number of chromatid copies 

(1 0). In G1 and early S phase, a single copy is present, and the cell uses NHEJ as a repair 

mechanism of choice. During S and G2 phase, how-ever, chromosomes are duplicated such 

that they consist of 2 identical sister chromatids. HR repairs a DSB on 1 sister chromatid, 

using the other intact chromatid as a template. In the processes of NHEJ and HR, a vast 

array of proteins are involved (7, 9,11 ). A number of these proteins locate at the site of the 

DSB and can be used to observe sites of gamma irradiation-induced DSB repair. 

MRE11 is part of a protein complex with the RAD50 and NBS1 proteins. Mutations in 

genes encoding for these pro-teins cause an ataxia-telangiectasia-like disorder or Nijme

gen breakage syndrome (12). Patients with this disorder or syndrome are radiosensitive and 

cancer prone. A biologi-cally relevant activity of the MRE11 complex is bridging of broken 

DNA ends early in DSB repair (13-16). This activity can be important in the NHEJ and HR 

pathways of DSB repair, even though they are mechanistically distinct. 

The RAD51 protein is another protein playing a key role in DSB repair, specifically in 

the HR pathway. RAD51 mediates DSB repair by promoting pairing of the intact identical 

se-quence on the sister chromatid (17-19). Mutations in HR's in-teracting partner, the 

product of the breast cancer-associated 2 gene (BRCA2}, reveal the clinical importance 

of HR medi-ated by RAD51. Cells with mutated BRCA2 are unable to activate the RAD51 

protein properly, and patients have a life-time risk of approximately 80% of developing 

breast cancer, demanding prophylactic mastectomy (20). 

Upon gamma irradiation of cells, 53BP1, RAD51, and MRE11 localize in sub-nuclear 

structures. They accumulate in large quantities at the site of a DSB, forming ionizing 

radiation-induced foci (IRIF) in the cell nucleus. These DSB-marking foci can be visualized 

using immunofluorescence. In vitro studies have shown the number of cell nuclei with IRIF 

to be dependent on radiation dose using 2-dimensional cultures on plastic (8,21 ,22). 

The goal of the present study was to test the feasibility of detecting DSBs and DSB 

repair proteins upon radiation of mucosa in a 3-dimensional (3D) culture system using mor

phology and immunohistochemistry. Antibodies that detect 53BP1, MRE11 and RAD51 were 

tested. 
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Materials and methods 

Culture of human keratinocytes 

Upon approval of the local medical ethics committee, human buccal mucosa was harvested. 

The mucosa was incubated in an antibiotic cocktail for 1 h (penicillin/strep-tomycin (100 

IU/ml/100 IJg/mL), gentamycin (50 IJg/mL), amphotericin B (2.5 IJg/mL), all Invitrogen, 

Breda, the Netherlands). The biopsy was transferred to dispase (2.5 IJg/mL, Invitrogen) in 

antibiotic cocktail at 48°C overnight. The next day, the biopsies in the enzyme solutions were 

held at 37°C for 10 min before gentle separation of the epidermal sheets from the dermis. 

The dermis was used to isolate fibroblasts as described elsewhere below. Subsequently, the 

epidermal sheets were put in trypsin-ethylenediaminetetraacetic acid EDTA, 0.25% (Sigma, 

Zwijndrecht, The Netherlands) at 378C for 20 min. After neutralization of the trypsin using 

Dulbecco's modified Eagle medium (DMEM) with 10% fetal bovine serum (FBS) (Sigma) a 

single-cell suspension was obtained by gentle pipetting. Keratinocytes were seeded into 

a T75 culture flask onto a feeder layer of lethally irra-diated 3T3 fibroblasts (a kind gift 

from Dr. von den Hoff, Department of Orthodontics and Oral Biology, University Medical 

Centre, Nijmegen, the Netherlands) in seeding medium, according to the Howard and Green 

protocol (23-25). 

Keratinocyte seeding culture medium was composed of a 3:1 mixture of high

glucose DMEM and Ham's F12 medium (Invitrogen) supplemented with 10% FBS, adenine 

1.8x1 o·4M (Sigma), cholera toxin 10·10 M (VWR inter-national, Amsterdam, the Netherlands), 

hydrocortisone 0.4 IJg/mL (VWR), insulin 5 g/ml (Eli Lily, Houten, the Netherlands), 

triiodo-L-thronine 2x10·9M (Sigma), and penicillin/streptomycin 100 IU/ml/100 11g/ml 

(Invitrogen). Twenty-four h after seeding, proliferation medium com-posed of seeding 

medium supplemented with 10 ng/ml mouse epidermal growth factor (Sigma) was added to 

the cells. The medium was changed every 2 days. 

Isolation and culture of human fibroblasts 

Upon separation of the epidermis from the dermis, the dermis was washed once more in 

PBS, minced, and put into DMEM with 1.5 mg/ml collagenase I and 2.5 mg/ml dispase 

at 37°C for 90 min. Subsequently, the enzyme solutions were filtered using a 100-11m cell 

strainer before centrifugation at 1000 RPM (200 g) for 5 min. Next, cells were seeded onto 

culture dishes in 10% FBS, penicillin/strepto-mycin 100 IU/ml-100 11g/ml and gentamycin 

50 j.Jg/ml in DMEM and cultured at 37°C, 10% carbon dioxide (C02). Fibroblasts at passages 

3 to 5 were used for experiments. 
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Preparation of a cellular dermis 

Human cadaver skin, cryopreserved in 85% glycerol and cytomegalovirus, human 

immunodeficiency virus, and hepatitis B negative, was obtained from the European 

Skin Bank (Beverwijk, the Netherlands). The epidermis was peeled off the dermis after 

overnight incubation in 1 OxPBS with antibiotic cocktail and EDTA. The remaining dermis was 

acellularized using gamma irradiation (35Gy). The dermis was cut into pieces of 1.5 cm2 and 

stored in DMEM supplemented with penicillin /streptomycin and gentamicin. 

Centrifugal seeding of fibroblasts 

To seed mucosal fibroblasts into the acellular dermis, a protocol was optimized using a 

centrifugal seeding techni-que and acellular dermis, as described elsewhere (26,27) Pieces 

of 1. 5-cm2 dermis were placed with their basal membrane side down onto 40 mL of DMEM/ 1% 

agarose gel in a 50 mL Falcon tube (BD Biosciences, Alphen aan den Rijn, the Netherlands) at 

room temperature. Next, 1 mL of fibroblast suspension containing 800,000 cells was added. 

Grafts were centrifuged at 200 g for 90 min. 

Culturing mucosal substitutes 

After the fibroblasts were centrifuged into the dermis, pieces were placed with the basal 

membrane side up in 6-well dishes. Grafts were produced in duplicate for 3 separate 

experiments. A stainless steel seeding ring with a 1-cm diameter was placed on the dermis 

and filled with keratinocyte suspension containing 250,000 third-passage keratinocytes in 

seeding medium composed of DMEM/ Ham's F12 (3:1), FBS 1%, cholera toxin 10-10M, hydro

cortisone 200 ng/mL, insulin 5 IJg/mL, ascorbic acid 50 IJg/mL (Sigma), and penicillin/ 

streptomycin 100 IU/mL/1001Jg/ mL, as described elsewhere (28,29). The next day, 

culture medium was changed to priming medium, which is the same as seeding medium 

but supplemented with bovine serum albumin (BSA) 24 !JM (Sigma), fatty acid cocktail 

(oleic acid 25 !JM, linoleic acid 15 !JM, arachidonic acid 71JM, palmitic acid 25 !JM) (Sigma), 

L-carnitine 10 !JM (Sigma), and L-serine 1 mM (Sigma). Grafts were maintained in this medium 

submerged for an additional 2 days. Next, the grafts were placed on a stainless steel mesh 

in a 6 well dish and were raised to the air-liquid interface for 7 or 14 days. The air-liquid 

interface medium was composed of serum-free priming medium supplemented with 1 ng/ 

mL epidermal growth factor (Sigma). The medium was changed every 2 days. 
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Radiation protocol 

After 13 days at the air-liquid interface, 3 CMSs per group were gamma-irradiated at dosages 

of 0, 2 and 12 Gy. One group received a fractionated dose of 4 Gy by 2 doses of 2 Gy with 

an interval of 24 h. Subsequently, grafts were incubated for 6 hat 37°C, 10% C02• Next, the 

CMSs were harvested and cut in 2 parts for paraffin embedding and cryo-sectioning. 

Morphology and immunohistochemistry 

Harvested CMSs were snap frozen or embedded in paraffin. Paraffin sections (5 ~m) were 

deparaffinized, re-hydrated, and prepared for morphological or immunohistochemical 

analysis. Cryo-sections (6 ~m) were fixed with 2% para-formaldehyde. Next, samples were 

processed for immunohistochemical detection of radiation damage and repair, apoptosis, 

and proliferation. 

Histology 

Hematoxylin and eosin (H&E) staining was performed on the paraffinized sections. 

Visualization of DNA breaks and repair proteins 

DSBs were detected using 53BP1, and repair proteins were detected using antibodies against 

MRE11 and RAD51. After sectioning, cryo-sections were fixed with 2% para-formaldehyde. 

Mesenchymal stem cells were permeabilized with 0.1% Triton X-100 in PBS and washed 

with PBSp(O. 5% BSA and 0.15% glycine) to prevent aspecific binding of the antibodies. The 

following antibodies were used: rabbit anti-human 53BP1 (rabbit polyclonal antibody, Novus 

Bio-logicals, Littleton, CO), rabbit anti-human RAD51 (nr. 2307, rabbit polyclonal antibody) 

(30), rabbit anti-human MRE11 (nr. 2244, rabbit polyclonal antibody) (31 ). Samples were 

incubated for 90 min at 3JOC in a humidified chamber and washed with 0.1% Triton X-100 in 

PBS followed by a quick washing step with PBS. Subsequently, the secondary antibody (Alexa 

Fluor 594, goat a-rabbit immunoglobulin G; Molecular Probes, Inc., Leiden, the Netherlands) 

was applied for 60 min at 37°C in a humidified chamber and washed with 0.1% Triton X-1 00 in 

PBS and PBS. The sections were cover-slipped with 40'6-diamidino-2-phenylindole /DAPCOA/ 

Vectashield and sealed. 

Quantification of radiation damage 

Radiation damage was quantified using morphology and immunohistochemical staining. 

In H&E samples, the percentage of atypical, pyknotic nuclei was quantified in the basal, 

proliferative layer. A nucleus was considered pyknotic when it showed cytoplasmic shrinkage 
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as well as nuclear condensation or fragmentation (figure 1). As for DNA damage and repair 

proteins, the percentage of nuclei with one or more IRIF was calculated in the basal layer. 

The percentage was also determined in the suprabasallayers, where no clear dose response 

was observed (data not shown). Six fields of view were counted per graft at high-power 

magnification (1000x). Triplicate grafts per time point were counted. 

Apoptosis assay 

For detection of apoptotic cells in the CMSs at various radiation doses, a TUNEL assay 

(DeadEnd Colorimetric TUNEL System; Promega, Leiden, the Netherlands) was used as 

described by the manufacturer. After incubation with the DAB substrate, the sections were 

counterstained using hematoxylin. 

Cellproliferation 

For detection of cells in G1, S, G2, or M phase of the cell cycle, Ki-67was used (Dako, Heverlee, 

Belgium). The secondary antibody, biotin-labelled goat anti-mouse immunoglobulins (Dako) 

in secondary buffer (2% normal goat serum (Sanquin Blood bank, Rotterdam, the Netherlands) 

2% human plasma (Sanquin), and 5% BSA (Sigma) in PBS) for 30 min at room temperature. 

Streptavidin-ABC-HRP (Dako) in PBS was used under the same conditions. Next, the substrate 

(1.2 ml 5% DAB (Sigma) with 241-JL of 30% hydrogen peroxide in PBS) was added to the samples 

for 5 min before stopping the reaction using tap water. Counterstaining was performed using 

hematoxylin for 10 s. After drying, the sections were coverslipped using Vectamount (Dako) 

and sealed with nail polish. Mitotic indices were expressed as a percentage of positive basal 

cells per high-magnification field of view. 

Cell counting and statistical analysis 

For analysis of the percentage of basal cells with IRIF, one author counted cells in the basal 

layer of 6 fields of view per graft using 1000x magnification. Cells were considered positive 

when more than 2 IRIF were present. Triplicate grafts per group were quantified. Statistical 

analysis was performed using the Mann-Whitney test. Statistical significance was reached 

if p < 0.05. 
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Figure 1: (A-D) High magnification of hematoxylin and eosin-stained basal epidermal Layers 

revealed the appearance of py-knotic nuclei from the dose of 2 Gy (original magnification 1000x). 

(E) Quantification of the number of pyknotic nuclei per surface area at various radiation doses 

was performed. A dose response was observed. Error bars represent standard errors of the mean 

of 3 grafts per group; approximately 120 cells per graft were counted (* p < 0.05). Color images 

available online at www.Liebert pub.comlten. 
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Results 

Effect and quantification of radiation on epidermal morphology 

Radiation damage in the epidermis was studied invitro using 3D cultures of human oral 

mucosal keratinocytes. To determine the effect of radiation on quality of the epidermis in a 

CMS, H&E staining was performed (figure 2 A-D). The unirradiated samples showed a well

differentiated, multi-layered epidermis after 14 days of culturing the CMS at the air-liquid 

interface. The epidermis of the CMS resembled the natural mucosal epidermis (32) and 

was well organized into a basal layer and a spinous layer. Upon irradiation, a number of 

changes were observed. Gross morphology did not change significantly at doses of 2 Gy or 

at a fractionated dose of 4Gy administered by 2 times 2 Gy with a 24-h interval (2 + 2 Gy). 

At 12 Gy, however, the epidermis appeared to be severely damaged, resulting in drastic 

changes in morphology. 

H&E 

Figure 2: Hematoxylin and eosin stain of cultured mucosal sub-stitutes at various radiation 

doses. (A) Unirradiated epidermises show differentiated keratinocytes with basal, spinal, and 

granular layers, as can be seen in natural mucosal tissue. (B-D) From an irradiation dose of 2 

Gy, pyknotic nuclei, composed of severely condensed material, appear in the keratinocytes of 

the proliferative basal layer (black arrows). Original magnification 200x, bars re-present 50 um. 

Color images available online at www.liebertpub .com/ten. 
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Next, we examined the effect of radiation on the mor-phology of the CMS in more detail. 

Upon radiation, cells with highly condensed, pyknotic nuclei started to appear in the basal 

and spinous layers of the epidermis (figure 1 A-D). To quantify the effect of radiation in 

CMS, the number of pyknotic cells in the proliferative, basal compartment of the epidermis 

were determined (Figure 1 E) relative to the total cell number per high-power field of view. 

Percentages were dose dependent, rising from 4.4% (±1.1) in the unirradiated group to 

53.5% (±16.5) in the 12 Gy irradiated group. In samples that received 2 + 2 Gy, the number 

of pyknotic cells was 54.8% (±9.1 ). 

TUNEL 

Figure 3: TUNEL stain (right column) TUNEL staining showed that positive cells were most 

prevalent in the basal cells of the epidermis, most conspicuously in the 2 + 2 Gy groups. The 

nuclei staining positive for the apoptosis marker TUNEL were pyknotic (grey arrows). Bars 

represent 50 um. Color images available on-line at www.liebertpub.com/ten. 

To extend observations from morphological changes in-dicative of apoptosis, biochemical 

analysis was performed using TUNEL as a marker (Figure 3 A-D) to visualize whether 

radiation induced apoptosis. TUNEL-positive, apoptotic cells were observed in the basal 

layers, most prominent in the pyknotic nuclei. As was observed in morphology, there was a 

dose-dependent increase in TUNEL-positive cells as radiation doses increased. 
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Figure 4: (A) Radiation damage was detected using an antibody for P53 binding protein 1 (53BP1 ), 

a protein involved in the detection of double-strand breaks (DSBs). Intranuclear radiation induced 

foci (/RtF) for 53BP1 were observed. (B) Quantification of the percentage of cells with IRIF in the 

basal layer showed a response to increasing radiation doses. (C) Radiation damage repair was 

detected in the keratinocytes by staining for MR£11. IRIF for MR£11 were observed most clearly 

in the basal cells. (D) Quantification of number of MR£11-positive nuclei at the basal layer of 

the epidermis shows a response of expression to radiation doses. The number of nuclei with /RtF, 

however, seems to reach a maximum after 2 Gy, as the response flattens out. (E) DSB repair 
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was shown using the RAD51 antibody for homologous recombination. (F) Quantification of the 

percentage of cells showing IRIF for RAD51 showed a maximum in deoxy-ribonucleic acid repair 

in the group receiving 2 doses of 2 Gy. (G) Because homologous recombination only occurs in the 

Late S phase, mitosis indices were measured using Ki-67 staining. (H) Quantification showed an 

up-regulation of mitosis index at a dose of 2 Gy. Overall, however, cell proliferation decreased 

as radiation doses increased. Error bars represent standard errors of the mean of 3 grafts per 

group; approximately 120 cells per graft were counted (*p < 0.05). Color images available online 

at www.Liebertpub.com/ten. 

Quantification of doserelated radiation damage using 53BP1 IRIF 

To develop a model for the quantification of radiation damage, 53BP1 was used as a marker 

for DSBs. 53BP1 is one of the first proteins that can be observed at the site of damage in 

the cascade of DSB repair. Therefore, we used 53BP1 to quantify radiation damage in the 

epidermis. Upon irradiation, 53BP1 was observed as IRIF in the proliferative basal layer 

(Figure 4A) and, less evidently, in the suprabasal cells. Quantification of the percentage of 

basal cells with IRIF showed a response to increasing doses of radiation (Figure 4B). Starting 

at 9.9% (±8.7) in the unirradiated group and increasing to 46.1% (±13.5) in the 2 Gy group 

and 78.9% (±3.5) in the 12 Gy group; 2 + 2 Gy resulted in 38.3% (±7.7), similar to a single 2 Gy 

dose. Quantification of the number of IRIF per nucleus showed a response as well, starting 

from 4. 9% (±3.3) in the control group, 9. 9% (±3.4) in the group receiving 2 Gy, and 11.9% 

(±0.6) in the group receiving 12 Gy. The fractionated-dose group showed an average of 5.7% 

(±2.5) IRIF per positive nucleus, again comparable with that of the group receiving a single 

dose of 2 Gy. Similar responses were observed for the suprabasal layers. These responses 

were less marked than in the pro-liferative basal layer (data not shown). 

Quantification of doserelated radiation damage using MRE11 IRIF 

Next, MRE11 was used to reveal DSB repair in the cell nucleus, and cells with IRIF were 

quantified. In all samples, IRIF were observed in the basal layer (Figure 4C). IRIF were also 

present in the suprabasal layer. The number of IRIF-positive nuclei in the suprabasal layer, 

however, did not change as radiation doses increased (data not shown). Quantification of 

the percentage of cells with IRIF in the basal layer showed a rapid response to increase in 

radiation dose (Figure 4D) between 0 and 2 Gy, starting at 25.7% (±1. 9) in the unirradiated 

group and rising to 63.4 (±1 0.1) and 63.3 (±3.1) for the groups that received 2 Gy and 12 

Gy, respectively. For the group that received 2 + 2 Gy, a percen-tage of 68.6% (±7.5) was 

measured. The response seemed to level off at a dose of 2 Gy. 
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Quantification of dose-related radiation damage using RAD51 IRIF 

RAD51 was used to study IRIF in S and G2 phase when HR is performed. Upon irradiation, 

RAD51 IRIF were observed. No IRIF were formed in the unirradiated samples. 

The IRIF were only present in the proliferative, basal cell layers of the epidermis 

(Figure 4E), with none in the suprabasal levels of the epidermis. Quantification of the 

percentages of cells with IRIF showed a response to increasing doses of radiation (Figure 

4F). In the irradiated groups, the percentage of IRIF nuclei was 14.7% (±1.9) for the group 

that received 2 Gy, rising to 24.1% (±2.0) for the group receiving 12 Gy. The groups receiving 

a fractionated dose of 2 + 2 Gy showed the highest response: 37.3% (±2.8). 

Dose dependent decrease in mitosis 

Ki-67 was used to determine the proliferative activity in the epidermis (Figure 4G). 

Proliferation was observed in the basal layers exclusively. Mitotic indices were calculated. 

Overall, a decrease in the mitotic index was observed as radiation doses increased (Figure 

4H) from 60.6% (±11.2) in the unirradiated group to 26.3% (±7.0) in the group receiving 

12Gy. Remarkable, however, was an increase in mitosis index after 2 Gy radiation to 81.9% 

(±4.5). Apparently, the 2 Gy dose results in enhanced proliferation of the epidermis. 

Discussion 

The goal of the present study was to develop a 3D in vitro model to quantitatively study 

radiation damage in cultured mucosa, using morphology as well as markers for DNA damage 

and repair proteins. 

Changes in cell and tissue morphology occurred as ra-diation doses increased. Cell 

nuclei became small and py-knotic. Close observation of the cell nucleus in our 3D mucosa 

revealed an increase in number of pyknotic nuclei in the basal layer, where the proliferative 

cells reside, as radiation doses increased. TUNEL staining showed these atypical nuclei to be 

apoptotic cells. It is well documented that cells go into apoptosis if the DNA damage is too 

severe, as an escape mechanism for malignant transformation. Moreover, the appearance 

of pyknotic nuclei resembles the morphology of so-called sun burn cells (SBCs), observed 

in ultraviolet-irradiated skin (33,34) and skin substitutes (35-37). SBCs develop as cells are 

damaged by ultraviolet light. Morphologically, y pyknotic nuclei with cytoplasmic shrink

age, mostly observed in the supra basal and mid epidermal layers, characterize SBCs. In the 
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case of gamma-irradiated mucosal substitutes, these cells appeared in the basal layer as 

well as the suprabasal layers. 

Gamma irradiation results in cell damage. Particularly important are DSBs of DNA. An 

alternative for apoptosis is DNA repair. A number of biochemical markers for DNA damage 

and repair have been developed and are used extensively in cell culture. Moreover, in cell 

culture, intra-nuclear presence of damage and repair proteins was correlated to radiation 

(8,21 ,22). The present study tested 53BP138 for suitability in detecting radiation-induced 

DNA damage in CMS. For visualization of DNA repair, MRE11 and RAD51 were used. All 

antibodies proved to be useful. 

Being visible early in the DNA damage response, 53BP1 was useful for quantification 

of radiation damage. Quantification of IRIF revealed a dose response to increasing doses 

of radiation. After 2 fractions of 2 Gy, similar damage was observed as in the 2 Gy group. 

This might be explained from the results of cell culture studies where the number of cells 

with IRIF decrease to normal levels 12-24 h after irradiation. In addition to 53BP1 H2AX was 

tested as an early marker for DSB. IRIFs were observed in the irradiated tissues. However, 

due to rapid bleaching of the IRIFs, quantification proved to be impossible. 

Subsequent markers in the DNA DSB repair cascade in-clude MRE11 and RAD51. As for 

MRE11, this marker showed an early saturation of the number of nuclei with IRIF, making it 

a less suitable marker for quantification of radiation dose responses. The number of MRE11 

induced IRIF in tissue culture has shown to reach a plateau at 6 Gy (22). The percentage 

of cells with IRIF was similar, 60%, con-curring with the data on 3D cell culture. The 

accumulation of damage-load to its maximum most probably explains the plateau at 2 Gy. 

Quantification of HR using RAD51 showed increasing counts from 2 to 12 Gy. No 

RAD51 IRIF were observed in the unirradiated CMS. Two and 12 Gy showed higher counts of 

positive cells. The group of grafts receiving 2 fractions of 2 Gy showed the highest counts 

of IRIF. Concurring with these data are the data on the mitotic indices. This showed a 

proliferative peak in the group receiving 2 Gy. This peak might be a sign of repopulation, 

as was observed in mouse tongue mucosa (5,39). Upon small doses of radiation, basal stem 

cell keratinocytes start proliferating to repopulate the epidermis. The recruit-ment of cells 

24 h after irradiation from GO to S and G2 concurs with the introduction of HR as a repair 

mechanism of choice. In addition, the RAD51 protein has been shown to remain present for 

up to 24 h. HR repairs damage caused by a second fractional dose of 2 Gy to the cells that 

left GO phase. Repopulation has been studied in the mouse tongue model. Here it was shown 

to start 3 to 7 days after irradiation (40,41 ). We found an increase in proliferative index as 
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soon as 8 h after radiation. This might be a result of symmetrical stem cell proliferation, or 

abortive proliferation by damaged stem cells, in which each damaged cell shows a number 

of abortive di-visions before differentiation and dying (5,42). 

Changes observed in the presented in vitro model resemble changes observed in vivo 

in animals and humans, in which radiation damage also is most prevalent in the basal layers 

of mucosa. Similar morphological cell changes are observed, including nuclear condensation 

and pyknosis (41 ,43). Future projects will include the study of the effect of radiation

preventive cytokines or strategies (44). Also, more-detailed studies of long-term proliferative 

dynamics, such as cell cycle time, the number of cells in abortive divisions, the number of 

cells in repopulating divisions, and the percentage of surviving cells, are ongoing. 

Conclusion 

The authors conclude that the use of DNA repair markers to quantify radiation damage in 

a 3D invitroculture is feasible. Use of these markers in tissue-engineered constructs might 

lead to further insights in molecular mechan-isms of radiation damage in a 3D organa-typical 

structure. The presented model can be considered to be an important step forward as a 

tool in the study of the development, as well as the treatment or prevention, of mucositis 

in a more quantitative way, proving once more the power and clinical importance of tissue

engineering techniques. 
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General Discussion 

The aim of this thesis was to develop, improve and test a CMS as a step towards clinical 

application in therapy for head and neck oncological procedures. To take a next step from 

lab bench towards bedside a number of goals were set and addressed in the various chapters 

(table 1 ). 

Table 1: Goals in project Cultured Mucosal Substitutes, from Lab Bench Towards Bedside? 

1. Study the performance of current reconstructive techniques to identify possible issues that can 
be improved and challenges that the CMS will meet upon transplantation. 

2. Choose an optimal isolation protocol 

3. Choose an optimal design of the CMS by choosing a dermal carrier and decide on the cell types 
included 

4. Study behavior CMS to clinically relevant environments in vitro 

-Hypoxia 

- gamma irradiation 

Head and neck cancer is increasingly common and Intra-oral reconstructive procedures 

are performed frequently. As mucosa is scarce, reconstruction of large mucosal defects 

is generally performed using free flaps, composed of keratinizing skin flaps. A number of 

workhorse flaps, including the radial forearm flap are used. Flaps should be thin in the 

anterior part of the mouth in order support mobility of the (remnant of the) tongue for 

important functions such as speech. In the posterior part of the mouth, on the other hand, 

more bulky flaps facilitate swallowing of food and saliva. 

Patients require post-reconstructive radiotherapy in 80% of cases 

The majority of our patients (79. 9%) required post-operative radiotherapy so flaps should 

be well-vascularized to withstand irradiation. Chapter 2 discusses clinical experience 

and quality of life outcomes using the Radial Forearm Flap in intra-oral reconstruction of 

the floor of the mouth. Two groups were described, based on location of the flap either 

in the anterior or posterior part of the oral cavity. Reconstructions, in particular in the 

anterior part of the mouth resulted in 26% of cases in too much bulk which impaired tongue 

function. The combination of skin and irradiation gave additional problems with dry mouth 

and swallowing. 
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Donor site morbidity is a problem. Damage to the superficial radial nerve results in decreased 

sensibility and cold intolerance. Furthermore, wound problems, tendon exposure and an 

unattractive and large donor-site scars can occur in up to 28% of patients (1-4). Improvement 

in functional outcome and reduced donor site morbidity would be expected if resected 

mucosa could be replaced with the same tissue according to the principle "replace like with 

like"(5, 6). Therefore, tissue engineering strategies were explored to assess feasibility in 

reconstructive procedures of large mucosal defects. 

CMS can provide In vitro answers to clinical and experimental questions 

Besides for clinical application, CMS as well as cultured keratinizing skin substitutes have 

become important in vitro models to study highly relevant subjects including carcinogenesis 

and congenital disorders such as Junctional Epidermolysis Bullosa (7,8). Others have 

performed important work studying the effect of various growth factors and other proteins 

using genetically modified keratinocytes(9-11 ). These techniques use human cells and new 

insights are gained, without the use of animals. 

Setting up a CMS production line takes time 

Cultured mucosal substitutes have been developed as described in this thesis. A number of 

problems are recognized in both the production phase and in the transplantation phase. 

Generally, a CMS is fragile. One should consider the production process of a CMS to be like 

a card house. Before one can test clinically relevant questions a large number of conditions 

have to be met (table 2). Cells should be isolated, seeded and grafts should be cultured. 

Problems can occur at every step of the protocol, and contamination is a constant danger. 

Infection in vitro means the CMS is prematurely destroyed, leading to frustration of the 

culturing crew, waste of money and time. Culturing CMS demands a learning period in which 

all these risks are encountered, recognized and dealt with. The first step in setting up a line 

is to test cell isolation protocols. 

Dispase is the enzyme of choice in keratinocyte isolation 

Generally, cell expansion in vitro happens exponentially. The rate at which this happens 

depends on the cell cycle of the cell type of interest. Keratinocytes have a cycle of 

approximately 24 hours. For clinical application, culture time should be reduced. One of the 

first steps to be optimized is the number of cells isolated per biopsy. In order to choose an 

optimal protocol for isolation and expansion in vitro, thermolysin and dispase were tested 
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(chapter 4). These enzymes are routinely used by many well-established laboratories (12). 

The results showed a clear advantage for the use of dispase. First of all, cell yields per 

surface area of biopsy were 3.26 times higher in the dispase treated groups. All of the 

dispase treated biopsies separated completely and at the level of the dermo-epidermal 

junction. Thermolysin on the other hand proved to be unpredictable in its effectiveness for 

two reasons. First, only part of the epidermal layers separated at all following overnight 

incubation. Secondly, epidermises that did separate showed a supra-basal separation level of 

the epidermis and dermis. Analysis of expression levels of differentiation marker CK13 (13) 

in the keratinocytes remaining attached to the dermis upon thermolysin treatment proved 

that remaining keratinocytes were basal cells. Basal keratinocytes are undifferentiated 

epidermal cells with the highest proliferative capacities, also the primary cells responsible 

for successful culturing and cell expansion necessary to be able to proceed to the phase of 

seeding onto a dermal scaffold. 

Table 2: Determinants of successful culturing and clinical application of CMS 

Factors for success 

In vitro Isolation protocol Straight-forward surgical protocol 
Communication between laboratory and surgeon 
Planning of isolation before reconstructive procedure 
Bacterial and fungal contamination rates 
Fibroblast contamination 
Cells/ cm2 biopsy 
% stem cells/ cm2 biopsy 

Costs Culture time 

In Vivo Surgery 

Graft take 

Long term 

- Isolation protocol 
- Technical difficulty protocol 
- % of successfully produced CMS 
- Infection rates 

Communication between laboratory and surgeon 
Logistics, e.g. transportation to OR 
Mechanical properties, handling of CMS for surgeon 
Resistance of CMS to handling by the surgeon 
Straight-forward surgical protocol 
Straight-forward wound protocol for surgical and nursing staff 

Angiogenesis 
Resistance to hypoxia 
Resistance to shearing forces 
Susceptibility to Infection 

Wound contraction 
Resistance to radiation 
Impairment of intra-oral functions such as speech 
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Of the various clinically approved dermal analogues, an a-cellular dermis ensures minimum 

wound contraction and optimal mechanical properties. Furthermore, the vasculature 

can invade into the dermis from the wound bed using the basement membrane proteins 

present in the remaining proteins of basal membranes of the donor vasculature (14-17). A 

problem encountered in our laboratory in producing CMS using conventional methods with 

a-cellularized cadaver skin and cultured keratinocytes without the use of fibroblasts was 

varying quality of the newly formed epidermis. 

Recently, a technique was developed to centrifuge fibroblasts into a-cellular dermis 

(18). In keratinizing skin substitutes, a clear improvement in epidermal morphology and 

a better formation of the DEJ was a result of incorporation of fibroblasts. Moreover, 

fibroblasts made the addition of growth factors, such as Keratinocyte Growth Factor (KGF) 

and Epidermal Growth Factor (EGF) unnecessary (18, 19). It has been shown that addition of 

fibroblasts to constructs enhances angiogenesis in vitro and improves graft survival. These 

results suggest that incorporation of fibroblasts in non-keratinizing mucosal substitutes 

might lead to important improvement of the quality of the cultured mucosa. 

Addition of fibroblasts to CMS enhances morphology and quality of the CMS 

To test this hypothesis, in Chapter 5 human fibroblasts were incorporated into the a-cellular 

dermis of CMS and seeded with human keratinocytes. CMS were stained for H&E for gross 

morphology and differentiation markers B1 integrin, cytokeratin 10 and involucrin after one 

and two weeks in culture. Basement membrane formation was analysed by laminin 5 and 

collagen IV and VII staining, proliferation by Ki-67 staining. 

Addition of fibroblasts to CMS enhances proliferation of keratinocytes and 

reduces culturing time 

Our study showed that fibroblasts incorporated into an a-cellular dermis indeed improves 

epidermal morphogenesis and function. Gross morphology showed a better organized 

epidermis with more cell layers in fibroblast containing dermises. Evaluation of integrin 

subunits 81, a6 and 84 revealed a higher number of basal cells per surface area. This 

was confirmed by Ki-67 staining showing suprabasal proliferation and statistically higher 

prolifation rates, which are advantageous to production, as it reduces culture time. 
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Addition of fibroblasts to CMS enhances maturation of the derma-epidermal 

junction 

Fibroblasts promoted early maturation of the epidermis as well as of the derma-epidermal 

junction (DEJ). The DEJ plays an important role in prevention of separation of the epidermis 

from the dermis. Early ventures using cultured keratinocyte sheeths without dermal 

components in burns surgery showed significant problems of blistering, underscoring the 

importance of adding a dermal component to the construct. Combination of epidermis and 

a dermal analogue in vitro results in the formation of this DEJ. Moreover, in a-cellularized 

dermis, the DEJ proteins responsible for anchoring the epidermis, such as laminin, remain 

present after decellularization. A better DEJ formation by fibroblasts has clinical implications 

as a more mature DEJ might result in a firmer anchoring of the epidermis to the dermis, 

reducing blistering or loss of the epidermis upon transplantation into the mechanically 

challenging oral environment. 

The observed effects on the epidermis by dermal fibroblasts in believed to be of 

paracrine origin. Growth factors, such as KGF, also known as FGF-7, play important roles 

in the development and maturation of an epidermis. Especially of interest is KGF, which is 

secreted only by fibroblasts, while keratinocytes express receptors for this growth factor. 

This means this growth factor is not present in grafts without fibroblasts and are introduced 

into the grafts with fibroblasts by the fibroblasts. Addition of KGF has dramatic consequences 

in vitro as well as in vivo (9,20). These changes are remarkably similar to the observed 

changes by addition of fibroblasts to the dermis. 

Hypoxia occurs in physiological conditions 

Epidermal hypoxia occurs frequently under physiological conditions (21 ). For example, 

wound margins become hypoxic immediately after wounding due to a reduced dermal blood 

supply by intravascular cloth formation (22). Also in bone marrow, progenitor cells are 

physiologically subjected to hypoxic conditions, preserving their undifferentiated status 

(23). In vitro, keratinocytes in the CMS survive on diffusion of oxygen from the air and 

culture media. Upon transplantation oxygen levels are expected to decrease while (semi) 

occlusive dressings render oxygen levels to a minimum. 

The aim of our hypoxic experiment (chapter 6) was to characterize three-dimensional 

cultured mucosal substitutes in hypoxia. It was hypothesized that culturing in hypoxic 

conditions could have a beneficial effect post transplantation due to upregulation of 

angiogenic factors. To test this hypothesis CMS were grown for periods up to 72 hours in 
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2% oxygen and were compared to CMS cultured in ambient oxygen concentrations. It is the 

first report on clinically highly relevant behavior of three-dimensional CMS under hypoxic 

conditions. 

Hypoxia decreases proliferation, delays differentiation in keratinocytes of 

CMS 
Hypoxia altered epidermal morphology, development and function. Architecture of the 

epidermis was disturbed and thickness of the epidermis was reduced as less cell layers 

were formed. This is the result of reduced proliferation, a hypothesis that was confirmed 

by our immunohistological data. Expression of the integrin subunit B1 was reduced while 

differentiation marker K10 was enhanced. Confirming Ki-67 data showed a decrease in 

mitosis indices by hypoxia. Our data on proliferation concur with others in two-dimensional 

cell culture where hypoxia in vitro led to growth arrest of cultured keratinocytes. Moreover, 

some groups have shown this arrest to be temporary and reversible upon re-oxygenation 

(24). 

Hypoxia induces early and transient upregulation of VEGF secretion 

In our three-dimensional model, VEGF secretion was increased in hypoxic cultures and 

reached its maximum after 36 hours in culture. At later time points, VEGF levels remained 

constant while secretion in normoxic grafts seem to increase. This observation is in line with 

data obtained by others on cultured keratinocytes (25-27). 

This study validated the use of CMS under hypoxic conditions as a model for the early 

period post transplantation. Whether these two effects enhance survival by decreasing 

demand for nutrients and oxygen while angiogenesis is enhanced in the wound bed is a 

hypothesis that warrants further research. 

After angiogenesis has occurred and grafts become normoxic by adequate supply 

of blood and oxygen, a new phase starts in the clinically applied CMS, involving post

reconstructive irradiation. As described in chapter 2, most of the patients receive 

postoperative radiotherapy. 

Typical protocols use doses of 2Gy up to a cumulative dose of 66 or 70Gy. Oral mucositis 

is considered a major side effect and complication in patients receiving radiotherapy for 

head and neck tumors. In addition, mucositis is highly relevant for patients undergoing 

chemotherapy and bone marrow transplantation. Clinical symptoms may vary from a mild 

erythema to severe, extremely painful ulcers in the mouth resulting in malnutrition and 



ChapterS------------------------------------------------------------

placement of a feeding tube (28). Incidences of 60% in patients receiving radiotherapy have 

been reported. For many of these patients it necessitates breaks in therapy for periods up 

to several days or weeks and pain relief using morphine (29). This allows the defects to heal, 

while on the other hand oncological therapy is inevitably compromised due to repopulation 

by tumor cells (30). Also, long term effects of radiation therapy, e.g. osteoradionecrosis, 

mucosal atrophy are related to the severity of the acute radiation response (31 ,32). 

Mucositis is caused by a number of changes induced by radiation in the various 

anatomical layers of mucosa (31-33). One of the causes is radiation damage to keratinocytes 

in normal mucosa as this is one of the only constantly proliferating cell types. Proliferation 

maintains the epidermis as a protective layer. Mucositis still is a clinical diagnosis. No scoring 

systems use histological or molecular markers. To date, no three-dimensional in vitro model 

is described to study radiation induced damage to mucosa. Such a model potentially holds 

a large number of benefits. 

Radiation results in dramatic epidermal changes in CMS 

In Chapter 7, tissue engineering proved to be useful in studying radiation damage. CMS 

were irradiated by gamma radiation at doses of 2Gy, 2x2Gy with a 24 hour interval and 

12Gy. Results showed dramatic changes in cell and tissue morphology increasing at higher 

doses. Cell nuclei became small and picnotic. Also, micronuclei were observed as a sign of 

radiation damage. Next we were able to quantify these changes. 

Morphological changes can be used to study radiation damage quantitatively 

Close observation revealed an increase in number of picnotic nuclei especially in the basal 

layer, where proliferative cells reside. TUNEL staining showed these atypical nuclei to be 

apoptotic. Quantification of these damaged basal cells in H&E processed grafts proved to be 

possible, moreover, a dose-response curve was shown. To confirm our histological data, we 

tested various proteins involved in DNA damage and DNA repair to show and quantify DNA 

damage and DNA repair at various radiation doses. 

CMS can be used to study DNA damage and Repair quantitatively 

Gamma irradiation results in DNA damage. Of the various types of DNA damage, gamma 

irradiation typically results in double-strand DNA breaks (DSB) where both strands of the 

DNA are broken. DNA damage can lead to a number of cellular responses. One of the first 

possibilities is malignant transformation of the cell as its genetic information might be 
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altered. In order to prevent this, apoptosis is an escape mechanism that often occurs if the 

DNA damage is too severe. An alternative for apoptosis is DNA repair. 

A number of biochemical markers for DNA damage, as well as repair have been 

discovered and were tested extensively in cell culture studies (34-36). In Chapter 7 a 

number of markers for both DNA damage as well as for DNA repair were successfully tested 

for the first time in a three-dimensional tissue, the CMS. For quantification of radiation 

damage the early marker 53BP1 was useful in visualizing and quantifying DNA damage. Of 

subsequent markers in the DNA DSB repair cascade RAD51 was most useful for quantification. 

Moreover, dose response curves were seen, validating a model measuring radiation damage 

and potentially measuring the effects various radiation protocols and radiation damage 

preventing agents, such as Vitamin C. 

Radiation induces cell proliferation at a single low dose 

In this study, mitotic indices were determined. Results showed a proliferative peak in the 

group receiving 2Gy, a dose that is typically used in the clinical situation. This peak might be 

a sign of repopulation as was observed in mouse tongue mucosa (32,37). Upon small doses 

of radiation, basal stem cell keratinocytes start proliferating to repopulate the epidermis. 

Repopulation has been studied in the mouse tongue model. Here it was shown to start 3 to 

7 days after irradiation (38,39). We found an increase in proliferative index as soon as 8 hrs 

after radiation. This might be a result of symmetrical stem cell proliferation, or abortive 

proliferation by damaged stem cells, where each damaged cell shows a number of abortive 

divisions prior to differentiation and dying (32,40). 

In vitro histological and proliferative changes upon radiation resemble observed 

changes in vivo 

Changes observed in the presented in vitro model resemble changes observed in vivo in 

both animals and humans where radiation damage is most prevalent in the basal layers of 

mucosa. Similar morphological cell changes are observed including nuclear condensation 

and picnosis (39,41 ). Therefore, the model can be considered to be an important step 

forward as a tool in the study of etiology, as well as treatment or prevention of mucositis, 

proving once more the power and clinical importance of tissue engineering techniques. 



ChapterS------------------------------------------------------------

Where are we now, Future Perspectives 

As can be concluded from this thesis, CMS has earned its place in experimental, in vitro 

studies for various subjects. The strength of three dimensional cultures is the fact that 

they behave largely physiologically, as illustrated by our hypoxia and radiation studies. This 

means that clinically relevant questions can be studied closely in vitro. Other purposes can 

be optimization. How long should we treat grafts using hypoxia or hyperoxic condition prior 

to transplantation? What radiation dose results in most rapid restoration of normal cells in 

CMS and compare this to CMS with tumor cells. Adding other cell types than fibroblasts and 

keratinocytes, such as endothelial cells, mast cells and inflammatory cells to the construct 

will increase physiological relevance of the model. Therefore it can be expected that CMS 

will be used increasingly. 

From Lab Bench to Bedside. There have been people using CMS in clinical applications 

such as intra-oral reconstruction. Especially intra-orally the environment is demanding. 

A number of hurdles remain to be conquered as discussed elsewhere in the thesis and in 

Table 1. 

We do believe the aforementioned experiments put CMS a step closer toward the 

clinic. A robust protocol is developed and more importantly tested in clinically relevant 

conditions. The next step can be studying the performance of CMS in vivo. The question 

remains how CMS responds to large numbers of bacteria, enzymes and constantly moving 

tissues intra-orally. 

A technique to cope with these threads is to use a two-step protocol of transplantation 

using a prelaminated flap. In this protocol the CMS is placed subcutaneously on a fascia, 

such as the radial forearm fascia. Here, vascularisation can take place in the first two weeks 

in a sterile environment with a well vascularized wound bed. Next, the fascia with the graft 

firmly attached and vascularized can be grafted to the intra-oral environment using free 

flap techniques. 

We think our CMS is ready for testing in vivo and opt for the technique described and 

hope the CMS will prove to be an addition to the armamentarium of the reconstructive 

plastic surgeon. 
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Doelen project 

Het doel van deze promotie was het ontwikkelen en testen van een nieuw soort kunst 

slijmvlies (mucosa) voor gebruik bij reconstructieve ingrepen in de mond na bijvoorbeeld 

het verwijderen van een tumor. Dit gekweekte mucosale substituut (CMS) wordt vervaardigd 

van een klein biopt (bijvoorbeeld 1cm2) van niet aangetast slijmvlies. In het labarotorium 

(in vitro) kan deze 1cm2 worden uitgegroeid tot enkele honderden cm2 in het verloop van 

enkele weken. Na deze periode kan men dit lichaamseigen slijmvlies terug transplanteren 

naar de patient. Om dit CMS vanuit het labarotorium lijkt me prima om een stap dichterbij 

te zetten de kliniek te krijgen hebben wij ons tevoren een aantal doelen gesteld (tabel1 ), 

die uit worden gediept in de diverse hoofdstukken van dit proefschrift. 

Tabel 1: Doelstellingen in projekt Cultured Mucosal Substitutes, from Lab Bench Towards 

Bedside? 

1. Bestudering van de kwaliteit van huidige reconstructieve technieken in de hoof·hals oncologie 

- ldentificatie van verbeterpunten 

- ldentificatie van milieufactoren voor het CMS. 

2. Kiezen van het beste isolatieprotocol 

3. Optimalisatie van het antwerp van het CMS door verkiezing van dermal carrier en celtypes. 

4. Bestudering van het gedrag van CMS in klinisch relevante condities in vitro 

- Hypoxie 

- gamma bestraling 

Mond-Keel kanker is veel voorkomend 

Hoofdhals kanker komt steeds meer voor. Reconstructieve procedures na het verwijderen 

van tumoren worden frequent verricht. Bij grate defecten in de mond, bijvoorbeeld na 

verwijdering van een halve tong is er een tekort aan slijmvlies. Het verwijderde slijmvlies 

is dun, plooibaar, vochtig en onbehaard. Grote defecten kunnen over het algemeen niet 

worden gesloten met slijmvlies. In plaats hiervan wordt vaak huid van de arm of het been 

gebruikt waarvan de bloedvaten met behulp van microchirurgische technieken in de hats 

worden aangesloten op locale vaatjes (vrije lap). Eigenschappen van de ideate lap zijn 

afhankelijk van de plaats van het defect. In de voorste mondholte is een dunne lap ideaal, 

met name om de bewegelijkheid van de tong niet te beperken. Achterin de mond is een 

meer volumineuze lap idealer om slikken van speeksel en voedsel te ondersteunen. Over het 
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algemeen kan worden gesteld dan huid van de gebruikelijke tappen stugger is dan mucosa, 

uit verhoornend epitheel bestaat zweetklieren bevat en behaard is. Om de resultaten van 

huidige reconstructieve technieken te bestuderen hebben we allereerst een studie verricht 

bij patienten die reconstructie hebben ondergaan met huid van de arm, de zgn Radial 

Forearm Flap. 

Patienten worden in 80% van de gevallen nabestraald 

Hoofdstuk 2 behandelt de klinische ervaring, resultaten en kwaliteit van leven van het 

gebruik van de Radial Forearm Flap (FRFF) in intra-orale reconstructie. De popultatie (n=72) 

werd onderverdeeld naar locatie van de tumor in voorste mondholte (n=39) en achterste 

mondholte (n=33). De studie liet zien dat, met name in de voorste mondholte, reconstructie 

vaak te volumineus waren en in 39% van de gevallen gepaard gingen met verminderde 

tongfunctie. Daarnaast werd de meerderheid van de mensen (79. 9%) postoperatief bestraald 

hetgeen vaak in een droge mond met slikproblemen resulteerde. 

De FRFF wordt geoogst van de onderarm. Deze zogenaamde donor site kan vervolgens 

problemen (morbiditeit) geven, donor site morbiditeit. Een bekend probleem is beschadiging 

van een gevoelszenuw terplaatse, de onderarm radialis superficialis wat kan leiden tot 

verminderd gevoel in de duimrug, koude intolerantie of neuroomvorming. Andere problemen 

zijn blootliggende pezen en grate littekens op de pols in 28% van de gevallen (1-4). 

Een aantal van deze problemen verwacht men te kunnen verminderen door het 

gebruiik van gekweekt slijmvlies. lmmers, gekweekt slijmvlies verminderd de hoeveelheid 

benodigde huid van de arm. Daarnaast wordt mucosa vervangen door mucosa volgens het 

principe 'replace like with like' (5,6). 

CMS kan in het laboratorium klinische vragen beantwoorden 

Naast ontwikkeling van CMS om in de kliniek te gebruiken is gebleken dat CMS dusdanig 

lijken op echte mucosa in gedrag in vitro dat ze steeds meer worden gebruikt om klinische 

vragen te beantwoorden in het laboratorium zonder dat proefdieren of mensen nodig zijn. 

Voorbeelden hiervan zjin de bestudering van aangeboren afwijkingen zoals epidermolysis 

bullosa waarbij er een aanlegstoornis is van de basaal membraan wat resulteert in ernstige 

blaarvorming. Ander voorbeelden zijn de bestudering van werkingsmechanismen van 

kankerverwekkende stoffen/omstandigheden zoals UV licht (7,8). Veel hedendaagse en 

veelgebruikte kennis omtrent de effecten van groeifactoren is met behulp van gekweekte 

weefsels opgedaan, bijvoorbeeld door gebruik van genetische modificatie van cellen in huid 

en mucosa susbstituten (9-11 ). 
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De opzet van een CMS lijn vergt tijd 

CMS zijn ontwikkeld zoals onder andere beschreven in dit proefschrift. Voor een succesvolle 

en snelle productie zijn een aantal problemen herkend (tabel 2) in zowel de productie als 

de transplantatie fase. Over het algemeen kan gesteld worden dat een CMS buitengewoon 

fragiel is. 

In de opzet van een productielijn zullen al deze problemen voorkomen en het team zal 

hier op gepaste wijze mee om moeten leren gaan. 

Tabel 2: Determinanten kweek en klinische applicatie CMS 

In vitro lsolatie protocol 
(in het lab) 

kosten 

In Vivo Chirurgisch 

Take 

Lange termijn 

Factoren voor succes 

Robuust biopterings protocol 
Goede communicatie chirurg/verpleging met labarotorium 
Periode voor transplantatie moet lang genoeg zijn 
Lage infectie percentages in het lab 
Weinig contaminatie van fibroblasten in keratinocytenkweek 
Hoeveelheid cellen/ cm2 biopsie 
% stam cellen/cm2 biopsy 

Kweektijd 
- lsolatieprotocol 
- Moeilijkheid kweekprotocol 
- Succespercentage kweek CMS 
- lnfectiepercentage 

Communicatie chirurg met labarotorium 
Logistiek (transport lab-OK) 
Mechanische kwaliteit CMS (kan het gehecht worden?) 
Makkelijke applicatie door chirurg 
Robuust wand nabehandelingsprotocol 

Angiogenese 
Bestand tegen hypoxie 
Bestand tegen schuifkrachten 
lnfectiegevoeligheid 

Wondcontractie 
Bestralingsgevoeligheid 
Beperking orale functies zoals spreken en slikken 

In de productie is de eerste stap de eel isolatie uit het biopt. Vervolgens moeten de cellen 

worden gekweekt om daarna te worden gebruikt voor het vervaardigen van kunstmucosa. Op 

elk punt van deze cascade kan iets misgaan en met name infectie met gisten, schimmels en 

bacterien zijn een constante bedreiging. In het geval van infectie wordt alles weggegooid, 

hetgeen leidt tot tijdsverlies, geldverspilling en bovenal frustratie van het team. 
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Dispase is het enzym van keuze voor keratinocyten isolatie 

Cel expansie is een exponentieel proces. De snelheid waarmee dit gebeurt is afhankelijk 

van de celcyclus van het betreffende celtype. Keratinocyten (epitheelcellen) hebben een 

cyclus van ongeveer 24 uur. Zoals in tabel 2 is genoemd is een voorwaarde van klinische 

applicatie van CMS minimalisatie van de kweektijd. Een van meest efficiente en eenvoudige 

wijzen om dit te realiseren is om de hoeveelheid cellen waar je mee start te optimaliseren. 

Hierom werden in hoofdstuk 4 twee veel gebruikte enzymen vergeleken, Thermolysine en 

Dispase (12). 

De resultaten lieten zien dat Dispase te prefereren is boven Thermolysine om een 

aantal redenen. Ten eerste was het aantal gei"soleerde cellen per oppervlakte biopt 3.26 

maal groter. Dispase behandeling liet in alle gevallen een totale separatie van epidermis 

van de dermis zien. Thermolysine resulteerde vaak in incomplete of geen separatie 

van de epidermis van dermis waarmee dit enzym minder betrouwbaar was. De partieel 

gesepareerde epidermissen bleken bij microscopisch onderzoek de basale keratinocyten op 

de dermis te hebben Laten staan. Analyse met immunohistochemische kleuringen (CK13) (13) 

wees uit dat de achterblijvende keratinocyten basale cellen waren met hoge proliferatieve 

capaciteiten. 

Van de diverse dermale substituten die tegenwoordig commercieel verkrijgbaar 

heeft acellulaire dermis als kenmerk minimale wondcontractie in combinatie met goede 

mechanische eigenschappen. Daarnaast kunnen de bloedvaten gebruik maken van de 

resten van basaalmembraaneiwitten om vanuit het wondbed in te groeien(14-17). Een van 

de problemen waar wij mee geconfronteerd werden bij het testen van deze dermis met 

gekweekte keratinocyten was de variabiliteit van de kwaliteit van de CMS. Dit probleem was 

dusdanig ernstig dat wij hebben gezocht naar een oplossing. 

Recent is er een techniek beschreven waarbij voor het kweken van huidsubstituten 

fibroblasten in de dermis gecentrifugeerd werden (18). De resultaten waren een drastische 

verbetering in kwaliteit van de huidsubstituten. Deze verbetering was dusdanig dat zelf 

het gebruik van bepaalde groeifactoren in het medium, zoals Keratinocyten Groei Factor 

(KGF) overbodig bleken te zijn(18, 19). Daarnaast hebben andere groepen Laten zien dat het 

gebruik van fibroblasten de vaatingroei (angiogenese) sterk verbetert na transplantatie van 

huidsubstituten. Aan de hand van deze studies hebben wij gekeken of de toevoeging van 

fibroblasten een gunstig effect zou hebben op de CMS die wij maken. 
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Toevoeging van fibroblasten aan de dermis geeft een sterk verbeterde morfologie 

en kwaliteit van CMS 

In hoofdstuk 5 hebben wij deze hypothese getest. Humane fibroblasten werden toegevoegd 

aan a-cellulaire dermis. Hierop werden vervolgens keratinoycten gezaaid. Histologie en 

immunohistochemie om de differentiatie patronen van de epidermis te bestuderen werd 

verricht. Voor morfologie werd een H8:E kleuring gebruikt. Voor differentiatie patronen 

zijn de markers B1 integrine, cytokeratine 10 and involucrine gebruikt. Vorming van de neo

basaalmembraan werd bestudeerd met kleuringen voor LaminineV en CollageeniV en VII. 

Cel proliferatie werd aangetoond met een Ki-67 kleuring. 

Fibroblasten stimuleren proliferatie en reduceren productietijd 

Onze studie heeft Laten zien dat toevoeging van fibroblasten aan een a-celluaire 

dermis de epidermale kwaliteit verbeterd. Morfologisch werd een beter georganiseerde 

epidermis gezien met meer cellagen dan de dermis zonder fibroblasten. Evaluatie van 

differentiatiepatronen met de genoemde markers lieten meer basale cellen per oppervlakte 

zien, hetgeen suggereert dater meer proliferatie mogelijkzou kunnen zijn. Hierom werd nog 

een proliferatie studie gedaan met Ki-67. Deze kleuring liet naast suprabasale proliferatie 

meer proliferatie zien, iets wat de kweektijd aanzienlijk kan bekorten. 

Fibroblasten stimuleren de maturatie van de dermo-epidermale hechting 

Toegevoegde fibroblasten zorgden voor een snellere vorming van de epidermis en ook van 

de dermo-epidermale hechting (DEJ). Deze DEJ is de lijmlaag tussen de epidermis en de 

dermis en heeft een belangrijke functie. Een goede DEJ voorkomt scheiding van epidermis 

en dermis (blaarvorming). Deze eigenschap is met name in de mond van belang waar de tong 

en voedsel bijvoorbeeld constant over het slijmvlies schuren. 

Hypoxie is een fysiologisch verschijnsel 

Naast mechanische uitdaginen wacht de CMS in de mond een periode van lage zuurstof

concentratie (hypoxie). Epidermale hypoxie gebeurt onder fysiologische omstandigheden. 

Na een verwonding worden de wondranden hypoxisch door verminderde doorbloeding van 

de dermis na intravasculaire trombosering (22). lndien de CMS worden getransplanteerd 

naar een wondbed is dus de verwachting dat transplantaten hypoxisch worden, wat nog 

verergerd wordt door het gebruik van (semi) occlusieve wondbedekkers. Over het gedrag 

van CMS in vitro onder hypoxische omstandigheden is nog weinig bekend. 
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Dit was de reden om in hoofdstuk 6 ons CMS in een hypoxische milieu te bestuderen. 

Naast observatie was er een hypothese dat hypoxische preconditionering het succes van 

transplantatie zou kunnen verbeteren doordat hypoxie secretie van angiogenetische 

groeifactoren stimuleert. De CMS werden tot 72 uur in 21% zuurstof gekweekt en vervolgens 

vergeleken met een controle groep van CMS die in kamerlucht gekweekt waren. 

Hypoxie verminderd proliferatie en vertraagt differentiate in CMS 

Hypoxie veranderde ontwikkeling, morfologie en functionaliteit van de epidermis. De 

verdeling van verschillende epidermale lagen werd verstoord en er werden minder lagen 

aangelegd. Dit bleek het resultaat van verminderde proliferatie zoals aangetoond met 

immunohistochemische kleuringen. 

Differentiatiemarker K10 kwam meer tot expressie terwijl de marker voor basaal 

cellen, het B1 integrine, minder tot expressie kwam. Analyse van mitose indices met behulp 

van proliferatie marker Ki-67 bevestigde dat proliferatie minder werd onder hypoxie. 

Hypoxie geeft een voorbijgaande toename van VEGF secretie 

VEGF productie in ons drie-dimensionale model werd gestimuleerd door hypoxie en was 

maximaal na 36 uur. Na 36 uur bleef de concentratie constant en bleek de concentratie 

VEGF in normale kweek condities te stijgen. 

Deze studie demonstreerde dat CMS voor bepaalde vraagstellingen gebruikt kunnen 

worden. Of VEGF stimulatie en verminderde celdeling overleving verbeteren en angiogenese 

stimuleren is iets wat uiteindelijk toch in vivo zal worden getest. 

Na volledige take van de CMS met adequate doorbloeding in vivo breekt een volgende 

fase aan waarin, zoals in hoofdstuk 2 beschreven bestraling een grate rol speelt. De meeste 

bestralingsprotocollen gebruiken dagelijkse doses van 2Gy tot een totaal van 66 of 70Gy. 

Naast beschadiging van kwaadaardig weefsel geeft bestraling als neveneffect schade aan 

gezond slijmvlies. Deze beschadiging wordt ook wet mucositis genoemd en komt ook veel 

bij mensen voor die met chemotherapeutica worden behandeld. lncidenties tot 60% zijn 

beschreven voor radiotherapie (29). Het beeld gaat gepaard met blaarvorming, ulceratie en 

is extreem pijnlijk. Vaak is het zo pijnlijk dat de therapie noodgedwongen wordt onderbroken 

voor klinsche pijnstilling en voeding met een voedingssonde (28) tot genezing van de ulcera. 

Gedurende deze pauzes kunnen naast normale cellen kwaadaardige cellen zich herstellen, 

hetgeen niet wenselijk is (30). 
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Bovenop korte termijn complicaties bestaan er lange termijn complicaties van bestraling 

zoals osteoradionecrosis, een soort verlittekening van de (neo)onder kaak gepaard gaand 

met pijn en fisteling en breuken in het bot. Ontstaan van lange termijn complicaties is 

gerelateerd aan het optreden van korte termijn complicaties (31 ,32). 

Mucositis ontstaat door beschadiging van verschillende lagen in de mucosa(31-33). Met 

name cellen die actief aan het delen zjn zijn gevoelig voor straling en chemotherapie. Een 

van de meest gevoelige celtypen is de keratinocyt in de epidermis omdat deze constant aan 

het delen is. 

Tot op vandaag is mucositis een klinische diagnose. Er bestaan geen histologische of 

moleculaire markers die worden gebruikt voor klinische kwantificatie van schade. Daarnaast 

bestaat er geen drie-dimensinaal model om bestralingsgerelateerde schade te bestuderen. 

Hierom hebben we ons CMS model bestraald om bestralingsschade te bestuderen. 

Bestraling resulteert in forse epidermale veranderingen van het CMS 

Het doel van hoofdstuk 7, was het bestuderen van veranderingen in CMS na bestaling. 

Daarnaast hadden we als hypothese dat we DNA schade en reparatiemechanismen en 

kleuringen konden gebruiken om schade te kwantificeren. Hiertoe werden CMS bestraald 

met verschillende doses. Bestraling leidde tot grote morfologische veranderingen. Celkernen 

werden klein en picnotisch. Er ontstonden micronuclei als teken van stralingsschade. De 

veranderingen leken toe te nemen met toenemende doses bestraling. 

Morfologie kan worden gebruikt om stralingsschade te kwantificeren 

Kwantificatie bleek mogelijk. Bij bepaling van het percentage picnotische cellen in de basale 

(proliferatieve) laag van de epidermis bleek dat dit percentage hoger werd naarmate het 

CMS aan meer straling was blootgesteld. Om deze picnotische cellen nader te karakteriseren 

is er een apoptose (= geprogrammeerde celdood) kleuring gedaan met een zgn TUNEL assay. 

De picnotische cellen bleken apoptotische cellen te zijn. Naast morfologische veranderingen 

hebben wij ook geprobeerd met kleuringen voor eiwitten betrokken bij de detectie en het 

herstel van DNA schade bestralingsschade in drie-dimensionale weefsels aan te tonen en te 

kwantificeren. 

Met CMS kun je DNA schade en reparative kwantitaief bestuderen 

Bestraling is schadelijk op een aantal manieren. Een van de manieren is dat het schadelijk is 

voor DNA. Bestraling geeft in DNAzogenaamde 'Double Strand' breuken (DSB). Dit betekend 
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dat beide strengen DNA gebroken zijn. Er zijn een aantal mechanismen beschreven hoe de 

eel met deze schade om kan gaan. In het kort kan hij afsterven (apoptose), of hij kan na 

detectie van de schade deze repareren. 

In deze detectie-reparatie cascade is een aantal markers beschreven die uitgebreid 

in celkweek zijn getest (34-36). Hoofdstuk 7 beschrijft het aantonen van deze eiwitten in 

drie-dimensionale kweek. Bovendien was met name 53BP1, een vroege detectiemarker, 

succesvol in kwantificatie van stralingsschade. Van de markers van DSB reparatie bleek 

rad51 zeer bruikbaar. Van de eiwitten werd een dosis-respons curve aangetoond. Dit is 

met name belangrijk en bruikbaar voor het testen van bestralingsschade beschermende 

protocollen en stoffen zoals vitamine C. 

In vitro histologische en functionele veranderingen komen overeen met de 

veranderingen die in vivo worden gezien 

Histologische verandering in CMS na bestraling waren vergelijkbaar met veranderingen in 

vivo. Ook in vivo worden met name veranderingen in de basale, proliferatieve laag van de 

epidermis gezien. Voorbeelden zijn picnotische kernen en het ontstaan van micronuclei, 

zoals deze ook in de CMS onstaan (39,41 ). Opnieuw is dit een blijk van het feit dat de CMS 

zich gedraagt als echte mucosa. 

Het heden en de toekomst 

Een van de conclusies van dit proefschrift is dat het CMS zijn plek heeft gevonden in 

experimentele, in vitro studies, en dat deze rol zich verder zal ontwikkelen. De kracht van 

een drie-dimensionaal model als het CMS is zijn fysiologische gedrag, zoals geillustreerd 

door onze hypoxie en bestralingsstudies. Met name dit gedrag maakt het dat het zich goed 

leent voor beantwoording van klinisch relevante vraagstellingen en optimalisatie studies. 

Hoe lang kan een CMS overleven in hypoxie? Welke doses bestraling zijn optimaal voor 

overleving, eventueel vergeleken met CMS vervaardigd van tumorcellen. Toevoeging van 

andere celtypes zoals endotheel en onstekingscellen zal de klinische relevantie in de 

toekomst verder doen toenemen. Een ander belangrijke reden waarom dit soort modellen 

toenemend zullen worden gebruikt is de reductie van het aantal proefdieren. Een groot 

aantal vragen kan worden beantwoord met een veellager aantal of zonder proefdieren. 

From Lab Bench towards Bedside, van laboratoriumtafel op weg naar het ziekenbed; 

we zijn er nog niet. Er zijn mensen die CMS klinisch hebben gebruikt. Wij hebben aan een 

aantal vereisten voor succesvolle klinische implementatie voldaan, maar in onze ogen blijft 
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er echter een aantal drempels over (tabel 2). De resultaten van dit proefschrift hebben de 

CMS een stap dichter bij het ziekenbed gebracht. Er is een robuust kweekprotocol, er is een 

CMS en het CMS is in klinisch zeer relevante tests goed uitgekomen. De volgende stap zal 

dan oak de stap naar het proefdier en vervolgens de kliniek moeten zijn. Alteen dan kun je 

uitvinden hoe het CMS presteert in de moeilijke orale omgeving val bacterien en enzymen. 

Een van de transplantatie protocollen waar wij aan denken is het gebruik van een 

tweestappen plan met een geprelamineerde lap. Hierbij wordt het CMS eerst subcutaan op 

de onderarmsfascie (radial forearm fascie) geplaatst. Vervolgens kan het CMS twee weken 

ingroeien waarna het op de fascie gevasculariseerd, als vrije lap, naar de mondholte kan 

worden verplaatst. 

Wij denken dat ons construct klaar is voor het testen in vivo en zullen bovenstaande 

techniek dan oak testen op zijn bruikbaarheid. Wij denken dat de CMS in de toekomst 

naast een plek in het laboratorium een toevoeging zal worden aan het gereedschap van de 

reconstructief chirurg. 
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