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Planners of longitudinal studies of binary responses in applied sciences have not yet 
benefitted from optimal designs, which have been shown to improve precision of model 
parameter estimates, due to absence of a computer program. An interactive computer 
program for Bayesian optimal binary repeated measurements designs is presented for this 
purpose. 
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Introduction 

Longitudinal study designs are used in different disciplines of science to study the 

change of a particular outcome variable over time. In smoking prevention studies, 

for example, pupils in primary and secondary school may be followed up to study 

the prevalence of smoking as a function of age. The generalized linear mixed 

model (GLMM) is the most frequently used model for the analysis of longitudinal 

dichotomous data such as smoking status. Optimal design of longitudinal studies 

has been shown useful to improve the precision of the model parameter estimates 

of interest, such as the rate of change, by optimizing the number and timing of 

repeated measurements. For cross-sectional data, the review of McClelland 

(1997) provided a good introduction into optimal design for psychologists. 

Raudenbush and Feng (2001) considered a study with a quantitative outcome in 
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which two groups are followed over time to assess group differences. Optimal 

design techniques were used to optimize power over feasible designs as a function 

of duration of a study, frequency of observations, and number of participants. For 

the GLMM, optimal designs were studied extensively in the literature by Han and 

Chaloner (2004); Niaparast (2009); Niaparast and Schwabe (2013); and Abebe, 

Tan, van Breukelen, and Berger (2014a, c), among others. 

Unfortunately, optimal designs for nonlinear models depend on the 

unknown parameter values of interest, that is, on the regression weights that 

reflect the outcome change over time. Thus, in order to find the optimal design, 

the model parameter values should be known in advance. However, the parameter 

values are always unknown as the design is planned to obtained data for 

estimating them. A common approach to this problem is to use a best guess of the 

parameter values, which leads to locally-optimal designs, that is, designs which 

are optimal for a given set of parameter values (see, e.g., Chernoff, 1953). Such 

designs may not be efficient when the true parameter values differ from those best 

guesses, that is, the design may not be robust for other parameter values. To 

overcome this local optimality problem, various methods have been proposed in 

the literature (see, e.g., Berger & Wong, 2009). The Bayesian approach is one 

way that has been shown to be useful to take into account the uncertainty of the 

parameter values (Chaloner & Larntz, 1989; Atkinson, Donev, & Tobias, 2007; 

Abebe et al., 2014a, b, c; Abebe et al., 2015; among others). The Bayesian design 

literature is vastly restricted to binary response models. However, no user-friendly 

software has been developed so far for Bayesian design of longitudinal studies 

with binary responses. 

Due to the absence of a computer program, planners of longitudinal studies 

in psychology, health sciences, and medicine face the problem of choosing the 

best number and timing of the repeated measurements. Usually the number and 

the allocation of the time points at which the measurements are taken are 

determined by non-statistical criteria. As an example, consider the Dutch smoking 

prevention study, where smoking and other data were collected from 3735 

children in 156 elementary schools by means of a questionnaire at six time points 

between September 1997 and September 2000: September 1997, February 1998, 

June 1998, May 1999, February 2000 and September 2000 (Ausems, Mesters, van 

Breukelen, & De Vries, 2002). 

Another example is the attention deficit hyperactivity disorder (ADHD) 

study (Lahey et al., 1998; Hartung et al., 2002). It was a longitudinal study on 255 

children that sought to identify risk and prognostic factors in early childhood for 

ADHD symptoms, diagnoses, and functional outcomes across childhood, 
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adolescence, and early adulthood. All participants were followed over seven 

annual visits after the baseline. The question is whether these designs are efficient, 

in terms of the number and the timing of the measurements, for estimating the 

change in smoking and ADHD prevalence over the total follow-up time. This 

question can be answered by optimal design theory, which is part of the field of 

statistics. 

For the linear random effects model optimal designs were discussed by Tan 

and Berger (1999) and Tekle, Tan, and Berger (2009), among others. They 

showed that regardless the underlying polynomial regression model, the number 

of repeated measures should be chosen as close as possible to the number of 

regression parameters. Ouwens, Tan, and Berger (2006) and Tekle et al. (2008) 

extended the work on optimal designs for logistic models with random effects 

using a maximin approach to handle the local optimality problem, without 

considering the cost of sampling and measuring. They have kept constant the 

number of subjects and the number of repeated measures per subject. But in a 

longitudinal study, costs are associated with the inclusion of patients (subjects) as 

well as with each repeated measurement. 

Further, Bayesian designs are an increasingly popular alternative to 

maximin design as a method to overcome the local optimality problem. The 

Bayesian approach takes the uncertainty of the parameter values of the statistical 

model into account by using a prior distribution on the unknown parameters rather 

than single-value guesses. This will give more flexibility. 

Therefore, a new interactive computer program is presented that computes 

Bayesian optimal repeated measurements designs for mixed effects logistic 

models with polynomial time effects under cost constraints, but also allows the 

user to compute maximin designs. The maximin approach essentially minimizes 

the largest possible (generalized) variance of the fixed-effect estimators within a 

user-specified region of the true fixed-effect values, or equivalently, it optimizes 

among worst possible efficiencies (see, e.g., Tekle et al., 2008; Ouwens et al., 

2006). 

It computes Bayesian optimal designs for longitudinal studies under cost 

constraints, thus helping researchers to reduce their study costs. The computer 

program helps users to identify the optimal number and optimal allocation of time 

points for a given subject-to-measurement cost ratio. Moreover, it computes the 

loss in efficiency of equidistant time points compared to the optimal allocation. It 

produces a plot of optimal allocations of time points under different values of 

autocorrelation. A separate manual is presented in the appendix and describes the 
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capabilities of the software, which runs in a Matlab environment (MathWorks, 

2010). 

The logistic mixed effects model with polynomial time effects is described, 

and the optimality criterion and the relative efficiency as a measure for the 

comparison of designs. Thereafter, the smoking prevention study by Ausems et al. 

(2002) is used to illustrate the application of the program and to discuss the 

various decisions that the user has to make when determining the most efficient 

design. The manual can be considered as part of the paper, but can be consulted 

independently from it. Finally, conclusions and recommendations are provided. 

The paper ends with a summary and discussion. 

The Logistic Mixed Effects Model 

Let the q × 1 vector yi = (yi1,…, yiq)ʹ be binary responses yij of subject i at q time 

points, i = 1, 2,…, N and j = 1,…, q. It is assumed that all subjects have 

measurements at the same time points, and that, conditional on the subject-

specific random effect vector bi, the binary responses yij of yi are assumed to be 

Bernoulli distributed with probability of success p(yij = 1 | bi). These probabilities 

are related to the fixed and random effects via the logit link function. The 

corresponding logistic mixed effects model is given by: 

 

   
 
 

p 1|
logit p 1| log

1 p 1|

ij i

ij i j j i

ij i

y
y

y

 
     

  
 

b
b x β z b

b
  (1) 

 

where the p × 1 vector xj is the design vector of the explanatory variables at the jth 

measurement for subject i, β is the corresponding p × 1 vector of fixed 

polynomial time effects, and zj is the r × 1 design vector for the random effects 

that is usually a subset of vector xj. The vector bi is the corresponding r × 1 

vector of random effects, which is assumed to have a multivariate normal 

distribution with mean zero and covariance matrix D. 

For example, if a quadratic (p = 3) time effect is assumed, the design vector 

is  21j j jt t x  and β = (β0  β1  β2)ʹ, where tj is the time point of the jth 

measurement, j = 1,…, 6, and β0, β1, and β2 are the fixed effects. Suppose that a 

random intercept and random linear slope are assumed. Then the design vector is 

zʹj = (1  tj) and bi = (b0i  b1i)ʹ, where b0i and b1i are the corresponding random 

(subject-specific) deviations from these fixed effects, i = 1,…, 3735. Then, 
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according to model (1), the log-odds of a positive response (smoking) for subject i 

at time tj is given by: 

 

        2

0 0 1 1 2logit p 1|ij i i i j jy b b t t       b   (2) 

 

To prevent misunderstanding about the flexibility of this model, note that it can 

handle U-shaped as well as monotonic trends over time. For the average subject 

(i.e. if the random effects are zero), the derivative of (2) with respect to time t is 0 

if 
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22
t









  

 

The time variable is bounded by the follow-up period of the longitudinal study, 

and so equation (2) reaches its maximum or minimum inside or outside the time 

interval, depending on the values of β1 and β2. So model (2) can handle monotonic 

as well as non-monotonic trends. 

For example, in the Dutch smoking prevention study, a quadratic (p = 3) 

time effect will be needed if smoking prevalence on the logodds scale increases 

nonlinearly over time. For the sequel, it is important to note that in this paper and 

software, the time interval is scaled as t ∈ [-1, +1]. This can be translated into any 

suitable time scale by linear transformation, and vice versa. For instance, the time 

scale of the smoking prevention study, with its baseline of September 1997 as the 

origin, its last measurement in September 2000, and a month as the unit of 

measurement, is obtained by the transformation t* = 18(t + 1). Likewise, our 

present time scale is obtained as t = (t* − 18)/18. The repeated measurements of 

smoking were made at time points t* = 0, 5, 9, 20, 29, and 36 months, which in 

terms of the present time scale gives as time points t = -1.00, -0.72, -0.50, 0.11, 

0.61, and 1.00, respectively. 

Due to the random effects in model (1) and (2), the log-likelihood cannot be 

written down in closed form. Hence, either numerical methods or approximations 

to the log-likelihood must be used. Numerical methods require large 

computational resources and more importantly they require full knowledge of the 

data (Moerbeek, Van Breukelen, & Berger, 2003; Han & Chaloner, 2004), 

making them computationally inconvenient for optimal design procedures. To 

overcome this problem, approximation methods are employed. There is a large 

statistical literature on various approximation methods, but here, for the purpose 
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of obtaining optimal designs, we will focus on the two most frequently used ones, 

which are implemented in commercially available software packages: first order 

penalized quasi-likelihood (PQL1) and an extended version of generalized 

estimating equations (GEE). 

First Order Penalized Quasi-Likelihood 

The PQL1 variances and covariances of the fixed parameter estimates are 

calculated using the first-order Taylor expansion around the fixed and random 

effects. An advantage is that the method performs well in terms of point estimates 

since it produces the smallest mean squared error and the bias of the estimators 

decreases as the sample size increases (Breslow & Clayton, 1993; Moerbeek et al., 

2003; Jang & Lim, 2009). A disadvantage is that design optimization based on 

PQL1 is very time consuming. This is due to the fact that the covariance matrix of 

the binary responses, which must be inverted at each iteration of the optimization 

process, is very large because it depends on the random effects (which in the 

design stage are sampled from a multinormal distribution). The variance-

covariance matrix of the estimator β̂  of the parameter β for the logistic mixed 

effects models (1) is approximated in PQL1 by: 

 

    
1

1ˆvar


β XV X   (3) 

 

where X is the Nq × p design matrix formed by stacking {xʹj} for N subjects and q 

time points, and V is the Nq × Nq block-diagonal matrix with N blocks of q × q 

variance-covariance matrices given by: 

 

  1 2 1 2

i i i   v w R w ZDZ   (4) 

 

The q × q matrix R(ρ) is the residual correlation matrix, Z is the q × r design 

matrix with rows zʹj, j = 1,…, q, the r × r matrix D is the variance-covariance 

matrix of the random effects, and 1

i


w  is the diagonal matrix of the conditional 

variances of the transformed responses given the random effects bi, which is equal 

to the inverse of the diagonal matrix of the conditional variances of the 

untransformed responses given the random effects bi (See for detail Moerbeek et 

al., 2001; Molenberghs & Verbeke, 2005, p. 270). Note that, under conditional 

independence, R(ρ) is an identity matrix and equation (4) becomes 
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 1

i i

  v w ZDZ   (5) 

 

The diagonal matrix of the conditional variances of the untransformed responses 

given the random effects bi, is given by: 

 

  1diag , ,i i

i i iqw w
b b

w   (6) 

 

where  var |i

ij ij iw y
b

b , for i = 1,…, N, j = 1,…, q. Since the random effects are 

unknown in the design stage, we will generate bi from a multivariate normal 

distribution with mean zero and variance-covariance D. 

Extension of Generalized Estimating Equations 

The extended GEE is an alternative method which is not likelihood-based. It has 

been extended by Zeger, Liang, and Albert (1988) and Molenberghs and Verbeke 

(2005) to include autocorrelations of the errors in the standard formulation of 

GLMM. The covariance matrix of the binary responses is expressed conditional 

on the random effects being zero, which makes the calculations much faster. The 

asymptotic variance-covariance matrix of β̂  for the logistic mixed effects models 

(1) with autocorrelation, based on the extension of the GEE approach, is 

approximated by: 

 

  
1

2 2
1

1

ˆvar
N

i i
i

i







  
  

  


P P
β u

β β
  (7) 

 

where β̂  is the estimator of β for model (1), Pi = (p(yi1 | bi),…, p(yiq | bi))ʹ and the 

working variance-covariance matrix of the responses is given by: 

 

  1 2 1 2

i i i i i  u w R w w ZDZ w   (8) 

 

When there are no residual correlations in R(ρ), a conditional independence 

model or purely random effects model results and equation (8) reduces to 

 

 i i i i
 u w w ZDZ w   (9) 
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where wi is the diagonal matrix of the conditional variances of untransformed 

responses given the random effects bi = 0, which is given by: 

 

  0 0

1 1diag , ,i i

i i iw w
 


b b

w   (10) 

 

where  0
var | 0i

ij ij iw y

 

b
b  for i = 1,…, N, j = 1,…, q (Molenberghs & 

Verbeke, 2005, p. 443). 

Time-structured data are naturally correlated (Berger, 1986). In this paper, a 

first order auto regressive (AR1) is considered, i.e., j lt t



, where j, l = 1,…, q, 

and so ρ is the autocorrelation coefficient between two responses at a time 

distance of one, that is, ρ = Corr(yij, yil) for which |tj – tl| = 1. This autocorrelation 

structure implies that repeated measurements closer in time are more highly 

correlated and that the correlation decreases as the distance between the time 

points increases. 

Bayesian D-Optimal Design and Relative Efficiency 

To introduce the notation for the optimality criterion, suppose that the study to be 

designed will have q ordered time points t1, t2,…, tq at which measurements are 

taken for all N subjects. The design space Ξ then contains all designs of the form 

 

  
1 2

1 2

1 2

: , ,
q

j q

q

t t t
t a b t t t

w w w

   
       

   

  (11) 

 

with weight wi indicating per time point what proportion of all observations is 

obtained at that point (see also, e.g., Bunke & Bunke, 1986, p. 506) and q ≥ p to 

make these fixed effects identifiable with p being the number of fixed parameters 

of the model. Although in general the weights (wi) at the different time points can 

be different, in this paper we make the restriction of all weights equal to 1 

(w1 = w2 =…= wq = 1) at all q ordered time points, i.e., measurements are taken on 

all N subjects at each time point, because we consider longitudinal designs and so 

all q repeated measurements are obtained from the same individuals. The time 

interval [a, b] is assumed to be fixed by substantive constraints within the field of 

application, for example, the total follow-up time in the cohort study of smoking 

prevention is b – a = 3 years, or 36 months. A design ξq is an element of the 

design space Ξ if it has q time points within the time interval [a, b]. 
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Optimal designs are usually selected by minimizing a real-valued function 

of the variance-covariance matrix of the parameter estimators, here of the 

estimators of the three regression weights in (2), which is known as optimality 

criterion (see, e.g., Silvey, 1980). In this way the precision of the estimators and 

the power of their significance tests are maximized. Various optimality criteria 

have been proposed in the literature, such as the D-, A-, or G-optimality criteria. 

In this paper, we will focus on the best-known and most popular optimality 

criterion, i.e., the D-optimality criterion. This optimality criterion has two nice 

properties: 1. It minimizes the volume of the asymptotic confidence ellipsoid for 

the parameters, for instance for the fixed effects in model (2), thus giving the 

multivariate generalization of the familiar confidence interval for a single 

parameter; and 2. It does not depend on the coding used for the endpoints of the 

chosen time interval [a, b], for instance, on whether we code the time predictor in 

equation (2) as running from 0 to 1, or from -1 to +1, or use the original time 

scale in days or months. This means that if the coding for the time interval is 

transformed linearly, a D-optimal design for the new time interval is obtained by 

applying the same linear transformation to the D-optimal design for the old 

interval (see Ouwens et al., 2006). 

For example, in the smoking study, the measurements were taken between 

September 1997 and September 2000 (a period of three years), and by linearly 

transforming the measured time points into the interval [-1, +1], the actual design 

of the smoking study ξ6 becomes (-1  -0.72  -0.50  0.11  0.61  1). Likewise, if e.g. 

the D-optimal allocation of the time points for the smoking study is -1, -0.5, 0, 0.5, 

and 1 on the time interval [-1, +1], then it is after 0, 9, 18, 27, and 36 months 

respectively on the original time scale of [0, 36] months. 

The D-optimal design 
*

qξ  is the design among all possible designs ξq with q 

time points for which the determinant of the variance-covariance matrix of 

parameter estimators, for instance, the covariance matrix of  0 1 2
ˆ ˆ ˆ, ,    in model 

(2), is minimized (Berger & Wong, 2009). It should be noted that, for some 

studies, other criteria could be more obvious. Using the D-optimality criterion, all 

fixed-model parameters are considered to be equally important. If, for example, 

only some of the model parameters are of interest and others are considered to be 

nuisance, then a DA-criterion will be more relevant, indicating that only a subset 

or m linear combinations of the p regression parameters (p ≥ m) are of interest and 

specified by an m × p design matrix A (see, e.g., Tan, 2011). Nevertheless, the 

concentration here will be on this D-optimality criterion, because it is expected all 

fixed effects in model (1) will be of interest. 
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The variance-covariance matrix of the fixed-effects estimators β̂  depends 

on the unknown parameter vector β (see Abebe et al., 2014a, b, c; Abebe et al., 

2015), which makes design optimization dependent on the very same parameters 

that have to be estimated with the study to be designed, thus creating a vicious 

circle. The Bayesian approach resolves this dependency problem by taking the 

expectation of a function of the variance-covariance matrix over a prior 

distribution for the unknown parameter vector β. Thus, the Bayesian D-optimality 

criterion is defined as follows: 

 

 

    

    

1

D

1

ˆ| π E log var

ˆlog var π d





 

 

β

β

ξ β

β β β

  (12) 

 

where π(β) is the prior distribution for β and  ˆvar β  is the variance-covariance 

matrix of β̂  for the logistic mixed effects models based on approximation 

methods (see Abebe et al., 2014a, b, c; Abebe et al., 2015 for details). In fact, the 

design criterion (12) follows from maximizing the expected Kullback-Leibner 

(KL)-distance between the prior and posterior distributions, measuring how much 

information can be gained when moving from prior to posterior. When the normal 

approximation is used for the posterior distribution, then a design that maximizes 

the KL-distance is equivalent to maximizing expression (12) and is called Bayes 

D-optimal. It should be mentioned that expression (12) does not represent the full 

Bayesian design criterion, but only approximately by ignoring the additional 

effect of the prior information about the fixed effects. However, for large sample 

sizes, the contribution of the prior information to the posterior variance is usually 

negligible (for further details, see Chaloner & Verdinelli, 1995; Sebastiani & 

Settimi, 1998). Note that maximization of (12) comes down to minimization of 

the expected log determinant of the covariance matrix, where the expectation is 

taken over the prior (Atkinson et al., 2007). 

The precision of estimating the fixed-effects parameters β increases by 

taking more measurements and sampling more subjects (Moerbeek et al., 2001). 

However, the addition of subjects and of measurements per subject will increase 

the costs of the study and these are usually limited by budget constraints. 

Therefore, it is reasonable to take into account the costs of a longitudinal study 

when designs are compared with each other. There are two main components of 
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these costs. These are the costs for recruitment of subjects and the costs of the 

measurements once a subject has been recruited. Let the cost of recruiting a 

subject be C1 and the cost of one measurement per subject be C2. Then the total 

cost of a longitudinal study with q time points and N subjects, excluding overhead 

cost, is given by the linear cost function: 

 

 
 

1 2

2

C C N C Nq

NC k q

 

 
  (13) 

 

where k = C1/C2 is the ratio of the cost of adding a new subject to the cost of an 

additional measurement per subject. 

To compare different designs, we will use their relative efficiencies while 

fixing the total costs C. This means that the designs can differ in terms of the 

number of subjects N and the number and timing of the measurements q. First, we 

compute the Bayesian D-optimal designs using fixed N and then we correct for 

costs and different q and N as follows: Let  *

D | πq ξ  denote the value of design 

criterion (12) for the optimal design 
*

qξ  with q time points, given the prior 

distribution π for the fixed effects. Then the relative efficiency (RE) of an 

arbitrary design ξs with s time points relative to the optimal design 
*

qξ  is defined 

as: 

 

   
   *

D D*
| π | π

RE ; π | π exp
s q

s q

k q

k s p

     
   

     

ξ ξ
ξ ξ   (14) 

 

where π is the prior distribution for the fixed effects and p is the number of fixed 

effects, that is, p = 3 for model (2). If the value of this relative efficiency is close 

to unity, then the design ξs is about equally efficient as the optimal design 
*

qξ  for a 

given prior π. The inverse of this relative efficiency is the number of times that a 

design ξs must be replicated to have the same efficiency as the optimal design 
*

qξ . 

Note that the term between squared brackets on the right side of equation (14), so 

without the (k + q)/(k + s) term, is the RE under the assumption of an equal 

number of subjects N for both designs, which then differ only in the number and 

timing of the repeated measures. This fixed N-situation, i.e. Ns = Nq, underlies the 

RE formula as given by Chaloner and Larntz (1989). However, if we keep the 
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total budget C instead of N the same for all designs, then it follows from equation 

(13) that we can have 

 

 s

q

N k q

N k s





  

 

as many subjects in design ξs as in design 
*

qξ . Since  ˆvar β  is inversely 

proportional to the sample size N, it then follows from equations (12) and (13) 

that the RE of both designs obeys equation (14). See the Appendix for details on 

the derivation of RE in (14). 

Method of Optimization 

The Bayesian D-optimal designs for the logistic mixed effect model are found by 

our computer program numerically by maximization of the criterion value (12) 

among all candidate designs for a given prior distribution of the parameters. 

Details of this will be given in the next sub-sections. 

Sampling Parameter Values from Priors to Compute the Criterion 

To construct Bayesian designs for continuous prior distributions, all candidate  

designs must be evaluated in terms of their criterion values as defined by (12). 

However, evaluation of the integration over the prior distribution is very 

complicated and cannot easily be done analytically. A numerical approximation 

of the integral is necessary. Numerical approximations can be done by sampling 

parameter values from the prior distribution and then by replacing the integral in 

(12) with a summation over the sample (Atkinson et al., 2007; Chaloner & 

Verdinelli, 1995). Estimating (12) using the traditional sampling (pseudo Monte 

Carlo) method requires very large samples from the prior to reduce the sample-to-

sample variability to the point where different samples do not lead to different 

design choices. Thus, this approach is costly in terms of computing time. In our 

computer program, we will use an Adaptive Rejection Metropolis Sampling 

(ARMS) algorithm (Gilks & Wild, 1992; Gilks, Best, & Tan, 1995), which is a 

more efficient sampling algorithm that requires a smaller sample to obtain a good 

approximation of the design criterion (12). ARMS is a generalization of the 

method of adaptive rejection sampling (ARS) (Gilks, 1992), which was itself a 

development of the original method proposed by Gilks and Wild (1992). The 
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ARMS generalization includes a Metropolis step to accommodate non-concavity 

in the log density. ARMS is a Markov chain Monte Carlo (MCMC) scheme for 

generating samples from high dimensional target distributions and widely used 

within Gibbs sampling, where automatic and fast samplers are often needed to 

draw. It can deal with (intrinsic) non-linear functions as often used in, for instance, 

pharmacokinetics. For the present log-linear model, the ARMS works very well 

and is much faster than the Gibbs sampling method. 

Optimization Algorithm for Finding an Optimal Design 

To find candidate designs and in particular the optimal design, the program uses 

the FMINCON function of MATLAB version 7.10.0499 (R2010a). This function 

performs constrained non-linear optimization and requires an initial design ξ0. 

Without loss of generality, the time interval was coded as [-1, +1], and equally-

spaced time points were used as initial designs. There is no need to start with non-

equally spaced time points because our experience is that Bayesian optimal 

designs for our model do not depend on the spacing of the initial design. 

According to Firth and Hinde (1997), the Bayesian criterion may only lead to 

different optimal designs for different starting values when very dispersed prior 

distributions are considered. In fact, the Bayesian D-optimal designs as obtained 

with our program can deviate a lot from equidistance, thus showing that 

equidistance as initial design does not constrain the final design (see, e.g., Abebe 

et al., 2015). 

The following global search algorithm is used to find the Bayesian D-

optimal designs for a given multivariate normal prior distribution of the 

parameters: 

 

1. Take samples from the prior distribution of the parameters using 

ARMS. 

2. Compute the Bayesian D-optimal allocation of q time points, using 

q = p equidistant time points as initial design, where p is the number of 

fixed parameters of the model. Note that the final optimal allocation 

does not need to be equally spaced (see, e.g., Abebe et al., 2014a). 

3. Increase the number of time points q by one and perform step 2 again 

to find the Bayesian optimal design (allocation) for the new value of q. 

Repeat step 2 and 3 until the maximum number of time points q (user 

specified) is reached. 
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4. Thereafter, select the optimal number of time points q for the Bayesian 

D-optimal design by computing the relative efficiencies of designs 

with different numbers of time points against each other for a user-

specified subject-to-measurement cost ratio. Do this for each cost ratio 

considered to obtain one optimal design per cost ratio for a chosen 

prior distribution. 

An Example: The Dutch Smoking Prevention Study 

As an illustration of the various decisions that the user has to make when 

determining the most efficient design, consider the Dutch smoking prevention 

study as described in the introduction section. A logistic mixed-effects model with 

quadratic time effect was found to give an adequate fit to the repeated measures of 

smoking status (0 = no, 1 = yes). Therefore, this model was adopted to illustrate 

the application of the BODMixed_Logistic program in guiding researchers for a 

similar future study. After starting the BODMixed_Logistic program, all the steps 

will be reviewed that are necessary to obtain the optimal design, starting with the 

specification of the model and the various input values. See the program manual 

for a description of the graphical user interface offered per step. 

Choice of the Model 

The first step is to choose the statistical model; the optimal design depends on the 

underlying statistical model and is different for a quadratic model than for a linear 

one. For the fixed model part, we choose a quadratic growth function, both in 

view of its fit to the smoking data and because it is more flexible than a linear one 

and can handle monotonic trends as well as U-shaped trends due to the finite time 

interval. For the random model part, we assume a random intercept as well as a 

random linear slope. This can be specified in the program by choosing nonzero 

variances for the intercept and linear slope and zero variance for the quadratic 

slope, with or without slope-intercept covariance. 

To the program user it may be reassuring to know that Abebe et al. (2014c) 

found that the Bayesian D-optimal designs are hardly affected by the choice of a 

covariance structure for the random effects, at least in case of a non-zero 

autocorrelation and the presence of a random intercept or random slope. Further, 

the autocorrelation between the repeated measures must be specified. Fortunately, 

the maximum loss in efficiency incurred by misspecification of the 

autocorrelation appears to be less than 5% (Abebe et al., 2014c), excepting the 
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case of a zero autocorrelation which gives very different allocations of time points 

than nonzero values. For illustration purpose, we will assume the default value of 

0.1 for the autocorrelation, remembering that this is the correlation between two 

measurements with a time interval of 1 on the time scale [-1, +1]. Of course, the 

program user is free to try out different covariance structures and autocorrelations 

to check the dependence of the optimal design on these values for his/her specific 

study. 

Approximation Method 

Next, the user has to choose between the two approximations of the likelihood 

that are implemented in the program: PQL1 and extended GEE. If computation 

time is not an issue, then we would recommend using the PQL1 approximation. 

The extended GEE, however, is computationally much faster and often produces 

similar Bayesian D-optimal designs as the PQL1 approximation (Abebe et al., 

2014c). In this example, we choose the extended GEE. 

Choice of Optimality Criterion 

At this stage, the model and the necessary parameter values have been specified. 

The program offers three different optimization criteria. 

 

a. The option ‘Bayesian D-optimal’ maximizes the criterion in equation (12), 

thus minimizing the generalized variance of the fixed effects estimators, 

for a user specified prior distribution of those fixed effects. Abebe et al. 

(2014b, c) showed that it is best to choose a prior distribution with a large 

variance (uninformative prior) to express the degree of uncertainty about 

the ‘true’ parameter values. The prior means then have little impact on the 

optimal design, provided that the autocorrelation is not too close to zero 

(ρ > 0.001). 

b. The option ‘locally D-optimal’ criterion can be chosen if the user wants to 

check the optimal design for specific values of the fixed effects regression 

parameters. Note that this comes down to assuming a prior with zero 

variance. This option is in general not recommended, because it will often 

lead to a sub-optimal design. 

c. The option ‘Maximin D-optimal design’ essentially minimizes (among all 

possible designs) the largest possible (generalized) variance of the fixed-

effect estimators within a user-specified region of the true fixed-effect 

values, or equivalently, it maximizes the minimum efficiency within this 
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region (see, e.g., Tekle et al., 2008; Ouwens et al., 2006). Using this 

criterion, the user remains on the safe side, and will furthermore obtain a 

design that is optimal for at least one combination of likely parameter 

values. A disadvantage of this criterion is that the maximin design is often 

optimal for some points on the boundary of the region (“parameter space”) 

for the true fixed effects, and these boundary points are less likely than 

values within the region (Atkinson et al., 2007, p. 258). 

 

For this illustration, Bayesian D-optimal design is selected with, as input 

prior distribution for the fixed effects, an independent normal with prior means 

µ = [1, 2, 3] and a prior variance σ2 = 5 for both fixed effects. Abebe et al. (2014c) 

showed that the Bayesian D-optimal designs with such large prior variance are 

hardly affected by the choice of prior means, provided that the autocorrelation is 

not too close to zero (ρ > 0.001). 

Optimal designs can be determined now in either of two ways: By fixing the 

number of time points q and finding the optimal q allocations, or by finding the 

optimal number and allocation of time points for a given subject-to-measurement 

cost ratio k. 

Computing the Optimal Allocation for a Given Number of Time Points 

q 

For this illustration, we use q = 6 time points as the design in the smoking 

example had 6 repeated measurements. The resulting optimal time points are, 

according to Figure 1 (see the 4th design in it), [-1, -0.6080, -

0.2063, 0.1875, 0.5465, 1]. Translated into the scale of the smoking study period 

in months, that is, into the time interval [September 1997, September 2000], this 

gives as optimal design points September 1997, April 1998, November 1998, June 

1999, January 2000, and September 2000. To compare, the actual time points 

were September 1997, February 1998, June 1998, May 1999, February 2000, and 

September 2000. In this example we fixed the number of time points, but it may 

be of interest to find the optimal number of time points for a given subject-to-

measurement cost ratio, which will now be discussed. 

Finding the Optimal Design for a Given Subject-to-Measurement Cost 

Ratio k 

As mentioned previously, the user can choose between fixing the number of time 

points q and fixing the subject-to-measurement cost ratio. The second option will 
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now be illustrated assuming a cost ratio k = 1, that is, equal costs for recruiting a 

subject and for a single measurement on a single subject. A maximum of seven 

time points were chosen, which covers the number of time points in most 

longitudinal studies. The minimum is three because the model has p = 3 fixed 

effects and is thus not identifiable with less than three time points. 

The results are given in Figure 1, showing the Bayesian optimal designs for 

each of the number of time points q = 3, 4,…, 7, and the relative efficiency of 

each Bayesian optimal design compared to the Bayesian optimal design with 

q = 7 time points for the chosen cost ratio, here k = 1. The optimal number of 

repeated measures q for that cost ratio is q = 4, giving a relative efficiency of 

1.2324 compared to q = 7. Further, the relative efficiency of an equidistant design 

with q = 4 time points compared to the optimal design with q = 4 is 0.9770, and 

so equidistance is highly efficient here, although it is not optimal. Finally, to show 

the effect of the chosen cost ratio on the optimal design, Figure 2 gives a plot of 

the relative efficiencies of the Bayesian optimal designs with different numbers of 

time points compared to the optimal design with the maximum number of time 

points, for each of several cost ratios k. Clearly, the optimal number of time points 

increases as the subject-to-measurement cost ratio becomes large. The practical 

implication of this is that, if the user is uncertain about the cost ratio, he or she 

should try several cost ratios within the plausible range. 

The efficiencies of the actual design of the smoking design relative to the 

Bayesian optimal design increase with an increasing cost ratio k, and the relative 

efficiency is large for cost ratios k ≥ 2. For small cost ratios k, the loss in 

efficiency for the actual design relative to the Bayesian design with 4 time points 

is at most 25%, which can be compensated by sampling about 33% more children. 

For large cost ratios (k ≥ 10), the loss in efficiency for the actual design is at most 

about 4%, which can be compensated by sampling about 4% more children. 

Plotting the Bayesian Optimal Design for Different Values of the 

Autocorrelation 

In the example it was assumed there is a single value 0.1 for the 

autocorrelation. However, the autocorrelation is rarely known in the design stage. 

The program therefore offers as a last option a plot of the effect of the 

autocorrelation value on the Bayesian D-optimal design for a user specified 

number of time points q and range of autocorrelation. Figure 3 shows such a plot 

for q = 6 time points (horizontal axis) against the autocorrelation (vertical axis) 

within the range from 0.001 to 0.90 for the random intercept logistic model with 
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quadratic time effects. From this plot we see that the Bayesian D-optimal 

allocation for q = 6 is fairly independent of the size of the autocorrelation, at least 

within the chosen range from 0.001 to 0.9. As mentioned before, a zero 

autocorrelation usually gives quite different optimal allocations which are far 

from equidistant. 
 
 

 
 
Figure 1. Bayesian optimal allocations of time points for cost ratio k = 1 with a maximum 

number of time points q = 7 for the logistic mixed model with quadratic time effects, 
assuming a random intercept and random linear slope logistic model with quadratic time 
effects, and autocorrelation 0.1 
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Figure 2. Relative efficiency of Bayesian optimal designs compared to the Bayesian 

optimal design 

 

 

 
 
Figure 3. Bayesian D-optimal allocation of q = 6 time points as a function of the 

autocorrelation, for the logistic mixed model with quadratic time effects 
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Table 1. Optimal time points for a quadratic model, fixed effects, number of time points q = 6 

 

Prior variance σ2 
Prior mean 
(β1, β2, β3) 

Autocorrelation (ρ) 

0.0 0.01 0.9 

0.5 [0, 0, 0] (-1, -1, 0, 0, 1, 1) (-1,-0.60,-0.19, 0.19,0.60,1) (-1,-0.63,-0.22,0.22,0.64,1) 

 
[1, 2, 3] (-1,-1, -0.27, -0.27, 0.47,0.47) (-1,-0.66,-0.30,0.04,0.40,0.71) (-1,-0.69, -0.25,0.21,0.53,1) 

5 [0, 0, 0] (-1, -0.36, 0.06, 0.06, 0.56, 1) (-1, -0.60, -0.20, 0.20, 0.60, 1) (-1,-0.67,-0.23,0.25,0.67, 1) 

  [1, 2, 3] (-1,-0.60,-0.24,0.13,0.46,0.91) (-1, -0.60, -0.21, 0.18, 0.54, 1) (-1,-0.65,-0.21,0.21, 0.60,1) 

 
 

Table 2. Optimal time points for a quadratic model, random intercept, intercept variance 
2

0
= 1τ , number of time points q = 6 

 

 
Prior mean 
(β1, β2, β3) 

Autocorrelation (ρ) 

Prior variance σ2 0.0 0.01 

0.5 [0, 0, 0] (-1, -1, 0, 0, 1, 1) (-1, -0.58, -0.18, 0.18, 0.58, 1) 

 
[1, 2, 3] (-1, -1, -0.26, -0.26, 0.51, 0.51) (-1, -0.66, -0.29, 0.06, 0.41, 0.73) 

5 [0, 0, 0] (-1, -1, -0.28, 0.29, 1, 1) (-1, -0.60, -0.20, 0.20, 0.60, 1) 

 
[1, 2, 3] (-1, -0.62, -0.22, 0.19, 0.50, 0.98) (-1, -0.60, -0.21, 0.18, 0.55, 1) 

 
 

Table 3. Optimal time points for a quadratic model, random intercept/slope, random intercept variance 
2

0
= 1τ , random slope 

variance 
2

1
= 1τ , number of time points q = 6 

 

 
Prior mean 
(β1, β2, β3) 

Autocorrelation (ρ) 

Prior variance σ2 0.0 0.01 

0.5 [0, 0, 0] (-1, -1, 0, 0, 1, 1) (-1, -0.56, -0.17, 0.17, 0.57, 1) 

 
[1, 2, 3] (-1, -1, -0.24, -0.24, 0.51, 0.51) (-1, -0.64, -0.28, 0.07, 0.42, 0.73) 

5 [0, 0, 0] (-1, -0.66, -0.17, 0.17, 0.63, 1) (-1, -0.60, -0.20, 0.20, 0.60, 1) 

 
[1, 2, 3] (-1, -0.59, -0.20, 0.18, 0.50, 0.97) (-1, -0.60, -0.21, 0.18, 0.54, 1) 
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Summarizing the example of Bayesian optimal design with the 

BODMixed_Logistic program, it can be concluded that when the subject-to-

measurement cost ratio k is less than 5, i.e. the cost of an additional subject does 

not exceed five times the cost of an additional observation on a single subject, 

then the optimal number of repeated measurements is four time points. Further, 

the optimal allocation is not equidistant, but equidistance is highly efficient. 

Using the suggested Bayesian D-optimal design, the relative efficiency of 

the optimal number of repeated measures q for the given cost ratio k = 1, which is 

equal to q = 4, relative to the q = 6 (which is the number of time points in the 

smoking study) is equal to about RE = 1.2324/1.099 = 1.1213 (see Figure 2). This 

means that about 10% less budget is needed for the optimal design to reach the 

same efficiency as compared to the actual design of the smoking prevention study 

of Ausem et al. (2004), which had six time points. 

Finally, to demonstrate the effect of the covariance structure D, prior means 

and variances, as well as of autocorrelation on the Bayesian D-optimal design, we 

will show some additional results for a quadratic model with fixed effects, 

random intercept, random intercept/slope, and for various priors and 

autocorrelations. We fixed the number of time points to q = 6 and used the 

extended GEE method for these results which are summarized in Tables 1 to 3, 

which gives the optimal time points for varying parameter values. 

Shown in Table 1 are optimal allocations of time points for a quadratic 

model with fixed effects only, Table 2 for the random intercept model with 

intercept variance equal to 2

0 1  , and Table 3 for the random intercept/slope 

model with intercept variance and slope variance equal to 2

0 1   and 2

1 1  , 

respectively. It can be seen that when there is no autocorrelation (i.e. ρ = 0), the 

optimal allocation of time points depends strongly on the covariance structure and 

priors and coinciding time points occur. Further, when the autocorrelation ρ > 0, 

the optimal allocations are never coinciding and are comparable for a prior 

variance equal to σ2 = 5 and all covariance structures D. The effect of a large 

versus small autocorrelation is only presented for the fixed effects model (D = 0), 

because Abebe et al. (2014c) already showed this for the random effects models. 

Finally, the prior means do not have much effect on the optimal allocation. This is 

in line with the findings of Abebe et al. (2014c) for a large prior variance. 
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Summary and Discussion 

Optimal designs for longitudinal studies have been shown useful to improve the 

precision of the model parameter estimates of interest. Due to absence of a 

computer program for the optimal design of longitudinal studies with a binary 

response, planners of such studies in psychology, health sciences, and medicine 

have not yet benefitted from optimal design theory. We present a user-friendly 

computer program that computes Bayesian optimal designs for mixed effects 

logistic models with polynomial time effects. This computer program helps 

researchers to identify the optimal number and allocations of time points of 

measurements for a given subject-to-measurement cost ratio, and computes the 

loss in efficiency of equidistance compared to the optimal allocation. Moreover, it 

helps to assess the effect of autocorrelation on optimal allocations of design points. 

The program was illustrated on a smoking prevention study showing that, when 

the cost ratio k is less than 5, the optimal number of repeated measurements is 4 

time points. Further, the optimal allocation is not equidistant, but equidistance is 

highly efficient. 

The use of a Bayesian design does not force researchers to use Bayesian 

methods to analyze the data. Once the experimental data is collected by using the 

Bayesian D-optimal design, researchers can fit their model either with Bayesian 

or with frequentist methods. 

The current version of the MATLAB program BODMixed_Logistic is freely 

available upon request from the corresponding author, which may be available 

eventually via the internet. The current version of the program considers designs 

based on the D-optimality criterion and assumes that all subjects are available 

over the total study period and that there is no dropout. Further, extensions of the 

model and software can be made by, e.g., adding a grouping variable or covariates 

like age or allowing for different types of covariance structures than already 

described in this paper. Future work may therefore aim at these extensions and at 

allowing for dropout. Another important issue for future work is Bayesian optimal 

design for model using non-polynomial (splines) time effects. 
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Appendix A: Derivation for the Relative Efficiency Equation 
(14) 

To compare designs we compute their efficiencies using the concept of equivalent 

sample size (see Atkinson et al., 2007, p. 152; Berger & Wong, 2009, p. 37). Let 

 ˆvar
sξ

β  and  ˆvar
qξ

β  be the variance-covariance matrices of β̂  for the design ξs 

with s time points and the design ξq with q time points, respectively, and let Ns 

and Nq be the number of subjects for the design ξs and ξq, respectively. For the D-

criterion and a given model with p parameters, the relative efficiency of design ξs 

compared to design ξq is given by: 
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Where the two determinants in (15) are both based on one subject only, and the 

factor Ns/Nq takes into account the sample size per design. 

This relative efficiency (15) can be rewritten as follows: 
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Rewriting Ns and Nq in terms of cost ratio k and number of time points for the 

same total cost using the cost function equation (13), i.e., 
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we obtain 
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This relative efficiency (17) is for locally optimal design, i.e., for given parameter 

values. By generalizing this to Bayesian design, the RE of design ξs compared to 

design ξq with prior distribution π for β becomes as follows: 
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Thus, using the Bayesian D-optimality criterion (12), the RE will be: 
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When the ratio (k + q)/(k + s) is one, that is, if either q = s or the cost ratio k is 

very large, this relative efficiency (19) becomes the same as the relative efficiency 

given by Chaloner and Larntz (1989). 
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Appendix B: BODMixed_Logistic Manual 

Introduction 

Bayesian Optimal Design for Mixed effects Logistic models with polynomial time 

effect (BODMixed_Logistic) is graphical user interface software that computes 

optimal designs for longitudinal studies with a binary response. The program runs 

in a MATLAB (32-bit version 7.10.0499 (R2010a)) environment. In any case, the 

program works on a HP Compaq 8200 Elite PC with Windows 7 Enterprise and 

configuration i5-2400 CPU, 3.1 GHz, 4 GB RAM memory and 64-bit operating 

system or comparable systems. 

To start the program: 

 

1. Start Matlab. 

2. Choose the option Window → Workspace → Current Folder and 

choose the directory where the software is located. 

3. Choose Window → Command window and type BODMixed_Logistic 

(case sensitive) press the   Enter key. 

 

After starting the BODMixed_Logistic program, the user will find the main menu 

of the BODMixed_Logistic program as shown in Figure 4. There are five panels 

that will each be explained in turn. In this paper, a tutorial section is included 

which discusses the various decisions that the user has to make when using the 

program to find the most efficient design. 

First Panel: Input Values of the Model 

• Choose model type: The user can choose the degree of the polynomial of 

the mixed logistic model, i.e., a linear (which is the default value), 

quadratic or cubic model for the trend over time. 

• Variance-covariance parameters (D): The user will find a sub-menu to 

enter the input values for the variances and covariances (matrix D) of the 

random parameters. Figure 5 shows the sub-menu for a quadratic model. 

A fixed effects logistic model is obtained by setting all values in D to zero. 

The matrix D must be specified for each run, i.e. the values of the previous 

run are not saved. 
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Figure 4. Layout of the main menu with the default input values for BODMixed_Logistic 

program 

 

 

• Enter/change the value of autocorrelation (rho): This is the size of the 

autocorrelation coefficient that the user expects between two repeated 

measurements at a time distance of one, i.e., ρ = Corr(yij, yil) for which |tj –

 tl| = 1, keeping in mind that the total follow-up time is scaled to the 

interval [-1, +1] so that a time distance of 1 corresponds to half the follow-

up time. 

Second Panel: Computational Method 

• Approximation to the likelihood: The user can choose an approximation 

method for the computation of optimal designs, i.e., either extended GEE 

or PQL1. The default method is the extended GEE. 
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Figure 5. The sub-menu of BODMixed_Logistic for input values for variance components 
in the D matrix for the mixed logistic model with quadratic time effects 

 

 
 

 
 
Figure 6. The sub-menu of BODMixed_Logistic for input values for the (normal) priors for 

the fixed effects parameters of the logistic model with quadratic time effect in the case of 
Bayesian design 
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Third Panel: Design Criterion 

• Select design type: Either Bayesian D-optimal, locally D-optimal, or 

Maximin D-optimal design. When the user selects a design type, a sub-

menu to fill in the input values for the relevant parameters will appear. 

Figure 6 is an example of a sub-menu for a Bayesian D-optimal design, 

where the prior means and prior variances can be specified. The input 

values must be filled in for each run, i.e. the values of the previous run are 

not saved. 

Fourth Panel: Optimal Design Results 

In this panel the user can choose between two methods of optimization: 

 

 Fixing the number of time points at some value q to find the optimal 

allocation of those time points within the time interval [-1, +1], 

 or fixing the subject-to-measurement cost ratio and letting the software 

then find the optimal number of time points as well as the optimal 

allocation. 

 

• Optimal allocations for q time points: A dialog box appears to fill in a 

specific number of time points q (see Figure 7a). Then, the optimal 

allocations of time points within the time interval [-1, +1] will be found 

for the specified number of time points q, and the relative efficiency of 

equidistant time points compared to the optimal allocation will also be 

computed 
 
 

  
 
Figure 7. The sub-menu of BODMixed_Logistic to specify the (a) number of time points 

(q), left, and (b) maximum number of time points, right 
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• Enter/change the subject-to-measurement cost ratio (k): This is the ratio of 

the cost of adding a new subject to the cost of an additional measurement 

per subject. This ratio is assumed to be greater than or equal to zero. 

• Optimal design for a given cost ratio k: determines the optimal number (q) 

of repeated measurements as well as the optimal allocation of the q time 

points for a given subject-to-measurement cost ratio k. The user must 

specify the maximum allowable number of time points (see Figure 7b). 

Note that the minimum number of time points is two for a linear, three for 

a quadratic, and four for a cubic polynomial time effect model. These 

minima have been implemented in the program already. 

Fifth Panel: Plot of Optimal Designs for Different Values of 

Autocorrelation 

The optimal allocations within the time interval [-1, +1] for a given number of 

time points q can be computed for each autocorrelation value and plotted against 

the autocorrelation within the range chosen by the user. 

 

• Enter/change the value of autocorrelation range: The user can enter a 

lower and upper bound for the autocorrelation parameter. 

• Optimal allocations of q time points for different values of autocorrelation: 

The user gets the sub-menu of Figure 7a to choose the number of time 

points (q). Any value with q ≥ p can be filled in, where p is the number of 

fixed parameters of the model (p = 2, 3, or 4 for the linear, quadratic, or 

cubic model, respectively). 

 

The user can change input values or obtain results by pressing the 

corresponding buttons on the main menu (Figure 4) as many times as he/she 

wishes. A ‘Help’ button is also available for guidance. The ‘Exit’ button in the 

main menu stops the program. 
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