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On Flexible Tests of Independence and Homoscedasticity 
 

 
 

Rand R. Wilcox 
University of Southern California 

 
 
Consider the nonparametric regression model ( ) ( )Y m X Xτ ε= + , where X and ε  are independent 
random variables, ε  has a mean of zero and variance 2σ , τ  is some unknown function used to model 
heteroscedasticity, and ( )m X  is an unknown function reflecting some conditional measure of location 
associated with Y , given X .  Detecting dependence, by testing the hypothesis that ( )m X  does not vary 
with X , has the potential of being more sensitive to a wider range of associations compared to using 
Pearson's correlation.  This note has two goals. The first is to point out situations where a certain variation 
of an extant test of this hypothesis fails to control the probability of a Type I error, but another variation 
avoids this problem.  The successful variation provides a new test of 0 : ( ) 1H Xτ ≡ , the hypothesis that 
the error term is homoscedastic, which has the potential of higher power versus a method recently studied 
by Wilcox (2006). The second goal is to report some simulation results on how this method performs.   
 
Key words: Heteroscedasticity, smoothers, wild bootstrap, Winsorized correlations. 
 

 
Introduction 

 
Consider the nonparametric regression model 

( ) ( )Y m X Xτ ε= + , where X  and ε  are 
independent random variables, ε  has a mean of 
zero  and  variance  2σ ,   τ   is  some  unknown  
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Pearson's correlation between X  and Y . A 
concern  about  this  approach is that it limits the  
function used to model heteroscedasticity, and 

( )m X  is an unknown function reflecting some 
conditional measure of location associated with 
Y , given X . Typically, it is assumed that 

0 1( )m X Xβ β= + , where 0β  and 1β  are the 
unknown slope and intercept, and of course a 
common approach toward establishing an 
association is testing 0 : 0H ρ = , where ρ  is 
types of associations between X and Y  that can 
be detected. For example, there are many types 
of curvilinear associations between X and Y  
for which ρ  will be close to zero, which in turn 
can mean relatively low power when 
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testing 0 : 0H ρ = .  Also, heteroscedasticity can 
affect power when using the usual Student's T 
test of this hypothesis (e.g., Wilcox, 2003), 
roughly because the wrong standard error is 
being used. In some cases, heteroscedasticity 
might increase power, but the reverse can 
happen as well. Perhaps more importantly, when 
Student's T rejects, there is uncertainty whether 
the main reason is due to heteroscedasticity or 
because ( )m X  varies with X.  

A test of 0 : 0H ρ =  that allows 
heteroscedasticity is given in Wilcox (2003, 
section 7.3.2), but again, curvilinear associations 
might be missed. Of course, if it is assumed that 
curvature can be represented by a particular 
parametric model, curvilinear associations  can 
be addressed.  For example, it might be assumed 
that 2

0 1 2Y X Xβ β β ε= + + + . 
However, experience with smoothers 

(e.g., Hastie & Tibshirani, 1990) suggest that it 
is not always evident which parametric model 
provides a good reflection of the data.  

Using a special case of a wild bootstrap 
method derived by Stute, Manteiga and 
Quindimil (1998), it is possible to test 
  
                         0 : ( ) ,H m X θ=                      (1) 
 
where θ  is some unknown measure of location. 
That is, the hypothesis is that the regression line 
is a straight, horizontal line having intercept θ .  
Wilcox (2001) reported simulation results 
indicating that good control over the probability 
of a Type I error is achieved when θ  is taken to 
be the population mean of the Y  values, yμ .  A 
seemingly natural way of robustifying this 
method is to replace the mean with some robust 
estimator, and a 20% trimmed mean was 
suggested by (Wilcox, 2003).  One goal here is 
to describe situations where using a 20% 
trimmed mean, control over the probability of a 
Type I error is very poor, but when using the 
usual mean, satisfactory control is maintained. 
(Using the median of the Y  values can also 
result in poor control over the probability of a 
Type I error.) 

Wilcox (2006) suggested a flexible 
method for testing  

                              0 : 1,H τ ≡                          (2) 
 
the hypothesis that the error term is 
homoscedastic.  The success of the wild 
bootstrap test of (1) suggests an alternative 
approach to testing (2). The second goal in this 
paper is to report simulation results on this 
alternative approach and to describe situations 
where it has more power than the approach 
studied by Wilcox (2006). 
 
Description of the Methods 
Testing (1) 

The wild bootstrap test of (1) is applied 
as follows.  Let 1 1( , ),..., ( , )n nX Y X Y  be a 
random sample of n  points from some unknown 
bivariate distribution. Let Y  be the usual sample 
mean based on the Y  values.  Fix j  and set 

1iI =  if i jX X≤ , otherwise 0iI = , and let  

                          
1 ,j i iR I r
n

= ∑                    (3) 

 
where i ir Y Y= − .  The test statistic is the 
maximum absolute value of all the jR  values: 
  
                            max | |,jD R=                    (4) 
 
where the maximum is over all j .  The critical 
value is computed as follows. Generate n  
observations from a uniform distribution and 
label the results 1,..., nU U .  For 1,...,i n= , set         

12( .5),i iV U= −   *
i i ir rV= , and  * *

i iY Y r= + . Then 
based on the n  pairs of points 

* *
1 1( , ),..., ( , )n nX Y X Y , compute the test statistic 

as described in the previous paragraph and label 
it *D .  Repeat this process B  times and label 
the resulting (bootstrap) test statistics 

* *
1 ,..., BD D .  Finally, put these B  values in 

ascending order, which are labeled 
* *
(1) ( )... BD D≤ ≤ .  Then, the α  level critical 

value is *
( )uD , where (1 )u Bα= −  rounded to 

the nearest integer. That is, reject if *
( )uD D≥ . 
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The corresponding p-value is the proportion of 
*
bD  values, among the B bootstrap samples, for 

which *
bD D< .   

Let (1) ( )... nY Y≤ ≤  be the iY  values 
written in ascending order and let g  be equal to 
.2n rounded to the nearest integer. Then the 20% 
trimmed mean of the Y  values is  

 

                           ( )
1

1
2

n g

t i
i g

Y Y
n g

−

= +

=
− ∑ . 

 
An alternative test of (1) is obtained simply by 
replacing the usual sample mean, Y , with tY . 
 
Testing (2). 

Now a test of (2) is described that is 
based on a simple modification of the method in  
Wilcox (2006).  Let ( )m X  be the conditional 
median of Y , given X . The first step is to 
approximate ( )m X  using what is called a 
running interval smoother, which is applied 
follows.  Let f , called a span, be some constant 
to be chosen and let M  be the median of the 
values 1, , nX X… . The median absolute 
deviation (MAD) measure of dispersion is the 
median of the values 1| |, ,| |nX M X M− −… .  
The point X is said to be close to iX  if  
  

                         | |
.6745i
MADX X f− ≤ . 

 
Under normality, MAD/.6745 estimates the 
standard deviation, in which case X  is close to 

iX  if X  is within f  standard deviations of 

iX .  Let 
  
         ( ) { :| | }i j iN X j X X f MADN= − ≤ × , 
 
where for convenience, MADN is MAD/.6745.  
That is, N( iX ) indexes the set of all jX  values 

that are  close to iX .  Then ( )im X  is taken to 
be the median of the jY  values such that 

( )ij N X∈ .  Generally, a good choice for the 
span is .8f =  (Wilcox, 2005), and this value is 
used here exclusively. Let | ( ) |i i iv Y m X= −  
( 1,...,i n= ) be the absolute residuals.  When (2) 
is true (there is homoscedasticity), the regression 
line between X  and v  should be a straight, 
horizontal line, which can be tested with the 
method. 

Wilcox (2006) suggested two alternative 
methods for testing (2).  Let β  be the slope of 
the regression line between the iX  and iν  
values. Then, a test of (2) corresponds to testing  
      
                               0 : 0H β = .                      (5) 
 
Alternatively, if ρ  is some correlation between 

iX  and iv , then 0 : 0H ρ =  should be true.  A 
natural strategy is to use least squares regression 
or Pearson's correlation, but this was found to be 
unsatisfactory.  What was found to perform well 
in simulations was a test of (5) using the Theil 
(1950) and Sen (1968) regression estimator in 
conjunction with a percentile bootstrap method, 
or an approach based on a so-called Winsorized 
correlation coefficient. 

Consider first the regression method. 
The goal is to test the hypothesis that the 
(population) regression line between v  and X  
is horizontal. To elaborate on the Theil-Sen 
estimator, for any i < i′ , for which i iX X ′≠ , let  
 

                           i i
ii

i i

v vS
X X

′
′

′

−=
−

. 

 
The Theil-Sen estimate of the slope is t̂sβ , the 
median of all the slopes represented by iiS ′ .  Let 

tsβ  be the population slope estimated by t̂sβ . 

To test 0H : tsβ =0, it currently seems that a 
basic percentile bootstrap method performs 
relatively well.  In particular, a bootstrap sample 
is obtained by randomly sampling, with 
replacement, n pairs of points from 

1 1( , ),..., ( )n nv X v X . Let *β̂  be the Theil-Sen 
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estimate of tsβ  based on this bootstrap sample.  
Repeat this bootstrap process B times 
yielding * *

1̂
ˆ,..., Bβ β . Let * *

(1) ( )
ˆ ˆ... Bβ β≤ ≤  be the 

bootstrap estimates written in ascending order.  
Let / 2l α= , rounded to the nearest integer, 
and u B l= − .  Then, 
 
                                * *

( 1) ( )
ˆ ˆ( , )l uβ β+  

 
is an approximate 1 α−  confidence interval for 

tsβ .  Let p̂  be the proportion of bootstrap 
estimates less than zero. Then, a p-value is 
2min( ˆ ˆ,1p p− ).   

As for the Winsorized correlation 
approach, set 1i iY v=  and 2i iY X=  ( 1,...,i n= ).  
Next, Winsorize the Y  values. That is, for fixed 
j , let (1) ( )...j n jY Y≤ ≤  be the n values written in 

ascending order, and let  
 

             ( 1)ij g jW Y +=  if ijY  ( 1)g jY +≤  

             ij ijW Y=     if ( 1) ( )g j ij n g jY Y Y+ −< <  

             ( )ij n g jW Y −=  if ( )ij n g jY Y −≤  
 
where g=[γ n], γ  (0 γ≤ <.5) is the amount of 
Winsorizing to be done and [.] is the greatest 
integer function.  Here, γ =.2 is used.  Then the 
estimate of wρ , the sample Winsorized 
correlation between R and X, is just Pearson's 
correlation based on the Winsorized values.  
That is, estimate wρ  with 
 

1 1 2 2

2 2
1 1 2

( )( )

( ) ( )
i i

w

i i

W W W W
r

W W W W

− −
=

− −
∑

∑ ∑
 

 
To test 0 : 0wH ρ = , compute  
  

2

2
1w w

w

nT r
r

−=
−

, 

 

and reject if 1 / 2| |wT t α−≥ , the 1 / 2α−  quantile 
of Student's t distribution with 2hν = −  
degrees of freedom, where h=n-2g. 
 
A Simulation Study 

Wilcox (2006) studied the small-sample 
properties of the method using simulations 
where both the X  and Y  values were generated 
from one of four g-and-h distributions (Hoaglin, 
1985), one of which was normal. If Z  has a 
standard normal distribution, then  

 

     2exp( ) 1exp( / 2)gZW hZ
g

−=      if   g >0  

      
                  2exp( / 2)W hZ=  if  g =0                               
 
has a g-and-h distribution where g and h are 
parameters that determine the first four 
moments.  The four distributions used were the 
standard normal (g=h=0.0), a symmetric heavy-
tailed distribution (h=0.2, g=0.0), an asymmetric  
distribution with relatively light tails (h=0.0, 
g=0.2), and an asymmetric distribution with 
heavy tails (g=h=0.2).  Table 1 shows the 
skewness ( 1κ ) and kurtosis ( 2κ ) for each 
distribution considered. Additional properties of 
the g-and-h distribution are summarized by 
Hoaglin (1985).   
 
 

Table 1.  Some Properties of the g-and-h 
Distribution. 

 
 

g 
 

 
h 

 
K1 

 
K2 

0.00 
 

0.00 0.00 3.00 

0.00 0.2 
 

0.00 21.46 

0.2 
 

0.0 0.61 3.68 

0.2 
 

0.2 2.81 155.98
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Although skewed distributions were 
considered, it turns out that when Y  has other 
skewed distributions, not considered by Wilcox 
(2001), control over the probability of a Type I 
error is poor when using a 20% trimmed mean, 
but control remains good when using the mean 
instead.  Suppose, for example, Y  has a chi-
squared distribution with 1 degree of freedom. 
Then, when X  has a standard normal 
distribution and n=30, the actual Type I error 
probability is approximately .54 when testing at 
the .05 level (based on simulations with 1,000 
replications). In contrast, when using the mean 
of Y , the Type I error probability is 
approximately .034. Problems remain with 3 
degrees of freedom but they become negligible 
when the degrees of freedom are increased to 5. 
If Y  has a lognormal distribution, the Type I 
error probability is .25 and .035 using a 20% 
trimmed mean and mean, respectively. So, it is 
evident that when Y  has a sufficiently skewed 
distribution, using a 20% trimmed mean can be 
disastrous. 

Now consider the problem of testing (2) 
with the wild bootstrap method   First consider 
the exact same conditions considered by Wilcox 
(2001), where observations were generated with 
either ( )m X X=  or 2( )m X X= .  Table 2 
shows the estimated probability of a Type I error 
when testing at the .05 level with n=30.  Again 
the estimates are based on 1,000 replications 
with B=500.  (From Robey and Barcikowski, 
1992, 1,000 replications is sufficient from a 
power point of view. More specifically, if the 
hypothesis that the actual Type I error rate is .05 
is tested and if one wants power to be .9 when 
testing at the .05 level and the true α  value 
differs from .05 by .025, then 976 replications 
are required.)  

 
 
 
 
 
 
 
 
 
 

 

 
Table 2. Type I Error Rates, n=30, α =.05 

 
X ε   

g h g h ( )m X X=  2( )m X X=
0.0 0.0 0.0 0.0 .036 .038 
0.0 0.0 0.0 0.2 .040 .032 
0.0 0.0 0.2 0.0 .046 .028 
0.0 0.0 0.2 0.2 .041 .028 
0.0 0.2 0.0 0.0 .039 .042 
0.0 0.2 0.0 0.2 .039 .034 
0.0 0.2 0.2 0.0 .043 .038 
0.0 0.2 0.2 0.2 .043 .032 
0.2 0.0 0.0 0.0 .040 .041 
0.2 0.0 0.0 0.2 .037 .025 
0.2 0.0 0.2 0.0 .044 .038 
0.2 0.0 0.2 0.2 .033 .027 
0.2 0.2 0.0 0.0 .034 .039 
0.2 0.2 0.0 0.2 .033 .035 
0.2 0.2 0.2 0.0 .043 .036 
0.2 0.2 0.2 0.2 .040 .034 

 
 

 
 
As indicated in Table 2, among all 

situations considered, the estimated probability 
of a Type I error ranged between .027 and .044. 
From Wilcox (2006), when using the Theil-Sen 
estimator, the estimates ranged between .030 
and .067. As for the method based on the 
Winsorized correlation, the estimates ranged 
between .021 and .050. Because generating 
observations from a chi-squared distribution 
with 1 degree of freedom, or a lognormal 
distribution, caused problems when using the 
wild bootstrap method with a 20% trimmed 
mean, these two distributions were also  

 
 
 
 
 
 
 
 
 
 
 



RAND R. WILCOX 
 

35

considered when using the wild bootstrap to test 
(2). The estimated probability of a Type I error 
for these two cases were .037 and .036, 
respectively.  

A practical issue is how the power of the 
method compares to the power of the methods 
studied by Wilcox (2006).  Checks revealed that 
the method can have more or less power 
depending on the nature of the 
heteroscedasticity.  For example, if 

2 | .2 |Y X X ε= + , with both X and ε  having 
standard normal distributions, the wild bootstrap 
method has power .34, versus .09 and .04 when 
using the Winsorized correlation or the Theil-
Sen estimator, respectively.  But if 

2 | 1|Y X X ε= + + , the estimated power for 
these three methods is .39, .51 and .35.  
Currently, it is unclear how best to characterize 
the situations where the wild bootstrap method 
will have more or less power. All that can be 
said is that given some data, the choice of 
method can make a practical difference. 
 

Conclusion 
 
For a wide range of situations, inferences based 
on a 20% trimmed mean, rather than a mean, can 
have considerable practical value in terms of 
both Type I errors and power (Wilcox, 2003, 
2005).  But, it is evident that when testing (1) 
with a wild bootstrap, using a 20% trimmed 
mean can be disastrous. Perhaps there is some 
modification of the wild bootstrap that both 
corrects this problem and has some practical 
advantage over using means, but this remains to 
be seen. 
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