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CHAPTER 1 

INTRODUCTION 

 

Paint is a type of polymeric material made of four main ingredients: pigment, resin, 

solvent and additives.  It is well known that paint have numerous applications over wide 

industries which include automotive, aerospace, ship-making, military, etc.  Thus, paint material 

has been studied continuously to obtain improved properties and performance of the final 

coating.  Out of all the ingredients, it is the resin/binder that leads to most of the physical and 

chemical properties of the paint material.  Most common resin materials are acrylic, alkyd, 

epoxy, phenolic resin, unsaturated polyester and polyurethane.  With the advancement of 

polymer engineering and paint technology, various inorganic fillers (clays, metals, minerals, etc.) 

are being added into coating formulations to improve some performance properties.  It was 

around three decades ago when technological advances allowed addition of decreasing sizes of 

various fillers at the nanometer scale.  It brought us to the realization of significant improvement 

of coating film‟s performance that is achievable with “nanocomposite coatings”.  

 

1.1 Challenges for Nanocoating Technology 

  

Nanocomposite coating technology has become a rapidly expanding area of research.  It 

encompasses a tremendous variety of systems with substantially improved properties and novel 

functionalities.  Some of the already developed nanocoatings are claimed to have enhanced 

barrier and mechanical properties such as tensile strength, stiffness, elongation at break, impact 
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strength, etc. (Chow and Ishak, 2007; Nobel et al., 2007).  Some exhibit improved flame 

retardancy and thermal resistance (Fang et al., 2011).  These materials also have become 

increasingly important because of their electrical and magnetic properties (Dincer et al., 2012).  

One of the obvious benefits of using nanocomposite coatings over conventional coatings is that 

all the superior properties can be achieved with typically 5-10% (by weight) loading of 

nanomaterials, while the conventional coatings may require 10-50% (by weight) loading of 

inorganic fillers into coating compositions.  Most of the superior properties achievable with 

nanoparticles addition into coating matrix seem to depend not only on the properties of 

individual entities but also on the interfacial interaction between organic and inorganic phases 

(Baur and Silverman, 2007).  As a result of all advanced properties, nanoparticle coatings are 

finding numerous applications in automotive, aerospace, ship-making, security, chemical, 

electronics, steel, construction, and many other industries (Khanna, 2008).   

Table 1.1 summarizes some known research on polymer nanocomposites.  It provides 

general information about various types of nanoparticles leading to specific superior or smart 

functionalities.  There are also more combinations of polymer systems and nanoparticles which 

deliver improved properties of the final nanocomposite.  These nanocomposites not only have 

applications in paints and coatings but also in plastic industry.  
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Table 1.1.  Summary of R&D on polymer-nanocomposites in past decade 

Publication Polymer type Nanoparticle type 
Performance improvement 

type 

Bharadwaj et al., 2002 Polyester MMT platelet Corrosion prevention 

Nobel et al., 2007 Acrylic resin 

Boehmite, 

laponite disk, 

MMT platelet 

Stiffness 

Dastjerdi et al., 2012 
Polysiloxane 

emulsion 

Colloidal TiO2, 

Silver 
Stain repellency 

Teng, 2011 Acrylic resin TiO
2
, SiO

2
 Self-cleaning, 

hydrophobicity 

Refat et al., 2009 Polyethylene 
Nano silicate 

(MMT clay) 
High thermal stability 

Mirabedini et al., 2011 
Acrylic 

coating 
TiO2, SiO2 

Enhanced photocatalytic 

activity 

US 6387519, 2002 

(PPG) 

Acrylic-

melamine 
Ceramic Scratch resistance 

US 20090081373, 

2009 (Nanovere) 
Dendrimer Zinc oxide 

Scratch and chemical 

resistance, self-cleaning 

US 20090136441, 

2009 (Taiwan) 
Oligomer 

Fluoroalkylsilane 

modified metal 

oxide 

Anti-fouling 

 

Although PNC coatings have these numerous advantages, they also come with some 

drawbacks.  The study of these nanocomposite materials requires a multi-disciplinary approach 

(Judeinstein and Sanchez, 1996).  In-spite of the fact that these materials have been investigated 

for several years, no profound knowledge about their physicochemical attributes that lead to the 

superior properties is available.  Due to the existence of vast design parameters and experimental 

complexity, nanopaint design optimality is extremely difficult to address.  The challenges to the 

development of these materials come in the production stages, which include,  

Processing.  The compatibility between nanoparticles and polymer resin is usually poor.  

It is challenging to control a uniform dispersion of nano-fillers inside the coating matrix.  Only a 

few thermoplastic polymer resins are easily compatible with selective inorganic filler systems.  
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In many cases, thee intercalation of nanoclays can change the functionality of the polymeric 

material and inhibit certain coating film properties. 

Property Optimization.  The properties of the final coating film depend largely on 

polymer morphology, nanoparticles chemistry, size, shape and dispersion within the coating 

film.  In order to obtain optimal properties of the coating material, a thorough understanding of 

the formulation is needed.  The current research and scientific knowledge is insufficient to 

develop nanocoating materials with various combinations of resin and nanoparticle.   

The above mentioned challenges prevent nanopaint-based products from getting accepted 

for large scale manufacturing.  Thus, it becomes essential to build a thorough understanding of 

the correlation between nanocomposite behavior on molecular scale and its effects on the 

performance.  An integrated computational-experimental approach for synthesis, development 

and analysis of PNCs should be very useful for studying the fundamentals of molecular behavior 

leading to their superior or entirely new functional properties.  It is known that computational 

material design can provide impressive freedom and control over the investigation of material 

parameters and product properties through virtually any number of in-silico experiments.  

Moreover, multiscale modeling and simulation can greatly facilitate identification of important 

correlations among material, structure, property, and performance.  Recent studies on 

computational modeling and simulation of smart PNCs provided some deep understanding of the 

science behind the superior functionalities of scratch resistance and corrosion prevention (Xiao 

and Huang, 2009; Xiao et al., 2010; Chen et al., 2008; Khanna, 2008).  The model-based 

approach should be very valuable for optimally designing experiments, but the computational 

findings must be validated experimentally for material development.  On other hand, 
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experimental study will provide reliable information for more advanced computational design of 

new properties of smart PNC.   

In order to ascertain the potential of PNC coatings, it is important to look at the entire 

product life-cycle for the impact of nanoparticles addition to conventional paint formulations.  

The two key stages of the life-cycle of nanocoating are paint manufacturing and coating 

formation.  There have been serious concerns about the environmental and health issues 

associated with nanomaterials (Lewisky, 2008).  These environmental risks depend on the type 

and concentration of nanoparticles and exposed surrounding.  Although there have been many 

studies on toxicology of nanoparticles (Schrand et al., 2010; Napierska et al., 2010), the effects 

of nanopaint exposure and application have not been studied in detail.  There is a serious 

knowledge gap existing between nanocomposite coatings potential and sustainability issues, 

which include nanoparticles-related environmental threats as well as life cycle performance of 

nanocoating products and the overall performance in terms of energy use, safety, water use, 

waste emission, etc.   

For automotive bodies, the paint material is applied via paint-spray technique.  It is the 

most common application practice which contributes to significant energy consumption and 

environmental emission of toxic chemicals.  In production cycle, paints-spray technique decides 

several key issues, such as transfer efficiency, wet film topology and VOC/nanoparticle 

emission, which correspond to economic, quality and environmental performances, respectively.      

   

1.2 Motivation 

  

Nanocoating technology, in-spite of showing tremendous potential for delivering superior  
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properties, faces various challenges to get accepted in a commercial market.  Paint manufacturers 

(e.g. BASF, DuPont and AkzoNobel) and end users (e.g. automotive, industrial, and architectural 

industries) are scrutinizing this evolving category of paints for all the possible benefits and risks 

involved.  There have been several experimental techniques existing for the synthesis of 

nanopaints with different types of nanoparticles (Tigli and Evren, 2005; Chow and Mohd Ishak, 

2007; Nobel et al., 2007; Chen et al., 2008).  However, it is extremely difficult to address the 

issues involved with the optimization of their formulations solely using experiments due to huge 

design space and experimental complexity.  In a cradle-to-grave life cycle of nanocoatings, there 

are innumerable key parameters which need to be examined before this technology can be 

accepted for production of commercial paints.  The first and most important concern is the risk to 

environment and human health that this nanoparticle-based technology can pose.  The release of 

toxic nanoparticles during various stages of life-cycle, which include extraction/mining, paint 

manufacturing, application and end use needs to be assessed and analyzed through experiments 

and computational modeling if the empirical data is not available.  The second concern is the 

lack of scientific knowledge regarding the correlation among coating‟s material formulation, 

microstructure, mesoscopic properties and final macroscopic film performance.  This issue 

brings-in the need for multiscale computational modeling and simulation.  The simulation of 

nanocomposite material on a molecular level can provide key insights into structure-property 

correlations which can help experimentalist in developing optimal formulations of nanocoatings.  

The macroscopic simulation of paint application process can generate crucial information related 

to nanoparticles emission and exposure to the surrounding atmosphere.  Such findings can assist 

in making the paint application phase of the life-cycle of nanocoating technology more 

sustainable.   
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 The life cycle data from all the stages can be used effectively to generate recommendations 

for the future research only if it is assessed in a comprehensive and methodological way.  There 

are several sustainability matrixes available for the assessment of chemical processes and 

manufacturing industries (e.g. AIChE, IChemE, etc.).  However, a complete framework of 

sustainability matrixes for all the pillars of sustainability (economic, environmental and social) 

and for all the stages of life cycle of a nanocoating technology is not available.  Such life-cycle-

based sustainability assessment framework is useful for determination of the right parameters 

and indicators and collection of appropriate data for the analysis of this nanotechnology.  This 

research frontier can also provide guidance to nanocoating researchers and end users for 

integrating life cycle assessment and sustainability criteria into nanopaint design, which becomes 

an urgent need in nanomaterial development. 

 

1.3 Multiscale Modeling and Simulation 

 

The multiscale modeling and simulation approach has become increasingly important 

over the last decade.  It has found applications in various fields, such as, plasma and thermal 

spray, crystallization, material design, chemical reactor designing, etc. (Vlachos, 1997; Kramer 

et al., 1999; Fauchais and Vardella, 2000; Maroudas, 2000; Li and Kwauk, 2001).  It has helped 

in generating many new understandings related to the system‟s final product or process.  It can 

provide a pathway in addressing all the necessary information about the whole spectrum of 

coating quality parameters (nano- to macro- scale), material efficiency parameters and energy 

efficiency parameters at the same time.  Such type of comprehensive study is not possible with 

existing mono-scale modeling approaches.  However, the field of multiscale modeling and 
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simulation requires further exploration.  Since, sustainable nanocoating technology development 

needs a complete understanding of microstructure, material, product and process behavior 

throughout a wide range of length (10
-9

 – 10 m) and time (10
-6

 – 10
3
 s) scales, multiscale 

modeling and simulation becomes a must. 

The modeling of microstructure of polymer nanocomposites and the correlation with 

material properties is done on micro- and meso- scale using molecular simulation techniques.  

The simulation at macro scale for the paint application process is performed using computational 

fluid dynamics (CFD) based modeling technique.   

Molecular simulation of polymer nanocomposite coatings.  Molecular modeling and 

simulation is a very useful tool of research especially in the field of nano scale sciences due to 

the compatibility at all the time and length scales involved.  In general, molecular simulations are 

used to calculate or support properties determined through experiments; but more importantly, 

this approach is very effective for systems that have not been studied through experiments to 

guide the development of novel material functionalities and properties.  With the aid of advanced 

technology and computer power today, the modeling and simulation of complex systems, such as 

polymers, has become possible within an acceptable time range.  Classical molecular simulation 

approaches involve modeling of material systems via functional forms that define inter-

molecular and intra-molecular interactions among various entities of the molecule.  These 

functional forms and corresponding parameter sets form a „force field‟ that is used to describe 

the potential energy of the system.  A force field is derived and optimized by validating 

simulation results with experiments and high-level quantum mechanical calculations.  With 

reliable force field and modeling technique, molecular simulations can assist in predicting 
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various material properties and guiding experimental efforts for synthesis and characterization of 

new materials.   

Two most popular approaches for molecular simulation are: stochastic approach (Monte 

Carlo) and deterministic approach (Molecular Dynamics).  Additionally, there are several other 

techniques that work at different length and time scales and sometimes combine the features of 

MD and MC.  The most distinctive feature of these molecular simulation techniques is their 

potential to evaluate material‟s macroscopic thermodynamic properties such as internal energy, 

shear and tensile modulus, pressure, coefficient of thermal expansion, heat capacities, etc.  

Macroscopic properties at equilibrium are calculated using the time average of MD simulation 

and the ensemble average of MC simulation.  The obvious benefit of MD over MC is that it 

gives route to the evaluation of transport (macroscopic) properties- also known as dynamical 

properties such as transport coefficient, rheology of the system, etc. using time correlation 

functions of corresponding microscopic variables.  MD simulation makes use of optimized force 

field parameters to predict bulk properties of the system, whereas in MC the parameters are 

assumed.  Hence, the simulation results obtained from MD can be applied to make comparisons 

with proposed theories and experiments directly, while it is not possible with the results from 

MC simulation.  

Molecular dynamics simulation was first applied by Alder and Wainwright to study the 

phase transition of fluids (Alder and Wainwright, 1957).  Theoretically in molecular modeling, 

the trajectories of particles/atoms are related to physical properties of the system by statistical 

thermodynamics.  MD allows the prediction of time evolution of the material.  The trajectory of 

positions and momenta of particles at different times can be used to evaluate all bulk physical 

properties of the system.  Primarily, MD consists of three constituents: (1) initial configuration 



10 
 

 
 

and velocities of all the particles of the system, (2) the interaction potentials among all the 

particles, (3) trajectory of positions of the particles at different times calculated by solving 

standard Newtonian equation of motion (Zeng et al., 2008).  The equation of motion is usually 

given as, 

  
⃗⃗  ⃗(t)   

 
 
   

 t 
  (1.1) 

where     represents the force acting on the particle i at time t and it can be derived from the 

potential energy U(  );      is the position of particle i having mass mi.  A physical simulation 

consists of the total potential energy that is a combination of all the interaction potentials among 

particles of the system, periodic boundary conditions and control of appropriate temperatures and 

pressures to satisfy conditions of different thermodynamic ensembles.  All the interaction 

potentials together with corresponding parameter set which contribute towards total energy of the 

system form a force-field.  The selection of appropriate force field depends on transferability, 

accuracy of parameters and total computational time.  The total interaction potential can be 

broadly classified into two categories of bonded interactions and nonbonded interactions (Allen, 

2004).  Several terms involved in these two categories that sum up to total energy can be 

represented as: 

U(  )  ∑Ubond (       ) + ∑Uangle (           ) + ∑Utorsion (               )  

+ ∑Uvdw (       ) + ∑Uelectrostatic (       )   (1.2) 

where Ubond is the bond stretching energy; Uangle is angle bending energy; Utorsion is the dihedral 

angle energy; Uvdw is the van der Waals energy; and Uelectrostatic is the electrostatic energy.  The 

bond and angle terms, Ubond and Uangle, do not allow covalent bonds to break.  The torsion energy 

term, Utorsion, usually consists of two types of potentials: dihedral angle potential and improper 

potential.  The former term is included to constrain the rotation of molecule around the specific 
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bond and the later term is used to maintain the planarity of atoms.  The non-bonded terms, Uvdw 

and Uelectrostatic, are more computationally expensive because of the higher number of interactions 

involved.  At the start of the simulation, atoms/particles are assigned initial velocities which 

contribute towards total kinetic energy of the system.  This kinetic energy is dictated by the 

temperature of the system.  Using the forces on each particle and temperature of the system, the 

acceleration of each particle can be determined.   

Integration of all the equations of motion for the system yields to the formation of a 

trajectory having detailed information about positions and velocities of all the particles, total 

internal energy and temperatures and pressures of the system at different points of time.  The 

integration of equations of motion over long time may be tedious and very complex at times.  

These equations can be integrated through many available algorithms using finite difference 

methods.  All the available integration algorithms assume that the positions, velocities and 

accelerations of the particles can be approximated using Taylor series expansion.   

The selected algorithm must comply with the characteristics of the equations of motion as 

given below.    

(i) The selected algorithm must deal with short or long time-scales involved in the 

simulation. 

(ii) The calculation of forces is mathematically expensive and time consuming. Thus, 

it should be performed at a frequency as low as possible. 

(iii) The updating of atomic coordinates must follow calculation of dynamic properties 

accurately and assist sampling of correct ensemble. 

(iv) The algorithm should also favor large time steps and thus they should not involve 

storage of large derivatives of positions and velocities.   
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The algorithm of Verlet satisfies most of these requirements.  Commonly used algorithms 

in MD simulations are velocity verlet and leapfrog (Rapaport, 2001; Hairer et al., 2003).  The 

Verlet algorithm calculates the position    t+ t  and acceleration a⃗  t+ t  of the particle at a time 

t+ t by using the position   ( ) and acceleration   ( ) at present time t and the position of 

particles    t- t  at time t- t.  Whereas, in Leapfrog algorithm, the velocities are calculated at first 

at time t+
 

 
 t and these are used to calculate positions of particles at time t+ t. 

 In case of polymers, the system size is very large.  Most of the times the surface effects of 

the polymer with simulation box surface are neglected.  In such cases periodic boundary 

conditions (PBC) are employed on the simulation box.  It considers an infinite space filled with 

an array of exact replicas of the constructed simulation region.  PBC comes with some 

consideration to satisfy periodicity.  It assumes that an atom leaving the simulation box through a 

particular wall immediately re-enters the region from the opposite end.  The interaction of one 

atom with another atom at a distance rc within the box is same as that of the atom present at the 

same distance in the adjacent replica of the box.  These constraints must be taken into account 

while dealing with equations of motion and new positions of atoms after each integration step.  

After each step, the atoms moving out of the boundary of the box must be brought inside from 

the opposite side and the coordinates must be adjusted accordingly.  Evidently, PBC are most 

easy to handle in case of regions of rectangular dimensions; although it is not an essential 

requirement.   

 MD simulation can be carried out in many different ensembles.  Ensemble is a collection 

of systems with different microscopic states but same macroscopic and thermodynamic states.  

Most common ensembles include microcanonical (NVE), canonical (NVT) and grand-canonical 

(µVT) where µ is a chemical potential.  Sometimes in practice, simulations need to be performed 
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at a constant temperature or pressure condition.  The methods to incorporate these isothermal and 

isobaric conditions consist of restructuring of Lagrangian equations of motion.  Some of the 

recognized methods for temperature control are Nosé-Hoover thermostat, the Berendson 

thermostat and Langevin dynamics. The methods for pressure control are the Berendson pressure 

bath coupling, Langevin piston method, etc.  

Macroscale modeling using computational fluid dynamics.  Nanopaint application using 

paint-spray technique is a complex multiphase system.  The paint material is composed of resin, 

pigment, additives, solvents and nanoparticles.  During the spray application substantial amount 

of solvents are released into the atmosphere in the form of volatile organic content (VOC) and 

the nanoparticles are released along with the paint droplets.  Inside a spray booth, the excess of 

paint which does not get deposited on the substrate panel is removed by ventilation air passing 

through the booth ambience.  In order to model this paint-spray process, multiple components 

and fluid phases need to be analyzed carefully and with precision.  A successful design of the 

process depends on the accurate prediction of the interactions (chemical, mechanical and 

thermal) between these phases.  Since this process is impossible to observe at a micro level, one 

has to rely on numerical modeling and simulation to gain insights into improving the process 

performance, environmental emissions, safety and reliability.    

Numerical simulation can play an important role in analyzing such complex system 

problems.  A discipline of computational fluid dynamics studies the numerical simulations and 

the solutions for the equations of motion of fluids.  Computational Fluid Dynamics (CFD) is the 

science of predicting fluid flow, heat and mass transfers, chemical reactions, and corresponding 

phenomena by solving the equations governing these processes using a numerical process.  It 
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provides a wide variety of methods for simulating the fluid flow problems.  Through CFD, a 

qualitative and quantitative prediction of fluid flows can be made by means of 

 Mathematical modeling (partial differential equations), 

 Softwares and tools (various types of solvers and tools for pre- and post- processing 

of the system), 

 Numerical methods (discretization and solution techniques). 

CFD calculations are based on the first principles of mass, momentum and energy 

conservation.  CFD modeling is capable of providing a detailed description of fluid flow 

variables, velocity, temperature and mass concentration profiles anywhere in the flow regime.  

Such details may not be possible to obtain from physical models and systems.  In CFD modeling, 

the fluid flow region is divided into numerous small elements within which the flow is either 

kept fixed or varies smoothly.  The equations of mass, momentum and energy balances are 

represented in terms of variables at the predetermined positions inside the elements.  The 

solutions of these equations are evaluated until it reaches the required accuracy.  

The working and use of CFD requires a basic set of steps to be followed.  These steps are 

given below. 

1. The physical problem to be studied should be defined.   

2. The physical system should be designed by defining its geometry in either 2D or 3D 

space.    

3. The conservation of mass, momentum and energy should be satisfied throughout the 

system‟s region under consideration. 

4. The properties of fluids involved in the system are modeled empirically. 
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5. Assumptions are made to simplify the problem and make it tractable (e.g. steady-

state, transient, compressible, 2 dimensional, etc.). 

6. Appropriate initial and final boundary conditions should be provided. 

7. The system domain is discretized into a finite number of volumetric regions, called 

cells or grids.  The discretized area is called the “mesh”. 

8. The governing equations for mass, momentum and energy conservation are applied 

on the mesh and individual cells through numerical methods of discretization. 

9. The post-processing of the solution is carried out to obtain the results for desired 

quantities (e.g. heat flow, mass fraction, temperature, drag, separation, pressure 

gradient, etc.).   

The foundation for modeling of the fluid flow is provided by Navier-Stokes and 

continuity equations.  The Navier-Stokes equations can be derived by the dynamic equilibrium of 

fluid elements.  For compressible flow, the governing equations are the continuity equation, 

momentum equation (Navier-Stokes) and the energy equation. 

The continuity equation is given as,   
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The Navier-Stokes equations are given as, 
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The energy equation is given as, 
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   (1.7) 

where Φ is the dissipation function, u, v and w are the velocity components in x, y and z 

directions, ρ is the density, p is the pressure, T is the temperature, cp is the specific heat at 

constant pressure and μ is the viscosity. 

The continuity equation represents the law of conservation of mass and thus must be 

satisfied at each point in the fluid region.  In Navier-Stokes equations (Eqs. 1.4-1.6) the terms on 

the left hand side represent the inertial term which arise from momentum change.  This term is 

compensated by the pressure gradient 












x

p
, the viscous forces and the body forces (Fx). 

The importance of accuracy in multiphase modeling of sprays and droplets in various 

engineering applications is well known (Sirignano, 1999; Sazhin, 2006).  Especially in the case 

of paint spray system, the model needs to take care of complicated fluid dynamics, multiple 

phases, heat/mass transfer, evaporation and deposition etc.  In order to study all the 

characteristics of the coating, the application process of the paint material must be reproducible 

and well-controlled.  With all the functionalities and abilities of CFD-modeling, it can provide a 

detailed view of the process, and study the effects of different operating conditions and 

geometries by simulating the corresponding flow behavior.  It can offer significant insights into 

the coating process and show how the changes in workplace geometry, operating conditions, 

material type and application pattern can affect the quality of coating and performance of the 

system.  With accurate modeling of this painting process, one can expect a number of 
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advancements in the understanding of the spray painting related issues, such as environmental 

emissions, paint transfer efficiency, coating quality, uniform film deposition, solvent 

evaporation, defects, and safety measure by assessing workers‟ exposure to overspray paint, 

VOC, nanoparticles, etc. as a function of spray booth structure and ventilation system.     

 

1.4 Towards Sustainable Nanocoating Technology Development  

 

Nanotechnology, as a result of all the possible opportunities it provides for innovation, is 

finding innumerable ways to enter human‟s life.  It offers a promise to provide breakthrough 

technologies for a number of industries and consumer sectors with improved and novel 

functionalities and with a reduction in consumption of hazardous materials, consumption of 

energy as well as generation of wastes.  Paint technology is no exception in accepting the ever 

increasing dominance of nanotechnology based products over conventional products.  In fact, a 

number of nanotechnology based consumer products of paints and inks are already available in 

the market.  However, the implications of nanomaterials and products on the environmental 

safety and human health are often either ignored or not highlighted.  There is a major knowledge 

gap existing between the applicability of nano-size materials into consumer products and their 

effects on health and environment.   

 Nanomaterial is referred as a material with at least one component in the order of 1-100 

nanometers.  These materials can be individual nanoparticles of different shapes or aggregates of 

several nanoparticles together.  In case of coating application there are numerous types of 

nanoparticles that are incorporated into polymer resin to synthesize final nanocomposite 

coatings.  These nanoparticles include TiO2, SiO2, Ag, MMT clay, aluminium oxide, zinc oxide, 
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etc.  They introduce improved and newer characteristics into nanocomposites such as improved 

mechanical, thermal, dielectric properties, biodegradability, anti-corrosion, self-cleaning, dirt 

repellency, anti-bacterial, etc (Zhang et al., 2005; Nobel et al., 2007; Chen et al., 2008). 

Presumably, this type of revolutionary technology should be sustainable in terms of economy, 

resource and energy efficiency and health care.  However, so far only the economic prospect of 

nanotechnology has been highlighted and a very little attention is given to its social and 

environmental implications (Linkov et al., 2007; Dhingra et al., 2010).  Its potential to develop 

systems with smart and newer functionalities significantly inspires competitiveness among 

different companies which use nanotechnology based coatings to avail all its economic benefits.  

Currently, the economic growth of the nanocoatings market and corresponding research and 

development gives a very little attention to assessment of social and ecological risks which are a 

part of complete holistic sustainability assessment of nanocoating products.  Thus, it is important 

to stress on benefits and risks of this technology during the life cycle to detect all hidden short 

and long term adverse effects and to support all the decisions related to its future development.  

A holistic view for a sustainable development of nanocoating technology is represented in Figure 

1.1. 

 
Figure 1.1. Holistic view of sustainability. 
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 A comprehensive study on the life cycle of nanoproducts can analyze, evaluate and 

address all the issues related to the environmental and health effects of nanoparticle induced 

coating materials.  The life cycle based study, as proposed by EPA, considers all the stages of 

nanocoating‟s life from “cradle-to-grave” which include, (1) material selection, (2) system‟s 

design, (3) use and maintenance, (4) recycling and reuse, and (5) disposal. 

Figure 1.2 broadly classifies these various stages of nanopaint life with applicable EPA 

regulations. 

 
Figure 1.2. Life cycle of a nanopaint-nanocoating system 

 

In general, it is very challenging to perform complete sustainability assessment of 

emerging or developing technologies (e.g. nanocomposite coatings) due to insufficient data 

availability for inputs and outputs of the system at each stage of life cycle.  However, if 

succeeded, it can provide significant amount of supplementary information to support decisions 

related to the future development.  LC based sustainability assessment can provide answer to the 

questions such as, 
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 How the performance of nanocoating is compared with conventional coating over its 

life-cycle? 

 How much energy efficiency is accomplished by incorporating nanoparticles into 

conventional products? 

 Which stage of life cycle dominates the energy consumption? 

 Which stage of life cycle is most prone to the release of nanomaterials in the 

environment? 

 What are the toxicity issues involved with released nanomaterials at different phases 

of life cycle? 

 What is the impact of nanoparticle coatings compared to those of conventional paint 

products on geographical parameters? 

 How is the end-of-life management of nanopaints compared to that of conventional 

paints? Is there a way for reuse or recycling?  

The answers to these questions and development of a comprehensive life-cycle based 

sustainability assessment methodology for analysis of nanocoating technology can significantly 

assist in directing the research and sustainable development of these paint products. 

 

1.5 Main Goals and Scientific Contributions 

 

The objective of this research is to develop a comprehensive multiscale design and 

development tool to aid the development of sustainable nanocoating technology which can 

deliver products with multiple functionalities.  The challenge to this research comes from the 

lack of thorough knowledge about the vast and complex microstructure, huge design space and 
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substantially limited data availability.  The existence of vast design parameters and experimental 

complexity makes nanopaint design optimality extremely difficult to address if not impossible.  

Thus, the focus of research on nanocoating technology is being shifted towards the optimal 

design formulation of nanocoatings, where the need for computational modeling and simulation 

methodologies is inevitable.  In silico experiments using computational material designs of 

nanocoating resins have immense potential to facilitate identification of important correlations 

among material, structure, property and performance.  It can assist the scientific research for the 

development of more sustainable multifunctional nanocoatings, the application methodologies 

and product design. 

In order to meet the goal of developing a methodology to aid the research on sustainable 

nanocoating materials, we integrate the top-down, goals/means, inductive systems engineering 

and bottom-up, cause and effect, deductive systems engineering approaches, as shown in Figure 

1.3 (McDowell and Olson, 2008), and develop a complete multiscale framework which can 

define a correlation among material-structure-property-performance.  Previously, through top-

down approach, the nanocoating system was studied by using modeling and simulation at meso- 

and macro-scales of length and time (Xiao et al, 2007; Xiao et al., 2010; Xiao and Huang, 2009).  

This research focuses on bottom-up approach to develop nano- and micro-scopic models and 

connect it to the already developed mesoscopic modeling methodology to complete the 

multiscale materials development framework.   
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Figure 1.3. Multiscale modeling framework integrating top-down  

and bottom-up systems engineering approaches (McDowell and Olson, 2008). 

 

 

For the process, product design and mesoscale development of paint material, the models 

based on CFD simulation technique and multiscale Monte-Carlo based simulation technique 

have been developed (Xiao et al, 2008; Xiao and Huang, 2009; Xiao et al., 2010; Xiao et al., 

2010).  The CFD based modeling provides crucial knowledge about paint film application 

technique and operating parameters related to paint spray and curing, and the Monte Carlo based 

modeling provide intrinsic relationship among nanopaint components and bulk properties 

through development of coarse-grained (CG) freely jointed bead-spring structures.  Although, 

the bead-spring model is useful to understand the correlation between coating microstructure and 

bulk properties, it lacks the details from specific chemistry of polymers.  Thus, the properties of 
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nanoparticle-induced coatings with different materials of resin cannot be studied.  This chemical 

specificity can be provided through structure and thermodynamics based coarse-grained 

modeling.  In this work, via bottom-up approach, we develop chemistry-specific CG nanocoating 

material designs and integrate it with the previous accomplishments to produce a complete 

multiscale framework that can lead to the development of optimal multifunctional nanocoating 

formulation using assessment of the correlation of material-property-product-processing.  

The introduction of unique and improved properties of the paint material through 

nanotechnology may also have environmental and societal implications which may lead to 

greater risks to human health and safety.  Thus, the environment, health and safety impact 

assessment of existing and emerging nanocoating materials has become a serious issue.   In this 

research, a life-cycle-based sustainability assessment framework is developed for the 

nanocoating technology which can highlight the potential problems that this technology may 

cause to the environment, society and economy.  For the assessment, five stages of cradle-to-

grave life-cycle of a paint material (material selection, paint manufacturing, paint spray/flash, 

curing and end use) have been considered.  Based on the data available from literature, research 

papers, industries and computational models related to paint technology, individual sets of 

parameters have been identified for each stage of the life-cycle which aid to the overall 

sustainability assessment of each stage.  The sustainability indicator matrices for each stage 

encompass all the aspects concerning the economic benefits, environmental issues and societal 

impact of that stage.  Using case studies of automotive coating systems, the assessment results 

are combined together and analyzed to identify critical parameters which influence the overall 

nanopaint technology sustainability.  The analysis of each stage of the life cycle using 

sustainability aspects and developing a correlation among different parameters and indicator 
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matrices related to environmental, social and economic aspects can significantly direct the future 

development of these products towards sustainability. 

 

1.6 Organization of Dissertation 

 

 The dissertation body is mainly composed of two sections.  The first section describes the 

multiscale computational modeling effort for polymer-nanocomposite coatings study and the 

second section focuses on the development of life-cycle based sustainability assessment 

framework and paint process modeling to obtain the data for the assessment. 

 In Chapter 2, the multiscale computational design of nanopaint is developed.  The 

nanopaint is modeled on atomistic level by using CHARMM force-field.  It is then mapped onto 

the coarse-grained structure which is developed by applying MARTINI force field protocols.  

The developed coarse-grained system is then used for the study of effects of different sizes, 

volume fractions and distributions of nanoparticles and the polydispersity of polymer resin on 

the structure-property correlations and interfacial behavior of resin molecules.  In Chapter 3, the 

efforts made towards the experimental verification of multiscale computational design of 

nanopaint are described.  As a case study, the polymer nanocomposite films are synthesized by 

layer-by-layer application of acrylic resin and TiO2 nanoparticles dispersion.  These films are 

characterized and tested through experimental analysis techniques such as XRR and AFM to 

determine the change in the mechanical stiffness of the films after addition of different 

dispersions of nanoparticles. 

 The later Chapters are focused on the development of life-cycle based sustainability 

assessment (LCSA) methodology and the macroscale modeling of paint application process to 

obtain the data for nanocoating technology assessment.  In Chapter 4, a comprehensive LCSA 



25 
 

 
 

methodology is described.  The parameter sets and corresponding sustainability indicator 

matrixes are developed for each of the 5 stages of life-cycle which include material selection and 

preprocessing, paint manufacturing, paint application and curing, use and disposal.  The 

applicability of the methodology is demonstrated with a case study on a set of coating systems 

assessment.  Chapter 5 and Chapter 6 provide the details of the modeling and simulation of paint 

application process (automotive paint-spray).  The modeling of paint-spray technique is 

performed in order to study the effects of nanoparticles addition into coating matrix on the 

environmental emissions inside the spray-booth and coating film quality parameters.  The 

topological characteristics of the paint film are also studied by developing case studies of various 

paint spray patterns and application parameters.  The data obtained in these chapters could be 

used for the quantification of some of the sustainability indicators described in Chapter 4.   

 Finally, the concluding remarks and possible directions to extend this work in the future 

are outlined in Chapter 7.  
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CHAPTER 2 

MULTISCALE MODELING AND ANALYSIS OF POLYMER  

NANOCOMPOSITE SYSTEMS 

 

With the advancement of computing power, it is evident that computational modeling 

tools are going to accelerate the development of nanocomposite coating technology for all the 

superior properties achievable.  The ability of having a complete control on nanocoating 

microstructure and complex behavior of polymer matrix makes the research using computational 

methods more significant.  However, it is the selection of appropriate modeling techniques and 

mathematical algorithms that ensures the generation of meaningful information out of 

simulation.  Nanopaints being materials with applications at continuum level and properties 

defined by microstructures, it is critical to generate intrinsic correlations among coating‟s 

material, structure, property and performance.   

 

2.1 Objective and Significance 

 

It has been proven that the interface between polymer and nanoparticle plays a key role in 

introduction of superior and newer functionalities into nanocoatings.  Besides the interface, the 

chemical nature of polymeric material, type and morphology of nanoparticles are amongst other 

important parameters to bring along the property enhancement.  An extensive experimental study 

is underway to determine all critical factors responsible for these superior properties as well as 
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newer functionalities of nanocomposite coating matrices.  The enhancement of mechanical and 

rheological properties of polymer nanocomposites is demonstrated by addition of different types 

of nanoparticles such as MMT clay, silica, TiO2, etc. into polymer resins (Van Hamersvelt et al., 

1999; Tigli and Evren, 2005; Chow and Mohd Ishak, 2007; Nobel et al., 2007; Chen et al., 

2008).  A work is also in progress to bring-in newer functionalities like self-cleaning and smart 

corrosion resistance into coating materials (Zhang et al., 2005; Radhakrishnan et al., 2009). 

Despite of growing knowledge about nanocomposite coatings through experiments, there 

are several structure and property correlations that are unanswered and still being investigated.  

With the development and availability of computing power, computational modeling and 

simulation has become a very useful tool to study and address these issues.  Over the years, 

simulation techniques are developed and applied to various systems such as polymers and 

biomolecules at multiple scales of length and time ranging from nanoscopic to macroscopic 

continuum levels.  Simulations on atomistic level provide chemical specificity to molecular 

models using empirically verified and generic force fields.  But the design complexity and huge 

design space of polymer melts at atomistic level brings along several limitations of time and 

length scales.  It is presently very difficult to model the behavior of polymer melt around 

nanoparticles at atomistic levels that requires tens of microseconds of time at tens of nanometers 

of length for equilibration.   

Coarse-graining approach can help in overcoming this limitation of atomistic modeling. 

Kremer and Grest proposed the popular bead-spring model for simulation of long chain 

molecules (Kremer and Grest, 1990).  It has been applied for CG modeling of large molecules 

like polymers by several research groups (Starr et al., 2002; Smith et al., 2003; Kalra et al., 

2010; Xiao et al., 2010).  Although the bead-spring model is applicable for understanding the 
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science behind polymer-nanoparticle surface interaction leading to superior properties, it lacks 

the details from specific chemistry of polymers.  Thus, it cannot be applied for studying the 

properties of coating with different materials of polymers.  This leaves a clear gap between two 

scales of simulation and makes it almost impossible to develop a correlation between atomistic 

and CG modeling.  In order to incorporate chemical specificity into CG models, the development 

of a structure based or thermodynamics based coarse-grained models is essential.  This type of 

CG modeling involves grouping of atoms from all-atom model into larger size beads.  Thus, it 

decreases the total number of atoms/particles in the system to be simulated.  As a result of 

reduced number of degrees of freedom, the CG models usually run much faster with larger time 

steps during molecular dynamics (MD) simulations compared to atomistic models.   

In order to prepare a comprehensive multiscale modeling tool for the study of 

nanocomposite coating material, it is critical to develop a well-defined CG model of selected 

polymer resin system that can be transferrable over different scales of time and length.  In our 

work, we adopt a thermodynamics based CG modeling technique called “The MARTINI force-

field method” which was introduced by Marrink et al. (2004).  It was originally developed for 

lipid bilayers and detergent molecules.  Later it was extended for coarse-graining of organic 

solvents, proteins and carbohydrates (Marrink et al., 2007; Monticelli et al., 2008; Lopez et al., 

2009).  The applicability of the MARTINI approach for polymers has been tested and verified 

over specific cases of polyethylene glycol, polystyrene and thermoset polyester coatings (Lee et 

al., 2009; Rossi et al., 2011a,b).  This approach consists of verification of bonded and non-

bonded parameters involved to define macromolecular structures using the data from atomistic 

scale modeling.  The accuracy of this model can be shown by comparing the structural and 
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thermodynamic properties such as radii of gyration, pair distribution functions, etc. with that 

from all-atom models. 

A significant attention is being given towards the development of water-based nanopaint 

resin systems to meet continuously increasing demand for low VOC and environmentally 

friendly materials.  Acrylic coatings are water-dispersible and have applications in many 

different types of coatings.  Consequently, a research focus is gradually shifting towards 

developing optimal formulations of nanocoatings that have acrylic-based resins.  Needless to say 

that the contribution from molecular simulation can be significant in the developmental studies 

of these types of nanocoating materials due to a large number of complex structural features 

involved.  For this purpose, a multiscale model of an acrylic nanocomposite material is required.  

Previous accomplishments of Dr. Huang‟s group covered the modeling and simulation of 

nanocoating material on the mesoscopic level.  In order to build a complete multiscale modeling 

framework which can generate crucial information about nanocoating‟s material-structure-

product-process correlation, the simulation on the finer level is required.  The nanoscopic and 

microscopic simulations then need to be bridged to the previously developed mesoscopic 

methodology to accomplish the objective of development of a comprehensive multiscale 

modeling framework for the study of nanocoating technology.  This major task involves five 

distinct steps of simulation work which are to be covered.  

1.  Generation of the atomistic model of an acrylic polymer system using a wisely 

selected force-field, 

2.  Development of the MARTINI parameter set to model the acrylic polymer at CG 

level and verifying it using atomistic simulations and experimental data, 

3.  Incorporation of nanoparticles of selected size and morphology. 
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4.  Use of the final polymer-nanocomposite model to predict structural features and bulk 

properties of the nanocoating material and to explore critical parameters that 

contribute towards enhancement of the material performance. 

5.  Building a bridge between MARTINI-based simulation model and previous Monte 

Carlo-based simulation model.     

After accomplishing the objective to develop a multiscale molecular modeling 

methodology to simulate a polymer-nancomposite coating, it can be very useful to learn and 

discover new knowledge about the microstructure-property-performance correlation among paint 

resin and dispersed nanoparticles.  It can help experimentalists to prepare optimum formulations 

with controlled enhancement in target properties.  The findings from life-cycle based 

sustainability assessment work can be employed easily to predict property changes of the coating 

material with accuracy and with lower cost and time. 

 

2.2 Atomistic Modeling 

 

The optimization of MARTINI force field parameters significantly relies on accuracy of 

atomistic modeling.  The atomistic modeling uses data from generic force-fields for simulation 

of molecules.  By selecting appropriate force field, atomistic simulation is capable of predicting a 

number of structural and thermodynamic properties of a molecular system.  In case of polymeric 

material the size of the system, length and number of polymer chains and number of atoms in the 

system decide the time required for equilibration under given conditions of ensemble.  Usually 

the time step for this simulation is very small.  The validity of the atomistic model is justified by 
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reproducing empirical polymer melt densities and certain structural properties such as radii of 

gyration, mean squared distances, etc.     

 

2.2.1 Force Field Selection and Optimization   

 

The selection of appropriate force field depends upon several factors such as the quality, 

applicability to the selected molecular structure and ability to predict target properties with 

accuracy.  The force field stores all the necessary information for the calculation of forces and 

energies.  Typically the force field should consist of following information: (i) atom types, (ii) 

partial atomic charges, (iii) functional forms of equations to represent energies, (iv) 

corresponding parameter values needed for all functional equations, (v) rules to generate new 

parameters for molecules that are not explicitly defined, and (vi) ways of assigning different 

types of functional forms and corresponding parameters. 

The basic functional form expressing total energy of the system forming the force field is 

the sum of bonded (covalently) interactions and nonbonded interactions (Van der Waal‟s and 

electrostatic interactions).  The bonded energy, Ebonded, generally accounts for bond stretching 

(Ebond), angle bending (Eangle) and dihedral torsion (Edihed) terms.   

Ebonded= Ebond + Eangle + Edihed (2.1) 

 The nonbonded energy, Enonbonded, accounts for Van der Waals (Evdw) and electrostatic 

(Ecoulomb) interaction terms. 

Enonbonded= Evdw + Ecoulomb  (2.2) 

The acrylic polymer selected for this work is polymethyl methacrylate (PMMA).  There 

are several classical force fields that are suitable for the simulation of PMMA model.  These 
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include CHARMM, AMBER, CVFF, COMPASS and PCFF.  The force field selected for 

atomistic modeling of PMMA is an extension of CHARMM (Chemistry at HARvard 

Macromolecular Mechanics).  CHARMM was originally developed by Dr. Alex MacKerell 

(Feller et al., 1997; Guvench and MacKerell, 2008).  It was parameterized on the basis of ab-

initio and experimental data on energies and geometries of small organic molecules, vibrational 

spectra and torsional rotational surfaces.   

 There are several different versions of CHARMM that are released till date.  The most 

commonly used are CHARMM19 (Feller et al., 1997), CHARMM22 (MacKerell et al., 1998) 

and CHARMM27 (Foloppe and MacKerell, 2000).  In CHARMM force-field, potential energy 

functions for bonded interactions are expressed as harmonic potentials.   The total bonded energy 

term can be written as: 

     e   ∑   ( -  )
2

      ∑   ( - 0)
2

a  le  ∑   (1  cos(  - ) )   e  al   

 ∑   ( -  )
2

      e   ∑   ( -  )
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where the first term represents harmonic bond potential and Kb and b0 are the force constant and 

equilibrium bond length respectively.  The second term in the equation stands for the harmonic 

angle potential where K  and  0 denote angle constant and equilibrium angle in degrees.  The 

third term accounts for the dihedral angle potential with torsional force constant   , dihedral 

angle   in degree, n is the multiplicity and δ is the phase shift.  Impropers are used to restrict the 

molecular geometry.  This fourth term corresponds to out of plane bending where    is the 

stiffness with equilibrium angle   .  The fifth Urey-Bradley potential term accounts for 

interaction between the 1
st
 and 3

rd
 atom, separated by two harmonic bonds, where    is the force 

constant and u0 is the equilibrium distance between 1, 3 atoms in the harmonic potential. 
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 The nonbonded potential functions are represented by the standard 12-6 LJ potential and 

electrostatic interactions as shown below: 
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where the first term accounts for van der Waals force of interaction between a pair of atoms 

represented by the 12-6 LJ potential.        
 is the equilibrium distance between two atoms at a 

point where the LJ potential becomes zero.  The last term stands for the electrostatic force of 

interaction between atoms with partial atomic charges (MacKerell et al., 1998).   

Figure 2.1 shows the proposed PMMA repeating unit model which is used in all the 

atomistic simulations.  The molecular weight of each repeating unit of PMMA is 100 g/cm
3
. 

 
Figure 2.1.  PMMA repeating unit. 

 

Partial atomic charges.  CHARMM27 does not have an optimized set of partial charges 

directly applicable to PMMA molecules.  Thus, partial charge on each atom of a PMMA 

repeating unit is determined using the CHELPG (charges from electrostatic potentials using a 

grid based method) type of atomic charge calculation scheme.  Each PMMA chain was 

constructed with three types of residues, which are the derivatives of a molecular structure 

formed by capping both ends of the methyl methacrylate monomer with methyl groups.  The 
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geometry of the PMMA monomer was optimized using Hartree Fock (HF) theory and 6-

31G+(d,p) basis set.  Calculations were started from a variety of initial conformations to ensure 

the optimized state corresponded to the global energy minimum (Breneman and Wilberg, 1990).  

This optimized geometry was used for the determination of partial charges via the CHELPG 

method (Breneman and Wilberg, 1990).  The partial atomic charges on each atom of a PMMA 

repeating unit formed by two different intial conformations are given in Table 2.1.  

Conformation 2 led to the minimum energy of the optimized state of the system as compared to 

that obtained from Conformation 1.  Thus, the corresponding set of charges was selected for 

further calculations.   

 

Table 2.1.  Partial atomic charges on MMA unit obtained after Gaussian calculations 

Atom name 
Partial charges with 

Conformation 1 

Partial charges with 

Conformation 2 

C1 -0.20 -0.12 

C2 0.09 0.16 

C3 -0.15 -0.23 

C4 0.88 0.87 

C5 -0.12 -0.02 

H1 0.07 0.01 

H2 0.07 0.01 

H3 0.04 0.05 

H4 0.04 0.05 

H5 0.04 0.05 

H6 0.05 0.08 

H7 0.05 0.08 

H8 0.05 0.08 

O1 -0.64 -0.65 

O2 -0.51 -0.42 

 

The partial atomic charges for the three residues of PMMA were derived from the 

charges determined for the reference molecular structure and with 2
nd

 initial conformation of 

atoms (see Figure 2.1).  One type of residue was used to represent MMA repeat units located 
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inside each polymer chain, whereas the other two types formed capping units.  The final set of 

atomic charges for each residue was obtained through normalizing the atomic charges of the 

structure in Figure 2.2 and by keeping the total charge on each residue equal to zero.   

 
 

Figure 2.2. Partial atomic charges obtained from Gaussian after  

optimization of MMA monomer capped with methyl groups. 

 

Dihedral optimization.  All the bonded and non-bonded potential parameters for PMMA 

modeling were obtained from CHARMM27 force field developed for lipid molecules.  Getting 

the non-bonded parameters for new molecules with the use of analogy to previously 

parameterized molecules can often be well assigned.  However, the bonded parameters are 

capable of posing more difficulty as the possibility of having unparameterized connectivity 

among atoms become larger for bonds, angles and dihedral angles (Guvench and MacKerell, 

2008).  In case of PMMA, though it was possible to get the parameterized connectivity of bonds 

and angles, the dihedral potentials still needed to be optimized.  It was achieved by using 

CHARMM general FF optimization methodology (Guvench and MacKerell, 2008; 

Vanommeslaeghe et al., 2010).  Typically the target data selected for fitting the dihedral angle 
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potentials are energies from QM (quantitative mechanical) adiabatic potential energy scans.  For 

a dihedral angle A-B-C-D, a relaxed potential energy scan is done by rotation about the bond B-

C over 360 degrees at fixed increments in QM representation.  The same scan is also done in the 

MM (molecular mechanics) representation by using all-atom CHARMM force field dihedral 

parameters to be optimized.  Rotational energy barrier plots are then obtained by subtracting the 

potential energy of the lowest energy conformation from all higher energy conformations at 

remaining angles.  The set of force field parameters that would give an exact match between the 

plots of rotational energy barriers from QM and MM are chosen for the selected dihedral A-B-C-

D.   

For optimization of the PMMA structure, we selected two dihedral angles.  One dihedral 

was selected along the main chain backbone (C2-C1-C2-C3) and the other along the side chain 

of PMMA (C2-C4-O2-C5) to ensure optimization over the complete PMMA structure.    In order 

to obtain potential energy scans at QM and MM levels, a trimer of PMMA was selected with 

both chain ends capped with hydrogen atoms.  The selection of a trimer structure instead of a 

dimer ensured mimicking the behavior of monomers located in long chains where the 

corresponding dihedral angles would encounter steric hindrance during rotation over 360 

degrees.  Thus, it was possible to extract accurate rotational energy barrier values which were 

higher as a result of steric hindrance from neighboring monomers.  Note that rotational energy 

barrier values of dihedral angles from dimer structure were smaller compared to that of trimer 

structure.  The potential energy scans at QM level were performed by optimizing the trimer 

structure at each dihedral increment with HF/6-31+G(d) level of theory calculations.  Whereas at 

MM level, potential energy scans were obtained over both dihedrals by optimizing the trimer 

structure using the CHARMM force field set of parameters to be optimized.  The molecular 
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simulation package used for performing MM level scans was CHARMM, version 34. The trimer 

structure was equilibrated at each increment of rotation and final rotational energy barrier plots 

were obtained.  Figure 2.3 shows both dihedrals of trimer structure selected for potential energy 

scans.  Figures 2.4a and b represent the final match of rotational energy barrier plots from QM 

and MM level calculations for both dihedrals C2-C1-C2-C3 (along the backbone) and C2-C4-

O2-C5 (along the side chain) using optimized parameters for PMMA.  

The graphs of rotational energy barriers show that minimum energy conformations are 

observed at ±60 degrees of dihedral angle C2-C1-C2-C3 and ±180 degrees of dihedral C2-C4-

O2-C5.  Figure 2.5 shows these stable conformations of PMMA trimer which should appear with 

highest probability in atomistic simulation trajectories.  The final optimized set of CHARMM 

force field parameters of bonded and nonbonded interactions for modeling of PMMA are given 

in Table 2.2.    

 

 
 

Figure 2.3.  PMMA trimer used for determination of rotational  

barriers for C2-C1-C2-C3 and C2-C4-O2-C5 dihedrals. 
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Figure 2.4.  Rotational energy barriers predicted by QM and  

MM calculations for dihedrals (a) C2-C1-C2-C3,  

(b) C2-C4-O2-C5,  (c) C2-C1-C2-C3 and (d) C2-C4-O2-C5. 

 

    
 

 

Figure 2.5.  Minimum energy conformations for the  PMMA trimer with: 

(a) dihedral C2-C1-C2-C3 fixed at -60 degrees, and  

(b) dihedral C2-C4-O2-C5 fixed at 180 degrees. 

 

(a) (b) 
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Table 2.2. CHARMM force-field parameters  

for the modeling of PMMA. 

 (a) Bond parameters 

Bond K0 Bond length 

(b0) 

C1-H1 309.0 1.111 

C1-H2 309.0 1.111 

C2-H3 322.0 1.111 

C2-H4 322.0 1.111 

C2-H5 322.0 1.111 

C5-H6 322.0 1.111 

C5-H7 322.0 1.111 

C5-H8 322.0 1.111 

C1-C2 222.5 1.538 

C2-C3 222.5 1.538 

C2-C4 200.0 1.522 

C4-O2 150.0 1.334 

C4-O1 750.0 1.220 

O2-C5 340.0 1.430 

 

(b) Angle parameters 

Angles K   0 Kub S0 

H1-C1-H2 35.50 109.0 5.40 1.802 

H1-C1-C2 35.50 109.0 5.40 1.802 

H3-C3-H4 35.50 108.4 5.40 1.802 

H3-C3-H5 35.50 108.4 5.40 1.802 

H6-C5-H7 35.50 108.4 5.40 1.802 

H6-C5-H8 35.50 108.4 5.40 1.802 

H7-C5-H8 35.50 108.4 5.40 1.802 

C2-C3-H3 33.43 110.1 22.53 2.179 

C2-C3-H4 33.43 110.1 22.53 2.179 

C2-C3-H5 33.43 110.1 22.53 2.179 

C2-C1-H1 26.50 110.1 22.53 2.179 

C2-C1-H2 26.50 110.1 22.53 2.179 

C1-C2-C3 58.35 113.5 11.16 2.561 

C1-C2-C4 52.00 108.0 n/a n/a 

C1-C2-C1 58.35 113.5 11.16 2.561 

C2-C1-C2 58.35 113.5 11.16 2.561 

C4-C2-C3 52.00 108.0 n/a n/a 
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C2-C4-O1 70.00 125.0 20.00 2.442 

C2-C4-O2 55 109 20 2.326 

O1-C4-O2 90 125.9 160 2.2576 

C4-O2-C5 40 109.6 30 2.2651 

O2-C5-H6 60 109.5 n/a n/a 

O2-C5-H7 60 109.5 n/a n/a 

O2-C5-H8 60 109.5 n/a n/a 

 

(c) Dihedral parameters 

Dihedrals K n δ 

H1-C1-C2-C3 0.05 3 180 

H2-C1-C2-C3 0.05 3 180 

C2-C1-C2-C3 2.05 3 180 

C2-C1-C2-C4 0.04 6 0 

C4-C2-C3-H3 0 3 0 

C4-C2-C3-H4 0 3 0 

C4-C2-C3-H5 0 3 0 

C1-C2-C1-C2 0.20 3 0 

C1-C2-C3-H3 0.05 3 180 

C1-C2-C3-H4 0.05 3 180 

C1-C2-C3-H5 0.05 3 180 

C3-C2-C4-O1 0 6 180 

C3-C2-C4-O2 0 6 180 

C1-C2-C4-O1 0.02 4 180 

C1-C2-C4-O2 0.43 2 0 

O1-C4-O2-C5 0.965 1 180 

C4-O2-C5-H6 -0.10 3 0 

C4-O2-C5-H7 -0.10 3 0 

C4-O2-C5-H8 -0.10 3 0 

C2-C4-O2-C5 1.50 3 0 

 

(d) Non-bonded LJ parameters 

Atom  Rmin/2 ,1-4 Rmin/2,1-4 

C1 -0.055 2.175 -0.01 1.9 

C2 -0.020 2.275 -0.01 1.9 

C3 -0.080 2.060 -0.01 1.9 

C4 -0.070 2.000 n/a n/a 

C5 -0.080 2.060 -0.01 1.9 

O1 -0.120 1.700 -0.12 1.4 
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O2 -0.152 1.770 n/a n/a 

H1 -0.022 1.320 n/a n/a 

H2 -0.022 1.320 n/a n/a 

H3 -0.022 1.320 n/a n/a 

H4 -0.022 1.320 n/a n/a 

H5 -0.022 1.320 n/a n/a 

H6 -0.022 1.320 n/a n/a 

H7 -0.022 1.320 n/a n/a 

H8 -0.022 1.320 n/a n/a 

*n/a: not available 

 

2.2.2 Polymer Matrix Simulation   

 

All of the atomistic simulations of PMMA model were performed using optimized set of 

CHARMM force field parameters.  The initial configuration consists of atomic coordinates for 

all of the atoms located in the simulation box.  The polymer chains are placed in the simulation 

box at various places.  The size of the box has to be adequate enough to obtain the density of the 

material comparable with the experimental value.   

The PMMA initial configuration was constructed using molecular packaging software 

PACKMOL (Martinez et al., 2009).  The molecular topology file needed for the construction of 

PMMA chains defines three residue types as explained in previous section.  One residue type 

represents monomer repeating unit inside each polymer chain and the other two residues are used 

to patch each polymer chain at the ends.  Initial model consisted of 15 atactic chains of PMMA 

having 50 repeating units in each.  The total number of atoms in the system were 11,280.  The 

chains were positioned randomly inside the simulation box.  The size of the box was selected in a 

way to keep the initial density of the system to 0.80 g/cm
3
.   
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Simulation details.  The amorphous PMMA structure is designed in the simulation box 

with periodic boundary conditions.  The molecular dynamics package used for performing all 

simulations is NAMD, version 2.8.  Each input file required for NAMD stores a specific 

information about the system and simulation conditions.  Typically the files needed are PDB, 

PSF, configuration file and parameter file.  PDB (Protein data bank) file stores all the atomic 

coordinates with their names and residue types.  PSF file stores all topological information about 

the molecule.  The parameter file stores all the force field parameters for a selected molecule in 

CHARMM format.  The configuration file provides all the details required to carry out the 

simulation at given conditions of temperature and pressure and at specified time step for 

specified run time.  The NAMD output stores all atomic coordinates and velocities in the DCD 

file.  All the information about forces and energies of the system are collected in the “log” file at 

each specified timestep.   

In case of PMMA melt simulation, the system was equilibrated at temperature of 500 K 

and pressure of 1 atm for 40 ns in the NPT ensemble.  The timestep for equilibration was 2 fs.  A 

cutoff of 12 A was used for the calculation of all nonbonded interactions during simulation.  

Switching was kept on with switching distance fixed at 10 A.  The pairlist distribution was set at 

14 A.  The temperature during NPT ensemble was controlled with Langevin thermostat 

(damping coefficient 5 ps
-1

) and the pressure was kept constant by applying Nośe-Hoover 

Langevin piston pressure control.  The values of piston period and piston decay were set at 100 

fs and 50 fs respectively.  The simulation was run for 20 ns further to extract data for 

measurement of all the properties.   

Atomistic simulations provided validation to the optimized set of dihedral parameters by 

calculating the distributions of both dihedral angles from equilibrated trajectories.  Figures 2.4 c 
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and d give the plots of normalized probability distribution of both selected dihedral angles.  For 

dihedral C2-C1-C2-C3, the distribution is highest at angles ±60 degrees and for dihedral C2-C4-

O2-C5 the distribution was highest ±180 degrees.  These distributions indicate the appearance of 

conformations having lowest rotational energy barriers with highest probability.     

 

2.2.3 Atomistic Model Verification   

 

The atomistic model works as a benchmark to validate CG simulation.  Thus, it is 

important to have this model accurately reproduce structural and thermodynamic properties of 

the polymer.  For the modeling of PMMA structure, the nonbonded parameters are selected 

through analogy with similar molecular structures.  The verification of these nonbonded LJ 

parameters for PMMA model is done by calculating thermodynamical properties of PMMA and 

comparing it with the empirical data.   

The target properties selected for the verification were density of PMMA at room 

temperature and glass transition temperature.  PMMA system was initially equilibrated under 

melt conditions at temperature of 500 K.  It was then cooled gradually at intervals of 50 K.  After 

cooling, the system was equilibriated under NPT ensemble for 5 ns and further for 2 ns to 

generate the data for analysis.  The cooling was carried out until 150 K.  The density of the 

system was measured after every temperature interval by averaging over the trajectory of last 2 

ns of simulation.   

The density of PMMA at 300 K was found to be 1.154 g/cm
3
 which was in good 

agreement with the bulk amorphous PMMA density of 1.17 g/cm
3
.  The glass transition 

temperature of the simulated amorphous PMMA model was calculated using the density data at 
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each temperature of simulation.  The increment in the specific volume is less pronounced below 

Tg compared to above Tg due to the onset of glassy state of the polymer.  The point of 

intersection of two lines representing two rates of increments of specific volumes is marked as Tg 

(Han et al., 1994).  From the Figure 2.6, it was measured to be 370 K and it is in good agreement 

with the literature data value of 378 K (Condo and Johnston, 2004; Goldstein et al., 1993). 

 
 

Figure 2.6.  Determination of the glass transition temperature (Tg). 

 

2.3 Coarse-Grained Modeling of Polymer Resin 

 

Simple CG models of polymers with freely jointed, bead-spring structures have been 

used successfully at many cases to understand the general features of polymers and study its 

structure and dynamics.  Xiao et al., 2010 used this type of model for the development of CG 

thermoset polymer nanocomposite system using Monte-Carlo simulation scheme to study their 

mechanical properties.  It has been the only effort to model a thermoset type of polymer 
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nanocomposite system till date.  The structure of polymer beads around platelet shaped 

nanoparticles exhibited the formation of structured pattern leading to substantial increase in its 

number density on the nanoparticle surface (Xiao et al., 2010).  Through molecular dynamics 

simulation technique, Starr et al. studied structural changes and dynamic properties of polymer 

chains as a function of surface interaction between icosahedral shaped nanoparticles and polymer 

beads (Starr et al., 2002).  Polymer chain length also plays a crucial role in regulating surface 

interactions.  An application of shear force alters the rate of aggregation of nanoparticles and is a 

strong function of polymer chain length, as discussed by Kalra et al. (2010). 

The objective of the project is to develop a comprehensive computational methodology to 

study microstructural behavior of polymer nanocomposites.  In order to construct the model 

applicable to polymeric materials with specific chemistry, a CG model with structural and 

thermodynamical basis is required.  It is accomplished by adopting the MARTINI force-field 

approach to develop the CG model.  The applicability of this approach on polymer systems has  

been proven to be accurate for several examples of polymeric systems.  The CG parameters 

optimized for polyethylene oxides model are transferable over different polymer molecular 

weights and chain lengths.  The polystyrene model developed by Rossi G. et al. (2011) is in good 

agreement with empirical data and atomistic simulations in terms of structural properties, 

temperature transferability and compatibility with different solvents.  In our case of acrylic 

polymer system, the optimization of interaction parameters among polymer beads are also 

performed by comparing with atomistic simulation results. 

 

2.3.1 Methodological Framework   
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As explained earlier, the reliability of coarse-grained models is highly dependent on 

atomistic level simulations.  CG model generally reproduces only the important degrees of 

freedom related to molecular structure.  The accuracy of CG model in reproducing structural data 

from all-atom model is decided by the bonded and non-bonded parameters to define the system 

under consideration.  A pathway which is followed to accomplish CG modeling of any molecular 

system is shown in the following figure. 

 

 

Figure 2.7. Coarse-graining algorithm. 

 

The interactions among „super-atoms‟ from CG models are mainly classified into two 

categories as, bonded and non-bonded.  The bonded interaction parameters are obtained by 

comparing the distributions of these interactions from both atomistic and CG simulations.  

Similarly, there are a number of objective functions which can be used to obtain non-bonded 
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parameters depending upon the type of CG model to be developed.  In case of thermodynamics 

based CG models, the target properties for optimization of CG parameters are generally density, 

radius of gyration and mean square displacement of polymer chains. Whereas, in case of 

structure based CG modeling it is the radial distribution function.  In developing MARTINI 

model, the target properties in the parameterization of bonded interactions are distributions of 

bonds and angles from atomistic simulations.  Nonbonded interactions are optimized using melt 

density and radius of gyration of the polymer melt.   

 

2.3.2 Model Development and Optimization   

 

According to MARTINI protocols, the method of coarse graining consists of three steps; 

mapping, parameterization of bonded and non-bonded interactions (Lee et al., 2009; Rossi et al., 

2011). 

Mapping.  Mapping step of coarse-graining consists of identification of groups of atoms 

to be represented as beads or “super-atoms”.  In order to keep the PMMA model simple, each 

all-atom repeat unit is mapped onto two interaction sites in CG model.  The interaction sites are 

represented as A and B.  The selection of bead types is based on chemical similarity between 

MARTINI beads and groups of atoms from PMMA structure.  When compared to the 

nomenclature of the MARTINI force-field, beads A and B are analogous to the bead types C1 

and Na (Marrink et al., 2007).  The bead type C1 is used to represent a site with very low 

polarity.  Similarly the bead type Na represents a non-polar site and it can be used to map on the 

chemical group –COOCH3.  This analogy is critical for the selection of initial guess for non-

bonded potential parameters for each bead.  The schematic of the mapping of PMMA repeating 
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unit is shown in Figure 2.8.  The size of the bead type B having four-to-one mapping is selected 

as 4.7 Å.  The bead type A consists of three-to-one mapping where only three heavy atoms of 

carbon are mapped onto a single bead.  The selection of masses and sizes of these beads are 

dependent on the performance of the model in terms of densities and structural properties.  

   

 

 

Figure 2.8. Schematic representation for mapping atoms in (a) to coarse-grained  

beads in (b) for PMMA. 

 

Parameterization of bonded interactions.  The CG system of PMMA contained 15 chains 

with 50 repeating units in each chain.  The  polymer was in the melt state at temperature of 500 

K and pressure of 1 atm.  The cutoff of 12 Å was used in the calculation of nonbonded 

interactions.  The switching distance was set to 14 Å.  The time step of 12 fs was used for CG 

level simulations of polymer resin.  The temperature and pressure were controlled during all 

simulations at NPT ensemble with Langevin thermostat and Nośe-Hoover Langevin barostat.  

The system was run for total simulation time of 150 ns.  MARTINI FF uses a cosine-based 

harmonic angle potential (Marrink et al., 2004).  In NAMD-2.8, cosine-based angle potential can 

be employed by switching “cosangles” and “martiniswitching” functions “ON”. 

(a) (b) 
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The bond and angle interactions between CG beads are represented by means of simple 

harmonic potentials.  In MARTINI force field, the chain stiffness is dictated with weak cosine 

type harmonic angle potential.  For simplicity torsional angle potentials are ignored in this work.  

The parameters for bonded interactions are optimized using distribution of distances and angles 

from atomistic simulation trajectories.  Following the MARTINI conventions, the bond and 

angle distributions are evaluated from trajectories of center of masses (COM) of groups of atoms 

in the all-atom model mapped onto CG beads (Lee et al., 2009).  For harmonic potentials of CG 

simulations, the average distances and angles from COM trajectories are selected as equilibrium 

lengths and angles.  The selection of force constants is based on reproduction of comparable 

widths of all distributions.  The final set of bonded parameters for CG modeling of PMMA is 

reported in Table 2.3.   

Table 2.3. Parameters for bonded and nonbonded interaction  

potentials used in the CG model of PMMA. 

 

Bond Rbond  

(nm) 

Kbond 

(kj/mol) 

A-A 0.282 14600 

A-B 0.282 46000 
 

Angle  0 

(degree) 

Kangle 

(kj/mol) 

A-A-A 131 25 

A-A-B 71 85 
 

NB 

pairs 

ζ  

(nm) 

ε 

(kj/mol) 

A-A 0.425 3.56 

A-B 0.473 2.7 

B-B 0.473 3.7 

 

At atomistic level, the trajectory from last 20 ns after equilibration was converted into 

COM trajectory to obtain all distributions of bonds and angles.  All bond and angle parameters 

were optimized by comparing distributions of equilibrium bonds and angles extracted from 
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trajectories of 40 ns of CG simulation with the COM trajectories of atomistic simulation.  The 

match among distribution plots of bonds and angles using optimized parameter sets are shown in 

Figure 2.9.  

 

Figure 2.9. Normalized probability distribution of the bond length in  

(a) A-A and (b) A-B, and that of the angles in (c) A-A-A and (d) A-A-B. 

 

The distributions of bondlengths for bonds A-A and A-B obtained from atomistic and CG 

simulations match very well with each other.  The plot for angle A-A-A also maches with 

atomistic COM trajectory.  However, angle A-A-B does not seem to give comparable 

distribution for lower degrees.  It is reasonable because of the larger size of bead type B than 

bead type A.  The trajectory of COM of angle A-A-B is at highest probability for angles around 
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70⁰.  In a CG model, values lower than 80⁰ for angle A-A-B lead to bead B coming in close 

proximity to the backbone chain.  Under such proximity, the beads encounter high steric 

hindrance from the backbone chain.  Thus, it prevents the angle A-A-B to reach smaller values 

than 80⁰.   

Parameterization of nonbonded interactions.  The nonbonded interactions consist of 

contribution from Van der Waals forces and electrostatic forces between polymer beads.  In the 

CG model of PMMA, both bead types are assigned with neutral charges.  Thus, there are no 

electrostatic interacations among the polymer chains.  According to the MARTINI protocol, the 

nonbonded interaction potentials among the neutral beads are represented by LJ function.  The 

optimization of LJ potential parameters is based on the reproduction of selected target 

thermodynamic and structural properties.  In this work, PMMA melt density and radius of 

gyration are set as target properties for optimization of nonbonded parameters.  The CG model of 

PMMA considers two different types of beads with four-to-one and three-to-one mapping 

schemes.  The size and mass for four-to-one mapped bead B is straightforward as 4.7 Å and 72 

amu respectively.  The size and mass of bead A with three-to-one mapping can be chosen as 

same or smaller depending upon the performance of the model in terms of target properties.  It 

was found that the density obtained using smaller size of A was in better agreement (4.06% 

error) than the density using same size of A (12.3% error) with that of the density from atomistic 

simulation of PMMA melt.   

In simulation, when the initial size () and strength of interaction (ε) values from the 

original MARTINI force field were used for both the bead types, the density of the system was 

1.161 g/cm
3
, which was significantly higher than that in the atomistic simulation (1.034 g/cm

3
), 

and the radius of gyration was also 18% larger.  A larger radius of gyration indicated attractive 
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forces between backbone beads which were too weak.  Thus, the force of attraction was 

increased by adjusting the value of ε between A-A to 3.56 kJ/mol and B-B to 3.7 kJ/mol.  Using 

these new values, the polymer melt density of the CG model at 500 K was found to be 1.076 

g/cm
3 

(with an error of 4.06%), and the radius of gyration of 1.236 nm was also in good 

agreement (with an error of 9.4% error) with that predicted by atomistic simulations.  The 

performance of the CG model of PMMA was slightly better than the MARTINI model 

developed for polyethylene oxide (PEO) chains, where the densities of low molecular weight 

PEO are reproduced with an error of 6-8% (Lee et al., 2009).  The optimized set of LJ 

parameters for all nonbonded pairs of beads are listed in Table 2.2, where Rbond and Kbond are the 

bond length and force constant at equilibrium, respectively, and  0 and Kangle are the angle and 

the force constants at equilibrium, respectively. 

 

2.3.3 CG Model Verification   

 

One of the important features of thermodynamics-based CG model for PMMA is its 

ability to retain molecular integrity at different temperatures.  The developed CG model is 

verified through reproducing accurately the thermodynamic and structural features that are 

obtained from the atomistic simulation.   

Density.  The system characterized by the CG model consisted equal number of polymer 

chains as that in the atomistic model.  The chains were allowed to equilibriate for 150 ns under 

melt condition at 500 K, and then cooled down at the interval of 100 K and equilibriated for 80 

ns at each interval boundary under NPT ensemble.  The densities were calculated by averaging 

over last 40 ns of trajectory. As shown in Table 2.4, the densities (ρ) evaluated by the CG model 
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and that through atomistic simulations have less than 5% of difference over the temperature 

range of 200 K to 500 K.  

Structure.  In general, CG models tend to lose structural features of a molecule at 

changing temperatures.  Table 2.4 also shows that the radius of the gyration of PMMA chains 

(Rgp) seems to match well with that from atomistic simulation over the entire temperature range.  

A closer look at the data indicates that at lower temperatures, the density of polymer chains 

become larger, which leads to a smaller radius of gyration.  Carbone et al. (2008) performed a 

comparative study on the transferability of the models that were obtained through coarse-

graining of polystyrene (structure-based) and polyamide (thermodynamics-based).  They 

demonstrated that the RDF‟s of only polyamide model showed good comparison and thus the 

model was transferable at different temperatures.  The CG model of PMMA could retain most of 

the structural features at all temperatures of simulation.  As shown in Figure 2.10, the RDF 

curves of PMMA chains at the simulated temperatures are very close to each other.  The first 

peak is increasing as the temperature is decreased, this is due to the stiffness of polymer chains at 

higher density. 

 

 

Table 2.4. Comparison of the temperature-dependent density and 

radius of gyration of PMMA by the atomistic model and the CG model. 

T (K) 
ρ (g/cm

3
) Rgp (nm) 

CG Atomistic CG Atomistic 

500 1.076±0.012 1.034±0.006 1.236±0.031 1.129±0.020 

400 1.121±0.015 1.107±0.009 1.224±0.022 1.113±0.012 

300 1.162±0.009 1.154±0.005 1.213±0.019 1.10±0.011 

200 1.198±0.007 1.191±0.008 1.199±0.023 1.092±0.018 
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Figure 2.10. RDF for A-A beads through CG simulation. 

 

2.4  Modeling of Polymer Nanocomposite Coating 

 

A nanocomposite coating consists of nanosize filler particles disperesed randomly in a 

coating matrix.  There are several different ways to model nanoparticles inside a polymer matrix.  

Different types of nanoparticles (e.g. TiO2 (Radhkrishnan et al., 2009), layered silicates (Nobel 

et al., 2007), MMT clay (Chow and Mohd Ishak, 2007), etc.) are generally added into polymer 

matrices to form nanocoatings with newer functionalities such as self-cleaning, high abrasion 

resistance, anti-fogging, super-scratch resistance, anti-corrosion resistance etc. Smart 

functionalities such as self-cleaning, abrasion resistant, pathogen killing coatings etc. can be 

obtained with several hydrophilic nanoparticles (Radhkrishnan et al., 2009; Menno et al., 2011).  

In order to mimic the behavior of these hydrophilic nanoparticles in nanocoatings, it is important 

to model nanoparticles with controlled hydrophilicity.  According to the MARTINI FF, the sizes 
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of beads which represent groups of atoms are predefined.  These beads are assigned with 

different values of ε of LJ interaction potential function.  The values of ε represent different 

levels of hydrophilicity/hydrophobicity.  Marrink et al. (2007) described 9 different interaction 

levels with specific values of ε.  Higher values of ε can be used to model more attractive 

interactions among highly polar groups, whereas smaller values of ε can be used to model 

various degrees of hydrophobic repulsions between polar and nonpolar phases.   

Studies on atomistic level simulation have shown that C60 fullerenes form spherical 

nanoparticles by closed packing large number individual entities to form spherical nanoparticles 

(Bedrov et al., 2005).  At CG level, nanoparticles are modeled using clusters of small sized beads 

to form various shapes of nanoparticles (Knauert et al., 2007).  We adopted a similar 

methodology to form spherical hydrophilic nanoparticles.  The modeling of each nanoparticle 

inside the polymer matrix was performed using LJ beads of size 4.7 Å.  A cluster of large 

number of beads connected to each other was created to form spherical nanoparticles.  The 

number of beads needed to form these CG nanoparticle clusters were calculated using the 

volume of each individual bead and the total volume of each nanoparticle.  The interactions 

between the beads were defined using only the LJ potential.  For this work, the nanoparticle 

beads are named as “NP”.  They are analogous to the bead type “P1” of MARTINI force field 

(hydrophilic beads with lower polarity).  The strengths of interactions between nanoparticle 

beads and polymer beads are summarised  in the table below. 

 

Table 2.5. LJ potential parameters between NP  

and polymer beads. 

Bead types ζ (Å) ε (kj/mol) 

NP-NP 4.7 4.5 

      NP-A 4.7 2.7 

      NP-B 4.73 4.5 
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The simulation of nanocomposite coating was performed under NVT ensemble.  These 

simulations were performed at longer time steps upto 25-30 ns to reach the equilibrium quicker.  

Under the melt condition at 500 K and atmospheric pressure, the polymer chains move freely and 

avoid getting trapped in one state of configuration.  The sizes of nanoparticles and number of 

polymer beads decide the system size and thus the cutoff length for LJ potential.  A long 

simulation time of 300 ns ensured reaching of the equilibration state and generation of sufficient 

trajectory length to extract data for measurement of structural properties.  Generally, an average 

over a trajectory of last 50 ns is used for extracting data for analysis.  The behavior of polymer 

beads was studied by keeping all the nanoparticles fixed at different locations inside the 

simulation box and the polymer was allowed to equilibriate.  

 The system was constructed using 15 chains of PMMA with 50 repeating units in each.  

The total number of polymer beads in the system were 1500.  The size of the anoparticle 

incorporated into the matrix was 3 nm.  Note that the interaction among nanoparticle force sites 

is stronger than the interaction between polymer and nanoparticle beads.  This stronger 

interaction prevents the polymer chains from entering inside the nanoparticle framework.  It has 

been studied that the interface between the polymer and the nanoparticle plays a critical role in 

defining improvement in properties of nanocomposites (Starr et al., 2002; Jankar et al., 2010; 

Xiao et al., 2010).  We studied the movement of polymer chains in the vicinity of nanoparticle 

surface.  Figure 2.11 illustrates the behavior of polymer beads around nanoparticle surface at the 

end of equilibration process of the initially built system with one nanoparticle surrounding 

polymer chains.  A “Visual Molecular Dynamics (VMD)” software package was used to 

visualize the 3D structure (Humphrey et al., 1996).  The grey, green and blue colors represent 
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bead types NP, A and B respectively.  As the simulation proceeds the polymer chains move 

towards the surface of nanoparticle and assemble into a structured pattern leading to a high 

density of beads at the interface.  Figure 2.12 represents the number density distribution of 

polymer beads at different distances from nanoparticle center before (a) and after (b) the 

equilibration step.  A peaks generated at the end of equilibration are due to the substantial 

increase in the number of polymer beads on the nanoparticle surface.  It is the result of a 

formation of structured pattern of polymer beads at the interface. This phenomenon was also 

observed by Xiao et al. (2010).   

 

 

                                 

 

Figure 2.11. Structures of nanocomposite: (a) the initial configuration, and  

(b) the final configuration after equilibration (where bead types NP,  

A and B are colored in grey, green and blue, respectively). 
 

(a) (b) 
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Figure 2.12. Number density distribution of polymer beads at different locations from  

the center of NP (3 nm size) (a) before and (b) after equilibration (cont‟d). 

 

     
 

 

Figure 2.12. Number density distribution of polymer beads at different locations from  

the center of NP (3 nm size) (a) before and (b) after equilibration. 

(a) 

(b) 
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2.5 CG Model Analysis and Evaluation of Properties 

 

In order to be able to predict accurate properties and performance features of the coating 

system using this methodology, it is important to analyze the model for its accuracy in 

reproducing the data from atomistic simulations and also from experiments.  The model being 

thermodynamically stable, it is  also necessary to demonstrate its stability at different 

temperatures. 

 

2.5.1 Radial Distribution Function   

 

The analysis of the stability of the model and capacity to reproduce all the polymers 

structural features over a wide temperature range was demonstrated using radial distribution 

function g(r) of polymer chains.  When compared the curves representing the structure at 

different temperatures ranging from 200 K to 500 K, the CG model retained most of the 

structural features even at lower temperatures.  The RDF plots of PMMA chains at different 

temperatures given in Figure 2.10 have all the peaks retained at same location.  The height of the 

first peak is seen to be increasing with the temperature as a result of increasing stiffness of 

polymer chains at lower temperatures.   

 

2.5.2 Microstructure Analysis   

 

In this section we investigate various simulations performed on polymer-nanocomposite  
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samples by changing the structural parameters of both.  We know that incorporation of 

nanoparticles in the polymer matrix causes polymer chains to move towards nanoparticle surface 

and orient in a highly dense pattern (Xiao et al., 2010).  But there are several factors that resist 

the movement of bulk polymer and its microstructure on polymer-nanoparticle interface.  By 

using MD simulation under NVT ensemble, we analyze the effect of nanoparticle size, polymer 

chainlength and polydispersity on the behavior of polymer beads in the vicinity of nanoparticle 

surface.   

Effect of NP size.  It has been proven that an interface between nanoparticle and polymer 

plays a key role in achieving superior properties of a nanocomposite coating.  Xiao et al. (2010) 

demonstrated the formation of a structured pattern by polymer beads at the interface.  The 

structured assembly of polymer beads causes an increase in the number density distribution.  

Consequently, it leads to improvement in the mechanical properties of the coating.  The 

improvement in mechanical and rheological properties of nanocomposites is a function of 

surface area of nanoparticles exposed to polymer chains (Jancar et al., 2010).  There are several 

different shapes of nanoparticles that are used to introduce different features into coatings.  

Nanoparticles could be rod like, spherical, sheet, platelet shaped, etc.  Spherical TiO2 and layered 

silicate nanoparticles of are amongst the most common ones in coating industries that give 

substantial improvement of mechanical, rheological or thermal properties and also sometimes 

brings in new functionalities like self-cleaning and anti-corrosion coatings (Zhang et al., 2005; 

Chow and Mohd Ishak, 2007; Chen et al., 2008; Radhakrishnan et al., 2009).  

In order to model comparable size of nanoparticles, we first model spheres by close- 

packing multiple LJ beads into a spherical shape.  As an initial case study, we model these type 
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of nanoparticles by assigning hydrophilic LJ parameters to individual beads which form 

spherical nanoparticles, as also explained in the “modeling of polymer nanocomposite” section.   

Experimentally it has been determined that nanocoating samples with smaller sized NP 

show better performance of the final film than the ones with larger sized NP in it (Manoudis et 

al., 2007).  In this work, the effect of size of spherical NP on the structured pattern formation of 

polymer around NP surface is investigated by simulating a single NP disperesed in PMMA.  In 

each case, a total of 1,500 polymer beads is used.  As shown in Figure 2.12, the highest density 

of polymer beads is obtained within 6 Å of the NP surface.  Figure 2.13 shows that the density of 

polymer beads at the polymer-NP interface goes down as the size of the NP is increased.    

 
 

Figure 2.13. Polymer beads density  at 6 Å distance  

away from NP surface for increasing NP size. 

 

The average radius of gyration of polymer chains is evaluated and used to analyze the 

structural properties.  It is observed that incorporation of nanosize fillers can stretch polymer 

chains, thus increasing the radius of gyration.  It is found that if the incorporated nanofiller is 
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larger in size, the average radius of gyration of polymer chains near the interface becomes larger.  

Figure 2.14 shows a linear increase of the ratio of radius of gyration in a nanocomposite relative 

to the pure polymer melt as the size of incorporated nanofiller is increased, which, indicates the 

stretching of polymer chains.  This stretching creates more free volume at the interface, and thus 

reduces the polymer bead density.  

 
 

Figure 2.14.  The ratio of the radius of gyration of polymer in presence of  

NP to that in absence of NP as a function of the radius of NP. 

 

 

Effect of nanoparticle volume fraction.  In simulation, different concentrations of 

dispersed spherical NP are tested to evaluate the impact on nanocomposite performance.  As 

shown in Table 2.6, the total surface area of NP is kept same (28.26 nm
2
) in all four cases.  Then 

the average radius of gyration of polymer chains in each case is measured.  The stretching of 

polymer chains due to interaction with NP‟s gives rise to a large radius of gyration as compared 
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to a pure polymer case.  Analysis of the radius of gyration suggests that the free volume available 

for polymer chains to stretch is less when the volume fraction of NP is higher.   

 

Table 2.6. Radius of gyration of polymer chains at 

different NP concentrations. 

 

No. of 

NP‟s 

NP radius 

(nm) 

Total NP 

surface 

area (nm
2
) 

Rg (nm) 

1 1.5 

28.26 

1.65±0.15 

2 1.06 1.612±0.13 

3 0.866 1.633±0.16 

4 0.75 1.59±0.19 

 

Effect of polydispersity.  It is a known fact that polydispersity of the polymer matrix 

under consideration plays a critical role in defining various performance properties of a 

nanocomposite.  Gilman et al. (2000) studied the flame retardancy of a polymer nanocomposite 

having MMT clay platelets dispersed around polystyrene resin.  It was determined that the 

organically modified PS-MMT grade does not show improvement in flame retardancy over 

immiscible PS-NaMMT sample.  The organic treatment degrades the polymer thus increasing its 

PDI.  According to Robello et al. (2004), the PS-clay nanocomposite grade with lower PDI of 

polystyrene shows an exfoliation of nanoparticles with very less agglomeration, unlike in the 

sample with higher PDI of PS.  In this section we study the effect of polydispersity on the 

assembly of polymer beads around nanoparticle surface. 

We carried out simulations of a nanocoating sample with varying number of polymer 

chains of different chain lengths.  For the first case study, the chain length was varied from n=40 

to n=70.  The total number of polymer beads in the system were kept the same for each case.  

The size of the nanoparticle was fixed to 3 nm.  The simulations were run at NPT ensemble for 

300 ns with 30 fs time step.  At the end of equilibration the total number of polymer beads at 6 Å 



64 
 

 
 

distance from nanoparticle surface were measured.  The density of polymer beads give a measure 

of degree of assembly of polymer chains on the nanoparticle surface.  Table 2.7 summarises the 

number of polymer beads gathering on the nanoparticle surface and average radius of gyration of 

polymer chains for all the samples.  The density of beads increases consistantly with the chain 

length for monodisperse samples.  For bidisperse samples, the sample with more number of 

longer chains gives higher density.  Althought the samples of monodisperse and bidisperse 

polymer melts show higher polymer bead density for longer chains, these results are difficult to 

relate with tridisperse and tetradisperse samples.  The loss of consistancy makes it difficult to 

correlate polydispersity with number density distribution of polymer beads.  The calculation of 

average radius of gyration of polymer chains show reasonable trends with increase in 

polydispersity.  The radius of gyration is higher for longer chains in monodisperse samples.  

Note that the radius of gyration of polymer chains is larger than pure polymer case due to the 

interaction with attractive nanoparticle surface.  When compared with polydisperse samples, the 

radius of gyration keeps increasing with increase in polydispersity.  This could be an effect of 

available free volume.  At higher polydispersity, polymer chains have more volume available to 

stretch themselves.  Shorter chains usually find more space and are more mobile compared to 

longer chains.  The increase in the number of shorter chains assist in providing larger free 

volume for polymer chains that leads to increase in the radius of gyration.  

 

Table 2.7. Density of polymer beads within 6 Å from the NP surface, and radius of gyration for 

monodisperse, bidisperse, tridisperse and tetradisperse polymer-nanocomposite samples. 

Polydispersity 

Number of polymer chains 
Total no. 

of beads 

Number Density 

of beads in 6Å 

interface (no./ 

Å
3
) 

Rg (Å) 
70 60 50 40 

Monodisperse 

 

17 0 0 0 2,380 0.0236 1.875±0.13 

0 20 0 0 2,400 0.0211 1.786±0.14 

0 0 24 0 2,400 0.0192 1.634±0.14 
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0 0 0 39 2,400 0.0183 1.489±0.11 

Bidisperse 
0 15 6 0 2,400 0.0241 2.445±0.22 

0 10 12 0 2,400 0.0225 2.631±0.23 

Tridisperse 0 8 9 7 2,420 0.0201 2.866±0.15 

Tetradisperse 5 5 5 8 2,440 0.0228 3.136±0.21 

 

2.6 Summary 

 

This work provided a detailed analysis of structural and thermodynamic behavior of 

polymer chains at the interface of polymer and NP.  The modeling and simulation of PMMA 

chains surrounding hydrophilic NP cluster was performed using the MARTINI based coarse-

graining methodology.  Model verification was provided by reproduction of structural and 

thermodynamic properties of the polymer obtained through atomistic simulation that was 

performed using an optimized set of CHARMM force field parameters.  The predicted densities, 

radii of gyration and distributions of bonds and angles were in good agreement with that from 

all-atom simulations over the temperature range of 200 K to 500 K.  

The deveoped model of polymer-nanocomposite system was applied for the study of 

structural behavior of polymer chains around induced nanofillers with varying NP size, volume 

fraction and the polydispersity of the polymer PMMA.  It is found that the radius of NP‟s 

dispersed in nanocoating resin changes polymer bead density and the radius of gyration of 

polymer chains.  For samples with large NP‟s, the interfacial polymer bead density is smaller and 

the radius of gyration is larger than for samples with small NP‟s as a result of availability of 

more free volume.  It was also shown that increasing the polydispersity index of polymer matrix 

elongates polymer chains.  These results favor a selection of polymer matrix with low 

polydispersity index with more number of longer chains and a higher volume fraction of NP‟s 

with smaller size to obtain higher interfacial density of polymer beads.     
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The developed CG parameter set for PMMA and the simulation methodology for 

corresponding nanocomposite modeling should be promising as they can be valuable in the study 

of water-dispersible acrylic nanocoating systems.  Additional nanocoating parameters, such as 

self-cleaning, and corrosion resistance, can also be investigated through the developed CG 

system. 
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CHAPTER 3 

EXPERIMENTAL STUDY ON POLYMER NANOCOMPOSITE COATINGS 

 

From past two decades, polymer nanocomposite coatings are being studied through 

various experiments to explore their potential to bring new and significantly improved 

functionalities into coating materials.  This area of research is still ever increasing through 

millions of dollars being invested on it, as innumerable questions related to structure and 

material-property correlations of polymer nanocomposites are still unanswered. 

The real challenge to this research comes from the limitation of scientific knowledge of 

nanocoating microstructure and required methodological-technical development.  Needless to 

say, that the sustainable nanopaint development is achievable only with an integrated 

computational-experimental effort.  Such study should be effective in analyzing all the aspects of 

the overall life cycle of nanocoating technology, which ranges from nanoparticles synthesis, 

through coating formulation, processing, and application to final life-cycle performance.  The 

experimental analysis of various nanocoating materials and their characterization can not only 

provide the verification to the property predictions obtained from computational modeling, but 

also it can provide the key insights into the effects of various materials on microstructure-

property correlations.     
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3.1 Objectives and Task Definition 

 

   The objective of the research is to develop a comprehensive multiscale methodology to 

assist in developing new nanocoating materials with multifunctional performance characteristics 

and improved sustainability than conventional coating materials.  The outcome from 

computational findings would generate critical information about the microstructural behavior 

and the correlation between material and the bulk mechanical properties of nanocomposite resin.  

The computational study would also provide a variety of information for designing the 

experiments, which include the recommendations for selecting polymer matrix and nanoparticle 

type, size and shape.  These findings would be useful in optimizing formulation parameters for 

the development of multifunctional nanocoating materials through experiments.  In order to 

develop the correlation between paint material and bulk properties, computational work needs to 

be integrated with experiments.  The verification of the modeling methodology through the case 

studies of real polymer nanocomposite coatings can support computational findings significantly.   

 In this work, the experimental efforts focus towards multiple aspects, such as providing 

verification to computational modeling and studying the bulk properties of nanosize polymer 

nanocomposite films.  The steps followed to achieve these objectives are as follows: 

 (i)  Polymer nanocomposite coating synthesis.  TiO2 nanoparticles are photocatalytic in 

nature.  A nanocoating formulation using selected polymer resin and TiO2 

nanoparticles would be synthesized.  The nanoparticles would be surface treated to 

aid the formation of stable dispersion without aggregation into polymer matrix.  The 

selection of polymer resin type, solvents and size and shape of nanoparticles decide 

the performance of the final coating film. 
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 (ii) Analysis of nanocoating formulation.  The formulated nanocoating resin will be 

analyzed for nanoparticle aggregation or uniform dispersion using SEM (scanning 

electron microscopy), AFM (atomic force microscopy) or other high resolution 

electron microscopy.   

 (iii)  Application of coating material on panel surface and sample development.  Nanosize 

coating film would be generated using sophisticated spin coating applicator.   

 (iv) Coating films‟ analysis for multifunctional performance.  The cured nanocomposite 

films would be subjected to mechanical testing with nano-scratch indentation for the 

film stiffness analysis.  Tapping mode AFM imaging would be employed to 

determine the nano-scratch depth and paint film morphologies.  Self-cleaning 

functionality would be quantified through measurement of paint film surface 

properties.  The measurement of contact angle change would give a degree of super-

hydrophilicity achieved with the TiO2 nanoparticles addition.   

 (v) Verification of computational models.  The formulation recipes and coating films 

would be analyzed thoroughly to study the effects of nanosize film thickness and 

morphology on the mechanical properties.  The film stiffness and mechanical 

properties will be compared with the computational modeling results and the 

prediction of same properties through molecular simulation will be verified.   

Project definition.  Nanoparticle induced coating compositions have significant number 

of benefits over their conventional counterparts.  However, there are several factors related to the 

formulation, structure and application of nanocoatings which may affect their improved 

performance.  These factors include types of polymer resin and nanoparticles, size, shape and 

chemistry of nanoparticles, distribution of nanoparticles within cured coating films, nanoparticle 



70 
 

 
 

aggregation, adhesion of the film to the substrates and with other coating films in multi-coat 

applications, rheological properties of nanocoating resins, application techniques, etc. 

 A thorough research is in progress to correlate nanoparticle morphological parameters 

with enhanced performance properties of the final polymer nanocomposite.  In case of coatings, 

it is believed that the distribution of nanoparticles inside the coating film is a crucial factor which 

dictates the mechanical and barrier properties of the final film.  It has been shown that the super-

hydrophilicity or self-cleaning feature of coating films can be controlled by applying layer-by-

layer films of TiO2 and SiO2 nanoparticle dispersions of known thicknesses (Wu et al., 2007; 

Permpoon et al., 2008).  This type of assembly of nanoparticle layers within a coating film can 

also change the mechanical properties of the film.  A very little attention has been given towards 

this correlation between the mechanical properties and nanoparticles distribution inside the cured 

coating film.  Our objective of the project is to analyze the change in mechanical performance as 

a function of location of nanoparticles layer inside the coating film.  It is accomplished by 

sandwiching TiO2 nanoparticles layer within two PMMA thin films, as shown in Figure 3.1. 

 

 
 

Figure 3.1. Coating film structure after sandwiching nanoparticle  

film between two polymer thin films. 

  

 The current nanocoating films have random distribution of nanoparticles inside the 

coating film.  We believe that if the distribution is controlled and the nanoparticles are 

concentrated at a location which would give maximum enhancement of the final properties, it 
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can lead to nanocomposite coating formulations with significantly improved performance.  If this 

phenomenon is studied thoroughly and the research predictions are verified, the findings can also 

provide directions to the discovery of next generation nanocoatings which would require a single 

layer of paint to perform all the functions delivered by current technique of multiple layers of 

coatings. 

 

3.2 Materials Selection and Sample Preparation 

  

 The polymeric material selected for this study was polymethyl methacrylate (PMMA) 

with average molecular weight Mw = 120,000 and glass transition temperature of 105º, purchased 

from Sigma-Aldrich.  The nanoparticles were anatase-TiO2 type with average particle size < 

25nm, purchased from Sigma-Aldrich.  The solvent chloroform was used to disperse PMMA.  

Silicon wafer substrates of 1 cm x 1 cm dimensions were used for application of nanosize films.  

The wafer surface was cleaned using methanol, acetone and water and by immersing the wafer 

substrates into freshly prepared pirhana solution for 30 minutes to remove all organic residues 

and make a clean hydrophilic surface.  A typical pirhana solution is prepared by adding 30% 

hydrogen peroxide solution into concentrated sulfuric acid at a ratio of 1:3 (by volume).  After 

removing from the pirhana, wafers were rinsed thoroughly with deionized water and dried using 

air jets. 

 The bare TiO2 nanoparticles were tested for the solubility in organic solvents.  The 

selection of appropriate solvent is critical to form a stable and uniform dispersion of 

nanoparticles which can be applied on the substrate.  The solubility of the bare nanoparticles was 

found to be poor in most of the organic solvents.  Nakayama and Hayashi (2008) suggested that 
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several efforts have been made to improve the solubility of nanoparticles by surface modifying 

these nanoparticles.  However, these efforts produced nanoparticles with improved dispersibility 

in organic solvents but at a cost of high refractive index of TiO2.  The objective of their study 

was, (1) to prepare a good dispersion with stability of TiO2 nanoparticles in organic solvents with 

surfactants of the minimal quantity, and (2) to disperse TiO2 nanoparticles into the organic 

solvents, by exchanging the type of the organic surfactants, without changing the properties of 

TiO2 nanoparticles as much as possible. TiO2 has several Lewis acid sites (Ti+) and Bronsted 

acid sites (Ti-OH) on the surface.  If these sites are capped using both carboxylic acid and amine, 

the nanoparticles can form a stable dispersion in organic solvents.  The scheme of surface 

binding at the TiO2 surface is given in Figure 3.2 (Nakayama and Hayashi, 2008).  

 

 
Figure 3.2  Scheme of surface binding of TiO2 nanoparticles surface. 

 

 The procedure followed for the surface modification of these nanoparticles is as follows 

(Nakayama and Hayashi, 2008). 
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1. Bare TiO2 nanopowder was added to excess of propionic acid and stirred for 24 

hours. 

2. The wet cake was obtained by centrifugation at 5000 rpm. 

3. It was washed with ethyl acetate 5 times to remove excess of acid and added into 

methanol. 

4. The solution of acid modified particles in methanol is mixed with excess amount of n-

hexylamine and stirred for 1 hour. 

5. The wet cake obtained by centrifugation at 5000 rpm was washed with ethyl acetate 

to obtain the surface modified TiO2 nanopowder. 

6. An overnight desiccation drying was done to obtain a dried nanopowder.  

  The FTIR spectrum of TiO2 nanoparticles was then obtained to ensure the surface 

modification.  The graph showed absorbence peaks at wavenumbers representing acid and amine 

functional groups (See Figure 3.3).  These peaks ensured the successful surface modification of 

the TiO2 surface.  The solubility of the final surface modified TiO2 was also tested in various 

organic solvents.  The findings are given in Table 3.1. 

 

Table 3.1.  Solubility comparison of TiO2 grades in various organic solvents 

Solvent IPA Chloroform Methanol 

Bare TiO2 Solubility No No Yes 

Surface modified TiO2 Solubility No Yes Yes 
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Figure 3.3.  FTIR measurement graph for surface modified TiO2 nanoparticles. 

 

 A polymer and nanoparticle dispersion films were applied by spin coating technique.  

The solutions of PMMA/chloroform were prepared at different concentrations of 0.5, 0.75, 1, 

1.25, 2 and 2.5 weight %.  All the samples were spun for 60 seconds at rotational speed of 3000 

rpm.  In order to reduce the surface roughness and to ensure removal of the solvent completely, 

the PMMA sample films were kept in an oven at 110º for 30 minutes.  TiO2 nanoparticles 

dispersion was prepared by dispersing the surface modified nanoparticles into solvent methanol 

at a concentration of 0.1 % (by weight).  The dispersion was then applied onto the wafer 

substrate to form nanoparticle films by spin coating for 60 seconds at 3000 rpm. 

 For the analysis of elastic moduli of polymer nanocomposite films, three different 

samples were prepared using films of PMMA and nanoparticle dispersions as below: 
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 (1) PMMA layer of thickness 48 nm using the solution with concentration of 0.75 % (by 

weight).  

 (2) PMMA layer of thickness 48 nm + TiO2 nanoparticles layer using the dispersion of 

nanoparticles in methanol 

 (3) PMMA layer of thickness 48 nm + TiO2 nanoparticles layer + PMMA layer of 

thickness 20 nm. 

  

3.3 Film Thickness Analysis 

  

 The measurement of polymer film thicknesses was done using X-ray reflectivity (XRR) 

technique.  Previous work by Walsh and Franses (2003) developed a correlation between PMMA 

film thicknesses and PMMA/chloroform solution concentrations at given conditions of spin 

coating (see Eq. 3.1).  

      .   
 .   - .                                           (3.1) 

where    is the film thickness in mm, c is the concentration of the solution in weight percent and 

  is the rotation speed in rpm.   

XRR measurement.  In the past decade, X-ray reflectivity (XRR) technique has become 

an important tool to study the interfacial properties of thin films (Rao et al., 2004).  XRR is a 

non-destructive, routine technique which is used for estimation of density, thickness and 

roughness of thin film structures.  In general, it can be used with crystalline, amorphous and 

liquid samples.  For the film thickness measurement XRR uses electron density fluctuations at 

the interface of two surfaces.  The measurement of thickness is based on the total external X-ray 

reflection from the surface.  This technique is especially suitable to study buried film surfaces as 
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X-rays can penetrate deep inside the coating material.  This technique is used for layer 

thicknesses between 5Å to 400 nm.  In this technique, the diffraction peaks are correlated with 

the thickness of polymer film.   

For PMMA films applied using polymer dispersions of different concentrations, the 

samples were kept inside the XRR instrument and reflectivity data was recorded.  The recorded 

data curve was analyzed and initial film thickness was predicted using FFT (fast Fourier 

transform). 

The reflectivity of a single layer deposited on the substrate is expressed using an equation 

given as: 
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  (3.2) 

where r1,2 are the Fresnel reflectivity coefficients of the free surface and the substrate interface 

respectively, k0z is the vertical component of the wave vector of the X-ray beam transmitted 

through the film and t is the film thickness.  The intensity maxima occurs at all points where 

e-     t = 1.   

During the determination of film thickness using XRR method, the roughness of the 

surface plays a key role.  In reality, thin film surfaces are not perfectly smooth.  The presence of 

high surface roughness decreases the specular intensity of the curve and gives rise to progressive 

damping of Kiessig fringes.  Figure 3.4a,b represents the reflectivity data curves for polymer 

films applied onto a silicon wafer substrate using 1% and 2.5% (by weight) solutions of PMMA 

respectively.  It can be observed that the fringes disappeared for the film of 2.5 % solution due to 

higher roughness of the surface.  The roughness values are measured using tapping mode AFM 

and the values are reported in Table 3.2. 
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Table 3.2. Film thickness values for PMMA solutions at different concentrations 

Concentration (%) Roughness (nm) Measured thickness (nm) 
Thickness from Eq. 

3.5 (nm) 

0.5 1.1 25.58 31.22 

0.75 1.4 48.22 53.54 

1 1.6 67.48 78.50 

1.25 2.1 101.45 105.63 

2 3.5 304.37 197.36 

2.5 11.6 350.10 265.56 

 

 

 

Figure 3.4. XRR plots for polymer film coated with (a) 1% solution of  

PMMA and (b) 2.5% solution of PMMA (cont‟d). 

 

(a) 
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Figure 3.4. XRR plots for polymer film coated with (a) 1% solution of  

PMMA and (b) 2.5% solution of PMMA. 

 

The film thickness values are plotted against the concentration of the solutions of PMMA 

(see Figure 3.5).  The values of the film thickness seem to match well with an error of less than 

10% for low concentrations of the solution.  At high concentration, the measurement technique 

does not produce reliable results because of increase in the roughness of the film surface.   

(b) 



79 
 

 
 

 
Figure 3.5. PMMA film thickness plot against solution concentrations for  

measurement using XRR and estimates using reference Eq. 3.1. 

 

3.4 Elastic Modulus Measurement 

 

The elastic properties of the polymer film can be quantified using Young‟s modulus 

measurement.  Atomic force microscopy (AFM) is widely used to study the material properties 

and film morphology at nano-scale.  The mechanical and topological properties of the polymer 

film can be calculated from force-distance curves which are obtained from AFM. 

Figure 3.6a represents the operation scheme of AFM imaging by different modes.  The 

AFM tip is generally able to probe into a very tiny area on the surface due of its extremely small 

radius around 5-50 nm.  The tip is suspended with a very small spring through which all the 

highly sensitive forces of interaction from the tip are accessible for measurement.  These 

cantilever beams are usually 100-200 microns long and can measure forces in the range of pico-

Newton. 
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Figure 3.6.  Representation of (a) the outline of AFM imaging and (b) force-distance  

curve obtained from force calibration mode of AFM. 

 

The AFM is used in the force calibration mode for the measurement of force applied by 

the cantilever on the tip.  In this mode, the tip is brought together with the surface of the polymer 

film in a fluid cell at room temperature.  The probe radius is 10 nm and the force constant (k) is 

0.06 N/m.  The force curves are obtained by bringing the tip in close contact with the surface in 

an aqueous medium and recording the force v/s deflection measurements after allowing the 

system to equilibrate for 10 min, until reproducible curves are observed.  The data of deflection 

as a function of piezo position in the z-direction is obtained at different locations on the surface. 

The data is analyzed at three different regions of the deflection curve.  In the region with 

no contact between tip and the surface, the cantilever deflection “d” does not change with respect 
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to the position of piezo in the z-direction.  After the contact, the deflection begins to increase 

which represents the nonlinear region of the curve.   

After the contact the tip indents inside the sample film to a distance δ resulting in small 

deflection d = z -  .  After certain time, the tip reaches the infinite stiffness point where the 

deflection curve becomes linear with respect to piezo position and d = z.  In generating the graph 

for force v/s displacement, the point at which the nonlinear region begins is considered as the 

starting point, z0.  The data of deflection against z-piezo position is converted into force against 

indentation by using Hooke‟s law, where the force F is proportional to the deflection through 

cantilever force constant, k. 

 F = kd = k(z-    (3.3) 

The final force against indentation curve is obtained by (a) calibrating the sensitivity, (b) 

shifting the deflection curve to (0,0) mark, (c) converting the z-piezo movement to indentation 

values, and (d) calculating F values using deflection data through Hooke‟s law. 

 The elastic deformation of the polymer film is represented by Hertzian mechanics 

(Mermut et al., 2003).  The Young‟s modulus then can be calculated using the equation, 

   
  √ 

   -   
 
 

    (3.4) 

The Poisson‟s ratio was selected as 0.35 for polymer PMMA film.  The radius of the tip 

was 10 nm.  From the linear plot of log F as a function of log δ, the intercept value was used to 

calculate the Young‟s modulus by using the equation below. 

  l    
 

 
l   +l  (

  √ 

   -   
)  (3.5) 

 Three different samples were prepared for the analysis of elastic properties of the 

polymer and nanoparticle layers.  The Young‟s moduli were calculated for each of the samples to 
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study the effect of addition of nanoparticles into coating film.  The plots of force to indentation 

for all the three samples are given in the following figure. 

 

 
Figure 3.7. Force v/s indentation curves for (a) Sample 1,  

(b) Sample 2 and (c) Sample 3. 

 

The surface morphology was studied using AFM imaging under tapping mode.  Figure 

3.8 shows the AFM images for Sample 3 after coating of each layer followed by curing.  It can 

be observed that a substantial number of nanoparticles are on the surface after application of the 

2
nd

 layer of nanoparticles.  This layer disappears after applying the 3
rd

 coat of PMMA of 20 nm 

thickness.  A minimal amount of nanoparticles which are visible in the wet film also disappear 

after the sample is kept under heating for 30 min.  After heating, all the solvent from the layer 

evaporates and the smoothness of the film improves.  
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Figure 3.8. AFM images of surfaces for sample 3 after application of nanoparticle layer (left), 

after application of top PMMA layer (middle) and heating of the top layer (right).  

 

The graphs of force as a function of indentation for all three samples were converted into 

linear plots by taking a log on each side as shown in Eq. 3.5 and the elastic moduli were 

determined.  The results are tabulated in Table 3.3. 

 

Table 3.3. The elastic moduli of all three samples of polymer nanocomposites. 

Sample Description Elastic Modulus (GPa) 

1 PMMA (48nm) 2.25 ± 1.1 

2 PMMA (48nm) TiO
2
 94.15 ± 13.2 

3 PMMA (48nm) TiO
2
 PMMA (20nm) 20.98 ± 10.6 

 

3.5 Summary 

 

In this work, the study of effect of distribution of nanoparticles inside a coating layer on 

the film properties was performed.  For this study, an acrylic resin (PMMA) which one of the 

most common paint resins for water-borne formulations was used along with hydrophilic anatase 
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TiO2 nanoparticles.  The selection of water miscible ingredients was done by keeping in mind the 

emerging need for low VOC paint formulations.   

The polymer and nanocomposite coating layers were analyzed and studied using AFM 

technique.  The films were applied by spin coating method.  The analysis of film thicknesses was 

carried out using a sophisticated XRR measurement method.  The film thicknesses in the range 

of nanosize were obtained using spin coating under controlled operating conditions.  The 

reliability of the values depends on the roughness of the coating film.  The AFM under tapping 

mode was employed to determine the roughness values of polymer and nanocomposite coating 

films.  The force calibration mode of AFM was used to determine the elastic properties of the 

films.  The calculated elastic modulus for PMMA layer was in good agreement with the 

empirical value.  It confirmed the applicability of the Hertzian mechanics for the measurement of 

elastic moduli of polymer/nanocomposite films.  The samples were prepared by sandwiching a 

nanoparticles layer in between two PMMA coating layers.  The coating layer thicknesses were 

controlled such that the final film thickness would remain within the range of 100-200 nm.  A 

contact mode AFM was applied to perform the mechanical stiffness analysis of each of the 

coating layers.  From the force to indentation curves, it was clearly seen that the elastic modulus 

of the coating film increased significantly after the addition of nanoparticles layer.  The results 

were in good agreement with the prediction from the computational model which stated that the 

evenly distributed nanoparticles inside a coating layer improve the mechanical strength of the 

final film. 

One of the limitations of this work was the accuracy of the Young‟s moduli values.  The 

values may not be reliable because of insufficient indentation of the AFM tip inside the coating 

film.  The reliability of the results can be improved if the indentation atleast reaches the bottom 
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layer (more than 50 nm).  It can be achieved with a very strong material, such as diamond, for 

the AFM tip.   

The future work should focus towards the measurement of accurate Young‟s moduli of 

polymer nanocomposite films using hard diamond tips and a stronger cantilever beam of AFM.  

The values then can be compared directly with the elastic properties prediction obtained from 

computational modeling of the same material.  The generation of more nanocomposite samples 

by varying the location of nanoparticles film from bottom of the layer to top, followed by 

determination of change in mechanical stiffness can generate critical information regarding the 

significance of nanoparticles distribution inside a coating layer.  If this distribution can be 

controlled and optimized for maximum enhancement of the film properties, it can lead to 

breakthrough coating technology and a possible single coat application to serve a purpose of 

multiple coats (e.g. primer, basecoat, topcoat).    
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CHAPTER 4 

MULTISCALE LIFE-CYCLE BASED SUSTAINABILITY ASSESSMENT  

(LCSA) OF NANOCOATING TECHNOLOGY 

 

The concept of sustainability deals with the balance in the “triple bottom line”, which is 

to accomplish economic development, environmental cleanliness and societal satisfaction 

together.  Collaborating sustainability approach with life cycle (LC) based study can support the 

economic growth of nanotechnology while improving the quality of life and without impairing 

public health or detrimental harm to the environment.  

 

4.1 Objective and Significance 

 

The nanocomposite coating material is synthesized by dispersing nanoparticles of 

different sizes and chemical nature into polymer resin.  The application process of these coatings 

consists of spraying the paint on substrates and heating the substrate to allow the film to dry.  

The final paint film has numerous applications due to superior performance properties provided 

by incorporated nanoparticles.  The life cycle of nanoparticle coatings can be divided into 

various stages.  We define six stages of complete life cycle of nanocoating material, called as 

„cradle-to-grave‟ continuum: (1) Raw material selection and preprocessing, (2) Paint 

Manufacturing, (3) Paint spray/flash, (4) Curing, (5) End use, (6) Disposal.  First four stages 

account for nanopaint film development, and remaining two stages account for its use and 
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disposal.  Figure 4.1 represents the pathway that connects all the stage of life cycle of a 

nanocoating.   

 

 
 

Figure 4.1. Life cycle of a nanopaint. 

 

During these several stages, the nanoparticles are very prone release into the surrounding 

air and waste water.  Assessing the release of nanoparticles and the possible exposure to 

environment and mankind is very crucial while framing critical stages of life cycle.  These 

nanocoatings can be most susceptible to environmental air, water and soil at different stages of 

life cycle.  TiO2 and SiO2 are most common types of nanoparticles that are added into coating 

formulations.  Their use in nanocoating systems has been ever increasing due to all the benefits 

achievable with them.     

The objective of this research is to identify and optimize ways to develop a sustainable 

nanocoating system with minimal environmental implications and improved societal safety and 

health care while preserving all the economic benefits of this novel technology.  To meet this 

goal, all the key parameters related to the paint material and properties at each stage of the life 

cycle are identified and addressed.  The correlations among sets of measurable parameters at 

each stage are established.  The development of a sustainable nanocoating technology requires a 

comprehensive assessment through various appropriate sustainability indicators.  The parameter 

sets at various stages will guide the development of sustainability matrix selection.  The 

indicators are able to address the issues related to triple bottom line.  The correlations among 
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indicator sets at different stages of life cycle are established.  The overall life-cycle based 

sustainability assessment from all the stages should guide the development of nanocoating 

technology towards more sustainable future products and also highlight the areas of 

improvement at each stage of the life-cycle.  Figure 4.2 represents a complete framework of the 

missions to be accomplished by this study.  The developed assessment methodology is 

exemplified using case studies of conventional and nanotechnology based coating materials.  The 

conclusions are drafted and recommendations are made to support the development of 

sustainable nanocoating material. 

 

 
Figure 4.2. Life-cycle-based sustainability assessment structure. 
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4.2 Life Cycle Aspects 

 

 The term life-cycle assessment was originally coined and documented in early 1990 in 

ISA 14040/14044.  This method comprises of four key phases.  These key phases and their 

correlation is shown in Figure 4.3.   

 

 

Figure 4.3.  LCA framework as defined in ISO 14040/14044. 

  

Life Cycle Assessment is a method for estimating and assessing the resource usage and 

environmental impacts attributable to the entire life cycle of a product, from raw material 

extraction and acquisition, through energy and material production and manufacturing, to use 

and end-of-life treatment and final disposal (ISO 14040, 2006).  The impacts consist of ozone 

layer depletion, climate change, increase in toxicity of human health and ecosystem, water usage, 

etc.  The details on the requirements and guidelines for the four phases shown in Figure 4.3 can 

be found in ISO 14044 (2006).  The goal and scope definition phase provides the details of 
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product system boundaries and functional units.  The inventory analysis phase is focused on the 

data collection and calculation procedures required to quantify all the measurable entities defined 

in phase 1.  The life cycle impact assessment aim at aggregating the results from the inventory 

analysis and determine product‟s potential for impact on environment and human health.  This 

process involves connectivity between inventory data analysis phase with corresponding impact 

category indicators.  The purpose of interpretation phase is to consider all the findings from 

inventory data and impact assessment and to provide appropriate conclusions and 

recommendations. 

In this work, the LCA methodology described above is combined with sustainability 

assessment procedure.  A comprehensive sustainability assessment of nanocoating technology 

considers following phases of the life cycle: (1) paint material selection and preprocessing, (2) 

paint manufacturing, (3) paint spray/flash application, (4) curing, (5) end use, and (6) disposal. 

The examination of the stages for selection of paint material, manufacturing, processing 

and use and its final disposal stages requires careful assessment of energy, resources and impact 

on environment through different design and technology alternatives.  Although most of the data 

required for the assessment is available only from the research papers and industrial practices, 

few parameters are very difficult to quantify due to unavailability of appropriate data.  Thus, it is 

critical to highlight the parameters that can be measured and can be used for the assessment.  

These parameters are associated with different time and length scales of measurement.  Figures 

4.3a through 4.3f shows the framework of parameters selection and their correlations associated 

with nanocoating technology at different life-cycle stages.  Note that the last stage of disposal 

has been ignored as it is least important and would make only a minor impact on the overall 

sustainability of the system. 
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For Stage 1 (material selection and preprocessing), seven parameters were identified 

which can be quantified either using the material data from industry or the data research papers.  

These parameters are as follows: 

S1:  Paint resin properties (e.g. molecular weight, PDI, functionality, etc.) 

S2:  Types of additives selected for the paint formulation 

S3: Nanoparticles size, shape and orientation 

S4:  Particle size distribution for pigment 

S5:  VOC content 

S6: Toxicity of each of the formulation ingredient 

S7: Raw materials cost 

The selection of these parameters was based on the availability of the data for analysis.  

More parameters related to energy, water and electricity consumption during each of the raw 

material extraction and synthesis could be added.  Such parameters were neglected at this stage 

due to the limitation of the data. 

Stage 2 (paint manufacturing) was assessed using nine different parameter sets which are 

given below.  The selection of parameters was done such that all the key aspects related to 

environmental emissions, social satisfaction and cost for manufacturing and energy consumption 

would be considered. 

M1: Paint system composition 

M2: Concentration of nanoparticles released/exposed to the surrounding during 

manufacturing of the paint  

M3: VOC emission during manufacturing 

M4:  Amount of solvent and water consumed 
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M5: CO2 emission and water usage 

M6: Quantity of wastes generated 

M7: Toxicity index for all the raw materials and ingredients used during the 

manufacturing 

M8: Amount of energy consumed for all the processes and electricity usage 

M9: Recycle factor.  It is a measure of quantity of raw materials which can be recycled 

The data for these parameters can be easily obtained from a paint manufacturing industry.  

The analysis using such data can be very effective in improving the sustainability performance of 

the paint manufacturing stage.  

For the assessment of Stage 3, the selected parameters can be quantified using the data 

from not only paint application industries but also computational modeling.  These are as 

follows: 

A1: Film surface topology parameters 

A2: Paint film thickness data 

A3: Emission of VOC‟s and nanoparticles during paint application through spray 

technique  

A4: Wet film defects (e.g. runs, sags, blisters, etc.) 

A5: Paint transfer efficiency 

A6: Ventilation system performance (e.g. air velocity, energy consumption) 

A7: Energy efficiency of the paint-spray system 

The data for some of these parameters is very difficult to obtain from the industrial 

practices and empirical measurements.  Thus, computational modeling and simulation tools can 
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be employed to determine the performance of some of these parameters, especially in case of 

nanopaint application. 

The paint spray and curing are one of the most energy consuming stages of the life cycle 

of coating technology.  The quality of the final coating film is also dependent on these stages and 

optimization of corresponding operation settings.  Thus, it is essential to perform a careful 

analysis of these stages in terms of energy, environment and quality.  For the paint curing stage 

(Stage 4) eight measurable parameters were identified which are enlisted below: 

C1: Coating microstructure analysis 

C2: Surface roughness after curing 

C3: VOC and nanoparticles emission 

C4: Film thickness and uniformity (DFT measurement) 

C5: Inter-coat adhesion study (film quality parameter) 

C6: Over operation settings and parameters  

C7: Crosslinking reaction conversion 

C8: Net energy consumption by ovens 

The 5
th

 stage (Use/Reuse) is very crucial for social parameters and coating quality 

parameters.  The performance at this stage is essentially decided by the sustainability 

performance of previous stages.  The assessment of Stage 5 includes majority of the parameters 

related coating quality, performance and toxicity issues.  Again, these sets of parameters can be 

modified depending upon the type of paint system to be studied.  These parameters are enlisted 

below.  

E1: Gloss retention 

E2: Coating film functionalities 
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E3: Cost of the final product 

E4: Toxicity and possible hazards on contact with the film 

E5: Solvent and water resistance of the film 

E6: Scratch resistance and mechanical stiffness 

E7: Corrosion inhibition 

All the parameter sets enlisted above are general and can be applied for most of the 

nanocoating systems.  However, these parameter sets can be modified with new type of 

parameters if the data is available for a specific type of nanopaint to be studied.  The correlations 

among these parameter sets over different time and length scales are shown below in Figure 4.4. 
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Figure 4.4.  Life cycle of a paint material with measurable parameters and their correlations 

at: (a) all stages of life-cycle, (b) paint material selection stage (cont‟d). 

(a) 

(b) 
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Figure 4.4. Life cycle of a paint material with measurable parameters and their correlations at 

(c) paint spray/flash and (d) coating curing stages (cont‟d). 

(c) 

(d) 
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Figure 4.4. Life cycle of a paint material with measurable parameters and their correlations at 

(e) coating curing and (f) end use stages. 

(e) 

(f) 
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The quantities of these parameters can be obtained from past research work, 

computational models or industrial data.  Based on the type of paint material and the available 

data, the final choice of parameters can be made which would define the sustainability 

assessment framework for the nanocoating system to be examined.   

 

4.3 Sustainability Assessment Framework 

 

 In simplest words, “sustainability”, as defined by the 1987 World Commission on 

Environment and Development (WCED) as, “Meeting the needs of the present without 

compromising the ability of future generations to meet their own needs (Mebratu, 1998)."  The 

sustainability assessment of nanotechnology deals with multiple dimensions of a design 

development and cause-and-effect relationships over various stages of life cycle.    

The sustainability assessment is performed using appropriately selected environmental, social 

and economic indicator sets.  Each indicator is quantified using the reference data for multiple 

cases and either absolute or normalized values are obtained.  During the life cycle of nanopaint, 

each stage is associated with different sets of measurable parameters.  Thus, the sustainability 

matrix is developed consisting of different indicator sets at each stage of life cycle based on the 

set of measurable parameters from that stage (see Table 4.1).  
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Table 4.1. Sustainability matrix over a life cycle of nanopaint. 

Stages Economic Environmental Social 

Paint Material 

selection 

Composition of 

paint (SI-2) 

Material Cost (SI-

6) 

Amt. of toxic raw material 

(SI-1) 

Amt. of solvent/water (SI-3) 

Environmental impact factor 

(SI-5) 

Human health impact 

(SI-4) 

 

Paint 

Manufacturing 

Raw material 

composition (MI-

1) 

Recycle 

efficiency (MI-6) 

Net manuf. Cost 

and capital 

investment (MI-

7) 

Release/exposure of 

hazardous material (MI-2) 

Net solvent/water 

consumption (MI-3) 

Total energy consumption 

(MI-8) 

Waste generated (MI-

4) 

Toxicity assessment 

(MI-5) 

 

Paint spray/flash 

Material transfer 

efficiency (AI-2) 

Net operational 

cost (AI-6) 

Net VOC/NP emission (AI-

1) 

Net energy usage (AI-5) 

Film quality 

assessment (AI-3) 

Human health burden 

(AI-4) 

Curing 

Energy efficiency 

(CI-5) 

Net operational 

cost (CI-6) 

Curing process efficiency 

(CI-1) 

Toxicity assessment (CI-3) 

Film quality 

assessment (CI-2) 

Operational safety (CI-

4) 

 

End use 
Product cost (EI-

3) 
Toxicity during use (EI-1) 

Coating performance 

assessment (EI-2) 

Customer satisfaction 

factor (EI-4) 

  

Many of these indicators from different stages of the life cycle are correlated with each other.  

A change in the value of one indicator from one stage can affect the indicator value at another 

stage.  Thus, while analyzing the sustainability performance of this technology, a holistic view is 

very important.  The developed framework pin points some of the important sustainability 

indicators which are correlated with each other.  In Figure 4.5, these correlations are represented 

and the locations of indicators are set at respective time and length scales of measurement. 
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Figure 4.5. Correlations among sustainability indicators at various stages  

of life cycle of a paint material. 

 

4.4 Case Study 

 

In this research, we selected an automotive paint system for a case study to perform a life 

cycle based sustainability assessment.  The objective was to carry out the sustainability 

assessment using selected indicator sets for environmental, social and economic performance and 

determine the correlation among the indicators selected from at least 2 of the stages of life cycle. 

The stages of life cycle we selected for the case study are, Stage 1: Material selection and 

Stage 3: Paint spray/flash. 

 



101 
 

 
 

4.4.1 Stage 1: Material Selection and Preprocessing   

 

This stage of life cycle deals with selection of paint formulation and raw materials 

required to manufacture the paint.  This is a critical stage which has direct correlation with the 

final performance of the coating film.  The material selection is based on the required final 

properties of the coating film.  Several factors related to the toxicity, energy efficiency, safety 

and economics of other stages of life-cycle can be improved by improving the sustainability of 

this critical stage.  In this case we considered the material selection criteria for the determination 

of all the indicator parameter values.  The preprocessing consists of the information from the 

extraction/synthesis of each of the raw materials selected for the formation of paint matrix.  Due, 

to the unavailability of such data for preprocessing, the indicators related to preprocessing stage 

were neglected.   

For the case study, we considered two examples of an automotive coating system with 2 

coats: basecoat and topcoat.  The basecoat for both the examples was a waterborne paint system 

while the topcoat in first example was solventborne clearcoat and in second example it was 

powder clearcoat.  The sustainability assessment of the system with basecoat and topcoat paint 

formulations used in the auto industry was carried out by selecting the paint formulations shown 

in Table 4.2.  The quantities of raw materials given in this table are in weight percent of the total 

weight of each of the paint system.   
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Table 4.2. Automotive basecoat and topcoat formulations. 

Waterborne basecoat Solventborne clearcoat  Powder clearcoat  

Material Quantity 

(%) 

Material Quantity 

(%) 

Material Quantity (%) 

Water 40 Naptha 3 PDMS
c
 1 

Titanium 

dioxide 

21 Xylene 18 Benzoin 0.5 

Naptha 4 Methanol 2 Acrylic/Si 

polymer 

1 

Polyurethane 3 Melamine 

formaldehyde 

12 Methacrylic 

polymer 

72 

Polyester resin 7 Ethylbenzene 1 DDDA
d
 22 

Melamine 

formaldehyde 

4 N-butyl alcohol 14  

EGME
a
 7 Cumene 1 

2-

Hexyloxyethanol 
2 MTS

b
 5 

PMMA 10 Butyl acetate 3 

  PMMA 42 

 

 

 

The waterborne basecoat (WB) and solventborne clearcoat (SC) formulations are 

commercial products from DuPont and powder clearcoat (PC) is from Seibert which are used for 

automotive painting operations (Papasavva et al., 2001).  The WB system contains a polyester 

and polyurethane resins.  Both the resins together form a binder which contributes to 7-14 % (by 

weight) of total formulation.  The carrying medium is water which accounts for 40-60 % (by 

weight).  The pigment is white titanium dioxide based (21 % by weight) powder.  The average 

thickness of the basecoat for the application on automotive body is expected to be 1.0 mil. 

The SC system is an acrylic solventborne system.  The binder for this system accounts for 

54% of the total weight of paint formulation.  The expected film thickness to obtain optimum 

properties using this coating system is 1.8 mils.  The resin for PC system is the glycidyl acrylic 

polymer.  The resin and crosslinker together contribute to 94% (by weight) of the total 

formulation.  The optimum film thickness for this system should be 2.2 mils.   

a
EGME: ethylene glycol 

monobutyl ether 
b
MTS: 3-methacryloxypropyl-

trimethoxy-silane 
c
PDMS: 

polydimethylcyclosiloxane 
d
DDDA: 1,12-dodecanedioic acid 
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In order to carry out the sustainability assessment we have selected a set of indicators 

which address environmental, social and economic aspects of Stage 1 of the life cycle of a paint.  

For the paint formulation to be environmentally sustainable it should have a minimum quantity 

of raw materials which contribute to VOC.  The formulation with higher quantity of water should 

be more sustainable.  The social indicators are selected to compare the toxicity for human health 

and the predicted performance of the final coating.  The waterborne basecoat is expected to 

provide the color, adherence and hardness to the surface of the automobile, whereas the clearcoat 

systems should provide more properties such as appearance, gloss, scratch resistance and 

recoatability cost, etc.  Economic indicators deal with the composition of each paint and the 

material cost.  The indicator matrix with relative assessment of both paint formulations is given 

in the table below. 

 

Table 4.3. Sustainability indicator matrix for the paint-spray application stage. 

Economic Environmental Social 

Material Cost 
Quantity of toxic raw 

material (VOC/gal) Predicted performance of 

the coating (scale of 10) Composition of paint 

(number of ingredients) 

Energy consumed per unit 

job 

 

 

For environmental indicators assessment, it can be observed from the formulations that 

the system with powder clearcoat should perform better because of zero VOC.  In each coating 

formulation, it is the polymer resin which consumes maximum amount of energy for the 

synthesis.  Both the coating systems (WB-SC and WB-PC) are used for coating on an SUV 

vehicle.  Figure 4.6 shows the amount of energy consumed for the material for each job of 

painting an SUV vehicle. 
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Figure 4.6. Comparison of two coating systems for energy consumed per job. 

 

For social sustainability assessment, both the systems performed equally.  The predicted 

properties of the final film with the selected basecoat and clearcoat systems were similar.   

The economic assessment was done by analyzing the material cost and total number of 

ingredients required to formulate each type of coating system.  The overall sustainability 

assessment and comparison between two examples is given in Table 4.4.  

 

Table 4.4. Sustainability assessment matrix for Stage 1 of the life cycle of paint. 

Sustainability 

Aspect 
Indicator 

Example 1 (WB/SC) Example 2 (WB/PC) 

Basecoat Clearcoat Basecoat Clearcoat 

Economic 

Composition of paint 

(no. of ingredients) 
9 10 9 5 

Material Cost ($/job) 63 40 63 28 

Environmental 

Quantity of toxic raw 

material (VOC/gal) 
1.5 4.0 1.5 0.0 

Energy consumed per 

job (MJ) 
467 514 467 406 

Social 
Predicted performance 

of the coating 
100% 100% 

 

 



105 
 

 
 

4.4.2 Stage 3: Paint Spray/Flash  

 

 After the paint is manufactured, it is applied on to the substrate using different types of 

application techniques such as brush application, roller application, conventional spray, airless 

spray, electrostatic spray and high volume-low pressure spray.  In an automotive industry, paint 

is applied using manual or robotic spray guns installed in a sophisticated spray booth.  In general, 

the spray booth is equipped with spray guns, ventilation systems and various accessory 

machines, tools, appliances and equipment that are necessary for operators to apply paint on the 

object surfaces to be coated, for instance, pumps, compressors, and personal protective 

equipment. 

During the paint spray process, paint species present in the paint formulation are 

continuously released into the air.  Although most of the paint gets deposited onto the surface of 

auto part, a substantial amount remains which pollutes the air inside the booth.  Volatile organic 

compounds (VOCs) are the most hazardous substances emitted during certain spray processes, 

which can cause acute symptoms to the involved workers, including headache and dizziness, and 

sometimes exposure to suspected carcinogens.  In case of nanopaint application, released 

nanoparticles further add to the contamination of the air.  This air is taken away by the exhaust 

and mixes with the running water through the grids at the bottom of the booth.  It results in 

increased pollution of the environment and water and risk to health care.   

The efficiency of the spray application depends on the final film topology and the amount 

of energy consumed.  A comprehensive sustainability assessment of the process can help in 

quantitative evaluation of the overall performance of this stage of life cycle.  Table 4.5 shows the 

indicator sets for initial assessment of the paint spray application stage.   
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Table 4.5. Sustainability indicator matrix for paint-spray application stage. 

Economic Environmental Social 

Net energy usage Energy efficiency Film quality assessment 

Total amount of paint applied Net VOC emission Human health burden 

 

Paint spray booth system.  In an automotive industry, paint spray system consists of 

several zones through which automotive parts are carried on a conveyor belt.  A complete layout 

of a typical paint spray system in an automotive plant is given in Figure 4.7.  The paint is applied 

using compressed air spray guns operated by robotic bells at automatic spraying chambers and 

manually by the workers at manual interior cut-in chambers.  After each type of paint film 

(basecoat and clearcoat) is applied, the parts are carried to the “heated flash off” zone where the 

parts are kept under warm ambience to allow uniform film formation and evaporation of 

solvents.  After flash-off, the coated auto parts are carried to the curing ovens for final film build 

and hardening.  The curing ovens are adjusted at a very high temperature above the boiling 

points of all the solvents and crosslinking reaction temperature in order to allow the film 

formation.  The lengths of curing zones are adjusted such that the coated parts spend enough 

time under high temperatures to ensure high conversion and efficiency of crosslinking reactions.   
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Figure 4.7.  Automotive plant‟s spray booth assembly layout. 

  

There are 29 spray bells installed at different stations throughout the spray chambers as 

shown in Figure 4.7.  The downdraft air is supplied by 15 exhaust fans of power of 25-hp each 

which are located at different places inside all the chambers.  The electric draw of each motor of 

the exhaust fan is 18.64 kW.  Conventionally in the paint spray operation, the energy is 

consumed by exhaust fans to provide ventilation air flows and by the spray facilities to generate 

shaping air flows.  Industrial practice shows that maintaining ventilation air flows consumes 

much more power than shaping air flows.  Thus in this work, the total energy consumption of a 

paint spray system is quantified solely using the energy consumed by the ventilation system.  

The power required for the exhaust fans (Ed, kW) is proportional to the velocity of the exhaust 

air flow ( DDv ) (Perry and Green, 1997). 

DDd cvE    (4.1) 
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where c is a given coefficient (kW/m/s).      

Environmental assessment.  The environmental assessment was done using the data of 

two cases of industrial practices.  Both cases assumed the settings for a sports utility SUV car 

getting painted in the spray booth.  The input parameters and calculated values are given in Table 

4.6.   The basecoat was water-borne acrylic paint whereas the clearcoat was solvent-borne acrylic 

paint.  In both the cases, the data related to application of waterborne basecoat onto the car body 

was used for the assessment.  The VOC concentration of the basecoat paint was 0.4 kg/l.  Thus, 

the VOC mass flow-rate was calculated as: 

Mass flow rate of VOC = TE  F. D.  VOC concentration             (4.2) 

where TE is the transfer efficiency (40%) of the paint material and F. D. is a paint fluid delivery.    

 

Table 4.6. Description of industrial cases of paint spray application. 

Case No. 
fluid delivery 

(cc/min) 

Downdraft 

(FPM) 

Downdraft 

(m/s) 

VOC mass flow-

rate*10
4
 (kg/s) 

c (energy 

coeff.) 

kW/m/s 

Case 1 

(basecoat) 
21400 1159 5.88 570 47.48 

Case 2 

(basecoat) 
22100 1160 5.89 589 47.44 

 

 

The energy efficiency was quantified using the energy coefficient.  It gives a measure of 

amount of energy that is consumed by the ventilation system.   

The net VOC emission was quantified using a relative parameter.  The net VOC content 

inside the booth is proportional to the quantity of fluid delivered and the downdraft air.  We 

define this relative term as “VOC factor”, which can be calculated as: 

VOC factor = VOC mass flow rate (kg/min) / total downdraft air in FPM      (4.3) 
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Social assessment.  The quality of the film was accessed by the percentage of paint film 

that was sprayed within the specified limit of film thickness.  The standard specifications of film 

thicknesses for basecoat and clearcoat are tabulated in Table 4.7. 

 

Table 4.7. Materials engineering paint film thickness specifications. 

for vertical 

and 

horizontal 

areas 

Vertical (mils) Horizontal (mils) 

Basecoat 

Min Spec 1.0 1.0 

Max Spec 1.2 1.2 

Clearcoat 

Min Spec 1.8 1.8 

Max Spec 2.0 2.0 

  

 

The average film thicknesses at different locations of automotive parts are obtained by 

selecting 90 random data points distributed at car body‟s hood, roof, doors and lift gate.  The 

film thicknesses at each point were measured and percentage of data points within specified 

limit, below the limit and above the limit was determined.  For two cases under consideration, 

the values obtained are given in Table 4.8.   

 

Table 4.8. Percentage of data points measured within the paint  

specification and outside the specification. 

Case # Paint film In Spec. Below Spec. Above Spec. 

1 

Basecoat 56.3% 19.7% 23.9% 

Clearcoat 19.2% 67.6% 13.1% 

Avg. 37.7% 43.7% 18.5% 

2 

Basecoat 78.9% 1.9% 19.2% 

Clearcoat 25.8% 63.8% 10.3% 

Avg. 52.3% 32.8% 14.8% 
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Economic assessment.  The operational cost was determined by calculating the total 

energy required for running the spray operation.  The energy is consumed by the system for 

ventilation airflows and shaping airflows.  The values of ventilation airflows are recorded in 

FPM whereas the shaping airflows are recorded in liter/min.  The surface area of the car is 131.8 

ft
2
.  The energy (in kW) consumed by the shaping airflows was calculated by the following 

formula.  

 Energy consumed   
     l   ate (  -  )  .   

      
  (4.4) 

where (SP-TP) is the static pressure with SP being outlet pressure (inches of water) and TP the 

inlet pressure (inches of water) from spray guns.  η is the efficiency of the motor associated with 

each spray gun.  The shaping air flow rate was calculated in CFM.  The total energy consumed 

by ventilation and shaping airflows for 1 minute of operation in Case 2 (720 kW) is greater than 

in Case 1 (691 kW).  The cost of each unit of electricity required to generate this energy was 

calculated by a two factor utility cost equation which is given as: 

 CS,u= a (CE PCI) + b (CS,f)  (4.5) 

where CS,u is the price, a and b are the utility coefficients, CS,f is the fuel price in $/gal and CE 

PCI (Chemical engineering plant cost index) is the inflation parameters for all the projects in 

U.S. (Ulrich and Vasudevan, 2006).  The value of a is 1.3 x 10
-4

 and b is 0.010.  The inflation 

parameter is selected to be in the range of 550 to 600.  The fuel price was assumed to be 

$3.5/gal.  Thus, the unit value of electricity required to generate the energy for case 1 was, 

 CS,u = 1.3 x 10
-4 

x 575 + 0.010 x 3.5 = $0.1097/kWh  (4.6) 

The human health burden was measured as a function of mass flow rate of VOC.  The 

overall assessment and comparison between two cases is given in Table 4.9.  Figure 4.8 
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represents the assessment results in bar-chart, where the “green” colored bars indicate the more 

sustainable case and “red” colored bars indicate less sustainable case.  It can be observed that 

Case 1 is more sustainable compared to Case 2 for four indicators out of selected six selected 

indicators.   

 

Table 4.9. Overall sustainability assessment of Stage 3. 

Sust. Factor Indicator Case 1 Case 2 

Environmental 
(1) Net VOC emission factor (x10

3
) 2.954 3.048 

(2) Net energy consumption (kW/m/s) 47.48 47.44 

Social 
(3) Film quality assessment (% In Spec.) 37.7% 52.3% 

(4) Human health burden*10
4
 (kg/s) 570 589 

Economic 
(5) Net operational cost ($) 4548 4739 

(6) Quantity of paint applied (cc/min) 21400 22100 
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Figure 4.8. Overall comparison of the two cases for the assessment of Stage 3. 

 

  



113 
 

 
 

 

 

CHAPTER 5 

CFD MODELING OF NANOPAINT APPLICATION SYSTEM – METHODOLOGY 

AND SYSTEM DESCRIPTION 

 

In an automotive industry, the topcoat layers are applied on the car bodies by manual or 

robotic spray-guns installed inside a spray booth.  The paint is applied under optimized 

conditions of temperature and humidity.  For painting of irregularly shaped objects, manual 

spray application is preferred.  A typical paint spray technique uses a compressed gas to atomize 

the paint material and direct it at a high velocity to the receiving panel through spray guns 

(Colbert and Cairncross 2006).  Although most of the sprayed paint lands on the target, a certain 

amount of paint is carried by the ventilation air and enters the water in the drain through grids on 

the booth floor.  The effectiveness of paint spray and final coating film quality depends largely 

on the operational settings, such as paint flow rate, shaping air velocity and electrostatic voltage 

(Li et al. 2007).  During paint spray operation, the workers inside the spray booth may become 

prone to multiple types of hazards as a result of exposure to VOC, heat overload, electric shock 

or electrocution, noise and other types of body injuries.  It has been recognized that VOC‟s affect 

human health and productivity the most in the manual paint application process due to possible 

acute symptoms to workers, including headache, dizziness and exposure to suspected 

carcinogens (Feldman et al. 1999; Kim et al. 2000).   

For nanopaint, the overspray paint mist is laden with VOC and toxic nanoparticles.  It 

may severely pollute the booth air as well as the water flowing through the washout.  Dunnett 
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(1994) studied how the presence of contaminants and the air flow pattern affect the workers‟ 

health.  If exposed to severe concentrations of toxic nanoparticles such as nanosilica or nano-

titanium dioxide, it can cause fatal health disorders (Reijnders, 2009).  Thus, it is important to 

develop an optimized paint-spray operation which would be more sustainable in terms of 

environmental emission, coating film quality and high transfer efficiency. 

 

5.1 Benefits of CFD Modeling for Paint-Spray System 

 

The study of paint-spray process requires detailed analysis of fluid flow, emission, 

atomization parameters and film topology changes.  Such analysis is only possible through 

computational modeling where individual paint droplets can be tracked and the concentration at 

various locations in the spray-booth can be precisely measured.  The computational model which 

simulates the paint spray application method should also consider the evaporation of solvent 

from individual paint droplets during the course of spray.  A thorough investigation of the air 

quality and energy consumption in the paint spray booth requires an understanding of the 

complex fluid flow phenomena in the occupied space of the ventilation air, for which finite 

difference-based and Computational Fluid Dynamics (CFD)-based modeling and simulation are 

suitable techniques (Tabor et al. 2012).   

Li et al. (2013) demonstrated the potential of CFD-based modeling methodology for the 

comprehensive analysis of a manual paint-spray system.  It was shown that the spray booth 

geometry and operation parameters could be adjusted to control the VOC emission below 

threshold limit value and to improve the energy efficiency.  But, it was assumed that the VOC 

was evaporated instantaneously after the paint was injected from the gun.  A CFD modeling was 
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also used to characterize the mass transfer and flow of VOC in the booth environment (Flynn and 

Sills 2000; Fogliati et al. 2006).  It was applied to simulate the breathing-zone concentration for 

a paint spray method in a simple spray booth unit with cross-flow ventilation [Flynn, 2000].  

Kim et al. (2002) analyzed a small-scale painting process with various exits of air leaving at 

different suction velocities.  Lu and Howarth (1996) presented numerical results of the prediction 

of air velocities, aerosol particle deposition and migration in two interconnected ventilated zones.  

Dunnett (1994) presented a study on the effect of the presence of workers on the air flow pattern 

and the factors affecting the exposure to contaminants.  However, more systematic and 

quantitative VOC emission characterization and energy-efficient VOC reduction analysis for 

surface coating systems have not been thoroughly studied yet. 

 

5.2 Paint Spray System Design  

 

 Since last decade, nanopaints are seen to be replacing conventional paints at several 

application areas including automotive, industrial, architectural, military, etc.  The induced 

nanoparticles of different size, shape and chemical nature provide substantial improvement in 

existing product performance and also bring in newer functionalities such as self-cleaning, super-

scratch, anticorrosion, etc.  Despite of all the benefits from nano-induced coating materials, it 

poses serious concern to environmental safety and health care by unintended release of 

nanoparticles into the surrounding medium during manufacturing, application and use phases.  

For automotive paint application, the material is applied using conventional, airless or 

electrostatic spray techniques.  During spraying, the nanoparticles are prone to release in the 

surrounding atmosphere and also in the drainage waste water causing serious hazards to 
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atmosphere.  Thus, continuous efforts are being made to optimize these spray techniques and 

reduce the risk factors associated with the use of nanocoatings. 

A typical paint spray technique uses a compressed gas to atomize the paint material and 

direct it with high velocity to the receiving panel through spray guns (Colbert and Cairncross, 

2006).  In automotive sector, the paint spray operation is performed by robotic manipulators.  

The paint particles are ejected towards the vehicle body inside the spray booth at a high speed.  

Although most of the sprayed paint lands on the target, a certain concentration of paint is carried 

by the downdraft air and enters the water in the drain through grids on the booth floor.  The 

efficiency of paint-spray and the final coating film quality depends on several factors such as 

paint flow-rate, paint injection velocity, atomization method, ventilation air velocity, spray angle, 

the distance between the gun and the substrate, etc.  (Li et al., 2007)  The overspray released 

during the painting operation is removed by the downdraft air that flows through the booth 

geometry and is absorbed by the water flowing underneath the exhaust grid.  The removal of the 

overspray can be more efficient with higher downdraft velocity of ventilation air.  But, it leads to 

increased energy consumption.  High transfer efficiency can also minimize the overspray 

concentration.  To improve the process economy and coating film quality, high transfer 

efficiency is critical.  While spraying nanopaint, the exposure to nanoparticles via different 

pathways such inhalation or dermal can cause severe health hazards (Klaine et al., 2008).  TiO2, 

SiO2, MMT clay, Al, etc. are among the most commonly used nanoparticles in coating 

formulations.  Research has shown that exposure to high concentrations of such material may 

result into possible acute symptoms to workers, including headache, dizziness and exposure to 

suspected carcinogens and sometimes can also affect central nervous system (Feldman et al., 

1999; Kim et al., 2000).   
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 A paint spray unit includes a spray booth, spray guns/bells, ventilation system, tools, 

appliances and equipment such as pump, compressor, conveyor belt and personal protective 

gears which are necessary for an operator to apply paint on the object surface to be coated.  Paint 

material is sprayed using spray bells rotating at high speed.  A typical automotive paint spray 

application unit is shown in Figure 5.1.   

 

 
 

Figure 5.1. Typical automotive paint spray application unit.  

 

 The air inside the bells atomizes the paint material and breaks it into tiny paint particles.  

For nanopaint, the particles are filled with individual or agglomerated nanoparticles inside it.  

The paint particles having nanoparticles are then ejected from the bells at high speed to form a 

film on automotive panels.  The transfer efficiency of water-borne paint material is generally 

around 30-40 % while that of solvent-borne is 60-80%.  The remaining paint material is emitted 

into the surrounding atmosphere resulting in contamination of the air inside the spray booth.  



118 
 

 
 

This contamination includes high concentrations of nanoparticles and VOCs.  A sophisticated 

ventilation system is used to remove the air contaminated with these paint particles.   

 As described before, the painting of irregularly shaped objects is performed inside a 

manual paint-spray booth.  As described by Li et al. (2013), a manual paint-spray facility 

consists of an air ventilation unit, spray-gun and a placement of substrate to be coated.  Figure 

5.2 shows a typical manual spray-booth design. 

 

 
 

Figure 5.2.  Sketch of manual paint-spray booth. 

 

 The design consists of a paint spray booth with operational parameters adopted from a 

real industrial practice.  According to Lin et al. (2005), the spray booth is applicable to chemical 

agent resistant coatings, production paints and camouflage and powder paints application.   
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The size of the booth is 19 ft by 39 ft, which is housed in a room of dimensions 

approximately equal to 350 ft long and 60 ft wide.  Inside the booth, a conveyor belt is located 

for moving parts through the working area.  Paint is applied by a compressed air-forced paint 

gun operated by a worker positioned next to the substrate panel.  Generally, an epoxy primer coat 

is first applied by spraying, followed by a topcoat films.  After painting, the parts are carried out 

of the booth into dryers for flash-off and curing.  At room temperature, the primer coat dries to 

touch in 15~45 minutes and the topcoat dries to touch in 15 minutes.  The appropriate paint 

thickness of 1.0~1.5 mils for the primer and 1.8 mils for the topcoat is achieved.  A successful 

paint application job should produce a smooth, continuous, adherent paint film free of runs, sags, 

blisters, orange peel, streaks, craters, blotches, fish eyes and pinholes. 

The roof of the paint booth is open and air is drawn through a 13 ft wide opening down to 

both exhaust air intakes with 4 ft wide slots located on each side of the booth floor.  Four 25-

horsepower motors power the exhaust fans to discharge paint fumes outdoor, which give the 

exhaust air flows at 80,000 CFM (Cubic Feet per Minute).  During the painting operation, fresh 

air enters the booth from the open roof and flows down to the floor continuously (see Figure 

5.2).  Both ends of the booth are kept open. The heating and ventilation facility operates 

continuously at all times.   

 

5.3 Integrated Modeling Methodology 

 

The transport of ventilation air, shaping air, injected paint material, VOC and 

nanoparticles can be thoroughly examined through CFD-based simulation.  Figure 5.3 represents 

a general scheme of the modeling methodology and different types of models that are used for 
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the calculation of energy efficiency, VOC emission and nanoparticles emission during the spray 

process.  This methodology consists of five different models which are described below.  Four of 

the models were used by Li et al. (2013) for the analysis of VOC emission and energy efficiency 

of a paint booth for conventional paint spray.  In this work, the discrete phase model was 

combined with the previous model to make it suitable for the analysis of nanoparticles-based 

paint systems. 

 

 

Figure 5.3.  CFD-based integrated modeling methodology. 

 

5.3.1 Air Flow Model   

 

The air flow pattern within the spray booth is determined by the geometry of the booth 

and ventilation system‟s design and setting.  It can be characterized by the following dynamic 

models, based on the mass conservation principle (see Eq. (5.1)), the momentum conservation 
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principle (see Eq‟s. (5.2)-(5.4)),  as well as the realizable k- turbulence principle (see Eq‟s. (5.5) 

and (5.6)) (Colbert and Cairncross 2006; Ellwood and Braslaw 1998; Shah et al. 2006).  The air 

is a continuous phase in the simulation.  The prediction of flow of continuous phase is obtained 

through a realization k-ɛ model.  It is an improved turbulence model as compared to the previous 

standard k-ɛ model (Boulet et al., 2010).  The governing equations for these models are given 

below. 
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where aρ  is the air density (kg/m
3
), v  is the velocity of air (m/s), mS  is the rate of mass addition 

into the gas phase per unit volume from the dispersed second phase (kg/m
3
s), p  is the pressure 

(Pa), τ  is the stress tensor of the air (Pa), g  is the acceleration due to gravity (m/s
2
), iS  is the 

external force on gas phase per unit volume from the i-th species particle (N/m
3
), a  and t  

are, respectively, the shear viscosity (Ns/m
2
) and turbulent viscosity (Ns/m

2
), I  is the unit 
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tensor, C , 1C , 2C , 3C , and k are the model constants, k  is the kinetic energy of 

turbulence (m
2
/s

2
),   is the dissipation rate of turbulence (m

2
/s

3
), kG  is the generation of 

turbulent kinetic energy due to the mean velocity gradient (kg/ms
3
), bG  is the generation of 

turbulent kinetic energy due to buoyancy (kg/ms
3
), and MY  is the contribution of the fluctuating 

dilatation in compressible turbulence to the overall dissipation rate (kg/ms
3
).  More details about 

the realizable k-ɛ model can be found in the ANSYS FLUENT theory guide (2009). 

 The air within the spray booth is initially static.  The fresh air then begins to blow from 

booth intake to the exhaust.  It is interfered by the shaping air flow near the spray guns.  The air 

flows out of the booth to the environment through exhaust grids located on the floor.  These 

operating conditions inside the spray booth are defined by the following initial and boundary 

settings of the air flow model.   

  























0boothspraythein0

0exhauststheexceptboundariesphysicalotherat0

0intakesboothat

0guns,sprayofoutlettheat

t,

t,

t,ν

tν

tx,ν
DD

SG

 (5.7) 

where SGν  is the air velocity from the spray gun (m/s), and DDν  is the air velocity of the 

downdraft (m/s). 

 

5.3.2 Species Transport Model   

 

 Paint species are ejected from the spray guns with a momentum that is governed by two 

types of forces: the drag force from the surrounding turbulent air flow and the gravitational force.  
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The velocity of paint species (u) can be modeled by the Newton‟s second law of motion as 

shown in the following equations (Colbert and Cairncross 2006; Im et al. 2004).  

 
 

     gftutv
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Dπμ3

dt

tud pa
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where u (m/s) is the velocity of the species having particle diameter pD  (m) and the mass m  

(kg), v (m/s) is the velocity of air surrounding the species, f  is the drag factor, p  is the paint 

density (kg/m
3
) and rRe  is the Reynolds number. 

The initial species velocity from the spray guns for this model is u0: 

   0u0u   (5.12) 

The species trajectory  txtr  is determined from the species velocity that is determined 

by Eq‟s. (5.8) – (5.12).  The initial position of all paint species is assumed to be at the outlet of 

the spray gun.  The dynamic model becomes:   

 
 

 tu
dt

td tr 
x

 (5.13) 

   0x0xtr   (5.14) 
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The models for the air flow and the species transport can be solved numerically.  The 

solution can be obtained at various locations within the booth and at different times.  The results 

from the CFD simulation can characterize the emission and diffusion of VOC‟s in the system as 

well as the effect of ventilation during the paint spray operation.   

The VOC emission and energy consumption of the paint spray booth can be quantified by 

the following models. 

 

5.3.3 VOC Concentration Model   

 

The air quality inside the spray booth is quantified by measuring the mean VOC 

concentration (Cm, kg/m
3
) in the system; which is the ratio of total mass of VOC‟s to the total 

space of the booth (Vbh, m
3
). 

bh

bhV
s

m
V

dVY

C







 (5.15) 

where s  is the species flow density (kg/m
3
) obtained from the species transport model, and Y is 

the mass fraction of VOC in the paint species flow.  This model accounts for the VOC content 

released in the air from the paint being applied onto the substrate and also the overspray.  The 

VOC evaporation from the deposited wet film is neglected as the substrate is immediately moved 

from the paint booth to the next production stage.  
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5.3.4 Energy Consumption Model   

 

 In paint spray operation, energy is consumed by exhaust fans that provide ventilation air 

and by the spray facilities that generate the shaping air.  Industrial practice shows that 

maintaining ventilation air flows consumes much more power than keeping shaping air flows.  

Thus, in this work, the total energy consumption of a paint spray system is quantified solely 

using the energy consumed by the ventilation system.  The power required for the exhaust fans 

(Ed, kW) is proportional to the velocity of the exhaust air flow ( DDv ) (Perry and Green 1997) i.e., 

 DDd cvE   (5.16) 

where c is a given coefficient (kW/m/s). 

 

5.3.5 Discrete Phase Model   

 

In addition to solving the transport equations of the continuous phase, FLUENT also 

provides a tool for simulating the discrete second phase.  The paint acts as a discrete second 

phase, which is sprayed in a continuous air domain.  The dispersed phase can exchange mass, 

momentum and energy with the continuous phase.  It is treated by the Lagrangian discrete phase 

model (DPM) which follows the Euler-Lagrange approach.  The DPM is combined with species 

transport model to calculate the paint flow trajectories and nanoparticles emission (See Figure 

5.3).  This discrete phase is sprayed in the form of large number of tiny particles representing 

real paint droplets with the same properties.  By this representation, one can control the size 

distribution of paint droplets that are being injected from the gun.  The droplets are traced 

through the booth environment at each time interval of iteration.  The trajectory of individual 
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droplet is determined by solving the equation of motion for each droplet.  This equation of 

motion is obtained from the particle force balance written in a Lagrangian frame of reference 

(See Eq. 5.17).  This equation considers the forces in the i
th

 direction of cartesian coordinates due 

to drag, gravity and pressure gradient.  The thermophoretic and Brownian motion forces are 

neglected. 
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where    
 is the drag force per unit particle mass,    and    

  are the velocities of fluid phase and 

particles respectively,   and    are the densities of the fluid phase and particles respectively,    

is the drag coefficient,    is the particle/droplet diameter,   is the viscosity of the discrete phase, 

   is the acceleration due to gravity, and    is the Reynolds number. 

During the spray of stable nanopaint material, the nanoparticles are not released in the 

natural form, but they are surrounded with resin material.  Essentially, the overspray paint mist 

carries the nanoparticles in the booth environment.  The emission of nanoparticles thus depends 

upon the paint droplet size and the concentration of the overspray.  The simulation of such 

mixture of species is accomplished by activating the FLUENT multicomponent particle law (law 

7).  It allows FLUENT to model each droplet consisting of multiple components with different 

masses and densities.  The injected particles are allowed to collide or break on interaction with 

each other in the air and on the deposited film.  The mass of each paint droplet changes 

depending upon the evaporation of solvent and collision and break-up phenomena.  Droplet 

spreading on the substrate film depends on multiple factors, such as, droplet size, injection speed, 
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angle of impact, paint surface tension, viscosity and surface properties such as surface energy, 

surface roughness, porosity, etc.  The amount of deposition and spreading is determined by the 

driving and resisting forces.  The driving force is provided by the kinetic energy of the droplet, 

whereas resistive force is provided by viscosity and surface tension of the paint material.  When 

the droplet impacts the surface, its initial spherical shape may change into oval-like form.  In 

FLUENT, the variation in the droplet shape is accounted by the “dynamic drag model”.  The 

distortion of shape significantly affects the drag coefficient of the droplet and the value changes 

significantly from the drag coefficient of the spherical droplet.  The dynamic drag model 

calculates the drag coefficient depending on the extent of distortion as given by Eq. 5.20. 

)y.(CC sphere,DD 63221
 

(5.20) 

where y is the extent of droplet distortion from spherical to the maximum of disc like shape.  In 

the case of zero distortion (y = 0), the drag coefficient of a sphere is used, while the maximum 

distortion (y = 1) produces the drag coefficient of a disc shape.  

 

5.4 Theory for Paint Spray Atomization and Modeling 

 

A spray is a system of droplets immersed in a continuous gaseous phase.  Sprays can be 

produced in a variety of ways.  Most of the spray application devices achieve atomization of bulk 

liquid by creating a high velocity between the liquid and the injected gas required to atomize the 

liquid.  In order to atomize the bulk liquid into tiny droplets, energy needs to be supplied to the 

system.  This energy can be provided to the liquid material by employing either high pressure, or 

kinetic acceleration.  Flowing air bubbles bursting at the liquid surface lead to its conversion into 

small droplets which are then sprayed out of the nozzle of the spray applicator.  
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The important properties for the process of atomization of any liquid are density, surface 

tension and viscosity.  The atomization of the liquid forming tiny droplets occurs when the stable 

liquid with certain surface tension and viscosity is influenced by the disruptions from many 

internal and external forces.  When the disruptive force barely exceeds the surface tension of the 

liquid, it leads to atomization and formation of droplets.  Most of the bigger droplets are unstable 

during the initial breakup of the liquid sheet and form smaller droplets by undergoing further 

disintegration.  Thus, the characteristics of a liquid spray are governed by the droplet sizes 

produced during primary atomization as well as by the extent to which these droplets are later 

disintegrated into smaller ones during secondary atomization.  

The diameter of droplets which are formed from the flowing liquid through a thin circular 

outlet of the spray gun nozzle can be calculated from the following equation (Lefebvre, 1989). 

d (
6d0ζ

ρLg
)

1

3

  (5.21) 

where do is the outlet diameter, ζ is the liquid surface tension, ρL is the liquid density and   is the 

gravity constant.  The effect of the aerodynamic drag force on break-up of droplets can be 

summarized using a Weber number as shown in following equation. 

We 
ρairU

2d

ζ
  (5.22) 

where ρair is the gas density, U the relative velocity and d the droplet diameter. 

In spray coating system, the liquid paint is atomized at the nozzle by pressure or 

ultrasounds and then it is directed towards the panel by a flowing gas.  The tiny droplets that are 

formed after atomization land on the surface producing either a full wet layer, in the case of large 

paint-flow rate, or sparse depositions and arrangements of dots on the surface, in the case of 

smaller flow rates.  This droplet spreading in spray coating application is influenced by various 
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factors such as, droplet sizes, impact velocity, impact angle, liquid surface tension, liquid 

rheology and substrate surface properties such as surface energy, surface roughness and porosity.    

When a droplet hits the surface, its initial spherical shape is forcefully converted into a 

pancake like shape.   The spreading of paint droplets is decided by the balance of driving and 

resisting forces between the droplets and the surface.  The driving force is provided by the 

kinetic energy of the droplet, whereas resisting force is provided by the surface tension and 

viscosity of the paint material.  The relative values of the surface and kinetic energies can be 

represented with Weber number.  For large values of the Weber number the kinetic energy 

overcomes the surface tension of the paint and spreading occurs.  Whereas, for low values of 

Weber number, (e.g. low impact velocity,) the droplets tend to stay spherical and minimal 

wetting of the surface takes place.   

Droplets are generated by high pressure of the gas during an atomization process.  The 

injection velocity from the nozzle can be of the order of 100 m/s.  However, a reduced velocity is 

used for spray nozzles with larger cross sectional area.  But, such adjustment is not 

recommended as the surrounding air from ventilation may affect the jet velocity and slow down 

the droplets flowing towards the surface.  Typical droplet sizes for paint material injection 

through spray guns are given in the literature which fall between 20-80μm (Toivakka, 2003). 

 

5.4.1 Concept of Particles and Parcels 

 

 During DPM simulation, the spray module tracks the discrete phase movement 

throughout the system domain.  In our case, the discrete phase is paint material.  This discrete 

phase is allowed to exchange energy, mass (evaporation) and momentum (drag) with the air 
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(continuous phase).  In case of spray application, the injected paint material is converted into 

millions of tiny droplets which flow through the simulation domain.  During unsteady DPM 

modeling, the tracking of each of the millions of individual droplets is extremely expensive in 

terms of computational efficiency.  Thus, in order to improve computational efficiency, 

FLUENT code in fact tracks “parcels” and not particles/droplets.   

 Each parcel is a representative entity of the behavior of many identical droplets after they 

are sprayed from the gun.  The behavior of the parcels is determined by the behavior of 

individual particles.  The total numbers of parcels that are generated are determined by various 

factors, such as, total mass flow rate, number of particles, particle size distribution, number of 

holes on the nozzle tip, and other spray injection inputs.   

 In general, the number of parcels is calculated by the following equation (Eq. 5.23). 

  a  el   t a        e   (5.23)  

where Ntracks is the number of random locations on the gun through which the paint material is 

injected and Nsizes is the number of diameters defined in Rosin-Rammler option for particle size 

distribution. 

The number of particles in each of the parcels is calculated by Eq. 5.24. 

  a t  le 

 a  el 

 
 ̇  t 

  a  el        

   (5.24)  

where  ̇ is the mass flow rate of the paint,  t is the time step of injection,    is the 

particle/droplet material density,    
 is the particle/droplet volume.  FLUENT tracks these 

parcels carrying different number of particles at all the time during simulation.  After each 

instant of time iteration, the number of parcels is recalculated.  The particles can exchange 

among different parcels during the course of simulation.  
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5.4.2 Boundary Conditions 

 

The droplet-substrate interaction is an important aspect responsible for formation of the 

paint film on the panel surface.  FLUENT provides a “wall-film” boundary condition which can 

cause the deposition of the paint on the panel.  It allows the fluid droplets to impinge on the 

surface and form a thin film.  The wall-film considers four key phenomena of interaction 

between droplets and sample based on the impact energy and wall temperature: spreading, 

sticking, rebound and splashing (Stanton et al. 1998 and O‟Rourke 2000).  Eq. 5.25 represents 

the impact energy (E) as a function of material parameters and the film thickness. 
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where    paint density,    is the droplet velocity,    is the diameter of the droplet,    is the 

surface tension of the paint material and      is the boundary layer thickness.  If the wall 

temperature is below the boiling temperature of the liquid, sticking, spreading and splashing 

occur.  The number of splashed droplets is set to the default value of 4.  
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CHAPTER 6 

CFD MODELING OF NANOPAINT APPLICATION SYSTEM – ANALYSIS OF 

ENVIRONMENTAL EMISSIONS AND COATING QUALITY 

 

 The CFD-based integrated modeling and simulation methodology which was described in 

Chapter 5 was used to investigate an industrial case of a paint-spray booth.  Various geometries 

and operational settings were simulated and analyzed for determination of an optimum set of 

working parameters for minimal VOC emission and energy consumption.  The test cases of 

various spray-booth systems and detail analysis can be found in Li et al. (2013).  The VOC 

emission analysis was performed using species transport model and VOC concentration model.  

The analyses of nanoparticles emission, coating film topology, transfer efficiency were 

performed by integrating a DPM theory with the models for air flow, species transport and VOC 

concentration.  

 

6.1 Spray-booth and Paint Material Details 

 

The paint booth geometry for the base case was adopted from the industrial example (Li 

et al., 2013).  In automotive industries, nanopaints have major applications in clearcoat 

formulations.  In this work, the paint material selected for modeling was an epoxy-based 

clearcoat resin, product no. D.E.R. 538 (www.dow.com/scripts/litorder.asp?filepath=/296-

00312.pdf).  For nanopaint formulation, silicon dioxide nanoparticles of uniform size distribution 
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of 100 nm were dispersed into the coating matrix (Huynh, 2006).  The solvent used for all paint 

formulations was acetone.  Based on the industrial data, the paint flow rate was selected as 150 

ml/min (Im et al. 2004).  The shaping air flow rate from the spray gun is set to 5 m/s.  Such a 

high value of shaping air flow avoids the coating spray quality from getting affected by the 

downdraft ventilation air.  The paint droplets were injected at a high velocity of 20 m/s.  For the 

simulation and analysis of the paint-spray through DPM, three paint systems were selected as: 1) 

nanopaint I (with 10% (by weight) nanoparticles); 2) nanopaint II (with 5% (by weight) 

nanoparticles); and 3) conventional paint.  The solvent concentration and material parameters of 

all three systems are enlisted in Table 6.1.  

 

Table 6.1. Material properties of various paint systems 

Parameters Nanopaint I Nanopaint II Conventional Paint 

Paint Density 1.286 g/cc 1.286 g/cc 1.23 g/cc 

NP type SiO2 with 100 nm particle-size - 

NP mass fraction 10 % 5 % 0 % 

Viscosity 46 cP 43 cP 40 cP 

Paint flow-rate 150 ml/min 

Size of Paint droplets 10-100 μm 

Solvent (Acetone) concentration (lb/gal) 4 

 

 

For the ventilation air unit, the booth was provided with four 25-hp fan motors.  The flow 

rate of the exhaust air generated by the fans was 80,000 CFM.  Thus, the exhaust air velocity was 

calculated as, 

v = 80,000 CFM / (2  4 ft  39 ft) = 256.4 FPM (Feet Per Minute) = 1.30 m/s  (6.1) 

where (2  4 ft  39 ft) is the intake area for the exhaust air.  The specified system information 

was used to construct the CFD-based models by employing Eq‟s. (5.1) through (5.16).  The 
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spray booth consists of four 25-hp fan motors, and the electrical draw of each motor is 18.64 kW.  

Thus, the energy coefficient in Eq. 5.16 is calculated as: 

c = 4  18.64 kW / 1.30 m/s = 57.35 kW/m/s (6.2) 

 The performance of the paint spray system, in terms of air purification by ventilation, 

quality of the deposited paint film and transfer efficiency depends on multiple factors such as 

ventilation air velocity, shaping air velocity, spray pattern, injection tracks, injection angle, 

surface roughness, gun-to-substrate distance of separation, etc.  For nanopaint spray, toxic 

nanoparticles are released in the atmosphere which must be removed to keep the booth 

environment safe for workers.  The quality of the film may alter due to the addition of 

nanoparticles in the paint matrix.  The prediction of the coating film topology provides key 

information about the role of nanoparticles.  For the process to be economical, transfer efficiency 

of the paint is a crucial factor.  All the parameters are a function of the method of spraying and 

operational settings.  The optimum performance can be obtained by adjusting the operational 

parameters appropriately for each type of coating material to be used.  This works studies these 

crucial operational parameters which can improve the sustainability performance of the paint 

spray system for different types of coating materials. 

    

6.2 Case Study Description   

 

In this work, the paint material was applied on the panel surface with three different spray 

patterns.  The spray patterns are described below as Cases 1 to 3.  In each case, the separation 

between the gun and the substrate was fixed at 8”.  The performance of each of the three paint 

systems was analyzed through CFD-based modeling and simulation to compare the film quality, 
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topological properties and emission of VOCs‟ and NPs‟.  The spray patterns and resulting 

coverage of the sample by the paint material are shown in Figure 6.1.  

Case 1: The paint was sprayed in a cone shape at the center of the sample at a 

spray angle of 66.02º.  The spray angle was adjusted such that no paint 

could be released directly in the surrounding (See Figure 6.1 (a)). 

Case 2: The paint was sprayed in a cone shape from the center at a spray angle of 

71.67º.  This spray angle ensured a complete coverage of the panel 

surface.  However, a certain portion of paint was allowed to release 

directly in the surrounding as overspray (See Figure 6.1 (b)). 

Case 3: The paint was sprayed at 5 different locations on the panel for 2 seconds at 

each at a fixed spray angle of 58º.  The location of spray gun was changed 

to four corners and the center of the panel (See Figure 6.1 (c)) in order to 

improve the surface topology of the deposited film. 
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Figure 6.1. Spray patterns for (a) Case 1, (b) Case 2 and (c) Case 3. 
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In each case, the paint was sprayed for 10 sec.  The fluid was injected along fixed 500 

droplet streams from the outlet of the gun.  It ensured even distribution of the paint material on 

the panel surface in each case.  The streams injected droplets of different diameters ranging from 

10μm to 100μm.  The intermediate droplet size distribution was calculated by applying Rosin-

Rammler distribution function with 50μm as the average size (Alderliesten, 2013).  The spread 

parameter was set equal to 2.  The Rosin-Rammler distribution function calculates the droplet 

sizes based on Eq. 6.2. 

     e
-(   ̅)

 

  (6.2) 

where    is the mass fraction of the paint material injected in the form of droplets with diameter 

d,  ̅ is the average diameter and n is the spread parameter.  The plot of initial size distribution 

based on Rosin-Rammler equation is given in Figure 6.2. 

 

Figure 6.2. Initial droplet size distribution based on Rosin-Rammler function. 

   

 The CFD model of the paint spray system considered certain assumptions for the analysis 

of each case.  These assumptions are, 
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1.  The nanoparticles were emitted in the atmosphere in the enclosed form inside a paint 

resin. 

2.  All the nanoparticles were spherical with identical size of 100 nm. 

3.  On collision of paint droplets on the substrate, the droplets showed one of the four 

behaviors: splash, spread, stick and rebound.  In the case of splashing, each droplet 

would break to form 4 tiny fractions of same size and equal mass fractions. 

5.  The effect of gravitational force which may cause sagging of wet film was neglected. 

6.  The collision on walls of paint-booth lead to sticking of the paint material.  

  

6.3 Simulation Details   

 

The models described above were implemented using the ANSYS CFD software 

FLUENT, Version 14.  A fine mesh was generated with 356746 total elements.  The mesh 

resolution near the gun outlet was higher to accurately predict the flow dynamics and the 

interaction between spray particles and the air.  The droplets were injected in a conical fashion 

from the spray gun.  Unsteady particle tracking was applied for DPM particle treatment.  The 

particles were sprayed at each particle time step of 0.1 second.  Droplet collision and droplet 

break-up (WAVE) models were activated to simulate the paint flow behavior during the spray.  

Stochastic tracking was applied by discrete random walk model.  Coupled scheme was 

implemented for pressure-velocity coupling.  The pressure discretization was performed under 

the second order scheme.   
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The air flow model predicted the air flow profile inside the booth, which was generated 

as a result of interaction of downdraft air and shaping air.  The contour of air flow velocity is 

shown in Figure 6.3.     

 

 
Figure 6.3. Air velocity contour (a) front view, (b) side view. 

 

(b) 

(a) 
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6.4 Spray Trajectories Analysis   

 

The paint droplets were injected from the gun nozzle at a high speed of 20 m/s.  Due to 

such high speed, the continuous phase had minimal effects on the flow and transfer efficiency of 

the paint.  For the DPM simulations, the boundary condition for the walls of the booth was 

selected such that the droplets would stick after the contact.  The downdraft air was allowed to 

flow from the opening on the roof to the grids mounted at the floor of the booth.  The panel 

surface was set as “wall-film”.  The trajectories were calculated at every 0.1 sec of iteration time 

step.  In all the cases, the droplets ejected from the gun were either deposited on the panel or 

released in the air.   

The flow of paint droplets along the spray booth is represented in Figure 6.4.  It can be 

seen from Figure 6.4a that the particles with highest residence time (red color) are lying on the 

wall of the booth.  However, the particles with smallest residence time (blue color) are observed 

near the panel.  Figure 6.4b represents the paint particles in the air at the end of 10 sec of spray 

and as a function of VOC content present in them.  The coloring shows that the particles which 

are further away from the substrate and have spent longer time in the booth have lesser amount 

of VOC in them.  This is expected due to higher evaporation of solvents at longer residence time.    
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Figure 6.4. DPM droplet tracks at the end of 10 sec of paint spray as a function of (a) residence 

time, and (b) VOC mass fraction. 
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6.5 VOC Emission Analysis   

 

During the spray application, the solvent was continuously evaporating from the paint 

material.  This VOC vapor contributes to the increasing air pollution inside the booth which 

could be hazardous to the worker standing inside.  Using this CFD simulation for all the cases, 

the vaporized VOC concentration distribution was analyzed.  Figure 6.5 represents this 

concentration of VOC.  It can be seen that the vapor concentration is highest near the sample.  

This VOC vapor is taken away with the downdraft air through the grids at the bottom.  The spray 

booth and ventilation system efficiency is determined by its ability to remove this VOC from the 

booth ambience and keep the environment clean for working.   

The VOC emission was also analyzed more precisely by calculating the solvent 

concentration remaining inside 20 randomly selected droplet streams injected initially at a time 

zero.  Figure 6.6 represents the trend of solvent concentration change in each of the 20 droplet 

streams of Case 1 for all three paint samples.  It can be observed that the solvent concentration 

was exponentially decreasing along the time.  This decrease was a result of continuous solvent 

evaporation contributing to increasing VOC in the booth.  The occasional increase in the solvent 

concentration of few droplets could be caused due to coalescence of several droplets together 

after depositing on the panel film.  Majority of the droplet streams did not reach 10 sec.  It could 

also be a cause of coalescence of the droplets with others and spreading on the panel film.  A 

close similarity among all three graphs (Figures 6.6a through 6.6c) suggests that addition of 

nanoparticles in the paint matrix did not affect the solvent concentration trends of all the droplet 

streams.  Thus, nanoparticles had negligible effect on VOC evaporation during the paint spray.  
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Figure 6.5.  Concentration of VOC vapor inside the spray booth after 10 sec of spray. 

 

 

 

Figure 6.6.  Solvent concentration change during the spray operation of Case 1 for (a) Nanopaint 

I, (b) Nanopaint II, and (c) Conventional paint (cont‟d).  

(a) 
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Figure 6.6.  Solvent concentration change during the spray operation of Case 1 for (a) Nanopaint 

I, (b) Nanopaint II, and (c) Conventional paint.  

 

(c) 

(b) 
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 The deposition of the solvent on the panel surface was also analyzed and compared to 

study the effect of nanoparticles addition into coating matrix.  Figure 6.7 represents the contours 

of solvent concentration that was deposited on the panel surface after the spraying of Nanopaint I 

and conventional paint material through the spray pattern used in Case 1.  The close proximity of 

the two contours suggests that nanoparticles have negligible effect on the solvent deposition on 

the spray panel surface. 

 

Figure 6.7.  Contours of solvent deposition on panel surface by spray pattern of Case 1 for the 

spraying of (a) Nanopaint I, and (b) Conventional Paint. 

 

 

6.6 Paint Transfer Efficiency   

 

The paint-spray process can be economical and the quality of deposited paint film can be 

improved with increasing the transfer efficiency.  Although spray painting provides a good 

control over the quality of the finish, lower transfer efficiency may cause higher emission of 
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paint mists.  The transfer efficiency of the spray process primarily depends upon the injection 

speed and the gun-to-substrate separation distance.  The non-transferred paint contributes to the 

overspray which causes worker‟s exposure to higher concentrations of paint mist.   

The separation distance between gun and sample was fixed to 8” for all the cases 

(Beuerle, 1996).  The transfer efficiencies of all the cases and types of paints are reported in the 

Table 6.2.  As expected, Case 1 provided the highest transfer efficiency followed by Case 3 and 

Case 2.  It can be observed that the nanopaint samples with increasing nanoparticle concentration 

have better transfer efficiencies.  This could be due to the presence of nanoparticles and increase 

in the paint viscosity.  The spray of more viscous paint deposited more content on the film and 

formed lesser paint mist.   

 

Table 6.2. Analysis of performance parameters for all three cases of paint spray 

Parameter Cases 
Geometry and spray 

pattern 

Nanopaint 

I 

Nanopaint 

II 

Conventio-

nal Paint 

Transfer 

Efficiency 

(%) 

1 
Spray at the center (partial 

coverage of panel) 
85.09 81.73 74.93 

2 
Spray at the center (full 

coverage of panel) 
74.85 73.86 72.05 

3 
Spray at 5 locations (full 

coverage of panel) 
80.91 76.46 72.26 

Paint 

removed 

by the 

ventilation 

system (%) 

1 
Spray at the center (partial 

coverage of panel) 
31.48 31.09 32.02 

2 
Spray at the center (full 

coverage of panel) 
30.61 30.71 31.07 

3 
Spray at 5 locations (full 

coverage of panel) 
31.12 31.08 32.45 

NP‟s 

concentrat-

ion in 

booth air 

(no./m
3
) 

1 
Spray at the center (partial 

coverage of panel) 
1.351x10

12
 8.323x10

11
 0 

2 
Spray at the center (full 

coverage of panel) 
2.307x10

12
 1.197x10

12
 0 

3 
Spray at 5 locations (full 

coverage of panel) 
1.742x10

12
 1.074x10

12
 0 
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The overspray, consisting of paint solids, nanoparticles and VOC, results in the worker's 

exposure to toxic substances.  This overspray must be removed efficiently by the downdraft air 

in order to keep the booth environment safe for working.  For all the simulated cases, the mass 

flow and velocity of downdraft air was kept unchanged.  The efficiency of the ventilation system 

for different cases of paint systems was studied by calculating the proportion of paint removed 

by the downdraft air out of total overspray.  The corresponding values are reported in the Table 

2.  It confers that the efficiency of the ventilation system, in case of conventional paint, is 

slightly better than that of nanopaint.  However, it is preferred to have a high efficiency of 

ventilation system, especially in the presence of toxic nanoparticles.  Thus, there is a trade-off 

between the transfer efficiency and environmental emissions.  

 

6.7 Nanoparticles Emission   

 

The nanoparticles emission during each case was analyzed by calculating the total 

concentration of nanoparticles in the booth environment at the end of paint-spray operation.  The 

values obtained from the analysis are reported in Table 6.2.  It can be seen that the higher 

nanoparticles content in the paint system invites further risk of nanoparticles emission and 

exposure to higher concentrations.  Highest concentration of nanoparticles was emitted during 

the spray of nanopaint samples through Case 2.  With the environmental regulations on NP‟s 

emission becoming more strict day-by-bay, it is crucial to have an optimized ventilation system 

for nanopaint spray to minimize this exposure which can cause several health concerns.   
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6.8 Film Topology Analysis   

 

The key benefit of paint-spray application method is the ability to control and improve 

surface morphology and coating film topology.  Spreading of the paint material on the film and 

the prediction of velocity profiles of paint droplets are the fundamental factors required for the 

accurate determination of surface morphology.  Fogliati et al. (2006) determined that the 

Realizable k-ɛ model gives most accurate prediction of these characteristics.  Thus, the same 

model was adopted for the simulation of all the cases.  

In order to determine the film thickness profile of the deposited paint layer, the sample 

surface was modeled as a “wall-film” which predicts four different phenomena of spread, stick, 

rebound and splash of the impacting paint droplets depending on the impact angle and velocity.  

The paint mass and deposited film thickness values at various locations on the panel were 

recorded.  Using these values the plots of distribution of paint thicknesses over the panel surface 

were reconstructed and analyzed.  The plots obtained for the spray of Nanopaint I using all three 

cases of spray patterns are represented in Figure 6.8.  The roughness of the film surface was 

calculated as the “arithmetic mean roughness (     )” by using the Eq. 10. 

  ea    
1

n
 ∑  | 

 
| 

     (6.3)    

where    is the vertical distance from the mean thickness line to the     data point and   is the 

number of selected ordered and equally spaced data points along the surface of the panel.  The 

values of the average thickness and roughness of the deposited film from all the cases are 

reported in Table 6.3.  In order to ensure the reliability of the simulations and the accuracy of the 

thickness data, these average thickness values were compared with the theoretically calculated 

thickness values.  The theoretical thickness is the ratio of quantity of paint that is transferred on 
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the substrate over the cross sectional area of the substrate.  The final values were calculated for 

each case and the percent error is reported in Table 6.4.  For all the cases, the error was less than 

8% which verified the reliability of the simulation and the final results.   

 

Table 6.3. Average film thickness and roughness values for all the 

 cases of all the paint samples 

Cases 

Average film thickness (μm) Arithmetic mean Roughness (μm) 

Nanopaint 

I 

Nanopaint 

II 

Conventional 

Paint  

Nanopaint 

I 

Nanopaint 

II 

Conventional 

Paint 

1 29.70 28.54 25.43 22.26 21.93 18.86 

2 25.55 24.55 24.28 14.25 14.11 15.34 

3 27.31 26.17 24.30 8.47 8.16 7.79 

 

 

Table 6.4. Theoretical thickness values and percent error in the calculations  

for all the simulation cases 

Parameter Cases 
Geometry and spray 

pattern 

Nanopaint 

1 

Nanopaint 

2 

Conventional 

Paint 

Transfer 

Efficiency 

(%) 

1 
Spray at the center (partial 

coverage of panel) 
85.09 81.73 74.93 

2 
Spray at the center (full 

coverage of panel) 
74.85 73.86 72.05 

3 
Spray at 5 locations (full 

coverage of panel) 
80.91 76.46 72.26 

Theoretical 

Thickness 

(μm) 

1 
Spray at the center (partial 

coverage of panel) 
29.68 28.50 27.32 

2 
Spray at the center (full 

coverage of panel) 
26.11 25.76 26.27 

3 
Spray at 5 locations (full 

coverage of panel) 
28.22 26.67 26.35 

% error 

1 
Spray at the center (partial 

coverage of panel) 
0.08 0.14 3.24 

2 
Spray at the center (full 

coverage of panel) 
2.11 4.71 7.58 

3 
Spray at 5 locations (full 

coverage of panel) 
4.64 3.36 7.78 
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Figure 6.8. Film thickness profiles of Nanopaint 1 from (a) Case 1, (b) Case 2 and (c) Case 3 

(cont‟d).  

 

(a) 

(b) 
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Figure 6.8. Film thickness profiles of Nanopaint 1 from (a) Case 1, (b) Case 2 and  

(c) Case 3. 

 

From Figure 6.8, it can be observed that the film topology from Case 3 was substantially 

improved as compared to that from Case 1 and Case 2.  The thickness values from Table 6.3 

suggest that the average thicknesses of nanopaint samples were greater than the conventional 

paint.  Case 3 showed about 7% improvement of the average film thickness than the worst case.  

The roughness was substantially reduced in Case 3 as compared to Case 1.  Thus, the spraying of 

paint uniformly over the cross-section of the panel showed significant improvement in the film 

topology.    

 

  

(c) 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

This chapter concludes the dissertation report with the summary of all the research 

findings in the areas of multiscale molecular modeling, life-cycle based sustainability assessment 

of nanocoating technology and CFD modeling and simulation of paint application process for the 

prediction of nanopaint performance and environmental emissions as compared to existing 

conventional paint systems.  The summary is followed by recommendations for possible 

extension of this work in the future. 

 

7.1 Conclusions 

 

 A comprehensive methodology and framework for the multiscale life-cycle-based 

sustainability assessment of nanocoating technology has been successfully developed.  This 

novel technology was studied using computational modeling and experimental analysis on 

various levels of time and length ranging from nano- to macro- scales.  These modeling 

methodologies and corresponding results generated key information required for the 

quantification of several sustainability matrixes representing different stages of the life cycle of 

nanocoating technology.   

The key challenge to the research on sustainability assessment of an emerging technology 

such as “nanocoating technology” comes from the limited scientific knowledge and the reliable 
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data availability.  Since last decade, nanoparticle-based coating materials are being studied 

extensively to determine all the attractive properties achievable with it.  It has been proven that 

the addition of nanosize fillers of different types and shapes can enhance the polymer composite 

as well as coating resin‟s properties tremendously.  The final product can have significantly 

improved mechanical stiffness, scratch resistance, super-corrosion resistance, antifouling 

properties, mar resistance and also certain smart functionalities such as self-cleaning, self-

healing, thermochromic, heat resistance, significantly improved solvent and chemical resistance, 

etc.  However, it is still unknown how these nanoparticles are responsible for such property 

enhancements.  The experiments solely are not capable of answering questions and studying the 

microstructure-property correlations among nanoparticles and polymer resins.  Through this 

research, an integrated computation-experimental approach was provided to study these 

microstructure-property-performance correlations.  

The computational modeling was performed using molecular simulation techniques such 

as Monte-Carlo and Molecular Dynamics (MD).  In the past, modeling methodology was 

developed on macro- to meso- scales of material.  This work adopted the bottom-up, deductive 

systems engineering approach of materials development.  The nanocoating system was simulated 

on nano-, micro- and meso- levels and the methodology was connected with the previously 

developed system to complete the multiscale modeling methodology of nanocoating system 

development.   

The nanocoating material was first simulated through MD simulation technique on a 

microscale.  The microstructural parameters such as bond lengths, bond angles, atomic charges, 

dihedrals, etc. were taken from a well-established atomistic force field called “CHARMM”.  The 

atomistic system consisted of a large number of entities which made the simulation of a 
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nanocoating system with huge design space and complexity computationally very expensive.  

Thus, the atomistic design was mapped onto a coarse grained system of “beads”.  This was 

accomplished by following MARTINI force field development protocols.  The bonded and non-

bonded interaction parameters for the system of PMMA-based resin material and TiO2 type 

nanoparticles were developed and the system was studied extensively to analyze the structure-

property correlations which cause the enhancement of properties in case of nanoparticles 

dispersion.  The factors such as, nanoparticles size, volume fraction, polydispersity index, etc. 

were studied to determine their effects on final nanocomposite structure.  This work was later 

coupled with experimental analysis in order to accomplish three key objectives: (a) to provide 

validation to the computational modeling work, (b) to study the effect of nanoparticles 

distribution inside a coating film on the final mechanical properties, and (c) to lead the 

computational-experimental approach towards a new knowledge discovery and optimization of a 

“self-cleaning” smart functionality.  

It was realized that the optimization of nanocoating formulations solely cannot bring 

these emerging products into commercialization due to various types of environmental hazards, 

health concerns and economic issues associated with it.  Thus, a comprehensive sustainability 

assessment framework was developed to look into all the aspects of nanocoating technology, not 

only at the manufacturing stage, but over its entire life-cycle which includes all the phases from 

material selection and preprocessing, paint manufacturing, paint application and film formation 

to its end use and disposal.  The developed methodology demonstrated how the sustainability 

indicators at various stages of life are correlated with each other.  This technology can gain 

significant value and the nanoproducts can be commercialized only if its sustainability 
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performance is assessed, compared with existing technologies and further improved to make it a 

safer alternative.   

However, the challenge to such detailed assessment emerged from the availability of data 

for the nanopaint.  Thus, Computational Fluid Dynamics (CFD) approach was adopted to 

simulate these nanopaints and study the coating quality parameters and environmental emission 

factors during application phase.  In automotive industries, paint-spray is the most common 

application method used for coating the auto bodies.  In this research, an industrial paint booth 

was designed and the spray of various paint systems was studied.  The components which may 

primarily affect the environment during paint spray are VOC (Volatile Organic Contents) and 

nanoparticles.  Through CFD simulation tool, ANSYS FLUENT, the paint spray process was 

simulated and the emission of VOC‟s and nanoparticles was thoroughly assessed.  This 

simulation generated crucial information related to the concentrations of overspray paint and 

VOC‟s that was released in the atmosphere and could cause health hazards to the workers inside 

the spray booth and pollute the drainage water passing through these paint booths.  The final 

coating quality parameters were also studied to ensure the superior performance of nanopaints 

over conventional paints.  The quality parameters such as, film topology, roughness, paint spray 

efficiency, etc. were determined and the results for different types of conventional and 

nanopaints were compared.   

The sustainability assessment framework and multiscale computational modeling 

methodologies generated in this research can provide a key pathway towards optimizing an 

emerging nanocoating technology and justify the inclusion of nanopaint products into future 

commercial market.  This research can also assist experimentalists in learning the structure-
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property correlations of nanocomposite coatings and discover novel formulations of these 

materials for the future.   

 

7.2 Future Work 

 

 The findings presented in this dissertation provide a solid foundation for the research 

related to the development of sustainable nanocoating technology.  It can be extended in three 

major directions: multiscale molecular modeling of nanocoatings, life-cycle based sustainability 

assessment and modeling and simulation of nanopaint application process. 

Multiscale molecular modeling of nanocoatings.  This dissertation focused on the 

development of the multiscale molecular modeling and simulation of nanopaints for the study of 

structure-property correlations.  The force field parameters and the CG methodology developed 

in this research was applied for the study of polymer nanocomposite microstructure.  This 

sophisticated methodology and the MARTINI force field for PMMA/TiO2 system can be applied 

for the study of several other key properties.  However, it is important to validate all the model 

parameters and the property predictions presented in this dissertation through experiments.  The 

experimental efforts initiated in this research for the study of polymer nanocomposite films and 

determination of properties related to mechanical stiffness and scratch resistance can be further 

explored and the validation to the multiscale framework (Figure 1.3) can be provided.  The 

accomplished work and some of the directions for future work using multiscale MD simulation 

method is shown in Figure 7.1. 
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Figure 7.1.  Summary of accomplished (non-shaded) and future (shaded) multiscale simulation 

work for prediction of nanocoating microstructure-property correlations   

 

With the accomplished work on the multiscale modeling of thermoplastic nanocomposite 

coating, the properties such as mechanical stiffness, scratch resistance, barrier properties and 

self-cleaning can be predicted.  However, a majority of the automotive paint are 2-component, 

thermoset systems.  The existing methodology can be extended to simulate such thermoset 

system by developing appropriate force field parameters for the crosslinker molecules and 

verifying them through experiments and empirical data.  If succeeded, this model can also 

provide validation to the past work which used Monte-Carlo based simulation method to model 

generic thermoset nanocomposite coating material.  

The CG model for nanocoatings with TiO2 type of nanoparticles can be applied for the 

study of “smart” coating materials with self-cleaning functionality.  The hydrophilicity of the 

nanoparticles play a key role in determining the performance of the eventual nanopaint.  This 
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MARTINI force field based CG model can predict the interactions among paint resin and surface 

of nanoparticles with different hydrophilicity.  This phenomenon can assist in the development 

of optimum formulations of nanopaints which can deliver self-cleaning functionality.   

The thermoset paint system is a 2K (2 component) system where the 2
nd

 component is a 

cross-linker/curing agent.  The curing agent is mixed with the paint vehicle before the mixture is 

applied onto car bodies.  The cross linking reaction helps in the formation of very hard films 

which have significantly better mechanical properties of the film as compared to thermoplastic 

paints.  The thermosets have been well rooted into automotive paint systems and most of the 

existing basecoat and topcoat formulations are thermoset paints.  However, the development of 

nanoparticles-induced thermoset paints remains a mountain top area of research.  The 

optimization of thermoset nanopaint formulations is a challenge due to the limited availability of 

knowledge about its microstructure.  The CG model developed in this research can be further 

extended for the study of such systems and the microstructure-property-performance correlations 

can be established for thermoset nanopaint materials.  Through the MD tool NAMD, it can be 

accomplished by developing an optimized CG force field parameters for crosslinker molecule 

and then simulate the cured system (as shown in Figure 7.1).  However, NAMD does not support 

the formation of new chemical bonds and thus the curing reaction to happen during the course of 

simulation.  This shortcoming of NAMD can be avoided by the use of the MD tool which 

supports such reactions.  LAMMPS and GROMACS are the best alternate routes which can 

perform such reactions during simulation and thus the thermoset nanocoatings can be modeled.  

The performance of nanopaints for automotive bodies heavily depends on the size 

distribution and shapes of dispersed nanoparticles.  The nanoparticles such as TiO2, SiO2, 

alumina, MMT clay, etc. have different shapes (e.g. spherical, oval, platelet, crystalline, etc.) and 
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thus they exhibit different characteristics in the final coating material.  The multiscale modeling 

methodology developed in this dissertation can be applied to study the effects of such shapes of 

nanoparticles on the final performance of the coating film.   

One of the challenges that the nanopaints are facing for becoming commercialized is 

from the issues related to durability.  This factor is also related to destabilization of paint due to 

aggregation/agglomeration of nanoparticles.  This crucial phenomenon can be studied by 

modifying the developed PNC system with a system where each nanoparticle is represented by a 

single Van der Waal bead.  The interaction parameters can be determined by following the same 

MARTINI methodology which was applied in this research.  Such system can efficiently address 

the concerns related to aggregation/agglomeration of different types of nanoparticles in the paint 

formulation.     

Life-cycle-based sustainability assessment.  It has been evidenced by several studies that 

the nanoparticles pose serious threat to environment and human health.  Needless to say, that the 

nanocoating, after commercialization in the future, can also pose such threats to human life and 

environment.  Thus, this dissertation was focused on the development of a comprehensive life-

cycle based sustainability assessment framework (Figure 4.2) to analyze the performance of 

existing nanocoating technology and determine the areas to improve in terms of environmental, 

economic and social performance of this technology for making it sustainable.  This framework 

can be further refined with much extensive research on each of the stages of life cycle by 

obtaining more reliable and accurate data for all the sustainability matrix parameters.  The 

accuracy of the data is the most important aspect which can justify the credibility of this 

methodology for the prediction of sustainability performance of different types of nanopaint 

systems.  The indicator matrixes developed in this work are also generic.  More indicators can be 
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explored and this framework can be further improved to make it applicable for a specific 

category of nanopaint.  For example, the assessment of a nanopaint system which has application 

in automotive industry can be more effective if the indicators are more focused towards the 

factors such as, durability of the film, energy consumption during application of the films in 

paint shops, and final performance of cured coating surfaces.   

Another aspect which can be introduced is the “decision-making”.  The current LCSA 

framework does not include the details of decision-making based on the assessment results.  The 

decision making methodology can be combined with the assessment to provide 

recommendations for improving the sustainability performance of the nanocoating technology.   

CFD modeling and simulation.  The part of the research was focused on the study of 

automotive paint application process through CFD-based modeling to assess the environmental 

emissions and coating quality parameters during paint-spray.  The energy efficiency and VOC 

emission patterns were studied through CFD modeling for the conventional paint spray (Li et al., 

2013).  In case of nanopaint spray, there are added concerns related to emission of nanoparticles 

along with VOC‟s during the spray application.  The presence of nanoparticles can also affect the 

performance of spray technique and thus the quality of the final film.  These factors were studied 

through CFD based modeling of a manual paint-spray booth.  In future, this approach can be 

extended to study automatic paint spray booths which consist of several robotic spray bells to 

coat the car bodies passing through the booth zones.   

The energy consumption and heating of wet films in curing ovens are other key factors 

which can influence the overall sustainability performance of the nanocoating technology.  The 

CFD modeling can be used for the assessment of curing zones to determine the emissions and 

effects of the operational settings on the quality of the final film.  Such models can greatly help 
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in obtaining the data for the sustainability assessment of application stage of the life-cycle of 

nanocoating technology. 
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ABSTRACT 

MULTISCALE DESIGN AND LIFE-CYCLE BASED SUSTAINABILITY  

ASSESSMENT OF POLYMER NANOCOMPOSITE COATINGS  
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Degree: Doctor of Philosophy 

Nanopaint with significantly improved performance properties could have numerous 

applications in the automotive, aerospace, ship-making, chemical, electronics, steel, construction, 

and other industries.  It is predicted that nanopaint, especially that providing multiple new 

functionalities to nanocoatings will be dominant surface coating material in the near future.  

However, how to ensure that such a nanocoating material be sustainable is a very sophisticated 

scientific problem.  The challenges in research arrive from the insufficient knowledge about 

formulation-structure-property correlations of nanocoating materials and their design 

complexity, and more seriously the prediction of their life-cycle sustainability performance, 

especially environmental impact and health risk.   

This research focuses on the study of multiscale sustainable nanocoating design, which 

could have applications from novel function envisioning and idea refinement, to knowledge 

discovery and design solution derivation, and further to sustainability performance evaluation.  

The nanocoating design is studied through developing multiscale models and conducting 

simulations using advanced computational techniques.  The nanocoating‟s sustainability 

assessment was performed throughout its life cycle.  Computational simulation aims at 
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integrating top-down, goals/means, inductive systems engineering and bottom-up, cause and 

effect, deductive systems engineering approaches for material development.  The in silico paint 

resin system is a water-dispersible acrylic polymer with hydrophilic nanoparticles incorporated 

into it.  The nano-scale atomistic and micro-scale coarse-grained (CG) level simulations are 

performed using molecular dynamics methodology to study structural and morphological 

features, such as effect of polymer molecular weight, polydispersity, rheology, nanoparticle 

volume fraction, size, shape and chemical nature on the bulk mechanical and self-cleaning 

properties of the coating film.  At the macro-scale, a paint spray system commonly used for 

automotive coating application is studied using CFD simulation technique to generate crucial 

information about the effects of nanocoating formulation on environmental emission and coating 

film quality.  The life-cycle based sustainability assessment study addresses all the critical issues 

related to economic benefit, environmental implication and societal effect of nanocoating 

technology through case studies on automotive coating systems.  It is accomplished by 

identifying crucial correlations among measurable parameters at different stages and developing 

sustainability matrices for analysis of each stage of life-cycle.  The findings from the research 

can have great potential to derive useful conclusions in favor of future development of coating 

systems with novel functionalities and improved sustainability. 
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