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CHAPTER 1 

INTRODUCTION 

 

Parts of this chapter have been submitted for publication to the journal BioMed 

Research International. 

 

Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, is 

crucial for mitochondrial function and is involved in various cellular processes outside 

of the mitochondria. The importance of CL in cardiovascular health is underscored by 

the life-threatening genetic disorder Barth syndrome (BTHS), which manifests clinically 

as cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. In 

addition to BTHS, CL is linked to various cardiovascular diseases (CVDs), including 

cardiomyopathy, atherosclerosis, myocardial ischemia-reperfusion injury, heart failure 

and Tangier disease. The link between CL and CVDs may possibly be explained by 

the physiological roles of CL in pathways that have cardioprotective function, such as 

autophagy/mitophagy and the mitogen-activated protein kinase (MAPK) pathways. My 

dissertation work focuses on elucidating how CL influences mitophagy and MAPK 

pathways. This knowledge may contribute to our understanding of the function of this 

important lipid, and may ultimately identify novel therapeutic strategies to treat CVDs 

and improve heart performance. 

 

1. CL and CL synthesis 
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CL contains two phosphatidyl moieties joined by a central glycerol backbone, 

forming a dimeric structure (De Bruijn, 1966). Thus, unlike other phospholipids that 

contain two fatty acyl chains linked to glycerol, CL has four acyl chains. Considering 

the potential combinations of fatty acyl groups on CL, a large number of CL species 

may be possible. However, in most organisms and tissues, the fatty acyl composition 

of CL is unique and specific. For example, bacterial CL contains both saturated and 

monounsaturated fatty acyl chains that are composed of 14–19 carbons (Kito et al., 

1972). In eukaryotes, CL mainly contains monounsaturated and diunsaturated fatty 

acyl chains that consist of 16–18 carbons (Schlame et al., 1993). In mammals, CL acyl 

species vary in different tissues, but the most abundant species in the heart is 

tetralinoleoyl CL. In yeast, the predominant fatty acyl species of CL are oleic acid and 

palmitoleic acid (Schlame et al., 1993). While CL plays critical roles in mitochondrial 

biogenesis, fusion and fission, respiration and protein import (Joshi et al., 2009), it is 

also involved in various cellular processes outside of the mitochondria. These include, 

but are not limited to cell wall biogenesis (Zhong et al., 2005), vacuole homeostasis 

(Chen et al., 2008b), ageing (Zhou et al., 2009), the cell cycle (Chen et al., 2010), and 

apoptosis (Li et al., 2015).  

Unlike mitochondrial membrane lipids that are synthesized in the endoplasmic 

reticulum, de novo synthesis of CL occurs exclusively in the inner membrane of the 

mitochondria (Hostetler et al., 1972) in a series of well-characterized steps that are 

conserved from yeast to higher eukaryotes (Tian et al., 2012). The first step in the CL 

biosynthetic pathway is the conversion of phosphatidic acid (PA) to CDP-diacylglycerol 
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(CDP-DAG), which is catalyzed in the inner membrane by CDP-DAG synthase 

encoded by TAM41 (Deprez et al., 2002; Kutik et al., 2008; Tamura et al., 2013). The 

PGS1-encoded phosphatidylglycerolphosphate (PGP) synthase catalyzes transfer of 

the phosphatidyl group from CDP-DAG to a glycerol-3-phosphate molecule to generate 

PGP (Chang et al., 1998b). PGP is subsequently dephosphorylated to 

phosphotidylglycerol (PG) by PGP phosphatase, encoded by PTPMT1 in mammals 

(Xiao et al., 2011; Zhang et al., 2011) and GEP4 in yeast (Osman et al., 2010).  The 

final step in the biosynthetic pathway is carried out by CL synthase, encoded by hCLS1 

in human cells (Chen et al., 2006; Houtkooper et al., 2006; Lu et al., 2006) and by 

CRD1 in yeast (Chang et al., 1998a; Jiang et al., 1997; Tuller et al., 1998). In this step, 

a second phosphatidyl group is added to PG from another CDP-DAG molecule, 

generating CL (Hostetler et al., 1972; Houtkooper et al., 2006; Malhotra et al., 2009).  

The acyl composition of CL varies in different tissues, and the CL remodeling 

process is responsible for the CL acyl group exchange following CL de novo synthesis. 

CL remodeling may occur through two mechanisms (Ye et al., 2014b). In the two-step 

mechanism, CL is first deacylated to monolyso-CL (MLCL) by phospholipases (Lands, 

1960). In yeast, the only CL-specific phospholipase is encoded by CLD1 (Beranek et 

al., 2009), while in mammals, several phospholipases are reported to have CL-

hydrolyzing activities, including iPLA2β, iPLA2γ, cPLA2, and sPLA2 (Buckland et al., 

1998; Dennis et al., 2011; Hsu et al., 2013). MLCL is reacylated to remodeled CL by 

the transacylase tafazzin, encoded by the tafazzin gene (TAZ/G4.5) located on Xq28 

in human cells (Bione et al., 1996) and by TAZ1 in yeast (Gu et al., 2004; Vaz et al., 
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2003). Acyltransferases encoded by ALCAT1 (Cao et al., 2004) and MLCLAT1 (Taylor 

and Hatch, 2009) have also been described in mammalian cells. In the one-step 

mechanism, CL remodeling occurs by direct transacylation (Xu et al., 2003; Yamashita 

et al., 1997). Mutations in tafazzin perturb CL remodeling and cause the life-

threatening genetic disorder Barth syndrome (BTHS) (Barth PG et al., 1983), which is 

discussed below.  

The CL synthesis and remodeling pathway in my research model, 

Saccharomyces cerevisiae, is shown in Fig. 1.1. 

 

2. Relationship between CL and CVD  

2.1 CL and cardiomyopathy 

2.1.1 Barth syndrome 

The most direct link between CVD and CL is seen in BTHS, an X-linked genetic 

disorder of CL remodeling caused by tafazzin mutations. BTHS manifests clinically as 

cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation (Barth et al., 

1999). More than 160 mutations in the tafazzin gene have been identified in BTHS 

patients (Chen et al., 2002; D'Adamo et al., 1997; Hijikata et al., 2015). These 

mutations result in loss of function of tafazzin, leading to decreased cellular CL, 

increased MLCL, and altered CL fatty acyl composition (Schlame et al., 2003; Schlame 

et al., 2002; Valianpour et al., 2002). Total CL is decreased to about 80% in BTHS 

platelets and skeletal muscle and 20% in cardiac tissue (Schlame et al., 2002). CL 

species vary in different tissues. Tetralinoleoyl-CL (L4-CL) is the most abundant  
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Fig. 1.1 Cardiolipin synthesis and remodeling pathway in Saccharomyces 

cerevisiae. Cited from Ye et al. 2014b. Cited from Ye et al. 2014b. The first 

reaction of CL de novo synthesis is the conversion of phosphatidic acid (PA) to 

CDP-diacylglycerol (CDP-DAG) by the mitochondrial CDP-DAG synthase 

Tam41. The committed step of CL synthesis is catalyzed by Pgs1, which 

converts CDP-DAG to phosphatidylglycerolphosphate (PGP). PGP is 

subsequently dephosphorylated to phosphatidylglycerol (PG) by the GEP4-

encoded PGP phosphatase. CL synthase, encoded by CRD1, condenses PG 

and CDP-DAG to form CL. CL synthesized de novo has primarily saturated acyl 

chains (CLSAT). CLSAT is deacylated by the CL-specific phospholipase Cld1 to 

monolysocardiolipin (MLCL), which is reacylated by tafazzin (the TAZ1 gene 

product) to CL containing more unsaturated acyl chains (CLUNSAT). All the CL 

biosynthetic enzymes are localized in the mitochondrial inner membrane (IM), 

whereas tafazzin is localized in the outer face of the (IM) and the inner face of 

the outer membrane (OM). IMS: intermembrane space. 
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CL species in heart, skeletal muscle and most other tissues, whereas acyl species 

such as arachidonic and docosahexaenoic acids are found in brain (Cheng et al., 2008; 

Houtkooper and Vaz, 2008; Schlame and Ren, 2006). L4-CL is absent in BTHS, 

while increases in other CL species are present (Schlame et al., 2003; Schlame et al., 

2002; Valianpour et al., 2002).  

Understanding the cellular function and molecular mechanisms of CL remodeling 

may provide better treatment options for BTHS patients (Ye et al., 2014b). Tafazzin 

deficiency results in decreased CL, increased MLCL, and altered CL species, any of 

which may cause the pathology in BTHS. Recent findings in yeast indicate that deletion 

of Cld1p-mediated deacylation rescues growth and lifespan defects in tafazzin 

deficient cells (Baile et al., 2013; Ye et al., 2014a). Because the cld1 mutation restored 

CL levels without generating remodeled CL, these findings suggest that decreased 

total CL and/or increased MLCL, but not decreased remodeled CL, causes the defects 

associated with tafazzin deficiency. Inhibiting CL deacylation may, thus, be a potential 

strategy to treat BTHS patients.  

 

2.1.2 Dilated cardiomyopathy with ataxia (DCMA) syndrome 

DCMA syndrome is an autosomal recessive genetic disorder that is 

characterized by early onset dilated cardiomyopathy with conduction defects, non-

progressive cerebellar ataxia, testicular dysgenesis, growth failure, and 3-

methylglutaconic aciduria (Davey et al., 2006). These clinical manifestations are similar 

to phenotypes found in BTHS. Patients with DCMA have a common mutation, a GC 
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base substitution within a splice site of the DNAJC19 gene (Davey et al., 2006). 

DNAJC19 protein localizes to the mitochondria and shares sequence and location 

similarity with yeast Tim14, an essential subunit of the TIM23 complex (D'Silva et al., 

2003; Mokranjac et al., 2003). TIM23 is required for the import of protein precursors 

from the cytoplasm into the mitochondrial matrix and inner membrane (Rehling et al., 

2003). This suggests that the DCMA phenotype may result from defective 

mitochondrial protein import. Interestingly, loss of CL also leads to defective 

mitochondrial protein import (Eilers et al., 1989; Endo et al., 1989; Endo and Schatz, 

1988; Gebert et al., 2009; Jiang et al., 2000). Therefore, it is interesting to speculate 

that defective mitochondrial protein import may be common to DCMA and BTHS. A 

recent study suggests that CL may play a role in the pathogenesis of DCMA (Richter-

Dennerlein et al., 2014). DNAJC19 protein is reported to form the PHB/DNAJC19 

complex with prohibitin, a ring-like scaffold protein located in the mitochondrial inner 

membrane. The PHB/DNAJC19 complex modulates CL remodeling by regulating 

tafazzin activity. Depletion of DNAJC19 does not affect CL or MLCL levels but alters 

the acyl chain composition of CL (Richter-Dennerlein et al., 2014). However, if the 

cause of DCMA is due to defective protein import, altered CL fatty acyl species, or a 

combination of the two remains unknown. 

 

2.1.3 Diabetic cardiomyopathy 

Diabetes is a metabolic disease characterized by increased levels of glucose in 

the blood over a prolonged period. It is due to either poor insulin production (type I) or 
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insulin resistance with β-cell dysfunction (type II) (He and Han, 2014). 

Diabetic complications are characterized by  a group of diseases derived from 

microvascular and macrovascular damage, including diabetic cardiomyopathy, 

myonecrosis, stroke, peripheral vascular disease, nephropathy, retinopathy 

and encephalopathy (Nathan, 1993). Diabetes doubles the risk of CVD, of which 

diabetic cardiomyopathy is the leading cause of mortality. Diabetic cardiomyopathy is 

characterized by altered lipid composition and mitochondrial dysfunction in the diabetic 

myocardium (Han et al., 2000). In the early stages of pathological development in the 

type II diabetic mouse model, a sharp decrease in total cardiac CL is observed (Han 

et al., 2005). In addition to a decrease in the whole cell CL content, there is also a shift 

from the predominant fatty acyl species, L4-CL (18:2) to longer and polyunsaturated 

fatty acids, due to aberrant CL remodeling (Han et al., 2007). Strikingly, these 

alterations are similar to changes observed in the type I model of diabetes. In type II 

diabetic mice, treatment with the antidiabetic drug rosiglitazone restored total CL, L4-

CL, and polyunsaturated CL levels (Pan et al., 2006). Impairment of CL synthesis plays 

a causal role in mitochondrial dysfunction (Koshkin and Greenberg, 2002; 

Mileykovskaya and Dowhan, 2014a; Pfeiffer et al., 2003), and mitochondrial 

dysfunction is associated with the pathogenesis of diabetic CVD, especially the 

sequential events following silent myocardial ischemia in diabetics (Sack, 2009). Thus, 

the sharp decrease in total cardiac CL and the altered CL fatty acyl species in the early 

stages of diabetic pathogenesis may play a key role in the progression of this disease. 
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2.2 CL is associated with other CVDs 

In addition to its role in cardiomyopathy, CL has been linked to other CVDs, 

including atherosclerosis, Tangier disease, myocardial ischemia-reperfusion and heart 

failure. 

Atherosclerosis is a form of arteriosclerosis in which an artery wall thickens due 

to chronic invasion and further accumulation of white blood cells (WBC), remnants of 

dead cells, cholesterol, and triglycerides (Ross, 1993). Oxidized CL (oxCL) was found 

to accumulate both in rabbit and human atherosclerotic lesions (Tuominen et al., 2006), 

and in the aortic root of mice fed a high fat diet (Zhong et al., 2014). Increased anti-

oxCL IgG (Lopez et al., 2003; Marai et al., 2008; Türkoğlu et al., 2008) and IgM (Su et 

al., 2013; Türkoğlu et al., 2008) antibodies are associated with atherosclerosis 

development. oxCL is recognized as a natural antigen that stimulates pro-inflammatory 

effects in the artery and promotes formation of atherosclerotic plaques (Bochkov et al., 

2010; Marai et al., 2008). However, some studies purport that autoantibodies to oxCL 

may serve a protective role against the onset and development of atherosclerosis 

(Frostegård et al., 2014; Su et al., 2006). The seemingly contradictory findings 

regarding the role of anti-oxCL antibodies in atherosclerosis may reflect the influence 

of other factors, including age, gender and existing diseases. The anti-coagulation 

protein annexin A5 has been reported to bind to and inhibit the pro-inflammatory effects 

of oxCL (Wan et al., 2014), providing the basis of a promising therapeutic strategy for 

oxCL-positive atherosclerosis.    

Tangier disease (TD) is another genetic disorder that may be linked to CL. TD is 
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a disorder of cholesterol efflux and lipid metabolism characterized by a nearly complete 

absence of plasma high-density lipoproteins (HDLs), atherosclerosis, peripheral 

neuropathy and an increased risk for developing CVD (Fredrickson, 1964; Oram, 

2000). The genetic cause of TD is mutations of the ABCA1 gene, which is located on 

chromosome 9 (Rust et al., 1999). ABCA1 encodes a highly conserved ATP binding 

cassette transporter that belongs to a subfamily of ABC transporters. The ABCA 

subfamily is involved in lipoprotein metabolism and lipid transport across the plasma 

membrane (Knight, 2004). Researchers propose that a physical interaction between 

apoA-I and ABCA1 results in the formation of a phospholipid-apoA-I complex that 

promotes cholesterol efflux (Wang et al., 2001). Three phospholipids, including CL and 

lysoCL 1 and 2 (LC1 and LC2), which together contribute only a small fraction of the 

total cellular phospholipid content, were found to be enriched up to five-fold in TD 

fibroblasts compared to wild type (WT) cells (Fobker et al., 2001). This finding suggests 

that phospholipid and cholesterol efflux may be co-regulated and, therefore, dually 

impaired in TD cells. Additionally, it is possible that increased CL may play an as yet 

uncharacterized regulatory role in cholesterol trafficking and efflux.  

In addition to the above disorders, the CL profile is altered in both myocardial 

ischemia-reperfusion injury and heart failure. Myocardial ischemia occurs when the 

myocardium does not receive sufficient blood flow, resulting in cell death and 

further irreversible injury (Carden and Granger, 2000). Restoration of circulation in 

ischemic myocardium exacerbates the injury (Carden and Granger, 2000). In the early 

stages of myocardial ischemia, there is an increase in reactive oxygen species (ROS). 
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During and post ischemia-reperfusion, ROS is thought to trigger lipid peroxidation as 

well as damage to cellular macromolecules and the electron transport chain, which 

together lead to apoptosis, necrosis and tissue damage (Ferrari et al., 1991; Kalogeris 

et al., 2014; Kloner et al., 1989). Unsaturated CL acyl species in the mitochondrial inner 

membrane that are close to the site of ROS generation are vulnerable to oxidative 

damage. Consistent with this, total CL was decreased and peroxidized CL was 

increased in the rat heart during ischemia-reperfusion (Paradies et al., 1999). A study 

of ischemia-reperfusion in rabbit heart reported that reduction of total CL was due in 

large part to a significant decrease in CL in the subsarcolemmal mitochondria, whereas 

CL in the interfibrillar mitochondria was unchanged (Lesnefsky et al., 2001). The levels 

of all other phospholipids remained unaffected in the same study. Decreased CL was 

shown to have an impact on electron transport chain complexes I (Paradies et al., 

2004), III (Petrosillo et al., 2003), and IV (Paradies et al., 1999). The enzyme activies 

of these complexes in mitochondria from the ischemic rat heart was restored by the 

addition of exogenous CL, but not by other phospholipids or peroxidized CL (Paradies 

et al., 1999). In summary, a feedback loop appears to be formed, in which CL is 

damaged by ischemia-reperfusion-induced ROS, and damaged CL leads to 

impairment of electron transport chain complexes, resulting in the generation of more 

ROS. In addition, the fact that membranes containing peroxidized CL are more 

permeable to apoptosis factors (Korytowski et al., 2011) may suggest a route through 

which ROS triggers apoptosis and tissue damage. 

Heart failure (HF) occurs when the heart is not able to contract efficiently enough 
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to pump blood to meet the body’s needs. The major clinical symptoms of HF include 

edema, shortness of breath and lack of energy. HF is usually the end stage of CVD, 

including cardiomyopathy, heart attack, cardiac valvular disease, atrial fibrillation, and 

high blood pressure (McMurray and Pfeffer).  In both the spontaneously hypertensive 

HF rat (SHHF) and human HF patients, decreased tafazzin mRNA levels were 

observed, concomitant with compensatory increases in the activity of 

phosphatidylglycerolphosphate synthase and MLCL acyltransferase (Saini-Chohan et 

al., 2009). However, studies of the CL profile in HF are controversial. While most 

studies report a significant reduction of total CL and L4-CL in human HF (Chatfield et 

al.; Le et al., 2014; Sparagna et al., 2007) and in the rat HF model (Reibel et al., 1986; 

Sparagna et al., 2007), one study reported an unchanged CL profile in a rat model with 

intracoronary microembolization-induced HF (Rosca et al., 2011). It is likely that 

different HF pathogenesis mechanisms lead to varying degrees of CL profile change 

and mitochondrial damage. 

 

3 CL plays a role in cellular events and pathways that are important for 

maintaining cardiovascular health 

3.1 Autophagy/mitophagy 

Autophagy refers to the cellular process in which cytoplasmic contents are 

delivered to the lysosome or vacuole for degradation. Autophagy is further classified 

into selective and nonselective autophagy (Nair and Klionsky, 2005). Various types of 

selective autophagy have been identified, including mitophagy, pexophagy, lipophagy, 

nucleophagy, lysophagy, reticulophagy/ER-phagy and ribophagy (Okamoto, 2014). 
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Mitophagy is the selective degradation of mitochondria by autophagy (Wang and 

Klionsky, 2011). Mitophagy and autophagy are generally not distinguished in studies 

of CVD and will be discussed together here. 

In the heart, autophagy is an important housekeeping process and is essential 

for maintaining cardiac health (Moyzis et al., 2015). Autophagic activity declines with 

age, and decreased or impaired autophagy leads to accumulation of proteins and 

damaged mitochondria, contributing to cardiac aging (Linton et al.). In addition, 

deletion of ATG5, the gene encoding a protein that regulates phagophore expansion, 

is known to result in cardiomyopathy in mice (Nakai et al., 2007). 

As discussed above, decreased CL causes impairment of the electron transport 

chain complexes I (Paradies et al., 2004), III (Petrosillo et al., 2003) and IV (Paradies 

et al., 1999), resulting in mitochondrial dysfunction. In response to mitochondrial 

damage, mitophagy increases as an adaptive and protective strategy to eliminate 

damaged mitochondria (Frank et al., 2012; Narendra et al., 2008). Therefore, I 

undertook the study in this thesis to investigate if the loss of CL leads to altered 

mitophagy. 

 

3.2 CL and MAPK pathways 

3.2.1 PKC pathway 

Protein kinase C (PKC) is a family of protein kinases that regulate the function of 

other proteins through specific phosphorylation of hydroxyl groups on threonine 

and serine residues. Human cells have fifteen PKC isozymes (Mellor and Parker, 
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1998). Over-stimulation of PKCα, PKCβ, PKCδ or PKCε results in hypertrophy of 

cardiomyocytes through activation of the extracellular signal-related kinase (ERK) 

pathway (Steven P. Marso and Stern, 2003). However, during ischemia preconditioning, 

PKCα, PKCδ, PKCε and PKCη have been shown to translocate to the active 

membrane pool and perform cardioprotective functions (Steven P. Marso and Stern, 

2003). Activation of PKCδ results in intracellular pH changes and viability protection; 

activation of PKCη protects against myocardial stunning; activation of both PKCδ and 

PKCη provides global myocardial protection against necrosis, acidosis, and 

myocardial stunning (Meldrum et al.). Blocking the phosphatidylinositol-specific 

phospholipase C (PI-PLC)-induced translocation of PKCα, PKCε, and PKCη during 

ischemia impairs myocardial recovery (Munakata M et al., 2002). Therefore, PKC 

isozymes have dual functions in the pathogenesis and progression of CVD. However, 

unlike other PKC isozymes that affect different CVDs, PKCη is mainly reported to play 

a cardioprotective role during ischemia.  

Yeast has only one PKC (Pkc1p). Human PKCη is the only human PKC isozyme 

that can complement the defects caused by deletion of PKC1 in yeast through 

activation of the same protein kinase cascade (Nomoto S et al., 1997). This suggests 

that PKCη shares both functional and structural homology with Pkc1p. A previous study 

in yeast showed that loss of PG, the precursor of CL, leads to defects in the activation 

of the PKC pathway (Zhong et al., 2007). Extrapolating from the finding in yeast that 

the CL precursor is required for PKC pathway activation, the cardioprotective role of 

PKCη activation during ischemia preconditioning may be dependent on CL. In yeast, 
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PKC activation is also required for mitophagy (Mao et al., 2011), another 

cardioprotective process. Thus, to investigate how CL plays a role in maintaining 

cardiovascular health, it is necessary to determine if CL is required for PKC pathway 

activation.  

 

3.2.2 HOG pathway 

The high osmolarity glycerol (HOG) pathway is a highly conserved MAPK 

pathway that mediates the cellular response to hyperosmotic shock. In yeast, the HOG 

pathway consists of two stress-sensing branches, SLN1 and SHO1 branches (Saito 

and Tatebayashi, 2004). Both branches are cascades that lead to phosphorylation of 

Hog1p, the yeast homolog of the mammalian MAPK p38, which functions in 

the inflammatory and stress responses (Raingeaud et al., 1995). Phosphorylation 

activates Hog1p and promotes translocation into the nucleus. The phosphorylated 

protein (pHog1p) induces transcription of GPD1, and GPP2, which encode glycerol-3-

phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively (Rep 

et al., 2000). These enzymes are involved in the production of glycerol, the cytosolic 

accumulation of which counteracts osmotic stress. Activated Hog1p also regulates 

intracellular ion homeostasis by phosphorylating the C-termini of Nha1p, the Na+/H+ 

antiporter on the plasma membrane, and Tok1p, the potassium channel on the plasma 

membrane (Proft and Struhl, 2004). In addition to regulating glycerol biogenesis and 

ion homeostasis, pHog1p regulates the transcription of about 600 genes, resulting in 

cellular adaptation to various stresses (O'Rourke and Herskowitz, 2004).  
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A previous study showed that CL mutants exhibit vacuole defects that are 

characterized by enlarged vacuoles and loss of vacuole acidification (Chen et al., 

2008b). The vacuole defects were rescued by deletion of NHX1, which encodes the 

Na+/H+ and K+/H+ exchanger, suggesting that ion homeostasis is perturbed in CL 

mutants. The vacuole defects were also rescued by supplementation with 1 M sorbitol, 

a HOG pathway stimulant, suggesting that osmoregulation may be perturbed in CL 

mutants. Because the HOG pathway functions in both osmoregulation and intracellular 

ion homeostasis, it is necessary to determine if the HOG pathway is perturbed in CL 

mutants. 

 

4  Saccharomyces cerevisiae as my research model 

As discussed above, CL biosynthesis is highly conserved from yeast to humans. 

The yeast taz1Δ mutant exhibits respiratory and metabolic deficiencies similar to those 

in human BTHS cells (Chen et al., 2008a; Gu et al., 2004; Ma et al., 2004). In addition, 

the availability of null mutants for each step of CL synthesis facilitates studies to 

elucidate CL function, which are not easily carried out in higher eukaryotes. For 

example, the finding that growth and respiratory defects of the yeast taz1 mutant are 

rescued by deletion of CLD1, which restores CL/MLCL levels without generating 

remodeled CL, suggests that CL/MLCL levels are more important for mitochondrial 

function than CL acyl composition (Baile et al., 2014; Ye et al., 2014a). This study could 

not be carried out in mammalian cells, as CL phospholipases have not been 

characterized in mammals.  
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Most of the studies described in this thesis utilize the crd1Δ null mutant, in which 

the gene for CL synthase is deleted. The crd1Δ mutant has no CL and accumulates 

the CL precursor, PG. I also utilized the yeast genome deletion collection, which 

facilitated me to carry out genetic interaction studies. The genetic and molecular tools 

of the yeast model enabled me to carry out my analysis of the role of CL in mitophagy 

and the MAPK pathways. 

 

5  Project outline 

The goal of my doctoral research was to investigate the role of CL in cellular 

events and pathways that are required for maintaining cardiovascular health. I 

specifically focused on the role of CL in mitophagy, and the mechanism underlying this 

connection. 

The study described in Chapter 2 shows that the loss of CL leads to defective 

mitophagy. Synthetic lethality with autophagy/mitophagy mutants suggested that 

mitophagy may be deficient in crd1Δ. Microscopic examination of mitophagy revealed 

decreased translocation of GFP-tagged mitochondrial protein into the vacuole of crd1Δ 

cells. This was confirmed by immunoblotting detection of free GFP, which was 

generated by cleavage of GFP-tagged mitochondrial protein after it was delivered into 

the vacuole by mitophagy. These findings indicated that mitophagy is decreased in CL 

deficient cells.  

Chapter 3 describes a possible mechanism underlying defective mitophagy in 

crd1Δ. It is known that the PKC pathway is required for early stages of mitophagy and 
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the HOG pathway is required for later stages (Mao et al., 2011). My studies showed 

that crd1Δ growth defects are exacerbated by downregulation of the HOG pathway 

and rescued by upregulating the PKC pathway, suggesting that these MAPK pathways 

may be defective in CL mutants. Consistent with this, Western blot experiments 

showed decreased phosphorylation of Slt2p and Hog1p in crd1Δ, indicating defective 

activation of the PKC and HOG pathways. Interestingly, upregulation of PKC rescued 

defective mitophagy in crd1Δ. These results suggest that the mechanism underlying 

defective mitophagy in crd1Δ cells is defective MAPK function. 

Although the findings of my dissertation research shed light on the role of CL in 

pathways known to be important for maintaining cardiovascular health, the story is far 

from over. Chapter 4 describes exciting experiments that can be done to elucidate the 

mechanism underlying the role of CL in mitophagy and the MAPK pathways. In addition, 

follow up experiments are proposed to continue preliminary studies of the role of CL in 

vacuole homeostasis.  
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   CHAPTER 2 

LOSS OF CARDIOLIPIN LEADS TO DEFECTIVE MITOPHAGY 

Introduction 

Cardiolipin (CL) is the signature lipid of mitochondrial membranes. It plays an 

important role in mitochondrial function through interacting with various mitochondrial 

membrane proteins, including electron transport chain (ETC) complex proteins that 

are components of complex I (Fry and Green, 1981; Mileykovskaya and Dowhan, 

2014b), complex III (Fry and Green, 1981; Pfeiffer et al., 2003; Zhang et al., 2002; 

Zhang et al., 2005), complex IV (Pfeiffer et al., 2003; Zhang et al., 2002; Zhang et al., 

2005), complex V (Gohil et al., 2004), cytochrome c (Ranieri et al., 2015) and 

transporter proteins such as the ADP-ATP carrier (Beyer K and M., 1985), pyruvate 

carrier (Paradies and Ruggiero, 1988) and phosphate carrier (Kadenbach et al., 1982). 

Loss of CL leads to impaired mitochondrial function, including defective respiration 

(Schlame and Ren, 2006), decreased mitochondrial membrane potential (Jiang et al., 

2000) and impaired mitochondrial protein import (Gebert et al., 2009; Jiang et al., 

2000). Additional cellular functions of CL outside of mitochondria are continuously 

being explored. 

In studies described in this chapter, I investigated the role of CL in mitophagy. 

Mitophagy is the selective degradation of mitochondria through autophagy (Wang and 

Klionsky, 2011). Autophagy is the cellular process in which cytoplasmic contents are 

delivered into the lysosome or vacuole for degradation. According to the different ways 

by which cargos are delivered to the lysosome/vacuole for degradation, autophagy is 
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classified as macroautophagy, microautophagy, and chaperone-mediated autophagy 

(Shintani and Klionsky, 2004). Autophagy is further classified as selective or 

nonselective, depending on whether specific cargo is selected (Nair and Klionsky, 

2005). Various types of selective autophagy have been identified (Okamoto, 2014), 

among which mitophagy is the selective degradation of mitochondria (Wang and 

Klionsky, 2011). In the heart, autophagy is essential for maintaining cardiac health 

(Moyzis et al., 2015). Impairment of the process by deletion of ATG5 has been 

demonstrated to cause cardiomyopathy in mice (Nakai et al., 2007), linking abnormal 

autophagy to cardiomyopathy. 

Cardiomyocytes have a remarkably high mitochondrial density that comprises 

about 30% of the total intracellular volume (Maack and O’Rourke, 2007). This allows 

cardiomyocytes to produce ATP quickly to satisfy the high demand for energy. Even 

subtle alterations in mitochondrial function or membrane potential can cause a 

significant change in cardiomyocyte energy production and further harm 

cardiovascular health. In response to mitochondrial damage, mitophagy increases as 

an adaptive and protective strategy (Frank et al., 2012; Narendra et al., 2008). 

Therefore, I carried out studies to determine if loss of CL, which perturbs numerous 

mitochondrial functions, leads to altered mitophagy. 

Genetic interaction analysis is a very powerful approach to study gene function. 

Rescue of a mutant phenotype by deletion of another gene identifies suppression of 

the mutant phenotype. Exacerbation of a mutant phenotype to lethality by deletion of 

another gene is defined as synthetic lethality, which suggests that the two genes may 
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work in redundant pathways. I predicted that genetic interaction analysis between 

autophagy/mitophagy genes and CRD1 would shed light on the role of CL in mitophagy.  

Although mitophagy occurs via both macro- and micro-autophagy (Kanki et al., 

2009c; Kiššová et al., 2007; Nowikovsky et al., 2007; Okamoto et al., 2009), 

degradation of mitochondria via macro-autophagy is the dominant process when 

mitophagy is triggered by nitrogen starvation or glucose deprivation (Kiššová et al., 

2007). During macro-mitophagy, mitochondria are recognized as the cargo that is 

brought to the phagophore assembly site (PAS), where the double-membrane of the 

phagophore expands and closes to form a mature mitophagosome that contains 

mitochondria. Macro-mitophagy adapts the general autophagy core machinery, which 

involves various autophagy-related (ATG) proteins, including the Atg1p/Atg13p 

complex, Atg9p, Atg18p-Atg2p complex, Atg8p conjugation system (Atg3p, Atg4p, 

Atg7p, and Atg8p), and the Atg12 ubiquitin-like conjugation system (Atg5p, Atg7p, 

Atg10p, Atg12p, and Atg16p) (Köfinger et al., 2015; Reggiori et al., 2005; Reggiori et 

al., 2004; Sakoh-Nakatogawa et al., 2015; Suzuki et al., 2001; Suzuki et al., 2007; Xie 

and Klionsky, 2007). Atg8p is the yeast homolog of mammalian LC3, and it is 

conjugated to phosphatidylethanolamine (PE) (Kirisako et al., 1999). Atg8p-PE coats 

the mitophagosome membrane during membrane elongation. Phosphatidylinositol 3-

phosphate (PI3P) is another important lipid that constitutes the mitophagosome 

membrane (Gillooly et al., 2000). Atg18p binds to PI3P and regulates the retrieval of 

Atg9p from PAS, and normal transport of Atg9p between PAS and the peripheral site 

is essential in PI3P synthesis on the mitophagosome membrane (Reggiori et al., 
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2005). Thus, Atg8p and Atg18p are essential proteins in the general autophagy core 

machinery.  

The mitochondrial outer membrane protein Atg32p plays a key role in selecting 

mitochondria as the specific cargo. When mitophagy is triggered, Atg32p is 

phosphorylated (Aoki et al., 2011). Then it interacts with Atg11p, which directs 

mitochondria to the PAS, where an Atg32–Atg11–Atg8 initiator complex is formed 

(Aoki et al., 2011; Farré et al., 2013). When an intact mitophagosome is formed and 

delivered to the vacuole, the mitophagosome outer membrane fuses with the vacuole 

membrane and releases the mitochondria wrapped by the mitophagosome inner 

membrane into the vacuole lumen for degradation. 

In this chapter, I investigated if loss of CL in the crd1Δ mutant leads to altered 

mitophagy. Deletion of autophagy/mitophagy genes exacerbated the crd1Δ growth 

defect. Mito-GFP marker tracking experiments and Western detection of free GFP, the 

mitophagy product, both showed inhibited mitophagy in crd1Δ compared to WT. These 

findings suggest that CL plays a novel role in mitophagy.  
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Methods and materials 

Yeast strains and growth media 

The Saccharomyces cerevisiae strains used in this work are listed in Table 2.1. 

Yeast extract peptone dextrose (YPD) medium contained yeast extract (1%), peptone 

(2%), and glucose (2%). Synthetic complete (SC) medium contained lab-made 

vitamin-free yeast nitrogen base without amino acids (Difco protocol, 0.17% ), 

ammonium sulfate (0.5%), glucose (2%), vitamins, and the following amino acids: 

adenine (20.25 mg/liter), arginine (20 mg/liter), histidine (20 mg/liter), leucine (60 

mg/liter), lysine (200 mg/liter), methionine (20 mg/liter), threonine (300 mg/liter), 

tryptophan(20 mg/liter), and uracil (20 mg/liter). Synthetic drop-out medium contained 

all ingredients mentioned above except the amino acid used as the selective marker. 

Synthetic lactate (SL) medium contained lab-made vitamin free yeast nitrogen base 

without amino acids (Difco protocol, 0.17%), ammonium sulfate (0.5%), and lactate 

(2%). Solid medium contained agar (2%).  

 

Construction of deletion mutants and strains that express GFP-tagged 

mitochondrial proteins 

Deletion mutants were constructed as follows. The entire open reading frame of 

the target gene was replaced by a KanMX4 cassette via homologous recombination 

in the wild type (WT) strain. The KanMX4 cassette was amplified by polymerase chain 

reaction (PCR), using the pUG6 plasmid, which contains the KanMX4 cassette, as the 
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template. The amplification primers consisted of 50 nucleotides that were identical to 

either the upstream or the downstream flanking region of the target gene at the 5’ end 

and 21 nucleotides that annealed to the KanMX4 gene at the 3’ end. For construction 

of the single mutants with the target mitophagy gene deleted, the PCR product was 

transformed into the WT strain by electroporation. For construction of the double 

mutants with both CRD1 and the target mitophagy gene deleted, the PCR product 

was transformed into the crd1Δ strain by electroporation. Transformants were 

selected on YPD plates with 200 μg/ml G418. Deletion of the target gene was 

confirmed by PCR using primers that amplify the original target gene.  

To monitor mitophagy in both WT and crd1Δ strains, the mitochondrial matrix 

protein Idh1p in both strains was tagged by GFP as previously described (Kanki et al., 

2009a). The pFA6a-GFP (S65T)-HIS3MX6 plasmid (kindly provided by Dr. Daniel 

Klionsky, University of Michigan) was used as the PCR template to amplify a DNA 

fragment that encodes GFP with HIS3 as the selective marker. The primers consisted 

of 50 nucleotides that were identical to either the upstream or the downstream flanking 

region of the IDH1 ending code (TAA) at the 5’ end and 20 nucleotides that annealed 

to the GFP sequence on the plasmid at the 3’ end. The sequences of these primers 

are 5’-CTTCTACTACTGACTTCACGAATGAAATCATCAACAAATTATCTAC 

CATGCGGATCCCCGGGTTAATTAA-3’ and 5’-AATTTGAACACACTTAAGTTGCAG 

AACAAAAAAAAGGGGAATTGTTTTCAGAATTCGAGCTCGTTTAAAC-3’. The PCR 

product was then transformed into both WT and crd1Δ cells in the BY4742 and FGY 

genetic backgrounds by electroporation, and inserted into the end of the IDH1 locus 
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via homologous recombination. The transformants that express IDH1-GFP were 

selected on SC his- medium. Correct GFP insertion was confirmed by PCR analysis, 

using confirmation primers 5’-ATGCTGTCTTCGAACCAGGTT-3’ and 5’-

AGTTCATCCATGCCATGTGT-3’. 

Another approach to construct strains containing GFP-tagged mitochondria was 

to transform the pCu416-IDP1-GFP plasmid that expresses IDP1-GFP (kindly 

provided by Dr. Hagai Abeliovich, Hebrew University) into WT and crd1Δ, by 

electroporation. Transformants carrying the plasmid encoding IDP1-GFP were 

selected on SC ura- medium. 

 

Single colony formation analysis 

Cells were pre-cultured in YPD at 30˚C to the mid-log phase. The absorbance at 

550 nm (A550) of the liquid culture was determined using a spectrophotometer 

(Beckman). Cell aliquots were centrifuged and pellets were resuspended in YPD to 

adjust the A550 value to 10 units per ml. 10 μl of the above sample were added to 990 

μl of water. 10 μl of the 100X diluted sample were placed on a hemocytometer for cell 

counting using light microscopy at a magnification of 1000 X. Based on cell number, 

cell aliquots with A550 of 10 were adjusted again and serial diluted to 2000 cells/ml, 

from which 100 μl suspension that contained about 200 cells were plated on a YPD 

plate and incubated at 30˚C, 36˚C or 37˚C for 3 days. The ability of single cells to form 

colonies was evaluated at 30˚C, 36˚C or 37˚C. 
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Table 2.1 Yeast strains and plasmids used in Chapter 2 

Strain/plasmid Characteristics or genotype               Source or reference 

 

FGY3 (WT) 

FGY2 (crd1Δ) 

FGY3 atg8Δ 

FGY2 atg8Δ     

FGY3 atg18Δ 

FGY2 atg18Δ 

FGY3 atg32Δ 

FGY2 atg32Δ 

FGY3 atg21Δ 

FGY3 atg18Δatg21Δ 

FGY2 atg18Δatg21Δ 

FGY3‐IDH1‐GFP 

FGY2‐IDH1‐GFP 

BY4742  

VGY1 (BY4742 crd1Δ) 

BY4742‐IDH1‐GFP 

BY4742 crd1Δ-IDH1‐GFP 

 

pFA6a‐GFP(S65T)‐His3MX6 

pCu416‐IDP1‐GFP  

 

MAT α, ura3‐52, lys2‐801, ade2‐101, trp1Δ1, his3Δ200, leu2Δ1 

MAT α, ura3‐52, lys2‐801, ade2‐101, trp1Δ1, his3Δ200, leu2Δ1, crd1Δ::URA3 

Derivative of FGY3, atg8Δ::KanMX4 

Derivative of FGY2, atg8Δ::KanMX4 

Derivative of FGY3, atg18Δ::KanMX4 

Derivative of FGY2, atg18Δ::KanMX4 

Derivative of FGY3, atg32Δ::KanMX4 

Derivative of FGY2, atg32Δ::KanMX4 

Derivative of FGY3, atg21Δ::TRP1 

Derivative of FGY3, atg18Δ::KanMX4, atg21Δ::TRP1 

Derivative of FGY2, atg18Δ::KanMX4, atg21Δ::TRP1 

Derivative of FGY3, in which GFP is inserted into the IDH1 gene locus 

Derivative of FGY2, in which GFP is inserted into the IDH1 gene locus 

MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0 

MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0, crd1Δ::URA3 

Derivative of BY4742, in which GFP is Inserted into the IDH1 gene locus 

Derivative of BY4742  crd1Δ::KanMX4,  in which GFP  is  Inserted  into  the  IDH1 

gene locus 

Derivative of pFA6a‐ His3MX6 

Derivative of pCu416, expresses GFP‐tagged IDP1 from CUP1 promoter 

 

  Jiang et al., 1997 

  Jiang et al., 1997 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  Euroscarf	a 

(Gohil et al., 2005) 

  This study 

  This study 

   

Kanki et al., 2009a 

(Journo et al., 2009) 
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Table 2.2 Real-time PCR primers used in Chapter 2 

Gene Primers   Sequence 

 

 

ACT1 

 

 

 

ATG8 

                 

Forward 

                  

Reverse 

                  

Forward          

                  

Reverse 

 

TCGTGCTGTCTTCCCATCTATCG 

      

CGAATTGAGAGTTGCCCCAGAAG 

      

ACCTTACCGTAGGGCAATTTG 

     

CCCGTCCTTATCCTTGTGTTC 

 



28 
 

FM 4-64 and quinacrine staining 

FM 4-64 staining was performed as previously described (Conboy and Cyert, 

2000) with minor revisions. Cell aliquots equivalent to an A550 of 1.0 were harvested by 

centrifugation, resuspended in 100 μl YPD, and incubated at 37˚C or 39˚C with 0.16 

mM FM4-64 for 15 min. Cells were pelleted and washed once with 37˚C YPD or 39˚C 

YPD and then resuspended in 500 μl YPD of the same temperature for 30 min. The 

cell suspension was centrifuged and the supernatants were discarded. The cell pellets 

were resuspended in 100 μl YPD, from which 3 μl were applied to the microscope slide 

and observed using epifluorescence microscopy using the filter for red fluorescence. 

Quinacrine staining was performed as previously described (Roberts et al., 1991), 

with minor revisions. Cell aliquots equivalent to an A550 of 1.0 were harvested by 

centrifugation and resuspended in 500 μl YPD (containing 2 mM quinacrine and 

buffered to pH 7.6 with 0.5M Na2HPO4) prewarmed to 37˚C or 39˚C. After a 5 min 

incubation, cells were pelleted and washed once with 500 μl 2% glucose that had been 

buffered to pH 7.6 with 0.5M Na2HPO4. The cell suspension was pelleted again and 

resuspended in 100 μl 2% glucose at pH 7.6, from which 3 μl were applied to a 

microscope slide and observed using epifluorescence microscopy using the filter for 

green fluorescence. 

 

Detection of mitophagy using fluorescence microscopy 

Microscopic analyses were performed using an Olympus BX41 epifluorescence 
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microscope. Images were captured by an Olympus Q-Color3 digital charge-coupled 

device camera operated by QCapture2 software. All pictures were taken at a 

magnification of 1000X. To induce mitophagy, cells expressing IDH1- GFP were 

cultured in SC medium to the mid-log phase, pelleted and resuspended in 5 ml SL 

medium with a starting A550 of 0.5. They were then cultured for 18 hours and observed 

using epifluorescence microscopy. An increase in the signal of mito-GFP in the vacuole 

indicated induction of mitophagy. In addition, cells were also treated with elevated 

temperature. Both WT-IDH1-GFP and crd1Δ-IDH1-GFP were cultured in YPD medium 

to the mid-log phase at 30˚C and then switched to 39˚C for 8 hours. Cells were then 

observed using epifluorescence microscopy, using the filter for green fluorescence. 

 

Western blot 

Whole cell extracts were prepared as previously described (Kanki et al., 2009a) 

with minor changes. Cell pellets equivalent to 1.5 A550 units were collected and 

resuspended in 1 ml 10% trichloroacetic acid (TCA). Samples were incubated for 10 

min on ice and proteins were pelleted by centrifugation at 4˚C, 15,000 rpm for 10 min. 

The pellets were washed twice with 1 ml of ice-cold acetone and air-dried at room 

temperature. The air-dried cell pellets were resuspended in 75 μl sample buffer, which 

consisted of 150 mM Tris-HCl with pH 8.8, 6% SDS, 25% glycerol, 6 mM EDTA, and 

disrupted by vortexing for 3 min in the presence of 75 μl acid-washed glass beads. 

Following this step, the samples were heated at 100°C for 3 min and then centrifuged 

at 4˚C, 7,000 rpm for 30 s to pellet the glass beads. 18 μl of the supernatants that 
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contained the proteins were mixed with 6 μl 4X loading dye (80% bromophenol blue 

and 20% β-mercaptoethanol) and loaded into a 12% SDS-polyacrylamide gel for 

electrophoresis. The proteins were then transferred to a PVDF membrane with 0.2 μm 

pores following the standard semidry Western blot transfer procedure. After blotting in 

TBST-milk (TBS containing 1% TWEEN 20 and 0.5% milk), the membranes were 

incubated in TBST-milk with mouse anti-YFP monoclonal antibody (JL-8, Clontech) at 

a 1:3000 dilution at 4°C overnight. After washing with TBST (TBS containing 1% 

TWEEN 20) for 4 times, 8 min per time, the membranes were incubated in 0.5% TBST-

milk with the secondary antibody, HRP-conjugated goat anti-mouse IgG (Santa Cruz), 

at a 1:5000 dilution for 1 h at room temperature. After washing with TBST 4 more times, 

8 min per time, the membrane was covered with Pierce™ ECL Plus Western Blotting 

Substrate reagent. To detect the signal of GFP, the HyBlot ES® Autoradiography film 

was exposed to the PVDF membrane and then developed. Idh1-GFP and cleaved GFP 

were detected as bands of 68 kDa and 28 kDa, respectively. 

 

Real-Time PCR (RT-PCR) 

Both WT-IDH1-GFP and crd1Δ-IDH1-GFP strains in the FGY background were 

cultured in 10 ml YPD medium to the mid-log phase at 30˚C and then switched to 

39˚C for 8 hours. Cells were harvested and total RNA was extracted using the RNeasy 

Mini kit (QIAGEN). This procedure removed possible contaminating genomic DNA. 

cDNAs were synthesized using the Transcriptor First Strand cDNA synthesis kit 

(Roche Diagnostics) following the manufacturer’s protocol. RT-PCR was performed 
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in a 96-well plate using Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent 

Technologies). Duplicates for each sample were included. The primers used for RT-

PCR are listed in Table 2.2. ACT1 was used as the internal control. The mRNA level 

of the target gene was normalized to ACT1 mRNA levels. PCR reactions were 

performed at 95°C for 10 min for denaturation and then 40 cycles that consisted of 30 

s at 95°C and 60 s at 56°C. 
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Results 

Deletion of autophagy/mitophagy genes exacerbates the temperature 

sensitivity of crd1Δ 

Previous studies have shown that loss of CL leads to impaired mitochondrial 

function, including defective respiration (Schlame and Ren, 2006), decreased 

mitochondrial membrane potential (Jiang et al., 2000) and impaired mitochondrial 

protein import (Gebert et al., 2009; Jiang et al., 2000). It is known that mitophagy 

increases as an adaptive and protective strategy in response to damage of 

mitochondria to eliminate damaged organelles (Frank et al., 2012; Narendra et al., 

2008). A previous study in our lab found that, at elevated temperature, CL mutants 

exhibit not only growth defects but also vacuole defects characterized by enlarged 

vacuoles and loss of vacuole acidification (Chen et al., 2008b). The mechanism 

underlying the vacuole defects in the CL mutants are unknown. Because increased 

autophagy leads to a large influx of membrane and contents to the vacuole, resulting 

in increased vacuole size (Baba M et al., 1994; Baba et al., 1995; Takeshige K et al., 

1992), I originally hypothesized that loss of CL might lead to increased mitophagy to 

eliminate the damaged mitochondria at elevated temperature. In addition, my 

preliminary study found that deletion of UTH1, a gene that is involved in cell wall 

biogenesis and may play a role in mitophagy, rescued both the vacuole defects and 

the temperature sensitivity of crd1Δ (Fig. 2.1), seeming to support my hypothesis that 

the vacuole defects in the CL mutants may be due to increased mitophagy.  
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To test this hypothesis, I decided to determine if there was genetic interaction 

between CRD1 and autophagy/mitophagy genes. The rationale for this is that, 

deletion of autophagy/mitophagy genes should block excessive mitophagy and 

rescue the phenotype of crd1Δ. I constructed single mutants of mitophagy genes in 

the FGY background, including atg8Δ, atg18Δ, atg21Δ, atg32Δ, double mutants of 

crd1Δ and atg8Δ, atg18Δ, atg21Δ, atg32Δ, and the triple mutant crd1Δatg18Δatg21Δ. 

Temperature sensitivity of these strains was examined. Surprisingly, deletion of 

autophagy/mitophagy genes did not rescue (Fig. 2.2) but rather exacerbated the 

temperature sensitivity of crd1Δ (Fig. 2.3). Compared to deletion of the mitophagy-

specific gene ATG32, deletion of general autophagy genes, including ATG8 and 

ATG18, caused more severe exacerbation of crd1Δ temperature sensitivity. These 

findings suggested that mitophagy may be decreased in crd1Δ. 

 

Delivery of mitochondria to the vacuole in response to increased temperature 

is inhibited in crd1Δ  

WT-IDH1-GFP and crd1Δ-IDH1-GFP strains in the FGY background were 

constructed as described in the ‘Methods and materials’ section (Fig. 2.4). These 

strains express an endogenous Idh1 protein that is tagged with GFP at the C terminus 

and is localized in mitochondria. After culture in YPD medium to the mid-log phase at 

30˚C, WT-IDH1-GFP and crd1Δ-IDH1-GFP were switched to 39˚C for 8 hours. Cells 

were then observed using epifluorescence microscopy. Accumulation of GFP was 

observed in the vacuole of WT cells, suggesting that elevated temperature  
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Marker product 

for screening 
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Fig. 2.4 Insertion of GFP into the IDH1 gene locus. 

Strains expressing an endogenous Idh1 protein tagged 

with GFP at the C terminus were constructed as described 

in the ‘Methods and materials’ section.  
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induced delivery of Idh1-GFP tagged mitochondria into the vacuole of WT cells for 

degradation. However, translocation of crd1Δ mitochondria into the vacuole was not 

observed, suggesting that mitophagy was inhibited in crd1Δ cells (Fig. 2.5). 

A recent study reported that transcription of ATG8 positively regulates the size of 

the autophagosome (Backues et al., 2012) and reflects the extent of autophagy 

induction (Gasch et al., 2000; Kirisako et al., 1999). When autophagy is triggered, 

expression of ATG8 is induced more than 10-fold (Gasch et al., 2000; Kirisako et al., 

1999). Expression of ATG8 was determined in both WT and crd1Δ cells at 30˚C and 

after switching to 39˚C for 8 hours. ATG8 mRNA levels in WT and crd1Δ were 

comparable at 30˚C. Interestingly, ATG8 expression increased 3-fold in WT cells at 

39˚C compared to that at 30˚C, while it increased 6.7-fold in crd1Δ cells at 39˚C 

compared to that at 30˚C (Fig. 2.6). Expression of ATG8, the essential gene for 

mitophagy and non-selective autophagy, was upregulated in both WT and crd1Δ at 

elevated temperature. However, the increase was greater in crd1Δ than in WT cells, 

suggesting that, in crd1Δ, there is a greater need to initiate mitophagy, or that non-

selective autophagy may be upregulated to compensate for the decrease of mitophagy. 

 

Induction of mitophagy is inhibited in crd1Δ cells 

Based on the finding that the delivery of mitochondria into the vacuole is inhibited 

in crd1Δ compared to WT in response to elevated temperature, I predicted that 

mitophagy is decreased in crd1Δ compared to WT. Because elevated temperature has 

not been previously shown to trigger mitophagy, and mitophagy has not been studied 
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WT 
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Fig. 2.5 Delivery of mitochondria to the vacuole in response to 

increased temperature is inhibited in crd1Δ. WT and crd1Δ cells 

expressing an endogenous Idh1 protein that is tagged with GFP at the 

C terminus were cultured in YPD medium to the mid-log phase at 

30˚C, shifted to 39˚C for 8 hours and observed using fluorescence 

microscopy.  
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Fig. 2.6 Increased temperature triggers increased upregulation of 

ATG8 expression in crd1Δ cells. WT and crd1Δ cells were cultured in 

YPD medium to the mid-log phase at 30˚C and divided into two groups: 

one group was kept growing in 30˚C for 8 hours while the other group 

was shifted to 39˚C for 8 hours. ATG8 expression was determined by 

RT-PCR. 
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in the FGY genetic background, I constructed WT-IDH1-GFP and crd1Δ-IDH1-GFP 

strains in the BY4742 background, which is widely used in mitophagy studies (Kanki 

et al., 2009b). WT-IDH1-GFP and crd1Δ-IDH1-GFP cells were cultured in SC medium 

to the mid-log phase at 30˚C, harvested, washed twice and resuspended in SL medium, 

which has been shown to induce mitophagy (Wu and Tu, 2011). After 18 hours, cells 

were observed using epifluorescence microscopy. Similar to the result seen in the FGY 

genetic background, accumulation of GFP was observed in the vacuole of WT but not 

crd1Δ cells, suggesting that mitophagy is inhibited in crd1Δ (Fig 2.7 A). To exclude the 

possibility that the observed differences were specific to the Idh1-GFP protein, I 

constructed WT and crd1Δ strains that have the GFP-tagged mitochondrial protein 

Idp1p exogenously expressed from the pCu416-IDP1-GFP plasmid. As seen in IDH1-

GFP strains (Fig 2.7 B), accumulation of Idp1-GFP was observed in the vacuole of the 

WT but not crd1Δ cells, suggesting that mitophagy was inhibited in crd1Δ cells. 

To confirm the microscopic finding, the release of free GFP from Idh1-GFP was 

determined in WT-IDH1-GFP and crd1Δ-IDH1-GFP strains by Western blot. Cells were 

cultured in SC medium to the mid-log phase at 30˚C, harvested, washed twice and 

resuspended in SL medium. After 5, 6 or 7 hours, proteins were extracted as described 

in the ‘Methods and materials’ section. As seen in Fig. 2.8, 6 hours after transferring to 

SL medium, a GFP band was detectable in WT cells. In contrast, the signal from crd1Δ 

cells was barely detectable. Taken together, these findings indicate that mitophagy is 

inhibited in crd1Δ. 
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DIC Idh1-GFP 

WT 

crd1Δ 

DIC Idp1-GFP 

WT 

Fig. 2.7 Decreased mitophagy in crd1Δ cells. WT and crd1Δ cells 

expressing an endogenous Idh1-GFP (A) or exogenous Idp1-GFP (B) 

were cultured in SC medium to the mid-log phase at 30˚C and shifted 

to SL for 18 hours. Cells were observed using fluorescence 

microscopy. 

A 

B 
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WT crd1Δ 

Fig. 2.8 Decreased mitophagy in crd1Δ cells expressing Idh1-

GFP. WT and crd1Δ cells carrying the GFP-tagged IDH1 gene were 

pre-cultured in SC medium to the mid-log phase at 30˚C and shifted 

to SL medium for 5, 6 or 7 hours. Aliquots were taken at the indicated 

times. Immunoblotting was done with anti-YFP antibody and the 

positions of full-length Idh1-GFP and free GFP are indicated.  
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Discussion 

In this chapter, I addressed the question of how loss of CL in the crd1Δ mutant 

affects mitophagy. My findings indicate that CL deficiency leads to decreased 

mitophagy. This conclusion is based on the findings that 1) deletion of 

autophagy/mitophagy genes exacerbated crd1Δ growth defects, 2) GFP-tagged 

mitochondria were not detected in the vacuole of crd1Δ in response to mitophagy 

induction, and 3) in crd1Δ, there was decreased level of free GFP, which is cleaved 

from Idh1-GFP after the mitochondria are delivered to the vacuole for degradation in 

response to mitophagy induction. 

The finding of decreased mitophagy seemed to contradict my preliminary finding 

that deletion of UTH1 rescued both vacuole defects and temperature sensitivity in 

crd1Δ. UTH1 was first linked to mitophagy by the finding that the uth1Δ mutant was 

resistant to rapamycin, the inducer of autophagy (Camougrand et al., 2003). This was 

further supported by the report of Kissova et al. (Kissová et al., 2004), which showed 

loss of colocalization of mitochondria and vacuole in uth1Δ after rapamycin treatment. 

However, Western analysis of degradation of mitochondria as determined by free GFP 

was not carried out in this study. More recently, Uth1p was found on the mitochondrial 

inner membrane, not in the outer membrane as previously predicted, and is 

dispensable for post-log-phase and rapamycin-induced mitophagy (Welter et al., 2013). 

Based on this recent finding, rescue of crd1Δ by deletion of UTH1 is unrelated to 

mitophagy but more likely due to rescue of cell wall biogenesis defects, as CL mutants 

exhibit defects in cell wall biogenesis and in maintenance of cell integrity (Zhong et al., 
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2005). 

Interestingly, compared to deletion of the mitophagy specific gene, deletion of 

general autophagy genes that are required in both nonselective autophagy and 

mitophagy exacerbated crd1Δ growth defects to a more severe extent.  As seen in 

Fig.2.3 A, crd1Δ is synthetically lethal with atg8Δ and atg18Δ. In contrast, crd1Δ is 

synthetically sick with atg32Δ, as seen in Fig.2.3 B. The explanation for this may be 

that CL is specifically involved in mitophagy, not nonselective autophagy. Thus, 

nonselective autophagy may function normally in crd1Δ, and damaged mitochondria 

may be delivered into vacuole for degradation as cargo in the nonselective 

autophagosome. If nonselective autophagy is also blocked by deletion of ATG8 or 

ATG18, cells will not be able to get rid of damaged mitochondria, resulting in cell death. 

If mitophagy is further impaired by deletion of ATG32, damaged mitochondria may be 

eliminated by nonselective autophagy, resulting in a sick but not lethal phenotype. 

The possibility that nonselective autophagy in crd1Δ may not be compromised 

may explain the greater increase in ATG8 gene expression in crd1Δ cells compared to 

WT as seen in Fig. 2.6. Non-optimal growth temperatures likely result in a higher rate 

of formation of aberrant mitochondria and respiratory-deficient petite mutants. 

Furthermore, yeast mitochondrial protein synthesis is more thermolabile than 

cytoplasmic protein synthesis (Walker, 1998). It has been reported that exposure to 

elevated temperature induces mitochondrial swelling (Ma et al., 2004). These factors 

may account for increased ATG8 expression and mitophagy at elevated temperature 

in WT. When CL mutants are exposed to elevated temperature, mitochondrial swelling 
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may be more pronounced than in WT cells (Ma et al., 2004). Thus, it is reasonable to 

speculate that increased ATG8 expression in crd1Δ is necessary to increase 

mitophagy in order to eliminate damaged mitochondria. Another possibility is that 

crd1Δ cells upregulate nonselective autophagy to a greater extent than WT cells to 

compensate for decreased mitophagy. 

In summary, studies in this chapter suggest that loss of CL may lead to 

decreased mitophagy, which may account at least in part for the temperature sensitivity 

of the crd1Δ mutant. Previous studies indicate that the PKC and HOG MAPK pathways 

are required for mitophagy (Mao et al., 2011). To understand the underlying mechanism 

of decreased mitophagy in crd1Δ, I carried out targeted genetic interaction analysis 

between CRD1 and the genes of the MAPK pathways, which is described in Chapter 

3. The findings in this chapter provide novel insights into the cellular functions of CL 

outside of mitochondria. 
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CHAPTER 3 

DEFECTIVE MITOPHAGY IN crd1Δ MAY RESULT FROM DECREASED MAPK 

PATHWAYS  

                             Introduction 

The studies described in Chapter Two suggest that perturbation of CL synthesis 

leads to defective mitophagy. Mitophagy is regulated by different pathways from those 

that control nonselective autophagy. Nonselective autophagy is regulated by at least 

four signaling pathways, including the Ras/cAMP-dependent protein kinase A (PKA) 

(Budovskaya et al., 2004; Zhou et al., 2009), the target of rapamycin (TOR) (Li et al., 

2012; Yorimitsu et al., 2007), Sch9 (Li et al., 2012; Yorimitsu et al., 2007) and Pho85 

pathways. Mitophagy is specifically regulated by two MAPK pathways: the PKC and 

HOG pathways (Li et al., 2012; Mao et al., 2011). The studies described in this chapter 

were undertaken to determine if these MAPK pathways are affected by the loss of CL, 

and if defective mitophagy in crd1Δ is due to altered PKC and HOG pathways.  

PKC is a MAPK pathway that regulates cell wall integrity in yeast. Cell wall 

integrity signaling is induced in response to various environmental stimuli, including 

heat stress, hypo-osmotic shock, mating pheromone, and agents that cause cell wall 

stress (Herskowitz, 1995; Levin and Errede, 1995). Wsc1p and Mid2p are plasma 

membrane sensors that trigger Pkc1p, which conveys the signal downstream to Bck1p, 

Mkk1p/ Mkk2p and Slt2p through a kinase cascade (Heinisch et al., 1999) (Fig. 3.1). 

In response to induction of mitophagy, Slt2p is dually phosphorylated on threonine and 

tyrosine residues (Mao et al., 2011). Deletion of the PKC pathway genes BCK1, 

MKK1/MKK2, and SLT2 leads to defective mitophagy, suggesting the involvement of 
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the PKC pathway in mitophagy. However, deletion of RLM1 and SWI4, genes encoding 

the downstream effectors of phosphorylated Slt2p (pSlt2p), does not alter mitophagy 

in WT cells. In addition, pSlt2p remains in the cytosol during mitophagy, suggesting 

that, other than conveying the signal downstream, pSlt2p may directly play a role in a 

relatively early stage of mitophagy (Fig. 3.1). As described in Chapter 2, mitophagy is 

inhibited in crd1Δ, but the mechanism underlying the inhibition is not understood. The 

finding that loss of PG, the precursor of CL, leads to defective activation of the PKC 

pathway (Zhong et al., 2007) provides a clue to the potential mechanism underlying 

inhibited mitophagy in crd1Δ. It is necessary to investigate if CL is required for PKC 

pathway activation and further regulation of mitophagy. 

The HOG pathway is a MAPK pathway that mediates the cellular response to 

osmotic stress. It consists of two stress sensing branches, SLN1 and SHO1 (Saito and 

Tatebayashi, 2004). While both branches are triggered by osmotic stress, only the 

SHO1 signaling is triggered by heat stress (Winkler et al., 2002). Sln1p and Sho1p are 

transmembrane osmosensors located within the plasma membrane. In response to 

osmotic stress, Sln1p conveys the signal downstream to Ypd1p, Ssk1p and 

Ssk2p/Ssk22p. In response to either osmotic or heat stress, Sho1p conveys the signal 

to Cdc42p, Ste20p and Ste11p/Ste50p. The MAPKKKs Ssk2p/Ssk22p and Ste11p 

trigger the same downstream MAPKK, Pbs2p. The MAPK Hog1p is dually 

phosphorylated by activated Pbs2p (Fig. 3.1). When Hog1p is phosphorylated, it 

translocates into the nucleus and induces transcription of up to 600 genes for cellular 

adaptation to stress, including the genes that function in the synthesis of glycerol 
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Fig. 3.1 The PKC and HOG pathways regulate different stages of 

mitophagy. Revised from Mao et al. 2011. 
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(O'Rourke and Herskowitz, 2004). Alternatively, phosphorylated Hog1p (pHog1p) 

remains in the cytosol under certain conditions, including high temperature and 

mitophagy induction (Mao et al., 2011; Winkler et al., 2002). Deletion of HOG1, PBS2 

and SSK1, leads to defective mitophagy, suggesting the involvement of the SLN1 

signaling of the HOG pathway in mitophagy. However, deletion of SKO1, HOT1 and 

SMP1, genes encoding the downstream effectors of pHog1p, does not alter mitophagy 

in WT cells (Mao et al., 2011). In addition, Hog1 is phosphorylated and remains in the 

cytosol after induction of mitophagy, suggesting that pHog1p may directly play a role 

in the cytosol at a relatively late stage of mitophagy (Fig. 3.1). As described in Chapter 

2, mitophagy is inhibited in crd1Δ. Thus, it is necessary to investigate if the HOG 

pathway is perturbed in crd1Δ. 

In the studies described in this chapter, I investigated the effect of CL deficiency 

on the HOG and PKC pathways. This study suggests that both pathways are defective 

when there is a loss of CL. Interestingly, upregulation of the PKC pathway rescues 

mitophagy in crd1Δ, indicating that decreased mitophagy in crd1Δ may result from an 

impaired PKC pathway.  

 

 

 

 

 

 



51 
 

Methods and materials 

Yeast strains and growth media 

The Saccharomyces cerevisiae strains used in this work are listed in Table 3.1. 

Yeast extract peptone dextrose (YPD) medium, synthetic complete (SC) medium, 

synthetic drop-out medium (SC ura-, SC leu-) and synthetic lactate (SL) medium were 

described in Chapter Two. YPDS medium was YPD medium supplemented with 1 M 

sorbitol. Sporulation medium contained potassium acetate (1%), glucose (0.05%), and 

essential amino acids. Solid medium contained agar (2%) for solidification. 

 

Construction of deletion mutants 

An established MATα crd1Δ mutant with CRD1 replaced by the dominant 

selectable marker URA3 was used as the query strain. Single mutants that have a 

single HOG pathway gene deleted were obtained from the deletion collection 

generated in the BY4741 (MATa) background (Research Genetics). The gene mutated 

in each strain was replaced by a kanamycin (geneticin) resistance marker (KanMX4). 

After crd1Δ was mated with each of these deletion strains, diploids were selected on 

SC met- lys- double drop-out medium, and sporulation was induced on sporulation 

medium. Double mutant meiotic progeny were selected on SC ura- drop-out medium 

with 200 mg/liter geneticin, as described (Tong et al., 2001). Growth of the double 

mutants was examined at various temperatures to identify genetic interactions 

between CRD1 and the HOG pathway genes. 
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Table 3.1 Yeast strains used in Chapter 3 

Strain/plasmid Characteristics or genotype             Source or reference 

BY4742 (WT)   

VGY1 (BY4742 crd1Δ) 

BY4742 sho1Δ 

VGY1sho1Δ 

BY4742 ssk1Δ 

VGY1ssk1Δ 

BY4742 ste50Δ 

VGY1ste50Δ 

BY4742 hog1Δ 

VGY1hog1Δ 

BY4742 WT‐IDH1‐GFP 

BY4742 crd1Δ- IDH1‐GFP 

 

pYPGK18 

pYPGK18‐PTP2 

pYPGK18‐PTP3 

pYCp50 

pYCp50‐PKC1 R398P
 

pRS352 

pRS352‐BCK1‐20 

pPS1739‐HOG1‐GFP 

MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0 

Derivative of BY4742 , crd1Δ::URA3 

Derivative of BY4742, sho1Δ:: KanMX4 

Derivative of BY4742, crd1Δ::URA3, sho1Δ::KanMX4 

Derivative of BY4742, ssk1Δ:: KanMX4 

Derivative of BY4742, crd1Δ::URA3, ssk1Δ::KanMX4 

Derivative of BY4742, ste50Δ::KanMX4 

Derivative of BY4742, crd1Δ::URA3, ste50Δ::KanMX4 

Derivative of BY4742, hog1Δ::KAN 

Derivative of BY4742, crd1Δ::URA3, hog1Δ::KanMX4 

Derivative of BY4742, in which IDH1 gene is chromosomally tagged with GFP 

Derivative of BY4742 crd1Δ::KanMX4,  in which  IDH1 gene  is chromosomally 

tagged with GFP 

2μm, LEU2 

Derivative of pYPGK18, expresses PTP2 from PGK1 promoter 

Derivative of pYPGK18, expresses PTP3 from PGK1 promoter 

CEN, URA3 

Derivative of pYCp50, expresses PKC1 R398P from PGK1 promoter 

2μm, URA3 

Derivative of pRS352, expresses BCK1‐20 from PGK1 promoter 

CEN, URA3, HOG1‐GFP 

  Euroscarf a 

(Gohil et al., 2005) 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

  This study 

 

(Vaz et al., 2003) 

  This study 

  This study 

(Helliwell et al., 1998) 

(Helliwell et al., 1998)   

(Helliwell et al., 1998) 

(Helliwell et al., 1998) 

(Ferrigno et al., 1998) 
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Plasmid construction 

To construct the PTP2 overexpression plasmid, a sequence of 2250 base pairs 

that contains the entire open reading frame of PTP2 was amplified from yeast genomic 

DNA using KpnI-tagged forward primer PTP2fr-f (5’-GG 

GGTACCATTGATGGATCGCATAGCACAG-3’) and XbaI-tagged reverse primer 

PTP2fr-r (5’- CGC TCTAGA TTAACAAGGTAACGCGTTCTTTATC -3’). After being cut 

by the restriction enzyme KpnI and XbaI, the PCR product was ligated downstream of 

the PGK1 promoter on the pYPGK18 (2um, LEU2) plasmid (Fig 3.2). 

To construct the PTP3 overexpression plasmid, a sequence of 2751 base pairs 

that contains the entire open reading frame of PTP3 was amplified from yeast genomic 

DNA using EcoRI-tagged forward primer PTP3fr-f (5’-CCGGAATTC 

GAACATGAAGGACAGTGTAGACTGC-3’) and BamHI-tagged reverse primer PTP3fr-

r (5’-CGCGGATCCGCCTAACTATTGTGGCAATTCTTTC-3’). After being cut by the 

restriction enzyme KpnI and XbaI, the PCR product was ligated downstream of the 

PGK1 promoter on the pYPGK18 (2um, LEU2) plasmid (Fig 3.2). 

 

Single colony formation and spotting 

Single colony formation experiments were performed as described in Chapter 

Two. 

Spotting experiments were performed as follows. Cells were pre-cultured in SC 

drop-out liquid medium at 30˚C to the mid-log phase. The A550 of the cells was 

determined using a spectrometer (Beckman). Cell aliquots were centrifuged and 

pellets were resuspended in SC leu- medium adjusted to an A550 of 10 units per ml. A 
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Fig. 3.2 Construction of the pYPGK18-PTP2 and pYPGK18-PTP3 

overexpression plasmids. The detailed procedure was described 

in the ‘Methods and materials’ section. 
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100X diluted sample was added onto a hemocytometer for cell counting using light 

microscopy. Based on the cell counting result, cell aliquots were adjusted to 2x108 

cells/ml. The cell aliquots were then diluted in a 10X serial dilution. Cells were spotted 

on SC drop-out plates with the most diluted spot containing 2000 cells and the plates 

were incubated at experimental temperatures for 2 days. The appearance of visible 

growth at various temperatures was evaluated. 

 

Fluorescence and microscopic analysis 

Microscopic analysis was performed using an Olympus BX41 epifluorescence 

microscope. Images were captured by an Olympus Q-Color3 digital charge-coupled 

camera operated by QCapture2 software. All pictures were taken at 1000x 

magnification.  

The method used to detect mitophagy by monitoring the translocation of GFP-

tagged mitochondria was described in Chapter Two. The same procedure was 

performed in BY4742 WT-IDH1-GFP and crd1Δ-IDH1-GFP strains that were 

transformed with either pYcp50 empty vector or pYcp50::PKC1R398, which 

overexpresses a constitutively activated Pkc1p. 

To visualize the translocation of phosphorylated Hog1p, WT and crd1Δ cells in 

the BY4742 background were transformed with the pPS1739 plasmid, which 

expresses HOG1-GFP (kindly provided by Dr. Pamela Silver, Harvard Medical School). 

Transformants were cultured in SC ura- liquid medium and grown to an A550 of 1.0. The 

cells were treated with different conditions (39°C or 0.5 M NaCl) and observed using 
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epifluorescence microscopy using a green fluorescence filter. Translocation of 

phosphorylated Hog1p was determined by the accumulation of GFP inside the nucleus. 

 

Western blot 

Western blot analysis to detect Idh1-GFP and cleaved free GFP was described 

in Chapter Two. 

To detect Slt2p and pSlt2p by Western blot, whole cell extracts were prepared 

as previously described (Hoppins et al., 2011) with minor changes. Mid-log phase cells 

were diluted to an A550 of 0.3 and grown at 30°C or 39°C. After culture at different 

temperatures for 2 hours, cells at an A550 of 1 were collected, washed with 1 ml ice-

cold sterile water and resuspended in 1 ml 0.255 M NaOH BME buffer, which consisted 

of 0.255 M NaOH, 1% β-mercaptoethanol, and 0.86 ml sterile distilled water. The 

samples were incubated for 10 min on ice and 138 μl 72% TCA were added. The 

samples were incubated on ice for another 10 min and then pelleted by centrifugation 

at 4˚C, 15000 rpm for 10 min. The pellets were washed once with 500 μl of ice-cold 

acetone, spun down at 4˚C, 15000 rpm for 5 min and then air-dried at room 

temperature. The air-dried cell pellets were resuspended in 50 μl MURB buffer, which 

consisted of 100 mM MES (PH 7.0), 1% SDS, 3 M urea, 10% β–ME and 35 μl ddH2O. 

9 μl of each sample were mixed with 3 μl 4X loading dye (80% bromophenol blue and 

20% β-mercaptoethanol) and loaded into a 10% SDS-polyacrylamide gel for 

electrophoresis. The transferring and blotting steps were described in Chapter Two. 
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The primary and secondary antibodies used to recognize dually phosphorylated pSlt2p 

and total Slt2p are listed in Table 3.2.  

To detect Hog1p and pHog1p by Western blot, whole cell extracts were prepared 

as described (Li et al., 2012). The primary and secondary antibodies used to recognize 

phosphorylated pHog1p and total Hog1p are listed in Table 3.2.  
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Table 3.2 Antibodies used in determining MAPK pathway activation 

Protein Primary Antibody Secondary Antibody     Band size 

 

pSlt2p 

 

 

 

Slt2p 

 

 

 

pHog1p 

 

 

 

Hog1p 

anti-phospho-p44/42 

MAPK (Thr202/Tyr204) 

mouse IgG  

( Cell signaling)  

                    

anti-Slt2p goat IgG 

(Santa Cruz)   

 

 

anti-phospho-p38 rabbit 

IgG (antibody 3D7; Cell 

Signaling)  

 

anti-Hog1p goat IgG 

(antibody yC-20, Santa 

Cruz) 

HRP-conjugated goat         2 bands 

anti-mouse IgG             ~ 55 kDa  

( Santa Cruz) 

      

 

HRP-conjugated donkey       1 band 

anti-goat IgG               ~ 55 kDa  

( Santa Cruz) 

 

HRP-conjugated goat          1 band 

anti-rabbit IgG              ~ 49 kDa  

( Santa Cruz) 

 

HRP-conjugated donkey       1 band 

anti-goat IgG               ~ 49 kDa  

( Santa Cruz) 
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Results 

Down-regulation of the HOG pathway exacerbates the crd1Δ growth defect. 

In Chapter Two, I reported that, under mitophagy inducing conditions, crd1Δ 

exhibited decreased mitophagy compared to WT. The HOG pathway is an upstream 

regulator of mitophagy. Deletion of the HOG pathway genes HOG1 and PBS2 leads to 

defective mitophagy (Mao et al., 2011). pHog1p appears to stay in the cytosol to play 

a role in a relatively late stage of mitophagy. Thus, I investigated the possibility that the 

HOG pathway is perturbed in crd1Δ. 

For this purpose, I determined if there is genetic interaction between CRD1 and 

HOG pathway genes. The yeast deletion collection facilitated construction of double 

mutants (Tong et al., 2001). crd1Δ was mated with sho1Δ, ssk1Δ, ste50Δ and hog1Δ 

mutants. Tetrads were obtained subsequent to sporulation, and haploids were 

acquired via tetrad dissection. Haploids containing mutations in both CRD1 and one of 

the four HOG pathway genes were selected by uracil prototrophy (crd1Δ mutation) and 

geneticin resistance (HOG pathway mutation). crd1Δ in the BY4742 background 

cannot form colonies from single cells plated on YPD at 40°C, which is a permissive 

temperature for WT (Jiang et al., 1999; Zhong et al., 2004). At 38˚C and 39˚C, crd1Δ 

cells form smaller colonies than WT. Based on this growth phenotype, genetic 

interaction was assessed at elevated temperature. Growth of double mutants at 40°C 

was considered rescue of the crd1Δ growth defect, while inability to grow at 38˚C or 

39˚C indicated exacerbation of the crd1Δ growth defect. 

While crd1Δ cells formed colonies at 39˚C, crd1Δssk1Δ did not. crd1Δste50Δ, 
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crd1Δsho1Δ, crd1Δhog1Δ did not form colonies even at 38˚C (Fig. 3.3), suggesting 

that mutants of SSK1, STE50, SHO1, and HOG1 genetically interact with crd1Δ. To 

determine if down-regulation of the HOG pathway leads to exacerbation of the crd1Δ 

growth defect, PTP2 and PTP3, which negatively regulate the HOG pathway, were 

overexpressed in crd1Δ. Serial diluted crd1Δ cells containing empty vector or 

overexpressing PTP2 or PTP3 were spotted on leu- plates and incubated at 30˚C - 

38˚C. The growth defect of crd1Δ was exacerbated by overexpression of PTP2 and 

PTP3 (Fig. 3.4). These data suggest that downregulation of the HOG pathway leads 

to exacerbation of the crd1Δ growth defect, and the HOG pathway may be perturbed 

in crd1Δ. 

 

Loss of CL leads to decreased Hog1p phosphorylation without perturbing 

activated Hog1p translocation  

Downregulation of the HOG pathway leads to exacerbation of the crd1Δ growth 

defect, suggesting that the HOG pathway may be altered in crd1Δ cells. To determine 

if Hog1p phosphorylation is perturbed in crd1Δ, I induced Hog1p activation with 0.5 M 

NaCl for 5 min, and analyzed Hog1p phosphorylation by Western blot, using a 

monoclonal antibody against dually phosphorylated p38, as described (Li et al., 2012; 

Zhou et al., 2009). Compared to WT cells, Hog1p activation was decreased in crd1Δ 

in response to osmotic stress (Fig. 3.5 A). To determine if translocation of activated 

Hog1p was perturbed in crd1Δ, WT and crd1Δ cells were transformed with the 

pPS1739 plasmid containing HOG1-GFP. The cells were cultured in SC ura- liquid  
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Fig. 3.3 Deletion of HOG pathway genes is synthetically 

lethal with CRD1 deletion. Cells were pre-cultured in liquid 

YPD at 30˚C to the mid-log phase. 200 cells of each strain 

were plated on YPD plates and incubated at 38˚C or 39˚C for 

3 days. 
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crd1Δ‐vector  crd1Δ‐PTP2 

30˚C 

36˚C 

37˚C 

38˚C 

crd1Δ‐PTP3 

Fig. 3.4 Overexpression of the negative regulators of the HOG 

pathway is synthetically lethal with CRD1 deletion. Cells were pre-

cultured in liquid SC leu- at 30˚C to the mid-log phase. Cell aliquots were 

adjusted to 2x108 cells/ml and then diluted in a 10X serial dilution. Cells 

were spotted on SC leu- plates with the most diluted spot containing 2000 

cells, and the plates were incubated at 30˚C, 36˚C, 37˚C or 38˚C for 2 

days. 
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medium to an A550 of 1 and treated with 0.5 M NaCl for 5 min. Fluorescence microscopy 

showed no difference between WT and crd1Δ in the translocation of activated Hog1p 

after NaCl treatment (Fig. 3.5 B). 

 

Heat stress does not activate Hog1p in WT and does not rescue decreased 

Hog1p phosphorylation in crd1Δ 

Both branches of the HOG pathway are triggered by activation of the 

corresponding membrane-bound sensors (Sho1p or Sln1p) in response to osmotic 

stress. A previous publication has shown that heat stress triggers the HOG pathway 

via the SHO1 but not the SLN1 signaling (Winkler A, 2002). Surprisingly, Hog1p 

phosphorylation was not observed in WT or crd1Δ in response to heat stress (Fig. 3.6 

A). The translocation of Hog1-GFP in response to heat stress was also not observed. 

WT and crd1Δ cells containing the pPS1739 plasmid were pre-cultured in liquid YPD 

at 30˚C to the mid-log phase, switched to 39˚C for 10 min and observed using 

epifluorescence microscopy. Consistent with the Western blot result, the translocation 

of Hog1-GFP into the nucleus was not observed in either WT or crd1Δ (Fig. 3.6 B), 

suggesting that heat stress does not trigger Hog1p activation or translocation in the 

BY4742 background. 

 

Upregulation of the PKC pathway rescues the crd1Δ growth defect      

As mentioned above, a previous study in yeast demonstrated that activation of 

the PKC pathway is decreased in pgs1Δ (Zhong et al., 2007). Deletion of PGS1 causes 

loss of both PG and CL. Thus, I investigated if there is decreased activation of PKC 
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GFP 

DC 

WT crd1Δ 

SC ura- 30˚C 

WT crd1Δ 

SC ura- 30˚C + 0.5M NaCl 

Fig. 3.5 (A) Decreased Hog1p phosphorylation in the crd1Δ mutant. Cells 

were pre-cultured in liquid YPD at 30˚C to the mid-log phase and treated with 

0.5 M NaCl for 5 min. Dually phosphorylated Hog1p and total Hog1p protein 

were detected by Western blot, as described previously (Zhou et al., 2009). (B) 

Translocation of activated Hog1p is not affected in crd1Δ. WT and crd1Δ 

were transformed with the plasmid pPS1739, from which Hog1p fused to GFP 

was expressed. Cells were grown in SC ura- to an A550 of 1, treated with 0.5 M 

NaCl for 5 min and then observed using epifluorescence microscopy. 

B 

p-Hog1p 

0.5 M NaCl 

WT crd1Δ 

Hog1p 

WT crd1Δ 
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p-Hog1p 

WT crd1Δ WT crd1Δ 

39˚C 30˚C 

Hog1p 
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GFP 

DC 

crd1Δ 

SC ura- 30˚C 

WT 

SC ura- 39˚C 

WT crd1Δ 

Fig. 3.6 (A) Heat stress does not trigger phosphorylation in the 

BY4742 background. Cells were pre-cultured in YPD at 30˚C to the mid-

log phase and switched to 39˚C for 5 min. Dually phosphorylated Hog1p 

and total Hog1p proteins were detected by Western blot, as described 

previously (Zhou et al., 2009).  (B) Heat stress does not induce the 

translocation of GFP tagged Hog1p into the nucleus in the BY4742 

background. WT and crd1Δ were transformed with the plasmid pPS1739, 

on which HOG1 is fused to GFP. Cells were grown in SC ura- to an A550 of 

1, switched to 39˚C, and observed using epifluorescence microscopy. 



66 
 

pathway in crd1Δ, which has PG but not CL. For this purpose, I examined the activation 

state (dual phosphorylation) of Slt2p in response to elevated temperature in isogenic 

WT, crd1Δ and pgs1Δ cells in the BY4742 background by Western blot. Because 

pgs1Δ in the FGY background requires sorbitol for survival at even 30°C, to exclude 

any influence caused by sorbitol, I also determined the Slt2p phosphorylation in pgs1Δ 

in this background, supplemented with 1 M sorbitol. Cells were pre-cultured in YPD at 

30˚C to the mid-log phase, diluted to an A550 of 0.3, and grown at 30°C or 39˚C for 2 

hours. Whole cell extracts were prepared, and dually phosphorylated Slt2p and total 

Slt2p proteins were detected by Western blot, as described in the ‘Methods and 

materials’ section. Dual phosphorylation of Slt2p in WT was detected after the cells 

were cultured for 2 hours at 39˚C. Slt2p dual phosphorylation was decreased in crd1Δ 

and almost absent in pgs1Δ and pgs1Δ supplemented with sorbitol, which indicates 

decreased PKC pathway activation in the CL mutants (Fig. 3.7 A). To upregulate the 

PKC pathway, crd1Δ was transformed with a vector expressing constitutively activated 

Bck1 (BCK1-20) or Pkc1 (PKCR398P). Consistent with the Western blot result, spotting 

experiments demonstrated that crd1Δ temperature sensitivity was rescued by plasmids 

expressing constitutively activated Bck1 or Pkc1 (Fig. 3.7 B), suggesting that 

upregulation of the PKC pathway rescues the crd1Δ growth defect.  

 

Upregulation of the PKC pathway rescues defective mitophagy in crd1Δ  

As mentioned above, activation of the PKC and HOG pathways are required for  
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mitophagy (Mao et al., 2011). Therefore, I investigated a possible causal relationship 

between decreased MAPK pathways and inhibited mitophagy in crd1Δ.  

Upregulation of the PKC pathway was achieved in WT-IDH1-GFP and crd1Δ-

IDH1- GFP strains in the BY4742 background by transfecting the cells with plasmid 

carrying the PCK1R398 gene, which encodes a constitutively activated Pkc1p. WT-

IDH1-GFP and crd1Δ-IDH1-GFP cells containing either empty vector or vector 

expressing PCK1R398 were pre-cultured in liquid SC ura- medium, harvested, washed 

twice, and resuspended in SL medium at a starting A550 of 0.5. After 18 hours, cells 

were observed using epifluorescence microscopy. As predicted, accumulation of GFP 

was observed in the vacuole of WT-IDH1-GFP cells containing either the empty vector 

or vector expressing PKC1R398P. GFP accumulation was not observed in crd1Δ-IDH1-

GFP cells containing the empty vector. Interestingly, accumulation of GFP was 

observed in crd1Δ-IDH1-GFP cells containing the vector that expresses the PKC1R398P 

gene, suggesting that mitochondria were delivered into the vacuole of this strain (Fig. 

3.8).  

The release of free GFP, a byproduct of mitophagy, was determined by Western 

blot of WT-IDH1-GFP and crd1Δ-IDH1-GFP strains containing either an empty vector 

or a vector expressing PCK1R398. Cells were cultured in liquid SC ura- medium to the 

mid-log phase at 30˚C, harvested, washed twice and resuspended in SL medium at a 

starting A550 of 0.5. After 6 hours, proteins were extracted as described previously. 

Consistent with the finding of the microscopic examination experiment, the Western 

blot showed a strong free GFP band in WT cells containing either the empty vector or  
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WT-EV WT-PKC1 crd1Δ-EV crd1Δ-PKC1 

Fig.3.8 Upregulation of the PKC pathway rescues the delivery of 

mitochondria into vacuole in crd1Δ after induction of mitophagy. 

WT-IDH1-GFP and crd1Δ-IDH1-GFP cells containing either an empty 

vector or a vector expressing PKC1R398P were cultured in SC ura- 

medium to the mid-log phase at 30˚C, washed and shifted to SL for 18 

hours. Cells were then observed with fluorescence microscopy.  

GFP 

DC 
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the vector expressing PKC1R398P, but only a very faint free GFP band in crd1Δ-IDH1-

GFP containing the empty vector, indicating that mitophagy is defective in crd1Δ cells. 

However, a strong free GFP band that is comparable to that detected in WT-ev and 

WT-PKC strains was observed in crd1Δ-IDH1-GFP cells containing  the vector that 

expresses PKC1R398P, suggesting that PKC rescued mitophagy in this strain (Fig. 3.9). 

 

The HOG pathway stimulants rescues the crd1Δ growth defect 

A constitutively activated HOG pathway causes lethality, and cannot be used to 

study mitophagy in crd1Δ. Although it is difficult to test if there is direct causal 

relationship between a decreased HOG pathway and defective mitophagy in crd1Δ, 

indirect evidence suggests that upregulating the HOG pathway may rescue the crd1Δ 

growth defect. A previous study demonstrated that the addition of 1 M sorbitol, a HOG 

pathway stimulant, rescued crd1Δ growth and vacuole defects (Chen et al., 2008b). 

Our present study established that 200 mM NaCl, another HOG pathway activator, 

similarly rescued crd1Δ temperature sensitivity (Fig. 3.10). However, more direct 

evidence is needed to conclude that a decreased HOG pathway inhibits mitophagy in 

crd1Δ. 
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0h 6h 

Idh1-GFP 

GFP 

Fig. 3.9 Upregulation of the PKC pathway rescues mitophagy in 

crd1Δ.  WT-IDH1-GFP and crd1Δ-IDH1-GFP cells containing either 

an empty vector or a vector expressing PKC1R398P were cultured in 

SC ura- medium to the mid-log phase at 30˚C, washed and shifted to 

SL. Samples were taken before shift to SL medium and at 6 hours 

post-shift. Immunoblotting was done with an anti-GFP antibody and 

the positions of full-length Idh1-GFP and free GFP are as indicated.  
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WT 

crd1Δ 

YPD+ 200 mM NaCl 

Fig. 3.10 200 mM NaCl rescues crd1Δ temperature 

sensitivity. WT and crd1Δ cells in the FGY background were 

pre-cultured in YPD liquid at 30˚C to the mid-log phase. 200 

cells were plated on a YPD plate with or without 200 mM NaCl. 

Plates were then incubated at 37.5˚C for 3 days. 

YPD 
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Discussion 

In this chapter, I addressed the hypothesis that loss of CL leads to perturbation 

of the HOG and PKC pathways, which causes defective mitophagy in crd1Δ. 

Consistent with this hypothesis, the crd1Δ mutant exhibited decreased 

phosphorylation of Hog1p in the presence of osmotic stress and decreased 

phosphorylation of Slt2p in the presence of heat stress, suggesting defective activation 

of both the HOG and PKC pathways in crd1Δ. As expected, pgs1Δ treated with heat 

stress also exhibited largely decreased phosphorylation of Slt2p. I demonstrated that 

upregulation of the PKC pathway rescued the growth defect in crd1Δ, as well as the 

accumulation of GFP labeled mitochondria and cleaved GFP in the vacuole of crd1Δ-

IDH1-GFP. This suggests that upregulation of the PKC pathway rescued mitophagy in 

crd1Δ, supporting the hypothesis that defective mitophagy in crd1Δ may be due to 

defective activation of the PKC pathway. 

Based on the previous findings that crd1Δ exhibits defective activation of the 

HOG pathway, which is required for mitophagy, upregulation of this pathway may 

rescue mitophagy in crd1Δ. However, constitutive activation of the HOG pathway 

causes cell lethality. It was previously shown that 1 M sorbitol, a HOG pathway 

stimulant, rescues the crd1Δ growth and vacuole defects (Chen et al., 2008b). In 

addition, I found that 200 mM NaCl, which also stimulates the HOG pathway, rescued 

crd1Δ temperature sensitivity (Fig. 3.8). These findings provide a clue that upregulating 

the HOG pathway may rescue the crd1Δ growth defect. However, sorbitol and NaCl 

also regulate cellular ion homeostasis, which may account for rescue of crd1Δ defects. 
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Although ion homeostasis may be perturbed in crd1Δ, it would not be the sole cause 

of the growth defect, because upregulation of the PKC pathway, which does not affect 

ion regulation, rescued the crd1Δ growth defect. 

As mentioned in Chapter Two, there was very little free GFP detected by Western 

blot in whole cell extracts from crd1Δ-IDH1-GFP after induction of mitophagy. 

Consistent with this, the phosphorylation of Slt2p and Hog1p upon induction by heat 

or osmotic stress was decreased but not fully blocked. Slt2p and Hog1p 

phosphorylation was detectable after stimulation, which might explain the faint band of 

free GFP detected in crd1Δ-IDH1-GFP cells 7 hours after mitophagy induction (Fig. 

2.8). If the HOG pathway is fully blocked, the late stage of mitophagy may be disrupted. 

Upregulation of the PKC pathway, which regulates the early stage of mitophagy, may 

not rescue mitophagy in crd1Δ under these conditions. 

Because crd1Δ is synthetically lethal with mutants of SLN1 and SHO1 branches, 

decreased activation of both branches may occur in crd1Δ. To address this possibility, 

Hog1p activation in double mutants with deletion of CRD1 and a gene from either 

branch should be compared to that of crd1Δ. For example, if sho1Δ exacerbates the 

Hog1p activation defect in crd1Δ, this would suggest that CL may be required for 

activation of SLN1 signaling. 

Translocation of pHog1p into the nucleus was not affected in crd1Δ cells. 

Surprisingly, elevated temperature did not induce phosphorylation or the translocation 

of Hog1p into the nucleus. This conflicts with the finding of Winkler, who reported that 

heat stress induced Hog1p activation (Winkler et al., 2002), but it may be explained by 
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the fact that our studies were performed using strains from different backgrounds. Heat 

activation of the HOG pathway is likely to be strain dependent. 

In summary, the studies described in this chapter suggest that the loss of CL may 

lead to decreased PKC and HOG pathways, and that a defective PKC pathway may 

account for impaired mitophagy in the crd1Δ mutant. The findings in this chapter 

provide novel insights into the cellular function of CL. It is tempting to speculate that 

upregulation of the PKC pathway may be a potential treatment strategy for BTHS 

patients.  
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CHAPTER 4 

 

 

FUTURE DIRECTIONS 

  

The studies described in this thesis provide novel insights into the cellular 

functions of CL beyond the confines of mitochondria, including mitophagy and the PKC 

and HOG pathways. While my studies showed that loss of CL leads to defective 

mitophagy, which may be due to decreased function of MAPK pathways, much remains 

to be unveiled. To elucidate the mechanism linking defective mitophagy and MAPK 

pathways in CL-deficient cells, as well as the mechanism underlying the role of CL in 

vacuolar morphology and acidification, future studies should address the following 

questions: 

 

1. Does nonselective autophagy function normally in crd1Δ ? 

In Chapter 2, I showed that CL deficiency leads to decreased levels of 

mitochondria and cleaved GFP in the vacuole, suggesting defective mitophagy in 

crd1Δ cells. However, deletion of ATG8 or ATG18, the general autophagy genes 

required for both nonselective autophagy and mitophagy, exacerbated the crd1Δ 

growth defect to a greater extent than deletion of the mitophagy specific gene, ATG32, 

(Fig. 2.3). I hypothesize that CL is specifically required for mitophagy, not for 

nonselective autophagy. Accordingly, if nonselective autophagy is unaffected in crd1Δ, 

damaged mitochondria can be enclosed in nonselective autophagosomes and 

delivered to the vacuole for degradation. However, if nonselective autophagy in crd1Δ 
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is blocked by deletion of ATG8 or ATG18, the cell will not be able to remove damaged 

mitochondria. This would result in cell death, consistent with synthetic lethality of crd1Δ 

and atg8Δ. This hypothesis is further supported by the finding that expression of ATG8 

in crd1Δ is two-fold higher than in WT at 39˚C (Fig. 2.6), suggesting that nonselective 

autophagy is upregulated in crd1Δ.   

If nonselective autophagy is functional in crd1Δ cells, stimulation by rapamycin 

might be expected to rescue crd1Δ growth defects. To test this possibility, rapamycin 

was added to YPD plates and temperature sensitivity of crd1Δ and WT in the FGY 

background was examined at 36.5°C and 37°C. WT cells were unable to grow at 

elevated temperature in the presence of rapamycin concentrations greater than 1 nM. 

0.01-1 nM rapamycin did permit growth of WT cells, while 0.5 nM rapamycin induced 

a slight rescue of crd1Δ temperature sensitivity at elevated temperature (data not 

shown). Future experiments are necessary to explain why only 0.5 nM rapamycin 

rescued crd1Δ growth defects. Rapamycin is an antifungal antibiotic, which inhibits the 

target of rapamycin complex 1 (TOR1). In addition to negatively regulating autophagy 

and transcription of stress responsive genes, TOR1 positively regulates ribosome 

biogenesis, global translation initiation, and nutrient import. Thus, the effect of 

rapamycin is like a double-edged sword: it increases autophagy while inhibiting 

ribosome biogenesis, global translation initiation, and nutrient import, resulting in cell 

lethality.  With additional growth defects, crd1Δ may be more sensitive to rapamycin 

than WT. The toxicity of 0.5-1 nM rapamycin may overwhelm the benefits of increased 

nonselective autophagy induced by these concentrations in crd1Δ. crd1Δ may tolerate 
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rapamycin less than 0.5 nM. However, levels of nonselective autophagy triggered by 

these concentrations may be inadequate to remove the majority of damaged 

mitochondria. 0.5 nM rapamycin may be an optimal concentration that can trigger 

enough nonselective autophagy to remove the majority of the damaged mitochondria. 

To definitively ascertain if nonselective autophagy is functional in CL deficient 

cells, direct monitoring of nonselective autophagy in crd1Δ is required. An engineered 

protein Pho8Δ60 has been designed for this purpose (Noda and Klionsky, 2008). 

Pho8Δ60 lacks the N-terminal transmembrane domain of Pho8 (alkaline phosphatase) 

that targets the endoplasmic reticulum; thus, the mutated protein remains in the cytosol 

and is only delivered to the vacuole through nonspecific autophagy. After entering the 

vacuole lumen, the alkaline phosphatase activity of Pho8Δ60 is proteolytically 

activated. Therefore, enzyme activity of Pho8Δ60 reflects the level of nonspecific 

autophagy. To determine if nonselective autophagy is upregulated to compensate for 

defective mitophagy in crd1Δ cells, the Pho8Δ60 assay should be performed.  

 

2. Which branch of the HOG pathway is defective in crd1Δ? 

As described in Chapter 3, loss of CL leads to decreased Hog1p phosphorylation 

without perturbing activated Hog1p translocation. However, it is not known if decreased 

Hog1p phosphorylation is due to perturbation of the SHO1 or SLN1 branch, or perhaps 

to both.  

If loss of CL leads to defective SHO1 signaling, downregulating SLN1 signaling 
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will exacerbate decreased Hog1p activation in crd1Δ. In this situation, with 0.5 M NaCl, 

crd1Δssk1Δ (SSK1 is required for SLN1 signaling) should have less Hog1p activation 

than crd1Δ, while crd1Δsho1Δ should have comparable Hog1p activation with crd1Δ. 

If loss of CL leads to defective SLN1 signaling, downregulating SHO1 signaling will 

exacerbate the decreased Hog1p activation in crd1Δ. In this situation, with 0.5 M NaCl, 

crd1Δsho1Δ should have less Hog1p activation than crd1Δ, while crd1Δssk1Δ should 

have comparable Hog1p activation with crd1Δ. However, if CL is required for activation 

of both branches, then the Hog1p activation in both crd1Δsho1Δ and crd1Δssk1Δ will 

be less than that of crd1Δ. 

In summary, comparing Hog1p activation in crd1Δ, crd1Δsho1Δ and crd1Δssk1Δ 

by Western blot should help to identify which HOG branch is defective in crd1Δ.  

 

3.   How does sorbitol rescue crd1Δ growth and vacuole defects?  

A previous study in our lab showed that 1 M sorbitol restores both growth and 

vacuole defects in crd1Δ by a mechanism not yet identified (Chen et al., 2008b). As 

shown in Fig. 4.1, 1 M sorbitol upregulates the HOG pathway at 39˚C, which might be 

the mechanism underlying rescue of crd1Δ temperature sensitivity and vacuole defects 

by sorbitol. However, the possibility that 1 M sorbitol restores the defects of crd1Δ via 

stimulating other osmotic regulatory pathways is not excluded. To address this 

question, my previous labmate Shuliang Chen and I carried out a targeted screen of 

osmotic regulatory mutants to identify those that abrogated sorbitol-mediated rescue 

of crd1Δ. Double mutants of CRD1 and the genes shown in Table 4.1 were constructed.  
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   39˚C 

Fig. 4.1 1 M sorbitol induces Hog1p activation in crd1Δ at elevated 

temperature. Cells were pre-cultured in YPD at 30˚C to mid-log phase 

and switched to 39˚C for 5 min and at the same time treated with either 

0.5 M NaCl (positive control) or 1 M sorbitol. The dually phosphorylated 

Hog1p and total Hog1p proteins were detected by Western blot, as 

described previously (Zhou et al., 2009).   
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Failure of sorbitol to rescue the double mutant indicated that the query gene is required 

for sorbitol-mediated rescue of crd1Δ.  

A search of the Saccharomyces Genome Database identified 57 nonessential  

genes that are involved in the HOG or other osmotic stress pathways (Table 4.1). A 

targeted synthetic genetic array (SGA) was performed as described (Zhou et al., 2009). 

Single mutants of the stress response genes were mated with crd1Δ, diploids were 

sporulated, and progeny containing mutations in both CRD1 and each of the query 

genes were selected by geneticin resistance (mutation of the query gene) and uracil 

prototrophy (CRD1 mutation). Double mutants were confirmed by PCR. 

Four of the double mutants were tested, including crd1Δanp1Δ, crd1Δptc7Δ, 

crd1Δosm1Δ and crd1Δdog2Δ. All were rescued by 1 M sorbitol at elevated 

temperature (Fig.4.2). This indicates that the corresponding genes are not required for 

sorbitol rescue. 53 double mutants remain to be tested. The screen for double mutants 

that cannot grow on YPD or YPD supplemented with 1 M sorbitol at elevated 

temperature is an interesting direction to pursue in future studies. 

 

4. What is the mechanism underlying the vacuole defects in crd1Δ ? 

A previous study in our lab found that, at elevated temperature, CL mutants 

exhibit enlarged vacuoles and loss of vacuole acidification (Chen et al., 2008b). The 

observed decrease in V-ATPase activity and proton pumping in crd1Δ may explain the 

loss of acidification of the vacuole. However, the mechanism underlying the enlarged 

vacuole morphology remains unknown. The following studies aimed to address the  
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Table 4.1. Deletion strains used in the mini SGA 

Standard name Standard name  Standard name 

 

YHR078W 

 

HKR1 

 

NBP2 

 

GRE1 

 

PTC1 

 

IZH2 

 

OSM1 

 

ANP1 

 

MSN1 

 

GLO1 

 

RVS161 

 

SKN7 

 

STE50 

 

SHO1 

 

MPC3 

 

PCK2 

 

SIP18 

 

SMP1 

 

SKO1 

 

SSK2 

 

VAC7 

 

PTC2 

 

PBS2 

 

GRE2 

 

SSK1 

 

NHX1 

 

FIG4 

 

GON7 

 

GRE3 

 

GPD1 

 

YNL190W 

 

PAI3 

 

AGP2 

 

PTP3 

 

PTP2 

 

HIR1 

 

RRD2 

 

YJL144W 

 

POR1 

 

YPR1 

 

PTC7 

 

HSP12 

 

PPZ2 

 

PPZ1 

 

YML131W 

 

PTC3 

 

ZNF1 

 

DOG2 

 

MSB2 

 

POR2 

 

HOT1 

 

AQY2 

 

RVS167 

 

STE11 

 

YAR1 

 

STL1 

 

GPP1 
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crd1Δ crd1Δosm1Δ crd1Δptc7Δ crd1Δanp1Δ crd1Δdog2Δ 

YPDS 

YPD 

Fig. 4.2 Deletion of ANP1, PTC7, OSM1 or DOG2 does not 

abrogate the rescue of crd1Δ temperature sensitivity by 

sorbitol. Cells were pre-cultured in liquid YPD at 30˚C to the 

mid-log phase. Approximately 200 cells of each strain were 

plated on YPD or YPDS plates and incubated at 39.5°C for 3 

days. 
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potential mechanism of vacuole morphology defects in crd1Δ. 

 

4.1 Increased nonselective autophagy may not be the cause of vacuole 

enlargement 

As described in Chapter 2, elevated temperature triggers increased expression 

of the general autophagy gene, ATG8, in both crd1Δ and WT (Fig. 2.6). In addition, at 

39°C, ATG8 expression is two-fold greater in crd1Δ than in WT. Although mitophagy is 

defective in crd1Δ, nonselective autophagy may not be affected, as discussed in 

Chapter 2. Because autophagy is the source of a large influx of lipid membrane and 

cellular contents to the vacuole (Baba M et al., 1994; Baba et al., 1995; Takeshige K 

et al., 1992), it is reasonable to speculate that increased nonselective autophagy may 

be the cause of vacuole enlargement in crd1Δ. 

If enlargement of the vacuole in crd1Δ at elevated temperature is due to 

increased nonselective autophagy, deletion of the nonselective autophagy genes 

should rescue the vacuole morphology defect of crd1Δ. To address this possibility, the 

effect of deleting nonselective autophagy genes on vacuole morphology of crd1Δ cells 

was determined. As seen in Fig. 4.3, crd1Δatg8Δ exhibited enlarged vacuoles similar 

to crd1Δ, indicating that blocking nonselective autophagy does not rescue the vacuole 

enlargement triggered by elevated temperature in crd1Δ. 

In addition, if increased nonselective autophagy causes vacuole enlargement, 

triggering nonselective autophagy should lead to enlarged vacuoles in WT and crd1Δ 

at optimal temperature. To address this hypothesis, rapamycin, a stimulant of  
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WT atg8Δ crd1Δ crd1Δatg8Δ 

FM4-64 

DIC 

Fig. 4.3 Deletion of ATG8 does not rescue the vacuole 
enlargement triggered by elevated temperature in crd1Δ. 

Cells were pre-cultured at 30 ℃ to the early log phase and 

then transferred to 37℃  at a starting A550 of 0.5 for 8h. FM4-
64 staining was performed and cells were observed using 
fluorescence microscopy for vacuole morphology. 
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nonselective autophagy, was used to trigger nonselective autophagy in WT and crd1Δ 

at 30°C. FM 4-64 staining was performed to observe vacuole morphology. As seen in 

Fig. 4.4, both crd1Δ and WT exhibited enlarged vacuoles, raising the possibility that 

nonselective autophagy triggered by rapamycin results in enlarged vacuoles in even 

WT. However, rapamycin has downstream effects other than autophagy. If the vacuole 

enlargement triggered by rapamycin in crd1Δ and WT was due to increased 

nonselective autophagy, but not to other downstream effects of rapamycin, deletion of 

the nonselective autophagy genes in these strains should rescue vacuole morphology. 

However, with rapamycin, atg8Δ and crd1Δatg8Δ exhibited enlarged vacuoles similar 

to that in crd1Δ and WT, indicating that blocking autophagy does not rescue vacuole 

enlargement triggered by rapamycin. Thus, the vacuole enlargement induced by 

rapamycin is probably not due to increased nonselective autophagy. In addition to 

triggering nonselective autophagy via the TOR1 pathway (Li et al., 2012; Yorimitsu et 

al., 2007), rapamycin may be involved in other cellular processes that regulate vacuole 

size. 

 

4.2 Is the vacuole defect caused by perturbation of the FAB pathway in crd1Δ ? 

The FAB pathway regulates the synthesis of phosphatidylinositol 3-phosphate 

(PI3P) and phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), which affects the size 

and acidification of the vacuole. Interestingly, the fab1Δ mutant, in which PI(3,5)P2 is 

undetectable, displays growth and vacuole defects that are similar to those in crd1Δ, 

including decreased growth at elevated temperature, vacuole enlargement and loss of  
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WT atg8Δ crd1Δ crd1Δatg8Δ 

FM4-64 

DIC 

Fig. 4.4 Rapamycin triggers enlargement of vacuoles in both WT 
and crd1Δ, which is not rescued by deletion of ATG8. Cells were 

pre-cultured at 30 ℃ to the early log phase and then transferred to 

medium containing 10nM rapamycin at a starting A550 of 0.5 for 8h. 
FM4-64 staining was performed and cells were observed using 
fluorescence microscopy for vacuole morphology.   
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vacuole acidification (Bonangelino et al., 2002; Gary et al., 1998; Yamamoto et al., 

1995). Thus, Chen et al. suggested that perturbation of the FAB pathway in CL 

deficient cells may explain the vacuole defects. Chen determined that mRNA levels of 

the FAB pathway genes were not affected in crd1Δ cells (Chen et al., 2008b). However, 

FAB1 is not transcriptionally regulated (Gary et al., 1998). Therefore, non-

transcriptional regulation of the FAB pathway may be defective in crd1Δ. Further 

studies are necessary to address this possibility. 

 

4.2.1 The FAB pathway 

As shown in Fig. 4.5, the first step of the FAB pathway is the synthesis of PI3P 

from PI, catalyzed by phosphatidylinositol (PI) 3-kinase, Vps34p (Auger et al., 1989; 

Slessareva et al., 2006). Fab1p, which localizes to the vacuole membrane, catalyzes 

the second step, converting vacuolar PI3P to PI(3,5)P2 (Dove et al., 2002; Gary et al., 

1998; Yamamoto et al., 1995). The reverse reaction to dephosphorylate PI(3,5)P2 to 

PI3P is catalyzed by PI(3,5)P2 phosphatase, Fig4p (Rudge et al., 2004), which is also 

needed for maximum function of Fab1p (Duex et al., 2006). Fab1p can be activated by 

Vac7p and Vac14p (Bonangelino et al., 1997; Duex et al., 2006; Gary et al., 2002), the 

latter of which is physically associated with Fig4p (Duex et al., 2006). Atg18p 

negatively regulates Vac7p (Efe et al., 2005). This regulatory pathway controls levels 

of PI(3,5)P2, which affect vacuole size and acidification. It is known that hyperosmotic 

stress leads to increased PI(3,5)P2, resulting in shrunken and fragmented vacuoles 

(Bonangelino et al., 2002; Dove et al., 1997), while loss of PI(3,5)P2 by deletion of  
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Fig. 4.5 The FAB pathway and its regulation. Revised from 

Efe et al., 2005.  
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FAB1 leads to enlarged vacuoles (Gary et al., 1998; Odorizzi et al., 1998). 

 

4.2.2 Is the FAB pathway perturbed in crd1Δ ? 

To determine if there is perturbation of the FAB pathway in crd1Δ, I assessed 

genetic interaction between crd1Δ and fig4Δ, because Fig4p is essential for both 

synthesis and turn over of PI(3,5)P2. If the FAB pathway in crd1Δ is perturbed, no 

matter whether there is altered synthesis of PI(3,5)P2, or altered turn-over of PI(3,5)P2, 

I should see genetic interaction between FIG4 and CRD1. The ability of single cells to 

form colonies was observed, using our lab generated crd1Δfig4Δ, fig4Δ, crd1Δ and WT 

strains in the FGY background. As shown in Fig. 4.6, deletion of FIG4 partially rescued 

the crd1Δ growth defect at 37.5°C, suggesting that the FAB pathway may be perturbed 

in crd1Δ. Levels of PI(3,5)P2 may be decreased, and deletion of FIG4 may rescue the 

growth defects of crd1Δ by blocking the dephosphorylation of PI(3,5)P2.  

 

4.2.3  PI3P and PI(3,5)P2 are localized normally on the vacuole membrane of crd1Δ. 

The findings described in section 4.2.2 provided a clue that the growth and 

vacuole defects in crd1Δ may be due to perturbation of the FAB pathway. Thus, it was 

necessary to determine if PI3P and PI(3,5)P2 on the vacuole membrane of crd1Δ are 

decreased. 

To directly observe if there is loss of PI3P or PI(3,5)P2 on the vacuole membrane, 

both crd1Δ and WT cells were transformed with the pRS415-GFP-FYVE and pRS415-

GFP-ATG18 plasmids (kindly provided by Rania Deranieh), while fab1Δ containing the  
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crd1Δ  

crd1Δfig4Δ fig4Δ 

WT 

Fig. 4.6 Deletion of FIG4 partially rescues crd1Δ 

temperature sensitivity. Cells were pre-cultured in liquid 

YPD at 30˚C to the mid-log phase. Approximately 200 cells of 

each strain were plated on YPD plates and incubated at 

37.5°C for 3 days. 
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pRS415-GFP-ATG18 plasmid (kindly provided by Rania Deranieh) was used as a 

negative control. The pRS415-GFP-FYVE plasmid expresses a protein in which GFP 

is fused to the FYVE zinc finger domain. Binding of the FYVE domain of this probe to 

PI3P enables the monitoring of PI3P intracellular localization. The pRS415-GFP-

ATG18 plasmid expresses a PI(3,5)P2 specific fluorescent lipid-associated reporter 

(FLARE), on which GFP is fused to the PI(3,5)P2 binding domain of Atg18p. At elevated 

temperature, PI3P and PI(3,5)P2 vacuolar localization in crd1Δ was similar to that of 

WT (Fig 4.7). In contrast, there is a loss of PI(3,5)P2 on the vacuole membrane in fab1Δ 

(Fig 4.8), suggesting that loss of vacuolar PI(3,5)P2 may be the cause of the vacuole 

defects in fab1Δ but not crd1Δ. However, normal PI3P and PI(3,5)P2 vacuole 

localization does not exclude the possibility that PI(3,5)P2 levels are slightly decreased 

in crd1Δ, which would not be discernible by comparison of fluorescence intensity. 

Analysis of PI3P and PI(3,5)P2 levels by HPLC would be required to conclusively show 

altered FAB pathway function. 

 

4.2.4 Are protein levels of the FAB pathway regulators altered in crd1Δ ? 

Although overexpression of FAB1 did not increase PI(3,5)P2 levels (Gary et al., 

1998), overexpression of FAB1 suppressed the vacuole defects in vac14Δ (Dove et 

al., 2002). This finding suggests that, other than regulating synthesis of PI(3,5)P2, 

Fab1p also directly controls vacuole size and acidification by a mechanism still unkown. 

Thus, the protein levels of the FAB pathway regulators are also important for vacuole 

morphology and acidification. Although Chen showed that the mRNA levels of FAB1,  
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WT crd1Δ 

Fig. 4.7 crd1Δ exhibits normal PI3P localization at the vacuolar 

membrane. Cells were pre-cultured at 30 ℃  to the early log 

phase and then transferred to 37℃  at a starting A550 of 0.5 for 8h. 
PI3P localization was then observed using fluorescence 
microscopy.   
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WT crd1Δ fab1Δ 

Fig. 4.8 Normal vacuolar localization of PI(3,5)P2 in crd1Δ. 

Cells were pre-cultured at 30℃ to the early log phase and then 

transferred to 37℃  at a starting A550 of 0.5 for 8h. Cells were 
then observed using fluorescence microscopy to determine 
PI(3,5)P2 localization. 

Phase Contrast 

GFP 
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VAC7, VAC14, VPS15, VPS34, FIG4, and ATG18 were not affected in crd1Δ cells, the 

protein levels were not examined (Chen et al., 2008b). 

The optimal way to address this question is to detect the protein levels of these 

regulators by Western blot. However, primary antibodies against these proteins are not 

commercially available. Thus, I employed an indirect approach to address this question. 

If overexpression of FAB1 or VAC7 suppresses the vacuole defects in crd1Δ, it 

suggests that Fab1p or Vac7p protein levels may be decreased in the mutant, which 

may account for the vacuole defects. crd1Δ in the BY4742 background was 

transformed with vectors expressing either FAB1 or VAC7  (or empty pYPGK18 

vector as a negative control), plated on leu- plates, and incubated at 30⁰C or 38⁰C. The 

ability of single cells to form colonies was observed. Overexpression of FAB1 and 

VAC7 in crd1Δ did not rescue the growth defects of crd1Δ (Fig 4.9), indicating that 

Fab1p and Vac7p protein levels may be unaltered in crd1Δ. However, it is possible 

that there is targeted degradation of the FAB1 and VAC7 mRNA in crd1Δ, resulting in 

not only degradation of endogenous FAB1 and VAC7 mRNA, but also FAB1 and VAC7 

mRNA that is expressed from the overexpression vector. 

To definitively ascertain if protein levels of FAB pathway regulators are altered in 

CL deficient cells, Western blot detections of these proteins are required. Because the 

primary antibodies against these proteins are not commercially available, an 

alternative approach is to tag each FAB pathway regulator with the hemagglutinin (HA) 

tag to enable the detection of these proteins by Western blot.  
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38℃ 30℃ 

crd1Δ-vec 

crd1Δ-FAB1 

crd1Δ-VAC7 

Fig. 4.9 Overexpression of FAB1 and VAC7 does not rescue crd1Δ 

temperature sensitivity. Cells were pre-cultured in liquid SC leu- at 

30˚C to the mid-log phase. Approximately 200 cells of each strain were 

plated on SC leu- plates and incubated at 38°C for 3 days. 
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4.3 Are the vacuole defects in crd1Δ caused by perturbation of the Ena1 Na+-

ATPase exporter? 

Vacuole size and acidification are regulated by PI(3,5)P2, as well as ion pumps 

and channels presented in the vacuole membrane. These include the H+-Ca2+ 

exchanger Vcx1p, the Ca2+ pump Pmc1p, the Ca2+ channel Yvc1p, the H+-Na+ 

exchanger Nhx1p, and the voltage-sensitive Cl– channel Gef1p (Bonilla and 

Cunningham, 2002; Ke et al., 2013; Li and Kane, 2009). Deletion of NHX1, but not the 

genes encoding the other pumps or channels, suppresses vacuole defects and 

temperature sensitivity of crd1Δ (Chen et al., 2008b). There is defective vacuolar V-

ATPase activity and reduced proton transport in crd1Δ, causing decreased intra-

vacuolar H+ levels (Chen et al., 2008b). Deletion of NHX1 blocks the vacuolar efflux of 

H+ and influx of Na+, which may counteract the decreased vacuolar H+ level. However, 

the mechanism whereby deletion of NHX1 rescues the vacuole morphology remains 

to be elucidated. 

Because deletion of NHX1 blocks the influx of Na+ into the vacuole, it is 

reasonable to speculate that there may be excessive Na+ in the vacuole of crd1Δ. Na+ 

is sequestered in the vacuole when intracellular Na+ levels are increased (Li et al., 

2012). If there is excessive intra-vacuolar Na+ in crd1Δ, it may indicate increased 

intracellular Na+ in this strain. 

The amount of intracellular Na+ in Saccharomyces cerevisiae is tightly regulated 

by activity of the ion pumps and channels on the cell membrane. The cell membrane 

influx of Na+ is mainly induced by the Na+-K+ transporter Trk system and the non-
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specific cation channel Nsc1. Conversely, the efflux of Na+ is induced by the Na+/K+-

ATPase Ena1p and the Na+, K+/H+ antiporter Nha1p (Ke et al., 2013). Although Ena1p 

and Nha1p are both involved in cell Na+ efflux, Nha1p plays a larger role in K+ extrusion 

and cell survival under acidic conditions, while Ena1p is more involved in Na+ extrusion 

and cell survival under alkaline conditions (Jung et al., 2012). In WT cells, heat shock 

stimulates activity of the Na+-K+ pump (the Trk system) without affecting intracellular 

Na+ levels (Boonstra et al., 1984), suggesting that the efflux of Na+ may be upregulated 

to counteract stimulation of the Na+-K+ pump at elevated temperature. Thus, Na+ efflux 

is essential for cell survival under heat stress. 

 

4.3.1  Deletion of ENA1 does not exacerbate crd1Δ temperature sensitivity 

I hypothesized that Na+ efflux is defective in crd1Δ at 39˚C, resulting in increased 

intracellular Na+. To alleviate toxicity caused by increased intracellular Na+, vacuolar 

Na+ influx is increased, resulting in increased osmotic pressure and vacuole 

enlargement. To test my hypothesis, I investigated if there is genetic interaction 

between CRD1 and ENA1, which encodes the major Na+ efflux transporter. Synthetic 

lethality would suggest that Ena1p is defective in crd1Δ. A crd1Δena1Δ double mutant 

was constructed by tetrad dissection and examined for temperature sensitivity. 

Deletion of ENA1 did not exacerbate crd1Δ temperature sensitivity (Fig. 4.10), 

suggesting that Ena1p may not be defective in crd1Δ. 

 

4.3.2  Upregulation of ENA1 expression may be partially impaired in crd1Δ 
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Fig. 4.10 Deletion of ENA1 does not affect crd1Δ 

temperature sensitivity. Cells were pre-cultured in 

liquid YPD at 30˚C to the mid-log phase. Aliquots were 

adjusted to 2x108 cells/ml and then diluted in a 10X 

serial dilution. Cells were spotted on YPD plates with 

the most diluted spot containing 2000 cells, and the 

plates were incubated at 30˚C or 39˚C for 2 days. 

39˚C 

30˚C 
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Ena1p is regulated at the transcriptional level (Ke et al., 2013; Márquez JA and 

R., 1996; Platara et al., 2006). To determine if there is defective Na+ efflux in crd1Δ at 

39˚C, it is necessary to determine if ENA1 gene expression is decreased in crd1Δ 

compared to WT at 39˚C. This would suggest that Na+ efflux will be decreased, leading 

to increased intracellular Na+. WT and crd1Δ cells were incubated at either 30˚C or 

39˚C for 2 hours. ENA1 expression in these strains was determined by RT-PCR. At 

39˚C, ENA1 expression was upregulated in both WT and crd1Δ.  However, 

upregulation of ENA1 expression in crd1Δ was less than in WT (Fig. 4.11), suggesting 

that upregulation of ENA1 expression may be partially impaired in crd1Δ at elevated 

temperature. Impaired ENA1 upregulation may lead to inadequate Na+ efflux and 

accumulation of intracellular Na+, leading to vacuole enlargement.  

 

4.3.3  Overexpression of ENA1 does not rescue crd1Δ temperature sensitivity 

As seen in Fig.4.11, there may be impaired upregulation of ENA1 in crd1Δ at 

39˚C. I then determined if overexpression of ENA1 rescues crd1Δ. crd1Δ was 

transformed with a vector (pYPGK18) overexpressing ENA1, spotted on the leu- plates 

and incubated at 30˚C or 39˚C. Overexpression of ENA1 did not affect crd1Δ 

temperature sensitivity (Fig. 4.12), indicating that the growth and vacuole defects in 

crd1Δ at elevated temperature are probably not due to impaired upregulation of ENA1 

in crd1Δ. 

The findings in Section 4.3.2 and 4.3.3 are controversial. To conclusively address 

if there is increased intracellular Na+, the total Na+ level in crd1Δ at 39˚C should be  
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crd1Δ 39˚C crd1Δ 30˚C WT 30˚C WT 39˚C 

Fig. 4.11 Inadequate ENA1 upregulation in crd1Δ 

compared to WT, at elevated temperature. WT and 

crd1Δ cells were cultured in YPD medium to the mid-log 

phase at 30˚C and then incubated at either 30˚C or 39˚C 

for 2 hours. ENA1 expression was determined by RT-PCR. 
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Fig. 4.12 Overexpression of ENA1 does not rescue 

crd1Δ temperature sensitivity. Cells were pre-

cultured in liquid SC leu- at 30˚C to the mid-log phase. 

Aliquots were adjusted to 2x108 cells/ml and then 

diluted in a 10X serial dilution. Cells were spotted on 

YPD plates with the most diluted spot containing 2000 

cells, and the plates were incubated at 30˚C or 39˚C 

for 2 days. 
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directly measured by isotachophoresis (Nakamura et al., 1993), an analytical 

chemistry technique used for quantification of ionic analytes. 

 

5. Summary 

In this chapter, I suggest future experiments to elucidate how CL regulates 

mitophagy and MAPK pathways. In addition, experiments to investigate the role of CL 

in vacuole homeostasis were described, and future directions related to this work have 

been proposed. Much about CL remains to be elucidated. I encourage my junior 

labmates to continue to explore the mystery of how CL contributes to human life and 

health. 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

REFERENCES 

Aoki, Y., T. Kanki, Y. Hirota, Y. Kurihara, T. Saigusa, T. Uchiumi, and D. Kang. 2011. 

Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Molecular 

Biology of the Cell. 22:3206-3217. 

Auger, K.R., C.L. Carpenter, L.C. Cantley, and L. Varticovski. 1989. 

Phosphatidylinositol 3-kinase and its novel product, phosphatidylinositol 3-

phosphate, are present in Saccharomyces cerevisiae. Journal of Biological 

Chemistry. 264:20181-20184. 

Baba M, Takeshige K, Baba N, and O. Y. 1994. Ultrastructural analysis of the 

autophagic process in yeast: detection of autophagosomes and their 

characterization. The Journal of Cell Biology. 124:903-913. 

Baba, M., M. Osumi, and Y. Ohsumi. 1995. Anaysis of the Membrane Structures 

Involved in Autophagy in Yeast by Freeze-Replica Method. Cell Structure and 

Function. 20:465-471. 

Backues, S.K., M.A. Lynch-Day, and D.J. Klionsky. 2012. The Ume6-Sin3-Rpd3 

complex regulates ATG8 transcription to control autophagosome size. 

Autophagy. 8:1835-1836. 

Baile, M.G., M. Sathappa, Y.-W. Lu, E. Pryce, K. Whited, J.M. McCaffery, X. Han, 

N.N. Alder, and S.M. Claypool. 2014. Unremodeled and Remodeled 

Cardiolipin Are Functionally Indistinguishable in Yeast. The Journal of 

Biological Chemistry. 289:1768-1778. 

Baile, M.G., K. Whited, and S.M. Claypool. 2013. Deacylation on the matrix side of 



105 
 

the mitochondrial inner membrane regulates cardiolipin remodeling. Molecular 

Biology of the Cell. 24:2008-2020. 

Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, 

Van 't Veer-Korthof ET, Van der Harten JJ, and S.-P. MA. 1983. An X-linked 

mitochondrial disease affecting cardiac muscle, skeletal muscle and 

neutrophil leucocytes. Journal of the Neurological Sciences. 62. 

Barth, P.G., R.J. Wanders, and P. Vreken. 1999. X-linked cardioskeletal myopathy 

and neutropenia (Barth syndrome)-MIM 302060. The Journal of pediatrics. 

135:273-276. 

Beranek, A., G. Rechberger, H. Knauer, H. Wolinski, S.D. Kohlwein, and R. Leber. 

2009. Identification of a Cardiolipin-specific Phospholipase Encoded by the 

Gene CLD1 (YGR110W) in Yeast. The Journal of Biological Chemistry. 

284:11572-11578. 

Beyer K, and K. M. 1985. ADP/ATP carrier protein from beef heart mitochondria has 

high amounts of tightly bound cardiolipin, as revealed by 31P nuclear 

magnetic resonance. Biochemistry. 24:3821-3826. 

Bione, S., P. D'Adamo, E. Maestrini, A.K. Gedeon, P.A. Bolhuis, and D. Toniolo. 1996. 

A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet. 

12:385-389. 

Bochkov, V.N., O.V. Oskolkova, K.G. Birukov, A.-L. Levonen, C.J. Binder, and J. 

Stöckl. 2010. Generation and Biological Activities of Oxidized Phospholipids. 

Antioxidants & Redox Signaling. 12:1009-1059. 



106 
 

Bonangelino, C.J., N.L. Catlett, and L.S. Weisman. 1997. Vac7p, a novel vacuolar 

protein, is required for normal vacuole inheritance and morphology. Molecular 

and Cellular Biology. 17:6847-6858. 

Bonangelino, C.J., J.J. Nau, J.E. Duex, M. Brinkman, A.E. Wurmser, J.D. Gary, S.D. 

Emr, and L.S. Weisman. 2002. Osmotic stress–induced increase of 

phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the 

lipid kinase Fab1p. The Journal of Cell Biology. 156:1015-1028. 

Bonilla, M., and K.W. Cunningham. 2002. Calcium Release and Influx in Yeast: TRPC 

and VGCC Rule Another Kingdom. pe17-pe17 pp. 

Boonstra, J., D.H.J. Schamhart, S.W. de Laat, and R. van Wijk. 1984. Analysis of K+ 

and Na+ Transport and Intracellular Contents during and after Heat Shock 

and Their Role in Protein Synthesis in Rat Hepatoma Cells. Cancer 

Research. 44:955-960. 

Buckland, A.G., A.R. Kinkaid, and D.C. Wilton. 1998. Cardiolipin hydrolysis by human 

phospholipases A2: The multiple enzymatic activities of human cytosolic 

phospholipase A2. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid 

Metabolism. 1390:65-72. 

Budovskaya, Y.V., J.S. Stephan, F. Reggiori, D.J. Klionsky, and P.K. Herman. 2004. 

The Ras/cAMP-dependent Protein Kinase Signaling Pathway Regulates an 

Early Step of the Autophagy Process in Saccharomyces cerevisiae. The 

Journal of biological chemistry. 279:20663-20671. 

Camougrand, N., A. Grelaud-Coq, E. Marza, M. Priault, J.-J. Bessoule, and S. 



107 
 

Manon. 2003. The product of the UTH1 gene, required for Bax-induced cell 

death in yeast, is involved in the response to rapamycin. Molecular 

Microbiology. 47:495-506. 

Cao, J., Y. Liu, J. Lockwood, P. Burn, and Y. Shi. 2004. A Novel Cardiolipin-

remodeling Pathway Revealed by a Gene Encoding an Endoplasmic 

Reticulum-associated Acyl-CoA:Lysocardiolipin Acyltransferase (ALCAT1) in 

Mouse. Journal of Biological Chemistry. 279:31727-31734. 

Carden, D.L., and D.N. Granger. 2000. Pathophysiology of ischaemia–reperfusion 

injury. The Journal of Pathology. 190:255-266. 

Chang, S.-C., P.N. Heacock, E. Mileykovskaya, D.R. Voelker, and W. Dowhan. 

1998a. Isolation and Characterization of the Gene (CLS1) Encoding 

Cardiolipin Synthase in Saccharomyces cerevisiae. Journal of Biological 

Chemistry. 273:14933-14941. 

Chang, S.C., P.N. Heacock, E. Mileykovskaya, D.R. Voelker, and W. Dowhan. 1998b. 

Isolation and characterization of the gene (CLS1) encoding cardiolipin 

synthase in Saccharomyces cerevisiae. The Journal of biological chemistry. 

273:14933-14941. 

Chatfield, K.C., G.C. Sparagna, C.C. Sucharov, S.D. Miyamoto, J.E. Grudis, R.D. 

Sobus, J. Hijmans, and B.L. Stauffer. Dysregulation of cardiolipin biosynthesis 

in pediatric heart failure. Journal of Molecular and Cellular Cardiology. 

74:251-259. 

Chen, D., X.-Y. Zhang, and Y. Shi. 2006. Identification and functional characterization 



108 
 

of hCLS1, a human cardiolipin synthase localized in mitochondria. 

Biochemical Journal. 398:169-176. 

Chen, R., T. Tsuji, F. Ichida, K.R. Bowles, X. Yu, S. Watanabe, K. Hirono, S. Tsubata, 

Y. Hamamichi, J. Ohta, Y. Imai, N.E. Bowles, T. Miyawaki, J.A. Towbin, and c. 

Noncompaction study. 2002. Mutation analysis of the G4.5 gene in patients 

with isolated left ventricular noncompaction. Molecular genetics and 

metabolism. 77:319-325. 

Chen, S., Q. He, and M.L. Greenberg. 2008a. Loss of tafazzin in yeast leads to 

increased oxidative stress during respiratory growth. Molecular Microbiology. 

68:1061-1072. 

Chen, S., D. Liu, R.L. Finley, and M.L. Greenberg. 2010. Loss of Mitochondrial DNA 

in the Yeast Cardiolipin Synthase crd1 Mutant Leads to Up-regulation of the 

Protein Kinase Swe1p That Regulates the G2/M Transition. Journal of 

Biological Chemistry. 285:10397-10407. 

Chen, S., M. Tarsio, P.M. Kane, and M.L. Greenberg. 2008b. Cardiolipin Mediates 

Cross-Talk between Mitochondria and the Vacuole. Molecular Biology of the 

Cell. 19:5047-5058. 

Cheng, H., D.J. Mancuso, X. Jiang, S. Guan, J. Yang, K. Yang, G. Sun, R.W. Gross, 

and X. Han. 2008. Shotgun Lipidomics Reveals the Temporally Dependent, 

Highly Diversified Cardiolipin Profile in the Mammalian Brain: Temporally 

Coordinated Postnatal Diversification of Cardiolipin Molecular Species with 

Neuronal Remodeling. Biochemistry. 47:5869-5880. 



109 
 

Conboy, M.J., and M.S. Cyert. 2000. Luv1p/Rki1p/Tcs3p/Vps54p, a Yeast Protein 

That Localizes to the Late Golgi and Early Endosome, Is Required for Normal 

Vacuolar Morphology. Molecular Biology of the Cell. 11:2429-2443. 

D'Adamo, P., L. Fassone, A. Gedeon, E.A. Janssen, S. Bione, P.A. Bolhuis, P.G. 

Barth, M. Wilson, E. Haan, K.H. Orstavik, M.A. Patton, A.J. Green, E. 

Zammarchi, M.A. Donati, and D. Toniolo. 1997. The X-linked gene G4.5 is 

responsible for different infantile dilated cardiomyopathies. American journal 

of human genetics. 61:862-867. 

D'Silva, P.D., B. Schilke, W. Walter, A. Andrew, and E.A. Craig. 2003. J protein 

cochaperone of the mitochondrial inner membrane required for protein import 

into the mitochondrial matrix. Proceedings of the National Academy of 

Sciences. 100:13839-13844. 

Davey, K.M., J.S. Parboosingh, D.R. McLeod, A. Chan, R. Casey, P. Ferreira, F.F. 

Snyder, P.J. Bridge, and F.P. Bernier. 2006. Mutation of DNAJC19, a human 

homologue of yeast inner mitochondrial membrane co-chaperones, causes 

DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. 

Journal of Medical Genetics. 43:385-393. 

De Bruijn, J.H. 1966. Chemical structure and serological activity of natural and 

synthetic cardiolipin and related compounds. British Journal of Venereal 

Diseases. 42:125-128. 

Dennis, E.A., J. Cao, Y.-H. Hsu, V. Magrioti, and G. Kokotos. 2011. Phospholipase 

A(2) Enzymes: Physical Structure, Biological Function, Disease Implication, 



110 
 

Chemical Inhibition, and Therapeutic Intervention. Chemical reviews. 

111:6130-6185. 

Deprez, P., I. Baholet, S. Burlet, G. Lange, R. Amengual, B. Schoot, A. Vermond, E. 

Mandine, and D. Lesuisse. 2002. Discovery of highly potent Src SH2 binders: 

structure-activity studies and X-ray structures. Bioorganic & medicinal 

chemistry letters. 12:1291-1294. 

Dove, S.K., F.T. Cooke, M.R. Douglas, L.G. Sayers, P.J. Parker, and R.H. Michell. 

1997. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate 

synthesis. Nature. 390:187-192. 

Dove, S.K., R.K. McEwen, A. Mayes, D.C. Hughes, J.D. Beggs, and R.H. Michell. 

2002. Vac14 Controls PtdIns(3,5)P2 Synthesis and Fab1-Dependent Protein 

Trafficking to the Multivesicular Body. Current Biology. 12:885-893. 

Duex, J.E., F. Tang, and L.S. Weisman. 2006. The Vac14p–Fig4p complex acts 

independently of Vac7p and couples PI3,5P(2) synthesis and turnover. The 

Journal of Cell Biology. 172:693-704. 

Efe, J.A., R.J. Botelho, and S.D. Emr. 2005. The Fab1 phosphatidylinositol kinase 

pathway in the regulation of vacuole morphology. Current Opinion in Cell 

Biology. 17:402-408. 

Eilers, M., T. Endo, and G. Schatz. 1989. Adriamycin, a drug interacting with acidic 

phospholipids, blocks import of precursor proteins by isolated yeast 

mitochondria. Journal of Biological Chemistry. 264:2945-2950. 

Endo, T., M. Eilers, and G. Schatz. 1989. Binding of a tightly folded artificial 



111 
 

mitochondrial precursor protein to the mitochondrial outer membrane involves 

a lipid-mediated conformational change. Journal of Biological Chemistry. 

264:2951-2956. 

Endo, T., and G. Schatz. 1988. Latent membrane perturbation activity of a 

mitochondrial precursor protein is exposed by unfolding. The EMBO Journal. 

7:1153-1158. 

Farré, J.-C., A. Burkenroad, S.F. Burnett, and S. Subramani. 2013. Phosphorylation 

of mitophagy and pexophagy receptors coordinates their interaction with Atg8 

and Atg11. EMBO Reports. 14:441-449. 

Ferrari, R., C. Ceconi, S. Curello, A. Cargnoni, E. Pasini, F. De Giuli, and A. Albertini. 

1991. Role of oxygen free radicals in ischemic and reperfused myocardium. 

The American Journal of Clinical Nutrition. 53:215S-222S. 

Ferrigno, P., F. Posas, D. Koepp, H. Saito, and P.A. Silver. 1998. Regulated 

nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta 

homologs NMD5 and XPO1. The EMBO Journal. 17:5606-5614. 

Fobker, M., R. Voss, H. Reinecke, C. Crone, G. Assmann, and M. Walter. 2001. 

Accumulation of cardiolipin and lysocardiolipin in fibroblasts from Tangier 

disease subjects. FEBS Lett. 500:157-162. 

Frank, M., S. Duvezin-Caubet, S. Koob, A. Occhipinti, R. Jagasia, A. Petcherski, 

M.O. Ruonala, M. Priault, B. Salin, and A.S. Reichert. 2012. Mitophagy is 

triggered by mild oxidative stress in a mitochondrial fission dependent 

manner. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 



112 
 

1823:2297-2310. 

Fredrickson, D.S. 1964. The Inheritance of High Density Lipoprotein Deficiency 

(Tangier Disease). The Journal of clinical investigation. 43:228-236. 

Frostegård, A.G., J. Su, X. Hua, M. Vikström, U. de Faire, and J. Frostegård. 2014. 

Antibodies against Native and Oxidized Cardiolipin and Phosphatidylserine 

and Phosphorylcholine in Atherosclerosis Development. PLoS ONE. 

9:e111764. 

Fry, M., and D.E. Green. 1981. Cardiolipin requirement for electron transfer in 

complex I and III of the mitochondrial respiratory chain. Journal of Biological 

Chemistry. 256:1874-1880. 

Gary, J.D., T.K. Sato, C.J. Stefan, C.J. Bonangelino, L.S. Weisman, and S.D. Emr. 

2002. Regulation of Fab1 Phosphatidylinositol 3-Phosphate 5-Kinase 

Pathway by Vac7 Protein and Fig4, a Polyphosphoinositide Phosphatase 

Family Member. Molecular Biology of the Cell. 13:1238-1251. 

Gary, J.D., A.E. Wurmser, C.J. Bonangelino, L.S. Weisman, and S.D. Emr. 1998. 

Fab1p Is Essential for PtdIns(3)P 5-Kinase Activity and the Maintenance of 

Vacuolar Size and Membrane Homeostasis. The Journal of Cell Biology. 

143:65-79. 

Gasch, A.P., P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. 

Botstein, and P.O. Brown. 2000. Genomic Expression Programs in the 

Response of Yeast Cells to Environmental Changes. Molecular Biology of the 

Cell. 11:4241-4257. 



113 
 

Gebert, N., A.S. Joshi, S. Kutik, T. Becker, M. McKenzie, X.L. Guan, V.P. Mooga, D.A. 

Stroud, G. Kulkarni, M.R. Wenk, P. Rehling, C. Meisinger, M.T. Ryan, N. 

Wiedemann, M.L. Greenberg, and N. Pfanner. 2009. Mitochondrial cardiolipin 

involved in outer membrane protein biogenesis: implications for Barth 

syndrome. Current biology : CB. 19:2133-2139. 

Gillooly, D.J., I.C. Morrow, M. Lindsay, R. Gould, N.J. Bryant, J.-M. Gaullier, R.G. 

Parton, and H. Stenmark. 2000. Localization of phosphatidylinositol 3-

phosphate in yeast and mammalian cells. The EMBO Journal. 19:4577-4588. 

Gohil, V.M., P. Hayes, S. Matsuyama, H. Schägger, M. Schlame, and M.L. 

Greenberg. 2004. Cardiolipin Biosynthesis and Mitochondrial Respiratory 

Chain Function Are Interdependent. Journal of Biological Chemistry. 

279:42612-42618. 

Gohil, V.M., M.N. Thompson, and M.L. Greenberg. 2005. Synthetic Lethal Interaction 

of the Mitochondrial Phosphatidylethanolamine and Cardiolipin Biosynthetic 

Pathways in Saccharomyces cerevisiae. Journal of Biological Chemistry. 

280:35410-35416. 

Gu, Z., F. Valianpour, S. Chen, F.M. Vaz, G.A. Hakkaart, R.J.A. Wanders, and M.L. 

Greenberg. 2004. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a 

model for Barth syndrome. Molecular Microbiology. 51:149-158. 

Han, X., D.R. Abendschein, J.G. Kelley, and R.W. Gross. 2000. Diabetes-induced 

changes in specific lipid molecular species in rat myocardium. Biochemical 

Journal. 352:79-89. 



114 
 

Han, X., J. Yang, H. Cheng, K. Yang, D.R. Abendschein, and R.W. Gross. 2005. 

Shotgun Lipidomics Identifies Cardiolipin Depletion in Diabetic Myocardium 

Linking Altered Substrate Utilization with Mitochondrial Dysfunction†. 

Biochemistry. 44:16684-16694. 

Han, X., J. Yang, K. Yang, Z. Zhao, D.R. Abendschein, and R.W. Gross. 2007. 

Alterations in Myocardial Cardiolipin Content and Composition Occur at the 

Very Earliest Stages of Diabetes: A Shotgun Lipidomics Study. Biochemistry. 

46:6417-6428. 

He, Q., and X. Han. 2014. Cardiolipin remodeling in diabetic heart. Chemistry and 

Physics of Lipids. 179:75-81. 

Heinisch, J.J., A. Lorberg, H.-P. Schmitz, and J.J. Jacoby. 1999. The protein kinase 

C-mediated MAP kinase pathway involved in the maintenance of cellular 

integrity in Saccharomyces cerevisiae. Molecular Microbiology. 32:671-680. 

Helliwell, S.B., A. Schmidt, Y. Ohya, and M.N. Hall. 1998. The Rho1 effector Pkc1, 

but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Current 

Biology. 8:1211-1214. 

Herskowitz, I. 1995. MAP kinase pathways in yeast: For mating and more. Cell. 

80:187-197. 

Hijikata, A., K. Yura, O. Ohara, and M. Go. 2015. Structural and functional analyses 

of Barth syndrome-causing mutations and alternative splicing in the tafazzin 

acyltransferase domain. Meta Gene. 4:92-106. 

Hoppins, S., S.R. Collins, A. Cassidy-Stone, E. Hummel, R.M. DeVay, L.L. Lackner, 



115 
 

B. Westermann, M. Schuldiner, J.S. Weissman, and J. Nunnari. 2011. A 

mitochondrial-focused genetic interaction map reveals a scaffold-like complex 

required for inner membrane organization in mitochondria. The Journal of Cell 

Biology. 195:323-340. 

Hostetler, K.Y., H. van den Bosch, and L.L. van Deenen. 1972. The mechanism of 

cardiolipin biosynthesis in liver mitochondria. Biochimica et biophysica acta. 

260:507-513. 

Houtkooper, R.H., H. Akbari, H. van Lenthe, W. Kulik, R.J.A. Wanders, M. Frentzen, 

and F.M. Vaz. 2006. Identification and characterization of human cardiolipin 

synthase. FEBS Letters. 580:3059-3064. 

Houtkooper, R.H., and F.M. Vaz. 2008. Cardiolipin, the heart of mitochondrial 

metabolism. Cell. Mol. Life Sci. 65:2493-2506. 

Hsu, Y.-H., D.S. Dumlao, J. Cao, and E.A. Dennis. 2013. Assessing Phospholipase 

A(2) Activity toward Cardiolipin by Mass Spectrometry. PLoS ONE. 8:e59267. 

Jiang, F., H.S. Rizavi, and M.L. Greenberg. 1997. Cardiolipin is not essential for the 

growth of Saccharomyces cerevisiae on fermentable or non-fermentable 

carbon sources. Molecular Microbiology. 26:481-491. 

Jiang, F., M.T. Ryan, M. Schlame, M. Zhao, Z. Gu, M. Klingenberg, N. Pfanner, and 

M.L. Greenberg. 2000. Absence of Cardiolipin in the crd1 Null Mutant Results 

in Decreased Mitochondrial Membrane Potential and Reduced Mitochondrial 

Function. Journal of Biological Chemistry. 275:22387-22394. 

Joshi, A.S., J. Zhou, V.M. Gohil, S. Chen, and M.L. Greenberg. 2009. Cellular 



116 
 

functions of cardiolipin in yeast. Biochimica et biophysica acta. 1793:212-218. 

Journo, D., A. Mor, and H. Abeliovich. 2009. Aup1-mediated Regulation of Rtg3 

during Mitophagy. The Journal of Biological Chemistry. 284:35885-35895. 

Jung, K.-W., A.K. Strain, K. Nielsen, K.-H. Jung, and Y.-S. Bahn. 2012. Two cation 

transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, 

antifungal drug resistance, and virulence of Cryptococcus neoformans via the 

HOG pathway. Fungal Genetics and Biology. 49:332-345. 

Köfinger, J., Michael J. Ragusa, I.-H. Lee, G. Hummer, and James H. Hurley. 2015. 

Solution Structure of the Atg1 Complex: Implications for the Architecture of 

the Phagophore Assembly Site. Structure. 23:809-818. 

Kadenbach, B., P. Mende, H.V.J. Kolbe, I. Stipani, and F. Palmieri. 1982. The 

mitochondrial phosphate carrier has an essential requirement for cardiolipin. 

FEBS Letters. 139:109-112. 

Kalogeris, T., Y. Bao, and R.J. Korthuis. 2014. Mitochondrial reactive oxygen species: 

A double edged sword in ischemia/reperfusion vs preconditioning. Redox 

Biology. 2:702-714. 

Kanki, T., D. Kang, and D.J. Klionsky. 2009a. Monitoring mitophagy in yeast: The 

Om45-GFP processing assay. Autophagy. 5:1186-1189. 

Kanki, T., K. Wang, M. Baba, C.R. Bartholomew, M.A. Lynch-Day, Z. Du, J. Geng, K. 

Mao, Z. Yang, W.-L. Yen, and D.J. Klionsky. 2009b. A Genomic Screen for 

Yeast Mutants Defective in Selective Mitochondria Autophagy. Molecular 

Biology of the Cell. 20:4730-4738. 



117 
 

Kanki, T., K. Wang, Y. Cao, M. Baba, and D.J. Klionsky. 2009c. Atg32 Is a 

Mitochondrial Protein that Confers Selectivity during Mitophagy. 

Developmental Cell. 17:98-109. 

Ke, R., P.J. Ingram, and K. Haynes. 2013. An Integrative Model of Ion Regulation in 

Yeast. PLoS Computational Biology. 9:e1002879. 

Kirisako, T., M. Baba, N. Ishihara, K. Miyazawa, M. Ohsumi, T. Yoshimori, T. Noda, 

and Y. Ohsumi. 1999. Formation Process of Autophagosome Is Traced with 

Apg8/Aut7p in Yeast. The Journal of Cell Biology. 147:435-446. 

Kissová, I., M. Deffieu, S. Manon, and N. Camougrand. 2004. Uth1p Is Involved in 

the Autophagic Degradation of Mitochondria. Journal of Biological Chemistry. 

279:39068-39074. 

Kiššová, I.B., B. Salin, J. Schaeffer, S. Bhatia, S. Manon, and N. Camougrand. 2007. 

Selective and Non-Selective Autophagic Degradation of Mitochondria in 

Yeast. Autophagy. 3:329-336. 

Kito, M., S. Aibara, M. Kato, and T. Hata. 1972. Differences in fatty acid composition 

among phosphatidylethanolamine, phosphatidylglycerol and cardiolipin of 

Escherichia coli. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid 

Metabolism. 260:475-478. 

Kloner, R.A., K. Przyklenk, and P. Whittaker. 1989. Deleterious effects of oxygen 

radicals in ischemia/reperfusion. Resolved and unresolved issues. 

Circulation. 80:1115-1127. 

Knight, B.L. 2004. ATP-binding cassette transporter A1: Regulation of cholesterol 



118 
 

efflux. Biochemical Society Transactions. 32:124-127. 

Korytowski, W., L.V. Basova, A. Pilat, R.M. Kernstock, and A.W. Girotti. 2011. 

Permeabilization of the Mitochondrial Outer Membrane by Bax/Truncated Bid 

(tBid) Proteins as Sensitized by Cardiolipin Hydroperoxide Translocation: 

MECHANISTIC IMPLICATIONS FOR THE INTRINSIC PATHWAY OF 

OXIDATIVE APOPTOSIS. The Journal of Biological Chemistry. 286:26334-

26343. 

Koshkin, V., and M.L. Greenberg. 2002. Cardiolipin prevents rate-dependent 

uncoupling and provides osmotic stability in yeast mitochondria. Biochemical 

Journal. 364:317-322. 

Kutik, S., M. Rissler, X.L. Guan, B. Guiard, G. Shui, N. Gebert, P.N. Heacock, P. 

Rehling, W. Dowhan, M.R. Wenk, N. Pfanner, and N. Wiedemann. 2008. The 

translocator maintenance protein Tam41 is required for mitochondrial 

cardiolipin biosynthesis. The Journal of cell biology. 183:1213-1221. 

Lands, W.E.M. 1960. Metabolism of Glycerolipids: II. THE ENZYMATIC ACYLATION 

OF LYSOLECITHIN. Journal of Biological Chemistry. 235:2233-2237. 

Le, C.H., C.M. Mulligan, M.A. Routh, G.J. Bouma, M.A. Frye, K.M. Jeckel, G.C. 

Sparagna, J.M. Lynch, R.L. Moore, S.A. McCune, M. Bristow, S. Zarini, R.C. 

Murphy, and A.J. Chicco. 2014. Delta-6-desaturase Links Polyunsaturated 

Fatty Acid Metabolism With Phospholipid Remodeling and Disease 

Progression in Heart Failure. Circulation: Heart Failure. 7:172-183. 

Lesnefsky, E.J., T.J. Slabe, M.S.K. Stoll, P.E. Minkler, and C.L. Hoppel. 2001. 



119 
 

Myocardial ischemia selectively depletes cardiolipin in rabbit heart 

subsarcolemmal mitochondria. H2770-H2778 pp. 

Levin, D.E., and B. Errede. 1995. The proliferation of MAP kinase signaling pathways 

in yeast. Current Opinion in Cell Biology. 7:197-202. 

Li, S.C., T.T. Diakov, J.M. Rizzo, and P.M. Kane. 2012. Vacuolar H(+)-ATPase Works 

in Parallel with the HOG Pathway To Adapt Saccharomyces cerevisiae Cells 

to Osmotic Stress. Eukaryotic Cell. 11:282-291. 

Li, S.C., and P.M. Kane. 2009. The Yeast Lysosome-like Vacuole: Endpoint and 

Crossroads. Biochimica et biophysica acta. 1793:650-663. 

Li, X.-X., B. Tsoi, Y.-F. Li, H. Kurihara, and R.-R. He. 2015. Cardiolipin and Its 

Different Properties in Mitophagy and Apoptosis. Journal of Histochemistry & 

Cytochemistry. 

Linton, P.-J., M. Gurney, D. Sengstock, R.M. Mentzer Jr, and R.A. Gottlieb. This old 

heart: Cardiac aging and autophagy. Journal of Molecular and Cellular 

Cardiology. 

Lopez, D., K. Kobayashi, J.T. Merrill, E. Matsuura, and L.R. Lopez. 2003. IgG 

Autoantibodies against β(2)-Glycoprotein I Complexed with a Lipid Ligand 

Derived from Oxidized Low-Density Lipoprotein are Associated with Arterial 

Thrombosis in Antiphospholipid Syndrome. Clinical and Developmental 

Immunology. 10:203-211. 

Lu, B., F.Y. Xu, Y.J. Jiang, P.C. Choy, G.M. Hatch, C. Grunfeld, and K.R. Feingold. 

2006. Cloning and characterization of a cDNA encoding human cardiolipin 



120 
 

synthase (hCLS1). Journal of Lipid Research. 47:1140-1145. 

Márquez JA, and S. R. 1996. Multiple transduction pathways regulate the sodium-

extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett. 11:89-92. 

Ma, L., F.M. Vaz, Z. Gu, R.J.A. Wanders, and M.L. Greenberg. 2004. The Human 

TAZ Gene Complements Mitochondrial Dysfunction in the Yeast taz1Δ 

Mutant: IMPLICATIONS FOR BARTH SYNDROME. Journal of Biological 

Chemistry. 279:44394-44399. 

Maack, C., and B. O’Rourke. 2007. Excitation-contraction coupling and mitochondrial 

energetics. Basic research in cardiology. 102:369-392. 

Malhotra, A., Y. Xu, M. Ren, and M. Schlame. 2009. Formation of molecular species 

of mitochondrial cardiolipin. 1. A novel transacylation mechanism to shuttle 

fatty acids between sn-1 and sn-2 positions of multiple phospholipid species. 

Biochimica et biophysica acta. 1791:314-320. 

Mao, K., K. Wang, M. Zhao, T. Xu, and D.J. Klionsky. 2011. Two MAPK-signaling 

pathways are required for mitophagy in Saccharomyces cerevisiae. The 

Journal of Cell Biology. 193:755-767. 

Marai, I., M. Shechter, P. Langevitz, B. Gilburd, A. Rubenstein, E. Matssura, Y. 

Sherer, and Y. Shoenfeld. 2008. Anti-Cardiolipin Antibodies and Endothelial 

Function in Patients With Coronary Artery Disease. The American Journal of 

Cardiology. 101:1094-1097. 

McMurray, J.J.V., and M.A. Pfeffer. Heart failure. The Lancet. 365:1877-1889. 

Meldrum, D.R., J.C. Cleveland, Jr., X. Meng, B.C. Sheridan, F. Gamboni, B.S. Cain, 



121 
 

A.H. Harken, and A. Banerjee. Protein Kinase C Isoform Diversity in 

Preconditioning. Journal of Surgical Research. 69:183-187. 

Mellor, H., and P.J. Parker. 1998. The extended protein kinase C superfamily. 

Biochemical Journal. 332:281-292. 

Mileykovskaya, E., and W. Dowhan. 2014a. Cardiolipin-Dependent Formation of 

Mitochondrial Respiratory Supercomplexes. Chemistry and physics of lipids. 

179:42-48. 

Mileykovskaya, E., and W. Dowhan. 2014b. Cardiolipin-dependent formation of 

mitochondrial respiratory supercomplexes. Chemistry and Physics of Lipids. 

179:42-48. 

Mokranjac, D., M. Sichting, W. Neupert, and K. Hell. 2003. Tim14, a novel key 

component of the import motor of the TIM23 protein translocase of 

mitochondria. 4945-4956 pp. 

Moyzis, A.G., J. Sadoshima, and Å.B. Gustafsson. 2015. Mending a broken heart: 

the role of mitophagy in cardioprotection. H183-H192 pp. 

Munakata M, Stamm C, Friehs I, Zurakowski D, Cowan DB, Cao-Danh H, McGowan 

FX Jr, and d.N. PJ. 2002. Protective effects of protein kinase C during 

myocardial ischemia require activation of phosphatidyl-inositol specific 

phospholipase C. Ann Thorac Surg. 73:1236-1245. 

Nair, U., and D.J. Klionsky. 2005. Molecular Mechanisms and Regulation of Specific 

and Nonspecific Autophagy Pathways in Yeast. Journal of Biological 

Chemistry. 280:41785-41788. 



122 
 

Nakai, A., O. Yamaguchi, T. Takeda, Y. Higuchi, S. Hikoso, M. Taniike, S. Omiya, I. 

Mizote, Y. Matsumura, M. Asahi, K. Nishida, M. Hori, N. Mizushima, and K. 

Otsu. 2007. The role of autophagy in cardiomyocytes in the basal state and in 

response to hemodynamic stress. Nat Med. 13:619-624. 

Nakamura, T., Y. Liu, D. Hirata, H. Namba, S. Harada, T. Hirokawa, and T. Miyakawa. 

1993. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive 

regulation of intracellular ions in yeast is an important determinant for 

adaptation to high salt stress conditions. The EMBO Journal. 12:4063-4071. 

Narendra, D., A. Tanaka, D.-F. Suen, and R.J. Youle. 2008. Parkin is recruited 

selectively to impaired mitochondria and promotes their autophagy. The 

Journal of Cell Biology. 183:795-803. 

Nathan, D.M. 1993. Long-Term Complications of Diabetes Mellitus. New England 

Journal of Medicine. 328:1676-1685. 

Noda, T., and D.J. Klionsky. 2008. Chapter 3 The Quantitative Pho8Δ60 Assay of 

Nonspecific Autophagy. In Methods in Enzymology. Vol. Volume 451. J.K. 

Daniel, editor. Academic Press. 33-42. 

Nomoto S, Watanabe Y, Ninomiya-Tsuji J, Yang LX, Nagai Y, Kiuchi K, Hagiwara M, 

Hidaka H, Matsumoto K, and I. K. 1997. Functional analyses of mammalian 

protein kinase C isozymes in budding yeast and mammalian fibroblasts. 

Genes Cells. 2:601-614. 

Nowikovsky, K., S. Reipert, R.J. Devenish, and R.J. Schweyen. 2007. Mdm38 protein 

depletion causes loss of mitochondrial K+//H+ exchange activity, osmotic 



123 
 

swelling and mitophagy. Cell Death Differ. 14:1647-1656. 

O'Rourke, S.M., and I. Herskowitz. 2004. Unique and Redundant Roles for HOG 

MAPK Pathway Components as Revealed by Whole-Genome Expression 

Analysis. Molecular Biology of the Cell. 15:532-542. 

Odorizzi, G., M. Babst, and S.D. Emr. 1998. Fab1p PtdIns(3)P 5-Kinase Function 

Essential for Protein Sorting in the Multivesicular Body. Cell. 95:847-858. 

Okamoto, K. 2014. Organellophagy: Eliminating cellular building blocks via selective 

autophagy. The Journal of Cell Biology. 205:435-445. 

Okamoto, K., N. Kondo-Okamoto, and Y. Ohsumi. 2009. Mitochondria-Anchored 

Receptor Atg32 Mediates Degradation of Mitochondria via Selective 

Autophagy. Developmental Cell. 17:87-97. 

Oram, J.F. 2000. Tangier disease and ABCA1. Biochimica et Biophysica Acta (BBA) - 

Molecular and Cell Biology of Lipids. 1529:321-330. 

Osman, C., M. Haag, F.T. Wieland, B. Brugger, and T. Langer. 2010. A mitochondrial 

phosphatase required for cardiolipin biosynthesis: the PGP phosphatase 

Gep4. The EMBO journal. 29:1976-1987. 

Pan, H.-J., Y. Lin, Y.E. Chen, D.E. Vance, and E.H. Leiter. 2006. Adverse hepatic and 

cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: 

Relation to dysregulated phosphatidylcholine metabolism. Vascular 

Pharmacology. 45:65-71. 

Paradies, G., G. Petrosillo, M. Pistolese, N. Di Venosa, A. Federici, and F.M. 

Ruggiero. 2004. Decrease in Mitochondrial Complex I Activity in 



124 
 

Ischemic/Reperfused Rat Heart: Involvement of Reactive Oxygen Species 

and Cardiolipin. Circulation Research. 94:53-59. 

Paradies, G., G. Petrosillo, M. Pistolese, N. Di Venosa, D. Serena, and F.M. 

Ruggiero. 1999. Lipid peroxidation and alterations to oxidative metabolism in 

mitochondria isolated from rat heart subjected to ischemia and reperfusion. 

Free Radical Biology and Medicine. 27:42-50. 

Paradies, G., and F.M. Ruggiero. 1988. The effect of doxorubicin on the transport of 

pyruvate in rat-heart mitochondria. Biochemical and Biophysical Research 

Communications. 156:1302-1307. 

Petrosillo, G., F.M. Ruggiero, N. Di Venosa, and G. Paradies. 2003. Decreased 

complex III activity in mitochondria isolated from rat heart subjected to 

ischemia and reperfusion: role of reactive oxygen species and cardiolipin. The 

FASEB Journal. 

Pfeiffer, K., V. Gohil, R.A. Stuart, C. Hunte, U. Brandt, M.L. Greenberg, and H. 

Schägger. 2003. Cardiolipin Stabilizes Respiratory Chain Supercomplexes. 

Journal of Biological Chemistry. 278:52873-52880. 

Platara, M., A. Ruiz, R. Serrano, A. Palomino, F. Moreno, and J. Ariño. 2006. The 

Transcriptional Response of the Yeast Na+-ATPase ENA1 Gene to Alkaline 

Stress Involves Three Main Signaling Pathways. Journal of Biological 

Chemistry. 281:36632-36642. 

Proft, M., and K. Struhl. 2004. MAP Kinase-Mediated Stress Relief that Precedes and 

Regulates the Timing of Transcriptional Induction. Cell. 118:351-361. 



125 
 

Raingeaud, J., S. Gupta, J.S. Rogers, M. Dickens, J. Han, R.J. Ulevitch, and R.J. 

Davis. 1995. Pro-inflammatory Cytokines and Environmental Stress Cause 

p38 Mitogen-activated Protein Kinase Activation by Dual Phosphorylation on 

Tyrosine and Threonine. Journal of Biological Chemistry. 270:7420-7426. 

Ranieri, A., D. Millo, G. Di Rocco, G. Battistuzzi, C. Bortolotti, M. Borsari, and M. 

Sola. 2015. Immobilized cytochrome c bound to cardiolipin exhibits peculiar 

oxidation state-dependent axial heme ligation and catalytically reduces 

dioxygen. J Biol Inorg Chem:1-10. 

Reggiori, F., T. Shintani, U. Nair, and D.J. Klionsky. 2005. Atg9 Cycles between 

Mitochondria and the Pre-Autophagosomal Structure in Yeasts. Autophagy. 

1:101-109. 

Reggiori, F., K.A. Tucker, P.E. Stromhaug, and D.J. Klionsky. 2004. The Atg1-Atg13 

Complex Regulates Atg9 and Atg23 Retrieval Transport from the Pre-

Autophagosomal Structure. Developmental Cell. 6:79-90. 

Rehling, P., N. Pfanner, and C. Meisinger. 2003. Insertion of Hydrophobic Membrane 

Proteins into the Inner Mitochondrial Membrane—A Guided Tour. Journal of 

Molecular Biology. 326:639-657. 

Reibel, D.K., B. O'Rourke, K.A. Foster, H. Hutchinson, C.E. Uboh, and R.L. Kent. 

1986. Altered phospholipid metabolism in pressure-overload hypertrophied 

hearts. American Journal of Physiology - Heart and Circulatory Physiology 

250:H1-H6. 

Rep, M., M. Krantz, J.M. Thevelein, and S. Hohmann. 2000. The Transcriptional 



126 
 

Response of Saccharomyces cerevisiae to Osmotic Shock: Hot1p AND 

Msn2p/Msn4p ARE REQUIRED FOR THE INDUCTION OF SUBSETS OF 

HIGH OSMOLARITY GLYCEROL PATHWAY-DEPENDENT GENES. Journal 

of Biological Chemistry. 275:8290-8300. 

Richter-Dennerlein, R., A. Korwitz, M. Haag, T. Tatsuta, S. Dargazanli, M. Baker, T. 

Decker, T. Lamkemeyer, Elena I. Rugarli, and T. Langer. 2014. DNAJC19, a 

Mitochondrial Cochaperone Associated with Cardiomyopathy, Forms a 

Complex with Prohibitins to Regulate Cardiolipin Remodeling. Cell 

Metabolism. 20:158-171. 

Roberts, C., C. Raymond, C. Yamashiro, and T. Stevens. 1991. Methods for studying 

the yeast vacuole. Methods Enzymol. 194:644-661. 

Rosca, M., P. Minkler, and C.L. Hoppel. 2011. Cardiac mitochondria in heart failure: 

Normal cardiolipin profile and increased threonine phosphorylation of complex 

IV. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1807:1373-1382. 

Ross, R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. 

Nature. 362:801-809. 

Rudge, S.A., D.M. Anderson, and S.D. Emr. 2004. Vacuole Size Control: Regulation 

of PtdIns(3,5)P(2) Levels by the Vacuole-associated Vac14-Fig4 Complex, a 

PtdIns(3,5)P(2)-specific Phosphatase. Molecular Biology of the Cell. 15:24-

36. 

Rust, S., M. Rosier, H. Funke, J. Real, Z. Amoura, J.-C. Piette, J.-F. Deleuze, H.B. 

Brewer, N. Duverger, P. Denefle, and G. Assmann. 1999. Tangier disease is 



127 
 

caused by mutations in the gene encoding ATP-binding cassette transporter 

1. Nat Genet. 22:352-355. 

Sack, M.N. 2009. Type 2 Diabetes, Mitochondrial Biology and the Heart. Journal of 

molecular and cellular cardiology. 46:842-849. 

Saini-Chohan, H.K., M.G. Holmes, A.J. Chicco, W.A. Taylor, R.L. Moore, S.A. 

McCune, D.L. Hickson-Bick, G.M. Hatch, and G.C. Sparagna. 2009. 

Cardiolipin biosynthesis and remodeling enzymes are altered during 

development of heart failure. Journal of Lipid Research. 50:1600-1608. 

Saito, H., and K. Tatebayashi. 2004. Regulation of the Osmoregulatory HOG MAPK 

Cascade in Yeast. Journal of Biochemistry. 136:267-272. 

Sakoh-Nakatogawa, M., H. Kirisako, H. Nakatogawa, and Y. Ohsumi. 2015. 

Localization of Atg3 to autophagy-related membranes and its enhancement 

by the Atg8-family interacting motif to promote expansion of the membranes. 

FEBS Letters. 589:744-749. 

Schlame, M., S. Brody, and K.Y. Hostetler. 1993. Mitochondrial cardiolipin in diverse 

eukaryotes. European Journal of Biochemistry. 212:727-733. 

Schlame, M., R.I. Kelley, A. Feigenbaum, J.A. Towbin, P.M. Heerdt, T. Schieble, R.J. 

Wanders, S. DiMauro, and T.J. Blanck. 2003. Phospholipid abnormalities in 

children with Barth syndrome. Journal of the American College of Cardiology. 

42:1994-1999. 

Schlame, M., and M. Ren. 2006. Barth syndrome, a human disorder of cardiolipin 

metabolism. FEBS Letters. 580:5450-5455. 



128 
 

Schlame, M., J.A. Towbin, P.M. Heerdt, R. Jehle, S. DiMauro, and T.J. Blanck. 2002. 

Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Annals of 

neurology. 51:634-637. 

Shintani, T., and D.J. Klionsky. 2004. Autophagy in Health and Disease: A Double-

Edged Sword. Science (New York, N.Y.). 306:990-995. 

Slessareva, J.E., S.M. Routt, B. Temple, V.A. Bankaitis, and H.G. Dohlman. 2006. 

Activation of the Phosphatidylinositol 3-Kinase Vps34 by a G Protein α 

Subunit at the Endosome. Cell. 126:191-203. 

Sparagna, G.C., A.J. Chicco, R.C. Murphy, M.R. Bristow, C.A. Johnson, M.L. Rees, 

M.L. Maxey, S.A. McCune, and R.L. Moore. 2007. Loss of cardiac 

tetralinoleoyl cardiolipin in human and experimental heart failure. Journal of 

Lipid Research. 48:1559-1570. 

Steven P. Marso, and D.M. Stern. 2003. Diabetes and Cardiovascular Disease: 

Integrating Science and Clinical Medicine. Lippincott Williams & Wilkins. 

Su, J., A.G. Frostegård, X. Hua, T. Gustafsson, T. Jogestrand, I. Hafström, and J. 

Frostegård. 2013. Low Levels of Antibodies Against Oxidized but not 

Nonoxidized Cardiolipin and Phosphatidylserine Are Associated with 

Atherosclerotic Plaques in Systemic Lupus Erythematosus. The Journal of 

Rheumatology. 40:1856-1864. 

Su, J., A. Georgiades, R. Wu, T. Thulin, U. de Faire, and J. Frostegård. 2006. 

Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are 

protective factors for atherosclerosis in patients with hypertension. 



129 
 

Atherosclerosis. 188:160-166. 

Suzuki, K., T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi. 2001. The 

pre-autophagosomal structure organized by concerted functions of APG 

genes is essential for autophagosome formation. The EMBO Journal. 

20:5971-5981. 

Suzuki, K., Y. Kubota, T. Sekito, and Y. Ohsumi. 2007. Hierarchy of Atg proteins in 

pre-autophagosomal structure organization. Genes to Cells. 12:209-218. 

Türkoğlu, O., N. Barış, N. Kütükçüler, Ö. Şenarslan, S. Güneri, and G. Atilla. 2008. 

Evaluation of Serum Anti-Cardiolipin and Oxidized Low-Density Lipoprotein 

Levels in Chronic Periodontitis Patients With Essential Hypertension. Journal 

of Periodontology. 79:332-340. 

Takeshige K, Baba M, Tsuboi S, Noda T, and O. Y. 1992. Autophagy in yeast 

demonstrated with proteinase-deficient mutants and conditions for its 

induction. The Journal of Cell Biology. 119:301-311. 

Tamura, Y., Y. Harada, S. Nishikawa, K. Yamano, M. Kamiya, T. Shiota, T. Kuroda, O. 

Kuge, H. Sesaki, K. Imai, K. Tomii, and T. Endo. 2013. Tam41 is a CDP-

diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. 

Cell metabolism. 17:709-718. 

Taylor, W.A., and G.M. Hatch. 2009. Identification of the Human Mitochondrial 

Linoleoyl-coenzyme A Monolysocardiolipin Acyltransferase (MLCL AT-1). The 

Journal of Biological Chemistry. 284:30360-30371. 

Tian, H.F., J.M. Feng, and J.F. Wen. 2012. The evolution of cardiolipin biosynthesis 



130 
 

and maturation pathways and its implications for the evolution of eukaryotes. 

BMC evolutionary biology. 12:32. 

Tong, A.H.Y., M. Evangelista, A.B. Parsons, H. Xu, G.D. Bader, N. Pagé, M. 

Robinson, S. Raghibizadeh, C.W.V. Hogue, H. Bussey, B. Andrews, M. Tyers, 

and C. Boone. 2001. Systematic Genetic Analysis with Ordered Arrays of 

Yeast Deletion Mutants. Science. 294:2364-2368. 

Tuller, G., C. Hrastnik, G. Achleitner, U. Schiefthaler, F. Klein, and G. Daum. 1998. 

YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for 

aerobic growth of Saccharomyces cerevisiae. FEBS Letters. 421:15-18. 

Tuominen, A., Y.I. Miller, L.F. Hansen, Y.A. Kesäniemi, J.L. Witztum, and S. Hörkkö. 

2006. A Natural Antibody to Oxidized Cardiolipin Binds to Oxidized Low-

Density Lipoprotein, Apoptotic Cells, and Atherosclerotic Lesions. 

Arteriosclerosis, Thrombosis, and Vascular Biology. 26:2096-2102. 

Valianpour, F., R.J. Wanders, H. Overmars, P. Vreken, A.H. Van Gennip, F. Baas, B. 

Plecko, R. Santer, K. Becker, and P.G. Barth. 2002. Cardiolipin deficiency in 

X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 

302060): a study in cultured skin fibroblasts. The Journal of pediatrics. 

141:729-733. 

Vaz, F.M., R.H. Houtkooper, F. Valianpour, P.G. Barth, and R.J.A. Wanders. 2003. 

Only One Splice Variant of the Human TAZ Gene Encodes a Functional 

Protein with a Role in Cardiolipin Metabolism. Journal of Biological Chemistry. 

278:43089-43094. 



131 
 

Walker, G.M. 1998. Yeast Physiology and Biotechnology. John Wiley & Sons Ltd. 

150. 

Wan, M., X. Hua, J. Su, D. Thiagarajan, A.G. Frostegård, J.Z. Haeggström, and J. 

Frostegård. 2014. Oxidized but not native cardiolipin has pro-inflammatory 

effects, which are inhibited by Annexin A5. Atherosclerosis. 235:592-598. 

Wang, K., and D.J. Klionsky. 2011. Mitochondria removal by autophagy. Autophagy. 

7:297-300. 

Wang, N., D.L. Silver, C. Thiele, and A.R. Tall. 2001. ATP-binding cassette transporter 

A1 (ABCA1) functions as a cholesterol efflux regulatory protein. Journal of 

Biological Chemistry. 276:23742-23747. 

Welter, E., M. Montino, R. Reinhold, P. Schlotterhose, R. Krick, J. Dudek, P. Rehling, 

and M. Thumm. 2013. Uth1 is a mitochondrial inner membrane protein 

dispensable for post-log-phase and rapamycin-induced mitophagy. FEBS 

Journal. 280:4970-4982. 

Winkler, A., C. Arkind, C.P. Mattison, A. Burkholder, K. Knoche, and I. Ota. 2002. 

Heat Stress Activates the Yeast High-Osmolarity Glycerol Mitogen-Activated 

Protein Kinase Pathway, and Protein Tyrosine Phosphatases Are Essential 

under Heat Stress. Eukaryotic Cell. 1:163-173. 

Wu, X., and B.P. Tu. 2011. Selective regulation of autophagy by the Iml1-Npr2-Npr3 

complex in the absence of nitrogen starvation. Molecular Biology of the Cell. 

22:4124-4133. 

Xiao, J., J.L. Engel, J. Zhang, M.J. Chen, G. Manning, and J.E. Dixon. 2011. 



132 
 

Structural and functional analysis of PTPMT1, a phosphatase required for 

cardiolipin synthesis. Proceedings of the National Academy of Sciences of the 

United States of America. 108:11860-11865. 

Xie, Z., and D.J. Klionsky. 2007. Autophagosome formation: core machinery and 

adaptations. Nat Cell Biol. 9:1102-1109. 

Xu, Y., R.I. Kelley, T.J.J. Blanck, and M. Schlame. 2003. Remodeling of Cardiolipin by 

Phospholipid Transacylation. Journal of Biological Chemistry. 278:51380-

51385. 

Yamamoto, A., D.B. DeWald, I.V. Boronenkov, R.A. Anderson, S.D. Emr, and D. 

Koshland. 1995. Novel PI(4)P 5-kinase homologue, Fab1p, essential for 

normal vacuole function and morphology in yeast. Molecular Biology of the 

Cell. 6:525-539. 

Yamashita, A., T. Sugiura, and K. Waku. 1997. Acyltransferases and Transacylases 

Involved in Fatty Acid Remodeling of Phospholipids and Metabolism of 

Bioactive Lipids in Mammalian Cells. Journal of Biochemistry. 122:1-16. 

Ye, C., W. Lou, Y. Li, I.A. Chatzispyrou, M. Hüttemann, I. Lee, R.H. Houtkooper, F.M. 

Vaz, S. Chen, and M.L. Greenberg. 2014a. Deletion of the Cardiolipin-specific 

Phospholipase Cld1 Rescues Growth and Life Span Defects in the Tafazzin 

Mutant: IMPLICATIONS FOR BARTH SYNDROME. The Journal of Biological 

Chemistry. 289:3114-3125. 

Ye, C., Z. Shen, and M. Greenberg. 2014b. Cardiolipin remodeling: a regulatory hub 

for modulating cardiolipin metabolism and function. J Bioenerg Biomembr:1-



133 
 

11. 

Yorimitsu, T., S. Zaman, J.R. Broach, and D.J. Klionsky. 2007. Protein Kinase A and 

Sch9 Cooperatively Regulate Induction of Autophagy in Saccharomyces 

cerevisiae. Molecular Biology of the Cell. 18:4180-4189. 

Zhang, J., Z. Guan, A.N. Murphy, S.E. Wiley, G.A. Perkins, C.A. Worby, J.L. Engel, P. 

Heacock, O.K. Nguyen, J.H. Wang, C.R. Raetz, W. Dowhan, and J.E. Dixon. 

2011. Mitochondrial phosphatase PTPMT1 is essential for cardiolipin 

biosynthesis. Cell metabolism. 13:690-700. 

Zhang, M., E. Mileykovskaya, and W. Dowhan. 2002. Gluing the Respiratory Chain 

Together: CARDIOLIPIN IS REQUIRED FOR SUPERCOMPLEX 

FORMATION IN THE INNER MITOCHONDRIAL MEMBRANE. Journal of 

Biological Chemistry. 277:43553-43556. 

Zhang, M., E. Mileykovskaya, and W. Dowhan. 2005. Cardiolipin Is Essential for 

Organization of Complexes III and IV into a Supercomplex in Intact Yeast 

Mitochondria(). The Journal of biological chemistry. 280:29403-29408. 

Zhong, H., J. Lu, L. Xia, M. Zhu, and H. Yin. 2014. Formation of electrophilic 

oxidation products from mitochondrial cardiolipin in vitro and in vivo in the 

context of apoptosis and atherosclerosis. Redox Biology. 2:878-883. 

Zhong, Q., J. Gvozdenovic-Jeremic, P. Webster, J. Zhou, and M.L. Greenberg. 2005. 

Loss of Function of KRE5 Suppresses Temperature Sensitivity of Mutants 

Lacking Mitochondrial Anionic Lipids. Molecular Biology of the Cell. 16:665-

675. 



134 
 

Zhong, Q., G. Li, J. Gvozdenovic-Jeremic, and M.L. Greenberg. 2007. Up-regulation 

of the Cell Integrity Pathway in Saccharomyces cerevisiae Suppresses 

Temperature Sensitivity of the pgs1Δ Mutant. Journal of Biological Chemistry. 

282:15946-15953. 

Zhou, J., Q. Zhong, G. Li, and M.L. Greenberg. 2009. Loss of Cardiolipin Leads to 

Longevity Defects That Are Alleviated by Alterations in Stress Response 

Signaling. Journal of Biological Chemistry. 284:18106-18114. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

ABSTRACT 

CARDIOLIPIN REGULATES MITOPHAGY THROUGH THE PKC PATHWAY 

by 

ZHENI SHEN 

August 2015 

 

Advisor: Dr. Miriam L. Greenberg  

Major: Biological Sciences 

Degree: Doctor of Philosophy 

 

Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, is 

important for cardiovascular health. Perturbation of CL metabolism is implicated in 

cardiovascular disease (CVD). The link between CL and CVD may be explained by the 

physiological roles of CL in pathways that are cardioprotective, such as 

autophagy/mitophagy and the mitogen-activated protein kinase (MAPK) pathways. My 

dissertation work focuses on elucidating how CL influences mitophagy and MAPK 

pathways. 

crd1Δ was synthetically lethal/sick with the general autophagy mutants atg8Δ, 

atg18Δ and mitophagy mutant atg32Δ, suggesting that autophagy/mitophagy may be 

deficient in cells lacking CL. Microscopic examination of mitophagy revealed 

decreased translocation of GFP-tagged mitochondrial proteins into the vacuole of 

crd1Δ cells. This was confirmed by a decreased level of free GFP generated by 



136 
 

cleavage of GFP-tagged mitochondrial protein after delivery into the vacuole by 

mitophagy. These findings indicated that mitophagy is decreased in CL-deficient cells. 

Expression of ATG8 was increased in crd1Δ cells at 37˚C, suggesting that nonselective 

autophagy was upregulated to compensate for decreased mitophagy. 

The PKC and HOG MAPK pathways are known to be required for mitophagy. 

crd1Δ growth defects are exacerbated by deletion of HOG pathway genes SHO1, 

SSK1, STE50 and HOG1, and rescued by stimulating the HOG pathway and 

upregulating the PKC pathway. These findings suggested the possibility that MAPK 

pathways are defective in crd1Δ cells. Phosphorylation of Slt2p and Hog1p in response 

to stimulants was decreased in crd1Δ, consistent with defective activation of these 

MAPK pathways. Interestingly, upregulating PKC by transforming the cell with a vector 

expressing a constitutively activated Pkc1p rescued defective mitophagy in crd1Δ.  

These results suggest that the mechanism underlying defective mitophagy 

caused by loss of CL is a defective PKC pathway. 
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