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CHAPTER 1

INTRODUCTION

1.1 Motivation

This dissertation addresses a learning problem where the training set does not contain

enough information for learning because it has an inadequate supply of training instances

with a complex feature space and skewed label distributions. Learning on such a dataset

will be referred to as “Learning with Absolute Rarity”. In the absence of the evidence

required for making a conclusion (learning), our algorithms will apply transfer learning

methods to learn form different (but related) datasets or will share knowledge between a

set of small datasets in a multi-task learning paradigm. The complexity of the data and

the rarity of training examples prohibit learning (hypothesis construction) by standard

algorithms and thus our solutions present a set of “last resort” methods to be applied

to an area of research that has been identified as very important but has received little

attention.

Many problems related to medical diagnosis, fault monitoring and fraud detection have

small datasets. For example, there are 6500 rare diseases where each rare disease occurs

in fewer than 200,000 individuals in the USA. Rare diseases are a substantial public

health burden as 6 − 8% of people have a rare disease at some point of their life and

most of these diseases do not have an International Classification of Diseases (ICD) code

or even belong to a registry [41]. Improvements, even minor, from methods optimized

specifically for “Absolute Rarity” can have significant financial and social impact within

domains, such as healthcare, where only human expertise are currently applicable. Other

problems such as cancer diagnosis (benign or malignant) for minority demographics or

classification of seismic waves (earthquake or nuclear detonation) are datasets that are
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small and are also imbalanced. Imbalance is especially true in healthcare where a fraction

of the population are critical (unhealthy) patients [92] and a vast majority are healthy.

For example, in one healthcare study, breast cancer diagnosis was active in 1.66% of the

population while peripheral atherosclerosis was active in 3.16% and aneurysm in 0.74%

[59]. Even more rare diseases are active in a very low ratio of the population and include

Testis Cancer (0.046%) and male genital disease (0.01%). The imbalanced problem is

also prevalent in other rare datasets including the detection of oil spills in satellite radar

images [16] and in-flight gearbox fault monitoring [54].

“Absolute Rarity” has been identified by several prominent researchers as an interest-

ing research problem. In 2009, Haibo He and Edwardo Garcia [50] described absolute

rarity as “a relatively new research topic that requires much needed attention in the com-

munity”. Gary M Weiss highlights the problem by stating that: “obtaining additional

training data is the most direct way of addressing the problems associated with mining

rare cases” and he states that “the usage of additional data when the absolute number

of samples is rare is an approach that warrants additional research” [116]. In her 2012

book “Analysis of Rare Categories” [51], Jingrui He singles out transfer learning as a

possible future direction. She states that “The goal is to leverage the information of

rare categories in a source domain to help us understand the rare categories in the target

domain” or “to make use of known rare categories to help us detect new rare categories”.

Figure 1.1 gives an overview as to how “Absolute Rarity” fits with other machine learn-

ing domains. “Absolute Rarity” is the study of learning where training examples are

scarce and the class distribution is possibly skewed. When data is not readily available

and class labels are equally distributed, transfer learning or multi-task learning methods

can compensate for the lack of data with the addition of auxiliary data or the concate-

nation of similar tasks. Alternatively, when the classes are not equally distributed with

an abundance of training samples, imbalanced methods are applied and are less necessi-
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tated as the number of training examples increases [117]. The figure depicts how standard

machine learning techniques are applicable when data is abundant and class labels are

equally distributed. Finally, a new set of “Big Data” methods extend the machine learn-

ing domain where the efficient processing of data is of more relevance than the choice of

algorithms.

Figure 1.1: Summary of the Learning Domains.

1.2 Thesis Contribution

A dataset with the high dimensionality, small sample size and class-imbalance creates

an extremum situation for learning that we aim to address in our thesis. Learning is the

science of generating conclusions (or hypotheses) from observed or “training” data. A

training dataset serves as the evidence that supports the conclusion and thus a judgment

cannot be applied with insufficient evidence. Similarly a hypothesis cannot be generated

with an inadequate supply of data and attempting to learn with “Absolute Rarity” is a

problem that can only be tackled with the addition of a selected set of knowledge from

a secondary source of data. Extending knowledge is not outside the realm of statistical

machine learning as it is the science of applying a conclusion to unseen data from knowl-

edge assembled with some previously collected data. This can be described as a transfer

of knowledge from what has been observed to what has yet to be observed. This idea of



4

knowledge extension is actually the foundation of machine learning and we specifically

optimize algorithms for this using a bias-variance trade-off [44]. Traditional learning fails

when the evidence does not depict the task at hand (target task). For example, determin-

ing if an alien in a movie is good or bad requires a dataset of similar aliens, a task that

is complicated and not required for human learning as we can instantaneously transfer

knowledge from similar experiences. Watching a movie, there is no need to specify which

alien creature is evil, it is just instinctive to us as we take cues from what we already

know to something that we have never encountered. That knowledge comes from a mix of

unrelated experiences and each individual fuses their own set of experiences to transfer.

It takes one good act from that seemingly evil alien for us to realize that what we knew

about good and evil was negative transfer that does not apply to this specific task and

we instantly reject (or reverse) that transfer. Selecting only a subset of evidence (the

concept to what an alien should look like) and rejecting or modifying another subset of

evidence (how a good or evil alien should look like) is a type of knowledge transfer that

is fundamentally different from standard learning theory since a volume of evidence can

be instantly rejected, transformed or reversed if a very small amount of data from the

target task deviates from what was already learned.

Motivated with real-world problems, we present the first body of work to address a

problem with significant financial and social impact and we aim to extend the machine

learning domain to an area that has been been identified but never specifically addressed.

Our main contributions:

1. Chapter 2: We describe “Rare Datasets” from different views. We highlight

related fields and describe the theoretical limitations that prohibit learning. We

highlight the difficulties encountered and the need for a new set of algorithms and

evaluation methods to solve an important problem.

2. Chapter 3: We highlight the problems with current boosting methods for instance
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transfer learning algorithms and propose a novel supervised transfer learning algo-

rithm to improve upon the most popular transfer learning method.

3. Chapter 4: We extend the transfer learning algorithm proposed in Chapter 2 to

address “Absolute Rarity”. This algorithm addresses a “Rare Dataset” learning

problem with a transfer learning approach. This is the first method to specifically

address “Absolute Rarity”.

4. Chapter 5: We compare the performance of our methods with several real-world

demographics datasets. We also extend our work with an algorithm to address

“Absolute Rarity” using an oversampling based approach.

5. Chapter 6: We propose an unsupervised multi-task learning algorithm. Instead of

extending knowledge from an auxiliary domain with an ample supply of samples,

we concatenate the knowledge from several small datasets with an unsupervised

multi-clustering technique.

Figure 1.2 presents an overview of the thesis’s organization.

Figure 1.2: Thesis Organization
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CHAPTER 2

ANALYSIS OF “ABSOLUTE RARITY”

2.1 Introduction

“Absolute Rarity” refers to the problem of learning when the number of examples

associated with a a class is too small to construct a hypothesis capable of generalizing to

unseen data. It is an understudied problem because the lack of representative training

samples, especially within the minority class, impede learning. In this chapter, we:

1. Describe “Absolute Rarity” with a Label-Dependent Distribution view.

2. Highlight the difference and relation to other machine learning domains.

3. Give an overview of learning methods and evaluation metrics that are necessary for

learning with “Absolute Rarity”.

4. Analyze the issues that impede learning.

5. Propose an evaluation plot.

2.2 Label-Dependent view

To describe datasets in terms of both size and imbalance, we use the “Label-Dependent”

view in Figure 2.1. The sub-figures present a binary classification problem with normally

distributed samples within each class1 (thus we describe it as label-dependent since the

distributions are normal within each label). Figure 2.1 illustrates the different datasets

with an overview of the related machine learning fields2 that can improve learning.

1. Standard dataset: Figure 2.1-a depicts a standard dataset with a relatively equal

1The terms class and label are used interchangeably in our discussion.
2Only concepts that are relevant for “Absolute Rarity” are discussed.
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(a) Standard (b) Imbalanced

(c) Small (d) Rare

Figure 2.1: Label-Dependent view of different type of datasets.

number of samples within each class (balanced class distribution) and an adequate

number of samples for generalization. To learn from balanced datasets, researchers

assign equal importance to all classes and thus maximizing the overall arithmetic ac-

curacy is the chosen optimization objective. A variety of standard machine learning

and data mining approaches can be applied for standard datasets as such methods

serve as the foundation for the algorithms that are modified for any peculiar feature

set or distribution.

2. Imbalanced dataset: The dataset in Figure 2.1-b is a relatively-imbalanced

dataset. It is relatively-imbalanced because there is a between-class imbalance

where one class encompass the majority of the training set. The balance is relative

since both minority and majority training subsets contain adequate training exam-

ples. For example, email spam classification is a relatively imbalanced problem since
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97% (majority) of emails sent over the net are considered unwanted emails [113]

and with around 200 billion messages of spam sent per day [48], the number of

non-spam emails (minority) is also a large dataset. Researchers refer to a relatively

imbalanced dataset as an “imbalanced dataset” with the postulation that the im-

balance is relative [50]. Because the majority class overwhelms the minority class,

imbalanced learning models are biased to improve learning on the minority class

(without any consideration to the availability of training examples).

3. Small dataset: The dataset in Figure 2.1-c is a balanced dataset with a training

sample size that is inadequate for generalization. One method to determine the

number of samples required for training is to rely on the “Probably Approximately

Correct (PAC)” learning theory [58]. PAC is applied to determine if the ratio of

the dimensions of the data to the number of training samples is too high where the

hypothesis space would thus be exceedingly large. If that ratio is too high, learning

is difficult and prone to model over-fitting. PAC gives a theoretic relationship

between the number of samples needed in terms of the size of hypothesis space

and the number of dimensions. The simplest example is a binary dataset with

binary classes and d dimensions with hypothesis space of size 22d , requiring O (2n)

samples [74].

4. “Absolute Rarity”: The dataset in Figure 2.1-d is small and imbalanced and

thus its imbalance is termed as “Absolute Rarity”. Weiss [115] presents a good

overview of the problems encountered when analyzing and evaluating such datasets.

Different solutions are outlined for handling ”Absolute Rarity” with a discussion of

solutions for segmentation, bias and noise associated with these datasets. In [51],

an end-to-end investigation of rare categories in imbalanced datasets in both the

supervised and unsupervised settings is presented.



9

2.3 Methods for Learning with “Absolute Rarity”

Figure 2.2 depicts a summary of the machine learning domains that are leveraged for

different label distributions and sample sizes. The figure will demonstrate how our work

will apply the transfer learning paradigm to address the problem of “Absolute Rarity”.

This research presents the first set of methods that are specifically optimized for “Rare

Dataset” learning with a transfer and multi-task learning paradigm.

Figure 2.2: Learning methods for different datasets’ distribution and size.

1. Standard Learning: Any Standard learning method can be applied and that in-

cludes decision trees, k-means, support vector machines and others [120].

2. Imbalanced Learning: Section 2.4.1 presents an overview of the imbalanced learning

domain. Chapter 5 presents our method for balancing a dataset using an oversam-

pling approach that leverages an auxiliary domain for its minority samples.

3. Transfer Learning: Methods for transfer learning improve a learning task by lever-

aging helpful knowledge from an auxiliary task or dataset. Section 2.4.2 presents an



10

overview of transfer learning. Chapter 3 presents our supervised transfer learning

method.

4. Rare-Transfer Learning: This refers to the extension of transfer learning to “Abso-

lute Rarity”. Rare-Transfer extends transfer learning to imbalanced learning and

Chapter 4 presents the first learning method to specifically optimize for “Absolute

Rarity” with a transfer learning approach.

5. Multi-Task Learning: Given a combination of small and balanced datasets. Learn-

ing can be improved if multiple related tasks can share knowledge. Multi-task

learning aims at improving the generalization performance where several related

problems can be simultaneously optimized by utilizing the intrinsic relationships

among multiple tasks. Chapter 6 presents our unsupervised multi-task learning

method.

6. Rare-Multi-Task Learning: Extending the multi-task learning paradigm, multi-task

imbalanced datasets can be learned simultaneously to improve balanced measures.

This will be presented as a possible extension to Chapter 6.

2.4 Related Domains

2.4.1 Imbalanced Learning

Traditional learning methods maximize accuracy and thus fail to generalize to im-

balanced datasets because the generated classifiers are biased towards the majority

class [83, 50, 76, 38]. Imbalanced classification is a well-studied problem and many sam-

pling methods, cost-sensitive learning methods, kernel-based learning techniques, and

active learning methods have been proposed [49, 98]. It is typically assumed that the mi-

nority class is more important and more difficult to classify and thus the class imbalanced

algorithms and evaluations give the minority class more importance [38].
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Example: Breast Cancer Detection

In this section, an example is presented to demonstrate how an imbalanced learning

algorithm’s bias is dependent on the desired outcome. Breast cancer detection is an im-

balanced classification problem where a majority of tests are Negative (patient is healthy)

while a minority of tests are Positive (patient has breast cancer). In a dataset that is

collected from patients’ records, an overwhelming majority of data belongs to healthy

patients and a standard classifier could achieve high accuracy by mistakenly classifying

all patients as healthy. To correct for the imbalance in the data, the classifier’s output

should be biased to improve the balanced classification metrics including the Balanced

Accuracy [47], the Geometric Mean [63] and the Harmonic Mean [89].

First Step (Screening) The first step for breast cancer detection is a screening test.

Figure 2.3 illustrates an example of a classifier optimized for breast cancer screening.

Breast cancer screening tests include Mammography [99] and Optical Spectroscopy [110]

and these tests are cost effective, routine and non-invasive. Once data is collected, a con-

structed classifier should be biased to minimize false negatives since a false classification

of a healthy patient as having breast cancer triggers a diagnostic test. While it is an

undesired outcome to classify a healthy patient as cancerous, it is a preferred outcome

when compared to a false classification of a cancerous patient as healthy.

Figure 2.3: Breast Cancer Screening Test
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Last Step (Diagnostic) The last step for breast cancer detection is a diagnostic test.

Figure 2.4 presents an example of a classifier optimized for a breast cancer diagnostic

test. Breast cancer diagnostic tests include Biopsy [108] and Raman Spectroscopy [118]

and these test are generally more expensive and invasive than screening tests. Once

data is collected, a constructed classifier should be biased to minimize false positives

since a false classification of a healthy patient as having breast cancer triggers a false

surgical procedure. While it is an undesired outcome to miss the detection of cancer

in an unhealthy patient, it is considered a preferred outcome when compared to a false

classification where a healthy patient undergoes a surgical procedure to remove a non

existing tumor.

Figure 2.4: Breast Cancer Diagnostic Test

This example demonstrated how the same problem requires two different specialty clas-

sifiers that not only optimize for class imbalance but also optimize for opposing class

labels.

Evaluation Metrics

A confusion matrix [60] contains the information required for evaluating a learning

system. In a confusion matrix, a True Negative (TN) is a negative instance that is cor-

rectly classified and a True Positive (TP) is a correctly classified positive sample. On

the other hand, a False Positive (FP) is a negative instance that is incorrectly classified
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as positive and a False Negative (FN) is a positive instance that is incorrectly classified

as negative. Table 2.1 presents the confusion matrix for a two-class classifier. In con-

Table 2.1: Confusion Matrix

Predicted

Positive Negative

Actual
TP FN
FP TN

vention, the class that occupies a minor fraction of data is called the positive class, and

instances that belong to this class are called positive instances (or positive samples). The

other class that takes a majority proportion of data is called the negative class and its

instances are negative instances. This is the standard convention in imbalanced learning

methods as the domain stems from the information retrieval science. The medical domain

has a reverse label definition where the majority instance’s label is considered negative

(healthy) while the minority instance’s label is considered positive (un-healthy). Given

the definitions of positive and negative classes, we will only refer to a label as a minority

or a majority label without referencing if it is positive of negative.

Measures of Imbalance

Imbalance Ratio: The degree of imbalance in the class distribution is the ratio of the

sample size of the minority class to that of the majority class. In real-world applications,

this ratio varies drastically and can range from 1:10 to 1:1000 or even smaller [18]. A

study investigated the correlation between the degree of class imbalance within a training

dataset and the classification performance of decision trees classifiers [117]. In this study,

26 UCI [42] datasets were used to determine the range of imbalance ratios that causes a

deterioration in a classifier’s performance and it was found that there is no specific ratio.

In some applications, a drop in classification performance occurs at a ratio as low as 1:35
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while other applications can only require a ratio of around 1:10 or even higher [57].

Distance Measures: Other measure that are used in imbalance learning techniques

include distance measures such as Hellinger distance [104]. Let P and Q denote two

probability measures that are absolutely continuous with respect to a third probability

measure λ. The squared Hellinger distance is the quantity given by:

H2(P,Q) =
1

2

∫ (√
dP

dλ
−
√

dQ

dλ

)2

dλ (2.1)

Hellinger distance was used as the decision tree splitting criterion in [20] where it was

demonstrated that this measure produces, under class imbalance, decision trees that are

superior to standard decision trees such as C4.5 [86] and CART [15].

2.4.2 Transfer Learning

To overcome the theoretical bounds of learning with an inadequate number of samples,

“Transfer Learning” methods [79] can be applied to develop learning models for a small

dataset (referred to as target set) by including a similar and possibly larger auxiliary

dataset (referred to as the source set). This knowledge transfer is achieved by integrating

relevant source knowledge into the training model or by mapping the source data or

models to the target. The knowledge assembled can be transferred across domain tasks

and domain distributions with the assumption that the auxiliary data is relevant. Pan

and Yang [79] present a comprehensive survey of transfer learning methods and discuss

the relationship between transfer learning and other related machine learning domains.

History of Transfer Learning Research

Transfer of learning started as the study of the dependency of human conduct, learn-

ing, or performance on prior experience. The notion was originally introduced in a 1901

study as “Transfer of Practice”[100]. The study explored how individuals would transfer



15

learning in one context to another context that shared similar characteristics or more

formally how “improvement in one mental function could influence another related one”.

This study found that transfer of learning depends on the proportion to which the learn-

ing task and the transfer task are similar, or where “identical elements are concerned

in the influencing and influenced function” in what is now known as “Identical Element

Theory” [100, 102].

Transfer learning as a machine learning domain gained attention in the 1990’s with the

first comprehensive survey in Thrun’s “Learning To Learn”[101]. Researchers in transfer

learning give the domain different names including: learning to learn, life-long learn-

ing, knowledge transfer, inductive transfer, multi-task learning, knowledge consolidation,

context-sensitive learning, knowledge-based inductive bias, meta-learning, and incremen-

tal/cumulative learning [101, 79]. In NIPS 1995, a two-day workshop on “Learning to

Learn”, focused on the need for lifelong machine learning methods that retain and reuse

learned knowledge. Fast forward to NIPS 2005, a workshop titled “Inductive Transfer:

10 Years Later”, examined the progress that has been made in ten years and identified

the questions and challenges that remain and the opportunities for new applications of

inductive transfer systems. The Defense Advanced Research Projects Agency (DARPA)

Information Processing Technology Office (IPTO) also identified transfer learning in 2005

with solicitation number BAA05-29 as: “The goal of the Transfer Learning Program so-

licited by this BAA is to develop, implement, demonstrate and evaluate theories, archi-

tectures, algorithms, methods, and techniques that enable computers to apply knowledge

learned for a particular, original set of tasks to achieve superior performance on new,

previously unseen tasks. This goal reflects the observation that key cognitive abilities of

humans include the abilities to generalize, abstract, reuse, reorganize and apply knowledge

learned in previous life experiences to novel situations.”.
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Near and Far Transfer

Near transfer refers to the transfer of knowledge between similar tasks or tasks with

common elements [82]. For example, an auto mechanic can transfer his knowledge of

vehicle engines to repair a small boat’s engine. Far transfer refers to transfer between

tasks that seem more remote and on the surface have little in common. For example,

a military commander can make a good CEO or a chess player can make a good poker

player. Far transfer is much more difficult and generally requires additional knowledge.

For instance, the majority of people stay within one area of research as moving to a new

area generally takes re-training.

The same concept of Near vs Far transfer is applicable to machine learning. The transfer

learning distance is generally quantified with distance based measures. The most popular

measure of transfer distance is the Kullback-Leibler (KL) divergence [66]. KL divergence

is a non-symmetric measure of the distance between two probability distributions P and

Q. This divergence is also referred to as information divergence and relative entropy and

is defined as:

DKL(P ||Q) =
∑
x

P (x) ln

(
P (x)

Q(x)

)
(2.2)

If the densities P and Q exist with respect to a Lebesgue measure [8], then the KL

divergence of Q from P gives a measure of the information lost when Q (model) is ap-

proximating P (true distribution). The KL-divergence is a specific example of a Bregman

divergence [13] and is useful for estimating whether two set of samples have been drawn

from the same distribution. This is essential for transfer learning as KL divergence can

be used to determine the distance between two distributions or this distance metric can

be included as an optimization criterion in a transfer learning algorithm.

KL divergence was used for transfer learning in [103] and the minimization of this di-

vergence in [97] was used to directly calculate a weight w for the ratio of two density
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functions for covariance shift between a training (tr) and testing (te) distributions as:

DKL(pte||wptr) =
∫
pte(x) ln

(
pte(x)

w(x)ptr(x)

)
dx

=
∫
pte(x) ln

(
pte(x)
ptr(x)

)
dx−

∫
pte(x) ln (w(x)) dx

(2.3)

It should be noted that the Kullback-Leibler divergence can be lower bounded in terms

of the Hellinger distance, H, (that is used in imbalanced learning methods) as [125]:

DKL(Q||P ) ≥ 2H2(P,Q) (2.4)

A related measure is the two sample Kolmogorov-Smirnov (KS) distance and can be more

applicable as a nonparametric distance measure that does not assume a Gaussian or any

predefined distribution for the data. KS compares the cumulative distributions of two

datasets where the cumulative distribution function Fn(x) is defined as:

Fn(x) =
1

n

n∑
i=1

IXi6x (2.5)

where IXi6x is the indicator function, equal to 1 if Xi 6 x and equal to 0 otherwise. The

KS statistic for the given cumulative distribution function F (x) is defined as:

Dn = sup
x
|Fn(x)− F (x)| (2.6)

where sup
x

is the supremum of the set of distances.

Other distance measures include “Information Gain” or “Mutual Information” which is

popular as it used as the splitting criterion in CART. In probability theory and informa-

tion theory, the mutual information of two random variables is a quantity that measures

the mutual dependence of the two random variables. The most common unit of measure-

ment of mutual information is the bit, when logarithms to the base 2 are used. Formally,
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the mutual information of two discrete random variables X and Y can be defined as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(2.7)

Where p(x,y) is the joint probability distribution function of X and Y. The marginal

probability distribution functions of X and Y are respectively p(x) and p(y). This split-

ting criterion relates directly to KL divergence as:

I(X;Y ) = DKL(p(x, y)||p(x)p(y)) (2.8)

An information-theoretic metric learning method in [27] minimized the LogDet diver-

gence [80] as a Bregman optimization problem. This metric was used for transfer learning

in [93] where they proposed to directly learn a distance metric across different domains.

In [65], this work was extended with the addition of a non-linear kernel for improved

performance. The authors in [84] proposed to learn metrics to leverage the information

shared between the training data from two image categories to develop a cross-category

ensemble for target classification. A transfer metric for learning task relationships was

proposed in [130] to discover the task relationship between all source tasks and the target

task. In [128], a distance metric is modified to map the target domain by using existing

distance metrics which are pre-learned from the source domains.

A universal kernel mapping data into a Reproducing Kernel Hilbert Space (RKHS) can

be used to estimate the high order momentums of the original data using only the first

momentum, mean, of that RKHS. As the number of dimensions produced by the kernel

increases, the capability of its mean to recover the moments of original data also increases

and thus the mean can more accurately reconstruct that original data. This interesting

trait of kernels equates minimizing the difference between the means of source and tar-

get domains in the RKHS, also known as Maximum Mean Discrepancy (MMD) [45] to
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mapping the data to a shared distribution. MMD is a nonparametric estimate criterion

of distance between distributions of datasets and is a relevant criterion for comparing

distributions because it does not require explicit density estimation. The authors in [77]

learned a low-dimensional space to reduce the distribution difference between different

domains for transfer learning by exploiting Maximum Mean Discrepancy Embedding

(MMDE) [11] which was originally designed for dimensionality reduction. This was im-

proved in [78] where a more efficient feature extraction algorithm, known as Transfer

Component Analysis (TCA), was applied to overcome the computationally expensive

cost of MMDE.

Positive and Negative Transfer

Positive transfer occurs when learning in one context improves performance in some

other context. For instance, speakers of one language find it easier to learn a related sec-

ond languages [114]. For this multi-lingual language learning example, negative transfer

occurs when learning in one context impacts negatively on performance in another. For

example, despite the generally positive transfer among related languages, contrasts of

pronunciation, vocabulary, and syntax generate stumbling blocks. Learners commonly

assimilate a new language’s phonetics to crude approximations in their native tongue and

use word orders carried over from their native tongue (accent).

Transfer learning algorithms have to incorporate positive transfer while simultaneously

rejecting negative transfer. A careful selection of source tasks and data is essential to

avoid negative transfer as this knowledge transfer not only fails to improve learning, but

actually hinders a learner’s performance. An empirical study demonstrated that negative

transfer occurs when tasks are too dissimilar [91]. Transfer learning algorithms should

only select source knowledge that is relevant to the target task and the authors in [95]

selected only source instances based on the likelihood that they will correctly label an
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instance from the target domain. In [34], the source selection techniques were divided

into methods that perform manual selection [119, 5] or ones that do so with task cluster-

ing [6, 123]. There is no set rule to determine how and if negative transfer will occur and

the general rule is to assume that near transfer is less likely to induce negative transfer

than far transfer and thus the same measures of transfer distance are applicable.

2.5 Learning with “Absolute Rarity”

A “Rare Dataset”3 is a label-skewed and small dataset and presents a set of challenges

that are not studied in existing literature. This section examines the parameters that

are relevant for the study of “Rare Datasets”.

2.5.1 Effect of Data Size on Learning

In a Balanced Dataset

The first impediment to learning with “Absolute Rarity” is the fact that the small

size of the training set, regardless of imbalance, impedes learning. When the number of

training examples is not adequate to generalize to instances not present in the training

data, it is not theoretically possible to use a learning model as the model will only

overfit the training set. The term “adequate” is a broad term as many factors have to

be considered including data complexity, number of dimensions, data duplication, and

overlap complexity [50]. Computational learning theory [74] provide a general outline to

estimate the difficulty of learning a task, the required number of training examples, the

expected learning and generalization error and the risk of failing to learn or generalize.

A study in [7] found that the size of training set is the factor with the most significant

impact on classification performance. Figure 2.5 depicts 4 different algorithms that are

trained at different training set sizes and demonstrates that increasing the training sets’

size improves the classification performance of all algorithms. To assert that increasing

3A “Rare Dataset” refers to a dataset with “Absolute Rarity”
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the number of training examples, combined with an error minimizing classifier, yields

results where the training and the generalization errors are similar is an intuitive and

crucial finding as is demonstrates than the choice of a classification model is less important

than the overall size of the training set. This is a major driving force in the machine

learning domain where there is a shift to “Big Data” assisted with the availability of

cluster computing frameworks such as MapReduce [28].

Figure 2.5: Learning Curves for Confusion Set Disambiguation.

In an Imbalanced Dataset

The second impediment to learning with “Absolute rarity” is the between-class im-

balance where a majority of samples belong to an overrepresented class and a minority

of samples belong to an underrepresented class [50]. The imbalanced classification study

in [117] found that the most significant effect on a classifier’s performance in an imbal-

anced classification problem is not the ratio of imbalance but it is the number of samples

in the training set. This is an important finding as it demonstrates that the lack of

data in “Absolute Rarity” intensifies the label imbalance problem. As the number of
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the training examples increased, the error rate caused by imbalance decreased [55] and

thus increasing the number of training samples makes the classifiers less sensitive to the

between-class imbalance [117].

Figure 2.6 demonstrates how the lack of training examples degrades learning in an im-

balanced dataset [117]. The ROC curve illustrates the performance of a binary classifier

where the x-axis represents the False Positive Rate (1-Specificity) and the y-axis rep-

resents the True Positive Rate and is an accepted metric in imbalanced learning prob-

lems. AUC is a simple summary of the ROC performance and can be calculated by

using the trapezoidal areas created between ROC points and is thus equivalent to the

Wilcoxon-Mann-Whitney statistic [26]. Figure 2.6 presents the Area Under the ROC

curve (AUC) [12] results in [117] where a classifier was trained for two imbalanced

datasets [42] with different subsets of training sets (with a total of n samples). The

results demonstrate that increasing the size of the training set directly improves learning

for imbalanced datasets.

(a) Adult (b) Covertype

Figure 2.6: AUC for imbalanced datasets at different training sample sizes
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2.5.2 Learning Bounds

Domain Adaptation Learning Bounds

Researchers have theoretically analyzed the target error bounds for the related prob-

lem of domain adaptation. By assuming the distribution of the target domain to be a

weighted combination of the source distributions, the authors in [73] proved that the

loss of the target classifier can be upper bound where there exists a distribution weighted

combining rule that has a loss of at most ε with respect to any target mixture of the

source distributions. Alternatively, the authors in [22] introduced a PAC-style model

of learning from multiple sources where they assumed that the distributions of multiple

input sources are the same across sources but each source may have its own deterministic

labeling function. They derived a bound on the error of the target domain by minimizing

the empirical error on the uniformly weighted data from any subset of the sources.

Hoeffding’s Inequality for Imbalanced datasets

Let Z1, . . . , Zn be random independent, identically distributed variables with expected

value E [Z], such that 0 ≤ Zi ≤ 1, than:

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Zi − E [Z]

∣∣∣∣∣ > ε

]
≤ δ = 2−2mε

2

(2.9)

To get a confidence of δ for error ε, we calculate the required number of samples m where

2−2mε
2 ≥ δ. Thus, given a hypothesis space with |H| complexity, we require:

m ≥ 1

2ε2

(
ln (|H|) + ln

(
1

δ

))
(2.10)
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Once m is set using Equation 2.10, we can calculate with probability at least 1 − δ the

difference between the empirical and actual mean as:

∣∣∣∣∣ 1

m

m∑
i=1

Zi − E [Z]

∣∣∣∣∣ ≤ ε (2.11)

If we draw m samples, then with probability at least 1 − δ, the difference between the

empirical mean, 1
m

m∑
i=1

Zi, and the true mean, E [Z], is at most ε, where:

∣∣∣∣∣ 1

m

m∑
i=1

Zi − E [Z]

∣∣∣∣∣ ≤ ε ≤

√
l

2m

(
ln (|H|) + ln

(
1

δ

))
(2.12)

Observing Equation 2.12, it be be deduced that Hoeffding’s inequality ignores information

about the variance. Hoeffding’s inequality does not use any distributional properties,

such as the distribution’s mean or variance as it assumes binomial random variables. On

the other hand, imbalanced data does not follow a binomial distribution and thus the

Hoeffding’s bounds are altered.

In most problems, the aim is not to obtain a function that performs well on training data

but rather to estimate a function (using training data) that performs well on future unseen

test data. This is accomplished by minimizing empirical risk on the training set while

choosing a function of small complexity. The rationale behind this approach is that the

empirical risk converges (uniformly) to the true unknown risk. Figure 2.7 shows how the

different datasets relate to Hoeffding’s Inequality. Both figures have the same error rate,

or deviation, but Figure 2.2-a depicts a balanced distribution while Figure 2.2-b depicts

an imbalanced distibution. In an imbalanced learning problem, the error bounds are

label-dependent [62]. Give the label dependent error, εl, the error bounds are calculated

as:

ml ≥ 1

2(εl)2

(
ln (|H|) + ln

(
1

δ

))
(2.13)
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(a) (b)

Figure 2.7: (a) Generalization Bound on a Balanced Distribution [37]. (b)
Generalization Bound on an Imbalanced Distribution.

This is an important property, as the label-dependent error bounds require a label-

dependent error minimization. In a datasets with “Absolute Rarity”, a label independent

error bound error has to be formulated.

Theorem 1: The number of minority samples bounds the structural risk.

Proof. Assuming no knowledge of training error, we can apply Hoeffding’s Inequality

for an imbalanced dataset by treating each class as an independent binomial distribution

where:

Pr

[∣∣∣∣ 1
mmajority

m∑
i=1

Zi − E [Z]

∣∣∣∣ > ε

]
≤ δ = |H| 2−2mmajorityε

2
, i ∈ majority

Pr

[∣∣∣∣ 1
mminority

m∑
i=1

Zi − E [Z]

∣∣∣∣ > ε

]
≤ δ = |H| 2−2mminorityε

2
, i ∈ minority

(2.14)

An imbalanced dataset has an un-equal distribution of labels as: mminority < mmajority.

Hoeffding’s Inequality for a label-independent error will be bound by:

Pr

[∣∣∣∣ 1m m∑
i=1

Zi − E [Z]

∣∣∣∣ > ε

]
≤ δ = min

[
|H| 2−2mmajorityε

2
, |H| 2−2mminorityε

2
]

= |H| 2−2mminorityε
2

(2.15)
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Equation 2.15 proves that the number of minority samples bounds the structural risk.

Given the extremely low number of minority samples in a dataset with “Absolute Rarity”,

it is essential to get another source of information for generalization. Transfer learning

provides a perfect opportunity to construct a hypothesis capable of generalization.

2.6 Visualization Diagram for Rare Datasets

For imbalanced datasets, F-measure [105] is a popular metric that is used to evaluate

the performance of a classifier. It is calculated as:

F =
2PR

P +R
(2.16)

P refers to Precision or Positive Predicted Value(PPV). Precision generally refers to the

fraction of retrieved instances that are relevant, and is calculated as:

P = PPV =
TP

TP + FP
(2.17)

R refers to Recall or True Positive Rate(TPR). Recall generally refers to the fraction of

relevant instances that are retrieved, and is calculated as:

R = TPR =
TP

TP + FN
(2.18)

F-measure is an acronym for the F1 − score which can be interpreted as a harmonic mean

of the Precision and Recall. The F1 − score reaches its best value at 1 and worst score

at 0. Equation 2.16 equally weighs Precision and Recall and this metric can be deceiving

since a classifier with high Precision and low Recall give the same F-measure result of a

classifier with low Precision and high Recall. Table 2.2 demonstrates how 3 algorithms

can have the same F1 − score with different performance for individual classes.

For imbalanced dataset methods, researchers can make the assumption that an increase
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Table 2.2: Classification Performance in an imbalanced dataset

Precision Recall F-Measure

Algorithm 1 0.2 0.6 0.3
Algorithm 2 0.3 0.3 0.3
Algorithm 3 0.45 0.225 0.3

in the F-measure is satisfactory since there is enough data in the training set to assume

that the majority instances are in such abundance that Recall is never degraded and the

increased F-measure comes from a better Precision score. In a dataset with “Absolute

Rarity”, an increase in both Precision and Recall is required (although a degradation

for the majority is almost unavoidable as the classification algorithm attempts to fit the

minority labels). For a more appropriate measure that is suitable for “Absolute Rarity”,

we investigated the generalized F-Score which is calculated as:

Fβ =
(1+β2)(Specificity)(Sensitivity)

Specificity+β2Sensitivity

=
(1+β2)·TP

(1+β2)TP+β2FN+FP

(2.19)

The F-Score (Fβ) was derived so that β weighs the balance between Precision and Recall

as its value attaches β times as much weight to Recall over Precision. For example, an

F2 measure weighs Recall twice as much as Precision and F0.5 measure weighs Precision

twice as much as Recall. For an all purpose metric where both Precision and Recall are

important, it is important that an algorithm minimizes the variation between the Fβ and

the F1/β measures. To visualize how an algorithm learns on a dataset with “Absolute

Rarity”, we propose the Fλ-Plots. Fλ-Plots allow the visualization of how well a clas-

sification algorithm performs at different Precision and Recall weights. λ will indicate

the scale of maximum importance for Precision and Recall. The x-axis would be set to(
log10(β)
log10(λ)

)
and the Y-axis would be the F-measure value at the specific value of β. Using(

log10(β)
log10(λ)

)
for the x-axis normalizes the scale between -1 and +1. For example, for an
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F10-Plot, the F-measure value at +1 would weigh recall 10 times more than precision, at

value 0 they will have equal weights and at -1 the F-measure value would weigh precision

10 times more than recall.

In Table 2.2, the F-measure statistic gives the false conclusion that all 3 algorithms are

equally fit to handle “Absolute Rarity” since they all have the same F-measure. The

algorithms actually are not similar and handle Precision and Recall very differently.

Alternatively, Figure 2.8 presents the F∞-Plot for the three algorithms. Figure 2.8 cap-

tures the retrieval effectiveness of an algorithm in one figure and thus presents a more

comprehensive visual view of the performance of a classifier. The figure demonstrates

visually how 3 algorithms have the same F-Measure (as when the x-axis is at zero) while

they produce Precision and Recall results that are completely different. The plot also

demonstrates that for an (λ→∞) plot, the plot converges to the actual Precision and

Recall metrics as the F∞-Plot converges to Recall at +1 and Precision at -1.
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Figure 2.8: F∞ plot for 3 algorithms with same F-measure but different statistics

The figure demonstrates that while all three algorithms have the same F-measure, “Al-

gorithm 2” handles positive and negative samples equally as it is the most balanced. On

the contrary, “Algorithm 1” and “Algorithm 3” have opposite performances.
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2.7 Conclusion

In this chapter, we provided an overview of the methods that are critical for learning

and evaluation of datasets with “Absolute Rarity”. We demonstrated that theoretically,

learning can not generalize and an additional source of information is required to gener-

alize as learning can only overfit.
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CHAPTER 3

ADAPTIVE BOOSTING FOR TRANSFER

LEARNING USING DYNAMIC UPDATES

3.1 Introduction

Instance transfer learning methods utilize labeled examples from one domain to im-

prove learning performance in another domain via knowledge transfer. Boosting-based

transfer learning algorithms are a subset of such methods and have been applied success-

fully within the transfer learning community. In this chapter, we address some of the

weaknesses of such algorithms and extend the most popular transfer boosting algorithm,

TrAdaBoost [24]. We incorporate a dynamic factor into TrAdaBoost to make it meet its

intended design of incorporating both AdaBoost [43] and the “Weighted Majority Algo-

rithm” [70]. We theoretically and empirically analyze the effect of this important factor

on the boosting performance of TrAdaBoost and we apply it as a “Correction Factor”

that significantly improves the classification performance. Our experimental results on

several real-world datasets demonstrate the effectiveness of our framework in obtaining

better classification results.

3.1.1 Notations

Consider a domain (D) comprised of instances (X ∈ Rd) with d features. We can

specify a mapping function, F , to map the feature space to the label space as “X → Y ”

where Y ∈ {−1, 1}. We will denote the domain with n auxiliary instances as the source

domain (Xsrc) and define (Xtar) as the target domain with m � n instances. Instances

that belong to the majority class will be defined as (Xmajority) and those that belong to

the minority class will be defined as (Xminority). nl is the number of source samples that

belong to label l while εl is the error rate for label l. N defines the total number of
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boosting iterations, w is a weight vector. A weak classifier at a given boosting iteration

(t) will be defined as
..

f t and its classification error is denoted by εt. 1I is an indicator

function and is defined as:

1I
[
y 6= f̈

]
=

 1 y 6= f̈

0 y = f̈
(3.1)

Table 3.1 presents a summary of notations used for chapters 3-5.

Table 3.1: Summary of the Notations

Notation Description
X feature space, X ∈ Rd

Y label space = {−1, 1}
d number of features
F mapping function X → Y
D domain
src source (auxiliary) instances
tar target instances
maj majority class
min minority class
εt classifier error at boosting iteration “t”
w weight vector
N number of iterations
n number of source instances
m number of target instances
t index for boosting iteration
..

f t weak classifier at boosting iteration “t”
1I Indicator function

3.2 Boosting for Instance Transfer

3.2.1 Boosting

Ensemble methods [30] are learning algorithms that construct a set of classifiers and

then classify new data points by taking a weighted vote of the combination of all the

classifiers’ predictions. The original ensemble method is Bayesian averaging where an

Bayes Optimal Classifier is an ideal ensemble where each generated hypothesis is given

a vote proportional to the likelihood that the training dataset would be sampled from a
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system where the hypothesis is correct. More recent algorithms include error-correcting

output coding [31], Bagging [14] and Boosting [43]. Some intuitive explanations to the

advantages of boosting with ensemble learners:

1. The training dataset might not be fit for a single best learner and thus a combination

of learners can improve the overall classification outcome.

2. The error convergence of most algorithms is not perfect (nor unique for most of

them). For example, even if there exists a unique optimal hypothesis, it might be

difficult to discover as learning algorithms find sub-optimal (and local) hypotheses.

Ensemble methods can compensate with the combination of several suboptimal

hypotheses.

3. The hypothesis space of the training set might not exactly depict the true target

function and thus an ensemble of learners can give better approximation .

4. Ensemble learners can boost simple classifiers (including linear classifiers) to pro-

duce complex (non-linear) classifiers. For example, classification boundaries of

decision stumps [52] (one level decision trees) are linear segments and a single de-

cision tree cannot lead to a good result yet a good approximation can be achieved

by combining a set of decision trees.

3.2.2 Boosting for Transfer Learning

Boosting-based transfer learning algorithms apply ensemble methods to both source

and target instances with an update mechanism that incorporates only the source in-

stances that are useful for target instance classification. These methods perform this

form of mapping by giving more weight to source instances that improve target training

and decreasing the weights for instances that induce negative transfer.

TrAdaBoost [24] is the first and most popular transfer learning method that uses boost-
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ing as a best-fit inductive transfer learner. As outlined in Algorithm 11, TrAdaBoost

trains the base classifier on the weighted source and target set in an iterative manner.

After every boosting iteration, the weights of misclassified target instances are increased

and the weights of correctly classified target instances are decreased. This target update

mechanism is based solely on the training error calculated on the normalized weights of

the target set and uses a strategy adapted from the classical AdaBoost [43] algorithm.

The Weighted Majority Algorithm (WMA) [70] is used to adjust the weights of the source

set by iteratively decreasing the weight of misclassified source instances by a constant fac-

tor, set according to [70], and preserving the current weights of correctly classified source

instances. The basic idea is that the source instances that are not correctly classified on

a consistent basis would converge to zero and would not be used in the final classifier’s

output since that classifier only uses boosting iterations N
2
→ N for convergence [24].

Algorithm 1 TrAdaBoost

Require: Source and Target Instances : D = {(xsrci , ysrci) ∪ (xtari , ytari)},
Maximum number of iterations(N), Base Learning algorithm(

..

f )

Ensure: Weak classifiers for boosting iterations : N
2
→ N

Procedure:

1: for t = 1 to N do
2: Find the candidate weak learner for

..

f t : X → Y that minimizes error for D
3: Update source weights via WMA to decrease weights of misclassified instances
4: Update target weights via AdaBoost using target error rate (εttar)
5: Normalize weights for D
6: end for

TrAdaBoost has been extended to many transfer learning problems. A multi-source

learning [126] approach was proposed to import knowledge from many sources. Having

multiple sources increases the probability of integrating source instances that are better

fit to improve target learning and thus this method can reduce negative transfer. TrAd-

aBoost has also been extended in [81] by incorporating AdaBoost.R2 [32] for regression

1Detailed algorithm can be found in the referenced paper
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transfer . A model-based transfer in “TaskTrAdaBoost” [127] extends this algorithm to

transferring knowledge from multiple source tasks to learn a specific target task. Since

closely related tasks share some common parameters, suitable parameters that induce

positive transfer are integrated from multiple source tasks. Application of TrAdaBoost

include multi-view surveillance for highway traffic [127] or head-pose estimation [109].

Other applications include visual tracking [71], cross category visual learning [84], text

classification [24] and several other problems [79].

Some other methods use AdaBoost’s update mechanism for target and source instances.

In ExpBoost [88], a separate hypothesis is learned for each of the source datasets and one

learner is constructed using only the target instances. At each boosting iteration, Exp-

Boost chooses to either use a hypothesis that is learned from a weighted source dataset or

the one generated by the weighted target dataset. Picking a hypothesis is dependent on

which learner produces the most accurate results. TransferBoost [35] is another method

and is used for boosting when multiple source tasks are available. It boosts all source

weights for instances that belong to tasks exhibiting positive transferability to the target

task. TransferBoost calculates an aggregate transfer term for every source task as the

difference in error between the target only task and the target plus each additional source

task. TransferBoost claims some improvements over TrAdaBoost where boosting is ap-

plied by reweighing instances from each source task based on their aggregate transfer to

the target task. TransferBoost adds the term, αit, to the update weight of source samples

and updates these source weights in a manner similar to AdaBoost but with a slight

modification as:

wt+1
srci

= wtsrcie
(βt

tarysrci f̈
t
srci

+αi
t)

βttar = ln
(

εttar
1−εttar

)
αti = εttar − εt(tar+srci)

(3.2)
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AdaBoost was also extended in [107] for concept drift as a fixed cost is pre-calculated

using Euclidean distance (as one of two options) as a measure of relevance between source

and target distributions as

Cj =

n∑
i,[ysrci 6=ytarj ]

(√(
xsrci − xtarj

)2)
n∑

i,[ysrci=ytarj ]

(√(
xsrci − xtarj

)2) (3.3)

The resulting relevance ratio is then normalized to span [0, 1]. This relevance ratio thus

gives more weights to data that is near in the feature space and share a similar label.

This ratio is finally incorporated to the update mechanism via AdaCost [98] for AdaC1

as:

wt+1
tarj

= wttarje
−Cjβ

t1I[ytarj=ytarj ] (3.4)

In Equation 3.4, the samples that have have a higher cost are reduced by a smaller factor.

However, the difference is expressed in exponential terms and is generally small. For a

linear impact, AdaC2 is used as it directly applies the cost factor so the weight change

is directly related to the relevance of the sample as:

wt+1
tarj

= Cjw
t
tarj

e−β
t1I[ytarj=ytarj ] (3.5)

Finally AdaC3 can be applied as a combination of Equation 3.4 and Equation 3.5. It is

calculated as:

wt+1
tarj

= Cjw
t
tarj

e−Cjβ
t1I[ytarj=ytarj ] (3.6)

Since AdaBoost based methods update the source weights via AdaBoost’s update mecha-

nism, they create a conflict within this update mechanism. A source task that is unrelated

to the target task will exhibit negative transferability and its instances’ weights would
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be diminished by a fixed [107] or dynamic rate [35, 36] within AdaBoost’s update mecha-

nism. This update mechanism will be simultaneously increasing these same weights since

AdaBoost increases the weights of misclassified instances. Furthermore, it can be noted

that the weight update in TransferBoost for the source domain instances is a special case

of the cost-sensitive boosting algorithm. When the parameter αit, in the TransferBoost

algorithm is set to a constant value at the individual instance level, then TransferBoost

is analogous to cost-sensitive boosting. Because of the conflict within AdaBoost’s update

strategy, a source update strategy based on the Weighted Majority Algorithm would be

more appropriate.

3.2.3 Weaknesses of TrAdaBoost

The main weaknesses of TrAdaBoost are highlighted in the list below:

1. Weight Mismatch: As outlined in [81], when the size of source instances is

much larger than that of target instances, many iterations might be required for

the total weight of the target instances to approach that of the source instances.

This problem can be alleviated if more initial weight is given to target instances.

2. Disregarding First Half of Ensembles: Eaton and desJardins [35] list the

choice to discard the first half of the constructed classifiers as one of TrAdaBoost’s

weaknesses since it is these classifiers that fit the majority of the data, with later

classifiers focusing on “harder” instances. Their experimental analyses along with

the analyses reported by Pardoe and Stone [81] and our own investigation show

mixed results. This is the outcome of a final classifier that makes use of all ensembles

and thus infers negative transfer introduced from non-relevant source instances

whose weights had yet to converge to zero.

3. Introducing Imbalance: In [34], it was noted that TrAdaBoost sometimes yields

a final classifier that always predicts one label for all instances as it substantially
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unbalances the weights between the different classes. Dai et al. [24] re-sampled

the data at each step to balance the classes and we also examined their algorithm’s

implementation and found out that they do add a step were they balance the labels’

weights.

4. Rapid Convergence of Source Weights: This seems to be the most seri-

ous problem with TrAdaBoost. Various researchers observed that even source in-

stances that are representative of the target concept tend to have their weights

reduced quickly and erratically. This quick convergence is examined by Eaton and

desJardins [35] as they observe that in TrAdaBoost’s reweighing scheme, the dif-

ference between the weights of the source and target instances only increases and

that there is no mechanism in place to recover the weight of source instances in

later boosting iterations when they become beneficial. This problem is exacerbated

since TrAdaBoost, unlike AdaBoost, uses the second half of ensembles when the

weights of these source instances have already decreased substantially from early

iterations. These weights may be so small that they become irrelevant and will no

longer influence the output of the combined boosting classifier. This rapid conver-

gence also led Pardoe and Stone [81] to the use of an adjusted error scheme based

on experimental approximation.

3.3 Dynamic-Transfer Algorithm

The pseudo code of “Dynamic-TrAdaBoost” is presented in Algorithm 2. The method

exploits transfer learning concepts to improve learning by allocating higher weights to

the subset of auxiliary instances that is most likely to improve learning with positive

transfer. The framework effectively combines the power of two boosting algorithms with

AdaBoost [43] updating the target instances’ weights and the Weighted Majority Algo-

rithm (WMA) [70] updating the source instances’ weights. The two algorithms operate
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separately and are only linked in:

1. Line 4 (Normalization): Both algorithms require normalization. The combined

normalization causes an anomaly that we will address in subsequent analysis.

2. Line 5: Infusing source with target for training is how transfer learning is induced

from the auxiliary dataset.

The target instances are updated on lines (7,9,11) as outlined by AdaBoost [43]. The weak

learner on line 5 finds the separating hyperplane that forms the classification boundary

and is used to calculate the target’s error rate (εttar < 0.5) on line 7. This error is used

on line 9 to calculate (βtar > 1) which is used to update the target weights on line 11 as:

wt+1
tarj

= wttarjβ
1I
[
ytarj 6=

..

f tj

]
tar (3.7)

Similar to AdaBoost, a misclassified target instance’s weight increases after normalization

and would thus acquire more influence in the next iteration. Once boosting is completed,

(t = N), the weak classifiers (
..

f t) weighted by βtar are combined to construct a committee

capable of non-linear approximation.

The source instances are updated on lines (2,10) as outlined by the Weighted Majority

Algorithm [70]. WMA is a meta-learning algorithm that constructs an additive set of

weak learners, where the number of mistakes for n source samples (nεWMA) is bound by

the number of mistakes made by the best performing of the N weak classifiers (nεbest)

as:

nεWMA ≤ nεbest ln (β−1src) + ln(N)

1− βsrc
(3.8)

The static WMA update rate (βsrc < 1) is calculated on line 2 and updates the source

weights as:

wt+1
srci

= wtsrciβ
1I
[
ysrci 6=

..

f ti

]
src

(3.9)
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Contrary to AdaBoost, WMA decreases the influence of an instance that is misclassified

and give it lower relative weight in subsequent iterations. This property is beneficial for

transfer learning as a source instance’s contribution to the weak classifiers is dependent

on its classification consistency. A consistently misclassified instance’s weight converges2

and its influence diminishes in subsequent iterations. In Algorithm 2, the WMA update

mechanism in Equation (3.9) is actually modified on line 10 to incorporate the cost Ct as

a dynamic “Correction Factor”. We will prove that this “Correction Factor” prevents the

source instances’ weights from early and improper convergence and thus improve positive

transfer.

3.4 Theoretical Analysis

3.4.1 Overview

In this section, we analyze how our algorithm improves transfer learning with im-

proved convergence properties. The combined normalization for AdaBoost and WMA

presents an anomaly where source weights improperly converge and the transfer from

source to target would be diminished. This anomaly diminishes the weight of source

instances that are beneficial for training and thus will be referred to as “Weight Drift”.

We present a high level overview of “Weight Drift” in Figure 3.1. The figure outlines how

the two algorithms operate on the source and target datasets and gives an overview of the

factors that control the rate of “Weight Drift”. There are 4 factors that affect the rate

of convergence and these variables can increase the convergence rate of source instances

that are helpful for transfer learning and diminish positive transfer. These factors are:

1. Number of boosting iterations.

2. Number of target instances.

3. Number of source instances.

4. Choice of weak learner.

2All mentions of “convergence” refer to a sequence (weight) that converges to zero.
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Algorithm 2 Dynamic-Transfer

Require:
• Source domain instances Dsrc = {(xsrci , ysrci)}
•Target domain instances Dtar = {(xtari , ytari)}
•Maximum number of iterations : N

•Base learner :
..

f

Ensure: Target Classifier Output :
{ .

f : X → Y
}

.

f = sign

[∏N

t=N
2

(
β

t

tar

−
..

f t
)
−
∏N

t=N
2

(
β

t

tar

− 1
2

)]
Procedure:
1: Initialize the weights for vector D = {Dsrc ∪Dtar}, where:

wsrc = {w1
src, . . . , w

n
src} , wtar = {w1

tar, . . . , w
m
tar} , w = {wsrc ∪ wtar}

2: Set βsrc = 1

1+
√

2 ln(n)
N

3: for t = 1 to N do
4: Normalize Weights: w = w

n∑
i
wsrci+

m∑
j
wtarj

5: Find the candidate weak learner
..

f t : X → Y that minimizes error for D weighted
according to w

6: Calculate the error of
..

f t on Dsrc: ε
t
src =

n∑
j=1

[wj
src]·1I

[
ysrcj 6=

..

f tj

]
n∑

i=1
[wi

src]

7: Calculate the error of
..

f t on Dtar: ε
t
tar =

m∑
j=1

[wj
tar]·1I

[
ytarj 6=

..

f tj

]
m∑
i=1

[wi
tar]

8: Set Ct = 2 (1− εtsrc). (Chapter 3) or Set C l =
(
1− εlsrc

)
. (Chapter 4)

9: Set βtar =
1− εttar
εttar

10: wt+1
srci

= Ctwtsrciβ
1I
[
ysrci 6=

..

f ti

]
src

where i ∈ Dsrc

11: wt+1
tarj = wttarjβ

1I
[
ytarj 6=

..

f tj

]
tar where j ∈ Dtar

12: end for
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Figure 3.1: Overview of Weight Drift

3.4.2 “Weight Drift”

In this section, we theoretically analyze the factors that affect the convergence rate

of source instances and present a method to prevent early convergence. We present an

explanation of the weight update of instances after a single boosting iteration to aid in

subsequent analysis and we introduce a proposition to allow for the calculation of the

“Weight Drift” bounds.

Definition 1: Given k instances at iteration t with normalized weight w and update

rate β, the sum of the weights after one boosting iteration with error rate (εt) is calculated

as:
k∑
i=1

wt+1 = kwt(1− εt)+kwt(εt)β (3.10)

To demonstrate with an example, given k = 10 instances at iteration t with normalized

weights w = 0.1, assume that weak learner f̈ correctly classifies 6 instances (εt = 0.4).
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The sum of correctly classified instances at boosting iteration t+ 1 is calculated as:

∑
y=f̈ t

wt+1 = 0.1β0 + 0.1β0 + 0.1β0 + 0.1β0 + 0.1β0 + 0.1β0

= 6(wt)β0 {since (wt = 0.1)}

= 10(0.6)(wt)

= kwt(1− εt) {since (k = 10, εt = 0.4)}

(3.11)

Alternatively, the sum of misclassified instances at boosting iteration t+ 1 is:

∑
y 6=f̈ t

wt+1 = 0.1β1 + 0.1β1 + 0.1β1 + 0.1β1

= 4(wt)β1 {since (wt = 0.1)}

= 10(0.4)(wt)β

= kwt(εt)β {since (k = 10, εt = 0.4)}

(3.12)

Thus, the sum of weights at boosting iteration “t+1” is calculated as:

k∑
i=1

wt+1 =
∑
y=f̈ t

wt+1 +
∑
y 6=f̈ t

wt+1

= kwt(1− εt)+kwt(εt)β
(3.13)

Proposition 1: All source instances are correctly classified by the weak learner:

ysrci = f̈ ti ,∀i ∈ {1, . . . , n} (3.14)

Equation (3.14) is analogous to:

n∑
i=1

wt+1 = nwtsrc
(
1− εtsrc

)
+ nwtsrc

(
εtsrc
)
βsrc = nwtsrc (3.15)
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Proposition 1 is not a realistic condition as it is not logical to assume an ideal classifier.

We hold it as true to theoretically demonstrate that even under ideal conditions, ideal

source samples, source weights still converge when they should not. A “Correction Fac-

tor” is calculated to correct for this improper convergence. It will be later demonstrated

that this correction is inversely proportional to the weak learner’s error and approaches

unity (no correction needed) as error increases and deviates from this proposition.

While Proposition 1 can not be exactly manifested, there are three methods to approx-

imate Equation 3.15 in Proposition 1 (hold the proposition as true) and minimize the

weight differential between subsequent iterations:

(
n∑
i=1

wt+1
srci
≈

n∑
i=1

wtsrci

)
(3.16)

1. Maximize the number of boosting iterations(N)

The total sum of source weights at iteration t + 1 is calculated as the sum of P and Q

where:

P = Sum of correctly classified source weights at iteration“t + 1”

= nwtsrc (1− εtsrc) βsrc
1I
[
ysrci=

..

f ti

]

= nwtsrc (1− εtsrc)
{
since 1I

[
ysrci =

..

f ti

]
= 0
} (3.17)

Q = Sum of misclassified source weights at iteration“t + 1”

= nwtsrc (1− εtsrc) βsrc
1I
[
ysrci=

..

f ti

]

= nwtsrc (εtsrc) βsrc
1I
[
ysrci 6=

..

f ti

]

= nwtsrc (εtsrc) βsrc

{
since 1I

[
ysrci 6=

..

f ti

]
= 1
}

(3.18)
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Thus, the sum of source weights at boosting iteration “t+1” is (S = P +Q) and is

calculated as:

S = Sum of source weights at boosting iteration“t + 1”

= nwtsrc (1− εtsrc) + nwtsrc (εtsrc) βsrc

= nwtsrc

[
1−

(
εtsrc

1+
√

N
2 ln(n)

)] {
since βsrc = 1

1+
√

2 ln(n)
N

} (3.19)

As the number of boosting iterations (N) increases, the assumptions in Proposition 1

can be approximated as:

lim
N→∞

{S} = lim
N→∞

nwtsrc
1−

 εtsrc

1 +
√

N
2 ln(n)

 = nwtsrc (3.20)

2. Minimize the number of source instances (n)

This is evidently not desired as it negates the knowledge transfer. Examining Equa-

tion 3.20 shows that n has negligible effect because it changes logarithmically. For ex-

ample, with N set to 30 boosting iterations, increasing the number of source instances

(n) from 1,000 to 10,000 requires N to change from 30 to 40 and the denominator will

stay unchanged.

3. Minimize the error rate (εtsrc → 0)

This is analogues to Equation 3.14 and can be controlled, to a certain extent, with the

choice of learners. After the “Correction Factor” is calculated, it will be demonstrated

that the applied correction is inversely proportional to the error rate and reaches unity

(No Correction) as the error increases. This is an important property since the effect of

the theorems utilizing this proposition is correlated to the proposition’s validity.

Theorem 2 will examine the effect of the combined (source + target) normalization in

line 4 of Algorithm 2 on transfer learning.
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Theorem 2: If no correction is included in Algorithm 2, source weights will improperly

converge even when the instances are correctly classified.

Proof. In the Weighted Majority Algorithm, the weights are updated as:

wt+1
src =



wt
src∑

{yi=fi}
wt

src+
∑

{yi 6=fi}
βsrcwt

src
ysrc =

..

f t

βsrcwt
src∑

{yi=fi}
wt

src+
∑

{yi 6=fi}
βsrcwt

src
ysrc 6=

..

f t
(3.21)

Equation 3.21 shows that the weights for source instances that are correctly classified

should not change since:

wt+1
src =

wtsrc
n∑
i=1

wtsrci

= wtsrc (3.22)

Without correction, the normalized source weights in Algorithm 2 are updated as:

wt+1
src =

wtsrc

n∑
i=1

wtsrci +
m∑
j=1

wttarj

(
1−εttar
εttar

)1I[ytarj 6= ..

f tj

] (3.23)

Equation 3.23 shows that, without correction, correctly classified source weights would

still converge in direct correlation to:

m∑
j=1

wttarj

(
1− εttar
εttar

)1I[ytarj 6= ..

f tj

]
(3.24)

Since all source weights persistently converge, all target weights would inversely increase

since (nwt
src+mw

t
tar) = 1. This anomaly will be referred to as “Weight Drift” since weight

entropy drifts from source to target instances. “Weight Drift” negates transfer since

the final classifier is comprised of the cascade of weak learners constructed in boosting

iterations N
2
→ N (where the source instances’ weights could have already converged).
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With converged source weights, Algorithm 2 becomes analogous to standard AdaBoost

algorithm with target instances and no transfer learning.

�

Theorem 2 examined the cause of “Weight Drift” and theorem 3 will outline the factors

that control it.

Theorem 3: For n source instances, “Weight Drift” is stochastic and its rate of conver-

gence at iteration t (without correction) is bound by the number of target training samples

(m) and the target error rate at that iteration (εttar).

Proof. The fastest rate of convergence is achieved by minimizing the weight for each

subsequent boosting iteration (wt+1
src ) as:

min
m,n,εttar

(
wt+1
src

)
=

wtsrc

max
m,n,εttar

{
n∑
i=1

wtsrci +
m∑
j=1

wttarj

(
1−εttar
εttar

)1I[ytarj 6= ..

f tj

]} (3.25)

Equation (3.25) shows that two factors can slow convergence:

1. Maximizing the weak learner’s target error rate with εttar → 0.5 (choosing an

extremely weak learner or one that is only slightly better than random). Since

the weak learner’s input weights cannot be predicted for each iteration, the weak

learner’s error cannot be controlled and this factor will continue to induce a stochas-

tic effect.

2. Decreasing the number of target samples m, since convergence rate accelerates when

m/n → ∞. Attempting to slow convergence by reducing the number of target

instances is counterproductive as knowledge form the removed instances would be

lost.

�
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Theorem 3 demonstrated that a fixed cost cannot control the convergence rate since the

cumulative effect of m, n, and εttar is stochastic. A dynamic term has to be calculated to

compensate for “Weight Drift” at every iteration.

3.4.3 Correction Factor

In this section, we calculate a dynamic term to compensate for “Weight Drift”. We

refer to this term as a “Correction Factor” as it corrects for the improper convergence

of the source instances’ weights. This factor is dynamic and preserves the weights for

instances that are consistently correctly classified so these instances can induce positive

transfer.

Theorem 4: A correction factor of 2 (1− εttar) can be applied to the source weights to

prevent their “Weight Drift” and make the weights converge as outlined by the Weighted

Majority Algorithm.

Proof. Un-wrapping the WMA source update mechanism of Equation (3.25), yields:

wt+1
src =

wtsrc

n∑
i=1

wtsrci +
m∑
j=1

wttarj

(
1−εttar
εttar

)1I[ytarj 6= ..

f tj

] =
wtsrc

nwtsrc + A+B
(3.26)

Where A and B are defined as:

A = Sum of correctly classified target weights at boosting iteration“t + 1”

= mwttar (1− εttar)
(

1−εttar
εttar

)1I[ytarj= ..

f tj

]

= mwttar (1− εttar)
{
since 1I

[
ytarj =

..

f tj

]
= 0
} (3.27)
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B = Sum of misclassified target weights at boosting iteration“t + 1”

= mwttar (εttar)
(

1−εttar
εttar

)1I[ytarj 6= ..

f tj

]

= mwttar (1− εttar)
{
since 1I

[
ytarj 6=

..

f tj

]
= 1
} (3.28)

Substituting for A and B, the source update is:

wt+1
src =

wtsrc
nwtsrc + 2mwttar (1− εttar)

(3.29)

We will introduce and solve for a correction factor Ct to equate (wt+1
src = wtsrc) for correctly

classified instances (as per the WMA).

wtsrc = wt+1
src =

Ctwtsrc
Ctnwtsrc + 2mwttar (1− εttar)

(3.30)

Solving for Ct:

Ct =
2mwttar (1− εttar)

(1− nwtsrc)
=

2mwttar (1− εttar)
mwttar

= 2
(
1− εttar

)
(3.31)

�

Adding this correction factor to line 10 of Algorithm 2 equates its normalized update

mechanism to the Weighted Majority Algorithm and subsequently prevents “Weight

Drift”.

Theorem 5: Applying a correction factor of 2 (1− εttar) to the source weights would cause

the target weights to converge as outlined by AdaBoost.

Proof. In AdaBoost, without any source instances (n = 0), target weights for correctly
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classified instances would be updated as:

wt+1
tar =

wt
tar

m∑
j=1

wt
tarj

(
1−εttar
εttar

)1I[ytarj 6= ..
ft
j

]

=
wt

tar

A+B
=

wt
tar

2mwt
tar(1−εttar)

=
wt

tar

2(1)(1−εttar)

(3.32)

Applying the “Correction Factor” to the source instances’ weight update prevents “Weight

Drift” and subsequently equates the target instances’ weight update mechanism outlined

in Algorithm 2 to that of AdaBoost since:

wt+1
tar =

wt
tar

nwt
src+2mwt

tar(1−εttar)
=

wt
tar

Ctnwt
src+2mwt

tar(1−εttar)

=
wt

tar

2(1−εttar)nwt
src+2mwt

tar(1−εttar)

=
wt

tar

2(1−εttar)(nwt
src+mw

t
tar)

=
wt

tar

2(1−εttar)(1)

(3.33)

�

It was proven that a dynamic cost can be incorporated into Algorithm 2 to correct for

weight drifting from source to target instances. This factor would ultimately separate

the source instance updates which rely on the WMA and βsrc, from the target instance

updates which rely on AdaBoost and εttar. With these two algorithms separated, they can

be joined for transfer learning by infusing “best-fit” source instances to each successive

weak classifier.

3.5 Empirical Analysis

In this section, we provide empirical validation of our theorems. We demonstrate how

Proposition 1 is valid for our analysis. We than demonstrate how a “Correction Factor”

fixes the problem of “Weight Drift”.
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3.5.1 Analysis of Proposition 1

In Proposition 1, we stated and analyzed the three factors (εtsrc, n, N) that minimize(
εtsrc

1+
√

N
2 ln(n)

)
and strengthen Proposition 1. In this section, we empirically validate our

analysis with two experiments. The first experiment analyzed the effects of N and n on

Proposition 1. The source error rate (εtsrc) was set to 0.2, while the number of source

instances (n) varied from 1000 to 10,000 and N ∈ {20, 40, 60}. The plot in Figure 3.2-(a)

demonstrates that the number of source instances (n) has little impact on the total sum

of source weights while N has more significance. The second experiment considered the

effects of N and εtsrc on the sum of source weights. The number of source instances (n)

was set to 1000 with εttar ∈ {0.05, . . . , 0.5} and N ∈ {20, 40, 60}. It can be observed in

Figure 3.2-(b) that the error rate does have a significant effect on decreasing the total

weight for t + 1. This effect can be only partially offset via increasing N and it would

require a large value of N for a reasonable adjustment. Since the source data comprises

most of training data, we can generally expect εtsrc ≈ εttar. The effect of source error rates

on Proposition 1 will be negated the fact that the correction factor, C = 2 (1− εttar), is

inversely proportional to εttar and its impact reaches unity (No Correction) as the target

error rate increases:

lim
εttar→0.5

{C} = lim
εttar→0.5

{
2
(
1− εttar

)}
≈ lim

εtsrc→0.5

{
2
(
1− εtsrc

)}
= 1 (3.34)

This is an important property because “Weight Drift” is most detrimental to learning at

low error rates (where Proposition 1 was set).

3.5.2 “Weight Drift” and “Correction Factor”

The first experiment demonstrates the effect of “Weight Drift” on source and target

weights. In Figure 3.3-a, the number of instances was constant (n = 10000,m = 200),

the source error rate was set to zero as per Proposition 1 and the number of boosting
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(a) (b)

Figure 3.2: The ratio of a correctly classified source weight for “t+ 1”/“t” (a) For
different number of source instances and number of boosting iterations (N) (b) For

different source error rate (εtsrc) and number of boosting iterations (N)

iterations was set to N = 20. According to the WMA, the weights should not change

since εtsrc = 0. The ratio of the weights (with and without correction) to the weights

of the WMA are plotted at different boosting iterations and with different target error

rates εttar ∈ {0.1, 0.2, 0.3}. The experiment validates the following theorems:

1. With no correction, source weights converge even when correctly classified.

2. Applying our “Correction Factor” equates the weight update of Algorithm 2 to the

WMA.

3. If correction is not applied, strong classifiers cause weights to converge at a faster

rate than weak ones (Theorem 3).

The figure also demonstrates that for a weak learner with εttar ≈ 0.1, if no correction

is applied, we would not be able to benefit from all 10,000 source instances although

they were never misclassified. The final classifier uses boosting iterations N/2→ N ,

or 10 → 20, where the weights of ideal source instances would have already lost over

85% of their value. Correction conserved these instances’ weights and thus helpful source

instances would improve classification.

The second experiment validates the effect of the number of target instances, m, on the
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convergence rate (Theorem 3). The number of source instances was set (n = 1000),

while the number of target instances was varied m
n
∈ {1%, 2%, 5%} and plotted for

εttar ∈ {0.1, . . . , 0.5}. The plot in Figure 3.3-b shows how the source weights converge

after a single boosting iteration and it can be observed that the rate of convergence is

bound by m/n and the error rate εtar (which is also bound by m).

(a) (b)

Figure 3.3: The weights (relative to the WMA) for ideal source instances.(a) For 20
iterations with different error.(b) For 1 iteration with different target instances and

error.

It should be noted that for both plots in Figure 3.3, the weight lost by the source instances

is drifting to the target instances. The plots for the target weights would look inversely

proportional to the plots in Figure 3.3 since:

n∑
i=1

wtsrci +
m∑
j=1

wttarj = 1. (3.35)

3.6 Experimental Results on Real-World Datasets

3.6.1 Experiment Setup

We tested several popular transfer learning datasets and compared AdaBoost [43]

(using target instances), TrAdaBoost [24], TrAdaBoost with fixed costs of (1.1, 1.2, 1.3)

and Dynamic-TrAdaBoost. Instances were balanced to have an equal number of positive

and negative labels. We ran 30 iterations of boosting.
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Base Learner
( ..
f
)

We did not use decision stumps [52] (one level decision trees) as weak learners since

the majority of training data belongs to the source and we need to guarantee an error

rate of less than 0.5 on the target to avoid early termination of boosting (as mandated

by AdaBoost). For example, applying decision stumps on data with 95% source and 5%

target is not guaranteed (and will certainly not work for many boosting iterations) to

get an error rate of less than 0.5 on target instances that compromise a small subset of

the training data.

A weighted decision tree is a classifier expressed as a recursive partition of weighted

instances [15]. The decision tree consists of nodes that form a root node, an internal

node or a leaf node [87]. A ”root” is one that has no incoming edges while all other

nodes have exactly one incoming edge. A node with outgoing edges is called an internal

or test node while all other nodes are called leaves or decision nodes [90]. Usually the

tree complexity is measured by one of the following metrics: the total number of nodes,

total number of leaves, tree depth and number of attributes used. In our decision tree,

the Gini Index [15] is used to split the internal nodes of the instance space into two or

more sub-spaces. We used decision trees and applied a top-down approach where we

trimmed the tree at the first node that achieved a target error rate that is less than 0.5

as displayed in Figure 3.4.

Figure 3.4: Trimmed Classification Trees
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Cross Validation

We did not use standard cross validation methods since the target datasets were

generally too large and did not need transfer learning to get good classification rates. We

generated target datasets by using a small fraction for training and left the remainder for

testing. A 2% ratio means that we had two target instances, picked randomly, for each

100 source instances and we used the remaining target instances for validation. We also

used all the minority labels and randomly picked an equal number of instances from the

majority labels to introduce variation in the datasets whenever possible. We ran each

experiment 10 times and reported the average accuracy to reduce bias.

3.6.2 Real-World Datasets

20 Newsgroups

The 20 Newsgroups3 dataset [67] is a text collection of approximately 20,000 news-

group documents, partitioned across 20 different newsgroups. We generated 3 cross-

domain learning tasks with a two-level hierarchy so that each learning task would involve

a top category classification problem where the training and test data are drawn from

different sub categories with around 2300 source instances (Rec vs Talk, Rec vs Sci, Sci

vs Talk) as outlined in further detail in [23]. We used the “Threshold of Document Fre-

quency” [2] with the value of 188 to maintain around 500 attributes. We used a 0.5%

target ratio in our tabulated results and displayed results of up to 10% target ratio in

our plots.

Abalone Age

The Abalone4 dataset’s features include the seven physical measurements of male,

source, and female, target, abalone sea snails. The goal is to use these physical mea-

3http://people.csail.mit.edu/jrennie/20Newsgroups/
4http://archive.ics.uci.edu/ml/
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surements to determine the age of the abalone instead of enduring the time consuming

task of cutting the shell through the cone, staining it, and counting the number of rings

through a microscope. We used 160 source instances with 11 target instances for training

and 77 for testing.

Wine Quality

The classification task is to determine the quality of white wine samples4 by using

red white samples as source set. The features are the wine’s 11 physical and chemical

characteristics and the output labels are given by experts’ grades of 5 and 6. We used

3655 source instances and 14 target instances for training and 1306 for testing.

3.6.3 Experimental Results

The comparison of classification accuracy is presented in Table 3.2. The results show

that Dynamic-TrAdaBoost significantly improved classification on real-world datasets.

We performed the following tests to show significance of our results:

1. Tested the null hypothesis that transfer learning is not significantly better than

standard AdaBoost. We applied the Friedman Test with p < 0.01. Only Dynamic-

TrAdaBoost was able to reject the hypothesis.

2. We performed paired t-tests with α = 0.01 to test the null hypothesis that classifi-

cation performance was not improved over TrAdaBoost. For all datasets, Dynamic-

TrAdaBoost rejected the hypothesis while “Fixed-Cost TrAdaBoost” did not.

3. Paired t-tests with α = 0.01 also rejected the null hypothesis that Dynamic-

TrAdaBoost did not improve classification over “Fixed-Cost TrAdaBoost” for all

datasets.

In Figure 3.5, the accuracy of the “20Newsgroups” dataset is plotted at different tar-

get/source ratios. The plots demonstrate that incorporating a dynamic cost into Dynamic-
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Table 3.2: Classification accuracy of AdaBoost (Target), TrAdaBoost, Fixed-Cost (best
result reported for TrAdaBoost with costs fixed at (1.1, 1.2, 1.3), Dynamic

(Dynamic-TrAdaBoost)

Dataset AdaBoost TrAdaBoost Fixed-Cost (1.1,1.2,1.3) Dynamic
Sci vs Talk 0.552 0.577 0.581 0.618
Rec vs Sci 0.546 0.572 0.588 0.631

Rec vs Talk 0.585 0.660 0.670 0.709
Wine Quality 0.586 0.604 0.605 0.638
Abalone Age 0.649 0.689 0.682 0.740

TrAdaBoost improved classification at different ratios as compared to TrAdaBoost or a

fixed correction cost.
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Figure 3.5: Accuracy of TrAdaBoost, Best of Fixed-Cost-TrAdaBoost (1.1,1.2,1.3) and
Dynamic-TrAdaBoost on the “20 Newsgroup” dataset at different target/source ratios.

3.7 Conclusion

We investigated instance transfer learning methods and analyzed their main weak-

nesses. We proposed an algorithm with an integrated dynamic cost to resolve a major

issue in the most popular boosting-based instance transfer algorithm, TrAdaBoost. This

issue causes source instances to converge before they can be used for transfer learning.

We theoretically and empirically demonstrated the cause and effect of this rapid con-

vergence and validated that the addition of our dynamic cost improved classification on

several datasets.



57

Table 3.3 presents a summary of how the addition of a Dynamic Correction improved

the performance of TrAdaBoost. The improved classification results were theoretically

and empirically demonstrated and real-world experiments validated the improved classi-

fication performance.

Table 3.3: The difference between TrAdaBoost and Dynamic-TrAdaBoost
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CHAPTER 4

TRANSFER LEARNING FOR RARE CLASS

ANALYSIS

4.1 Label-Space Optimization

Transfer learning has the potential to address the shortage of sample within “Ab-

solute Rarity”, but intuitive results require balanced optimization to address the class

imbalance. Figure 4.1 demonstrates how optimizing with balanced accuracy measures

improve classification with imbalanced datasets. The two classifiers in Figure 4.1 are

optimized with different types of accuracy measures (Arithmetic vs. Geometric [63]/

Balanced [47]/Harmonic [89]). This example shows that given a constrained classifier

(a) (b)

Figure 4.1: (a) Classifier minimizing Arithmetic error. (b) Classifier minimizing
(Geometric, Balanced, Harmonic) error.

(linear classifier in this example), more intuitive results can be obtained with a degraded

Arithmetic Accuracy and an improved Balanced (Geometric/Balanced/Harmonic) Accu-
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racy. The example in Figure 4.1 also demonstrates that a standard classifier (optimized

for Arithmetic Accuracy) is biased for correct classification of the majority class. This is

the standard premise for “Imbalanced Learning” methods.

Proposition 2: For a non-trivial problem, a standard classifier yields lower error rate

for the majority label as compared to that of the minority since it optimizes:

min
ε

(nε) = min
εl

(∑
∀l∈Y

nlεl

)
(4.1)

In a label-imbalanced problem where (nl=majority � nl=minority), a traditional classifier

optimizing Equation (4.1) can achieve high accuracy if it classifies all instances as ma-

jority instances. This proposition serves as a foundation for all imbalanced learning

methods [83, 50, 38].

4.2 Label-Dependent Error

In this section, we present Theorems 6, 7, and 8 to prove that minimizing a single

label-dependent error is equivalent ti minimizing all the “Balanced Accuracy” measures

and it will be demonstrated that this label-dependent optimization can improve the

balanced statistics for “Absolute Rarity”.

Theorem 6: Maximizing the Balanced Accuracy (BAC) is equivalent to minimizing the

sum of label-dependent errors independent of the number of samples within each class:

max (BAC) = arg min
εl

∑
l∈Y

εl

Proof. To prove theorem 6, we will start with a binary labeled example and extend

to general form. With no optimization of the prediction threshold of a binary classifier,

classifier threshold at a pre-set level, the Area under the ROC Curve (AUC) is equivalent
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to Balanced Accuracy (BAC) [47]1. This balanced accuracy is the average accuracy of

each class and in turn equates to the average of sensitivity and specificity. It is calculated

as:

AUC = BAC = 1
2

(Sensitivity + Specificity)

= 1
2

[(
TruePositive

TruePositive+FalseNegative

)
+
(

TrueNegative
TrueNegative+FalsePositive

)]

= 1
2

 n∑
i=1

(yi=+1,fi=+1)

n∑
i=1

(yi=+1,fi=±1)

+

 n∑
i=1

(yi=−1,fi=−1)
n∑

i=1
(yi=−1,fi=±1)



=
∑
l∈Y

0.5

(
n∑

i=1
(yli=f li)

)
n∑

i=1
(yli=f li)+

n∑
i=1

(yli 6=f li)
=
∑
l∈Y

0.5(nl(1−εl))
nl(1−εl)+nl(εl)

= 0.5

(∑
l∈Y

(
1− εl

))

(4.2)

Equation (4.2) can be maximized as:

max (BAC) = arg max
εl

(
0.5

(∑
l∈Y

(
1− εl

)))
= arg min

εl

(∑
l∈Y

εl

)
(4.3)

�

The optimization problem in Equation (4.3) is a constrained optimization problem bounded

mainly by the classifier’s VC dimension [106] and the number of samples. It is minimized

as:

min
εl

∑
l∈Y

εl

s.t.
∑
∀l∈Y n

lεl = ε

(4.4)

Theorem 7: Maximizing the Geometric Mean (G-Mean) is equivalent to minimizing the

product of label-dependent errors and is independent of the number of samples within each

1http://www.causality.inf.ethz.ch/challenge.php?page=evaluation
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class:

max (G−Mean) = arg min
εl

∏
l∈Y

εl

Proof. Similar to Theorem 6, we start with a binary labeled example and extend to

general form:

G−Mean =
√

(Sensitivity) (Specificity)

=

√(
TruePositive

TruePositive+FalseNegative

)(
TrueNegative

TrueNegative+FalsePositive

)

=

√√√√√
 n∑

i=1
(yi=+1,fi=+1)

n∑
i=1

(yi=+1,fi=±1)

 n∑
i=1

(yi=−1,fi=−1)
n∑

i=1
(yi=−1,fi=±1)



=

√√√√∏
l∈Y

n∑
i=1

(yli=f li)
n∑

i=1
(yli=f li)+

n∑
i=1

(yli 6=f li)
=

√∏
l∈Y

nl(1−εl)
nl(1−εl)+nl(εl)

=
√∏

l∈Y
(1− εl)

(4.5)

Maximizing the statistic in Equation (4.5):

max (G−Mean) = arg max
εl

√∏
l∈Y

(1− εl)

 = arg min
εl

(∏
l∈Y

εl

)
(4.6)

�

Similar to Equation (4.4), the optimization problem in Equation (4.6) is a constrained

optimization problem and is minimized as:

min
εl

∏
l∈Y

εl

s.t.
∑
∀l∈Y n

lεl = ε

(4.7)

Since both Equation (4.4) and Equation (4.7) are constrained by the classifier’s error
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rate, modifying the weak learner to improve classification on one label can degrade clas-

sification on the other label (Figure 4.1).

Theorem 8: An improved G-Mean coupled with no degradation in the BAC will improve

the F-Measure.

Proof. The harmonic mean of sensitivity and specificity is a particular realization of

the F-measure [89] and is maximized as:

f −measure =
[
2(Sensitivity)(Specificity)
Sensitivity+Specificity

]
=


2


n∑

i=1
(yi=+1,fi=+1)

n∑
i=1

(yi=+1,fi=±1)
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n∑
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i
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i)+
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(yl

i
6=fl

i)

2
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0.5

(
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i=1
(yl

i
=fl

i)
)

n∑
i=1

(yl
i
=fl

i)+
n∑

i=1
(yl

i
6=fl

i)

 =

 ∏
l∈Y

nl(1−εl)
nl(1−εl)+nl(εl)∑

l∈Y

0.5(nl(1−εl))
nl(1−εl)+nl(εl)



=

 ∏
l∈Y

(1−εl)

0.5

(∑
l∈Y

(1−εl)
)


(4.8)

Equation can be optimized as:

max (f −measure) = arg max
εl

 ∏
l∈Y

(1−εl)

0.5

(∑
l∈Y

(1−εl)
)


= arg max
εl

[
(G−Mean)2

BAC

]
= arg max

εl


( ∏

l∈Y
εl

)
∑
l∈Y

εl


(4.9)

�

This section demonstrated that a label-dependent error minimization, where error is
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minimized for each label independently, can improve balance and improve the balanced

statistics. This is equivalent to minimizing:

arg min
εl

[
max
l∈Y

(
εl
)]

(4.10)

Equation 4.10 is equivalent to stating that the best balanced results can be achieved by

minimizing the error of the worst performing class. In a balanced learning problem, all

labels have equal effect on BAC and G-Mean but as the label space gets more imbalanced,

nl=majority

nl=minority →∞, the contribution of the minority label’s error rate to the classifier’s overall

accuracy can thus be approximated as:

∑
∀l∈Y

nlεl ≈
∑

l∈majority

nlεl (4.11)

Equation (4.11) demonstrates that biasing the classifier to favor the minimization of the

minority label, in an imbalanced dataset, has minimal effect on the overall accuracy.

With no significant change in accuracy, the balanced arithmetic mean will also not be

significantly degraded since the increased error of the majority label is negated by the de-

creased error of the minority label. On the other hand, G-Mean is the balanced geometric

mean and is significantly improved if balance is induced.

4.3 “Rare-Transfer” Algorithm

Algorithm 2 in chapter 3 improved the performance of transfer learning and in this

chapter, the Weighted Majority Algorithm’s (WMA) update mechanism in Equation

(3.9) will be modified on line 10 of Algorithm 2 to replace Ct with the label-dependent

cost (C lt) for a class balanced transfer learning. This dynamic cost is calculated on line

8 and it promotes balanced transfer learning. Starting with equal initial weights and

using standard weak classifiers, that optimize for accuracy, these classifiers achieve low
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error rates for the majority and high error rate for the minority as they are overwhelmed

with the majority label. The label dependent cost, C l, controls the rate of convergence

of the source instances so weights converge slower2 for labels with high initial error

rates (minority classes). As minority labels get higher normalized weights with each

successive boosting iteration, the weak classifiers would subsequently construct more

balanced separating hyperplanes. Since only the N
2
→ N weak classifiers are used for

the final output, the expectation is that the most consistent and balanced mix of source

instances would be used for learning the final classifier.This is the first transfer learning

algorithm to optimize with label information.

4.3.1 Overview

Figure 4.2 presents an overview of how a label-dependent transfer can improve clas-

sification with “Absolute Rarity”. While transfer is preserved by incorporating samples

that induce positive transfer, modifying this transfer to improve learning and simultane-

ously compensate for imbalance can address both the impediments that hinder learning

with “Absolute Rarity”. The figure gives an overview of how a label-dependent correc-

tion factor can improve balanced classification on a target dataset with separate controls

of minority and majority accuracy to generate the optimal balanced accuracy solution.

4.3.2 Correction for Rare Learning

The “Correction Factor” introduced in the previous chapter allows for strict control

of the source weights’ rate of convergence and this property will be exploited to induce

balance to a “Absolute Rarity”. Balanced classifiers can be dynamically promoted by

accelerating the rate of weight convergence of the majority label and slowing it for the

minority label.

We will first prove that the Weighted Majority Algorithm exacerbate the difficulty of

2Slower or decreased convergence rate means that a weight converges to zero with higher number of
boosting iterations.
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Figure 4.2: Overview of Balanced Transfer

learning when the dataset is imbalanced.

Theorem 9: In an imbalanced problem, updating the source instances via the Weighted

Majority Algorithm, WMA, significantly degrades the classification performance (espe-

cially if the final classifier is computed using only the N
2
→ N boosting iterations).

Proof. A misclassified source instance at boosting iteration t is updated via the WMA

update mechanism and its t+1 weight is adjusted to: wt+1
src = βsrcw

t
src. The source update

mechanism is set by βsrc which is set to:

0 <

βsrc =
1

1 +
√

2 ln(n)
N

 < 1 (4.12)

Since βsrc < 1, a misclassified source instance’s weight would converge after normaliza-

tion. Since weak classifiers at initial boosting iterations, with equally initialized weights,

yield high error rates for minority labels (Proposition 2), the minority label’s weights

would subsequently have less influence on the t + 1 classifier and would accelerate the
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rate of convergence as:

wt+1
src ≥ wtsrc ysrc =

..

f t

wt+1
src < wtsrc ysrc 6=

..

f t
(4.13)

Ignoring normalization, the minority label’s weights decrease exponentially as:

wt+1
src ≈ βsrcw

t
src

wt+2
src ≈ βsrcw

t+1
src ≈ βsrcβsrcw

t
src

...

wt+ksrc ≈ βksrcw
t
src

(4.14)

Since the final classifier in Algorithm 2 is computed from the cascade of learners con-

structed in iterations N
2
→ N , where the minority source weights could have already

converged, the final output would be extremely imbalanced as it will have added only

majority weights.
�

This outcome was observed even in generally balanced instance-transfer methods. It was

noted by [34] that boosting for transfer learning sometimes yielded a final classifier that

always predicted one label for all instances. Dai et al. [24] re-sampled the data at each

step to balance the classes since they observed similar behavior.

Conversely, updating the target instances via the AdaBoost update mechanism improves

the performance on an imbalanced dataset particularly if the final classifier is computed

using only the N
2
→ N boosting iterations. A misclassified target instance at boosting

iteration t is updated via the AdaBoost update mechanism and its t+1 weight is adjusted

to: wt+1
tar = βtarw

t
tar. The target update for a misclassified instance’s weight is dependent

on βtar where:

1 <

[
βtar =

1− εttar
εttar

]
<∞ (4.15)
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Since βtar > 1, a misclassified target instance’s weight would increase after normalization

and the minority label’s weights would in turn have more influence on the t+ 1 classifier

and bias the classifier to improve learning on the minority as:

wt+1
tar < wttar ytar =

..

f t

wt+1
tar ≥ wttar ytar 6=

..

f t
(4.16)

Since the final classifier is computed from the cascade of learners constructed in iterations

N
2
→ N , where the minority label’s instances have increased weights to compensate for

the lack of its samples, the final output would be more balanced.

Optimization for “Absolute Rarity”

Using definition 1, the sum of source instances’ weight is monotonically decreasing

as:

nwt+1
src = nwt

src [1 + εtsrc (βsrc − 1)]

nwt+1
src ≤ nwt

src since (βsrc < 1, εtsrc ≥ 0)
(4.17)

Similarly, the target instances’ weights are monotonically increasing:

mwt+1
tar = mwt

tar [1 + εttar (βtar − 1)]

mwt+1
tar ≤ mwt

tar since (βtar > 1, εttar ≥ 0)
(4.18)

Line 4 of “Rare Transfer” normalizes the sum of all weights and all thus all source

weights are monotonically converging. On the other hand, Theorem (9) demonstrated

that the minority sources’ weights converge faster than the majority sources’ weights. To

improve balanced classification, we include a “Label-Dependent Correction Factor” to

dynamically slow the convergence of the source instances’ weights while simultaneously
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reducing the differential in error between the minority and majority label. It is set to:

C l =
(
1− εlsrc

)
(4.19)

This factor dynamically slows convergence for the label with a higher error since the

convergence rate is inversely correlated to the error. Biasing each label’s weights allows

“Rare Transfer” to steer for the construction of a final classifier that includes a best-fit

set of auxiliary samples and has an equal error on all labels.

4.4 Empirical Analysis

This section presents an empirical validation of Theorems 6, 7, 8 and 9. A binary

labeled classification problem was simulated with 900 majority instances, 100 minority

instances and the weak classifier’s arithmetic error rate was set to (ε = 0.2). Since this

an imbalanced dataset and the weak classifier is weighted, error rate (εl) was correlated

with the label’s relative weight as: εl =
ε
∑
i∈l

wi∑
w

.

In Figure 4.3-a, we plot the accuracy for both labels and demonstrate that applying a

label dependent correction factor to the weight update mechanism induces balance while

the un-corrected WMA update mechanism minimizes only the majority label’s error

and causes extreme imbalance. This behavior is reflected in the statistical measures as

Figure 4.3-b shows that inducing balance causes no degradation in BAC while Figure

4.3-c shows that inducing balance improved G-Mean. The improved G-Mean coupled

with no degradation in BAC is reflected in the improved F-Measure in Figure 4.3-d.
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Figure 4.3: Effect of “Rare Correction”

4.5 Experimental Results of “Rare Transfer”

4.5.1 Experiment Setup

AdaBoost [43] was used as the reference algorithm. We applied SMOTE [16]3, with 5

k-nearest neighbors (k = 5), before boosting to compare with an imbalanced classification

method (SMOTE-AdaBoost). Reference algorithms were trained with the target-only set

and with the combined target/source set. Thirty boosting iterations were experimentally

proven sufficient for training.

Base Learner
( ..
f
)
: We did not use decision stumps as weak learners since most data

belongs to the source and it was not possible to keep the target error below 0.5 (as

mandated by AdaBoost) for more than a few iterations. We used a strong classifier,

classification trees, and applied a top-down approach where we trimmed the tree at the

first node that achieved the desirable target error rate εttar < 0.5.

3Refer to section 5.3 for more details about SMOTE



70

Cross Validation: Since rare datasets easily over-fit and terminate boosting, we restarted

all algorithms with a new cross validation fold when any algorithm terminated before

reaching 30 iterations. We used random non-intersecting folds and tabulated each statis-

tic with the macro [124] average of 30 runs using the number of samples outlined in Table

4.1. We also present plots to demonstrate two imbalance rates across a variable size of

minority training sets.

4.5.2 Datasets Used

20 Newsgroups4 is a popular transfer learning text collection that is partitioned across

20 groups with 3 cross-domain tasks and a two-level hierarchy as outlined in [23]. We

used the Threshold of Document Frequency [2] to maintain around 500 features and

imbalanced the set to generate a high dimensional, small and imbalanced training set.

Table 4.1 presents a detailed description of the data used in the experiments. Different

within-class imbalance ratio were used to examine the effect of imbalance on the different

algorithm’s performance. The overall size of the minority class within training set also

varied and was maintained at a low sample/feature ratio to demonstrate the effectiveness

of transfer learning in compensating for the lack of samples.

4.5.3 Experimental Results

BAC Results

The BAC results presented in Table 4.2 show that Rare-Transfer improved the Bal-

anced Accuracy. The improved performance is consistent even when the addition of aux-

iliary data seemed to degrade the performance due to the infusion of negative transfer.

This is proof that the “transfer learning” objective in our algorithm improved learning

with only the best set of auxiliary instances. Figure 4.4 demonstrates that the improved

performance is consistent across different datasets, imbalance ratios and absolute number

of minority samples.

4http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 4.1: Detailed data description. Nu:Numeric, No:Nominal.

Dataset Features Source Source Target Target
Majority Minority Majority Minority

REC
vs

TALK

Nu : 500
No : 0

rec talk rec talk
autos politics.guns sports.baseball politics.mideast

motorcycles politics.misc sports.hockey religion.misc
1009 20,50,101 472,453,393 10,23,39

2%,5%,10% 2%,5%,10% 2%,5%,10%

REC
vs

SCI

Nu : 500
No : 0

rec sci rec sci
autos sci.crypt motorcycles sci.electronics

sports.baseball sci.space sports.hockey sci.med
1187 24,59,119 486,518,543 10,26,55

2%,5%,10% 2%,5%,10% 2%,5%,10%

SCI
vs

TALK

Nu : 500
No : 0

sci talk sci talk
sci.med politics.misc sci.crypt politics.guns

sci.electronics religion.misc sci.space politics.mideast
840 17,42,84 513,529,507 10,26,51

2%,5%,10% 2%,5%,10% 2%,5%,10%

Table 4.2: Comparison of Balanced Accuracy values on real-world datasets

Dataset AdaBoost
(Target)

AdaBoost
(Src+Tar)

SMOTE
(Target)

SMOTE
(Src+Tar)

Rare
Transfer

Rec-Sci (2%) 0.564 0.571 0.566 0.569 0.594

Sci-Talk (2%) 0.544 0.541 0.544 0.540 0.571

Rec-Talk (2%) 0.569 0.534 0.577 0.547 0.610

Rec-Sci (5%) 0.635 0.622 0.635 0.645 0.664

Sci-Talk (5%) 0.602 0.591 0.607 0.596 0.632

Rec-Talk (5%) 0.635 0.569 0.642 0.602 0.672

Rec-Sci (10%) 0.696 0.680 0.699 0.706 0.706

Sci-Talk (10%) 0.662 0.639 0.672 0.647 0.679

Rec-Talk (10%) 0.714 0.628 0.722 0.673 0.736
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(a) REC-VS-SCI (2%) (b) REC-VS-TALK(10%)

Figure 4.4: BAC at different minority samples

G-Mean Results

The results in Table 4.3 confirm that Rare-Transfer significantly improved the Ge-

ometric Mean. The results on the 20-News(2%) dataset demonstrate improved perfor-

mance with severe label imbalance and an extremely high features/samples ratio (10

minority samples, ≈500 majority samples, 500 features). Figure 4.5 shows that Rare-

Transfer consistently yield superior results even after conditions improve and the other

algorithms can construct representative hypotheses.

Table 4.3: Comparison of G-Mean values on real-world datasets

AdaBoost
(Target)

AdaBoost
(Src+Tar)

SMOTE
(Target)

SMOTE
(Src+Tar)

Rare
Transfer

Rec-Sci (2%) 0.324 0.362 0.338 0.379 0.430

Sci-Talk (2%) 0.270 0.271 0.277 0.292 0.380

Rec-Talk (2%) 0.343 0.221 0.378 0.293 0.460

Rec-Sci (5%) 0.500 0.492 0.501 0.561 0.592

Sci-Talk (5%) 0.433 0.423 0.446 0.464 0.541

Rec-Talk (5%) 0.502 0.340 0.516 0.450 0.591

Rec-Sci (10%) 0.615 0.605 0.623 0.641 0.674

Sci-Talk (10%) 0.563 0.531 0.584 0.575 0.637

Rec-Talk (10%) 0.647 0.483 0.661 0.597 0.702
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(a) REC-VS-SCI (2%) (b) REC-VS-TALK(10%)

Figure 4.5: G-Mean at different minority samples

F-Measure Results

The F-Measure [89] results are presented in Table 4.4 and demonstrate that Rare-

Transfer constructs a more balanced classifier. The improvements are consistent at

different imbalance ratios and sample sizes as shown in Figure 4.6. The results also

demonstrate the effect of “Absolute Rarity” on imbalance as the classifiers generate more

balanced classification results with the addition of samples to the training set. This is

similar to the results observed in previously conducted research on the effect of “Absolute

Rarity” on imbalanced classification [117].

Table 4.4: Comparison of F-Measure values on real-world datasets

AdaBoost
(Target)

AdaBoost
(Src+Tar)

SMOTE
(Target)

SMOTE
(Src+Tar)

Rare
Transfer

Rec-Sci (2%) 0.208 0.240 0.218 0.258 0.331

Sci-Talk (2%) 0.225 0.115 0.256 0.174 0.363

Rec-Talk (2%) 0.149 0.144 0.152 0.164 0.275

Rec-Sci (5%) 0.405 0.393 0.408 0.490 0.534

Sci-Talk (5%) 0.407 0.228 0.424 0.349 0.527

Rec-Talk (5%) 0.324 0.309 0.343 0.365 0.473

Rec-Sci (10%) 0.550 0.541 0.560 0.638 0.645

Sci-Talk (10%) 0.590 0.389 0.609 0.536 0.671

Rec-Talk (10%) 0.484 0.445 0.514 0.513 0.600
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(a) REC-VS-SCI (2%) (b) REC-VS-TALK(10%)

Figure 4.6: F-Measure at different minority samples

Minority Label Accuracy

The F-Measure results of the previous section only show that the harmonic mean

was improved and thus we present the average classification accuracy for the minority

class in Table 4.5. The improvement is consistent even when the number of samples is

very small as evident in Figure 4.7. The results demonstrate that the “Absolute Rarity”

of minority training examples is a challenging problem and although “Rare-Transfer”

improved classification, the error rate for the minority label is still generally high.

Table 4.5: Minority Label Accuracy

AdaBoost
(Target)

AdaBoost
(Src+Tar)

SMOTE
(Target)

SMOTE
(Src+Tar)

Rare
Transfer

Rec-Sci (2%) 0.129 0.146 0.135 0.155 0.223

Sci-Talk (2%) 0.089 0.084 0.090 0.093 0.179

Rec-Talk (2%) 0.139 0.069 0.157 0.102 0.247

Rec-Sci (5%) 0.273 0.256 0.277 0.339 0.401

Sci-Talk (5%) 0.208 0.190 0.224 0.233 0.347

Rec-Talk (5%) 0.273 0.142 0.289 0.228 0.392

Rec-Sci (10%) 0.400 0.386 0.415 0.498 0.533

Sci-Talk (10%) 0.334 0.295 0.368 0.364 0.481

Rec-Talk (10%) 0.436 0.264 0.459 0.396 0.555
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(a) REC-VS-SCI (2%) (b) REC-VS-TALK(10%)

Figure 4.7: Minority label’s accuracy at different minority samples

4.6 Conclusion

We discussed the impediments to instance transfer learning with “Absolute Rarity”

and proposed the first classification method optimized specifically for “Absolute Rarity”.

Our framework simultaneously compensated for the lack of data and the label-imbalance

using a transfer learning paradigm with a balanced statistics objective. We theoretically

analyzed and empirically verified our work and demonstrated its effectiveness with several

imbalance ratios and different sizes of training datasets.
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CHAPTER 5

DEMOGRAPHICS EXPERIMENTS AND

EXTENSIONS

5.1 Introduction

In this chapter, we first compare our algorithms on real-world demographics prob-

lems. The results demonstrate how our work improves classification performance when

addressing a real-world problem with “Absolute Rarity”. In the second section of this

chapter, we extend our work by modifying our “Rare-Transfer” algorithm to address im-

balanced learning as an over-sampling approach where the generated samples come from

an auxiliary domain instead of artificially creating new instances as is done in current

imbalanced learning approaches.

5.2 Demographics Experiments

In this section, we applied our algorithm to several demographics datasets where

“Absolute Rarity” presents an obstacle to learning.

5.2.1 Data Description

Heart Failure: We collected Heart Failure (HF) patient data from the Henry Ford

Health System (HFHS) in Detroit. This dataset contains records for 8913 unique patients

who had their first hospitalization with primary HF diagnosis. The goal is to predict if a

patient will be re-admitted within 30 days after being discharged from the hospital and to

apply the model to rural hospitals or to demographics with less data. This is an important

healthcare problem since re-hospitalization for heart failure (HF) occurs in around one-

in-five patients within 30 days of discharge. HF is disproportionately distributed across

the US population with significant disparities based on gender, age, ethnicity, geographic
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area, and socioeconomic status [21]. The physiology is also different; for example, renal

function features are calculated as [96]:

eGFR =
186.3 (gender) (race)

(age)0.203(Creatinine Levels)1.154

Where gender is set to 0.742 for women and race is set 1.21 for African-Americans

and both are set to 1 otherwise. Other non-demographic features included length of

hospital stay, ICU stay and dichotomous variables for whether a patient was diagnosed

with diabetes, hypertension, peripheral vascular disease, transient ischemic attack, heart

failure, chronic kidney disease, coronary artery disease, hemodialysis treatment, car-

diac catheterization, right heart catheterization, coronary angiography, balloon pump,

mechanical ventilation or general intervention. The average results with 50 minority

samples (patient was re-hospitalized) is reported.

Employment: This dataset is a subset of the 1987 National Indonesia Contraceptive

Prevalence Survey [40]. We used the dataset1 to predict if a non-Muslim woman is em-

ployed based on her demographic and socio-economic characteristics. In the training set,

only 22 of the 1275 were not Muslim and only 7 of them were employed.

Parkinson: This dataset [69] is composed of a range of biomedical voice measurements

from people with early-stage Parkinson’s disease1. The goal is to predict if a female

patient’s score on the Unified Parkinson’s Disease Rating Scale [39] is high (UPDRS≥10)

or low (UPDRS<10). In the training set, only 125 of the 3732 participants were female

and only 13 of them had a low UPDRS score.

5.2.2 Experiment Setup

We compared our algorithms, “Dynamic-TrAdaBoost” [3] and “Rare Transfer” with

one imbalanced and one balanced classifier. AdaBoost [43] with target instances was

used and we also applied SMOTE [16] to the target data before boosting to compare

1http://archive.ics.uci.edu/ml/
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Table 5.1: HF:Heart Failure, Nu:Numeric, No:Nominal. AA:African American,
CA:Caucasian American, NReH:Not Re-Hospitalized, ReH:Re-Hospitalized

Dataset Features Source Source Target Target
Majority Minority Majority Minority

HF
(Race)

Nu : 2
No : 20

AA AA CA CA
NReH ReH NReH ReH

4468 (78.0%) 1026 (17.9%) ≈183 (3.2%) ≈50 (0.9%)

HF
(Age)

Nu : 1
No : 21

Over 50 Over 50 Under 50 Under 50
NReH ReH NReH ReH

4513 (75.4%) 1182 (19.8%) ≈241 (4.0%) ≈50 (0.8%)

HF
(Gender)

Nu : 2
No : 20

Male Male Female Female
NReH ReH NReH ReH

3366 (75.7%) 818 (18.4%) ≈211 (4.8%) ≈50 (1.1%)

Employment
(Religion)

Nu : 5
No : 3

Muslim Muslim Non-Muslim Non-Muslim
Un-employed Employed Un-employed Employed

955 (74%) 298 (23%) 15 (0.02%) 7 (0.006%)

Parkinson
(Gender)

Nu : 19
No : 0

Male Male Female Female
UPDRS≥10 UPDRS<10 UPDRS≥10 UPDRS<10
3732 (89%) 276 (8%) 112 (0.03%) 13(0.003%)

with an imbalanced method (SMOTE-AdaBoost). We followed the setup in Chapter 4.

5.2.3 Experimental Results

This section presents the balanced classification statistics including G-Mean, BAC,

F-measure and the minority label’s accuracy on the demographics dataset outlined in

Table 5.1. Additionally, we present classification plots for the Heart Failure prediction

dataset in Figures 5.1, 5.2, 5.3 and 5.4. We plot each accuracy metric using different

demographics and with different number of target samples. The results demonstrate

that our “Rare Transfer” algorithm yields superior results and compensates for “Absolute

Rarity”. The plots also illustrate that “Dynamic-TrAdaBoost” performs well once the

minority samples’ training size reaches a significant number and more target examples

are available to compensate for the within-class imbalance without the need for balanced

transfer.
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G-Mean

The G-Mean results are presented in Table 5.2. We performed the following signifi-

cance tests:

• Tested the null hypothesis that the G-Mean performance of “Rare Transfer” is not

significantly better than AdaBoost. We applied the Friedman Test with p < 0.01.

SMOTE-AdaBoost and Rare-Transfer were able to reject the hypothesis for all

datasets.

• We performed paired t-tests with α = 0.01 to test the null hypothesis that G-

Mean performance was not improved over SMOTE-AdaBoost. For all datasets,

“Rare-Transfer” rejected the hypothesis.

Table 5.2: G-Mean on demographics data

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

Heart Failure (Race) 0.382 0.456 0.145 0.533
Heart Failure (Age) 0.355 0.440 0.164 0.478
Heart Failure (Gender) 0.374 0.444 0.117 0.510
Employment (Religion) 0.422 0.467 0.331 0.488
Parkinson (Gender) 0.518 0.715 0.841 0.874
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(a) G-Mean (Race)
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(b) G-Mean (Gender)
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(c) G-Mean (Age)

Figure 5.1: G-mean on different demographics and at different minority samples.
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BAC Analysis

We present the BAC results in Table 5.3 as evidence that biasing the classifier to

reduce the classification error of the minority label did not degrade the overall perfor-

mance of the classifier. The results confirm the analysis in chapter 4 where the classifier

improved learning on the minority label without an overall degradation in balanced ac-

curacy. This is desired outcome for a classification algorithm that is limited to a small

number of training examples combined with a within-class imbalance. This outcome also

matches the theoretical and empirical analysis in chapter 4.

Table 5.3: BAC on demographics data

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

Heart Failure (Race) 0.519 0.521 0.504 0.559
Heart Failure (Age) 0.526 0.532 0.503 0.555
Heart Failure (Gender) 0.520 0.517 0.502 0.560
Employment (Religion) 0.506 0.510 0.524 0.513
Parkinson (Gender) 0.649 0.761 0.862 0.885
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Figure 5.2: BAC on different demographics and at different minority samples.
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F-Measure Analysis

The F-measure results are presented in Table 5.4. We performed the following signif-

icance tests:

• Tested the null hypothesis that the F-measure performance is not significantly

better than AdaBoost. We applied the Friedman Test with p < 0.01. SMOTE-

AdaBoost and Rare-Transfer were able to reject the hypothesis for all datasets.

• We performed paired t-tests with α = 0.01 to test the null hypothesis that F-

measure performance was not improved over SMOTE-AdaBoost. For all datasets,

Rare-Transfer rejected the hypothesis.

Table 5.4: F-Measure on demographics data

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

Heart Failure (Race) 0.205 0.257 0.055 0.328
Heart Failure (Age) 0.180 0.229 0.063 0.269
Heart Failure (Gender) 0.194 0.236 0.037 0.301
Employment (Religion) 0.276 0.325 0.188 0.378
Parkinson (Gender) 0.404 0.552 0.702 0.749
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(a) F-Measure (Race)
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(b) F-Measure (Gender)
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(c) F-Measure (Age)

Figure 5.3: F-measure on different demographics and at different minority samples.
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Analysis of Minority Label’s Accuracy

The results for the minority label’s accuracy are presented in Table 5.5. We performed

the following significance tests:

• Tested the null hypothesis that the minority label’s accuracy is not significantly

higher than AdaBoost. We applied the Friedman Test with p < 0.01. SMOTE-

AdaBoost and Rare-Transfer were able to reject the hypothesis for all datasets.

• We performed paired t-tests with α = 0.01 to test the null hypothesis that the mi-

nority label’s accuracy was not improved over SMOTE-AdaBoost. For all datasets,

Rare-Transfer rejected the hypothesis.

Table 5.5: Minority Label’s Accuracy on demographics data

Target SMOTE Dynamic Rare
AdaBoost AdaBoost TrAdaBoost Transfer

Heart Failure (Race) 0.178 0.279 0.033 0.411
Heart Failure (Age) 0.150 0.244 0.039 0.321
Heart Failure (Gender) 0.167 0.262 0.021 0.341
Employment (Religion) 0.249 0.321 0.120 0.471
Parkinson (Gender) 0.306 0.550 0.748 0.792
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(a) Accuracy (Race)
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(b) Accuracy (Gender)
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Figure 5.4: Minority label’s accuracy on different demographics and minority sample
sizes.
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5.3 “Auxiliary Domain Over Sampling”

In this section, we transform “Rare Transfer” to a sampling technique that samples

an auxiliary (source) domain for new instances instead of synthetically generating new

instances from the existing (target) domain. This algorithm is different from transfer

learning methods, and more like imbalanced methods, since we make no attempt at

classification. We simply exploit the concepts within transfer learning to search for

instances from the auxiliary data that best fit the hypothesis of our training set under

the assumption that these instances are likely to improve learning by discovering the real

underlying distribution of the target domain. Once the training set in that target domain

is augmented with a best-fit set of auxiliary instances, any machine learning algorithm

can be applied.

Sampling for Imbalanced learning

To bias a classifier for improved minority classification, several sampling methods have

been proposed to synthetically subtract or create new training instances and modify the

training dataset so it has a relatively more balanced class distribution. The simplest

method is to apply random under-sampling or random over-sampling. In random under-

sampling methods [64], instances from the majority class are randomly removed until

there is a balanced mix of majority and minority samples. While removing instances

does induce balance, this is not helpful for learning when there is limited number of

minority samples since the total size of the dataset would be around twice that of the

minority and useful information from the majority can be lost.

There are two main set of methods for oversampling. The simplest method is “Random

over-sampling” [17] which create duplicates of the minority instances to bias the classi-

fier with an increased number of minority instances. The second type of oversampling

uses an advanced sampling strategy that creates new synthetic instances based on exist-
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ing instances’ distribution. This intelligent oversampling strategy is superior to random

over-sampling since random oversampling generally overfits [33] as the duplicated data

generates a training model that is too close to the over-duplicated training set. Synthetic

Minority Over-sampling Technique (SMOTE) [16] is the most popular intelligent over

sampling method and it creates synthetic instances instead of merely duplicating exist-

ing ones. To create new synthetic minority instances, SMOTE randomly selects minority

samples and generates new ones along the line segment connecting neighboring samples.

This is performed in the feature space and each synthetic sample is the average of its k

neighbors. In one of the many variation of SMOTE [56], the randomness in minority in-

stance selection is replaced with a minority sample selection that is based on k-means [72].

The minority instances are clustered to an equal number of clusters and oversampling

is applied to each cluster independently to generate a broader minority space. Another

method, “Focused Resampling” [53], applies over-sampling only to minority instances

that lie along the classification boundary.

A newly proposed algorithm [112] “Transfer Ensemble Model for Imbalanced Data” or

TEMID used an “imbalance than transfer“ concept to learn with imbalance and transfer

where the two problems were cascaded. Over-sampling of the source and target was the

first step and was followed by under-sampling of the merged set of source and target

instances. The first two steps comprised the balancing stage and were followed by an

ensemble transfer phase.

Sampling From an Auxiliary Domain

The weakness of sampling methods is that they cannot discover the true underly-

ing distribution if the number of minority samples is sparse. For example, Figure 5.5

demonstrates how a classifier might construct the separation boundary if no sampling

strategy is applied. There are two important observations: First, the learner discovers
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only a subsection of the minority label’s space since there is not enough data to discover

the true underlying distribution. Second, the learner rejects outliers since the minority

label’s outlier is overwhelmed with majority label’s instances.

In Figure 5.6, a SMOTE strategy oversamples the minority label by creating synthetic

Figure 5.5: Classification without Oversampling.

minority instances. This oversampling strategy discovers a subsection of the minority

label’s distribution but is only limited to the subsection where minority samples already

exist. While the SMOTE over-generalization improves training with the denser minority

space, this methods also overgeneralizes to outliers and biases for a noise sensitive clas-

sifier.

Figure 5.6: Classification with SMOTE.

To find the true minority space, a similar auxiliary dataset can be used to find the direc-

tion where the minority label’s true distribution exists. The example in Figure 5.7 shows
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how synthetic data can be found and not created by using the instances that are found

in the auxiliary dataset. The instances from the auxiliary dataset might have a shifted

distribution that is different from that of the minority samples but finding instances that

fit within the sparse underlying distribution of the target dataset allows for the discov-

ery of that underlying distribution. In Figure 5.7, the minority instances come from an

auxiliary domain where the distribution is shifted to the left-upper corner. The shifted

distribution still fills the sparse hyperplane where the minority instances reside. This

strategy is analogous to observing a similar dataset to get a general idea as to where the

underlying true distribution resides. Subsequently, this method of over-sampling from an

auxiliary domain has a better chance of finding the minority’s instances true distribution

in a datasets with “Absolute Rarity”. This method is also better fit to reject outliers as

these outliers are less likely to have many instances within close proximity.

Figure 5.7: Classification from an auxiliary domain.

Figure 5.8 gives a single view of how the three classification boundaries differ. Sam-

pling from an auxiliary domain discovered the classification boundary with the largest

proportion of the underlying distribution while rejecting the outlier.
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Figure 5.8: a) Left: Classification without Oversampling. b) Center: Classification
with SMOTE. c) Right: Classification from an auxiliary domain.

5.4 Proposed Algorithm

5.4.1 Auxiliary Domain Over Sampling (ADOS)

The pseudo code of “Auxiliary Domain Over Sampling”, ADOS, is presented in Al-

gorithm 3. The weak classifiers on line 8 are trained with the weighted target instances

to discover the hypothesis space for the target data. In AdaBoost’s intended design,

weighted weak classifiers are constructed to discover the hyperplane that forms the deci-

sion boundaries for classification.

In Algorithm 3, the decision boundaries are utilized to narrow the candidate set of aux-

iliary instances that are best fit for oversampling. We will use target instances to find

the optimal separating hyperplane and subsequently use that hyperplane inversely to

search for the optimal set of source instances that are aligned with that hyperplane.

This concept allows for the discovery of the true underlying distribution in a dataset

with “Absolute Rarity”.

Sampling is performed on line 3 to generate balanced classifiers to make it easier to dis-

cover the proper separating hyperplane in an imbalanced dataset. Sampling also allows
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for multiple hypotheses to be generated as set by the constant R and can reduce sensi-

tivity to outliers. The weights of the best-fit auxiliary samples would maintain higher

values after N boosting iterations, while the weights of weak performing instances (un-

aligned instances) would converge. After boosting is complete, the auxiliary instances

with the highest weights can augment the minority target samples to improve learning.

Algorithm 3 can also augment the majority instances as the overall size of the dataset

might be too small and inadequate for training and adding additional instances, even

for the majority class, could improve classification. Algorithm 3 can be followed by any

classification algorithm for training.

5.5 Experimental Results on Real-World Datasets

5.5.1 Experiment Setup

We follow the setup in Chapter 4 with two additional datasets:

• Abalone2: The goal is to use seven physical measurements of an abalone sea snail

to determine its age. This dataset is mostly from male abalone (source set, 1448

majority, 80 minority) and thus there is only a small number of female abalone

samples (target set, 99 majority, 22 minority).

• Solar Flare: The goal is to predict if a C-class flare will occur within the next 24

hours using 10 attributes of solar activity measurements. Data collected in 1969

(source set, 884 majority, 182 minority) was used to augment data collected in

1978 (target set, 71 majority, 9 minority) with the latter having much more error

correction and is consequently more reliable.

2http://archive.ics.uci.edu/ml/
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Algorithm 3 Auxiliary Domain Over Sampling (ADOS)

Require:

B Source Majority Dsrc−maj = {xsrc−maji , ysrc−maji}
B Source Minority Dsrc−min = {xsrc−mini

, ysrc−mini
}

B Target Majority Dtar−maj = {xtar−maji , ytar−maji}
B Target Minority Dtar−min = {xtar−mini

, ytar−mini
}

B Max iterations : N,Base learner :
..

f

Output:Weighted auxiliary instances as they are fit for oversampling:w =

R∑
k=1

wk

R

Procedure:
1: Setβsrc = 1

1+
√

2 ln(n)
N

2: for k = 1 to R do
3: Sample for Training Majority:

size (xtrain−maj) = size (xsrc−min) = m
xtrain−maj ∈ xsrc−maj

4: Initialize the training weight vector: wtrain = {wtrain−maj ∪ wsrc−min}
5: Initialize the source weight vector: wsrc = {wsrc−maj ∪ wsrc−min}
6: for t = 1 to N do
7: Normalize Training Weights: w = w

m∑
j
wtrainj

8: Find the candidate weak learner
..

f t : X → Y that minimizes error for Dtrain

weighted according to w

9: Calculate the error of
..

f t on Dtrain: εttrain =
m∑
j=1

[wj
train]1I

[
ytrainj

6=
..

f tj

]
m∑
i=1

[wi
train]

10: Set β =
1− εttrain
εttrain

11: wt+1
srci

= wtsrciβsrc
1I
[
ysrci 6=

..
fti

]
where i ∈ Dsrc

12: wt+1
traini

= wttraini
βt

1I
[
ytraini

6=
..
fti

]
where i ∈ Dtrain

13: end for
14:

15: Store Normalized Source Weights: wk = wt
src

n∑
i
wt

srci

16: end for
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5.5.2 Experimental Results

A summary of different performance metrics is presented in Table 5.6. The results

demonstrate the effectiveness of our method and the failure of SMOTE when the ratio

of features/samples is high (as is the case in the 20 Newsgroups dataset that has ≈ 500

features). The “Abalone” and “Solar Flare” datasets also fit the description of “Absolute

Rarity” but occupy a fairly small 7 and 10 dimensional feature spaces and reside within

a limited hypothesis space that is feasible to shatter [4] with standard models.

Table 5.6: Algorithm comparison with different performance metrics. (Left)
AdaBoost.(Center) SMOTE-AdaBoost. (Right) ADOS-AdaBoost

Dataset Fea G-Mean BAC Minority Accuracy

Abalone 7 0.60 0.69 0.75 0.67 0.71 0.76 0.40 0.55 0.70
Sun Flare 10 0.33 0.38 0.42 0.53 0.53 0.53 0.13 0.18 0.22
REC SCI ≈500 0.34 0.34 0.64 0.57 0.57 0.66 0.14 0.14 0.51

REC TALK ≈500 0.36 0.38 0.60 0.58 0.58 0.64 0.16 0.16 0.44
SCI TALK ≈500 0.29 0.28 0.63 0.55 0.55 0.66 0.11 0.10 0.50

Comparison at different absolute and relative rates

In Figure 5.9 we vary the size of the training set for the “20-Newsgroups” dataset

with a 5% imbalance ratio. The results demonstrate that SMOTE failed because the

absolute number of samples is insufficient. On the other hand, ADOS compensated for

the lack of minority data and for the overall lack of samples. ADOS augmented the

training dataset with the best set of source instances that represent the true underlying

target’s distribution.

Figure 5.10 presents a comparison of our algorithm at 10% imbalance rate to validate

how our algorithm performs at a rate that can include a sufficient number of training

examples. The results demonstrate that competing algorithms perform well only when

there is a sufficient number of samples for generalization while ADOS was able to find the

true distribution faster uses the auxiliary domain. The results demonstrate that ADOS
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Figure 5.9: REC-VS-SCI (5% minority, 3-30 samples).

can replace SMOTE particularly when the number of training examples in an imbalanced

dataset is small (as in “Absolute rarity”).
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Figure 5.10: REC-VS-TALK (10% minority, 5-46 samples).

5.6 Conclusion

We tested our algorithms “Dynamic-TrAdaBoost” and “Rare-Transfer” on several

real world problems and demonstrated that our algorithms improved classification for

“Absolute Rarity”. The results fit the theoretical and empirical analysis that we did in

chapters 3 and 4. We also proposed an algorithm that extracts samples from an auxiliary

domain to augment a high-dimensional, label-skewed and sample-deficient dataset. Our

algorithm augmented the minority samples in an imbalanced problem with samples from

an auxiliary domain and improved over existing approaches by finding the true underlying

distribution of a dataset with “Absolute Rarity”.
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CHAPTER 6

MULTI-TASK CLUSTERING USING

CONSTRAINED SYMMETRIC NON-NEGATIVE

MATRIX FACTORIZATION

Multi-Task clustering is a promising research direction that can leverage knowledge

from related tasks to improve clustering quality. In this chapter, we present a novel for-

mulation where we simultaneously cluster multiple tasks with an optimized Intra-Task

(within-task) and Inter-Task (between-task) knowledge sharing. We present an efficient

and flexible geometric affine transformation (contraction or expansion) of the distances

between Inter-Task and Intra-Task instances. This transformation allows for improved

Intra-Task clustering without overwhelming the individual tasks with the bias accumu-

lated from other tasks. Inter-Task contraction compresses the distance between different

tasks to obtain a global solution while Inter-Task expansion stretches the manifold and

dilutes the connections between the tasks so they exhibit less influence on one-another for

a single task solution. This multi-task affinity transformation requires a constrained low-

rank decomposition so that simultaneous clustering can be performed while maintaining

the class distribution within each individual task. We impose an Intra-Task soft orthog-

onality constraint to a Symmetric Non-Negative Matrix Factorization (NMF) problem

to generate basis vectors that are near orthogonal within each task. Inducing orthogonal

basis vectors in each task is analogous to imposing the prior knowledge that a task should

have two orthogonal (different) clusters. We validate that our transformation is efficient,

flexible and generates superior clustering results with several real-world experiments.
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6.1 Introduction

Researchers aim to improve the performance of clustering algorithms by improving

the quality of clustering or algorithm run-time [1]. One prominent method to improve

clustering quality is to simultaneously cluster a set of related datasets (tasks) in what

is called multi-task clustering. The aim of multi-task clustering is to improve clustering

in each individual task by sharing knowledge between the different datasets (Inter-Task

knowledge sharing). Clustering quality can be improved with some bias from the global

task (combination of all tasks) with the trade-off that the Inter-Task knowledge can over-

whelm each individual task and alter its distribution.

An “Affinity Matrix” is a positive symmetric similarity matrix that describes the distance

(weight) between a set of instances. Figure 6.1 gives a simple example to demonstrate the

decomposition of an affinity matrix, with multiple tasks, into Intra-Task and Inter-Task

components. We plot the affinity matrix for a four-task clustering problem where each

task comes from a different university and contains two classes of websites (personal vs.

project). Figure 6.1(a) shows the full affinity matrix where all of the connections are

treated equally and all tasks are combined into a single affinity matrix. The matrix in

Figure 6.1(b) presents Intra-Task components while Figure 6.1(c) presents the Inter-Task

components.

(a) Full Task (b) Intra-Task (c) Inter-Task

Figure 6.1: Decomposition of a Four-Task Multi-Task Affinity Matrix.
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Combining all tasks into one single clustering problem generally yields inferior results

since multiple tasks, with different distributions, bias and distort each individual task’s

distribution. Multi-Task clustering methods aim to control the effect of the Inter-Task

knowledge via regularization of the clustering objective or by finding a mapping (or view)

where the multiple distributions share a common distribution in the mapped space. The

multi-task clustering method in [129] used Bregman divergence [13] for task regulariza-

tion to require the learned local mixture densities for all tasks to be similar. In [85, 46],

different tasks are mapped to a shared distribution in a Reproducing Kernel Hilbert

Space (RKHS) [10] where standard clustering can be performed in the common RKHS.

Information theoretic clustering methods minimize the difference in mutual information

between the original data matrix and that of the clustered random variables [29]. Self-

Taught clustering [25] used the information theoretic approach for unsupervised transfer

learning while the loss in mutual information was added for Inter-Task regularization for

multi-task co-clustering in [121].

Existing multi-task methods do not directly control the effect of the Inter-Task knowl-

edge bias on individual tasks. Combining multiple tasks can overwhelm the Intra-Task

distribution. For example, in the four-task problem, each task will be influenced by three

other tasks and if all connections are treated equally, the Intra-Task clustering will be

distorted (and overwhelmed) by the compounded effect of the three other tasks.

In this chapter, we control the Intra-Task vs. Inter-Task contribution to the affinity

matrix for an optimal clustering outcome. Controlling the bias induced by the Inter-

Task knowledge can improve the clustering quality without overwhelming the individual

tasks. To incorporate controlled bias into multi-task clustering, an Affinity Matrix is

transformed to a Multi-Task Affinity Matrix where the weight, w, between two instances

i and k can be biased (compressed or stretched) for an optimal clustering solution. Con-
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trolling the bias is performed using general multi-task coefficients (λ):

wik =

 λintra (wik) if 〈Intra− Task〉

λinter (wik) if 〈Inter− Task〉
(6.1)

where λ ∈ {0, . . . , 1} is a multi-task coefficient (or maybe a matrix of coefficients for

exact tailoring) that can be modified for different clustering solutions.

Diminishing the Inter-Task connections can diminish the bias induced by other tasks but

as the tasks become loosely connected, standard clustering methods will cut the weakly

connected tasks into different clusters. For example, in the four-task example in Fig-

ure 6.1(b), standard clustering might group the first two tasks as one cluster and the last

two tasks as another (or some other combination where each task belongs to only one

class). To prevent this phenomenon, we force a solution where a low-rank decomposition

contains near orthogonal basis vectors within each task. Forcing orthogonal basis vectors

within each task is analogous to forcing the basis vectors to contain two different clusters

within each task and thus the cut is not between tasks but rather within individual tasks.

The rest of the chapter is organized as follows: Section 6.2 proposes a flexible and efficient

construction method for a “Multi-Task Affinity Matrix”. Section 6.3 presents an algo-

rithm for generating relevant multi-task clustering solutions. Section 6.4 demonstrates

our experimental results on several real-world datasets while section 6.5 concludes this

chapter.

6.2 Multi-Task Affinity Matrix

6.2.1 Multi-Task Transformation

Figure 6.2 illustrates how a multi-task affinity transformation translates to different

clustering solutions. For clarity, we present the simplest variations of λintra and λinter as

we set (λintra = 1) and (λinter = λ). The goal is to cluster documents into either sports
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or science documents where each individual task has documents that belong to a branch

of science (Chemistry, Biology) or sports (Basketball, Football). Intra-Task connections

can link documents via task-dependent (NBA, Avogadro) features and task-independent

(Score, Celsius) features. On the other hand, Inter-Task instances can only connect via

task independent features. Following the multi-task definition in Equation (6.1), different

λ values generate different clustering solutions as:

Figure 6.2: Multi-Task Affinity Transformation.

• Intra-Task Clustering (λ = 0): This coefficient removes all Inter-Task connections

and thus a task cannot share or get any knowledge or bias from the other task.

Because there is no connection between the two tasks, clustering is independent

and so is the solution.

• Global-Task Clustering (λ = 1): All weights are biased equally as the multi-task

coefficients are equal and the two tasks will combine into one global clustering

solution.

• Multi-Task Clustering (0 < λ < 1): This is the general definition of multi-task clus-

tering where the clustering is an Intra-Task solution with an Inter-Task bias (or

knowledge sharing).
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6.2.2 Multi-Task Graph

In section 6.2.1, we proposed some different λ variations that can produce different

feature sets and different clustering solutions. For an efficient and flexible transforma-

tion, we create a star structured network that is constructed with tasks t = {1, . . . , T}.

Table 6.1 presents a summary of notations.

Table 6.1: Summary of notations

Notation Description
D Input Data Matrix: Dn×nz

I Instance Tasks: I = {Xt}Tt=1

Z Feature Task (Zeroth Task): Z = {Xt}t=0

M Multi-Task Graph: M = {I ∪ Z}
T Total Number of Tasks
t Task Index: t = {1, . . . , T}
nt Number of Instances in the tth Instance Task
nf Number of Features in the Feature Task
f i ith feature
eAB Binary Relation between any two nodes A and B: e ∈ {0, 1}
wAB Weighted Relation between any two nodes A and B: w ∈ {R+}
E Binary Relation Set
W Weighted Multi-Task Affinity Matrix
xit Node i in Task t (Instance or Feature)
N Total Number of Instances
l Number of Labels

V N×2 NMF Basis Vectors
HT×N Task-Indicator Function
K2×T Class-Indicator Function

An Input Data Matrix
(
Dn×nz)

is split as:

1. Instances (samples) form nodes in an “Instances Task”: In×1 = {Xt}Tt=1 where each

task (t) has nt samples for a total of n =
T∑
t=1

nt nodes.

2. Features form nodes in the “Feature Task” or the Zeroth task: Z1×nz
= {Xt}t=0 for

a total of nz feature nodes.

With all instances and features mapped as nodes, an information graph G = 〈M,E,W 〉

is constructed where the union of the “Instance Tasks” and the “Feature Task” construct
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the Multi-Task Graph, M :

M = {I ∪ Z} = {Xt}Tt=0 (6.2)

The binary relation between all nodes within this network is:

e ∈ E ∈ {0, 1} (6.3)

This network is weighted with the non-negative weights mapping feature nodes to in-

stance nodes with w ∈ <+ such that:

∀e =
〈
xj

t
, xi

t

〉
,
{
xj

t
∈ Xt=0 ∧ xit ∈ Xt6=0

}
(6.4)

Equation (6.4) states that instance nodes only connect to feature nodes to form a bipartite

graph. This graph is considered a bipartite graph since instance nodes and feature nodes

can be divided into two disjoint sets (t = 0 and t 6= 0) such that every edge connects

a vertex in (t = 0) to one in (t 6= 0). This bipartite graph will be transformed into a

Weighted Multi-Task Affinity Matrix (W ).

6.2.3 Sub-Graph Matrices

For an efficient and flexible mapping of the bipartite graph for the multi-task setting,

we will construct two types of sub-graphs:

1. Intra-Task sub-graphs: Each sub-graph is a weighted graph connecting the Intra-

Task instance nodes. For T tasks, a total of T sub-graphs are constructed.

2. Inter-Task sub-graphs: Each sub-graph is a weighted graph connecting instance

nodes from two different tasks using the feature nodes that are common to both

tasks. A total of TC2 = T (T−1)
2

sub-graphs are constructed.

A sub-graph is defined as Gtt∗ , where t is the index of the first task and t∗ is the index of

the second task. t 6= t∗ for an Inter-Task graph while t = t∗ for an Intra-Task sub-graph.
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Let us define exi
t
zj as the binary relation between the jth feature node (zj) and the ith

instance node (xi) of task t. Let exi
t
zj indicate if the jth feature node (zj) is connected

to the ith instance node (xi) of task t as:

exi
t
zj ≡

(
zj ∈ xi

t

)
=

 1 wxi
t
zj 6= 0

0 otherwise
(6.5)

To check if a feature node (zj) belongs to any instance node (xt) in task t, it has to connect

to at least one of the task’s instance nodes and thus we define the binary indicator f tzj

to designate if the jth feature node zj belongs to task t as follows:

f tzj ≡
(
zj ∈ t

)
=


1

nt∑
i=1

exi
t
zj 6= 0

0 otherwise

(6.6)

Now that the preliminaries have been defined, a sub-graph Gtt∗
[
xi

t
xkt∗
]

is constructed as:

nz∑
j=1

(
sxi

t
xk
t∗

) (
f tzjf

t∗

zj

) (
exi

t
zjexk

t∗z
j

)(
wxi

t
zj + wxk

t∗z
j

)
(6.7)

Equation (6.7) is divided into 4 components where the first 3 components are Kronecker’s

Delta “checks” to generate weighted connections between instance nodes:

1.
(
sxi

t
xk
t∗

)
is optional to prevent self-loops and is defined as:

[
sxi

t
xk
t∗

]
=

 1 xi
t
6= xkt∗

0 otherwise
(6.8)

2.
(
f tzjf

t∗

zj

)
: This section is an Inter-Task check and by definition of f tzj , we will get a

value of one if a feature node belongs to both tasks. It is a redundant check and

is included for efficiency as it eliminates all feature nodes that are not shared by
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the two tasks. For example: if two tasks only share 10% of the feature nodes, this

check can eliminate 90% of the feature nodes for a reduced sub-graph. It is defined

as:

[
f tzjf

t∗

zj

]
=

 1 (zj ∈ t) ∧ (zj ∈ t∗)

0 otherwise
(6.9)

3. (extziext∗zi): This section checks if a feature node (zi) belongs to both instance

nodes (xt∗) and (xt). The outcome is a value of One if that feature node belongs

to both instance nodes as:

[
exi

t
zjexk

t∗z
j

]
=

 1
(
zj ∈ xi

t

)
∧ (zj ∈ xit∗)

0 otherwise
(6.10)

4.
(
wxi

t
zj + wxk

t∗z
j

)
: If a feature node belongs to both tasks and is connected to in-

stance nodes (xt and xt∗), the weight of the path connecting these two instance

nodes through the feature node (zi) should be combined in the sub-graph.

6.2.4 Multi-Task Weighted Affinity Matrix

For T tasks, a total of TC2 + T weighted sub-graphs are constructed and combine to

construct a single Multi-Task Weighted Affinity Matrix with the weights defined as:

wxi
t
xk
t∗

= [(δtt∗)λintra + (δ′tt∗)λinter]Gtt∗
[
xi

t
xkt∗
]

(6.11)

where (δ′tt∗) is the inverse of the Kronecker’s delta (δtt∗) which is defined as:

δtt∗ = δ [tt∗] =

 1 t = t∗

0 t 6= t∗
(6.12)
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Equation (6.11) can be broken down to:

wxi
t
xk
t∗

=


λintraGtt∗

[
xi

t
xkt∗
]

t = t∗

λinterGtt∗
[
xi

t
xkt∗
]

t 6= t∗

(6.13)

This is the original definition of multi-task clustering in Equation (6.1).

The sub-graph construction method is:

• Efficient: Several steps are added to the sub-graph construction method to scale

to large graphs. For example: It leverages the symmetry of the affinity matrix,

sub-graphs are constructed independently (parallel construction), sub-graphs can

be constructed and re-used, and no multiplications are required.

• Flexible: Different multi-task coefficients (or a matrix of coefficients) can be incor-

porated for different multi-task formulations. A star-structured network is also very

flexible to accommodate a diverse set of problems such as heterogeneous networks.

6.3 Symmetric Multi-Task NMF

A Multi-Task Affinity Matrix can stretch the distance between tasks weakening the

connection between them. This is beneficial as Inter-Task knowledge should only con-

tribute complementary (auxiliary) knowledge and not overwhelm the Intra-Task knowl-

edge. The drawback of diminishing the connection between tasks is that standard clus-

tering does not distinguish between different tasks and different clusters and thus will

assign different tasks to different clusters (labels). To prevent this, a Non-negative Matrix

Factorization (NMF) [68] method is proposed where orthogonality in each task’s basis

vectors is promoted. Enforcing orthogonal basis vectors, within each task, is equivalent

to forcing a solution with two different clusters within each task and thus the clustering

“cut” is within each task and not between different tasks.
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6.3.1 Non-negative Matrix Factorization

Non-negative Matrix Factorization(NMF) [68] is a matrix factorization technique

that focuses on the analysis of data matrices whose elements are non-negative. The

non-negativity is a useful constraint for matrix factorization since it allows for a parts

representation of the data where the basis vectors are distributed and also form sparse

combinations that can generate expressiveness in the reconstructions[75].

Given a non-negative data matrix X, non-negative matrix factorization is a linear, non-

negative approximate data representation that aims to find two non-negative matrices U

and V whose product can approximate the original matrix: X ≈ UV T . Various objective

functions have been proposed [94] and the most widely used is the sum of squared error,

Euclidean distance, function:

min
U,V >0

∥∥X − UV T
∥∥2 (6.14)

Symmetric NMF is a special case of NMF decomposition where the basis U is replaced

with V and the NMF optimization approximates a symmetric matrix W as: W ≈ V V T .

Symmetric NMF can improve over standard NMF as it can discover clusters with a

nonlinear underlying structure [61]. Symmetric NMF is also useful for clustering as it

can be constrained to morph into several popular clustering methods [111]. For example,

for a square symmetric affinity matrix, W , Symmetric NMF can be equivalent to kernel

k-means clustering with the additional constraints of symmetry as follows:

arg min
V≥0

∥∥W − V V T
∥∥2,s.t. (V TV = I

)
(6.15)

NMF can also be transformed to Normalized-Cut spectral clustering by normalizing the

adjacent matrix W in Equation (6.15) as:

W̃ = D−
1
2WD−

1
2 , D = diag (d1, . . . , dm) , di =

∑
j

wj (6.16)
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6.3.2 Symmetric Multi-Task Non-Negative Matrix Factoriza-

tion

In this section, we modify the Symmetric NMF objective function for multi-task

clustering. Formally, given a Symmetric Multi-Task Affinity Matrix W , we want to find

the basis vectors V such that:

arg min
V≥0

[J (V )] = arg min
V≥0

[
1

2

∥∥W − V V T
∥∥2 + αTr

(
φφT

)]
(6.17)

The constraint φ is a multi-task sparsity/orthogonality constraint and is defined as:

φ = HVK (6.18)

where HT×N ∈ {0, 1} is the task-indicator function. Within the trace penalty constraint,

this matrix limits the orthogonality constraint to Intra-Task basis while excluding Inter-

Task basis. It is defined as:

H (t, i) =

 1 i ∈ t

0 i /∈ t
(6.19)

K2×T ∈ {−1,+1} is the class-indicator function and sums the basis (if normalized) to

zero when an Intra-Task solution is orthogonal. For a binary problem, it is defined as:

K (i, t) =

 +1 i = 1

−1 i = 2
(6.20)

The first part of Equation (6.17) is a global Symmetric NMF clustering solution minimiz-

ing the reconstruction error where the generated basis vectors are near-orthogonal [111].

The second part of equation (6.17) constrains the objective function to include Intra-
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Task orthogonality thus optimizing for a solution where each task has orthogonal basis

vectors and thus instances that belong to different classes. The multi-task penalty added

to Equation (6.17) is a soft sparsity or orthogonality constraint and is equivalent to:

∑
t∈Tasks

(
∑
i∈taskt

Vi,1 −
∑
i∈taskt

Vi,2)
2

(6.21)

Equation (6.21) can be minimized as a:

1. Sparsity Constraint: The basis vectors are sparse (have small values). This is the

trivial solution and it directly increases the reconstruction error.

2. Orthogonality Constraint: The basis vectors are orthogonal within each task. This

has less effect on the reconstruction error since a task with two clusters naturally

has two different distributions (one for each cluster) and thus the basis vectors can

be near orthogonal (after normalization) without drastic increase in re-construction

error. For example, for a a simple multi-task problem with 2 independent clusters

within each task, the penalty Tr
(
φφT

)
can be minimized to zero without affecting

the re-construction error. Symmetric NMF’s near-orthogonal basis is an essential

property in equation (6.21) as orthogonal basis do not need to be normalized.

This penalty thus encourages Intra-Task orthogonality which is analogous to enforcing

the prior knowledge that each task should contain two clusters. The penalty Tr
(
φφT

)
equals zero for a fully orthogonal within-task solution and is strictly increasing otherwise.

6.3.3 Multiplicative Update Rule

To derive the updating rule for Equation (6.17) with non-negative constraints on

vij, we introduce the Lagrangian multipliers λ to minimize the Lagrangian function:

L = J +
∑
ij

λijVij.
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The first order KKT condition for local minima is:

∂L

∂Vij
= 0 and λijVij = 0,∀i, j (6.22)

Expanding the Lagrangian function L:

L = 1
2

∥∥W − V V T
∥∥2 + αTr

(
φφT

)
+ Tr

(
λV T

)
= Tr

(
1
2

(
W TW − 2WV V T + V V TV V T

))
+Tr

(
αHVKKTV THT + λV T

) (6.23)

The gradient of Equation (6.23) is:

∂L

∂V
= −2WV + 2V V TV + 2αHTHVKKT + λ (6.24)

The KKT complementarity condition for the non-negativity of Vik gives:

(
−2WV + 2V V TV + 2αHTHVKKT

)
ik
Vik = 0 (6.25)

This is the fixed point relation that the local minima for V must satisfy.

To minimize Equation(6.17), we use the gradient descent method:

Vij ← Vij − εij
∂J

∂Vij
(6.26)

Setting εij =
Vij

4V V TV
, we derive the proposed updating rules of Equation (6.27).

Vij =
1

2

[
Vij

(
1 +

(
WV − αHTHVKKT

)
ij

(V V TV )ij

)]
(6.27)

At α = 0, this update mechanism is the same as the standard update mechanism for

Symmetric Non-Negative Matrix Factorization. A value of α has to be set such that
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non-negativity is enforced ∀ij:

[
WV − α

(
HTHVKKT

)]
ij
≥ 0 (6.28)

Since KKT ∈ {R<0,R>0}, Equation (6.28) can be decomposed into its negative and

positive components as:

[
WV − α

(
HTHVKKT

)+ − α(HTHVKKT
)−]

ij
≥ 0 (6.29)

The term α
(
HTHVKKT

)−
can be dropped from Equation (6.29) since ∀ij:

[
−α
(
HTHVKKT

)−]
ij
≥ 0 (6.30)

Thus α has to be set to any value such that ∀ij:

α ≤
(

WV

(HTHVKKT )+

)
ij

(6.31)

Simply stated, non-negativity is preserved if α is set to any positive value less than the

minimum of the matrix calculated in Equation (6.31).

α ∈
{

0, . . . ,min

(
WV

(HTHVKKT )+

)}
(6.32)

In our implementation, we preserved non-negativity and minimized Tr
(
φφT

)
by setting

α to:

α = min

(
WV

(HTHVKKT )+

)
(6.33)
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6.3.4 Symmetric Multi-Task NMF Clustering Algorithm

In this section, we present our Multi-Task clustering algorithm “Symmetric Multi-

Task NMF”. The first two steps generate a Multi-Task Affinity Matrix where the Inter-

Task connection have their weights reduced by the Multi-Task coefficients λ1. We iterate

to get the basis vectors and set the class membership to the basis vector with highest

value.

Algorithm 4 Symmetric Multi-Task NMF (SMT-NMF)

Require: Input Data Matrix
(
Dn×nz)

. Multi-Task Coefficients λ
1: Construct Sub-Graph Matrices using equation (6.7).
2: Construct Weighted Multi-Task Affinity Matrix W using equation (6.11).
3: Set H using equation (6.19) and K using equation (6.20).
4: Initialize V with random non-negative values
5: repeat

6: α = min
(

WV

(HTHVKKT )+

)
7: Vij = 1

2

[
Vij

(
1 +

(WV−αHTHVKKT )
ij

(V V TV )ij

)]
8: until Convergence

Ensure: Assign clusters to: max (V ).

6.3.5 Synthetic Example and Relationship to Orthogonality

A synthetic 2-task example was generated with 1,600 samples where each task in-

cludes 400 samples for each label. The multi-task affinity matrix is sorted by label (for

clarity) and plotted in Figure 6.3(a) with no Inter-Task connections (λinter = 0). The

clustering result using standard Symmetric NMF (α = 0) is plotted in Figure 6.3(b) and

it demonstrates that standard Symmetric NMF assigns all instances in each task to one

class. This is the expected behavior since the two tasks form two disjoint clusters. In

Figure 6.3(c), Symmetric Multi-Task NMF formulation forces a clustering solution where

instances within each task are clustered into two different classes and this is accomplished

by reducing the trace orthogonality penalty, Tr
(
φφT

)
, by 20 times as:

1For simplicity we set: λintra = 1.
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Tr
α 6=0

(
φφT

)
Tr
α=0

(φφT )
= 0.05

The outcome of the standard Symmetric NMF formulation matches the expected outcome

(a) Two-Task Affinity (b) Standard NMF:α = 0 (c) Multi-Task NMF:α 6= 0

Figure 6.3: NMF Results with different λ values. (a) Affinity Matrix. (b) Clustering
with Symmetric NMF. (c) Clustering with Symmetric Multi-Task NMF

in [111] and generates an orthogonal solution for the global affinity matrix as:

(
V V T

)
: All =

 1.00 0.00

0.00 1.00

 ,Task1 =

 2.00 0.00

0.00 0.00

 ,Task2 =

 0.00 0.00

0.00 2.00


This solution is orthogonal for the global affinity matrix but is not “within-task orthog-

onal”. On the other hand, our Symmetric Multi-Task NMF formulation generates a

near orthogonal solution but orthogonality is task-dependent and the basis vectors are

orthogonal in each individual task as:

(
V V T

)
: All =

 0.99 0.16

0.16 1.00

 ,Task1 =

 1.00 0.00

0.00 1.00

 ,Task2 =

 1.00 0.34

0.34 1.00
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6.4 Experimental Results on Real-World Datasets

6.4.1 Dataset Description

The detailed constitution of the datasets is summarized in Table 6.2.

• 20 Newsgroups: The 20 Newsgroups2 dataset [67] is a collection of newsgroup

documents. We generated six multi-task learning problems where each task is

drawn from different sub-categories as outlined in [23]. For example, if the classes

are from the two top categories: “Rec vs. Talk”, the first task is from sub-

categories \rec.sport.hockey and \talk.religions.misc whereas the second task is

from \rec.sport.baseball and \talk.politics.mideast and so on.

• Reuters-21758: The Reuters-217583 corpus contains Reuters news articles from

1987. Three multi-task problems with 2 tasks per problem were generated where

the subcategory splits are analogous to the 20newsgroup dataset [23].

• WebKB4: The WebKB44 dataset contains web pages from four universities (Cor-

nell, Texas, Washington, Wisconsin) and thus 4 tasks were generated. Web-sites

belong to either Personal (student/faculty) or Project (course/project).

Table 6.2: Description of the datasets.

Dataset Tasks #Tasks #Samples #Features

20 Newsgroups

Rec vs Talk 4 40,80,120,160 636-1963
Rec vs Sci 4 40,80,120,160 448-1876

Rec vs Comp 4 40,80,120,160 405-1468
Talk vs Sci 4 40,80,120,160 631-2388

Talk vs Comp 4 40,80,120,160 504-2066
Sci vs Comp 4 40,80,120,160 634-1939

WebKB4 Project vs Personal 4 80,160,240,320 141-760

Reuters
Orgs vs People 2 40,80,120,160 1514-2552
Orgs vs Places 2 40,80,120,160 1501-2583

People vs Places 2 40,80,120,160 1281-2610

2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
4http://archive.ics.uci.edu/ml/
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6.4.2 Experiment Setup

We compare the proposed Symmetric Multi-Task NMF (SMT-NMF) clustering algo-

rithm with single-task and combined-task clustering methods including K-means, Nor-

malized Cut (N-Cut) and standard Symmetric NMF (α = 0). Additionally, we compare

with the recently proposed multi-task clustering algorithm “LNKMTC” [85]. For N-Cut,

we search for the best distance kernel and for LNKMTC we follow the setup in [85]

where the neighborhood size for the LNKMTC’s lambda was uniform for all labels, the

k-NN graph is set to k = 10, the regularization parameter C is set by searching the grid

{0.1, 1, 10, 100, 500, 1000} and b is set to 30. For SMT-NMF, we set λinter = 1 and search

the multi-task coefficient λintra = {0, . . . , 1}.

Since single task algorithms performed poorly with a small number of samples, we varied

the number of samples and compiled the results at four different sample sizes. Instances

were randomly selected as outlined in Table 6.2. As the number of samples increased, so

did the number of features (processed into TF-IDF [2] representations). At each sample

size, we calculated the average clustering accuracy [122] of 30 runs and tabulated the

total average from 120 runs.

6.4.3 Multi-Task Learning between Similar Tasks

The first set of experiments (4-tasks, 2-classes) and (2-tasks, 2-classes) tested the

ability of SMT-NMF to improve learning when knowledge was mostly beneficial. We gen-

erated six 20newsgroups (4-tasks, 2-classes), one WebKB4 (4-tasks, 2-classes) and three

Reuters (2-tasks, 2-classes) experiments. The comparison of clustering accuracy [122] is

presented in Tables (6.3-6.5). SMT-NMF consistently outperformed all other al-

gorithms. For the (4-tasks, 2-classes) datasets, the second best algorithms were (Single-

Task NMF, 80% of experiments) and (All-Task NMF, 20% of experiments). For the

(2-tasks,2-classes) Reuters dataset, the second best algorithms were evenly split between

Multi-Task NMF, Single-Task NMF, and Single-Task N-cut. “LNKMTC” [85] did not
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perform well as the k-NN graph construction method creates sparse affinity matrices

where a disjoint (or very weakly connected) set is formed when a set of instances in any

one task only connect to instances within their own cluster and do not connect with the

remainder of the graph to output a solution where only one task has a good clustering

solution.

Table 6.3: Performance comparison with similar tasks (WebKB4, Reuters).

Four-Tasks,Two-Classes(WebKB4). Two-Tasks,Two-Classes(Reuters)

WebKB4 Reuters

DataSet Project vs Personal ppl-orgs plcs-orgs ppl-plcs

Method T1 T2 T3 T24 T1 T2 T1 T12 T1 T2

S-Ncut 77.3 72.5 78.1 65.8 70.9 74.0 74.3 69.1 66.7 69.7
S-NMF 84.6 83.0 84.9 86.6 72.3 65.3 62.1 71.4 69.8 61.1
S-Kmeans 76.2 72.1 80.0 60.5 55.6 57.0 59.2 58.8 57.0 57.5

A-Ncut 69.8 67.9 67.2 70.4 71.6 73.9 72.9 66.5 61.7 65.6
A-NMF 85.9 82.9 81.3 86.5 73.1 75.4 74.0 68.8 63.4 69.3
A-Kmeans 67.8 67.1 67.1 67.0 57.6 57.3 54.6 58.1 59.5 56.5

LNKMTC 61.7 52.9 52.0 63.3 59.4 62.8 62.8 59.1 56.7 60.0
SMT-NMF 92.1 88.3 88.0 92.6 81.0 84.6 81.3 77.6 73.7 75.1

Table 6.4: Performance comparison with similar tasks (20Newsgroups(1-3)).

Four-Tasks, Two-Classes. (20 Newsgroups)

DataSet Rec vs Talk Rec vs Sci Rec vs Comp

Method T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

S-Ncut 82.5 91.9 81.0 85.8 81.4 89.1 86.0 82.2 86.0 92.4 79.4 83.8
S-NMF 84.9 93.8 86.1 89.0 86.6 91.6 91.4 82.9 90.9 94.5 86.1 89.3
S-Kmeans 76.4 88.5 79.6 78.9 80.1 86.8 86.1 74.3 83.2 90.1 79.7 83.4

A-Ncut 82.4 86.0 61.3 64.0 81.0 81.3 60.5 60.7 84.8 86.5 72.4 75.1
A-NMF 83.7 91.9 74.9 76.1 84.3 85.2 75.6 70.2 90.7 94.9 80.7 83.3
A-Kmeans 81.8 89.1 64.3 64.7 81.5 87.7 55.4 54.3 87.2 94.0 71.3 71.0

LNKMTC 53.1 80.8 52.0 55.3 60.0 63.7 56.9 56.1 58.8 77.3 51.4 52.7
SMT-NMF 93.2 96.7 89.6 91.2 91.2 94.9 91.8 88.7 95.7 97.5 92.0 92.8
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Table 6.5: Performance comparison with similar tasks (20Newsgroups(4-6)).

Four-Tasks, Two-Classes. (20 Newsgroups)

DataSet Talk vs Sci Talk vs Comp Sci vs Comp

Method T1 T2 T23 T4 T1 T2 T3 T4 T1 T2 T3 T4

S-Ncut 75.7 84.5 83.9 77.2 84.3 81.8 94.0 89.3 70.1 84.4 84.9 82.8
S-NMF 80.6 88.4 87.5 81.0 85.4 90.1 92.2 92.0 75.8 88.4 89.6 82.0
S-Kmeans 71.6 80.4 78.2 70.6 79.3 81.7 88.6 85.9 68.7 80.8 82.8 73.4

A-Ncut 71.9 68.6 72.3 66.1 86.3 87.2 91.4 89.2 66.1 80.2 79.0 72.4
A-NMF 76.3 76.7 80.7 71.7 91.6 92.5 95.9 94.1 65.9 82.7 84.7 78.7
A-Kmeans 70.3 73.1 78.2 66.9 91.5 91.2 96.0 93.6 65.0 79.5 81.1 74.7

LNKMTC 54.5 54.1 68.1 56.8 51.8 54.5 80.1 55.0 52.4 62.2 60.5 61.8
SMT-NMF 89.3 88.5 91.9 84.7 97.0 97.2 97.9 97.4 78.2 91.8 93.6 91.0

6.4.4 Multi-Task Learning with Similar and Different Tasks

To test the performance of SMT-NMF when there was an overwhelming bias from

other tasks, we generated six 20newsgroups experiments where each experiment had four

tasks with two classes per task and a random permutation of four classes (4-tasks, 4-

classes). For each class, one Inter-Task distribution was helpful while the remaining five

distributions were different. The results in Tables (6.6, 6.7) demonstrate that SMT-NMF

had the best performance while K-means was the second best algorithm in around 2/3

of the experiments and standard NMF was the second best algorithm in around 1/3 of

the experiments.

Table 6.6: Comparison with similar/different tasks (20Newsgroups(1-3)).

Talk-Sci-Rec-Comp Talk-Sci-Rec-Comp Talk-Sci-Rec-Comp

Method T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

A-Ncut 70.6 63.7 57.6 58.9 77.9 62.2 65.6 60.0 68.7 60.1 72.3 60.6
A-NMF 62.3 60.1 66.2 69.6 66.7 70.5 65.0 67.0 63.1 63.8 65.5 69.6
A-Kmeans 71.0 64.2 65.6 65.5 84.4 74.8 68.5 55.6 70.5 59.0 81.8 64.4

LNKMTC 57.2 53.5 58.4 57.4 64.5 55.9 55.7 52.6 54.2 53.9 67.1 54.1
SMT-NMF 76.7 72.2 80.4 81.7 82.3 82.9 76.0 79.9 75.6 79.2 82.3 80.5
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Table 6.7: Comparison with similar/different tasks (20Newsgroups(4-6)).

Talk-Sci-Rec-Comp Talk-Sci-Rec-Comp Talk-Sci-Rec-Comp

Method T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

A-Ncut 66.4 61.6 65.1 61.5 60.7 59.6 80.3 66.2 63.8 74.6 60.8 70.8
A-NMF 64.0 70.0 65.2 65.5 68.4 61.8 71.0 63.2 62.1 65.7 66.5 62.6
A-Kmeans 62.6 76.4 71.4 64.7 70.0 62.4 74.7 76.0 66.7 75.8 64.1 72.6
LNKMTC 55.1 65.7 55.8 53.3 56.8 50.9 72.8 51.6 52.3 73.0 51.4 54.2
SMT-NMF 79.9 89.6 85.5 79.6 87.1 76.3 92.2 85.7 78.7 83.0 83.2 76.6

6.4.5 Clustering with Different Number of Samples

In Figure 6.4 we demonstrate the clustering performance with a variable number

of instances. We did not plot the WebKB4 and Reuters datasets because SMT-NMF

performed significantly better with all sample sizes. For the 20newsgroups dataset, the

performance of Single-Task algorithms improved with increased availability of data. For

clarity we only compare the two most competitive algorithms (Single-Task NMF and

Single-Task N-Cut).

The sub-figures demonstrate that SMT-NMF effectively and consistently improved the

clustering accuracy. The results also demonstrate that increasing the number of examples

improved single-task clustering performance since the increased sample size expands the

feature set (with more non-zero features), improves generalization (with more samples)

and diminishes sensitivity to outliers.

6.5 Conclusion

A multi-task clustering framework is proposed where distances within and between

tasks can be stretched or compressed to increase or diminish the knowledge-sharing be-

tween tasks. The formulation is efficient, flexible and extends to a variety of multi-task

problems. A Symmetric Multi-Task Non-Negative Matrix Factorization method is pre-

sented where the NMF basis vectors are orthogonal within each task thus producing

a clustering solution where knowledge-sharing does not overwhelm or bias individual
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(a) Rec vs. Talk (b) Rec vs. Sci

(c) Rec vs. Comp (d) Talk vs. Sci

(e) Talk vs. Comp (f) Sci vs. Comp

Figure 6.4: Performance on “20newsgroups” with varying number of training instances.

tasks. The effectiveness of the framework was demonstrated and it was illustrated that

it can address several multi-task clustering problems. The superiority of the multi-task

formulation was verified with an extensive of real-world multi-task clustering problems.
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CHAPTER 7

FUTURE WORK AND CONCLUSION

In this dissertation, we presented several set of algorithms that can serve as a foun-

dation for works in applied machine learning research. All the presented algorithms

were validated with several type of learning problems to demonstrate that they can be

extended to multiple learning domains. Transfer and Multi-Task learning methods are

gaining popularity as these methods present effective solutions to many world problems

and the extension of these methods to extremely small and label-skewed datasets was not

an option and our hope is that this work presents methods that can be easily coded and

readily available for addressing such datasets. Improvements, even minor, from meth-

ods optimized specifically for “Absolute Rarity” can have significant financial and social

impact within domains, such as healthcare, where only human expertise are currently

applicable. For example, rare diseases are a substantial public health burden as 6−8% of

people have a rare disease at some point and currently no global registry or classification

codes exist [41]. Rare methods can improve learning and also encourage data collection

and warehousing. Future methods can leverage information in distributed environments

with multiple source sets for greater impact.

We addressed several classification ideas and our work for integrating Transfer Learning

with Imbalanced Learning was the first to simultaneously combine these domains for

“Absolute Rarity”. Traditional imbalanced modifications including SMOTEBoost [19],

over or under sampling [9] followed by transfer [112] or cost sensitive learning [98] are

a straight-forward extension and can further improve classification. We made no mod-

ifications to demonstrate, without ambiguity, that our algorithmd improved balanced

learning strictly using an auxiliary domain. The affinity transformation we presented is

flexible where the bipartite graph can extend to heterogeneous networks while parallel
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construction of sub-graphs equates the processing time of a multi-task affinity transfor-

mation to that of the largest single task to extend to large networks.

Several variation of λintra and λinter can generate different transformations. For example,

λ in SMT-NMF was set to (λintra = 1, λinter < 1) where Inter-Task distance was stretched

to give more relevance to Intra-Task weights and generate a Multi-Task solution. Setting

(λintra < 1, λinter = 1) would compress Inter-Task distance for consensus clustering.

The class-indicator function K in Equation (6.20) is set to {−1,+1} to generate an

orthogonal solution when the clustering is balanced. This is beneficial for the multi-

task setting but can be also applied for the single or multi task setting with imbalanced

clustering. For example, the constraint φ in Equation (6.18) can be set to encourage a

clustering solution with prior probabilities as:

K =

{
−1

P (Y = −1|X)
,

+1

P (Y = +1|X)

}
(7.1)

Since the Multi-Task constraint is minimized with an equal number of active (Vij = 1)

basis, a multi-class constraint can be enforced with the concatenation of binary orthog-

onality constraints. For example, an (l + 1)-class problem changes the optimization in

Equation (6.17) to:

arg min
V≥0

[J (V )] = arg min
V≥0

[
1

2

∥∥W − V V T
∥∥2 + αlTr

(
φlφ

T
l

)]
(7.2)

The orthogonality constraints would be set to:

φ1 = HVKl (7.3)

For example, a 3-class problem would minimize the penalty in Equation (7.2) with a

class-indicator function set to K1 = {−1,+1, 0} , K2 = {−1, 0,+1}.
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Learning from multiple sources of data is a promising research direction as researchers

leverage ever more diverse sources of information. When data is not readily available

and knowledge has to be transferred from other sources, new methods (both supervised

and un-supervised) have to be developed to selectively share and transfer knowledge. As

machine learning methods extend to more complex and diverse set of problems, situa-

tions arise where the complexity and availability of data presents a situation where the

information source is not “adequate” to generate a representative hypothesis.

In this dissertation, we presented both supervised and un-supervised techniques to tackle

a problem where learning algorithms can not generalize and require an extension to lever-

age knowledge from different sources of data. Knowledge transfer is a difficult problem

as diverse sources of data can overwhelm each individual dataset’s distribution and a

careful set of transformations has to be applied to increase the relevant knowledge at the

risk of biasing a dataset’s distribution and inducing negative transfer that can degrade a

learner’s performance.

We gave an overview of the issues encountered when the learning dataset does not have

a sufficient supply of training examples. We categorized the structure of small datasets

and highlighted the need for further research. We presented an instance-transfer super-

vised classification algorithm to improve classification performance in a target dataset via

knowledge transfer from an auxiliary dataset. The improved classification performance of

our algorithm was demonstrated with several real-world experiments. We extended the

instance-transfer paradigm to supervised classification with “Absolute Rarity”, where a

dataset has an insufficient supply of training examples and a skewed class distribution.

We demonstrated a solution with a transfer learning approach and another with an imbal-

anced learning approach and demonstrated the effectiveness of our algorithms with real

world text and demographics classification problems. We also presented an unsupervised

multi-task clustering algorithm where several datasets were simultaneously clustered and
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knowledge was transferred between the datasets to improve clustering performance on

each individual dataset and we demonstrated the improved clustering performance with

an extensive set of experiments.
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As machine learning methods extend to more complex and diverse set of problems, sit-

uations arise where the complexity and availability of data presents a situation where the

information source is not “adequate” to generate a representative hypothesis. Learning

from multiple sources of data is a promising research direction as researchers leverage ever

more diverse sources of information. Since data is not readily available, knowledge has to

be transferred from other sources and new methods (both supervised and un-supervised)

have to be developed to selectively share and transfer knowledge. In this dissertation, we

present both supervised and un-supervised techniques to tackle a problem where learning

algorithms cannot generalize and require an extension to leverage knowledge from differ-

ent sources of data. Knowledge transfer is a difficult problem as diverse sources of data

can overwhelm each individual dataset’s distribution and a careful set of transformations

has to be applied to increase the relevant knowledge at the risk of biasing a dataset’s

distribution and inducing negative transfer that can degrade a learner’s performance.

We give an overview of the issues encountered when the learning dataset does not have a

sufficient supply of training examples. We categorize the structure of small datasets and

highlight the need for further research. We present an instance-transfer supervised clas-

sification algorithm to improve classification performance in a target dataset via knowl-
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edge transfer from an auxiliary dataset. The improved classification performance of our

algorithm is demonstrated with several real-world experiments. We extend the instance-

transfer paradigm to supervised classification with “Absolute Rarity”, where a dataset

has an insufficient supply of training examples and a skewed class distribution. We

demonstrate one solution with a transfer learning approach and another with an imbal-

anced learning approach and demonstrate the effectiveness of our algorithms with several

real world text and demographics classification problems (among others). We present an

unsupervised multi-task clustering algorithm where several small datasets are simultane-

ously clustered and knowledge is transferred between the datasets to improve clustering

performance on each individual dataset and we demonstrate the improved clustering

performance with an extensive set of experiments.
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