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SIN TREGUA (estrofa X)

Llenate de ambición, ten el empeño;

ten la más loca, la más alta mira;

no temas ser espíritu, ser sueño,

ser ilusión, ser ángel, ser mentira.

La verdad es un molde, es un diseño

que rellena mejor quien más delira…

¿que la ciencia es brutal y que no sueña?

¡eso lo afi rma el asno que la enseña!

Almafuerte, Argentina (1854-1917)
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ABSTRACT

Dissecting the genetics of Alzheimer’s disease (AD) and Parkinson’s disease 

(PD) has contributed signifi cantly to our understanding of the pathogenesis of 

neurodegeneration in these two complex disorders. For AD, three highly penetrant 

genes (APP, PSEN1 and PSEN2) and one susceptibility gene (APOE) have been 

identifi ed. For PD, seven genes (SNCA, Parkin, UCHL1, NR4A2, DJ1, PINK1 and 

LRRK2) have been found. These genes explain only a small proportion of AD 

and PD patients and are mostly associated with an early onset presentation of the 

disease. APOE remains the only common gene, which increases the risk of both rare 

early and late onset AD. The ongoing challenge is to unravel the genetics of the most 

frequent forms of these complex disorders. In the present paper, we briefl y review 

the state of the art in the genetics of AD and PD. We also discuss the prospects of 

fi nding new genes associated with common forms of these diseases in light of two 

hypotheses concerning the genetic variation of complex diseases: common disease/

common variants and common disease/rare variants.
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general introduction 13

INTRODUCTION

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most frequent 

neurodegenerative disorders in western societies and an important cause of disability 

among patients (1, 2). AD and PD are complex diseases in which multiple genes 

as well as environmental factors are involved (1). For both disorders, mutations 

associated with Mendelian forms explain only a small proportion of cases. For AD, 

a common polymorphism also increases the risk. In this paper we review the genes 

that are known to be involved in AD and PD. Further, we discuss approaches to 

identify new genes. 

ALZHEIMER’S DISEASE

AD is the most frequent neurodegenerative disorder and the primary cause of 

dementia in humans. The prevalence of the disease is approximately 1% among 

people aged 65 to 69 years, and increases to nearly 30% by the age of 95 (3). 

Although different risk factors have been associated with the disease, only age and 

a positive history of familial dementia are the risk factors consistently identifi ed in 

different studies (4, 5). In a small proportion of cases, the disease begins before age 

65 years, which is referred to as presenile, or early onset, AD. 

The most important clinical manifestation of AD is the progressive loss 

of cognitive function, short-term memory impairment being one of the fi rst 

manifestations. AD patients gradually lose judgment, visuospatial skills, language, and 

the ability to learn new information. Clinical examination and neuropsychological 

testing combine to make a clinical diagnosis of probable AD, which is confi rmed in 

80-100% of the cases by neuropathology (6). Neuroimaging is not obligatory for the 

diagnosis, but does contribute to the differentiation of AD from other pathologies 

(7). A defi nite diagnosis requires histopathological examination. The pathological 

hallmarks of AD are extra-cellular senile plaques, neurofi brillary tangles, and 

neuronal loss (8). The β amyloid protein is the main constituent of senile plaques, 

whereas neurofi brillary tangles are composed of aggregates of hyperphosphorylated 

tau protein. The neuronal loss occurs in the cortex and the hippocampus, regions 

associated with memory and cognition (9). From a pathological perspective, there is 

no difference between early and late onset forms of AD.

No curative treatment is available for AD. Cholinesterase inhibitors are the 

standard medication to improve cognitive function, but only a small fraction of 

patients respond (10). Other medications alleviate the symptoms associated with late 

stages of AD, but do not halt the progression of the disease.
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14 Chapter 1

Genes and AD

Familial aggregation in AD is strong. This is true for both early and late onset forms 

(11, 12). The fi rst causative gene identifi ed for early onset AD was the amyloid 

precursor protein (APP) gene (see table 1). The APP gene was identifi ed through 

linkage analysis in families segregating an autosomal dominant form of early 

onset AD (13). The APP gene, located at chromosome 21q21.22 (14), encodes 

a transmembrane protein that is normally processed into amyloid fragments. In 

neurons, β and γ secretases cleave the APP protein into smaller amyloid (Aβ) 

peptides. γ secretase cleaves APP into Aβ
40
 and Aβ

42 
fragments. Aβ

42 
has proven to be 

the strongest determinant in the pathogenesis of the disease (15). So far, 18 different 

mutations have been reported in the APP gene in 50 families (http://molgen-www.

uia.ac.be/ADMutations/). All 18 mutations cause amino acid changes in putative sites 

for the cleavage of the APP protein (16). APP mutations are highly penetrant. The 

number of carriers of the various mutations may differ across clinical populations. 

In the general population, not more than 0.5% of early onset AD patients carry a 

mutation in the APP gene (17). Among all AD patients, not more than 0.005% is 

found to carry a mutation in APP. 

Mutations in two other genes have been found to lead to early onset autosomal 

dominant forms of AD (table 1). The presenilin-1 (PSEN1; 14q24.3) and presenilin-2 

(PSEN2; 1q31-q42.3) genes were localized using linkage analysis (18, 19). These 

genes encode proteins that are involved in the normal cleavage of the APP protein, 

increasing the production of Aβ
42
 (20, 21). Indeed, there is convincing evidence 

that PSEN1 encodes a γ secretase (22). A total of 142 mutations have been found 

in PSEN1 in 281 families (http://molgen-www.uia.ac.be/ADMutations/); this makes 

it the gene with the highest number of pathogenic mutations in AD. For PSEN2, 10 

mutations have been found in 16 families. In the general population, mutations in 

the presenilin genes explain about 7.5% of early onset AD (6.5% for PSEN1 and 1% 

for PSEN2). When considering all patients, both early and late onset, sporadic and 

familial cases, the presenilin genes explain less than 0.075% (17) (early onset AD 

represents about 1% of all AD cases).

The fourth gene related to AD is APOE (19q13.32), which was initially identifi ed 

using linkage analysis (23). The relationship between APOE and AD has been 

confi rmed in more than 100 studies conducted in diverse ethnic backgrounds (24). 

The gene has 3 different alleles, APOE*2, APOE*3 and APOE*4. In populations of 

European origin, the allele proportions are 0.08, for APOE*2, 0.77 for APOE*3 and 

0.15 for APOE*4 (17). The APOE*4 allele is the variant associated with AD, and 

unlike the mutations found in APP, PSEN1 and PSEN2, it is not a causal mutation for 

AD. Rather, it is considered to be an allele associated with an increased risk.
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16 Chapter 1

Longitudinal studies in Caucasian populations have shown that carriers of one 

APOE*4 allele have a two-fold increase in the risk for AD (25, 26). The increase 

in risk is higher in homozygotes for the APOE*4 allele; in European and American 

populations the risk can be as high as 8 times that of APOE*3 homozygotes (25, 26). 

The APOE*4 allele is also associated with an earlier onset of the disease (27). The 

shift in the age of onset for carriers of this variant is also dose-dependent in that 

homozygous subjects are affected at earlier ages than heterozygotes for APOE*4. 

Unexpectedly, the progression of the disease does not appear to depend on the 

APOE genotype (28). APOE has also been related to other neurological disorders, 

including cerebral amyloid angiopathy (29), Parkinson’s disease (30) and Creutzfeldt-

Jakob disease (31), and modulates the outcome of other cerebral insults such as 

trauma (29). The APOE gene has also been implicated in the decline of cognitive 

function with age, although study results have been inconsistent (32, 33). 

There is also ample evidence from experimental studies supporting the role of 

APOE in AD. This gene has been implicated in different pathophysiological pathways 

leading to neurodegeneration, including Aβ
42 

deposition and antioxidative stress (34). 

Neuropathological examination of brain tissue in AD patients has shown a higher 

density of neuritic plaques and neurofi brillary tangles in APOE*4 carriers (35, 36). 

Biochemical studies have demonstrated that the APOE gene product, apolipoprotein 

E, can bind both the Aβ
42 

and tau protein (37); this binding appears to be isoform-

specifi c. Transgenic knock-out mice expressing human APOE*4, have an impairment 

in cognitive function and also show neuropathological changes (38, 39). Finally, 

higher levels of APOE expression have been associated with AD in several studies 

(40, 41). However, the exact mechanisms by which the APOE gene increases the risk 

of AD remain to be determined. On the population level, the APOE*4 allele plays an 

important role, explaining up to 17% of all AD patients (table 1).

In summary, all of the genes identifi ed for AD so far, appear to be involved 

in the Aβ
42 

pathway. Most of our insights into the pathogenesis of AD come from 

the relatively rare dominant mutations in the APP and presenilin genes, which, 

essentially, elucidated this pathway. The role of the Aβ
42
 protein is not limited to 

carriers of the APP and presenilin genes. Aβ
42
 metabolism was found to be disturbed 

in sporadic patients without dominant mutations or the APOE*4 allele (42). The 

identifi cation of rare mutations, therefore has not only led to new insights into the 

pathogenesis of familial forms of AD but also shed light on the pathways of sporadic 

forms of the disease.

The genetics of AD is far from being disentangled. It is clear that other genes 

must be involved in AD. The present genes explain less than 20% of all patients, a 

proportion that is for a large part explained by the  APOE*4 allele (table 1). Linkage 

of AD has been shown at chromosomes 1, 4, 6, 9, 10, 12 and 19 (for a recent review 
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general introduction 17

of positive linkage analysis see (43) ) (table 2). A recent study suggests that the gene 

responsible for the positive linkage of AD at chromosome 9 is the ubiquilin gene 

(UBQLN1) (44). However, this fi nding remains to be confi rmed by other studies. 

The genes involved in the other regions have not been identifi ed yet. Also, a large 

number of candidate gene studies have been conducted with confl icting results (for 

a review see (45)).

Table 2. Loci identifi ed using linkage analysis for Alzheimer’s disease and Parkinson’s disease

Alzheimer’s disease
References for linkage 
analysis a Candidate genes b

Locus

1p36  (109, 110) MTHFR (111, 112)

4q35 (113, 114) Unknown

5p13-15 (110, 115) Unknown

6p21- 6p35 (110, 113, 116)
TNF-A (117),HLA2 (118)
ESR-A (119), HFE(120)

9p21/q22 (109, 110, 113, 115) UBQLN1(44) , VLDR-R (121)

10q21-22/ 10q24-25 (109, 110, 113, 114)
IDE (122), CDC2 (123), GST1/2 

(124),

12p11 (109, 110, 125) A2M (126),LRP (127)

 Xp11-21/Xq21-26 (109, 110, 113) MAOA (128)

Parkinson’s disease

2p13 (129, 130) PARK3 (SPR) (131)

1p36 (132) PARK9 (Unknown)

1p32 (114, 133) PARK10 (Unknown)

 2q36-37 (134, 135) PARK11 (Unknown)

These loci have been reported at least in two studies although overlapping samples may occur in some of them with the exception of PARK-9 a.

Candidate genes tested within loci b.

PARKINSON’S DISEASE

PD is the second most frequent neurodegenerative disorder in the elderly and the 

most common movement disorder. As with AD, age is one of the strongest risk 

factors associated with this disease. The prevalence of PD is about 0.5-1% among 

people aged 65-69 years and increases to 1-3% in people 85 years old (46, 47). The 

age of onset of PD has a wide distribution. The disease onset can be classifi ed as 

juvenile (onset < 21 years), early (onset between 21 and 50 years) and late onset PD 

(onset > 50 years) (48). Besides age, several environmental factors, such as 1 methyl-

4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and pesticides, can lead to Parkinsonism 

(49). The relationship with MPTP intoxication, as well as the weak evidence for 

familial clustering, have fuelled a long term dispute on the genetics of PD (50). 
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18 Chapter 1

The main clinical feature of PD is severe motor impairment. The cardinal signs 

are resting tremor, rigidity, bradykinesia, and postural imbalance. Pathological 

changes in the brain are neuronal loss in the dopaminergic system, including the 

substantia nigra pars compacta, the brain stem, the autonomic nervous system, some 

regions in the basal ganglia, and the cortex. Histopathological fi ndings also show 

Lewy body inclusions in the neurons and the dendrites (46).

Treatment for PD that prevents neuronal death progression in the dopaminergic 

system is not yet available. Current therapy is targeted towards improving motor 

and psychiatric symptoms (51). Levodopa continues to be the key medication, as it 

is one of the intermediate molecules in the genesis of dopamine (51). Other groups 

of drugs include inhibitors of monoaminooxidase enzyme, dopamine agonists, and 

coenzyme Q
10
,
 
among others (51). New treatments aimed at preventing neuronal 

damage are also under development.

Genes and PD 

Despite weak evidence for the familial aggregation of PD, several genes have been 

identifi ed. The fi rst gene identifi ed was SNCA (PARK1; 4q21-q23), which encodes 

the α-synuclein protein, one of the major constituents of Lewy body inclusions 

(52). Three missense mutations in SNCA have been identifi ed in families segregating 

dominant forms of PD, including one recently reported in a Spanish family (53-55) 

(table 1). Furthermore, duplications and triplications of this gene leading to PD have 

been found (56). These mutations are rare in patients with sporadic and familial PD 

(57, 58). 

Three other genes have been associated with dominant forms of PD. The NR4A2 

(NURR1) gene, which encodes a nuclear transcription-like protein, is involved in 

the generation of dopaminergic neurons (59). The UCHL1 gene, which encodes an 

ubiquitin carboxy-terminal hydrolase L1, is expressed in neurons and has been found 

in Lewy bodies (60). Although these genes are implicated in physiological pathways 

of neuronal function, their actual role as causal genes for PD has not been confi rmed 

(61). The LRRK2 (PARK8; 12q12) gene has been associated with familial and sporadic 

late onset PD (62). The gene encodes dardarin, a 2482 amino acid protein with 

several domains, including a tyrosine-kinase domain. Eight different mutations have 

been identifi ed in this gene (62-65). These mutations might explain up to 5-6% of 

familial PD and 1% of sporadic PD (64). The role of this gene in the pathogenesis of 

PD remains to be investigated.

Also of interest is the large number of recessive mutations found in PD. The 

parkin (PARK2) gene was identifi ed in Japanese families with recessive juvenile 

Parkinsonism (table 1) (66). The gene, located at chromosome 6q25-q27 (67), 

encodes an ubiquitine E-2 protein. More than 70 mutations have been identifi ed in 
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general introduction 19

the parkin gene, including point mutations and genomic rearrangements (48, 68) 

(table1). Parkin mutations explain about 50% of familial cases with recessive early 

onset forms of the disease (69) and between 15-20% of sporadic early onset PD (70). 

Contributions of the gene to late onset PD are not clear, but some studies indicated 

that it might be important (71, 72).

Two other genes are associated with recessive forms of familial PD; DJ1 

(PARK7), and PINK1 (PARK6). DJ1 was identifi ed in families derived from a Dutch 

isolated community (73, 74). The gene is located at chromosome 1p36, and encodes 

a 189 amino acid protein, which is expressed in different tissues including brain. The 

function of this protein in the pathogenesis of early onset PD is not known in detail. 

Some studies indicate that the protein might be involved in the cellular response to 

oxidative stress (75). A total of 11 mutations in DJ1 have been identifi ed (75). The 

alterations include single base pair changes as well as large deletions (76-78). The 

frequency of these alterations is estimated to explain 1% of early onset PD. 

The PINK1 gene is located at chromosome 1p35-36 and has been found to 

segregate in families with recessive PD (79, 80). The product of this gene is a 

tyrosine kinase protein that localizes in the mitochondria, suggesting a possible role 

in energy metabolism (81). The function of the protein has not been determined, 

but its location in the mitochondria suggest that the protein might play a role in 

protecting cells from oxidative stress (72). At least 10 different mutations have been 

identifi ed in this gene (81-84) in different populations. PINK1 mutations appear to 

be more frequent than DJ1 in early onset familial PD, but their role in sporadic PD 

seems to be small (84-86).

Like AD, the genetics of PD are still largely unknown. Other genes must 

be involved in the pathogenesis of PD. Some of them have been localized to 

chromosomal regions (61) (table 2), but the causative genes remain to be discovered. 

Candidate genes have also been tested for association with PD with inconsistent 

results.

PERSPECTIVES FOR FINDING NEW GENES IN NEURODEGENERATIVE 
DISORDERS

So far, the dominant and recessive genes that have been identifi ed for PD and AD 

account for a small fraction of all cases. For AD, a common genetic risk factor is 

known (APOE*4), which explains a substantial number of patients, but leaves more 

than 80% of cases undetermined. For the vast proportion of affected individuals, the 

cause of the disease remains unknown.
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To fully understand the pathways involved in AD and PD, we need to be able to 

identify the other genes involved. The best approach to fi nd these genes depends on 

what type of genetic background we expect: (1) a number of common variants, each 

of them with a small genetic relative risk (87) (i.e., APOE*4), or (2) a large number 

of rare mutations with a large impact on the risk of disease (i.e., PSEN1, parkin). 

The fi rst hypothesis, the common variants/common disease hypothesis is, at fi rst 

sight, appealing. For common forms of AD and PD that occur late in life, it is easy to 

envision a common allele with an associated low risk (88). One may even argue that 

neurodegeneration may be the result of multiple interacting genes and environmental 

factors, rather than a mutation with major effects on protein function. These genes 

may have a small effect by themselves, making it diffi cult to identify them (89). To 

explain their high frequencies, we have to assume that such variants were common 

in early human populations, predating the modern expansion of humans (90). These 

common variants are only preserved if natural selection acting upon them is weak, 

which is likely for late onset diseases as they affect individuals after reproductive age 

(88).

If the common disease/common variants hypothesis is true for AD and PD, 

association studies (genome wide or targeting candidate genes, which, a priori, 

are expected to be involved in the disease based on protein function) provide the 

most powerful approach (45, 91). In association studies, the allele proportions 

are basically compared between a series of patients and controls (89). So far, the 

results of implementing this approach have been confl icting for both AD and PD. A 

recent review of late onset AD (92) included 90 studies which tested for association 

with polymorphisms in candidate genes at 55 different loci. Genes located in only 

three regions (6p21, 10q24, 11q23) showed consistent association in more than two 

studies. Nevertheless, negative results for these regions were also reported (92). 

One of the explanations for the failure of association studies relates to the 

fact that multiple common variants may be present in a single gene (allelic 

heterogeneity). When the number is large, association studies will lose power, since 

a very large number of patients and controls are required to detect a small increase 

in genetic risk for each variant (93). However, fl aws in the design of association 

studies might also have contributed to the confl icting results reported in the literature 

(94, 95). Another issue is that most association studies do not consider gene-gene 

interactions, which are expected to be present in complex diseases (96). A single-

locus design might lack the power to detect a marginal increase in risk for an allele 

that depends on the presence of other alleles or genes, or other environmental 

factors (97, 98). Such genetic interactions might be found in a single gene design, 

provided that very large samples are available (98).
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Last, but not least, most association studies have targeted only limited 

polymorphisms in a gene, which account for a small proportion of all 

polymorphisms available in the human genome.

Contrary to the common disease/common variants hypothesis, the common 

disease/rare variants hypothesis predicts that large numbers of rare variants, 

each one with a strong effect on the risk of disease, are responsible for complex 

diseases (93, 99). For late onset disorders such as AD and PD, these mutations 

can be maintained in populations due to the fact that the diseases occur after the 

reproductive period of life (99). The common disease/rare variants hypothesis is 

consistent with the strong aggregation observed in a large number of families with 

multiple AD cases. Such familial aggregation does not fi t the view of a large number 

of genes with small effects. Common variants with a small effect may explain 

familial aggregation in siblings, but not in extended pedigrees involving parents and 

grandparents, which is the pattern often observed in AD (11, 100). For PD, the weak 

familial aggregation is still compatible with a large number of recessive forms, which 

might explain patients with sporadic forms of the disease.

Linkage analysis in extended families has been successful in mapping genetic 

variants associated with highly penetrant Mendelian forms of AD and PD (table 1). 

Still, for both AD and PD, there have been examples of linkage studies that were not 

replicated or in which the genes have not been identifi ed (table 2). A major problem 

in the identifi cation of a new rare mutation is that, within a family, multiple genes 

may be involved, hampering the power of linkage analysis (95). Further, to fi nd rare 

variants in a series of patients, one has to sequence a large number of patients.

Rather than being two mutually exclusive hypotheses, both the common disease/

common variants and common disease/rare variants approaches may be correct 

for neurodegenerative disorders such as AD and PD. Particularly, for AD, there are 

mutations with major effects (APP, PSEN1, PSEN2), as well as a common variant with 

a small effect (APOE*4). One may argue that this is also the case for PD, although 

common variants with small effects have not been identifi ed yet. 

DISCUSSION

Due to the progress in dissecting the pathogenic pathways of AD and PD, new 

therapeutic approaches are emerging. In AD, it is becoming clear that the disease is 

the result of the imbalance between the production and degradation of the amyloid 

proteins that accumulate in the brain (101, 102). Therefore, a clear target to develop 

new drugs is the prevention of aggregation of amyloid protein (103). As with AD, 

dissecting the genetics of PD has improved knowledge regarding the pathogenesis of 
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the disease tremendously. The discovery of the SNCA gene led to the identifi cation 

of the α-synuclein pathway. It has been shown that misfolding and oligomerization 

of this protein are associated with neuronal toxicity in the dopaminergic system 

(61). Further genetic research into PD revealed other disease mechanisms, including 

mitochondrial dysfunction, the ubiquitine-proteasome pathway, and oxidative stress. 

These fi ndings open new avenues for developing treatment (61, 104). 

How to further dissect AD and PD? A huge problem is the genetic and 

environmental heterogeneity of complex diseases. An approach to overcome this 

problem is to embed the studies in isolated populations, in which a reduced genetic 

heterogeneity and a more uniform environment are expected (105, 106). 

Linkage analysis is still a powerful tool to map genes associated with 

neurodegenerative diseases in such populations. Since, in isolated populations, 

inbreeding is often increased, they also offer a powerful setting to identify new 

recessive mutations. Until now, most studies have focused on genome screens in 

isolates, but also candidate genes studies may also benefi t from the reduced genetic 

diversity (105). 

An alternative approach may be to study AD and PD not as outcomes, but, 

rather, to use endophenotypes, i.e., intermediate phenotypes involved in the 

disease pathways which are, a priori, expected to be strongly related to a gene 

(107). Typical endophenotypes for AD may be either cognitive function or Aβ
42
 

protein levels in blood or CSF. Indeed, using Aβ
42
 protein levels as an intermediate 

phenotype, linkage of AD to chromosome 10 was found (70). For PD, this may 

involve dopamine pathology for instance, as seen on PET scan. Combining the new 

opportunities offered by developments in genomics with the new approaches in 

phenomics, may open new avenues to dissect complex traits such as AD and PD.
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Genetic factors play a crucial role in the risk and progression of Alzheimer’s disease 

(AD) (1). Considerable progress has been made towards understanding the genetics 

of AD. As presented in chapter 1, four genes (APP, PSEN1, PSEN2 and APOE) have 

been implicated in AD. These genes have been shown to contribute to less than 20% 

of late onset AD. Other genes must be involved in the pathogenesis of the disease, as 

approximately 50% of AD cases are genetic in origin (2). However, the identifi cation of 

other genes underlying the pathogenesis of AD has proven to be diffi cult.

One of the explanations for the failure to identify genes for AD is the 

poor design of many linkage and association studies, that have been largely 

underpowered, both in terms of the number of subjects studied, as well as the 

number of markers used (3). One approach to follow in the near future is to study 

large series of cases and matched controls, which will most likely require large 

multicenter studies (4). Alternative approaches, which are more feasible in the 

short term, are to select a relatively small study group while reducing the genetic 

heterogeneity in AD, and to study intermediate phenotypes (endophenotypes) for 

AD (chapter 1).

Cognitive function is a potential endophenotype for AD. Cognitive impairment 

is an overt manifestation of the disease (5). Furthermore, it has been demonstrated 

that a decline in various cognitive domains occurs before the disease is diagnosed 

(6). There is compelling evidence that the apolipoprotein E (APOE) gene, which 

is related to AD, is also involved in cognitive function (7). Thus, dissecting the 

genetics of cognitive function may shed light on the genetics of AD. The aim of 

this thesis is to study the genetic determinants of cognitive function. To reduce the 

problem of genetic heterogeneity, studies are conducted in a genetically isolated 

Dutch population, embedded in the Genetic Research in Isolated Populations (GRIP) 

program. In chapter 3 of this thesis, the infl uence of both genetic drift and founder 

effects on the genetic make-up of the GRIP population are examined. Specifi cally, 

the question of whether common traits such as AD are genetically less complex in 

the GRIP population is addressed.

In chapter 4 the heritability estimates of specifi c cognitive domains in a sample 

of 2575 subjects from the GRIP population are presented. Sex- and age-specifi c 

heritability estimates and the effects of inbreeding on cognitive function are 

evaluated. In chapter 5, the role of the APOE gene on the variation of cognitive 

domains is investigated. APOE is one of the established determinants of AD. The aim 

of this study is to reveal endophenotypes for AD that are relevant for future research. 

In chapter 6, the role of blood pressure, atherosclerosis and four candidate genes 

for hypertension on different domains of cognitive function is examined. Finally, 

in chapter 7, the results of the thesis are summarized and discussed in a broader 

perspective. 
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ABSTRACT

The genetic make-up of genetically isolated populations may differ from the general 

population as a result of genetic drift and founder effects. We assessed the extent 

of this deviation in a recently isolated population located in the southwest of The 

Netherlands and studied as part of the Genetic Research in Isolated Populations 

(GRIP) program. A gene-dropping experiment was performed in a large pedigree 

from this isolate, assuming different founder frequencies in the population founders 

came from. Allelic frequencies in the last generations of this pedigree were 

estimated. Simulation analysis showed large fl uctuations, as measured by variation 

coeffi cient and suffi cient loss probability, when initial frequencies were lower 

than or equal to 1%. For initial frequencies larger than 1%, the fl uctuations were 

small. We also analyzed mean heterozygosity and allele diversity of 592 markers 

in a random sample from the GRIP population. The results were compared with 

a general population (CEPH sample), old large isolate (Icelandic sample) and 

small-sized population of Talana (Sardinia). GRIP mean heterozygosity and mean 

number of alleles were signifi cantly lower as compared with CEPH and Iceland, but 

much higher when compared with the Talana population. We also concluded that 

the fi ndings from the GRIP population for common variants (>1%) are likely to be 

extendable to other young isolates in Europe, as well as to outbred populations.
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INTRODUCTION

Genetic drift and founder effects are major evolutionary forces that determine the 

fl uctuation in the genetic pool of fi nite populations when the effects of selection and 

migration are neglected. The extent of such effects in a population is determined by 

the population size, dynamics, breeding structure and time elapsed since foundation 

(1). Isolated populations are by defi nition founded by a small sample of individuals, 

and geographical and or cultural barriers have restricted migration and breeding 

with other groups, thereby also restricting genetic infl ux (2). Since not all isolated 

populations exhibit the same genetic structure, the extent of drift and founder effects 

will differ according to their evolutionary history. These differential effects will be 

refl ected in terms of the extent of linkage disequilibrium and genetic diversity.

Association studies are predicted to be a powerful tool to detect common genetic 

variants with small effects (3, 4). However, in outbred populations the genetic and 

environmental heterogeneity is high and thus, large numbers of patients and controls 

are required (5). Power may be increased by conducting such studies in an isolated 

population which exhibit less environmental variation and a more homogeneous 

genetic background (2, 6). Another advantage of isolated populations is that linkage 

disequilibrium can be found over large distances. However, the extent of linkage 

disequilibrium and genetic variability varies among different isolated populations, 

making some of them better suited for gene mapping research than others (3). 

Recently, the necessity to study the evolutionary history of isolated populations to 

optimize the use of gene mapping tools has been stressed (7, 8). The value and 

extent of linkage disequilibrium is an issue of active debate and has been extensively 

analyzed in different demographic contexts (9-12). Another crucial point is that drift 

and founder effects can reduce the genetic variability; in isolated populations allele 

variants may become unique as a joint result of drift and founder effects. That is 

the case in Finland, where hereditary disorders that are highly prevalent but barely 

found elsewhere have been reported (13, 14).

Several studies have addressed the effect of drift in isolated populations (8, 15, 

16). The present analysis was intended to analyze the drift and founder effects in 

a young genetically isolated community in The Netherlands. In a previous study 

(17), the extent of linkage disequilibrium in this isolate was evaluated. Here, 

we assessed to what extent drift and founder effects have reduced the genetic 

variability in this isolated population. We simulated the stochastic process due to 

gamete sampling to measure the change in allelic frequencies using the complete 

genealogical information on a large pedigree belonging to this community. Empirical 

data was also used: the average heterozygosity and mean number of alleles in 592 

markers from subjects derived from this isolate was compared with data available 
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from populations with different demographic histories (a general population, and 

populations of Iceland and Talana).

MATERIALS AND METHODS

Subjects

This study was performed using a pedigree derived from an isolated community, 

studied as part of the Genetic Research in Isolated Populations (GRIP) program. This 

young genetic isolate is located in the southwest of The Netherlands. From historical 

data we know that the population was constituted as a religious isolate in the middle 

of the 18th century by a limited number of founders. The population has remained in 

isolation, with a low rate of immigration, and experienced an exponential increase in 

size in the last century. 

In this population, we recently started the ERF (Erasmus Rucphen Family) cohort 

study. This study is concentrating on unraveling genes underlying quantitative 

trait variation in humans. All participants are screened for many quantitative traits 

related to a set of diseases of interest. At present, we have collected phenotypic 

information on 1053 subjects who comprise the last 4-5 generations of a single 

large pedigree, connecting 9800 individuals. The genealogical information includes 

data on individuals that were living in the isolate from about the middle of the 16th 

century, and extends to the current inhabitants of these communities. We performed 

a gene-drop experiment including all people with genealogical information available 

(back to founders from the 16th century). The study was approved by the Medical 

Ethics Committee of the Erasmus Medical Center, Rotterdam, and written consent was 

obtained from all subjects.

Computer simulations and summary statistics

We used the complete genealogical information of the large pedigree to simulate 

stochastic changes due to drift and founder effects. The program package MGA-

Simulate (http://mga.bionet.nsc.ru) was used for the gene-dropping experiment. This 

program randomly assigns genotypes to founders given the allele frequency in a 

population the founders come from, and assuming Hardy-Weinberg equilibrium. The 

allele transmission in descendants is then simulated. In this analysis, we simulated 

one locus with two alleles. Eight different initial frequencies ranging from 0.01 to 

50 percent were considered. For low initial frequencies (0.01, 0.1% and 1%), 10 000 

simulations were used, for others (2.5, 5, 10, 25 and 50%), 5 000 simulations were 

performed. After each simulation, the frequency of one of the alleles was estimated 

in the last generations of the pedigree that at present are included in ERF study. 
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The distribution of allele frequencies for each one of the eight initial frequencies 

was obtained by repeated simulations. The means, median and quintiles of the 

distributions were estimated using S-plus 2000 (18)

Mean heterozygosity and mean number of alleles

We compared the heterozygosity and number of alleles between the Dutch isolate, 

Icelandic (deCode) and CEPH (Centre d’Etude du Polymorphisme Humain) 

populations using 592 Short Tandem Repeat markers typed in all three samples. 

These markers were genotyped in 58 random subjects from the GRIP population 

who participated as controls in a recent study; details are described elsewhere (17). 

The expected heterozygosity for each marker was calculated as: h = 1- H, where H 

is the homozygosity calculated as the sum of the squared frequencies of all alleles 

at one locus (19). The mean number of alleles was estimated by allele counting. 

All markers in the GRIP population were tested for deviation from Hardy-Weinberg 

equilibrium proportions using the library genetics for R program (http://www.

r-project.org). 

Information concerning the mean heterozygosity and number of alleles for 

the CEPH families are available at the Marshfi eld Clinic web page (http://research.

marshfi eldclinic.org/ genetics/ Map_Markers /maps/ IndexMapFrames.html), based 

on 8 families with 28 genotyped founders. The expected heterozygosity and mean 

number of alleles in the Icelandic families (deCode) were calculated (as for the 

GRIP population) from Kong et al. (2002), with 297 founder individuals. We also 

compared mean heterozygosity and mean number of alleles from a subset of 20 

markers on chromosome 19 reported for the Talana population, based on 381 

founders (20). The differences in mean heterozygosity and mean number of alleles 

among the GRIP population, CEPH, deCode and Talana families were tested using a 

non-parametric sign test. Bootstrapping was performed to study the effect of sample 

size on the estimation of the mean number of alleles. We derived 1000 random 

samples, each one of 56 chromosomes for each marker from GRIP and deCode 

families, and calculated the mean number of alleles per locus in all 592 markers. 

For a given marker, an overall mean estimate was obtained from these bootstrapped 

distributions. The estimates were compared with the number of alleles per marker in 

CEPH families using a sign test.
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RESULTS

Description of the pedigree

The genealogical data set we used to do simulations comprised a total of 9800 

individuals with 2296 founders. The maximal number of generations was 23 and the 

proportion of men in this data set was 49%. The last 4-5 generations of this large 

pedigree consist of 1053 individuals who are the participants of the ERF study. Out 

of a total of 1053 individuals, 823 (82%) had an inbreeding coeffi cient larger than 

zero, and 112 (11%) had an inbreeding coeffi cient higher than or equal to 0.016, 

which may correspond to a second cousin marriage. The average inbreeding for all 

individuals was 0.006. 90% of the kinship values of all possible pairs were larger than 

zero. The average kinship value for all the ERF pairs was 0.008, and 0.009 for the 

pairs with kinship values larger than zero. 

Simulations

Figure 1 depicts the distribution of the simulated allele frequencies obtained from 

individuals of the last generations of the pedigree. The median and mean estimates 

of these distributions were similar to the initial values we set for founders (table 1). 

However, the shape of the distribution varied according to the initial frequency being 

skewed towards zero for low initial frequencies (fi gure 1 a-c), meaning that the rare 

alleles have disappeared. For instance, at an initial frequency (P
0
) of 0.01% the allele 

was lost in 95.4% of the simulations (table 1). In contrast, alleles that were common 

in founders (P
0 
>1%) were never eliminated. 

Table 1 also shows that the fl uctuation in allele frequencies was highest for 

very rare alleles, as shown by the coeffi cient of variation. At an initial frequency of 

0.01, the coeffi cient of variation was 12 whereas for an initial frequency of 0.025 it 

was 0.5. The highest initial frequency, 0.5 in founders, corresponded to the lowest 

coeffi cient of variation, 0.09. Thus, the fl uctuation in the allele frequencies in the 

contemporary generations is only considerable for alleles with low initial frequencies.

The results obtained in the simulations were compared with theoretical 

distributions expected under a simplifi ed model. In this model, we assumed that 

generation time is 30 years and consequently 7 generations have passed from 

the foundation of the population. The pedigree data was used to compute the 

number of births in 30-year bins. The harmonic mean of these numbers was used 

to estimate the effective population size, N
e
. These calculations suggest an effective 

size of 725.43. We assumed that the isolation of the population is complete (no 

immigration). Under these assumptions, the probability of loss is given by exp 

{-4N
e
p

0 
/t}= exp {(-414.53p

0
)} and the variance of the allelic frequency distribution is 

given by p
0
(1-p

0
)1-[1-(1/(2N

e
))]t = 0.05p

0
(1-p

0
) (21). The values of the loss probability 
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and standard deviation of the distribution of allelic frequency expected according to 

these formulae are shown in table 1. Though it is clear that these formulas over-

estimate the effects of drift, generally the agreement is good. 

Mean heterozygosity and mean number of alleles

The results obtained with simulations were compared with empirical data. A 

sample of 592 markers from 58 random subjects derived from the GRIP population 

was used to calculate mean heterozygosity and mean number of alleles. There 

was no deviation from Hardy-Weinberg equilibrium proportions. We compared 

mean heterozygosity and mean number of alleles in the GRIP population with 

the information available for 28 founders from 8 CEPH families (http://research.

marshfi eldclinic.org/ genetics/ Map_Markers /maps/IndexMapFrames.html) and 297 

founders from Icelandic families (22). Table 2 shows the expected heterozygosity 

per chromosome calculated for these three groups. Overall, the mean heterozygosity 

calculated over 22 chromosomes was 0.757 (standard error; 0.003), 0.759 (standard 

error; 0.004) and 0.768 (standard error; 0.003) for the GRIP population, deCode 

and CEPH families, respectively. The mean heterozygosity was slightly higher in 

the CEPH families, lowest in the young GRIP population with a small founder size, 

and intermediate for the old Icelandic isolate with a large number of founders. The 

mean difference was tested using the sign test and was signifi cant when the GRIP 

population was compared with the deCode families (p = 0.04) and highly signifi cant 

when the GRIP was tested against the CEPH families (p < 0.0001).

The mean number of alleles genome-wide and per chromosome was also 

calculated. As shown in table 2, the GRIP population had the smallest number of 

alleles (9.799; standard error; 0.116). DeCode families showed the largest allele 

diversity with a mean estimate of 10.059 (standard error; 0.125), whereas for the 

CEPH families the mean value was 9.858 (standard error; 0.139). The differences 

in number of alleles, tested using the sign test, was highly signifi cant for all the 

comparisons among the populations (p value < 0.0001). In addition, the mean 

heterozygosity and mean number of alleles from a subset of 20 markers from 

chromosome 19 reported in the Talana population was also compared (20). The 

mean heterozygosity for this population was 0.685 whereas for the GRIP population 

this value was 0.775. Allele diversity was also lower in the Talana population. The 

differences in heterozygosity and mean number of alleles were statistically signifi cant 

(Sign test p < 0.001).

The largest variability showed by the deCode families may be the result of 

having the largest sample size for this population. To correct for unequal sample 

size we performed 1000 bootstrapping replicates. In each replica we sampled 

from the deCode data the same number of founders as for the CEPH families (28). 
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When using bootstrap, the mean number of alleles was estimated as 7.62. The same 

analysis was performed for GRIP, and the estimate was of 7.24. Differences between 

these bootstrapped estimates and the mean number of alleles in the CEPH families 

were statistically signifi cant (Sign test; p value < 0.0001) 

DISCUSSION 

To analyse the extent of drift and founder effects in a recent genetically isolated 

Dutch population, we used the complete genealogical information of a reconstructed 

pedigree to simulate random changes in allele frequencies. Our study showed that 

the fl uctuation in allele frequencies over generations is small for variants attaining 

high frequencies in a population where the founders of the isolate come from. 

Alleles with an initial frequency higher than 1% are likely to be maintained in 

descendants since in our simulation they were never lost. This suggests that common 

alleles that are associated to traits in GRIP will also be found in other outbred 

Dutch populations. In contrast, at frequencies lower than or equal to 1%, alleles are 

often eliminated from our population (probability of loss was as high as 96% for 

initial frequencies equal to 0.01%). These results agree with the results obtained by 

analytical formulas under simplifi ed assumptions. However, the probability of loss is 

higher for the expected distributions, because the assumption of complete isolation 

is not fulfi lled in this isolate.

The fi ndings obtained in the simulation analysis were supported by empirical 

data. Populations with a small effective number of founders are expected to show 

reduced genetic variability as compared to populations with larger founder size and 

genetic fl ow (19). We compared genetic variability in our isolate with populations 

with a different demographic history. CEPH families might be regarded as pedigrees 

derived from an outbred population with a heterogeneous genetic background 

(23). On the other hand, families from Iceland are considered to be a genetically 

homogeneous sample of an old isolated population with a large number of founders 

(24). We found lower allele diversity in our GRIP population than in both the 

CEPH and Icelandic populations. However the difference was not very large. The 

comparison with the Talana population, with a founder size of 200 and a long 

history of geographic isolation (25), showed that allele diversity is lower in Talana 

as compared to the GRIP population. Therefore, genetic variability in our isolate 

seems to lie between that of a population with large drift and founder effects (Talana 

population) and a more heterogeneous one (CEPH families).

In our study, the allele diversity in the deCode families was larger when 

compared with the CEPH families (table 1); theoretically, there are two explanations 
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for this observation. First, the difference in the number of alleles may indicate a 

difference in laboratory techniques applied. Second, the estimated number of alleles 

may be affected by the sample size. As shown by our bootstrapping experiment, 

the second hypothesis is the most likely explanation. By bootstrapping, we showed 

that when we used the same number of founders for all the populations, the GRIP 

population had the lowest allele diversity (7.2 alleles), and deCode families the 

second lowest (7.63). The decrease in the number of alleles when a smaller sample 

was considered was on average two, for both the GRIP population and the deCode 

families (from 9.8 to 7.2 in the GRIP sample and from 10.1 to 7.6 in the deCode 

families). Hence, this result refl ects that allele diversity in a population largely 

depends on the sample size, as reported previously (20). 

In a recent study, Aulchenko et al (2004) studied the amount and decay of 

linkage disequilibrium with genetic distance in this Dutch isolated population. The 

study reported a similar extent of linkage disequilibrium to other recent isolates from 

various parts of the world. Furthermore, linkage disequilibrium was found over large 

distances, highlighting the potential of this population to conduct gene mapping. In 

the present analysis we addressed the magnitude of the composite drift and founder 

effects in this isolate. We have shown that the genetic variability is reduced in the 

GRIP population. However, only alleles with a frequency lower than 1% are likely 

to be lost. The major fi nding of the present study is that although fl uctuations in 

allele frequencies may occur in the GRIP population, and other recent isolates in 

the world due to drift and founder effects, genetic variants with a frequency higher 

than 1% are expected to be present in both, young genetic isolates and outbred 

populations. Therefore, fi ndings of genome screens conducted in young isolates may 

be generalized to other demographic contexts.
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ABSTRACT

Although genetic factors infl uence human cognitive function, their contribution to 

the variation in specifi c cognitive domains is less clear. We estimated the heritability 

of different cognitive domains related to Alzheimer’s disease and other dementias in 

2575 subjects from a recent genetically isolated Dutch population. We also studied 

the effects of inbreeding, and examined sex- and age-specifi c genetic effects on 

the variation of cognitive domains. A variance components method was used to 

estimate the heritability of cognitive domains. We estimated sex-specifi c variance 

components in women and men. Age-specifi c genetic effects were estimated in two 

age categories (<50 years and ≥ 50 years).

The heritability of cognitive domains ranged from 10% (recognition) to 36% 

(visuospatial-visuoconstructive abilities). Inbreeding was associated with a small 

but signifi cant decrease in general cognitive ability, visuospatial-visuoconstructive 

abilities and executive function. Age-specifi c genetic effects were found for 

psychomotor speed, phonological fl uency and susceptibility to interference. The 

genetic correlations for these domains were between 0.64 and 0.73, suggesting that 

about 30% of the genetic expression in these domains might be age-group specifi c. 

Although we did not observe a sex-specifi c genetic background modulating cognitive 

domains, we observed differences in the magnitude of genetic and environmental 

effects between sexes in learning and susceptibility to interference. Our fi ndings 

suggest that the genetic contribution to the variation in cognitive function differs 

across specifi c cognitive domains. We also showed that inbreeding and age-specifi c 

genetic effects modulate specifi c cognitive domains.
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INTRODUCTION

Genetic factors have been shown to play a key role in human cognitive variation 

(1-3). The heritability of general cognitive ability has been consistently estimated 

to be approximately 50% (for a review see (2)). There is less agreement about the 

contribution of genetic factors to the variation of specifi c cognitive domains such as 

memory and executive function, which are commonly affected by aging, Alzheimer’s 

disease (AD) and related disorders (4, 5). Heritability estimates range from 21% 

to 60% for memory (6, 7), while heritability estimates for different components of 

executive function vary from 35% to 79% (8, 9). The variability of these estimates 

might be due to the heterogeneity of the study designs (6, 7, 9, 10) and perhaps, 

different ethnic backgrounds (9, 10).

Age is a strong predictor of cognitive variation. Although environment is a major 

determinant of the age-related differences in cognitive function (11), there is also 

evidence that some of the genetic expression of cognitive function is age-specifi c 

(12). Thus, genes determining cognitive function at birth might differ from those that 

modulate cognitive decline during aging. The latter may be of relevance in light of 

current studies of the genetics of late onset AD and related dementias. 

Along with age, sex is also related to the variation in cognitive function. Sexual 

dimorphism has been documented for several cognitive domains, and there is 

evidence that it might be under genetic control (13-16). Sex-specifi c genetic effects 

on the variation of a number of quantitative traits such as lipid levels, glucose 

metabolism, blood pressure and serotonin levels have been reported (17-19). To 

what extent sexual dimorphism in human cognitive variation is due to sex-specifi c 

genetic expression is unclear.

In certain populations inbreeding was found to contribute to the genetic variance 

of general cognitive ability (20). Early studies showed that inbreeding was associated 

with a lower cognitive performance (21). To date, studies addressing the effects of 

inbreeding on specifi c cognitive domains are scarce. The effect of inbreeding on 

specifi c cognitive domains is of interest, since recently, a role for recessive mutations 

in AD in an inbred population was reported (22).

Previously, we studied the heritability for various cognitive domains in 780 

subjects, belonging to a single extended pedigree from a recent genetically isolated 

Dutch population, in relation to cardiovascular risk factors (23). In the present 

analysis, we extend this previous work to include a larger series of 2575 relatives 

to answer whether inbreeding affects specifi c cognitive domains (memory and 

executive function) and whether there are sex- and age-specifi c genetic effects on 

these domains of cognitive function. 
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52 Chapter 4

MATERIALS AND METHODS

Study population

The present study was conducted within the setting of the Erasmus Rucphen 

Family (ERF) study, a family-based study of a recent genetically isolated population 

located in the southwest of The Netherlands (24, 25). The population was founded 

by a limited number of individuals in the 18th century and was characterized by 

minimal immigration until the last few decades. The genealogical database contains 

information about the current inhabitants of this area and their ancestors and 

includes over 80 000 records. For the ERF study, 22 families were selected that had 

at least 5 children baptized in the community church between 1850 and 1900. All 

living descendants of the families and their spouses, aged 18 and older (n = 2906), 

were invited to participate. The recruitment of participants started in June 2002 and 

fi nished in February 2005. The Medical Ethics Committee of the Erasmus Medical 

Center, Rotterdam approved the study.

Neuropsychological assessment

Trained assistants administered a battery of neuropsychological tests on the ERF 

participants (Sleegers et al, in press). Participants with a diagnosis of neurological 

or psychiatric disorders were excluded (n = 47) (Sleegers et al, in press). Five 

neuropsychological tests adapted to the Dutch language were used to evaluate 

different cognitive domains related to neurodegenerative disorders (table 1) (4, 5, 

26), namely: the Dutch version of the auditory verbal learning test (AVLT) (27, 28), 

the trail making test (TMT) (29), the Stroop colour-word test (30, 31), the verbal 

fl uency test (32, 33), and the block design subtest of the Wechsler adult intelligence 

test (WAIS) (34).

AVLT assesses different components of memory through a number of different 

trials (see table 1 for details), yielding several independent measures (35, 36). 

Four measures were derived from this test: short-term or working memory (AVLT-

trial I), learning (AVLT-trials II-V), delayed recall (AVLT-trial VI) and recognition 

(trial-VII). The TMT consists of two tasks. The fi rst task (TMT-A) is used to assess 

psychomotor speed, whereas the second one (TMT-B) evaluates mainly cognitive 

fl exibility (5). The Stroop colour-word test is composed of three tasks. The fi rst two 

tasks (word naming in card I and colour naming in card II) are used to evaluate 

selective attention. The third task measures susceptibility to interference, or the 

ability to inhibit an automatic response (interference task in card III) (35). The verbal 

fl uency test consists of two measures, semantic fl uency and phonological fl uency, 

which are indicators of several cognitive abilities, including the ability to generate 

search strategies to retrieve information (executive function) (35). Here we used 
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54 Chapter 4

the semantic and phonological fl uency tests, along with TMT-B, and card III of the 

Stroop colour-word test, to evaluate executive function. Finally, the block design 

subtest (WAIS) was used to measure visuospatial and visuoconstructive abilities (35). 

As part of the neuropsychological assessment we included the Dutch Adult 

Reading Test (DART), as a measure of general cognitive ability. This test has a high 

correlation with other more extensive tests that measure general cognitive function 

(35). The education level attained by the ERF participants in the Dutch school system 

was determined. We categorized the education level into three groups: elementary 

(8 years or less of full-time education), junior vocational training (8 to 14 years of 

education) and senior vocational or academic training (at least 15 years of full-time 

education) (36, 37).

Statistical analysis

Gender differences between the scores of the cognitive tests were tested with the 

Mann-Whitney U test. Age-quartile differences between the scores of the cognitive 

tests were tested with the Kruskal-Wallis H test. The inbreeding coeffi cients, the 

probability that 2 alleles at the same locus of a person are identical by descent (i.e. 

derived from the same ancestral allele), were computed for all individuals using all 

available genealogical information. The PEDIG package of programs was used for 

this purpose (38). We categorized the levels of inbreeding into quartiles.

We transformed the cognitive tests that were skewed using the natural logarithm 

(for AVLT-trial VII, TMT-A, TMT-B, cards I, II and III of the Stroop colour-word 

test and block design tests) or the square root (for DART). A full pedigree-variance 

components method as implemented in the SOLAR 2.1.2 software package (39) 

was used to estimate both the heritability as well as the effects of inbreeding on 

the cognitive tests. The phenotypic variance of a cognitive test, which refl ects the 

inter-individual variation of an underlying cognitive domain, was partitioned into its 

additive genetic (σ2
G
) and environmental (σ2

E
) variance components (40). Heritability 

was estimated as the ratio of the additive genetic variance to its phenotypic variance: 

h2= σ2
G
 / (σ2

G
 + σ2

E
);

To estimate the heritability of the cognitive tests the following models were used: 

for general cognitive ability we adjusted for age, age2 (to account for non-linear age 

effects), sex, level of education and inbreeding quartiles. For the other cognitive tests 

we included general cognitive ability in addition to the previous covariates to adjust 

for the variance that is common to all cognitive domains (41). The proportion of the 

phenotypic variance of cognitive tests due to covariates as well as general cognitive 

ability was estimated.

To evaluate sex-specifi c genetic effects on the variation of the cognitive tests, 

we used a standard approach (17, 42). In brief, we included the estimation of 
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genetic and environmental variances specifi c for men and women, as well as the 

correlation between genetic components of a cognitive test in men and women 

(ρ
G
). Three different hypotheses were tested: (1) ρ

G
 = 1, which tests whether genes 

infl uencing a cognitive trait in men and women are the same; (2) σ2
G-M

 = σ2
G-F

, which 

tests whether the genetic variance in men is equal to the genetic variance in women; 

and (3) σ2
E-M

 = σ2
E-F

, which tests whether the residual environmental variance of a 

cognitive trait is equal in men and women. Rejection of hypothesis 1 implies that 

a different set of genes contributes to the variation in cognitive traits in men and 

women. Rejection of hypothesis 2 implies that the magnitude of genetic effects on 

the expression of a cognitive trait differs between sexes. Rejection of hypothesis 

3 indicates that the magnitude of environmental effects on the expression of a 

cognitive trait differs between sexes. Likelihood ratio tests (one degree of freedom) 

were used to evaluate the above hypotheses (nested models) against a general one, 

in which all parameters were estimated (43).

To estimate the age-specifi c variance components of the cognitive tests, we split 

the sample into two broad age categories (< 50 years and ≥ 50 years) and followed 

the same approach as for sex-specifi c genetic effects. We selected this cut-off point 

because age-related differences in cognition are substantial above 50 years of age 

(44).

RESULTS

A total of 2575 subjects were phenotyped for specifi c cognitive domains. The age of 

the subjects ranged from 18 to 89 years (median: 48 years; 95% of the distribution: 

20.38 - 75.28 years) and the proportion of men was of 49%. Of these participants, 

82% were inbred (median: 0.002; 95% of the distribution: 0 - 0.02), although less 

than 10% had inbreeding values equal or higher than 1/64 (equivalent to a second 

cousin marriage). The average level of education corresponded to a junior vocational 

training. Six percent of the population (n = 147) had senior vocational or academic 

training.

Table 2 shows the median scores of the cognitive tests by gender. Men 

performed signifi cantly better in the cognitive tests evaluating general cognitive 

ability (DART), visuospatial-visuoconstructive abilities (block design) and verbal 

fl uency (semantic). Women performed signifi cantly better than men in memory-

related tests such as those evaluating learning, delayed recall, selective attention 

(card II of the Stroop colour-word test) and in susceptibility to interference. The 

median score of the test for working memory (AVLT-trial I) was the same for men 

and women, though the range of the distribution was signifi cantly different (range 
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in women: 0 - 10 recalled words; range in men: 0 - 12 recalled words). The sex 

differences were not statistically signifi cant for phonological fl uency, card I of 

the Stroop colour-word test and TMT. Table 2 also presents the median score of 

cognitive tests by age-quartiles. Statistically signifi cant differences were observed 

for all cognitive tests (Kruskal-Wallis H test; all p values < 0.001). The highest age 

quartile showed the lowest performance in all cognitive tests. 

Table 3 presents the estimated additive heritability of cognitive tests. The 

heritability of general cognitive ability was 49% (95% C.I, 40% - 53%). For 

memory-related components the estimates were between 10% (recognition; AVLT-

trial VII) and 30% (learning; AVLT-trials II-V). For executive function (cognitive 

fl exibility, susceptibility to interference, verbal fl uency) as well as for visuospatial-

visuoconstructive abilities the estimates were approximately 36%. A large proportion 

of the phenotypic variance of the specifi c cognitive domains (from 20 to 50%) was 

explained by age age2, education, general cognitive ability and inbreeding quartiles 

(table 3). General cognitive ability accounted for between 4% and 22% of the 

phenotypic variance of the other cognitive domains with large effects on executive 

function. Table 3 also shows that inbreeding was signifi cantly associated with lower 

performance on the DART, semantic and phonological fl uency, TMT and block 

design tests. 

Table 4 presents the results of the sex-specifi c variance components analysis. 

The genetic correlations of the cognitive tests between men and women were high 

and did not signifi cantly differ from one (all p values > 0.10). Table 4 also shows 

that women displayed higher genetic variances in learning (AVLT trial II-V; p value 

= 0.02) and in susceptibility to interference (card III of the Stroop colour-word 

test; p value < 0.02), while men exhibit higher environmental variances for these 

domains (p value = 0.03 for learning; p value = 0.02 for susceptibility interference). 

The differences in the components of the variances led to substantially different 

heritability estimates: 40% in women versus 19% in men for learning, and 50% in 

women versus 15% in men for susceptibility to interference.

Age-specifi c variance components were estimated for two broad age groups 

(< 50 years and ≥ 50 years). As shown in table 5, genetic correlations were 

signifi cantly smaller than one in psychomotor speed (TMT-A; p value = 0.03) and 

phonological fl uency (p value = 0.01), and borderline signifi cant in susceptibility to 

interference (card III of the Stroop colour-word test; p value = 0.06). The genetic 

variance was signifi cantly higher in the old age group (50 years and above) for 

general cognitive ability (DART; p value < 0.001) although the genetic correlation 

was not signifi cantly different from one. Likewise, we observed higher genetic 

variances in the advanced age group for almost all specifi c cognitive domains. Only 

in cognitive fl exibility was this difference signifi cant (TMT-B; p value = 0.026). Of 
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interest, the genetic variance of the block design test was not signifi cant for the 

advanced age group, which suggests that the signifi cant heritability estimate we 

observed when considering the whole sample was mainly driven by the young age 

group. The environmental variances were signifi cantly higher in the advanced age 

group in general cognitive ability as well as in verbal fl uency (semantic), cognitive 

fl exibility (TMT-B), recognition (AVLT-trial VII) and susceptibility interference (card 

III of Stroop colour-word test).

DISCUSSION

In this study we found a heritability estimate of 49% for general cognitive ability. For 

specifi c cognitive domains, we observed a wide variation in the heritability estimates 

(from 11% to 36%) after adjusting for the common variability attributed to general 

cognitive ability. In addition, we found that inbreeding was negatively associated 

with general cognitive ability as well as with visuospatial-visuoconstructive abilities 

(block design), and with various components of executive function, namely: 

cognitive fl exibility (TMT-B) and with lower ability to generate searching strategies 

(semantic and phonological). Furthermore, we did not fi nd evidence for a sex-

specifi c genetic background modulating cognitive domains. However, we observed 

differences in the genetic and environmental variances between men and women 

for learning and susceptibility interference. This indicates that although sharing the 

same set of genes, the magnitude of genetic and non-genetic (environmental) effects 

differs between sexes. In contrast to sex-specifi c genetic effects, our results indicated 

that different genes might be involved in cognitive domains at different ages.

The heritability estimates of general cognitive ability as well as of specifi c 

cognitive domains in our analysis were consistent with previous studies (9, 45). The 

highest estimates of heritability were 30% (95% C.I, 21% - 39%) for learning and 

36% (95% C.I, 27% - 45%) for cognitive fl exibility. Both these estimates are in the 

lower range of those reported by others (21% - 60% for memory and 35% - 79% for 

executive function) (46). However, some of these studies used twin-based design, 

which may be prone to overestimate heritability when no other sources of familial 

correlations are considered (47). The fact that we used extended families to estimate 

the heritability of cognitive domains and adjusted for general cognitive ability, which 

accounted for up to 22% of the phenotypic variance for some cognitive tests, may 

explain partly why our fi ndings were in the lower range.

In our study, inbreeding was signifi cantly associated with general cognitive 

ability and with specifi c cognitive domains. Although the effects of inbreeding were 

signifi cant, it only accounted for a relatively small proportion of the total variance 
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of the cognitive tests (1% on average, data not shown). Inbreeding results in an 

increased probability of homozygosity for any allele at any loci, which may have 

adverse or benefi cial effects. However, there is evidence that supports an association 

of inbreeding with decline in cognitive function (21). Our results are in line with the 

fi ndings of Morton (1978) who showed that the decrease in cognitive performance 

as a result of inbreeding was due to the effect of recessive alleles (20). Further, our 

fi ndings suggest that the genetic background underlying specifi c cognitive domains is 

constituted, at least partly, by recessive alleles. 

In spite of the recent indications for genetic infl uences on the sexual dimorphism 

in cognitive function from both human and functional animal studies (13-16), we 

could not demonstrate sex-specifi c genetic effects. Although in the crude analysis we 

observed signifi cant gender differences in general cognitive ability and in specifi c 

cognitive domains, these differences were not explained by sex-specifi c genetic 

effects on the variation of both general cognitive ability and specifi c cognitive 

domains between men and women. Thus, other factors may account for the gender-

related differences in cognitive function documented in other studies. However, in 

our study we estimated the net effect of all genes (40), which does not preclude that 

one or several loci are expressed differently between sexes. 

We found evidence for age-specifi c genetic effects on the variation of 

psychomotor speed, phonological fl uency and susceptibility to interference, with 

genetic correlations between 0.64 and 0.73 that were signifi cantly different from one. 

This means that about 30% of the genetic expression in these cognitive domains 

might be age-group specifi c. In addition, signifi cantly higher genetic variances and 

higher heritability estimates were observed in the advanced age group (≥ 50 years) 

for general cognitive ability and as well as for cognitive fl exibility. This is in line 

with the observation of higher heritability estimates in both general cognitive ability 

and other cognitive domains with increasing age (45). These fi ndings suggest that 

age-specifi c genetic expression modulates cognitive function at old age. A possible 

point of concern is that we only considered two broad age groups and therefore we 

might have missed higher differences in cognitive domains between more narrow 

age groups. Given the preponderant role of age as a determinant of variation in 

cognition, these results need confi rmation in other populations.

Genetically isolated populations may exhibit both increased genetic drift and 

inbreeding and thus may deviate in their genetic composition from the general 

population. Moreover, in genetic isolated populations, there is an increased chance 

of loss or fi xation of some genetic variants potentially leading to lower genetic 

diversity and consequently lower heritability. However, in a recent study (24) we 

have shown that the effects of drift are relatively small in our young genetically 

isolated population and that there is a very small chance of losing an allele unless 
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it had a very low frequency in the original population. Thus, our population should 

not deviate much from the general population in its genetic composition and we do 

not expect that our heritability estimates would substantially differ from those in the 

general Dutch population.

In summary, we found signifi cant heritability in cognitive domains after 

adjustment for general cognitive ability. We also provide evidence that inbreeding 

infl uences the variation in specifi c cognitive domains. The results of sex- and age-

specifi c heritability estimation highlight the potential interaction between genes and 

age- and sex-related factors in the expression of cognitive domains. 
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ABSTRACT

 The APOE gene that encodes Apolipoprotein E is a well-established risk factor 

for Alzheimer’s disease (AD). The APOE*4 allele has been shown to have a strong 

correlation with AD-like alterations in the brains of subjects with mild cognitive 

impairment (MCI) and of cognitively intact subjects. Thus far there is no consensus 

about which specifi c early changes in cognitive function are related to APOE*4. 

In the present study, we investigated the association between the APOE*4 allele 

and cognitive function in non-demented subjects to identify the cognitive profi le 

associated with APOE*4. Furthermore, we evaluated whether age and gender 

modulate the effects of the APOE*4 allele on cognitive function. 

Carriers of the APOE*4 allele had lower short-term memory (p = 0.05) and 

cognitive fl exibility (p < 0.001) than non-carriers. These effects were driven by 

subjects of 50 years and older. In this age group we also found a signifi cant 

relationship between APOE*4 and susceptibility to interference (p = 0.04). Gender 

differences in the effects of the APOE*4 allele were also found. APOE*4 carrier 

women had poorer short-term memory and executive function than non-carriers. 

No differences were observed in men. We concluded that APOE*4 contributes to the 

variation of short-term memory and executive function, which might represent early 

changes in cognitive function in AD. The contribution of APOE*4 to these cognitive 

domains is age- and sex-dependent, with effects being pronounced at older age and 

in women. 
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INTRODUCTION

The apolipoprotein E gene, APOE, is a pleiotropic gene, with a large range of effects 

on human traits including lipid metabolism (1), longevity (2) and cognitive function 

(3). Three common alleles of APOE (APOE*2, APOE*3 and APOE*4) that encode 

three different isoforms of the protein (ε-2, ε-3 and ε-4) have been identifi ed. The 

APOE*4 allele is a well-established genetic risk factor for late onset Alzheimer’s 

disease (AD) (4). Although APOE*4 is neither necessary nor suffi cient to cause AD, 

it has been associated with lower cognitive function and with the progression from 

mild cognitive impairment (MCI) to AD (5-7). Neuroimaging studies in subjects with 

MCI (8), as well as in cognitively intact individuals at high risk for AD (9), have 

shown that APOE*4 is correlated with alterations in the brain which are similar to 

those seen in the brains of AD patients (10). 

Therefore, although there is considerable evidence to support a role for APOE*4 

in cognitive decline in non-demented individuals, some important questions 

remain unanswered. Firstly, it is still not clear whether the effect of APOE*4 on 

cognitive function is global or correlates predominantly with specifi c cognitive 

domains (3). Secondly, there is still debate about whether APOE affects cognitive 

function early in life. Most of the studies that found an association between APOE 

and cognition focused on aged individuals (6). There is evidence that cognitive 

decline during ageing is faster in APOE*4 carriers (7), suggesting that this variant 

modulates processes in the brain that lead to neurodegeneration. Animal studies 

have shown that the APOE protein has signifi cant effects on early brain development 

(11), indicating that APOE may also have an impact on early cognitive reserve. 

Nevertheless, it has not yet been shown whether APOE has early effects on cognitive 

function in humans. Thirdly, it has not yet been established whether there are 

gender-specifi c effects of the APOE*4 allele on cognition. There is some evidence for 

gender-specifi c effects of APOE*4 on cognition in relation to AD (12). The infl uence 

of gender on the neuropsychological profi le associated with APOE*4 has only been 

addressed in a few studies, with confl icting results (6, 13).

In the present study we evaluated the effects of the APOE*4 allele on specifi c 

cognitive domains over a wide age-range in participants of a family-based study. 

The main aim was to study the cognitive profi le associated with the APOE*4 allele 

in non-demented subjects. Further, we addressed whether the effect of this variant is 

homogenous across different ages and whether it is modulated by gender.
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MATERIALS AND METHODS

Study population

Subjects were participants of the Erasmus Rucphen family (ERF) study, a family-

based cohort study conducted in a recent genetically isolated population in The 

Netherlands (14, 15). The population was founded in the middle of 18th century 

by approximately 150 people and remained isolated until the last few decades. An 

extensive genealogical database including over 80 000 records is available for this 

population. For the ERF study, 22 families that had at least 5 children baptized in 

the community church between 1850 and 1900 were selected. All living descendants 

of the families and their spouses, aged 18 and older (n = 2906), were invited to 

participate in the ERF study. Thus, participants from the ERF study were selected 

according to genealogical, and not disease, status. The Medical Ethics Committee of 

the Erasmus Medical Center, Rotterdam approved the study. Participants followed 

a standardized protocol that included a medical questionnaire and an interview. 

Subjects were extensively phenotyped for different clinical measures organized 

into cardiovascular, ophthalmologic, cognitive and anthropometrical blocks. The 

recruitment started in June 2002 and fi nished in February 2005. Genotypes for the 

APOE gene for 1024 participants were available at the time of the current study. 

Using the genealogical database we connected all genotyped participants in a single 

large pedigree consisting of 9800 subjects.

Data collection

A battery of neuropsychological tests was administrated to the participants of the 

ERF study. We used the following tests: the Dutch version of the auditory verbal 

learning test (AVLT) (16), the trail making test (TMT) (17), the Stroop colour-word 

test (18), the verbal fl uency test (17) and the block design subtest of the Weschler 

adult intelligence test (WAIS) (19). These tests are widely used to screen for cognitive 

defi cits in AD and other dementias (20) and were chosen to assess cognitive domains 

over a wide age range.

AVLT assesses different aspects of memory through a series of trials (trial I to 

VII) (21). Different scores were derived from AVLT: short-term memory: number 

of correctly recalled words in the fi rst trial (AVLT trial I); learning: sum of correctly 

recalled words from trial II to V (AVLT trials II-V); delayed recall: number of 

correctly recalled words after a 20 minute delay (AVLT trial VI) and recognition: 

number of correctly recognized words from a 30-word list (AVLT trial VII) (21, 22). 

The TMT evaluates psychomotor speed (part A) and cognitive fl exibility (part B) 

(23). The scores were defi ned as time in seconds to complete the task in parts A 

and B separately. The Stroop colour-word test assesses selective attention (reading 
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task in card I; naming colours in card II) and susceptibility to interference (Stroop 

interference in card III) (21). The scores were defi ned as time in seconds to 

complete the task in cards I, II and III separately. The verbal fl uency test consists of 

semantic and phonological fl uency tests that evaluate searching strategies to retrieve 

stored information (21). The scores for verbal fl uency were defi ned as the sum of 

the named words starting with letters D, A, and T (phonological fl uency), and the 

sum of all named animals and professions (semantic fl uency). Cognitive fl exibility 

(TMT-B), susceptibility to interference (Stroop card III) and verbal fl uency are 

measures of executive function (21). The block design subtest assesses visuospatial 

and visuoconstructive abilities (21). This test was scored as the maximum number of 

replicated blocks per time. Furthermore, we assessed the general cognitive ability of 

the participants with the Dutch Adult Reading Test (DART) (21)

The education level attained by the subjects within the Dutch schooling system 

was determined (22). We categorized the highest level of education attained by 

the participants into three groups: elementary education (8 years or less of full-

time education), junior vocational training (8 to 14 years of education) and senior 

vocational or academic training (at least 15 years of full-time education) (22).

Genotyping

Genomic DNA was extracted from whole blood samples obtained at the baseline 

examination, utilizing the salting out method (24). Samples were genotyped for the 

APOE C112R (APOE*4 allele) and APOE R158C (APOE*2 allele) polymorphisms with 

a Taqman allelic discrimination Assay-By-Design (Applied Biosystems, Foster City, 

CA). Primer sequences are available on request. The assays utilized 5 nanograms of 

genomic DNA and 2 microliter reaction volumes. The amplifi cation and extension 

protocol was as follows: an initial activation step of 10 min at 95oC preceded 40 

cycles of denaturation at 95 oC for 15 s. and annealing and extension at 50 oC for 60 

s. Allele-specifi c fl uorescence was then analysed on an ABI Prism 7900HT Sequence 

Detection System with SDS v 2.1 (Applied Biosystems, Foster City, CA).

Statistical analysis

The APOE genotypes were grouped according to the number of APOE*4 alleles, 

namely: zero (2/2, 2/3 and 3/3 genotypes), one (2/4 and 3/4 genotypes) and 

two copies (4/4 genotypes); or as carriers and non-carriers of the APOE*4 allele. 

General characteristics of the study population among the genotypic groups were 

compared using the one-way ANOVA test (normally distributed) or Kruskal-Wallis 

test (not normally distributed) for continuous variables. For dichotomous variables 

we used the chi-square test. These analyses were performed with SPSS V.11.0 (SPSS 
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Inc. Chicago IL). The observed frequencies of the APOE genotypes were tested for 

deviations from Hardy-Weinberg equilibrium proportions using the chi-square test.

Inbreeding coeffi cients were computed based on all available genealogical 

information using PEDIG software (25). As the inbreeding values were not normally 

distributed, we categorized the levels of inbreeding into quartiles, namely: 25th 

percentile: 1.55 x10 –3, 50th percentile: 0.004, and 75th percentile: 0.009.

We evaluated the effects of the APOE*4 allele on cognitive function in subjects 

belonging to a single large pedigree using linear mixed models to allow adjustment 

for family structure. The genotypes were pooled into APOE*4 allele carriers and 

non-carriers assuming a dominant model, which is consistent with the role of this 

variant in cognitive function (6). The models were adjusted for age, age2 (to account 

for non-linear age effects), sex, inbreeding and general cognitive ability (26). Other 

confounders considered were hypertension, atherosclerosis, body mass index 

(BMI), alcohol consumption and smoking. Because of the skewed distributions of 

the AVLT trial VII, TMT-A, TMT-B, cards I, II and III of the Stroop colour-word and 

block design tests, the data were log-transformed to improve normality (log
20
 (100 * 

cognitive test)).

To evaluate whether age and sex modifi ed the effect of the APOE*4 allele 

on cognitive function, we included interaction terms between APOE and two age 

categories (< 50 years and ≥ 50 years). We selected this cut-off point because age-

dependent infl uences on cognitive function are substantial after the age of 50 years 

(27). We also performed a stratifi ed analysis by gender. All analyses were performed 

using the SOLAR software package (28) 

RESULTS

The frequencies of the APOE alleles were 0.05 for the APOE*2 allele, 0.75 for the 

APOE*3 allele and 0.20 for the APOE*4 allele. The allele and genotype distributions 

were in Hardy-Weinberg equilibrium (p = 1.00). Table 1 presents the general 

characteristics of the population by number of APOE*4 alleles. A signifi cant increase 

in serum levels of total cholesterol and triglycerides was observed with increasing 

number of APOE*4 alleles (p ≤ 0.02). 

Table 2 presents the median and the inter-quartile range of the distribution of the 

cognitive tests by APOE genotype, as well as the p values of the adjusted analysis. 

Short-term memory (AVLT trial I) and cognitive fl exibility (TMT-B) were signifi cantly 

associated with APOE*4 in both the crude analysis (AVLT trial I; p = 0.02; TMT-B; 

p = 0.003) and in the analysis adjusted for family structure (AVLT trial I; p = 0.05; 

TMT-B; p < 0.001). Findings for card II of the Stroop colour-word test were not 
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consistent, as this test did not show any signifi cant association with APOE*4 in the 

analysis adjusted for family structure (card II of the Stroop colour-word test; p = 

0.23). The inclusion of other cardiovascular variables did not substantially change the 

association of the APOE*4 allele with the cognitive tests.

APOE was not associated with DART, the test that assesses general cognitive 

ability. Table 3 presents the effects of the APOE*4 allele on the cognitive tests in 

two age categories (< 50 years; ≥ 50 years). Signifi cant interactions were observed 

for cognitive fl exibility (TMT-B; p = 0.001), recognition (AVLT trial VII; p = 0.03) and 

susceptibility to interference (card III of the Stroop colour-word test; p = 0.04). In the 

group of 50 years and older, a signifi cant association between the APOE*4 allele and 

short-term memory (AVLT trial I; p = 0.05), cognitive fl exibility (TMT-B; p < 0.001) 

and susceptibility to interference (card III of the Stroop colour-word test; p = 0.03) 

was found. The effect of the APOE*4 was also stronger for the AVLT trial VII test 

(recognition) in the group of 50 years and older, although the relation to APOE*4 

was not statistically signifi cant in the stratifi ed analysis. None of the cognitive tests 

were signifi cantly associated with the APOE*4 allele in the younger age group.

Table 4 presents the gender-specifi c effects of the APOE genotype on the 

cognitive tests. Signifi cant interactions were observed for learning (AVLT trials II-V; 

p = 0.03), recognition (AVLT trial VII; p = 0.05), semantic fl uency (p = 0.04) and 

cognitive fl exibility (TMT-B; p = 0.04). In the stratifi ed analysis, the APOE*4 effects 

were only signifi cant in the female group. As shown in table 4, the APOE*4 allele 

was signifi cantly associated with lower performance in tests measuring short-term 

memory (AVLT trial I; p = 0.03), cognitive fl exibility (TMT-B; p < 0.001) and 

susceptibility to interference (card III of the Stroop colour-word test; p = 0.04). The 

Table 1. Demographic characteristics and risk factors per APOE genotypes

APOE

Variable 2/2, 3/2, 3/3 (n =646) 4/2, 4/3 (n =307) 4/4 (n =49) P value†

Age (years) 54.1 (15.91) 55.2 (14.21) 51.9 (12.73) 0.31

Inbreeding 0.006 (0.007) 0.007 (0.008) 0.006 (0.006) 0.06

Men (%) 0.40 0.39 0.51 0.50

Body Mass Index (kg/cm2) 0.3 (0.05) 0.3 (0.05) 0.3 (0.04) 0.34

IMT (mm) 0.86 (0.20) 0.88 (0.22) 0.84 (0.20) 0.14

Fasting glucose (mmol/l) 4.79 (1.11) 4.73 (1.07) 4.56 (0.63) 0.36

Cholesterol (mmol/l) 5.50 (1.10) 5.73 (1.19) 5.68 (1.22) 0.02

Triglycerides (mmol/l) 1.35 (0.80) 1.46 (0.77) 1.65 (0.95) 0.02

HDL (mmol/l) 1.29 (0.38) 1.24 (0.32) 1.13 (0.27) <0.001

Values presented are means (standard deviations) or proportions

IMT (common carotid Intima Media Thickness)

HDL (High density lipoproteins)
† p value of 1-way ANOVA test (continuous variables) or chi-square test (proportions)
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Table 3. Eff ects (standard error) of the APOE*4 allele on cognitive tests in two age categories

< 50 years >= 50 years

Cognitive tests APOE*4 †† APOE*4 ††

AVLT-trial I (short-term memory) -0.181 (0.162) -0.253 (0.125)

AVLT-trials II-V (learning) 0.232 (0.785) -0.788 (0.683)

AVLT-trial VI (delayed recall) 0.091 (0.247) -0.189 (0.248)

AVLT-trial VII† (recognition) 0.079 (0.045) -0.105 (0.071)

Semantic fl uency (verbal fl uency) -0.307 (0.986) 0.148 (0.729)

Phonological fl uency (verbal fl uency) 1.490 (0.951) 0.493 (0.840)

TMT-A† (psychomotor speed)* 1.276 (1.114) 0.723 (1.166)

TMT-B† (cognitive fl exibility)* 1.549 (1.331) 7.105 (1.541)

Card I† (selective attention)* -0.442 (0.678) 0.376 (0.629)

Card II† (selective attention)* -0.132 (0.569) 0.960 (0.611)

Card III† (susceptibility to interference)* -0.635 (0.636) 1.769 (0.790)

Block Design† (visuospatial abilities) 0.004 (1.656)  0.520 (1.242)

The values are the regression coeffi  cients of the APOE*4 carriers onto the cognitive tests.

The models were adjusted for age, age2, sex, inbreeding, education, DART and familial structure 
† Log-transformed cognitive tests
†† The genotypes were pooled into APOE*4 non carriers versus carriers of at least one APOE*4 allele
* Positive eff ects correlate with lower performance (time demanding tasks)

Signifi cant eff ects (p-value< 0.05) of the APOE*4 allele are in bold

Table 4. Eff ects (standard error) of the APOE*4 allele on cognitive tests by gender

Men Women

Cognitive tests APOE*4 ††  APOE*4 ††

AVLT-trial I (short-term memory) -0.121 (0.148) -0.276 (0.127)

AVLT-trials II-V (learning) 0.583 (0.786) -1.224 (0.670)

AVLT-trial VI (delayed recall) 0.355 (0.275) -0.301 (0.233)

AVLT-trial VII† (recognition) 0.034 (0.078) -0.062 (0.056)

Semantic fl uency (verbal fl uency) 1.500 (0.937) -1.253 (0.779)

Phonological fl uency (verbal fl uency) 1.705 (0.951) 0.390 (0.867)

TMT-A† (psychomotor speed)* 0.549 (1.299) 1.508 (1.091)

TMT-B† (cognitive fl exibility)* 1.038 (1.713) 6.544 (1.401)

Card I† (selective attention)* -0.649 (0.796) 0.556 (0.572)

Card II† (selective attention)* 0.546 (0.747) 0.513 (0.518)

Card III† (susceptibility to interference)* 0.124 (0.812) 1.396 (0.686)

Block Design† (visuospatial abilities) 1.612 (1.693) -0.284 (1.290)

The values are the regression coeffi  cients of the APOE*4 carriers onto the cognitive tests.

The models were adjusted for age, age2, sex, inbreeding, education, DART and familial structure 
† Log-transformed cognitive tests
†† The genotypes were pooled into APOE*4 non carriers versus carriers of at least one APOE*4 allele
* Positive eff ects correlate with lower performance (time demanding tasks)

Signifi cant eff ects (p-value< 0.05) of the APOE*4 allele are in bold
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effects of the variant on the test that assesses learning were borderline signifi cant 

(AVLT trials II-V; p = 0.07). No signifi cant evidence for associations between the 

APOE*4 allele and the cognitive tests were found in men.

DISCUSSION

In this family-based study, we found signifi cant associations between the APOE*4 

allele and reduced short-term memory and lower cognitive fl exibility. These effects 

were driven by the group of 50 years and older, and were not signifi cant in the 

younger age group. In addition, we found signifi cant gender differences in the 

effects of the APOE*4 allele on these cognitive domains. Female APOE*4 carriers 

performed less well in memory tests than non-carriers, with stronger effects in short-

term memory and borderline differences in learning.

In our study the association between the APOE*4 allele and cognitive function 

was specifi c to short-term memory (and learning in women), and executive function, 

with larger effects on cognitive fl exibility. This is in line with previous studies that 

demonstrated specifi c effects of APOE*4 on memory and executive function (3, 6). 

The lower cognitive performance in both short-term memory and executive function 

in carriers of at least one APOE*4 allele also fi ts with the domains predominantly 

affected in MCI (29). Our fi ndings suggest that both cognitive fl exibility and short-

term memory, as measured by AVLT and TMT-B, might be early markers of the 

cognitive defi cits related to AD-like pathology. 

Most of the studies that have found an association between APOE and cognition 

have focused on aged individuals, and have provided evidence for a role for APOE 

in cognitive decline in APOE*4 carriers (6). Animal studies, however, have shown 

that apolipoprotein E has a role in early brain development (11). We found that 

the effects of the APOE*4 allele were modifi ed by age, with signifi cant effects only 

in the advanced age group (≥ 50 years). We did not fi nd any signifi cant effect of 

the APOE*4 allele in those aged 50 years and younger. The fact that the APOE*4 

allele has little or no effect on cognitive function early in life, whereas it infl uences 

cognitive fl exibility and short-term memory in late life, suggests that APOE*4 is 

related to cognitive decline, rather than cognitive reserve (7, 30). 

It has been shown that the ε-4 isoform of apolipoprotein E is less effective in 

the maintenance of neuronal repair than the other two apolipoprotein E isoforms 

(ε-3 and ε-2) (31). The effect of APOE*4 late in life may be explained by the 

fact that the defi ciency in repair only becomes manifest at advanced age as the 

cumulative damage to the brain that occurs during ageing increases. However, there 

are alternative pathways that may help explain the effects of APOE*4 in late life. 

Luba bw.indd   76Luba bw.indd   76 30-08-2006   17:44:3130-08-2006   17:44:31



Age- and sex-dependent eff ects of the apolipoprotein E (APOE) gene on cognitive function 77

Apolipoprotein E is also involved in the oxidative stress response (31), and APOE*4 

carriers might be more susceptible to oxidative damage. The effects of APOE*4 on 

specifi c cognitive domains may be due to the higher susceptibility of neurons to 

oxidative stress in specifi c brain areas such as hippocampus (32, 33).

There is evidence for gender-specifi c effects of APOE on cognitive function (6, 

13). In our analysis, women showed differences in cognitive performance by APOE*4 

status whereas, in men, the effect was less pronounced and non-signifi cant. This is 

line with a previous study that showed higher cognitive decline in female APOE*4 

carriers, especially in executive function (13). A higher cognitive decline in male 

APOE*4 carriers in memory and executive function was found in another study 

(6). However, the small number of APOE*4 women carriers might account for the 

lack of APOE*4 effects in women in this study (6). Our fi ndings are in line with the 

strong effects of APOE*4 on AD found in a previous meta-analysis (12). Moreover, 

more frequent neurodegenerative lesions in the brain of women with AD have been 

reported (34). The fact that the differences between men and women were observed 

in both short-term memory and executive function, both of which are predominantly 

affected in AD, supports the hypothesis that women carriers of APOE*4 may be an 

important high risk group from a clinical and public health perspective.

There is recent interest in fi nding endophenotypes for AD. These are defi ned as 

intermediate phenotypes that are in the pathways leading to a disease, but with a 

simpler genetic architecture than the disease itself (35). Endophenotypes should be 

correlated with the disease, should be heritable and should be associated with the 

disease risk factors in unaffected subjects (10). In previous work, we showed that 

AVLT, TMT and the Stroop colour-word test are highly heritable (26). Here we show 

that APOE*4 contributes to the variance in these tests only in subjects aged 50 years 

and above. These results suggest that these tests may be valuable endophenotypes 

for AD.

In summary, in this cross-sectional study, we showed that the cognitive profi le 

associated with the APOE*4 allele consists of changes in short-term memory 

and executive function. The lower cognitive performance in these domains was 

signifi cant in women and in individuals 50 years and older.
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ABSTRACT

The genetic variation underlying vascular pathology may contribute to lower 

cognitive function. In this study the effects of systolic blood pressure (SBP), diastolic 

blood pressure (DBP), intima media thickness (IMT) and polymorphisms of the 

angiotensinogen (AGT), angiotensin II type 1 receptor (AT1R), α-adducin-1 (ADD1) 

and G-protein β-3 (GNβ3) genes, which have all been associated with vascular 

pathology, were evaluated in relation to cognition. Participants of a family-based 

study were genotyped for the AGT M235T, AT1R C575T, ADD1 G460W and the GNβ3 

rs2301339 G/A polymorphisms. Cognitive function was assessed with a battery of 

neuropsychological tests. The effects of SBP, DBP, IMT and the four genetic variants 

on the cognitive tests were evaluated using linear mixed models. The effect of the 

four genetic variants was evaluated independently as well as by combining the risk 

alleles.

DBP was associated with worse performance in the trail-making test A (TMT-A). 

IMT was associated with lower performance in the Stroop-colour word test and 

semantic fl uency. In contrast, SBP was associated with a better performance in the 

TMT-A and in card II of the Stroop colour-word test. The effects of SBP on TMT-A 

were driven by the group of 55 years and older. Signifi cant effects of the AGT 235T 

allele on recognition were found. In contrast, worse performance in phonological 

fl uency was associated with the AAD1 460W polymorphism, while a poorer 

performance in TMT-B and card III of the Stroop colour-word test were associated 

with the GNβ3 rs2301339 G allele. Moreover, lower performance in tests evaluating 

learning and in susceptibility to interference with an increasing number of risk alleles 

was found. We concluded that vascular factors and genes involved in blood pressure 

regulation contribute to the variation in cognitive function.

Luba bw.indd   82Luba bw.indd   82 30-08-2006   17:44:3630-08-2006   17:44:36



83The eff ects of blood pressure, intima media thickness and four blood pressure genes on cognitive function

INTRODUCTION

Vascular pathology plays a key role in the development and progression of cognitive 

decline and dementia including Alzheimer’s disease (AD) and vascular dementia (1, 

2). Vascular damage may lead to hypoperfusion and ischaemia, resulting in neuronal 

death (3-5). Hypertension and atherosclerosis are the main causes of vessel damage 

and there is compelling evidence that each contributes to the risk for AD, vascular 

dementia and reduced cognitive function (6-10).

The Renin-Angiotensin Aldosterone System (RAAS) modulates vascular tone and 

water and salt homeostasis (11, 12), and seems to play a role in hypertension and 

atherosclerosis (3). Four genes involved in RAAS are known to be involved in blood 

pressure regulation: the angiotensinogen (AGT) gene (13); the angiotensin II type 1 

receptor (AT1R) gene (14); the G-protein β3 subunit (GNβ3) gene (15, 18) and the 

α-adducin 1 (AAD1) gene. AGT and AT1R are part of the Renin-Angiotensin System. 

GNβ3 and AAD1 are salt-sensitivity genes in the aldosterone pathway (15-17).

In the present analysis we examined to what extent blood pressure, 

atherosclerosis and polymorphisms of the AGT, AT1R, ADD1 and GNβ3 genes 

contribute to cognition. We studied four polymorphisms in the RAAS genes, which 

have been related to blood pressure regulation: G460W of ADD1 (19), the M235T of 

AGT (13), the C573T of AT1R (14) and the rs2301339 G/A of GNβ3.

 MATERIALS AND METHODS

Study population

This study was conducted within the Erasmus Rucphen Family (ERF) study, which 

is embedded in the Genetic Research in Isolated Populations (GRIP) program. 

The ERF study was designed to fi nd genetic determinants of quantitative traits in 

a recent genetically isolated population in The Netherlands (20, 21). An extensive 

genealogical database, including over 80 000 records is available for the GRIP 

population. For the ERF study, 22 families that had at least 5 children baptized in 

the community church between 1850 and 1900 were selected. All living descendants 

of the families and their spouses, aged 18 and older (n = 2906), were invited 

to participate and the study was approved by the Medical Ethics Committee of 

the Erasmus Medical Center, Rotterdam. Participants of the ERF study followed 

a standardized protocol that included a medical questionnaire and an interview. 

Subjects were phenotyped for different clinical measures including cardiovascular, 

ophthalmologic, cognitive and anthropometrical outcomes. The recruitment of 

subjects started in June 2002 and fi nished in February 2005. The present analysis is 

Luba bw.indd   83Luba bw.indd   83 30-08-2006   17:44:3730-08-2006   17:44:37



84 Chapter 6

based on a sample of 1041 participants, from whom genotypic information of the 

four genetic polymorphisms was available. 

Data collection

A battery of neuropsychological tests was administrated to the participants of the 

ERF study. The following neuropsychological tests were chosen to assess different 

cognitive domains over a wide age-range: the Dutch versions of the auditory verbal 

learning test (AVLT) (22), the trail-making test (TMT) (23), the Stroop colour-word 

test (24), the verbal fl uency test (23) and the block design subtest of the Weschler 

Adult Intelligence Test (WAIS) (25).

AVLT assesses different aspects of memory through a series of trials (trial I to 

VII) (26). Different scores were derived from AVLT: short-term memory: number 

of correctly recalled words in the fi rst trial (AVLT trial I); learning: sum of correctly 

recalled words from trial II to V (AVLT trials II-V); delayed recall: number of 

correctly recalled words after a 20 min-delay (AVLT trial VI) and recognition: 

number of correctly recognized words from a 30-words list (AVLT trial VII) (26, 

27). TMT evaluates psychomotor speed (part A) and cognitive fl exibility (part B) 

(28). The scores were defi ned as time in seconds to complete the task in part A 

and B separately. The Stroop colour-word test assesses selective attention (reading 

task in card I; naming colours in card II) and susceptibility to interference (colour 

interference in card III) (26). The scores were defi ned as time in seconds to 

complete the task in cards I, II and III separately. The verbal fl uency test consists of 

semantic and phonological fl uency tests that evaluate searching strategies to retrieve 

stored information (26). The scores for verbal fl uency were defi ned as the sum 

of the named words starting with letters D, A, and T (phonological fl uency), and 

sum of all named animals and professions (semantic fl uency). Cognitive fl exibility 

(TMT-B), susceptibility to interference (card III of the Stroop colour-word test) and 

verbal fl uency are measures of executive function (26). The block design subtest 

assess visuospatial and visuoconstructive abilities (26). This test was scored as the 

maximum number of replicated blocks per time. We used the Dutch Adult Reading 

Test (DART) as a measure of general cognitive ability (26).

 We determined the education level attained by the subjects within the Dutch 

schooling system (27). We categorized the highest level of education attained by 

the participants into three groups: elementary education (8 years or less of full-

time education), junior vocational training (8 to 14 years of education) and senior 

vocational or academic training (at least 15 years of full-time education) (27).

Blood pressure was measured twice in the sitting position from the right upper 

arm with an automated device (OMRON 711, automatic IS; Vernon Hills Illinois, 

USA). The average of the two measurements was used in the analyses. Hypertension 
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was defi ned as mean systolic blood pressure (SBP) ≥ 160 mmHg or diastolic blood 

pressure (DBP) ≥ 100 mmHg or use of antihypertensive medication (29). Common 

carotid intima media thickness (IMT) was measured with a 7.5-MHz linear array 

transducer (ATL Ultra-Mark IV; Advanced Technological Laboratories, Bethell, 

Washington, USA). The conditions and procedures for the IMT assessment have been 

described previously (30).

Genotyping

The genotyping of the ADD1 G460W, the AGT M235T, the AT1R C573T and the GNβ3 

rs2301339 G/A polymorphisms was performed using TaqMan allelic discrimination 

Assays-By-Design (Applied Biosystems, Foster City, CA) . The primer sequences 

used to genotype these polymorphisms are available on request. The assays utilized 

5 nanograms of genomic DNA and 5 microliter reaction volumes. The amplifi cation 

and extension protocol was as follows: an initial activation step of 10 min at 95°C 

preceded 40 cycles of denaturation at 95°C for 15 s. and annealing and extension 

at 50°C for 60 s. Allele-specifi c fl uorescence was then analysed on an ABI Prism 

7900HT Sequence Detection System with SDS v 2.1 (Applied Biosystems, Foster City, 

CA). 

Covariate adjustment and data analysis

The general characteristics of the study population were compared for the total 

sample as well as in two age categories (< 55 years; ≥ 55 years) using either the 

t-test (continuous variables) or chi squared test (categorical variables). Inbreeding 

coeffi cients were computed based on all available genealogical information using 

PEDIG software (31). As the inbreeding values were not distributed normally, we 

categorized these into quartiles.

The observed frequencies of the genotypes were tested for deviations from 

Hardy-Weinberg equilibrium proportions using the chi-square test (one degree of 

freedom). As the participants of the study were connected to a single extended 

pedigree, we used linear mixed models to evaluate the effect of SBP, DBP, IMT and 

genetic variants on the cognitive tests. Linear mixed models allow adjustments for 

family structure to be made. The models were adjusted for age, age2 (to account 

for non-linear age effects), sex, inbreeding, general cognitive ability (DART) and 

anti-hypertensive medication (32). Because of the skewed distribution, the AVLT trial 

VII, TMT-A, TMT-B, block design and cards I, II and III of the Stroop colour-word 

test were log-transformed to improve normality.

Next we evaluated the effect of the polymorphisms in the four blood pressure 

genes on the cognitive tests, based on an earlier analysis (manuscript in preparation). 

Genotypes of the four genes were pooled as follows: GG = 0, GW/WW = 1 for 
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ADD1 (17); MM/MT = 0, TT = 1 for AGT (33); CT/TT = 0 CC = 1 for AT1R and AA 

= 0, AG/GG = 1 for GNβ3. The latter two polymorphisms were pooled based on 

the blood pressure levels in our population (van Rijn MJ et al. 2006, manuscript 

in preparation). To evaluate the effects of the combined genetic polymorphisms, 

a variable was created for additive effects of the risk alleles (0, 1, 2, 3 and 4 risk 

alleles). The models were adjusted for the aforementioned covariates, except for anti-

hypertensive mediation. All analyses were performed using the SOLAR package (34).

RESULTS

All 1041 subjects were connected in a single pedigree consisting of 9800 individuals. 

The general characteristics of the whole study population, as well as of the two 

age categories, are presented in table 1. The mean age of the total population was 

55 years (SD ±15.10). The mean level of inbreeding was signifi cantly higher in the 

group of 55 years and above. Hypertension and atherosclerosis were signifi cantly 

more prevalent in the old age group (p value < 0.001) (table 2). The mean level of 

education was signifi cantly lower in the group of 55 years and above.

Table 2 shows the effects of the vascular risk factors on cognitive function in 

the total sample and in two age categories (< 55 years and ≥ 55years). Overall, 

DBP was signifi cantly associated with a worse performance on the TMT-A test and 

card II of the Stroop colour-word test. In contrast, SBP was signifi cantly associated 

with a better performance in the TMT-A. IMT was signifi cantly related to a worse 

performance in all of the tasks in the Stroop colour-word test (cards I-III), as well as 

to a worse performance on semantic fl uency. In the age-stratifi ed analysis, SBP was 

Table 1. Characteristics of the study population by two age categories

Demographic variables All sample <55 years (n=520) ≥ 55 years (n=521)

Age (years) 54.27 (15.10) 41.77 (9.02) 66.68 (9.01)†

Men (%) 40.8 38.7 41.3

Inbreeding 0.006 (0.007) 0.005 (0.006) 0.007 (0.008)†

University degree or higher (%) 3.5 6.3 1.0†

Systolic blood pressure (mm Hg) 141.44 (21.86) 132.32 (16.72) 152.08 (22.36)†

Diastolic blood pressure (mm Hg) 80.22 (10.09) 78.97 (10.27) 81.64 (9.73)†

Hypertension (%) 49.0 28.5 73.1†

Anti-hypertensive medication use (%) 21.71 10.5 33.0†

Common carotid IMT 0.86 (0.21) 0.74 (0.12) 1.02 (0.19)†

Continuous values are presented as means (SD)

IMT (Carotid Intima Media Thickness)
†p value < 0.05 compared with people older than 55 years
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88 Chapter 6

signifi cantly associated with better performance in both tasks of TMT in the group 

or 55 years and older. IMT was signifi cantly associated with lower performance in 

the Stroop colour-word test (cards I-III) in this age group. In those younger than 55 

years, DBP showed an association with a poorer performance in TMT-A, whereas 

IMT was signifi cantly associated with worse performance in semantic fl uency and the 

Stroop colour-word test.

The genotype frequencies of the AGT M235T, the AT1R C573T, the ADD1 

G460W, and the GNβ3 rs2301339 G/A polymorphisms were in Hardy-Weinberg 

Equilibrium proportions (p value = 0.72 for AGT, p value = 0.30 for AT1R, p value 

= 0.58 for ADD1 and p value = 0.18 for GNβ3). Table 3 presents the effects of the 

polymorphisms of the AGT, AT1R, ADD1 and GNβ3 genes on the cognitive tests. 

The AGT M235T polymorphism was associated with better performance in the AVLT 

trial VII test (recognition task; p value = 0.01). Carriers of at least one AAD1 460W 

allele had a lower performance in phonological fl uency than non-carriers (p value = 

0.04), whereas carriers of the GNβ3 G allele had lower performance in both TMT-B 

(cognitive fl exibility; p value = 0.02) and in card III of the Stroop colour-word test 

(susceptibility to interference; p value = 0.05).

Table 3. Eff ects of four blood pressure genetic polymorphisms of blood pressure genes on cognitive tests

Cognitive tests AGT AT1R AAD1 GNβ3

AVLT-trial I (short-term memory) -0.123 (0.105) 0.014 (0.093) -0.029 (0.092) 0.152 (0.160)

AVLT-trials II- V (learning) -0.635 (0.559) -0.758 (0.504) -0.779 (0.493) -0.740 (0.842)

AVLT- trial VI (delayed recall) -0.022 (0.192) -0.013 (0.173) -0.221 (0.168) -0.150 (0.293)

AVLT- trial VII† (recognition) 0.129 (0.048) 0.060 (0.044) 0.007 (0.042) -0.085 (0.075)

Semantic fl uency (verbal fl uency) 0.041 (0.641) -0.712 (0.584) -0.643 (0.572) 0.756 (0.961)

Phonetic fl uency (verbal fl uency) -0.236 (0.688) 0.188 (0.619) -1.256 (0.608) 0.976 (1.035)

TMT-A† (psychomotor speed)* 0.038 (0.893) -1.134 (0.808) 1.449 (0.791) -0.661 (1.327)

TMT-B† (cognitive fl exibility)* 0.703 (1.160) -0.400 (1.054) 1.749 (1.034) 4.071 (1.746)

Card I† (reading abilities)* 0.475 (0.508) 0.599 (0.460) -0.073 (0.449) -0.298 (0.766)

Card II†(reading abilities)* 0.432 (0.453) -0.064 (0.410) 0.374 (0.403) -0.044 (0.676)

Card III† (susceptibility to interference)* 0.920 (0.561) 0.566 (0.510) 0.420 (0.501) 1.676 (0.841)

Block Design† (visuospatial abilities) 1.089 (1.112) -0.290 (1.000) -0.451 (0.985) 1.165 (1.643)

Values presented are the regression coeffi  cient of the genetic polymorphism (s.e. are in brackets) onto the cognitive tests

AVLT (Auditory verbal learning test)

TMT (Trail Making Test)
†Log-transformed cognitive tests 

All models were adjusted for age, age2, sex, inbreeding, education, DART, antihypertensive medication and family structure

The genotypes were pooled as: AAD1: GG=0, GW/WW =1; AGT: MM/MT =0, TT=1; GNβ3: AA=0, AG/ GG=1; AT1R: TT/TC=0 CC=1

Signifi cant regression coeffi  cients (p value < 0.05) are in bold

* Positive correlation is associated with lower cognitive performance (for time demanding tasks)
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89The eff ects of blood pressure, intima media thickness and four blood pressure genes on cognitive function
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90 Chapter 6

The effects of the combined risk alleles of the four blood pressure genes are 

presented in table 4. There was a trend towards lower performance in all cognitive 

tests with increasing number of risk alleles. There was a signifi cant difference of 

10 words in AVLT trials II-V (learning) when comparing carriers of the four risk 

alleles against non-carriers (learning; p value = 0.007). The difference between 

these groups for the card III of the Stroop colour-word test was also statistically 

signifi cant (susceptibility to interference; p value = 0.02). The effect of the combined 

risk alleles on the TMT-B was borderline signifi cant (cognitive fl exibility; p value 

= 0.06). Further stratifi ed analysis showed that the effect of the combined alleles 

was signifi cant for those younger than 55 years old for AVLT trials II-V (learning; 

p value = 0.007), whereas in the card III of the Stroop colour-word test, the effect 

of the combined alleles was driven mainly by the group of 55 years and older 

(susceptibility to interference; p value = 0.003).

DISCUSSION

In this family-based study, we found that DBP was associated with lower cognitive 

performance in both TMT-A and card II of the Stroop colour-word test. IMT was 

signifi cantly associated with a worse performance in all tasks of the Stroop test 

as well as with semantic fl uency. In contrast, SBP was associated with a better 

performance in TMT-A, and in card II of the Stroop colour-word test. Furthermore, 

the AGT 235T allele was associated with better performance in the recognition task. 

Lower phonological fl uency in carriers of at least one ADD1 460W allele was found 

whereas the GNβ3 A allele was related to a poorer cognitive performance in tests 

evaluating cognitive fl exibility and susceptibility to interference. The combined 

risk alleles of the four genes were signifi cantly associated with lower performance 

in tasks evaluating learning and susceptibility interference. This association was 

borderline signifi cant for cognitive fl exibility.

In this study, most of the cognitive tests were adversely associated with blood 

pressure and atherosclerosis, which is in line with previous studies (8, 35). However, 

SBP was associated with improved performance in TMT-A and TMT-B in those 

aged 55 years and older. The better cognitive performance in those with high SBP 

is counter-intuitive, but in line with a number of epidemiological studies (for a 

review see (36)), suggesting that with aging the brain may become more susceptible 

to hypoperfusion leading to lower cognitive function (5). High SBP may prevent 

hypoperfusion in the brain, thereby improving cognitive function. On the other 

hand, high blood pressure at a young age may lead to cerebral vessel damage, as 

shown by fi ndings in the Framingham study (35).
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91The eff ects of blood pressure, intima media thickness and four blood pressure genes on cognitive function

This is the fi rst study in which the four RAAS genes involved in blood pressure 

regulation have been evaluated in relation to cognitive function. In this analysis, 

polymorphisms of two genes involved in salt-sensitivity variation, the GNβ3 and 

AAD1 genes, were associated with a poorer performance in tasks evaluating 

executive function (cognitive fl exibility, susceptibility to interference and verbal 

fl uency). When combining all alleles associated with increased blood pressure, there 

was a decrease in the performance in all cognitive tests, but this was statistically 

signifi cant only in the tests evaluating learning and susceptibility to interference. 

The association of the AGT 235T allele with better recognition is unexpected as 

this allele has been associated with higher blood pressure through the effects of 

increased angiotensinogen levels (13). However, angiotensin II has been associated 

with improved memory in several studies (for a review see (12)). A major issue of 

this analysis is that the assumption of the additive effects of the risk alleles might 

not be true, as most of the gene-gene interactions in previous studies are modelled 

assuming multiplicative effects. However, it has been recently suggested that 

modelling gene-gene and gene-environment interactions using an additive scale may 

indeed be of biological relevance (37). 

In our study, multiple tests were conducted with candidate genes. However, 

the polymorphisms we studied were chosen based on previous research, which 

suggested that these polymorphisms are associated with blood pressure variation 

among the participants of our study. Here, we tested whether these specifi c 

polymorphisms were also associated with cognitive function. Our fi ndings of 

association between blood pressure genes and cognitive function seem to contradict 

our earlier study, in which no signifi cant genetic correlations between vascular 

factors and cognitive function were found (32). However, the lack of genetic 

correlation may be explained partly by the small number of subjects studied.

In conclusion, we have shown signifi cant associations between vascular factors 

and the polymorphisms of four blood pressure regulating genes with cognitive 

functions. Polymorphisms of genes involved in salt-sensitivity pathways had 

signifi cant effects on lower executive function. These fi ndings suggest that genes 

involved in blood pressure explain a small proportion of the variation in cognitive 

function. 
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INTRODUCTION

Alzheimer’s disease (AD) is a late-onset neurodegenerative disorder that affl icts more 

than 24 million individuals worldwide (1). It is expected that this number will double 

in the next 20 years (1). Dissecting the genetics of AD is one of the most challenging 

endeavours for researchers in the fi eld of human genetics and genetic epidemiology. 

A major diffi culty in the identifi cation of genes involved in AD pathogenesis is that it 

is a complex disorder. Multiple genes, each with a small effect, interacting with each 

other and with environmental factors, can confer an increased risk for the disease, 

while rare genetic variants with large phenotypic effects can also cause AD. APOE is 

an example of a gene that can confer an increased risk of AD while APP, PSEN1 and 

PSEN2 are examples of genes with rare variants that cause AD.

As a consequence of the complexity of AD, large sample sizes are required in 

order to estimate the multiple parameters describing a complex system. Alternatively, 

one may attempt to study the system in a setting in which the complexity is expected 

to be reduced. 

Studies in genetically isolated populations are an example of a method for 

reducing the genetic complexity of AD. In such populations, the genetic and 

environmental heterogeneity of complex diseases is expected to be reduced. 

Genetically isolated populations have been proven to be a powerful setting for 

fi nding genes for both Mendelian and complex disorders (2, 3). 

Further, it may also be possible to identify a less complex subsystem of a 

complex disease that can be measured as continuous trait, and concentrate on 

elucidating the genetics of this trait. Endophenotypes provide an example of 

subsystems that can reduce the complexity of diseases, which are caused by 

alterations in different biological pathways. Endophenotypes are traits that are in a 

strong causal relationship with the disease of interest, but are more closely associated 

with the genes underlying the disease. Thus, these traits have a less complex genetic 

architecture (4). 

In this thesis the genetic determinants of cognitive function, which is a potential 

endophenotype for AD, were studied in a young genetically isolated population. In 

this chapter the results of the thesis are discussed. In the fi rst section, the advantages 

and disadvantages of using genetically isolated populations to study complex 

diseases are considered. In the second section, the characteristics of potential 

endophenotypes for AD are discussed. In the third and fourth sections, the genetics 

of cognitive function are discussed. In the last section, possible directions for future 

research in this and other populations are discussed.
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GENETIC RESEARCH IN ISOLATED POPULATIONS

A genetically isolated population usually implies a relatively small group of people 

who have a common population history. This history is described by the time since 

foundation or most recent bottleneck, the number of founders, the population 

growth history (whether the population has undergone expansion or not), the rate 

of immigration, and the pattern of marital choice. The interactions between these 

parameters dictate how large founder and drift effects will be and how large the 

extent of linkage disequilibrium (LD) in the population is. 

In any study of a genetically isolated population it is very important to determine 

the magnitude of founder/drift effects and LD in the study population (5). Both 

effects are double-sided. Strong drift and founder effects tend to deviate the genetic 

pool of isolated populations from that of the general population (3). This makes 

isolated populations suited to the identifi cation of rare genetic variants since these 

variants might reach higher frequencies in particular isolates. However, large 

deviations from the allele frequencies found in the general population reduce the 

chance that any fi ndings can be extended to other populations, as these variants can 

become population-specifi c. 

If a very strong LD between markers and a putative disease locus can be 

expected, the marker coverage of the genome required for association studies may 

be sparse compared to that required in the general population. On the other hand, 

high LD may limit the precision of fi ne mapping of a locus region (3). 

In this context, young genetically isolated populations can present a very 

attractive compromise between reduced heterogeneity and extendibility. Such 

populations, like any relatively small genetically isolated population, are expected to 

have a more homogenous environmental background, and should exhibit moderate 

amounts of LD. Yet, these populations may be very similar to the general population, 

except for the frequencies of rare variant alleles.

GRIP population: a young genetically isolated population

The studies described in this thesis have been conducted within the framework 

of the Genetic Research in Isolated Populations (GRIP) program. The study 

population is located in the Southwest of The Netherlands and it is known from 

historical records that the population was founded in the 18th century by a limited 

number of individuals (<400). In this population new genes and mutations were 

identifi ed for disorders such as early-onset Parkinson’s disease (PD) (DJ-1 gene) 

(6) and hereditary hemochromatosis (SLC11A3 gene) (7). In the past three years, 

research has been conducted to clarify the extent of LD in the GRIP population. 

Aulchenko et al, studied the pattern of LD across the whole genome in a sample 
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of 58 unrelated subjects using micro-satellite markers (8). Moderate LD was found. 

The extent of LD was higher than that observed in the general population (UK) but 

lower than in an old, large genetically isolated population (Finland). The degree 

of LD in GRIP was similar to that of other young, genetically isolated populations 

such as in Palau and the Central Valley of Costa Rica. These fi ndings have been 

confi rmed in a more recent study in which a sample of 200 unrelated individuals 

from the GRIP population was analysed. Service et al, studied LD in 12 genetically 

isolated populations, using a dense map of 2486 SNPs covering chromosome 22 (9). 

They have shown that LD in the GRIP population is similar to that in other young, 

genetically isolated populations. For these populations, it was estimated that an 

approximately 30% reduction in the number of SNP markers would still achieve the 

same effi ciency of coverage in a whole genome screen compared to the general 

population. However, the overall magnitude of LD was different across the different 

young isolated populations (9), which highlights the fact that other factors such as 

founder population size, inbreeding and admixture are also major determinants of 

the LD in a given population. 

In chapter 3 of this thesis, genetic drift and founder effects in the GRIP 

population were studied (9). It was shown that drift and founder effects are strong 

only for variants with frequencies lower that 1%. At the same time, common 

genetic variants identifi ed in the GRIP population are likely to be present at similar 

frequencies in the general population. Table 1 presents empirical support for these 

theoretical fi ndings by comparing the frequencies of common variants of three 

genes (APOE, AGT and CETP) in the GRIP population with their frequencies in 

other Caucasian and non-Caucasian populations. The frequencies of these common 

variants in the GRIP population are similar to the frequencies in the general Dutch 

population and other populations of Caucasian origin. In contrast, the frequency 

Table 1. Allele frequencies of the variants genotyped in GRIP compared with Caucasian and non-Caucasian populations

 Population APOE*4 AGT T235 CETP V405

Caucasian    

GRIP 0.20* 0.48* 0.30**

Finland 0.19 (54) 0.46 (55) 0.37 (56)

General Dutch population 0.15 (57) 0.40** 0.32 (58)

Other Caucasian populations 0.14 (54) 0.45 (59) 0.30 (60)

Non-Caucasian    

African descendants 0.31 (54) 0.83 (61) 0.695†

Asia (Japanese-Chinese) 0.117 (54) 0.76 (61) 0.568† 

* This thesis (chapter 5,6)
** Unpublished data
† dbSNP (rs5882; http//www.ncbi.nlm.nih.gov/SNP)
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of the DJ-1 deletion that causes recessive PD was approximately 0.9% in the GRIP 

population. Although mutations in the DJ-1 gene were found in other populations, 

the specifi c deletion was absent (10). These results confi rm that genetic variants 

identifi ed in young isolated populations can be extended to more general contexts, 

provided that they are relatively common (frequency > 1%). 

In conclusion, the GRIP population represents a typical example of a young 

genetically isolated population. Work presented in this thesis shows that the genetic 

composition of the GRIP population does not deviate much from that of the general 

population. 

Gene-mapping in genetically isolated populations

Genetically isolated populations represent a methodological and computational 

challenge to genetic epidemiologists. One of the major issues when conducting 

research in isolated populations is that the probability that 2 alleles at the same locus 

are identical by descent (IBD) is higher than in outbred populations (11). This holds 

both for 2 alleles at the same locus in one individual (inbreeding) and for 2 alleles 

randomly sampled from 2 different individuals (kinship). Considerable caution must 

therefore be taken in the interpretation of any fi ndings in isolated populations using 

current statistical methods (linkage and association studies) (11). 

In standard affected sib-pair methods, which are commonly used to search 

for loci in complex diseases, sibs are expected to have 0, 1 or 2 alleles identical 

by descent (IBD), with probabilities of 0.25, (0 alleles), 0.50 (1 allele) and 0.25 (2 

alleles) (the null hypothesis). In affected sib-pairs analysis, any excess of sharing 

between sibs is considered a signal of linkage (12). When parents are either related 

or inbred, the expected shared IBD probabilities between sibs might increase under 

the null hypothesis, as the expected shared IBD probabilities were derived assuming 

unrelated parents. The probability of false positive linkage fi ndings increases if this 

is not taken into account (12). Likewise, in genetic mapping using dominant models 

and in homozygosity mapping, higher rates of false positive linkage results are 

obtained when not all kinship and/or inbreeding information is used (Fan et al, 2006 

in press). 

Higher kinship and inbreeding also affect the type-1 error in association studies, 

if patients are substantially more closely related than controls (13). The association 

studies of quantitative traits described in chapters 5 and 6 were performed using 

a linear mixed modelling approach that accounted for the complete pedigree 

information, including thousands of individuals and multiple loops. Therefore, it is 

unlikely that the fi ndings in these chapters are due to cryptic relationships between 

individuals in the study population.
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Another problem is the computational burden caused by the complex pedigrees 

derived from isolated populations. The extensive genealogical records that are 

available for some isolated populations reveal that individuals are inter-related 

through multiple connections. These extended pedigrees become too complex 

for linkage analysis using standard computer programs (11). An alternative is to 

decompose these complex pedigrees into smaller pedigrees, although this might 

reduce the power of the study (11) and increase the risk of type-1 errors (Fan et al, 

2006 in press). For association studies there are methods that account for complete 

genealogical information (14), but they require extensive computational time. High 

performance parallel computing provides one option to speed-up the analysis. Faster 

methods, which account for pedigree structure, such as the restricted maximum 

likelihood method are also an alternative. 

ENDOPHENOTYPES FOR ALZHEIMER’S DISEASE AD

Endophenotypes are the intermediate traits that lie in the pathways relating genes 

to diagnostic entities, but have a simpler genetic architecture than the disease itself 

(4, 15). Criteria to describe an endophenotype have been developed in the fi eld of 

psychiatric genetics (4, 15, 16): (i) the endophenotype has to be associated with the 

disease (ii) the endophenotype should be heritable; (iii) the endophenotype should 

manifest in both affected and unaffected individuals and (iv) the endophenotype 

should occur with a higher frequency in relatives of probands than in the general 

population (15, 16). Current endophenotypes for the genetic analysis of AD can 

be grouped into cognitive tests, brain imaging-derived measures and biochemical 

markers (17).

Cognitive tests

AD is characterized by insidious cognitive decline (18). Although patients with 

AD may also exhibit behavioural and motor symptoms, the main feature of AD 

is global cognitive impairment (18). Cognitive defi cits can be assessed using 

neuropsychological tests (18), which have high sensitivity and specifi city to 

differentiate between different dementia subtypes (18, 19). 

Cognitive traits are suitable for genetic analysis. The heritability of general 

cognitive ability has been estimated to be as high as 50% (20), although for other 

specifi c cognitive domains the estimates are lower and vary according to the study 

design and the population studied (chapter 4). Furthermore, lower cognitive function 

is observed in the relatives of AD cases, especially early onset AD (21). 
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An important caveat in using cognitive domains as endophenotypes for genetic 

analysis is that other variables, such as educational achievement, or depression, may 

affect the assessment of cognitive function (22). For this reason, neuropsychological 

assessment might have lower sensitivity and specifi city than neuroimaging to identify 

pre-clinical AD (23). A major advantage of neuropsychological assessment is that it 

is easy to implement by trained personnel and allows evaluation of large numbers of 

individuals.

Neuroimaging

There is evidence that brain volume is an inheritable trait. A high heritability of 

both grey matter (90%) (24) and white matter (87%) (25) was demonstrated by 

using magnetic resonance imaging (MRI) in twins. Signifi cant heritabilities for 

regional brain volumes have also been demonstrated (26). Measures derived from 

neuroimaging studies have been used as endophenotypes for AD (22), as they 

correlated with AD (27). In addition, fi rst-degree relatives of AD cases show a 

higher degree of structural and functional changes in the brain, without any clinical 

manifestation (28). 

A complication when using these quantitative imaging measures is the high 

implementation cost and time as specialized personnel are required to analyse the 

imaging data. Thus far, such studies were based on relatively small sample sizes. 

Developments in neuroimaging may make large-scale studies feasible in the future. 

Biochemical markers

The β-amyloid protein (Aβ) is a key element in the cascade of events that leads to 

AD (29). Increased concentrations of the Aβ
42 

and Aβ
40 

fragments of the Aβ protein in 

blood have been associated with AD in some studies (30, 31). Recently, it has been 

shown that low levels of the Aβ
42 

fragment, together with the levels of tau protein, in 

cerebral-spinal fl uid (CSF) have high sensitivity and specifi city to predict AD (31). Aβ 

levels are heritable, with estimates of 56% for Aβ
42
 levels and 41% for Aβ

40
 levels in 

AD families (32). In addition, several studies have shown that fi rst-degree relatives of 

late onset AD cases are at risk of exhibiting higher levels of Aβ (32). 

One major issue is that the assessment of Aβ
40
 and Aβ

42
 levels in CSF is an 

invasive procedure. Aβ
40
 and Aβ

42 
levels can also be determined in plasma. However, 

the levels of these proteins vary with age and with the levels of serum creatinine, 

and correlate poorly with the levels in CSF (33). In addition, in cross-sectional studies 

a large overlap between the levels on these proteins in AD patients and in controls 

has been found (33). In summary, these endophenotypes await further technical 

development. 
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GENETIC STUDIES OF COGNITIVE FUNCTION

Heritability studies

The classical approach to model the genetic variation of a continuous trait is to 

partition the phenotypic variance (V
P
) of a trait onto its genetic and environmental 

variance components (V
G
 and V

E 
respectively) (34): V

P
 = V

G
 + V

E 

The proportion of phenotypic variance that is explained by genetic factors is 

denominated heritability (34).

Twin studies are often used to estimate heritability (35). In this design, the 

heritability is estimated as twice the difference of the intra-class correlation of 

monozygotic twins minus the intra-class correlation of dizygotic twins (26). The main 

limitation of twin studies is that shared genetic and environmental effects cannot be 

discriminated using only sib-correlations (35). Therefore twin studies tend to give 

infl ated heritability estimates. It has been argued that for cognitive function this does 

not represent a problem, as early shared environmental effects may not infl uence 

cognitive abilities in late life. Yet, it has been shown that non-genetic infl uences may 

have an important contribution to specifi c cognitive domains such as verbal fl uency 

(36). In addition, the assumption of homogenous environmental effects for both 

monozygotic and dizygotic twins might not apply (37). 

The above caveats for the twin studies may be overcome by using adoption 

studies that compare correlations between twins reared apart and adopted children 

with shared environments (35). These studies are powerful in discriminating between 

shared environmental and genetic effects, but they are limited by the scarcity of 

suitable subjects. 

Alternatively, heritability can be also estimated by including other types of 

relatives in the analysis. Distant relatives are not expected to share a common 

environment and therefore studies based on extended pedigrees may provide more 

reliable estimates of heritability. These studies are less discriminative than adoption 

studies, but have the advantage of the availability of large numbers of subjects. 

Heritability estimates range across different populations as well. Differences in 

the heritability estimates for cognitive function have been attributed to differences in 

the genetic background, but even more to differences in the environment. Despite 

these shortcomings, heritability analysis is a powerful method to determine whether 

genes are accounting for a large proportion of the variance of a cognitive trait.

Defi nitions of phenotypes for genetic analysis

Cognition is a composite of multiple, highly correlated cognitive abilities (18). Early 

studies of the variation of psychometric intelligence test results among individuals 

showed that a general factor (general intelligence or “g” factor) explained a large 
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proportion of the variation of cognitive tests (38). Furthermore, multivariate genetic 

studies of intelligence have also shown that “g” explains a large proportion of the 

genetic variance of psychometric tests (38). From a genetic perspective, this might 

imply that the genetic make-up of cognitive function is constituted by “general” 

genes that are common to all cognitive domains rather than specifi c genes that affect 

only a single domain (39).

However, cognition is a complex trait. As for other complex traits, the genetic 

architecture of cognition will most likely consist of multiple genes each with a mild 

effect on the expression of human cognitive variation (40). With this assumption 

in mind, it might be more powerful to study the genetics of cognitive function in 

discrete entities, rather than considering cognition a single unit (41), especially if the 

goal is to fi nd genetic and environmental determinants for AD. 

Functional studies have revealed that the APOE variant APOE*4 is associated 

with alterations in the brains of non-demented subjects at high risk for AD (such as 

fi rst-degree relatives or carriers of early-onset AD mutations) that are similar to those 

observed in AD patients (28). Therefore this genetic variant may also be valuable to 

underscore changes in domains of cognition that are stronger correlated with AD and 

its prodromal phases. For example, in chapter 5 of this thesis, the relation between 

APOE and cognitive function was evaluated. The APOE*4 allele was associated with 

a worse performance in cognitive tests measuring short-term memory and executive 

function. There was no effect on other cognitive domains. These results suggest that 

reduced short-term memory and executive function might be early markers for AD 

and therefore potential endophenotypes for genetic studies. 

Other risk factors may have effects on specifi c cognitive domains. For example 

hypertension has been shown to affect executive function (43), whereas visuospatial 

abilities appear not to be affected (44). In chapter 6, the relationships between blood 

pressure and atherosclerosis with cognitive function were studied. Increased blood 

pressure and IMT were associated mainly with lower executive function whereas 

memory-related tests did not show any association. The fi ndings presented in 

chapter 5 and 6 demonstrate that cognitive domains are differentially affected when 

comparing the APOE*4-related spectrum (typical from AD) and hypertension-related 

spectrum (typical of vascular dementia).

Inbreeding, AD and cognitive function

Although genetic factors have been shown to play an important role in the 

pathogenesis of late onset diseases such as AD, the genetic background of such 

disorders is poorly understood. There is some evidence that recessive or partially 

recessive variants might be implicated in late onset disorders (45). Such variants 

might escape strong selective constraints because they only have detrimental effects 
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during post-reproductive life (45). The mutation-accumulation hypothesis predicts 

that these alleles accumulate in the genome, contributing to aging and related 

disorders (46). This is in line with the increase in the genetic variance observed for 

several late onset disorders (45). 

There is evidence that inbreeding has an impact in late onset diseases such 

as hypertension (47, 48). Inbreeding increases the genetic homozygosity and thus 

enriches the genome of individuals with recessive variants (49). For AD, the evidence 

is scarce. Only one study has reported a higher prevalence of AD associated with 

inbreeding (50). Furthermore, mutations in 3 genes that cause early onset AD are 

clearly dominant (29). However, these mutations have a minor contribution to the 

total burden of the disease in the general population (51). Thus, it is likely that other 

genetic variants with less strong effects on the fi tness of individuals may be part of 

the genetic background for late onset AD.

Studies of inbreeding and cognitive function date back to as early as 1978 (52). 

Morton showed that inbreeding had detrimental effects on cognitive performance. 

In addition he showed that these effects were entirely due to recessive variants. 

In chapter 4 of this thesis, the effects of inbreeding on cognitive function in a 

sample of 2575 subjects from the GRIP population were investigated. Although 

the percentage of inbred participants in the GRIP population is high (75%), the 

inbreeding coeffi cients were on average low (mean value 0.006; lower than the 

value corresponding to a second-cousin marriage: 0.02). In the GRIP population, 

inbreeding was associated with lower visuospatial abilities and executive function. 

The effect was very small, but the fi ndings suggest that inbreeding contributes to the 

variation in general cognitive function in adults. Furthermore, the results demonstrate 

that the GRIP population may be a useful setting in which to fi nd rare recessive 

variants associated with late onset AD.

POWER OF ASSOCIATION STUDIES IN ERF 

A family-based study was conducted in the GRIP population. The Erasmus 

Rucphen Family (ERF) study was designed to fi nd susceptibility genes associated 

with quantitative traits related to complex diseases. The ERF study includes 2996 

participants belonging to 22 5-generation families, selected on the basis of the 

number of sibs (at least 5) in the second generation (5). This is the setting for the 

genetic epidemiological studies to search for genes implicated in cognitive function 

described in this thesis. One of the important questions to be addressed is: How 

powerful is the ERF study to detect genetic variants with small phenotypic effects? 
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Several genes have been genotyped in approximately 1000 participants of the 

ERF study. Preliminary power studies have shown that this sample has about 80% of 

the power required to detect a candidate polymorphism explaining as little as 1% of a 

trait’s variation at the nominal signifi cance level of 0.05. In this thesis, the associations 

between cognitive functioning and the APOE gene were investigated. In the study 

described in chapter 5, the APOE*4 variant was associated with specifi c cognitive 

domains, contributing to less than 2% of the variance of those domains, which was in 

line with previous studies (42, 53). This provides an empirical proof of the high power 

of our study sample to detect gene variants with modest effects on phenotype.

FUTURE RESEARCH

In the ERF study, extensive phenotypic information has been gathered for 

2996 subjects belonging to 22 extended pedigrees. In addition, genotyping of 

approximately 6000 SNPs (1 SNP every 0.5 cM on average) is on-going. This 

tremendous amount of information represents a methodological and computational 

challenge. It is also not yet quite clear what are the most powerful analytical 

methods in the setting of the ERF study.

The most interesting and powerful approach is perhaps Genome Wide 

Association (GWA) analysis. As demonstrated in this thesis, the GRIP population 

is a young genetically isolated population that is representative of both young 

isolates, and the general Caucasian population. We expect that common variants 

found in relation to cognitive function in the GRIP population will also have a role 

in determining cognitive ability in other populations. We have also shown that the 

ERF study is suffi ciently powerful to detect small genetic effects such as those of the 

APOE gene on specifi c cognitive domains. It is likely that other loci are implicated 

in cognitive function, as this gene only explained a small proportion of the variance 

of the cognitive domains. In addition, in the GRIP population there is moderate LD 

between genetic markers. This improves the marker coverage of the genome in ERF 

participants.

It may be expected, however, that there are also rare variants affecting cognitive 

function in the GRIP population. Under this assumption, linkage analysis should be 

a powerful method in the ERF study. The ERF families were selected based on large 

sibships that are critical for genome-wide linkage analysis. For cognitive function, 

inbreeding was associated with reduced executive function and visuospatial abilities 

(chapter 4). Therefore, homozygosity mapping may be an interesting approach to 

identify genetic variants associated with specifi c cognitive functions. 
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However, the same strict criteria employed for both association and linkage 

studies need to be applied to the ERF study to reduce both the type-1 and -2 errors 

associated with linkage and association studies. There are major methodological 

challenges, including the defi nition of phenotypes, to be overcome ahead of 

performing genome-wide analyses in the ERF study. The fi ndings presented in this 

thesis indicate that specifi c cognitive domains will be suited to genetic analysis, 

especially in the context of AD. Memory and executive function, for example, might 

be valuable endophenotypes for AD in the ERF study, as shown by the signifi cant 

effects of APOE*4, the well-known risk factor for AD, on these 2 cognitive domains. 

In addition, for both memory and executive function the heritability estimates were 

relatively high. Phenotypic defi nition with other tools such as neuroimaging will also 

help to identify better endophenotypes, as well as select subjects at risk for late AD. 

The work presented in this thesis has provided the foundation upon which to 

construct further studies aimed at elucidating the genetics of cognitive function as 

well as that of onset AD. 
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Alzheimer’s disease (AD) is the primary cause of dementia in Western societies, 

affecting approximately 30% of the population aged 90 years or over. Despite the 

huge effort in the scientifi c community to identify the genes involved in AD, the 

genetics of late onset AD are largely unknown. Intermediate phenotypes of AD 

(endophenotypes) may help to identify genetic and non-genetic modifi ers of the 

disease. In this thesis we aimed to identify genetic determinants of cognitive traits 

that are used as intermediate phenotypes for AD in a young genetically isolated 

population in the Southwest of The Netherlands. The research was performed as part 

of the Genetic Research in Isolated Populations (GRIP) program.

In chapter 1, the literature of the genetics of AD and Parkinson’s disease (PD) 

was reviewed in light of the current hypotheses available to explain the genetic 

background of complex disorders: common diseases/common variants and common 

diseases/rare variants. Several strategies to increase the power of genetic studies of 

neurodegenerative disorders were also delineated. 

In chapter 2 the aims and general outline of the research described in this thesis 

are presented.

In chapter 3, founder and drift effects on the GRIP population were examined. 

A large extended pedigree, including 9800 individuals derived from the GRIP 

population, was used to simulate the drift and founder effects. We found that only 

variants attaining initial frequencies equal or lower than 1% will be subjected to drift 

and founder effects, with a high probability of loss and a reduced chance of fi xation. 

To provide empirical confi rmation of the simulated data, the expected heterozygosity 

and mean number of alleles of 592 microsatellite markers from 58 subjects from 

this population were estimated. These parameters were compared with those from 

samples with a different demographic history, namely the CEPH families (general 

population), Icelandic pedigrees (old and large isolated population) and the Talana 

(a sub-isolate with strong founder effects). We observed a lower mean heterozygosity 

and a lower number of alleles in the GRIP population than in the CEPH families 

(general population) and the Icelandic population, but higher than in the Talana 

population. We concluded that the fl uctuations in the genetic pool of the GRIP 

population have occurred due to genetic drift and founder effects, but that these 

effects have only had an impact for rare genetic variants.

In this thesis, the genetics of cognitive traits that are potential endophenotypes 

for AD was examined. In chapter 4, the heritability of specifi c cognitive domains, 

as assessed by standard neuropsychological tests, was estimated in participants 

from a family-based study (The Erasmus Rucphen Family (ERF) study) in the GRIP 

population. The effects of inbreeding on cognitive variation were also examined, 

along with sex- and age-specifi c genetic effects on the phenotypic expression of 

cognitive function. The heritability estimates varied from 10% to 30% for memory-
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related traits, while for executive function the estimate was 36%. Inbreeding 

was associated with worse executive function and reduced visuospatial abilities. 

This analysis also showed that age-specifi c effects might account for age-related 

differences in psychomotor speed and susceptibility to interference. In contrast, there 

was no evidence for sex-specifi c genetic effects on cognitive function. These fi ndings 

suggest that the contribution of genetic factors to the variation in cognitive function 

is domain-specifi c. Furthermore, the signifi cant effects of inbreeding indicate that 

recessive variants may, at least partially, determine the genetic make-up of cognitive 

function.

In chapter 5, we studied the relationship between the APOE gene and cognitive 

function to examine the cognitive profi le associated with the APOE*4 allele in 

non-demented subjects. In addition, we evaluated whether age and sex modulated 

the effect of this genetic variant on the cognitive domains. Carriers of at least one 

APOE*4 allele had worse cognitive performance than non-carriers in short-term 

memory, cognitive fl exibility and susceptibility to interference. These effects were 

modulated by both age and gender, as we observed that the effect was stronger in 

those 50 years and older and also in women. The signifi cant associations between 

the APOE*4 allele and memory and executive function suggests that these cognitive 

tests may be markers of early changes in cognition.

In chapter 6, the association between blood pressure, atherosclerosis and 

polymorphisms in the angiotensinogen (AGT), angiotensin II type 1 receptor (AT1R), 

the α-adducin 1 (AAD1) and the G-protein β-3 subunit (GNβ3) genes were evaluated 

in relation to cognitive function. We found adverse effects of blood pressure and 

atherosclerosis on cognitive tests, mainly with those tests that evaluate executive 

function. The effect of the angiotensinogen AGT M235T, the AT1R C573T, the AAD1 

G460W and the GNβ3 rs2301339 polymorphisms on the cognitive tests were also 

evaluated. There was a signifi cant association between the AGT 235T allele with a 

better performance in the recognition task. In contrast, lower cognitive performance 

in phonological fl uency in carriers of the AAD1 460W allele was found. In addition, 

a worse performance in the tests that evaluate susceptibility to interference, with 

carriers of the GNβ3 G allele was observed. The joint effect of the risk alleles of 

the four genes was also evaluated. Interestingly, worse performance in all cognitive 

tests with increasing number of risk alleles was observed, although it was signifi cant 

only for learning and susceptibility to interference. There were no major differences 

in the stratifi ed age-analysis. Our results confi rm the substantial role of vascular 

factors in reduced performance in cognitive function. In addition, genes underlying 

the variation in blood pressure also contribute to the variation in cognition. The 

association of the AGT 235T allele with better performance in recognition suggests 

that angiotensinogen might have pleiotropic effects in brain. 
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The results of this thesis underscore the value of the GRIP population as a 

powerful setting to do genetic research. Future genetic studies of cognitive function 

in the setting of the ERF study are also promising.
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De ziekte van Alzheimer (Alzheimer’s Disease, AD) is de meest voorkomende 

oorzaak van dementie in de Westerse wereld. Circa 30% van de bevolking van 90 

jaar en ouder lijdt hieraan. Ondanks grote inspanningen binnen de wetenschap om 

genen te identifi ceren die betrokken zijn bij AD, blijven de genetische aspecten 

van de zgn. “late onset AD” grotendeels onbekend. Intermediaire phenotypes van 

AD (endophenotypes) kunnen mogelijk eraan bijdragen om genetische en non-

genetische factoren te identifi ceren, die de ziekte kunnen beïnvloeden. Het doel 

van dit proefschrift is het identifi ceren van genetische determinanten van cognitie, 

die gebruikt worden als intermediaire phenotypes van AD in een jonge, genetisch 

geïsoleerde populatie in het Zuid-Westen van Nederland. Het onderzoek maakt deel 

uit van het GRIP programma (Genetic Research in Isolated Populations).

In hoofdstuk 1, wordt literatuur over de genetica van AD en de ziekte 

van Parkinson (Parkinson’s Disease, PD) beschreven in het kader van de 

huidige hypotheses over de genetische achtergrond van complexe ziektes: veel 

voorkomende/zeldzame varianten van algemeen voorkomende ziektes. Verscheidene 

methoden om de “power” van genetische studies over neurodegeneratieve 

afwijkingen te vergroten worden ook besproken.

In hoofdstuk 2 worden het doel en de algemene opzet van het in dit 

proefschrift beschreven onderzoek uiteengezet.

In hoofdstuk 3 worden “founder” en “drift” effecten binnen de GRIP populatie 

bestudeerd. Een grote en uitgebreide stamboom bestaande uit 9800 personen, 

afkomstig uit de GRIP populatie, is gebruikt om deze “founder” en “drift”effecten 

te simuleren. Wij vonden dat alleen varianten met een initiële frequentie van 1% 

of minder onderhevig zijn aan deze effecten, met een grote kans op verlies en 

een verminderde kans op fi xatie. Om empirische bevestiging te verkrijgen van de 

bevindingen van de gesimuleerde data, zijn de verwachte graad van heterozygotie 

en het gemiddelde aantal allelen van 592 “microsatellite” markers in 58 personen 

uit deze populatie geschat. Deze data is vergeleken met data van personen met 

een andere demografi sche achtergrond, afkomstig van de CEPH families (algemene 

bevolking), uit IJslandse stambomen (oude en grote genetisch geïsoleerde populatie) 

en van de Talana populatie (een sub-isolaat met sterke “founder” effecten). Wij 

vonden een lagere gemiddelde heterozygotie en een kleiner aantal allelen in de 

GRIP populatie dan in de CEPH families (algemene bevolking) en de IJslandse 

populatie, maar daarentegen een hoger aantal dan in de Talana populatie. Wij 

concluderen dat fl uctuaties in de genetische “pool” van de GRIP populatie hebben 

plaatsgevonden door genetische “drift” en “founder” effecten, maar dat deze effecten 

alleen de zeldzame genetische varianten hebben beïnvloed.

In dit proefschrift zijn genetische determinanten van cognitie bestudeerd 

die potentiële endophenotypes vormen van AD. In hoofdstuk 4 is de 
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erfelijkheid van bepaalde cognitieve domeinen, beoordeeld middels standaard 

neuropsychologische testen, geschat bij deelnemers aan een familie-onderzoek 

(ERF Studie, Erasmus Rucphen Familie Studie) binnen de GRIP populatie. De 

effecten van bloedverwantschap tussen ouders op variatie in cognitie zijn ook 

bestudeerd, tezamen met geslachts- en leeftijdsspecifi eke genetische effecten op 

phenotypische expressie van cognitieve functie. Schattingen van de erfelijkheid 

variëren van 10 tot 30% voor geheugen gerelateerde eigenschappen, terwijl voor 

uitvoerende functies de schatting 36% was. Bloedverwantschap tussen ouders was 

geassocieerd met verslechterde uitvoerende functies en verminderde ruimtelijke en 

gezichtsfuncties. Deze analyse toonde ook dat leeftijdsspecifi eke effecten mogelijk 

leeftijdsgerelateerde verschillen in psychomotorische snelheid en vatbaarheid voor 

afl eiding (“interference”) kunnen verklaren. Daarentegen was er geen bewijs voor 

geslachtsspecifi eke genetische effecten op cognitie. Deze bevindingen suggereren 

dat de bijdrage van genetische factoren aan de variatie in cognitieve functie 

domein-specifi ek is. Voorts geven de signifi cante effecten van bloedverwantschap 

tussen ouders aan dat recessieve varianten, ten minste voor een deel, mogelijk de 

genetische basis van cognitieve functie bepalen.

In hoofdstuk 5 hebben wij de relatie tussen het APOE gen en cognitieve functie 

bestudeerd teneinde het cognitieve profi el, geassocieerd met het APOE*4 allel, in 

niet-dementerende personen te onderzoeken. Voorts hebben wij onderzocht of 

leeftijd en geslacht het effect van deze genetische variant op cognitieve domeinen 

beïnvloedt. Dragers van ten minste één APOE*4 allel hadden een verminderde 

cognitieve prestatie t.o.v. niet-dragers wat betreft korte termijn geheugen, mentale 

fl exibiliteit en vatbaarheid voor afl eiding. Deze effecten werden beïnvloed door 

zowel leeftijd als geslacht, daar wij zagen dat het effect sterker was bij hen die 50 

jaar of ouder waren, alsmede bij vrouwen. De signifi cante associaties tussen het 

APOE*4 allel en geheugen en uitvoerende functies kunnen erop wijzen dat deze 

cognitieve testen mogelijk markers zijn van vroege veranderingen in cognitie.

In hoofdstuk 6 wordt de associatie tussen zowel bloeddruk, atherosclerose 

en polymorphismen in het angiotensinogeen (AGT) gen, het angiotensine II 

type 1 receptor (AT1R) gen, het α-adducin 1 (AAD1) gen en het G-protein β-3 

subunit (GNβ3) gen in relatie tot cognitieve functie bestudeerd. Wij vonden een 

negatief effect van bloeddruk en atherosclerose op cognitieve tests, vnl. op die 

tests die uitvoerende functies evalueren. Het effect van de AGT M235T, AT1R 

C573T, AAD1 G460W en GNβ-3 rs2301339 polymorphismen op cognitieve tests 

werd ook bestudeerd. Er was een signifi cante associatie tussen het AGT 235T allel 

en een betere prestatie bij herkenning. In tegenstelling werd een verminderde 

cognitieve prestatie in phonemische vloeiendheid bij dragers van het AAD1 460W 

allel gevonden. Daarnaast observeerden wij bij dragers van het GNβ3 G allel een 
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slechtere prestatie in tests die de vatbaarheid voor afl eiding beoordelen. Ook werd 

het effect van een combinatie van de risico-allelen van deze vier genen geëvalueerd. 

Het was daarbij interessant dat een verslechterde prestatie bij alle cognitieve tests 

werd waargenomen bij een toenemend aantal risico allelen, alhoewel deze bevinding 

alleen voor leervermogen en vatbaarheid voor afl eiding signifi cant was. Er waren 

geen grote verschillen in analyses in verschillende leeftijdsgroepen. Onze resultaten 

bevestigen de grote rol van vasculaire factoren bij verminderde prestatie op cognitief 

gebied. Voorts dragen genen die variatie in bloeddruk beïnvloeden ook bij aan de 

variatie in cognitie. De associatie van het AGT 235T allel en verbeterde herkenning 

duidt mogelijk op de pleiotrope effecten op de hersenen die angiotensinogeen zou 

kunnen hebben.

De resultaten van dit proefschrift benadrukken het belang van de GRIP populatie 

als een krachtige opzet om genetisch onderzoek te verrichten. Toekomstige studies 

van cognitieve functie binnen de ERF studie zijn ook veelbelovend.

Luba bw.indd   120Luba bw.indd   120 30-08-2006   17:45:0930-08-2006   17:45:09



Resumen 121

La enfermedad de Alzheimer es la primera causa de demencia en sociedades 

occidentales afectando aproximadamente un 30% de la poblacion mayor de 90 años 

de edad. A pesar del enorme esfuerzo de la comunidad científi ca para identifi car el 

component genético de de la enfermedad de Alzheimer, los genes responsables de 

las formas más comunes esta patología no han sido completamente determinados. 

Fenotipos intermedios de la enfermedad de Alzheimer (endofenotipos) podrían 

ayudar en la identifi cación de determinantes genéticos y no genéticos de este 

desorden neurodegenerativo. La función cognitiva, entre otros, es un potencial 

endofenotipo de la enfermedad de Alzheimer. Esta tesis presenta estudios realizados 

para identifi car determinantes genéticos de la función cognitiva en una poblacion 

genéticamente aislada en el suroeste de Holanda. Este trabajo hace parte del 

programa llamado “Genetic Research in Isolated Populations (GRIP)”. 

En el capítulo 1, una revisión de la literatura acerca de la genética de la 

enfermedad de Alzheimer y la enfermedad de Parkinson es presentada a la luz de 

las hipótesis mas aceptadas acerca de la variación genética de las enfermedades 

complejas. Además, algunas estrategias para aumentar el poder de los estudios 

genéticos de enfermedades neurodegenerativas es delineada.

En el capítulo 2, el objetivo general de esta tesis es presentado. 

En el capítulo 3, los efectos de deriva genética (genetic drift/ founder effects) 

en la poblacion de GRIP fueron investigados. Para ello, una familia extendida que 

incluyó 9800 individuos fue usada para simular los efectos de deriva genética. 

En este estudio se observó que las frecuencias alélicas iguales a 1% o menores, 

están sujetas a deriva genética, con una alta probabilidad de ser eliminadas 

de la población. Para confi rmar los resultados del estudio de simulación, la 

Heterozigosidad Esperada (EH) y la diversidad alélica fueron estimados usando 592 

microsatelites (short-tanden repeats) en una muestra de 58 personas de la población 

de GRIP. Estos parametros (EH y numero promedio de alelos) fueron comparados 

con los obtenidos de poblaciones con una historia demográfi ca diferente: familias 

CEPH (muestra de una población general), familias de Islandia (representativas 

de una población genéticamente aislada y antigua) y familias de la población de 

Talana (representativas de una población aislada sometida a gran deriva genética). 

En este estudio se observó que la EH y numero promedio de alelos en la población 

de GRIP es menor respecto de las familias de CEPH y Islandia, pero mayor que en 

la población de Talana. Nosotros concluimos que ha habido fl uctuaciones en el 

acervo genético de la población de GRIP debido a deriva genética, pero que estas 

fl uctuaciones solo tienen impacto en variantes alélicas que son raras en la población 

(frequencias ≤ 1%).

En esta tesis, la genética de pruebas cognitivas (potentiales endofenotipos para 

la enfermedad de Alzheimer) fue investidada. En el capítulo 4, la heredabilidad 
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(heritability) de dominios cognitivos específi cos fue estimada en participantes del 

estudio de ERF (Erasmus Rucphen family-ERF) en la población de GRIP. Además, los 

effectos de consaguidad (inbreeding) y la heredabilidad específi ca de sexo y edad 

en la variación de la función cognitiva de los participantes de ERF fueron estimados. 

La heredabilidad estimada fl uctuó entre 10 a 30% en pruebas cognitivas relacionadas 

con memoria, mientras que los estimados de heredabilidad para las pruebas 

relacionadas con función ejecutiva fue en promedio 36%. Además, se observo que el 

grado de consaguinidad entre los padres de un individuo esta asociado a un menor 

rendimiento en pruebas cognitivas que evaluan función ejecutiva y habilidades 

visoespaciales. Este análisis también mostró que la expresión de genes específi ca 

por edad, podría explicar differencias en “rapidez psicomotora” y susceptibilidad 

a la interferencia”. Por otro lado, no encontramos evidencia de que las diferencias 

en la variación en función cognitiva entre mujeres y hombres sea explicada por 

differencias en la expression de genes. Los resultados sugieren que la magnitud de la 

expresión de genes que modulan cognición varía de acuerdo a dominios especifi cos. 

Además, las asociación de consaguinidad con ciertos dominios cognitivos parece 

indicar que parte del material genético que modula cognición esta constituido por 

variantes que actuan de manera recesiva.

En el capítulo 5, la relación entre el gen que codifi ca para la apolipoproteina 

E (APOE) y función cognitiva fue investigada, para examinar el perfi l cognitivo 

asociado con el alelo APOE*4. También investigamos si la edad y el género modulan 

los efectos de este variante genético en determinados dominios cognitivos. Se 

observó que personas con una o dos copias del alelo APOE*4 presentaron un 

menor rendimiento en las pruebas cognitivas que evaluan “memoria de corto plazo”, 

“fl exibilidad cognitiva” y “susceptibilidad a la interferencia” respecto de las personas 

que no son portadoras del alelo APOE*4. Estos efectos son modulados por edad y 

sexo, dado que el efecto fue signifi cativo únicamente en el grupo de sujetos mayores 

de 50 años o en mujeres. Estos efectos estadísticamente signifi cativos entre el 

variante APOE*4 y función cognitiva sugieren que estas pruebas cognitivas podrían 

ser macadores tempranos de deterioro cognitivo asociado con la enfermedad de 

Alzheimer.

En el capítulo 6, la asociación entre presion arterial ateroesclerosis y 

polimorfi smos en los genes angiotensinogeno (AGT), receptor tipo 1 de la 

angiotensina II (AT1R), alfa aducina 1(AAD1) y subunidad 3 de la proteína G 

(GNβ3) fueron evaluados en relación con la función cognitiva. Se observaron 

effectos adversos de la presión arterial (sistólica y diastólica) sobre función cognitiva 

particularmente en las pruebas que evaluan función ejecutiva. Además, se evaluó el 

efecto sobre la función cognitiva de los siguientes polimorfi smos: AGT M235T, AT1R 

C535T AAD1 G460W y GNβ3 rs2301339. Encontramos una asociación signifi cativa 
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entre el alelo T del gen AGT con un mejor rendimiento en la prueba cognitiva 

que evalua “reconocimiento”. Por otro lado, observamos un menor rendimiento 

en la prueba que evalua “fl uencia fonologica” en portadores del alelo 460W del 

gen AAD1, al igual que menor rendimiento la prueba que evalua “susceptibilidad 

a la interferencia” en portadores del alelo G del gen GNβ3. También estudiamos 

el effecto combinado de los alelos de riesgo de los cuatro genes asociados con 

presion arterial sobre la función cognitiva. Un menor rendimiento fue observado en 

todas las pruebas cognitivas por aumento en el numero de alelos de riesgo, aunque 

solo se alcanzó signifi cancia estadística en las pruebas que evaluan “aprendizaje” y 

“susceptibilidad a la interferencia”. No se observó ninguna diferencia en el análisis 

estratifi cado por edad. Nuestros resultados confi rman el efecto substancial de 

factores vaculares en la disminución de la función cognitiva. Además, los genes 

que infl uencian presión arterial contribuyen también a la variación en la función 

cognitiva. La asociación del gen de AGT con un mejor rendimiento en la prueba que 

evalua “reconocimiento” sugiere que este gen podría tener efectos pleiotrópicos en 

el cerebro.

Los resultados de esta tesis subrayan el valor de la poblacion de GRIP para 

realizar estudios genéticos. Futuros estudios en el contexto del estudio de ERF son 

igualmente prometedores en la busqueda de genes involucrados en la función 

cognitiva y la enfermedad de Alzheimer.
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