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CHAPTER 1: Introduction

The purpose of this work is to produce high resolution quantitative in vivo sound speed

images of the human breast for aiding in the detection and diagnosis of breast cancer. Breast

cancer is the second-leading cause of cancer death of American women.[1] Early detection

is the best known means for reducing cancer mortality. Mammography, as a screening tool,

generates many abnormal findings not related to cancer which generate additional imaging

procedures. More effective screening and diagnosis tools are urgently needed for the early

detection of breast cancer. Tomographic imaging techniques in ultrasound show tremendous

potential to detect and diagnose early stage breast cancer.

In this work, we focus on the reconstruction of the sound speed of breast tissue using

waveform tomography techniques. Waveform tomography reconstruction algorithms model

the propagating wavefields using the full wave equation, hence taking into account higher

order effects such as diffraction and multiple scattering [2]. This is in contrast to more com-

mon travel time (or ray) tomography techniques which only consider the arrival times of

transmitted wavefronts [3]. A limitation of our approach is that we model 2D wave propaga-

tion which neglects the out of plane scattering present in real data acquisition. However, this

approach has significant advantages in terms of computational speed, complexity of hard-

ware, and chest wall access. It is also mitigated by the fact that the considered transducer

ring focuses most of the acoustic energy in the coronal plane. By careful data-fitting of

the numerical wavefields to real acoustic data, we solve the inverse problem to iteratively

produce sound speed models of the breast. We start from an initial estimate of the sound

speed model and update it using conventional gradient descent methods. The iterations stop

when a convergence criterion is satisfied. The computation of the simulated wave field for

a given sound speed model is achieved through forward modeling. The update of the sound

speed model based on the computed measurement mismatch is obtained by solving the cor-
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responding inverse problem. The improved image quality enabled by waveform tomography

has the potential to significantly increase the clinical value of these images for the detection

and diagnosis of breast cancer. We will show that the radical improvements in contrast and

resolution over previous travel time methods improve the shape and margins of structures.

For example, by using the waveform tomography technique, there are great improvements

in the differentiation of benign masses, malignant masses, and cysts from the bulk breast

parenchyma. The results obtained by ultrasound waveform tomographic techniques mirror

the capabilities of modalities such as MRI. By using the waveform tomography technique,

there is potential to improve the clinical assessment of breast disease.

1.1 What is Cancer?

Medical imaging techniques can reveal information not visible to the naked eye. This can

range from the size of bone fractures to the gender of a fetus. Medical imaging can also be

used to detect the presence and the extent of malignancy of diseases such as cancer. Cancer

is a term used to describe a wide group of diseases that cause cells to divide and multiply

uncontrollably [4, 5]. The resulting growth is called a neoplasm or the more colloquial term

tumor. The uncontrolled growth is due to problems with genes that both encourage and

discourage cell division. Cell division is encouraged by proto-oncogenes, but when they

are damaged, they may become oncogenes which encourage cells to divide uncontrollably.

As cells undergo their usual processes of growth and division, mutations may result. Tumor

suppression genes would typically cause these cells to die in a process called apoptosis. When

damaged, the genes fail to regulate cell division.

1.1.1 Classifying Cancer

There two types of tumors: malignant and benign. Benign tumors are typically identical

to normal tissues. They are simply capsulary overgrowths of normal tissues and are most

likely not fatal. Some examples of benign tumors include fluid-filled cysts and mass-like

fibroadenomas. Malignant tumors may result in fatalities. Malignant tumors are destructive
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because they consume oxygen that would otherwise go to healthy tissues. Healthy tissues

would starve and die undergoing necrosis. Malignant tumors are morphologically different

from benign tumors in that they are invasive and branch out to adjacent normal tissues.

They do not recognize tissue boundaries and can move or metastasize throughout the body.

Malignant tumors cease to resemble their parent cells. They are said to be poorly differen-

tiated.

The degree to which a tumor has developed is quantified by grading [6]. The TNM

(tumor-node-metastasis) grading scale is used to describe the degree of malignancy of a

tumor. Scores of 0-4, 0-3, and 0-1 are given to each subcategory, respectively. Higher

numbers indicate a worsening prognosis. A score of ”X” is given if the minimum requirements

for classification have not been met. The tumor, node, and metastasis scores describes the

size of the primary tumor and the extent to which it has spread to adjacent structures, the

spread of malignancies to regional lymph nodes close to the primary tumor, and the spread

of malignancies to other parts of the body, respectively.

Breasts are also classified into their respective densities using, for example, the BI-RADS

criteria for mammographic density [7]. This results in four distinct and qualitative classi-

fications for breast density: (1) almost entirely fatty, (2) scattered areas of fibroglandular

density, (3) heterogeneously dense, and (4) extremely dense.

1.1.2 Cancer Risk

Screening is essential to finding tumors when they are small and still in situ or locally

constrained. Age is the most important factor in cancer incidence. Older people are at a

higher risk. It has been shown that people with healthy lifestyles with good diet and exercise

have lower incidences of cancers. Chemicals and substances known as carcinogens induce

cancer formation. These can range from the charred lamb kabobs to industrial insulators

such as asbestos. Smoking and the consumption of drugs such as alcohol and tobacco also

increase the likelihood of cancer incidence. There are differences in genes that predispose

certain individuals to form cancers. For example, breast cancer risk is higher for individuals
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with family history. Differences in genes among the people of different regions of the world

might also contribute to the incidence of cancers. For example, it has been shown that

Asians and sub-Saharan Africans have a lower risk of forming cancers.

1.2 American Breast Cancer Statistics

Information about American breast cancer statistics has been compiled in [1]. In 2011,

230,480 new incidences of breast cancer and 39,520 deaths were expected. Women over the

age of 50 accounted for 78% and 87% of these numbers, respectively. New incidence rates

increased in the 1980s due to the invention of mammography screening and a decline in

pregnancy rates. They further increased during the 1990s possibly due to further increases

in mammography screening as well as the use of menopausal hormones. A sharp decrease

of 7% was noted in 2002 when a report detailing the harms of menopausal hormones was

published. Mortality rates increased steadily at a rate of 0.4% per year from 1975–1990

reaching 50,000 deaths per year. The rate has steadily declined at a rate of 2.2% per year

due to increased screening and treatment options.

There is a disparity in incidence and survival rates based on state, socioeconomic class,

and ethnicity. Asian American/Pacific Islanders had the lowest rate of new incidences (84.9

new cases per 100,000 women). Non-Hispanic whites had the highest rate (125.4 new cases

per 100,000 women). Mortality rates were lowest among Asian American/Pacific Islanders

(12.2 deaths per 100,000 women). The highest mortality rate is among African American

women (32.4 deaths per 100,000 women). This disproportionately higher rate reflects differ-

ences in socioeconomic status which leads to a lack of early screening. This is particularly

evident in the fact that new incidence rates are higher in non-Hispanic white women when

compared to African American women (125.4 and 116.1 cases per 100,000 women, respec-

tively), yet they have lower mortality rates when compared to African American women

(23.9 and 32.4 cases per 100,000 women, respectively). The variation in cancer in different

ethnicities might also arise from molecular differences in tumor biology. Within a state,

there is disparity among counties according to the level of poverty. The mortality rate is
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Figure 1.1: Breast Anatomy. (1) Chest wall. (2) Pectoralis muscles. (3) Lobules. (4) Nipple. (5)
Areola. (6) Milk duct. (7) Fatty tissue. (8) Skin.

proportional to the level of poverty.

1.3 Breast Anatomy and Cancer Detection

A human female breast is composed of a matrix of adipose and fibrous tissues surrounding

mammary lobules. The lobules are composed of secretetory ducts which converge at the

nipple. The fibrous tissue, or parenchyma, connects and holds the breast together. The

breast connects to the rest of the body at the pectoralis muscle which is connected to the chest

wall. An image displaying these and other relevant structures is seen in Figure 1.1 [8]. Since

the breast is composed of soft tissues, it is an ideal candidate for ultrasound tomography.

Note that the chest wall and corresponding muscles can corrupt image quality by entering

in to the field of view of the ultrasound tomography scanner (for an example, see image

closest to chest wall in Figure 6.10). Early detection of breast disease can lead to significant

reduction in the mortality rate [9]. The detection of breast cancer is muli-modal.



6

(a) (b)

Figure 1.2: Mammography. (a) Data acquisition. (b) Example of x-ray attenuation image.

1.3.1 Palpation and Mammography

The first line of defense uses self examination and palpation of the breasts. The problem

with self palpation is that it would typically only find suspicious lumps after they have

grown to a sizable volume. However, a women doing regular breast self examination would

on average find a tumor of approximate size 2 cm as opposed to a finding a tumor of

approximate size 3.5 cm by accident [10]. The typically screening modality associated with

breast cancer detection is mammography. It has shown to be an effective tool in reducing

mortality associated with breast cancer [11]. An illustration of a mammogram acquisition is

seen in Figure 1.2(a) [12].

In mammography, a patient places a breast in between plates that compress the breast.

Diagnostic ionizing x-rays are then used to scan the breast typically resulting in two planar

projections characterizing the photoelectric attenuation properties of the breast anatomy [13].

An example image is seen in Figure 1.2(b). The resulting shape of the imaged structures

is then used to assess the presence of breast disease. For a good introduction to reading

and interpreting mammograms, the reader is referred to [14]. The reader will find that to

first order, malignant cancers are defined by indistinct or “fuzzy” margins (or borders) while

benign tumors have more round or smooth shape. When using mammography, a mass of
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average size 1.6 cm is found by a woman’s first mammogram while a mass of average size

1.2 cm is found when previous mammograms are available for comparison. Thus, the best

method to detect breast cancer early as possible would use a combination of high-quality

mammograms which are the gold standard for cancer screening and a clinical breast exam

performed by a physician [15]. Routine mammographic screening every one or two years is

recommended for women age forty or older [9] although there is some debate on the most

effective age of beginning participation [16, 17, 18].

Problems exist with the effectiveness of screening mammography [19]. The extent of the

ability for screening mammography to improve the quality of life of a patient is debatable [20,

21]. For example, a false-positive mammographic finding usually results in an unneeded

biopsy or subsequent imaging with another modality such as hand-held ultrasound. This

adds a great deal of anxiety and expense for the patient as well as expense to the health

care system. False-positives can also lead to overdiagnosis [22]. Cancers such as some

forms of Ductal Carcinoma In Situ (DCIS) are stable diseases related to the presence of

microcalcifications and will not become metastatic [23]. Finding these cancers by an imaging

method will lead to their removal even though they might not be potentially hazardous.

Another problem associated with mammography is the presence of mammographically occult

lesions in dense breasts who often times are in young women [24]. The extensive parenchyma

and fibrous tissue present in these types of breasts hinder the ability of a radiologist to make

an accurate diagnosis of breast disease based on morphology. If a patient is young, she would

be also less likely to be seek cancer screening or perceive a risk to the disease. Another

prevalent problem with mammography is the use of painful compression that can lead to a

reduction in women seeking screening. Due to many of the problems listed above, we are

motivated to find an adjunct or replacement to mammography.

1.3.2 Hand-Held Ultrasound

A very effective tool at increasing the specificity of mammography is given by the use of

hand-held ultrasound [25, 26, 27]. Hand-Held ultrasound is the precursor to our ultrasound
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(a) (b)

(c)

Figure 1.3: Hand-Held Ultrasound (a) Example of reflection or B-mode image. (b) Example of
reflection or B-mode image from another scan at a later time corresponding to the approximate
location in (a). (c) Data acquisition.

tomography method. A hand-held ultrasound probe consists of a linear or curvi-linear ul-

trasound transducer array that is typically attached to processing hardware and an imaging

workstation. An example is seen in Figure 1.3(c). An impedance matching acoustic coupling

gel is applied to a patients skin before it scanned by the probe. This type of reflection based

ultrasound scanning measures the variation of the impedance Z = ρc of the breast where the

density and the sound speed of the breast are ρ and c, respectively [28]. For example, a signal

originating from a medium with impedance Z1 and reflecting at a normal incidence from a

medium with impedance Z2 would have a reflection coefficient R = (Z2 − Z1)2/(Z2 + Z1)2.

An example of the reflection or B-mode image of a breast is seen in Figures 1.3(a) and 1.3(b).
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The hand-held ultrasound scan is highly dependent on the expertise of the operator as they

must search through tissue and visualize and calibrate the 2D image on the imaging worksta-

tion with the scanned anatomy. An example of this is seen in the B-mode ultrasound breast

images in Figure 1.3. One image was acquired in the radial breast plane while the other

was acquired in the anti-radial plane (see Figure 7.1(c)). The lesion location, i. e. distance

from nipple and clock position, should be roughly the same for both images. The fact that

the images look very different gives an example of the operator dependence of hand-held

ultrasound. The reader is referred to [29] for a basic introduction to hand-held ultrasound.

For the interpretation of sonographic findings, the reader is referred to [26] which does an

extensive analysis of benign and malignant findings in ultrasound breast scans. As was

the case for mammography, the reader will find that malignant tumors generally have more

diffuse shape and indistinct margins when compared to benign cases. It is important to

understand that the shape and margins of tumors carry vital diagnostic information which

can directly characterize breast disease. If the classification is robust and not marred by

false-positives, then unneeded biopsies can be reduced. Due to the operator dependence of

hand-held ultrasound and its ability to accurately characterize benign and malignant lesions,

we are motivated to image with ultrasound tomography.

1.4 Ultrasound Tomography

Ultrasound tomography is an ideal technique for obtaining 3D images of breast structures

since the breast is comprised mostly of soft tissues without bones or other materials which

would strongly scatter and attenuate transmitted signal energy [30]. Potential clinical ben-

efits of ultrasound tomography include safety, comfort, and 3D imaging. This is in contrast

to existing clinically accepted modalities, such as x-ray mammography, which only provides

planar projections, involves ionizing radiation, and uses uncomfortable compression.

Many researchers have made important contributions to the field of ultrasound tomog-

raphy. Early work focused on using tomographic techniques for reflection imaging [31]. A

fundamental benefit of ultrasound tomography techniques over traditional hand-held ultra-
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(a) (b)

Figure 1.4: Ultrasound Tomography Breast Placement and Patient Scan. (a) Breast in ring. (b)
Data acquisition.

sound is the ability to use the transmitted ultrasound wave field. This is important because

the transmitted portion of an ultrasound signal contains information about the sound speed

and attenuation properties of the insonified medium [32, 33, 34, 35]. These properties can

aid in the differentiation of fat, fibro-glandular tissues, benign masses, and malignant cancer.

A few examples of research groups that have made contributions to transmission ultrasound

tomography include [36, 37, 38, 39, 40, 41].

The two ultrasound tomography devices used to generate data for this work [42, 43] op-

erate in a similar fashion. During an exam, the patient lies prone on a table and inserts a

breast into a ring transducer which is immersed in a water filled chamber. Examples of a

patient exam and the placement of the breast are seen in Figure 1.4. The ring transducer

then scans the entire breast acquiring coronal slices from the chest wall to the nipple region.

Tomographic reflection or B-mode images are then reconstructed from the reflected signals

while sound speed and attenuation images are reconstructed from the transmitted signals.

The three image types can then be used to evaluate the presence of breast disease. The B-

mode images are qualitative reconstructions which measure the variations in the impedance

properties of the breast tissue [44]. They provide useful contrast and morphological informa-

tion. The sound speed and attenuation images map the sound speed (m/s) and attenuation
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(a) (b) (c)

Figure 1.5: Ultrasound Tomography Scan of Small Benign Cysts in a Dense Breast. (a) Reflection.
(b) Sound speed (m/s). (c) Attenuation (dB/mm).

(dB/mm) within each voxel of the reconstructed breast volume. In addition to providing

contrast and morphological information, this quantitative data helps in the identification of

unknown structures in an absolute and consistent way [3, 45, 46]. An example of a scan

of small benign cysts in a very dense breast is seen in Figure 1.5. It can be seen that the

hypoechoic cyst locations correspond to regions of higher sound speed and lower attenuation.

The sound speed of breast can also be a quantitative surrogate marker for the evaluation of

breast density which would be useful since women with dense breasts are at an increased risk

for breast cancer due to increased incidence and reduced diagnosis [47, 48, 49, 50]. Thus,

waveform tomography can be used to assess the possible cancer risk to young women as

well as monitoring the progression of benign or malignant breast disease without having to

subject the patient to repeated doses of ionizing radaition.

1.5 Previous Contributions to Waveform Tomography

In the preceding decades, various research teams have made significant advances in wave-

form tomography. These include extensive research in Geophysics as well as limited study

in medical applications. Sound scales fairly linearly across the frequencies used in these

applications. For example, Geophysics uses sound waves with frequencies on the order of

Hz to image the Earth’s subsurface where relevant length scales are on the order of km. In
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contrast, medical ultrasound uses MHz signals to image structures with length scales of mm.

Thus, Geophysics waveform tomography techniques can be utilized in medical applications.

1.5.1 Geophysics Applications

The most important contributions to waveform tomography arose from research in the

field of Geophysics. A major subset of this field includes the study and investigation of

seismic waveforms. As these waveforms travel through the earth, they are modified and

perturbed according to the elastic properties of the Earth. The received waveforms can then

be used to deduce the elastic properties which caused the modifications. For example, as

in B-mode ultrasound imaging, one can map the reflective properties of the interior of the

Earth by using the principles of migration [51]. A method to iteratively update a sound speed

model by perturbations developed from a least-squares minimization of a cost function was

developed in [52, 53]. The authors recast the principles of migration to show that the sound

speed model was updated by using the gradient of the cost function where the perturbations

were given by correlating the forward propagated wave field with the backward propagated

data residual. An example of a numerical result in the time domain is given in [54] while

a numerical result in the frequency domain is given in [55]. The compact matrix formalism

approach and technique developed in [56] was absolutely crucial in developing our algorithm.

The frequency domain approach is efficient as it allows only the inversion of a subset of the

frequencies contained within the signal bandwidth [57]. Some examples of the application

of waveform tomography to experimental data is given in [56, 58, 59, 60, 61, 62, 63]. An

excellent review of Geophysics applications of waveform tomography is found in [2].

1.5.2 Medical Applications

While some research has investigated medical applications using numerical data sets [64,

65, 66, 67], to the best of our knowledge, very few have successfully applied these techniques

to clinical in vivo data. The work in [39, 68] was a major pioneering contribution using an

ultrasound tomography device with planar transducer arrays. Their reconstruction technique
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Figure 1.6: Ultrasound Tomography Transducer Ring Configuration.

contrasts sharply with ours. While [39] used an implicit integral equation technique to find

the scattered wavefields, we use finite difference and matrix inversion methods using data

acquired from a ring transducer. Another important contribution to waveform tomography

for breast imaging is given in [69]. The authors use a very similar waveform tomography

algorithm to produce sound speed and attenuation images of a physical tissue mimicking

breast phantom and in vivo data obtained using our older ultrasound tomography unit.

Their work relies on manual travel time picking to build the initial sound speed model.

Manual travel time picking requires a user to look at a received waveform and decide the

time-of-flight of the acoustic signal. Due to the vast amount of data collected, this approach

is impossible for practical clinical applications. In contrast, our method utilizes a completely

automatic time-of-flight picker which is capable of separating system noise and the arrival

of the acoustic signal. We also use different preprocessing techniques in the implementation

of our algorithm.

1.6 Problem Statement

Let us consider the ultrasound tomography transducer ring configuration depicted in

Figure 1.6. The breast, represented by the gray circle, is immersed in water and surrounded

by an ultrasound transducer ring with NT elements (see Figure 1.4(a)). The positions of the
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transducer elements are given by rγ for γ = 1, 2, . . . , NT . Our goal is to estimate the sound

speed model c(r) as a means to quantitatively characterize breast tissue. The sound speed is

assumed to be independent of the frequency (no dispersion). Reconstructing the sound speed

model of the breast is an inherently 3D problem. However, since our ring transducer focuses

most of the transmitted energy in the acquisition plane, we will reconstruct the breast volume

as a series of 2D coronal slices. The inter-slice spacing can be adjusted as a function of the

vertical transducer beam width to ensure full coverage (with possible overlap). Note that

attenuation can easily be included by adding an imaginary component to the sound speed

model [58, 70]. The sound speed model is sampled on an uniform N ×N reconstruction grid

and stacked into an N2 dimensional vector c.

The acquisition works as follows. Each transducer element sequentially emits an ul-

trasound pulse which propagates throughout the medium. In the frequency domain, the

transmitting pulse given by the transducer operating at frequency ω is given by complex

valued quantity s(ω), and the resulting complex wave field at position r is denoted d(r, ω).

The wave field is measured at the transducer locations rγ, giving complex valued exper-

imental measurements d(rγ, ω). The measurements obtained for all emitter-receiver pairs

can be stacked into an N2
T dimensional vector dobs(ω). The expected numerical wave field

obtained at position r for a given operating frequency ω and sound speed model c is denoted

u(r, ω, c). Similar to the experimental measurements, the simulated wave field is sampled at

the transducer locations and the values are stacked in an N2
T dimensional vector uobs(ω, c).

The problem that we would like to solve is to estimate the sound speed model c that

generates, upon numerical simulation, simulated measurements uobs(ω, c) that best match

the experimental measurements dobs(ω). More specifically, we would like to minimize the

real valued mean squared error cost function

E(ω, c) =
1

2
eH(ω, c) e(ω, c) , (1.1)

where H denotes the Hermitian transpose, and e is the residual mismatch defined as
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e(ω, c) = uobs(ω, c)− dobs(ω) . (1.2)

Note that the dependence on the frequency ω and the sound speed model c is explicitly given

in the above expressions to emphasize that the optimization is performed on one frequency

at a time, and that the simulated wave field depends on the assumed sound speed model.

In other words, if the sound speed model is updated, the simulated wave field needs to be

reevaluated.

1.7 Dissertation Outline

Application of the frequency domain acoustic wave equation on data acquired from ultra-

sound tomography scans is shown to yield high resolution sound speed images on the order

of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1

MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The

quantitative sound speed values and morphology provided by these images have the poten-

tial to inform diagnosis and classification of breast disease. In this manuscript, we present

the formalism, practical application, and in vivo results of waveform tomography applied

to breast data gathered by two different ultrasound tomography scanners that utilize ring

transducers. The formalism includes a review of the physics of wave propagation, frequency

domain modeling of the wave equation using finite difference operators, and a review of the

inverse problem as related to an iterative reconstruction scheme using the gradient descent

method. We give numerical results and show that the practical application of waveform

tomography requires an accurate starting model, careful data processing, and a method to

gradually incorporate higher frequency information into the sound speed reconstruction. Fol-

lowing these steps resulted in high resolution quantitative sound speed images of the breast.

These images show marked improvement relative to commonly used travel time tomography

reconstruction methods. The robustness of the method is demonstrated by obtaining similar

results from two different ultrasound tomography devices. We also compare our method to

MRI to demonstrate concordant findings. We give examples of the possible use of waveform
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tomography in a clinical setting. The clinical data used in this work was obtained from a

HIPAA compliant clinical study (IRB 040912M1F). This work was partially funded by the

National Institutes of Health (NIH) through National Cancer Institute grants R43CA171601

and R44CA165320.
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CHAPTER 2: Physics of Wave Propagation

The topic of acoustic wave propagation in breast tissue is a subset of the field of fluid

mechanics. Many resources are available to understand this topic [71, 72, 73, 74, 75, 76, 77].

We will develop some of the principal equations of fluid mechanics from fundamental physical

principles and then make the appropriate considerations and approximations to yield the

acoustic wave equation. We will not be nearly as rigorous in our development as in the

sources cited above, but we hope that adequate justice is done to the development and

presentation of the acoustic wave equation.

2.1 Formulation of the Wave Equation

2.1.1 Euler’s Equation

Fluid mechanics is concerned with macroscopic phenomena and thus the breast is con-

sidered to be a continuous fluid. We then consider an ideal fluid particle of the breast which

is large enough such that it contains many molecules, but it is smaller than other length

scales considered in the problem. The fluid is ideal in the sense that we ignore any effects

of energy dissipation that occur to internal frictional losses (viscosity) and heat exchange

between different parts of the fluid. Thus, the motion of an ideal fluid is adiabatic.

We can then apply the laws of conservation of matter, momentum, and energy to a

fluid particle to yield the equations of motion. From the conservation of matter, a small

infinitesimal volume of fluid dV with density ρ(r, t) and velocity v(r, t) obeys the continuity

equation

∂ρ

∂t
+∇ · (ρv) = 0 , (2.1)

where the spatial variable r = (x, y, z), the time is denoted t, and the gradient is given by

∇. The net force acting on some arbitrary volume of fluid is related to the pressure p by
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Fnet = −
∫
V

∇p dV ,

where the integral is taken over volume elements dV within the arbitrary volume V . Thus,

the equations of motion for a volume element of a fluid is given by

ρ
dv

dt
= −∇p . (2.2)

Following the steps in [72], the change in velocity dv can be decomposed in terms of the

change in the velocity of fluid particle at a fixed point during a time interval dt as well as

the difference between velocities of two points separated by a distance dr

dv =
∂v

∂t
dt+ (dr · ∇) v . (2.3)

Inserting equation 2.3 into equation 2.2, recognizing v = dr/dt, and dividing by the density

ρ yields Euler’s equation

∂v

∂t
+ (v · ∇) v = −1

ρ
∇p . (2.4)

Equation 2.4 can also be derived using the principles of conservation of momentum as shown

in [74].

2.1.2 Sound Waves

Since we will be using ultrasound as a probe to image the breast, we are concerned with

the propagation of sound waves. A sound wave is a small oscillatory motion in a compressible

fluid that causes regions of compression and rarefaction. The fact we are dealing with small

oscillations allows us to expand the pressure, density, and velocity as

p = p0 + p′, ρ = ρ0 + ρ′, and v = v0 + v′ , (2.5)

where the constant equilibrium pressure p0, density ρ0, and velocity v0 are perturbed by a

sound wave with pressure, density, and velocity variations p′, ρ′, and v′ (po � p′, ρo � ρ′,

and |v0| � |v′|). We can assume that in the unperturbed state, there is no net flow and
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v0 = 0. We will obtain an expression for the acoustic wave equation by combining the

continuity and Euler’s equations with a first-order relation between density and pressure.

The continuity equation in equation 2.1 can be written as

1

ρ0

∂ρ

∂t
+∇ · v +

v · ∇ρ
ρ0

= 0 , (2.6)

where we have used that since ρ′ is small, ρ−1 ≈ ρ−1
0 . Using the expansions in equation 2.5,

equation 2.6 becomes

1

ρ0

∂ρ′

∂t
+∇ · v′ + v′ · ∇ρ′

ρ0

= 0 . (2.7)

In the above expression, variations with respect to ρ0 are zero and are omitted. Also, we

can omit v′ · ∇ρ′ as this involves a small term multiplied by the derivative of a small term.

Thus, equation 2.6 becomes

1

ρ0

∂ρ′

∂t
+∇ · v′ = 0 . (2.8)

Transforming Euler’s equation in equation 2.4 in a similar manner gives

∂v′

∂t
+

1

ρ0

∇p′ = 0 , (2.9)

where we ignore the convective acceleration (v′ · ∇) v′ since soft tissue like the human breast

would be lacking this phenomena, and because it is essentially a product of a small term

times the derivative of a small term. In addition, the term 1/ρ is approximated as 1/ρ0.

Implicit in this linearization procedure is the assumption that the velocity of a fluid particle

in the wave is small compared with the velocity of sound, i. e. |v′| � c. For ideal fluids

(adiabatic process with constant entropy s), small changes in the pressure and density can

be obtained through a Taylor expansion yielding the first order result

p′ = ρ′
(
∂p

∂ρ0

)
s

, (2.10)

where (·)s denotes the process is done at a constant entropy s. Thus, combining equa-

tions 2.10 and 2.8 yields
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∂p′

∂t
+ ρ0

(
∂p

∂ρ0

)
s

∇ · v′ = 0 . (2.11)

Before obtaining a wave equation, we must perform one more substitution. Introduce a

scalar velocity potential u(r, t) by defining

v′ = ∇u . (2.12)

Note that in general we could consider another term∇×Ψ to add to equation 2.12. However,

we can omit shear waves by approximated the breast to be a liquid with irrotational flow.

Using equation 2.12, equation 2.9 becomes

p′ = −ρ0
∂u

∂t
. (2.13)

Combining equations 2.11, 2.12, and 2.13 then gives the wave equation for scalar field values

u(r, t)

∇2u(r, t) =
1

c2

∂2u(r, t)

∂t2
, (2.14)

where the sound speed c of the propagating waves is related to the pressure and density by

c2 =

(
∂p

∂ρ0

)
s

. (2.15)

The isentropic compressibility κs is given by (see [78])

κs = − 1

V

(
∂V

∂p

)
s

=
1

ρ

(
∂ρ

∂p

)
s

. (2.16)

Letting ρ = ρ0, we can relate the compressibility in equation 2.16 to the sound speed in

equation 2.15

c2 =
1

κsρ0

.

Note that isentropic bulk modulus βs is the inverse of the compressibility.



21

2.2 Wave Equation

2.2.1 Solution of the Wave Equation

For frequency domain application, we are interested in the solution of the Helmholtz

equation. Transforming equation 2.14 into the frequency domain for a particular frequency

ω, input sound speed distribution c(r), and source function s(r, ω) yields the Helmholtz

equation

(
∇2 +

ω2

c(r)2

)
u(r, ω) = s(r, ω) , r ∈ Ω . (2.17)

There are appropriate boundary conditions such as

u(r) = 0 , r ∈ ∂Ω , (Dirichlet) ,

∇u(r) · n̂(r) = 0 , r ∈ ∂Ω , (Neumann) ,

where n̂(r) is a unit vector normal to the boundary ∂Ω. A schematic of the acquisition

geometry is seen in Figure 2.1. Letting the sound speed c(r) be a constant background

sound speed c0, the wave number is k = ω/c0. The Green’s function g(r|r′) for the Helmholtz

equation then satisfies

(
∇2 + k2

)
g(r|r′) = −δ(r− r′) . (2.18)

Assuming a solution with an oscillatory part exp [ik · r], a unique solution is given by requir-

ing a boundary condition at infinity as given by the Sommerfeld radiation condition [79]

lim
|r|→∞

|r|(d−1)/2

(
∂

∂|r|
− ik

)
g(r|r′) = 0 ,

where d is the dimension (i. e. 1D, 2D, 3D) and i =
√
−1. Many methods exist for the

determination of the solution of equation 2.18. Readers are referred to [80, 81, 82, 83] for a

detailed discussion of the derivation of the Green’s function solution. For example, a guess

to the solution can be made in terms of an eigenfunction expansion. The resulting equations

can then be determined to be identical to some known function. In the case of a 2D geometry,

the Green’s function is given by the Hankel function of the first kind
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Ω

∂Ω

Γ

Ω′

r

r′

Figure 2.1: Acquisition Geometry. The domain Ω with boundary ∂Ω has a transducer ring Γ with
γ evenly spaced transducers that act as sources and sinks of ultrasound radiation. A breast Ω′ is
placed in Γ. The coordinate vector is r and the vector denoting the location of a transducer is r′.
At a particular transducer location γ, r′ = rγ .

g(r|r′) =
i

4
H

(1)
0 (k|r− r′|) . (2.19)

Given a general source distribution s(r, ω), the field values u(r, ω) would then be obtained

by using Green’s second identity

u(r) =

∫
Ω

g(r|r′)s(r′) dr′ +
∫
∂Ω

[g(r|r′)∇s(r′) · n̂(r′)− s(r′)∇g(r|r′)) · n̂(r′)] dS ′ ,

where dS ′ is a surface element on ∂Ω. We note that if we had instead used a solution

with oscillatory part exp [−ik · r] in the development of the Sommerfeld radiation condi-

tion, then a unique solution would be given by the Hankel function of the second kind:

i/4H
(2)
0 (k|r− r′|). Further discussion of this observation and its relation to attenuation and

numerical implementation can be seen in section 2.2.2 and Appendix A.3, respectively.
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2.2.2 Incorporating Attenuation: Complex Sound Speed

In our development of the wave equation, we made the assumption of isentropic fluid flow.

This leads to a wave equation that does not dissipate energy in the form of internal friction

losses. We can then incorporate attenuation by using an ad hoc method. For example, in

the time domain wave equation, attenuation can be added by adding a term a∂u/∂t to the

right hand side of equation 2.14 [64]. For the Helmholtz equation, allowing the wave number

to have an imaginary component leads to evanescent waves [84]. A common practice in the

field of Geophysics is to allow the sound speed to have an imaginary part [56, 58, 70]. Thus,

in our problem, attenuation is introduced through the use of the use of a complex valued

sound speed

c(r) = c(r)R + ic(r)I ,

where the real part of the sound speed c(r)R is the phase sound speed or the typical quantity

when we think of sound speed, and the imaginary part of the sound speed c(r)I provides

viscous damping. This type of attenuation is derived from the quality factor Q, the reciprocal

of which is proportional to the attenuation . The quality factor is a dimensionless measure of

the intrinsic attenuation (as opposed to attenuation resulting from scattering due to velocity

inhomogeneities) when a material is subject to stress at periodic intervals ω. The quality

factor is defined through its relation to the loss in energy −∆E and maximum strain energy

E contained in each cycle

1

Q
≡ 1

2π

−∆E

E
. (2.20)

An expression for the amplitude of a signal A(x) with initial amplitude A0 moving in a

medium with phase velocity cR can be derived from equation 2.20 yielding

A(x) = A0 exp [−αQx] , (2.21)

with αQ = ω/ (2cRQ). We now show how the quality factor relates to cI . Consider a plane

wave Ψ(r, t) with a complex valued wavenumber k = kR + ikI as given by
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Ψ(r, t) = Aoe
i(k·r−ωt) = Aoe

i(kR·r−ωt)e−kI ·r . (2.22)

Note that each wavevector has a spatial decomposition in the unit bases x̂ and ŷ

kR = (kx,R, ky,R) ,

kI = (kx,I , ky,I) .

Let the wave travel from r to r + λ where we have chosen λ = λkR and λ · kR = 2π.

Therefore, λ = 2π/kR · kR. Then, the change in energy of the wave, which goes like the

square of the amplitude, is given by

∆E = ‖Ψ(r + λ, t)‖2 − ‖Ψ(r, t)‖2 (2.23)

combining equations 2.22 and 2.23

1

Q
=

1

2π

(
1− e−2kI ·λ

)
≈ 2kI · kR
|kR|2

=
2|kI |
|kR|

where we assumed that |kR| � |kI | in order to expand the exponential and that kI · kR =

|kI ||kR| so that we have maximum attenuation. This assumption is reasonable as it implies

Q � 1 which would imply that there shouldn’t be a significant loss in energy when a wave

travels a distance of a wavelength. Defining the local wave number to be k = |kR| + i|kI |

and using the dispersion relation k = ω/c, we have

k =
ω

cR + icI
=

ωcR
c2
R + c2

I

− i ωcI
c2
R + c2

I

= |kR|+ i|kI | . (2.24)

Thus, in order to introduce attenuation, we can give the velocity a non-zero imaginary part

1

Q
=

2|kI |
|kR|

= −2cI
cR

,

with the constraint cI < 0 in order for Q > 0. Comparing equations 2.21 and 2.24

αQ = − ωcI
c2
R + c2

I

=
ω

2cRQ
,

we see that in order for both approaches to match, we need Q � 1 which implies c2
R � c2

I

for the implementation to be well behaved. To conclude this section, we note that if in
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(a) (b)

Figure 2.2: Eikonals Travel Times. Shown is the result of a finite difference modeling of the
Eikonal equation of a constant background medium with an embedded high sound speed triangle.
(a) Eikonals travel times. (b) Contour plots of constant Eikonals.

our development, a plane wave with oscillatory part exp [−ik · r] was used, then we would

require cI > 0. This is discussed further in section 2.2.1 and appendix A.3.

2.2.3 High Frequency Ray Approximation

The imaging method of travel time tomography utilizes a high frequency approximation

to the acoustic wave equation. Consider the acoustic wave equation in the frequency domain

with a position dependent wave number k(r)

(
∇2 + k(r)2

)
u(r, ω) = 0 . (2.25)

Define τ(r), the eikonal, to be a scalar function that represents how the phase of the wave

changes with position. Consider the solution to be a plane of the form

u(r, ω) = exp [iω (τ(r)− t)] . (2.26)

Substituting equation 2.26 into 2.25 and noting that the sound speed c(r)2 = ω2/k(r)2

i∇2τ(r)

ω
−∇τ(r)2 +

1

c(r)2
= 0 .
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In the limit of infinite frequency, we are left with the Eikonal equation

∇τ(r)2 =
1

c(r)2
. (2.27)

We use the package FDTIMES [85] to solve equation 2.27 by finite difference methods. The

program outputs the eikonal which is the amount of time it takes for a wave to travel from

source to grid points. The output travel times and an associated contour map (i.e. cos of

the travel times) can be seen in Figure 2.2 for a model consisting of a high velocity triangle

embedded in a constant sound speed medium.
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CHAPTER 3: Numerical Forward Modeling

As developed in chapter 2, we made some physical assumptions on the propagation of

acoustic waves in the human breast and derived the acoustic wave equation. Because of the

high computation cost of time domain modeling, the efficiency of the frequency domain ap-

proach for a multi-source problem, and the ability to naturally incorporate higher wavelength

features as we progress from lower to higher frequencies [2], we transformed the acoustic wave

equation to the frequency domain, and we model the propagation of ultrasound within the

breast using the Helmholtz equation

(
∇2 +

ω2

c(r)2

)
u(r, ω) = s(r, ω) . (3.1)

Previously, we stated the analytical solution of the Helmholtz equation. However, we must

solve it numerically in order to use the solution in an numerical optimization problem.

Methods exist to solve the integral equation given in equation 2.2.1. For example, [68]

gives a method to solve an integral representation of the Helmholtz equation for application

in ultrasound tomography breast imaging. In contrast to an integral representation, we

numerically solve the Helmholtz equation by using a finite difference method. In this chapter

we will discretize our problem and use the resulting discretized system to produce numerical

field values that will be compared to real data whose acquisition is discussed in chapter 4.

We will compare the finite difference numerical solution of the Helmholtz equation with the

analytical solution.

In our problem, we are interested in the field values u(r, ω) created as a result of acoustic

radiation emanating from a total of γ sources at positions rγ along the ring transducer

Γ. In our problem, we consider s to be a point source at positions rγ. It can then be

expressed as s(r, ω) = s(ω)δ (r− rγ), where δ denotes the delta distribution. Note that the

source locations rγ also serve as receiver locations for the sampling of the wave field u along
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∆
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Figure 3.1: Discretized Acquisition Geometry. The domain Ω is split into an evenly spaced grid
with spacing ∆. The boundary of Ω is ∂Ω. A transducer ring Γ surrounds the object Ω′ that will
be imaged. Cartesian coordinates are sampled on the corner points um,n. Direction of positive and
negative x and y coordinates are given in lower right hand corner of stencil.

the ring transducer. Also, both the field values u and the sources s are complex valued

quantities as they represent the amplitude and phase of the propagating waves and source

wavelet, respectively.

3.1 Discretization

In order to use computer programs to numerically solve the above differential equa-

tion, we set bounds for the problem by considering only solutions in a square domain

Ω = [−L/2, L/2] × [−L/2, L/2], where L is big enough to allow the placement of a ring

array transducer ring with radius R. The boundary of the domain is denoted ∂Ω. We dis-

cretize Ω into a N × N square grid mesh with uniformly sized cell indices with physical

dimensions ∆ = L/N . The number of pixels N2 in the mesh is chosen such that the physical

dimension of each pixel is ∆ = λ/nλ, where λ is the wavelength of the chosen optimization
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frequency, and nλ = 5 is the number of grid points per wavelength chosen to balance the

computation cost, the quality of the reconstructed image, and the mitigation of numerical

dispersion. Due to numerical dispersion, choosing nλ ≤ 4 leads to a complete breakdown of

the algorithm. Choosing a value nλ > 5 increases the computation time without providing a

substantial increase in the quality of the reconstructed image. To compute the wavelength,

we use the mean sound speed of the water bath surrounding the breast as a reference value.

The discretized acquisition geometry is seen in Figure 3.1. In the new discretized system,

the coordinate vector r becomes rm,n where

rm,n = (xm, yn) , xm = −L/2 +m∆ , yn = −L/2 + n∆ , m, n ∈ [0, N − 1] .

The field values u(r) and source function s(r) would then become u(rm,n) and s(rm,n),

respectively. For interior points, i.e. rm,n ∈ Ω, the Helmholtz operator is discretized using

an optimal nine-point finite difference stencils detailed in [86]. The discretized representation

of equation 3.1 for the field value u(rm,n) is then given by

(
∇2 +

ω2

c(rm,n)2

)
u(rm,n, ω) ≈ α1

um+1,n + um−1,n+1 − um,n + um,n+1 + um,n−1

∆2

+ (1− α1)
um+1,n+1 + um+1,n+1 + um−1,n+1 + um−1,n−1(√

2∆
)2

+
ω2

c2
m,n

[
α2 + α3 (um,n + um−1,n + um,n+1 + um,n−1)

+
1− α2 − 4α3

4
(um+1,n + um+1,n−1 + um−1,n+1 + um−1,n−1)

]
= −δm,n(ω) , rm,n ∈ Ω .

where the coefficients αi are determined by minimizing numerical dispersion. The right

hand side forcing term δm,n(ω) is the Fourier transform of the source signal δ(r′, ω) and is

non-zero only when the indices m,n correspond to points on the transducer ring Γ. For

ri,j ∈ ∂Ω, absorbing boundary conditions are used to dissipate waves on the major faces [87]

and the corner points of the boundary [88, 89]. This plays the role of the Sommerfeld

radiation condition when deriving the analytical solution in section 2.2.1. The boundary
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conditions are such that they do not allow reflection but only outward traveling waves on

the boundaries. This is true for waves normally incident on the boundary. However, the

efficacy of the absorbing boundary conditions to inhibit the introduction of reflected energy

back in to the system becomes progressively worse as waves arrive at more oblique incidence.

An example of the absorbing boundary condition on the left face of ∂Ω is given by

(
iω

c(rm,n)

∂

∂x
+

ω2

c(rm,n)2
+

1

2

∂2

∂y2

)
u(rm,n, ω) ≈ iω

cm,n

um+1, − um,n
∆

+
ω2

c2
m,n

um,n +
1

2

um,n+1 − 2um,n + um,n−1

∆2
= 0 , rm,n ∈ ∂Ω .

For the Top-Left corner point, the boundary condition is given by

(
∂

∂x
+

∂

∂y
+

3

2

iω

c(rm,n)

)
u(rm,n, ω) ≈ um+1,n − um,n

∆

+
um,n+1 − um,n

∆
+

iω

cm,n
um,n = 0 , rm,n ∈ ∂Ω .

Further discussion and details of the finite difference stencils are available in Appendix A.

3.2 Matrix Solution

We can now consider every other unknown field value u(rm,n) and stack them into an N2

dimensional vector u. Similarly, we define the N2 dimensional vector s that has non-zero

values only at the grid indices rm,n that correspond to the position of the transmitting trans-

ducer element. The discretized Helmholtz operator is stored in a matrix S with dimensions

N2 × N2. The matrix S is large but very sparse. There are about 9 non-zero values for

every N2 grid points. It is pseudodiagonal because it has nine diagonal bands of non-zero

entries corresponding to the coefficients of the nine-point stencil. Its entries depend on the

assumed sound speed model and the chosen absorbing boundary conditions. With the above

discretization, the Helmholtz equation can be written in matrix form as

Su = s , u, s ∈ CN2

, S ∈ CN2×N2

. (3.2)

See Appendix A.8 for an explicit example of the structure of S. Note that the above equation
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needs to be solved for γ sources. Since the matrix S does not change unless the sound speed

model is updated, these systems of equations can be efficiently solved using LU factoriza-

tion [90, 91]. Once S has been factored, its LU constituents can be re-used to rapidly solve

the system of equations corresponding to each source. This is one reason why the frequency

domain waveform tomography method is preferred to the time domain method. We note

that the solution u of equation 3.2 depends on the source vector s for which we can make an

arbitrary initial guess. The guess is scaled by a complex scalar using a method to estimate

the source signal (see section 5.2.7). The field values u are also scaled by the same factor.

3.3 Discussion

3.3.1 Attenuation: Relationship Between Q and Power Loss

From section 2.2.2, we came to the conclusion that we can simulate attenuation by

allowing the sound speed to be complex valued. Neglecting geometrical decay (1/
√
x), the

amplitude of the wave A(x) at a position x is then given by

A(x) = exp [−αQx] = exp

[
−ωx
2cRQ

]
, cI = − cR

2Q
.

However, ultrasound attenuation is usually given in terms of power loss. For example, the

units of the attenuation coefficient can be [α] = [dB/ (mm Mhz)]. In this section we will

see how changing the quality factor Q affects the power of the numerically generated wave

fields. We define the power loss ∆dB at a pixel location rm,n, for a particular frequency ω

and quality factor Q to be

∆dB = 20 log10

(
u(rm,n, ω,Q)

u(rm,n, ω,Q =∞)

)
,

where there is no attenuation when Q =∞ (cI = 0). In this experiment, we use a constant

sound speed model of c = 1500 m/s, frequencies ranging between 112 and 336 kHz, and Q

values between 200 and 20. Using a single transducer to excite the medium, the average

power loss per unit length ∆dB/x averaged over all receiver location is given by
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(a) (b)

Figure 3.2: Average Power Lost as a Function of Q and Frequency. (a) Power lost per unit distance.
(b) Power lost per unit distance. Use the frequency f and not ω when using this figure.

∆dB

x
=

1

x

∑
rm,n∈Γ

20 log10

(
u(rm,n, ω,Q)

u(rm,n, ω,Q =∞)

)
, (3.3)

where x is the average propagation distance from the source transducer to receiver transduc-

ers. A plot of the expression in equation 3.3 versus 1/Q is seen in Figure 3.2(a). By dividing

by the frequency ω, we can generate a plot of the average power loss per unit length and

frequency as see in Figure 3.2(b). From Figures 3.2(a) and 3.2(b), it can be deduced that

the power loss is given by

∆dB =
20

ln 10

ωx

2cRQ
. (3.4)

Thus using equation 3.4, we have a simple formula to convert between Q and the average

power loss ∆dB.

3.3.2 Reflections From Boundary

The reader may be concerned that a small distance between the transducer ring and the

artificial boundary ∂Ω would cause reflections that would corrupt the sampling of the wave

fields u on the transducer ring. This might be further exacerbated by the intuition in the

time domain where having a larger Region of Interest (ROI) would allow the omission of
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reflected waves by choosing an appropriate time tmax to stop sampling the wave field at the

transducer location. However in the frequency domain, solutions are essentially integrated

over infinite time, and the effects of reflection from artificial boundaries in numerical simu-

lations can be mitigated by appropriate absorbing boundary conditions. This is in contrast

to section 2.2.1 where a combination of Dirichlet/Neumann boundary conditions and the

Somerfeld radiation condition gave rise to a unique and physically acceptable solution to the

wave equation. A totally reflecting boundary condition, i. e. u(rm,n) = 0 , rm,n ∈ ∂Ω would

lead to the generation of standing waves for the field values u within the domain Ω. This

does not model acoustic wave propagation within the breast and our ultrasound tomography

prototypes. Instead, we must use absorbing boundary conditions. In our experience, a 2nd

order Engquist and Majda absorbing boundary condition [87] (see section A.3) was quite

sufficient at damping waves on the artificial boundary.

3.3.3 Comparison of Analytical Solution and Numerical Approximation

In this section we will compare the numerical reconstruction representing the field values

u(r, ω) to the analytical solution. It is useful to explore the asymptotic expansion of the 2D

Helmholtz Green’s function. Combining the Green’s function for the 2D Helmholtz equation

(i.e. equation 2.19) and the asymptotic expansion (z = ω|r− r′|/c → ∞) of the Hankel

function (see [92]) gives

i

4
H

(1)
0 (z) ' i

4

√
2

πz
exp

[
i
(
z − π

4

)]
=

1√
8πz

exp
[
i
(
z +

π

4

)]
.

From the asymptotic expansion we see that the field values behave as plane waves exp[iz]

that decay as 1/
√
z. This contrasts to the 3D case where the decay behaves as 1/|r− r′|. We

will compare the analytical solution i/4H
(1)
0 (z) to a numerical simulation. In this comparison

we set the sound speed model to a constant value of c = 1500 m/s, the frequency to f = 100

kHz with ω = 2πf , and the source function s = −1.0/∆2 at position r0 = (0.11, 0) (meters).

The real Re{u} and imaginary Im{u} numerical wave field values as well as their modulus

and phase are shown in Figure 3.3.
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(a) (b)

(c) (d)

Figure 3.3: Numerical Wave Fields. (a) Real part of numerical wave field Re{u}. (b) Imaginary
part of numerical wave field Im{u}. (c) Log of the modulus of the numerical wave field log10 [|u|].
(d) Phase of the numerical wave field tan−1 [Im{u}/Re{u}].

Horizontal line profiles of the real and imaginary field values in Figures 3.3(a) and 3.3(b)

are compared to the Green’s function of the 2D Helmholtz equation in Figure 3.4. We see

that the numerical and analytical solutions agree very well up to amplitude normalization.

Next, we again compare the numerical and analytical solutions, but with attenuation added

via a complex sound speed (see sections 2.2.2 and 3.3.1). Using the same parameters in the

previous comparison in Figure 3.4 but with a quality factor of Q = 50 (c = 1500− i1500/(2 ·

50)), the numerical and analytical solutions with attenuation are shown in Figure 3.5. We
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(a) (b)

Figure 3.4: Comparison of Numerical and Analytical Solutions. (a) Line profile of real part of
numerical wave field Re{u} and real part of Green’s function. (b) Line profile of imaginary part
of numerical wave field Re{u} and imaginary part of Green’s function. Graphs are plotted as a
function of kr = k|r− r′|.

(a) (b)

Figure 3.5: Comparison of Numerical and Analytical Solutions With Attenuation. (a) Line profile
of real part of numerical wave field Re{u} and real part of Green’s function. (b) Line profile of
imaginary part of numerical wave field Re{u} and imaginary part of Green’s function. Graphs are
plotted as a function of kr = k|r− r′|.

see that numerical results, with and without attenuation, agree very well with the theoretical

prediction.
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CHAPTER 4: Inverse Problem

In this chapter we will discuss the inverse problem and the steps that need to be taken

to solve it. We will define the cost function and discuss how it will be minimized using

gradient descent methods. This will give an iterative procedure to update the sound speed

model. We will then give an explicit formulation of the gradient of the cost function which

will be used to update the sound speed model. We will conclude the chapter with numerical

reconstructions and experiments which analyze the accuracy and resolution of our method.

The reader is referred to [93, 94] for excellent resources on the detailed discussion of the

inverse problem.

4.1 Cost Function

Recalling from section 1.6, we would like to estimate a sound speed model c that gen-

erates, upon numerical simulation, simulated measurements uobs(ω, c) that best match the

experimental measurements dobs(ω) (the data acquisition procedure and signal processing

leading to dobs(ω) will be discussed in Chapter 5). More specifically, we would like to mini-

mize the real valued mean squared error cost function

E(ω, c) =
1

2
eH(ω, c) e(ω, c) , (4.1)

where H denotes the Hermitian transpose, and e is the residual mismatch defined as

e(ω, c) = uobs(ω, c)− dobs(ω) .

The vectors uobs and dobs represent the numerical and experimental wave fields sampled

on the transducer aperture Γ for every receiver. Since there are N2
T emitter-receiver pairs,

uobs,dobs ∈ CN2
T . In addition, since we discretize our domain Ω in a mesh of size N2,

the sound speed model c ∈ CN2
. If additional a priori information is known about the
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relationship between the vectors uobs and dobs, a data covariance matrix Cd that contains this

information can be incorporated into equation 4.1. If we wish to constrain and smooth the

reconstruction process, a regularization term can be incroporated by the use of the Lagrange

multiplier λR and the regularization operator R acting on the model space c. The Lagrange

multiplier λR balances the contribution of the the original penalty term in equation 4.1

and the regularization term. The cost function with additional a priori knowledge and

regularization is given by

E(ω, c) =
1

2
eH(ω, c)C−1

d e(ω, c) + λRR(c) .

Common regularization operator include the Tikhonov and the Total Variation operators[46,

95]. All of the sound speed reconstructions in this thesis do not use a regularization term

except for some of the attenuation reconstructions in section 4.4.2 which use Tikhonov reg-

ularization with R(c) = |∆cI |2 which penalizes perturbations ∆cI to the current imaginary

sound speed model. Choosing larger and smaller values of λR controls the degree to which

the update is penalized.

4.2 Linearization of the Cost Function

In this section we linearize the cost function to arrive at an update equation for the

sound speed c. Expanding the cost function E from equation 4.1, but omitting the explicit

dependence on ω, and using the notation u(c) = uobs(c) and d = dobs, we have

E(c) =
1

2
(u(c)− d)H (u(c)− d) .

We seek to find the optimum model copt = argmin
c

E(c) by locally optimizing the cost

function E about a neighborhood c0. In order to arrive at the optimum solution, we use an

iterative procedure where we assume the updated model is given by the previous model with

an added perturbation ∆c

c = c0 + ∆c .
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Taylor expanding the cost function E at the updated model location gives

E(c) = E(c0 + ∆c) = E(c0) +
∂E(c0)

∂c
∆c +

1

2

∂2E(c0)

∂c2
(∆c)2 +O

(
∂3

∂c3

)
. (4.2)

Since we are interested in the minimum of the cost function E, we take the derivative of

equation 4.2 with respect to c and set it equal to zero to give

0 =
∂E(c)

∂c
=
∂E(c0)

∂c
+
∂2E(c0)

∂c2
∆c .

Which mean that the perturbation ∆c is given by

∆c = −
[
∂2E(c0)

∂c2

]−1
∂E(c0)

∂c
.

The second derivative term is called the Hessian. Explicitly calculating the Hessian results

in Newton’s method, while a typical approximation to it gives the Gauss-Newton Method.

We can also set the value equal to a positive scalar α giving the Gradient Descent Method.

With this choice, we arrive at the update equation for every iteration i

c(i+1) = c(i) + ∆c = c(i) − α∂E(c0)

∂c
.

4.3 Gradient Descent Method

To solve the inverse problem for sound speed reconstruction, we use an iterative approach.

The starting sound speed model c(0) is created using a travel time reconstruction method [3].

For each frequency ω, we define a stopping criterion by updating the sound speed a config-

urable number of times. This is based on balancing computation cost with the quality of

the reconstructed image. The quality of the image is a subjective metric which balances the

interpretation of the apparent ability of the algorithm to correctly image structures and the

introduction of noise and artifacts into the reconstructed image. Often times, the quality

can be improved by taking more iterations at a particular frequency or by incorporating

higher frequency information. However, there is a point where the improvements in quality
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by making further iterations or moving to higher frequencies are negligible when compared

to the additional computation cost. An optimal frequency and iteration schedule is a topic of

current and ongoing investigation. In the inversion process, we start at the lowest frequency

in the set of selected frequencies, and then we move to the next frequency until all frequencies

have been used. Given a current estimate c(i) of the sound speed model, we find the gradient

of the cost function at that point. We then update the sound speed in the direction of the

steepest descent to obtain a new estimate c(i+1). The sound speed update can be written as

c(i+1) = c(i) − α(i)∇E(ω, c(i)) ,

where α is the step size as determined by a line search method [96], and the gradient ∇ =

∂/∂cR or ∂/∂cI depending on if the real part cR or the imaginary part cI of the sound speed

is to be updated. A simple example of the gradient descent method for a toy problem is given

in Appendix B.3. When using the line search method in a gradient descent algorithm, one

chooses an initial step size α0. This choice can be made, for example, based on experience

working with the numerical algorithm. The algorithm decides if the step size was appropriate

if the cost function decreases sufficiently. An appropriate decrease is dictated by the Wolfe

conditions. We only enforce the first condition called the Armijo rule in equation 4.3)

E
(
c(i) − α(i)∇E

(
ω, c(i)

))
≤ E

(
c(i)
)
− c1α

(i)∇E
(
c(i)
)H

E
(
c(i)
)
, (4.3)

where c1 is a positive constant. If the the step size was successful, then we can increase it, for

example α → 2α, for the subsequent iteration. If the cost function did not decrease or did

not satisfy the Armijo rule because the algorithm overshot the appropriate location, then we

can decrease the step size, for example α → α/2, and try again. An alternative to the line

search method involves finding an optimal step length α which can be chosen by minimizing

the cost function E with respect to α (see Appendix B.1). The inversion process can also

be improved in terms of computation speed using a conjugate gradient method [97].
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4.3.1 Starting Model and Phase Mismatch

In order to ensure that the waveform tomography algorithm converges to a solution close

to the global minimum, an accurate starting sound speed model is needed to avoid cycle

skipping phase mismatch between the simulated measurement uobs and the experimental

measurements dobs [98]. For example, let the true phase of a discrete frequency component

of the received waveform be φd = 0. If an initial sound speed model c1 predicts a phase

φ1 such that −π < φ1 ≤ π, then the algorithm will update the sound speed model to c′1 in

order to minimize the phase mismatch: φ1 → φd. However, if another initial sound speed

model c2 predicts a phase φd such that −3π < φ2 ≤ −π, then the algorithm will update

the sound speed model to the wrong local minimum c′2 to minimize the phase mismatch:

φ2 → φd − 2π. We generate our starting model using the travel time tomography method

detailed in [3]. The travel time reconstruction algorithm is iterated sufficiently to output a

high enough resolution image that avoids phase mismatch due to cycle skipping. However,

overiteration is avoided as it introduces strong ray artifacts which are retained throughout

the waveform tomography inversion process. Paralleling the need for an accurate starting

model, once the inversion process begins, each subsequent update of the sound speed needs

to adequately avoid the cycle skipping problem in order to converge in the direction of the

global minimum. This requirement becomes stricter as higher frequencies are incorporated

into the inversion process.

4.3.2 Calculating the Gradient

From the Appendix B.2, the gradient evaluates as

∇E = Re
{
JHe

}
,

where J is a N2
T ×N2 Fréchet derivative matrix whose elements are given by

Ji,j =
∂uobs,i
∂cj

, i = 1, 2, . . . , N2
T , j = 1, 2, . . . , N2 , (4.4)

where uobs,i and cj are the i-th and j-th elements of the vectors uobs and c, respectively.
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We again emphasize that we can take the derivative with respect to the real or imaginary

part of the sound speed to update the corresponding parameter of interest. We will not

calculate these derivatives explicitly, but we use the approach of [56] and take the derivative

of equation 3.2 with respect to the sound speed at each grid point to obtain an expression

for the gradient. This yields

∂u

∂cj
= −S−1 ∂S

∂cj
u = S−1fj , (4.5)

where the inverse operator (·)−1 is shorthand for the LU decomposition and inversion process,

and fj = (−∂S/∂cj) u is the “virtual source.” In order to calculate ∂S/∂cj, we use the

derivatives of the finite difference equations in [86]. Note that equation 4.4 involves the field

values uobs at the transducer grid points, and equation 4.5 involves the field values u at all

grid points. We augment the expression in equation 4.4 to create an augmented Fréchet

derivative matrix Ĵ of dimensions N2 ×N2 with coefficients

Ĵi,j =
∂ui
∂cj

, i, j = 1, 2, . . . , N2 ,

where ui is the i-th element of the vector u. Likewise, we augment the residual vector e with

zeros to create an N2 dimensional vector ê. Considering each of the column vectors fj as a

column of a matrix F, the augmented Fréchet matrix can be written as

Ĵ = S−1 [f1 · · · fN2 ] = S−1F .

The expression for the gradient in equation 4.3.2 reduces to

∇E = Re
{

ĴH ê
}

= Re
{

FH
[
S−1
]H

ê
}

= Re
{
FHv

}
,

where v = [S−1]
H

ê is the back-propagated wave field with the residual acting as a source.

Example of gradients are shown in Figure 4.1.
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(a) (b) (c)

Figure 4.1: The Gradient of the Cost Function. (a) Gradient for one emitter and one receiver. (b)
Accumulated gradient for one emitter and all receivers. (c) Accumulated gradient for all emitters
and all receivers.

4.4 Numerical Reconstructions: Accuracy and Resolution Analysis

In this section, we will assess the accuracy and resolution of our waveform tomography

algorithm. We will first compare the accuracy and resolution of travel time and waveform

methods. We qualitatively inspect the reconstruction of a heterogeneous numerical phantom.

We will also compare the edge response of a sound speed reconstruction of a homogeneous

cylindrical phantom with and without attenuation. The convergence of the algorithm to the

true solution will be seen in a plot of the cost function. For these waveform tomography

reconstructions, in order to avoid the inverse crime, forward modeling is done using the

same frequency domain algorithm but with different discretized parameters. The inverse

crime refers to when identical or nearly identical algorithm parameters are used to forward

model and invert data in the inverse problem. Next, we will use a time domain acoustic

wave propagation algorithm [65] to simulate waveform data. We note that this method of

preparing forwarded modeled data completely avoids any problems that might be associated

with committing the inverse crime since the observed data is created using an entirely dif-

ferent method. We preprocess and transform the data (see section 5.2) and input it in to

our frequency domain waveform tomography algorithm. We perform this experiment on a

cylindrical model and a model where two small squares are separated by a fixed distance.
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We assess the resolution capabilities of waveform tomography in this scenario by computing

the edge response of the cylinder and by seeing how well the spacing between the squares is

resolved.

4.4.1 Methods: Experiment 1

True Models

To analyze the resolution and accuracy of our waveform tomography algorithm, we nu-

merically simulate wave propagation on known sound speed distributions which we refer to

as “true models.” The goal is to see how well the inversion process reconstructs the true

models. In this section, we simulated a heterogeneous sound speed model intended to sim-

ulate the sound speed and morphology of structures in the breast, and a cylindrical model

consisting of a 50 mm radius 1540 m/s cylinder embedded in a 1470 m/s background that

will be used to calculate an edge response. For attenuation reconstructions, we simulated

a cylindrical model consisting of a 50 mm radius with Q = 100 embedded in a 1540 m/s

background sound speed with no attenuation. The true models are seen in Figure 4.2.

Resolution and Accuracy

The resolution is defined by the distance of the edge response between the 10% and 90%

values of the data relative to the minimum and maximum values of the reconstruction. The

accuracy is measured by the absolute value of the average residual sound speed between the

reconstructed image with respect to the true model where the sum is carried over all Np

pixels within a chosen region of interest (ROI) of the reconstructed image

accuracy =

∣∣∣∣∣ 1

Np

Np∑
i=1

[c(i)true − c(i)]

∣∣∣∣∣ , (4.6)

where the true model is ctrue and the reconstructed image is c. To see the manner in which

the waveform reconstruction converges to the true model as a function of iteration number,

we can consider the behavior of the cost function.
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(a) (b)

(c)

Figure 4.2: Numerical Phantoms True Models. (a) Heterogeneous sound speed phantom. (b)
Homogeneous sound speed phantom. (c) Homogeneous attenuation phantom.

Reconstruction Parameters

Ten frequencies ranging from 112 kHz to 364 kHz were used as input to the frequency

domain waveform algorithm. Five iterations were done at each frequency to update the

model parameter of interest. A fine grid of ∆ = λ/12 was used to create simulation data

in the forward modeling process. To ensure numerical stability for lower frequencies, the

number of pixels in the horizontal and vertical directions were equal to 350 pixels. During

inversion, in order to not commit the inverse crime, the grid size was taken to be ∆ = λ/10

or N = 300 pixels. We compare the sound speed and attenuation reconstructions separately.

For the sound speed reconstructions, we reconstructed a high sound speed disk 1540 m/s
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(a) (b)

Figure 4.3: Reconstruction of Heterogeneous Sound Speed Phantom. (a) Waveform reconstruction.
(b) Travel time reconstruction.

embedded in a low sound speed background medium of 1470 m/s as well as heterogeneous

numerical phantom. No attenuation was present anywhere in the model. The starting model

was homogeneous with a sound speed of 1500 m/s.

4.4.2 Results and Discussion: Experiment 1

Sound Speed Reconstructions

The waveform and travel time tomography reconstructions of the heterogeneous sound

speed phantom is seen in Figure 4.3, while the reconstruction of the homogeneous cylindri-

cal model is seen in Figure 4.4. The waveform tomography reconstruction better resolves

the true model when compared to the travel time tomography result. The cascading outer

layers over the phantom are clear. The shape of the lesions in the inside of the model, which

can have critical diagnostic information [26], are much clearer in the waveform tomography

reconstruction. The reconstructed sound speeds of the waveform tomography reconstruction

more closely matches the true model. An estimate of the resolution can be given by the

distance required for the edge response to rise from 10% to 90%. We use the homogeneous

cylindrical model for this testing purpose as well for the determination of accuracy of the re-

construction. A plot profile of the reconstructed images overlaid with the true models allows
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(a) (b)

Figure 4.4: Reconstruction of Homogeneous Sound Speed Phantom. (a) Waveform reconstruction.
(b) Travel time reconstruction.

(a) (b)

Figure 4.5: Line Profile of Homogeneous Sound Speed Model Reconstructions. (a) Waveform
reconstruction profile. (b) Travel time reconstruction profile.

us to compare the resolution of the waveform and travel time tomography reconstructions of

the homogeneous cylindrical sound speed model in Figure 4.5. For the travel time and wave-

form sound speed reconstructions, the resolution corresponds to a distance of approximately

15 mm and 3 mm, respectively. The highest frequency used in the waveform reconstruction

was 364 kHz, which for a background sound speed of 1500 m/s corresponds to a wavelength

of 4.12 mm. The limiting resolution of the waveform method should then be approximately

λ/2 = 2 mm. For a propagation distance of L = 200 mm, the limiting resolution of the travel
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time based reconstruction is on the order of the first Fresnel zone:
√
λL = 14.7 mm for a

dominant frequency of 1 MHz. From these considerations, we see that the edge response is

a fairly accurate measure of the limiting resolution in the sound speed reconstructions. The

accuracy of the reconstructions can be assessed by considering the average residual sound

speed of the reconstructed sound speed image with respect to the true model. Using an

ROI with a radius of 80 mm takes the sound speed transition mismatch in to account while

neglecting artifacts near the transducer ring. The travel time and waveform reconstructions

yield an average residual sound speed of 3.25 m/s and 0.24 m/s, respectively.

Attenuation Reconstructions

For the attenuation reconstruction, we reconstructed a homogeneous sound speed model

of 1540 m/s with an embedded attenuating disk with quality factor Q = 100. The start-

ing sound speed model was exact with a homogeneous sound speed of 1540 m/s and the

starting attenuation model was homogeneous with a quality factor of Q = 1000. Because

higher frequencies did not improve the reconstruction, only the first five frequencies were

used for the attenuation reconstruction. The attenuation reconstruction has significantly

more noise in the reconstructed model. This noise can be suppressed to a degree by incor-

porating a regularization term as given in equation 4.1. The attenuation reconstruction of

the cylindrical attenuation model with and without regularization is seen in Figure 4.6. A

plot profile of the reconstructed images overlaid with the true models allows us to compare

the the waveform attenuation reconstructions of the cylindrical attenuation model. Profiles

of attenuation and attenuation with regularization are seen in Figure 4.7. Due to its compli-

cated nature, the attenuation reconstruction suffers from significant noise. Therefore, it is

cumbersome to characterize its resolution in the same manner that was done for the sound

speed reconstruction. We will not quote an edge response resolution, but from observing

Figures 4.6(a) and 4.7, it can be seen that the attenuation reconstruction does have a fairly

sharp interface boundary. Recovering the attenuation information is complicated because it

is impossible to separate intrinsic attenuation due to tissue properties and attenuation due



48

(a) (b)

Figure 4.6: Reconstruction of Homogeneous Attenuation Phantom. (a) Waveform reconstruction.
(b) Waveform reconstruction with regularization.

(a) (b)

Figure 4.7: Reconstruction of Homogeneous Attenuation Phantom. (a) Waveform attenuation
reconstruction. (b) Waveform attenuation reconstruction with regularization.

to velocity inhomogeneties. Taking attenuation into consideration allows for better modeling

of the underlying physics and more accurate sound speed reconstructions.

Cost Function vs. Iteration Number

The cost functions for waveform sound speed and attenuation reconstructions as a func-

tion of iteration number can be seen in Figure 4.8. It can be seen that the cost functions

decrease as a function of iteration indicating that the algorithm is successful in finding sound



49

(a) (b)

Figure 4.8: Reconstruction of Homogeneous Attenuation Phantom. (a) Waveform reconstruction.
(b) Waveform reconstruction with regularization.

speed models which minimize the difference between numerical and experimental pressure

field values. Note that in the frequency domain, each discrete frequency has a unique cost

function. The cost functions in Figure 4.8 have been normalized so that there is a continu-

ous decrease in their values instead of a dramatic increase every five iterations (which would

correspond to moving to the next frequency).

4.4.3 Methods: Experiment 2

In order to simulate a real clinical environment, we examined the limiting resolution of

our method by using a time domain waveform algorithm to generate input data for our

frequency domain waveform algorithm.

True Models

time domain waveform propagation was simulated on the models seen in Figures 4.9.

The first model consists of a 50 mm radius 1540 m/s cylinder embedded in a 1470 m/s

background. The second model consists of a two 1 cm width 1540 m/s squares separated by

2 mm embedded in a 1470 m/s background. The separation distance of 2 mm corresponds

to a separation of approximately λ/3, λ/2, and λ for frequency values of 223, 358, and 615
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(a) (b)

Figure 4.9: Numerical Phantom True Models. (a) 50 mm radius 1540 m/s cylinder embedded in a
1470 m/s background. (b) Two 1 cm width 1540 m/s squares separated by 2 mm embedded in a
1470 m/s background.

kHz, respectively.

Resolution

We use the edge response as given in section 4.4.1 as well as a qualitative metric. The

qualitative metric uses visual inspection to see if objects separated by a fixed distance can

be resolved as two objects. This is commonly referred to as the number of line pairs that

can be resolved per millimeter. Due to intense scattering effects which exist in ultrasound

wave propagation, only two objects are used in this comparison as opposed to CT phantoms

which typically have many different objects of varying sizes.

Reconstruction Parameters

A circular array of 256 transducers was used in these simulations. Grid-point intervals

of ∆ = 0.1636 mm, translating into about 15 grid points per wavelength for the highest

frequency of approximately 615 kHz used in the inversion algorithm, was used in forward

modeling. The direct arrivals of the time domain data were then windowed and tapered

before being Fourier transformed into the frequency domain. This data was then sampled

for the frequencies that would be used in the inversion.

The sampled data was used as input into our iterative gradient inversion procedure which
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(a) (b) (c)

Figure 4.10: Time Domain Waveform Tomography Data. (a) Common source gather for waves
propagated through a cylindrical model. (b) Windowed waveform for a particular source receiver
pair. (c) Magnitude of Fourier transform of windowed waveform.

compares the forward modeled data with data generated by the frequency domain waveform

algorithm. Grid-point intervals of ∆ = max {λ/10, λN} was used for the reconstruction,

where λN corresponds to the wavelength that would have a mesh size of 300 pixels within

the problem domain. The initial sound speed model used for frequency domain algorithm

corresponded to the approximate speed of sound in water: 1500 m/s. By comparing both

data sets, the sound speed distribution was iteratively updated 5 times for each frequency

for a total of 19 frequencies ranging from 108 kHz to 615 kHz.

Every fourth waveform of a common source gather propagated in the time domain through

the cylindrical numerical model in Figure 4.9(a) is shown below in Figure 4.10. The windowed

portion of a waveform and the magnitude of its Fourier transform are also shown.

4.4.4 Results And Discussion: Experiment 2

The frequency domain waveform reconstructions of both models are shown in Figures 4.11

and 4.13. Midline profiles comparing the reconstructions to the true model are shown in

Figures 4.12 and 4.14.

It can be seen that reconstruction of the cylindrical model matches very well with the

true model. The 10% and 90% response is given by 1.6 ± 1.1 mm. This compares very

well to the results preented in section 4.4.2. If we consider the model with two embedded

squares, we see that the resolution is somewhere between λ and λ/2 since the reconstruction
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(a) (b) (c)

Figure 4.11: Reconstruction of Cylindrical Model. 50 mm radius 1540 m/s cylinder embedded in
a 1470 m/s background. Sound speed images of 5th iteration of frequency: (a) 223 kHz, (b) 358
kHz, and (c) 615 kHz.

(a) (b) (c)

Figure 4.12: Profiles of Reconstruction of Cylindrical Model. 50 mm radius 1540 m/s cylinder
embedded in a 1470 m/s background. Midline profiles of 5th iteration of frequency: (a) 223 kHz,
(b) 358 kHz, and (c) 615 kHz.

is well resolved in the latter case but not so much in the former. This agrees with the edge

responses of both experiments.
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(a) (b) (c)

Figure 4.13: Reconstruction of Squares Model. Two 1 cm width 1540 m/s squares separated by 2
mm embedded in a 1470 m/s background. Sound speed images of 5th iteration of frequency: (a)
223 kHz, (b) 358 kHz, and (c) 615 kHz.

(a) (b) (c)

Figure 4.14: Profiles of Reconstruction of Squares Model. Two 1 cm width 1540 m/s squares
separated by 2 mm embedded in a 1470 m/s background. Midline profiles of 5th iteration of
frequency: (a) 223 kHz, (b) 358 kHz, and (c) 615 kHz.
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CHAPTER 5: Acquisition Hardware, Signal Processing, and

Other Practical Considerations

In this chapter, we describe the hardware used to gather experimental data and the steps

needed for the successful inversion of experimental data. The same steps are applied to data

acquired by the two considered tomographic ultrasound units. These include: computing a

low resolution sound speed starting model using travel time tomography, applying digital

signal processing to the raw signals to extract the frequency components used for the op-

timization, compensating for the transducer response, and estimating the unknown source

signal. We will also discuss other practical considerations and observations that do not fit

so well in other chapters.

5.1 Acquisition Hardware

The two ultrasound tomography devices used to gather data are seen in Figure 5.1. The

first device [42], an early prototype developed at the Karmanos Cancer Institute, has a

ring array transducer with a 100 millimeter radius, 256 transducer elements, and a signal

bandwidth centered at 1.5 MHz. The second device [43], a recent prototype developed by

(a) (b)

Figure 5.1: Ultrasound Tomography Devices. (a) CURE. (b) SoftVue.



55

(a) (b)

Figure 5.2: Ultrasound Tomography Device Transducer Rings. (a) CURE. (b) SoftVue.

Delphinus Medical Technologies, Inc., has a transducer with a 110 millimeter radius, 2048

transducer elements, and a signal bandwidth centered at 2.75 MHz. Only 256 transducer

elements were used in this work to facilitate comparison with the older prototype and to

minimize reconstruction time. The two devices, uniquely different in their manufacturing,

have different performance properties and provide excellent test cases to assess the robustness

of the proposed waveform tomography reconstruction scheme. The transducer rings of both

devices are seen in Figure 5.2. An example of a patient exam and the placement of the breast

are seen in Figure 1.4.

5.2 Signal Processing

The proposed algorithm works on the frequency components extracted from the raw time

series. We use data acquired by the newer ultrasound tomography device for the discussion

in this section.

5.2.1 Acquired Ultrasound Data

In Figure 5.3, we see an example of a common shot gather of raw experimental data

traversed through a breast with scattered density. A common shot gather is a collection of

received time series for all receivers from a pulse excitation by one transmitting transducer.
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Figure 5.3: Common Shot Gather of Scattered Density Breast. Overlaid are red crosses that are
the first arrival times determined by the automatic TOF picking algorithm.

In each plot, the corresponding time-of-flights used for frequency extraction are marked by

red crosses. The data has not been processed and represents the raw signals obtained by

the experimental device. The amplitudes have been normalized to fit on the plot. More

examples of common shot gathers are given in Appendix C. This includes examples of a

water shot, a scattered density breast, and an extremely dense breast. Included are the

modifications to the received signals due to preprocessing as well as the corresponding fre-

quency spectrums. Note that the presence of an object alters the shape of the waveforms

with respect to the water shot. The altered waveforms have decreased amplitude and more

complicated wave phenomena. For example, the scattered density breast alters the wave-

forms less than an extremely dense breast. This can be seen, for example, by comparing

the amplitudes of far offset waveform relative to near offset waveforms that haven’t traveled

through the breast. Since near offset waveforms are not attenuated or scattered by traveling

through the breast, their amplitudes are considerable higher than the other waveforms in

the common shot gather. Depending on the deformation of the data, the automatic time

picker fails to accurately pick the correct travel time. Later arriving reflection events arrive
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after the first transmitted portion. These signals are mostly clearly seen in the near offset

receivers (i. e. 40–60 and 200–220). Of one particular interest are the two straight lines of

waveforms present in the common shot gather figures. This phenomena occurs as a result of

waveforms causing multiple scattering events on the transducer ring that further cause more

scattering events on the transducer ring. The net result of this resonance is the generation of

waveforms along the straight lines seen in the common shot gather figures. Other resonance

phenomena can occur as well. For example, resonance noise caused by the power supply can

create artifacts in the reconstructed images.

We can select a single waveform of the common shot gather. An example of a single raw

time series is seen in Figure 5.4(a). Each time series is processed before injection into the

the algorithm. An example of the unfiltered signal, its filtered form, and the corresponding

frequency magnitude spectrum is seen in Figure 5.4. The signal processing of the raw time

signal is achieved by applying the steps below.

5.2.2 Time Windowing

The time of first arrival for each waveform is evaluated using an automatic travel time

estimation method described in [99, 100]. These travel times allow us to define windows which

extract the primary transmitted portion of the received waveforms and reject reflected and

multi-scattered signals. This is done to force the algorithm to match the primary features

of the true sound speed model [69]. The length of the window is chosen so that it includes

the contribution of the primary transmitted waveform. Short cosine tapers (approx. 0.5

µs) are applied to both sides of the window before Fourier transformation to avoid Gibbs

phenomena.

5.2.3 Exponential Damping

We dampen the tail of the signal for the same reason we window. A damping profile of

the form max {1, exp [− (t− t0 − td) /τ ]} is applied to every waveform as a means to further

focus the inversion process on information contained in the primary transmitted signal. We
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(a) (b)

(c)

Figure 5.4: Processing of Raw Ultrasound Signal. Data generated by newer prototype. (a) Original
waveform. (b) Processed waveform. (c) Magnitude spectrum of processed waveform.

use a value of td that begins damping the signal after the main transmitted portion of the

waveform (approx. 5 µs after the travel time t0), and a short scaling factor τ (approx. 1 µs)

to quickly attenuate the later portion of the signal that is contaminated by non-transmitted

components.

5.2.4 Waveform Selection

A calibration of the ring array transducer [101] and the determination of travel time

statistical outliers in the clinical data set allow us to detect faulty transducer elements and
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discard waveforms that are too noisy to be included in the reconstruction process. We use an

automated calibration method which estimates the position of the transducer elements using

travel time measurements done in a water bath at controlled temperature. The calibration

method also analyses the power of the transmitted signals to flag faulty transducer elements.

For example, the transducer element directional beam profiles make small angle emitter-

receiver contributions unreliable. For this reason, we omit waveforms that do not lie within

an arc of approximately 270 degrees with respect to the source transducer.

5.2.5 Fourier Transformation

The processed waveforms are then Fourier transformed to extract the frequency com-

ponents given as input to the optimization process. A typical magnitude spectrum for the

new device is shown in Figure 5.4(c). We start the iterative optimization procedure with

the lowest frequency that has enough energy (around 400 kHz for the older unit and 500

kHz for the newer unit). We iterate multiple times on that frequency and then move to

the next frequency using an increment of 30 kHz up to a maximum frequency of 1 MHz.

Since computation cost is not linearly proportional to the size of mesh, and thus, the chosen

frequency, the maximum reconstruction frequency of 1 MHz was found to be an appropriate

maximum frequency since further improvements in the quality of the reconstructed image

were overshadowed by significant increases in computation cost and model mismatch. The

chosen optimization process allows us to gradually incorporate shorter wavelength features

to prevent the algorithm from being stuck in a local minimum. Experiments have shown

that this optimization schedule performs well across all considered data sets. Note that the

current transducer ring has not been optimized to operate at such low frequencies. The en-

ergy available in the considered frequency range is significantly lower than what is available

near the central frequency (Figure 5.4(c)). Thus, further optimization of the acquisition

hardware holds great promise for even better image reconstruction quality. This would be

especially true for reconstructing images of dense breasts.
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5.2.6 Transducer Response

For the simulated data set to best match the experimental one, we must also take the

characteristics of the transducer beam profile into account. This can be achieved either by

including the transducer response in our propagation model or by modifying the waveforms

to best match a simple numerical model that assumes omni-directional point sources. The

former approach would require very careful calibration of our algorithm for a successful in-

version. For simplicity, we have chosen the latter approach. We normalize the magnitude

spectrum of both the simulated and experimental data sets. In other words, we only match

the phase of the frequency components in the inversion process. However, neglecting am-

plitude information may lead to residual artifacts. This is true especially in a propagation

medium rich with scattering. In addition, neglecting amplitude information by completely

normalizing the magnitude spectrum would void the possibility of in vivo attenuation recon-

struction.

5.2.7 Source Signal Estimation

In order to solve our forward problem, the input signal s must be known. We could

calibrate our transducers and obtain the signal, but that would add an additional layer of

complexity to our algorithm. In addition, by estimating the source, we provide an additional

degree of freedom to the inversion problem. For a given sound speed model, this is a linear

estimation task. We need to find the optimal complex valued source scaling factor sγ such

that the simulated and experimental measurements best match in a mean squared sense.

The optimal value is obtained through orthogonal projection [56] and is given by

sγ =
dHobsuobs
uHobsuobs

. (5.1)

Using this scaling factor, the source vector and field values are scaled to s → sγs, and

u→ sγu, respectively. The reconstruction algorithm alternates between updating the source

signal using the above scaling factor for a known sound speed model and estimating the sound
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Figure 5.5: Schematic of a Vertical Profile of an Ultrasound Scan.

speed model for a given source signal.

5.3 Other Practical Considerations

In this section, we will discuss some practical considerations and observations of the

waveform tomography algorithm. These topics include: the finite slice thickness of trans-

ducer ring and its effects on the reconstructed image, the effects of using different numbers

of transducers elements, an example of phase mismatch and its relation to convergence, and

the computation time of the algorithm.

5.3.1 Slice Thickness and Vertical Beam Profile

We do not use a 3D ultrasound tomography acquisition system (for example [102]),

however we use a focusing lens on our ultrasound transducers so that most of the energy is

concentrated within the coronal plane. Thus, each coronal slice of the breast integrates the

vertical dimension resulting in a finite slice thickness. A schematic of this is seen in Figure 5.5

(source [42]). A complete sampling of the breast is ensured by having an inter-slice spacing

less than the slice thickness. When viewing an image, one needs to have in mind that the

image is a 2D projection of the all the information present in the 3D cylinder defined by
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the slice thickness and the 2D geometry. The finite vertical dimension of the transducers

and manufacturing limitations hinder our ability to have images with less slice thickness.

Unfortunately, the finite slice thickness of our imaging method results in a degraded z-plane

resolution.

Another problem caused by the finite slice thickness of the ultrasound beam is that there

are some problems registering sound speed and reflection images due to the sloping breast

surface. From Figure 5.5, a pulse emitted from the ultrasound beam at the left hand size of

the image will be reflected by the top breast surface (the top dashed line) before the lower

breast surface. This will bias the reconstructed image to the shape of the top portion of

the beam profile. In contrast, the travel time tomography algorithm will take the fastest

time through the breast which will likely be near the bottom. The waveform tomography

will take the integrated vertical path since it utilizes the entire waveform. An example of

this phenomena is seen in Figure 5.6. In this example, we see a series of slices showing

registration problems in a sloping breast. From looking at the reflection and sound speed

images corresponding to the same slice, we see that the breast seems to have a different size

as defined by its outside contour. This problem is very apparent as we scan closer to the

nipple. Again, this is due to the sloping nature of the breast and the manner in which the

ultrasound transducer ring receives reflected and transmitted signals. Also, we make a very

unrelated observation and note air bubbles creating bright white circular objects artifacts in

the bottom row of the reflection images.

5.3.2 Number of Transducer Elements

A test was performed to see the effects of using less emitters in frequency domain wave-

form tomography. A total of 256 receivers were always used while we changed the number of

emitters from 256 to 8 in factors of 2. We used a numerical phantom composed of a 1540 m/s

50 mm disk in a background of 1470 m/s with no attenuation added. Forwarding modeling

was done in the frequency domain at 112 kHz with a very fine mesh of ∆ = λ/23 (N2 =

1600 nodal points). Reconstruction was also done in the frequency domain at 112 kHz but
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Figure 5.6: Registration Problems in a Sloping Breast. Images consist alternating row of reflection
envelope images and waveform sound speed images. Each vertical pair of reflection and sound speed
images correspond to the same slice.
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with a coarser mesh of ∆ = λ/17 (N2 = 900 nodal points). The model was updated via

gradient methods where we determined the step length at every iteration by line search. The

reconstruction results are shown in Figure 5.7. It is seen for this limited test, that a quality

reconstruction can still be reconstructed using only 64 emitters. Since the cost of running

the algorithm is directly proportional to the number of emitters that are used to insonify

the medium, a reduction in the number of emitters will result in a reduction in computation

cost. Note that we did not vary the number of receivers in this test. Having more receivers,

and thus more data, would improve the quality of the reconstruction process by making the

matrix inversion problem more well-posed. For the SoftVue device, we can possibly have

4x more receiving transducer elements. Adding or subtracting the number of receivers will

have no practically effect on computation cost since we already solve the numerical wave

field for the entire domain. We would just sample more indices of the numerical wave field

corresponding to the new receiver locations.

5.3.3 Convergence Based on the Accuracy of the Starting Model

As stated in section 4.3.1, the starting sound speed model is very important for a suc-

cessful inversion. The starting model needs to be accurate enough to predict numerical wave

fields with phases within a π window of the true phase. The most simple test to see this

behavior is in a completely homogeneous medium. Consider the inversion of a medium that

has a constant sound speed c = c. We can then let c0 = c0 for different values of c0. We

can also vary the operating frequency f (ω = 2πf). The result of this experiment is seen

in Figure 5.8. We plot the number of iterations it takes for our waveform tomography al-

gorithm to converge to the true model c = 1500 m/s given a different initial sound speed

c0 and operating frequency f . We see that at lower frequencies (thus a longer wavelength

and oscillation period), a greater mismatch between the true model and the starting model

is tolerable. The algorithm takes longer to converge to the true model, but it is still able

to converge to it. The longer period of oscillation means that it much easier to satisfy the

π criteria of phase mismatch. As the frequency increases, larger offsets no longer satisfy
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Figure 5.7: Varying Emitters. Reducing the number of emitters used in the reconstruction process
affects the quality of the reconstructed image.
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Figure 5.8: Convergence to a Homogeneous Sound Speed Model as a Function of the Starting Sound
Speed Model and Operating Frequency.

the π criteria since the period of oscillation has decreased. For example, for an operating

frequency of 60 kHz, a starting model of 1650 m/s would not converge to the true model

of 1500 m/s. Note that we have plotted both negative and positive offsets for only 80 and

100 kHz. Also, even if we start with the exact solution, various factors, for example the the

estimation of the source signal, forces the algorithm to find sound speed models that explain

the difference between numerical wave fields and experimental wave fields (which in this case

are also numerical). Since changing a reconstruction parameter would change the numerical

field values created, it would still take a finite number of iterations to converge to the true

model even if the exact solution was given.

5.3.4 Computation Time

When comparing travel time and waveform tomography methods, one of the biggest

drawbacks of the waveform approach is computation time. Since we are solving a very

large system of equations, we are constrained by the capabilities of current matrix inversion

methods and hardware capabilities. The later restriction can be alleviated by simply waiting



67

Figure 5.9: Computation Time: GPU vs. CPU. The total accumulated time is displayed on the
y-axis.

until faster processors become available. The former restriction is more difficult to deal with.

For example, we use a highly optimized LU decomposition method [91] to solve the system

of equations in equation 3.2. We use this method because once we factor the matrix S

representing the discretized Helmholtz operator into its LU form: S→ LU, we can rapidly

apply the factors (LU)−1 to different source vectors s representing excitation from different

source transducer locations. We can use graphical processing units (GPUs) to improve

computation time by parallelizing serial threads [103]. This significantly reduces the time

needed to apply the LU factors to source vectors. However, not all problems are “highly

parallelizable.” For example, a “for loop” that loops over an array and increments the value

of each element of the array by 1 is a highly parallelizable problem. However, if we apply

an operator on an element of the array that depends on other elements of the array, then

it is not as parallelizable as the simple addition example. The LU decomposition step is a

bottle neck for GPU capabilities. For example, the LU decomposition algorithm must find

the pivot locations (i.e. reducing a matrix to row-echelon form [104]) which are necessary
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to determine the final LU factored form. This step and other steps in the LU factorization

procedure are not highly parallelizable. However, research is being done on applying GPUs to

this problem. Regardless, applying GPUs to the parallelizable portion of our matrix inversion

method greatly improves the computation speed. Dr. Cuiping Li implemented GPUs in our

waveform tomography algorithm and the results are shown in Figure 5.9. It can be seen

that the GPU method greatly reduces the computation speed of the method. By optimizing

the Basic Linear Algebra Subprograms (BLAS) libraries, further improvements are made

in the computation time. By experimenting with the fitting of the data in Figure 5.9, we

found that the computational cost is quadratically proportional to the modeled frequency.

This agrees with a derivation given in [83]. As a final comment in this section, we note

that frequency domain waveform methods are faster than time domain approaches since we

only model a finite number of the frequency components in a signal. The frequency domain

approach also has the advantage that one can end the iteration procedure of incorporating

higher frequencies at any desired time. If clinically requirements dictate a certain time frame,

then those requirements can be met at the expense of the quality of the final image.
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CHAPTER 6: In Vivo Sound Speed Imaging

In this chapter, we will present the results of applying our waveform tomography algo-

rithm to experimentally gathered data. We will first give a comparison of waveform and

travel time tomography methods. This will include the ex vivo sound speed reconstruction

of a tissue mimicking phantom and in vivo sound speed reconstructions of patient data.

We will next compare in vivo waveform tomography sound speed images to MRI to show

that there are many concordant findings across the two modalities. Note that we are not

presenting attenuation reconstructions of experimentally gathered data as additional work

is required for the successful inversion of attenuation properties.

6.1 Comparison of Waveform and Travel Time Tomography

In this section, we present in vivo waveform and travel time tomography reconstruction

results. We highlight the improvements made upon existing travel time imaging methods and

the robustness of the proposed algorithm to data acquired by the two considered ultrasound

tomography units. Note that our goal is not to compare the two units in terms of image

reconstruction quality, but to demonstrate the applicability of the algorithm to data sets

acquired with different devices.

6.1.1 Physical Phantom Results

A physical tissue mimicking breast phantom, built by Dr. Ernest Madsen of the University

of Wisconsin, was used to assess the real-world reconstruction ability of our algorithm. It has

been previously used in the studies presented in [3, 42]. An x-ray computed tomography (CT)

image of the phantom is shown in Figure 6.1(c). The phantom has scanning characteristics

of a highly scattering predominantly parenchymal breast, and it has two embedded high

speed tumors and two low sound speed fat inclusions which are surrounded by a cascading
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Figure 6.1: Reconstructions of Physical Breast Phantom. Data acquired by older ultrasound to-
mography unit. Gray scale values in the sound speed images correspond to a range of 1475–1550
m/s. Brighter areas correspond to higher sound speed. (a) Travel time tomography method. (b)
Waveform tomography method. (c) Computed tomography reference with arrow overlays labeling
structures: (1) Small tumor, (2) Large fat deposit, (3) Large tumor, (4) Small Fat deposit, (5)
Glandular tissue, (6) Subcutaneous fat layer.

subcutaneous fat layer that is further surrounded by a layer of skin. The travel time and

waveform tomography reconstruction results of data obtained from the old prototype are

shown in Figure 6.1. An x-ray computed tomography (CT) scan is also shown in Figure 6.1(c)

to highlight concordant findings. Note the phantom images have been manually masked so

that the reader can focus on the contained lesions instead of artifacts outside the field of

view. Also, in comparison to in vivo patients scans, the temperature of the water bath was

approximately 22 ◦C.

Morphological Comparison

The waveform tomography reconstruction method show significant improvements in the

morphological quality of the reconstructed image over the method based on travel times.

For example, the inclusion at 1 o’clock is clearly visible in the higher resolution waveform

image while it is barely visible in the travel time tomography image. In addition to finding

smaller lesions, the shape and margins of the larger lesions in the waveform image are better

delineated and match more closely the CT reconstruction. Since the shape and margins

of tissues, including tumors, cysts, and parencyhma have critical diagnostic value in the
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Structure Reference Values Travel Time Rec. Waveform Rec.
(µ± σ) (µ± σ)

Large tumor 1559 1551± 10 1551± 5
Small tumor 1549 1542± 2 1535± 3
Large fat deposit 1470 1501± 10 1490± 9
Small fat deposit 1470 1524± 3 1511± 4
Glandular tissue 1515 1528± 3 1521± 3

Table 6.1: Comparison of Reference Values (m/s) to Travel Time and Waveform Tomography
Reconstructions of Breast Phantom. Values are reported using the mean sound speed µ in the ROI
and the corresponding standard deviation σ.

assessment of disease [26], an observer would be able to make a more accurate diagnosis

with the additional information present in the waveform reconstruction.

Quantitative Comparison

We assess the accuracy of the reconstructed sound speed values by selecting a region of

interest (ROI) around the structures labeled in Figure 6.1(c). Each ROI is contoured to

match the morphological feature of the imaged lesion. For an ROI of N pixels, we obtain

the mean sound speed µ and unbiased standard deviation σ as given by

µ =
1

N

N∑
i=1

c(i) , σ2 =
1

N − 1

N∑
i=1

[c(i)− µ]2 .

We then compare the obtained sound speeds to references values reported by the manufac-

turer. Table 6.1 summarizes these results.

In most cases, the reconstructed sound speed values are very similar, especially within

the error of the measurements, and close to the reference values. However, there was a

significant lapse in time between the creation of the phantom and its scanning using our

older ultrasound tomography unit. It is likely that the phantom degraded over that time.

Thus, the reference values are not reliable estimates of the true sound speed of the phantom

at the time of scanning. What is of importance is the trend in sound speed. For example, the

large tumor should have greater sound speed than the small tumor. We can see that both

the waveform and travel time methods agree with these trends. The recovered sound speed
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of the small tumor and fat deposit is most problematic. Due to their small size, we approach

the resolution limitations of waveform tomography when the highest reconstructed frequency

is 1 MHz. Due to volume averaging effects and convergence issues, the reconstructed sound

speeds of the lesions are averaged with the adjacent glandular tissue leading to skewed sound

speed values. By looking at the values in Table 6.1, we see that the waveform reconstructions

have significant variance in the reported sound speed values. This could be reduced and

smoothed by incorporating a regularization penalty to the cost function. For example,

a Tikhonov penalty would help balance data fitting and image roughness by prohibiting

updates which significantly change the sound speed [95].

6.1.2 Artifacts

Artifacts are present in both the travel time and waveform reconstruction. The most

significant artifact in the travel time sound speed images are streaks or ray artifacts aris-

ing around regions of higher tissue contrast. This is seen to some degree in the phantom

reconstruction in Figure 6.1(a), but are more clearly seen in the in vivo reconstructions in

Figures 6.2 and 6.3 (top row). The ray artifacts are distracting because they mask the true

morphology contained in the margins of the tumor. Morphological information can aid in the

assessment of the presence of one breast structure over another (i.e. parenchyma or tumor)

or relative risk (i.e. malignant or benign).

The waveform results contain other artifacts. These arise from the hardware, phase

matching, and the accuracy of the starting model. The waveform images reconstructed by

the older prototype have significantly more artifacts than the newer prototype due to bad

transducer elements whose corrupted data is discarded by the calibration process. These

are readily seen within the regions corresponding to water in Figures 6.2 and 6.3 (bottom

rows). This can lead to problems in imaging the skin contour of the breast. Due to poor

signal quality, other problems exist near the chest wall or when the imaging ring is filled to

capacity. Also, the presence of more signal energy at 400 kHz and the different acquisition

hardware alters the overall perception of the old prototype images. A phase mismatch also
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results in artifacts within the reconstructed image. For example, the waveform phantom

image in Figure 6.1(b) contains aberrations which look like false contours or clouds on the

outer portions of the cascading skin layer (11, 1, and 6 o’clock positions). They arise from

a phase offset induced on the reconstructed wavelets. This phase mismatch occurs as a

result of the impedance mismatch between the water and the outer skin layer of the tissue

mimicking breast phantom and the finite vertical dimension of the ultrasound transducer

which confuses the origins of received signals from the sloping edges of the insonified object.

The false contours of rapidly sloping objects is proportional to the degree of sloping and

is worst near the nipple of the breast. Problems pertaining to the imaging of the outer

skin is not as important as the success of imaging clinically relevant features (tumors, cysts,

parenchmya, etc.) which are better resolved by using the waveform technique. Ray artifacts

inherited from the travel time starting model also corrupt the waveform images. An example

is seen in Figure 6.2(a). This issue will be addressed in future work.

6.1.3 In Vivo Results

The usefulness of the waveform tomography method is most clearly seen in the improve-

ments made in imaging the sound speed of in vivo structures. To highlight the robustness of

the method, we present images reconstructed from data acquired by both the old and new

ultrasound tomography units. These reconstructions include examples of the bulk breast tis-

sue and parenchyma, small tumors, and large tumors. Note that each reconstructed image

corresponds uniquely to a different patient. We also demonstrate the accuracy of our in vivo

sound speed reconstructions by imaging a saline breast implant with known sound speed.

In section 6.2, we show the validity of our waveform tomography method by demonstrating

concordant findings with MRI.

Morphological Comparison

The sound speed reconstructions of data recorded by the older prototype are shown

in Figure 6.2. The top row corresponds to the travel time reconstruction method while
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(a) (b) (c)

Figure 6.2: Comparison of Travel Time (top row) and Waveform (bottom row) Reconstruction
Nethods. Data acquired using older ultrasound tomography unit. Gray scale values in the sound
speed images correspond to a range of 1400–1575 m/s. Brighter areas correspond to higher sound
speed. (a) Complex parenchyma shape. (b) 1.5 cm tumor. (c) 4 cm tumor (1 o’clock) and
parenchyma (9 o’clock).

the bottom corresponds to the waveform method. In Figure 6.2(a), we see an example

of parenchymal tissue (white) embedded in fat (black). Improvements are made with the

waveform reconstruction (bottom row). The cascading layers of the parenchymal tissue are

revealed with great clarity in the waveform image where only a fuzzy image marred with

ray artifacts is revealed by the travel time reconstruction method (top row). In addition,

ray artifacts are clearly seen in the travel time reconstructions. In Figures 6.2(b) and 6.2(c),

we see examples of a smaller (approx. 1.5 cm at 6 o’clock) and larger (approx. 4 cm at 1

o’clock) tumors, respectively. As stated before, many structures in the breast can be uniquely

identified by their sound speed. However, when dealing with structures with similar sound

speed, the improvements made in the delineating the margins of unknown breast structures

are of utmost importance [26]. These margins facilitate the differentiation of parencyhma
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and other breast structures from malignant and benign masses. The improvements made

with the waveform reconstruction allows an observer to better classify the unknown lesions

as tumors when, for example, an identification of parenchyma might have resulted from the

travel time reconstruction image.

One problem present in these reconstructions is the accurate delineation of the outer

contour of the breast. For example, by comparing the waveform and travel time images in

Figures 6.2(b) and 6.2(c), one can see that there is some discrepancy in the imaging of the

boundary of the breast. This is most problematic as we reach the chest wall, regions where

the breast rapidly slopes, or regions where fat/skin folds enter the field of view of the scanner.

By comparing to our B-mode reflection images, it is seen that the contours produced by the

waveform tomography are more accurate than the travel time tomography.

The sound speed reconstructions of data recorded by the newer prototype is shown in

Figure 6.3. In Figure 6.3(a), we see another example of breast parenchyma. Unlike the big

cascading layers in Figure 6.2(a), Figure 6.3(a) shows a patient with very fine parenchymal

strands. When compared to the travel time tomography reconstruction in Figure 6.3, which

only has a faint hint of some of these detailed structure, the delineation of these fine strands

is a testament to the resolving power of waveform tomography. In Figures 6.3(b) and 6.3(c),

we see examples of a smaller (approx. 1 cm at 9 o’clock) and larger (approx. 4 cm at 3

o’clock) tumors, respectively. As was stated before, a proper reconstruction of the margins

of a tumors aids in the best identification of unknown masses. Note the very fine structures

resolved in all the cases shown in Figure 6.3.

Quantitative Comparison

From Figures 6.2 and 6.3, it can be seen that the sound speed of waveform reconstructions

tend to be lower in fatty regions while being accentuated in tumors and parenchyma. As

in section 6.1.1, this can partially be explained by volume averaging effects and convergence

issues. An explicit comparison of waveform and travel time sound speeds is shown in Fig-

ure 6.4 where a vertical line profile has been taken through the tumor in 6.3(c). From the
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(a) (b) (c)

Figure 6.3: Comparison of Travel Time (top row) and Waveform (bottom row) Reconstruction
Methods. Data acquired using newer ultrasound tomography unit. Gray scale values in the sound
speed images correspond to a range of 1400–1575 m/s. Brighter areas correspond to higher sound
speed. (a) Very fine parenchyma patterns. (b) 1 cm tumor (10 o’clock). (c) 4 cm tumor (3 o’clock).

profiles, it can be seen that travel time tomography tends to overestimate fat sound speeds

while underestimating tumor sound speeds. In addition, the improvements in resolution

are apparent through the increased sharpness of the edge response of the line profiles. In

section 6.1.1, we presented quantitative sounds speed measurements for a tissue mimicking

phantom. We demonstrate the in vivo accuracy of quantitative sound speed measurements

by imaging a saline breast implant as shown in Figure 6.5. Saline breast implants contain

an outer silicone shell filled with a sterile saline solution [105]. Typical saline is composed of

0.9% NaCl solution. Using an empirical formula [106], we calculated the sound speed of the

saline implant assuming a body temperature of 37 ◦C, a salinity of 0.9%, and a pressure of

1 atm to predict a sound speed of 1535 m/s. Drawing a 25 mm radius circular ROI within

the center of the implant gives an average sound speed µ with error σ of 1533± 3 m/s and
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Figure 6.4: Vertical Line Profile Through the Tumor in Figure 6.3(c)

(a) (b)

Figure 6.5: Saline Breast Implant Reconstructions. Gray scale values in the sound speed images
correspond to a range of 1450–1550 m/s. Brighter areas correspond to higher sound speed. (a)
Waveform tomography method. (b) Travel time tomography method.

1528± 1 m/s for waveform and travel time reconstructions, respectively. Thus, we see that

sounds speed of the breast implant is fairly uniform across measurements from three different

modalities. This should give some verification to the quantitative capabilities of waveform

tomography sound speed imaging and clear up some of the inconsistencies in the measured

sound speed values reported in section 6.1.1.
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6.2 Comparison to MRI

In this section, we present a comparison of waveform tomography sound speed images to

MRI. We will show examples of data gathered by both ultrasound tomography prototypes.

We compared our waveform tomograms with MRI (Figures 6.6 and 6.7 for data obtained

by the old prototype; Figures 6.8 and 6.9 for data obtained by the new prototype). For

the images in Figures 6.6, 6.7, 6.8, and 6.9, arrows mark some of the corresponding areas.

Note that it is difficult to perfectly register the images created by both modalities. Aside

from typical registration problems, it is particularly difficult in this case because the coronal

slices of the waveform tomography images are at an angle with respect to MRI due to the

differences in the positioning of the breast in the acquisition process. In particular, the breast

is suspended in water during acquisition by our tomographic ultrasound unit. Thus, in order

to identify structures that are present in one slice of the waveform tomography image, several

slices of the MRI reconstruction may be needed. Likewise, several waveform tomography

images might be needed to register a single MR image. Also, waveform tomography sound

speed images corresponding to the new system had their the gray scale values inverted to

improve visualization and comparison with the T1 weighted MRI sequence that was used.

Thus, for these images, darker areas correspond to regions of higher sound speed. For the

older system, no such inversion was made as the MRI sequences that were used were T1

weighted gadolinium enhanced fat suppressed sequences. For these sequences, regions such

as parenchyma or tumors, which prefer to uptake gadolinium, are bright as in the original

gray scale convention of waveform tomography sound speed images. MRI breast images were

also resampled from their original transverse orientation and projected into the coronal plane

to match the orientation of waveform tomography.

In Figure 6.6(a), a large tumor is present at 1 o’clock. The shape and margins of the

tumor are well reconstructed by waveform tomography. Hints of the central necrosis of the

tumor are also present in the waveform tomography reconstruction (Figure 6.6(a)). Some

of the filamentary structure of the tumor is discernible. For example, the small strand at
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Figure 6.6: Comparison of Waveform Tomography Reconstruction to MRI. Combinations of num-
bers and arrows indicate the corresponding tissues for comparison. Data was acquired by the old
prototype. (a) Waveform sound speed; (b) MR slice with corresponding parenchyma; (c) MR slice
with corresponding tumor.
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Figure 6.7: Comparison of Waveform Tomography Reconstruction to MRI. Combinations of num-
bers and arrows indicate the corresponding tissues for comparison. Data was acquired by the old
prototype. (a) Waveform sound speed; (b) and (c) Corresponding MRI slices.

the inferior portion of the tumor is present in both Figures 6.6(a) and 6.6(c). In addition,

the shape of the dense tissue structures at 8 o’clock in Figure 6.6(a) matches well with that

of MRI in Figure 6.6(b). In Figure 6.7, the waveform inversion (Figure 6.7(a)) of breast

parenchyma is compared to MRI (Figures 6.7(b) and 6.7(c)). The overall shape of the

parenchyma matches very well. In Figures 6.8(a) and 6.8(b), the waveform inversion reveals

a small tumor at 10 o’clock. Both the tumor and filamentary structures match very well
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Figure 6.8: Comparison of Waveform Tomography Reconstruction to MRI. Combinations of num-
bers and arrows indicate the corresponding tissues for comparison. Data was acquired by the new
prototype. Gray scale values of the waveform tomography image have been inverted to better
match the MR image. (a) Waveform sound speed; (b) Waveform sound speed; (c) MR slice with
corresponding tumor and parencyhma.

with MRI in Figure 6.8(c). In Figure 6.9, very fine parenchymal structures are imaged in

a very similar fashion by both waveform tomography and MRI. Overall, there is a great

deal of concordance between our preliminary waveform tomography sound speed images and

the well established modality of MRI. Morphological comparison of the shape of complex

parenchyma and other breast features verifies the capabilities of waveform tomography to

image real structures. The high quality images obtained by reconstructing both data sets

highlights the robustness of the algorithm. Note that some of these patients were scanned by

the older system while others were scanned by the new system. Images were manually masked

to highlight the comparison of breast tissue. As a conclusion to this section, in Figure 6.10

we give more examples of the fine parenchymal breast structures shown in Figure 6.9.
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Figure 6.9: Comparison of Waveform Tomography Reconstruction to MRI. Combinations of num-
bers and arrows indicate the corresponding tissues for comparison. Data was acquired by the new
prototype. Gray scale values of the waveform tomography image have been inverted to better
match the MR image. (a) Waveform sound speed; (b) Corresponding MRI slice; (c) Waveform
sound speed; (d) Corresponding MRI slice.
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Figure 6.10: Series of MR and Waveform Tomography Sound Speed Images. Images consist of
alternating rows of MR images and waveform sound speed images. Each vertical pair of MR and
sound speed images correspond to approximately the same location in the patient.
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CHAPTER 7: Clinical Use

A major motivation for pursuing the waveform sound speed imaging method is the hope

that it would be useful in a clinical setting. Having demonstrated the capabilities of the wave

form algorithm to accurately obtain morphological and quantitative sound speed information,

we assess its performance in a clinical setting by following the work-up of different patients

who were eventually diagnosed with either malignant or benign breast diseases. We present

summaries of the clinical reports used to diagnosis the patient and where appropriate and

available, the corresponding mammograms, hand-held ultrasound (HHUS) scans, MR scans,

waveform tomography sound speed images, and tomographic reflection images. We surmise

the possible role that waveform tomography would have in screening and diagnosing a patient

given our limited experimentation. Note that we will not evaluate the use of attenuation

in these clinical cases. However, reliable and accurate attenuation measurements should aid

in the specificity of ultrasound tomography breast examinations. In Figure 7.1, we see the

definition of the anatomic planes [107] as well as other terminology associated with anatomic

locations in medicine [108, 109]. We will also make use of some of the lexicon used to describe

tumors as given in [14, 26].

7.1 Methods

7.1.1 Patient Selection

In an ongoing HIPAA compliant and IRB approved clinical study, 300 women were

scanned by an ultrasound tomography device to further evaluate masses that were previously

detected and diagnosed by biopsy, MRI, mammography, and/or standard ultrasound. Data

obtained from a subset of 11 women was used in this study. Patients were chosen based

on confirmed breast masses. The patient data included 4 cancers, 8 fibroadenomas, and

7 cysts. The ultrasound waveform tomography (USWT) method allowed visualization of
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Figure 7.1: Directional References. Schematic of body planes and commonly used terminology to
describe anatomic location.

breast anatomy including normal fibroglandular tissue of varying density, benign tumors

such as cysts and fibroadenomas, and malignant tumors of varying sizes. Area analysis

compared the size of tumors across different modalities. Quantitative analysis of the sound

speed imaging technique is also presented.

7.1.2 Quantitative Sound Speed Analysis

In order to determine the sound speed of a tumor or other breast tissue, a region of interest

(ROI) was drawn in our USWT sound speed images around what was visually determined

to be the margin of the tumor/tissues. The mean sound speed µ in the ROI is given by the
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mean sound speed of all N pixels corresponding to the ROI

µ =
1

N

N∑
i=1

ci .

The error in the measurement is given by the standard deviation of the sound speed values

in the ROI

σ =

√√√√ 1

N − 1

N∑
i=1

(ci − µ)2 .

When multiple measurements from different lesions were averaged, the error is given by the

propagation of the individual errors in addition to the standard deviation of the averaged

values.

For tumors that were difficult to detect or determine the extent of their margins, B-mode

UST images served as a guide for ROI selection. The sound speed of fibroglandular regions

were determined by selecting ROIs around regions of fibroglandular tissue surrounding the

tumor location in order to determine the background parenchymal enhancement of the tumor.

The sound speed of fatty regions was determined by placing a circular ROI in that region

while taking special care to avoid as much fibro-glanduar tissue as possible.

After obtaining mean sound speed values for various lesions, it was useful to window and

level the grayscale of the sound speed image to correspond to the mean sound speed of the

lesion. For example, for the evaluation of fibroadenomas in one of the clinical case examples,

windowing and leveling the sound speed image to a range consistent with the sound speed

of fibroadenomas might help an observer locate other similar lesions. In addition, when the

grayscale is limited to a narrower window, variations in the sound speed are more readily

apparent. For example, this might help in the imaging of necrotic tissue within a tumor.

7.1.3 Qualitative and Area Comparison to Other Imaging Modalities

USWT sound speed images were compared to other imaging modalities in order to es-

tablish concordant findings and to compare the manner in which the breast tissue image was
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reconstructed and displayed. USWT sound speed images were compared to HHUS, mam-

mography, both T1 weighted and T1 weighted gadolinium enhanced fat suppressed MRI

images, UST B-mode reflection images, and UST travel time sound speed images. Note that

it was difficult to perfectly register images across different modalities.

For the case of MRI comparison, MRI images were converted from their native axial

orientation and resampled in the coronal plane to match the orientation of USWT. A breast

was freely suspended in air during MRI acquisition while a breast was submerged in water

during an UST tomography scan acquired by our clinical prototype. The effects of gravity

and buoyancy then distorted the visualization of the breast. Thus, in order to register breast

architecture between MRI and USWT, multiple slices of either modality were needed to see

breast features present in the other modality. A problem with the grayscale values of the

USWT sound speed images arose when comparing to T1 weighted MRI. Areas of higher

sound speed such as breast fibroglandular tissue and tumors were bright due to our original

grayscale convention. In T1 weighted MRI, these regions were dark. Thus, we found the best

solution that maximizes image quality for both modalities was to invert the grayscale of the

USWT sound speed images such that darker/brighter areas corresponded to higher/lower

sound speed. Note that this problem did not exist when comparing USWT sound speed to

T1 weighted contrast enhanced fat suppressed MRI sequences as areas such as tumors and

fibro-glanduar tissue were brighter after contrast enhancement and fat suppression.

Comparison to HHUS and mammography was done by matching features present in both

modalities with patient reports and the USWT sound speed image. Comparison to UST

reflection B-mode images and travel time sound speed images were done by comparing the

image slices corresponding to both modalities. We also performed area analysis to compare

the size of tumors across different modalities. This analysis was done by determining the

area of an ellipsoid as given by the length, width, and/or heights measurements of the imaged

lesions across the different modalities.
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Type. Average (m/s). Maximum (m/s). Minimum (m/s). Average Background
Enhancement (m/s).

Cancer 1542± 42 1568± 22 1506± 18 59± 35
Fibroadenoma 1583± 19 1600± 19 1569± 18 48± 20
Cyst 1561± 25 1591± 15 1535± 22 54± 10
Fat 1439± 20 1460± 18 1403± 33 −71± 31

Table 7.1: Sound Speed Analysis of Various Tissue Types. The average background enhancement
is with respect to the surrounding fibroglandular tissues.

7.1.4 Clinical Application

The clinical application of the USWT sound speed imaging method was determined by

reviewing the case reports of different patients. We will present an in-depth analysis for 5 of

the 11 patients used in this study. These cases included a combination of younger and older

women with varying breast densities and varying lesion types including cysts, fibroadenomas,

and cancers. We compared the original purpose of breast evaluation (i.e. palpable lumps,

routine mammogram), the outcome of the evaluation (i.e. mammography occult but visible

via HHUS), patient age, and breast density to the ability of the various imaging modalities to

properly diagnose the patient. We then assessed what role USWT might play in this workflow

and how the morphological and quantitative information provided by USWT might change

or improve diagnostic performance.

7.2 Results and Discussion

7.2.1 Quantitative Sound Speed Analysis

Table 7.1 summaries the quantitative sound speed analysis of cancers, fibroadenomas,

cysts, and fat. The reported average background enhancement is with respect to areas of

fibroglandular tissue adjacent to the various tissue types. For the tumors, the mean average

background enhancement is 53 +/- 20 m/s.

The sound speed of fat as reconstructed by USWT agreed with many different studies [32,

33, 34, 35, 46]. The fat sound speed values in these studies ranged from about 1410 -1490 m/s.
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In particular, [35] reported the sound speed of breast fat to be 1436 +/- 18 m/s. The USWT

reconstruction of malignant and benign tumor sound speeds both agrees and disagrees with

other studies. References [34, 46] reported that the sound speed of cancers are generally

higher than benign tumors. For example, [34] gave an average cancer and fibroadenoma

sound speed of 1531 +/- 36 m/s and 1500 +/- 27 m/s, respectively, while [46] which used

our previous travel timetomography sound speed imaging method, gave an average cancer

and benign tumor sound speeds of 1548 +/ 27 m/s and 1513 +/- 27 m/s. Our USWT

results showed that fibroadenomas and cysts tend to have a higher relative sound speed

while cancers ranged from about 1500 -1570 m/s. This agrees with [33] which reported

cancers with a sound speed range of 1470 -1610 m/s and fibroadenomas with a sound speed

range of 1560 -1600 m/s. It also agreed with [32] which reported a cancer sound speed range

of 1465 -1573 m/s. In particular, [35] gave cancer, fibroadenoma, and cyst sound speeds of

1550 +/- 35 m/s, 1584 +/- 27 m/s, and 1568 +/- 40 m/s. Thus, we conclude that the sound

speed of fat, to be conservative, is at least below 1500 m/s. In addition, tumor sound speeds

can have a wide sound speed range.

7.2.2 Case 1 - Small Cancer in Younger Female with Scattered Density (SV029)

A 35-year-old female with a palpable mass and no family history of breast cancer came for

her first mammogram. A bilateral diagnostic mammogram and subsequent spot compressions

revealed scattered areas of fibroglandular density and a 2.1 circumscribed irregular mass

with no architectural distortion. A cranial-caudal mammogram is seen in Figure 7.2(a).

The tumor location corresponds to the location of biopsy clip (bright spot in center and

lower third of image). Hand-Held ultrasound (HUS) was recommended which revealed an

irregular mass with indistinct margins, posterior shadowing, and peripheral vascular flow

measuring 2.8 cm x 2.4 cm (length x height in radial plane) and 2.5 cm x 2.4 cm (length

x height in anti-radial plane) in size (Figure 7.2(b)). The radial and anti-radial breast

planes are shown in Figure 7.1(c). Using the volume of an ellipsoid V = 4/3πlwh, this give

an approximate volume of 70 cm3. Ultrasound (US) guided core biopsy and the subsequent
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Figure 7.2: Images Corresponding to Case 1. (a) Cranial-Caudal mammogram. (b) Hand-Held
ultrasound. (c) Waveform sound speed re-sampled in sagittal plane. (d) MRI. (e) Waveform sound
speed with inverted gray scale.

pathology report revealed a poorly differentiated invasive ductal carcinoma. A bilateral MRI

examination was performed to reveal a mass indicative of malignancy. Its size is 2.6 cm (TR)

x 2.7 cm (AP) x 2.8 cm (CC) (Figure 7.2(d)). The abbreviations TR, AP, and CC mean
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“transverse”,“anterior-posterior”, and “cranial-caudal” (see Figure 7.1). The approximate

volume would then be 82 cm3. The patient was scanned with ultrasound tomography (UST)

and ultrasound waveform tomography (USWT) was applied to create a USWT sound speed

map of the breast (Figure 7.2(e)). Viewing the USWT image stack reveals a 2.3 cm (TR)

x 2.3 cm (AP) x 2.0 cm (CC) tumor with irregular shape and indistinct margins. The

approximate volume would then be 44 cm3. As in section 6.1.1, mean sound speed values

were determined by masking ROIs around the margins of the tumor, the fibroglandular

region at 1 oclock, and the fatty breast region at 7 oclock. This gave mean sound speed

values of 1526 +/- 15 m/s, 1479 +/- 25 m/s, and 1450 +/- 14 m/s, respectively.

The purpose of this example is to demonstrate the capability of USWT to find a small

approximately 2 cm cancer in a young 35-year-old female with a palpable mass and no prior

family history of breast cancer. The size of the mass implies that it could have been detected

prior to palpation if a baseline mammogram and subsequent screening mammograms were

available. However, given the age of the woman, regular screening mammography would

still not have been recommended for at least another five years [9]. This has important

consequences in the screening of at risk dense breasted young women. From the mammogram,

it is difficult to make a conclusive diagnosis about the nature of the mass. HHUS was needed

to help make this diagnosis without the use of biopsy. Comparison of USWT to T1 weighted

MRI reveals a great deal of concordant findings between the two modalities. The shape

of the tumor and the branching patterns of the fibroglandular region at 1 oclock are very

similar. The shape of parenchyma at the caudal region of the image is also similar in that

both patterns do not show mass effect. Comparison of USWT sound speed to T1 and T1

weighted contrast enhanced fat suppressed MRI implies that areas of higher sound speed

have lower T1s since bright areas in the sound speed image correspond to dark areas in

the T1 MRI image. Also, areas of higher sound speed tend to absorb more contrast agent

since bright areas in the sound speed image correspond to bright areas in the T1 contrast

enhanced fat suppressed image. The volume reported by MRI and HHUS agree fairly well.

Due to problems with the anterior-posterior resolution, artifacts near the chest wall (see
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Figure 7.2(c)), and the deformation of the breast in water, it is hard to be confident in

the concordance of the anterior-posterior extent of the tumor in the waveform image of this

patient. However, the measurements in the coronal plane match very well between MRI,

HHUS, and USWT.

7.2.3 Case 2 - Multiple Fibroadenomas in Younger Female with Heterogeneous Density

(SV162)

A 34-year-old female with multiple bilateral palpable lumps came for a follow up bilat-

eral HHUS examination. Sonographic examination of the both breasts revealed multiple

well-defined hypoechoic solid masses with no vascular flow and a sonographic appearance

characteristic of benign fibroadenomas (Figure 7.3(a)). The largest mass in the left breast is

at the 12:30 position 8 cm from the nipple and measures 2.5 cm x 1.9 cm (length x height in

radial plane) and 2.7 cm x 1.9 cm (length x height in anti-radial plane). We approximate an

ellipsoid area of A = πlw = π x 2.5 cm x 2.7 cm = 21 cm2. The sonographic characteristics

compounded with the fact the lesions have been stable for more than two years is compatible

with multiple benign fibroadenomas. Thus, no additional biopsy or imaging procedures were

recommended. The patient was then scanned using UST and USWT was applied to create

a USWT sound speed map of the breast as seen in Figure 7.3(c). Note that the B-mode

reflection image is also shown for comparison in Figure 7.3(b) to highlight the concordant

cyst shape. Viewing the USWT image corresponding to the approximate location of the

largest mass in the left breast reveals a 3.0 cm (long axis) x 2.4 cm( short axis) tumor with

lobular shape and well-defined margins. Volumetric comparison was not done as the entire

image stack was not reconstructed. However, the area was determined to be approximately

23 cm2. Mean sound speed values were determined by masking ROIs around the margins

of the tumor, the surrounding fibroglandular region, and a fatty region of the breast. This

gave mean sound speed values of 1570 +/- 19 m/s, 1511 +/- 30 m/s, and 1460 +/- 18 m/s,

respectively. In Figure 7.3(d), the windowing and leveling of the grayscale values of the

USWT sound speed image is set such that the minimum and maximum sound speed is 1550
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Figure 7.3: Images Corresponding to Case 2. (a) Hand-Held ultrasound. (b) Reflection envelope.
(c) Waveform sound speed. (d) Waveform sound speed with preferential window and leveling.

m/s and 1600 m/s.

This example illustrates the ability of USWT to image benign fibroadenomas in a younger

34-year-old female with heterogeneously dense breasts and multiple benign lesions. The

shape and margins of the benign tumor are consistent with the appearance of shapes and
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margins of tumors as presented in HHUS. The approximate area of the lesion also matches

fairly well in HHUS and USWT. The sound speed values of the large fibroadenoma is con-

sistent with the values reported in some studies. By finding a proper window and level

setting dependent on the overall sound speed of the breast that is scanned and the type of

lesion one is interested in, additional information can be obtained through simple contrast

adjustment. By windowing to a range consistent with what might match for particular type

of fibroadenoma that has a high sound speed, the shapes of what might be similar lesions

are revealed. These regions, to some degree, correspond to the regions of hypoechogenic-

ity in the B-mode reflection image. Thus in line with the patient report, we believe these

regions might correspond to additional benign fibroadenomas. Using UST with additional

USWT sound speed imaging avoids the ionizing radiation of mammography and could serve

to monitor the possible growth of malignancy in patients with dense breasts and a history

of benign breast disease.

7.2.4 Case 3 - Benign Cyst in Older Female with Scattered Density (SV113)

A 47-year-old female was called back for a diagnostic mammogram (see Figure 7.4(a))

after a suspicious mass was found in a previous visit. Additional spot compression views

were obtained and a persistent 3 cm mass was seen. Subsequent HHUS revealed a well-

defined anechoic structure with enhanced through transmission and a lack of vascular flow

measuring 2.6 cm x 1.2 cm (length x height in radial plane) and 1.7 cm x 1.2 cm (length x

height in anti-radial plane) (see Figure 7.4(b)). The HHUS findings were consistent with a

benign simple cyst and the lesion area corresponded to the area of mammographic concern.

The patient was then scanned using UST and USWT was applied to create a USWT sound

speed map of the breast in Figure 7.4(c). Viewing the USWT image reveals a mass at the 4

o’clock position measuring 2.3 cm (long axis) x 1.8 cm (short axis) with lobular shape and

well-defined margins. Mean sound speed values were determined by masking ROIs around

the margins of the tumor, the fibroglandular region surrounding the tumor, and a fatty

portion of the breast. This gave mean sound speed values of 1535 +/- 22 m/s, 1474 +/-
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Figure 7.4: Images Corresponding to Case 3. (a) Mediolateral Oblique Mammogram. (b) Hand-
Held ultrasound. (c) Waveform sound speed. (b) Reflection envelope.

22 m/s, and 1438 +/- 15 m/s, respectively. A reflection envelope image is also shown in

Figure 7.4(d) to highlight the concordant shapes of the cyst and to highlight similar fine

parenchymal patterns in the breast.
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This is an example of a cyst in a breast with scattered fibroglandular density. As was the

in the case 1, it is difficult to make a definitive diagnosis based on the mammogram alone.

HHUS was needed to help make this diagnosis without the use of biopsy. The shape and

margins of the benign cyst matches fairly well across HHUS, USWT, and UST reflection

images. The size/area of the tumor is also fairly consistent between HHUS and USWT.

Our hope is to use the different imaging capabilities of UST (reflection, sound, attenuation)

to make a definite diagnosis of malignant or benign breast disease. Thus, we could avoid

the ionizing radiation of mammography and the operator dependence of HHUS. Note that

in order to have confidence in the imaging capabilities of any modality, a large data base

of reconstructed images from different types of disease and patients are needed. Based on

the knowledge gained from studying the database, an observer will be trained to recognize

features in an unknown sample.

7.2.5 Case 4 - Benign Cysts in Older Female with Extremely Dense Breasts (SV077)

A 51-year-old female with a history of cysts and bilateral palpating lumps had a bilateral

diagnostic mammogram exam as shown in Figure 7.5(a). The breasts were extremely dense

which obscures the viewing of mammograms. Circumscribed isodense masses were seen but

with little change compared to previous mammograms. No spiculated masses or microcalci-

fications developed. Areas of palpable concern were marked with triangular shaped fiducial

markers. HHUS of the breasts revealed multiple anechoic simple cysts with imperceptible

walls, enhanced through transmission, and no internal solid component. An example of

what we believe to be the area corresponding to the waveform sound speed image shown in

Figure 7.5(c) is seen in Figure 7.5(b).

The patient was then scanned using UST and USWT was applied to create a USWT

sound speed map of the breast in Figure 7.5(c). Viewing the USWT image reveals two

masses, one 3.0 (long axis) x 2.4 (shorter axis) cm mass with mean sound speed 1545 +/- 17

m/s near the center of the breast and another 1.8 (TR) x 1.5 (CC) cm mass with mean sound

speed 1561 +/- 15 closer to the edge. The shape and margins as revealed by the waveform
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(a) (b)

(c) (d)

Figure 7.5: Images Corresponding to Case 4. (a) Cranial-Caudal mammogram. (b) Hand-Held
ultrasound. (c) Waveform sound speed. (b) Reflection envelope.
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sound speed image are fairly well defined for the central cyst but more diffuse for the upper

cyst. In contrast, the reflection envelope image (Figure 7.5(d) reveals a well-defined mass

at the outer edge and a more diffuse mass at the center. The Mean sound speeds of the

fibroglandular region surrounding the tumor and a fatty region of the breast are 1524 +/-

24 m/s and 1444 +/- 22 m/s, respectively.

In this example we highlight the difficulty of using mammograms to find masses in dense

breasts. The high amount of fibroglandular content greatly obscures the readability of a

mammogram. In this breast, many cysts were present. We have not shown all the imaged

lesions using HHUS, but have given an example in this section as well as the lesions presented

in Figures 1.3(a) and 1.3(b). When there are many lesions present, then there would be a

higher chance that the operator would not locate one. Since UST is automatic (up to initial

breast alignment in the imaging chamber), there should be a significantly improvement in the

reproducibility of a breast scan. Due to problems in registering images, we have not made

a comparison of the spatial extent of the tumors. We comment that there relative shape,

margins, and sound speed of the tumors as revealed by UST are consistent with benign cysts.

7.2.6 Case 5 - Large Cancer in Older Female with Extremely Dense Breasts (SV161)

A 54-year-old female with prior history of benign breast disease and a palpable area of

concern had a diagnostic mammogram performed. Prior mammograms were not available for

comparison. The diagnostic exam revealed an extremely dense breast with a circumscribed

mass and an associated biopsy clip corresponding to a prior benign finding. In addition,

a lobular mass measuring 4.3 cm (AP) was found in the palpable area of concern (see

Figure 7.6(a)).

Subsequent HHUS revealed an irregular hypoechoic mass with internal vascularity mea-

suring 2.9 x 1.9 (length x height in radial plane) and 4.0 cm x 1.9 cm (length x height in

anti-radial plane) (see Figure 7.6(b)). Pathology revealed a poorly differentiated grade 3

ductal carcinoma. The patient was then scanned using UST and USWT was applied to

create a USWT sound speed map of the breast in Figure 7.6(c). Viewing the USWT image
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(a) (b)

(c)

Figure 7.6: Images Corresponding to Case 5. (a) Mammogram. (b) Hand-Held ultrasound. (c)
Waveform sound speed.

reveals two masses, one cancer at the 12 o’clock position measuring 4.5 cm (long axis) x

2.2 cm (short axis) with mean sound speed 1567 +/- 25 m/s and one fibroadenoma at the

3 o’clock position measuring 3.9 cm (long axis) x 3.0 cm (short axis) cm mass with mean

sound speed 1573 +/- 27 m/s. Mean sound speeds of the fibroglandular region surrounding

the cancer and of a fatty region in the breast were 1504 +/- 31 m/s and 1459 +/- 23 m/s,

respectively.
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In this example, we find a cancer in an extremely dense breast. Again, an extremely

dense breast hinders the ability of a radiologist to make an informed diagnosis based on

mammography alone. HHUS was needed to help determine if the lesion imaged by mam-

mography was benign or malignant. Since HHUS revealed a lesion with more diffuse and

irregular margins, a biopsy was recommended. USWT sound speed images revealed masses

with dimensions consistent with the HHUS findings. The cancer at the 12 o’clock position

has diffuse boundaries and is not well-defined. The fibroadenoma at the 3 o’clock position is

significantly more regular and lobular shaped. Since the sound speed of both lesions are very

similar, it is difficult to make a diagnosis based on sound speed alone. However the shapes

and margins of these tumors are consistent with what would be excepted for a cancer and

fibroadenoma. By using USWT sound speed imaging, we have shown an example where we

were able to differentiate between maligant and benign tumors in an extremely dense breast.
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CHAPTER 8: Conclusions

Breast cancer, a leading cause of cancer mortality, affects over 200,000 American women

every year. Finding a cancer as a early as possible will allow a patient to receive the best

care. Current methods to detect breast cancer are deficient. Mammography as a screening

tool leads to a significant improvement in the ability of a radiologist to make an informed

diagnosis, however, the modality uses ionizing radiation, painful compression, and lacks

specificity when used in women with dense breasts. An increase in specificity and thus a

reduction in unneeded biopsies can be achieved by using hand-held ultrasound as an adjunct

diagnostic tool. The shape and margins of unknown masses in B-mode reflection images

provided by hand-held ultrasound can help distinguish malignant and benign tumors. The

severe operator dependence of hand-held ultrasound limits its usefulness as a trained operator

must navigate the breast volume where it is difficult to interpret the 3D breast using 2D

slices in the radial and anti-radial planes. This can lead to unidentified lesions. In addition,

only the reflected signals are used to assess the morphology of breast structures. Another

great tool for the diagnosis of breast disease is MRI. It works very well, but its use in a

screening environment is prohibitive due to its extreme operating cost.

A possible remedy to the various deficiencies listed above is the use of ultrasound to-

mography. Ultrasound tomography is virtually operator independent and uses no painful

compression or ionizing radiation. Like MRI, and unlike mammography and hand-held ul-

trasound, ultrasound tomography is capable of completely imaging the breast by creating a

series of 2D coronal tomographic slices. It is capable of producing B-mode reflection images

akin to hand-held ultrasound in addition to capturing the transmitted signals which can

be used to image transmission properties such as sound speed and attenuation. By using

both the reflective and transmission properties of the breast, it is hoped that ultrasound

tomography has increased sensitivity and specificity when compared to mammography and
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hand-held ultrasound. This would be especially hopeful in dense breasted women who are

at an increased cancer risk due to higher cancer incidence and mammographically occult

lesions.

In this thesis, we have developed an ultrasound waveform tomography algorithm that

estimates the sound speed of breast tissue to aid with the detection and diagnosis of breast

cancer. In contrast to previous travel time tomography methods that used first arrival

travel times to obtain the sound speed of the breast, the adopted method is based on the

principles of full waveform inversion which models and utilizes the entire pressure wave field

that is generated by acoustic excitation. In order to mitigate the extreme computation cost

of full waveform modeling, we model acoustic wave propagation in the frequency domain

by inverting a subset of the frequencies spanning the signal bandwidth of our ultrasound

devices. We numerically simulate 2D acoustic wave propagation by using matrix inversion

methods to solve a finite-difference matrix representation of the Helmholtz operator. We

then solve the inverse problem by first forming a cost function defined as the difference

between numerically and experimentally acquired pressure field data. We minimize the cost

function in the least squares sense by using a gradient descent method which iteratively

finds sound speed distributions which upon numerical forward modeling generates numerical

pressure fields which best match the experimental data. Note that in order to successfully

apply waveform tomography methods to experimentally gathered data, we require a method

to properly preprocess experimental data. Note that in this thesis we have not presented in

vivo waveform tomography attenuation reconstructions via a complex sound speed inversion.

Additional research is required for the successful inversion of in vivo waveform tomography

attenuation images. However, we can invert for attenuation using numerical simulations.

We have found that waveform tomography sound speed images have significantly im-

proved resolution and accuracy when compared to travel time tomography methods. Nu-

merical experiments reveal that the resolution of waveform tomography sound speed imaging

is on the order of the ultrasound wavelength λ while the resolution of the travel time to-

mography is on the order of the first Freznel zone
√
λL, where L is the propagation distance
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of the ultrasound wave. Ex vivo and in vivo experiments have shown that there is great

improvements in the quality of the reconstructed images as most significantly highlighted by

improvements in the shape and margins of tumors which are critical for an accurate diagnosis

of breast disease. In addition, very fine parenchymal patterns of breast tissue are revealed by

waveform tomography methods when only a fuzzy and blurred image was seen using travel

time tomography methods.

Waveform tomography sound speed images have the potential to be a viable modality

in a clinical setting. By comparing waveform tomography sound speed images to MRI, we

have demonstrated a great deal of concordant findings. This ranges from the shape and

margin of tumors as well as the imaging of very fine parenchymal patterns. We have also

assessed the possible clinical role waveform tomography sound speed images might have

in the diagnosis of unknown breast disease. We have shown that it is capable of imaging

benign and malignant lesions in dense breast tissue which is a difficult environment for

mammography. We believe that the use of waveform tomography sound speed imaging,

ultrasound tomography B-mode imaging, and the attenuation properties of the breast can

have a positive value in the prognosis of a patient. This belief can be verified or denied based

on future studies which examine a large patient population.

In conclusion, we have presented a preliminary study of ultrasound waveform tomography

sound speed imaging for the detection of breast disease. The improvements made upon our

previous travel time based sound speed images are significant. The apparent improved con-

trast, better resolution, and more accurate margin delineation have the potential to greatly

increase the clinical value of breast sound speed images. When compared to MRI, we see that

the waveform tomography method has a great deal of concordant findings and can function

as a poor man’s MRI. By considering the impact of waveform tomography techniques in a

clinical setting, it was shown that it can make a positive value in the life and prognosis of a

patient. Current research is focusing on optimizing the algorithm, reducing the reconstruc-

tion time, and improving the reconstruction accuracy by reducing artifacts, investigating a

more optimal transducer design, and using more transducers in the reconstruction process.



104

In addition, we are investigating the reconstruction of attenuation for in vivo data via the

inversion of a complex valued sound speed.
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APPENDIX A: Finite Difference Stencil

A.1 Real and Imaginary Parts of Slowness and its Derivatives
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A.2 S Matrix: Interior Points

The discretized acquisition geometry is shown in Figure 3.1. The stencil for the field

values um,n are labeled according to the diagram in Figure A.1 where the positive x are

given by index m+1, and the positive y values are given by index n+1. The stencil satisfies

α1
um+1,n + um−1,n+1 − um,n + um,n+1 + um,n−1

∆2

+ (1− α1)
um+1,n+1 + um+1,n+1 + um−1,n+1 + um−1,n−1(√

2∆
)2

+
ω2

c2
m,n

[
α2 + α3 (um,n + um−1,n + um,n+1 + um,n−1)

+
1− α2 − 4α3

4
(um+1,n + um+1,n−1 + um−1,n+1 + um−1,n−1)

]
= −δm,n(ω) .

(A.1)

Or collecting terms for the notation used in the implementation code
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um−1,n+1 um,n+1 um+1,n+1

um−1,n um,n um+1,n

um−1,n−1 um,n−1 um+1,n−1

x

y

Figure A.1: Finite Difference Stencil. Field values um,n are sampled on the corner points.

um,n

(
−4α1
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∆2
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)
= −δm,n(ω) .

(A.2)

Note that when α1 = α2 = 1 and α3 = 0, the optimal nine point stencil reduces to the typical

Laplacian stencil. The real and imaginary parts of 1/c2
m,n are then taken when inserting the

discretized equation into arrays in the code.

A.3 S Matrix: Boundary Points

We model absorbing boundary conditions on the boundary ∂Ω by forcing only outward

propagating wave solutions on the boundary [87]. In this development, we have followed the

notation used in [87]. Therefore, we assume a plane wave of form exp [−ik · r] which has an

opposite sign to the discussion in sections 2.2.1 and 2.2.2. Thus, implementing the boundary

conditions as outlined in this section would lead to a fundamental solution as given by the

Hankel function of the second kind as opposed to the first kind. It would also require using

cI > 0 for attenuation to behave properly. For the left boundary, which we will force to only

allow leftward propagating solutions, the 2nd order Engquist and Majda boundary condition
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is given by

(
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Transforming into the frequency domain
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Using only a 5 point stencil for the Laplacian and a forward difference for the first derivative

term, the stencil satisfies
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+
ω2

c2
m,n

um,n +
1

2

um,n+1 − 2um,n + um,n−1

∆2
= 0 . (A.5)

Collecting terms for the notation use in implementation
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Expressions in terms of real and imaginary components will be explicitly given as terms

involving i complicate matters.
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(A.7)

A.4 S Matrix: Corner Points

Modeling the corners is a special case (see [88] or [89]). For the Top-Left corner, the

equation satisfied is

(
∂

∂x
+

∂

∂y
+

3

2

1

c

∂

∂t

)
u(r, t)|r∈∂Ω = 0 . (A.8)

Transforming into the frequency domain
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Using forward differences for the first derivative terms, the stencil satisfies
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Or collecting terms for the notation used in implementation
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We then again express in terms of real and imaginary parts for this particular boundary. Note

that boundary conditions for the other boundaries/corners are then deduced by symmetry.
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(A.12)

A.5 Derivative of S Matrix: Interior Points

We will use ∂/∂m ≡ ∂/∂cR or ∂/∂cI depending on if we are interested in a real or

imaginary update. The only interesting terms in the stencil in equation A.2 are terms that

involve the sound speed c. The others terms are lumped together in a constant C
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α2ω
2

c2
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= C .

(A.13)

Then taking derivatives and expressing in terms of the real and imaginary parts we obtain
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(A.14)

A.6 Derivative of S Matrix: Boundary Points

Lumping together constant terms in equation A.6 as we did for the interior case
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We then express in terms of real and imaginary parts. We again emphasize that depending

on the model update of interest m = cR or m = cI , we take the appropriate ∂/∂m
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(A.16)

A.7 Derivative of S Matrix: Corner Points

We have from the corners stencil in equation A.11
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110

And in terms of real and imaginary parts
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(A.18)

A.8 Example of Matrix Representing Finite Difference Stencil

We give an explicit example of the structure of the matrix S which represents the finite

difference stencil representation of the Helmholtz operator in equation 3.1. The matrix

equation is given by

Su = s , (A.19)

where the vector of field values is u and the source vector is s. We will use the standard

5-point formula for the Laplacian operator. Then, equation 3.1 becomes

(
∇2 +

ω2

c(rm,n)2

)
u(rm,n, ω) ≈

um+1,n + um−1,n − 4um,n + um,n+1 + um,n−1

∆2
+

ω2

c2
m,n

um,n = −δm,n(ω) , rm,n ∈ Ω .

(A.20)

In this example we will discretize the problem domain Ω into a 9 × 9 grid. We also ig-

nore boundary conditions. Setting ∆ = 1, and letting ξm,n = −4 + ω2/c2
m,n, we combine

equations A.19 and A.20 to generate the system of equations shown in equation A.21



ξ1,1 1 0 1 0 0 0 0 0
1 ξ2,2 1 0 1 0 0 0 0
0 1 ξ3,3 0 0 1 0 0 0
1 0 0 ξ4,4 1 0 1 0 0
0 1 0 1 ξ5,5 1 0 1 0
0 0 1 0 1 ξ6,6 0 0 1
0 0 0 1 0 0 ξ7,7 1 0
0 0 0 0 1 0 1 ξ8,8 1
0 0 0 0 0 1 0 1 ξ9,9


S



u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3
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u

=



0
0
0
s
0
0
0
0
0


s

. (A.21)
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APPENDIX B: Inverse Problem

B.1 Line Search Estimation

In order to find the optimal value of the step length α, we need to minimize the cost

function E with respect to the step length. Letting the cost function E be

E(c) =
1

2
(u(c)− d)H (u(c)− d) , (B.1)

where the experimental data is denoted d, and the synthetic data term u is non-linearly

dependent on some model c. Taking the derivative of the cost function E with respect to

the step length α gives

∂E

∂α
=

1

2

{(
∂u(c)

∂α

)H
(u(c)− d) + (u(c)− d)H

∂u(c)

∂α

}
. (B.2)

We need to obtain an expression for ∂u(c)/∂α. Assuming linearity of u(ck+1) with respect

to perturbations to the current model k, we expand the wave field u using the update

equation 4.3 and a Taylor expansion

u
(
ck+1

)
= u

(
ck − αk∇E

(
ck
))

≈ u
(
ck+1

)
− αk∇u

(
ck
)H ∇E(ck) +O

(
∂2

∂c2

)
.

(B.3)

We then take the partial derivative of the wavefield with respect to αk

∂u
(
ck+1

)
∂αk

=
∂u
(
ck
)

∂αk
−∇u

(
ck
)H ∇E(ck)− αk

∂2u
(
ck
)H

∂αk∂ck
∇E

(
ck
)
. (B.4)

To simplify notation, we will now omit the iteration superscript k and the explicit dependence

on c. Ignoring terms that involve second derivatives, using the chain rule, and substituting

equation B.4 into B.2. We have
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2
∂E

∂α
=

(
∇u

∂u

∂α
−∇u∇E

)H
(u− α∇u∇E − d)

+ (u− α∇u∇E − d)H
(
∇u

∂u

∂α
−∇u∇E

)
= −2

{
∇EH∇uH (u− α∇u∇E − d) + (u− α∇u∇E − d)H ∇E∇u

}
= −2

{
∇EH∇uH (u− d) + (u− d)H ∇E∇u− 2α∇EH∇uH∇u∇E

}
= −4

{
∇EH∇E − α∇EH∇uH∇u∇E

}
.

(B.5)

Setting the left hand side of equation B.5 to zero then gives us an expression for the step

length

α =
∇EH∇E

∇EH∇uH∇u∇E
. (B.6)

B.2 Cost Function Gradient

The following discussion will establish a relationship between the cost function

E = 1/2 (u(c)− d)∗ (u(c)− d) , (B.7)

the Fréchet derivatives J = ∇u, and the data residual δd = u(c)− d. Namely, we will show

∇E = Re{J∗δd} , (B.8)

where the gradient ∇ can be taken with respect to the real or imaginary component of the

velocity ∇ = ∂/∂cR or ∂/∂cI . We will use ∇ = ∂/∂c for notational simplicity. Note that the

fields values u(c) are non-linear functions of the sound speed c. Taking the derivative of the

cost function in equation B.7 and recognizing that both u(c) and d have real and imaginary

parts yields
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2
∂E

∂c
=
∂u∗

∂c
(u− d) + (u− d)∗

∂u

∂c
(B.9a)

=

(
∂uR
∂c
− i∂uI

∂c

)
(uR + iuI − dR − idI)

+ (uR − iuI − dR + idI)

(
∂uR
∂c

+ i
∂uI
∂c

)
(B.9b)

=
∂uR
∂c

uR +
∂uI
∂c

uI −
∂uR
∂c

dR −
∂uI
∂c

dI . (B.9c)

The term J∗δd is expanded to give

J∗δd =
∂u∗

∂c
(u− d) (B.10a)

=

(
∂u∗

∂c
− i∂uI

∂c

)
(uR + iuI − dR − idI) (B.10b)

=

(
∂uR
∂c

uR +
∂uI
∂c

uI −
∂uR
∂c

dR −
∂uI
∂c

dI

)
+ i

(
−∂uI
∂c

uR +
∂uR
∂c

uI +
∂uI
∂c

dR −
∂uR
∂c

dI

)
. (B.10c)

Thus, we can see that equation B.8 is true.

B.3 Gradient Example

In section 4.3 we discuss the use of the gradient descent method to iteratively find the

sound speed model c that minimizes the cost function E. The reader is referred to [97] for

an excellent resource for understanding the gradient descent method. In this section, we

give a simple example of using the gradient descent method to find the solution of a concave

system of linear equations. Consider the system

Ax = b , A =

(
3 2
2 −6

)
, b =

(
2
−8

)
.

The system is also represented by the linear equations
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Figure B.1: Surface and Contour Lines Representing the Cost Function f(x). Lines representing
the system of equations intersect at the minimum point of f(x).

x2 =
1

6
(−8− 2x1)

x2 =
1

2
(2− 3x1) ,

which is also seen in Figure B.1 as the two black lines. Define the cost function f(x) for this

problem to be

f(x) = |Ax− b|2 .

which is also seen in Figure B.1 as the concave manifold. The gradient update procedure is

given by

x(i+1) = x(i) − α∇xf(x(i)) .

where i is the iteration number, α is a step size, and ∇x is the gradient with respect to x.
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Guess an initial point x0 as the solution to the system (or c0 from section 4.3). Letting

α = 1, the first update is then given by

x1 = x0 − 2AT (Ax0 − b) .

where T is the transpose operator. You can continue in this manner until you reach the

optimal solution xopt = (2,−2)T . In this simple example the choice for the starting model

x0 is not as important, but for multi-dimensional ill-posed problems, many local minimums

exist in the cost function f(x) (or E from section 4.3). For these ill-posed problems, selecting

an initial point close to the global minimum is crucial for convergence to the global minimum.

For example, for the application of the frequency domain ultrasound waveform tomography

gradient descent method to experimental data, choosing the sound speed model cray created

using ray tomography methods leads to convergence to a global minimum, while using a

constant sound speed of model of c0 ≈ cH2O leads to rapid divergence. This contrasts with

the numerical case where a constant sound speed model approximately average of the true

model is sufficient at driving convergence to the global minimum.
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APPENDIX C: Common Shot Gathers and Frequency

Spectrums

A common shot gather of a water shot, a scattered density breast, and a dense breast are

seen in Figures C.1, C.2, and C.3, respectively. After preprocessing the waveforms using the

methods detailed in section 5.2, we have show common shot gathers of the scattered breast

and very dense breast in Figures C.4, and C.5. The corresponding magnitude spectrums of

the Fourier transforms of the preprocessed data are seen in Figures C.6, C.7, and C.8.

Denser breasts scatter and attenuate ultrasound waves more readily than fattier breasts.

The scattering results in more multiply reflected signals and the attenuation results in signals

with decreasing magnitude. Thus, there is a greater chance that a time-of-flight picker will

get more confused in a dense breast. The presence of a denser breast also alters the filtering

of the received frequencies with respect to the water shot frequency spectrum.



117

Figure C.1: Common Shot Gather of Water Shot. Overlaid are red crosses that are the first arrival
times determined by the automatic TOF picking algorithm.

Figure C.2: Common Shot Gather of Scattered Density Breast. Overlaid are red crosses that are
the first arrival times determined by the automatic TOF picking algorithm.
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Figure C.3: Common Shot Gather of Dense Breast. Overlaid are red crosses that are the first
arrival times determined by the automatic TOF picking algorithm.

Figure C.4: Preprocessed Common Shot Gather of Scattered Density Breast. Overlaid are red
crosses that are the first arrival times determined by the automatic TOF picking algorithm.
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Figure C.5: Preprocessed Common Shot Gather of Dense Breast. Overlaid are red crosses that are
the first arrival times determined by the automatic TOF picking algorithm.

Figure C.6: Magnitude Spectrum of Preprocessed Common Shot Gather of Water Shot.
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Figure C.7: Magnitude Spectrum of Preprocessed Common Shot Gather of Scattered Density
Breast.

Figure C.8: Magnitude Spectrum of Preprocessed Common Shot Gather of Dense Breast.
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Ultrasound tomography is an emerging modality for imaging breast tissue for the detec-

tion of disease. Using the principles of full waveform inversion, high-resolution quantitative

sound speed and attenuation maps of the breast can be created. In this thesis, we introduce

some basic principles of imaging breast disease and the formalism of sound wave propagation.

We present numerical methods to model acoustic wave propagation and methods to solve the

corresponding inverse problem. Numerical simulations of sound speed reconstructions are

used to assess the efficacy of the algorithm. A careful review of the preprocessing techniques

needed for the successful inversion of acoustic data is presented. Ex vivo and in vivo sound

speed reconstructions highlight the significant improvements that are made upon commonly

used travel time sound speed reconstruction methods. The higher resolution and contrast

of our waveform method will allow radiologists to make a more informed diagnosis of breast

disease. A comparison of full waveform sound speed imaging to MRI shows a great deal of

concordant findings. Lastly, we give examples of the use of full waveform inversion sound

speed imaging in a clinical setting.
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