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CHAPTER 1: INTRODUCTION

This thesis introduces new methodologies for real-time control-oriented identifi-

cation of electric machines using quantized sensor information. It employs Permanent

Magnet DC Motor (PMDC) motors as a benchmark platform to develop these meth-

ods. In this research, several problems of PMDC motors such as modeling, estimation,

quantization, and wireless control were investigated. Control theory, system identifi-

cation, and signal processing technologies are used to solve these problems properly.

A closed loop system with communication channels were build to control the speed

of PMDC motors through transmitting and receiving the in/out data.

System identification and parameter estimation in dynamic models is of impor-

tance for many fields of science and engineering because many physical, chemical and

biological processes are described by systems of differential equations with unknown

parameters.

System identification and parameter estimation is very important area of research

in engineering. In this area the statistical methods are used to build mathematical

models of dynamical systems from measured data. The optimal design of experiments

is included in system identification to generate informative data that can be used

efficiently in a system. In addition to dynamical behavior of the system; for automatic

control, these models require important simplifications if the model is to be used in

a real-time application. There are different models that can be used to describe the

system such as physical, mathematical, mental, statistical, psychological, etc.
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Recently, the use of wireless communications in automotive systems to replace

wired systems is increased. Many automotive manufacturers are seeking wireless so-

lutions for intra-vehicle control systems. More importantly, in networked systems

such as unmanned aerial vehicles, mobile sensor teams, autonomous highway vehicle

platoons, wireless communication channels become an integral part of the feedback

loop. Introduction of communication channels mandates signal sampling, quantiza-

tion, and estimation, and consequently adds new dynamic subsystems into the feed-

back loop. Design variables for the communication systems such as sampling schemes

and quantization levels, for signal estimation such as parameter updating step sizes,

and controllers such as controller gains, interact and jointly affect feedback perfor-

mance. This dissertation investigates impact of these design variables and derives

some essential guidelines in designing remotely controlled electric motors.

1.1 Objective and Motivation

The main objectives of this dissertation are:

• This dissertation introduces new methodologies for real-time control-oriented

identification of electric machines using quantized sensor information. While

this methodologies have been mathematically developed with some appealing

convergence properties, they have never been applied to system identification

of electric machines. This dissertation employs PMDC motors as a benchmark

platform to develop our methods. Using binary or quantized sensors is chal-

lenging for system modeling, identification and control since they are nonlinear,
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discontinuous, and provide very limited information.

Advantages of binary sensors:

– Less complexity

– More cost effective

– Communication channels can be used in remote control real time applica-

tions.

• This thesis proposes threshold adaptation technique in parameter estimation

process. This technique is useful in increasing the accuracy of the parameter

estimation and decreasing the total square error between the estimated and

actual parameters. Threshold adaptation depends on accumulative distribution

function F(.), the highest slope is near the probability value ζ = 0.5, so threshold

value can be chosen according to this.

• This thesis investigates unique issues rising from feedback control of electric

motors with embedded communication channels. For concreteness, PMDC mo-

tors are employed as a representative system for carrying out our analysis and

simulation, although the findings of this dissertation are applicable to other

motor types. Adding two embedded communication channels among the feed-

back is a challenging problem because this will affect the performance of the

output response of feedback PMDC systems. Introduction of communication

channels adds new dynamic subsystems into the feedback loop. Design vari-

ables for the communication systems such as sampling schemes and quantiza-
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tion levels, which are directly linked to their resource consumptions, interact

with controllers to jointly affect feedback stability and performance. In this

thesis the impact of communication strategies on motor feedback systems and

the important guidelines in designing remotely controlled electric motors are

introduced.

• This dissertation proposes wireless solutions for many automotive systems such

as intra-vehicle control systems. More importantly, in networked systems such

as unmanned aerial vehicles, mobile sensor teams, autonomous highway vehi-

cle platoons, wireless communication channels become an integral part of the

feedback loop.
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1.2 Literature Survey

This subsection presents a comprehensive review on existing methodologies in

the field of parameter estimation and system identification for electric machines.

The traditional system identification methods, such as least squares, instrumen-

tal variables, stochastic approximation, frequency-domain, and maximum likelihood

methods use a linear sensor in measuring the output. So the estimation algorithms

depend on the calculation of the system output directly. Also many algorithms were

developed in system identification and parameter estimation such as algorithms of gra-

dient or Gauss-Newton type. The gradient method has problems when the derivative

is used near the switching points. As a result, algorithm for recursive identification of

linear systems, using quantized and noise corrupted measurements of the output signal

have been recently developed, also recursive least-squares (RLS) algorithm that using

multiple time-varying for on-line parameter estimation of an induction machine (IM)

was proposed and compared to other least square methods see [1, 2, 3, 4, 5, 6, 7, 8, 9].

Different control strategies and schemes were developed to control the electric

machines, such as fuzzy logic, sensorless control scheme using an observer and pole

placement techniques, sliding mode control, and pulse width modulation (PWM)

control techniques see [10, 11, 12, 13, 14, 15, 16, 17]

Feedback-linearizing control strategies were presented, such as the current tracking

controller and the torque controller, PID controller, and fractional-order controller,

see [18, 19, 20].
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Nonlinear control methods of electric machines such as feedforward/feedback con-

trol strategy, composite nonlinear feedback (CNF) control, and obtaining a compen-

sator of a nonlinear input/output characteristic that reduced the tracking accuracy

characteristic have been proposed in [21, 22, 23].

Other methods such as chopper method was used to control the terminal volt-

age such that the input DC voltage is chopped by Insulated Gate Bipolar Tran-

sistor(IGBT). Phase Locked Loop(PLL) offers a stable frequency controller system

which was widely used in communications, instrumentation and motor controlled.

A PLL system using Field Programmable Gate Array (FPGA)chip and an analog

Voltage Controlled Oscillator (VCO) were synthesized. Phase comparator (phase de-

tector) and programmable counter (frequency divider) were implemented in FPGA.

The results showed that motor speeds were not affected under fluctuating loads, see

[24].

As a first attempt of applying a new methodology to the important area of electric

motors, we also recognize that there are potentially other methods that can be used

in this application. We hope that this study will stimulate further studies in using

different methods and comparing pros and cons in their practical aspects. In its struc-

ture, a quantizer is a static nonlinearity. As a result, the entire system is a Wiener

system for which many algorithms were available [25, 26, 27, 28, 29]. Some traditional

system identification methods of Wiener systems employ continuously invertible seg-

ments of the nonlinear functions to jointly identify the linear dynamic subsystem and

the nonlinear static function. Quantized observations represent non-smooth and non-
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invertible nonlinear functions. Such methods may need certain smoothing functions

to accommodate such nonlinearity. For example, extended Kalman filters or standard

adaptive observer design methods such as deadbeat design, pole placement, H2/H∞

filtering [30, 31, 32, 33], etc., often rely on local linearization, and hence may need

some further extension.

Networked control systems have drawn increased attention recently [34, 35, 36]

with impact of communication channels on stability and achievable performance as

an important focus [37, 38, 39]. System identification and signal estimation under

quantized observations have been explored in [40, 41, 42, 43]. Sampling and quanti-

zation collectively determine data flow rates, which were shown to be a critical factor

in feedback stability and performance [35, 38]. These theoretical advancements, how-

ever, have never been applied and evaluated in motor control problems. One key

component in this study is signal averaging filters that are essential part for system

identification and signal estimation under quantized observations. Signal averaging

has been used in many aspects of stochastic analysis [44, 45, 46]. Background ma-

terials on stochastic processes and related topics can be found in [47, 48, 49] and

references therein.
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1.3 Original Contributions

In this thesis several methodologies in real time and wireless control of Permanent

Magnate Direct Current (PMDC) motors are introduced.

There are several original contributions in this research work.

1. Developing algorithms that can perform model estimation of PMDC motors

parameters under binary-valued or quantized output measurements. While this

methodology has been mathematically developed with some appealing conver-

gence properties, it has never been applied to system identification of electric

machines. Using binary or quantized sensors is challenging for system model-

ing, identification and control because they are nonlinear, discontinuous, and

provide very limited information. The quantized sensors used in this work are

more cost effective than other regular sensors.

2. Introducing threshold adaptation technique. Choosing thresholds is important

for fast convergence in our algorithm and to achieve good estimation results.

The main idea is that the best inverse sensitivity is achieved when accumulative

distribution function F(.) has the largest slope. For Gaussian distributions, it

is at 0 or when the probability value ζ = 0.5. Consequently, one may tune the

threshold towards ζ = 0.5.

In general, the threshold adaptation starts with a selection of the range [ζlow, ζhigh]

of ζ in which the inverse sensitivity of the distribution function F is acceptable.

When ζ is outside of this arrange, one adapts the threshold according to the
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relative ζ value: If ζ < ζlow, the threshold C is moved up so that ζ will in-

crease in the next data block. Similarly for ζ > ζhigh. It should be pointed out

that the threshold adaptation is to improve motor estimation accuracy when

the targeted motor speed changes. If the set point does not change, threshold

adaptation does not need to be implemented frequently.

3. Applying and developing optimal Quasi-Convex combination estimator (QCCE).

It is obvious that each threshold Ci can generate an estimate of ω. A suitable

combination of these estimates will lead to an asymptotically optimal estimator

for θ (the identification parameters of the system) by achieving the Cramer-Rao

lower bound. It should be noticed that combining thresholds and using optimal

Quasi-Convex combination estimator will improve the identification accuracy.

The results show the convergence of sample variance of the QCCE estimator to

the theoretical CR lower bound.

4. Hardware implementation: In this part the parameter estimation method is

evaluated experimentally. To implement the experimental platform, we utilize

the following equipments and measurement devices that are connected into a

testing platform.

• The Renesas DC Motor Control Demonstration Kit (YMCRPR8C25).

• The NI SCB-68 shielded I/O connector block for interfacing I/O signals

to plug-in data acquisition (DAQ) devices with 68-pin connectors.

• A desktop computer which has LabVIEW software installed (ver 2011).
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• A digital multimeter.

5. Proposing wireless communication methods in motor control systems. This

will add new dynamic subsystems into the feedback loop. Design variables for

the communication systems such as sampling schemes and quantization levels,

which are directly linked to their resource consumptions, interact with con-

trollers to jointly affect feedback stability and performance and investigate the

impact of communication strategies on motor feedback systems and derive some

important guidelines in designing remotely controlled electric motors.

Many automotive manufacturers are seeking wireless solutions for intra-vehicle

control systems. More importantly, in networked systems such as unmanned

aerial vehicles, mobile sensor teams, autonomous highway vehicle platoons,

wireless communication channels become an integral part of the feedback loop.

Introduction of communication channels mandates signal sampling, quantiza-

tion, and estimation, and consequently adds new dynamic subsystems into the

feedback loop.

6. Introducing remote control strategy that uses two communication channels.

The first channel is from the motor speed measurement to the remote con-

troller, and the second one is from the remote controller to the motor voltage

input for the feedback control signal. These two channels may have different

sampling periods and signal estimation schemes, leading to an asynchronous

framework which is more flexible than the commonly-employed synchronous
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sampling schemes. Our results will demonstrate that many components of de-

sign variables interact closely to determine feedback properties. These include

sampling interval, quantization levels, signal estimation data windows, motor

dynamics, controllers, and signal estimation algorithms.
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CHAPTER 2: BACKGROUND

This chapter introduces some background and theory of the fundamental ele-

ments and supporting technologies used in this study. PMDC motors are essen-

tial parts of electric and hybrid vehicle powertrains and their auxiliary subsystems

[50, 51, 52, 53]. In addition, PMDC motors have been extensively employed in diver-

sified industrial applications such as battery powered devices, X-ray and tomographic

systems [62, 65].

Due to variations in motor parameters, for efficient torque/speed control, thermal

management, motor condition monitoring, and fault diagnosis of PMDC motors, it is

essential that motor characteristics are captured in real-time operations.

2.1 PMDC Motors

2.1.1 Direct Current Motors

Electric machines are essential systems in electric vehicles and widely used in other

applications. DC machines appeared in the 1800’s when M. Faraday created a basic

disc-type machine. Nowadays, DC motors are used in control systems, because the

speed and torque can be easily controlled.

DC electric motor is a device which converts electrical energy into mechanical

energy, which can be driven by direct current DC. The physical DC motor diagram

consists of an armature which is the main part in DC motor that consists of coil made

of copper wire wound on a core of soft iron. This coil should be in a rectangular shape
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and insulated. A commutator which is used to reverse the direction of the armature

current is an insulated ring that made from copper. A ring is fixed on each end of

the coil. Both rings are connected with two small strips of carbon called brushes

which are connected to a DC power supply. They rotate along with coil between

the brushes . There are two main types of DC motors the brushed and brushless

DC motors, which use internal and external commutation respectively to reverse the

current in the windings in synchronism with rotation. The diagram of a physical DC

motor is shown in Figure 1 [79]. A PMDC motor is similar to an ordinary DC Shunt

motor except that the field of PMDC is provided by permanent magnets instead of

salient pole wound field structure.

How does a PMDC motor work? In PMDC motor, a fixed magnetic field gener-

ated by the permanent magnets interacts with the perpendicular field induced by the

currents in the rotor windings, thus creating a mechanical torque. As the rotor turns

in response to this torque, the angle between the stator and rotor fields is reduced,

so that the torque would be nullified within a rotation of 90 electrical degrees (an

electrical degree is a unit of measurement for expressing the amount of rotation in

electric machines). To sustain the torque acting on the rotor, permanent-magnet DC

motors incorporate a commutator, fixed to the rotor shaft. The commutator switches

the supply current to the stator so as to maintain a constant angle=90, between

two fields. Because the current is continually switched between windings as the ro-

tor turns, the current in each stator winding is actually alternating, at a frequency
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proportional to the number of motor magnetic poles and the speed.

�

Figure 1: Schematic Diagram of DC Motor

There are five types of brushed DC motors:

1. Shunt DC motor: The rotor and stator windings are connected in parallel.

2. Separately excited motor: The rotor and stator are each connected from a

different power supply, this gives another degree of freedom for controlling the

motor over the shunt.

3. Series motor: the stator and rotor windings are connected in series. Thus the

torque is proportional to the current so it gives the highest torque per current

ratio over all other DC motors. It is therefore used in starter motors of cars

and elevator motors.
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4. Compound motor: the stator is connected to the rotor through a compound of

shunt and series windings, if the shunt and series windings add up together, the

motor is called cumulatively compounded. If they subtract from each other,

then a differentially compounded motor results, which is unsuitable for any

application.

5. Permanent magnet (PMDC) motors: The stator is a permanent magnet, so the

motor is smaller in size. Figure 2 shows the types of brushed DC motor.

     

 

 

 

 

 

Brushed 

DC Motors 

Series Motor 

�

Permanent 

Magnet (PMDC) 

Compound�

������

Separately 

Excited Motor 

Shunt Motor 

�

Figure 2: Brushed DC Motor Types

The second type is a brushless DC motor which is driven by controlled AC signals

that use PWM or by direct DC supply. In brushless DC motors the commutator

is replaced by external electronic switch synchronized to the rotor’s position. Both

brushed and brushless DC motors will be referred to simply as DC motors since both

motor types can be represented by the same equations unless aspects of a specific

type of motor are to be discussed [66, 67, 55].
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2.1.2 Permanent Magnet Direct Current Motor (PMDC)

PMDC motors are dependent on permanent magnets to provide the magnetic field

to produce torque, because PMDC motors do not have a field winding on the stator

frame. This field is fixed, so it cannot be used for speed control. PMDC motors used

high energy magnets made with neodymium or other strategic elements to minimize

overall weight and size, most such are neodymium-iron-boron alloy .

PMDC motors have been extensively employed in industrial applications such as

battery powered devices like wheelchairs and power tools, guided vehicles, welding

equipment, X-ray and tomographic systems, CNC machines, etc. PMDC motors

are physically smaller in overall size and lighter for a given power rating than in-

duction motors. The unique features of PMDC motors, including their high torque

production at lower speed, flexibility in design, make them preferred choice in au-

tomotive transmissions, gear systems, lower-power traction utility, and other fields

[62, 54, 63, 64, 65].

For efficient torque/speed control, thermal management, motor condition monitor-

ing, and fault diagnosis of PMDC motors, it is essential that their characteristics are

captured in real-time operations. Although, PMDC motor models have been studied

extensively and simplified electric/mechanical model structures have been widely used

in system design and integration, during their operations component aging, drifting

of their characteristics, faults, and interaction with operational environment make

it highly desirable to estimate their model parameters in real time so that control
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strategies can be adapted and faults can be promptly diagnosed [7, 60].

2.2 Speed Sensors

Speed sensors are used in rotating systems to achieve the information for both po-

sitional and frequency. They are widely used in vehicles, aerospace and monitoring

machine applications. Using speed sensors the information of a time-varying voltage

can be used to measure the speed as in tachometers.

Types of Speed Sensors:

1. Variable Reluctance Speed VR Sensors:

It consists of four parts, a permanent magnet, a ferromagnetic pole piece, a

pickup coil, and a rotating toothed wheel. Using this sensor the position and

speed of moving metal components can be measured.

The principal of work is depending on the gear teeth of the rotating wheel

passing the face of the magnet, this will affect the amount of magnetic flux

that flows through the magnet which leads to a change in coil reluctance. The

flux is at a maximum when the gear tooth is closed to the sensor and the flux

drops off when it is far away. The rotating of the wheel causes a time-varying

flux, and then a proportional voltage in the coil is induced. After that a signal-

processing circuitry is used to amplify the voltage across the coil and convert

this to a speed according to mathematical relations.

An advantage of this sensor is the low cost coil of wire and magnets. In addition
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it can also be used in high-temperature applications, such as sensing the speed

of a turbine of a jet engine or an engine cam shaft and crankshaft position

control in an automobile. The disadvantage of this sensor is the complexity of

circuit design to measure very-low-speed signals.

2. Eddy Current Speed Sensors:

The relative motion of the field source and conductor results in electric currents

induced in conductors, this causes changes in magnetic field with time. A

circulating eddy current within the body of the conductor flows and thus induces

magnetic fields. The faster the field changes are proportional to those circulating

currents in the conductor.

3. RF Speed Sensors:

RF speed sensors can be used to sense non-ferrous metals and nonmagnetic

stainless steel like aluminum. It has large air gaps and sensing characteristics

different from VR speed sensor. This sensor is not a passive device and requires

coupling with a signal conditioners or preamplifier circuitry. The output of this

sensor is pulses to measure the speed of moving object.

4. Hall Effect Sensors:

A Hall Effect sensor is a transducer that varies its output voltage in response

to a magnetic field. The applications of the Hall Effect sensor are proximity

switching, positioning, speed detection, and current sensing. The disadvantages

of this type of sensors in order to get high accuracy and performance are that
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the Hall Effect sensors are more expensive. They also have limited maximum

sensing distance and maximum operating temperature compared to other types.

The functions of Hall effect sensor are shown in Figure 3.

Hall Effect sensors are widely used in measuring the speed of wheels and shafts,

such as for tachometers, anti-lock braking, and internal combustion engine ig-

nition timing systems. The Hall sensors can be also used in brushless DC

electric motors to detect the position of the permanent magnet. Hall sensors

are connected electronic signal conditioning circuit to get digital output. The

Hall element is basically a small sheet of semiconductor material, if the biased

Hall element is placed in a magnetic field, the output voltage is proportionally

changed with respect to the strength of the magnetic field. The Hall Effect was

discovered in 1879 by E. F. Hall.

A Hall Effect sensor is a binary-valued position sensor, whose output indicates

only when the rotor magnet strips pass the position of the sensor installation.

Each magnet strip defines a binary threshold on the rotor position [75, 76, 77,

78, 80, 81, 82].

2.3 System Identification and Parameter Estimation

In (Zadeh1962) the identification is determined on the basis of input and output,

of a system within a class of systems, to which the system under test is equivalent.

Parameter estimation is the experimental determination of values of the parameters



20

� ������������������������������������������

������������������������������������������������������������

���������������������

�����������������������������������	�
��������������������

 

�������������������
� ��

����� ��������������������������������	


� ��� ������������������������������������

� �

����������������������������������������������������������������������������

���
���������	
�

�

�����������	
� �

Figure 3: Functions of a Hall Effect Sensor

that govern the dynamic and/or non-linear behavior, assuming that the structure of

the model is known.

Mathematical model is preferred in system identification. A mathematical model

gives a description of the dynamic behavior of a system or process in either the time or

frequency domain. Mathematical models have the ability to provide the foundation of

most methods of engineering problems and design. In dynamic systems it is important

to have the mathematical models for system identification and parameter estimation.

These models can be formed using linear or nonlinear differential equations. The

system identification is the most common approach which starts from measurements

of the behavior of the system and the external influences (inputs to the system) and

try to determine a mathematical relation between them without going into the details

of what is actually happening inside the system. In this approach, the input is known

and the output can be measured, so the unknown blackbox system can be identified

from input and output. Two types of models are common in the field of system
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identification:

Grey box Model: A certain model based on both insight into the system and

experimental data is constructed. This model does however still have a number of

unknown free parameters which can be estimated using system identification. Grey

box modeling is also known as semi-physical modeling. Point out that the search for

a good fit to experimental data tends to lead to an increasingly complex model.

Blackbox Model: In this model, there is no any prior model available for this type.

Knowing that, most system identification algorithms are of this type.

In parameter estimation the input is known, the output can be measured, and the

model is identified, so from the output and predicted output that achieved from the

model we can estimate the parameters of the unknown blackbox system. After that

model validation can be achieved by comparing the actual output with the estimated

output [56, 57, 58, 59]. Figure 4 below shows the system identification and parameter

estimation process.
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Figure 4: System Identification and Parameter Estimation
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2.4 System Identification with Quantized Observations

The quantization measurements are inherent in the digital systems. This is simply

because the data is received from a communication channel or using analog to digital

converter. This idea can be expanded in the control systems networking process

when the input and output signals are transmitted/received through a communication

channel.

Equal-length intervals of the output range are the mostly common used in quanti-

zation. In this dissertation, a finite collection of subsets were used. The subsets may

have equal or unequal lengths. In our study case, the subsets is fixed due to sensor

limitations.

For the purpose of system identification the use of quantized measurements of

inputs and outputs in the control systems is very important. It is proved that the

identification error is reduced and the accuracy of the system increased using quan-

tization data. It can be assumed, that the quantizer, in many situations is fixed and

known, however this is not always the case. In automatic control, the quantizer may

not be known, because it is adaptive.

Signal quantization and data compression are a typical analog to digital conver-

sion process that has been studied extensively in the signal processing and computer

science community. Studies of impact of quantization errors can be conducted in

a worst-case or probabilistic framework, depending on how quantization errors are

modeled.
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Quantized sensors are used in dynamic systems since they are more cost effec-

tive than other regular sensors. They are preferable in real time applications. The

quantizer is a fundamental block in the systems that used communication channels

to transfer the data. Because quantization sensors have limited information this

contains only a finite number of possible values, therefore, it is necessary to de-

velop new methodologies and algorithms to achieve convergence of estimate methods

[7, 8, 9, 83, 84].

Industry-grade sensors are quite expensive. It is important for cost reduction to

use cheap sensors. For instance, to reduce packaging costs and enhance reliability, the

number of magnet strips on the rotor needs to be reduced. The emerging field is using

PMDC motors in remote controlled mode through communications, such as remote

operated unmanned ground and aerial vehicles, mobile sensors, implanted medical

devices. This has ushered in a new paradigm in which the system outputs must be

communicated through a wireless network. In such applications, data flow rates are

directly related to power consumption and bandwidth demands. Using measurement

data of low length can dramatically reduce the consumption of communication re-

sources. The main question is: Can one still achieve similar capability of real-time

model estimation and control quality under the reduced complexity on the sensor

system? This is a typical parameter estimation and signal recovery under quantized

sensors.

Using binary or quantized sensors is challenging for system modeling, identifica-

tion and control since they are nonlinear, discontinuous, and provide very limited
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information. Typical nonlinear filtering techniques require smooth nonlinear func-

tions or are of infinite dimensional (such as Wonham filters) [68, 69, 70]. The use

of quantized sensors on modeling, identification, control, and diagnosis for electric

machines is unique. This will have an impact on applications of electric machines in

medical applications, vehicles with cheap sensors, and remote control with wireless

communications.
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2.5 Signal Estimation

In typical applications of control systems with communication channels, an output

signal y(t) is sampled to generate a sampled sequence yk = y(kT ), quantized to

produce quantized sequence sk = S(yk + dk), where dk is the measurement noise.

Signal estimation aims to recover yk from sk.

To understand the fundamental aspect of this process, we consider the basic prob-

lem of binary-valued sensors of a threshold γk, which may be a constant γ or adapted

for improved performance. In this case, the sensor output is sk = 1, if yk + dk ≤ γk,

and sk = 0, if yk + dk > γk.

The basic ideas are derived from system identification with binary-valued sensors

[68, 93]. However, modifications must be made due to two fundamental differences

here: (1) Signals are time varying; (2) Estimation cannot use progressively long-time

windows for convergence. In this thesis, technical results on output estimation require

some conditions on y(t) so that yk is slowly time varying.

2.5.1 Weighted Empirical Measures

For the same case yk = θ and γk = γ, empirical measures was modified by the

following truncated and exponentially weighted empirical measure. For a selected

0 < α < 1, define

ζ0k = (1− α)
∞∑
l=0

αlsk−l (2.1)
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where the weight is normalized to (1− α)
∑∞

l=0 α
l = 1, and

ζk =


ζ0k , if z ≤ ζ0k ≤ 1− z;

z, if ζ0k < z;

1− z, if ζ0k > 1− z.

, ŷk = γ − F−1(ζk). (2.2)

Remark 1 For practical applications, sequences start at certain starting time k0. In

that case (2.1) is modified to

ζ0k =
1− α

1− αk−k0

k−k0−1∑
l=0

αlsk−l

to ensure that ζ0k is unbiased, Eζ0k = p. To capture the “persistent” aspect of the

signal estimation problem, we are considering the case when k−k0 is large, eliminating

the transient. This is achieved by letting k0 → −∞, leading to (2.1).

Theorem 1

lim
α→1

1 + α

1− α
E(ζk − Eζk)

2 = F (γ − θ)(1− F (γ − θ)) (2.3)

lim
α→1

1 + α

1− α
E(ŷk − θ)2 =

F (γ − θ)(1− F (γ − θ))

f2(γ − θ)
. (2.4)

Remark 2 Since 1+α → 2 as α → 1, the claims of the theorem may also be written

as

lim
α→1

E(ζk − Eζk)
2

1− α
=

F (γ − θ)(1− F (γ − θ))

2
.

and

lim
α→1

E(ŷk − θ)2

1− α
=

F (γ − θ)(1− F (γ − θ))

2f 2(γ − θ)
.
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Proof: By the choice of z, z < p < 1 − z. Since Esk−l = p = F (γ − θ), we have

Eζ0k = p and E(ζ0k − p)2 = 1−α
1+α

p(1− p). By the definition of ζk,

E(ζk − ζ0k)
2 =

∫ z

0

(x− z)2f0(x)dx+

∫ 1

1−z

(x− z)2f0(x)dx

where f0(x) is the density function of ζ0k . The first term is bounded by∫ z

0

(x− z)2f0(x)dx =

∫ z

0

(x− p+ p− z)2f0(x)dx

≤ 1− α

1 + α
p(1− p) + (p− z)2P{ζ0k ≤ z}

≤ 1− α

1 + α
p(1− p) +

1− α

1 + α
p(1− p)

by the Chebyshev inequality. Similar inequality can be derived for the second term.

As a result, we have

lim
α→1

E(ζk − ζ0k)
2 = 0. (2.5)

Hence, we can concentrate on ζ0k in the following proof.

(1)

E(ζ0k − Eζ0k)
2 = (1− α)2

∞∑
l=0

α2lE(sk−l − Esk−l)
2

= (1− α)2
∞∑
l=0

α2lpk−l(1− pk−l)

= F (γ − θ)(1− F (γ − θ))
1− α

(1 + α)
,

where we have used pk = P{sk = 1} = F (γ − θ).

(2) Since p = Esj = F (γ − θ), we have θ = γ − F−1(p) and ŷk − θ = F−1(ζk) −

F−1(p). Furthermore, Eζ0k = (1 − α)
∑∞

l=0 α
lEsk−l = p. Since (1 − α)

∑∞
l=0 α

l = 1,

by Assumption 1,

E(ζ0k − p)2 = (1− α)2
∞∑
l=0

∞∑
m=0

αl+mE(sk−l − p)(sk−m − p)

=
1− α

1 + α
p(1− p) =

1− α

1 + α
(F (γ − θ)(1− F (γ − θ)).
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Now, by a Taylor expression, there is a p∗k such that

ŷk − θ = F−1(ζk)− F−1(p)

= (F−1(p))′(ζk − p) +
1

2
(F−1(p∗k))

′′(ζk − p)2,

where by (F−1(p))′ =
1

f(γ − θ)
. Consequently,

1 + α

1− α
|E(ŷk − θ)2 − 1

f 2(γ − θ)
E(ζ0k − p)2|

≤ 1 + α

1− α
(κ1|E(ζ0k − p)3|+ κ2E(ζk − p)4)

(2.6)

for some constants κ1 and κ2. As higher order terms, we have

1 + α

1− α
(κ1|E(ζ0k − p)3|+ κ2E(ζk − p)4) → 0, α → 1.

Therefore,

lim
α→1

1 + α

1− α
E(ŷk − θ)2 = lim

α→1

1 + α

1− α

1

f2(γ − θ)
E(ζ0k − p)2 =

F (γ − θ)(1− F (γ − θ))

f2(γ − θ)
.

�

2.5.2 Algorithms and Convergence

Let

v∗ = argmin σ2
CR(v) = argmin

F (v)(1− F (v))

f2(v)
. (2.7)

Since F and f are known, v∗ can be calculated off-line and is a constant. The

optimal threshold is related to v∗ by γ∗
k = v∗+ yk. Consequently, when γk is adapted,

the output estimation may be obtained as ŷk = γk − v∗. Define µ = F (v∗).

Exponential averaging filters may be written recursively as

ŷk = ŷk−1 + (1− α)(xk − ŷk−1) (2.8)
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which is a stochastic approximation algorithm with a constant step size β = 1− α.

Weighted Empirical Measure Averaging with Threshold Adaptation

Consider the following algorithm

sk =


1, yk + dk ≤ γk

0, yk + dk > γk

ξk+1 = ξk + β(sk+1 − ξk)

γk+1 = γk + β(µ− ξk)

ŷk = γk − v∗.

(2.9)
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2.6 Control Theory

Linear Time Invariant (LTI) systems combine between two properties:linearity and

time invariant system.

Linearity: a Linear system is the system that has a linear relationship between

the input and the output :

If input u1 produces output y1 and input u2 produces output y2then,

c1u1 + c2u2 produces the output c1y1 + c2y2 where c1 and c2 are constants.

Time invariant system: the system is time invariant if the output does not depend

on the time, in other words if we apply an input to the system now or after τ seconds

from now, the output will be identical except for a time delay of the τ seconds.

That is, if the output due to input u(t)is y(t), then the output due to input u(t−τ)

is y(t − τ). Thus any system modeled as a linear homogeneous differential equation

with constant coefficients is an LTI system.

Analyzing LTI systems are considered easy, compared to the time-varying and

nonlinear systems.

Causality: A system is causal if the output depends only on present and past

input, but not future. A necessary and sufficient condition for causality is

δ(t) = 0 for all t < 0, where δ(t) is the impulse response.

Stability: A system is stable if for bounded-input the output is bounded, (i.e. for

every bounded input, the output is finite).

∥ u(t) ∥∞< ∞ then the output is
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∥ y(t) ∥∞< ∞

Discrete Time Systems:

The discrete time system has the following characterestics:

• Discrete-time models describe relationships between sampled variables u(kTs), y(kTs), k =

0, 1, ...

• During the sampling interval [kTs, (k + 1)Ts), the value u(kTs)is kept constant,

where Ts is the sampling rate.

• A discrete-time signal can either represent the sampling of a continuous-time

signal, or be an intrinsically discrete signal.

• Discrete-time signals are at the basis of digital controllers.

The types of control:

1. Feedback closed loop control: The output of the system y(t) is fed back through

a sensor measurement F to the reference value r(t). The controller then takes

the error (difference) between the reference and the output to change the inputs

u to the system under control plant.

2. Open loop control: The controller doesn’t know the output of the system.
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The advantages and disadvantages of the two types of control systems.

Open Loop Systems:

Advantages:

• Simplicity and stability: they are simpler in their layout and hence are econom-

ical and stable due to their simplicity.

• Construction: Since these are having a simple layout so are easier to construct.

Disadvantages:

• Accuracy and Reliability: since these systems do not have a feedback mecha-

nism, so they are very inaccurate in terms of result output and hence they are

unreliable too.

• Due to the absence of a feedback mechanism, they are unable to remove the

disturbances occurring from external sources.

Closed Loop Systems:

Advantages:

• Accuracy: They are more accurate than open loop system due to their complex

construction. They are equally accurate and are not disturbed in the presence

of non-linearities.
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• Noise reduction ability: Since they are composed of a feedback mechanism, so

they clear out the errors between input and output signals, and hence remain

unaffected to the external noise sources.

Disadvantages:

• Construction: They are relatively more complex in construction and hence it

adds up to the cost making it costlier than open loop system.

• Since it consists of feedback loop, it may create oscillatory response of the

system and it also reduces the overall gain of the system.

• Stability: It is less stable than open loop system but this disadvantage can be

stroked off since we can make the sensitivity of the system very small so as to

make the system as stable as possible.

Transfer Function: A transfer function is used to describe the input and output

relation of a system and hence serves as a model of the system. Such a transfer

function model is most suitable for linear time-invariant systems with a single input

and a single output. If the system to be controlled is nonlinear, or time-varying, or

has multiple inputs or outputs, then it will be difficult, if not impossible, to model it

by a transfer function.

The state variables of a system are defined as a minimum set of variables such that

the knowledge of these variables at any time t0, plus the information on the input

subsequently applied, is sufficient to determine the state variables of the system at
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any time t > t0. If a system has n state variables, we say that the order of the system

is n.

Hence the state space representation of LTI system can be written as

ẋ = Ax+Bu

y = Cx+Du

where A,B,C,D are matrices of appropriate dimensions. Since A,B,C,D are con-

stants.

2.6.1 Digital PID Controller

In real systems, controllers are nowadays almost exclusively implemented digi-

tally. Digital controllers are far more convenient to implement on microprocessors

than are continuous-time controllers. Discrete-time controllers, are easily imple-

mented using difference equations, i.e. simple computer software.

The PID controller becomes the most widely known and used one. There are

many different types and design methods for the PID controller. Since many control

systems using PID controller have proven satisfactory, it still has a wide range of

applications in industrial control. PID controller popularity comes from its simplicity

and its ability to be used in a wide variety of processes. PID controller has been an

active research topic for many years.

The term PID stands for Proportional, Integral and Derivative. Each one of these

letters (P, I, D) is term in a control algorithm, and each has a special purpose. It

is possible to a PI controller, PD controller or P controller. It has been found from
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the experimental point of view that the structure of the PID controller has sufficient

flexibility to yield excellent results in many dynamic applications. Figure 5 shows the

PID controller block diagram.

Input to PID e(t)  

Error Signal 

 

 

 

Output of PID  

        

KP 

KI 

KD 

Integrator 

Differentiator 

Summer 

Figure 5: PID Controller Block Diagram

From the Figure 5, it can be clearly seen that in a PID controller, the error signal

e(t) is used to generate the proportional, integral, and derivative actions, with the

resulting signals weighted and summed to form the control signal u(t) applied to the

plant model.

A proportional controller KP will have the effect of reducing the rise time and

will reduce but never eliminate the steady-state error. An integral control KI will

have the effect of eliminating the steady state-error, but it may make the transient

response worse. A derivative control KD will have the effect of increasing the stability

of the system, reducing the overshoot, and improving the transient response.
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When designing a controller, the designer must define the specifications that need

to be achieved by the controller. Normally, the maximum overshoot (Mp) of the

system step response should be small. Commonly, a range between 2 percent and 10

percent is acceptable. Also the settling time ts, is an important factor. The objective

here is to design a PID controller so that the closed-loop [71, 72].

The relation between the Laplace transform variable s and the Z-transform vari-

able z is z = esT , with sampling period T. We use a bilinear transformation (BLT)

method from s-domain to z-domain, and then we have the following:

esT ≈ (1 + sT/2)/(1− sT/2), Therefore define the BLT by

z = (1 + sT/2)/(1− sT/2) and its inverse is s = 2/T (Z − 1)/(Z + 1)

To convert a continuous transfer function G(s) to a discrete transfer function G(z)

with sampling period T ,then simply replaces all occurrences of s by

2/T (Z − 1)/(Z + 1).

The continuous-time PID controller can be written in the form C(s) = Kc[1 +

1/(τIs) + τDs]

Where τI is the integration time constant or ’reset time’, τD is the derivative time

constant,

To convert this to digital form using the BLT, write

C(z) = Kc[1 + 1/(τI(2/T (z − 1)/(z + 1))) + τD(2/T (z − 1)/(z + 1))]

= Kc[1 + (T (Z + 1))/(τID(z − 1)) + τDD/T ((z − 1)/(z + 1))]

where the digital integral and derivative time constants are

τID = 2τI , τDD = 2τD
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More practical approach is to specify the closed loop transfer function so the

realistic settling time is achieved.

If we have a scond order system represented as

plant: is

G(s) = K/((τ1S + 1)(τ2S + 1)), then the controller will be:

C(s) = (τ1 + τ2)/(Kτc)[1 + 1/(τ1 + τ2)s+ (τ1τ2)/(τ1 + τ2)s]

Comparing with

C(s) = Kc[1 + 1/(τIs) + τDS]

Where Kc = (τ1 + τ2)/(Kτc), τI = (τ1 + τ2), τD = (τ1τ2)/(τ1 + τ2)

To convert this to digital form using the BLT, then

C(z) = Kc[1 + (T (Z + 1))/(τID(z − 1)) + τDD/T ((z − 1)/(z + 1))]

2.6.2 Response Performance of Output Signal

There are four different types of input signals that can be used to measure the

out performance response of the system:

• Impulse signal: In the time domain, u(t) = cδ(t). In the s domain, U(s) = c.

• Step signal: In the time domain, u(t) = c. In the s domain, U(s) = c
s
.

• Ramp signal: In the time domain, u(t) = ct. In the s domain, U(s) = c
s2
.

• Sinusoidal signal: In the time domain, u(t) = csin(2πft). In the s domain,

U(s) = 2πftc
s2+(2πft)2

.
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where c is a constant in all the above.

In order to analyze system characteristics we can employ one of the input signals.

If the inputs to a control system are gradually changing signals of time, then a ramp

signal of time may be a good test signal. Similarly, if a system is subjected to sudden

disturbances, a step signal of time may be a good test signal, and for a system

subjected to a shock input, an impulse signal may be best. The time response of a

control system consists of two parts:

1. Transient Response :The transient response is defined as the part of the time

response which goes from the initial state to the final state and reduces to zero

as time becomes very large.

2. Steady State Response. The steady-state response is defined as the behavior of

the system as t approaches infinity after the transients have died out.

Thus the system response y(t) may be written as: y(t) = ytran(t) + yss(t) where

ytran(t) denotes the transient response, and yss(t) denotes the steady-state response.

Some basic definitions for step response performance measure:

• Maximum overshoot: The maximum amount by which the system output re-

sponse proceeds beyond the desired response. Let ymax denotes the maximum

value of y(t), and yss = y(∞) the steady-state value of y(t), then the maximum

overshoot of y(t) is defined as: MP = ymax − yss The maximum overshoot is

often represented by a percentage of the final value of the step response.
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• Peak time, tmax: The time required for the response to reach the first peak of

the overshoot.

• Rise time, tr: The time required for the step response to rise from 10 to 90

percent of its final value.

• Settling time,ts: The time required for the step response to settle within a

certain percentage (2 or 5 percent) of its final value.

Figure 6 shows the step performance and how to measure the rising, settling, peak

times and overshoot [71, 72].

Figure 6: Step Response with Performance Measure Times

The transient behavior of a second-order system can be described by:

• The swiftness of the response, as represented by tr and tmax
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• The closeness of the response to the desired response, as represented by MP

and ts.
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CHAPTER 3: MODELS OF PMDC MOTORS

In this chapter I will derive and explain in details the models of PMDC motors.

Three types of models will be introduced. First, the continuous- time models, secondly

I will derived the discretized model , and finally a regression model will be discussed.

3.1 Continuous-Time PMDC Models

Typical models for DC motors contain one differential equation for the electric part,

one differential equation for the mechanical part, and their interconnections. The

state space model structure and derivations are quite standard. We summarize them

below for self containment.

The equations for the motor rotor and shaft motion and stator wiring are

dw(t)

dt
=

−µ

J
ω(t) +

km
J

ia(t)−
1

J
TL(t),

dia(t)

dt
=

−kb
La

ω(t)− Ra

La

ia(t) +
1

La

U(t),

which can be expressed in a state space model as

ẋ(t) = A0x(t) +B0u(t)

y(t) = C0x(t)

where the state variables are x(t) = [ω(t), ia(t)]
′, the inputs u(t) = [TL(t), U(t)]′ and

A0 =

 −µ/J km/J

−kb/La −Ra/La

, B0 =

 −1/J 0

0 1/La

, C0 =

 1 0

0 1

.
where,

ω(t) is the shaft speed (rad/sec),
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ia(t) the motor current (A),

U(t) the supply voltage (V),

TL(t) the load torque (N.m),

J the moment of inertia for the motor (Kg.m2),

µ the friction coefficient (N.m.s),

km the motor constant (N.m/A),

kb the back emf constant (V/rad/s),

La the armature inductance (H),

and Ra the armature resistance (Ohm).

The transfer matrix of the system can be derived as

G(s) =
1

(s+ µ
J
)(s+ Ra

La
) + kmkb

LaJ

 − s+Ra
La

J
km
LaJ

kb
LaJ

s+µ
J

La

 .

From the above expressions, we obtain the shaft rotational speed and armature cur-

rent as functions of the input voltage and load disturbance

Ω(s) =
−(Las+Ra)TL(s) + kmU(s)

(Js+ µ)(Las+Ra) + kmkb
,

Ia(s) =
(Js+ µ)U(s) + kbTL(s)

(Js+ µ)(Las+Ra) + kmkb
.

In particular, the transfer function from the input voltage U(s) to the angular speed
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Ω(s) is

G1(s) =
km/LaJ

s2 +

(
Ra

La
+ µ

J

)
s+ Raµ+kmkb

LaJ

.

Denote r = Ra

La
+ µ

J
, d = Raµ+kmkb

LaJ
, g = km

LaJ
.

It follows that

G1(s) =
g

s2+rs+d
= g

(s−s1)(s−s2)

where s1 = (−r +
√
r2 − 4d)/2, s2 = (−r −

√
r2 − 4d)/2 are the poles of G1(s).

3.2 Discretization of PMDC Models

For system identification, it is convenient to use a discretized model in a regression

structure. Suppose that the sampling interval is T (second). Denote the sampled

signals

ωk = ω(kT ), uk = U(kT ), k = 0, 1, . . .

Using the partial fraction expansion and zero-order hold function, the corresponding

discrete-time transfer function of the sampled system can be derived via the standard

z-transform as Ω̃(z)

Ũ(z)
=

(
G1(s)

(
1−e−Ts

)
s

)
:= G̃1(z) Here, Ω̃(z) and Ũ(z) are the z-

transforms of the speed and voltage sampled sequences, respectively.

Under a step input with amplitudeM , the angular speed is Ω̃(z) = G̃1(z)

(
M

1−z−1

)
.

This implies that

ωk = M(c1 + c2e
s1kT + c3e

s2kT ), (3.10)

where c1 =
p

s1s2
, c2 =

p
(s1(s1−s2))

, c3 =
p

(s2(s2−s1))
. Accuracy of the discretized models is

demonstrated in the following case study.
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Example 1 Suppose that the above system is simulated over the time interval [0, 2]

second with the sampling period T = 0.01 sec. The input voltage is a step function

with amplitude M = 240 V. The motor specification values as supplied by the manu-

facturer are as follows: La = 0.0104 H, Ra = 1.43 ohm, J = 0.068 Kg.m2, µ = 0.0415

N.m.s, km = kb = 1.8 N.m/A or V/rad/s. Figure 7 shows the open-loop speed

trajectories of the PMDC motor in continuous and discrete forms. The discretized

models are sufficiently accurate for system identification and control.
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Figure 7: Continuous-time and discrete-time speed of the PMDC motor
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3.3 Regression Models

For system identification experiments, it is desirable to transform a model into a

regression form. The general form for the speed can be written in an autoregressive

moving average with input (ARMA or ARMAX)1 model [7, 61, 60] as

ωk =
n∑

j=1

ajωk−j +
n∑

i=0

biuk−i,

where n is the model order. In our case, the PMDC motor is assumed to have the

following ARMA model (n = 2) structure

ωk = [ωk−1, ωk−2, uk−1, uk−2]



a1

a2

b1

b2


(3.11)

where ωk is the speed of PMDC motor (rad/sec) and uk the input voltage of PMDC

motor (V). It is a standard but tedious process to verify that the parameters are

related to the original system parameters and the sampling interval by

a1 = −(es1T + es2T ),

a2 = e(s1+s2)T ,

b1 = −(c1 + c2)e
s2T + c2 + c3 + (c1 + c3)e

s1T ,

b2 = c2e
s2T + c1e

(s1+s2)T + c3e
s1T .

1To simplify notation, we will use ARMA to represent both ARMA and ARMAX models in this

dissertation.
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Now we can write the noise-free speed in an operator form as

ωk = G̃(q)uk =
b1q + b2q

2

1− (a1q + a2q2)
uk, k = 0, 1, 2, . . .

where q is the one-step shift operator quk = uk−1, or in the regression form

ωk = ϕT
k θ, k = 0, 1, 2, . . .

where ϕT
k = [ωk−1, ωk−2, uk−1, uk−2], θ = [a1, a2, b1, b2]. The parameter vector θ is to

be identified. When a random noise or dither dk is added to the output ωk, we have

yk = ωk + dk.

Remark 3 We use an ARMA model structure for system identification. For con-

venience of algorithm implementation, ARMA models have a few advantages: (1)

Practical linearized systems have rational transfer functions. If they are represented

by FIR (finite impulse response) models, finite truncation must be used, leading to

unmodeled dynamics. To reduce truncation errors, the order of the FIR model must

be relatively high. ARMA models do not introduce such errors and retain the same

order as the original continuous-time system after sampling. (2) State space model

realizations of a system are not unique and in general contain more parameters than

their transfer functions. For this reason, most identification algorithms are based on

input/output models. It is also noted that, the ARMA model structures are the basis

for Box-Jenkins polynomial models in statistical time series analysis. Also, we are

using the output error model (instead of equation error models) in representing the

additive noises/dithers. This is used on the basis of the PM motor data measurement

schemes.
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CHAPTER 4: PARAMETER ESTIMATION OF

PMDCMOTORS USING QUANTIZED SENSORS

Although motor dynamics involve nonlinearity due to distortion in magnetic

fields, it is a standard practice that locally linearized models around operating points

are used. In this case, the model parameters will change under different operating

conditions. Operational environments such as temperature, humidity, wiring insula-

tion, motor aging, etc., will result in further parameter deviations. This dissertation

employs identification methods to capture such changes in real time. Consequently,

linearized models with unknown parameters are suitable in this pursuit. In this study,

we employ the typical linear state space models of PMDC motors [62, 65, 50]. The

relationship between the input voltage and output speed of the motor can be derived

and represented by a higher-order differential equation. Under a selected sampling in-

terval, the system can be discretized to a regression model structure, which is suitable

for system identification experiments. Depending on applications, position or speed

control problems are typical. This dissertation is focused on speed control problems.

The motor rotational speed is measured by either a binary sensor or quantized

observations. One key idea to make a binary sensor to provide as much information

as a regular sensor is to add a small periodic dither to the voltage input. Due to

inherent motor inertia, this small dither will not affect motor operations. However,

this will greatly enhance the system identification capability. Under this dithered

input, model parameters in a regression model structure can be individually identified,
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substantially reducing algorithm complexity. Identification algorithms are developed

and their convergence properties are established. It can be shown that by choosing the

periodic dither properly, the regression matrix will become full rank. Consequently

the input becomes ”persistently exciting” for quantized identification, namely the

input will be rich enough so that the model parameters can be identified from input

and quantized output observations. The theoretical foundation of this technology

was developed in [68, 69, 70]. This dissertation applies it into algorithms for PMDC

motors and demonstrated its utility and capability in this important application area.

In this chapter, I will introduce the methodology of my work. Then, I will explain

the binary identification method using single threshold. Finally, I will propose the

quantization speed identification method using multi-thresholds.

4.1 Problem Formulation on Quantized Identification of PMDC

Motor Parameters

If the output of the system is measured by a quantized sensor with m thresholds

−∞ < C1 < · · · < Cm < ∞, the sensor output can be represented by a set of m indi-

cator functions sk = [sk(1), . . . , sk(m)]T , where sk(i) = I{−∞<yk<Ci}, i = {1, . . . ,m}.

Here, for a generic set Q of real numbers, the indicator function is defined as

I{yk∈Q} =


1, if yk ∈ Q

0, otherwise

This leads to a system configuration shown in Figure 8.
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Figure 8: Quantized system identification configuration

We should point out that the “sensor” may be a physical sensor such as a Hall-

effect sensor or it may represent a quantization/coding scheme if the output must be

transmitted through a communication network.

In such a setting, the sensor may be viewed as m binary-valued sensors with in-

creasing thresholds. Also, in their indicator function representation, if sk(i) = 1,

then sk(j) = 1 for j ≥ i. An alternative representation of the sensor is by s̃k(i) =

ICi−1<yk≤Ci
with Co = −∞, and Cm+1 = ∞ with the interval (Cm,∞). This repre-

sentation employs distinct switching intervals. Consequently, only one s̃k(i) = 1 at

any k.

Assumption 1 Suppose that {dk} is a sequence of i.i.d. (independent and identically

distributed) random variables. The accumulative distribution function F (·) of d1 is

a twice continuously differentiable function. The moment generating function of d1

exists. The inverse of the function F (·) exists and is F−1(·).
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4.2 Binary Identification of PMDC Motors

First, we consider the special case of binary sensors. The algorithms described in

this section will then be generalized to quantized identification algorithms in the next

section.

4.2.1 Observation Structures

Suppose that the output of the system is measured by a binary sensor with threshold

C. The output of the sensor will be either 0 or 1 according to the following relation

by an indicator function

sk = I{yk≤C} =


1, yk ≤ C

0, yk > C

.

Since the sensor output provides only the information whether the system output

is above or below C, it contains very little information for the signal itself and is

insufficient for system identification. However, if the system output is either corrupted

by noise or is added with a stochastic dither, the statistical analysis can lead to much

richer information on the system. Mathematically, by using the noise distribution

information and the laws of large numbers in statistics, more accurate information of

the system output can be asymptotically obtained from the {0, 1} sequences of the

sensor output.

In this framework, suppose that the output of the system has an additive noise/dither
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dk and the sensor output becomes

sk = S(ωk + dk) =


1, ωk + dk ≤ C

0, ωk + dk > C

.

4.2.2 Identification Algorithms

The identification algorithms of this dissertation utilize periodic input signals, which

are designed to simplify identification problems, provide persistent excitation, and

make it possible to use the laws of large numbers directly in achieving parameter

convergence. In this framework, the parameter vector θ of the transfer function G(q)

is to be estimated by using a binary sensor. The main algorithm is described below.

Select uk to be a 4-periodic signal which is full rank, see [70] for detailed definitions

and discussions of full rankness. Then the noise-free system output ωk = G(q)uk is

also 4-periodic, after a short transient duration since the system is exponentially

stable. Denote the first 4 values of the 4-periodic output sequence by ω1, ω2, ω3,

ω4. Then other values of ωk are ω1+4l = ω1, ω2+4l = ω2, ω3+4l = ω3, ω4+4l = ω4, for

l = 1, 2, . . .. Let vk(j) = ωj + dk be the noise-corrupted output, j = 1, 2, 3, 4.

We takeN samples on the sensor output. For convenience of notation, assume that

N is a multiple of the size of θ, which is 4. Hence, let the observation length N = 4L

for some positive integer L. It follows that sj+4l = S(ωj + dj+4l), l = 0, 1, . . . , L − 1.

The basic idea is that we first obtain estimates ω̂1, ω̂2, ω̂3, ω̂4. Then the system

parameter vector θ can be estimated from the model structure ωk = G(q)uk.

Generically, suppose that ωj, j = 1, 2, 3, 4, is an unknown speed. Then for any l,
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the probability of the event {sj+4l = 1} is

pj = P{−∞ < vj+4l ≤ C} = F (C − ωj). (4.12)

Our approach is based on the fact that the probability pj can provide more information

about the unknown speed ωj since the accumulative distribution function F (·) is

known and invertible. This implies that

ωj = C − F−1(pj). (4.13)

In other words, if one can estimate pj, then (4.13) can be used to estimate ωj. This

leads to the following estimation algorithm.

Estimation Algorithms:

• Step 1: Estimation of pj in (4.12).

Take N measurements on sk. Then for j = 1, 2, 3, 4,

ζjL =
1

L

L−1∑
l=0

sj+4l

is the sample relative frequency of vj+4l taking values in (−∞, C).

• Step 2: Estimation of ωj, j = 1, 2, 3, 4.

An estimate ω̂j of ωj can be derived from

ω̂j = C − F−1(ζjL).

• Step 3: Construction of Periodic Estimates.
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From the one-period estimated values ω̂j, j = 1, . . . , 4, a 4-periodic extension

can be constructed by ω̂j+4l = ω̂j for l = 0, 1, . . . , L − 1. Then, for a given

j ∈ {1, . . . , 4}, the true output speed is related to the estimates by ωj+4l =

ω̂j+4l + εj+4l, l = 0, 1, . . . , L− 1, where εj+4l is the estimation error.

• Step 4: To estimate the parameter θ, we use ω̂k in place of ωk, ω̂k = ϕ̂T
k θ + εk,

where

ϕ̂T
k = [ω̂k−1, ω̂k−2, uk−1, uk−2].

Denote

Ω̂ =


ω̂3

...

ω̂L−1

 , Φ̂ =


ϕ̂T
3

...

ϕ̂T
L−1

 , E =


ε3

...

εL−1

 .

Then, we have

Ω̂ = Φ̂θ + E. (4.14)

• Step 6: Since the regression matrix Φ̂ is full rank, one derives an estimate θ

from θ̂L = (Φ̂T Φ̂)−1Φ̂T Ω̂.

4.2.3 Convergence Analysis

The theoretical foundation of the above algorithm follows [68, 69, 70], especially

Theorem 3 in [69], with a specification on the model order n = 2 and data length L.

Theorem 2 Suppose that G(q) = D(q)
B(q)

, D(q) and B(q) are coprime polynomials, i.e.,

they do not have common roots. If {uk} is 2n-periodic and full rank, then θ̂L → θ,

w.p.1, as L → ∞.
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Proof: Here, we only outline the main ideas of the proof. The details can be found

in [69].

From ω̂j+4l = ωj+4l + ejL, (4.14) can be expressed as

Ω + EL = (Φ + ς(EL))θ̂L, (4.15)

where both EL and ς(EL) are perturbation terms with EL → 0 w.p.1 as L → ∞, and

ς(·) is a continuous function of its argument satisfying ς(EL) → 0 as EL → 0.

Since Φ has a uniformly bounded inverse and ς(EL) → 0, w.p.1, Φ + ς(EL) is

invertible w.p.1 for sufficiently large L. It follows that for sufficiently large L, by

(4.15)

ΦTΩ + ΦTEL = (ΦTΦ + ΦT ς(EL))θ̂L.

This implies that

θ̂L = (ΦTΦ + ΦT ς(EL))
−1(ΦTΩ + ΦTEL)

→ (ΦTΦ)−1ΦTΩ = θ

w.p.1 as L → ∞. �

4.2.4 Examples

This section presents several examples. The main objective is to verify that the pro-

posed parameter estimation methodology works properly. The PMDC motor model

and the simulation results are performed by using the Matlab/Simulink software. The

identification algorithm is applied to the system and the model parameter estimates
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are derived. Estimation errors are evaluated by the total square error (TSE),

TSE = (θ̂L − θ)T (θ̂L − θ).

Example 2 In this example, we apply a 4-periodic input voltage to the PMDC motor

model in Example 1 with its first 4 values as uk = 240× [1, 0.9, 1.1, 0.85] V.

The binary sensor threshold is C = 125. The measurement noises are i.i.d. Gaus-

sian noise sequences with zero mean and standard deviation σ = 4. The results are

shown in Table 1. Figure 9 shows the speed trajectories for estimated and actual

parameters.

Table 1: Parameter Estimation with M = 240 V, σ = 4, and C = 125

Para. Actual Est. Est. Est. Est.

N=1000 N=5000 N=10000 N=20000

a1 -1.0078 -0.8628 -0.9004 -1.0246 -1.0079

a2 0.2513 0.2848 0.3123 0.2866 0.2723

b1 0.0815 0.09378 0.07201 0.0882 0.0872

b2 0.0514 0.0346 0.0421 0.0547 0.0571

TSE - 0.02258 0.01543 0.00158 0.00051

Example 3 We consider the same system as in Example 2, with the observation

length N = 20000, and the threshold value C = 125, but different noise standard

deviation values σ. The results are shown in Table 2.
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Figure 9: The motor speed trajectories using actual and estimated parameters

Table 2: Parameter Estimation M = 240 V, N = 20000, and C = 125

Para. Actual Est.

σ = 8

Est.

σ = 12

Est.

σ = 16

Est.

σ = 25

a1 -1.0078 -1.0109 -1.0341 -0.8905 -0.8357

a2 0.2513 0.2251 0.2972 0.3715 0.3276

b1 0.0815 0.0648 0.1015 0.0621 0.0589

b2 0.0514 0.0520 0.0423 0.03627 0.06381

TSE - 0.00098 0.00328 0.02881 0.03610
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Discussions:

• From Table 1 and Figure 9, we can see that the parameter estimation errors

decrease as the observation length N increases, which is detailed by the total

square errors. This is consistent with the laws of large numbers which claim

that the convergence rates are proportional to 1/N . Such a rate of convergence

for binary sensors was derived in [69].

• It is noted from Table 2 that the standard deviation σ of the Gaussian noise

shouldn’t be too high, because this may affect the parameter estimation. But if

the noise spread (defined by its standard deviation) changes, the estimation can

be less accurate. The explanation for this situation is that when the inverse of

the noise distribution function, which is used in the identification algorithm, be-

comes very big, estimation accuracy decreases. This observation indicates that

the input design, threshold selection, and noise characterizations are closely re-

lated in ensuring identification accuracy. When they are properly selected, ac-

curacy of parameter estimation can be substantially enhanced. In other words,

with only a minor loss of convergence speed, we may use much cheaper sensors

or much lower communication resources without much detrimental impact on

modeling and control performance.
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4.2.5 Threshold Adaptation

Choosing thresholds is important for fast convergence in our algorithm. Example 2

achieves good estimation results by using the threshold C = 125 which is close to

the actual motor speed. To understand this, we use the following example in which

different thresholds are used.

Example 4 We consider the same system as in Example 2, with a fixed noise stan-

dard deviation σ = 4, and the observation length N = 20000, but with different input

amplitudes and different sensor threshold values. The results are shown in Table 3.

Table 3: Parameter Estimation with N = 20000 and σ = 4

Para. Actual Estimate Estimate Estimate Estimate

u = 200 u = 150 u = 100 u = 24

C = 105 C = 79 C = 55 C = 12

a1 -1.0078 -1.0102 -1.0072 -1.0223 -0.9497

a2 0.2513 0.2584 0.2377 0.2819 0.2458

b1 0.0815 0.0843 0.0762 0.085 0.1115

b2 0.0514 0.0512 0.0496 0.0567 0.0500

TSE - 6.4E-05 0.00022 0.00119 0.00431

Table 3 clarifies that the threshold value C has significant impact on identification

accuracy. The thresholds should be chosen such that the values of ζ are near the range

in which F (·) is invertible. Since the speed ωk changes with time, the thresholds

should be adapted. The threshold adaptation algorithm is outlined by the flowchart

in Figure 10. The main idea is that the best inverse sensitivity is achieved when

F (·) has the largest slope. For Gaussian distributions, it is at 0 or when ζ = 0.5.
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Consequently, one may tune the threshold towards ζ = 0.5.

In general, the threshold adaptation starts with a selection of the range [ζlow, ζhigh]

of ζ in which the inverse sensitivity of the distribution function F is acceptable. When

ζ is outside of this arrange, one adapts the threshold according to the relative ζ value:

If ζ < ζlow, the threshold C is moved up so that ζ will increase in the next data block.

Similarly for ζ > ζhigh. It should be pointed out that the threshold adaptation is to

improve motor estimation accuracy when the targeted motor speed changes. If the

set point does not change, threshold adaptation does not need to be implemented

frequently.

Initial Threshold C 

Computer the Empirical 

Measure  Lx

?low L highx x x£ £

Stop 

Decrease C by δ Increase C  by δ 

high Lx x£
L lowx x£

Yes 

Figure 10: Threshold adaptation flowchart
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4.3 Quantized Identification Algorithms

When more complicated quantized sensors are used, more information can be ex-

tracted from the sensor output which can potentially improve estimation accuracy.

However, proper usage of the sensor information is far from a trivial issue. We will use

a scheme that is optimal in the sense that the estimation error variance is minimized.

Suppose that now we have a quantized sensor with m thresholds −∞ < C1 <

· · · < Cm < ∞, and the sensor output can be represented by a set of m indicator

functions sk = [sk(1), . . . , sk(m)]T , where sk(i) = I−∞<yk<Ci
, i = {1, . . . ,m}. First,

we observe that each threshold Ci is a binary sensor and sk(i) is the corresponding

sensor output. Consequently, all discussions in the previous section on binary sensors

are valid, including input design, algorithms, convergence properties, and impact of

threshold selections. Since these binary sensors provide information on the same ωj,

j = 1, 2, 3, 4, the main issue here is how to combine information from these binary

sensors of different thresholds to form a new combined estimate of the same quantity.

4.3.1 Optimal Quasi-Convex Combination Estimator

It is obvious that each threshold Ci can generate an estimate of ω. A suitable com-

bination of these estimates will lead to an asymptotically optimal estimator for θ by

achieving the Cramer-Rao lower bound.

Define the weighting γ = [γ1, . . . , γm] such that γ1 + · · · + γm = 1. From the m

estimates ωi
N of ω by using the m sensor thresholds, their convex combination is also



62

an estimate ω̂ of ω

ω̂ =
m∑
i=1

γiω
i
N = γTWN ,

where WN = [ω1
N , . . . , ω

m
N ]. ω̂ is called a Quasi-Convex Combination Estimator

(QCCE). When the weighting values are selected optimally, we have the optimal

QCCE, see [93].

The optimization algorithm is described below. Let ωi
N , i = 1, . . . ,m be m asymp-

totically unbiased estimators of ω based on samples of size N . Then the estimation

error is defined by eiN = ωi
N − ω for each i = 1, . . . ,m. The error vector can be

expressed as eN = ωN − ω11 where 11 = [1, 1, . . . , 1]T . Define the covariance matrix of

eN as VN = E[eNe
T
N ].

Theorem 3 Suppose that VN(ω) is positive definite. Then the optimal QCCE is

obtained by choosing

γ∗ =
V −1
N (ω)11

11TV −1
N (ω)11

.

The minimal variance is

σ2
N =

1

11TV −1
N (ω)11

.

Proof: Here, we only outline the main steps of the proof. The detailed proof can be

found in [93]. Consider the Hamiltonian H(γ, λ) = γTVN(ω)γ + λ(1− γT11), where λ

is the Lagrange multiplier. Using the standard techniques in optimization yields the

minimum point γ∗ and σ2
N . �

One way to implement the QCCE numerically is as follows:



63

• Step 1: Find the sample mean of all estimated values ω̂, computed from the

m-thresholds. The sample mean is

W̄N =
N∑
j=1

Wj/N.

• Step 2: Find the sample covariance V̂N . The sample covariance is

V̂N =
1

N − 1

N∑
j=1

(Wj − W̄N)(Wj − W̄N)
T .

• Step 3: Find γN as

γN =
V̂ −1
N 11

11T V̂ −1
N 11

.

• Step 4: Find ω̂N = (γN)
TWN .

This algorithm can also be implemented recursively as follows.

W̄N = W̄N−1 −
1

N
W̄N−1 +

WN

N

V̂N = V̂N−1 −
1

N − 1
V̂N−1 +

(WN − W̄N)(WN − W̄N)
T

N − 1
.

It can be shown [93] that

V̂N(ω)− VN(ω) → 0, N → ∞.

To study the efficiency of the QCCE estimator, we compare the variance of this

estimator to the CR lower bound. For i = 1, . . . ,m+ 1, define

pi(ω) = P{sk(i) = 1}

= P{Ci−1 < yk ≤ Ci}

= F (Ci − ω)− F (Ci−1 − ω)

:= F̃ (ω).



64

Let hi(ω) = ∂pi(ω)/∂ω = −f(Ci − ω) + f(Ci−1 − ω), where f(·) is the probability

density function. Then, the sensitivity of ω with respect to pi is ∂ω/∂pi = 1/hi(ω).

Denote

h(ω) = [h1(ω), h2(ω), . . . , hm+1(ω)]
T

p(ω) = [p1, p2, . . . , pm]
T

U(ω) = diag(1/h1, 1/h2, . . . , 1/hm)

M(ω) = diag(p)

Ψ(ω) = U(M − ppT )U.

Let Q = M1/2 = diag(
√
p1, . . . ,

√
pm). M is invertible since p is non-zero and

positive. If pj is zero, the threshold Cj can be eliminated and the interval (Cj−1, Cj)

does not contain useful information.

Lemma 1 [93] The Cramèr-Rao lower bound for estimating ω based on observations

of sk is given by:

σ2
CR(N,m) =

(
N

m+1∑
i=1

h2
i

pi

)−1

.

Theorem 4 The optimal QCCE is asymptotically efficient in the sense that

Nσ2
N −Nσ2

CR(N,m) → 0, N → ∞.

Proof: The variance of the optimal QCCE satisfies

σ2
N = N

1

11TV −1
N (ω)11

→ 1

11TΨ−1(ω)11
, N → ∞,

where Ψ−1(ω) is the limit of N−1V −1
N (ω). Now from Lemma 1,

Nσ2
CR(N,m) =

(
m+1∑
i=1

h2
i

pi

)−1

.
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This leads to 11TΨ−1(ω)11 =
∑m+1

i=1
h2
i

pi
. �

4.3.2 Examples

In the following examples, we consider the same system and apply the same input as

in Example 2. The sensor has four thresholds 115, 122, 130, 135. Example 5 demon-

strates identification accuracy when each threshold is used individually like a binary

sensor.

Example 5 We consider the same system as in Example 2, with a fixed noise stan-

dard deviation σ = 4, and the observation length N = 5000, but with different

threshold values. The results are shown in Table 4.

Table 4: Parameter Estimation by Using The Data of Example 5

Para. Actual Estimate Estimate Estimate Estimate

C = 115 C = 122 C = 130 C = 135

a1 -1.0078 -0.8509 -0.8777 -0.8853 -0.9398

a2 0.2513 0.0252 0.136 0.2241 0.2891

b1 0.0815 0.0948 0.0901 0.1093 0.0909

b2 0.0514 0.0481 0.0395 0.0551 0.0571

TSE - 0.07593 0.03044 0.01653 0.00617

Example 6 We now combine the 4 estimates in Example 5 by using the QCCE

algorithm. The measurement noises are i.i.d. Gaussian noise sequences with zero

mean and standard deviation σ = 30. The results are shown in Table 5. Figure 11

compares the estimated speeds of PMDC motor by using each threshold individually

with the optimal QCCE by using the combined 4-thresholds. Figure 12 shows the
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convergence of the QCCE and convergence rates. Figure 13 compares the sample

variance and the theoretical CR bound.

Table 5: Parameter Estimation by Using the Optimal QCCE of 4-Thresholds

Para. Actual Estimate Estimate Estimate Estimate

N=1000 N=2000 N=3000 N=4000

a1 -1.0078 -0.8209 -1.1398 -1.0271 -1.009

a2 0.2513 0.0625 0.3891 0.2558 0.262

b1 0.0815 0.0948 0.0909 0.0775 0.0863

b2 0.0514 0.0481 0.045 0.0473 0.04432

TSE - 0.07077 0.03654 0.00043 0.00019
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Figure 11: Speeds of the PMDC motor

Discussions:
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• From Tables 4, 5, and Figure 11, one can see that using multi-thresholds in

parameter estimation is quite effective, because the TSE errors between the

actual and estimated parameters decrease significantly. Also it is noted that

the observation length using multi-thresholds can be shorter than that for the

single threshold. Even if higher standard deviations are used in the case of

multi-thresholds (σ = 30 in Example 6 vs. σ = 4 in Example 4), identification

accuracy is sustained.

• From Figures 12 and 13, it can be seen that using the optimal QCCE is an

effective method that improves convergence rates towards the CR bound.

• The above observations highlight some practical guidelines in selecting some

design variables: (1) Choose N based on the CR lower bound so that the

corresponding estimation errors fall within tolerance specifications. The sample

variance will be close to it. (2) If the desired motor speed is near a constant, the

thresholds of the quantizer can be pre-optimized by using the CR lower bound.
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4.4 Experimental Verification

This section presents experimental verification of our algorithms. The main equip-

ment and measurement devices for the experimental platform include: (1) The Re-

nesas DC Motor Control Demonstration Kit (YMCRPR8C25). This combined test-

ing/demo motor control system consists of the following subsystems: YMCRPR8C25

motor control board; a PMDC motor with specifications 24 V/0.5 A power rating and

rated speed 4000 rpm; and an AC Adapter, 24 VDC 5A, center positive. (2) The NI

SCB-68 shielded I/O connector block for interfacing I/O signals to plug-in data ac-

quisition (DAQ) devices with 68-pin connectors. Combined with the shielded cables,

the SCB-68 provides rugged, very low-noise signal termination. It is compatible with

single- and dual-connector NI X Series and M Series devices with 68-pin connectors.

The connector block is also compatible with most NI E, B, S, and R Series DAQ

devices. (3) A desktop computer which has LabVIEW software installed (ver 2011),

(4) A digital multimeter. The devices are connected into a testing platform, shown

in Figure 14 for the motor control kit and Figure 15 for the integrated test platform.

Motor input voltage is controlled from the LabVIEW software on the desktop

computer, but also measured at the motor. Motor speeds are physically measured

at the motor by a Hall-effect sensor. Using two channels of data acquisition, the

measurement data on the input and speed are fed into the computer by using the

data acquisition software of the motor control kit and then imported to the Labview

platform. Random dithers are added to the data and then passed through a quantized
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�

Figure 14: The motor control and evaluation kit

�

Figure 15: The experimental verification system



71

sensor of selected thresholds. The data on the input voltage and motor speed are

sampled values. The data are collected in real time, then stored using Microsoft

Excel 2007. Typical segments of the data are shown in Figure 16 on the input voltage

and in Figure 17 on the motor speed. We should clarify that due to a hardware

limitation which does not allow synchronized real-time data acquisition and parameter

estimation, the data are collected in real time, saved, and then used in estimation.

Since parameter estimation is an open-loop operation, this limitation does not affect

the results.
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�
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�
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Data Index
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Figure 16: Periodic input voltage profiles

Example 7 The sampling interval is selected as T = 0.01 sec. The input voltage

is a 4-periodic function with amplitudes shown in Fig. 16. The motor specification

values as supplied by the manufacturer are as follows: La = 0.0023 H, Ra = 1.68

ohm, J = 0.0011 Kg.m2, µ = 9.8 × 10−8 N.m.s, km = kb = 0.033 N.m/A or

V/rad/s. The added measurement dithers are i.i.d. Gaussian random sequences
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Figure 17: Periodic output speeds of the PMDC motor

with zero mean and standard deviation σ = 25. Under quantized measurements

with thresholds C1 = 245, C2 = 278, C3 = 295, C4 = 318, N = 10000 samples are

collected. By using the QCCE estimator, the parameter estimates are summarized in

Table 6. To evaluate the estimation accuracy, the sample variances of the estimation

error sequences are compared to theoretically computed CR lower bound under the

given motor parameters and testing conditions. Figure 18 shows the sample variance

trajectory of the QCCE estimator and the theoretical CR lower bound.

Table 6: QCCE Estimation Using the Experimental Data of Example 7

Parameter Actual Estimated

a1 -0.9939 -0.9709

a2 6.7203e-4 6.25e-4

b1 0.1538 0.1639

b2 0.0929 0.0969

TSE - 0.00065



73

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

                                                                      Data Index                                        x103               

V
ar

ia
nc

e

Sample Variance of the QCCE Estimator vs the CR Bound

 

 

Sample Variance of QCCE
CR Bound

Figure 18: Sample variance trajectory of the QCCE estimator vs the CR bound

Chapter 5 SIGNAL ESTIMATION AND CLOSED-

LOOP SYSTEMPERFORMANCE OF PMDCMO-

TORS WITH COMMUNICATION CHANNELS

This chapter investigates unique issues rising from feedback control of electric mo-

tors with embedded communication channels [89]. For concreteness, PMDC motors

are employed as a representative system for carrying out our analysis and simulation,

although the findings of this chapter are applicable to other motor types.

To characterize impact of the above-mentioned design variables on motor control,

we focus on several commonly used performance measures. It is well understood that

the feedback mechanism provides some critical functions: (1) Transient performance.



74

This is typically specified by the step response and its characterizing parameters

such as the rise time, settling time, peak time, and overshoot. (2) Tracking capabil-

ity. When the command signals are time varying, the motor speed must follow them

quickly and accurately. We will use the ramp and sinusoid inputs as testing commands

for the tracking aspect of the motor system. (3) Disturbance attenuation. Measure-

ment errors and communication uncertainties are represented by noises. They cause

the motor speed to fluctuate. It is important that the feedback system can attenu-

ate such disturbances on the motor speed. These will be used to evaluate relations

between key design variables and motor performance.

To compare to the standard computer-controlled system without communications,

we note that in classical digital control design, one designs a continuous-time con-

troller first. Then the controller is discretized after choosing a sampling interval.

Usually, as long as the sampling interval is sufficiently small, the sampled system

will deliver a similar performance to the continuous-time controller. Communication

channels depend on network traffic conditions and deliver different throughput, im-

plying that the sampling intervals may change. Since signal estimation is updated

on the arrival of new data, its dynamics actually change with the sampling interval.

Consequently, interaction among sampling, signal estimation, and the controller will

introduce new issues in remotely controlled motors.

Our results will demonstrate that many components of design variables interact

closely to determine feedback properties. These include sampling interval, quantiza-

tion levels, signal estimation data windows, motor dynamics, controllers, and signal
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estimation algorithms. The theoretical foundation for analyzing such systems was first

introduced in [42, 43] under a simplified loop structure. Employing PMDC motors as

a platform, this chapter treats a remotely controlled motor with two communication

channels, one from the motor speed measurement to the remote controller, and the

other from the remote controller to the motor voltage input for the feedback control

signal. These two channels may have different sampling periods and signal estima-

tion schemes, leading to an asynchronous framework which is more flexible than the

commonly-employed synchronous sampling schemes.

The rest of the chapter is organized as follows. Section 5.1 described the system

configuration of closed loop feed back PMDC system interact with communication

channels. Then Section 5.2 introduces the main algorithms for signal estimation.

Typical and optimal signal estimation schemes can be represented by a signal aver-

aging filter with its time constant derived from the step size of the signal estimation

algorithm. To evaluate interactions of the feedback system, signal filter parameter,

and sampling interval, Section 5.3 presents some case studies covering a variety of

scenarios. They clearly indicate that these parameters must be carefully chosen to

retain feedback performance. From these cases, we highlight some design guidelines

so that motor operations can deliver desired performance robustly.

5.1 Feedback Systems with Communication Channels

In order to understand the effect of adding one or two communication blocks and

signal estimation algorithms, we will first study system performance without commu-
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nication blocks. These will serve as performance references when evaluating impact

from communications and signal estimation algorithms. All simulations in this dis-

sertation use Matlab/Simulink codes.

Example 8 Suppose that a PMDC motor has the following parameters (from the

manufacturer): La = 0.02 H, Ra = 2.0 ohm, J = 0.07 Kg.m2, µ = 0.045 N.m.s,

kp = km = 2.5 N.m/A or V/rad/s. The system is sampled with the sampling

period Ts = 0.01 second. In an open-loop environment (without the PI controller),

Figure 19 shows the step responses of the original continuous-time model and its

sampled system. It is clear that the sampling interval is adequate for the sampled

system to approximate the original continuous-time system. Figure 20 illustrates the

step responses when the the PI controller is applied, with the continuous-time PI

expression for the continuous-time plant and the discrete-time PI controller for the

sampled system. Apparently, feedback controller improves motor performance and

the sampling interval remains suitable.

To further demonstration of performance, Figures 21 and 22 present the ramp and

sinusoid responses of the closed-loop system with the PI controller. In all above cases,

we observe that without communication links, the controller performs well in terms

of stability and performance. Also, the discretized models are sufficiently accurate

as approximations for system identification and control, indicating that the sampling

interval Ts = 0.01 is adequate.
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Figure 19: Step response of PMDC motor in open loop (without the controller)
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Figure 20: Step response of PMDC motor in closed loop (with the controller)
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When a PMDC motor must be remotely controlled, communication channels are

inserted into the feedback loop, leading to a new system structure shown in Fig-

ure 23. The overall system consists of the PMDC motor transfer function G(z), the

PI controller C(z), communication blocks in both output and input sides. In this

configuration, the output speed signal ω(t) and the control signal uk are communi-

cated through communication channels, and then estimated. In our development, we

allow the two communication blocks and signal estimation algorithms to have dif-

ferent sampling intervals and step sizes, in order to accommodate realistic wireless

communication networks.
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Figure 23: Closed-loop PMDC system with communication channels

Inserting a communication block to transmit a signal in the feedback loop intro-

duces some errors; and signal estimation leads to dynamic delays. In this dissertation

we aim to study the behavior of the PMDC closed-loop system under the commu-
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nication channels and signal estimation algorithms by analyzing interactions among

quantization, sampling, signal estimation, and feedback stability and performance of

PMDC motors. We will also show that there are certain fundamental issues that an

engineer must consider when designing remotely controlled PMDC motors.

5.2 Communication Channels and Signal Estimation

When signals must be transmitted through communication channels, they are sam-

pled, quantized, and transmitted; then recovered and estimated at the receiving side

[89]. Signal averaging methods are commonly used in such signal recovery schemes to

reduce errors and noises on the signals. This is especially true under lower-precision

quantization schemes.

In principle, low-precision quantization, such as binary-valued quantization, will

not transmit sufficient information on the signals for feedback control. However,

by employing the smoothing effects of random noises or dithers, more information

can be recovered, see [41, 42] comprehensive exploration of related algorithms and

properties. It was shown in [42] that the algorithms that extract information on

the original signals act like averaging filters that introduce new dynamics into the

feedback loop. Consequently, they affect feedback stability and performance.

The methodology we used here was initially developed in [42, 43] with one block

representing lumped communication channels. In this dissertation two communica-

tion blocks are used: one to transmit and estimate the motor output speed signal

to the controller and the other to transmit and estimate the controller output signal
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back to the motor. This is a challenging problem since signal averaging algorithms

interact with sampling and quantization of the communication channels and affect

the feedback system’s performance. The main question is: What is the behavior of

the closed-loop system under these two channels and signal estimation algorithms?

In the subsequent performance evaluations, we will employ the step responses

in which the standard performance measures are the rise time tr, settling time ts,

peak time tmax, and percentage overshoot Mp, see [92] for their definitions. Within

these measures, the rise time and peak time represent response speeds; the overshoot

represents control accuracy; and the settling time represents control effective duration.

All these parameters are desired to be small.
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5.2.1 PMDC Signal Estimation

We now explain the methodology of signal estimation which was introduced in [42, 43],

and some essential derivation steps that will be relevant in our study. We will use

the output speed signal ωk in describing the algorithms and main features. The

estimation steps and features for the control signal uk will be similar.

The true motor speed ωk is bounded in ωmin ≤ wk ≤ ωmax. ωk is either mea-

sured with a measurement noise or added with a random dither dk to enhance signal

estimation.

The noise-added signal ωk + dk is quantized to produce a quantization sequence

sk = S(ωk + dk), where S represents the quantization function. More precisely,

suppose that the signal ωk+dk is quantized bym quantization thresholds {h1, . . . , hm},

which divides the range [ωmin, ωmax] into ωmin < h1 < · · · < hm < ωmax. The output

of the quantizer takes m+ 1 possible values {1, 2, . . . ,m+ 1} and is represented by

sk =
m+1∑
i=1

iI{hi−1<ωk+dk≤hi} (5.16)

with h0 = 0 and I being the indicator function. In the special case of a binary-valued

quantization of threshold h,

sk =


1, if ωk + dk ≤ h,

0, if ωk + dk > h.

For clarity, we will use the binary-valued quantization to derive algorithms and prop-

erties. Generalization to m quantizion levels can be found in [42]. sk will be processed

to estimate ωk at the receiver side.
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Signal Estimation Algorithms:

For a selected 0 < α < 1, define the following truncated and exponentially

weighted empirical measures

ζνk = (1− α)
k∑

l=−∞

αk−lsl, (5.17)

where the weight is normalized so that when sl ≡ 1, (1 − α)
∑∞

l=0 α
l = 1. This

algorithm can also be written recursively as

ζνk = ζνk−1 + (1− α)(sk − ζνk−1) = ζνk−1 + β(sk − ζνk−1),

which is a stochastic approximation algorithm with a constant step size β = 1− α.

To understand the meaning of the weight α and the step size β = 1− α, we note

that (5.17) is a weighted averaging computation. The smaller the α value, the faster

the decaying rate αk−l in (5.17), which in turn implies the averaging uses mostly the

recent data, that is a small data window in the sinal averaging. This is equivalent

to β being close to 1. This represents a fast updating algorithm. Such an algorithm

will be able to track fast changing signals, but will have less capability in attenuating

noise effects. However, this is a fast response filter (i.e., less dynamic delay) and

hence will have less detrimental effects on feedback stability and performance. This

intuitive understanding will help in interpreting case study results.

In addition, when we translate the step sizes to the actual time, each updating

step in signal estimation means Ts second. Consequently, the sampling period is a

fundamental parameter when feedback performance is evaluated.
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For a technical delicacy, for some small δ satisfying 0 < δ < 1, define

ζk =


ζνk , if δ < ζνk < 1− δ;

δ, if ζνk < δ;

1− δ, if ζνk > 1− δ.

(5.18)

This will not affect system analysis. Then, the estimation of ωk is

ω̂k = h− F−1(ζk). (5.19)

5.2.2 Filter Representation and Error Analysis

It can be shown [42] that adding the signal estimation algorithm (5.19) into the PMDC

feedback loop can be represented by a signal averaging filter and an equivalent noise

source. Consequently the block diagram of the closed loop PMDC is expanded with

two filters Hα1(z) =
(1−α1)z
z−α1

and Hα2(z) =
(1−α2)z
z−α2

, shown in Figure 24.

 

Figure 24: Simplified equivalent system

The following property, established in [43], establishes a convergence property for
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this filter representation.

Lemma 2

lim
α→1

Eω̂k = θ and lim
α→1

1 + α

1− α
E(ω̂k − θ)2 =

F (h− θ)(1− F (h− θ))

f 2(h− θ)
. (5.20)

This Lemma implies that asymptotically, ω̂k = ωk + δk, where the estimation er-

ror δk satisfies Eδk = 0 and Eδ2k = 1−α
1+α

F (h−θ)(1−F (h−θ))
f2(h−θ)

. Here we note that by [93],

F (1 − F )/(Nf 2) is the CR lower. In this sense, Lemma 2 establishes that the algo-

rithm (5.18) achieves the CR lower bound asymptotically, and hence is asymptotically

efficient when α → 1.

On the other hand, the same characterization may be derived from a filter

Hα(z) =
(1− α)z

z − α
(5.21)

that acts on ωk + dk with {dk} being a sequence of i.i.d. random variables satisfying

Edk = 0 and σ2
d = Ed2k =

F (h− ωk)(1− F (h− ωk))

f 2(h− ωk)
.

Indeed, suppose xk = ωk + dk and ωk = θ is a constant. Let zk = Fxk, namely

zk = (1− α)
∑k

l=−∞ αk−lxl. Then Ezk = θ and

E(zk − θ)2 = (1− α)2
∞∑
l=0

α2lσ2
d =

1− α

1 + α
σ2
d. (5.22)

In other words, the estimator (5.19) can be simply represented by the filter Hα(z)

with an equivalent noise dk in Figure 24. The step size of the algorithm determines

the filter time constant.
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5.2.3 Impact of Signal Estimation on Feedback Performance

Now, suppose we add only a communication block 1 to the system. Consider a

feedback system shown in Figure 24 whose open-loop system P (z), which combines

the controller and plant, has a minimal state space realization

P (z) :


xk+1 = Axk +Buk

ωk = Cxk.

(5.23)

It is assumed that the closed-loop system under the negative unity feedback u = −ωk

is stable.

For a (sufficiently small) sampling interval Ts1, the overall closed-loop system with

signal estimation on ωk becomes

xk+1 = xk + Ts1(Axk +Buk)

ωk = Cxk

sk =


1, ωk + dk ≤ h

0, ωk + dk > h

ξk+1 = ξk + β(sk − ξk)

ω̂k = h− F−1(ξk)

uk = −ω̂k.

(5.24)

Theorem 5 Suppose that the sampling interval Ts1 is proportional to the step size

β: Ts1/β = λ. Then, the closed-loop system is
xk+1 = xk + Ts1(A0xk −B(γ − F−1(ξk)− Cxk)

ξk+1 = ξk +
1
λ
Ts1(sk − ξk).

(5.25)
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Proof: Define the signal estimation error ek = ŷk − yk. The state equation can be

modified to

xk+1 = xk+Ts1(Axk−Bŷk) = xk+Ts1(Axk−B(yk+ek)) = xk+Ts1((A−BC)xk−Bek).

Hence, we have 
xk+1 = xk + Ts1(A0xk −Bek)

ξk+1 = ξk + β(sk − ξk).

Since ek = γ − F−1(ξk)− Cxk, we have (5.25). �

Theorem 6 As Ts1 → 0, (xTs1(·), ξTs1(·)) converges weakly to (x(·), ξ(·)) such that

(x(·), ξ(·)) is a solution of the ordinary differential equation
ẋ = A0x−B(γ − F−1(ξ)− Cx)

ξ̇ =
1

λ
(F (γ − Cx)− ξ),

(5.26)

provided that (5.26) has a unique solution for each initial condition.

The unique equilibrium point of (5.26) is ξ = F (γ) and x = 0. We further derive

the locally linearized system of (5.26) at the equilibrium point.

Theorem 7 The locally linearized system of (5.26) is

ẋ = Ax+Bu, ω = Cx, u̇ = −1

λ
ω − 1

λ
u, (5.27)

which is exactly the feedback system with

ω = P (s)u, u = −R(s)ω, (5.28)

where R(s) = 1
λs+1

.



88

Proof: Since λ ̸= 0 and, as a stable matrix, A0 is non-singular, the equilibrium point

of (5.26), solved from

ξ = F (γ − Cx), λA0x = 0,

is unique ξ = F (γ), x = 0. Define v = ξ − F (γ). For stability analysis, we may

transform the limit system (5.26) into a system of x and v, with the equilibrium

point x = 0 and v = 0,
ẋ = A0x−B(γ − F−1(v + F (γ))− Cx)

v̇ =
1

λ
(F (γ − Cx)− F (γ)− v).

(5.29)

The Jacobian matrix of (5.29) at x = 0, v = 0 is

A =

 A B
f(γ)

−f(γ)C/λ −1/λ

 . (5.30)

Hence, the locally linearized system of (5.29) is
ẋ = Ax+

B

f(γ)
v

v̇ = −1

λ
f(γ)Cx− 1

λ
v.

(5.31)

Now, by defining u = v/f(γ), the linearized system (5.31) becomes (5.27). By (5.23)

and after taking the Laplace transform of the last equation, we obtain (5.28). �

Remark 4 The above result establishes a basic relationship

α = e−Ts1/λ. (5.32)

When Ts1 → 0, the filter Hα(z) = (1−α)z
z−α

in (5.21) can be approximated by the

continuous-time filter

R(s) =
1

λs+ 1
(5.33)
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in the sense that maxt∈[kTs1,(k+1)Ts1) |ω(t) − ω(kTs1)| = o(Ts1) where o(Ts1)/Ts1 → 0,

as Ts1 → 0. For a simply understanding, note that the R(s) has impulse response

r(t) = 1
λ
e−t/λ, t ≥ 0. Acting on a continuous-time signal x(t), its output is ω(t) =∫ t

−∞ r(t− τ)x(τ)dτ = 1
λ

∫ t

−∞ e−(t−τ)/λx(τ)dτ. For small Ts1, ω(t) is approximated by

ωk = ω(kTs1) =
1

λ

∫ t

−∞
e−(t−τ)/λx(τ)dτ =

Ts1

λ

k∑
i=−∞

(e−Ts1/λ)k−ixi + o(Ts1)

=
Ts1

λ(1− α)
(1− α)

k∑
i=−∞

αk−ixi + o(Ts1) = (1− α)
k∑

i=−∞

αk−ixi + o(Ts1),

where α = e−Ts1/λ. This is reduced to the filter Hα in (5.21).

The above analysis confirms that for asymptotic analysis of the feedback system

with communication channels and signal estimation, the limit ODE is (5.28) and

the signal estimation can be represented by a filter R(s). This structure forms the

foundation of subsequent system analysis and design. From (5.32), limTs1→0
Ts1

(1−α)
= λ.

This relationship represents an inherent interaction among sampling interval Ts1,

signal estimation weight α, and closed-loop stability.

5.3 Case Study 1: Output Communication Block 1 Only

In this section we will study the impact of signal averaging weight α1 and sampling

period Ts1 after adding one communication block to the closed-loop PMDC motor

system. The system performance will be quantitatively analyzed by the step response

parameters, and then further illustrated by ramp and sinusoid responses.
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5.3.1 Impact of Signal Averaging Weight α1

In order to study the impact of signal averaging after adding the communication block

1 to the closed-loop PMDC system, we will take different values of α1 and assess the

corresponding responses.
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Figure 25: Effects of signal averaging weights: step response

Example 9 Consider the same PMDC specifications as in Example 8, but now we

add the communication block 1 with the signal estimator (5.19). The estimator can

be represented by a filter whose step size is α1 and sampling interval is Ts1. The

sampling period is fixed as Ts1 = 0.01. Three values of α1 are used and their impacts

on system performance are compared. Performance evaluations are conducted by

using the step, ramp, and sinusoid inputs: Figure 25 for the step response; Figure 26

for the ramp response; and Figure 27 for the sinusoid input.
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Table 7: Step Response Performance of Figure 25

α1 tr ts tmax Mp

0.98 2.74 5.06 3.56 14.62

0.90 0.57 2.08 0.78 16.54

0.60 0.14 1.50 0.19 17.71

Discussions: From Figure 25, we can derive closed-loop performance parameters in

Table 7. We recall that α1 represents sizes of data window sizes in signal averaging.

When α1 is large (close to 1), see the top plot of Figure 25, the window size is large.

This represents a slower dynamics but has more averaging effect. Consequently, the

output noise is attenuated, leading to a smooth speed profile. On the other hand, a

slow filter dynamics imply slower responses and less aggressive feedback, resulting in

smaller overshoot. These are clearly reflected in Table 7: as α1 increases, tr, ts, and

tmax increase, but the overshoot reduces. This trade-off must be carefully considered

when designing motor controllers. In principle, if output noises are small, then small

data windows can be used.

In terms of time-varying commands, such as ramp and sinusoid inputs, if α1 is

small, the system has a better tracking capability. This is seen in Figure 26 and

Figure 27, especially the bottom plots. The top plots indicate clearly that large α1

cannot be used if tracking performance is essential since the feedback system cannot

follow such command signals.
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Figure 26: Effects of signal averaging weights: ramp response
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Figure 27: Effects of signal averaging weights: sinusoid response
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5.3.2 Impact of Sampling Interval Ts1

In order to study the impact of sampling rate after adding a communication block 1

to the closed loop PMDC system, we will take different values of Ts1 and compare

closed-loop performances.

Example 10 Consider the same PMDC specifications as in Example 8. In this

example the step size of the filter is fixed α1 = 0.95 and three different values of

Ts1 are applied. Then the signal estimator (5.19) is applied for the three cases.

Figure 28 shows the step response of the closed-loop PMDC motor under different

values of Ts1, with performance comparison detailed in Table 8. Figure 29 and Figure

30 demonstrate the output speed responses under the ramp and sinusoid inputs,

respectively.

Discussions: It is well understood that in typical sampled-data systems, if the

sampling interval is sufficiently small, the sampled system will approximate well the

original continuous-time systems, and varying the sampling interval to smaller val-

ues will have little impact on such approximations. By observing Figure 28, this is

obviously not the case here. When the sampling interval changes, the closed-loop

performance is affected significantly. From Table 8, as Ts1 increases, tr, ts, and tmax

increase, while the overshoot decreases. This effect is similar to Example 9 when α1

increases.

To understand the significance of this result, consider a typical communication

traffic. Due to request priorities and routing congestion conditions, communication
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data transmission rates are usually time varying. Our result points out that mo-

tor performance will fluctuate significantly along with communication network op-

erations. Consequently, motor control performance becomes un-predictable. The

question is: How can we find a remedy for this situation?

By comparing Figures 26 and 29, it is cleared that if α1 and Ts1 are tuned col-

laboratively, then the effect of time-varying Ts1 can be compensated by the adaptive

α1. In principle, when the sampling interval increases and the weight α1 should be

reduced. The desirable relationship for this step-size adaptation is given by (5.32):

for a selected constant λ, α1 should be adapted according to α1 = e−Ts1/λ.

The above observation further expand to ramp and sinusoid responses from Fig-

ures 27 and 30. We notice that tracking capability improves with smaller Ts1. This

can also be explained as having the effect of reducing the de factor step size β, leading

to a fast tracking ability. But similar to adjustment of α1, fast tracking capability

comes with a price of reduced ability in attenuating noises.

Table 8: Step Response Performance of Figure 28

Ts1 tr ts tmax Mp

0.1 11 16.06 14.70 7.91

0.01 1.10 2.76 1.41 13.13

0.001 0.12 1.16 0.17 17.11
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Figure 28: Effects of sampling intervals: step response
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Figure 29: Effects of sampling rates: ramp response
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Figure 30: Effects of sampling rates: sinusoid response

5.3.3 Impact on Noise Attenuation

Signal measurements and communications introduce noises. One of the feedback

functions is to attenuate noises so that the motor speed fluctuation can be reduced.

In the previous case studies, we have already see that noise attenuation is a factor to

be considered. To demonstrate more concretely this aspect of design considerations,

we choose three cases of small, medium, and large noises in the following example.

Example 11 Consider the same PMDC specifications as in Example 8 with fixed

weight α1 = 0.98 and sampling interval Ts1 = 0.01 sec. We add noises to the output

communication block with mean zero and standard deviation σ. Then the signal

estimator (5.19) is applied for three cases of noise variances. Figure 31, Figure 32,

and Figure 33 illustrate control performance under different input commands.
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Discussions: From Figures 31, 32, and 33, large noises must be attenuated. Noise

attenuation capability depends on selections of α1 and Ts1. In the case of small

noises, the top plots of the figures, noise attenuation is not a big concern. But as

noise variances increase, the motor performance is no longer acceptable. In these

cases, α1 and Ts1 must be re-designed so that noise attenuation ability is balanced

with other performance measures.
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Figure 31: Effects of noise: step response
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Figure 32: Effects of sampling rates: ramp response
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Figure 33: Effects of sampling rates: sinusoid response
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5.4 Case Study 2: Both Input and Output Communication

Blocks

This section will consider more realistic cases of two communication blocks, shown in

Figure 23. Analysis of such systems can be carried out using the same methods as

in Section 5.2. We will use some typical scenarios to demonstration design variables

and their impact, and provide some guidelines.

5.4.1 Impact of Signal Averaging Weights α1 and α2

We first consider the impacts of signal averaging weights α1 and α2 on the performance

of the PMDC system using both communication blocks 1 and 2.

Example 12 Consider the same PMDC specifications as in Example 8. In this

example the sampling intervals for both communication blocks are Ts1 = Ts2 = 0.001

sec, Then the signal estimator (5.19) is applied. Three cases are considered with α1 =

α2 = α. Figure 34 shows the step response of the closed-loop system with performance

parameters summarized in Table 9. Figures 35 and 36 expand performance evaluation

to the ramp and sinusoid inputs.

Discussions: From Figure 34 and Table 9 we can see that the signal averaging

weights α1 and α2 have similar influence on the system as in the one-block case: as

α1 and α2 are increased, the rise time, settling time, and peak time will increase. On

the other hand, the overshoot becomes smaller. This trade-off can be explained by the

data window sizes. Larger weights entail larger data windows, which in turn imply
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Figure 34: Effect of signal averaging weights: step response

slower dynamics from the filters. Consequently, the closed-loop system demonstrates

typical changes in its performance associated with slow dynamics. Slow systems

compromise tracking capability, shown in Figures 35 and 36. The main implication

is that if tracking performance (such as acceleration) is essential, then small α values

should be used.

Table 9: Step Response Performance of Figure 34

α1 = α2 tr ts tmax Mp

0.98 22.4 32.2 29.8 22.28

0.90 4.6 7.2 6.0 21.23

0.60 1.1 4.5 1.7 27.19
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Figure 35: Effect of signal averaging weights: ramp response
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Figure 36: Effect of signal averaging weights: sinusoid response
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Example 13 Consider the same PMDC specifications and sampling rates as in Ex-

ample 8. Then the signal estimator (5.19) is applied for 3 cases such that unequal

values of α’s for both blocks (α1 ̸= α2). Figure 37 and Table 10shows the output

speed response of closed loop PMDC motor and the performance measure.
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Figure 37: Effects of different signal averaging on closed loop using two blocks

Table 10: Step Response Performance of Figure 37

α1, α2 tr ts tmax Mp

0.60,0.40 1.2 NA 1.6 37.8

0.60,0.98 22.6 32.5 30.21 24.28

0.98,0.60 1.2 5.2 1.8 27.19
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5.4.2 Impact of Sampling Intervals Ts1 and Ts2

Example 14 Consider the same PMDC specifications as in Example 8 with fixed

α1 = α2 = 0.60. Then the signal estimator (5.19) is applied. The sampling intervals

Ts1 = Ts2 are varied to assess their impacts on feedback performance. Figure 38

shows the step response with supporting details in Table 11. Similarly, Figure 39 is

for the ramp input, and Figure 40 is for the sinusoid input.
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Figure 38: Effects of sampling intervals: step response

Discussions: From Figure 38 and Table 11, as Ts1,Ts2 increase, the rise time, settling

time, and the peak time increase, while the overshoot is reduced.

From Figures 36 and 40, it is cleared that to retain desirable performance, α1 and

α2 should be adapted according to Ts1,Ts2. This will avoid loss of robustness of the

feedback system when communication data flow rates fluctuate from communication
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traffic conditions.

Furthermore, two blocks of dynamic subsystems alter the loop dynamics signifi-

cantly. It may make it necessary to re-design the controller itself. In our studies, the

following adaptation strategies are used to make controller parameter Kc dependent

on the sampling interval. The typical values are: when Ts1 = Ts2 = 0.01, Kc = 20.8;

when Ts1 = Ts2 = 0.1, Kc =
1
1.8

; when Ts1 = Ts2 = 0.5, Kc =
1

10.7
. The principle is

that for slow sampling (large sampling intervals), the controller should be make more

conservative.

Table 11: Step Response Performance of Figure 38

Ts1 = Ts2 tr ts tmax Mp

0.01 0.88 3.86 1.23 16.67

0.10 8.9 30.1 12.0 22.5

0.50 45.0 120.4 60.0 23.26

Example 15 Consider the same PMDC specifications as in Example 8 with fixed

step sizes α1 = α2 = 0.95. Then the signal estimator (5.19) is applied for 3 cases such

that unequal values of sampling rates for both blocks Ts1 ̸= Ts2. Figure 41 and Table

12 show the output speed response of closed loop PMDC motor and performance

measure.
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Figure 39: Effects of sampling rates: ramp response
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Figure 40: Effects of sampling rates: sinusoid response
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Figure 41: Effects of different sampling rates on closed loop using two blocks

Table 12: Step Response Performance of Figure 41

Ts1, Ts2 tr ts tmax Mp

0.01,0.05 4.88 9.94 5.87 18.87

0.10,0.01 0.83 3.1 1.27 21.5

0.01,0.50 47.0 125.4 61.0 24.26
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5.4.3 Impact of Transmission Errors and Packet Losses

The channel Υ is characterized by the probability transition matrix

Π =

 π11 π12 π13

π21 π22 π23


with

∑3
j=1 πij = 1, i = 1, 2. Here,

π11 = P{xk = 0|sk = 0}, π12 = P{xk = 1|sk = 0}, π13 = P{xk = ∗|sk = 0}

π21 = P{xk = 0|sk = 1}, π22 = P{xk = 1|sk = 1}, π23 = P{xk = ∗|sk = 1}.

Let p = P{xk = 0|sk = 0} = P{xk = 1|sk = 1}, q = P{xk = ∗|s = 0} = P{xk =

∗|s = 1}, ps = P{sk = 1}, px = P{xk = 1}. For a symmetric channel, we have

π13 = π23 (the probability of data loss) and π11 = π22 (the probability of correct data

transmission). Then

Π =

 p 1− p− q q

1− p− q p q

 (5.34)

Assumption 2 2p+ q − 1 ̸= 0.

The case 2p+q−1 = 0 means that p = (1−q)/2. This implies that if the data are not

lost (which has probability 1−q), then the channel output has an equal probability of

receiving 1 or 0 regardless what is the input symbol. This is the singular case and the

channel does not transmit any information, as evidenced in Shannon’s information

theory. Since px = pps + (1 − p − q)(1 − ps) = (2p + q − 1)ps + 1 − p − q, under

Assumption 2, ps can be calculated from px

ps =
px − (1− p− q)

(2p+ q − 1)
. (5.35)
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In addition, communication channels introduce time delays. Suppose that a time

delay of τ seconds is in effect in data transmission at a given time. Under the sampling

interval Ts, this time delay is translated into nd = τ/Ts steps of delay in discrete time.

For notational simplicity, assume that nd is an integer. Note that for any given τ ,

nd → ∞ when Ts → 0. In other words, for a meaningful discussion of effect of time

delay on systems in asymptotic analysis, nd must be varied so that ndTs = τ is a

constant.

In many practical systems with communication channels, it is desirable to reduce

communication power and bandwidth consumption, and perform signal processing at

the receiving side. We shall consider the case of the binary scheme for quantization

and DMC communication channels. Let wk = H(sk) represent the channel.

Signal estimation and feedback control algorithms are modified to be:

xk+1 = xk + Ts(Axk +Buk)

ωk = Cxk

sk =


1, ωk + dk ≤ h

0, ωk + dk > h

wk = H(sk)

ξ̃k+1 = ξ̃k + β(wk − ξ̃k)

ξk =
ξ̃k − (1− p− q)

(2p+ q − 1)

ω̂k = h− F−1(ξk)

uk = −ω̂k.

(5.36)
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Remark 5 In this algorithm, the channel information p and q are assumed to be

known. Joint identification of the signal ωk and the channel parameters p and q can

be derived directly from the joint identification algorithms in [41]. This will not be

included here.

Definition 1 ωk is slowly varying if |ωk − ωk−1| ≤ r for some small r.

By [43], we have the following result.

Lemma 3 if α is selected as a function of r such that 1−α(r) → 0 and
√
r/(1− α(r)) →

0 as r → 0, the algorithm (5.18) has the following property:

lim
r→0

1 + α(r)

1− α(r)
E(ŷk − ωk)

2 =
F (h− ωk)(1− F (h− ωk))

f 2(h− ωk)
.

Theorem 8 The asymptotic signal estimation error is

lim
α→1

1 + α

1− α
E(ω̂k − ωk)

2 =
(aF (h− ωk) + b)(1− (aF (h− ωk) + b))

a2f 2(h− ωk)
, (5.37)

where a = 2p+ q − 1 and b = 1− p− q.

Proof: (5.37) follows from Lemma 3 with

limα→1
1 + α

1− α
E(ω̂k − ωk)

2 =
px(1− px)

(dpx/dωk)2

=
(aps + b)(1− (aps + b))

a2(dps/dωk)2

=
(aF (h− ωk) + b)(1− (aF (h− ωk) + b))

a2f2(h− ωk)
.

�

By Theorem 8, we have the following system representation.
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Corollary 1 when α → 1 H(z) = (1−α)z
z−α

and {dk} is a sequence of i.i.d. random

variables satisfying Edk = 0 and Ed2k =
(aF (h−ωk)+b)(1−(aF (h−ωk)+b))

a2f2(h−ωk)
.

Remark 6 We point out that communication errors and packet losses increase the

variance of the equivalent noise, but do not alter the structure of the closed-loop

system. Consequently, under Assumption 2, the stability analysis and performance

tradeoff presented in the previous sections remain valid here.
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5.4.4 Impact of Communication Delays

Communication channels always encounter time delays. Communication latency in-

dicates that the data point sk sent at time tk will arrive at the receiver buffer at

trk = tk+ τ̃k. Assuming that the channel hubs employ FIFO (first-in-first-out) buffers,

the data sequence will not be altered despite time-varying delays τ̃k. Suppose that

the sampling of sk is synchronized with tk = kTs where Ts is the sampling interval.

Then wk is received at trk = max{tk + τ̃k, t
r
k−1}. In other words, if sk is subject to

a much shorter delay than sk−1, it will be considered as received immediately after

wk−1 is received.

Suppose the channel is subject to a constant but unknown time delay τ . For sim-

plicity, we focus on time delay and assume that the channel has no other uncertainty.

For a small sampling interval Ts, the overall closed-loop system with signal estimation

on ω becomes

xk+1 = xk + Ts(Axk +Buk) (plant)

ωk = Cxk

sk =


1, ωk + dk ≤ γ

0, ωk + dk > γ

(quantization)

wk = sk−τ/β (channel delay)

ξk+1 = ξk + β(wk − ξk) (signal averaging)

ω̂k = γ − F−1(ξk) (signal exponential estimation)

uk = −ω̂k. (feedback)

(5.38)
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Chapter 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation introduces a new method of identifying the model parameters

and predicts the rotational speed of PMDC motors, using quantized output observa-

tions. This technique is useful in reducing costs of motor sensing systems, commu-

nication resource consumptions, and in enhancing system reliability by simplifying

system configuration and packaging. While the PMDC motor is used as a benchmark

case for discussion, it appears that the same method can be applied to other electric

machines.

The binary identification technology was explored for nonlinear systems in [70].

In particular, Wiener and Hammerstein systems can be accommodated. This may

be valuable for PMDC motors when we take further consideration of their nonlinear

components. Although, we have applied our methodology to PMDC motors, it can

be applied to other electric machines as well. The adaptation of proposed system

gives the system the ability to use in on-line identification and real time estimation.

In this dissertation, the impact of communication channels on feedback perfor-

mance of PMDC motors is also studied. The main conclusions of this study indicate

that when communications and signal estimations are involved, sampling intervals

and signal averaging window sizes (or equivalently signal estimation step size) must

be carefully coordinated so that performance specifications can be robustly main-

tained. The situations are further complicated by the noise attenuation capability
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and tracking performance of the system which are also substantially affected by the

same design parameters. The results of this dissertation show that there is a basic

relationship between the sampling interval and signal averaging weight that can be

used to adapt the weight when communication data flow rates change with time.

Finally, as part of the feedback loop, the controller itself may need to be re-designed

to accommodate communication channels.

6.2 Future Work

Along these directions, there are some remaining work that need to be completed

in the near future. In this section 6.2, several topics are suggested to supplement the

current work as the future research efforts.

1. Hardware embedded system implementation of real time estimation system:

In order to build the hardware system the following components should be

available:

• PMDC Motor

• Binary Speed Sensor (Hall Effect sensor WGB351928 or IR Infrared sensor

LM393)

• DC Power Supply Voltage up to 120 volts.

• Microcontroller PIC18F2455 or PIC16F877A (Any PIC Microcontroller

with PWM output)
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• RS232 Serial Communication port (to transmit the output pulses of the

speed to PC)

• PMDC Motor Driving Circuit (Dual full bridge chip L298 or Non Inverting

Buck Boost driving chip or H bridge chip with suitable voltage applicable

to our PMDC motor)

Procedures

(a) Using MPLAB IDE software and C code to program the PIC Microcon-

troller to give us a PWM signal with variable Duty Cycle; this can be done

using two timers built in microcontroller.

(b) Build the Driving circuit using switching techniques (Dual full bridge chip

L298 or Non Inverting Buck Boost driving chip or H bridge chip with

suitable voltage applicable to our PMDC motor), then using the variable

PWM to control the input average DC voltage applied to the motor in

periodic form (our case is 4-periodic).

(c) After that the output speed is measured for each input value using binary

speed sensor.

(d) Using the RS232 interface, the binary output of the sensor is transmitted

to the PC computer.Figure 42 shows the hardware diagram of the system.

(e) Using the Lab View software 2011, the real time data is processing online
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Figure 42: Hardware implementation of real time estimation of PMDC parameters

to estimate the parameters of the PMDC motor. The estimation process

can be done simultaneously for any number of observations N during the

time measured. Note: At each interruption (each 0.39321s), the value of

speed counter, will be taken as detected pulses. The pulses produced from

binary speed sensor for each speed, will be loaded to PC each 0.39321s.

So, the motor speed is calculated using some equations.

2. Hardware implementation of closed loop feedback system with communication

channels:

This system can be implemented wireless also by transmitting the speed signal

through a wireless communication channel, then do the controller part and re-

submit the controller signal to the PMDC motor again.
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Procedure

Using the same component in the first part, then the output speed signal can

be transmitted/recieved using Zigbee wireless software.

3. Detection of fault Diagnosis for PMDC motors In PMDC motors faults can

occur in the rotor/field, stator/armature, or mechanical components connected

to it. This dissertation discusses a permanent magnet machine without focusing

on associated inverter faults and bearing faults.

Types of Faults:

• Armature faults

The armeture faults are usually happened when the winding insulation

failure, this is because of manufacturing defect, high operation tempera-

ture, overloading, vibration, or transient high voltage. This fault may start

from a short circuit between two turns, or phase to ground short.

• Permanent Magnetic Faults

Field faults basically refers to a failure in the permanent magnets, this

cause the demagnetization to be uniform over all poles or partial over

certain region or poles, this fault can be caused by high operation temper-

ature, aging of magnets, corrosion of magnets, or inappropriate armature

current.

• Mechanical Faults
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Mechanical faults can happen because of bearing failure. A bearing is a

mechanical component which consists of two rings and a set of balls rolling

between them. This has been recorded as one of the dominant causes

for damage in electric machine, this fault can be caused by metal fatigue,

unbalanced stress, improper installation, corrosion.

These problems could result in vibrations and noise during the machine’s oper-

ation, which are usually measured and processed as diagnosis indicators.

It is clear that motor parameters will be changed according to motor faults

therefore, it is easy to detect a motor fault by comparing its estimated pa-

rameters with normal parameters. When parameter change exceeds a preset

threshold, a fault is immediately detected, because the pattern of parameter

changes is different for different faults. Sometimes one fault causes different

parameters to be changed; in this case it is difficult to detect the fault.

4. Impact of transmission errors and packet losses:

In many practical systems with communication channels, it is desirable to re-

duce communication power and bandwidth consumption, and perform signal

processing at the receiving side. So, some simulation can be done to study the

impact of transmission errors and packet losses.

5. Impact of communication delays:

Communication channels always encounter time delays. In this case also some

simulation results can be done to study the impact of communication delays on
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the response of the system.

6. Designing the graphical user interface (GUI) of the proposed system that can

be developed using LabView or MatLab software, this technology can be easily

handled, so it can be available for most of the people without complicated. Also

this design can be applied to the front panel of any type of vehicles.
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Establishing real-time models for electric motors is of importance for cap-

turing authentic dynamic behavior of the motors to improve control performance,

enhance robustness, and support diagnosis. Quantized sensors are less expensive and

remote controlled motors mandate signal quantization. Such limitations on observa-

tions introduce challenging issues in motor parameter estimation. This dissertation

develops estimators for model parameters of permanent magnet direct current motors

(PMDC) using quantized speed measurements. A typical linearized model structure

of PMDC motors is used as a benchmark platform to demonstrate the technology,

its key properties, and benefits. Convergence properties are established. Simulations

and experimental studies are performed to illustrate potential applications of the

technology.

Remotely-controlled Permanent Magnet DC (PMDC) motors must trans-

mit speed measurements and receive control commands via communication channels.
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Sampling, quantization, data transfer, and signal reconstruction are mandatory in

such networked systems, and introduce additional dynamic subsystems that substan-

tially affect feedback stability and performance. The intimate interaction among

sampling periods, signal estimation step sizes, and feedback dynamics entails care-

ful design considerations in such systems. This dissertation investigates the impact

of these factors on PMDC motor performance, by rigorous analysis, simulation case

studies, and design trade-off examination. The findings of this dissertation will be of

importance in providing design guidelines for networked mobile systems, such as au-

tonomous vehicles, mobile sensors, unmanned aerial vehicles which often use electric

motors as main engines.
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