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CHAPTER 1. Strategies for Optimizing Water-Exchange Rates of Lanthanide-Based  

             Contrast Agents for Magnetic Resonance Imaging 

Parts of this chapter were adapted with permission from Siriwardena-Mahanama B.N.; Allen, 

M.J. Molecules 2013, 18, 9352–9381; published by MDPI, 2013. 

Introduction 

 This chapter describes coordination-chemistry-based strategies from the past decade used 

to tune the water-exchange rates of lanthanide-based T1-shortening and paramagnetic chemical 

exchange saturation transfer (PARACEST) contrast agents for magnetic resonance imaging 

(MRI) as well as the implications of these strategies on the development of new contrast agents, 

and will provide context to the research discussed in subsequent chapters.  

MRI is a non-invasive imaging modality that is widely used in clinical medicine and 

biomedical research to generate three-dimensional images with a high spatial resolution (~1 

mm
3
) and excellent tissue penetration.

1 
Conventional MRI generates contrast through differences 

in water proton density and the longitudinal and transverse relaxation times of water protons. 

These differences provide information regarding the chemical and physical nature of an imaged 

specimen. However, a key challenge associated with MRI is the low inherent contrast that is 

often observed.
2
 To overcome this challenge, paramagnetic substances known as contrast agents 

are used to catalytically shorten the longitudinal (T1) and transverse (T2) relaxation times of 

nearby water protons.
2–4

 This shortening leads to improved image contrast between regions that 

differ in the amount of contrast agent present. Contrast agents that shorten both longitudinal and 

transverse relaxation times to approximately the same degree are called T1-shortening agents. 

Agents that shorten transverse relaxation times to a much greater extent than longitudinal 

relaxation times are called T2-shortening agents. In general, T1-shortening agents give rise to 

increased signal intensity and are referred to as positive contrast agents, and T2-shortening agents 

give rise to a decreased signal intensity and are referred to as negative contrast agents.
5
 Of these 
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two types of agents, T1-shortening agents are often favored because the darker images produced 

by T2-shortening agents can be difficult to differentiate from background.
6
 Consequently, the 

research described in this thesis will focus on T1-shortening agents.  

 The most widely used clinical contrast agents are Gd
III

-containing acyclic or macrocyclic 

polyaminopolycarboxylate-based chelates. The efficiency of these Gd
III

-containing complexes as 

contrast agents is described by their ability to shorten the relaxation times of nearby water 

protons and is expressed as relaxivity, r1, with units of mM
−1

 s
−1

. The relaxivity of Gd
III

-based 

contrast agents is governed by magnetic field strength and several structural, dynamic, and 

electronic parameters of the agents including the number of coordinated water molecules, q; the 

rate of exchange between coordinated and bulk water, kex; the distance between the Gd
III

 ion and 

coordinated water protons, rGdH; the longitudinal and transverse electron spin relaxation times T1e 

and T2e, respectively; and the rotational correlation time of the agent, τR. The contributions of 

these molecular parameters to relaxivity are described by the Solomon–Bloembergen–Morgan 

(SBM) equations, and have been discussed in detail elsewhere.
7–9

 

 Based on the SBM equations, an optimum relaxivity of approximately 40 mM
−1

 s
−1

 per 

coordinated water molecule is expected at the clinically relevant field strength of 1.5 T for Gd
III

-

containing contrast agents.
8,9

 However, the observed relaxivity of clinically approved contrast 

agents is much lower (~4–5 mM
−1

 s
−1

) than the theoretical optimum value.
10 

The low observed 

relaxivity suggests that the molecular parameters that govern the relaxivity of these agents need 

to be tuned. A great deal of research has been employed to tune the molecular parameters that 

influence relaxivity using coordination chemistry. For example, relaxivity increases as a function 

of water-coordination number, and water-coordination number is a molecular parameter that can 

be tuned through modification of ligands. However, the tuning of water-coordination number is 
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limited by issues beyond relaxivity: increasing water-coordination number beyond two often 

compromises complex stability, which has a detrimental impact on toxicity. Another molecular 

parameter that can be tuned using coordination chemistry is rotational correlation time, where 

slow rotation leads to high relaxivity. Attempts to slow rotation through interactions with high-

molecular weight species have been successful, but the maximum effect of high molecular 

weight interactions are not observed due to internal motion, slow water-exchange rates, or both. 

Therefore, tuning water-exchange rate becomes crucial in designing efficient T1-shortening 

agents (Figure 1.1).  

Figure 1.1. Optimum water-exchange rates of T1 and PARACEST agents.  

 The optimum water-exchange rate for small-molecular T1-shortening agents is ~10
8
 s

−1
 at 

1.5 T, based on the SBM equations, and this rate is roughly two orders of magnitude faster than 

the water-exchange rates of current clinical agents (~10
6 

s
−1

).
8–10

 It is also important to note that 

water exchange provides the lower limit for proton exchange, but at physiologically relevant pH 

values, proton and water exchange are roughly the same.
9,11

 Consequently, this chapter focuses 

on water-exchange rates and not proton-exchange rates.  

 In addition to T1-shortening agents, a relatively new class of contrast agents that function 

based on the transfer of magnetization by chemical exchange of protons has gained much 

attention in the last two decades. These agents are referred to as chemical exchange saturation 

transfer (CEST) agents. One limitation of CEST agents is the small signal produced from direct 

presaturation of bulk water that occurs coincidentally during presaturation of exchangeable 

protons. This limitation can be overcome with the use of paramagnetic lanthanide(III) (Ln
III

)-

containing complexes (in this chapter, Ln
III

 = Ce
III

, Pr
III

, Nd
III

, Sm
III

, Eu
III

, Tb
III

, Dy
III

, Ho
III

, Er
III

, 
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Tm
III

, or Yb
III

) that are able to shift the resonance frequency of exchangeable protons away from 

that of bulk water, and these complexes are called paramagnetic chemical exchange saturation 

transfer (PARACEST) contrast agents. Reviews of PARACEST agents in general can be found 

elsewhere.
12–14 

The exchangeable protons on PARACEST agents can be O–H or N–H protons on 

a multidentate ligand or protons from Ln
III

-coordinated water molecules that undergo chemical 

exchange with bulk water. This chapter focuses on water-exchange-based agents that are relevant 

to the research described in the rest of this thesis.  

 PARACEST agents give rise to a decrease in the bulk water magnetization as a result of 

the transfer of saturated magnetization from exchangeable protons (coordinated water molecules 

for the purpose of this chapter) to bulk water after selective presaturation of the coordinated-

water protons. The efficiency of PARACEST agents is measured in terms of the magnitude of 

percent saturation transfer. For transfer of saturated magnetization to occur, the difference in 

resonance frequency between the two exchanging pools of protons, Δω, needs to be greater than 

or equal to the rate of exchange between the two pools of exchanging protons, kex.
15

 

Paramagnetic Ln
III

-containing complexes can display Δω values that are about an order of 

magnitude greater than those observed for diamagnetic systems that undergo magnetization 

transfer.
12,16 

Large values of Δω are advantageous because they enable selective presaturation of 

exchangeable protons without direct saturation of bulk water. For Δω to be greater than or equal 

to the kex, PARACEST agents require slow water-exchange rates (~10
3
 s

−1
) to maximize 

efficiency (Figure 1.1). However, most PARACEST agents developed to date display water-

exchange rates that are about an order of magnitude faster (~10
4
 s

−1
) than the optimum water-

exchange rate.
17
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 Tuning water-exchange rate is of great importance to achieve maximum efficiencies for 

both T1-shortening and PARACEST agents; however, these classes of agents require tuning in 

opposite directions: T1-shortening agents require fast rates and PARACEST agents require slow 

rates. The need to tune water-exchange rates over a broad range from slow (~10
3
 s

−1
) to fast 

(~10
8
 s

−1
) has led to an enormous focus on coordination-chemistry-based strategies to tune and 

on analytical techniques to measure the rates and mechanisms of exchange. Determination of the 

rates and mechanisms of water exchange of Ln
III

-containing complexes has provided a general 

understanding of the influence of the structure of Ln
III

-containing complexes on water-exchange 

rates. The water-exchange rates of Ln
III

-containing complexes are often determined from the 

temperature-dependence of the transverse relaxation rates of 
17

O-enriched water measured by 

variable-temperature 
17

O-NMR spectroscopy. The mechanism of water exchange is determined 

from the volume of activation (ΔV
‡
) obtained from the pressure-dependence of the transverse 

relaxation rate of 
17

O-enriched water determined using variable-pressure 
17

O-NMR spectroscopy. 

Experimental details for these measurements have been described elsewhere
18–20

 and, therefore, 

are not included in this chapter. Because water-exchange rates depend on temperature, 

comparisons made among water-exchange rates in this chapter are only between rates measured 

at the same temperature. All water-exchange rates reported in the text have been determined at 

25 °C unless otherwise noted. 

 The importance and determinants of water-exchange rate of Gd
III

-based T1-shortening 

agents were reviewed at the end of the last century.
21

 In addition, the importance of water-

exchange rates was reviewed recently with respect to responsive T1-shortening and PARACEST 

agents.
22

 The following text describes coordination-chemistry-based strategies explored over the 
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last decade to tune the water-exchange rates of T1-shortening and PARACEST agents and the 

implications of these strategies for improving the efficiency of both types of contrast agents.  

Coordination-Chemistry-Based Strategies to Tune kex 

 Coordination-chemistry-based strategies that have been used to tune the water-exchange 

rates of Ln
III

-containing complexes for T1-shortening and PARACEST agents include 

modification of (1) the mechanism of water exchange; (2) the charge of the Ln
III

-containing 

complex; (3) the steric hindrance at the site of water coordination; (4) the ligand side chains; and 

(5) the ratio of twisted-square-antiprism (TSAP) to square-antiprism (SAP) isomers for 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA)-type complexes. In addition to the five 

strategies listed above, the identity of the Ln
III

 ion in a complex also influences the magnitude of 

water-exchange rates.
23–27

 However, this chapter focuses on strategies useful to both T1-

shortening and PARACEST agents, and therefore, a description of the influence of Ln
III

 ion on 

water-exchange rates is not included because Ln
III

 ions other than Gd
III

 are not useful for T1-

shortening agents. The following text is divided into separate sections that describe the five 

strategies listed above in terms of their implications to T1-shortening and PARACEST agents. 

Although these strategies are separated in this text to enable structure–function comparisons to 

be made, it is important to note that these strategies are interrelated and cannot be completely 

isolated from each other. 

Modification of Water-Exchange Mechanism 

 The mechanism of water exchange is an important determinant of the magnitude of 

water-exchange rates of Ln
III

-containing complexes. In this section, the relationship between the 

mechanism of water exchange and water-exchange rate will be discussed using complexes 1.1–

1.11 (Table 1.1 and Figure 1.2). Water exchange in Ln
III

-containing complexes proceeds via 



7 
 

 
 

dissociative, associative, or interchange mechanisms. In a dissociative mechanism, dissociation 

of the coordinated water is rate limiting and precedes coordination of the incoming water 

molecule. In an associative mechanism, coordination of the incoming water molecule is rate 

limiting and precedes the dissociation of the coordinated water molecule. The interchange 

mechanisms are where transition states are not observed. Interchange mechanisms are divided in 

to dissociative interchange and associative interchange mechanisms depending on the relative 

contributions from bond breaking and forming: higher bond-breaking contributions lead to 

dissociative interchange and higher bond-forming contributions lead to associative interchange. 

Ln
III

-containing complexes with coordination numbers of nine tend to undergo dissociative or 

dissociative interchange mechanisms of exchange, and complexes with coordination numbers of 

eight tend to undergo associative or associative interchange mechanisms of exchange. 

Table 1.1. Water-exchange parameters obtained from 
17

O-NMR spectroscopy and coordination 

numbers of complexes 1.1−1.11.  

nr = not reported, 
a
associative, but no ΔV

‡
 data given. 

 

Complex 

number 

kex  

(10
6
 s

–1
) 

V
‡
  

(cm
3
 mol

–1
) 

q Coordination 

number 

Mechanism  Reference 

1.1 4.1 10.5 1 9 dissociative 31 

1.2 3.3 12.5 1 9 dissociative 31 

1.2 7.0 (37 C) nr 1 9 dissociative 38 

1.3 380 nr 2 8 associative
a
  30 

1.4 130 nr 2 8 associative
a
  30 

1.5 53 –5 2 8 associative interchange 29 

1.6 102 –1.5 2 8 associative interchange 33 

1.7 27 nr 1 8 associative
a
  34 

1.8 170 nr 1 8 associative
a
 22 

1.9 700 8.3 0.6 8 and 9 dissociative interchange 36 

1.10 804 –3.3 8 8 associative  31 

1.11 220 nr 1.4 9 and 10 associative
a
 37 
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Figure 1.2. Representative Gd

III
-containing complexes that undergo water exchange via 

dissociative (1.1 and 1.2), dissociative interchange (1.9), associative (1.3, 1.4, 1.7, 1.8, 1.10, and 

11), and associative interchange (1.5 and 1.6) processes.
28–37

  

 

In aqueous solution, Ln
III

 aqua ions usually have water-coordination numbers of eight or 

nine, with large lanthanides (La
III

 to Nd
III

) tending toward water-coordination number nine, 

medium-sized lanthanides (Sm
III

 to Gd
III

) existing mostly in equilibrium between water-

coordination numbers eight and nine, and small lanthanides (Tb
III

 to Lu
III

) likely having water-

coordination numbers of eight. Many polyaminopolycarboxylate-based ligands occupy eight 

coordination sites of Ln
III

 ions allowing space for the coordination of one water molecule. 

Because these types of complexes have coordinatively saturated (nine coordinate) ground states, 

they tend to undergo dissociative water exchange through a relatively unstable eight-coordinate 

transition state. Dissociative exchange often leads to slow water-exchange rates due to the large 

energy difference between the nine-coordinate ground state and the eight-coordinate transition 
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state, and the rates of exchange could be increased by stabilizing the eight-coordinate transition 

state or destabilizing the nine-coordinate ground state. On the other hand, water-exchange rates 

could be decreased by stabilizing the nine-coordinate ground state or destabilizing the eight-

coordinate transition state (Figure 1.3). 

 

Figure 1.3. Ground and transition states of the water-exchange process. A. Stabilization and 

destabilization of the ground state lead to slower and faster water exchange-rates, respectively. 

B. Stabilization and destabilization of the transition state lead to faster and slower water-

exchange rates, respectively.  

 

Different from nine-coordinate complexes, eight-coordinate Ln
III

-containing complexes 

used as contrast agents tend to have six or seven coordination sites occupied by a multidentate 

ligand, enabling the coordination of one or two water molecules in the inner coordination sphere 

of the Ln
III

 ion. Due to the coordinatively unsaturated ground state, eight-coordinate complexes 

tend to undergo associative water exchange through a nine-coordinate transition state. Because 

the energy gaps between eight-coordinate ground states and nine-coordinate transition states tend 

to be small, associative exchange mechanisms often display fast water-exchange rates.
28

 

Therefore, with eight-coordinate complexes, stabilization of the nine-coordinate transition state 

is a potential method to increase water-exchange rates, and stabilization of the eight-coordinate 

ground state is likely to decrease water-exchange rates.  



10 
 

 
 

Nine-coordinate polyaminopolycarboxylate complexes 1.1 and 1.2 display water-

exchange rates on the order of 10
6
 s

−1
, and eight-coordinate complexes (compounds 1.3–1.8) 

display relatively fast water-exchange rates (10
7
–10

8
 s

−1
). These differences in water-exchange 

rates can be attributed in part to the differences in the mechanism of water exchange. The water-

exchange rates of hydroxypyridonate (HOPO)-based complexes 1.3–1.5, reported by Raymond 

and co-workers, are closer to the optimum water-exchange rate (10
8
 s

−1
) of T1-shortening agents 

at 1.5 T than those of clinically approved polyaminopolycarboxylate-based complexes 1.1 and  

1.2.
28–31

 Similar to HOPO-based complexes, the fast water-exchange rates observed for 

polyaminopolycarboxylate-based complexes 1.6 and 1.7 and phosphonate-containing complex 

1.8 can be attributed in part to an associative exchange mechanism.
32–34 

As mentioned earlier, water-exchange rates can be increased by stabilizing the transition 

state formed during the exchange process. This idea is exemplified by the 3-fold faster water-

exchange rate of complex 1.3 relative to complex 1.4.
30

 This difference in water-exchange rate is 

likely due to the accommodation of a third water molecule in the inner-coordination sphere 

through intra-molecular hydrogen bonding between the primary amine of complex 1.3 and a 

third water molecule. Stabilization of the nine-coordinate transition state through intra-molecular 

hydrogen bonding is likely the cause of the faster water-exchange rate for complex 1.3.
30

 In 

another example, linear complex 1.9, despite undergoing dissociative exchange, displays a 

water-exchange rate that is 210-times greater than the rate for linear complex 1.2 and is nearly as 

fast as the Gd
III

-aqua complex, 1.10. This extremely fast water-exchange rate is likely due to the 

existence of both eight- and nine-coordinate species in solution as observed by variable-

temperature UV–vis spectroscopy of the Eu
III

 analog of complex 1.9, implying that the eight-

coordinate transition state is stabilized.
35,36

 In a similar study, but on a macrocyclic complex, 
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Tóth and co-workers demonstrated that macrocyclic complex 1.11 displayed a water-exchange 

rate that is 54-times faster than the rate of macrocyclic complex 1.1, because of an equilibrium 

between two hydration states (q = 1 and q = 2) with coordination-numbers nine and ten based on 

variable-temperature UV–vis spectroscopy. Complex 1.11 likely undergoes associative exchange 

based on the large negative activation entropy (–35 J mol
−1

 K
−1

); however, the authors did not 

report the volume of activation for complex 1.11.
37

 

The fast water-exchange rates (10
7
–10

8
 s

−1
) of complexes 1.3–1.9 and 1.11 are desirable 

starting points for the design of T1-shortening agents. Designing eight-coordinate complexes with 

the ability to undergo associative exchange and complexes in which eight- and nine-coordinate 

species are in equilibrium with one another is desirable to attain fast water-exchange rates for T1-

shortening agents. In addition to complexes that undergo associative exchange, complexes that 

undergo dissociative exchange, but with stable eight-coordinate transition states are likely to 

display fast water-exchange rates desirable for T1-shortening agents. However, stabilizing the 

eight-coordinate transition state can be challenging for most polyaminopolycarboxylate-based 

ligands because these ligands tend to favor complexes with coordination number nine. On the 

other hand, the fast water-exchange rates of complexes 1.3–1.9 and 1.11 and the relatively 

slower exchange rates (10
6
 s

−1
) of nine-coordinate polyaminopolycarboxylate-based complexes 

1.1 and 1.2 are orders of magnitude too fast to be useful for PARACEST agents. Therefore, 

designing coordinatively saturated nine-coordinate complexes that undergo dissociative 

exchange is a useful starting point for the development of PARACEST agents. Moreover, 

stabilizing the nine-coordinate ground state, for example through hydrogen-bond interactions, 

would lead to a larger energy gap between the ground and transition states, potentially leading to 

slow water-exchange rates. Stabilization of the nine-coordinate ground state leads to slow water-



12 
 

 
 

exchange rates, which at first glance seems opposite to the fast water-exchange rate observed for 

complex 1.3 when the nine-coordinate transition state was stabilized. However, the opposite 

trends in water-exchange rates can be rationalized based on the difference in the mechanism of 

exchange: dissociative mechanisms have slow water-exchange rates with stable nine-coordinate 

ground states, and associative mechanisms have fast water-exchange rates with stable nine-

coordinate transition states. 

Modification of the Charge of a Ln
III

-Containing Complex 

The charge of Ln
III

-containing complexes is another important determinant of the 

magnitude of water-exchange rate, and this section describes the influence of complex charge 

and electron density of the coordinating atoms on water-exchange rate using complexes 1.12–

1.42 as examples (Table 1.2 and Figure 1.4). It is important to note that modification of charge 

toward positively charged complexes is expected to lead to increased proton-exchange rates;
11

 

however, discussion of proton-exchange rates is beyond the scope of this chapter. Also, the 

differences in water-exchange rates described in this section are explained in terms of charge 

density only, although the charge density at the Ln
III

 center closely correlates with Lewis acidity 

of the Ln
III

 ion. The influence of the charge of a complex on water-exchange rates is exemplified 

by the 2- to 8-times slower water-exchange rate that is observed for monoamide complexes 1.12 

and 1.13 and bisamide complex 1.14 compared to the all carboxylate complex 1.2.
38,39

 Not only 

is the charge of a Ln
III

-containing complex important for tuning water-exchange rates, but the 

charge density at the Ln
III

 center is equally important. The atoms directly coordinating to a Ln
III

 

ion tend to have the greatest impact on the charge density at the Ln
III

 center. Modifying the 

coordinating atoms can change the charge density, thereby altering the water-exchange rate. For 

example, a slowing of water-exchange rates is observed in macrocyclic amide derivatives 1.15–
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1.17 relative to the all-carboxylate macrocyclic complex 1.1.
40

 This slowing of water-exchange 

rates occurs due to the higher positive charge density at the Gd
III

 center, regardless of the 

increasing negative charge of the phosphonate side chains in the series 1.15–1.17. The slowing 

of water-exchange rates in amide-containing complexes is proportional to the number of amide 

groups that coordinate to the Ln
III

 ion. 

In general, faster water-exchange rates are observed in complexes with less positive 

charges. For example, an 18- and 4.5-fold difference in water-exchange rate was observed 

between negatively charged complexes 1.18 and 1.19 and structurally similar, but neutral 

complex 1.20.
41

 Another example demonstrated that the water-exchange rate of negatively 

charged Gd
III

-containing 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate (DO3A) derivative 1.21 

with a monodentate phosphonate group displayed a water-exchange rate that is 170-times faster 

than that of the neutral DO3A derivative 1.22 with a bidentate ethoxyacetate moiety.
42

 The 

difference in water-exchange rate between negatively charged and neutral complexes is possibly 

due to the difference in charge between the two complexes but is likely also due to the change in 

the functional groups (discussed in subsequent sections on influence of steric hindrance and 

ligand side chains on water-exchange rates). Based on the correlation between fast water-

exchange rates and positive charges, complexes with less positive charge at the Gd
III 

center are 

desirable for designing Gd
III

-containing T1-shortening agents with fast water-exchange rates. 
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Table 1.2. Water-exchange rates of complexes 1.12–1.42 determined from 
17

O-NMR 

spectroscopy and CEST spectra for Gd
III

- and Eu
III

-containing complexes, respectively.  

 

Complex kex (×10
6
 s

–1
) Ln

III
 ion Reference 

1.12 1.9 Gd
III

 39 

1.13 1.3 Gd
III

 39 

1.14 0.85 (37 C) Gd
III

 38 

1.15 0.77 Gd
III

 40 

1.16 0.16 Gd
III

 40 

1.17 0.038 Gd
III

 40 

1.18 80 Gd
III

 41 

1.19 20 Gd
III

 41 

1.20 4.4 Gd
III

 41 

1.21 78.7 Gd
III

 42 

1.22 0.457 Gd
III

 42 

1.23 0.98 Gd
III

 43 

1.24 0.60 Gd
III

 43 

1.25 14.1 Gd
III

 44 

1.26 6.29 Gd
III

 44 

1.27 17.6 Gd
III

 45 

1.28  7.4 Gd
III

 45 

1.29 1.7 Gd
III

 46 

1.30 0.66 Gd
III

 46 

1.31 0.0069 Eu
III

 47 

1.32 0.0051 Eu
III

 47 

1.33 0.0037 Eu
III

 47 

1.34 0.0033 Eu
III

 47 

1.35 0.0031 Eu
III

 47 

1.36 0.0028 Eu
III

 47 

1.37 0.018 Eu
III

 48 

1.38 0.012 Eu
III

 48 

1.39 0.005 Eu
III

 48 

1.40 0.00290 Eu
III

 49 

1.41 0.00253 Eu
III

 49 

1.42 0.00211 Eu
III

 49 
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Figure 1.4. Representative Gd
III

- and Eu
III

-containing complexes that relate the influence of 

charge (compounds 1.12–1.26) and electron density of coordinating atoms (compounds 1.27–

1.42) to water-exchange rate.
38–49
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On the other hand, reducing the water-exchange rate is desirable when designing 

PARACEST agents, and complexes with high positive charges on the Ln
III

 ion tend to lead to 

slow water-exchange rates. As mentioned earlier, the observed 8.2-fold difference in water-

exchange rate between negatively charged linear complex 1.2 and the analogous neutral linear 

complex 1.14 at 37 °C is an example of slowing of water-exchange rates with higher overall 

positive charge and higher positive charge on the Ln
III

 ion.
38

 Similarly, a 1.6-fold difference in 

water-exchange rate was observed between neutral, linear complex 1.23 and the analogous 

positively charged complex 1.24.
43

 Complexes 1.23 and 1.24 are structurally similar but have 

different charges; consequently, the slowing of water-exchange rate can be attributed at least 

partially to the difference in charge between 1.23 and 1.24. In another example, a 2.2-fold 

difference in water-exchange rate was observed between neutral, macrocyclic Gd
III

-containing 

complex 1.25 and neutral glycine derivative 1.26.
44

 Although complexes 1.25 and 1.26 are both 

neutral, the charge distribution on the complexes is different. Complex 1.26 has the negative 

ligand-based charges farther away from the Gd
III

 ion than in complex 1.25, resulting in a lower 

density of positive charge close to the Gd
III

 ion in complex 1.25 relative to 1.26. This difference 

in charge density at the Gd
III

 center likely is responsible for the differences in water-exchange 

rates between complexes 1.25 and 1.26. Observations that slow water-exchange rates occur with 

more positive charges suggest that complexes with more positive charges are potentially useful 

in designing PARACEST agents with slow water-exchange rates. 

To further probe the influence of charge density near a Ln
III

 ion on water-exchange rates, 

the electronic effects of coordinating atoms have been studied. As an example, Aime and co-

workers demonstrated that the water-exchange rates of neutral DO3A-type complexes can be 

varied by altering the electronic properties of coordinating macrocyclic nitrogen atoms.
45

 In this 
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example, complexes 1.27 and 1.28 differ in the substituent on the para-position of the phenyl 

group attached to a coordinating macrocyclic nitrogen atom. A 2.4-fold faster water-exchange 

rate was observed with complex 1.27, with an electron-donating amino group, relative to 

complex 1.28, with an electron-withdrawing nitro group.
45 

Moreover, the influence of electron-

donating methyl groups on water-exchange rates of triamide derivatives of DO3A-type 

complexes has also been investigated. Complex 1.29 that contains an electron-donating methyl 

substituent displayed a 2.6-fold faster water-exchange rate than non-methyl-containing analog 

1.30.
46

 The relatively fast water-exchange rates in complexes 1.27 and 1.29 compared to 1.28 

and 1.30 can be attributed to the electron density on the macrocyclic nitrogen atoms. This density 

can neutralize some of the positive charge on the Ln
III

 ion resulting in weak interactions with 

water and facilitate the dissociation of coordinated water from the Ln
III

 ion. In addition to 

electron density, steric hindrance at the water-coordination site caused by the methyl group in 

complex 1.29 (described in the subsequent section that discusses influence of steric hindrance on 

water-exchange rates) is likely another contributing factor to the faster water-exchange rate of 

complex 1.29 relative to complex 1.30. 

The influence of the electron density of macrocyclic nitrogen donors on water-exchange 

rates is similar to the influence of electron density on arm donors. In one study, Sherry and co-

workers investigated the series of complexes 1.31–1.36 containing substituents with different 

electronic properties, and demonstrated that water-exchange rate can be tuned by varying the 

electron density on the coordinating amide group. In this study, mesomeric electron-donating 

groups (OCH3) led to fast exchange rates, and mesomeric electron-withdrawing groups (CO2t-Bu 

and CN) led to slow exchange. However, the opposite trend was reported for inductively 

donating (CH3) and withdrawing (F) groups.
47

 In another example, a series of three complexes 
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(compounds 1.37–1.39) was investigated, where complexes 1.37 and 1.38 displayed 3.6- and 

2.4-times faster water-exchange rates, respectively, relative to complex 1.39. This observation 

was expected based on the calculated Mulliken charges on the coordinating carbonyl oxygen 

atoms. In this series of complexes, the negative charge on the coordinating carbonyl oxygen 

atoms ranges from most negative in complex 1.37 to least negative in complex 1.39.
48 

The idea 

that lower charge density on the coordinating atom leads to slower water-exchange rates was 

expanded to investigate the suitability of ketones to achieve slow water-exchange rates desirable 

for PARACEST agents.
49

 In this study of complexes 1.40–1.42, water-exchange rates were 1.1- 

to 1.4-times faster in complex 1.40 relative to complexes 1.41 and 1.42, respectively. These 

observations are consistent with water-exchange rate being dependent on the number of poorly 

electron donating ketone-donor arms in the complex. 

Based on the studies described in this section, negatively charged complexes with 

carboxylate and phosphonate donors lead to fast water-exchange rates compared to positively 

charged complexes with amide donors. Moreover, water-exchange rates become faster as a 

function of the negative charge of the complex, low positive charge density at the Ln
III

 center, or 

both. These features that lead to fast water-exchange rates are desirable for the design of T1-

shortening agents. The opposite is true for PARACEST agents, where positively charged 

complexes with amide and ketone donors tend to be useful as PARACEST agents because 

complexes with high positive charges favor slow water-exchange rates. However, complexes 

with poorly donating amide and ketone groups tend to display lower stability relative to 

negatively charged complexes with strong carboxylate donors, and stability of these complexes 

is critical in designing contrast agents. 
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Modification of Steric Hindrance at the Site of Water Coordination 

Another parameter that influences water-exchange rates is the degree of steric hindrance 

at the water-coordination site. This parameter is related to mechanism of exchange (discussed in 

the first section) and isomer ratio (described in the last section); increased steric hindrance leads 

to faster water-exchange rates in complexes that undergo dissociative water exchange because 

crowding the water-coordination site favors dissociation of the coordinated water molecule, 

which is the rate-limiting step. The influence of steric hindrance at the site of water coordination 

on water-exchange rate is described in this section using complexes 1.43–1.65 (Figure 1.5 and 

Table 1.3). 

Merbach and coworkers demonstrated that complex 1.43, an analog of macrocyclic 

complex 1.1 with an extended macrocyclic backbone that is one carbon longer than the 

macrocyclic backbone of complex 1.1, has a 66-fold faster water-exchange rate relative to 

complex 1.1. The difference in water-exchange rates was attributed to the increased steric 

encumbrance at the site of water coordination that results from the difference between the five-

membered and six-membered rings formed between the macrocycles and the Ln
III

 ions.
10

 The 

argument of increased steric hindrance is supported by the differences in the Gd
III

–Ocarboxylate 

distances and the Ocarboxylate–Gd
III

–Ocarboxylate angles (Figure 1.6). Although complexes 1.1 and 

1.43 have similar Gd
III

–Owater distances of 2.45 and 2.48 Å, respectively, they have markedly 

different Gd
III

–Ocarboxylate distances of 0.70 and 0.83 Å, respectively. These data indicate that the 

negatively charged carboxylate plane is closer to the axially coordinated water molecule in 

complex 1.43 than in complex 1.1. This argument is further supported by the differences in the 

Ocarboxylate–Gd
III

–Ocarboxylate angles (136.7 and 142.7° for complex 1.43 vs 146° for 1.1) implying 
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that the carboxylate plane around the Gd
III

 ion is more compact in complex 1.43 than in complex 

1.1.
10

 

Figure 1.5. Representative Gd
III

-containing complexes 1.43–1.65 that relate the influence of 

steric hindrance at the water-coordination site to water-exchange rate.
10,50–62
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Table  1.3. Water-exchange rates of Gd
III

-containing complexes 1.43–1.63 determined using 
17

O-NMR spectroscopy.  

 

Complex kex (×10
6
 s

–1
) Reference 

1.43 270 10 

1.44 61 50 

1.45 110 51 

1.46 1.6 52 

1.47 81.2 53 

1.48 1.1 53 

1.49 86 54 

1.50 0.6 54 

1.51 330 55 

1.52 31 56 

1.53 80 50 

1.54 31 50 

1.55 18 (37 C) 57 

1.56 12 (37 C) 57 

1.57 11 (37 C) 57 

1.58 10 (37 C) 57 

1.59 9.26 (37 C) 57 

1.60 43 58 

1.61 11 59 

1.62 34 54 

1.63 59 60 

1.64 29 61 

1.65 63 62 

 

 
Figure 1.6. Coordination polyhedron of Gd

III
-containing complex 1.43.

10
  

The steric difference between five and six-membered rings in chelation also can be 

observed in the arms of the complexes. Complex 1.44, with an extended carboxylate arm that is 

one carbon longer than the arms in complex 1.1, displayed a 15-fold faster water-exchange rate 
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than complex 1.1. This difference is likely due to the increased steric hindrance at the site of 

water coordination, similar to the system with an extended macrocycle.
50

 Based on the water-

exchange rates of 1.43 and 1.44, extending the macrocyclic backbone has a more pronounced 

effect in increasing the water-exchange rates of DOTA-type complexes compared to extending 

one of the arms. 

In another example, DOTA-monoamide derivative 1.45, with an amide group separated 

by an ethylene bridge from the macrocyclic nitrogen, displayed a water-exchange rate that is 69-

times faster than the analogous DOTA-monoamide complex 1.46.
51,52

 The fast water-exchange 

rate of 1.45 is likely due to the steric hindrance at the water-coordination site, imposed by the 

seven membered chelate formed by the ethylene bridge between the macrocyclic nitrogen and 

the amide oxygen compared to the five membered chelate in DOTA-monoamide complex 1.46. 

A similar trend in water-exchange rates was observed between DOTA-monoamide complexes 

1.47 and 1.48 where complex 1.47 displayed a water-exchange rate that is 74-times faster than 

that of complex 1.48.
53

 The faster water-exchange rate of complex 1.47 relative to complex 1.48 

is possibly due to the steric constraints at the site of water-coordination caused by the six 

membered chelate in 1.47 relative to the five membered chelate in 1.48. Similar to the fast water-

exchange rates observed for DOTA-monoamide derivatives 1.45 and 1.47, a 143-fold difference 

in water-exchange rate was observed between triaza-macrocyclic complex 1.49 with a propionate 

arm and the analogous triaza-macrocyclic complex 1.50 with an acetate arm. The difference in 

water-exchange rate between complexes 1.49 and 1.50 was reportedly due to the increased steric 

hindrance at the site of water coordination caused by the extended propionate arm.
54 

These 

studies suggest that the steric environment caused by ring size is generalizable to different sizes 

of macrocyclic ligand backbones. 
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The work on elongation of the macrocyclic backbones was extended into linear 

diethylene triamine pentaacetate (DTPA)-type systems by Merbach and coworkers. In one study, 

complex 1.51, which is structurally similar to complex 1.2 but with an extra carbon in the 

nitrogen backbone, displayed a 100-fold faster water-exchange rate relative to that of complex 

1.2. The faster water-exchange rate of 1.51 relative to 1.2 was reported to be due to the steric 

hindrance caused by the extra carbon in the backbone of 1.51.
55

 In another example, complex 

1.52 with an ether-based oxy-ethylene bridge in the backbone led to a water-exchange rate that is 

9.4-times faster than that of complex 1.2. The difference in water-exchange rate between 1.2 and 

1.52 can be attributed to the 3% longer Gd–Owater distance in 1.52 compared to 1.2, possibly due 

to steric hindrance caused by the ethylene bridge on the backbone of 1.52, which facilitates the 

dissociation of the coordinated water molecule.
56 

However, because there are multiple structural 

differences between complexes 1.2 and 1.52, it is likely that no single difference is responsible 

for the entire change in water-exchange rate. 

In addition to extending the linear backbone, DTPA-type complexes with extended arms 

have been synthesized to study the influence of arm extensions on water-exchange rates. For 

example, a 24-fold difference in water-exchange rate was observed between DTPA analog 1.53 

with an extended carboxylate arm and the parent complex 1.2.
50

 Furthermore, with DTPA-type 

complexes, the position of the extended carboxylate arm (whether terminal or central) also 

influences the water-exchange rate. Complex 1.53, with a terminal extended carboxylate arm, 

has a water-exchange rate that is 2.6-times faster than that of complex 1.54 with a central 

extended carboxylate arm.
50

 This observation implies that the extension of terminal carboxylates 

causes more steric hindrance at the site of water coordination and leads to faster water-exchange 

rates compared to extension of the central carboxylate arm. Unlike with macrocyclic complexes, 
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extension of the nitrogen backbone with linear complexes generally has a higher impact on 

water-exchange rates than extending one of the carboxylate arms. 

In addition to extending multidentate ligand backbones and arms, the influence of steric 

crowding caused by backbone substitution on the water-exchange rates was studied using the 

series of linear complexes 1.55–1.59.
57

 In this series, the complexes differ from one another in 

the alkyl-group substitution on the ethylene carbons. The dialkyl substituted complex 1.55 has a 

water-exchange rate that is 2.6-times faster than complex 1.2 at 37 °C, and monoalkyl substituted 

complexes 1.56–1.59 display water-exchange rates that are 1.3- to 1.7-times faster than the 

parent unsubstituted complex 1.2 at 37 °C. The faster water-exchange rates of the alkyl 

substituted complexes relative to parent complex 1.2 are likely due to the increased steric 

hindrance in the inner-coordination sphere.
57

 A similar study demonstrated that dimethyl-

substituted complex 1.60 had a 1.3-fold faster water-exchange rate than parent complex 1.6.
58

 A 

confounding point with complex 1.6 is that it has two different reported water-exchange rates 

(102 × 10
6
 s

−1
 and 33 × 10

6
 s

−1
)
33,58

, and the 1.3-fold difference in rates is not observed if the 

wrong value is used when comparing complexes 1.6 and 1.60. As with the other systems, this 

result is likely due to the increased steric hindrance from the methyl substitution. 

In addition to using alkyl groups to investigate the influence of steric crowding on water-

exchange rates, complexes containing bulky phosphonate arms display faster water-exchange 

rates relative to complexes with no phosphonates. This difference in rates is likely at least 

partially due to the steric hindrance at the site of water-coordination caused by the large size of 

the phosphonate groups. For example, phosphonate-containing complex 1.61 displayed a water-

exchange rate that is 3.5-times faster than that of the parent complex 1.2.
59

 In another example, 
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phosphonate-containing triaza-macrocyclic complex 1.62 displayed a 57-fold faster water-

exchange rate relative to the non-phosphonate-containing analog 1.50.
54

 

Rigidifying the backbone of polyaminopolycarboxylate-based ligands is another strategy 

that often results in faster water-exchange rates, possibly due to enhanced steric crowding caused 

by substituents used to rigidify the ligand backbone. For example, backbone rigidification in 

complex 1.63 using two piperidine moieties led to a 1.9-fold faster water-exchange rate than 

non-rigid complex 1.52.
60 

In another example, complex 1.64 with a cyclohexylene-bridge-

containing rigidified macrocycle led to a water-exchange rate that was 2.4-fold faster than that of 

non-rigid 1.25.
61

 Another example demonstrated that a rigid macrocyclic ligand framework 

based on diazapyridinophane (complex 1.65) displayed a 15-fold faster water-exchange rate than 

complex 1.1.
62

 The faster water-exchange rates of rigidified complexes 1.63–1.65 with respect to 

non-rigid analogs 1.52, 1.25, and 1.1 are likely due to a variety of differences, but one of the 

influences is the increased steric hindrance brought about by the cyclic functionalities that 

enhance the rigidity of the backbone.  

Increasing steric hindrance at the site of water coordination—using strategies including 

extension of ligand backbone or arms, incorporating bulky phosphonates, introducing bulky 

alkyl groups on the ligand backbone, and rigidification of the ligand backbone—leads to 

complexes with fast water-exchange rates; therefore, these strategies are desirable in T1-

shortening agents. However, it is important to note that extension of ligand backbone and arms 

often leads to less stable complexes relative to analogous complexes without backbone and arm 

extensions, and stability is a critical consideration in the design of contrast agents. On the other 

hand, releasing steric encumbrance at the site of water coordination using less sterically 
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demanding coordinating groups leads to complexes with slow water-exchange rates that might be 

desirable for use as PARACEST agents. 

Modification of Ligand Side Chains 

The water-exchange rates of Ln
III

-containing complexes tend to depend on the chemical 

nature of ligand side chains including bulkiness, polarity, and charge as has been described to 

some extent in the previous sections. This section focuses on the influence of ligand side chains 

on water-exchange rate using complexes 1.4 (Figure 1.2), 1.40 (Figure 1.4) and 1.66–1.83 

(Figure 1.7 and Tables 1.4 and 1.5).  

 
Figure 1.7. Representative complexes 1.66–1.83 that relate the influence of bulkiness and 

polarity of ligand side chains to water-exchange rates.
15,27,63–69 

 

  

For example, a series of Eu
III

-tetraamide-based complexes (1.40 and 1.66–1.71) was 

synthesized to investigate the influence of ligand side chains in terms of water-accessible surface 

area (calculated from molecular modeling) on water-exchange rates.
63

 The complexes in the 

series likely undergo dissociative water exchange based on their nine coordinate ground state 
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structures. Based on the findings of this study, the water-exchange rate decreased with 

decreasing water-accessible surface area (1.66 > 1.40 > 1.67 > 1.68 > 1.69 > 1.70 = 1.71).
63

 The 

rationale used to explain these data is that large water-accessible surfaces give rise to a large 

amount of second-sphere hydration, subsequently decreasing the activation energy for the water-

exchange process. Moreover, any substituent that facilitates the access of incoming water 

molecules through second-sphere hydration was reported to lead to fast water-exchange rates. On 

the other hand, substituents on the ligand side chains that hinder the access of incoming water 

molecules lead to slow water-exchange rates.
63 

Table 1.4. Water-exchange rates of Eu
III

-containing DOTA-tetraamide complexes 1.40 and 

1.66–1.80.  

 

Complex kex (×10
6
 s

–1
) Side chain Method Reference 

1.40 0.007 CH2CO2t-Bu NMR spectroscopy
c
 63 

1.66 0.01 H NMR spectroscopy
c
 63 

1.66 0.0083
a
 H 

1
H-NMR spectroscopy 65 

1.67 0.005 CH2Ph NMR spectroscopy
c
 63 

1.68 0.004 CH(CH3)Ph NMR spectroscopy
c
 63 

1.69 0.003 CH2CO2CH2CH3 NMR spectroscopy
c
 63 

1.69 0.0013
a
 CH2CO2CH2CH3 

1
H-NMR spectroscopy 27 

1.70 0.002 CH2CO2nBu NMR spectroscopy
c
 63 

1.71 0.002 CH2CO2CH2Ph NMR spectroscopy
c
 63 

1.72 >1
a
 4-heptyl CEST  15 

1.73 0.059
a
 3-pentyl CEST 15 

1.74 0.10
a
 t-Bu CEST 15 

1.75 0.02
 a
 i-Pr CEST 15 

1.76 0.0096
a
 C(CH3)2CO2

–
 CEST 15 

1.77 0.0064
a
 CH3 

1
H-NMR spectroscopy 65 

1.78 0.00077
a
 CH2PO(OCH2CH3)2 

1
H-NMR spectroscopy 66 

1.79 0.0048
a
 C(CH3)2CO2CH2CH3 CEST 15 

1.80 0.015
b
 CH2PO3

2–
 

1
H-NMR spectroscopy 27 

a
for the square-antiprism (SAP) isomer in CH3CN, 

b
in water, 

c
the authors did not specify 

1
H or 

17
O 

 

 In addition to studying the influence of water-accessible surface area on water-exchange 

rates, a recent study correlated the steric bulk of ligand side chains and water-exchange rates 

using complexes 1.72–1.75. Based on this study, large amounts of steric bulk on ligand side 
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chains resulted in fast water-exchange rates.
15

 However, this trend cannot be generalized to any 

bulky group because there are other factors involved including polarity of the side chains. The 

relationship between steric bulk of ligand side chains and water-exchange rate is similar to that 

observed in the previous section, where water-exchange rate increased with steric hindrance 

imposed at the site of water-coordination. Furthermore, at least a 17-times faster water-exchange 

rate was observed for more bulky heptyl-containing complex 1.72 relative to less bulky pentyl-

containing complex 1.73, and a 3.7-fold faster water-exchange rate was observed for complex 

1.74 (with more bulky tert-butyl substituents) relative to 1.75 (with less bulky isopropyl 

substituents).
15 

To explain these observations, it was suggested that side chains with bulky 

substituents interact with one another through steric interactions making the coordinated water 

exposed to bulk water.
15

 The exposure of coordinated water to bulk water facilitates water 

exchange leading to fast water-exchange rates. 

Because the steric bulk and polarity of side chains are intertwined, complexes 1.74 and 

1.76 were used to isolate the effects of steric bulk and polarity. Despite being similar in terms of 

steric bulk, complexes 1.74 and 1.76 display different water-exchange rates (Table 1.4), 

suggesting that the polarity of the side chains influences the magnitude of water-exchange rates. 

Complex 1.74 displayed a 10-fold faster water-exchange rate than complex 1.76 with polar 

carboxylate groups. This difference in water-exchange rate can be attributed to the ability of 

polar groups to sustain second-sphere hydration via hydrogen-bond interactions, thereby 

stabilizing the nine-coordinate ground state leading to slow water-exchange rates.
15

 This trend in 

water-exchange rates is the opposite of what was reported for complexes 1.40 and 1.66–1.71 

likely because both polarity and bulkiness of ligand side chains contribute to water-exchange 

rates and the difficulty of separating one from the other. 
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In general, water-exchange rates of Eu
III

-containing DOTA-tetraamide-based complexes 

tend to be slower when the polarity of ligand side chains is greater (primary amides<alkyl 

substituents<carboxylates<phosphonates).
64

 An example of this trend can be observed in the 

differences in water-exchange rates among complexes 1.66, 1.69, 1.77, and 1.78 [primary amide-

containing complex 1.66 > alkyl substituent-containing complex 1.77 > carboxylate-ester-

containing complex 1.69 > phosphonateester-containing complex 1.78] (Table 1.4).
27,65,66 

The 

slowing of water-exchange rates as a function of polarity can be attributed to the stabilization of 

the nine-coordinate ground state through hydrogen-bond interactions. Although polar ligand side 

chains are expected to result in slow water-exchange rates, it was observed that complexes 

bearing negatively charged side chains display faster water-exchange rates than their neutral 

analogs.
64 

For example, a 2-fold difference in water-exchange rate was observed between 

negatively charged carboxylate-side-chain-containing analog 1.76 and neutral ethylester-side-

chain-containing complex 1.79.
15

 In another example, a 52-fold difference in water-exchange 

rate was observed between neutral phosphate-ester-side-chain-containing complex 1.78 and 

negatively charged phosphonate-side-chain-containing analog 1.80.
27,66 

The slower water-

exchange rates of neutral ester-containing complexes relative to their negatively charged analogs 

is likely due to the ability of ethyl groups to block incoming water molecules, subsequently 

lowering the number of water molecules available for exchange.
15

 The observation of complexes 

with negatively charged side chains leading to fast water-exchange rates is consistent with the 

second section that relates negatively charged complexes to fast water-exchange rates.  

Another instance of polar side chains leading to slow water-exchange rates can be 

observed with HOPO-based polyethylene glycol (PEG) conjugates 1.81–1.83.
67,68

 Moreover, a 4-

fold difference in water-exchange rate was observed between parent HOPO complex 1.4 without 
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PEG and HOPO complex 1.83 with the PEG moiety with 123 monomer units (Table 1.5).
67,68 

The observed difference in water-exchange rate is likely due to hydrogen-bonding and steric 

interactions brought about by PEG moieties. 

Table 1.5. Water-exchange rates and water-coordination numbers of Gd
III

-containing HOPO-

based (1.4 and 1.81–1.83) PEG conjugates.  

 

Complex kex (×10
6
 s

–1
) q Reference 

1.4 130 2 30 

1.81 77 1 67 

1.82 53 1 68 

1.83 32 1 68 

 

Based on the studies described in this section, Ln
III

-containing complexes with bulky, 

hydrophobic side chains are desirable in designing T1-shortening agents, because they are 

expected to lead to fast water-exchange rates. On the other hand, Ln
III

-containing complexes 

with neutral hydrophilic side chains are suitable for developing PARACEST agents because 

hydrophilic side chains tend to result in slow water-exchange rates. 

Modification of TSAP/SAP Ratios for DOTA-Type Complexes 

 The water-exchange rates of DOTA-type Ln
III

-containing complexes are also governed 

by the ratio of the twisted-square-antiprism (TSAP) to square-antiprism (SAP) isomers. In this 

section, the influence of the TSAP/SAP ratio on water-exchange rate will be discussed using 

complexes 1.18–1.20 and 1.84–1.93 (Figures 1.4 and 1.8 and Table 1.6). DOTA-type 

complexes exist as two diasteriomers in aqueous solution, namely TSAP and SAP that differ in 

the arrangement of their carboxylate arms and macrocyclic rings. Specifically, these two isomers 

differ in the twist angle between macrocyclic nitrogen plane and carboxylate oxygen plane: the 

TSAP isomer has a narrow O–Gd
III

–N twist angle (20°), and the SAP isomer has a wide O–

Gd
III

–N twist angle (40°) (Figure 1.9). These isomers have the ability to interconvert by ring 

inversion or arm rotation.
69 
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Figure 1.8. Representative complexes 1.88–1.93 that relate the influence of TSAP/SAP ratios 

with water-exchange rates of DOTA-type complexes.
41,70–77

  

  

Table 1.6. Water-exchange rates and TSAP/SAP ratios of Gd
III

-containing complexes (1.18–1.20 

and 1.88–1.93).  

 

Complex kex (×10
6
 s

–1
) TSAP/SAP 

ratio 

kex (×10
6
 s

–1
) 

for TSAP 

kex (×10
6
 s

–1
) 

for SAP 

Reference 

1.18 80 1.3 Nr nr 41 

1.19 20 0.56 Nr nr 41 

1.20 4.4 0.39 Nr nr 41 

1.84 140
 a
 0.78

b
 330 0.43 70 

1.85 31
 a
 0.77

b
 70 0.74 70 

1.86 71 1.5 Nr nr 71 

1.87 61.7 1.5
b
 Nr nr 72 

1.88 58  Nr nr 73 

1.89a 15.4 2 Nr nr 74 

1.89b 9.0 0.75 Nr nr 74 

1.89c 3.45 0.20 Nr nr 74 

1.90 5 0.08 Nr nr 75 

1.91 67  Nr nr 76 

1.92 8.3 0 Nr nr 76 

1.93 4.5 (37 C) 0.4 110 1.6 77,78 

nr = not reported, 
a
calculated from weighted average, 

b
TSAP/SAP ratios obtained from Eu

III
-

containing complexes 
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Figure 1.9. Top-down view of (left) TSAP and (right) SAP isomers with the O–Gd

III
–N twist 

angles indicated. In these views, the oxygen plane is above the Gd
III

 ion and the nitrogen plane is 

below the Gd
III

 ion.  

  

In general, the measured water-exchange rate of DOTA-type complexes is the weighted 

average of the water-exchange rates of the TSAP and SAP isomers. Between the two isomers, 

the TSAP isomer tends to display a water-exchange rate that is approximately 50–200 times 

faster than the SAP isomer in DOTA-tetraamide type complexes.
69,79

 The faster water-exchange 

rate in the TSAP isomer relative to the SAP isomer is likely due to the higher amount of steric 

encumbrance at the site of water coordination, which facilitates the dissociation of coordinated 

water similar to fast water-exchange rates (discussed in the third section) due to the steric 

hindrance at the site of water-coordination. Because the TSAP and SAP isomers display different 

water-exchange rates, the water-exchange rates of DOTA-type complexes can be tuned by 

changing the relative abundance of the two isomers in solution using coordination-chemistry-

based strategies. Complexes with sterically bulky substituents tend to favor the TSAP isomer, 

while complexes without bulky substituents favor the SAP isomer. However, it is important to 

note that relative abundance of the two isomers also depends on other factors including ionic 

radius, solvent, ionic strength of the solution, and salt composition.
80–82

  

To study the influence of steric bulk on amide nitrogen atoms on the relative abundance 

of the TSAP and SAP isomers, complexes 1.84 and 1.85 were investigated. The TSAP/SAP 

ratios of 0.78 and 0.77 were measured for Eu
III

-containing complexes 1.84 and 1.85, 
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respectively. These ratios are 2-times greater than Eu
III

-containing complex 1.1 that has a 

TSAP/SAP ratio of 0.36.
70

 The water-exchange rates obtained for the Gd
III

-containing complexes 

1.84 and 1.85 indicated that the TSAP isomers displayed 782- and 95-times faster water-

exchange rates, respectively, than the SAP isomers.
70

 

In addition to introducing steric bulk on amide nitrogen atoms, other bulky DOTA-type 

complexes increase the population of the TSAP isomer relative to the SAP isomer, leading to 

faster water-exchange rates. This idea can be exemplified using phosphonate-containing DOTA-

type systems.
41,71,72

 In one example, a TSAP/SAP ratio of approximately 1.5 was observed for 

phosphonate-containing complex 1.86 and resulted in a 17-fold faster water-exchange rate 

relative to that of complex 1.1.
71

 In another example, a TSAP/SAP ratio of 1.5 for phosphonate-

containing complex 1.87, which is 4-times greater than that of complex 1.1, resulted in a water-

exchange rate that is 15-times faster than complex 1.1.
72 

Interestingly, the series of phosphonate-

containing complexes 1.18–1.20 were used to demonstrate that the TSAP/SAP ratios are larger 

with complexes of more negative charge. The TSAP/SAP ratios were 1.3 and 0.56 in negatively 

charged complexes 1.18 and 1.19, respectively, and 0.39 in neutral complex 1.20 suggesting that 

the TSAP isomer dominates in complexes with more negative charge. The difference in the 

populations of the TSAP isomers was reflected in the water-exchange rates of complexes 1.18–

1.20: 18- and 4.5-fold differences in water-exchange rates were observed in complexes 1.18 and 

1.19, respectively, relative to complex 1.20.
41

. The differences in water-exchange rates of 

complexes 1.18–1.20 are likely due to the difference in the TSAP isomer population, the 

difference in complex charge as described in the second section, or both factors. In addition to 

bulky phosphonate-containing complexes, complex 1.88 with a bulky bis-methylene picolinate 

platform was explored. Complex 1.88 displayed a water-exchange rate that is 14-times faster 
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than that of complex 1.1.
73

 The faster water-exchange rate is likely because complex 1.88 exists 

exclusively as the distorted TSAP isomer.
73  

In addition to incorporating steric bulk on the ends of the arms farthest from the 

macrocycle, DOTA-type complexes with substituents at the α-positions of the pendent arms 

increase the abundance of the TSAP isomer. As an example, Parker and co-workers observed 

that a Gd
III

-containing DOTA analog with propionate groups in the α-positions of the pendent 

arms contains the three isomers 1.89a, 1.89b, and 1.89c. In this series, the water-exchange rate 

increases with increasing TSAP/SAP ratios.
74 

Interconversion between TSAP and SAP isomers 

in complexes 1.89a and 1.89b was reported to occur only through ring inversion because the 

bulky propionate group in the α-position of the pendent arm hinders arm rotation affording 

TSAP/SAP ratios that are 10- and 3.8-times higher, respectively, than in complex 1.89c. The low 

TSAP/SAP ratio in complex 1.89c is likely due to interconversion between TSAP and SAP 

isomers through arm rotation as well as ring inversion. The differences in the TSAP/SAP ratios 

are likely responsible for the 4.5- and 2.6-fold faster water-exchange rates of complexes 1.89a 

and 1.89b, respectively, relative to complex 1.89c.
74 

In addition to blocking arm rotation, 

complexes containing bulky substituents on the macrocycle were synthesized with the objective 

of blocking ring inversion in DOTA-type complexes. A study of complex 1.90 with a p-

nitrobenzyl group on the macrocycle demonstrated that TSAP to SAP interconversion through 

ring inversion can be blocked. However, arm rotation persisted affording a TSAP/SAP ratio of 

0.08 resulting in a water-exchange rate that is only 1.2-times faster than that of complex 1.1.
75

 

Based on the observations that arm rotation and ring inversion can be blocked by arm and ring 

substitutions, respectively, complexes with both arm and ring substitutions were reported to 

control isomer type. Furthermore, controlling the chirality at five carbons led to preference for a 



35 
 

 
 

single isomer. For example, complexes 1.91 (S-SSSS) and 1.92 (S-RRRR) with substituents on 

the macrocycle as well as the pendant arms were reported to exist exclusively as TSAP and SAP 

isomers, respectively.
76 

The water-exchange rate of 1.91 (S-SSSS) in the TSAP form was 8-times 

faster than the water-exchange rate of 1.92 (S-RRRR) in the SAP form.
76

 These examples 

substantiate that complexes existing exclusively in the TSAP form have faster water-exchange 

rates relative to complexes existing in the SAP form. 

In addition to experimental studies carried out to tune TSAP/SAP ratios in DOTA-type 

complexes, a computational study was carried out on complex 1.93 to understand the rationale 

behind the TSAP isomer leading to fast water-exchange rates.
77 

This computational study 

suggested that the TSAP isomer displays hydrogen-bond interactions between pendant arms and 

second-sphere water, enabling the coordinated water to exchange readily with bulk water, 

leading to fast water-exchange rates. On the other hand, the SAP isomer is expected to form 

hydrogen-bond interactions between second-sphere and inner-sphere water, stabilizing the 

ground state in dissociative exchange processes and leading to slow water-exchange rates. Based 

on this study, increasing the ability of pendant arms to form hydrogen bonds without lengthening 

side chains is likely to result in large proportions of the TSAP isomer with DOTA-type 

complexes. Although the predictions of this study at first glance appear to be in contrast with the 

studies discussed in the previous section that relates ligand side chains to water-exchange rates, 

the difference is likely because the side chains of complexes 1.81–1.83 are long compared to the 

side chain of complex 1.93. The length of the side chain influences how far from the Ln
III

 ion 

hydrogen bonding occurs, and this distance is an important difference between the complexes 

described in the previous section and this section. 
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Complexes with large TSAP/SAP ratios are expected to lead to fast water-exchange rates 

necessary for conventional T1-shortening agents because the TSAP isomers display fast water-

exchange rates. Large TSAP/SAP ratios are likely to form with complexes that contain bulky 

substituents on the α-position of pendant arms, on the macrocycle, and on amide nitrogen atoms 

as well as from complexes with side chains that facilitate hydrogen-bonding interactions near the 

inner-sphere water. On the other hand, for the design of PARACEST agents, low TSAP/SAP 

ratios are desirable because the SAP isomers display water-exchange rates that are 1–2 orders of 

magnitude slower than the TSAP isomers. Complexes with low TSAP/SAP ratios are likely with 

low steric strain on pendant arms and the macrocycle as well as on amide nitrogen atoms. Also, 

side chains that hinder hydrogen-bond interactions close to the inner-sphere water might favor 

the SAP isomer leading to slow water-exchange rates useful for PARACEST agents. 

Summary 

Water-exchange rate is an important molecular parameter in Ln
III

-containing complexes 

that governs the efficiency of T1-shortening and PARACEST contrast agents for MRI. 

Consequently, tuning water-exchange rates of Ln
III

-containing complexes to achieve maximum 

efficiencies for both types of agents has led to a great deal of research. As discussed in this 

chapter, several coordination-chemistry-based strategies have been employed to tune water-

exchange rates of Ln
III

-containing complexes toward the optimum values desirable for both types 

of agents. It is important to re-emphasize that there is overlap among the strategies discussed in 

this chapter. Based on the influence of different coordination-chemistry-based strategies on 

water-exchange rate, complexes with the following properties are expected to lead to fast water-

exchange rates that are desirable for the design of T1-shortening agents: that undergo associative 

water exchange; that are negatively charged; with steric hindrance at the site of water 
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coordination; with side chains containing non-polar substituents; and with large TSAP/SAP 

ratios for DOTA-type complexes. On the other hand, complexes that undergo dissociative 

exchange; that are positively charged; without bulky substituents at the site of water 

coordination; with polar substituents on side chains; and with predominantly SAP isomers for 

DOTA-type complexes are expected to lead to slow water-exchange rates that are desirable for 

the design of PARACEST agents. Careful consideration and application of the coordination-

chemistry-based strategies described in this chapter have the potential to enable fine-tuning of 

water-exchange rates towards optimal fast or slow rates. Consequently, these strategies are 

expected to aid the design of both T1-shortening and PARACEST contrast agents for MRI. 

Research Approach 

 As discussed in this chapter, a great deal of research efforts have been employed to tune 

the water-exchange rates of Ln
III

-containing complexes towards fast (10
8
 s

–1
) and slow (10

3
 s

–1
) 

rates that are useful for T1-shortening and PARACEST agents, respectively. Literature examples 

discussed in this chapter demonstrate that even minor modifications to ligand structure lead to 

considerable changes in the water-exchange rates of Ln
III

-containing complexes. Consequently, it 

was envisioned that the water-exchange rates of Ln
III

-containing DOTA-type complexes could 

be tuned by introducing a modular and tunable system of modifications, based on the bio-

compatible and hydrophilic polymer polyethylene glycol (PEG). Moreover, this modular and 

tunable PEG-based system was expected to enable investigation of the influence of both length 

and density of PEG on water-exchange rates of these complexes. The goal of this work was to 

use PEG to tune water-exchange rates of Ln
III

-containing complexes to slow water-exchange 

rates. To accomplish this goal, it was hypothesized that PEG is able to tune water-exchange rates 
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of Ln
III

-containing complexes towards slower rates. The experimental design that was used to 

test this hypothesis and the data obtained are explained in the subsequent chapters. 

 Chapter 2 describes key features of the PEG-based Ln
III

-containing DOTA-type systems 

that lead to modular systems with the potential to tune water-exchange rates of Ln
III

-containing 

complexes as a function of length and density of PEG. This chapter also illustrates the 

coordination-chemistry-based strategies employed in the design of PEG-based Ln
III

-containing 

DOTA-type systems. Furthermore, a discussion is included in Chapter 2 on how Ln
III

 ions were 

chosen for the PEG-based DOTA-type systems based on the expected properties of the designed 

complexes. In Chapter 3, the ability of PEG to influence water-exchange rates is described for 

Ln
III

-containing complexes in a systematic fashion as a function of length of PEG. Moreover, 

Chapter 3 includes contrast-agent-relevant properties of PEG-based Ln
III

-containing complexes 

and a plausible explanation for the ability of PEG to influence water-exchange rates as a function 

of length of PEG.  Chapter 4 describes the synthetic attempts performed for the synthesis of 

PEG-based Ln
III

-containing complexes designed to study the influence of density of PEG on 

water-exchange rates of Ln
III

-containing complexes. Chapter 5 concludes the thesis by discussing 

the potential of PEG-based Ln
III

-containing DOTA-type systems to tune water-exchange rates as 

a function of length of PEG. Moreover, the implications of PEG-based systems for the design of 

T1-shortening and PARACEST contrast agents for MRI with tunable water-exchange rates is 

illustrated. In addition, a few suggestions for future work to further tune water-exchange rates of 

PEG-based systems is described with specific focus on factors to be considered in designing 

contrast agents with optimum water-exchange rates. 

 

 



39 
 

 
 

CHAPTER 2: Ligand Design and Synthetic Approach 

Ligand Design 

 The modular systems of lanthanide(III) (Ln
III

)-containing polyethylene glycol (PEG) 

conjugates were designed considering several factors including (1) the ability to form 

thermodynamically stable and kinetically inert complexes with Ln
III

 ions; (2) the capacity to 

incorporate one or more functional groups capable of reacting with commercially available PEG 

moieties; and (3) the modularity necessary to enable the investigation of the molecular 

parameters including water-exchange rates of Ln
III

-containing complexes as a function of length 

and density of PEG in a systematic fashion.  Careful consideration and combination of all three 

factors led to the design of modular systems based on 1,4,7,10-tetraazacyclododecane-1,4,7-

tris(acetic acid) (DO3A) and 1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid) (DO2A). 

Moreover, the DO3A-based system (Figure 2.1) and the DO3A- and DO2A-based systems 

(Figure 2.2) were designed to investigate the influence of length and density of PEG, 

respectively, on the water-exchange rates of Ln
III

-containing complexes. Details of the design 

consideration choices are described in this chapter. 

 

Figure 2.1. The DO3A-based ligand (2.1) designed to investigate the influence of length of PEG 

on water-exchange rates of Ln
III

-containing complexes. This ligand system incorporates one 

amine-terminated arm that can be conjugated to one PEG moiety. The counteranion of ligand 2.1 

is not shown for clarity. 



40 
 

 
 

 

Figure 2.2. The DO3A- (2.2) and DO2A-based (2.3) systems designed to investigate the 

influence of density of PEG on water-exchange rates of Ln
III

-containing complexes. Ligand 2.2 

incorporates one arm that branches into two terminal amines and ligand 2.3 incorporates two 

amine-terminated arms. The terminal amines on ligands 2.2 and 2.3 can be conjugated to two 

PEG moieties. The counteranions of ligands 2.2 and 2.3 are not shown for clarity. 

 

 Each ligand system is composed of two parts: a DO3A or DO2A macrocycle and one or 

more linear or branched amine arms. Polyaminopolycarboxylate-type macrocycles based on 

1,4,7,10-tetraazacyclododecane (cyclen) tend to form thermodynamically stable and kinetically 

inert Ln
III

-containing complexes through the chelate and macrocyclic effects.
2,8,9

 Also, the 

carboxylate arms in DO3A and DO2A are known to form stronger interactions with Ln
III

 ions 

relative to other coordinating functional groups including amides, esters, and ketones.
83–86

 The 

non-carboxylate arms in the ligand systems included amide functional groups to bind with the 

Ln
III

 ion and linear or branched terminal amines that can be conjugated to succinimidyl ester-

derivatives of PEG. The amide groups were chosen over ester and ketone groups because amides 

tend to form stronger interactions with Ln
III

 ions.
49

 In addition, the amide groups were placed so 

that they coordinate the Ln
III

 ion through the formation of five-membered rings because Ln
III

 

ions prefer coordination through five-membered rings relative to larger or smaller rings.
87

 

Moreover, ligand system 2.1 consists of one linear terminal amine that can be conjugated to one 

PEG moiety to investigate the influence of the length of PEG on the properties of the molecules. 

Ligand systems 2.2 and 2.3 consist of branched and linear terminal amines, respectively, that can 
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be conjugated to two PEG moieties to investigate the influence of the density of PEG on the 

properties of the molecules.  

Gd
III

 was chosen as the Ln
III

 ion for ligand systems 2.1–2.3 to enable determination of 

contrast agent relevant parameters including water-exchange rate, kex; relaxivity, r1; and 

longitudinal and transverse electron spin relaxation times, T1e and T2e, respectively.  In addition, 

Eu
III

-containing complexes of ligand systems 2.1–2.3 were synthesized to obtain water-

coordination number (q) data. Also, Y
III

-containing complexes of ligand systems 2.1–2.3 were 

synthesized as diamagnetic controls for the determination of water-exchange rates. The 

structures of metal
 
complexes of ligand systems 2.1–2.3 are shown in Figure 2.3. 

 

Figure 2.3. Structures of metal complexes 2.4–2.12 formed using ligands 2.1–2.3. The 

counteranions of the complexes are not shown for clarity. 

  

PEG was chosen to tune water-exchange rates of Ln
III

-containing DOTA-type complexes 

through steric and hydrogen bonding interactions. Hydrogen bond formation with bound and 

bulk water is expected through oxygen-based hydrogen bond acceptors present in PEG. Based on 

the coordination-chemistry-based strategies described in Chapter 1, the hydrogen bond forming 

ability of ligand side chains and steric blocking of the water-coordination sites tend to influence 

water-exchange rates of Ln
III

-containing complexes. In addition, conjugation to PEG is not 

detrimental to the biocompatibility
 

of Ln
III

-containing contrast agents.
88–90

 Commercially 
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available PEG moieties were selected to enable investigation of influence of length and density 

of PEG on water-exchange rates of Ln
III

-containing complexes. The structures of M
III

-containing 

PEG conjugates and PEG moieties explored are illustrated in Figure 2.4. Conjugation between 

M
III

-containing complexes and PEG moieties was carried out using different combinations as 

described below to enable variation of length and density of PEG. Moreover, to enable variation 

of length of PEG, metal complexes 2.4–2.6 were conjugated to succinimidyl ester derivatives of 

a–d. To enable variation of density, metal complexes 2.4–2.6 were conjugated to succinimidyl 

ester derivative of e and metal complexes 2.7–2.9 and 2.10–2.12 were conjugated to 

succinimidyl ester derivatives of a and c. Conjugates 2.16–2.18 and 2.19–2.21 that were 

designed to study the influence of density of PEG, also enable comparison between the influence 

of cis and trans conjugation of PEG, respectively, on water-exchange rates. However, it is 

important to note that the difference in charge between systems 2.16–2.18 (neutral) and 2.19–

2.21 (+1) can lead to differences in water-exchange rates as described in Chapter 1. 

Figure 2.4. The structures of M
III

-containing PEG conjugates, 2.13–2.21, acetate, a, used as a 

control, and PEG moieties b–e used to investigate the influence of length and density of PEG on 

water-exchange rates of Ln
III

-containing complexes. The counteranions of complexes 2.19–2.21 

and are not shown for clarity. 
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Synthetic Approach 

 It was proposed that a four step synthetic approach could afford the desired M
III

-

containing PEG conjugates based on the retrosynthetic analysis of conjugates 2.13–2.15, 2.16–

2.18, and 2.19–2.21 illustrated in Schemes 2.1–2.3, respectively. 

 In general, the first step involves nucleophilic substitution of the protected arms (2.24 or 

2.26) with DO3A-tert-butyl ester (2.23) or DO2A-tert-butyl ester (2.28) to yield protected 

ligands 2.22, 2.25, and 2.27. The tert-butyl esters, tert-butoxycarbamates, and carboxybenzyl 

protecting groups could be cleaved upon treatment with concentrated hydrochloric acid to afford 

deprotected ligands 2.1, 2.2, and 2.3. Metallation of the deprotected ligands could be 

accomplished using metal chlorides to obtain Gd
III

-, Eu
III

-, or Y
III

-containing complexes 2.4–

2.12. Conjugation of PEG to terminal amines of M
III

-containing complexes could be achieved 

using succinimidyl ester derivatives of acetate, a, and PEG, b–e, to yield conjugates 2.13–2.21. 

Scheme 2.1. Four step retrosynthetic analysis of 2.13–2.15. The counteranions of complexes 

2.4–2.6 and ligand 2.1 are not shown for clarity. 
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Scheme 2.2. Four step retrosynthetic analysis of 2.16–2.18. The counteranions of complexes 

2.7–2.9 and ligand 2.2 are not shown for clarity. 

 

 

 

 

Scheme 2.3. Four step retrosynthetic analysis of 2.19–2.21. The counter anions of complexes 

2.10–2.12 and ligand 2.3 are not shown for clarity. 
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Experimental Procedures  

Commercially available chemicals were of reagent-grade purity and were used without 

further purification unless otherwise noted. Water was purified using a PURELAB Ultra Mk2 

(ELGA) water purification system. Flash chromatography was carried out with silica gel 60, 

230−400 mesh (EMD chemicals).
91

 Thin-layer chromatography (TLC) was performed on ASTM 

TLC plates with a silica gel 60 F254 coating (250 μm layer thickness). Visualization of TLC was 

carried out with a UV lamp followed by staining with potassium permanganate (2 g KMnO4, 20 

g K2CO3, 5 mL 5% w/v aqueous NaOH, and 300 mL H2O). Spectra/Por Biotech cellulose ester 

dialysis membranes of 100−500, 500−1,000, and 8,000−10,000 Da molecular weight cut off 

(MWCO) were used for dialysis. Freeze drying was carried out using a LABCONCO FreeZone 

2.5 freeze dryer. Resin reactions were performed in Poly-Prep chromatography columns on a 

Barnstead/Thermolyne LABQUAKE rotator. Centrifugation was carried out using a Fisher 

Scientific Centrific centrifuge. High-performance liquid chromatography (HPLC) was carried 

out on a Shimadzu HPLC system equipped with a C4 column (RESTEK Ultra C4, 5.0 μm × 250 

mm) and fluorescence (λex = 273 nm, λem = 622 nm for Gd
III

 complexes and λex = 396 nm and 

λem = 593 nm Eu
III

 complexes, photodiode array (absorbance at 210 nm), and refractive index 

detectors. Aqueous size-exclusion chromatography (SEC) was performed on the same HPLC 

system using three aquagel-OH columns in series (VARIAN PLaquagel-OH-mixed, 8 μm × 300 

mm). A binary gradient method (pump A: H2O, pump B: CH3CN; 95−5% B over 20 min; flow 

rate: 1 mL/min) was used with the C4 column, and an isocratic method (100% H2O; flow rate: 1 

mL/min) was used with the aquagel-OH columns.  

1
H NMR spectra were acquired using Varian Unity 400 (400 MHz) or Varian-500S (500 

MHz) spectrometers, and 
13

C NMR spectra were acquired using Varian Unity 400 (101 MHz) or 
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Varian-500S (125 MHz) spectrometers. Chemical shifts (ppm) for 
1
H NMR spectra are reported 

relative to residual CHCl3 in CDCl3 (7.27 ppm) or CH3OH in CD3OD (3.30 ppm). Multiplicities 

are reported as “s” = singlet, “m” = multiplet, and “brs” = broad singlet. The elements 

responsible for particular shifts are noted with italicized font. Chemical shifts for 
13

C NMR 

spectra are reported relative to CDCl3 (77.23 ppm) in CDCl3 or CD3CN (118.26 ppm) as an 

internal standard in D2O. High-resolution electrospray ionization mass spectra (HRESIMS) were 

obtained on an electrospray time-of-flight high-resolution Waters Micromass LCT Premier XE 

mass spectrometer. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry was 

performed on a Waters SYNAPT G2 mass spectrometer (Manchester, UK) equipped with a 

commercial MALDI source and a Nd:YAG laser (355 nm, 200 Hz) or a Bruker Ultraflex 

MALDI-TOF mass spectrometer. α-Cyano-4-hydroxycinnamic acid (5 mg in 50:50 CH3CN/H2O 

with 0.1% formic acid) was used as the matrix. Prior to plating, samples (~1 μg/mL in water with 

0.1% formic acid or ~1 mg/mL in water) and matrix were mixed in 1:1 or 1:100 v/v ratios. N-

(tert-Butoxycarbonyl)-N'-aminoacetylchloride, 2.24,
92

 and DO2A-tert-butyl ester, 2.28,
93,94 

were 

synthesized according to previously published procedures.
 
The synthetic route to PEG conjugates 

designed to explore the influence of length (2.13a–d, 2.14a–d, and 2.15a–d) and density (2.13e, 

2.14e, and 2.15e) of PEG on water-exchange rates is shown in Scheme 2.4. 
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Scheme 2.4. Synthetic route to M
III

-containing PEG conjugates 2.13a–e, 2.14a–e, and 2.15a–e. 

 

 
 

Attempted synthesis of 2.13e, 2.14e, and 2.15e is discussed in Chapter 4. 

 

1,4,7-Tris(tert-butyloxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (2.23): The 

synthesis of this molecule is based on a previous report with  modifications as noted in the 

following text.
95

 To a mixture of cyclen (1.00 g, 5.80 mmol, 1 equiv) and NaHCO3 (1.61 g, 19.2 

mmol, 3.3 equiv) in anhydrous CH3CN (15 mL) at 0 °C under Ar was added a solution of tert-

butyl bromoactetate (2.90 mL, 19.4 mmol, 3.3 equiv) in anhydrous CH3CN (20 mL) over a 

period of 18 h (instead of 30 min as described in the previous report). The reaction mixture was 

allowed to warm to ambient temperature during the addition of tert-butyl bromoactetate (instead 

of after the addition as previously reported). The reaction mixture was stirred under Ar for 48 h 

after the addition of tert-butyl bromoactetate. The reaction mixture was filtered through celite, 

and the filtrate was concentrated to dryness under reduced pressure to yield a pale yellow solid 

that was purified using silica gel column chromatography (9:1 CHCl3/CH3OH) (not described in 

the previous report). Fractions with Rf values (9:1 CHCl3/CH3OH) between 0.39 and 0.63 were 
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combined, and the solvent was removed under reduced pressure. The resulting solid was 

recrystallized from hot toluene, dissolved in saturated NaHCO3 (50 mL), extracted with CHCl3 

(3 × 50 mL), and dried over anhydrous MgSO4. Solvent was removed under reduced pressure to 

obtain 1.46 g (49%) of 2.23 as an off-white solid. 
1
H NMR (500 MHz, CDCl3, ): 1.34−1.52 (m, 

CH3, 27H), 2.70−2.91 (m, CH2CH2, 12H),  3.00 (brs, CH2CH2, 4H), 3.30 (s, CH2C=O, 2H), 3.35 

(s, CH2C=O, 4H); 
13

C NMR (125 MHz, CDCl3, ): 28.20 (CH3), 28.24 (CH3), 47.8 (CH2CH2), 

50.4 (CH2C=O), 51.3 (CH2CH2), 51.7 (CH2CH2), 58.1 (CH2C=O), 81.5 (C(CH3)3), 81.6 

(C(CH3)3), 170.4, 171.1; Rf = 0.47 (9:1 CH3Cl/CH3OH); HRESIMS (m/z): [M + H]
+ 

calcd for 

C26H51N4O6, 515.3809; found 515.3817. 

1,4,7-Tris(tert-butyloxycarbonylmethyl)-10-(N-(2-tert-butoxycarbonylaminoethyl) 

acetamide-1,4,7,10-tetraazacyclododecane (2.22): To a mixture of 2.23 (0.394 g, 0.765 mmol, 1 

equiv), Cs2CO3 (0.584 g, 1.79 mmol, 2.3 equiv), and KI (0.278 g, 1.67 mmol, 2.2 equiv) in 

anhydrous CH3CN (16 mL) was added a solution of 2.24 (0.219 g, 0.925 mmol, 1.2 equiv) in 

anhydrous CH3CN (16 mL) under Ar. The reaction mixture was heated at reflux under Ar for 28 

h. The reaction mixture was cooled to ambient temperature and filtered through celite, and the 

solvent was removed under reduced pressure. The resulting residue was dissolved in CHCl3 (40 

mL) and washed sequentially with H2O (40 mL) and saturated aqueous KCl (3 × 40 mL). The 

organic layer was dried over anhydrous K2CO3 and concentrated under reduced pressure to 

obtain 0.470 g (86%) of 2.22 as a light brown solid. 
1
H NMR (400 MHz, CDCl3, ): 1.32−1.52 

(m, CH3, 36H), 2.51 (brs, CH2CH2, 4H), 2.68 (brs, CH2CH2, 4H), 2.89 (brs, CH2C=O, 6H), 3.07 

(s, CH2C=O, 2H), 3.16−3.58 (m, CH2CH2, 12H), 5.99 (brs, NH, 1H), 8.79 (brs, NH, 1H); 
13

C 

NMR (101 MHz, CDCl3, ): 27.9 (CH3), 28.0 (CH3), 28.2 (CH3), 28.6 (CH3), 39.6 (CH2CH2), 

41.1 (CH2CH2), 51.7 (CH2CH2), 52.3 (CH2C=O), 53.7 (CH2C=O), 55.1 (CH2CH2), 56.2 
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(CH2CH2), 57.1 (CH2CH2), 57.8 (CH2C=O), 79.1 (C(CH3)3), 80.9 (C(CH3)3), 81.0 (C(CH3)3), 

81.9 (C(CH3)3), 155.9, 156.5, 170.6, 171.8, 172.7; HRESIMS (m/z): [M + H]
+ 

calcd for 

C35H67N6O9, 715.4970; found 715.4976. 

1,4,7-Tris(carbonylmethyl)-10-(aminoethyl-N')-acetyl)-1,4,7,10-tetraazacyclododecane 

(2.1): To tert-butylester 2.22 (0.248 g, 0.347 mmol) was added concentrated HCl (25 mL), and 

the resulting mixture was stirred at ambient temperature for 3 h. The reaction mixture was 

concentrated under reduced pressure, and the resulting residue was dissolved in H2O and freeze 

dried to obtain 0.161 g (96%) of 2.1 as a yellow–brown solid. 
1
H NMR (400 MHz, CD3OD,  at 

55 C): 3.02−3.24 (m, CH2CH2, 10H), 3.36−3.58 (m, CH2CH2, and CH2C=O, 12H), 3.70 (s, 

CH2C=O, 2H), 3.94 (s, CH2C=O, 4H); 
13

C NMR (125 MHz, D2O,  at 65 C): 35.4 (CH2CH2), 

38.3 (CH2CH2), 48.2 (CH2CH2), 48.3 (CH2CH2), 48.9 (CH2CH2), 49.0 (CH2CH2), 52.1 

(CH2C=O), 52.3 (CH2C=O), 52.9 (CH2C=O), 169. 0, 169.3, 170.0; HRESIMS (m/z): [M + H]
+ 

calcd for C18H35N6O7, 447.2567; found 447.2562. 

General procedure for the synthesis of M
III

-containing complexes (2.4, 2.5, and 2.6): 

Ligand 2.1 (0.100 g, 0.207 mmol, 1 equiv) was dissolved in H2O (20 mL) and the pH of the 

solution was adjusted to between 6 and 7 using 1 M NH4OH. To the resulting solution was added 

MCl3·6H2O (0.311 mmol, 1.5 equiv), and the pH of the solution was adjusted to between 6 and 7 

using 1 M NH4OH. The reaction mixture was heated at 90 C for 24 h and then cooled to 

ambient temperature. The pH of the solution was increased to 11 by adding 1 M NH4OH 

followed by centrifugation, and the supernatant was filtered through a 0.2 µm hydrophilic 

syringe filter (Millipore, IC MILLEX-LG). The filtrate was dialyzed in a 500 Da molecular 

weight cut off (MWCO) dialysis membrane against H2O (4 L). The dialysis reservoir was 

changed at 2–4, 6–8, and 10–14 h. After the last change, dialysis was continued for 7 h. Contents 
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within the dialysis membrane were freeze dried to obtain 0.0948 g (74%) of 2.4, 0.0851 g (67%) 

of 2.5, or 0.0981 g (85%) of 2.6 as off-white solids. Purity of the complexes was verified by 

SEC, and the chromatograms are included in appendix B. 

Gd
III

 complex (2.4): HRESIMS (m/z): [M + H]
+ 

calcd for GdC18H32N6O7, 599.1559; found 

599.1579.  

Eu
III

 complex (2.5): HRESIMS (m/z): [M + H]
+ 

calcd for EuC18H32N6O7, 595.1531; found 

595.1523.  

Y
III

 complex (2.6): HRESIMS (m/z): [M + H]
+ 

calcd for YC18H32N6O7, 533.1391; found 

533.1396.  

General procedure for the synthesis of M
III 

-containing conjugates (2.13a–c, 2.14a–c, and 

2.15a–c): To a flask containing N-acetoxysuccinimide, a, or succinimidyl ester derivatives of 

PEG, b or c (5 equiv), was added dropwise a mixture of the M
III 

complex, 2.4, 2.5, or 2.6 (1 

equiv), and diisopropylethylamine (5 equiv) in anhydrous CH3OH (5 mL). The resulting mixture 

was allowed to stir at ambient temperature under Ar for 24 h. The resulting reaction mixture was 

added to aminomethylated polystyrene HL (100–200 mesh) resin (5 equiv, pre-swollen in 

C2H5OH for 0.5–1 h), and the resulting mixture was allowed to rotate for 15 to 18 h. The liquid 

portion of the reaction mixture was separated from the resin via filtration, and the resin was 

washed with C2H5OH (3 × 7 mL). The washings were combined with the liquid portion of the 

reaction mixture, and the solvents were removed under reduced pressure to obtain an oil that was 

dissolved in H2O (10 mL) and washed with hexanes (4 × 10 mL). The H2O layer was dialyzed in 

either a 500 (2.13a, 2.14a, 2.15a, 2.13b, 2.14b, and 2.15b) or a 1,000 Da (2.13c, 2.14c, and 

2.15c) MWCO dialysis membrane against H2O (4 L). The dialysis reservoir was changed at 2–4, 

6–8, and 10–14 h. After the last change, dialysis was continued for 7 h. Contents within the 
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dialysis membrane were freeze dried and the resulting solids were washed with CH3CN (3 × 5 

mL) to yield M
III

-containing conjugates 2.13a–c and 2.14a–c, and 2.15a–c as white solids. The 

purity of the conjugates 2.13a–c, 2.14a–c, and 2.15a–c was verified by reversed-phase HPLC, 

and the chromatograms are in appendix B.  

Conjugate 2.13a: 18.6 mg (46%), HRESIMS (m/z): [M + H]
+ 

calcd for GdC20H34N6O8, 

641.1664; found 641.1640. 

Conjugate 2.13b: 29.1 mg (43%), HRESIMS (m/z): [M + H]
+ 

calcd for GdC28H50N6O12, 

817.2713; found 817.2708. 

Conjugate 2.13c: 18.8 mg (51%), MALDI-MS: median peak [M + H]
+
 calcd for 

GdC57H107N7O26, 1463.65; found 1463.19. 

Conjugate 2.14a: 18.9 mg (47%), HRESIMS (m/z): [M + H]
+ 

calcd for EuC20H34N6O8, 637.1637; 

found 637.1634. 

Conjugate 2.14b: 22.5 mg (34%), HRESIMS (m/z): [M + H]
+ 

calcd for EuC28H50N6O12, 

813.2685; found 813.2682. 

Conjugate 2.14c: 12.87 mg (49%), MALDI-MS: median peak [M + H]
+
 calcd for 

EuC57H107N7O26, 1458.65; found 1458.19. 

Conjugate 2.15a: 16.0 mg (48%), HRESIMS (m/z): [M + H]
+ 

calcd for YC20H34N6O8, 575.1497; 

found 575.1498. 

Conjugate 2.15b: 27.2 mg (39%), HRESIMS (m/z): [M + H]
+ 

calcd for YC28H50N6O12, 751.2545; 

found 751.2543. 

Conjugate 2.15c: 16.1 mg (49%), MALDI-MS: median peak [M + H]
+
 calcd for YC57H107N7O26, 

1394.63; found 1394.19. 
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General procedure for the synthesis of M
III

-containing conjugates (2.13d, 2.14d, and 

2.15d): To a flask containing succinimidylester derivative of PEG d (1 equiv) was added 

dropwise a mixture of the M
III

-containing complex, 2.4, 2.5, or 2.6 (3 equiv), and 

diisopropylethylamine (3 equiv) in anhydrous CH3OH (5 mL). The resulting mixture was 

allowed to stir at ambient temperature under Ar for 24 h. The resulting reaction mixture was 

concentrated under reduced pressure to obtain a white solid that was dissolved in H2O (10 mL) 

and washed with hexanes (4 × 10 mL). The H2O layer was dialyzed using a 1,000 Da MWCO 

dialysis membrane against H2O (4 L). The dialysis reservoir was changed at 2–4, 6–8, and 10–14 

h. After the last change, dialysis was continued for 7 h. Contents within the dialysis membrane 

were freeze dried, and the resulting solids were washed with CH3CN (3 × 5 mL) to yield M
III

-

containing conjugates 2.13d and 2.14d, and 2.15d as white solids. The purity of 2.13d, 2.14d, 

and 2.15d was verified by aqueous SEC, and the chromatograms are in appendix B.  

Conjugate 2.13d: 42.6 mg (45%), MALDI-MS: median peak [M + H]
+
 calcd for 

GdC228H448N6O112, 5222.87; found 5222.03. 

Conjugate 2.14d: 44.6 mg (48%), MALDI-MS: median peak [M + H]
+
 calcd for 

EuC228H448N6O112, 5217. 87; found 5217.01. 

Conjugate 2.15d: 41.9 mg (44%), MALDI-MS: median peak [M + Na]
+
 calcd for 

YC228H447N6O112Na, 5175.84; found 5175.88. 

 The attempted synthesis of M
III

-containing conjugates 2.13e, 2.14e, and 2.15e is 

discussed in Chapter 4. 

The synthetic route to DO3A-based conjugates, 2.16a–2.18a and 2.16c–2.18c, is 

illustrated in Scheme 2.5. These conjugates were designed to investigate the influence of density 

of PEG on water-exchange rates.  
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Scheme 2.5. Synthetic route to M
III

-containing PEG conjugates 2.16a–2.18a and 2.16c–2.18c. 

 

Attempted synthesis of conjugates 2.16a–2.18a and 2.16c–2.18c is discussed in Chapter 4. 

  

N,N’’-(Dicarboxybenzyl)diethylenetriamine-N’-acetylchloride (2.26): To a mixture of  

N,N’’-(dicarboxybenzyl)diethylenetriamine 2.29 (0.999 g, 2.69 mmol, 1.0 equiv) and 

triethylamine (2.20 mL, 15.9 mmol, 5.9 equiv) in anhydrous CH2Cl2 (20 mL) was added 

dropwise a solution of chloroacetyl chloride 2.30 (0.65 mL, 8.06 mmol, 3.0 equiv) in CH2Cl2 (20 

mL) over 1 h at –20 C under Ar. The reaction mixture was stirred at ambient temperature under 

Ar for 24 h, then filtered through celite. The filtrate was washed with aqueous citric acid (40 mL) 

followed by H2O (3 × 40 mL). The organic layer was dried over anhydrous K2CO3 and 

concentrated under reduced pressure to obtain a dark brown solid that was purified using silica 

gel column chromatography (100% CH3COOC2H5). Fractions with an Rf value (100% 

CH3COOC2H5) of 0.69 were combined and concentrated under reduced pressure to obtain 1.070 

g (89%) of 2.26 as a light yellow oil. 
1
H NMR (400 MHz, CDCl3, δ): 2.15–3.65 (m, CH2CH2, 

8H), 4.02 (s, COCH2Cl, 2H), 5.07 (s, CO2CH2C6H5, 2H), 5.11 (s, CO2CH2C6H5, 2H), 5.38 (brs, 

NH, 1H), 5.56 (brs, NH, 1H), 7.28–7.43 (m, C6H5, 10H); 
13

C NMR (101 MHz, CDCl3, δ): 39.4 
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(CH2CH2), 39.7 (CH2CH2), 41.0 (COCH2Cl), 46.4 (CH2CH2), 48.6 (CH2CH2), 66.9 

(CO2CH2C6H5), 67.1 (CO2CH2C6H5), 128.1 (C6H5), 128.2 (C6H5), 128.3 (C6H5), 128.5 (C6H5), 

128.6 (C6H5), 136.2, 136.4, 156.7, 156.9,  168.2; HRESIMS (m/z): [M + H]
+
 calcd for 

C22H27N3O5Cl, 448.1639; found 448.1639. 

 1,4,7-Tris(tert-butyloxycarbonylmethyl)-10-N,N’’-(dicarboxybenzyl)diethylenetriamine-

N’-acetamide-1,4,7,10-tetraazacyclododecane (2.25): To a mixture of 2.23 (0.431 g, 0.837 mmol, 

1.0 equiv), Cs2CO3 (0.632 g, 1.94 mmol, 2.3 equiv), and KI (0.294 g, 1.77 mmol, 2.1 equiv) in 

anhydrous CH3CN (35 mL) was added a solution  of 2.26 (0.448 g, 1.00 mmol, 1.2 equiv) in 

CH3CN (35 mL). The resulting mixture was stirred under Ar at reflux for 48 h. The reaction 

mixture was allowed to cool to ambient temperature and filtered through celite. The filtrate was 

concentrated under reduced pressure. The resulting residue was dissolved in CHCl3 (40 mL) and 

sequentially washed with H2O (40 mL) and saturated aqueous KCl (3 × 40 mL). The organic 

layer was dried over anhydrous K2CO3 and concentrated under reduced pressure. The resulting 

yellow solid was purified by silica gel column chromatography (10:1 CH3COOC2H5/CHCl3). 

Fractions with an Rf value of 0.2 (10:1 CH3COOC2H5/CHCl3) were combined and concentrated 

under reduced pressure to obtain 0.535 g (69%) of 2.25 as a light yellow solid. 
1
H NMR (400 

MHz, CDCl3, δ): 1.28–1.50 (m, CH3, 27H), 1.66–3.00 (m, CH2CH2 ring, and NCH2CO, 24H), 

3.08–3.60 (m, CH2CH2 arm, 8H), 4.95–5.07 (m, CH2OC=O, 4H), 6.12 (brs, NH), 6.97 (brs, NH), 

7.17–7.35 (m, CH2C6H5, 10H);
 13

C NMR (101 MHz, CDCl3, δ): 27.9 (CH3), 39.3 (CH2CH2 arm), 

39.9 (CH2CH2 arm), 47.0 (CH2CH2 ring), 47.8 (CH2CH2 ring), 49.0 (CH2CH2 ring), 52.5 

(CH2CH2 ring), 55.0 (CH2C=O), 55.6 (CH2C=O), 66.2 (CH2OC=O), 81.8 (C(CH3)3), 127.7 

(C6H5), 127.9 (C6H5), 128.1 (C6H5), 128.4 (C6H5), 136.9, 156.7, 157.1, 172.5, 172.8; HRESIMS 

(m/z): [M + H]
+
 calcd for C48H76N7O11, 926.5603; found 926.5609.  
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 1,4,7-Tris(carbonylmethyl)-10-N,N’’-(dicarboxybenzyl)diethylenetriamine-N’-acetyl)-

1,4,7,10-tetraazacyclododecane (2.2): To protected ligand 2.25 (0.499 g, 0.539 mmol) was added 

concentrated HCl (50 mL) and the resulting mixture was stirred at ambient temperature for 3 h. 

The reaction mixture was concentrated under reduced pressure. The resulting residue was 

dissolved in water and freeze dried to obtain 0.294 g (97%) of 2.2 as a light brown solid. 
1
H 

NMR (400 MHz, D2O, δ at 80 C): 3.50−3.70 (m, CH2CH2 ring, and CH2CH2 arm, 12H), 3.79 

(brs, CH2CH2 ring, 8H), 4.04–4.12 (m, CH2CH2 arm, 4H), 4.19 (brs, CH2C=O, 2H), 4.30–4.44 

(m, CH2C=O, 6H); 
13

C NMR (125 MHz, D2O,  at 70 C): 36.2 (CH2CH2 arm), 38.4 (CH2CH2 

arm), 43.6 (CH2CH2 ring), 48.7 (CH2CH2 ring), 50.1 (CH2C=O), 53.0 (CH2C=O), 53.7 

(CH2C=O), 169.8, 171.4; HRESIMS (m/z): calcd for C20H40N7O7, 490.2989; found 490.2982. 

 General procedure for the synthesis of M
III

-containing complexes (2.7, 2.8, and 2.9): 

Ligand 2.2 (0.100 g, 0.179 mmol, 1.0 equiv) was dissolved in H2O (20 mL) and the pH of the 

solution was adjusted to between 6 and 7 using 1 M NH4OH. To the resulting solution was added 

MCl3·6H2O (0.267 mmol, 1.5 equiv), and the pH of the solution was adjusted to between 6 and 7 

using 1 M NH4OH. The reaction mixture was heated at 90 C for 24 h and then allowed to cool 

to ambient temperature. The pH of the solution was increased to 11 by adding 1 M NH4OH 

followed by centrifugation, and the supernatant was filtered through a 0.2 μm hydrophilic 

syringe filter (Millipore, IC MILLEX-LG). The filtrate was dialyzed in a 500 Da MWCO 

dialysis membrane against H2O (4 L). The dialysis reservoir was changed at 2–4, 6–8, and 10–14 

h. After the last change, dialysis was continued for 3 h. Contents within the dialysis membrane 

were freeze dried to obtain 0.0912 g (77%) of 2.7, 0.0799 g (68%) of 2.8, or 0.0467 g (44%) of 

2.9 as off-white solids. The purity of complexes was verified using SEC, and the chromatograms 

are in appendix B.  
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Gd
III

 complex (2.7): HRESIMS (m/z): [M + H]
+ 

calcd for GdC20H37N7O7, 642.1981; found 

642.1973.  

Eu
III

 complex (2.8): HRESIMS (m/z): [M + H]
+ 

calcd for EuC20H37N7O7, 638.1953; found 

638.1927.  

Y
III

 complex (2.9): HRESIMS (m/z): [M + H]
+ 

calcd for YC20H37N7O7, 576.1813; found 

576.1812.  

Attempted synthesis of M
III

-containing conjugates 2.16a–2.18a and 2.16c–2.18c is 

discussed in Chapter 4. 

The synthetic routes to DO2A-based conjugates, 2.19a–2.21a and 2.19c–2.21c, designed 

to investigate the influence of density of PEG on water-exchange rates is illustrated in Scheme 

2.6.  

Scheme 2.6. Synthetic route to M
III

-containing PEG conjugates 2.19a–2.21a and 2.19c–2.21c. 

 

Attempted synthesis of conjugates 2.19a–2.21a and 2.19c–2.21c is discussed in Chapter 4. 

 

1,7-Bis(tert-butyloxycarbonylmethyl)-7,10-bis(N-(2-tert-butoxycarbonylaminoethyl) 

acetamide-1,4,7,10-tetraazacyclododecane (2.27): To a mixture of 2.28 (0.250 g, 0.624 mmol, 
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1.0 equiv), Cs2CO3 (0.854 g, 2.62 mmol, 4.2 equiv), and KI (0.477 g, 2.87 mmol, 4.6 equiv) in 

anhydrous CH3CN (20 mL) was added a solution  of 2.24 (0.325 g, 1.37 mmol, 2.2 equiv) in 

CH3CN (20 mL). The resulting mixture was stirred under Ar at reflux for 36 h. The reaction 

mixture was allowed to cool to ambient temperature and filtered through celite. The filtrate was 

concentrated under reduced pressure. The resulting residue was dissolved in CHCl3 (40 mL) and 

sequentially washed with H2O (40 mL) and saturated aqueous KCl (3 × 40 mL). The organic 

layer was dried over anhydrous K2CO3 and concentrated under reduced pressure to obtain 0.435 

g (87%) of 2.27 as a yellow solid. 
1
H NMR (400 MHz, CDCl3, δ): 1.35–1.52 (m, CH3, 36 H), 

2.62 (brs, CH2CH2 ring, 8H), 2.75 (brs, CH2CH2 ring, 8H), 3.02 (s, NCH2CO, 4H), 3.13–3.46 

(m, NCH2CO and CH2CH2 arm, 12 H), 5.39 (brs, HN, 2H), 8.26 (brs, HN, 2H);
 13

C NMR (101 

MHz, CDCl3, δ): 28.3 (CH3), 28.6 (CH3), 39.4 (CH2CH2 arm), 41.2 (CH2CH2 arm), 53.0 

(CH2CH2 ring), 54.8 (CH2CH2 ring), 56.6 (CH2C=O), 59.4 (CH2C=O), 79.2 (C(CH3)3), 81.5 

(C(CH3)3), 156.3, 170.5, 172.4; HRESIMS (m/z): [M + H]
+
 calcd for C38H73N8O10, 801.5450; 

found 801.5411.  

 1,7-Bis(carbonylmethyl)-7,10-bis(N-(2-tert-butoxycarbonylaminoethyl)acetamide-

1,4,7,10-tetraazacyclododecane (2.3): To protected ligand 2.27 (0.465 g, 0.581 mmol) was added 

concentrated HCl (50 mL), and the resulting mixture was stirred at ambient temperature for 3 h. 

The reaction mixture was concentrated under reduced pressure. The resulting residue was 

dissolved in water and freeze dried to obtain 0.316 g (97%) of 2.3 as a light brown solid. 
1
H 

NMR (400 MHz, CDCl3, δ at 70 C): 3.64−3.74 (m, CH2CH2 arm, and CH2CH2 ring, 12H), 3.86 

(brs, CH2CH2 ring, 8H), 3.96−4.08 (m, CH2CH2 arm, 4H), 4.17 (s, CH2C=O, 4H), 4.47 (s, 

CH2C=O, 4H); 
13

C NMR (125 MHz, D2O,  at 70 C): 36.4 (CH2CH2 arm), 38.8 (CH2CH2 arm), 
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48.4 (CH2CH2 ring), 50.5 (CH2CH2 ring), 53.0 (CH2C=O), 54.4 (CH2C=O), 167.5, 172.1; 

HRESIMS (m/z): [M + H]
+
 calcd for C20H41N8O6, 489.3149; found 489.3170. 

 General procedure for the synthesis of M
III

-containing complexes (2.10, 2.11, and 2.12): 

Ligand 2.3 (0.150 g, 0.267 mmol, 1.0 equiv) was dissolved in H2O (20 mL), and the pH of the 

solution was adjusted to between 6 and 7 using 1 M NH4OH. To the resulting solution was added 

MCl3·6H2O (0.401 mmol, 1.5 equiv), and the pH of the solution was adjusted to between 6 and 7 

using 1 M NH4OH. The reaction mixture was heated at 90 C for 24 h and then allowed cooled 

to ambient temperature. The pH of the solution was increased to 11 by adding 1 M NH4OH 

followed by centrifugation, and the supernatant was filtered through a 0.2 μm hydrophilic 

syringe filter (Millipore, IC MILLEX-LG). The filtrate was dialyzed using a 500 Da MWCO 

dialysis membrane against H2O (4 L). The dialysis reservoir was changed at 2–4, 6–8, and 10–14 

h. After the last change, dialysis was continued for 3 h. Contents within the dialysis membrane 

were freeze dried to obtain 0.0705 g (41%) of 2.10, 0.103 g (51%) of 2.11, or 0.0993 g (64%) of 

2.12 as off-white solids. The purity of complexes was verified using SEC, and the 

chromatograms are in appendix B.  

Gd
III

 complex (2.10): HRESIMS (m/z): [M]
+ 

calcd for GdC20H38N8O6, 641.2141; found 

641.2125.  

Eu
III

 complex (2.11): HRESIMS (m/z): [M]
+ 

calcd for EuC20H38N8O6, 637.2113; found 

637.2081.  

Y
III

 complex (2.12): HRESIMS (m/z): [M]
+  

calcd for YC20H38N8O6, 575.1973; found 575.1976.  

 Attempted synthesis of conjugates 2.19a–2.21a and 2.19c–2.21c is discussed in Chapter 

4. 
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Applications 

 Properties of the synthesized Ln
III

-containing polyaminopolycaboxylate-type PEG 

conjugates are discussed in Chapter 3. Moreover, Chapter 3 illustrates studies performed to 

investigate the influence of length of PEG on contrast-agent-relevant properties including water-

exchange rates of Ln
III

-containing complexes. In addition, interpretation of the data obtained, 

followed by the implications of these findings to the design of contrast agents for magnetic 

resonance imaging is discussed. 
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CHAPTER 3: Modulating Water-Exchange Rates of Lanthanide(III)-Containing          

 Polyaminopolycarboxylate-Type Complexes Using Polyethylene Glycol 

 

Adapted with permission from Siriwardena-Mahanama, B.N.; Allen, M.J. Dalton Trans. 2013, 

42, 6724–6727. Reproduced by permission of The Royal Society of Chemistry. 

 

http://pubs.rsc.org/en/results?artrefjournalname=dalton%20trans.&artrefstartpage=6724&artrefv

olumeyear=2013&fcategory=journal 

 

Introduction 

 

 The efficiency of Ln
III

-containing complexes as conventional (T1-reducing) and 

paramagnetic chemical exchange saturation transfer (PARACEST) contrast agents for magnetic 

resonance imaging (MRI) is governed by the interactions among the structural and electronic 

properties of these complexes and by the interactions of these complexes with the 

environment.
4,54,96–101 

The optimal value for a specific parameter is a moving target that varies as 

a function of magnetic field strength and the other parameters.
8,15,80,102

 Of these parameters, the 

exchange rate between coordinated and bulk water, kex, plays a critical role in establishing 

contrast-enhancing efficiency.
15,49,96–101 

Hence, the ability to precisely control the water-

exchange rates of Ln
III

-containing complexes is imperative to achieving optimal efficiencies of 

contrast agents for both conventional and PARACEST imaging.  

For example, conventional, Gd
III

-containing, small molecular-weight agents require a fast 

water-exchange rate (∼10
8
 s

–1
) to achieve optimal efficiency at the clinically relevant field 

strength of 1.5 T,
8,103 

and macromolecular Gd
III

-based agents require a faster water-exchange rate 

(∼10
10

 s
–1

).
102

 However, these target values change with changes in field strength. Different from 

conventional agents, Ln
III

-based PARACEST agents require slow-to-intermediate water-

exchange rates on the NMR time scale, and the optimal value for the water-exchange rate 

depends on the frequency of the pulse used to presaturate the exchangeable protons.
17

 The 

http://pubs.rsc.org/en/results?artrefjournalname=dalton%20trans.&artrefstartpage=6724&artrefvolumeyear=2013&fcategory=journal
http://pubs.rsc.org/en/results?artrefjournalname=dalton%20trans.&artrefstartpage=6724&artrefvolumeyear=2013&fcategory=journal
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estimated optimal water-exchange rate for PARACEST agents is between 0.3 × 10
3
 and 1 × 10

3
 

s
–1

 at clinically relevant pulse frequencies (50–100 Hz).
17

 

 The water-exchange rates of clinically approved Gd
III

-containing small molecular-weight 

contrast agents are slower (1 × 10
6
 to 4 × 10

6
 s

–1
) than the optimal value (10

8
 s

–1 
at 1.4 T),

50
 and 

the water-exchange rates of most Ln
III

-based complexes developed as potential PARACEST 

agents are faster (0.3 × 10
4
 to 1 × 10

4
 s

–1
) than the optimal value.

17
 Consequently, there is a need 

to tune the water-exchange rates of Ln
III

-containing complexes to achieve optimum efficiencies 

for conventional and PARACEST agents. This need has been the focus of a great deal of 

research. Tuning water-exchange rates of Ln
III

-containing complexes has been achieved by 

several coordination-chemistry-based modifications as described in Chapter 1 including 

modifying (1) the charge of the Ln
III

-based complex;
39

 (2) the accessibility of the metal center to 

bulk water;
10,15,55,63,67,68,104–106 

(3) the mechanism of water exchange;
28 

 and (4) the ratio between 

twisted square anti-prism and square anti-prism isomers for Ln
III

-based complexes with 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-type ligands.
69,79

 These studies 

demonstrate that small modifications in ligand structure can have large impacts on the water-

exchange rates of Ln
III

-containing complexes, but most of these studies are specific to the system 

being studied. 

 It was envisioned that a modular and tunable system of modifications could be 

incorporated into Ln
III

-based DOTA-type systems to tune water-exchange rates. Consequently, it 

was hypothesized that bio-compatible, hydrophilic oligomers of polyethylene glycol (PEG) 

could be used to modulate water-exchange rates by altering the accessibility of bulk water to the 

Ln
III

-center through both steric and hydrogen bonding interactions in a systematic fashion based 
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on oligomer length. In this chapter, the influence of length of PEG on the molecular parameters, 

including water-exchange rates, of Ln
III

-containing DOTA-type complexes is described. 

 To investigate the influence of PEG oligomers on the water-exchange rates of Ln
III

-

containing complexes, a PEG-containing model system, 2.13a–d and 2.14a–d in Figure 3.1 was 

designed and synthesized to modulate the water-exchange rates of Ln
III

-DOTA-type complexes. 

It was expected that PEG would hydrogen bond to water through the large number of oxygen-

based hydrogen bond acceptors, thereby changing the extent of the hydrogen bonding network as 

PEG length is varied. This hypothesis is consistent with reports of changes in water-exchange 

rates being observed as the length of PEG was varied with PEG-conjugates of Gd
III

-containing 

hydroxypyridonate (HOPO)-based complexes.
67,68,105,106

 The HOPO-based systems have a water-

coordination number of two and display fast water-exchange rates (∼10
8
 s

–1
). The PEG moiety in 

those systems led to slower water-exchange rates and a decrease in water-coordination number 

from two to one. It was expected that PEG could be used to fine-tune the water-exchange rates of 

other systems including Ln
III

-containing DOTA-type complexes with water-coordination 

numbers of one and relatively slow water-exchange rates (∼10
6
 s

–1
). 

 

Figure 3.1. Structures of M
III

-containing PEG conjugates 2.13a–d, 2.14a–d, and 2.15a–d. 
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 The model system that was designed includes M
III

-containing complexes without PEG 

(2.13a, 2.14a, and 2.15a) as well as six complexes with different length oligomers of PEG 

(2.13b–d, 2.14b–d, and 2.15b–d). The synthetic route to M
III

-containing complexes 2.13a–d, 

2.14a–d, and 2.15a–d is shown in Scheme 2.4 in Chapter 2.  

Experimental Procedures 

 Synthesis, purification, and characterization of compounds 2.13a–d discussed in this 

chapter were carried out as described in Chapter 2. 

Inductively coupled plasma optical emission spectroscopy (ICP-OES) measurements 

were performed on a HORIBA Jobin Yvon ULTIMA spectrometer or by Columbia Analytical 

Services Inc., Tucson, Arizona, USA. Samples measured with the ULTIMA spectrometer were 

diluted with nitric acid (2% v/v, aqueous), and standards were prepared by serial dilution of Gd, 

Eu, and Y standards (High-Purity Standards).  

Water proton relaxation rate data were obtained using a Bruker mq 60 NMR Analyzer 

(1.4 T) at 37 °C for Gd
III

-containing conjugates 2.13a–d in phosphate-buffered saline (pH 7.4). 

The relaxivities of Gd
III

-containing conjugates were obtained from the slopes of the linear plots 

of 1/T1 versus Gd
III

 concentration. Measurements were repeated three times with independently 

prepared solutions for each Gd
III

-containing conjugate. The Gd
III

 concentration was verified by 

ICP–OES. The water proton relaxation rate data obtained for complexes 2.13a–d are illustrated 

in Tables C.1–C.4 (Appendix C). 

Variable-temperature 
17

O-NMR measurements of Gd
III

-containing conjugates 2.13a (6 

mM), 2.13b (6 mM), 2.13c (4 mM), and 2.13d (17 mM) and their diamagnetic Y
III

 analogues 

(2.15a–d) in H2O were carried out on a Varian-500S spectrometer. Enrichment in 
17

O (1%) was 

achieved using 
17

O-enriched water (10% H2
17

O, Cambridge Isotope Laboratories, Inc.). Line 
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widths at half height were measured at 20 (or 25), 30, 40, 50, 60, and 70 °C. A/ħ and ΔE were 

fixed to –3.8 × 10
–6 

rad/s and 2.5 × 10
–11

 J/mol, respectively, for Gd
III

-containing conjugates, 

2.13a–d. The water-coordination number, q, was set to the value obtained from luminescence-

decay measurements for Eu
III

-containing conjugates 2.14a–d. The least-squares fits of the 
17

O-

NMR relaxation data were calculated using origin software (8.0951 B951) following a 

previously published procedure
107

 to obtain the water-exchange rates of Gd
III

-containing 

conjugates, 2.13a–d. Gd
III

 and Y
III

 concentrations were verified by ICP–OES. The data obtained 

from variable temperature 
17

O-NMR measurements and corresponding least-squares fits of 
17

O-

NMR data are shown in Tables C.5–C.8 (Appendix C). 

 Luminescence-decay measurements of Eu
III

-containing conjugates 2.14a–d, in H2O and 

D2O were acquired using a HORIBA Jobin Yvon Fluoromax-4 spectrofluorometer in decay by 

delay scan mode using the phosphorescence lifetime setting. Excitation and emission 

wavelengths of 393 and 596 nm were used, respectively, while the other parameters were kept 

constant: excitation and emission slit widths (5 nm), flash count (100), initial delay (0.01 ms), 

maximum delay (2 ms for solutions in H2O and 8 ms for solutions in D2O), and delay increment 

(0.01 ms). The decay rates obtained from luminescence-decay measurements for conjugates 

2.14a–d are included in Table C.9 (Appendix C). The number of coordinated water molecules, 

q, was determined using the method developed by Horrocks and coworkers.
108 

  

Electron paramagnetic resonance (EPR) measurements of 2.13a–d in water were 

performed on a Bruker EMX X-band spectrometer. From the EPR spectra, the electronic Landé g 

factors, gL, peak-to-peak line widths, ΔHpp, and transverse electronic relaxation rates, 1/T2e, were 

obtained according to a previously reported method.
31

 The EPR spectra and the parameters 

obtained from EPR spectra for conjugates 2.13a–d (Table C.10) are illustrated  in Appendix C. 
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Results and Discussion 

Analysis of Water-Coordination Number Data 

 The water-coordination number, q, was obtained for Eu
III

-containing complexes 2.14a–d 

using luminescence-decay measurements (Table 3.1).
108

 Values of q were close to 1, and these 

values agree with what is expected for Ln
III

-complexes coordinated to octadentate ligands. 

Water-coordination number data for 2.14a–d suggest that steric blocking has little if any 

influence on the properties of the complexes. 

Table 3.1. Molecular parameters of complexes 2.13a–d. 

Parameter 2.13a 2.13b 2.13c 2.13d 

q
a,b,c

 0.90  0.01 0.89  0.01 0.96  0.01 0.76  0.01 

τm
298

 × 10
–6

 (s)
a
 0.37  0.01 0.66  0.01 1.2  0.1 1.5  0.07 

kex
298 

× 10
6
 (s

–1
)
d
 2.7   0.03 1.5   0.02 0.83  0.08 0.67   0.05 

T1e
298 

× 10
–9

 (s)
a
 440  30 61  1 12  0.3 4.0  0.04 

H (kJ mol
–1

)
a
 36  1 50  1 71  4 90  2 

r1 (mM
–1

 s
–1

)
a
 2.5  0.1 4.0  0.1 5.3  0.1 6.3  0.1 

MW (Da) 641 817 1463 5222 

gL 1.98 1.98 1.99 1.98 

1/T2e × 10
6
 (s

–1
) 17.8 8.11 6.51 5.03 

τR × 10
–12

 (s) 46 79 110 220 
a
Reported as mean ± standard error. 

b
From complexes 2.14a–d. 

c
The error associated with q 

determination is ±0.1 water molecules.
107

 
d
Error represents relative uncertainty. 

 

Analysis of Variable-Temperature 
17

O-NMR Data 

To investigate the influence of PEG on tuning water-exchange rates, variable-temperature 

17
O-NMR experiments for Gd

III
-containing conjugates 2.13a–d were performed, and the fitted 

molecular parameters are summarized in Table 3.1: the residence lifetime of coordinated water, 

τm
298

 (water-exchange rate, kex
298

, is 1/τm
298

); the longitudinal electronic relaxation time, T1e
298

; 

and the enthalpy change for the water-exchange process, ΔH. Based on the results of the variable 

temperature 
17

O-NMR experiments, a gradual decrease in water-exchange rates was observed 

with increasing length of PEG from 2.13a (control without PEG) to 2.13d (long PEG). 

Moreover, 1.8-, 3.3-, and 4.0-fold decreases in water-exchange rates were observed from 2.13a 
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to 2.13b, 2.13c, and 2.13d, respectively. The observed decrease in water-exchange rates with 

increasing length of PEG was supported by an increase in ΔH from 2.13a to 2.13d. This increase 

in enthalpy suggests that the exchange between coordinated and bulk water molecules becomes 

difficult as length of PEG is increased, possibly due to a larger hydrogen-bond network. The 

increase in ΔH and decrease in water-exchange rates from 2.13a to 2.13d support the hypothesis 

that PEG is able to modify the water-exchange properties of Gd
III

-containing DOTA-type 

complexes as a function of length. 

Analysis of Relaxivity Data 

 To investigate the influence of length of PEG on the efficiency of complexes 2.13a–d as 

conventional contrast agents, relaxivity, r1, measurements of 2.13a–d at 37 °C and 1.4 T in 

phosphate-buffered saline (pH = 7.4) were carried out. The r1 values of 2.13a–d were obtained 

from the slopes of the plots of 1/T1 versus Gd
III

 concentration (Table 3.1). A 2.5-fold increase in 

relaxivity was observed as the length of PEG was increased from 2.13a to 2.13d. This increase in 

relaxivity corresponds to the increase in molecular weight (MW, Table 3.1) from 2.13a to 2.13d. 

As the molecular weight increases, complexes tend to tumble more slowly in solution leading to 

higher relaxivity values.
109

 

Analysis of Estimated Rotational Correlation Times (τR) 

To more rigorously unite 
17

O-NMR spectroscopy and relaxivity data, electron 

paramagnetic resonance spectroscopy measurements were performed to obtain the electronic 

Landé g factor, gL, and the transverse electronic relaxation rate, 1/T2e, of 2.13a–d. These 

parameters together with r1, kex, T1e, and q were used with the Solomon–Bloembergen–Morgan 

equations, which describe the factors affecting the efficiency of contrast agents for MRI,
8
 to 

obtain estimated rotational correlation times, τR, for 2.13a–d (Table 3.1 and calculations in 
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Appendix C). The values of τR seem lower than expected likely due to the internal motion of the 

PEG moieties as suggested for the HOPO-based system,
67,68,105,106

 due to the ineffective coupling 

between the motion of Gd-water vector and rotational motion of the entire molecule,
7
 or a 

combination of the two. An increase in the τR values was observed from 2.13a to 2.13d, which is 

consistent with the increase in molecular weight as the length of PEG is increased. This increase 

in τR is likely the cause of the observed increase in relaxivity from 2.13a to 2.13d. However, the 

increase in relaxivity observed from 2.13a to 2.13d is lower-than-expected based solely on the 

variation in τR from 2.13a to 2.13d (calculations illustrated in Appendix C), and this observation 

is a likely result of the decrease in water-exchange rates as length of PEG increases from 2.13a 

to 2.13d. 

Conclusions 

 This chapter describes the influence of PEG oligomer length on the water-exchange rates 

and other molecular parameters that contribute to the efficiency of Ln
III

-containing DOTA-type 

contrast agents. Based on the results obtained, PEG can be used to fine-tune, toward slower rates, 

the water-exchange rates of Ln
III

-containing DOTA-type complexes. The findings discussed in 

this chapter demonstrate a similar magnitude of slowing of water-exchange rates as was reported 

with HOPO-based systems,
67,68,105,106

 but without the associated change in water-coordination 

number. Consequently, PEG is able to slow the water-exchange rates of Ln
III

-containing 

complexes regardless of water-coordination number, demonstrating that conjugation of PEG 

represents a modular and tunable strategy for slowing water-exchange rates that is general for 

Ln
III

-containing complexes. It is expected that these findings will be useful in the design of Ln
III

-

based contrast agents that require slow water-exchange rates on the NMR time scale. 
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CHAPTER 4: Synthesis of Lanthanide(III)-Containing Polyethylene Glycol (PEG)  

Conjugates for the Investigation of the Influence of the Density of PEG on    

Water-Exchange Rates of Lanthanide(III)-Containing Complexes 

 

Introduction 

 The prevalent use of magnetic resonance imaging (MRI) as an imaging tool in clinical 

medicine and biomedical research is a result of the non-invasive nature of the technique as well 

as excellent tissue penetration and capability to produce three-dimensional images with high 

spatial resolution (~1 mm
3
).

1,2,8
 The usefulness of MRI is enhanced with the use of paramagnetic 

substances known as contrast agents. Most clinically approved contrast agents are based on 

lanthanide(III) (Ln
III

)-containing complexes with polyaminopolycarboxylate-type ligand 

frameworks.
2,8

 The efficiency of Ln
III

-containing complexes as contrast agents for MRI is 

determined by interactions among the structural, dynamic, and electronic properties of these 

complexes.
4,54,96–101 

The rate of exchange between coordinated and bulk water, kex, is an 

important parameter that contributes to the efficiency of Ln
III

-containing complexes as T1-

shortening and paramagnetic chemical exchange saturation transfer (PARACEST) contrast 

agents for MRI.
15,49,96–101

 Moreover, T1-shortening and PARACEST agents rely on water-

exchange rates to bring about optimum efficiencies. Consequently, tuning of water-exchange 

rates of Ln
III

-containing complexes is critical for developing T1-shortening and PARACEST 

contrast agents with improved efficiency. Because T1-shortening and PARACEST agents differ 

in the mechanism of action that generates contrast enhancement in MRI, tuning of water-

exchange rates in opposite directions is required for these two types of agents. Specifically, T1-

shortening agents need to be tuned toward fast rates (10
8
 s

–1
)
8,103

 and PARACEST agents need to 

be tuned toward slow rates (10
3
 s

–1
).

17
 This need to tune water-exchange rates over a broad range 

from slow to fast (10
3
–10

8
 s

–1
) has given rise to an extensive amount of research efforts to tune 
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water-exchange rates of Ln
III

-containing complexes through coordination-chemistry-based 

modifications.   

Several different coordination-chemistry-based strategies have been employed to tune 

water-exchange rates of Ln
III

-containing complexes. As described in Chapter 1, these strategies 

include modification of (1) the water-exchange mechanism;
28

 (2) the charge of the Ln
III

-

containing complex;
39

 (3) the steric hindrance at the water-coordination site;
10,55

 (4) the ligand 

side chains;
15,63,67,68,104–106

 and (5) the ratio of twisted square anti-prism to  square anti-prism 

isomers for Ln
III

-containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA)-type 

complexes.
69,79

 Findings of studies that relate coordination-chemistry-based modifications to 

changes in water-exchange rates reveal that  substantial differences in water-exchange rates can 

be achieved with minor alterations in the structure of the Ln
III

-containing complexes.  

Consequently, it was expected that a modular system of modifications based on 

hydrophilic polyethylene glycol (PEG) could be incorporated on to Ln
III

-containing DOTA-type 

complexes to tune water-exchange rates. It was hypothesized that PEG could be used to tune 

water-exchange rates by stabilizing the coordinated water through hydrogen-bonding interactions 

and altering the accessibility of bulk water through steric and hydrogen-bonding interactions. 

Moreover, the results presented in Chapter 3 demonstrate that PEG is able tune water-exchange 

rates of Ln
III

-containing DOTA-type complexes as a function of length of PEG.  Because tuning 

of water-exchange rates was possible as a function of length of PEG, it was envisioned that 

varying the density of PEG could influence water-exchange rates of Ln
III

-containing complexes. 

Consequently, M
III

-containing DOTA-type PEG conjugates, 2.13–2.21, illustrated in Figure 4.1 

were designed to investigate the influence of density of PEG on the water-exchange rates of 

Ln
III

-containing complexes.  



70 
 

 
 

 

Figure 4.1. The structures of M
III

-containing PEG conjugates, 2.13–2.21, N-acetoxysuccinimide, 

4.1a, used as a control, and PEG moieties 4.1c and 4.1e used to investigate the influence of 

density of PEG on water-exchange rates of Ln
III

-containing complexes.  

 

 Incorporation of Gd
III

, Eu
III

, and Y
III

 as the M
III

 ion was envisioned to enable the 

determination of contrast-agent-relevant properties of the conjugates that are necessary to 

establish a relationship between density of PEG and the properties of the conjugates. 

Specifically, Gd
III

-containing complexes 2.13, 2.16, and 2.19 were designed to enable the 

determination of water-exchange rate, kex; relaxivity, r1; and longitudinal and transverse electron 

spin relaxation times, T1e and T2e, respectively.  In addition, Eu
III

-containing complexes 2.14, 

2.17, and 2.20 were designed to obtain water-coordination number (q) data. Also, Y
III

-containing 

complexes 2.15, 2.18, and 2.21 were designed to be used as diamagnetic controls in the 

determination of water-exchange rates. Conjugates 2.13–2.15 were designed to include a 

branched PEG moiety, and conjugates 2.16–2.18 and 2.19–2.21 were designed to include two 

identical units of a linear PEG moiety to enable investigation of the influence of the density of 

PEG on water-exchange rates of Ln
III

-containing complexes. Also, conjugates that include 

acetate, were designed to be used as controls. 
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Synthesis of M
III

-Containing PEG Conjugates 

The synthetic routes to M
III

-containing PEG conjugates 2.13–2.21 are illustrated in 

Schemes 2.4, 2.5, and 2.6 (Chapter 2) and the synthesis of M
III

-containing complexes 2.4–2.12 

was carried out as described in Chapter 2. Conjugation of M
III

-containing complexes 2.4–2.12 to 

succinimidyl ester derivatives of PEG, 4.1a, 4.1c, and 4.1e (Figure 4.1) occurs through the 

reaction between one or more amine arms on the M
III

-containing complexes and the succinimidyl 

ester group on the PEG moiety regardless of the identity of the M
III

 ion. Consequently, 

conjugation reactions were carried out using Eu
III

-containing complexes as a starting point to 

establish reaction conditions for conjugation reactions between M
III

-containing complexes and 

the succinimidyl ester derivatives of PEG, 4.1a, 4.1c, and 4.1e (Figure 4.1). Synthesis of Eu
III

-

containing PEG conjugates was chosen as the starting point because these complexes enable the 

determination of water-coordination numbers, which in turn determine whether or not water-

exchange rate and relaxivity measurements need to be performed. Attempted synthesis and 

purification of Eu
III

-containing PEG conjugates 2.14e, 2.17a, 2.17c, 2.20a, and 2.20c is 

described in the following text.  

Experimental Procedures  

Commercially available chemicals were of reagent-grade purity and were used without 

further purification unless otherwise noted. Water was purified using a PURELAB Ultra Mk2 

(ELGA) water purification system. Spectra/Por Biotech cellulose ester dialysis membranes of 

100−500; 500−1,000; and 8,000−10,000 Da molecular weight cut off (MWCO) were used for 

dialysis. Freeze drying was carried out using a LABCONCO FreeZone 2.5 freeze dryer. Resin 

reactions were performed in Poly-Prep chromatography columns on a Barnstead/Thermolyne 

LABQUAKE rotator. Thin-layer chromatography (TLC) was performed on ASTM TLC plates 
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with a silica gel 60 F254 coating (250 μm layer thickness). Visualization of TLC was carried out 

with a UV lamp followed by staining with potassium permanganate (2 g KMnO4, 20 g K2CO3, 5 

mL 5% w/v aqueous NaOH, and 300 mL H2O). Aqueous size-exclusion chromatography (SEC) 

was carried out on a Shimadzu high-performance liquid chromatography (HPLC) system 

equipped with three aquagel-OH columns in series (VARIAN PLaquagel-OH-mixed, 8 μm × 

300 mm) or a Bio-Sil SEC 250 column (BIO-RAD gel filtration HPLC column, 5 μm × 300 

mm), and fluorescence (λex = 396 nm and λem = 593 nm for Eu
III

-containing complexes), 

photodiode array (absorbance at 210 nm), and refractive index detectors. An isocratic method 

(100% H2O) with a flow rate of 1 mL/min was used with the aquagel-OH columns, and flow 

rates of 0.7 or 0.5 mL/min were used with the Bio-Sil SEC 250 column. SEC was performed 

using commercially available Sephadex G-25 and Sephadex G-10 with H2O as the mobile phase 

and under gravity flow.   

Synthesis of Eu
III

-Containing PEG Conjugate 2.14e 

The synthetic route to Eu
III

-containing PEG conjugate 2.14e is shown in Scheme 4.1. In 

general, the synthesis of Eu
III

-containing conjugate, 2.14e, was carried out by adding a mixture 

of the Eu
III

-containing complex, 2.5, and diisopropylethylamine (DIEA) in anhydrous CH3OH to 

a flask containing succinimidyl ester derivative of branched PEG, 4.1e (1 equiv, Figure 4.1). 

The resulting mixture was allowed to stir at ambient temperature under Ar for 24 h, followed by 

concentration of the reaction mixture under reduced pressure to obtain a white solid that was 

dissolved in H2O (10 mL) and washed with hexanes (4 × 10 mL) to remove excess DIEA. The 

H2O layer was dialyzed using a 10,000 Da MWCO dialysis membrane against H2O (4 L) to 

remove unreacted excess Eu
III

-containing complex, 2.5. The dialysis reservoir was changed at 2–
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4, 6–8, and 10–14 h. After the last change, dialysis was continued for 3 h. Contents within the 

dialysis membrane were freeze dried to obtain a white solid. 

Scheme 4.1. Synthesis of Eu
III

-containing PEG conjugate 2.14e from Eu
III

-containing complex 

2.5. 

 

 

Several different reaction conditions were explored to test if a pure product can be 

obtained by driving the reaction to completion with increased ratios of Eu
III

-containing complex 

2.5 to succinimidyl ester derivative of PEG 4.1e (Table 4.1). An excess of the Eu
III

-containing 

complex was used with the expectation of achieving complete consumption of the PEG moiety 

resulting in a reaction mixture containing unreacted excess Eu
III

-containing complex, 2.5, and the 

conjugate, 2.14e. The large difference in size between Eu
III

-containing complex, 2.5, (656 Da) 

and conjugate, 2.14e, (42,000 Da) was expected to enable easy purification of the conjugate 

using dialysis. Four different ratios of Eu
III

-containing complex, 2.5, to succcinimidyl ester 

derivative of PEG 4.1e (2 to 1, 5 to 1, 10 to 1, or 20 to 1 in Table 4.1) were explored to test if 

any of the tested ratios would result in a pure product at the end of dialysis. However, all four 

reaction conditions resulted in multiple peaks in the chromatograms acquired from SEC using 

HPLC equipped with a PL-aquagel OH column even after purification using dialysis. This 

observation indicated that none of the reaction conditions resulted in pure conjugate, 2.14e, 

likely due to the steric hindrance caused by the large size of the succinimidyl ester derivative of 

PEG 4.1e, leading to incomplete consumption of 4.1e during the reaction.  
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Table 4.1. Different reaction conditions explored in the synthesis of Eu
III

-containing PEG 

conjugate 2.14e. 

 condition 1 condition 2 condition 3 condition 4 

equiv of 2.5 2 5 10 20 

equiv of 4.1e 1 1 1 1 

equiv of DIEA 2 5 10 20 

 

 Because varying the reaction conditions did not result in a pure conjugate at the end of 

dialysis, purification was attempted with SEC using the PL-aqaugel column. However, fractions 

that were collected did not yield any solid material upon removal of solvent by freeze drying and 

produced SEC chromatograms that were similar to that obtained for the blank indicating the 

absence of any Eu
III

-containing material.  This observation is likely a result of the dilution of the 

injected samples due to the presence of three columns in series in the PL-aquagel OH column, 

making the collection of fractions using this column ineffective. Consequently, SEC purification 

was attempted with the use of a Bio-Sil SEC 250 column. A flow rate of 0.7 mL/min was used 

initially, followed by a decrease in flow rate to 0.5 mL/min to improve the separation. 

Purification of 2.14e was attempted by collecting fractions using the Bio-Sil SEC 250 column 

with a flow rate of 0.5 mL/min for the reaction mixture obtained from condition 4 (Table 4.1). 

Two fractions were collected within the elution time interval given in Table 4.2, and the 

fractions were freeze dried to remove water. However, when the two dried fractions were tested 

for purity with SEC using Bio-Sil SEC 250 column and the same method, both fractions 

displayed similar chromatograms with peak tailing  and overlap (Figure 4.2). The peak tailing 

and overlap observed for fractions 1 and 2 are likely because the elution time interval included 

the middle portion of the two peaks that corresponds to portions of both peaks.  

Table 4.2. Elution time range of the two fractions collected during the purification of 2.14e 

(reaction condition 4, Table 4.1). 

fraction number elution time interval (min) 

1 8.5–10.0 

2 10.5–12.5 
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Figure 4.2. SEC chromatograms (fluorescence response) of 2.14e (reaction condition 4 in Table 

4.1, top) and fractions 1 (middle) and 2 (bottom) collected using a Bio-Sil SEC 250 column (0.5 

mL/min flow rate). 

Therefore, fraction collection was attempted once more using the same sample obtained 

from condition 4 (Table 4.1) with the Bio-Sil SEC 250 column and the same method but with 

different elution time intervals as listed in Table 4.3 to facilitate collection of material 

corresponding to one peak rather than collecting material under overlapped peaks. Fractions 1 

and 2 were freeze dried and tested to verify purity by SEC using the same conditions used for 

fraction collection. The chromatograms of fractions 1 and 2 are shown in Figure 4.3. Based on 

the chromatograms in Figure 4.3, fractions 1 and 2 display peak broadening possibly due to the 

presence of more than one species of similar size.   
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Table 4.3. Elution time range of the three fractions collected during the purification of 2.14e 

(reaction condition 4, Table 4.1). 

fraction number elution time interval (min) 

1 8.5–9.0 

2 9.0–11.0 

3 11.0–13.0 

 

 

  

 
Figure 4.3. SEC chromatograms (fluorescence response) of fractions 1 (top) and 2 (bottom) 

collected using a Bio-Sil SEC 250 column (0.5 mL/min flow rate) from reaction condition 4 

(Table 4.1) of 2.14e. 

 

 Because the Bio-Sil SEC 250 column did not result in pure fractions, purification of 

2.14e from reaction 4 was attempted using a column packed with Sephadex G-25, using H2O as 

the mobile phase and run under gravity flow. Only two of the fractions indicated the presence of 

material by means of spotting on a TLC place and visualization with UV and KMnO4. However, 

both fractions indicated the presence of two peaks when tested by SEC with HPLC using the 

Bio-Sil Sec 250 column (Figure 4.4). This observation is likely due to the MW range (1,000–

5,000 Da) of Sephadex G-25 being narrow and very different from the large MW (42,000 Da) of 

the conjugate. 
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Figure 4.4. SEC chromatograms (fluorescence response) of fractions 1 (top) and 2 (bottom) 

collected from Sephadex G-25 chromatography from reaction condition 4 (Table 4.1). 

 

Synthesis of Eu
III

-Containing PEG Conjugates 2.17c and 2.20c 

 

 The synthetic route to Eu
III

-containing PEG conjugates 2.17c and 2.20c is shown in 

Scheme 4.2. In general, the synthesis of Eu
III

-containing conjugates, 2.17c and 2.20c, was 

carried out by adding a mixture of Eu
III

-containing complex 2.8 or 2.11 (1 equiv) and DIEA in 

anhydrous CH3OH to a flask containing succinimidyl ester derivative of PEG, 4.1c. The resulting 

mixture was allowed to stir at ambient temperature under Ar for 24–72 h, and the resulting 

reaction mixture was added to amine-terminated aminomethylated polystyrene HL (100–200 

mesh) resin (25 equiv, pre-swollen in C2H5OH for 2–3 h) allowing to rotate for 15–18 h to 

remove unreacted excess succinimidyl ester derivative of PEG, 4.1c. The liquid portion of the 

reaction mixture was separated from the resin via filtration, and the resin was washed with 

C2H5OH (3 × 7 mL). The washings were combined with the liquid portion of the reaction 

mixture, and the solvents were removed under reduced pressure to obtain an oil that was 

dissolved in H2O (10 mL) and washed with hexanes (4 × 10 mL) to remove excess DIEA into 

hexanes. The H2O layer was dialyzed using a 1,000 Da MWCO dialysis membrane against H2O 
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(4 L) to remove unreacted Eu
III

-containing complex, 2.5 or 2.8 and any unreacted succinimidyl 

ester derivative of PEG, 4.1c remaining after the resin reaction. The dialysis reservoir was 

changed at 2–4, 6–8, and 10–14 h. After the last change, dialysis was continued for 3 h. Contents 

within the dialysis membrane were freeze dried to yield white solids. 

Scheme 4.2. Synthesis of Eu
III

-containing PEG conjugates 2.17c and 2.20c from Eu
III

-containing 

complexes 2.8 and 2.11, respectively. 

 

 

Several different reaction conditions were explored (Table 4.4) to test if the conjugation 

reaction could be driven to completion using the Eu
III

-containing complexes, 2.8 or 2.11, as 

limiting reactants and an excess of the succinimidyl ester derivative of PEG, 4.1c to enable easy 

purification with the resin reaction to remove unreacted succinimidyl ester derivative of PEG, 

4.1c and dialysis to remove any unreacted Eu
III

-containing complex 2.8 or 2.11.  

Reaction conditions 1–3 to obtain conjugate 2.17c and reaction conditions 1 and 2 to 

obtain conjugate 2.20c were carried out using the same number of equivalents of DIEA as the 

number of equivalents of PEG moiety, 4.1c. Based on the peak intensities in SEC 

chromatograms obtained from HPLC using PL-aquagel OH column, the majority of the starting 

materials were present and the new peaks were insignificant. Because of the similar pKa values 
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(~10–11) of protonated DIEA and protonated amine arms of the Eu
III

-containing complexes, 2.8 

and 2.11, a large excess of DIEA (500 equiv) was added to increase the probability of 

deprotonating the amine arms of complexes 2.8 and 2.11 and thereby facilitate nucleophilic 

attack. Reaction conditions 4–5 to obtain conjugate 2.17c and condition 3 to obtain conjugate 

2.20c resulted in higher intensities of the new peaks in the SEC chromatograms. SEC 

chromatograms obtained for conjugate 2.17c with reaction conditions 1 and 4 are shown in 

Figure 4.5 as representative chromatograms in the absence and presence of a large excess of 

DIEA, respectively.  

Table 4.4. Different reaction conditions explored in the synthesis of Eu
III

-containing PEG 

conjugates 2.17c and 2.20c. 

2.17c condition 1 condition 2 condition 3
a
 condition 4 condition 5 

equiv of 2.8 1 1 1 1 1 

equiv of 4.1c 10 10 40 20 10 

equiv of DIEA 10 10 40 500 500 

reaction time (h) 24 48 72 24 24 

2.20c condition 1 condition 2 condition 3   

equiv of 2.11 1 1 1   

equiv of 4.1c 10 20 10   

equiv of DIEA 10 20 500   

reaction time (h) 24 24 24   
a
20 equiv of succinimidyl ester derivative of PEG, 4.1c and DIEA added at start, followed by 

subsequent addition of 10 equiv of 4.1c and DIEA after 24 and 48 h 

 

 The reaction time was increased from 24 to 48 h to allow more time for the reaction 

between Eu
III

-containing complex, 2.8, and the PEG moiety, 4.1c, to occur in case steric 

hindrance arising from the conjugation of one PEG moiety to Eu
III

-containing complex, 2.8, 

hindered the conjugation of a second PEG moiety to Eu
III

-containing complex, 2.8. However, 

increasing the reaction time from 24 to 48 h did not result in considerable changes in the amount 

of product formed based on the intensities of the new peaks in SEC chromatograms obtained 

with reaction conditions 1 and 2 in Table 4.4 performed to obtain conjugate 2.17c (Figure 4.6).   
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Figure 4.5. SEC chromatograms (fluorescence response) of 2.17c obtained with a PL-aquagel 

OH column for reaction conditions 1 (top) and 4 (bottom) in Table 4.4 in the absence and 

presence, respectively, of a large excess of DIEA. 

 

 

 

 
 

 

Figure 4.6. SEC chromatograms (fluorescence response) of 2.17c obtained with a PL-aquagel 

OH column for reaction conditions 1 (top) and 2 (bottom) in Table 4.4 with 24 and 48 h reaction 

times, respectively. 

 

Also, increasing the number of equivalents of the succinimidyl ester derivative of PEG, 

4.1c, added did not increase the amount of product formed based on the new peak intensities in 

SEC chromatograms obtained with reaction conditions 4 and 5 (Table 4.4) carried out to 

synthesize conjugate 2.17c (Figure 4.7).  A similar observation was made from SEC 
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chromatograms obtained for reaction conditions 1 and 2 (Table 4.4) carried out in the synthesis 

of conjugate 2.20c.  

 

 

 

Figure 4.7.  SEC chromatograms (fluorescence response) of 2.17c obtained with a PL-aquagel 

OH column for reaction conditions 4 (top) and 5 (bottom) in Table 4.4. 

 

In addition, sequential addition of the succinimidyl ester derivative of PEG, 4.1c, at the 

start of reaction, 24 h, and 48 h was explored in reaction condition 3 (Table 4.4) in the synthesis 

of conjugate 2.17c. Sequential addition was carried out with the expectation that the reaction 

between the Eu
III

-containing complex, 2.8, and 4.1c will be facilitated by minimizing any side 

reactions between CH3OH that was used as solvent and 4.1c. However, similar SEC 

chromatograms were obtained at the end of 24, 48, and 72 h (Figure 4.8), indicating that any 

side reaction between CH3OH and the PEG moiety is unlikely to hinder the reaction between 

Eu
III

-containing complex, 2.8, and the PEG moiety, 4.1c.  

Poor peak resolution was observed in SEC chromatograms obtained with all reaction 

conditions likely due to the similarity in size of the reactants and the possible products, including 

Eu
III

-containing complexes (2.8 or 2.11) with one and two PEG moieties attached. Consequently, 

isolation of peaks by colleting fractions with HPLC was not possible. Therefore, purification of 
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2.17c and 2.20c was attempted using a column packed with Sephadex G-25, using H2O as the 

mobile phase and run under gravity flow. However, pure fractions were not observed upon 

testing each fraction by SEC with HPLC likely due to the similarity in MWs of unreacted 

reactants and products present in the reaction mixtures of 2.17c and 2.20c (Table 4.5). 

 

 

 

 

 

Figure 4.8. SEC chromatograms (fluorescence response) of 2.17c obtained with a PL-aquagel 

OH column for reaction condition 3 at the end of 24 h (top), 48 h (middle), and  72 h (bottom). 

 

Table 4.5. Calculated MWs of compounds present in reaction mixtures of 2.17c or 2.20c. 

compounds present  MW (Da) 

Eu
III

-containing complex (2.8 or 2.11) 638 

Eu
III

-containing complex with one c moiety 1500 

Eu
III

-containing complex two c moieties 2362 

Succinimidyl ester derivative of PEG (4.1c) 976 
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In addition, purification of 2.17c and 2.20c was attempted using a column packed with 

Sephadex G-10 (MW <700), using H2O as the mobile phase and run under gravity flow. Similar 

to the observations from Sephadex-G25, pure fractions were not observed when each fraction 

was tested by SEC with HPLC. Inability to obtain pure fractions is likely due to the similarity in 

MWs of unreacted reactants and products present in the reaction mixtures of 2.17c and 2.20c 

(Table 4.5). 

Synthesis of Eu
III

-Containing Acetamide Conjugates 2.17a and 2.20a 

 The synthetic route to Eu
III

-containing PEG conjugates 2.17a and 2.20a is shown in 

Scheme 4.3. In general, the synthesis of Eu
III

-containing conjugates, 2.17a or 2.20a, was carried 

out by adding a mixture of Eu
III

-containing complex 2.8 or 2.11 (1 equiv) and DIEA in 

anhydrous CH3OH to a flask containing N-acetoxysuccinimide, 4.1a. The resulting mixture was 

allowed to stir at ambient temperature under Ar for 24–48 h, and the resulting reaction mixture 

was added to amine-terminated aminomethylated polystyrene HL (100–200 mesh) resin (25 

equiv, pre-swollen in C2H5OH for 2–3 h) allowing to rotate for 15–18 h to remove unreacted 

excess N-acetoxysuccinimide, 4.1a. The liquid portion of the reaction mixture was separated 

from the resin via filtration, and the resin was washed with C2H5OH (3 × 7 mL). The washings 

were combined with the liquid portion of the reaction mixture, and the solvents were removed 

under reduced pressure to obtain an oil that was dissolved in H2O (10 mL) and washed with 

hexanes (4 × 10 mL) to remove excess DIEA. The H2O layer was dialyzed in a 500 Da MWCO 

dialysis membrane against H2O (4 L) to remove any unreacted N-acetoxysuccinimide, 4.1a, and 

salts of DIEA. The dialysis reservoir was changed at 2–4, 6–8, and 10–14 h. After the last 

change, dialysis was continued for 3 h. Contents within the dialysis membrane were freeze dried 

to yield white solids. 
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Scheme 4.3. Synthesis of Eu
III

-containing acetamide conjugates 2.17a and 2.20a from Eu
III

-

containing complexes 2.8 and 2.11. 

 
 

 

 Although a few different reaction conditions were explored (Table 4.6) with the 

expectation of obtaining pure conjugates 2.17a and 2.20a, none of the reaction conditions 

yielded pure conjugates as observed by SEC.  The reaction conditions were varied for the same 

reasons described in the previous section that describes the synthesis of conjugates 2.17c and 

2.20c. Because purification of conjugates 2.17a and 2.20a was unlikely with HPLC, purification 

was attempted using a column packed with Sephadex G-10 (MW <700), using H2O as the 

mobile phase and run under gravity flow. Similar to the observations from 2.17c and 2.20c 

discussed in the previous section, pure fractions were not observed when each fraction was tested 

by SEC with HPLC. Inability to obtain pure fractions is likely due to the similarity in MWs of 

unreacted reactants and products present in the reaction mixtures of 2.17c and 2.20c (Table 4.7). 
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Table 4.6. Different reaction conditions explored in the synthesis of Eu
III

-containing PEG 

conjugates 2.17a and 2.20a 

2.17a condition 1 condition 2
b
 condition 3 

equiv of 2.8 1 1 1 

equiv of 4.1a 10 20 10 

equiv of DIEA 10 20 500 

reaction time (h) 24 48 24 

2.20a condition 1 condition 2  

equiv of 2.11 1.0 1.0  

equiv of 4.1a 10 20  

equiv of DIEA 500 500  

reaction time (h) 24 24  
b
10 equiv of N-acetoxysuccinimide, 4.1a, and DIEA added at start, followed by subsequent 

addition of 10 equiv of 4.1a and DIEA after 24 h 

 

Table 4.7. Calculated MWs of compounds present in reaction mixtures of 2.17a or 2.20a. 

compounds present MW (Da) 

Eu
III

-containing complex (2.8 or 2.11) 638 

Eu
III

-containing complex with one a moiety 681 

Eu
III

-containing complex with two a moieties 723 

N-acetoxysuccinimide (4.1a) 157 

 

Future Directions  

 Although several attempts were made to purify the Eu
III

-containing PEG, 2.14e, 2.17a, 

2.17c, 2.20a, and 2.20c, successful purification was not achieved likely due to the size similarity 

between the reactants and products formed during the conjugation reactions. However, use of 

other SEC media including Sephadex-LH 20 (100–10,000 Da) is likely to enable the isolation of 

2.17a, 2.17c, 2.20a, and 2.20c. Also, the use of Sephadex G-50 (<30,000 Da) is likely to be 

useful in the isolation of 2.14e. In addition, silica gel chromatography also can be tested with 

polar solvent conditions including H2O/CH3CN and MeOH/NH4OH mixtures. Once the 

conditions for purification of Eu
III

-containing conjugates are established, the identities of the 

conjugates need to be confirmed by matrix assisted laser desorption ionization (MALDI) mass 

spectrometry. Next, Gd
III

- and Y
III

-containing conjugates need to be isolated and identified using 

the same purification and MALDI conditions established for the Eu
III

-containing conjugates. If 



86 
 

 
 

successful, these complexes would enable the determination of contrast agent relevant properties 

including water-exchange rates, kex, relaxivities, r1, longitudinal and transverse electron spin 

relaxation times, T1e and T2e, respectively, and water-coordination numbers, q, which in turn 

could be used to establish a relationship between the density of PEG and water-exchange rates 

and other contrast agent relevant properties.  
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CHAPTER 5: Summary, Conclusions, and Future Directions  

Summary 

 Water-exchange rates of lanthanide(III) (Ln
III

)-containing complexes are important 

determinants of the efficiency of these complexes as T1-shortening and paramagnetic chemical 

exchange saturation transfer (PARACEST) contrast agents for magnetic resonance imaging 

(MRI). As a result of the differences in how these two types of MRI contrast agents operate, the 

water-exchange rates of Ln
III

-containing complexes need to be tuned over a broad range: towards 

fast rates (10
8
 s

–1
) for  T1-shoretning agents and towards slow rates (10

3
 s

–1
) for PARACEST 

agents.  

The need to tune water-exchange rates over a broad range has led to an enormous amount 

of research efforts to tune water-exchange rates of both types of contrast agents using 

modifications in the structure of the Ln
III

-containing complexes. Examples of coordination-

chemistry-based strategies explored include modification of (1) the mechanism of water 

exchange; (2) the charge of the Ln
III

-containing complex; (3) the steric hindrance at the site of 

water coordination;  (4) the ligand side chains; and (5) the ratio of twisted-square-antiprism 

(TSAP) to square-antiprism (SAP) isomers for 1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetate (DOTA)-type complexes. Although the influence of each strategy was considered 

separately to allow structure-function comparisons to be made, there is considerable overlap 

among these strategies and they cannot be completely isolated from one another. Based on 

studies that relate different coordination-chemistry-based strategies to water-exchange rates, 

complexes with the following properties tend to lead to fast water-exchange rates desirable for 

T1-shortening agents: complexes that undergo associative water exchange; that are negatively 

charged; with bulky groups at the site of water coordination; with side chains containing non-
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polar substituents; and with large TSAP/SAP ratios for DOTA-type complexes. In contrast, 

complexes that undergo dissociative water exchange; that are positively charged; without bulky 

groups at the site of water coordination; with side chains containing polar substituents; and with 

small TSAP/SAP ratios for DOTA-type complexes tend to lead to slow water-exchange rates 

desirable for PARACEST agents.   

Studies describing the influence of coordination-chemistry-based modifications on water-

exchange rates demonstrate that minor structural modifications give rise to substantial changes in 

the water-exchange rates.  Consequently, a modular system of modifications based on a 

biocompatible and hydrophilic polymer, polyethylene glycol (PEG) was designed to enable 

tuning of water-exchange rates of Ln
III

-containing DOTA-type complexes through steric and 

hydrogen-bonding interactions. Furthermore, the systems were designed to allow investigation of 

the influence of length and density of PEG on water-exchange rates of Ln
III

-containing 

complexes and the designed systems are shown in Figure 5.1.    

Figure 5.1. The structures of M
III

-containing PEG conjugates, 2.13–2.21, acetate, a, used as a 

control, and PEG moieties b–e used to investigate the influence of length and density of PEG on 

water-exchange rates of Ln
III

-containing complexes. 
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PEG conjugates 2.13a–d, 2.14a–d, and 2.15a–d were designed to study the influence of 

the length of PEG on water-exchange rates, and PEG conjugates 2.13–2.15e, 2.16–2.21a, and 

2.16–2.21c were designed to explore the influence of density of PEG on the water-exchange 

rates. M
III

-containing PEG conjugates were synthesized starting from the reaction of tri-tert-

butyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetate or di-tert-butyl-1,4,7,10-tetraazacyclo -

dodecane-1,7-diacetate with protected linear or branched amine arms, followed by the 

deprotection of the protecting groups and tert-butyl esters to obtain the ligands. The deprotected 

ligands were metallated using metal chloride salts to obtain M
III

-containing complexes, which 

were then reacted with succinimidyl ester derivatives of acetate a, or PEG moieties b–d to yield 

M
III

-containing PEG conjugates 2.13a–d, 2.14a–d, and 2.15a–d.  The products of each synthetic 

step were purified by normal-phase, reversed-phase, or size-exclusion chromatography and 

characterized by mass spectrometry and NMR spectroscopy or high-performance liquid 

chromatography. However, M
III

-containing PEG conjugates 2.13–2.15e, 2.16–2.21a, and 2.16–

2.21c that were designed to study the influence of density of PEG on water-exchange rates could 

not be isolated as a result of the challenges encountered in the purification of the conjugates. 

Although many different size-exclusion chromatography media including PL-aquagel OH, Bio-

Sil SEC 250, Sephadex G-25, and Sephadex G-10 were used to purify the PEG conjugates, 

purification could not be achieved likely due to the similarity in size between the unreacted 

starting materials and products. Therefore, the studies on the investigation of density of PEG on 

water-exchange rates could not be performed. 

Upon synthesis, purification, and characterization of M
III

-containing PEG conjugates, 

2.13a–d, 2.14a–d, and 2.15a–d, properties relevant to MRI including water-coordination 

number, q; water-exchange rate, kex; relaxivity, r1; and longitudinal and transverse electron spin 



90 
 

 
 

relaxation times, T1e and T2e, respectively, were determined to evaluate the influence of length 

and density of PEG on water-exchange rates and contrast agent efficiency. Contrast-agent-

relevant properties obtained for the system designed to explore the influence of length of PEG on 

the water-exchange rates are summarized in Table 5.1.  

 Luminescence-decay measurements that were performed to obtain water-coordination 

number data for Eu
III

-containing complexes 2.14a–d resulted in water-coordination numbers 

close to one for all four complexes. This observation suggests that there is little if any steric 

hindrance caused by PEG moieties to block the coordination of a water molecule at the ninth 

coordination site of Ln
III

-containing octadentate DOTA-type complexes.    

Table 5.1. Molecular parameters of complexes 2.13a–d. 

Parameter 2.13a 2.13b 2.13c 2.13d 

q
a,b,c

 0.90  0.01 0.89  0.01 0.96  0.01 0.76  0.01 

kex
298 

× 10
6
 (s

–1
)
d
 2.7   0.03 1.5   0.02 0.83  0.08 0.67   0.05 

T1e
298 

× 10
–9

 (s)
a
 440  30 61  1 12  0.3 4.0  0.04 

r1 (mM
–1

 s
–1

)
a
 2.5  0.1 4.0  0.1 5.3  0.1 6.3  0.1 

MW (Da) 641 817 1463 5222 

1/T2e × 10
6
 (s

–1
) 17.8 8.11 6.51 5.03 

τR × 10
–12

 (s) 46 79 110 220 
a
Reported as mean ± standard error. 

b
From complexes 2.14a–d. 

c
The error associated with q 

determination is ±0.1 water molecules.
107

 
d
Error represents relative uncertainty. 

 

 To study the influence of length of PEG on water-exchange rates of Gd
III

-containing 

complexes 2.13a–d, variable-temperature 
17

O NMR spectroscopy was performed. The water-

exchange rates obtained demonstrated a 4-fold decrease in water-exchange rates from complex 

2.13a (used as a control without PEG) to 2.13d (with the longest PEG moiety used in this study). 

The observed decrease in water-exchange rates as a function of length of PEG is likely due to the 

stabilization of the nine-coordinate ground state through hydrogen-bonding interactions, increase 

in extent of the hydrogen-bonding network between bulk and coordinated water as a function of 

length of PEG, or both factors. The ability of PEG to tune water-exchange rates as a function of 
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length of PEG supports the hypothesis that PEG is able to tune water-exchange rates of Ln
III

-

containing DOTA-type complexes.  

 The efficiency of Gd
III

-containing complexes 2.13a–d as T1-shortening contrast agents 

was obtained in terms of relaxivity from water-proton relaxation time measurements at 37 C, 

pH 7.4 (in phosphate-buffered saline), and 1.4 T. The relaxivity values obtained for Gd
III

-

containing complexes 2.13a–d indicated a 2.5-fold increase from 2.13a to 2.13d as length of 

PEG increased. This increase in relaxivity is possibly due to the molecular weight (MW) 

increase (Table 5.1) from 2.13a to 2.13d, because complexes with high molecular weights have 

a tendency to tumble slowly in solution leading to higher relaxivity values.   

 Rotational correlation times (τR) for Gd
III

-containing complexes 2.13a–d were estimated 

using the measured data in Table 5.1 and the Solomon–Bloembergen–Morgan equations
8
 to 

account for the increase in relaxivity from 2.13a to 2.13d. Based on the estimated rotational 

correlation times (Table 5.1), a 5-fold increase from 2.13a to 2.13d was observed suggesting that 

the increase in rotational correlation time is consistent with the increase in MW. Moreover, the 

observed increase in the estimated rotational correlation time is likely the cause of the observed 

increase in relaxivity from 2.13a to 2.13d. 

Conclusions 

 This thesis describes the design, synthesis, and characterization of Ln
III

-containing 

DOTA-type complexes conjugated to different lengths and densities of PEG. In addition, 

measurements performed to explore the influence of length and density of PEG on water-

exchange rates and other molecular parameters that contribute to the efficiency of Ln
III

-

containing complexes as contrast agents for MRI are described, followed by the analysis and 

interpretation of data. The results suggest that PEG is able to tune the water-exchange rates of 
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Ln
III

-containing DOTA-type complexes towards slower rates as a function of length of PEG. 

Moreover, the magnitude of slowing of water-exchange rates is comparable to that reported for 

Ln
III

-containing hydroxypyridonate-based (HOPO) PEG conjugates.
67,68,104,105

 However, the 

decrease in water-coordination number from two to one reported for the HOPO-based systems 

with long PEG moieties was not observed with the DOTA-type system. The results described in 

this thesis for DOTA-type complexes together with the results reported for the HOPO-based 

systems demonstrate that PEG can be used to slow water-exchange rates of Ln
III

-containing 

complexes as a function of length of PEG, regardless of the differences in water-coordination 

numbers. Consequently, conjugation of PEG leads to a modular and tunable approach to slow 

water-exchange rates that can be generalized for Ln
III

-containing complexes.  

Because conjugation of PEG leads to slowing of water-exchange rates, the results 

described in this thesis are expected to be useful for the design of PARACEST agents for MRI, 

which require slow water-exchange rates. In addition, despite their relatively slow (~10
6
 s

–1
) 

water-exchange rates Gd
III

-containing complexes, 2.13b–d, have the potential to be used as T1-

shortening agents for MRI owing to the higher relaxivity values (4.0–6.3 mM
–1

 s
–1

) observed 

relative to clinically approved Gd
III

-DOTA (3.0 mM
–1

 s
–1

) at 37 C, pH 7.4, and 1.4 T.
106

   

Future Directions 

  As described in this thesis, the conjugation of PEG enables tuning of water-exchange 

rates of Ln
III

-containing complexes towards slower rates. However, the magnitude of slowing 

(×4) attained through conjugation of PEG alone is not sufficient to be used as PARACEST 

agents that require slower water-exchange rates (10
3
 s

–1
). To make conjugation of PEG a 

practical strategy for the design of PARACEST agents, conjugation of PEG can be combined 

with a few other strategies. 
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One approach to making the conjugation of PEG a useful strategy for the design of 

PARACEST agents is to begin with complexes that display slow water-exchange rates. Based on 

the coordination-chemistry-based strategies discussed in Chapter 1, positively charged 

complexes lead to substantial slowing of water-exchange rates of Ln
III

-containing complexes.
40,43

  

Consequently, designing positively charged complexes that can be conjugated to PEG is likely to 

lead to water-exchange rates that are slow enough to perform as efficient PARACEST agents. 

Examples of positively charged complexes that can be conjugated to PEG are shown in Figure 

5.2.   

 
Figure 5.2. Positively charged Ln

III
-containing complexes that can be conjugated to PEG with 

the potential to lead to slow water-exchange rates required for PARACEST agents.  

 

 Another approach to making the conjugation of PEG useful for the design of 

PARACEST agents is to incorporate other paramagnetic Ln
III

 ions including Ce
III

, Pr
III

, Nd
III

, 

Sm
III

, Tb
III

, Dy
III

, Ho
III

, Er
III

, Tm
III

, and Yb
III

. Incorporating other Ln
III

 ions is advantageous for 

the design of PARACEST agents because each Ln
III

 ion shifts the exchangeable protons peaks to 

different extents from that of bulk water. This difference in the extent of the shift of 

exchangeable protons alters the resonance frequency difference between the two exchanging 

pools of protons (Δω).
12

 Ln
III

 ions that give rise to large values of Δω are useful because they 

allow complexes with fast water exchange rates to be used as PARACEST agents.
12
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APPENDIX A  
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APPENDIX C 

Table C.1. Water proton relaxation rate data for conjugate 2.13a. 

Trial 1                                                                  

Concn (mM) 1/T1 (s
–1

) T1 (s) 

5.70 15.8 0.0633 

2.85 7.84 0.128 

1.43 4.44 0.225 

0.713 2.64 0.379 

0.000 0.259 3.87 

 

 

 

Trial 2 

Concn (mM) 1/T1 (s
–1

) T1 (s) 

5.70 14.5 0.0692 

2.85 7.73 0.129 

1.43 3.88 0.258 

0.713 2.62 0.382 

0.000 0.262 3.81 

 

 

 

Trial 3  

Concn (mM) 1/T1 (s
–1

) T1 (s) 

5.70 14.5 0.0690 

2.85 7.75 0.129 

1.43 3.94 0.254 

0.713 2.63 0.381 

0.000 0.262 3.81 

 

 

 

 

Table C.2. Water proton relaxation rate data for conjugate 2.13b. 

 

Trial 1                   

Concn (mM) 1/T1 (s
–1

) T1 (s) 

7.88 33.0 0.0303 

3.94 16.5 0.0606 

1.97 8.29 0.121 

0.990 4.60 0.217 

0.000 0.259 3.87 
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Trial 2                   

 

 

 

 

 

 

 

 

 

 

Trial 3                   

Concn (mM) 1/T1 (s
–1

) T1 (s) 

7.88 30.9 0.0324 

3.94 14.8 0.0675 

1.97 8.26 0.121 

0.990 4.11 0.244 

0.000 0.262 3.81 

 

 

 

 

Table C.3. Water proton relaxation rate data for conjugate 2.13c. 

 

Trial 1                                  

Concn (mM) 1/T1 (s
–1

) T1 (s) 

1.02 5.68 0.176 

0.510 3.03 0.330 

0.255 1.42 0.704 

0.128 0.790 1.27 

0.000 0.260 3.85 

 

 

Trial 2                                  

 

 

 

 

 

 

 

 

 

 

 

 

Concn (mM) 1/T1 (s
–1

) T1 (s) 

7.88 31.4 0.0319 

3.94 14.8 0.0675 

1.97 8.40 0.119 

0.990 4.10 0.244 

0.000 0.262 3.81 

Concn (mM) 1/T1 (s
–1

) T1 (s) 

1.02 5.68 0.176 

0.510 3.03 0.330 

0.255 1.42 0.704 

0.128 0.790 1.27 

0.000 0.262 3.81 
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Trial 3                                  

 

 

 

 

 

 

 

 

 

 

Table C.4. Water proton relaxation rate data for conjugate 2.13d. 

     

Trial 1                   

Concn (mM) 1/T1 (s
–1

) T1 (s) 

0.387 2.61 0.383 

0.194 1.41 0.712 

0.097 0.842 1.19 

0.048 0.547 1.83 

0.000 0.260 3.85 

 

 

 

Trial 2                   

 

 

 

 

 

 

 

 

 

Trial 3                  

 

 

 

 

 

  

Concn (mM) 1/T1 (s
–1

) T1 (s) 

1.02 5.68 0.176 

0.510 3.03 0.330 

0.255 1.42 0.704 

0.128 0.790 1.27 

0.000 0.262 3.81 

Concn (mM) 1/T1 (s
–1

) T1 (s) 

0.387 2.72 0.368 

0.194 1.46 0.685 

0.097 0.867 1.15 

0.048 0.555 1.80 

0.000 0.262 3.81 

Concn (mM) 1/T1 (s
–1

) T1 (s) 

0.387 2.71 0.369 

0.194 1.46 0.684 

0.097 0.870 1.15 

0.048 0.554 1.80 

0.000 0.262 3.81 
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Table C.5. Variable-temperature 
17

O NMR data for conjugate 2.13a. 

 

Temperature (C) linewidth at half height (Hz) 

 2.13a 2.15a 

70 114.08 28.87 

60 141.92 32.27 

50 155.88 37.10 

40 151.51 42.31 

30 136.03 50.52 

25 130.05 58.68 
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Table C.6. Variable-temperature 
17

O NMR data for conjugate 2.13b. 

Temperature (C) linewidth at half height (Hz) 

 2.13b 2.15b 

70 85.90 30.30 

60 102.03 32.84 

50 110.20 37.08 

40 105.90 42.82 

30 97.05 50.93 

20 91.20 63.56 
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Table C.7. Variable-temperature 
17

O NMR data for conjugate 2.13c. 

Temperature (C) linewidth at half height (Hz) 

 2.13c 2.13c 

70 42.16 29.56 

60 48.22 32.88 

50 53.56 37.10 

40 57.82 43.01 

30 62.26 51.34 

20 71.26 63.73 
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Table C.8. Variable-temperature 
17

O NMR data for conjugate 2.13d. 

Temperature (C) linewidth at half height (Hz) 

 2.13d 2.13d 

70 46.59 30.11 

60 53.57 34.15 

50 59.60 38.95 

40 65.80 45.61 

30 72.63 54.55 

20 79.79 68.18 
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Table C.9. Luminescence-decay rate data for conjugates 2.14a–d. 

Complex Luminescence-decay rates  (s
−1

)   

 Trial 1  Trial 2  Trial 3  

 in H2O in D2O in H2O in D2O in H2O in D2O 

2.14a 1.48 0.419 1.46 0.428 1.48 0.428 

2.14b 1.46 0.427 1.48 0.434 1.47 0.432 

2.14c 1.52 0.404 1.52 0.404 1.48 0.419 

2.14d 1.33 0.422 1.32 0.422 1.39 0.421 

 

 

2.13a                                                       2.13b                               

  

 

 

 

2.13c        2.13d        

 

 

 

 

 

Table C.10. Peak-to-peak line widths, ΔHpp  obtained from EPR spectra for conjugates 2.13a–d. 

 

 

  

Complex ΔHpp (G) 

2.13a 118 

2.13b 53.8 

2.13c 43.0 

2.13d 33.2 

2800 3800 

3800 
3800 

3800 

2800 

2800 

2800 
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Estimation of Rotational Correlation Time (R) 

To obtain an estimation of R, equation 1 was used that relates observed relaxivity, r1
obs

, 

to inner- and outer-sphere relaxivities, r1
IS

 and r1
OS

, respectively, at 1.4 T (60 MHz). 

OSISobs rrr 111   
 

Assuming that complexes 2.13a–d behave similarly to small molecular contrast agents, 

r1
obs

 is composed of approximately equal contributions from r1
IS

 and r1
OS

.
8
 Therefore, r1

IS
 can be 

expressed as half of r1
obs

 as shown in equation 2. 

ISobs rr 115.0 
 

 

The term r1
IS

 is related to the number of coordinated water molecules (q), the longitudinal 

relaxation time of the coordinated water proton (T1m), and the residence lifetime of the 

coordinated water molecule in the inner-sphere (m, reciprocal of water-exchange rate, kex) as 

expressed in equation 3. 

 

 

 

Equations 2 and 3 can be combined to obtain equation 4, which enables the calculation of 

T1m by substituting r1
obs

, m, and q with values obtained experimentally for complexes 2.13a–d 

(r1
obs 

and m) and 2.14a–d (q). 

mobsm
r

q
T 

1

1
750,27

 
 

The term T1m is composed of a dipole–dipole contribution (DD) and a scalar (SC) 

contribution to longitudinal proton relaxation as shown in equation 5. 

SCDD
m TTT

111

111


  

equation 2 

equation 1 

equation 3 

equation 5 













mm

IS

T

q
r

1

1

1

500,55

equation 4 
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The scalar contribution to overall longitudinal proton relaxation is negligible at field 

strengths greater than 10 MHz.
8 

Therefore, at field strengths above 10 MHz, the longitudinal 

proton relaxation becomes equal to the DD contribution that can be expressed as shown in 

equation 6. 



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In equation 6, I is the nuclear gyromagnetic ratio (2.67  10
8
 s

–1 
T

–1
), g is the electron g-

factor obtained for complexes 2.13a–d from EPR spectra, μB  is the Bohr magneton (9.274  10
–

24
 J T

–1
), μ0 is the vacuum permeability (4π  10

–7
 T mA

–1
), rGdH, is the electron spin-proton 

distance (3.1  10
–10 

m, from reference 8 for DOTA-type Gd
III

-containing complexes), and S is 

the electron spin for Gd
III

 (3.5). Terms ωS and ωI are the electron and nuclear Larmor 

frequencies, respectively at magnetic field strength, B (1.4 T). ωS and ωI are related to γS 

(electron gyromagnetic ratio = 1.76  10
11

 s
–1 

T
–1

), I, and B as shown in equations 7 and 8. 

 

 

Correlation times τC1 and τC2 are related to the rotational correlation time, τR, the 

residency lifetime of coordinated water, τm, longitudinal electron spin relaxation time, T1e, and 

transverse electron spin relaxation time, T2e as shown in equations 9 and 10. 

emRC

emRC

T
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1111

1111
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B

B
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SS
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

equation 6 

equation 9 

equation 10 

equation 7 

equation 8 
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T1e (obtained from the fitting of 
17

O NMR data) and T2e (obtained from EPR spectra) for 

complexes 2.13a–d were used in equations 9 and 10 that were combined with equation 6 to solve 

for R for complexes 2.13a–d. 

Table C.11. Estimated T1m and τR values for conjugates 2.13a–d. 

Complex T1m 10
–6

 (s) R 10
–12

 (s) 

2.13a 13 46 

2.13b 2.9 79 

2.13c 5.3 110 

2.13d 7.4 220 

 

Estimation of Relaxivity, r1
obs

, Based on R 

Estimated relaxivity values for complex 2.13a were obtained using R values from 

complexes 2.13a–d, and m and q values from complex 2.13a:  m = 3.7 × 10
–7

 s and q = 0.9. 

Values of C1 and C2 were calculated for 2.13a by substituting m, T1e, and T2e obtained for 2.13a 

and R from 2.13a–d. The calculated C1 and C2 values together with other constants were used 

to calculate a value for T1m using equation 6.   

The calculated T1m values for 2.13a and fixed m and q values were substituted in 

equation 3 to obtain r1
IS

 that was in turn used in equation 2 to obtain r1
obs

, which are the expected 

relaxivity values for 2.13a based on changes in R associated with complexes 2.13a–d.   

 

Table C.12. Observed r1 values for conjugates 2.13a–d and estimated r1 values for conjugate 

2.13a using R values from conjugates 2.13a–d. 

Complex Observed r1 (mM
–1 

s
–1

) Complex Estimated r1 (mM
–1 

s
–1

) 

2.13a 2.5 2.13a  2.5 

2.13b 4.0 2.13a with R from 2.13b 4.2 

2.13c 5.3 2.13a with R from 2.13c 5.7 

2.13d 6.3 2.13a with R from 2.13d 11 
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ABSTRACT 

MODULATION OF WATER-EXCHANGE RATES OF LANTHANIDE(III)-

CONTAINING COMPLEXES USING POLYETHYLENE GLYCOL 

 

by 

BUDDHIMA N. SIRIWARDENA-MAHANAMA 

May 2014 

Advisor: Dr. Matthew J. Allen 

Major: Chemistry  

Degree: Doctor of Philosophy 

A modular system of lanthanide(III)-containing polyethylene glycol (PEG) conjugates 

was synthesized and characterized to investigate the influence of length and density of PEG on 

water-exchange rates of lanthanide(III)-containing complexes. The water-exchange rates of 

lanthanide(III)-containing complexes contribute to the efficiency of these complexes as T1-

shortening and paramagnetic chemical exchange saturation transfer (PARACEST) contrast 

agents for magnetic resonance imaging (MRI). Because the mechanism of these two MRI 

methods is vastly different, there is a need to tune the water-exchange rates of lanthanide(III)-

containing complexes over a broad range: towards fast rates (10
8
 s

–1
) for T1-shortening agents 

and slow rates (10
3
 s

–1
) for PARACEST agents.  As a result, extensive research efforts have 

contributed to tuning water-exchange rates of both types of contrast agents using coordination-

chemistry-based strategies. These studies reveal that small modifications in the structure of 

lanthanide(III)-containing complexes lead to considerable changes in water-exchange rates. This 

thesis tests the hypothesis that hydrophilic PEG alters the accessibility of bulk water and the 

extent of hydrogen bonding between lanthanide(III)-coordinated and bulk water.
 
To test this 

hypothesis, a PEG-based lanthanide(III)-containing model system was designed and synthesized 



142 
 

 
 

to investigate the influence of length and density of PEG on the water-exchange rates of 

lanthanide(III)-containing complexes. Properties of the new complexes that are relevant to MRI, 

including water-exchange rates, were determined using relaxometric and spectroscopic 

techniques. The modular lanthanide(III)-containing system designed to investigate the influence 

of length of PEG demonstrated that PEG is able to tune water-exchange rates of lanthanide(III)-

containing polyaminopolycarboxylate-type complexes toward slower rates. The ability of PEG to 

tune water-exchange rates toward slower rates as a function of the length of PEG is likely due to 

the variation in extent of hydrogen bonding between coordinated and bulk water. These findings 

provide insight into the influence of length and density of PEG on water-exchange rate and 

contrast agent efficiency and are expected to be useful in the design of contrast agents with 

optimum water-exchange rates. 

  

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

 
 

AUTOBIOGRAPHICAL STATEMENT 

Education 

Wayne State University, Detroit, MI, USA: Chemistry, Ph.D. 2008–2014 

University of Colombo, Colombo 3, Sri Lanka: Chemistry, B.Sc. 2002–2006 
 

Research Experience 

Wayne State University  May 2009–May 2014  (Graduate Student) 

Advisor: Prof. Matthew J. Allen 

Modulation of water-exchange rates of lanthanide(III)-containing complexes using  

polyethylene glycol 
 

University of Colombo  August 2005–August 2006  (Undergraduate) 

Advisor: Prof. Dhammike P. Dissanayake 

Oxidation of halogen-containing volatile organic compounds 
 

Awards 

Best Poster Award, The Midland Section of the American Chemical Society Fall Scientific  

Meeting: October 2013 

Departmental Citation for Excellence in Teaching Service, Wayne State University: April 2012 
 

Professional Affiliations 

American Chemical Society—Member     2012–Present 

Phi Lambda Upsilon (Chemistry Honors Society)   2010–Present 

Chemical Society, University of Colombo—Assistant Secretary  2006–2007 

Chemical Society, University of Colombo—Member   2004–2006 

The Chartered Institute of Marketing, UK—Member   2004–2007 
 

Publications 

Siriwardena-Mahanama, B. N.; Allen, M. J. Dalton Trans. 2013, 42, 6724–6727.   

Siriwardena-Mahanama, B. N.; Allen, M. J. Molecules 2013, 18, 9352–9381.   

Averill, D. J.; Garcia, J.; Siriwardena-Mahanama, B. N.;* Vithanarachchi, S. M.; Allen,  

M. J. J. Vis. Exp. 2011, 53, e2844. (* co-first author) 
 

Presentations/Conferences Attended 

The Midland Section of the American Chemical Society Fall Scientific Meeting. Delta  

College, Midland, MI. October 5, 2013; Poster.  

15
th

 Annual Chemistry Graduate Research Symposium 2013. Wayne State University,  

Detroit, MI. September 28, 2013; Poster. 

Ohio Inorganic Weekend 2012. Wayne State University, Detroit, MI. October 19–20, 2012;  

Poster. 

14
th

 Annual Chemistry Graduate Research Symposium 2012. Wayne State University,  

Detroit, MI. October 13, 2012; Poster.  

244
th

American Chemical Society National Meeting & Exposition. Philadelphia, PA. August  

19–23, 2012; Poster. 

Proteases and Cancer Program Annual Retreat 2011. Wayne State University, Detroit, MI.  

December 1, 2011; Poster. 

Ohio Inorganic Weekend 2011. University of Cincinnati, Cincinnati, OH. October 28–29,  

2011; Talk. 

Schaap Chemistry Symposium. Wayne State University, Detroit, MI. September 17, 2011;  

Poster. 

Ohio Inorganic Weekend 2010. The Ohio State University, Columbus, OH. October 29–30,  

2010; Poster. 

12
th

 Annual Chemistry Graduate Research Symposium 2010. Wayne State University,  

Detroit, MI. October 9, 2010; Poster.  

Ohio Inorganic Weekend 2009. Case Western Reserve University, Cleveland, OH. November  

13–14, 2009; Poster.  

11
th

 Annual Chemistry Graduate Research Symposium 2009. Wayne State University,  

Detroit, MI. October 3, 2009; Poster. 


	Wayne State University
	1-1-2014
	Modulation Of Water-Exchange Rates Of Lanthanide(iii)-Containing Complexes Using Polyethylene Glycol
	Buddhima Nirodhi Siriwardena-Mahanama
	Recommended Citation


	tmp.1400011334.pdf.UTiMX

