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CHAPTER 1.  INTRODUCTION 

Nature has placed mankind under the governance of two sovereign 

masters, pain and pleasure.  It is for them alone to point out what we 

ought to do, as well as to determine what we shall do.  […].  They govern 

us in all we do, in all we say, in all we think: every effort we can make to 

throw off our subjection, will serve but to demonstrate and confirm it.  In 

words a man may pretend to abjure their empire: but in reality he will 

remain subject to it all the while. 

Jeremy Bentham, 17891 

Pain is a conscious, subjective, and unpleasant experience that consists of sensory-

discriminative, affective-motivational and cognitive-evaluative components (Melzack & Casey, 

1967).  The sensory-discriminative component of pain provides information about the temporal 

occurrence, the spatial localization, the physical qualification, and the intensity quantification of 

the noxious stimulus and elicits rapid responses (i.e., withdrawal reflexes) designed to prevent 

further or potential injury.  The affective-motivational dimension can be distinguished from its 

discriminative sensory aspects (Craig & Sorkin, 2001) and renders the noxious stimulus with a 

distinctly unpleasant character that ultimately motivates behaviors such as avoidance and 

recuperation (Borszcz, Johnson, & Fahey, 1994).  The cognitive-evaluative component is 

responsible for the appraisal of the meanings, consequences, and predictability of the painful 

sensations and injury.  Each of these components is mediated and modulated through different 

forebrain mechanisms (Casey, 1999).   

The affective and cognitive components of pain interact and attribute the negative 

emotional coloring to the pain experience (Almeida, Roizenblatt, & Tufik, 2004), thus generating 
                                                 
1 The first sentence of this paragraph has been used as a motto also by Leknes & Tracey (2008). 
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emotional disturbances such as fear, anger, frustration, stress, anxiety, and depression (Price, 

2000, 2002).  Affective reactions to pain can generate “fear-avoidance” beliefs (Asmundson, 

Norton, & Allerdings, 1997; Waddell, Newton, Henderson, Somerville, & Main, 1993) and 

“catastrophizing” thoughts (Carleton, Abrams, Asmundson, Antony, & McCabe, 2009; Sullivan, 

Stanish, Waite, Sullivan, & Tripp, 1998) that further increase the distress of the patient in pain, 

and thus leading to a vicious circle characterized by development and maintenance of pain 

behaviors (McCracken, Zayfert, & Gross, 1992) such as decreased self-efficacy (Arnstein, 

Caudill, Mandle, Norris, & Beasley, 1999), avoidance behavior (Asmundson, Norton, & Norton, 

1999; Vlaeyen & Linton, 2000), work loss, and general disability in activities of daily living 

(Fordyce, Shelton, & Dundore, 1982; Philips, 1987; Waddell et al., 1993).  Furthermore, the 

development and maintenance of these secondary emotional disturbances exacerbate the 

suffering of patients in pain, and thereby motivate individuals to seek medical attention.  Indeed, 

“it is suffering, not pain, that brings patients into doctor's offices in hopes of finding relief” 

(Loeser, 2000).  Supporting this observation, many researchers found that fear of pain may be 

more disabling than pain itself (Crombez, Vlaeyen, Heuts, & Lysens, 1999; Fordyce et al., 1982; 

McCracken et al., 1992; Philips, 1987; Waddell et al., 1993; Wade, Dougherty, Hart, Rafii, & 

Price, 1992) and that fear of pain can be used as a reliable predictor for the perceived intensity of 

acute pain (George, Dannecker, & Robinson, 2006; Hirsh, George, Bialosky, & Robinson, 2008). 

As a consequence, the need for better medical treatment of pain and better pain 

management therapies makes understanding the mechanisms through which the emotional aspect 

of pain is generated, maintained and finally suppressed of paramount importance.  Whereas 

considerable progress has been made in understanding the neural mechanisms that subserve the 
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sensory-discriminative component of the pain, comparatively little is known about the neural 

circuits underlying the generation and suppression of the affective aspect of the pain experience.  

More than a century ago, it was observed that strong analgesics, like morphine, heroin, 

amphetamine, and cocaine, have a high abuse potential and are self-administered by both 

humans and animals (Himmelsbach, 1943; May, 1953; Morphine and Heroin Addiction: 

Departmental Committee's Report, 1926; Spender, 1887), suggesting that the neural substrates of 

reward and antinociception overlap (Oberst, 1943).  Franklin (1989, 1998) proposed that the 

ability of these drugs (i.e. opioids and psychostimulants) to induce a positive affect underlies 

both their addictive liability and their analgesic action.  The positive affective state generated by 

these drugs should reduce the level of distress that normally accompanies noxious stimulation.  

This phenomenon is referred to as “affective analgesia” and reflects preferential suppression of 

the emotional reaction to pain.  The affective analgesia hypothesis proposes that neural substrates 

underlying reward contribute to suppression of the affective response to pain.  The proposed 

research provides the first systematic investigation into the capacity of brain reward circuit 

activation to suppress the affective response of rats to noxious stimulation. 

1.1. Ventral Tegmental Area (VTA) in Reward and Reinforcement 

Although the terms reward and reinforcement are more often than not used 

interchangeably, there is a clear distinction between an internal positive subjective state (reward) 

and the capacity of that state to support appetitive conditioning (reinforcement) (Wise, 1996).  

The ability of natural (i.e., food, water, sex) or artificial (i.e., drugs of abuse, intracranial self-

stimulation - ICSS) rewards to induce a positive affective state relies, at least partially, on the 

integrity of dopaminergic projections from the VTA to nucleus accumbens (NAc) of the striatum 

(for reviews, see Bardo, 1998; Di Chiara et al., 1999; Di Chiara, 2002; Ikemoto, 2007; Kiyatkin, 
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2002; Koob & Volkow, 2010; Schultz, 2000; Wise, 2004).  This idea is supported by a plethora 

of data derived from microinjection, microdialysis, electrophysiological, and neuroimaging 

studies (Table 1).  For example, in vivo microdialysis experiments in rats revealed that chemical 

(Westerink, Kwint, & deVries, 1996) or electrical (Fiorino et al., 1993) activation of the VTA 

results in an increase of dopamine (DA) release in NAc.  This release is associated with reward, 

as rats that electrically self-stimulate the VTA display an increase in accumbal DA up to almost 

200% (Fiorino et al., 1993).  Likewise, drugs that are abused in humans (e.g. amphetamine, 

cocaine, opiates, nicotine, ethanol2) increase DA availability in the rat NAc, drugs that induce a 

negative affective state in humans (e.g. κ-opioid agonists, tifluadom, bremazocine) decrease DA 

availability in the rat NAc, and drugs that do not induce any affective state in humans (e.g. 

imipramine, atropine, antihistamines) do not change the DA levels in the rat NAc (Di Chiara & 

Imperato, 1988).  These findings are in agreement with the data provided by imaging studies in 

humans with DA tracers (e.g. raclopride isotopes), which showed that drugs of abuse like 

amphetamine or cocaine increase DA availability in the striatum and this increase is associated 

with self-reports of “high” and “euphoria”, in a directly proportional fashion (for a review of 

these studies, see Volkow, Fowler, Wang, Baler, & Telang, 2009).  Conversely, the levels of 

striatal DA release were unchanged in the subjects in which the psychostimulants did not induce 

euphoric effects.  Not only have directly rewarding stimuli elicited mesolimbic DA release, but 

also the stimuli that were previously associated with a reward (Schultz, Dayan, & Montague, 

1997). 

                                                 
2 These drugs of abuse act as DA agonists as they increase the DA availability in the brain either by acting directly 
on the VTA neurons (e.g. opioids disinhibit the DA cells, Johnson & North, 1992; nicotine activates the DA 
neurons, Mereu et al, 1987; ethanol lifts the GABA inhibition from the DA neurons, Xiao & Ye, 2008) or by 
blocking the DA transporter or the DA D2 autoreceptor (e.g. for amphetamine, see Jones, Gainetdinov, Wightman, 
& Caron, 1998; for cocaine, see Beuming et al., 2008).    
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Besides mediating the positive affective state that characterizes a reward, the role of DA, 

especially accumbal DA, in reinforcement is also well-substantiated by the literature.  For 

instance, a rat will learn to press a lever in order to receive food, water, sexual contact, or drugs 

of abuse and during learning of these appetitive instrumental tasks the DA release in NAc is 

increased (Cheng & Feenstra, 2006; Hernandez & Hoebel, 1988), as well as during the 

performance of the appetitive tasks (Phillips, Stuber, Heien, Wightman, & Carelli, 2003).  Also, 

rats readily self-administer DA agonists like heroin and cocaine if the DA system is intact, but 

they cease to do so if the mesoaccumbal DA system is depleted (Wise & Rompre, 1989).  The 

involvement of the DA system in reinforcement is further supported by the finding that 

disruption of DAergic transmission either by systemically blocking the DA receptors or by 

activating the DA autoreceptors results in impairments in appetitive conditioning in both rodents 

(Gerber, Sing, & Wise, 1981; Ikemoto & Wise, 2004; Wise & Schwartz, 1981) and humans 

(Pizzagalli et al., 2008; Santesso et al., 2009).  Likewise, even if animals successfully learned an 

appetitive conditioning task, they do not perform normally if the mesoaccumbal DAergic system 

is impaired (Parkinson et al., 2002).  Furthermore, extinguished lever pressing for cocaine is 

reinstated by microinjections of cocaine or other DA agonists into NAc (Schmidt, Anderson, & 

Pierce, 2006), behavior that is blocked by pretreatment with DA antagonists into the same region 

(Anderson, Schmidt, & Pierce, 2006).  Taken together, these findings point to the paramount role 

of DA release in NAc for both reward and reinforcement processes. 

1.2. VTA in Pain and Analgesia 

Involvement of the VTA in antinociception is supported by the finding that electrical 

stimulation of the VTA abolishes escape responding produced by stimulation of the nucleus 

reticularis gigantocellularis (Anderson, Diotte, & Miliaressis, 1995).  Nucleus reticularis 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gerber%20GJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sing%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wise%20RA%22%5BAuthor%5D
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gigantocelluaris (nRGC) is a medullary link of the spinoreticulothalamic pathway that transmits 

noxious information from the spinal cord to the medial thalamus and related forebrain structures 

(Almeida et al., 2004).  Similarly, electrical stimulation of lateral hypothalamic sites that support 

self-stimulation, an effect dependent on VTA activation (Wise, 1996), also attenuates escape 

responding to nRGC stimulation (Simson & Coons, 1989).  Stimulation of the lateral 

hypothalamus produces antinociception in the footshock test (Lopez & Cox, 1992), tail-flick test 

(Aimone, Bauer, & Gebhart, 1988; Franco & Prado, 1996) and hot-plate test (Carstens, 

Fraunhoffer, & Suberg, 1983).  Simulation of the lateral hypothalamus also reduced the 

amplitude of evoked potentials to noxious peripheral stimulation in medial thalamic targets 

(centromedian–parafascicular complex) of nRGC and suppressed escape responding to the same 

noxious stimulus (Butkevich & Kassil, 1999).  Nociceptive processing by these medial thalamic 

sites contributes to production of affective responses to pain in both humans and animals 

(Delacour, 1971; Harte, Kender & Borszcz, 2005; Harte, Lagman & Borszcz, 2000; Kaelber et 

al., 1975; Mark, Ervin, & Yakovlev, 1962; Weigel & Krauss, 2004;  Whittle & Jenkinson,  1995; 

Young et al., 1995). 

Release of DA into NAc from axon terminals of DAergic neurons in VTA contributes to 

the antinociceptive action of VTA stimulation (see Table 3).  Opioids administered systemically 

or into the VTA increase DA metabolism (Kalivas & Richardson-Carlson, 1986; Latimer, Duffy 

& Kalivas, 1987) and extracellular levels of DA (Pontieri, Tanda & Di Chiara, 1995) in the NAc.  

Similarly, systemic administration of amphetamine or cocaine elevates extracellular levels of DA 

in the NAc (Pontieri, Tanda, & Di Chiara, 1995).  Microinfusions of morphine into the VTA or 

amphetamine into NAc suppress paw-licking in the formalin test but do not alter withdrawal 

latencies in the tail flick test (Altier & Stewart, 1996; Manning, Morgan, & Franklin, 1994).  
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These antinociceptive effects in the formalin test were blocked by pretreatment of NAc with the 

DA receptor antagonist raclopride (Altier & Stewart, 1998).  Likewise, neurotoxic lesions of DA 

neurons in VTA block the suppression of paw-licking in the formalin test produced by systemic 

administration of morphine or amphetamine, but do not alter the increase in tail flick latencies 

generated by these drug treatments (Clarke & Franklin, 1992; Morgan & Franklin, 1990).  

Alternately, intra-NAc microinjections of the D2 agonist quinpirole reduced nociceptive 

responding during the formalin test in a dose-dependant manner and this effect was blocked by 

administration of the D2 antagonist raclopride into NAc (Taylor, Joshi, & Uppal, 2003).  As tail 

flicks and paw-licking are respectively organized at spinal and supraspinal levels of the neuraxis 

(for a review, see Le Bars, Gozariu, & Cadden, 2001) these findings indicate that activation of 

mesoaccumbal DA projections selectively suppresses or masks nociceptive processing at 

supraspinal levels of the neuraxis.   

1.3. Analgesia and Reward: Motivational Continuum Hypothesis 

Opioids and psychostimulants elicit mesolimbic DA release and this activation induces a 

positive affect (see Table 1) and, as stated above, Franklin’s affective analgesia hypothesis 

(1989, 1998) postulates that this positive affect suppresses the emotional distress associated with 

the pain experience without reducing the actual sensory experience.  Altier and Stewart (1999a) 

postulated that the relation between the rewarding and antinociceptive actions of analgesic drugs 

such as opiates and psychostimulants can be understood from the perspective of a motivational 

continuum.  This motivational continuum has poles of extreme negative and positive affect with 

normal affect located in the middle.  When administered in the normal affective state, opiates 

and psychostimulants shift the continuum from normal affect to positive affect through activation 

of the brain reward circuitry.  The shift to the positive pole of the continuum may underlie the 
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addictive liability of opiates or psychostimulants.  In contrast, when noxious stimulation 

generates a negative affective state, opioids and psychostimulants suppress pain affect through 

their activation of brain reward circuitry.  This activation shifts the negative affective state to the 

middle of the motivational continuum producing affective analgesia.  It is important to stress that 

while the same circuitry is activated in both cases, the baseline is changed in the latter example; 

these drugs administered in the negative state do not induce a positive state (Fig. 1).    

 
 
Figure 1.  The motivational continuum.  If the organism is in a negative affective state (e.g. 
such as that generated by noxious stimulation), the opiates and psychostimulants shift the 
motivational continuum towards a neutral affective state, producing affective analgesia by 
activating the brain reward circuitry.  If the organism is in a neutral affective state, the opiates 
and psychostimulants shift the motivational continuum towards a positive affective state that 
underlies their addictive liability, by activating the brain reward circuitry. 
 

The motivational continuum hypothesis is supported by the observation that patients who 

are given morphine for pain relief, and hence in a strong negative affective state, rarely become 

addicted or develop withdrawal symptoms (Melzack, 1990).  Alternately, addiction, tolerance, 

and withdrawal commonly follow morphine administration during neutral or positive affective 

states.  Thus, when opioids are used for pain management, they may help the patient to achieve 

an affective state normally experienced when free of pain, but not the extreme positive affect that 

might support addiction.  Supporting this view are reports that the capacity of morphine to serve 

as a reinforcer in a conditioned place-paradigm (CPP) is attenuated when given to rats that are in 

a chronic/tonic pain state (Narita et al., 2005; Ozaki et al., 2002; Suzuki, Kishimoto, & Misawa, 

1996; Suzuki, Kishimoto, Misawa, Nagase, & Takeda, 1999) and that morphine fails to induce 
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dependence in rats when administered during a pain state (Abbott, Franklin, Ludwick, & 

Melzack, 1981; Colpaert, 1996; Vaccarino & Couret, 1993; Vaccarino et al., 1993).    

In summary, the DA release from the VTA into the NAc underlies both the analgesia and 

the rewarding effects induced by drugs of abuse.  Clearly, neural circuits that underlie affective 

analgesia and reinforcement overlap, but the extent of the overlap is currently unknown.  The 

present study systematically investigates the extent of the overlap between affective analgesia 

and reinforcement. 

1.4. Acetylcholine in VTA: The Common Mediator 

In addition to opioids and psychostimulants, the availability of mesoaccumbal DA can be 

also increased by endogenous substances like acetylcholine.  VTA neurons display a variety of 

nicotinic receptors subtypes (Adell & Artigas, 2004; Azam, Winzer-Serhan, Chen, & Leslie, 

2002; Klink, de Kerchove d'Exaerde, Zoli, & Changeux, 2001) and at least the muscarinic 

receptor M5 (Vilaro, Palacios, & Mengod, 1990; Yeomans, Forster, & Blaha, 2001) and M2 

subtypes (Garzon & Pickel, 2006).  Microinjecting nicotinic and muscarinic receptor agonists 

into the VTA excites DAergic neurons in the VTA via activation of local cholinergic receptors 

(Calabresi, Lacey & North, 1989; Lacey, Calabresi, & North, 1990; Niijima & Yoshida, 1988), 

and increases the release of DA in NAc (Gronier & Rasmussen, 1998; Nisell, Nomikos, & 

Svensson, 1994).  Continuous infusion of the non-specific cholinergic agonist carbachol3 into the 

VTA causes an up to 140% elevation in extracellular DA levels in the ipsilateral NAc (Westerink 

et al., 1996), and DA efflux in the NAc is increased by intra-VTA injection of the prototypical 
                                                 
3 Carbachol induces excitation of the DA neurons within VTA by activating both muscarinic and nicotinic receptors 

via a L-type Ca2+ channel facilitation mechanism (Zhang, Liu & Chen, 2005) 
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muscarinic agonist muscarine.  Alternately, baseline levels of accumbal DA are reduced by intra-

VTA administration of the muscarinic antagonist scopolamine (Miller & Blaha, 2005). 

Cholinergic projections to the VTA arise bilaterally mostly from the laterodorsal 

tegmental (LDTg) and less from the adjacently located caudal pedunculopontine (PPTg) nuclei 

(Blaha et al., 1996; Oakman, Faris, Kerr, Cozzari, & Hartman, 1995; Omelchenko & Sesack, 

2005).  Approximately 50% of LDTg neurons make synaptic contact  (presumably excitatory) 

with DA neurons in VTA that project to NAc or prefrontal cortex (PFC), the strength of 

excitatory input being greater for DA neurons providing mesoaccumbal versus mesoprefontal 

projections.  These LDTg neurons also provide moderate excitatory inputs to GABAergic 

neurons in VTA that project to NAc.  The remaining 50% of LTDg/PPTg neurons make 

synapses (presumably inhibitory) more with the mesoprefrontal than mesoaccumbens neurons 

(Omelchenko & Sesack, 2005, 2006; Fig. 2).  Besides projecting to mesolimbic and mesocortical 

structures, the GABA cells within VTA also send collaterals to the DA neurons, making mostly 

inhibitory synaptic contacts (Bayer & Pickel, 1991; Johnson & North, 1992; Omelchenko & 

Sesack, 2009; Sugita, Johnson, & North, 1992).  Thus, acetylcholine is likely to depolarize the 

DA neurons in VTA either directly or indirectly by inhibiting the GABA interneurons and thus 

lifting the inhibition from the DAergic cells.  
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Figure 2.  Schematic drawing of cholinergic synapses within the VTA.  The drawing depicts 
the excitatory (white) and inhibitory (black) synapses made by cholinergic cells with the VTA 
DAergic (D) and GABAergic (G) neurons.  The thickness of cholinergic axons depicts the 
approximate number of the connections.  From Omelchenko & Sesack (2006). 
 

Lesions of acetylcholine-producing neurons in LDTg block the DA release in NAc 

induced by intra-VTA neostigmine (cholinesterase inhibitor, Blaha et al., 1996).  The accumbal 

efflux of DA that accompanies electrical stimulation of the LDTg is also attenuated following 

injection of muscarinic or nicotinic antagonists into the VTA (Forster & Blaha, 2000; Lester, 

Miller, & Blaha, 2010).  LDTg-induced accumbal efflux of DA is also reduced in mutant mice 

with deletion of the M5 receptor (Forster, Yeomans, Takeuchi, & Blaha, 2002; Yeomans et al, 

2001). 

The reinforcing properties of opioids, psychostimulants and ICSS are mediated, at least 

partly, by cholinergic activation of mesoaccumbal DA neurons.  Acetylcholine release in the 

VTA is significantly elevated by rewarding events such as intravenous cocaine self-

administration (You, Wang, Zitzman, & Wise, 2008), subcutaneous morphine injections 

 



 12

(Rezayof, Nazari-Serenjeh, Zarrindast, Sepehri, & Delphi, 2007), lateral hypothalamic self-

stimulation, eating, and drinking (Rada, Mark, Yeomans, & Hoebel, 2000).  Although both 

nicotinic and muscarinic acetylcholine receptors in the VTA mediate the rewarding effects of 

cocaine, morphine and lateral hypothalamic stimulation, it appears that the muscarinic receptors 

are more involved in reward processing than nicotinic receptors.  Muscarinic receptors in the 

VTA contribute to the increase in accumbal DA generated by systemic administration of 

morphine and this increase is readily attenuated by the infusion of the non-selective muscarinic 

antagonist scopolamine into VTA (Miller, Forster, Yeomans & Blaha, 2005).  Blockade of 

muscarinic rather than nicotinic receptors in VTA results in attenuation of the reinstatement of 

cocaine seeking and VTA DA levels induced by VTA perfusion of neostigmine (You et al., 

2008), and in the attenuation of the rewarding effects of the lateral hypothalamic stimulation 

(Yeomans & Baptista, 1997).  Correspondingly, infusion into the VTA of antisense 

oligonucleotides targeting muscarinic M5 mRNA inhibited local M5 receptor binding and 

reduced lateral hypothalamic self-stimulation (Yeomans et al., 2000).  Mutant mice with deletion 

of the M5 receptor exhibit reduced CPP learning with systemic injections of morphine or cocaine 

(Basile et al., 2002;  Fink-Jensen et al., 2003), and show reduced cocaine self-administration 

(Thomsen et al., 2005).  Similarly, muscarinic receptor blockade in VTA by scopolamine 

attenuates cocaine enhancement of LDTg stimulation-evoked NAc DA release in the mouse 

(Lester, Miller, & Blaha, 2010).  Alternately, the rewarding effects of lateral hypothalamic 

stimulation are enhanced by infusion of acetylcholine into the VTA (Olds, Yuwiler, Olds, & 

Yun, 1964; Redgrave & Horrell, 1976), whereas the muscarinic antagonist atropine infused into 

the VTA completely blocks self-stimulation of the lateral hypothalamus (Rada et al., 2000).   
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Not surprisingly, acetylcholine receptor activation within the VTA is rewarding.  Intra-

VTA administration of carbachol supports development of CPP learning, and rats learn to self-

administer carbachol into the VTA (Ikemoto & Wise, 2002; Yeomans, Kofman, & McFarlane, 

1985).  These reinforcing effects of carbachol were attenuated more effectively by pre-treating 

VTA with muscarinic versus nicotinic receptor antagonists.   

1.5. VTA Heterogeneity  

1.5.1. Reward 

However, Ikemoto & Wise (2002) observed regional differences within the VTA in the 

ability of carbachol to activate DAergic reward circuitry.  Specifically, administration of 

carbachol into the posterior VTA (pTVA), but not the anterior VTA (aVTA), supported 

development of CPP.  Also, rats learned to self-administer carbachol into the pVTA, but not into 

the aVTA (Ikemoto & Wise, 2002).  Similarly, rats learn to self-administer opiates (Zangen, 

Ikemoto, Zadina, & Wise, 2002), cocaine (Rodd et al., 2005), nicotine (Ikemoto, Qin, & Liu, 

2006), ethanol (Rodd-Henricks, McKinzie, Crile, Murphy, & McBride, 2000),  

tetrahydrocannabinol (cannabinoid agonist, Zangen, Solinas, Ikemoto, Goldberg, & Wise, 2006), 

muscimol (GABAA agonist, Ikemoto, Murphy, & McBride, 1998), and CPBG (5-HT3 agonist, 

Rodd et al., 2007),  into the pVTA, but not the aVTA.   

The functional differences observed by the self-administration and CPP studies may be 

explained by differences in the efferent projections of the aVTA versus the pVTA.  Namely, 

Ikemoto (2007) conducted a series of comprehensive double immunostaining studies (with 

tyrosine hydroxylase and fluorogold) and found that the cathecholaminergic neurons in pVTA 

predominantly projects to the medial part of the NAc shell and the medial olfactory tubercle, 

structures critical for mediating the rewarding effects of drugs of abuse as revealed by ICSS and 
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CPP studies (Ikemoto, 2007, 2010; Ikemoto & Donahue, 2005; Ikemoto, Qin, &  Liu, 2005; 

Sellings, Bahamouri, McQuade, & Clarke, 2008; Sellings, McQuade, & Clarke, 2006a,b).  

Alternatively, the aVTA provides little or no projections to the medial NAc shell and medial 

olfactory tubercle, but instead projects to the NAc core, NAc ventral shell, lateral tubercle, and 

dorsal striatum, into which application of DAergic drugs is not reinforcing (Ikemoto, 2007). 

1.5.2. Affective Analgesia 

Given the aforementioned heterogeneity within the VTA of carbachol to support 

reinforcement, we evaluated regional differences within the VTA of carbachol to produce 

affective analgesia (Schifirneţ & Borszcz, 2007; Schifirneţ, Karim, Lucas, & Borszcz, 2008).  

According to Franklin’s affective analgesia hypothesis (1989, 1998), it is reasonable to infer that 

if antinociception elicited by cholinergic activation of the VTA depends on activation of 

mesoaccumbal reward circuitry, then this antinociceptive action should exhibit regional 

differences within the VTA.  Namely, the activation of the rewarding pVTA projections should 

be conducive to affective analgesia, whereas the activation of the non-rewarding aVTA 

projections should not produce affective analgesia.   

Research in this laboratory has validated vocalization afterdischarges (VAD) as a model 

of pain affect in rats.  These vocalizations occur following a brief (1 s) noxious tailshock and are 

spectrographically distinct from vocalizations that occur during tailshock (VDS).  Systemically 

administered drugs that preferentially suppress the affective reactions to pain in humans, like 

morphine, fentanyl, and diazepam (Chapman & Feather, 1973; Gracely, McGrath, & Dubner, 

1978; Price, Harkins, Rafii, & Price, 1986; Price, Von der Gruen, Miller, Rafii, & Price, 1985) 

also preferentially suppress production of VADs (Borszcz et al., 1994; Caroll & Lim, 1960; 

Hoffmeister, 1968; Levine, Feldmesser, Tecott, Gordon, & Izdebski, 1984).  Damage to or drug 
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treatments into forebrain sites known to contribute to the affective responses of humans to 

clinical and experimental pain (e.g. amygdala, thalamus, hypothalamus, anterior cingulate gyrus 

– aCC; Ballantine, Cassidy, Flanagan, & Marino, 1967; Foltz & White, 1968; Hebben, Corkin, 

Eichenbaum, & Shedlack, 1985; Sano, Yoshioka, Ogashiwa, Ishijima, & Ohye, 1966; Sweet, 

1980; Uematsu, Konigsmark, & Walker, 1974; Whittle & Jenkinson, 1995)) selectively suppress 

the generation of VADs (Borszcz, 1999, 2006; Borszcz & Leaton, 2003; Borszcz & Streltsov, 

2000; Greer, 2007; Greer, Wronkowicz, Harte, & Borszcz, 2005; Harte et al., 2000, 2005; Harte, 

Hoot, & Borszcz, 2004; Harte, Spuz, Greer, & Borszcz, 2005; Hoffmeister, 1968; Kender, Harte, 

Munn, & Borszcz, 2008; Munn & Borszcz, 2002; Munn, Harte, Lagman, & Borszcz, 2009; 

Nandigama & Borszcz, 2003).  Additionally, the capacity of tailshock to support fear 

conditioning in the rat relies on its capacity to elicit VADs (Borszcz, 1993, 1995, 2006, Borszcz 

& Leaton, 2003).  Besides the VAD model, there are virtually no animal pain models that can 

directly quantify the innate, unconditional, affective reaction to pain. 
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Figure 3. Affective analgesia assessment.  Top.  The animal is restrained on a Plexiglas 
pedestal in a custom made Velcro® body suit.  The electric shock is delivered via two electrodes 
attached to the tail and the subsequent tail-flicks and vocalizations are recorded by a computer.  
Bottom.  Oscilloscope traces depicting the recorded behaviors.  The top line represents the output 
of the microphone, the middle line represents the duration of the shock, and the bottom line 
represents the output of the displacement transducer.  Note the initiation of VADs immediately 
after the shock.  For a complete description of the test, see Schifirneţ (2009). 
 

Consistent with our previous report (Kender et al., 2008), administration of carbachol into 

the pVTA produced dose-dependent elevation of the current thresholds for tailshock to elicit 

VAD and VDS with the effect greater for VAD threshold.  Alternately, the current intensity to 

elicit spinal motor reflexes (SMR = tail flick and hindlimb flexion) was not altered by injection 

of carbachol into the pVTA.  This affective analgesia was mediated by muscarinic receptors as it 

was effectively blocked by pretreating the VTA with the muscarinic receptor antagonist atropine 

but not with the nicotinic receptor antagonist mecamylamine.  Administration of carbachol into 
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the aVTA also preferentially elevated VAD threshold that was blocked by administration of 

either atropine or mecamylamine (Schifirneţ et. al, 2008).  These results indicate that carbachol-

induced affective analgesia relies on the activation of muscarinic receptors in pVTA and 

muscarinic and nicotinic activation in aVTA. 

Furthermore, during the course of this study we observed that administration of carbachol 

in the area between aVTA and pVTA was ineffective in producing antinociception.  This 

intermediate area of the VTA had previously not been identified as a functionally separate region 

of the VTA, and we labeled it as the midVTA (Fig. 4). 

 
 
Figure 4.  Carbachol induces affective analgesia in aVTA and pVTA, but not midVTA.  
Top.  Unilateral administration of carbachol (4 µg) into the midVTA (yellow) failed to elevate 
VAD thresholds as compared with the same dose administered in aVTA and pVTA (red) or with 
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saline (blue).  * Thresholds significantly elevated compared to saline, p < .05.  Bottom.  Coronal 
slices representing aVTA, midVTA, and pVTA, respectively. 
 

Taken together, the aforementioned results point to a discrepancy between the ability of 

carbachol to produce reward and to induce affective analgesia, at least in the aVTA.  Therefore, 

this study re-assessed the ability of carbachol to support CPP in the three subregions of the VTA 

using a carbachol dose that induces affective analgesia (i.e. 4 μg).  Additionally, the carbachol-

induced affective analgesia in the Schifirneţ et al. (2008) study relied on the activation of 

muscarinic receptors in pVTA and muscarinic and nicotinic activation in a VTA as shown by the 

fact that administration of atropine in the pVTA and administration of both atropine and 

mecamylamine in the aVTA attenuated carbachol-induced affective analgesia.  Thus, the present 

study also assessed the differential involvement of muscarinic and nicotinic receptors in 

activating the reward brain circuitry in the VTA subregions by pretreating the VTA with the 

same doses of atropine (i.e., 60 μg) and mecamylamine (i.e., 45 μg) that proved efficacious in 

attenuating the carbachol-induced affective analgesia.   

Finally, the distinction between the three subregions of the VTA in the rostro-caudal axis 

relies on functional findings, and not on anatomical landmarks.  From a stereological point of 

view, the main VTA zones rich in DA-producing neurons are paranigral nucleus (PN) and 

parabrachial pigmented nucleus (PBN; Ikemoto, 2007; Nair-Roberts et al., 2008).  However, 

from an anatomical standpoint, the VTA is an area whose borders and components are still a 

matter of debate (for an extensive review regarding VTA nuclei nomenclature, division, and 

projections, see Ikemoto, 2007).  For example, the 4th edition of Paxinos & Watson’s rat brain 

atlas (1998) is markedly different than the 6th edition of the same atlas (2007).  These differences 

are to be seen both at the level of aVTA and pVTA (Fig. 5), making difficult the identification of 

accurate stereotaxic coordinates.  Therefore, a tyrosine hydroxylase immunohistochemistry (TH 
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IHC) study was conducted in order to identify the cells that produce cathecholamines and, thus, 

properly adjust the coordinates for the stereotaxic surgeries (see Methods).   

 
 
Figure 5. VTA heterogeneity.  Excerpts from Paxinos and Watson 4th edition (left) and 6th 
edition (right) rat brain atlases showing coronal sections through the right midbrain of the rat.  
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Top.  Section at - 4.80 mm posterior to Bregma from the 4th edition (A) and 6th edition (B), at the 
level of the putative aVTA.  Note that at the same coordinates (DV=8.2mm, ML=1mm) the 
atlases point to two different structures, LH and VTAR, respectively.  Bottom.  Sections at 
approx.  - 6.00 mm posterior to Bregma, from the 4th edition (C) and 6th edition (D) at the level 
of the putative pVTA.  Note the differences in coordinates for the PBP. Abbreviations: fr, 
fasciculus retroflexus; IF, interfascicular nucleus; IPR, interpeduncular nucleus, rostral 
subnucleus; LH, lateral hypothalamic area; ml, medial lemniscus; mp, mammillary peduncle; 
PBP, parabrachial pigmented nucleus; pc, posterior commissure; PIF, parainterfascicular nucleus 
of the VTA; PN, paranigral nucleus of the VTA; pr, prerubral field; RMC, red nucleus, 
magnocellular part; RPC, red nucleus, parvocellular part; SNCD, substantia nigra, compact part, 
dorsal tier; SNCM (SNM), substantia nigra, compact part, medial tier; SNR, substantia nigra, 
reticular part; SuML, supramammillary nucleus (lateral part); tth, trigeminothalamic tract; VTA, 
ventral tegmental area; VTAR, ventral tegmental area, rostral part (aVTA). 
 
1.6. Behavioral Assessment 

Introduced in the 1940s and then refined almost two decades later, the conditioned place 

preference (CPP) paradigm is a validated experimental protocol for measuring drug reward (for 

reviews, see Bardo and Bevins, 2000; McBride, Murphy, & Ikemoto, 1999; Tzschentke, 1998, 

2000).  “Animals, just like humans, prefer and approach environments that have been repeatedly 

paired to stimuli with positive motivational properties” (DiChiara, 2000, p. 299).  The conceptual 

framework of the CPP paradigm is based on classical (Pavlovian) conditioning learning theory.  

Namely, “the primary motivational properties of a drug or non-drug treatment serve as an 

unconditioned stimulus (US) that is repeatedly paired with a previously neutral set of 

environmental stimuli which acquire, in the course of conditioning, secondary motivational 

properties such that they can act as conditioned stimuli (CS) which can elicit approach (or 

withdrawal, if the primary motivational properties of the treatment were aversive) when the 

animal is subsequently exposed to these stimuli” (Tzschentke, 1998, p. 616). Although there are 

ardent debates regarding the extent of the isomorphism between the reward processes underlying 

CPP and the reinforcement processes underlying self-administration, the majority of researchers 

agree that, as compared with the self-administration paradigm, the CPP is more sensitive to the 

 



 21

natural state of the organism, because the testing session in the latter protocol occurs when the 

animal is in a drug-free state (Bardo & Bevins, 2000).  

As mentioned earlier, several classes of drugs of abuse act as DA agonists as they 

increase the DA availability in the brain either by acting directly on the VTA neurons (e.g. 

opioids, nicotine, ethanol) or by blocking the DA transporter or the DA D2 autoreceptor (e.g. 

amphetamine, cocaine).  Most DA agonists strongly support the formation of CPP, effect that is 

readily blocked by administering DA antagonists (for a cross-indexed bibliography of these and 

other related studies that used CPP from 1957 to 1996, see Schechter & Calcagnetti, 1993, 

1998).  Consequently, it is of no surprise that CPP is robustly induced by drugs of abuse like 

morphine (Mueller, Perdikaris, & Stewart, 2002), heroin (Hand, Stinus, & Le Moal, 1989), 

amphetamine (Spyraki, Fibiger, & Phillips, 1982), cocaine (Spyraki, Nomikos, & Varonos, 

1987), nicotine (Yararbas, Keser, Kanit, Pogun, 2010), and ethanol (Gremel & Cunningham, 

2008), effects that are prevented by administration of  DA antagonists (for morphine, 

Manzanedo, Aguilar, Rodríguez-Arias & Miñarro, 2001;  for nicotine, Acquas, Carboni, Leone, 

& Di Chiara, 1989, for amphetamine, Liao, 2008, for heroin, Spyraki, Fibiger, & Phillips, 1983; 

for cocaine, Bilsky, Montegut, Nichols, & Reid, 1998; for ethanol, Walker & Ettenberg, 2007).  

1.7. Specific Aims: 

• Evaluate the ability of carbachol to support CPP learning in aVTA, midVTA and pVTA.  

• Evaluate the pharmacological specificity of carbachol effects by challenging CPP 

acquisition with nicotinic and muscarinic antagonists. 

• Identify the location of cathecholaminergic cells within VTA in the Long-Evans rat via 

TH staining. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hand%20TH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stinus%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Le%20Moal%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Spyraki%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fibiger%20HC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Phillips%20AG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yararbas%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Keser%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kanit%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pogun%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Spyraki%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fibiger%20HC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Phillips%20AG%22%5BAuthor%5D
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• Compare across VTA subregions the ability of carbachol to induce CPP with our 

previous findings of its capacity to elicit affective analgesia.  
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CHAPTER 2.  METHODS 

2.1. Animals 

Seventy-six naïve male Long-Evans rats were housed as pairs in plastic cages and given 

ad libidum access to food and water.  Housing was provided in a climate-controlled vivarium 

maintained on a 12:12-hr circadian cycle with lights on at 0700 hrs.  All testing was conducted 

between 0800 and 1700 hrs.  Rats were handled every three days for at least one week before 

testing to minimize possible effects of stress from human contact.  Also, upon arrival, rats were 

given 5-7 days of acclimatization within the new environment.  All procedures in this study were 

approved by the Institutional Animal Care and Use Committee (IACUC) of Wayne State 

University.  

2.2. Surgery 

All surgeries were performed under aseptic conditions.  Rats were anesthetized with 

sodium pentobarbital (50mg/kg, i.p.) following pretreatment with atropine sulfate (1 mg/kg, i.p.).  

For VTA implants, a stainless steel 33-gauge custom cannula was stereotaxically implanted 

unilaterally (right side), according to coordinates extrapolated from the rat brain atlas of Paxinos 

and Watson (1998) and to the immunohistochemistry data.  The coordinates (in mm) relative to 

the Bregma suture and the top of the skull were for the pVTA: AP = - 4.5, ML = + 2.5, DV = - 

7.3, for the midVTA: AP = - 5.0, ML = + 2.5, DV = -7.3, and for the aVTA: AP = - 5.5, ML = + 

2.5, DV = -7.3.  Guides were affixed to the skull with 4 stainless steel bone and cranioplastic 

cement.  Each guide cannula was fitted with a 28-gauge dummy cannula that extended the length 

of the guide to keep it clear and free of debris.  Rats were given 7-10 days to recover before the 

initiation of testing. 

2.3. Apparatus 
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The place conditioning apparatus consisted of two dimly-lit Plexiglas chambers (43 cm 

long X 21.5 cm wide X 30.5 cm high) separated by an opaque black wall with a guillotine door 

in the middle (8 cm wide).  One chamber differed from the other by wall pattern (horizontal vs. 

vertical black and whites line, each 2.5 cm wide) and floor type (horizontal vs. vertical bars).  

Each chamber was equipped with four horizontal photobeam arrays: two arrays were mounted on 

the each of longer sides at a height of 4.5 cm and two arrays were mounted on the longer side 

opposed to the guillotine wall, at a height of  4.5 cm and 12 cm, respectively.  Each photobeam 

array was spaced by 2.5 cm from one another (Fig. 6).   

 
 
Figure 6.  The CPP apparatus.  One chamber differed from the other by wall pattern 
(horizontal vs. vertical black and white lines, each 2.5 cm wide) and floor type (horizontal vs. 
vertical bars). 
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2.4. Procedure  

2.4.1. Conditioned Place Preference 

Each experiment consisted of three sessions (Fig. 7): habituation (day 1), conditioning 

(days 2 to 7), and testing (day 8).  On Day 1, the Habituation day, the guillotine door was open 

and the animals in a drug-free state were given free access to both chambers for 15 minutes.  As 

our dependent measure, we recorded the amount of time each rat spent in each chamber.  In 

order to minimize novelty effects and to ensure that rats had equal access to both chambers, each 

animal was placed in front of the opened guillotine door, facing the opposite chamber.  On the 

first day of Conditioning, the rats received either saline or carbachol and were immediately 

confined to one chamber for 15 min.  The guillotine door was closed.  The next day, rats were 

administered the opposite drug and restricted to the opposite chamber for 15 minutes. This 

procedure was repeated for the remaining days of the conditioning session.  Thus, each rat was 

exposed to each chamber three times, in an alternate fashion.  On Day 8, the Test day, each rat 

was placed in the opposite chamber than on day 1, facing the opened guillotine door.  Rats had 

access to both chambers for 15 min in a drug-free state and the time spent in each chamber was 

recorded.   
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Figure 7.  The CPP timeline.  The experimental design permitted the alternation of the chamber 
(half of the rats received the drug in chamber A and the other half in chamber B) and order (half 
of the rats received the drug first and the other half received the saline first). 
 

After each rat exposure, the chambers were cleaned with 0.75 % Alconox (VWR) and 

then aerated with Nilotron (Nilodor, Inc.) to eliminate odors from other rats.  The temporal data 

and other behavioral variables (e.g. locomotion, velocity, distance travelled, etc.) were recorded 

each day with the aid of the Activity Monitor software, version 5 (MED Associates, Inc.). 

2.4.2. Experiment 1: Carbachol-Induced CPP Learning   

During CPP conditioning sessions, three groups of rats with cannulation targeting aVTA, 

midVTA, or pVTA received unilateral (right) microinjections of 4 µg/.25 µl carbachol or vehicle 

solution (normal saline - Sal) into the VTA on alternate days and were then immediately placed 

into the CPP apparatus.  Each group contained 7-8 rats.   

2.4.3. Experiment 2: Antagonism Analyses   

To evaluate the pharmacological specificity of carbachol, four groups of rats with 

cannulations targeting aVTA and pVTA, respectively, received unilateral (right) microinjections 

of either a muscarinic or nicotinic antagonist 7-10 min prior to carbachol administration.  Every 

animal in the muscarinic antagonism group received unilateral injections of Sal + Sal or 60 µg 

atropine + 4 µg carbachol on alternate conditioning days; whereas, every animal in the nicotinic 

antagonism group received unilateral injections of Sal + Sal or 45 µg mecamylamine + 4µg 

carbachol on alternate conditioning days.  All injections were made in a constant volume of .25 

µl.  Each group of animals contained 6-9 rats.  As midVTA injections of carbachol failed to 

support CPP, an antagonism analysis could not be conducted. 

2.4.4.   Drug Injections   
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Intracerebral injectors targeted at the VTA extended 1.7 mm beyond the end of the 

cannula.  All injections were administered in a constant volume of 0.25 µl via a 33-gauge 

injector.  All injections were made at a constant rate over 1 min, via an infusion pump (Harvard 

Model PHD 2000), and injectors were left in place for 2 min after the completion of injections to 

aid in the diffusion of drugs into the tissue.  Carbachol, atropine, and mecamylamine were 

dissolved in normal sterile saline solution.  Carbamoylcholine chloride (carbachol), Atropine 

sulfate (atropine), and Mecamylamine hydrochloride (mecamylamine) were purchased from a 

local branch of Sigma-Aldrich.   

2.4.5. TH Immunocytochemistry and Histology   

Unless otherwise specified, all chemicals were purchased from a local branch of Sigma-

Aldrich or Fisher.  TH immunoreactivity was conducted in order to localize cathecholaminergic 

cells.  Under deep anesthesia (150 mg/kg pentrobarbital), the animals (n = 8) were transcardially 

perfused with saline solution followed by a solution of 4% paraformaldehyde in 0.1 M phosphate 

buffer, pH 7.4.  After perfusion, the brains were removed from the skulls and post-fixed in the 

same solution at room temperature for 3 h. Brains were then placed in sugar buffered formalin 

and stored at 4°C  until sectioned.  For each brain, serial coronal slices (45 µm) were obtained on 

a freezing microtome (Leica SM2000R) and placed in 24-free floating well plates containing 1 

ml 0.1M phosphate buffered saline (PBS) at pH 7.4.  The following steps were similar with the 

Xavier et al. (2005) protocol and were performed at room temperature with medium agitation, 

unless otherwise noted.  The free-floating sections were  pretreated with 1 ml of 0.3% H2O2  in 

0.1M PBS for 30 min, washed three times with 1 ml of 0.1M PBS, and blocked with 500 µl of 

Blocking Buffer (BB) for 60 min, containing 1% Normal Goat Serum, 1% bovine serum 

albumin, 0.3% Triton X-100, in 0.1M PBS solution.  The sections were then incubated over night 
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with 200 µl of monoclonal tyrosine hydroxylase primary antibody raised in mice (Sigma), 

diluted 1:750 in BB.  After washing three times with 1 ml of 0.01M PBST (PBS mixed with 

0.02% Triton X-100), the sections were  incubated for 120 min. in 200 µl secondary antibody, 

prediluted, biotynilated, raised in goats (Chemicon).  Sections were washed again three times 

with PBST and incubated for 60 min. with 200 µl Avidin-Biotin complex (Vector laboratories).  

Slices then were rinsed three times in 1 ml of PBST and two times in 1 ml of 0.01M Tris-HCl 

solution to bring the pH of the tissue from 7.4 to 7.6.  The immunoreaction was developed by 

incubating each section for 5 min in a 100ul diaminobenzene (DAB, Sigma) medium with nickel 

intensification (1 pellet DAB dissolved in 5 ml of distilled H20 containing 60 mg Nickel 

Ammonium Sulfate).  The last step of the immunoreaction was  completed by adding 100 µl of 

peroxidated DAB (1 µl of 30% H2O2 to 2.5 ml DAB medium) to the sections and then quickly 

removing the solution and stopping the reaction with 1 ml 0.05 Tris-HCl.  Finally, the sections 

were rinsed in distilled H2O, mounted on microscope gelatin-coated glass slides out of 0.01M 

PBS, dehydrated in ethanol (70%, 95%, 100%, 100%; 2 min each), cleared with CitriSolv™ 

(Fisher) and xylene and then covered with Permount® (Fisher) and coverslips.     

Rats that did not undergo TH immunohistochemistry were euthanized by carbon dioxide 

asphyxiation.  The injection sites were marked by an injection of 0.25 µl of safrin-O dye (EM 

Science).  The safranin-O injection was performed in the same fashion as the drug injections.  

Brains were extracted and placed in 20% (w/v) sucrose formalin solution for 48-72 hours.  

Brains were then sectioned in slices of 45 μm thickness on a freezing microtome, and injection 

sites were localized with the aid of the Paxinos and Watson (1998, 2007) brain atlases and of the 

TH data by two experimenters, one of whom was unaware of the behavioral outcomes. 

2.5. Data analyses 
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Rats that did not complete the experiment due to unforeseen circumstances (illness, 

blocked cannulae, n = 3) were excluded from the data analyses.  Statistically, CPP was defined 

as significantly more time spent in the drug-paired compartment following conditioning sessions 

(Test Day) compared to prior to conditioning (Habituation Day).  Accordingly, significant effects 

of treatment were determined by paired-sample Student’s t-tests for each VTA region.  The 

significance threshold alpha was set at .05.  Statistical analyses were performed using SPSS.  
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CHAPTER 3.  RESULTS 

3.1. Behavioral Profile 

In most of the rats, carbachol injections did not change the observable immediate 

behavior.  However, a minority of the animals displayed either hyperactivity (e.g., ipsilateral 

rotation, increased grooming hyperlocomotion, increased exploration and rearing) or 

hypoactivity (very calm, almost immobile, with eyes half-closed) both during carbachol injection 

and diffusion.  These behavioral effects were not consistent in the same animal (i.e. did not 

exhibit the behavioral profile following every injection) and a particular profile was not 

restricted to a particular VTA subregion. 

3.2. Initial Chamber Preference 

Rats were tested using an unbiased procedure in a two chamber CPP apparatus (see 

Methods for details of training and microinjection procedures).  Because there are reports that 

rats may have an initial tendency to prefer one of the two chambers (for a discussion on this 

methodological issue, see Bardo & Bevins, 2000, p. 38), a comparison of the amount of time 

spent in each chamber on the Habituation Day was conducted.  Collapsing data across all groups, 

rats initially spent an equal amount of time in each chamber (t(56) =  .39,  p > .05), indicating 

that an initial chamber preference did not confound the results of CPP training (Fig. 8).  
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Figure 8.  Animals did not exhibit any tendency to prefer one chamber vs. another prior to 
conditioning.  The rats spent almost exactly equal amount of time in each chamber. 
 
3.3. Experiment 1: Carbachol-Induced CPP Learning 

 Unilateral administration of carbachol (4μg in .25μl) into either the pVTA (Fig. 9) or 

aVTA (Fig. 10) was effective in supporting CPP learning.  The amount of time spent in the 

carbachol-paired chamber was directly compared before and after the conditioning took place.  

Rats spent significantly more time in the carbachol-paired compartment after conditioning 

(pVTA: t(6) = 3.98, p < .01; aVTA: t(5) = 4.04, p = .01). 

 

 



 32

 
 
Figure 9.  Unilateral administration of carbachol into pVTA produces CPP.  *Significantly 
more time spent in the carbachol paired compartment after vs. before conditioning, p < .01. 
 

 
 
Figure 10.  Unilateral administration of carbachol into aVTA produces CPP.  *Significantly 
more time spent in the carbachol paired compartment after vs. before conditioning, p = .01. 
 

Alternately, unilateral administration of carbachol (4μg in .25μl) into the midVTA failed 

to support CPP learning (Fig. 11).  There was no significant difference between the time spent in 

the carbachol-paired compartment before and after conditioning (t(7) =  .22, p > .05).  
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Figure 11.  Unilateral administration of carbachol into the midVTA does not produce CPP.  
Note that the rats spent almost the exact amount of time in both chambers after conditioning. 
 
3.4. Locomotion 

The behavioral effects observed in some rats following injection of carbachol were not 

observed on conditioning days when rats received vehicle injections or on the Test Day when no 

injections were administered.  Nevertheless, possible confounding effects of carbachol-induced 

locomotion during the Test Day were assessed (Fig. 12).  The level of locomotor activity 

(defined as number of photobeam breaks) prior to carbachol treatment (Habituation Day) was 

compared to that observed during the Test Day.  No difference in locomotion was observed in 

groups administered carbachol into the aVTA or midVTA (t(5) = .50, p > .05 and t(7) = 1.14, p > 

.05, respectively).  However, rats that received carbachol in the pVTA during conditioning 

exhibited elevated locomotion during the Testing Day (t(6) = 3.36, p < .05). 

 



 34

 
 
Figure 12.  Carbachol-induced locomotor activity.  * Significantly more photobeam breaks 
during the Testing (T) Day compared with the Habituation (H) Day, p < .05. 
 

As depicted in Fig. 13, rats that received carbachol in the pVTA also exhibited an 

increased number of chamber crossing during the Test Day as compared to the Habituation Day 

(t(6) = 2.49, p = .05).  No difference in the number of chamber crossing was observed in rats that 

were administered carbachol into aVTA or midVTA (t(5) = 1.65, p > .05 and midVTA, t(7) = 

1.87, p > .05, respectively). 

 
 
Figure 13.  Carbachol-induced zone crossings. * Significantly more chamber crossings during 
the Testing (T) Day compared with the Habituation (H) Day, p = .05. 
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It is unlikely that the CPP learning observed by the group administered carbachol into 

pVTA is confounded by the increased locomotor activity and chamber crossing observed during 

the Test Day.  Despite increased sampling of both chambers this group spent significantly more 

time in the carbachol-paired chamber.  Typically, it is a decrease in locomotor activity and 

chamber crossings that is suspected as confounding chamber preference during the Test Day, i.e. 

“the higher the rate of locomotion in one compartment relative to the other, the greater is the 

probability that the rat will leave that compartment” (Martin-Iverson, Reimer, & Sharma, 1997, 

p. 328). 

3.5. Experiment 2: Antagonism Analysis 

 The pharmacological specificity of carbachol-induced CPP was evaluated by pretreating 

the VTA with muscarinic (atropine) or nicotinic (mecamylamine) antagonists prior to carbachol 

administration. 

3.5.1. Muscarinic Receptors 

 Unilateral administration of atropine (60 μg in .25μl) prior to carbachol (4μg in .25μl) 

injections into either the pVTA (Fig. 14) or aVTA (Fig. 15) prevented the development of 

carbachol-induced CPP learning.  The amount of time spent in the drug-paired chamber was 

directly compared before (Habituation Day) and after (Test Day) the conditioning took place.  

There was no significant difference between the amount of time the animals spent in the atropine 

+ carbachol paired chamber and the saline + saline compartment after conditioning when the 

drugs were administered in pVTA (t(5) = .22, p > .05). The rats that received the atropine + 

carbachol treatment in aVTA spent less time in the drug-paired compartment than in the vehicle-

paired compartment after conditioning (t(8) =  2.94, p < .05). 
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Figure 14.  Muscarinic mediation of CPP in pVTA. Atropine pretreatment prevented the 
formation of carbachol-induced CPP.  Legend: Atr = atropine, Carb = carbachol, Sal = saline. 

 
 
Figure 15.  Muscarinic mediation of CPP in aVTA.  Atropine pretreatment prevented the 
formation of carbachol-induced CPP.  #  Significantly less time spent in the drug-paired 
compartment after vs. before conditioning, p < .05.  Legend: Atr = atropine, Carb = carbachol, 
Sal = saline. 
 
3.5.2. Nicotinic Receptors 

Unilateral administration of mecamylamine (45 μg in .25μl) prior to carbachol (4 μg in 

.25 μl) injections into either the pVTA (Fig. 16) or aVTA (Fig. 17) prevented the development of 

carbachol-induced CPP learning.  The amount of time spent in the drug-paired chamber was 
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directly compared before (Habituation Day) and after (Test Day) the conditioning took place.  

There was no significant difference between the amount of time the animals spent in the 

mecamylamine + carbachol paired chamber and the saline + saline compartment after 

conditioning (pVTA: t(5) = 1.77, p > .05; aVTA: t(6) = .99, p > .05). 

 
 
Figure 16.  Nicotinic mediation of CPP in pVTA.  Mecamylamine pretreatment in pVTA 
prevented the formation of carbachol-induced CPP.  Legend: Carb = carbachol, Mec = 
mecamylamine, Sal = saline. 

 
 
Figure 17.  Nicotinic mediation of CPP in aVTA.  Mecamylamine pretreatment in pVTA 
prevented the formation of carbachol-induced CPP.  Legend: Carb = carbachol, Mec = 
mecamylamine, Sal = saline. 
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3.6. Tyrosine Hydroxylase Immunohistochemistry 

 Figure 18 shows the localization of catecholamine producing neurons within aVTA (top), 

midVTA (middle) and pVTA (bottom) of the intact adult male Long-Evans rat.  Surgery 

coordinates for CPP studies were adjusted accordingly.  See Methods for experimental details.   

 
 
Figure 18.  Catecholamine-producing neurons within VTA.  Top.  aVTA.  Middle.  midVTA.  
Bottom.  pVTA.  The staining was obtained via TH IHC. 
 

The exact location of the injection sites performed in aVTA, midVTA, and pVTA is 

shown in Fig. 19, Fig. 20, and Fig. 21, respectively. 
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Figure 19.  Coronal diagrams extracted from Paxinos and Watson (2007) representing the 
cannula placements in aVTA.  The red circles represent the location of the 4 μg carbachol 
microinjections and the blue squares represent the location of either 60 μg atropine + 4 μg 
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carbachol or 45 mecamylamine + 4 μg carbachol microinjections.  Numbers on the right side of 
diagrams represent coordinates in millimeters posterior to Bregma. 

 
 
Figure 20.  Coronal diagrams extracted from Paxinos and Watson (2007) representing the 
cannula placements in midVTA.  The black triangles represent the location of the 4 μg 
carbachol microinjections.  Numbers on the right side of diagrams represent coordinates in 
millimeters posterior to Bregma. 
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Figure 21.  Coronal diagrams extracted from Paxinos and Watson (2007) representing the 
cannula placements in pVTA.  The red circles represent the location of the 4 μg carbachol 
micro injections and the blue squares represent the location of either 60 μg atropine + 4 μg 
carbachol or 45 mecamylamine + 4 µg carbachol microinjections.  Numbers on the right side of 
diagrams represent coordinates in millimeters posterior to Bregma. 
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3.7. Comparison between Carbachol-Induced Affective Analgesia and Reward 

Figure 22 compares the capacity of 4 µg carbachol administered into subregions of the 

VTA to support CPP learning (present study) and generate increases in VAD threshold 

(Schifirneţ & Borszcz, 2007).  The capacity of carbachol to elevate VAD threshold depended on 

the subregion of the VTA into which carbachol was injected.  Comparison of VAD thresholds 

following injection of carbachol into the aVTA, midVTA and pVTA revealed significant 

differences (F(2,40) = 46.4, p < .001).  Planned pairwise comparisons revealed that the mean 

threshold current intensity necessary to elicit VAD was significantly lower when the drug was 

delivered into the midVTA compared with aVTA (t(23) = 8.91, p < .001) and pVTA (t(25) = 

10.08, p < .01).  Comparison between 4 μg carbachol treatment in aVTA and pVTA indicated no 

difference in the VAD threshold (t(32) = .65, p = .52). 

Similarly, analysis of the groups of animals that received unilateral 4 µg carbachol 

injections in the aVTA, midVTA, and pVTA in the present study revealed that the CPP score is 

significantly affected by the region into which the drug is delivered (F(2,18) = 7.32, p = .005).  

The CPP score is defined as time spent in the carbachol-paired chamber after conditioning minus 

time spent in the carbachol-paired chamber before conditioning.  Specifically, direct planned 

comparisons revealed that the animals spent significantly less amount of time in the drug-paired 

chamber when the drug was delivered into the midVTA compared with aVTA (t(12) = 3.36, p < 

.01) and pVTA (t(13) = 3.31, p < .01).  Comparisons between 4 μg carbachol treatment in aVTA 

and pVTA indicated no difference in the CPP score (t(11) = .03, p = .98). 
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Figure 22.  Unilateral 4 µg carbachol injections support the development of CPP learning 
and affective analgesia in both the aVTA and pVTA, but not in the midVTA.  Top left. 
Carbachol (4 µg) administered in mid-VTA (black) failed to elevate VAD thresholds as 
compared with the same dose administered in aVTA and pVTA (red). * Thresholds significantly 
elevated compared to midVTA, p < .01.  Top right.  Carbachol (4 µg) administered aVTA and 
pVTA (red), but not in mid-VTA (black) supported the acquisition of CPP learning in mid-VTA 
(black). * CPP score significantly elevated compared to midVTA, p < .01. Bottom.  Coronal 
slices representing the aVTA, midVTA, and pVTA, respectively, from the Schifirneţ & Borszcz 
(2007) study (left) and from the present study (right).   
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CHAPTER 4.  DISCUSSION 

This study is the first to directly compare the extent of overlap between cholinergically 

mediated reward and affective analgesia within different VTA regions. We tested Franklin’s 

(1989, 1998) analgesia hypothesis that postulated that activation of the brain reward circuit 

should be conducive to affective analgesia Our data indicate that unilateral 4 µg carbachol 

injections support both the development of CPP learning and affective analgesia in both the 

aVTA and pVTA, but not in the midVTA (Fig. 22), supporting the affective analgesia 

hypothesis.  However, the extent of overlap between the neural circuits underlying affective 

analgesia and reward is only partial, as different cholinergic receptors are responsible for these 

effects in different subregions of the VTA.  Whereas both nicotinic and muscarinic receptors 

contribute to carbachol-induced affective analgesia aVTA, as shown by the ability of both 

atropine and mecamylamine to reduce the carbachol-induced increases in VAD threshold, only 

the muscarinic receptors are mediating the analgesic action of carbachol in the pVTA, because 

mecamylamine was ineffective in attenuating the carbachol analgesia, but atropine reliably 

blocked this effect.  On the other hand, the rewarding effects of carbachol are mediated by the 

activation of both nicotinic and muscarinic receptors in both aVTA and pVTA, as indicated by 

the fact that both atropine and mecamylamine prevented the development of CPP in both VTA 

subregions. 

4.1. Differential Cholinergic Activation of the VTA in Reward and Analgesia 

Two previous studies addressed the rewarding properties of intra-VTA carbachol 

administration by employing the CPP paradigm.  The first study observed that carbachol (0.5 µg 

and 2 µg/side) is reinforcing in the VTA (Yeomans et al., 1985).  Yet, in this study, different 

VTA subregions were not assessed, as the cannulae placements ranged from - 4.8 mm to - 6.3 
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mm from Bregma, covering the majority of the VTA.  The second study conducted by Ikemoto 

& Wise (2002) evaluated the capacity of carbachol to support CPP in the aVTA and pVTA and 

found that carbachol supports CPP learning only in the pVTA.  Nevertheless, this study used 

significantly lower doses of carbachol (ranging from 0.00546 µg to 0.091 µg) as compared with 

our doses that proved efficacious in inducing affective analgesia (2 and 4 µg).  At the lowest 

dose (1 µg) used in the Schifirneţ & Borszcz (2007) study, carbachol failed to induce affective 

analgesia in any VTA subregion.  Therefore, it is possible that low doses (0.09 µg) of carbachol 

are not rewarding, but the high dose (4 µg) used in this study are able to induce CPP in the 

aVTA.  

 When 4 µg carbachol was administered in the midVTA, as opposed to the aVTA or 

pVTA, it failed to induce either affective analgesia or reward, suggesting that carbachol-induced 

CPP is anatomically specific to the aVTA and pVTA.  To the best of my knowledge, there is 

only one study published to date that found an anterior-posterior bimodal activation within the 

VTA.  Marcangione & Rompré (2008) trained rats to self-administer electrical stimulation to the 

posterior mesenchephalon and assessed the subsequent c-Fos expression within VTA.  The 

authors found that in both the aVTA and pVTA there was an increase in the c-fos expression 

following posterior mesenchephalon stimulation, but the lateral midVTA exhibited the lowest 

number of Fos-positive cells.  The fact that the midVTA is not involved in the rewarding effects 

of posterior mesenchephalon self-stimulation (Marcangione & Rompré, 2008) or in the 

locomotor (Museo & Wise, 1995) and rewarding effects of cytisine4 (R. A. Wise, personal 

communication, 6/17/2010) indicates that unlike the aVTA and pVTA, the activation of the 

midVTA is not reinforcing.  Taken together, and concordant with the affective analgesia 

                                                 
4 Cytisine is a nicotinic agonist that supports the development of CPP when delivered into the aVTA (Museo & 
Wise, 1994) 
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hypothesis, these results suggest that there is a similar regional heterogeneity within the VTA 

mediating analgesia and reward: wherever carbachol is reinforcing within the VTA, it also 

produces affective analgesia; conversely, wherever in the VTA carbachol injections are not 

reinforcing, this drug also fails to induce affective analgesia.  

The carbachol-induced affective analgesia and reward in the aVTA and pVTA is thought 

to be mediated by its binding to the muscarinic and nicotinic receptors located on the 

dopaminergic neurons within the VTA.  Thus, carbachol activation of the dopaminergic neurons 

mimics the actions of acetylcholine release from the LTDg and PPTg nuclei5, resulting in 

subsequent dopamine release into the terminal VTA efferent sites.  As stated above, cholinergic 

activation of the VTA following electrical stimulation of LTDg (Forster & Blaha, 2000; Forster 

et al., 2002; Yeomans et al., 2001) or intra-VTA administration of cholinergic agonists, like 

carbachol (Westerink et al., 1996), oxotremorine M (muscarinic agonist, Gronier & Rasmussen, 

2000), or nicotine (Blaha et al., 1996) results in increased accumbal DA efflux.  This 

cholinergically mediated DA release into the NAc is reinforcing as it is associated with the 

rewarding effects of morphine (Rezayof et al., 2007), cocaine (You et al., 2008), and lateral 

hypothalamic self-stimulation (Rada et al., 2000).  

Activation of muscarinic rather than nicotinic receptors seems to be more involved in 

reward processing (Yeomans & Baptista, 1997, You et al., 2008).  Both the increase in accumbal 

DA release and the rewarding effects associated with morphine injections (Miller et al., 2005), 

cocaine self-administration (You et al., 2008), lateral hypothalamic stimulation (Rada et al., 

2000; Yeomans & Baptista, 1997; Yeomans et al., 2000) are blocked more by pretreating the 

                                                 
5 These cholinergic structures that project to the VTA are also involved in noxious (LDTg, Kayama & Ogawa, 1987; 
PPTg, Carlson et al., 2004; Iwamoto, 1991; Kayalioglu & Balkan, 2004) and reward – related (LDTg, Nakahara, 
Ishida, Nakamura, Furuno, & Nishimori, 2001; PPTg, Okada, Toyama, Inoue, Isa, & Kobayashi, 2009; Olmstead, 
Munn, Franklin, & Wise, 1998) information processing. 
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VTA with muscarinic rather than nicotinic antagonists.  In concordance with this, our study 

found that the VTA muscarinic receptors mediate the rewarding and analgesic effects of 

carbachol, as atropine blocked the carbachol-induced CPP and affective analgesia in both the 

aVTA and pVTA. 

Although not to the same extent as muscarinic receptors, the activation of the nicotinic 

receptors from the VTA is also reinforcing.  Knock-out mice with deletion of nicotinic receptor 

genes that underwent viral restoration of the nicotinic receptors α4β2 and α6β2 selectively in the 

VTA self-administer i.v. nicotine, but not if these receptors are missing from the VTA or are 

restored elsewhere in the brain (Pons et al., 2008), suggesting that these particular nicotinic 

subtypes expressed onto the DA neurons are necessary and sufficient for nicotine self-

administration.  Nicotinic activation of the VTA DA neurons results in increased DA accumbal 

efflux (Cadoni, Muto, Di Chiara, 2009; Yoshida et al., 1993; Zhang et al., 2009) and this efflux 

is blocked by intra-VTA application of nicotinic antagonists (Gotti et al., 2010; Nissel et al., 

1994).  The reinforcing properties of nicotine depend on the integrity of mesoaccumbal DA 

terminals, as shown by the fact that nicotine self-administration is reduced in rats with intra-NAc 

6-OHDA lesions6 (Corrigall, Franklin, Coen, & Clarke, 1992).  Alternately, intra-VTA 

microinjection of the nicotinic antagonist DHβE attenuates i.v. nicotine self-administration 

behavior (Corrigall, Coen, & Adamson, 1994).  Nicotine also supports the development of CPP 

(Vastola, Douglas, Varlinskaya, & Spear, 2002; Yararbas et al., 2010) and the acquisition of this 

learning is blocked by intra-NAc shell D1 antagonists (Spina, Fenu, Longoni, Rivas & Di Chiara, 

2006).  Consistent with these findings, the results of our study revealed blockade of nicotinic 

receptors by mecamylamine into either aVTA or pVTA prevents the development of carbachol-

                                                 
6 When administered into the catecholaminergic terminal sites, like NAc, this neurotoxin is taken up by the terminal 
buttons of DA axons and transmitted via retrograde transport to cell bodies in VTA where it destroys these cells by 
inducing apoptosis (for a review, see Blum et al., 2001). 
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induced CPP learning.  On the other hand, mecamylamine reduced the carbachol-induced 

affective analgesia only when administered into the aVTA, but not in the pVTA.  

It is important to mention that administration of an antagonist prior to a non-specific 

agonist is not identical to administration of the other agonist alone.  In other words, 

administration of mecamylamine + carbachol does not equal administration of muscarine.  If this 

were true, then administration of atropine prior carbachol in our study, for example, would not 

have prevented the development of CPP learning, as the activation of the nicotinic receptors 

within the VTA is reinforcing.  Therefore, the present study suggests that there is a 

subpopulation of muscarinically activated AND nicotinically inhibited neurons within the pVTA 

that is involved in affective analgesia, but not in reward (Fig. 23).  Conceivably, in order to 

produce a compound that when administered into the pVTA has an analgesic, but not a 

rewarding effect, this compound must be a combination of a muscarinic agonist and a nicotinic 

antagonist.  Thus, at least at the level of the pVTA, the neural circuits contributing to affective 

analgesia and reward overlap only partially.  Further studies are needed to characterize the 

potential analgesic and/or rewarding effects of direct nicotinic or muscarinic activation of the 

VTA by injecting nicotine or muscarine alone, without actively inhibiting the other receptors 

type. 
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Figure 23.  The differential involvement of nicotinic and muscarinic receptors in aVTA, 
midVTA, and pVTA in affective analgesia (AA) and conditioned place preference (CPP).  
Note that in the pVTA there is a subpopulation of muscarinically activated AND nicotinically 
inhibited neurons that is involved in affective analgesia, but not in reward. 
 

It is possible that the differential involvement of cholinergic receptors in the three VTA 

subregions in reward and analgesia relies on the different densities of nicotinic and muscarinic 

receptors in these areas.  Unfortunately, there is no extant evidence of the distribution of the 

cholinergic receptors in these VTA subregions.  Thus, future studies that perform ultrastructural 

localization of the cholinergic receptors in the VTA would provide useful information that help 

assess whether cholinergic receptors display a regional heterogeneity within VTA.  

Another possibility is that the cholinergic agents used in this study bound to receptors 

located on non-dopaminergic neurons.  From a quantitative point of view, the most recent 

unbiased stereological estimate of the rat VTA reports that GABA neurons constitute about 35% 

of the VTA, with glutamate neurons constituting about 2-3%, and the remaining 63% (approx. 

40,000 cells) being DA neurons  (Nair-Roberts et al., 2008).  It is important to stress that the 

distribution of these three cell types is not uniform across the VTA, with more glutamate and less 

GABA neurons in the aVTA and more GABA cells and almost no glutamate neurons in the 

pVTA (Nair-Roberts et al., 2008; Yamaguchi, Sheen, & Morales, 2007).  In addition to the VTA 

neurons, en passant axons and most of the VTA terminals possess muscarinic and nicotinic 

receptors (Adell & Artigas, 2004) and binding to cholinergic agents to these receptors can result 

in either depolarization or hyperpolarization of VTA neurons.  For example, the nicotinic 

receptor α4β2 is expressed by GABA afferents and the nicotinic receptor α7 by glutamate inputs 

(Keath, Iacoviello, Barrett, Mansvelder, & McGehee, 2007).  These cytoarchitectonic differences 

may result in differential modulation of VTA subregions by cholinergics and, as a consequence, 
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differential involvement of the VTA subregions in reward and analgesia.  Further studies 

designed to identify the muscarinic and nicotinic receptor subtypes responsible for the results 

obtained in this study, along with their exact location, would provide further insight into the 

mechanisms of cholinergically mediated analgesia and reward. 

4.2. Downstream Effects 

4.2.1. Nucleus accumbens (NAc) 

As mentioned earlier, previous studies suggested that the activation of the pVTA, but not 

the aVTA, mediates the reinforcing effects of opiates (Zangen et al., 2002), cocaine (Rodd et al., 

2005), nicotine (Ikemoto, et al., 2006), ethanol (Rodd-Henricks et al., 2000), 

tetrahydrocannabinol (Zangen et al., 2006), muscimol (GABAA agonist, Ikemoto et al., 1998), 

CPBG (5-HT3 agonist, Rodd et al., 2007), and low doses of carbachol (Ikemoto & Wise, 2002).  

These functional differences are thought to rely on the differences in efferent projections of these 

two subregions: pVTA projects predominantly to limbic structures critical for reinforcement 

(e.g., medial part of the NAc shell and the medial olfactory tubercle), whereas aVTA projects to 

limbic regions less involved in reinforcement processes (e.g., NAc core, NAc ventral shell, 

lateral tubercle, and dorsal striatum (Ikemoto, 2007, 2010).  

However, besides striatum and the olfactory tubercle, the VTA sends efferents to other 

subcortical structures, such as the habenula, bed nucleus of stria terminalis, amygdala, 

hippocampus, and septum (for reviews, see Deniau, Thierry, & Feger, 1980; Moore & Bloom, 

1978; Oades & Halliday, 1987; Swanson, 1982).  Moreover, the mesocortical dopaminergic 

system, comprising of the VTA’s efferents to prefrontal, insular and cingulate cortices (Fluxe et 

al., 1974, Ohara et al., 2003; Williams & Goldman-Rakic, 1998), is well characterized and 

heavily investigated by cognitive neuroscientists (Wise, 2004).  In addition to the mesolimbic 
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and mesocortical projections, VTA neurons send several sparse efferents to the adjacent 

substantia nigra (Ferreira, Del-Fava, Hasue, & Shammah-Lagnado, 2008), thalamus (Beckstead, 

Domesick, & Nauta, 1979), hypothalamus (Phillipson, 1979), locus coeruleus (Oades & 

Halliday, 1987), dorsal raphe (Kalen, Skagerberg, & Lindvall, 1988), and periaqueductal grey 

(PAG, Kirouac, Li, & Mabrouk, 2004).  

As mentioned above, Ikemoto (2007) found that the pVTA predominantly projects to the 

medial part of the NAc shell and the medial olfactory tubercle; in contrast, the aVTA projects 

mostly to the NAc core, NAc ventral shell, lateral tubercle, and dorsal striatum.  Somewhat 

inconsistent findings were reported by Lammel et al. (2008) who found by retrograde tracing that 

the medial VTA projects to mPFC, amygdala, NAc core and medial shell, whereas the lateral 

VTA (whether posterior or anterior) projects to the NAc lateral shell (Lammel et al, 2008).  Yet 

other groups maintain that the medial VTA projects to the lateral habenula, locus coeruleus and 

parabrachial nucleus, the dorsal VTA projects to the pregenual aCC,  the ventral VTA projects to 

NAc, septum, amygdala, and supragenual aCC, and the ventroanterior VTA projects to the 

hippocampus and entorhinal cortex (Swanson, 1982).  Also, the anterodorsal VTA is the 

predominant origin for mesocortical projections, whereas the posteroventral portion of the VTA 

gives rise to the mesolimbic projections (Fluxe, et al., 1974, Oades & Halliday, 1987).  With 

respect to the mesocortical system, the pregenual cortex receives projections from the medial 

VTA, the supragenual cortex from the ventrolateral VTA and the perirhinal cortex from the 

dorsolateral VTA (Lindvall, Bjorklund, & Divac, 1978).  Also, it is important to mention that the 

midVTA is a region that has not yet been investigated as a separate functional subunit of the 

VTA and its afferent and efferent projections are unknown.   
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Inasmuch as some of the divergences in these tracing studies can be accounted for by 

species differences or tracing methods, more research needs to be conducted to asses the 

anatomical organization of the mesolimbic and mesocortical neurons within the VTA.  Also, 

there is virtually no evidence of cell distribution or afferents/efferents labeling in the midVTA.  

Nevertheless, these findings indicate that 1) the subpopulations of the neurons that project to a 

particular region are distributed throughout the VTA on rostro-caudal, ventro-dorsal, and medio-

lateral axes, and 2) the mesolimbic efferents tend to cluster more in the posterior than in the 

anterior VTA, more medially than laterally, whereas the mesocortical efferents display the 

opposite pattern.  

Although the carbachol microinjections in both the present study and the Schifirneţ & 

Borszcz (2007) study were performed in the center of the aVTA and the pVTA, and thus not 

allowing a finer distinction between medial and lateral aspects of the VTA, it can be speculated 

that carbachol activated most of the reward-processing clusters of mesoaccumbal neurons within 

the pVTA and the aVTA, albeit there are less mesoaccumbal rewarding cell populations in the 

aVTA.  If the reinforcing and analgesic neural substrates within the VTA were entirely shared, 

then the amplitude of the VAD thresholds increases and the magnitude of CPP score following 

carbachol administration would have varied according to the distribution of the mesoaccumbal 

reward populations in the pVTA and the aVTA (i.e., a slight decrease in the VAD thresholds and 

CPP score in the aVTA compared with pVTA).  Since there was virtually no difference between 

the carbachol-induced increase in VAD thresholds and CPP score in the aVTA and the pVTA 

(Fig. 20) it is concluded that the carbachol-induced affective analgesia and reward when 

delivered in to the pVTA is mediated primarily by DA release in NAc.  On the other hand, the 

carbachol-induced affective analgesia and reward in the aVTA may rely on DA release in other 
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terminal structures, presumably mesocortical.  Thus, while the rewarding and analgesic effect 

obtained by cholinergic activation of the pVTA may rely on activation of the mesoaccumbens 

dopaminergic system, the same effects obtained in the aVTA may rely on the DA release into 

structures other than NAc, like aCC, insula, or amygdala.  

4.2.2. Anterior cingulate cortex (aCC) 

The aCC is paramount for the generation of the affective-motivational aspect of the pain 

experience, but it is not involved in the processing of the sensory-discriminative aspect (Cao et 

al., 2009; Gao, et al., 2004; Johansen & Fields, 2004; Johansen, Fields, & Manning, 2001; Lei, 

Sun, Gao, Zhao, & Zhang, 2004; Li et al., 2009; Ren et al., 2006; Sewards & Sewards, 2002; Sun 

et al., 2008; Treede, Kenshalo, Gracely, & Jones, 1999; Vogt, 2005; Xie, Huo, & Tang, 2009), 

and its activation is required for the generation of pain unpleasantness (Kulkarni et al., 2005; 

Rainville, Duncan, Price, Carrier, & Bushnell, 1997; Vogt & Sikes, 2000). Moreover, surgical 

cingulotomy in humans results in a pain relief that is associated with the attenuation of the pain 

affect (Hassenbusch, Pillay, & Barnett, 1990; Hurt & Ballantine, 1974; Pillay & Hassenbusch, 

1992; Wilson & Chang, 1974).  In point of fact, in a striking similarity with the patients that 

receive morphine for severe pain, the patients with cingulotomies report that the pain is still 

present, but it does not bother them.  The aCC receives DAergic (Oades & Halliday, 1987), 

GABAergic (Carr & Sesack, 2000) and possibly glutamatergic input from the VTA (Sulzer & 

Rayport, 2000; Trudeau, 2004).  Stimulation of the VTA also inhibits the aCC neurons that 

respond to noxious stimuli (Mantz, Milla, Glowinski, & Thierry, 1988; Pirot, Glowinski, & 

Thierry, 1996).  Correspondingly, microinjections of DA or DA agonists into the aCC suppress 

pain behaviors associated with long-term nociception elicited by sciatic denervation in the rat 

and these antinociceptive effects are blocked by microinjecting DA antagonists into the aCC 
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(Lopez-Avila, Coffeen, Ortega-Legaspi, del Angel, & Pellicer, 2004).  Taken together, these 

findings suggest that the DAergic projection from the VTA to the aCC is essential for analgesia.  

Thus, it is possible that the increase in the VAD thresholds following carbachol administration 

into the aVTA observed in the Schifirneţ & Borszcz (2007) study is partially dependent on the 

DA release into the aCC.  

Converging evidence suggests that the aCC is a structure critical also for reward and 

reinforcement.  To the extent that in rat the aCC is part of the PFC (for an extensive review, see, 

Uylings, Groenewegen, & Kolb, 2003), DA agonists like amphetamine and cocaine increase 

extracellular DA in rat PFC and cocaine facilitates both PFC and medial forebrain bundle (MFB) 

self-stimulation (Moody & Frank, 1990); this facilitation of PFC self-stimulation is completely 

blocked by DA antagonists (McGregor, Atrens, & Jackson, 1992).  Similarly, cocaine (Goeders 

& Smith, 1983) and DA (Goeders & Smith, 1986) self-administrations into the aCC are 

abolished by microinjecting D1 DA antagonists or lesioning the DA terminals in this region.  In 

addition, DA antagonists microinjected into the prelimbic portion of medial PFC (mPFC) block 

the reinforcing effects of i.v. cocaine (McGregor & Roberts, 1995), whereas VTA lesions block 

cocaine self-administration (Roberts & Koob, 1982).  Normally, rats will work harder if the 

reward is bigger, but not if they are given systemic D2 antagonists or if their DA terminals 

within aCC are lesioned (Walton et al., 2009).  Taken together, these finding suggest that the DA 

input to aCC is required for drug self-administration and reward processing.  Thus, the 

development of CPP following carbachol administration into the aVTA can be explained, at least 

partially, by the reinforcing effects of DA release into the aCC. 

4.2.3. Insula 
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Another of the target structures of the VTA involved in pain processing, analgesia, and 

reward is the insula.  Many imaging studies have shown that insular activation is correlated with 

the conscious, subjective feeling of craving or urge of taking drugs of abuse such as cocaine, 

heroin, alcohol, and nicotine (for a review of these studies, see Naqvi & Bechara, 2009).  

Conversely, damage to the insular cortex promotes a “disruption of smoking addiction” in 

humans (Naqvi, Rudrauf, Damasio, & Bechara, 2007, p. 531), suggesting that this region plays a 

central role in the initiation of drug urges.  Likewise, lidocaine inactivation of the insula 

abolished the ability of amphetamine to induce CPP learning (Contreras, Ceric, & Torrealba, 

2007), bringing further evidence that the “insular cortex is a key structure in the perception of 

bodily needs that provides direction to motivated behaviors” (p. 655).  With respect to 

reinforcement, both D1 receptor activation and inactivation in the rat dorsal agranular insular 

cortex reduce the lever-pressing for cocaine, but only the D1 blockade results in a significantly 

reduced amount of cocaine intake in the addicted rat (Di Pietro, Mashhoon, Heaney, Yager, & 

Kantak, 2008).  Interestingly, D1 receptor blockade also disrupted the food-maintained 

responding and consumption in the normal rat, suggesting that the DAergic afferents to the 

insular cortex are important not only for reward processing in a dependent organism, but also for 

the initiation and maintenance of the motivation to seek natural reinforcers.  

Based on the observation that the insula receives ample information from the body and 

thalamus about interoceptive sensations (e.g., pain, inflammation, temperature, taste, itch, 

sensual touch, tickle, air hunger, visceral and muscular sensation), Craig (2002) proposed that 

the primary role of the insula is to create a map of the bodily states that, together with other 

structures, might constitute the “basis for human awareness of the physical self as a feeling 

entity” (p. 663).  According to this view, the insula is a crucial part of a system that not only 
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updates the interoceptive maps based on signals from the body when something is changed, but 

also makes these maps available to awareness (i.e. consciousness).  These neural maps are not 

devoid of meaning, since their continuous updates are necessary for the brain to maintain 

homeostasis.  As such, the insula, along with the amygdala, aCC, and ventromedial PFC, might 

make available to consciousness emotions associated with imbalances in the bodily states, like 

“urges”, “wantings”, “desires”, or what Damasio (1994) calls “somatic markers” (also, for a 

discussion of the somatic-marker hypothesis, see Bechara, Damasio, & Damasio, 2000).  With 

respect to drugs of abuse, the insula is probably a central player in representing the interoceptive 

effects of these drugs in the form of a neural map (Naqvi & Bechara, 2009).  Therefore, when the 

body is experiencing withdrawal symptoms, the insula translates these interoceptive signals into 

a conscious, subjective feeling of “urge” to address the imbalance by taking the drug that restores 

the homeostasis.  Naqvi & Bechara (2009) proposed that DA release from the VTA into the 

insula might contribute to the updates of the neural map from the insula about drug-induced 

interoceptive changes by bringing information about the hedonic value of the drug use. 

The homeostatic role of the insular cortex is also supported by pain research.  Pain can be 

viewed as a homeostatic emotion destined to signal the violation of the integrity of the body 

(Craig, 2003), and, not surprisingly, insular activation during pain experience is the most 

frequently reported finding in the imaging studies on pain processing (Apkarian, Bushnell, 

Treede, & Zubieta, 2005).  Moreover, electrical stimulation of the human posterior insula 

produces pain sensations like stinging, burning or disabling pain in a somatotopic fashion 

(Ostrowsky et al., 2002) and the subjective intensity of pain is correlated with activation of the 

insula (Coghill, Sang, Maisog, & Iadarola, 1999; Koyama, McHaffie, Laurienti, & Coghill, 

2005).  Alternately, patients with insular damage show absent or inadequate emotional responses 
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to painful stimuli (i.e. pain asymbolia; Berthier, Starkstein, & Leiguarda, 1987; Greenspan, Lee, 

& Lenz, 1999), underscoring the importance of the insula in processing the affective-

motivational aspect of pain.  

Of note, the rostral agranular insular cortex (RAIC) is a region that is heavily innervated 

by DAergic fibers (Jones, Kilpatrick, & Phillipson, 1986; Ohara, et al., 2003) and DA release in 

the insula is essential for antinociception.  Injections of the DA reuptake inhibitor GBR-12935 

into the RAIC result in dose-dependant inhibition of the pain behaviors induced by formalin 

inflammation that is reduced by administration of the selective D1 receptor antagonist SCH-

23390 into the RAIC (Burkey, Carstens, & Jasmin, 1999).  Consistent with these results, 

DAergic stimulation of the insula by intra-RAIC GBR-12935 injections reduced the noxious 

stimulus-induced c-fos expression in nociceptive spinal dorsal horn neurons, as well as the firing 

of these neurons in response to noxious heat application to the paw, suggesting that the role of 

DA release into RAIC is to inhibit nociception (Burkey et al., 1999).  However, it appears that 

different DA receptors play different roles in the insula in different pain conditions: the 

activation of D2 and the blockade of D1 elicit antinociception in a neuropathic rat model as 

measured by a decrease in the autotomy behavior, but the opposite pattern is without effects 

(Coffeen et al., 2008).  These data suggest that the activation of D1 receptor is pronociceptive in 

a chronic pain condition (Coffeen et al., 2008), but antinociceptive in acute pain (Burkey et al., 

1999), whereas D2 activation is antinociceptive in the chronic neuropathic pain condition.  As 

opposed to the subcortical D1 and D2 receptors (Uchimura, Higashi, & Nishi, 1986, but see Greif, 

Lin, Liu, & Freedman, 1995), the cortical D1 and D2 receptors usually result in an opposite 

pattern of postsynaptic membrane polarization (i.e., depolarization vs. hyperpolarization; 

Godbout, Mantz, Pirot, Glowinski, & Thierry, 1991; Parfitt, Gratton, & Bickford-Wimer, 1990); 
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therefore, it is conceivable that inhibition of insula neurons by DA D2 is conducive to analgesia, 

whereas activation by DA D1 is pronociceptive.  

Whereas it is evident that intra-insular DA is required both for reward processing and 

analgesia, more research is necessary to disentangle the roles of different DA receptors in the 

insula, the downstream synaptic events, and the extent of the involvement of insular DA in all 

these processes. 

4.2.4. Amygdala  

The amygdala is an almond-shaped structure in the medial temporal lobe containing at 

least twelve subdivisions (LeDoux, 2000) and has bidirectional connections with the VTA (for 

amygdalar efferents, see Fudge & Haber, 2000; for VTA efferents, see Swanson, 1982).  

DAergic afferents to the amygdala arise from the substantia nigra and VTA and project via the 

medial forebrain bundle (de la Mora, Gallegos-Cari, Arizmendi-Garcia, Marcellino, & Fuxe, 

2009).  Since the 1950s, a considerable amount of research has been published on the 

involvement of the amygdaloid complex in negative affect, particularly fear and aggression (e.g. 

Fernandez De Molina & Hunsperger, 1959; LeDoux, 2000). 

Exposure to a painful stimulus is obviously a threatening event, and therefore it is not 

surprising that the amygdala is involved in the processing and modulation of pain7.  Bilateral 

lesions of the rat amygdala reduce emotional pain reactions such as ultrasonic vocalizations to an 

                                                 
7 It is important to stress that the amygdalar involvement in aversive and noxious processing is complex and not 
uniformly distributed across all the amygdalar nuclei (for a review of each amygdalar nucleus involvement in pain, 
see Neugebauer, Li, Bird, & Han, 2004).  Moreover, even within a particular amygdalar nucleus there are regional 
differences with respect to aversive processing.  For example, microinjecting DA or the DA agonist bromocriptine 
into the posterior, but not anterior, BLA “dose-dependently attenuated cold restraint stress (3 h at 4°C)-induced 
gastric ulcer formation in rats” (Ray & Henke, 1991, p.786).  There are also sex and lateralization differences in the 
amygdalar involvement in aversive and noxious processing, with females, but not males, showing increased DA 
release in BLA in a restraint stress paradigm (Mitsushima, Yamada, Takase, Funabashi, & Kimura, 2006), and with 
right amygdala being more involved in an chronic arthritic pain paradigm in rats that the left amygdala (Ji & 
Neugebauer, 2009). 
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electric shock (Goldstein, Rasmusson, Bunney, & Roth, 1996) or shock-induced hyperalgesia 

(Crown, King, Meagher, & Grau, 2000).  Furthermore, bilateral lesions of the amygdala reduce 

the antinociceptive action of morphine in the rat and cannabinoids in rhesus monkeys in a warm-

water tail-withdrawal assay (Manning, Merin, Meng, & Amaral, 2001) and dramatically increase 

the vocalization thresholds in the rat tail-flick test, but leave the tail withdrawal latencies 

unaltered (Calvino, Levesque, & Besson, 1982).  In agreement with this, Borszcz & Leaton 

(2003) found that electrolytic lesions of the central amygdala (CeA) of rats preferentially 

increased the tailshock threshold to elicit VADs, leaving VDS and SMR thresholds intact.  These 

investigators also reported the CeA lesions blocked the capacity of tailshock to support 

Pavlovian fear conditioning.  To the extent that the VAD threshold elevation reflects suppression 

of the affective dimension of pain, microinjections of morphine into the basolateral amygdala 

(BLA) result in a dose-dependent preferential increase in VAD threshold and this effect is 

reversed by the administration of the opiate receptor antagonist methylnaloxonium into the BLA 

(Nandigama & Borszcz, 2003).  

The involvement of amygdala in pain affect is further confirmed by imaging studies in 

humans, where it has been found that the amygdala activation corresponds with the subjective 

perception of thermal painful stimuli, but not with intensity of non-painful thermal stimuli 

(Bornhovd et al., 2002).  In line with this, several imaging experiments with humans involving 

placebo analgesia paradigms have shown that amygdalar activation is correlated with placebo 

responses (Bingel, Lorenz, Schoell, Weiller, & Büchel, 2006; Craggs, Price, Perlstein, Verne, & 

Robinson, 2008; Wager, Scott, & Zubieta, 2007).  To the extent that the placebo effect engages 

the neural circuitry that subserves the affective-motivational dimension of pain (for a review, see 

Zubieta & Stohler, 2009), amygdalar activation in placebo conditions is preferentially correlated 
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with suppression of the affective–motivational and not the sensory-discriminative dimensions of 

pain.  

Painful stimuli result in DAergic activation of the amygdala as microdialysis studies 

showed that electric footshock or stimuli paired with electrical shocks increases DA release in 

the rat amygdala (Herman et al., 1982; Young & Rees, 1998).  Also, chronic inflammatory pain 

in rodents induces increase in DA in the amygdala, as detected with high-performance liquid 

chromatography (HPLC) (Neugebauer, Galhardo, Maione, & Mackey, 2009).  Additionally, 

aversive electrical stimulation of the inferior colliculus increases the DA and serotonin release in 

BLA, but not CeA (Macedo, Martinez, de Souza Silva, & Brandao, 2005).  These findings 

suggest that aversive stimulation, whether painful or not, conditioned or unconditioned, results in 

DA release in amygdala.  

Unfortunately, the role of amygdalar DA with respect to pain affect and analgesia is 

somewhat unclear, given the paucity of studies that conducted direct DAergic manipulations 

within the amygdala coupled with pain paradigms.  More research into DA involvement in pain 

affect in amygdala is clearly warranted.  

Nevertheless, there is indirect evidence that might shed a little light on the role of DA in 

amygdala.  From a physiological point of view, opioid administration results in decreased 

amygdalar excitation (for a review of opioid receptor function, see Simonds, 1988).  As opposed 

to morphine, DA has mainly excitatory effects in the amygdala8.  Thus, if inactivation of the 

amygdala by lesions or opioids results in affective analgesia, as suggested by the findings 
                                                 
8 Similar to the cingulate and insular cortices, DA in amygdala can have complex actions: the total output of 
amygdala can be decreased on increased by DA, depending whether it excites directly the projection neurons, or it 
inhibits them indirectly via GABAergic interneuron activation, as revealed by in vitro patch-clamp recordings in 
rodents (Bissiere, Humeau, & Luthi, 2003; Kroner, Rosenkranz, Grace, & Barrionuevo, 2005).  Moreover, the DA 
local action in amygdala can be excitatory or inhibitory, depending whether it binds to the D1 receptors or D2 
autoreceptors, respectively.  Furthermore, DA can excite or inhibit local GABA interneurons in BLA (Marowsky, 
Yanagawa, Obata, & Vogt, 2005). 
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presented above, it would be plausible to assume that amygdalar excitation by DA will augment 

pain behaviors, or, at least, would not result in analgesia.  If this were the case, then less DA into 

the amygdala would correlate with higher pain thresholds.  But, some evidence suggests that 

rodents with amygdalar DA depletion produced either by intra-amygdala 6-OHDA injections 

(which results in selective catecholamine depletion, Ashford & Jones, 1976) or by a COMT 

knockout (Kambur et al., 2008) have the same baseline nociceptive thresholds as controls, as 

measured by  response latencies in pain tests such as tail-flick, hot-plate or foot-shock.  These 

inconsistencies might be reconciled if the role of amygdala in processing pain in general is 

considered.   

With the caveat that there are differences in pain paradigms, experimental conditions and 

behavioral variables which still need to be addressed, it is generally believed that the lateral and 

basolateral nuclei attach emotional significance to noxious sensory information (i.e. pain affect), 

which is then transmitted to the CeA, which, in turn, can send projections to the descending pain 

control structures in the brainstem (e.g. PAG, rostroventral medulla - RVM) and thus modulates 

pain behavior (Neugebauer, et al., 2009)9. The BLA is under tight regulatory control from mPFC 

and DA in BLA has dual action: lifts the inhibition from the amygdalar projecting neurons that 

are under tight mPFC inhibition and augments the sensory signal from cortical areas (Grace & 

Rosenkranz, 2002; Rosenkranz & Grace, 1999, 2001, 2002a, b).  Since DA enhances the sensory 

inputs to BLA, it is proposed here that DA in the BLA also augments the processing of a noxious 

stimulus by increasing the firing rate of the BLA neurons that project to CeA.  

                                                 
9 This view is consistent with the fear and anxiety research that suggests that the lateral and basolateral nuclei 
together are a sensory interface where CS-US associations are made during aversive conditioning, whereas CeA is 
the effector system that initiates the autonomic, endocrine and behavioral reactions to the aversive stimulus 
(LeDoux, 2000) 
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The CeA, which also receives DAergic projections that acts as modulator of the local 

synapses (de la Mora et al., 2009), has dual action with respect to pain; it has been shown that 

CeA manipulations (lesions or electrical stimulations) can enhance pain and can inhibit pain, by 

activating or inhibiting, respectively, the neurons from the PAG that are part of the endogenous 

descending pain modulatory system, depending on the negative affective state of the organism 

(Neugebauer, et al., 2004).  In other words, affective states like anxiety (that can be elicited by 

the threat of an electric shock) do not engage the endogenous descending pain modulatory 

system, but fear (elicited by exposure to three brief shocks) does so (Rhudy & Meagher, 2000), 

presumably via differential CeA regulation of the PAG neurons.  Also, stress induced analgesia 

or hyperalgesia are well documented phenomena (for reviews of stress-induced analgesia, see 

Butler & Finn, 2009, of stress-induced hyperalgesia, see Imbe, Iwai-Liao, & Senba, 2006).  

Without going into detail of how fear and anxiety are produced, the main difference between 

these states is the subjective emotional intensity.  Therefore, it is conceivable that there is a 

threshold after which the CeA initiates the endogenous pain suppression and DA is modulating 

this threshold.  By increasing firing rate in the BLA and potentiating the noxious sensory signals, 

DA “forces” the CeA to initiate or not the endogenous opioid system, depending on the affective 

encoding done in the BLA.  Whether or not the CeA would initiate the opioid system depends on 

the affective coloration assigned by the BLA to the noxious stimulus, on the affective state of the 

organism prior to the noxious stimulation, and on the type of pain.  Indeed, not all types of pain 

trigger the endogenous opioid system; endogenous opioid system comes into play with prolong, 

but not acute stimuli (Watkins & Mayer, 1986).  

In terms of pain affect, if DA increase in the BLA results in amygdalar disinhibition, then 

this would facilitate affective behaviors.  The finding that intra-amygdalar DA microinjections 
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attenuates morphine analgesia in a foot-shock test (Rodgers, 1977) appears contradictory with 

the DAergic role proposed here, but it is not, as this test measured pain behaviors that are 

organized at the spinal level.  Also, this author injected DA into the cortico-medial amygdala, 

and therefore there are regional differences between amygdalar nuclei to be considered.  To the 

extent that BLA attaches emotional significance to the painful stimulus, then it is conceivable 

that DA manipulations in this region would not change the reflex latencies, but it would change 

the emotional coloration of the stimulus.  In other words, intra-amygdalar DA would not affect 

the sensory dimension of pain, but the affective aspect, the latter of which is not being captured 

by measures like reflex latencies.  The same rationale would apply to the lack of changes in 

nociceptive threshold found with intra-amygdalar DA depletion described above.  In summary, 

the evidence reviewed above suggests that DA in the amygdala serves a modulatory role, 

facilitating adaptive behavioral responses to painful stimuli.  Thus, the carbachol-induced 

affective analgesia obtained in the Schifirneţ & Borszcz (2007) study in the aVTA could be 

partially mediated by DA release in the BLA or CeA.  To test this hypothesis, further studies 

should challenge directly the intra-VTA carbachol induced affective analgesia by microinjecting 

DA antagonists in BLA and CeA, respectively.   

Amygdalar nuclei are also involved in reward processing, as electrophysiological 

recordings from monkey amygdala revealed that at least 35% of amygdalar neurons respond to 

food reward consumption exclusively, with the other neurons responding to either bar pressing 

for food or to the tone or light that had been associated with the reward (Nakano et al., 1987).  It 

appears that the involvement of the amygdala in reward processing relates to reward-related 

learning, as lesions of the rat the BLA block the ability of cocaine-associated cues to lower the 

threshold for ICSS (Hayes & Gardner, 2004) and impair different aspects of instrumental 
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(Balleine, Killcross, & Dickinson, 2003) and Pavlovian (Hatfield, Han, Conley, Gallagher, & 

Holland, 1996) conditioning.  

In agreement with this, DA release in the amygdala is required for the formation of 

different types of reward-related learning, as rats who received DA receptor antagonists into the 

BLA fail to engage in cocaine seeking behavior under a second-order schedule of reinforcement 

(Di Ciano & Everitt, 2004).  Of note, DA D1 receptor blockade in the BLA significantly disrupts 

the conditioned reinstatement of cocaine self-administration (Alleweireldt, Hobbs, Taylor, & 

Neisewander, 2006), but it does not affect cocaine self-administration itself (See, Kruzich, & 

Grimm, 2001), suggesting that the role of DA in the BLA is to regulate reward-related 

associative learning, and not the basic incentive value of the reward (for an alternative view, see 

Hitchcott & Phillips, 1998a, 1998c).  In addition, blockade of D3 receptors in the amygdala 

results in impaired Pavlovian conditioning to both natural (sucrose) and drug rewards 

(amphetamine) (Hitchcott & Phillips, 1998b).  Therefore, it is apparent that DA in the amygdala, 

at least in the BLA, is required for reward-related learning, whether Pavlovian or operant, and 

the ability of carbachol to support development of CPP in the present study when delivered into 

the aVTA might be mediated also by DA release in amygdalar nuclei. 

4.2.5. Other Terminal Sites 

The involvement of VTA DA release in analgesia and reward processing within in NAc, 

aCC, insula, and amygdala might explain the carbachol-induced affective analgesia and reward 

in aVTA and pVTA, but does not fully account for the fact that there is a subpopulation of 

muscarinically activated AND nicotinically inhibited neurons within the pVTA that is involved 

in affective analgesia, but not in reward.  One possible explanation is that these neurons project 

to terminal sites that process analgesic, but not reward-related information. 
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One of these putative sites is the PAG, to which the VTA sends both DAergic and 

GABAergic projections (Kirouac et al., 2004).  Whereas there are no reports that the PAG plays 

a significant role in reward processing, there is ample evidence for the involvement of the PAG 

in pain modulation and pain affect (Dostrovsky & Deakin, 1977; Guimarães, Guimarães, & 

Prado, 2000; Heinricher, Cheng, & Fields, 1987; Vaccarino, Clemmons, Mader, & Magnusson, 

1997).  The PAG contributes to analgesia by activating both ascending projections to the 

forebrain and thalamic sites essential for the production of the affective dimension of pain and 

descending projections to the rostral ventromedial medulla that result in the suppression of pain 

transmission at the level of spinal cord (Behbehani, 1995; Borszcz, 1995, 1999).  For example, 

the affective analgesia obtained after morphine microinjections into the nucleus parafascicularis 

thalami (nPf) is blocked by muscimol (GABAA agonist) injections in the ventrolateral PAG 

(Munn et al., 2009).  Alternately, the analgesia induced by morphine injections in the ventral 

PAG is dose-dependently reduced by administration of methysergide (5-HT antagonist) in the 

CeA or nPf (Borszcz & Streltsov, 2000).  

These results suggest that there is a functional interaction between PAG, CeA and nPf in 

modulating the affective dimension of pain.  Thus, it is conceivable that the analgesic, but not-

rewarding effect of muscarinically activated and nicotinically inhibited neurons within the pVTA 

is possibly mediated by their projections to PAG, a site paramount for antinociception, but not 

for reward-related processing.  

4.3. The Role of the VTA DA in Analgesia and Reward   

4.3.1. Reinforcement and Reward: The Masking Hypothesis 

The data presented above emphasizes the role of cholinergically-induced DA release 

from the VTA in affective analgesia and reward.  But the question of how is DA exactly 

 



 66

producing analgesia and reward in each of the structures discussed above is still unanswered.  

Namely, is DA producing analgesia by suppressing the pain transduction and thus disrupting the 

pain circuitry?  Or is the activation of the VTA DA inducing a positive affective state that is 

superimposed on the negative affective state produced by pain and thus attenuating the pain 

experience?  In an attempt to answer these questions, in the following section I will discuss some 

of the most prominent hypotheses regarding the role of DA in general and then, based on the 

available evidence, provide a framework for understanding the role of DA in pain, analgesia, and 

reward in the context of DA function. 

4.3.1.1. Nucleus Accumbens Evidence   

Since its discovery as a neurotransmitter and not just a precursor of norepinephrine and 

epinephrine in 1957 (Carlsson, Lindqvist, & Magnusson, 1957) for which Carlsson received the 

Nobel prize, DA is incontestably the molecule for which more hypotheses have beet put forward 

than for any other neurotransmitter.  There has been so much research of DA and DA function(s) 

in addiction, for example, that this neurotransmitter achieved the status of celebrity both in the 

scientific world and in the popular media as the ‘pleasure molecule’ (Marsden, 2006).  As DA 

has definite roles in Parkinson disease, schizophrenia, pair-bonding, cardiovascular regulation, 

kidney function and others, only a few of the hypotheses -  regarding reward and reinforcement - 

are briefly discussed in the following pages, as they are the most relevant to pain and analgesia.  

Out of these, the most known hypothesis (and oldest) is usually referred to as the hedonic 

hypothesis of DA or simply the reward hypothesis10.   

                                                 
10 Proposed initially by Wise (Wise, 1982; Wise, Spindler, deWit, & Gerberg, 1978), the anhedonia hypothesis has 
been refined and enlarged to include as separate subdivisions the DA involvement in reinforcement, reward, 
incentive motivation, and hedonia (see Wise, 2004, 2008).  Here are highlighted only the major concepts that 
received the most empirical support.  
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According to the reward hypothesis, the role of DA in appetitive reinforcement is thought 

to convey the reward signal itself (Wise, 1996) and when this signal is blocked (e.g. by DA 

antagonists), the “goodness” of the stimuli is blunted:  

In introspective language we would say that neuroleptics [that disrupt the midbrain 

dopamine system] appear to take the pleasure out of normally rewarding brain 

stimulation, take the euphoria out of normally rewarding amphetamine, and take the 

“goodness” out of normally rewarding food (Wise, Spindler, deWit, &  Gerberg, 1978, p. 

263). 

As seen in Chapter 1.2., this hypothesis received substantial support from studies that 

assessed both the reinforcing and the rewarding effects of DA agonists.  Drugs of abuse like 

opioids and psychostimulants act as DA agonists as they increase the DA availability in the 

brain.  Such drugs have high abuse potential, are self-administered in both animals and humans, 

and as outlined in Chapter 1.2., they are also potent analgesics.  Based on this observation, as 

described in Chapter 1.3., Altier and Stewart (1999a) proposed that these drugs act as analgesics 

because they shift the motivational state from a negative affective state, such as that produced by 

a painful stimulus, to a normal affective state by promoting the DA availability into the NAc.  

On the other hand, these drugs achieve addictive liability when administered in a normal 

affective state, because they shift the motivational continuum from a neutral affective state 

towards a positive affective state, by promoting DA availability into the same site, i.e. NAc (Fig. 

1).  

Of course, one can find many caveats with the accumbal DA hypothesis of reward.  For 

instance, Ikemoto (2007) pointed out that the pleasure felt during anticipation of reward is 

different (and thus probably subserved by different neural mechanisms) from the sensory 
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pleasure of the consumption of reward.  Whether DA is necessary or is merely modulating these 

two types of pleasure it is still unclear.  Another problem stems from the techniques employed to 

asses the role of DA.  To mention only one example, the CPP paradigm is often used for 

measuring reinforcement of a particular drug, even though CPP is a form of Pavlovian learning, 

and not operant, thus being more suitable for reward measurement (Wise, 1996; Wise & 

Rompre, 1989).  

Nonetheless, the reward hypothesis has dominated DA research for the past 25 years and 

the fact the DA release in NAc is associated with at least some form of a positive state is a well-

documented phenomenon.  Corroborating this with the finding that DA release/availability in 

NAc is also associated with analgesia, it seems plausible that the way in which mesoaccumbal 

DA mediates affective analgesia in the present study is by producing a positive affective state 

that shifts the motivational continuum towards the middle, as Altier & Stewart (1999a) 

suggested.  In doing so, accumbal DA effectively masks the negative affect produced by pain and 

shifts the motivational continuum to a more positive affective state that would allow the 

organism to more effectively ignore the pain and engage in adaptive behaviors destined to escape 

the noxious stimulus and/or to avoid further injury.  

4.3.2. Salience: The Pain Transmission Suppression/Facilitation Hypothesis 

However, the DA theory of reward is incomplete, as it cannot account for the fact that 

reward without DA is possible.  In a series of experiments with DA-deficient mice created by 

inactivating the tyrosine hydroxylase gene, the Palmiter group (Zhou & Palmiter, 1995) found 

that these mice will die of starvation if DA is not restored to the striatum because they do not 

approach food placed literally in front of their noses (Hnasko, Szczypka, Alaynick, During, & 

Palmiter, 2004) or they eat such insignificant amounts of food that are not enough to keep them 
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alive (Szczypka et al., 1999), but they still prefer sucrose over water (Cannon & Palmiter, 2003).  

Additionally, neurochemical 6-OHDA lesions of the NAc do not disrupt the ‘liking’ of sweet 

solutions, as assessed by the taste reactivity test (i.e., observing the evolutionarily conserved 

affective reactions of rats to sucrose, Berridge & Robinson, 1998).  With respect to drugs of 

abuse, the DA-depleted mice display robust CPP with morphine (Hnasko, Sotak, & Palmiter, 

2005) and cocaine (Hnasko, Sotak, & Palmiter, 2007), suggesting that the ability of these drugs 

to induce a positive affect must either 1) not rely on DA or 2) relies on DA, but in the absence of 

it, a compensatory mechanism mimics the DA action.  Because fluoxetine, a serotonin 

transporter blocker, induces CPP in the DA-depleted animals, but not in the control animals 

(Hnasko et al. 2007), it seems that the second explanation is more plausible.  

Moreover, the reward hypothesis of DA function predicts that the A10 neurons should be 

inhibited, or, at least, should not fire in the presence of an aversive stimulus.  If DA signals to the 

NAc carry a positive affect and fire only during presentation or expectation of rewards, then one 

would expect the DA neurons to be silent during aversive stimulation.  Indeed, an experiment 

employing in vivo electrophysiological recordings has shown that DA neurons within VTA are 

uniformly inhibited during foot pinch of anaesthetized rats whereas the non-DAergic neurons are 

activated (Ungless et al., 2004).  However, as shown in Table 1, there is considerable evidence 

that VTA DA neurons are active during aversive stimulation like tail pinch (Smith et al., 1997) 

and this activation is associated with increased accumbal DA (Young, 2004).  In light of this 

evidence, the same group that found that DA neurons are uniformly inhibitive during noxious 

stimulation, repeated their previous experiments and found that dorsal VTA (PBN) does not 

respond to noxious stimulation (consistent with the reward hypothesis), but ventral VTA (PN) 

shows phasic activation by electric footshocks (Brischoux, Chakraborty, Brierley, & Ungless, 
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2009).  Thus, there are at least two different populations of neurons within the VTA that have 

different firing patterns to negatively or positively valenced stimuli.  

As a consequence of these and similar findings, the incentive salience hypothesis of DA 

has been put forward, initially by Berridge and Robinson (Berridge & Robinson, 1998; Robinson 

& Berridge, 1993, 2003), and then refined and expanded by others.  According to this 

hypothesis, the DA signal does not carry the hedonic value of a stimulus (the ‘liking’), rather it 

carries a different component of reward, the ’wanting’.  In other words, during the process of 

Pavlovian learning, DA mediates the transformation of the neutral representation of the 

conditioned stimulus into an attractive and ‘wanted’ incentive that ‘grabs attention’, thus the 

reinforcing stimuli acquire incentive motivational properties.  For example, both a light that will 

predict an electric shock and the sight of palatable food will increase DA release, because both 

stimuli need to ‘grab the attention’ of the animal as they are salient events for the organism.  

However, additional data suggest that the incentive motivational role of DA extends beyond 

conditioned stimuli.  Supporting this idea, data from electrophysiology and microdialysis studies 

have shown that a wide range of salient unconditioned stimuli like pain, loud tones, bright lights, 

and novel environments increase the firing of DA neurons (for a review of these studies, see 

Horvitz, 2000).  

The incentive-salience theory and its derivatives shift the focus of DA neurons as reward 

detectors to a broader role as high relevance for behavior or salient stimuli detectors (Salamone, 

Correa, Mingote, & Weber, 2005).  With respect to aversive stimulation, this theory implies that 

VTA neurons are involved in processing both aversive and appetitive stimuli, as long as they 

display incentive salience properties.  
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Thus, the VTA DA signals a change in the environment that is of importance for the 

animal.  This signal is not devoid of meaning (of which the animal might be aware of or not) 

because a salient stimulus or event has motivational properties; it requires the organism to be 

ready for a potential change in the environment and therefore be able to engage in a goal-

directed behavior that is responsive to that environmental change.  Therefore is not surprising 

that a painful stimulus, which is a change in the environment that has incentive-motivational 

properties, results in massive DA release in various brain structures. 

4.3.2.1. Anterior Cingulate Cortex Evidence.   

Pain is a complex experience that captures attention, it is a salient event, and requires 

“alerting and orienting to the potentially threatening stimulus, evaluating and anticipating the 

threat and executing an appropriate escape response, as well as learning and memory to avoid 

future encounters” (Hutchison, Davis, Lozano, Tasker, & Dostrovsky, 1999, p. 404).  

The aCC is a structure implicated in performance monitoring and error detection 

(Bechtereva, Shemyakina, Starchenko, Danko, & Medvedev, 2005) and attentional processes 

(for a review, see Raz & Buhle, 2006), and its role in attention is to “focus greater attention on 

behaviorally relevant stimuli to limit the processing of distracting events” (Weissman, 

Gopalakrishnan, Hazlett, & Woldorff, 2005, p. 229).  In addition, the evidence presented in 

Chapter 4.2.2. outlines 1) the role of aCC in generating the affective dimension of pain, 2) the 

role of DA release in aCC in producing affective analgesia, and 3) the role of DA release in aCC 

in reward and drug self-administration. 

Therefore, it is proposed here, and in concordance with the motivational-incentive 

hypothesis of DA function, that the role of DA in aCC is to prevent the generation of the 

affective dimension of pain in order to shift attention to goal-directed behaviors that would result 
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in an escape from the painful stimulus.  Thus, the saliency signal is effectively transformed into a 

pain suppression signal in the aCC enabling generation of behaviors more important for the 

organism, like escaping, attending to the injury, or preventing further injury.  Pain is 

unquestionably a salient event, but perhaps the need, the ‘want’ to escape pain and its causes is 

more salient and it is possible that this information is what VTA conveys to the aCC.  

Likewise, during drug-self administration, the DA signal of the aCC could carry 

incentive-motivational information relevant for orienting/shifting attention, error detection, 

and/or performance monitoring destined to prepare the organism for goal-directed behavior.  

Indeed, one line of evidence links the VTA DA neuronal firing more to the expectation of 

rewards rather than the hedonic value of the stimulus, particularly in the neocortical regions 

(Schultz, 2002).  Therefore, the fact that intra-aCC DA antagonists block diverse aspects of self-

administration and reinforcing properties of drugs of abuse might not necessarily reflect a 

reduction of the hedonic value of the stimulus carried by the DA release in the aCC, but rather a 

reward expectation signal that is disrupted (i.e. a salient event is about to happen).  

4.3.2.2. Insula Evidence.   

It is plausible that a saliency signal is generated not only in response to relevant external 

events, but also to the events that change the internal equilibrium of the organism.  As both 

external events like a painful stimulus and drugs of abuse result in interoceptive changes, the 

insular cortex plays a central role in creating and updating a neural map of these bodily changes 

that serve the purpose of maintaining homeostasis.  It is believed that the insular cortex, along 

with other structures, is a part of a circuit that attaches emotional valence to these interoceptive 

changes.  Indeed, there is evidence that the activity of the insula is strongly associated with some 
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of the feelings associated with interoceptive changes like disgust (Wicker et al., 2003), craving 

(Contreras et al., 2007), and the unpleasantness of pain (Greenspan et al., 1999).  

As outlined in Chapter 4.2.3, the DA input to the insular cortex is essential for both 

analgesia and reward processing.  Integrating the data presented above and taking into account 

the general homeostatic role of insula in reward and analgesia, it is hypothesized here that the 

DA signal to the insular cortex brings information vital to the updating the neural map of the 

current state of the organism with the purpose of restoring homeostasis.  This hypothesis is 

consistent with the incentive-motivational role of DA.  

Correspondingly, the analgesia that follows DAergic activation of the insula might be the 

result of a process of pain transmission suppression, a process similar to the prevention of the 

generation of the affective dimension of pain in the aCC.  Indeed, both insula and aCC are 

involved in the generation of the affective dimension of pain, although the unpleasantness of 

pain serves different purposes in these two areas: whereas insula integrates different signals from 

the body, attaches emotional valence to them and makes these feeling available to consciousness, 

the aCC supplements the motor aspect of motivations to emotional stimuli (volition, agency) 

(Craig, 2009a, 2009b).  Therefore, DA in insula IF it binds to D2 receptors (see Chapter 4.1.2.) 

might prevent the pain unpleasantness from either being generated or from being made available 

to awareness.  In either case, the behavioral result is affective analgesia.  On the other hand, IF 

DA binds to the D1 receptors, then the result could be a heightened signal regarding the saliency 

of the pain stimulus, thus facilitating the insular cortex in the generation of the conscious feeling 

of unpleasantness.  It would be interesting to investigate the circumstances under which D1 or D2 

receptors are activated. 

4.3.2.3. Amygdala Evidence   
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The modulatory role of the DA saliency signal is even more apparent in the amygdala.  

As mentioned above, the BLA and the CeA nuclei have distinct roles in pain processing: the 

BLA attaches negative emotional valence to stimuli, whereas the CeA is the effector, it “acts” on 

the input provided by BLA.  This type of connection parallels the relationship between insular 

and cingulate cortices.  However, the DA input to amygdala, whereas it still brings a saliency 

signal, has a different role than the input to the two cortical areas.  Namely, the DA release into 

the BLA augments the pain signal, consistent with the salience-motivational hypothesis of DA 

function.  It is proposed that this augmentation facilitates adaptive responses to the painful 

stimuli.  

Electrophysiological recordings from CeA during application of DA in a painful setting 

have not yet been conducted, but the available evidence summarized in Chapter 4.2.4. suggests 

that DA is capable to modulate the CeA output during pain.  As a consequence, the CeA can 

either activate or inhibit the endogenous opioids release, as CeA projects to and modulates the 

descending pain modulatory system subserved by PAG and RVM (Neugebauer et al., 2009).  At 

prima facie, it would seem paradoxical that organisms do not make use of the endogenous opioid 

system every time a painful stimulus occurs, regardless of type or situation.  And yet, one can 

think of a situation when an augmentation of the painful stimulus (like chronic pain, 

inflammation) (read amygdalar activation and inhibition of the endogenous opioids) would be 

adaptive, because it forces the organism to pay attention and take action, thus avoiding further 

injury.  On the other hand, “in life-threatening situations (actual or perceived), when survival 

demands ‘fight or flight’-like decisions, the amygdala acts to suppress attention to pain as a less 

important but possibly distracting factor to guarantee survival” (Neugebauer, 2007, p. 2).  
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Perhaps DA in amygdala provides a gate for aversive stimuli enabling a switch between starting 

on and shutting off the endogenous opioid system. 

With respect to reward processing within amygdala, it is possible that the disruption of 

different reward-related learning tasks by DA antagonists reflects the absence of a signal that 

conveys the incentive-motivational value of a rewarding stimulus.  Amygdala would require 

such a signal to perform adequate reward-related learning with the purpose of adaptive goal-

directed behavior.  Indeed, the impairments seen in cocaine seeking behavior (Di Ciano & 

Everitt, 2004) or conditioned reinstatement of cocaine self-administration behavior (Alleweireldt 

et al., 2006) after intra-BLA microinjections of DA antagonists might reflect the disruption of a 

motivational signal destined to facilitate reward-related learning phenomena. 
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CHAPTER 5.  CONCLUDING REMARKS 

In summary, the present study is the first to systematically evaluate and compare the 

extent of the overlap between the neuronal circuits underlying reward and affective analgesia by 

investigating the participation of the cholinergically activated DA release from three VTA 

subregions in reward and affective analgesia.  Additionally, by analyzing the two major theories 

of DA function – the reward theory and the salience theory -, it is hypothesized here that VTA 

DA plays different roles in reward and analgesia, depending on the terminal region. 

In the NAc, VTA DA is not interfering directly with the pain processing system, but it 

induces affective analgesia by producing a positive affective state that is superimposed on the 

negative affective state produced by pain and thus masking pain affect.  In other words, both the 

unpleasantness of pain and the pleasant feeling generated by the DA release in NAc are 

simultaneously processed in the brain, but they compete for what economists and computational 

theorists termed resource allocation.  Competition between opposing motivational system has 

long been hypothesized by psychological theories such as the Opponent Process Theory 

proposed by Solomon & Corbit (1974) and supported by Koob & Le Moal (2008) or the 

Motivation-Decision Model proposed initially by Fields (2007) and refined later by Leknes & 

Tracey (2008).  By themselves, both pain and reward are powerful motivational states that result 

in a learning signal to either avoid or approach, respectively, the environmental stimulus or 

situation that caused them.  This “teaching signal” (Fields, 2004, p. 571) is used by other brain 

regions (presumably cortical) for decision-making processes and goal-directed behaviors 

destined to keep the actions of the organism adaptable and coherent.  When both these powerful 

teaching signals occur together, pleasure and unpleasantness compete for processing resources, 

because cortical areas like the aCC and PFC must act based on one signal, but not the other, 
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since approach and avoidance are behavioral actions that cannot be performed simultaneously.  

The positive affect generated by DA release in NAc during a painful state competes with the 

negative affect generated by the noxious stimulus, thus masking the pain signal and shifting the 

motivational balance toward a more positive affective state.  This idea is concordant both with 

the motivational continuum theory proposed by Altier & Stewart (1999a) and with the reward 

hypothesis of DA function.  

On the other hand, DA release in other brain regions effectively suppresses or facilitates 

the pain signal, concordant with the incentive-motivational theory of DA function.  Specifically, 

DA release in the aCC and in the insula (when binding to D2 receptors) suppresses the pain 

transmission circuitry, but DA release in the amygdala (particularly the BLA) and in the insula 

(when binding to D1 receptors) facilitates the pain signal.  Presumably, DA release in these 

regions increases the saliency of either the pain signal or the need to escape pain, depending on 

which is more adaptive for the organism at a given time.  Thus, the salient signal carried by DA 

can serve as 1) a suppressor of the generation of the affective dimension of pain in the aCC in 

order to shift attention to goal-directed behaviors designed to escape injury, 2) a suppressor or 

facilitator of the pain signal in insula in order to enable behaviors designed to achieve 

homeostasis, and 3) a modulator of the endogenous descending pain modulatory system in 

amygdala in order to enable adaptive responses to pain.  

In summary, when DA reaches its terminal regions, it seems that it is differently utilized 

by these structures.  Thus, the reward and salience hypotheses are not incongruent with each 

other; rather they are complementary theories. 

In conclusion, major challenges remain, not the least of which is the understanding of the 

production and suppression of the affective dimension of pain.  However, it is apparent that the 
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brain’s ‘pleasure molecule’ plays a significant role in the modulation of the affective reaction to 

pain.  The obvious importance of the pain affect to the pain experience and the necessity of 

finding a potent analgesic that lacks abuse potential clearly warrant further studies. 
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 APPENDIX A. TABLES 
 
Table 1    
     
VTA-NAc pathway involvement in reward and reinforcement  
          
     
Species Behavioral 

paradigm 
Method Main Results Reference 

          
     
Humans Oral intake of 

alcohol or 
orange juice 
30 min prior 
to tracer 
injection 

PET with 
[11C] 
raclopride 
(D2 
radioligand), 
MRI 

Radiotracer binding potential was reduced bilaterally 
in the NAc in the alcohol condition compared to the 
orange juice condition, indicative of increased 
extracellular DA.  The magnitude of the change in 
radiotracer binding correlated with the alcohol-
induced increase in heart rate, which is thought to be a 
marker of the psychostimulant effects of the drug. 

Boileau et al.,  
2003 

Rats CPP Intra-VTA 
morphine  

Morphine supports CPP learning in the VTA, but not 
in the adjacent areas. 

Bozarth, 1987 

Humans Smoking 
inside the 
scanner 

PET with D2 
radiotracer, 
genotyping  

Smokers with genes associated with low resting DA 
tone have greater smoking-induced (phasic) DA 
release into ventral caudate/NAc during smoking than 
those with alternate genotypes. 

Brody et al., 
2006 

Rats ICSS of MFB E-PHYS, 
FSCV 

ICSS elicited DA release in the NAc and produced 
coincident time-locked changes (predominantly 
inhibitions) in the activity of a subset of NAc neurons.  
Similar responses were elicited with noncontingent 
stimulations.  The changes in firing rate induced by 
noncontingent stimulations were reversed by the 
GABAA receptor antagonist bicuculline. 

Cheer, Heien, 
Garris, 
Carelli, & 
Wightman, 
2005 

Rats i.v. CB 
agonists and 
antagonists 

FSCV The CB agonist produced dose-dependently increases 
extracellular NAC DA and this is manifested as an 
increase in the frequency and amplitude of rapid DA 
transients in the NAc.  These effects are reversed by a 
CB1 antagonist. 

Cheer, 
Wassum, 
Heien, 
Phillips, 
Wightman, 
2004 

Starved 
rats 

Instrumental 
learning for 
food pellets 

microdialysis The rats that learned the task showed significantly 
higher increases in NAc DA than rats that did not 
learn the task in the first session.  The NAc DA 
increase was similar in both learning groups in the 
second session. 

Cheng & 
Feenstra, 
2006 

Rats i.p. or s.c. 
drug 
administration 

microdialysis Drugs abused by humans (e.g., opiates, ethanol, 
nicotine, amphetamine, and cocaine) increased 
extracellular DA in NAc.  Drugs with aversive 
properties (e.g., agonists of K opioid receptors, U-
50,488, tifluadom, and bremazocine) reduced NAc 
DA.  Drugs not abused by humans [e.g., imipramine 
(an antidepressant), atropine (an antimuscarinic drug), 
and diphenhydramine (an antihistamine)] failed to 

Di Chiara & 
Imperato, 
1988 
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modify synaptic DA concentrations. 

Humans i.v. 
amphetamine 

 PET with 
[11C] 
raclopride 
(D2 
radioligand) 

The magnitude of NAc DA release and binding 
correlates positively with the hedonic (euphoric) 
response to amphetamine. 

Drevets et al., 
2001 

Rats ICSS of VTA microdialysis, 
HPLC 

Increases in extracellular NAc DA were positively 
correlated with the rate of ICSS. 

Fiorino et al., 
1993 

Humans Instrumental 
tasks for 
amphetamine 

NAc 
cannulation 

Rats will perform different variants of instrumental 
tasks in order to receive direct intra-NAc injections of 
amphetamine. 

Hoebel, 
Monaco, 
Hernandez, 
Aulisi, 
Stanley, et al, 
1983 

Rats Cocaine self-
administration 

FSCV NAc DA levels increased during perception of 
cocaine-associated cues, during lever-pressing for 
cocaine, and during consumption of cocaine.  
Remarkably, these behaviors could be elicited by 
electrically evoking NAc DA release from the VTA. 

Phillips et al., 
2003 

Humans i.v. cocaine PET with 
[11C] cocaine 
(DAT) 
radioligand 

Cocaine at doses commonly abused by humans 
blocked between 60-77% of DAT in the dorsal 
striatum (whose DAT response to cocaine is similar to 
NAc).  This occupancy was positively correlated with 
the subjective reports of high and rush.  The DAT 
occupancy must be greater than 47% for cocaine users 
to subjectively perceive cocaine as rewarding. 

Volkow et al., 
1997 

Rats ICSS of 
VTA/MFB 

E-PHYS NAc neurons exhibit vigorous activation, both 
antidromically and orthodromically, in response to 
self-administered trains of stimulation in VTA/MFB. 

Wolske, 
Rompre, 
Wise, & 
West, 1993 

Rats Heroin i.v. 
self-
administration 

FSCV Heroin self-administration increased the extracellular 
NAc DA, in a dose-dependent and naloxone-
reversible manner. 

Xi, Fuller, & 
Stein, 1998 

Mutant 
mice 
(TH -/-) 

Feeding and 
locomotion  
recording 

i.p. injections 
of L-DOPA, 
quinpirole 
and SKF 
81297 

Although the mutant mice behave and develop 
normally for the first postnatal week, they display 
symptoms of bradykinesia and hypophagia and they 
will die of starvation by 3 to 4 weeks without 
intervention.  Restoration of DA function by L-DOPA 
induces near normal activity, feeding, and growth 
levels. 

Zhou & 
Palmiter, 
1995  

 

Note: A query on the search engine Stanford HighWire (that includes PubMed) to contain the 

words “dopamine”, “accumbens”, and “reward”, all in the same abstract, rendered 817 results on 

May 1st, 2010.  Thus, only a handful of the studies that seemed most relevant to the topic 

described herein were included in this table, in alphabetical order. 
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Abbreviations.  CB – cannabinoid; CPP – conditioned place preference; E-PHYS – 

electrophysiological recordings; FSCV – in vivo fast-scan cyclic voltammetry; ICSS – intra-

cranial self-stimulation; HPLC – high performance liquid chromatography; fMRI – functional 

magnetic resonance imaging; PET – positron emission tomography; TH – tyrosine hydroxylase.  

Table 2      
       
VTA involvement in pain     
       
       
Species Behavioral 

paradigm 
Metho
d 

Main Results VTA 
involveme
nt 

Cell 
type 

Reference 

       
       
Human
s 

Noxious 
thermal 
stimuli 
(46°C) 

fMRI Noxious stimuli increased the signal 
several brain regions implicated in 
reward processing, such as the 
VTA/PAG region and extended 
amygdala, among other structures. 

Activation N/A Becerra, 
Breiter, Wise, 
Gonzalez, & 
Borsook, 
2001 

Anesth
etized 
rats 

Footshock E-
PHYS, 
JCL, 
TH 
IHC 

Dorsal VTA is inhibited by footshocks, 
the ventral VTA is phasically excited 
by footshock. 

Excitation 
and 
inhibition 

DA Brischoux et 
al., 2009 

Human
s 

Noxious 
electrical 
stimuli to 
either the 
midline 
lower 
abdomen or 
rectum 

fMRI Increases in signal were observed in the 
VTA/SN, PAG, parabrachial 
nuclei/nucleus coeruleus, and red 
nucleus bilaterally to both stimuli. 

Activation N/A Dunckley et 
al., 2005 

Human
s 

Noxious 
thermal 
stimuli to 
the hand 
accompanie
d by visual 
cues 

fMRI Increases in signal were observed in the 
VTA and other regions before and 
during pain.  Activation of insula 
during pain was predicted by activity in 
both the entorhinal cortex and VTA 
during anticipation of pain. 

Activation N/A Fairhurst, 
Wiech, 
Dunckley, & 
Tracey, 2007 

Anesth
etized 
rats 

Noxious 
mechanical 
stimulation 
of the skin 

E-
PHYS 

Following application of noxious 
stimuli, 37% (n=14) of the VTA cells 
were inhibited, 58% (n=22) showed no 
response, and 5% (n=2) were excited. 

Mostly 
inhibition 
or 
unresponsi
ve 

N/A Hentall, Kim, 
& Gollapudi, 
1991 

Rats Formalin 
test 

c-fos 
IHC 

Tonic pain activates DAergic and 
CCKergic neurons from the VTA. 

Activation DA, 
CCK  

Ma, Zhou, & 
Han, 1993 
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Anesth
etized 
rats 

Foot pinch, 
tail pinch, 
stimulation 
of the 
vaginal 
cervix 

E-
PHYS 

For foot pinch and tail pinch tests, 
suppression of DA neurons occurred 
more frequently than activation (68% 
vs. 13%).  For the same tests, the non-
DA neurons half had decreased activity 
(43%) and half had increased activity 
(46%). 

Mostly 
inhibition 

DA, 
non-
DA 

Maeda & 
Mogenson, 
1982 

Anesth
etized 
rats 

Noxious 
tail-pinch 

E-
PHYS 

The mesocortical DA neurons 
responded to tail pinch, either by an 
excitation (65%), or by an inhibition 
(25%).  In contrast, most DA neurons 
projecting either to the NAc or the 
septum remained unaffected. 

Mostly 
inhibition 

DA Mantz, 
Thierry, & 
Glowinski, 
1989 

Rats Tail-shock NAc 
microdi
alysis 

Both tail-shock and intra-VTA 
capsaicin induce DA release in NAc, 
and this release is blocked by intra-
VTA microinjection of the TRPV1 
antagonist iodoresineferatoxin. 

Excitation DA Marinelli, 
Pascucci, 
Bernardi, 
Puglisi-
Allegra, & 
Mercuri, 2005 

Rats Formalin 
injections 
into the 
lumbar 
muscles and 
skin 

c-fos 
IHC 

Fos-immunoreactive neurons were 
observed in the VTA, spinal cord, NAc 
core, BLA, PAG and other regions 

Activation N/A Ohtori et al., 
2000 

Young 
and old 
rats 

Tail pinch c-fos 
IHC 

More Fos-immunoreactive neurons 
were observed in the VTA and other 
regions of the young rats than the 
middle-aged rats 

Activation N/A Smith et al., 
1997 

Anesth
etized 
rats 

Foot pinch E-
PHYS 

The VTA neurons that are excited by 
aversive stimuli are not DAergic; the 
DA neurons are uniformly inhibited. 

Excitation 
and 
inhibition 

DA, 
non-
DA 

Ungless, 
Magill, & 
Bolam, 2004 

Rats Footshock NAc 
microdi
alysis 

DA levels in NAc increased after each 
shock. 

Excitation DA Young, 2004 

 
Abbreviations. BLA – basolateral nucleus of the amygdala; IHC – immunohistochemistry; JCL - 

juxtacellular labeling. 

Table 3    
     
VTA involvement in analgesia 
          
     
Species Behavioral 

paradigm 
Method Main Results Reference 
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Bilateral intra-VTA 
infusions of the 
Substance P analogue, 
DiMe-C7 

DiMe-C7 induced analgesia 

Bilateral infusions of 
amphetamine into the 
medial prefrontal cortex 

Amphetamine failed to induce analgesia 

Formalin test 

Bilateral infusions of 
amphetamine into the 
NAc  

Amphetamine induced analgesia 

Rats 

Tail flick test Intra-VTA DiMe-C7 or 
intra-NAc amphetamine 

No analgesia 

Altier & 
Stewart, 1993 

Rats Formalin test Intra-VTA infusions of 
the opioid antagonist 
naltrexone 

Reduced stress-induced analgesia Altier & 
Stewart, 1996 

Rats Formalin test intra-VTA infusions of 
neuropeptide FF 

Blocked analgesia induced by  
intro-VTA morphine or exposure to 
footshock stress 

Altier & 
Stewart, 1997a 

Rats Formalin 
test, Tail 
flick test 

Intra-VTA or intra-NAc 
infusions of  tachykinin 
agonists 

All injections produced analgesia in the 
formalin, but not in the tail-flick test 

Altier & 
Stewart, 1997b 

Rats Formalin test Intra-NAc infusions of 
DA antagonists  

Blocked the analgesia induced by intra-
VTA infusions of the substance P analog, 
DiMe-C7 or morphine and intra-NAc 
infusions of amphetamine 

Altier & 
Stewart, 1998 

Rats Formalin test Intra-VTA infusions of 
the tachykinin NK-l 
receptor antagonist, RP-
67580 

Blocked footshock stress-induced 
analgesia 

Altier & 
Stewart, 1999b 

Rats Aversive 
electrical 
stimulation 
of the NRGi 

ICSS of VTA Long-lasting suppression of aversion 
produced by the NRGi following VTA 
brain stimulation  

Anderson et 
al., 1995 

Rats Formalin test 6-OHDA lesion of the 
NAc 

The lesion reduced the analgesic effect of 
amphetamine, but had no effect on 
morphine analgesia 

Clarke & 
Franklin, 1992 

Rats Rhizotomy 
(section of 
dorsal roots 
C5 to Th1 
included) 

6-OHDA lesion of the 
VTA 

The lesion induced an increase in the 
autotomy behavior 

Gorea & 
Lombard, 1984 

Rats The VAD 
test 

Intra-VTA 
microinjections of 
carbachol and atropine 

Carbachol induced affective analgesia in a 
dose-dependant manner and this effect 
was blocked by atropine.  Carbachol had 
no effect on the SMR thresholds 

Kender et al., 
2008 

Rats Tail or foot 
pinch tests 

Intra-VTA infusions of 
the GABA-A agonist 
muscimol 

Muscimol potentiates the analgesia 
induced by i.p. halothane or pentobarbital 

Ma & Leung, 
2006 

Rats Formalin test Intra-VTA 
microinjections of the 
opioid antagonist 
naloxone, s.c. morphine 

Morphine produced almost complete 
analgesia in the Phase 2 of the formalin 
test that was not reversed by 3 μg 
naloxone. 

Manning & 
Franklin, 1998 
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Rats Tail-flick 
test 

Electrical stimulation of 
the VTA 

Analgesia Mayer, Wolfle, 
Akil, Carder, & 
Liebeskind, 
1971 

Rats Formalin 
test, tail-flick 
test 

6-OHDA lesion of the 
VTA 

The lesion blocked the analgesic effect of 
amphetamine and morphine in the 
formalin, but not in the tail-flick test. 

Morgan & 
Franklin, 1990 

Rats Hot plate test Electrical lesion of the 
VTA 

No effect on the analgesia induced by 
morphine or the κ-opioid agonist U-
50,488H. 

Ohno, 
Yamamoto, & 
Ueki, 1987 

Rats Acute and 
chronic pain 
tests 

Selective chemical 
lesions with 6-OHDA 
or/and kainic acid of the 
VTA, SN and striatum 

All lesions of DAergic terminals in the 
striatum decreased the latencies of all 
nociceptive reflexes and accelerated the 
time of onset of autotomy behavior.  
Kainic acid lesions of the SN-VTA did not 
produce significant changes in the 
latencies of nociceptive reflexes or in the 
autotomy criteria. 

Saade, Atweh, 
Bahuth, & 
Jabbur, 1997 

Rats The VAD 
test 

Intra-VTA 
microinjections of 
carbachol, 
mecamylamine, and 
atropine 

Carbachol induced affective analgesia in a 
dose-dependant manner in both anterior 
and posterior VTA.  This effect was 
blocked by atropine and mecamylamine in 
anterior VTA and by atropine in posterior 
VTA.  Carbachol had no effect on the 
SMR thresholds. 

Schifirneţ, 
2009 

Rats Carrageenan 
inflammation 
of the paw 

Radiofrequency lesions 
or electrical stimulation 
of the VTA 

VTA lesions enhanced the occurrence of 
autotomy behavior, whereas VTA 
stimulation facilitates analgesia 

Sotres-Bayon, 
Torres-Lopez, 
Lopez-Avila, 
del Angel, & 
Pellicer, 2001 

Rats Formalin test Intra-NAc D1 and D2 
agonists and antagonists 
administration 

Quinpirole dose-dependently inhibited the 
Phase 2 nociception in the formalin test, 
effect that was blocked by raclopride, 
suggesting that the NAc D2 receptors are 
involved in antinociception. The D1 
agonist results were inconclusive. 

Taylor et al., 
2003 

Mice Formalin test Systemic administration 
of DAergic agents 

Both D1 and D2 receptors agonists and 
antagonists induced antinociception in 
different phases of the formalin test. 

Zarrindast, 
Nassiri-Rad, & 
Pazouki, 1999 

 
Abbreviations. 6-OHDA – 6-hydroxydopamine; NRGi - nucleus reticularis gigantocellularis. 
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 Activation of the dopaminergic mesolimbic reward circuitry that originates in the ventral 

tegmental area (VTA) is postulated to preferentially suppress affective reactions to noxious 

stimuli (affective analgesia, AA). VTA dopamine neurons are activated via cholinergic inputs, 

and we have observed that microinjections of the acetylcholine agonist carbachol suppressed 

vocalizations of rats that occur following administration of brief (1 sec) tail-shocks (vocalization 

afterdischarges = VAD). VADs are a validated rodent model of pain affect. In addition, the 

capacity of carbachol to support reinforcement appears to be regionally dependent within VTA. 

Ikemoto & Wise (2002) reported that carbachol was self-administered in the posterior VTA 

(pVTA), but not the anterior VTA (aVTA). We have previously reported that carbachol 

preferentially increased the threshold current intensity for eliciting VADs in aVTA and pVTA, 

but not midVTA. This carbachol-induced AA is mediated by muscarinic receptors within the 

pVTA and by both muscarinic and nicotinic receptors within the aVTA. Using the conditioned 

place preference paradigm (CPP), the present study evaluated the muscarinic versus nicotinic 

involvement in intra-VTA carbachol-induced CPP learning by administering atropine 
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(muscarinic antagonist) and mecamylamine (nicotinic antagonist) into the VTA prior to 

carbachol treatment. The present study indicates that unilateral carbachol (4 µg/0.25 µl) supports 

the CPP learning in aVTA and pVTA, but not midVTA. Additionally, both atropine (60 µg/0.25 

µl) and mecamylamine (45 µg/0.25 µl) reliably prevented the development of carbachol-induced 

CPP in the aVTA and pVTA. Thus, this study is the first to directly compare the extent of 

overlap between cholinergically mediated reward and affective analgesia within different VTA 

regions. The results are discussed in terms of anatomical and physiological properties of the 

VTA, with emphasis of cholinergically activated mesolimbic and mesocortical systems. Finally, 

based on two of the most prominent hypotheses regarding the role of DA in general, a 

framework is provided for understanding the role of DA in pain, analgesia, and reward in the 

context of DA function. 
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