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Mean-variance portfolios constructed using the sample mean and covariance matrix of 
asset returns perform poorly out-of-sample due to estimation error. Recently, there are 
two approaches designed to reduce the effect of estimation error: robust statistics and 

robust optimization. Two different robust portfolios were examined by assessing the out-
of-sample performance and the stability of optimal portfolio compositions. The 
performance of the proposed robust portfolios was compared to classical portfolios via 
expected return, risk, and Sharpe Ratio. The aim is to shed light on the debate concerning 
the importance of the estimation error and weights stability in the portfolio allocation 
problem, and the potential benefits coming from robust strategies in comparison to 
classical portfolios. 
 

Keywords: Mean-variance portfolio, robust statistics, robust optimization 

 

Introduction 

The portfolio optimization approach proposed by Markowitz (1952) undoubtedly 

is one of the most important models in financial portfolio selection. This model is 

based upon the fundamental trade-off between expected return and risk, measured 

by the mean and standard deviation of return respectively. Therefore, Markowitz's 

model is called the mean-variance portfolio since this technique is highly reliant 

upon the value of a set of inputs, i.e. the mean vector μ and covariance matrix Σ. 

The goal of the portfolio allocation problem is to find weights w which represent 

the percentage of capital to be invested in each asset. 

https://doi.org/10.22237/jmasm/1493598720
mailto:epha.supandi@uin-suka.ac.id
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To compute the mean-variance portfolios, the mean vector μ̂  and 

covariance matrix Σ̂  need to be estimated and both inputs are obtained from 

historical data. These estimators plug into an analytical or numerical solution to 

the investor’s optimization problem. This leads to an important drawback in the 

mean-variance approach: the estimation error. 

The fact that mean-variance “optimal” portfolios are sensitive to small 

changes in input data is well documented in the literature. Chopra and Ziemba 

(1993) showed that even slight changes to the estimates of expected return or risk 

can produce vastly different mean-variance optimized portfolios. Best and Grauer 

(1991) analyzed the sensitivity of optimal portfolios to changes in expected return 

estimates. Broadie (1993), meanwhile, showed how the estimated efficient 

frontier overestimates the expected returns of portfolios for various levels of 

estimation errors. Because of the ill effects of estimation errors on optimal 

portfolios, portfolio optimization has been called “error maximization” (see 

Michaud, 1989). 

There are two standard methods extensively adopted in the literature to 

combat the impact of estimation error on portfolio selection. The first method is 

robust estimation, which can be quite robust to distributional assumptions. The 

introduction of robust estimation to portfolio optimization is relatively recent 

compared to the Markowitz foundational paper. Nevertheless, the subject has 

become very active in the last decade, as seen in the works of Lauprête (2001), 

Lauprete, Samarov, and Welsch (2002), Mendes and Leal (2003), Perret-Gentil 

and Victoria-Feser (2004), Welsch and Zhou (2007), and DeMiguel and Nogales 

(2009). The main difference among these approaches is in the term of the type of 

robust estimator used. Lauprête (2001) and Lauprete et al. (2002) used the least 

absolute deviation Huber estimator and trimean estimator, Mendes and Leal 

(2003) used the M-estimator, Perret-Gentil and Victoria-Feser (2004) used the S-

estimator, Welsch and Zhou (2007) used the minimum covariance determinant 

estimator and Winsorization, and DeMiguel and Nogales (2009) used the M-

estimator and the S-estimator. In their investigations, the portfolios constructed 

using a robust estimator outperformed those created using traditional mean-

variance portfolio in the majority of cases. 

The second method to deal with the estimation error is robust optimization. 

Robust portfolio optimization is a fundamentally different way of handling 

estimation error in the portfolio construction process. Unlike the previously-

mentioned approaches, robust optimization considers the estimation error directly 

in the optimization problem itself. Introduced by Ben-Tal and Nemirovski (2002) 

for robust truss topology design, robust optimization is an emerging branch in the 
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field of optimization in which the solutions for optimization problems are 

obtained from uncertain parameters. The uncertainty is described using an 

uncertainty set which includes all, or most, possible realizations of the uncertain 

input parameters (see Pachamanova, Kolm, Fabozzi, & Focardi, 2007). The true 

mean and covariance matrix of asset returns lie in a fixed range. A robust 

portfolio, the one that optimizes the worst-case performance concerning with all 

possible values the mean vector and covariance matrix. The worst-case for robust 

optimization probably happened in the uncertainty sets (see, for example, 

Goldfarb & Iyengar, 2003; Tütüncü & Koenig, 2004; Engels, 2004; Garlappi, 

Uppal, & Wang, 2007; Lu, 2011). 

The aim of this study is to shed light on the recent debate regarding the 

importance of the estimation error and weights’ stability in the portfolio allocation 

problem and the potential benefits coming from robust portfolios in comparison to 

classical techniques. Here, two different robust portfolios have been investigated. 

The first portfolio was obtained by robust estimator to the mean-variance 

portfolio towards the S-estimators, constrained M-estimators, Minimum 

Covariance Determinant (MCD), and Minimum Volume Ellipsoid (MVE). The 

second one was obtained by robust optimization to the sample mean-variance 

portfolio where the formulation and the algorithm used in this paper were based 

on those developed by Tütüncü and Koenig (2004). We empirically compared two 

versions of robust asset allocation through the out-of-sample performance of those 

portfolio allocation approaches corresponding to the methodology of rolling 

horizon as proposed in DeMiguel and Nogales (2009). 

The Mean-Variance Portfolio (Classical Portfolio) 

It is assumed that the random vector r = (r1, r2,…, rN)' denotes random returns of 

the N risky assets with mean vector μ and covariance matrix Σ. A portfolio is 

defined to be a list of weights wi for the assets i = 1,…, 𝑁 that represent the 

amount of capital to be invested in each asset. We assumed that 

 

 
1

1
N

i

i

w


   

 

meaning that capital is fully invested. 

For a given portfolio w, the expected return and variance were respectively 

given by: E(w'r) = w'μ and Var(w'r) = wTΣw. Then, the classical mean-variance 
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portfolio models of Markowitz were formulated mathematically as the 

optimization problem: 

 

 max , s.t. 1, 0
2


    

w
w μ w Σw e w w   (1) 

 

where μ ∈ ℜN is the vector of expected return, Σ ∈ ℜN × N is the covariance matrix 

of return, where ℜN × N denotes the set of all N × N positive definite symmetric 

matrices, and w ∈ ℜN is the vector of portfolio weight. The restriction w ≥ 0 

means that short-selling is not allowed. The parameter γ can be interpreted as a 

risk aversion, since it takes into account the trade-off between risk and return of 

the portfolios. 

The main criticisms against the Markowitz models centers on the 

observation that the optimal portfolios generated by this approach are often quite 

sensitive to the input parameters μ and Σ. To make matters worse, these 

parameters can never be observed, and one has to settle for estimates found using 

some particular techniques. 

Robust Portfolio Estimation 

In this section, the class of portfolio policies based on the robust estimators is 

proposed where portfolio optimization and robust estimation are performed in two 

steps. It began by computing the robust estimators of the mean vector and 

covariance matrix of asset returns and followed by computing the portfolio 

policies by solving the classical minimum-variance problem (1), but replacing the 

sample mean and covariance matrix by their robust counterparts. 

One of the most popular classes of robust estimators is affine equivariant 

robust estimators (see Maronna, Martin, & Yohai, 2007). Let     ˆˆ ,μ r Σ r  be 

location and dispersion estimates corresponding to a sample = (r1, r2,…, rN)'. 

Then the estimates are affine equivariant if 

 

        ˆ ˆˆ ˆ and     μ Ar b Aμ r b Σ Ar b AΣ r A   

 

for any constant N-dimensional vector b and any non-singular N × N matrix A. 

There are many different robust estimators for the mean and covariance in this 

class, such as S-estimators (Rousseeuw & Yohai, 1984), MVE and MCD 

proposed by Rousseeuw (1984), as well as CM-estimators (Kent & Tyler, 1996). 
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S-Estimators 

S-estimators were first introduced (in the context of regression) by Rousseeuw 

and Yohai (1984). Later, they were applied to the multivariate scale and location 

estimation problem (Davies, 1992). 

Let r be a data set in ℜN. The S-estimators of the multivariate location 

 ˆ Nμ r  and scatter  ˆ N NΣ r  are defined as the solution to the problem of 

minimizing |Σ| subject to 
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 r μ Σ r μ   (2) 

 

where ρ denotes the loss function and b0 satisfies 0 < b0 < a0 = sup{ρ}. As stated 

by Alqallaf (2003), it is natural to choose   0 E ρb  r . 

Let r be a data set in ℜN and c0 = b0/sup ρ. If c0 ≤ (n – N)/2n, where 

n ≥ N + 1, then the breakdown point ε* = ⌈nc0⌉/n, where ⌈k⌉ denotes the nearest 

integer greater than or equal to k. The breakdown point for S-estimators is 

 

 * 1
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Portfolios based on S-estimators with biweight function were examined by 

Perret-Gentil and Victoria-Feser (2004) and, in a one-step approach, by DeMiguel 

and Nogales (2009). 

CM-Estimators 

As stated by Kent and Tyler (1996), the CM-estimator is defined via the 

minimization of an objective function subject to some constraints. For the data set 

r we defined the CM-estimators of the multivariate location  ˆ Nμ r  and 

scatter  ˆ N NΣ r  to be any pair which minimized the objective function 
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subject to the constraint 
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where di = (ri – μ)'Σ-1(ri – μ), ρ denotes the loss function, and ε ∈ (0, 1) refers to 

the breakdown point. Kent and Tyler (1996) showed that the breakdown point of 

the CM-estimate for data r in general is 

 

 
 *
1
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n Nn

n n




    
         

  

Minimum Volume Ellipsoid (MVE) Estimators 

Rousseeuw (1984) introduced a highly robust estimator, the MVE estimator, 

(μ, Σ) where μ was taken to be the center of the minimum volume ellipsoid 

covering at least half of the observations, and Σ was an N by N matrix 

representing the shape of the ellipsoid. 

This approach attempted to seek the ellipsoid with the smallest volume 

covering h data points where n/2 ≤ h ≤ n. Formally, the estimate is defined as 

these μ, Σ that minimized |Σ| subject to 

 

     1 2 1
# ;

2
i i

n N
i c        

 
r μ Σ r μ   (5) 

 

The constant c is chosen as 
2

,0.5N  and # denotes the cardinality. Portfolios based 

on MVE estimators were used by Kaszuba (2013). Let r be a data set in ℜN with 

N ≥ 2, and let n ≥ N + 1; then the breakdown point of MVE is 

 

 
 

*
1 2n N

n
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Minimum Covariance Determinant (MCD) Estimators 

The MCD estimators are highly robust estimators of multivariate location and 

scatter introduced by Rousseeuw (1984). Given an n × N data matrix 

r = (r1, r2,…, rn)' with ri = (ri1, ri2,…, riN)', it is focused on finding h (with 

⌊(n + N + 1)/2⌋ ≤ h ≤ n) observations whose classical covariance matrix has the 

lowest possible determinant. Then, the MCD estimator of location is the average 

of these h points, whereas the MCD estimator of scatter is their covariance matrix. 

In 1999, Rousseeuw and Van Diressen constructed a very fast algorithm to 

calculate the MCD estimator. The new algorithm was called Fast-MCD based on 

the C-step. The Fast-MCD algorithm is defined as follows: 

 

Algorithm 1. The Fast-MCD (Rousseeuw & Van Diressen, 1999) 

 

1. Set an initial h-subset H1, that is, beginning with a random (N + 1)-subset 

J. 

2. Compute 

 

   0 0 0 0

J J

1 1ˆˆ ˆ ˆand
1 1

i i i

i iN N 

    
 
 μ r r μ r μ   

 

If 
0

ˆ 0Σ , random observations are added to J until 
0

ˆ 0Σ . 

3. Apply the C-step to the initial h-subset H1, and obtain the  1 1
ˆˆ ,μ Σ . If 

0
ˆ 0Σ  or 0 1

ˆ ˆΣ Σ , stop; otherwise, running another C-step produces 

2Σ̂ , and so on, until convergence is reached. 

 

If the data are sampled from a continuous distribution, then these estimators 

have the breakdown point 

 

 * 1
min ,

n h h p

n n


   
  

 
  

 

Portfolios based on MCD estimators were investigated by Zhou (2006), Welsch 

and Zhou (2007), and, in a modified version, by Mendes and Leal (2005). 

S-estimators, CM-estimators, MVE, and MCD are used to construct robust 

portfolio mean-variance. A two-step approach to robust portfolio estimation is 
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proposed. First, compute a robust estimate of the mean vector and covariance 

matrix of asset returns. Second, solve the classical mean-variance problem (1), but 

replacing the sample mean and covariance matrix by their robust counterparts. 

Thus, given the robust estimators, the robust portfolio estimation can be found by 

solving the following optimization problem: 

 

 
rob rob

ˆˆmax , s.t. 1, 0
2


    

w
w μ w Σ w e w w   (6) 

Robust Portfolio Optimization 

Robust optimization has been developed to solve any problems related to the 

uncertainty in the decision environment and, therefore, sometimes it is referred to 

uncertain optimization (Ben-Tal & Nemirovski, 2002). Robust models have been 

adapted in portfolio optimization to resolve the sensitivity issue of the mean-

variance portfolio to its inputs. 

Robust portfolio optimization is to represent all available information about 

the unknown input parameters in the form of an uncertainty set that contains most 

of the possible values for these parameters. 

Tütüncü and Koenig (2004) proposed a bootstrap method to determine the 

uncertainty sets. This method attempted to capture the uncertainty regarding the 

parameters µ and Σ in their uncertainty sets 𝕌μ and 𝕌Σ by carrying out the 

following algorithm: 

 

Algorithm 2. The construction of 𝕌μ and 𝕌Σ using a block bootstrap method 

 

1. Choose the block length (l). In our experiment, we used the non-

overlapping block. Divide the data into n/l blocks in which block 1 

became {r1, r2,…, rl} and block 2 became {rl + 1, rl + 2,…, r2l}, ..., etc. 

2. Resample the blocks and generate the bootstrap sample. 

3. Compute the classical estimators of μ and Σ from bootstrap data. 

4. Construct the empirical distribution of estimators by repeating step 2 and 

step 3 B times and sorting the bootstrap estimators from the smallest to 

largest ones. 

5. Determine the (1 − α)100% percent quintile of distribution of estimators 

 

From algorithm 2, the uncertainty sets are defined as 
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  L Uˆ ˆ:  μ μ μ μ μ   (7) 

 

  L Uˆ ˆ: , 0  Σ Σ Σ Σ Σ Σ   (8) 

 

Given the uncertainty sets of mean vector (7) and covariance matrix (8), then 

robust optimization (Rob.Opt) can be defined as follows: 

 

 T L U Tˆˆmax , s.t. 1, 0
2


  

w
w μ w Σ w e w w   (9) 

Empirical Study 

Data used in this study were collected from the Jakarta Stocks Exchange (JSE) 

consisting of 20 companies categorized as the blue chip. A blue chip is a stock in 

“a nationally recognized, well-established and financially sound company.” 

(“Blue Chip”, n.d.). Table 1 presents the list of companies. 

The time series data span was from 04/02/2008 to 29/12/2014 with a total of 

360 weekly returns. The first 260 observations (02/01/2008 to 07/01/2013) were 

used as the first window to perform the estimation and the uncertainty set. The 

last 100 observations (14/01/2013 to 29/12/2014) referred to the out-of-sample 

period and were used for the ex-post effectiveness analysis. 
 
 
Table 1. Asset name for empirical analysis 
 

No Asset Name 

 

No Asset name 

1 AALI = Astra Argo Lestari, Tbk 
 

11 JSMR = Jasa Marga (Persero) Tbk 

2 AKRA = Akr Corporindo Tbk 

 

12 KLBF = Kalbe Farma Tbk 

3 BBCA = Bank Centra Asia Tbk 
 

13 LPKR = Lippo Karawaci Tbk 

4 BBNI = Bank Negara Indonesia (Persero) Tbk 
 

14 MNCN = Media Nusantara Citra Tbk 

5 BBRI = Bank Rakyat Indonesia (Persero) Tbk 

 

15 PGAS = Perusahaan Gas Neagara (Persero) Tbk 

6 BMRI = Bank Mandiri (Persero) Tbk 
 

16 PTBA = Tambang Batu Bara Asam (Persero) Tbk 

7 CPIN = Charoen Pokphand Indonesia Tbk 
 

17 SMGR = Semen Indonesia (Persero) Tbk 

8 INDF = Indofood Sukses Makmur Tbk 

 

18 TLKM = Telekomunikasi Indonesia (Persero) Tbk 

9 INTP = Indocement Tunggal Prakarsa Tbk 
 

19 UNTR = United Tractors Tbk 

10 ITMG = Indo Tambangraya Megah Tbk 
 

20 UNVR = Unilever Indonesia Tbk 
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Research Methodology 

For an empirical analysis, several parameters have to be set. Firstly, for robust 

portfolio estimation, a translated biweight function is used as the loss function and 

the breakdown point is set at 45%. Meanwhile, in robust portfolio optimization, 

an important question is how to determine the uncertainty sets. The value α 

determines the most extreme parameter values that are still included in the 

uncertainty sets. The smaller α is, the larger an uncertainty set will be, and thus 

the greater the worst-case estimation errors will be. Hence, α can be interpreted as 

a parameter that captures the investor’s tolerance for estimation errors (Fastrich & 

Winker, 2009). Therefore, to measure the level of sensitivity of the Rob.Opt 

model, set α = 0.05, 0.10, and 0.20.  

Use the rolling-horizon procedure to compute the out-of-sample 

performance measures. This procedure has been implemented similarly as in 

DeMiguel and Nogales (2009). First, chose the window T = 260 to perform the 

estimation and the uncertainty sets. Second, using the return data in the estimation 

window, compute some optimal portfolio policies according to each strategy 

(classical portfolio, robust portfolio estimation, and robust portfolio optimization). 

Third, repeat the rolling-window procedure for the next month by including the 

four data points for the new date and dropping the four data points for the earliest 

period of the estimation window (we assumed that investors would rebalance their 

portfolios every one month). Continue this until the end of the dataset is reached. 

Therefore, at the end there is a time series of 25 portfolio weight vectors for each 

of the portfolios considered in the analysis. 

The out-of-sample performance of each strategy was evaluated according to 

the following statistics: mean return, risk, Sharpe ratio, and portfolio turnover. 

Holding the portfolio s

tw  for one trading period gave the following out-of-sample 

excess return at time t + 1, that is s s

1 1t̂ t t 
r w r . After collecting the time series of 

25 excess returns 1t̂r , the out-of-sample mean return, standard deviation (risk), 

Sharpe ratio, and portfolio turnover are: 

 

  

25
s s
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1
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s s s
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25 5

, 1 ,

1 1

1
Turnover

24
j t j t

t j

w w

 

    

 

where wj,t is the portfolio weight in asset j at time t + 1 but before rebalancing and 

wj,t+1 is the desired portfolio weight in asset j at time t + 1. Therefore, the portfolio 

turnover is a measure of the variability in the portfolio holdings and can indirectly 

indicate the magnitude if the transaction costs associated to each strategy. Clearly, 

the smaller the turnover, the smaller the transaction costs associated to the 

implementation of the strategy. 

Research Hypothesis 

The research hypothesis is that the appropriate application of robust strategies in 

the construction of mean-variance portfolios allows the achievement of better 

investment results (measured with mean return and risk) in comparison to 

classical portfolios (benchmark). Hence, it is verified whether the given method 

allows one to obtain higher mean return compared to the classical method using 

the Wilcoxon signed rank test at significance level of 5%. Similarly, it is 

examined whether the robust methods will have lower risk (measured by standard 

deviation) compared to the classical method (see Kaszuba, 2013). 

Results of Empirical Study 

In the ninth column of Table 2, it can be observed that most of the return data 

were not normally distributed except AKRA, INTP, and UNVR. Also, UNVR had 

the best performance for having the highest mean return and the lowest risk 

(measured by standard deviation) compared to other stocks. 

Presented in Table 3 are the out-of-sample performance of the classical and 

all robust approaches for each time window win in which the former serves as a 

benchmark. The results presented in Table 3 concern only portfolios for which 

risk aversion is equal to 10. Other risk aversion parameters were tested, such as 

γ = 1, 100, and 1000; the summary of these results are presented in Table 4. 

It can be seen that the mean returns are higher in all seven robust approaches 

compared to the classical approach. An examination in the out-of-sample 

performance of portfolio returns indicated that the highest mean returns are 

obtained by robust portfolio estimation generated using CM-estimators (as 

presented in Table 3). 
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Table 2. Summary statistics of the 20 stocks used in the dataset 

 

 
Min Max Mean Std. Dev Var Skew Kurtosis K.Smirnov 

AALI -0.4329 0.3459 -0.0007 0.0723 0.0052 -0.5740 6.4580 0.0004 

AKRA -0.2673 0.1982 0.0029 0.0612 0.0038 -0.1660 1.6770 0.4150 

BBCA -0.7071 0.1588 0.0017 0.0579 0.0034 -5.0540 62.0380 0.0004 

BBNI -0.4362 0.3920 0.0033 0.0634 0.0040 0.2190 11.6080 0.0002 

BBRI -0.6434 0.2975 0.0015 0.0655 0.0043 -2.6460 27.4440 0.0048 

BMRI -0.2744 0.2380 0.0033 0.0548 0.0030 -0.2460 4.2520 0.0293 

CPIN -1.5404 0.3868 0.0033 0.1109 0.0123 -7.4410 105.2200 0.0000 

INDF -0.2542 0.2654 0.0027 0.0556 0.0031 -0.1560 3.9300 0.0034 

INTP -0.4418 0.2747 0.0032 0.0579 0.0033 -0.9070 10.6050 0.0527 

ITMG -0.5557 0.3153 -0.0008 0.0773 0.0060 -0.9150 8.7970 0.0012 

JSMR -0.2942 0.1842 0.0036 0.0449 0.0020 -0.4700 6.3350 0.0409 

KLBF -1.5991 0.4970 0.0010 0.1038 0.0108 -10.0080 159.2970 0.0000 

LPKR -0.2587 0.3520 0.0011 0.0598 0.0036 0.4410 4.6370 0.0112 

MNCN -0.2801 0.5994 0.0032 0.0786 0.0062 1.3750 10.3110 0.0026 

PGAS -1.5549 0.2841 -0.0023 0.0974 0.0095 -11.3460 180.6230 0.0000 

PTBA -0.5771 0.2451 0.0002 0.0685 0.0047 -1.5180 14.2460 0.0007 

SMGR -0.6012 0.2766 0.0030 0.0591 0.0035 -2.5900 31.3040 0.0042 

TLKM -1.5864 0.1382 -0.0035 0.0930 0.0086 -13.7920 234.9950 0.0000 

UNTR -0.4215 0.2895 0.0009 0.0699 0.0049 -0.8050 7.9740 0.0018 

UNVR -0.1676 0.1436 0.0042 0.0402 0.0016 0.0500 1.5960 0.0590 

 

Note: The bold values indicate the best performance of out-of-sample portfolio. 

 
 

Also, it can be seen that MVE portfolios obtained higher Sharpe ratio than 

the ones obtained with the classical or other robust approaches. Whereas, in the 

context of risk, MCD generated using the fast algorithm exhibited the lowest risks. 

Meanwhile, MVE portfolios achieved the lowest turnover. Therefore, portfolio 

robust estimation (Rob.Est) created using a two-step approach (CM, S, MCD, and 

MVE portfolios) outperformed the classical approach for this case. 

It can also be noticed that by analyzing the performance of Rob.Opt 

portfolios one can observe that increasing the investors’ tolerance for estimation 

error α can decrease the performance of all out-of-sample for this portfolios. 

Presented in Table 4 are the out-of-sample performance’s portfolio, i.e., 

mean returns (
ŝ ), risk (

ŝ ), Sharp Ratio (SR), and portfolio turnover (TO) at a 

number of different risk aversions, as well as different p-values of the Wilcoxon 

test for differences between the portfolios returns calculated with the given 

method and classical portfolios. The presented p-values for Wilcoxon test for 

observation pairs allows us to see whether the average weekly returns for the 

investigated portfolios were significantly higher than the average returns for 

classical portfolios. 
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Table 3. The out-of-sample performance of portfolio return for each time window win at 

γ = 10 
 

  
Rob.Est 

 
Rob.Opt 

win Classic CM S MCD MVE 
 

α=5% α=10% α=20% 

1 0.0167 0.0641 0.0576 0.0523 0.0556 
 

0.0080 0.0088 0.0077 

2 0.0370 0.0450 0.0635 0.0477 0.0450 
 

0.0485 0.0496 0.0500 

3 -0.0017 0.0139 0.0135 0.0110 0.0099 
 

-0.0032 -0.0033 -0.0037 

4 0.0017 0.0060 0.0190 -0.0078 0.0151 
 

0.0155 0.0137 0.0117 

5 -0.0577 -0.0769 -0.0775 -0.0662 -0.0609 
 

-0.0593 -0.0584 -0.0582 

6 0.0434 0.0160 0.0317 0.0181 0.0087 
 

0.0753 0.0742 0.0687 

7 -0.0099 -0.0121 0.0012 -0.0030 0.0023 
 

-0.0186 -0.0222 -0.0181 

8 0.0684 0.1429 0.1275 -0.0030 0.1220 
 

0.0248 0.0270 0.0314 

9 0.0046 0.0310 0.0242 0.0178 0.0291 
 

0.0139 0.0137 0.0122 

10 0.0100 0.0313 0.0236 0.0266 0.0257 
 

0.0043 0.0038 0.0045 

11 -0.0122 -0.0247 -0.0228 -0.0238 -0.0237 
 

-0.0155 -0.0144 -0.0149 

12 0.0135 0.0277 0.0189 0.0229 0.0327 
 

0.0088 0.0099 0.0118 

13 -0.0281 0.0085 -0.0025 -0.0162 0.0050 
 

-0.0166 -0.0167 -0.0227 

14 0.0006 -0.0025 0.0074 -0.0051 -0.0017 
 

-0.0090 -0.0083 -0.0070 

15 0.0054 0.0056 -0.0193 0.0073 0.0083 
 

0.0195 0.0186 0.0168 

16 -0.0060 -0.0107 -0.0217 -0.0087 -0.0163 
 

-0.0131 -0.0125 -0.0112 

17 -0.0222 -0.0123 -0.0304 -0.0092 -0.0086 
 

-0.0113 -0.0158 -0.0169 

18 -0.0267 -0.0112 -0.0131 -0.0036 -0.0016 
 

-0.0125 -0.0118 -0.0164 

19 0.0006 0.0050 0.0079 0.0065 0.0060 
 

0.0171 0.0149 0.0143 

20 0.0389 0.0236 0.0223 0.0256 0.0309 
 

0.0272 0.0285 0.0289 

21 -0.0081 -0.0132 -0.0198 -0.0098 -0.0106 
 

-0.0059 -0.0049 -0.0062 

22 -0.0249 -0.0088 0.0136 -0.0112 0.0004 
 

0.0103 0.0058 0.0024 

23 -0.0248 -0.0398 -0.0594 -0.0338 -0.0479 
 

-0.0171 -0.0181 -0.0193 

24 -0.0011 0.0129 0.0079 0.0105 0.0093 
 

0.0130 0.0109 0.0105 

25 0.0200 0.0203 0.0456 0.0198 0.0037 
 

0.0169 0.0150 0.0193 

          
μ̂

s
 0.0015 0.0097 0.0088 0.0026 0.0096 

 
0.0048 0.0043 0.0038 

̂
s

 0.0269 0.0396 0.0409 0.0249 0.0347 
 

0.0257 0.0258 0.0256 

SR 0.0555 0.2442 0.2142 0.1038 0.2751 
 

0.1881 0.1678 0.1491 

TO 1.5891 1.1840 1.1097 1.1527 1.2927   1.6178 2.0235 2.0165 
 

Note: The bold values indicate the best performance 

 
 

An examination in the out-of-sample performance of portfolio returns 

indicated that the highest mean returns were obtained by robust portfolios. Of the 

robust approaches, portfolios generated with CM-estimators achieved the higher 

mean returns at γ = 1 and 10. Meanwhile, Rob.Opt portfolios obtained higher 

mean returns at γ = 100 and 1000. 
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Table 4. Out-of-sample performance’s portfolio i.e. mean returns ( μ̂
s

), risk ( ̂
s
), Sharpe 

ratio (SR) and portfolio turnover (TO) at different of risk aversions 
 

 

  
Rob.Est 

 
Rob.Opt 

  
Classic CM S MCD MVE 

 

α=5% α=10% α=20% 

γ = 1 μ̂
s

 -0.0076 0.0160 0.0128 0.0142 0.0159 
 

-0.0003 -0.0033 -0.0073 

 
p-value 1.0000 0.0773 0.0773 0.1759 0.0954 

 
0.4410 0.6169 0.8289 

 ̂
s

 0.0435 0.0572 0.0592 0.0752 0.0595 
 

0.0341 0.0351 0.0385 

 
p-value 1.0000 0.0075* 0.001* 0.0012* 0.0274* 

 
0.0004* 0.0000* 0.0000* 

 
SR -0.1751 0.2801 0.2163 0.1891 0.2671 

 
-0.0093 -0.0929 -0.1898 

 
TO 1.9026 1.9372 2.0000 1.8958 1.9282 

 
1.6731 1.6461 2.0955 

           

γ = 10 μ̂
s

 0.0015 0.0097 0.0088 0.0026 0.0096 
 

0.0048 0.0043 0.0038 

 
p-value 1.0000 0.3859 0.3350 0.5004 0.2887 

 
0.5379 0.5900 0.7148 

 ̂
s

 0.0269 0.0396 0.0409 0.0249 0.0347 
 

0.0257 0.0258 0.0256 

 
p-value 1.0000 0.0000* 0.0004* 0.0000* 0.0000* 

 
0.0000* 0.0000 0.0000* 

 
SR 0.0555 0.2442 0.2142 0.1038 0.2751 

 
0.1881 0.1678 0.1491 

 
TO 1.5891 1.1840 1.1097 1.1527 1.2927 

 
1.6178 2.0235 2.0165 

           

γ = 100 μ̂
s

 0.0058 0.0062 0.0054 0.0049 0.0064 
 

0.0067 0.0066 0.0065 

 
p-value 0.9693 0.9540 0.8929 0.9234 0.9234 

 
0.9234 0.9234 0.9234 

 ̂
s

 0.0290 0.0276 0.0267 0.0252 0.0262 
 

0.0292 0.0290 0.0288 

 
p-value 1.0000 0.0000* 0.0000* 0.0000* 0.0000* 

 
0.0000* 0.0000* 0.0000* 

 
SR 0.2010 0.2239 0.2033 0.1953 0.2449 

 
0.2308 0.2283 0.2273 

 
TO 1.4530 1.0739 0.9222 1.0650 1.0682 

 
1.6414 2.0457 2.0276 

           

γ = 1000 μ̂
s

 0.0057 0.0042 0.0041 0.0045 0.0053 
 

0.0061 0.0060 0.0060 

 
p-value 1.0000 0.8626 0.8929 0.8929 0.9693 

 
0.9847 0.9847 0.9847 

 ̂
s

 0.0286 0.0243 0.0244 0.0245 0.0240 
 

0.0290 0.0288 0.0290 

 
p-value 1.0000 0.0000* 0.0000* 0.0000* 0.0000* 

 
0.0000* 0.0000* 0.0000* 

 
SR 0.1978 0.1718 0.1678 0.1835 0.2208 

 
0.2103 0.2083 0.2069 

 
TO 1.4585 1.0547 1.0112 1.0072 1.3808   2.0360 2.0317 2.0270 

 

Note: The bold values indicate the best performance; an asterisk (*) indicates p-values at a significance level of 

0.05 

 
 

The corresponding results for the portfolio risk showed that the Rob.Est 

portfolios were better than two portfolio approaches (i.e. classical and Rob.Opt). 

The lowest portfolio risk was achieved by Rob.Est in the majority of the scenarios 

(γ = 10, 100 and 1000). The research demonstrated that portfolios generated with 

MCD and MVE achieved a lower portfolio risk compared to S- and CM-
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estimators. Therefore, it is obvious if the largest Sharpe ratios are obtained by 

Rob.Est in all cases. 

Comparing portfolio turnover values, one can observe that for all portfolios, 

increasing the risk aversion value from 1 to 1000 has caused these values to 

decrease. Portfolios created using robust estimators (CM and S) had the lowest 

turnover except at γ = 1. 

An empirical study using the real market data indicated that, for all robust 

portfolios with robust estimation and robust optimization on portfolio weights, 

there were statistically significant improvements in the risk. The classical 

portfolios were characterized by a much higher risk than robust portfolios. 

However, in the context of mean return, the difference in performances between 

robust techniques and classical techniques did not seem to be statistically 

significant (p-value > 0.05), the robust estimation techniques were able to deliver 

more stability in the portfolio weights in comparison to the classical approach. 

The main implication of this finding is that, if we assume equal performance 

across techniques, investors will be better off by choosing a strategy that does not 

require any radical changes in the portfolio composition over time. These 

substantial changes in portfolio composition are rather difficult to be implemented 

in practice due to (i) management costs; and (ii) negative cognitive aspects 

perceived by investors and/or investment managers (see Santos, 2010). 

Because the aim was to examine portfolios regarding their robustness 

properties, a small turnover indicates the stability of portfolio, which means it is 

more robust. From the point of view of an investor, the stability of weights in a 

portfolio constructed by them throughout the entire duration of the investment is a 

significant element. In this case, as seen in Table 4, the smallest turnover is 

achieved by Rob.Est. These findings are corroborated by the visual inspection of 

Figure 1 and Figure 2, which show the time-varying portfolio weights and 

boxplots of each portfolio technique. 
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Figure 1. Time-varying portfolio weights for classical portfolio and robust portfolios for the 

case of γ = 10 
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Plotted in Figure 1 are the time-varying portfolio weights for the classical 

portfolio, robust portfolio optimization (right column of graphs), and robust 

portfolio estimation (left column of graphs) at risk aversion is equal to 10. All of 

the eight graphs map the time window win on the x-coordinate, while the y-

coordinate maps the portfolio weights. Other risk aversion parameters were tested, 

such as γ = 1, 100, and 1000, but the insights from the results were similar, and 

thus the results are presented only for the case γ = 10. 

It can be seen that Figure 1 corroborates the main findings by showing the 

high instability associated to the time-varying portfolio weights (compositions) of 

classic and Rob.Opt in contrast to the relative stability in the composition of 

Rob.Est. 

Figure 2 gives the boxplots of the portfolio weights of classical portfolio, 

robust portfolio estimation, and robust portfolio optimization for the case of 

γ = 10. 

Each graph in Figure 2 contains 20 boxplots corresponding to each of the 

twenty assets (for detail, see Table 1). Finally, the box for each portfolio weight 

has lines at the 25th, 50th, and 75th percentile values of the portfolio weights. The 

whiskers are lines extending from each end of the boxes to show the extent of the 

rest of the data. Extreme portfolio weights that have values beyond the whiskers 

are also depicted (as indicated by the white circles). We have tested other risk 

aversion parameters, such as γ = 1, 100 and 1000, but the insights from the results 

were similar and thus the results are presented only for the case γ = 10. 

It can be observed from Figure 2 that the mean-variance portfolios (classical 

and Rob.Opt) are much more unstable than the Rob.Est portfolios. For instance, 

for γ = 10, it can be seen that the Rob.Opt portfolios generated using α = 5% 

concentrate the allocation in only five assets of twenty available, and the 

allocation between these five assets radically changed in the period analyzed (see 

the second row of the second column in Figure 2). This is reflected in the high 

portfolio turnover as achieved by Rob.Opt (2.0235). As in the previous strategy, 

the changes in the portfolio weights associated to the Rob.Est were more stable 

over time since it produced little turnover. 

A further step in the analysis was to check which observations are 

considered outliers and were responsible for this instability of the portfolios. To 

do so, we used a diagnostic tool called Mahalanobis distance. Briefly, the 

Mahalanobis distance can identify which observations are quite far from the bulk 

of data to be considered outliers (Werner, 2003). 
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Figure 2. Boxplots of the portofolio weights for classical portfolio and robust portfolios for 
the case of γ = 10 
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Figure 3. Mahalanobis distance of each of the 360 returns 

 

 

Figure 3 shows the Mahalanobis distances of data using classical estimators 

in panel (a) and MCD estimators in panel (b). It is found that both pictures 

exhibited extreme return observations compared to the majority. They were 

detected to have a very strong influence on the classical estimates of the optimal 

portfolio weights (compositions). In short, it has been found that the outlying 

observations in the data have a strong influence on the composition of the 

resulting optimal portfolios. 

In summary, the robust techniques lead to an improvement compared to the 

classical approach. Of the robust approaches, the robust estimation clearly 

outperforms the robust optimization approach. This improvement is possible due 

to the properties of robust estimator, which is not influenced by the presence of 

outliers. 

Conclusion 

In this work, two different robust techniques, robust estimation and robust 

optimization, have been empirically tested and compared with a classical 

approach. From the results presented in the previous section, some important 

implications for investment decisions based on portfolio selection policies can be 

pointed out. 

Based on an empirical analysis, it is shown that the robust portfolio 

estimation (Rob.Est) significantly outperformed the classical portfolio and robust 

portfolio optimization in terms of out-of-sample performance, i.e. mean excess 

return, risk, Sharpe ratio, and portfolio turnover, in the majority of the scenarios. 

The portfolio compositions of Rob.Est are shown to be more stable and 
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consequently lead to a reduction of the transaction cost. This is simply because 

robustly estimated parameters will be closer to the true parameter values when 

there are some extreme observations (outliers) than their classical counterparts. 

Meanwhile, the portfolio compositions of Rob.Opt are heavily biased as this 

method works on a worst-case approach, so it can be detrimentally influenced by 

outliers in the data 

Therefore, in this case, of the robust approaches the robust estimation 

clearly outperforms the robust optimization approach. In future research, the 

robust estimation should be combined with robust optimization in the formation 

of the optimal portfolio. 
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