
 

 

 

 

 

 

DEVELOPMENT OF AGE-RELATED MACULOPATHY: 

A HISTOCHEMICAL AND MOLECULAR APPROACH 
 

 

 

 

 

 

 

 

 

 

Antoinette Carolien Lambooij 



 

 

ACKNOWLEDGEMENTS 

 
The research presented in Chapter 7 of this thesis was made possible by the financial 

support of the Rotterdamse Vereniging Blindenbelangen and the Stichting voor 

Ooglijders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development of age-related maculopathy: a histochemical and molecular approach 

A.C. Lambooij 

Thesis Rotterdam 

 

©A.C. Lambooij, 2002 

No part of this thesis may be reproduced or transmitted in any form or by any means 

without permission of the author 

 



 

 

 

 

 

DEVELOPMENT OF AGE-RELATED MACULOPATHY: 

A HISTOCHEMICAL AND MOLECULAR APPROACH 
 

 

 

ONTWIKKELING VAN 

OUDERDOMS-GEBONDEN MACULOPATHIE: 

EEN HISTOCHEMISCHE EN MOLECULAIRE BENADERING 

 

 

 

 

 

 

 

Proefschrift 

 

ter verkrijging van de graad van doctor 

aan de Erasmus Universiteit Rotterdam 

op gezag van de Rector Magnificus Prof.dr.ir. J.H. van Bemmel 

en volgens besluit van het College voor Promoties 

 

De openbare verdediging zal plaatsvinden op 

woensdag 2 oktober 2002 om 9:45 uur 

 

door 

Antoinette Carolien Lambooij 

 

geboren te Wassenaar 

 



 

 

PROMOTIECOMMISSIE 
 

 

PROMOTOR  Prof.dr. G. van Rij 

 

OVERIGE LEDEN Prof.dr. Th.H. van der Kwast 

   Prof. dr. S.W.J. Lamberts 

   Prof.dr. A.F. Deutman 

 

COPROMOTOREN Dr. C.M. Mooy 

   Dr. R.W.A.M. Kuijpers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Voor mijn ouders 
Voor Erik 



 

 

CONTENTS 

 

 
PUBLICATIONS AND MANUSCRIPTS BASED ON THE STUDIES DESCRIBED  
IN THIS THESIS              8 

 
ABBREVIATIONS            9 
 
 

PART I  INTRODUCTION 
 
CHAPTER 1 
General introduction: Age-related maculopathy      13 
 

CHAPTER 2 
Pathogenesis and histology of age-related maculopathy     15 
 
2.1  Anatomy of the normal retina       15 
 

2.2  Aging of the retina        15 
2.2.1  Theories on cellular aging       15 
2.2.2  Oxidative stress        17 
2.2.3  Apoptosis         17 
 

2.3  Age-related maculopathy       20 
2.3.1  Pathogenesis of age-related maculopathy     20 
2.3.2  Early stages of age-related maculopathy     21 
2.3.3  Geographic age-related macular degeneration     23 
2.3.4  Exudative age-related macular degeneration     24 
 

2.4  Therapeutic modalities       31 
 

CHAPTER 3 
Aim of the Thesis          33 
 
 

PART II MOLECULAR ASPECTS OF THE AGING RETINA 
 

CHAPTER 4 
Apoptosis is present in the primate macula at all ages     37 



 

 

CHAPTER 5 
Role of Fas-ligand in age-related maculopathy not established    49 
 
 

PART III MOLECULAR ASPECTS OF NEOVASCULAR AGE-RELATED  

MACULAR DEGENERATION  
 
CHAPTER 6 
Insulin-like growth factor-I and its receptor in neovascular age-related 
macular degeneration         59 
 
CHAPTER 7 
Insulin-like growth factor-binding proteins in neovascular age-related macular 
degeneration           71 
 
CHAPTER 8 
Somatostatin receptor 2A expression in choroidal neovascularization secondary  
to age-related macular degeneration       85 
 

CHAPTER 9 
Radiotherapy of neovascular age-related macular degeneration; a clinical and  
pathological study          97 
 
 
CHAPTER 10 
General considerations and future prospects               107 
 
REFERENCES                     111 

 
SUMMARY                     131 

 
SAMENVATTING VOOR NIET-DESKUNDIGEN               133 
 
CURRICULUM VITAE                    137 

 
DANKWOORD                   138 

 



 

8 

PUBLICATIONS AND MANUSCRIPTS 

BASED ON THE STUDIES DESCRIBED IN THIS THESIS 

 

 

CHAPTER 4 Lambooij AC, Kliffen M, Kuijpers RW, Houtsmuller AB, Broerse JJ, 

Mooy CM (2000) Apoptosis is present in the primate macula at all ages. 

Graefes Arch Clin Exp Ophthalmol 238:508-514 

 

CHAPTER 5 Lambooij AC, Kliffen M, Mooy CM, Kuijpers RWAM (2001) Role of 

Fas-Ligand in age-related maculopathy not established. Am J Ophthalmol 

132(3):437-439 

 

CHAPTER 6 Lambooij AC, van Wely KHM, Lindenbergh-Kortleve DJ, Kuijpers 

RWAM, Kliffen, Mooy CM. Insulin-like Growth Factor-I and its 

receptor in neovascular age-related macular degeneration (submitted) 

 

CHAPTER 7 Lambooij AC, Lindenbergh-Kortleve DJ, Kuijpers RWAM, Kliffen, 

Mooy CM. Insulin-like Growth Factor-Binding Proteins in neovascular 

age-related macular degeneration (submitted) 

 

CHAPTER 8 Lambooij AC, Kuijpers RW, van Lichtenauer-Kaligis EG, Kliffen M, 

Baarsma GS, van Hagen PM, Mooy CM (2000) Somatostatin receptor 

2A expression in choroidal neovascularization secondary to age-related 

macular degeneration. Invest Ophthalmol Vis Sci 41:2329-2335 

 

CHAPTER 9 Lambooij AC, Kuijpers RWAM, Mooy CM, Kliffen M (2001) 

Radiotherapy of exudative age-related macular degeneration: a clinical 

and pathologic study. Graefes Arch Clin Exp Ophthalmol, 239:539-543 



 

9 

ABBREVIATIONS 

 

 

AMD  age-related macular degeneration 

ARM  age-related maculopathy 

BLD  basal laminar deposit / basal linear deposit 

bp  base pair 

CNV  choroidal neovascularization 

CNVM choroidal neovascular membrane 

PDR  proliferative diabetic retinopathy 

FAS-L fas-ligand 

FGF  fibroblast growth factor 

GCL  ganglion cell layer 

GH  growth hormone 

HPRT  hypoxanthine-guanine phosphoribosyl transferase 

IGFBP insulin-like growth factor binding protein 

IGF-I  insulin-like growth factor-I 

IGF-IR insulin-like growth factor receptor type I 

IL  interleukine 

INL  inner nuclear layer 

MMP  matrix metalloproteinase 

ONL  outer nuclear layer 

rd-mice retinal degeneration-mice 

RPE  retinal pigment epithelium 

RT-PCR reverse transcriptase-polymerase chain reaction 

SSD   source skin distance 

SST  somatostatin receptor 

TGF-ββββ transforming growth factor-β 

TNF-αααα tumor necrosis factor-α 

TUNEL terminal deoxynucleotidyl transferase mediated deoxyuridine biotin nick 

end labeling 

VA  visual acuity 

VEGF  vascular endothelial growth factor 

 



 

 



 

 

 

 

 

 

 

PART I 

 

 

INTRODUCTION 



 

 

 



 

13 

CHAPTER 1 

 

GENERAL INTRODUCTION: AGE-RELATED MACULOPATHY 

 
 

 

Age-related maculopathy (ARM) is the major cause of blindness in people over 65 

years of age in the Western world. ARM involves the central part of the retina, called 

the macula or yellow spot, where visual acuity is highest. 

Clinically, early stages of ARM show drusen and pigment alterations, associated with 

minimal or mild vision loss. Histopathologically, the first signs are deposits between 

the retinal pigment epithelium (RPE) and Bruch's membrane, drusen and RPE 

alterations. Late stages of ARM, also called age-related macular degeneration (AMD), 

include geographic atrophy and exudative macular degeneration. They are associated 

with severe vision loss. The exudative form is characterized by choroidal 

neovascularization (CNV). In CNV, newly formed vessels sprout from the underlying 

choroid and grow through breaks in Bruch’s membrane beneath the retinal pigment 

epithelium (RPE) and the retina.1 Clinically, visual acuity decreases rapidly because of 

hemorrhages or serous detachments.  

Geographic atrophy is characterized by areas of degenerated RPE and neural retina in 

the absence of breaks in Bruch’s membrane and subretinal new vessels, and has been 

suggested to be the natural endstage of ARM.2 

In the Netherlands, the prevalence of late stages of ARM is 1.7% in people over 55 

years of age and up to 11% in people over the age of 85.3 Sixty-five % of patients with 

AMD have the exudative form, while 35% show geographic atrophy.3 Exudative 

AMD is responsible for 80% of the cases of severe vision loss.4,5 Numbers will increase 

because of the population’s increasing age. Both aging,6 genetic factors,7-9 and 

environmental factors such as cigarette smoking6,10,11 and antioxidant status12 are 

acknowledged risk factors in the aetiology of ARM. Only a limited percentage of 

AMD patients is amenable to treatment.13 

 

This thesis focusses on the pathogenesis of photoreceptor atrophy and on the patho-

genesis of exudative AMD. 



 

 

.
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CHAPTER 2 

 

PATHOGENESIS AND HISTOLOGY OF AGE-RELATED MACULOPATHY 

 

 

 

2.1 ANATOMY OF THE NORMAL RETINA  

 

The human retina (Figure 2.1A) comprises the neuroretina and the RPE, which is a 

monolayer of pigmented cells in close contact to the photoreceptors and is situated on 

top of Bruch’s membrane. Bruch’s membrane consists of three layers: a middle layer 

of elastic tissue and two outer layers of collagen. Beneath Bruch’s membrane is the 

choriocapillaris, which is part of the choroidal vascular network and responsible for 

the nutrition and oxygenation of the RPE and outer neuroretina. The inner retinal 

layers on the other hand are supplied with blood from the central retinal artery.  

The optical center of the human retina is called the macula lutea (Figure 2.1B). This is 

an area of about 5 mm with an indentation in the middle, the foveola. The yellow 

coloration of the macula is derived from the presence of macular pigment, chemically 

defined as xanthophyll carotenoids.14,15 Surrounding the foveola the annular regions 

towards the margin of the macula are called fovea, parafovea and perifovea, 

respectively.  

The neuroretina consists of different layers, which are described in figure 2.1A. In the 

macula, the ganglion cell layer consists of a minimum of two cells thick. Furthermore, 

this region has the highest concentration of photoreceptors, permitting high-resolution 

visual acuity. The photoreceptors are organized in a mosaic of rods and cones. The 

mosaic in the fovea is composed entirely of cones. In the periphery of the fovea more 

rods are present. Outside the macula, cones are scarce. 

 

 

 

2.2 AGING OF THE RETINA 

 

2.2.1. Theories on Cellular Aging 

Aging or senescence, can be defined as a series of time-related processes occurring in 

the adult individual that ultimately bring life to a close.16 These processes involve the 
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Figure 2.1  Anatomy of macula (A) Macular region of non-human primate, indicating the 
retinal layers. Bruch’s membrane (*) is located in between the RPE and CC.  (B) Foveal 
indentation at visual centre. (GCL = ganglion cell layer; IPL = inner plexiform layer; INL = 
inner nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear layer; PR = 
photoreceptor layer; RPE = retinal pigment epithelium; CC = choriocapillaris). Mallory staining; 
original magnification x200 (A) and x100 (B) 

 

cumulative effects of extrinsic influences and an intrinsic molecular program of 

cellular aging.17,18 

Theories concerning extrinsic influences imply that exogenous damaging factors 

exceed the cells’ regenerative capability, thus causing senescence. The free radical theory 

of aging centers on the long-term deleterious oxidative effects of the physiologically 

generated free radicals.19,20 Because oxidative damage is generally thought to play a 

major role in aging of the retina, this will be discussed in paragraph 2.2.2. Closely 

related to the free radical theory of aging is the mitochondrial theory of aging. The fact that 

mitochondria posses their own genetic material and that they only have a limited 

arsenal of DNA repair processes makes them especially vulnerable to oxidative 

damage.21 This theory assumes that oxidative damage to mitochondrial DNA in 

postmitotic cells leads to mutations and blocks to replication, and consequently to 

mitochondrial dysfunction and physiological cellular decline. 

 

Intrinsic cellular aging theories assume that genetic factors predispose to progressive 

cellular changes, leading to senescence. 

The somatic mutation hypothesis proposes that an accumulation of DNA mutations leads 

to nonfunctional proteins and enzymes, and thus is responsible for senescence.16 A 

second theory on intrinsic aging, the programmed aging hypothesis, assumes a 

predetermined, genetically programmed, sequence of events ultimately leading to 

senescence. The telomere hypothesis of cellular aging explains that proliferation stops after 

a defined number of cell divisions, because of telomere shortening.22,23 At a critical 

telomere length, the cell irreversibly exits the cell cycle and enters a stage called 
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senescence. The senescent cells are metabolically active but cannot proliferate, and can 

be considered as replicative or telomeric aged. 

How these concepts on intrinsic aging apply to post-mitotic cells is still unclear. 

Probably, in age-related disease, a combination of both intrinsic and extrinsic aging 

plays a role. With aging and accumulation of genetic damages, functional cellular 

capacity decreases until the disease threshold is achieved. Earlier onset of disease 

could occur because of genetic differences and by further loss of function due to 

environmental agents.24,25 

 

The cells of the retina are post-mitotic and differentiated, and under normal 

circumstances they are unable to regenerate new cells after the loss of old or damaged 

ones. Therefore, the thickness of the human retina decreases with advancing age, due 

to loss of photoreceptors and ganglion cells.26,27 Retinal cell loss probably occurs via 

apoptotic cell death. The apoptotic phenomenon is discussed in paragraph 2.2.3. 

 

2.2.2. Oxidative Stress 

Oxidative stress refers to cellular damage caused by oxidative processes and has been 

implicated in many disease processes, specially age-related disorders. The retina is 

particularly susceptible to oxidative stress, firstly because of its high consumption of 

oxygen, secondly because the membranes of photoreceptor outer segments contain a 

high concentration of polyunsaturated fatty acids that are highly susceptible to 

oxidation,28 and thirdly because of its exposure to visible light.29 The free radical 

theory of aging proposes that aging and age-related disorders are the result of 

cumulative damage arising from reactions involving oxidative processes.20,29 

Many of the oxygen radicals are produced as byproducts of normal physiology. For 

instance, lipofuscin is an autofluorescent material which accumulates within the RPE 

throughout life. Lipofuscin is formed by the undegradable endproducts resulting from 

the phagocytosis of photoreceptor outer segments.30 Lipofuscin is capable of light-

induced generation of reactive oxygen species,31,32 supporting the relationship between 

light, age-induced changes in the retina and retinal degeneration.33 Although the RPE 

is rich in antioxidants, these may be insufficient to detoxify all the radicals and there 

may be an accumulation of oxidative damage throughout life that only manifests itself 

in older people.30 

 

2.2.3 Apoptosis 

Apoptosis is a cell suicide program in which the cell triggers a process of events that 

results in its own death.34-37 Apoptosis plays a crucial role in many physiological 

processes such as embryonic development and homeostatic maintenance of several 

adult tissues. Also many disease processes are associated with apoptosis or a lack 

thereoff, for instance degenerative diseases and malignant tumours, respectively. 
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Apoptosis is an active process, that is usually dependent on protein synthesis38 and on 

the expression of certain genes. The process of apoptosis can be initiated by a variety 

of stimuli such as irradiation, growth factor withdrawal, hormones, cytokines, natural 

killer cells, and a variety of chemical, viral, and physical agents.  

After the initial stimulus has activated the process of apoptosis, a cascade of 

biochemical events is switched on, leading to the irreversible execution of the cell 

death. Cystein proteases known as caspases are key-players in the catabolic cascade, 

leading to DNA fragmentation and cellular degradation. The nuclear DNA is cleaved 

into internucleosomal fragments of multiples of 180 base pairs (bp) by endonucleases. 

Analysis by gel electrophoresis shows a characteristic ladder formation. DNA-nick 

ends of individual apoptotic cells can be visualized in-situ by the TUNEL method 

(terminal transferase-mediated dUTP nick end labeling).39 Morphologically, apoptosis 

characteristically affects single cells in stead of groups of adjoining cells. Apoptotic 

cells show nuclear and cytoplasmic condensation. Cells shrink and are fragmented 

into apoptotic bodies, which are removed by macrophages or neighboring cells,40 

without any inflammation in contrast to cell death by necrosis. 

 

In the eye, apoptosis occurs under both physiological and pathological conditions. 

During normal retinal development, many more retinal neuronal cells are produced 

than will ultimately survive in the adult retinal system; the redundant cells die by 

apoptosis. The survival of developing neurons depends on the correct connection to 

both their efferents and afferents, on the interaction with neighboring glial cells, and 

on the availability of neurotrophic proteins and neurotransmitters.41 The removal of 

redundant cells in the developing mouse retina occurs by apoptosis in the various 

retinal layers in time waves.42 

Under pathological circumstances, retinal cell loss via apoptosis is considered as a 

final common pathway resulting from a variety of primary defects. Recent studies 

indicate that apoptosis is a mechanism of cell death in several ocular diseases 

including glaucoma, retinitis pigmentosa, cataract formation, retinoblastoma, retinal 

ischemia, and diabetic retinopathy.43-53 Apoptotic cells have also been identified in late 

stages of AMD, both in the neovascular form as well as in the geographic form.54-56 It 

is suggested that apoptosis is one of the pathways of photoreceptor degeneration in 

AMD.55 

 

Many inhibitory and stimulatory genes regulating apoptosis have been identified 

(Figure 2.2). In the retina some of these have been studied under experimental 

conditions. 

The Bcl-2 family consists of many proteins, with an important role in both the 

induction and protection from apoptosis, depending on specific ratios of pro- or anti- 
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Figure 2.2  Cellular processes involved in apoptosis. Simplified scheme of cellular processes 
involved in apoptosis. Activation of caspases by Fas-ligand binding to Fas, hormone-receptor 
activation and many other factors, several still unidentified, induce a cascade of events. This 
ultimately leads to cleavage of DNA by endonucleases. The process can be inhibited by Bcl-2 or 
Bcl-x, while p53 has a pro-apoptotic effect when DNA damage is irreparable. 

 

apoptotic members of the family.57 The Bcl-2 family of proteins are located mostly in 

the mitochondrial membrane. The apoptosis-protective protein Bcl-2 is expressed 

widely in the developing neuronal system but downregulated in the adult neuronal 

system.58 Bcl-x is another apoptosis protective protein and is predominantly present in 

postnatal neural tissues57 and adult rat retina.59 Overexpression of Bcl-2 or Bcl-x 

delayes photoreceptor cell death in a mouse model of retinal degeneration,60 although 

conflicting reports exist.61 

Fas (CD95) receptor mediates apoptosis when triggered by its ligand, Fas-ligand 

(FasL) or by agonistic antibodies.62 In the eye, FasL expression helps to maintain 

immune privilege by inducing apoptotic cell death of invading lymphoid cells that 

enter in response to infection.63 Thus, infiltrating inflammatory cells are killed before 
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they can damage the eye, thereby helping to preserve vision. Furthermore, FasL 

expressed on RPE cells is suggested to control growth and development of new 

subretinal vessels64 by inducing apoptosis of endothelial cells. 

The p53 tumor suppressor protein is involved in the control of the cell cycle, and is 

associ-ated with apoptosis in various cell types, especially following DNA damage.65 

DNA dama-ge induces p53 to stop the cell cycle allowing the DNA damage to be 

repaired. If the da-mage is beyond repair, p53 activates the apoptotic program. The 

p53 product is thought to play a dynamic role in the process of apoptosis due to retinal 

ischemia.66,67 In a mouse model of retinal degeneration, absence of p53 delays 

photoreceptor cell loss.68 However, also p53-independent apoptosis has been described 

in studies on retinal degeneration.69 

The proteins Jun and Fos are proto-oncogenes.70 There is evidence that both Fos and 

Jun are involved in apoptosis of various cell types, including neurons71 and other 

retinal cell types.41 In both differentiated and undifferentiated retinal cells, expression 

of c-Jun is correlated with apoptosis, preceding the morphological and biochemical 

characteristics of apoptosis.41 c-Fos deficient mice are protected against light-induced 

photoreceptor apoptosis.71 

 

 

 

2.3 AGE-RELATED MACULOPATHY 

 

2.3.1 Pathogenesis of Age-related Maculopathy 

The first histologic signs of ARM are deposits (basal laminar and linear deposits, and 

drusen) between the RPE and Bruch's membrane. The deposits are accompanied by 

attenuation of the RPE and thickening of Bruch's membrane. The depositions 

probably form a barrier for oxygen and nutrition transport from the choriocapillaris to 

the RPE and outer neuroretina, culminating in further degeneration and ultimately 

death of RPE cells and secondary degeneration of rods and cones.1 Furthermore the 

extended deposits in and along Bruch's membrane provide a cleavage plane for 

ingrowing choroidal neovascularization. 

 

The site of the primary lesion in the pathogenesis of ARM is still unclear. Several 

theories have been hypothesized, in which the primary defect is allocated either to the 

RPE, to Bruch's membrane, to the choriocapillaris or to the photoreceptors. 

Several authors assume that ARM is caused by gradual failure of the metabolic 

integrity of the RPE,1,72,73 giving rise to other signs of deterioration, such as deposits in 

Bruch's membrane and RPE and associated photoreceptor cell death.1 The RPE 

dysfunction may be due to imperfections in the cell’s digestive mechanisms,1 or to 
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oxidative stress due to free radical chain reactions.29 Abnormal molecules such as 

lipofuscin, gradually accumulate within the RPE and normal metabolism is disrupted, 

leading to aberrant deposition of debris in and along Bruch’s membrane. In addition, 

there is evidence that RPE produces endothelial cell growth inhibitors and trophic 

factors which maintain the normal function of the choriocapillaris.74 This biochemical 

communication between the RPE and choriocapillaris may be disturbed by a thick 

layer of basal deposits, which interferes with the diffusion of those factors.74 

Other authors assume choroidal circulatory abnormalities to be the primairy event in 

the pathogenesis of ARM.75 Vascular insufficiency could lead to insufficient removal 

of waste products from the outer retina and to a disrupted supply of oxygen and 

nutrients.76 Friedman proposes that AMD is the result of atherosclerotic changes in 

choroidal vasculature and deposition of lipids in Bruch’s membrane.77 Some authors 

argue that because in the macular area a great number of photoreceptor cells are 

located, characterized by a high energy turnover, even a minor compromise of blood 

flow and oxygen supply causes cellular hypoxia, leading to degeneration.78,79 Studies in 

support of this theory demonstrated choriocapillary atrophy,80 reduced choroidal 

arteries and reduced choroidal blood flow in ARM patients.79,81-85 In contrast, other 

authors assume that the blood flow through the choriocapillaris is in excess of the 

amount required to nourish the retina,86 and changes in choroidal blood flow may be 

secondary to changes in the RPE-Bruch’s membrane complex. 

Closely related to hypotheses on vascular abnormalities are theories considering 

Bruch's membrane as the primary lesion. They propose that depositions of neutral 

lipids in Bruch's membrane may cause hydrophobicity and predispose to detachment 

of the RPE and cause functional loss.83,87 Also other depositions in Bruch's membrane 

such as cholesterol,88,89 probably derived from the choriocapillaris, may impair the 

nutrient exchange along Bruch's membrane. 

Yet another line of theory proposes that macular rod dysfunction (for instance a 

defected rim protein like ABCR) is the primary factor in AMD. This rod dysfunction 

in turn induces RPE dysfunction and ultimately cone photoreceptor death.90 In the 

case of ABCR-mediated retinal degeneration, the defected rod rim protein causes RPE 

dysfunction because of excessive lipofuscin accumulation.91,92 This theory is 

strengthened by the detection of mutations in the ABCR gene in some patients with 

AMD,9 although the detected mutations may simply reflect polymorphisms found in 

normal healthy people.93,94 

 

2.3.2 Early stages of Age-related Maculopathy 

Morphologic changes of early stages of ARM include drusen, basal deposits, retinal 

pigment alterations and deterioration of Bruch’s membrane. These changes have 

extensively been described in the theses of van der Schaft95 and Kliffen.96 They will be 

described here in short.  
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Drusen  

Drusen are extracellular deposits situated between the basement membrane of the 

RPE and the inner collagenous zone of Bruch’s membrane. It must be noted that the 

term ‘drusen’ raises confusion, because it is used in clinical and in histopathological 

setting, to describe a variety of deposits which differ morphologically, biochemically 

as well as ophthalmoscopically.97 The morphology and biogenesis of drusen have 

recently been reviewed by Hageman.98 It is beyond the scope of this thesis to discuss 

all types of drusen, however two types will be distinguished here. 

Hard drusen usually appear fundoscopically as small yellow-white deposits with well-

demarcated boundaries. Histologically, hard drusen are accumulations of homo-

geneous hyaline material along Bruch’s membrane with attenuation of the overlying 

RPE (Figure 2.3A). Multiple hard drusen are recently acknowledged to be predictive 

of ARM progression99 and even for development of AMD [van Leeuwen, personal 

communication]. 

Soft drusen are funduscopically seen as amorphous deposits with indistict borders, 

usually larger than 63 µm in size. Histologically, soft drusen appear as large drusen 

with sloping edges, containing less homogeneous membranous or fibrillar material100 

(Figure 2.3B). The overlying RPE is often attenuated and atrophic. In contrast with 

hard drusen, soft drusen are significant risk factors for developing late stage AMD.101 

Multiple drusen (5 or more), large drusen (sized larger than 63 µm), and confluence of 

drusen are associated with increased risk of progression to exudative AMD.1,83,102 The 

origin of the drusenoid material is unclear. It may be derived from the RPE,1,98,103,104 

from the chorio-capillaris,88,105,106 or both.98 Recently a role for inflammation and 

immune-mediated processes in drusen biogenesis has been proposed.98,107 

 

 
Figure 2.3  Sub-RPE deposits. (A) Hard drusen. (B) Soft drusen. (C) Basal laminar and/or 
linear deposits (in between arrows) (D) Thickening of Bruch’s membrane with formation of 
intercapillary pillars (arrow). Mallory staining. Original magnification x400. 
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Basal deposits  

Two types of basal deposits are distinguished by electon microscopy: firstly basal 

laminar deposits which are localized between the basal cytoplasmic membrane of the 

RPE and its 

basement membrane, composed of granular material with wide-spaced collagen.108 

The second type of deposits is called basal linear deposits. These deposits are located 

between the basement membrane of the RPE and the remainder of Bruch’s 

membrane,108 composed of granular and vesicular lipid-rich material. Basal linear 

deposits can appear similar to soft drusen, with the exception that they are not heaped 

up.109 Both basal linear deposits and soft drusen provide a cleavage plane within 

Bruch’s membrane which may facilitate the ingrow of choroidal neovascularization.110 

Basal laminar and linear deposits (BLD) are detectable by light microscopy (Figure 

2.3C) but are clinically only detectable by secondary changes of RPE.73 Basal deposits 

are positively associated with early ARM lesions and may be a significant indicator of 

progression to late AMD.110,111 The origin of basal deposits is unclear. Several authors 

suggest that these deposits are released from the RPE via the basal plasma 

membrane.110 

 

Deterioration of Bruch’s membrane  

With advancing age, the thickness of Bruch’s membrane increases,80,112,113 expanding 

between the choriocapillary vessels, the so-called intercapillary pillars (Figure 2.3D). 

Further changes include hyalinization, densification and calcification.1 Thickening 

and hyalinization of Bruch’s membrane appears to be caused by accumulation, 

predominantly in the outer collagenous zone, of coated membrane-bound bodies and 

of wide-spaced collagen.114 

 

Retinal Pigment Epithelium abnormalities  

Lipofuscin accumulates in the RPE with age as a byproduct of photoreceptor outer 

seg-ment phagocytosis.1,115 Further RPE changes in ARM include attenuation of the 

RPE overlying drusen and BLD (Figure 2.3B), RPE atrophy, hypertrophy, hyperplasia 

and pigment clumping.116 RPE hyper-pigmentation and hypo-pigmentation are 

significant inde-pendent risk factors for the development of exudative AMD.117 

 

2.3.3 Geographic Age-related Macular Degeneration 

Histopathologically, atrophic or geographic AMD involves choroidal atrophy, 

involution of the RPE, and involution of the adjacent photoreceptors and outer retinal 

layers in the macular region. At the edge of the area of atrophy pigment clumps 

accumulate.2 In the absence of neovascularization, geographical atrophy probably is 

the natural end-result of ARM.2 
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It is currently unknown what factors determine the development of the disease 

towards either the geographic or to the neovascular form. In 42% of eyes histologically 

diagnosed with geographic atrophy, neovascularization was demonstrated,2 although 

the fibrovascular invasion had not obscured the underlying choroid on clinical 

examination. The clinical picture is therefore determined by the extent of the 

neovascular response and different manifestations may occur in the two eyes.2 In a 

histologic and morphometric study on geographic and neovascular AMD, no 

differences were detected in measured variables between eyes with the neovascular 

and geographic forms of AMD. This may indicate that the underlying 

pathophysiologic mechanisms are not different in these two AMD groups.118 
 

2.3.4 Exudative Age-related Macular Degeneration 

Exudative AMD is characterized by RPE detachment, choroidal neovascularization 

and disciform scarring. The presence of confluent soft drusen and BLD predisposes to 

a detachment of the RPE basement membrane from Bruch’s membrane.73 The RPE 

detachment often goes hand in hand with serous detachment of the neuroretina. 

In neovascular AMD, vessels from the choroid invade Bruch’s membrane and grow 

beneath the degenerating RPE or beneath the neural retina (Figure 2.4). Fibrovascular 

tissue proliferates, involving transdifferentiated RPE cells and inflammatory cells such 

as macrophages and (myo-)fibroblasts.119 In later stages this proliferation leads to the 

formation of a fibrocellular disciform scar (Figure 2.5). Photoreceptor cells disappear 

rapidly in this stage. The formation of the disciform lesion is regarded as the end result 

of CNV and also as normal wound repair.1,74,119,120 The newly formed vessels have a 

tendency to leak and bleed. Additionally, the normal blood-retinal barrier from the 

outer retinal blood supply, which is situated in the tight junctions of the RPE 

monolayer, is broken and thus the new vessels may give rise to serous detachments or 

hemorrhages.86 CNV also occurs in other ocular diseases such as the presumed ocular 

histoplasmosis syndrome, posterior uveitis, multifocal choroiditis, ocular 

toxoplasmosis, birdshot chorioretinopathy, ocular sarcoidosis, rubella retinopathy, 

Vogt Koyonagi Harada syndrome, Behçet's disease and chronic uveitis.78 

Neovascular AMD has a chronic inflammatory component.78,121-124 CNV contains 

chronic inflammatory cells such as macrophages121-123 and multinucleated giant cells 

which participate in the breakdown of Bruch's membrane and may provide an 

angiogenic stimulus for CNV.78,124-127 It is possible that inflammatory changes are a 

result, rather than a cause, of the degenerative changes that subsequently lead to CNV. 

However, the occurrence of CNV in diseases in which the chorioretinal inflammation 

clearly precedes the degenerative changes, as it does in posterior uveitis, supports the 

hypothesis that the development of chorioretinal inflammation is a critical, late step in 

the pathogenesis of CNV in both ARM and posterior uveitis.78 
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Figure 2.4  Early choroidal neovascularization (A) Thinning of Bruch’s membrane below soft 
drusen, with a possible break through by a capillary. (B) Capillaries growing through a defect in 
Bruch’s membrane (in between arrows) towards the RPE. (C) Capillary growing through a break 
in Bruch’s membrane into a choroidal neovascularization. (D) Capillary (arrow) in a sub-RPE 
choroidal neovascularization. A layer of BLD is indicated by arrowheads. Mallory or PAS 
staining. Original magnification x400 (A-C) and x200 (D). 

 

 

Classification of Choroidal Neovascularization 

Clinically, two types of CNV are distinguished based on the pattern at fluorescein 

angiography: classic CNV and occult CNV. 128 Classic CNV is characterized by an 

area of hyperfluorescence with well-demarcated boundaries on the early phase of 

fluorescein angiography. In occult CNV, the borders are usually poorly demarcated, 

and there is late leakage of undetermined source. Also mixtures of classic and occult 

CNV occur. Occult CNV covers up to 87% of all CNV associated with ARM.129,130 

Occult CNV can be visualized with indocyanine green videoangiography.131,132 

 

Histologically, two different types of CNV can be distinguished120,133 (Figure 2.6). Type 

1 CNV is located beneath the RPE and is usually associated with ARM (Figures 2.5A 

and 2.6A). Type 2 CNV is present between the neuroretina and RPE (Figures 2.5B 

and 2.6B). This type is associated with focally destructive lesions affecting Bruch’s 

membrane and the RPE, such as focal chorioretinal scars in ocular histoplasmosis 

syndrome.120 In ARM, with decreased coherence of the RPE, Bruch’s membrane and 

choriocapillaris, the CNV is more likely to develop between the RPE and Bruch’s 

membrane (type 1). This in contrast to younger patients with an intact RPE-Bruch’s 

membrane-choriocapillaris complex, who are more prone to develop a type 2 

membrane. When proliferation of CNV associated with ARM continues, the subRPE 
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type 1 membrane may grow through the RPE into the subretinal space, resulting in a 

mixed pattern120 (Figure 2.6C). 

The correlation of the clinical and histological classifications is still not clear. 

Although with fluorescent angiography, the well-defined, classic type of CNV is more 

frequent in a subretinal type 2 membrane, this is not a reliable sign in differentiating 

the two types of membranes.120 

 

 
Figure 2.5  Fully developed choroidal neovascularizations. (A) Sub-RPE choroidal neo-
vascularization. A large defect in Bruch’s membrane may serve as the original site of the 
neovascularization. In the outer portion of the membrane several vital vessels (arrowheads) are 
seen, while the inner portion (darker area just below the RPE) the membrane has turned into a 
fibrocellular scar. The overlying neuroretina is disorganized, all photoreceptors have 
disappeared.(B) Subretinal choroidal neovascularization, with several capillaries containing 
erythrocytes (arrowheads). The overlying neuroretina is disorganized. RPE is indicated by an 
asterix. NR = neuroretina; BM =  Bruch’s membrane; CH = choroid. Mallory-staining. Original 
magnification x 200 
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Figure 2.6  Schematic histologic classification of CNV. (A) Type 1 
membrane, which is localized sub-RPE. (B) Type 2 membrane, with 
subretinal localization. The adherence of the RPE to Bruch’s membrane is 
largely undisturbed. (C) Combined (mixed) membrane, partly localized 
sub-RPE with outgrow in the subretinal space. 
NR = neuroretina; RPE = retinal pigment epithelium; CC = 
choriocapillaris. Adapted from: Grossniklaus H.E. and Gass, J.D.M., 
Clinicopathologic correlations of surgically excised type 1 and type 2 
submacular choroidal neovascular membranes. Am J Ophthalmol 
1998;126:59-69. 

 
 

Growth Factors involved in Pathogenesis of Choroidal Neovascularization 

In the complex process of angiogenesis, vascular endothelial cells are activated to mi-

grate and proliferate by angiogenic factors. The surrounding vascular basement mem-

brane and the extracellular matrix are degradated by proteolytic enzymes (called 

matrix metalloproteinases), enabling proliferating vascular endothelial cells to migrate 

towards the stimulus and form sprouts. Sprouts then connect to form vascular loops, 

which are canalized to establish blood flow. During the last stage pericytes and 

smooth muscle cells are recruited to stabilize the new vessels, and the extracellular 

matrix is remodelled.134 

Under physiological circumstances, the quiescent vascular homeostasis of the retina is 

regulated by a balance between naturally occurring pro-angiogenic factors and angio-

genesis inhibitors.134-136 Several factors, among which hypoxia,137,138 oxidative stress,139-
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141 and many still unidentified other factors, are capable of regulating growth factor 

expression. These factors may be capable of disturbing the natural homeostasis, thus 

allowing neovascularization. The definite pro-angiogenic action of growth factors is 

further dependent on extracellular matrix composition and the expression of receptors 

on target cells.142,143 The provoking factors of angiogenesis in AMD are still 

unidentified. Hypoxia as a stimulus has been suggested by several authors.74,144,145 A 

thick layer of BLD may serve as a barrier for oxygen diffusion and cause relative 

hypoxia in the outer retinal layers, inducing angiogenic factor release. Upregulation of 

several growth factors by reactive oxygen intermediates in the RPE and 

macrophages139-141 may highlight oxidative stress as a provoking factor.  

 

In the retina, many growth factors have been identified that are involved in the patho-

genesis of neovascular retinal disease. Some of the most important factors will be 

discussed. 

 

Vascular endothelial growth factor (VEGF) 

VEGF is a endothelial-specific mitogen, which is capable of stimulating all major 

functions of endothelial cells in the process of angiogenesis: increased permeability, 

migration, proliferation, and tube formation.119,142 Under physiological circumstances, 

VEGF has a low constitutive expression in the eye.146 In the RPE, this probably 

functions as a trophic factor in the maintenance of the endothelial cells of the 

choriocapillaris.119,146,147 VEGF is upregulated by multiple factors, including 

hypoxia,137,148-152 several growth factors such as fibroblast growth factors (FGFs),153,154 

transforming growth factor-β (TGF-β)155 and insulin-like growth factor-I (IGF-I),156 

prostaglandins,157 alterations in the extracellular matrix,158 and also by oxidative 

stress.139  

VEGF appears to play a central role in neovascular AMD. VEGF protein and mRNA 

have been identified in histopathologic specimens of early and neovascular 

ARM.144,145,159,160 Animal models in which VEGF is overexpressed in the RPE show 

choroidal161-163 or intrachoroidal neovascularization.164 Blocking of VEGF receptor 

kinases causes dramatic inhibition of CNV under experimental circumstances,165,166 

indicating that VEGF may be required for development of CNV. However, additional 

factors are probably needed. 

 

Insulin-like growth factor-I (IGF-I) 

IGF-I is a growth promoting polypeptide that has mitogenic and differentiating effects 

on many cell types. The diverse activities of IGF-I are mediated through binding and 

activation of the type I IGF receptor (IGF-IR). In the circulation and extracellular 

space, IGF-I is usually bound to one of the IGF-binding proteins (IGF-BP) [reviewed 

by Baxter167]. Six major IGF-BPs are discerned currently. The circulating IGF-I/IGF-
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BP complex limits access of IGF-I to specific tissues and to the IGF receptor. IGFBP-

3 is the most abundant in serum, and binds more than 95% of the IGF. 

Intravascularly, the IGF-I/IGFBP3 dimer forms a complex with the acid-labile 

subunit, resulting in a prolonged half-life of several hours. When released from this 

complex, IGF-I can enter target tissues with help of other binding proteins.168 

Furthermore most IGF-BPs have actions that are independent of IGF-I binding, 

including inhibition or enhancement of cell growth and induction of apoptosis. IGF-I 

and the IGFBPs are mainly produced by the liver, however they are also synthesized 

locally by most tissues, where they act in an autocrine or paracrine manner.168 

In many situations on pathological growth, multiple components of the IGF system 

may be dysregulated.169 IGF-I participates in each step of ocular neovascularization.170 

It is involved in the degradation of basement membranes and extracellular matrix 

proteolysis, and in vascular endothelial cell migration and proliferation.171 IGF-I also 

increases RPE cell migration and proliferation in vitro.172 In the eye, IGF-I can act as a 

direct angiogenic factor on vascular endothelial cells of the retina173 and 

choriocapillaris,174 or indirectly through increased VEGF gene expression of cultured 

RPE cells.156 Intravitreous injection of IGF-I in animals produces preretinal 

neovascularization in rabbits175 or microangiopathy resembling diabetic 

microangiopathy in pigs.176 In mice, inhibition of IGF-I can decrease ischemia-

induced retinal neovascularization.177 Inhibition of IGF-I can be achieved by 

somatostatin analogues or by transgenic downregulation of growth hormone (GH). In 

addition, antagonists of IGF-IR suppress retinal neovascularization and reduces the 

retinal endothelial cell response to VEGF. This may suggest that IGF-I has a 

permissive role in VEGF-induced neovascularization.178 The effect of IGF-I on 

choroidal neovascularization has not been studied so far. 

 

Somatostatin 

Somatostatin is a neuropeptide with a wide variation of activities in various tissues 

[reviewed by Patel179]. In the retina somatostatin functions as a neurotransmitter. 

Under pathologic conditions, somatostatin and its analogues inhibit ocular 

angiogenesis, indirectly by downregulation of growth hormone and IGF-I,177 by 

inactivating the IGF-I mediated activation of IGF-IR,180 and by inhibiting VEGF 

expression in RPE cells.180 In addition, somatostatin and its analogues can inhibit 

angiogenesis directly,181 possibly by activation of somatostatin receptors located on 

capillary endothelial cells.173 In the treatment of diabetic retinopathy patients, the 

somatostatin analogue octreotide may retard progression of advanced diabetic 

retinopathy and may delay the time to laser surgery.182 A pilot study in which patients 

with neovascular AMD were treated with octreotide, showed stabilization or minor 

deterioration of visual acuity in the majority of patients after 2 years.183 
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Angiopoietin (Ang)-Tie2 system 

Tie2 is an endothelial cell-specific receptor which is thought to stabilize vascular 

integrity.184 Angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are ligands for the Tie2 

receptor. Ang2 is a natural antagonist for Tie2.185 The system is thought to play a role 

in pathologic angiogenesis in which VEGF is involved. Both hypoxia and VEGF 

selectively enhance Ang2 expression in retinal vascular endothelial cells while the 

expression of Ang1 and Tie2 remains stable. Ang2 is up-regulated in hypoxic retinas 

and neovascular vessels in vivo.186. In CNV, Ang2 and VEGF are both upregulated, 

and Tie2 is expressed in a variety of cell types, supporting a role of the interaction 

between VEGF and Ang2 in the pathogenesis of CNV formation.187 

 

Fibroblast growth factor (FGF) 

FGFs are a family of heparin binding proteins, with mitogenic, neurotrophic and 

angiogenic properties.119,188-190 In the macula, FGFs have a constitutive expression.119 

Some FGFs are non-secreted factors, which probably have autocrine functions in the 

retina. FGF5 is a secreted protein with probable paracrine functions as well.119 FGF 

has synergistic angiogenic activity with VEGF.191-193 In neovascular AMD, several 

FGFs have been identified145,189,190 and FGF is capable of inducing subretinal 

neovascularization in rabbits.194 

 

Platelet-derived growth factor (PDGF) 

PDGF stimulates formation of granulation tissue and is involved in wound repair.119 

This could explain increased PDGF expression in RPE underlying retinal 

detachment,195 and in eyes with epiretinal membranes.195,196 In eyes with neovascular 

AMD, expression is upregulated in the outer nuclear layer of the retina.144 Since 

PDGF is highly growth promoting and chemotactic to RPE cells,195,197,198 this 

upregulation could be attributed to its participation in RPE migration towards the 

inner retina, often seen in neovascular AMD.144 

 

Transforming growth factor-beta (TGF-ββββ) 

Activated TGF-β inhibits endothelial cell proliferation. It is secreted by pericytes in a 

latent form, which is then activated by the vascular endothelial cell, emphasizing the 

important role of pericytes in maintaining vascular quiescence.134 The role of TGF-β in 

the process of angiogenesis is still controversial. TGF-β has been postulated to be an 

inhibitor of ocular angiogenesis,199,200 however also pro-angiogenic functions have been 

attributed to this cytokine.135,143 The angiogenic actions of TGF-β are indirect by 

modulating expression of other angiogenic factors such as VEGF,155,197,201 or by 

recruitment of inflammatory cells, which in turn produce positive regulators such as 

VEGF.143,202 In early ARM144 and in neovascular AMD,189,203 TGF-β expression is 

upregulated. 
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Pigment Epithelium-Derived Factor (PEDF)  

PEDF is a neurotrophic factor204 and one of the most potent inhibitors of ocular 

angiogenesis,135 produced in the RPE.204,205 PEDF is probably responsible for the 

physiological avascularity of the cornea and vitreous.135 The amount of PEDF 

produced by retinal cells is positively correlated with oxygen concentration, suggesting 

that loss of PEDF plays a permissive role in ischemia-driven retinal 

neovascularization.135 PEDF inhibits aberrant blood vessel growth in mouse models of 

ischemia-induced retinopathy,206,207 and in experimental CNV.207 This angiogenesis 

inhibiting effect is thought to be caused by induction of apoptosis of activated 

endothelial cells.206 

 

Angiostatin 

Angiostatin is a potent inhibitor of angiogenesis, selectively inhibiting endothelial cell 

proliferation.208 It is composed of an internal fragment of plasminogen.208 Angiostatin 

reduces neovascularization size in experimental rat CNV,209 and prevents retinal 

neovascularization in a mouse model of retinopathy of prematurity without affecting 

physiological angiogenesis.210 It is suggested that local release of angiostatin is one of 

the mechanisms that mediates the therapeutic effect of retinal photocoagulation in 

proliferative diabetic retinopathy.211 

 

 

 

2.4 THERAPEUTIC MODALITIES 

 

Therapies for AMD are mainly focussed on patients with neovascular AMD. Only 

studies on antioxidant vitamins and cofactors for antioxidant enzymes such as zinc 

also address early ARM. A recent report demonstrated a modest effect for antioxidant 

vitamins E, C and A in combination with zinc in preventing progression from early 

ARM to advanced AMD, particularly to neovascular AMD.12 

Two treatment modalities with acknowledged beneficial effect on neovascular AMD 

are laser treatment128,212 and photodynamic therapy.213,214 Laser treatment reduces the 

risk of visual acuity loss, however, only a small group consisting of patients with 

classic CNV are eligible for laser therapy. Patients with subfoveal CNV experience an 

immediate central scotoma due to irreversible retinal and choroidal damage. 

Recurrences of CNV frequently occur, often within 1 year of laser treatment.215 It is 

unclear in these cases whether the laser treatment is inadequate or whether the 

recurrent CNV consists of a new neovascularization.108 
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Photodynamic therapy (PDT) is a promising newly developed treatment modality, 

combining laser with light-sensitive drugs, intended to achieve isolated vessel 

occlusion. PDT also is most effective on patients with classic CNV, and multiple 

consecutive treatments are required.213,214 

Radiotherapy is one of many experimental treatments for neovascular AMD. Varying 

results have been published with a variety of techniques and dosage-schemes, but a 

recently performed pooled analysis of different studies indicated that radiotherapy 

with higher dosages may only act to slow or delay the progress of the disease.216 

Surgical treatments including surgical excision of the CNV and retinal rotation are still 

in an experimental stage. In general, surgical treatment does not improve vision in 

patients with AMD, but may be effective in patients with other causes of CNV.120,217 

Currently a variety of trials on anti-angiogenic drugs to attack neovascular AMD is 

underway. Angiogenesis inhibitors that could be valuable against CNV are given in 

Table 2.1. Because of the multifactorial origin of vascular growth in CNV, inhibition 

of more than one growth factor is probably essential for a definite effect. 

 
TABLE 2.1   ANGIOGENESIS INHIBITORS POSSIBLY USEFUL IN NEOVASCULAR AMD 
Angiogenesis inhibitor Trials Comments 

angiostatin  using gene-therapy 

 
matrix metalloproteinase-
inhibitors 

  
prevent enzymatic degradation of extracellular 
matrix 

 
interferon-2α 

  
not effective in neovascular AMD 

 
thalidomide 

 
multicentre trial 

 
no results yet 

 
monoclonal antibodies 

  
against endothelial cell markers 218 or integrins  

 
antisense-oligonucleotides 
against VEGF 

 
phase II multicentre trial 

 
prevents translation of mRNA into proteins 219,220 

 
steroids 

 
uncontrolled pilot study of 
intravitreal triamcinolone 

 
probable beneficial effect in neovascular AMD  

 
somatostatin-analogues 

 
randomized, double blind 
trial using octreotide 

 
pilot study was promising in stabilizing visual 
acuity 
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CHAPTER 3 

 

AIM OF THE THESIS 

 

 

Although the morphology of ARM has been described in detail, the pathogenesis is 

still poorly understood. Several important questions remain to be answered in order to 

develop new prevention and treatment strategies. 

Although the most striking associated factor for ARM is age, it is still not clear 

whether ARM is an exaggeration of the normal aging process (in other words an 

advanced stage of a deteriorative process that takes place in all eyes1), or a 

fundamentally different disease-entity. All major signs of ARM increase with 

advancing age, but only in some individuals they progress to the stage of functional 

loss or cell death.1 A well-known mechanism of cell death and subsequent atrophy is 

apoptosis. To address this topic, we studied the presence of apoptosis in the aging 

retina in the second part of this thesis. The RPE appears to play a vital role in the 

development of ARM. The expression of the apoptosis–regulating protein Fas-ligand 

on RPE is hypothesized to have an inhibitory effect on human neovascularization64 by 

inducing apoptosis of active vascular endothelial cells. Therefore, we investigated 

whether Fas-ligand expression on RPE cells is associated with the stage of ARM and 

with age. 

Focussing on neovascular AMD the question remains what factors trigger neovascular 

capillaries to develop from the choroid. It is acknowledged that growth factors are 

important in initiation and development of CNV. VEGF seems to play a central role 

in neovascular AMD,144,145,159-166 however other growth factors are probably required in 

addition. Thus, in the third part of this thesis, we focus on the Insulin-like Growth 

Factor pathway in neovascular AMD. IGF-I is associated with ocular angiogenesis in 

animal models,177,178 it has direct angiogenic effects,170,173 and modulates the expression 

and effects of VEGF156,178 Finally, in order to assess the effects of treatments, we 

describe the histopathological findings of radiotherapy on neovascular AMD. 
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CHAPTER 4 

 

APOPTOSIS IS PRESENT IN THE PRIMATE MACULA AT ALL AGES 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 
Purpose: It has become increasingly clear that apoptosis is a main event in 

photoreceptor cell death in a variety of retinal degenerations. We investigated the role 

of apoptosis in the physiologically aging primate macula. 

Methods: Twenty maculae of rhesus monkeys, aged 6 to 34 years, were investigated. 

Apoptosis was determined in formalin-fixed, paraffin-embedded eyes using the 

TUNEL (TdT-mediated dUTP-biotin nick end labeling) method and quantitatively 

analyzed. Morphology of TUNEL positive cells was studied by confocal laser 

microscopy and transmission electron microscopy. The thickness of the outer nuclear 

layer (ONL) was determined by image analysis. Furthermore, expression of apoptosis-

regulating proteins Bcl-x, Fas and Fas Ligand was studied by immunohistochemistry.  

Results: TUNEL positive nuclei showed apoptotic features on confocal laser 

microscopy. They were scattered and sparsely found in the macula, most frequently in 

the ONL. The thickness of the ONL decreased with increasing age. Apoptosis was 

found equally distributed at all ages, although in the two oldest maculae up to 13 times 

more apoptosis was found. Expression of Bcl-x, Fas and Fas Ligand was equal at all 

ages. 

Conclusion: Our findings indicate that apoptosis in the primate macula occurs at all 

ages at similar rate, possibly increasing in the oldest age group, and may account for 

the decreasing thickness of the primate macula with age. 
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INTRODUCTION 

 

The thickness of the human retina decreases with advanced age, due to loss of 

photoreceptors and ganglion cells.26 Photoreceptor loss occurs in atrophic age-related 

macular degeneration (AMD) as well as in the more severe neovascular form.90 

Apoptosis was demonstrated in 4 out of 16 cases of AMD, neovascular as well as 

atrophic.55 Therefore, it was hypothesized that apoptosis is involved in photoreceptor 

degeneration in AMD.55 In animal models of retinal degeneration, photoreceptor cell 

death occurs by apoptosis.43-45,221-223 

It has become increasingly apparent that apoptosis, a cell suicide program, plays a 

crucial role in many physiologic processes, such as embryonic development and 

homeostatic maintenance of tissues, and in many disease processes, for instance 

malignant tumors. The process of apoptosis is under genetic control and can be 

initiated by an internal clock (programmed cell death), or by extracellular agents such 

as hormones, cytokines, natural killer cells, and a variety of chemical, viral, and 

physical agents. During apoptosis, individual cells show nuclear and cytoplasmic 

condensation and biochemical analysis reveals internucleosomal DNA 

fragmentation.34,35,37 

Apoptosis-regulating genes in the retina have been studied extensively in experimental 

conditions. The Bcl-2 family consists of many proteins, both inhibitors and stimulators 

of apoptosis. The apoptosis-protective protein Bcl-2 is expressed widely in the 

developing neuronal system but downregulated in the adult neuronal system.58 Bcl-x is 

the predominant Bcl-2 family member in postnatal neural tissues57 and adult rat 

retina.59 Overexpression of Bcl-2 or Bcl-x is protective for photoreceptor cell death in 

rd mice.60 Fas (CD95) receptor mediates apoptosis when triggered by agonistic 

antibodies or its ligand, Fas Ligand (FasL).62 Fas and FasL are expressed in normal 

human retina.54,64,224,225 

The ocular fundus of humans and rhesus monkeys is almost identical.226,227 Aged 

maculae of rhesus monkeys have clinically and histologically detectable pathology 

associated with age related maculopathy (ARM). Clinically, macular drusen (6 to 

74%) identical to human drusen, and alterations of the RPE (18 to 45%) have been 

demonstrated.228-232 The maximum life span of the rhesus monkey is one third of 

humans implying that relative aging occurs three times more rapidly.227 

The aim of this study was to ascertain whether apoptosis plays a role in the 

physiologically aging primate macula. 
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MATERIALS AND METHODS 

 

The animals were procured, maintained and used in accordance with the Dutch law 

and regulations, the Animal Welfare Act and the ‘Guide for the Care and Use of 

Laboratory Animals’ prepared by the Institute of Laboratory Animal Resources- 

National Research Council (USA). 

 

Experimental animals 

Twenty rhesus monkeys (Macaca mulatta) studied were obtained from the Department 

of Clinical Oncology, University of Leiden, from the project ‘Late effects of total body 

irradiation in rhesus monkeys’.233,234 The animals used in this study belonged to the 

non-irradiated control group and were aged 6 to 34 years. 

 
Tissue preparation and histopathology 

The eyes of the monkeys were enucleated immediately post mortem and were 

processed as described before.235 In short, a portion of the retina of approximately 1 

cm2 containing the macula was sectioned and horizontally divided in two parts. One 

part was fixed by immersion in formaline for 24 hours. After embedding in paraffin, 

sections through the centre of the macula were cut at 5 µm thickness and were 

mounted on silanized glass slides. For light microscopy, sections were stained with 

hematoxylin and eosin (HE), periodic acid-Schiff and Mallory. The maculae were 

histologically examined by light microscopy for signs of aging and early macular 

degeneration, i.e. thickening of Bruch's membrane, basal laminar deposits (BLD), 

drusen and RPE abnormalities.112,236 

 
TUNEL staining 

To identify apoptosis, we used the terminal deoxynucleotidyl transferase (TdT)-

mediated deoxyuridine (dUTP)-biotin nick end labeling (TUNEL) method, which 

labels the fragmented DNA ends with biotinylated poly(dU). Paraffin sections, within 

1 mm of the foveola, were used for TUNEL staining, according to the method of 

Gavrieli et al.39 with the following modifications. After deparaffinization and 

rehydration, the slides were pretreated with 20 µg/ml DNase-free proteinase K (Gibco 

Life Technologies, Breda, Netherlands) during 10 minutes at 37ºC. As a positive 

control one slide was treated by DNase I (Promega, Madison, WI, USA) dissolved in 

a DNase buffer (30 mM Trizma-base, 140 mM cacodylate, 4 mM MgCl2, 0.1 mM 

dithiotreïtol, pH 7.2) during 1 hour at 37ºC or overnight at 4ºC to induce 

chromosomal breaks. Sections were washed in TdT buffer (0.5 M cacodylate, 1 mM 

CoCl2, 0.5 mM DTT, 0.15 M NaCl, 0.05% bovine serum albumin, pH 6.8) and 

incubated for 3 hours in a mix containing 25 µl TdT buffer, 5 U TdT (Promega) and 
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0.5 nmol biotin-16-dUTP (Boehringer Mannheim, Germany). As a negative control, 

TdT enzyme was omitted. Labeling was done using biotinylated multilink antibodies 

followed by streptavidin-labeled alkaline phosphatase (Biogenex, San Ramon, CA, 

USA). New Fuchsin was used as chromogen, and the slides were counterstained with 

Mayer's hematoxylin. The number of TUNEL-stained nuclei was quantified in four 

random slides per macula by image analysis.  

 
Confocal laser microscopy 

To examine morphology, TUNEL-positive nuclei and apoptotic bodies were localized 

exactly in TUNEL-stained maculae by computer. Thereafter the slides were 

unmounted and stained with 5 ng/ml propidium iodide (Sigma, Steinheim, Germany) 

in Vectashield (Vector, Burlingame CA, USA). The TUNEL-positive nuclei were 

relocalized and examined using a confocal laser scanning microscope with a He/Ne-

laser at 543 nm as an excitation light source. A long pass filter (> 570 nm) was used 

for the detection of propidium iodide emission light. 

 

Electron microscopy 

Another part of the macula was embedded for electron microscopy. The tissue was 

immersed in 4% paraformaldehyde and, after dehydration, embedded in Lowicryl 

(Aurion, Wageningen, Netherlands). The blocks were polymerized at -35ºC under 

ultraviolet light. Ultrathin sections were cut and stained with uranylacetate 6% and 

lead citrate. The sections were mounted on grids and examined for features of 

apoptosis using a transmission electron microscope. 

 

Image analysis 

Digital microscopic images consisting of 512×512 pixels (0.43 µm/pixel) of each 

section were recorded with a 40× objective using a Zeiss Axioplan Microscope (Zeiss, 

Oberkochen, Germany) equipped with a Sony DXC-930P 3-chip color CCD 

videocamera (with a 0.45× lens). The measurements and estimations were performed 

with a semi-automatic digital image analysis procedure (software: KS400, Kontron, 

Germany). 

To determine the percentage of TUNEL-positive nuclei, the total numbers of nuclei 

present in the ONL and INL were estimated in the following way: 1) the mean surface 

area of individual nuclei that could be identified automatically by the image analysis 

software was measured (Amean nucleus); 2) the total nuclear surface area of all nuclei, 

including the nuclei that were not segmented by the software (Atotal), was measured, 

and 3) the total number of nuclei (Ntotal) was estimated as: Ntotal=Atotal/Amean nucleus. The 

number of TUNEL-stained nuclei per 1000 nuclei in the ONL and INL was recorded.  

To relate thickness of  the macula to age, we chose a section in the perifoveal region of 

the slides. Because the INL width has a large variance along the foveolar - 
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parafoveolar - perifoveolar region 237, we restricted this part of the study to the ONL 

width. We standardized according to the number of ganglion cells, to exclude any 

possible regional anatomic variation. We ensured that the plane of section was truly 

axial along the length of the rod inner segments. Therefore, five maculae had to be 

excluded. The ONL width was measured from the outer limiting membrane to the 

innermost cell of the ONL.  

 
Immunohistochemistry 

Expression of Bcl-x, Fas and FasL was determined as follows. Paraffin slides were 

deparaffinized and rehydrated. For the Fas antibody, antigen retrieval was performed 

(pronase treatment for 10 minutes at 37ºC). Incubation was performed with polyclonal 

rabbit anti-human antibodies against Bcl-x and FasL (Santa Cruz Biotechnologies, 

Santa Cruz, CA, USA) and monoclonal mouse anti-human antibodies against CD95 

(Fas) (Immunotech, Marseille, France) for 1 hour at room temperature. Labeling was 

done using biotinylated multilink antibodies followed by streptavidin-labeled alkaline 

phosphatase (Biogenex, San Ramon, CA, USA). New Fuchsin was used as 

chromogen. The slides were counterstained with Mayer's hematoxylin, and examined 

by light-microscopy. Negative controls for immunohistochemistry included (1) 

omission of the primary antibody, (2) use of irrelevant antibodies of the same isotype, 

and (3) preabsorption of the Fas and FasL antibodies with a tenfold concentration of 

the immunizing peptide for 4 hours.  

 

Statistical analysis 

To analyse the data, Spearman's correlation was used. A value of P<0,05 was 

considered significant. 

 

 

RESULTS 

 

Histopathology 

BLD and soft drusen were not found in any of the maculae. Hard drusen were noted 

in 8 maculae. The correlation (rS=0.57) between number of drusen and increasing age 

was significant (P=0.01). Diffuse thickening of Bruch's membrane with intercapillary 

pillars was noted in one macula from a monkey 21 years of age.  

 
TUNEL staining  

All maculae were included except for two that after processing did not contain a retina 

(n=18). TUNEL-stained nuclei, indicating apoptosis, were observed sparsely in the
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Figure 4.1 Apoptosis in rhesus monkey macula. In-situ 3’end labeling of apoptotic DNA by alkaline 
phosphatase detection (upper row) and confocal laser microscopy images of same cells (lower row). (A) TUNEL-
positive nucleus in ONL of 8-year-old monkey. Nucleus appears shrunken in relation to surrounding cells, and 
nuclear material appears condensed in periphery of nucleus. (B) TUNEL-positive nuclei in ONL of 34-year-old 
monkey. One nucleus shows budding (arrow). (C) Apoptotic body in the photoreceptor layer of 18 year old monkey. 
ONL = outer nuclear layer; INL = inner nuclear layer, RPE =  retinal pigment epithelium. Original 
magnification upper row, 400×; estimated magnification confocal images, 1300× – 1800×.  
 

nuclear layers of the retina but were most numerous in the ONL (Figure 4.1A, B). 

TUNEL-stained nuclei were also found in the photoreceptor layer, as well as small 

labeled particles, consistent with apoptotic bodies238 (Figure 4.1C). The red-colored 

apoptotic bodies were clearly distinguishable from RPE pigment. In four maculae 

TUNEL-stained nuclei were sporadically found in the RPE. The negative controls did 

not stain, and positive controls showed adequate labeling of DNA fragments. 

 
Confocal laser microscopy 

Confocal microscopy of TUNEL-stained nuclei revealed the presence of condensed 

nuclei with morphologic features of apoptosis: condensation of nuclear chromatin, cell 

body shrinkage and cell budding (Figure 4.1). 

 
Electron microscopy 

In the ultrathin sections of the macula of the oldest monkey we found focally in the 

ONL a cell, showing phagocytosis of condensed material, consistent with nuclear 

chromatin (Figure 4.2). 
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Figure 4.2 Transmission electron microscopy of nuclei in the ONL 
of the oldest monkey (34 years of age) with phagocytosis of condensed 
nuclear material (filled arrow) by a neighboring cell. The open arrow 
indicates the original nucleus of the cell. Scale bar represents 1,59 µm. 

 
 

Image analysis 

TUNEL-positive nuclei in the ONL were found at a rate of 0 to 0.53‰ of the total 

number of ONL nuclei in each section. TUNEL staining was found equally 

distributed at all ages, although in the two oldest maculae (32 and 34 years of age) 6 

and 13 times more positive nuclei were found in the ONL, respectively (corrected for 

the amount of nuclei in the ONL) (Figure 4.1B). We found a non-significant 

correlation of rS = 0.14 for the ONL and rS = 0.10 for the INL between TUNEL 

staining and increasing age (ONL: P = 0.59, INL: P = 0.69; Spearman’s correlation 

coefficient) (Figure 4.3). The thickness of the ONL decreased significantly with 

increasing age (rS = -0.56; P = 0.029) (Figure 4.4). 

 
Immunohistochemistry 

Expression of Bcl-x was observed in the RPE, in the outer limiting membrane, and in 

nuclear and plexiform layers, particularly in the outer plexiform layer (Figure 4.5A). 

Strong expression of Fas was found in ganglion cells and INL, less strong expression 

in the RPE and variously in choriocapillaris and choroidal vessels (Figure 4.5B). FasL 

expression was found throughout the neuroretina, in the RPE, and variously in the 

choriocapillaris (Figure 4.5C). In negative controls, no staining or slightly aspecific  
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staining was seen (Figure 4.5D, E, F). Expression of Bcl-x, Fas, and FasL in the 

neuroretina was similar at all ages. 
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Figure 4.3 Relationship between TUNEL-stained nuclei in ONL 
and aging, in years. Number of apoptotic nuclei is quantified per 1000 
nuclei of ONL.  
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Figure 4.4 Relationship between age and thickness of ONL (in 
micrometers) in rhesus monkey, indicating that thickness of the macula 
decreases with increasing age. rS = –0.56, P = 0.03 (Spearman’s 
correlation). 

 
 

DISCUSSION 

 

We found that apoptosis in the primate macula occurs at all ages at similar rate, even 

in the youngest age group. In the 2 oldest maculae (>32 years) we found 

approximately 6 and 13 times more apoptotic nuclei, respectively. However, a 

significant positive correlation of apoptosis with increasing age could not be 

demonstrated. This may be due to the relatively small number of aged maculae. 

Moreover, the occurrence of apoptosis in postmitotic tissues should be a rare event.  
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Figure 4.5  Immunolocalization of apoptosis-regulating proteins in rhesus monkey macula. 
Immunohistochemistry was performed on paraffin-embedded tissue and visualized with an alkaline phosphatase 
system using a red chromogen. Expression of Bcl-x (A), Fas (CD95) (B), and FasL (C). Negative control staining 
using irrelevant polyclonal rabbit IgG antibodies (D), irrelevant monoclonal mouse IgG1 antibodies (E), and peptide 
blocking of the anti-FasL antibodies (F). GGL = ganglion cell layer, INL = inner nuclear layer, ONL = outer 
nuclear layer, RPE = retinal pigment epithelium. Original magnification ×400 
 

 

With confocal laser microscopy, we demonstrated features of apoptosis, such as 

nuclear chromatin condensation, cell shrinkage and cell budding in TUNEL stained 

nuclei. Therefore, we assume that TUNEL positive nuclei in our study represent 

apoptosis.  

The apoptotic process is accomplished quickly34 and the period through which dying 

cells can be revealed by the TUNEL method is also relatively short: it is estimated at 

about 10 hours in rat retinal ganglion cells.51 Thus, because of the short duration of 

apoptosis a relatively low incidence of histologic signs of apoptosis can indicate a 

considerable rate of cell loss.239 Our findings of constant levels of apoptosis in the ONL 

might explain the decrease of ONL thickness with increasing age. These findings are 

in concordance with decreasing of thickness of the human retina with age,26,27 

although a different method was applied in those studies. 
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Apoptotic cells break up in membrane-bound fragments, so-called apoptotic bodies, 

that are phagocytosed by neighboring cells and induce no inflammatory response.34,35,37 

On electron microscopy we found phagocytosis of condensed nuclear material by a 

neighboring cell. Furthermore, we found some apoptotic bodies in the photoreceptor 

layer by confocal laser microscopy. Therefore it is conceivable that some apoptotic 

bodies migrate from the ONL and are phagocytosed by the RPE. Apoptosis in RPE 

cells was a rare event at all ages. However, with a small number of RPE cells present 

per slide, this result can indicate RPE cell loss by apoptosis. This is in accordance with 

the observations of decreased RPE cell density in the macular area with age.27,240 In 

vitro, cultured RPE cells can be triggered to undergo apoptosis by a variety of agents, 

such as oxidative stress25 and lipofuscin components.241 
Apoptosis in the younger age group may partly be explained by a continuation of the 

apoptotic process, responsible for the death of redundant cells during development of 

the retina.42,242 Another explanation may be that apoptosis resulting from external 

stimuli is already present at young age and functions in order to remove damaged or 

dysfunctional cells. Our findings are in concordance with findings of apoptosis in 

control monkey retinas in other studies52 and indicate that some apoptosis of the retina 

occurs as part of normal aging. The equal protein expression of the apoptosis-

regulating genes Bcl-x, Fas and FasL at all ages is in accordance with the steady amount 

of apoptosis during the aging process.  

The apoptotic rate increases in the oldest age group and in maculae with signs of 

ARM, possibly under influence of other stimuli, internal as well as external. Internal 

stimuli may be genetic predisposition, as is shown in colonies of rhesus monkeys with 

high rates of ARM.229 Likewise, in humans there is evidence for genetic predisposition 

in AMD.7,9 A number of external stimuli may be postulated. Hypoxia and ischemia of 

the outer retina are thought to contribute to the development of AMD.144 In a recent 

study on retinal ischemia in rats, apoptosis appeared as late component of neuronal 

death.67 Environmental factors such as light are assumed to play a role in retinal 

degeneration. In albino rats some of the damage inflicted by light may result in 

apoptosis of retinal photoreceptor cells. 243,244 Apoptosis is also induced by ultra violet 

light damage.245 In our study, the investigated rhesus monkeys, being captive, were 

underexposed to ultraviolet light, and were not exposed to other known risk factors for 

ARM,3 although atherosclerosis was present in the older monkeys. In rhesus monkeys, 

end stage AMD is rare.231 This may reflect either a slower degenerative process, or 

may represent an environmentally selective phenomenon.228 Furthermore, we did not 

find any BLD in the maculae of these monkeys, which is consistent with findings of 

other studies.103,228,231,232 This might implicate a degenerative process in the rhesus 

monkey eye somewhat different from that in the human eye. 
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In summary, we found that apoptosis occurs at similar rates at all ages in the primate 

macula. The process of apoptosis may account for the decreasing thickness of the 

ONL with age. 
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CHAPTER 5 

 

ROLE OF FAS-LIGAND IN AGE-RELATED MACULOPATHY NOT 
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ABSTRACT 

Purpose: Fas-ligand (FasL) expression on retinal pigment epithelium (RPE) is 

hypothesized to have an inhibitory effect on human ocular neovascularization.  

Methods: We studied FasL expression in the aging RPE and in early and late stages of 

age-related maculopathy (ARM). Immunohistochemistry with antibodies against FasL 

was performed on paraffin-embedded sections of 23 human eye bank eyes (aged 45 to 

96 years) and 12 eyes with neovascular AMD.  

Results: FasL expression in RPE was not related to age or to the presence of early 

ARM. Furthermore, FasL expression in RPE was similar in subretinal and sub-RPE 

choroidal neovascular membranes (CNVM).  

Conclusions: It appears to be unlikely that FasL expressed on RPE controls the 

extension of CNVM from sub-RPE to subretinal. 
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INTRODUCTION 

 

Age-related maculopathy (ARM) is the major cause of blindness in people over 65 years 

in the Western world.3 Late stages of ARM, also called age-related macular degeneration 

(AMD), include geographic atrophy and neovascular macular degeneration. The 

neovascular form is characterized by choroidal neovascular membranes (CNVM). In 

CNVM new vessels grow beneath the retinal pigment epithelium and the retina from the 

underlying choroid. Many growth factors have been identified that might influence 

angiogenesis in CNVM, such as VEGF, bFGF and somatostatin.145,159,160,189,190,246-248 

Recently, the role of Fas and its natural ligand, Fas-ligand (FasL) has been acknowledged 

in the process of angiogenesis.249 Fas and FasL are important for apoptosis in T-

lymphocytes but are also expressed on non-lymphoidal tissue. In the eye Fas-FasL 

interactions appear to be an important mechanism for the maintenance of immune 

privilege by inducing apoptosis of invading lymphocytes.63 Kaplan and coworkers64 

studied the role of FasL in surgically excised CNVMs of patients with AMD. They 

demonstrated FasL-positive RPE cells in close proximity to and surrounding Fas-positive 

vascular endothelial cells in new vessels. They also found an increased incidence of 

neovascularization in Fas-deficient and FasL-defective mice compared with normal mice. 

Fas-FasL interaction on RPE induced apoptosis of cultured choroidal endothelial cells. 

They concluded that FasL expressed on RPE may control the growth and development 

of subretinal neovascularization. They hypothesized that with RPE senescence, 

subretinal neovascularization in AMD may result from a decreased inhibitory effect of 

FasL-positive RPE cells on angiogenesis. 

 

The purpose of our study was to investigate FasL expression in the aging RPE and in 

early stages of ARM, and to study FasL expression on RPE in subretinal (clinically 

defined as classic) CNVMs, as well as subretinal RPE (clinically defined as occult) 

CNVMs. 

 

 

MATERIALS AND METHODS 

 

The study was performed according to the tenets of the Declaration of Helsinki. 

Enucleation or surgical excision of subfoveal CNVs was performed after obtaining 

informed consent of the patient. 
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Patient materials 

All eyes were retrieved from the files from the Ophthalmic Pathology Department of the 

University Hospital of Rotterdam. For determination of FasL expression on RPE related 

to age and early ARM, 22 human eye bank eyes were used. The donors were 45 to 96 

years of age (mean 75 years) with postmortem time from 2 to 11 hours. The donors had 

no history of eye disease, and the samples were macroscopically and microscopically 

checked for retinal diseases that might stimulate angiogenesis. The macular area (about 1 

cm2) was dissected from the ocular tissue, fixed in phosphate buffered formaldehyde and 

embedded in paraffin. Sections of 5 µm were made and classified for the presence of 

ARM as described before144 (Table 5.1). 

Furthermore, FasL expression on RPE in CNVM was determined on 12 eyes (6 

enucleated eyes, 4 donor eyes and 2 surgically removed subretinal neovascularizations) of 

11 patients with neovascular AMD, described before248 (Table 5.2). All eyes were 

processed for routine diagnostic procedures by fixation in formaldehyde and embedded in 

paraffin. Five µm sections were prepared for immunohistochemistry. 

 

TABLE 5.1. CLASSIFICATION OF HUMAN MACULAE AND FASL EXPRESSION IN RPE 

Case no. Age PM Classification of macula FasL expr RPE 

1 38 9.5 no ARM 1 

2 45 8.5 no ARM 2 

3 55 7 no ARM 2 

4 64 10 ARM 2 

5 65 8 ARM 0 

6 67 11 ARM 3 

7 74 8 ARM 1 

8 74 8 ARM 2 

9 76 7 no ARM 3 

10 77 9 no ARM 0 

11 77 9 no ARM 2 

12 80 9.5 no ARM 2 

13 81 5.5 no ARM n.c. 

14 81 7 ARM 0 

15 81 7 ARM 2 

16 85 4.5 ARM 3 

17 86 5 ARM 2 

18 86 10 ARM 3 

19 87 5 ARM 0 

20 88 8 ARM 0 

21 91 4.5 no ARM 3 

22 96 2 ARM 2 

Categories of FasL expression: 0 (0 – 25% positive cells), 1 (26 – 50% positive cells), 2 (51 – 75% positive cells) and 3 (76 
– 100%). PM = postmortem time in hours; ARM = age-related maculopathy; n.c. = not classifiable.  
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Immunohistochemistry 

Polyclonal rabbit antibodies against Fas (C20) and FasL (N20) for 

immunohistochemistry were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA). The sections were deparaffinated and rehydrated. After blocking with normal goat 

serum (Dako, 1:10) for 15 minutes, the slides were incubated with the antibodies (Fas, 

1:500; FasL 1:100) for 1 hour. The sections were further incubated with biotinylated 

multilink antibodies for 30 minutes, followed by alkaline phosphatase-labeled antibiotin 

(both Biogenex, San Ramon, USA) for 30 minutes. The complex was visualized by 

incubating the sections with new fuchsin for 30 minutes in the dark. The slides were 

counterstained with Mayer’s hematoxylin, mounted and examined by light microscopy. 

We graded the expression in 4 categories of positive cells: 0 (0 – 25%), 1 (26 – 50%), 2 (51 

– 75%) and 3 (76 – 100%). Negative controls for immunohistochemistry included 1) 

omission of the primary antibody, 2) incubation with an irrelevant polyclonal rabbit 

antibody and 3) preabsorbtion of the antibodies with a tenfold of the immunizing 

receptor peptide for 4 hours. The manufacturer has described the specificity of the 

antibodies. 

 

 

RESULTS 

 

FasL expression in aging human macula and early ARM 

FasL protein was found mostly in a membranous pattern at the basal side of the RPE 

(Figure 5.1A). Incidental cells stained in a more diffuse pattern. In early ARM, FasL 

staining was similar to non-ARM maculae (Figure 5.1B).  

FasL expression in RPE cells was not related to age (the Spearman coefficient, r = -0.14 , 

P = 0.95 ), nor to presence of early ARM (logistic regression adjusted for age, FasL > 

25% vs. FasL < 25%; odds ratio = 2.3; 95% CI: [0.2 to 28.2]) (Table 5.1). In negative 

controls, no staining was detected. 

 
FasL expression on RPE in CNVM 

In CNVMs, strong FasL and less intense Fas staining were found in RPE monolayers 

(Figure 5.1C-D, Table 5.2). Endothelial cells of newly formed vessels had both FasL and 

Fas expression in most cases. FasL staining in RPE was similar in sub-RPE (Figure 5.1C) 

and subretinal CNVMs (Figure 5.1D), as well as in fibrovascular and fibrocellular 

CNVMs. In negative controls with CNVMs, no staining was detected. 
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Figure 5.1 FasL expression in RPE (A) Fas-ligand staining of human macular RPE in 80-year old donor eye. 
The FasL protein is found mostly in a membranous pattern at the basal side (arrow). (B) FasL staining of 86-year old 
donor eye with ARM. (C) Fas-ligand staining of subRPE choroidal neovascular membrane (CNVM) secondary to 
ARM. (D) FasL staining on RPE (arrows) of mixed subRPE and subretinal CNVM secondary to ARM. RPE = retinal 
pigment epithelium, Bm = Bruch’s membrane, BLD = basal laminar deposits, CNVM = choroidal neovascular 
membrane (original magnification ×400, counterstaining Mayer’s hematoxylin). 
 

DISCUSSION 

 

Our results show similar expression of FasL in the RPE in maculae of different age and 

ARM status. This might indicate that FasL expression in the RPE is not age-related or 

related to the presence of early ARM. This is not in line with Kaplan’s hypothesis of 

FasL reduction with RPE senescence.64 

In earlier studies, immunohistochemical Fas and FasL expression was found 

constitutively in the normal human retina and the choroid.224 Both were also detected in 

cultured human RPE.250 

Furthermore, we found similar FasL RPE expression in subretinal and in sub-RPE 

CNVM secondary to ARM. In subretinal CNV, the fibrovascular tissue grows through 

the RPE beneath the retina, while in sub-RPE CNV the neovascularization is restricted to 

the sub-RPE level. From experimental studies, and a study on excised human subretinal 

CNVMs it was postulated that decreasing FasL expression in sub-RPE CNVMs fails to 

inhibit subretinal extension of CNVM.64 We did not find decreased expression in sub-

RPE or mixed sub-RPE/subretinal CNVMs compared with subretinal CNVMs. Kaplan 

and coworkers used surgically excised CNV, which are mainly localized subretinal, while 

CNVMs in our study were localized mainly sub-RPE and mixed sub-RPE/subretinal. 
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This might partly explain the different expression pattern of Fas and FasL in our study 

compared to the results of Kaplan and coworkers. However, subretinal CNVMs are less 

common in ARM. 120 Therefore, it appears to be unlikely that FasL expression in RPE 

controls the extension of CNVM from sub-RPE to subretinal in human ARM. It may be 

possible that the Fas-FasL system is still important in this process, but through soluble- 

rather than membrane bound factors. Further investigation about the role of FasL in 

ARM is necessary. 
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CHAPTER 6 

 

INSULIN-LIKE GROWTH FACTOR-I AND ITS RECEPTOR 

IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION 

 

 

 

 

 

ABSTRACT 

 
Purpose: The insulin-like growth factor-I (IGF-I) protein is a growth promoting 

polypeptide that can act as an angiogenic agent in the eye. The purpose of our study is 

to localize the expression of IGF-I and its receptor (IGF-IR) mRNA and IGF-IR 

protein in situ in the normal human eye and to examine the presence of expression in 

eyes with neovascular age-related macular degeneration (AMD). 

Methods: Formalin-fixed, paraffin-embedded slides of 4 normal control eyes, 14 eyes 

with choroidal neovascularization (CNV) secondary to AMD were used. Three eyes 

with proliferative diabetic retinopathy were studied as positive control. IGF-I and 

IGF-IR mRNA was detected by in-situ hybridization with digoxigenin-labeled RNA 

probes. IGF-IR protein was studied by immunohistochemistry. 

Results: In the normal retina, IGF-I and IGF-IR mRNA expression was found 

throughout the neuroretinal layers, in the retinal pigment epithelium (RPE) and in 

some choriocapillary and retinal capillary endothelial cells. In eyes with CNV we 

found IGF and IGF-IR mRNA in capillary endothelial cells, some transdifferentiated 

RPE, and fibroblast-like cells.  

IGF-IR protein was found in normal eyes in all neuroretinal layers, in the RPE, and in 

the choroidal vessels. In eyes with CNV, we found IGF-IR protein in the RPE 

monolayer, in transdifferentiated RPE and in newly formed vessels.  

Conclusions: The co-localization of protein and receptor indicates an autocrine 

function of IGF-I in the normal human retina. Since IGF-I participates in ocular 

neovascularization, synthesis of IGF-IR and IGF-I in endothelial cells, RPE cells and 

fibroblast-like cells in CNV may point towards a role of this growth factor in the 

pathogenesis of neovascular AMD. 
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INTRODUCTION 

 

Neovascular age-related macular degeneration (AMD) is characterized by choroidal 

neovascularization (CNV), in which newly formed vessels from the underlying 

choroid grow beneath the retinal pigment epithelium (RPE) and the neuroretina. CNV 

may cause (sub) acute blindness because of bleeding or scar formation.1 Although the 

morphology of angiogenesis in CNV secondary to AMD has been described in detail, 

the pathogenesis is still poorly understood.  
Growth factors are acknowledged to play an important role in retinal 

neovascularizations. Vascular endothelial growth factor (VEGF), an endothelial 

specific mitogen, is regarded as one of the most important ocular angiogenic factors, 

especially under hypoxic circumstances.166,251 Other angiogenic factors in ocular 

neovascularization include basic fibroblast growth factor, transforming growth factor-

beta, platelet derived growth factor and insulin-like growth factor-I (IGF-I).144,251 

In an earlier study we demonstrated that most CNV in AMD express somatostatin 

receptor type 2A that bind potential anti-angiogenic somatostatin analogues.248 

Somatostatin receptors are present on cultured human retinal endothelial cells. 

Proliferation of both retinal endothelial cells173 as well as choroidal endothelial cells174 

can be inhibited by somatostatin analogues. In mice, inhibition of IGF-I by 

somatostatin analogues or by downregulation of growth hormone (GH), can decrease 

ischemia-induced retinal neovascularization.177 IGF-I is a growth promoting 

polypeptide that has mitogenic and differentiating effects on many cell types, among 

which are ocular vascular endothelial cells252 as well as RPE172,253 and neuronal cells.171 

IGF-I can act as a direct angiogenic factor on retinal endothelial cells,173,174 or 

indirectly through increased VEGF gene expression of cultured RPE cells.156  

Most studies describe the role of IGF-I in in vitro models173,174,254-257 or in situ in diabetic 

retinopathy.258,259 So far IGF-I has not been studied in ARM.  

The purpose of our study is to localize the expression of IGF-I and its receptor (IGF-

IR) mRNA and IGF-IR protein in situ in normal human eyes and to examine the 

presence of expression in eyes with CNV, in order to elucidate its possible role in 

angiogenesis in AMD. 

 

 

MATERIALS AND METHODS 

 

The study was performed according to the tenets of the Declaration of Helsinki. 

Enucleation or surgical excision of subfoveal CNVs was performed after obtaining 

informed consent of the patient. 
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Patients 

All eyes were retrieved from the files from the Ophthalmic Pathology Department of 

the University Hospital of Rotterdam. Four enucleated eyes without ischemic disease 

(enucleated for other reasons) and 3 enucleated eyes with proliferative diabetic 

retinopathy (PDR) were used as controls. Fourteen eyes (5 enucleated eyes, 4 donor 

eyes and 5 surgically removed subretinal neovascular membranes) of 13 patients with 

neovascular AMD were studied. The clinical and histological diagnosis of the eyes 

and the classification of CNV are described in Table 6.1. The eyes were processed for 

routine diagnostic procedures by fixation in 10% buffered formaldehyde and were 

embedded in paraffin. Five-µm sections were prepared for in-situ hybridization and 

immunohistochemistry. 

 
RNA probes 

The human IGF-I probe was a 258 bp fragment containing exon 2 and 3 of the IGF-I 

gene.260 The human IGF-IR probe was generated using a cDNA clone with a unique 

insert of human IGF-IR (I.M.A.G.E. cDNA clone 150361, Research Genetics, 

Huntsville, AL, USA). The insert was reduced to 270 bp by restriction with BamHI 

and AvaI, and ligated in vectors pBluescript SK (antisense) and KS (sense) (Stratagene 

Europe, Amsterdam, The Netherlands). E. Coli Xl2Blue were transformed with these 

vectors and proper colonies were isolated and grown. Sequence analysis was 

performed to verify the inserts. Digoxigenin-11-UTP labeled RNA probes were 

prepared according to the manufacturer’s prescription (Roche Diagnostics, 

Mannheim, Germany) using T7 RNA polymerase. 

 

In-situ hybridization  

Sections were deparaffinated with xylene and rehydrated. The slides were incubated in 

the following solutions: 0.2 N HCL, 0.3% Triton X-100 in phosphate-buffered saline 

(PBS), RNase-free proteinase K (5 µl/ml for 20 minutes at 37ºC) and 4% formaline in 

PBS. Subsequently, acetylation was performed with acetic anhydride in 0.1 M 

triethanolamine. The slides were rinsed in 2x SSC (1xSSC = 150 mM NaCl and 15 

mM sodium citrate) and preincubated in 50% formamide in 2xSSC at 37ºC. For 

hybridization, antisense and sense probes were diluted in hybridization solution (50% 

deionized formamide, 10% dextran sulphate, 4xSSC (IGF-I) or 2xSSC (IGF-IR), 

1xDenhardt’s solution, 1 µg/ml tRNA, 250 µg/ml herring sperm RNA) to a 

concentration of 400 ng/ml, and incubated at 68ºC for 30 minutes. The hybridization 

solution was then layered onto the sections and hybridized overnight at 55ºC in a 

humid chamber. Post hybridization washes were performed at 45ºC for 30 minutes in 

the following solutions: 50% formamide in 2xSSC, 50% formamide in 1xSSC, 

0.1xSSC (IGF-IR) or 0.5xSSC (IGF-I). The slides were incubated with RNAse T1 (2 

U/ml) in 2xSSC/1mM EDTA in 37ºC for 15 minutes and washed at 45ºC with
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TABLE 6.1   DIAGNOSIS OF STUDIED EYES AND HISTOLOGICAL CLASSIFICATION OF CNV 

Histological classification CNV No Age/ 

sex 

OD/ 

OS 

Clinical description 

subret/ 

sub-RPE 

FV/FC other characteristics

Co1 83/M OS corneal ulcer    

Co2 57/M OS recurrent conjunctival 

melanoma 

   

Co3 42/M OS choroidal melanoma    

Co4 69/F OD orbital metastasis, post 

irradiation 

   

DM1 34/M OS PDR    

DM2 63/F OD PDR    

DM3 75/F OD PDR    

CNV1 79/M u surgically excised CNV mixed FV + FC hemorrhage 

CNV2 79/F u surgically excised CNV subretinal FV + FC hemorrhage 

CNV3 76/F OD surgically excised CNV subretinal FV BLD 

CNV4 79/M u surgically excised CNV mixed FV + FC BLD, hemorrhage 

CNV5 78/M u surgically excised CNV sub-RPE FV + FC BLD, confluent soft 

drusen 

CNV6 72/M OS   disciform MD mixed FV + FC BLD, hemorrhage 

CNV7 86/M OS disciform MD, acute 

glaucoma 

sub-RPE FV + FC BLD, hemorrhage, 

retinal detachment; 

posterior uveitis   

CNV8 91/M OS disciform MD, donor eye mixed FC disciform MD, BLD 

CNV9 87/M OS disciform MD, donor eye mixed FV + FC disciform MD, BLD 

CNV10 83/M OD painful eye, suspected 

uveal melanoma 

mixed FV + FC ischemic retinal 

disease; disciform 

MD, BLD, 

hemorrhage 

CNV11 73/M OS disciform MD subretinal FV + FC   

CNV12 73/M OD disciform MD, post 

irradiation 

subretinal FV  

CNV13 82/M OD disciform MD mixed FC confluent soft 

drusen  

CNV16 80/F OS disciform MD, 

hemorrhage, secondary 

glaucoma  

mixed FV + FC BLD, hemorrhage 

CNV = choroidal neovascularization; OD = right eye; OS = left eye; FV = fibrovascular; FC = fibrocellular; PDR 
= proliferative diabetic retinopathy; u = unknown; MD = macular degeneration; BLD = basal laminar and linear 
deposits.  
 

 

1xSSC and at room temperature with 2xSSC. The digoxigenin-labeled hybrids were 

detected by antibody incubation performed according to the manufacturer’s 

prescription (Roche Diagnostics, Mannheim, Germany) with the following 

modifications. A 1:1000 dilution of anti-digoxigenin (Fab) conjugated to alkaline 

phosphatase was used for a 2.5 hour incubation at room temperature or overnight at 
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4ºC. Afterwards, an extra washing step of 0.025% Tween in Tris-buffered saline (pH 

7.5) was introduced. For staining, sections were layered with detection buffer (0.1 M 

Tris-HC, 0.1 M NaCl, 0.05 M MgCl2 pH 9.5) containing NBT (4-nitroblue tetrazolium 

chloride), BCIP (5-bromo-4-chloro-3-indolyl-phosphate) (both from Vector, 

Burlingame, CA, USA) and 6% polyvinylalcolhol (m.w. 31.000-50.000, from Aldrich 

Chemical Milwaukee, WI, USA). The color reaction was performed in the dark and 

was stopped when the desired intensity of the resulting blue precipitate was reached. 

Sections were washed in 10 mM Tris-HCl, 1 mM EDTA pH 8.0, counterstained with 

nuclear red solution, dehydrated with ethanol gradients and mounted.  

 

Immunohistochemistry 

Polyclonal rabbit antibodies against IGF-IR (1:750 dilution) were obtained from 

Research Diagnostics (Flanders, NJ, USA). Immunohistochemistry against IGF-I was 

not performed because of lack of adequate antibodies for paraffin-embedded material. 

Antibodies against pankeratine (monoclonal mouse antibodies; 1:100 dilution); factor 

VIII (monoclonal mouse antibodies; 1:50 dilution) and glial fibrillary acidic protein 

(GFAP; polyclonal rabbit antibodies; dilution 1:200) were obtained from DAKO 

(Glostrup, Denmark). Monoclonal mouse antibodies against smooth muscle actin 

(SMA; 1:150 dilution) were obtained from Biogenex (San Ramon, CA, USA). 

Sections were deparaffinated and rehydrated. Antigen retrieval was performed for the 

IGF-IR and pankeratin antibodies (microwave-heating for 10 minutes), and for the 

factor VIII antibodies (pronase treatment for 20 minutes at 37°C). After blocking with 

normal goat serum (Dako, 1:10) for 15 minutes, the slides were incubated with the 

primary antibodies for 1 hour at room temperature or overnight at 4°C (IGF-IR). The 

sections were further incubated with biotinylated multilink antibodies for 30 minutes, 

followed by alkaline phosphatase-labeled antibiotin (both Biogenex) for 30 minutes. 

The complex was visualized by incubation with new fuchsin (as a red chromogen) for 

30 minutes in the dark. The slides were counterstained with Mayer’s hematoxylin, 

mounted and examined by light microscopy. Negative controls for 

immunohistochemistry included 1) omission of the primary antibody, 2) incubation 

with an irrelevant polyclonal rabbit antibody and 3) preabsorbtion of the IGF-IR 

antibodies with a tenfold of the immunizing IGF-IR peptide (Research Diagnostics) 

for 4 hours. 

 
Grading of expression and statistics 

The slides were examined by light microscopy. Grading of mRNA and IGF-IR 

protein expression was performed in a masked fashion by two authors (AL and CM) 

twice or once, respectively. Slides were blinded and randomly graded per cell type in 3 

categories (Table 6.2): 1: no staining; 2: staining in less than 50% of cells; 3: staining in 

more than 50% of cells.  
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Positive cell types in CNV were identified using pankeratine staining (RPE cells), 

factor VIII staining (vascular endothelial cells), GFAP staining (neuronal cells) and 

SMA (myofibroblasts) in consecutive slides, combined with cellular morphology at 

examination by light microscopy. Cells not meeting these criteria were classified as 

“other”. 

For inter- and intra-observer variability a kappa-value was calculated.  

 

 

RESULTS 

 

In two eyes with neovascular AMD (Table 6.2: CNV 8 and CNV13) the normal 

retina, regarded as positive internal control, was negative with in-situ hybridization. 

All mRNA appeared to be lost in these eyes. 

 

 
TABLE 6.2   EXPRESSION OF IGF-I AND IGF RECEPTOR TYPE 1 IN CNV 

IGF-I MRNA  IGF-IR MRNA  IGF-IR PROTEIN  

EC RP FB O  EC RP FB O  EC RP FB O 

1. CNV1 0 0 0 1  2 2 2 2  1 1 1 1 

2. CNV2 0 0 0 0  2 2 2 2  1 2 2 1 

3. CNV3 1 2 1 1  2 1 1 2  1 1 0 0 

4. CNV4 1 2 1 1  nc nc nc nc  1 2 0 0 

5. CNV5 1 1 0 1  1 2 1 1  1 2 nc nc 

6. CNV6 0 0 0 0  1 1 1 0  1 1 0 1 

7. CNV7 nc 0 nc 1  1 2 1 1  0 1 0 0 

8. CNV8 0 0 0 0  0 0 0 0  0 1 1 0 

9. CNV9 2 2 1 1  2 2 2 2  nc nc nc nc 

10. CNV10 1 1 1 1  1 1 1 0  1 1 1 0 

11. CNV11 0 1 1 nc  2 2 2 2  1 1 0 1 

12. CNV12 0 1 1 1  1 1 1 1  2 2 1 1 

13. CNV13 0 0 0 0  0 0 0 0  0 1 0 0 

14. CNV16 0 1 0 1  1 1 1 1  0 1 0 0 

0 = no expression; 1 = 1 to 50% of cells; 2 = 51 – 100% of cells. EC = endothelial cells; RPE = retinal pigment 
epithelium; FB = fibroblasts and fibrocytes; O = other cell types. 
 

 

In-situ hybridization  

IGF-I 

In the normal retina, IGF-I mRNA expression (Figure 6.1A,D) was found in the 

ganglion cell layer, inner nuclear layer, outer limiting membrane, RPE monolayer and 

in some cells in the choroid. Choriocapillary endothelial cells and retinal vessels were 

positive infrequently. Further expression was found in the lens epithelium, and in all 
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corneal layers (not shown). Hybridization with the sense probe was negative. In eyes 

with CNV we found IGF mRNA in the retina in the same pattern as in normal retina. 

Staining in preexistent RPE monolayer was similar to normal eyes. In 8 out of 14 eyes 

with CNV, expression was found in vascular endothelial cells, some RPE cells, and 

fibroblast-like cells (Table 6.2; Figure 6.2A,D,G,J). Eyes with PDR showed identical 

expression in retinal layers. In the preretinal membranes endothelial cells from newly 

formed capillaries and fibroblast-like cells stained positive (Figure 6.1G). 

Hybridization with the sense probe was negative. 

 

IGF-I Receptor  

In the normal eye mRNA of the IGF-IR (Figure 6.1B,F) was seen in the ganglion cell 

layer, inner and outer nuclear layer and outer limiting membrane. The RPE was 

strongly positive. Endothelial cells of the choriocapillaris, choroidal and intraretinal 

vessels were frequently positive. Further expression was found in the non-pigmented 

epithelium and to a lesser extent in the pigment epithelium of the ciliary body, the iris 

dilator muscle, the iris pigment epithelium and iris endothelial cells. The lens 

epithelium and all corneal layers were also positive. Hybridization with the sense 

probe was negative. In all eyes with CNV we found IGF-IR mRNA in endothelial 

cells of newly formed vessels, in RPE-cells and in the RPE monolayer, and in 

fibroblasts (Table 6.2; Figure 6.2B,E,H,K). Eyes with PDR showed expression in 

retinal layers and RPE similar to normal eyes. In the diabetic preretinal membranes 

(Figure 6.1H) endothelial cells from newly formed capillaries and fibroblast-like cells 

were positive. Hybridization with the sense probe was negative. 

 

Immunohistochemistry 

IGF-I Receptor  

In the normal eyes, we found IGF-IR protein in the choroidal vessels, in the RPE, and 

in all layers of the neuroretina (Figure 6.1C,F). Choriocapillaris was negative. 

Negative controls showed no staining, except for the peptide control, in which staining 

of the RPE monolayer was not totally blocked compared to retinal staining, indicating 

an aspecific component in the RPE staining. In all eyes with CNV, we found the IGF-

IR protein in RPE cells, and in 9 out of 13 classifiable eyes, staining was seen in newly 

formed vessels (Table 6.2; Figure 6.2C,F,I). Eyes with PDR showed expression in the 

retina similar to normal eyes, and in the diabetic preretinal membranes endothelial 

cells from newly formed capillaries were positive (Figure 6.1I). 
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Figure 6.1 Localization of IGF-I and IGF-IR in the human eye and in eyes with diabetic proliferative 
retinopathy. Expression of IGF-I mRNA (left column), IGF-IR mRNA (middle column) in paraffin-embedded tissue, detected 
by in-situ hybridization with digoxigenin-labeled probes, colored with (blue) NBT/BCIP, and counterstained with nuclear red. 
Expression of IGF-IR protein (right column) in paraffin-embedded tissue, detected with polyclonal antibodies, and visualized 
with an alkaline phosphatase detection system using a red chromogen and counterstained with hematoxylin. Short arrows 
indicate capillary endothelial cells, long arrows indicate RPE cells. (A to F) Posterior pole of normal eye (Co1) with IGF-I 
mRNA expression (A, D); with IGF-IR mRNA expression (B, E); and with IGF-IR protein expression (C, F). (G, H, I) 
Diabetic preretinal membrane (DM2) with IGF-I mRNA expression (G); with IGF-IR mRNA expression (H); and with IGF-
IR protein expression (I). Original magnification X400 

 

 

Statistics 

Grading of mRNA and IGF-IR protein expression was performed in a masked fashion 

by two authors (AL and CM), twice with a time interval of 7 weeks and once, 

respectively. For inter-observer variability, kappa was 0.75; for intra-observer 

variability kappa was 0.83. 
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Figure 6.2 Localization of IGF-I and IGF-IR in eyes with neovascular AMD. Expression of IGF-I 
mRNA (left column), IGF-IR mRNA (middle column) in paraffin-embedded tissue, detected by in-situ 
hybridization with digoxigenin-labeled probes, colored with (blue) NBT/BCIP, and counterstained with nuclear 
red. Expression of IGF-IR protein (right column) in paraffin-embedded tissue, detected with polyclonal antibodies, 
and visualized with an alkaline phosphatase detection system using a red chromogen and counterstained with 
hematoxylin. Short arrows indicate capillary endothelial cells, long arrows indicate RPE. (A, B, C) Surgically 
excised CNV (CNV2) with IGF-I mRNA expression (A); with IGF-IR mRNA expression (B); and with IGF-IR 
protein expression (C). (D, E, F) Surgically excised CNV (CNV3) with IGF-I mRNA expression pression (D); with 
IGF-IR mRNA expression (E); and with IGF-IR protein expression (F). (G, H, I) Sub-RPE CNV (CNV11) with 
with IGF-I mRNA expression (G); with IGF-IR mRNA expression (H); and with IGF-IR protein expression (I).  
(J, K) Subretinal CNV (CNV9) with IGF-I mRNA expression (J); and with IGF-IR mRNA expression (K). 
Protein detection of IGF-IR with immunohistochemistry gave aspecific staining; therefore not shown. Original 
magnification X400. 
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DISCUSSION 

 

In the normal human retina, we found IGF-I and IGF-IR mRNA expression 

throughout the neuroretina in the same pattern as described for other species.261,262 

Expression in human RPE was not described before in-situ, but was detected in 

cultured human RPE cells.254-256 IGF-I stimulates differentiation and proliferation of 

vascular endothelial cells,170 RPE cells256 and neural retinal cells,171,263 and is also 

neuroprotective.263-265 Our finding of protein and receptor co-localization confirms a 

paracrine/autocrine function of IGF-I in the normal human retina.261,266 

The observed hybridization signal of IGF-IR was much stronger than that of IGF-I. 

This might represent a real difference in expression, confirming the findings of higher 

IGF-IR expression in cultured human RPE.254,255 On the other hand, intensity of 

staining is not a reliable quantitative criterion, and the IGF-IR probe might be more 

sensitive than the IGF-I probe. 

 

In CNV secondary to ARM, we demonstrated mRNA expression of IGF-I and IGF-

IR in vascular endothelial cells, in RPE cells and in fibroblast-like cells. Similarly, we 

found expression of IGF-I mRNA and its receptor in epiretinal membranes in eyes 

with PDR, including endothelial cells from newly formed capillaries and in fibroblast-

like cells. This is in accordance with a previous diabetic retinopathy study, in which 

binding sites for IGF-I (receptors or binding proteins) were demonstrated in vessel 

walls as well as in cells in fibrous tissue in human diabetic epiretinal membranes.258 In 

human and rat diabetic retinas, IGF-I mRNA levels are decreased,259,267 but vitreal 

levels of IGF-I are elevated.268-272 Our findings confirm that intraocular synthesis may 

contribute to these elevated concentrations.271 

The pathogenesis of neovascular AMD involves the choroidal vasculature rather than 

the retinal vasculature as in diabetic retinopathy. In vitro, IGF-I stimulates the 

proliferation of choroidal endothelial cells.174 Therefore, synthesis of IGF-IR and IGF-

I in endothelial and RPE cells in CNV may point towards a role of this growth factor 

in the pathogenesis of neovascular AMD, since both cell types appear to have an 

important role in this process.1 

IGF-I participates in each step of ocular neovascularization.170 It is involved in the 

degradation of basement membranes and extracellular matrix proteolysis, and in 

vascular endothelial cell migration and proliferation.173 Intravitreous injection of IGF-I 

in animals produces preretinal neovascularization in rabbits175 or microangiopathy 

resembling diabetic microangiopathy in pigs.176 IGF-I also increases RPE cell 

migration and proliferation in vitro.172  Furthermore, IGF-I induces upregulation of 

VEGF mRNA expression in RPE cells156 and fibroblasts,178 which in turn also 

stimulates endothelial cells.156 Antagonism of IGF-IR suppresses retinal 
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neovascularization and reduces the retinal endothelial cell response to VEGF,273 which 

allows for the hypothesis that IGF-I has a permissive role in VEGF-induced 

neovascularization. 

Inhibition of IGF-I, achieved with somatostatin analogues,177 may occur at different 

levels. Firstly, somatostatin inhibits the GH-IGF axis. Furthermore, somatostatin can 

inactivate the mitogenic potential of IGF-I directly by inactivating the phosphorylated, 

active form of IGF-IR.170,274 Finally, somatostatin can act directly as an anti-angiogenic 

agent through binding to somatostatin receptors.173 Therefore, somatostatin analogues 

may be an effective therapy for neovascular AMD. 

IGF-I is recruited in normal wound repair.275,276 This may partly explain the presence 

of IGF-I in CNV, because formation of the disciform lesion is regarded as normal 

wound repair.1  

 

In conclusion, in this descriptive study we localized the expression of IGF-I mRNA 

and IGF-IR protein and mRNA in the normal eye. The co-localization of protein and 

receptor indicates an autocrine function of IGF-I in the human retina. Furthermore, 

we detected synthesis of both IGF-I and its receptor, and IGF-IR protein in ocular 

neovascular membranes of patients with AMD and diabetic patients. Since IGF-I 

participates in ocular neovascularization, synthesis of IGF-IR and IGF-I in vascular 

endothelial, RPE and fibroblast-like cells in CNV may point towards a role of this 

growth factor in the pathogenesis of neovascular AMD. The exact role of the IGF 

family in CNV formation and its possible therapeutic possibilities need to be 

established. 
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INSULIN-LIKE GROWTH FACTOR-BINDING PROTEINS 

 ARE EXPRESSED 

IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION 

 

 

 

 

ABSTRACT 
 

Purpose: The insulin-like growth factor-I (IGF-I) protein is a growth promoting 

polypeptide that can act as an angiogenic agent in the eye. Earlier we detected IGF-I 

and type 1 IGF receptor in neovascular AMD. The diverse activities of IGF-I are 

mediated through binding and activation of the type I IGF receptor. IGF-I is usually 

bound to one of the six major IGF-binding proteins (IGFBPs). These complexes 

prolong half-life in the circulation and function as a reservoir for IGF-I. Furthermore 

most IGFBPs have actions that are independent of IGF-I binding. The purpose of our 

study is to localize the expression of IGFBP proteins and mRNA in situ in the normal 

human eye and in eyes with neovascular age-related macular degeneration (AMD). 

Methods: Formalin-fixed, paraffin-embedded slides of 4 normal control eyes and 17 

eyes with choroidal neovascularization (CNV) secondary to AMD were used. IGFBP 

mRNA was detected by in-situ hybridization with digoxigenin-labeled RNA probes, 

and IGFBP proteins were studied by immunohistochemistry.  

Results: In the normal retina, we found mRNA of IGFBP-2 and IGFBP-4; mRNA of 

IGFBP-1 was not detected. IGFBP-1, -2, -3, -4 and -6 were immunolocalized  

throughout the eye in a spatially differentiated pattern. In eyes with CNV we localized 

mRNA of IGFBP-2 and -4 in CNV resulting from AMD, as well as most IGFBP 

proteins, in vascular endothelial cells, RPE cells and fibroblasts.  

Conclusions: The finding of these members of the IGF family may indicate a role of 

the IGF family in the pathogenesis of neovascular AMD, since IGF-I is involved in 

angiogenesis. The functional role of the various IGF family members in AMD needs 

to be established. 
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INTRODUCTION 

 

Neovascular age-related macular degeneration (AMD) is characterized by choroidal 

neovascularization (CNV), in which newly formed vessels from the underlying 

choroid grow beneath the retinal pigment epithelium (RPE) and the retina. CNV may 

cause (sub) acute blindness because of bleeding or scar formation.1 Although the 

morphology of angiogenesis in CNV secondary to AMD has been described in detail, 

the pathogenesis is still poorly understood.  
Growth factors are acknowledged to play an important role in retinal 

neovascularizations. Vascular endothelial growth factor (VEGF), an endothelial 

specific mitogen, is regarded as one of the most important ocular angiogenic factors, 

especially under hypoxic circumstances.166,251 Other angiogenic factors in ocular 

neovascularization include basic fibroblast growth factor, transforming growth factor-

beta (TGF-β), platelet derived growth factor and insulin-like growth factor-I (IGF-

I).144,251 

In an earlier study we detected production of IGF-I and the type 1 IGF receptor (IGF-

IR) in the normal eye and in eyes with neovascular AMD [manuscript submitted]. 

IGF-I is a growth promoting polypeptide that has mitogenic and differentiating effects 

on many cell types, among which ocular cell types.171,172,174,252,253 In animal models, 

IGF-I is associated with ocular angiogenesis.177,178. Furthermore, in vitro IGF-I can act 

as a direct angiogenic factor on retinal endothelial cells,173 or indirectly through 

increased VEGF gene expression in cultured RPE cells.156 The diverse activities of 

IGF-I are mediated through binding and activation of IGF-IR. Intravascularly and in 

the extracellular space, IGF-I is usually bound to one of the IGF-binding proteins 

(IGFBP). Six major IGFBPs are described currently. Most IGFBPs have additional 

actions that are independent of IGF-I binding, including inhibition or enhancement of 

cell growth and induction of apoptosis (reviewed by Baxter167). IGF-I and the IGFBPs 

are mainly produced by the liver, however they are also synthesized locally by most 

tissues, where they act in an autocrine or paracrine manner.168 In many situations on 

pathological growth, multiple components of the IGF system may be dysregulated.169 

The purpose of this study is to explore mRNA and protein expression of the six 

IGFBPs in situ in normal human eyes and in eyes with CNV. 
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MATERIALS AND METHODS 

 

The study was performed according to the tenets of the Declaration of Helsinki. 

Enucleation or surgical excision of subfoveal CNVs was performed after obtaining 

informed consent of the patient. 

 
Patients 

All eyes were retrieved from the files from the Ophthalmic Pathology Department of 

the University Hospital of Rotterdam. Four enucleated eyes without ischemic disease 

(enucleated for other reasons) were used to study the normal human eye. Term 

placental tissue was used as positive control.277 Seventeen eyes (8 enucleated eyes, 4 

donor eyes and 5 surgically removed subretinal neovascular membranes) of 16 patients 

with neovascular AMD were used. The clinical and histological diagnosis of the eyes 

and the classification of CNV are described in Table 7.1. The eyes were processed for 

routine diagnostic procedures by fixation in 10% buffered formaldehyde and were 

embedded in paraffin. Five-µm sections were prepared for in-situ hybridization and 

immunohistochemistry. 

 

RNA probes and antibodies 

The cDNA containing plasmids for human IGFBP-1 to 6 were kindly provided by 

Shunichi Shimasaki (Department of Reproductive Medicine, University of California, 

La Jolla, CA, USA). Digoxigenin-11-UTP labeled RNA probes were prepared 

according to the manufacturer’s prescription (Roche Diagnostics, Mannheim, 

Germany) using T7 RNA polymerase for antisense and T3 RNA polymerase for sense 

probes. 

Goat polyclonal antibodies against IGFBP-1 to 6 (respectively M-19; M-18; M-19; C-

20; C18; M20) were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, 

USA).  

Antibodies against pankeratin (monoclonal mouse antibodies; 1:100 dilution); factor 

VIII (monoclonal mouse antibodies; 1:50 dilution) and glial fibrillary acidic protein 

(GFAP; polyclonal rabbit antibodies; dilution 1:200) were obtained from DAKO 

(Glostrup, Denmark). Monoclonal mouse antibodies against smooth muscle actin 

(SMA; 1:150 dilution) were obtained from Biogenex (San Ramon, CA, USA).  

 
In-situ hybridization  

Sections were deparaffinized with xylene and rehydrated. Before hybridization, the 

slides were incubated in the following solutions: 0.2 N HCL, 0.3% Triton X-100 in 

phosphate-buffered saline (PBS), RNase-free proteinase K (5 µl/ml for 20 minutes at 

37ºC), 4% formaline in PBS, acetic anhydride in 0.1 M triethanolamine, and 2xSSC.  
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TABLE 7.1   DIAGNOSIS OF STUDIED EYES AND HISTOLOGICAL CLASSIFICATION OF CNV 

Histological classification CNV No Age/ 

sex 

OD

/ 

OS 

Clinical description 

subret/ 

sub-RPE 

FV/FC other characteristics 

Co1 83/M OS corneal ulcer    

Co2 57/M OS recurrent conjunctival 

melanoma 

   

Co3 42/M OS choroidal melanoma    

Co4 69/F OD orbital metastasis, post 

irradiation 

   

CNV1 79/M u surgically excised CNV mixed FV + FC hemorrhage 

CNV2 79/F u surgically excised CNV subretinal FV + FC hemorrhage 

CNV3 76/F OD surgically excised CNV subretinal FV BLD 

CNV4 79/M u surgically excised CNV mixed FV + FC BLD, hemorrhage 

CNV5 78/M u surgically excised CNV sub-RPE FV + FC BLD, confluent soft 

drusen 

CNV6 72/M OS   disciform MD mixed FV + FC BLD, hemorrhage 

CNV7 86/M OS disciform MD, acute 

glaucoma 

sub-RPE FV + FC BLD, hemorrhage, 

retinal detachment; 

posterior uveitis   

CNV8 91/M OS disciform MD, donor eye mixed FC disciform MD, BLD  

CNV9 87/M OS disciform MD, donor eye mixed FV + FC disciform MD, BLD  

CNV10 83/M OD painful eye, suspected 

uveal melanoma 

mixed FV + FC ischemic retinal 

disease; disciform MD, 

BLD, hemorrhage 

CNV11 73/M OS disciform MD subretinal FV + FC   

CNV12 73/M OD disciform MD, post 

irradiation 

subretinal FV  

CNV13 82/M OD disciform MD mixed FC confluent soft drusen  

CNV14 85/F OS post surgical 

endophthalmitis 

subretinal FV endophthalmitis, 

uveitis 

CNV15 84/F OD expulsive hemorrhage 

preoperatively 

subretinal FV hemorrhage 

CNV16 80/F OS disciform MD, 

hemorrhage, secondary 

glaucoma  

mixed FV + FC BLD, hemorrhage 

CNV17 84/F OS disciform MD mixed FV + FC BLD, hemorrhage 

OD = right eye; OS = left eye; FV = fibrovascular; FC = fibrocellular; PDR = proliferative diabetic retinopathy; u 
= unknown; MD = macular degeneration; BLD = basal laminar and linear deposits.  
 

 

The slides were preincubated in 50% formamide in 2xSSC at 37ºC. For hybridization, 

antisense and sense probes were diluted in hybridization solution (50% deionized 

formamide, 10% dextran sulphate, 4xSSC (IGFBP-2 and IGFBP-4) or 2xSSC 

(IGFBP-1), 1xDenhardt’s solution, 1 µg/ml tRNA, 250 µg/ml herring sperm RNA) to 

a concentration of 400 ng/ml, and incubated at 68ºC for 30 minutes. The 
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hybridization solution was then layered onto the sections and hybridized overnight at 

55ºC in a humid chamber. Posthybridization washes were performed at 45ºC for 30 

minutes in the following solutions: 50% formamide in 2xSSC, 50% formamide in 

1xSSC, 0.1xSSC. The slides were incubated with RNAse T1 (2 U/ml) in 

2xSSC/1mM EDTA in 37ºC for 15 minutes and washed at 45ºC with 1xSSC and at 

room temperature with 2xSSC. The digoxigenin-labeled hybrids were detected by 

antibody incubation performed according to the manufacturer’s prescription (Roche 

Diagnostics, Mannheim, Germany) with following modifications. A 1:1000 dilution 

of anti-digoxigenin (Fab) conjugated to alkaline phosphatase was used for a 2.5 hour 

incubation overnight at 4ºC. Afterwards, an extra washing step of 0.025% Tween in 

Tris-buffered saline (pH 7.5) was introduced. For staining, sections were layered with 

detection buffer (0.1 M Tris-HC, 0.1 M NaCl, 0.05 M MgCl2 pH 9.5) containing NBT 

(4-nitroblue tetrazolium chloride), BCIP (5-bromo-4-chloro-3-indolyl-phosphate) (both 

from Vector, Burlingame, CA, USA) and 6% polyvinylalcolhol  (m.w. 31.000-50.000, 

from Aldrich Chemical Milwaukee, WI, USA). The color reaction was performed in 

the dark and was stopped when the desired intensity of the resulting blue precipitate 

was reached. Sections were washed in 10 mM Tris-HCl, 1 mM EDTA pH 8.0, 

counterstained with nuclear red solution, dehydrated with ethanol gradients and 

mounted. The slides were examined by light microscopy. Staining of the antisense 

probe was scored positive if the sense probe scored negative in the same region. 

Intensity of staining between slides could not be used as reliable quantitative criterion 

because of possible differences in fixation time.  

 

Immunohistochemistry 

The sections were deparaffinated and rehydrated. Antigen retrieval was performed for 

the IGFBP-6 and pancytokeratin antibodies (microwave-heating for 10 minutes), and 

for the factor VIII antibodies (pronase treatment for 20 minutes at 37°C). 

Immunohistochemistry with the IGFBPs was performed as follows. After blocking 

with 1,5% normal rabbit serum (Dako) in PBS for 30 minutes, the slides were 

incubated with the primairy antibodies (1:150 for IGFBP-1, IGFBP-2, and IGFBP-4; 

1:100 for IGFBP-3 and IGFBP-6) overnight at 4°C. The sections were further 

incubated with biotinylated rabbit-anti-goat antibodies (Dako) for 1 hour, followed by 

alkaline phosphatase-labeled antibiotin (Dako) for 30 minutes. For 

immunohistochemistry with Factor VIII, SMA, GFAP and pankeratin, slides were 

blocked with normal goat serum in PBS (Dako, 1:10) for 15 minutes.  The primairy 

antibodies were incubated for 1 hour at room temperature, followed by biotinylated 

multilink antibodies for 30 minutes. The avidin-biotin complex was visualized by 

incubation with new fuchsin (as a red chromogen) for 30 minutes in the dark. The 

slides were counterstained with Mayer’s hematoxylin, mounted and examined by light 

microscopy. Negative controls for immunohistochemistry included 1) omission of the 
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primary antibody and 2) preabsorbtion of the antibodies with a tenfold of the 

immunizing IGFBP peptide (Santa Cruz) for 4 hours. 

 

 

RESULTS 

 

In two eyes with neovascular AMD, (Table 7.3: CNV 8 and CNV13) no mRNA could 

be detected with digoxigenin-labeled mRNA in-situ hybridization, regardless of the 

probe. All mRNA appeared to be lost in these eyes. These eyes were considered as 

‘not classifiable’. 

 

IGFBP-1 

The sense probe for IGFBP-1 mRNA showed light aspecific staining in the retina, and 

negative controls for IGFBP-1 immunohistochemistry showed no staining. In the 

normal eye (Table 7.2, Figure 7.1A,D), mRNA for IGFBP-1 could not be detected. 

IGFBP-1 protein was found in all nuclear and plexiform layers of the neuroretina, 

including photoreceptor inner segments, in the RPE at the basal side. Retinal and 

choroidal vessels stained positive, choriocapillary cells incidentally stained positive. 

Lens epithelium, non-pigmented epithelium of the ciliary body and corneal layers also 

stained for IGFBP-1 protein.  

In eyes with CNV (Table 7.3, Figure 7.2A,D), faint staining for IGFBP-1 mRNA was 

only detected in one sample. All CNVs showed positive immunohistochemical 

staining in capillary endothelial cells, RPE and/or fibroblasts.  

 
IGFBP-2 

The sense probe for IGFBP-2 mRNA, and negative controls for IGFBP-2 

immunohisto-chemistry showed no staining. In the normal retina (Table 7.2, Figure 

7.1B,E), we found IGFBP-2 mRNA in the ganglion cell layer, inner nuclear layer, 

photoreceptor layer and RPE. IGFBP-2 protein was found with higher intensity but in 

the same pattern as IGFBP-1, that is in all nuclear and plexiform layers of the 

neuroretina, including photoreceptor inner segments, in the RPE and in the 

choriocapillaris. Lens epithelium, non-pigmented epithelium of the ciliary body and 

corneal layers also stained for IGFBP-2 protein.  

In CNV (Table 7.3, Figure 7.2B,E) IGFBP-2 mRNA was found in 9 out of 14 CNV, 

localized in endothelial cells, RPE or fibroblasts. Nearly all cellular components of 

CNV, including capillaries, RPE and fibroblasts, stained intensely positive for IGFBP-

2 protein.  
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TABLE 7.2  EXPRESSION OF IGFBP MRNA AND PROTEIN IN CONTROL EYES 

  IGFBP-1  IGFBP-2 IGFBP-3 IGFBP-4  IGFBP-6 

  RNA prot  RNA prot RNA prot RNA prot  RNA prot 

GGL  - ++  ++ +  ++ ++ ++   + 

INL  - +  + ++  + ++ +   - 

ONL  - +  - ++  - + -   - 

PHR  - ++  ++ ++  ++ ++ ++   + 

RPE  - ++  + ++  ++ ++ ++   + 

ChC  - +  - +  - + +   - 

Expression of mRNA (RNA) and protein (prot) expression: - = no expression; + = moderate expression; ++ = 
intense expression. NFL = neural fiber layer; GGL = ganglion cell layer; INL = inner nuclear layer; ONL = outer 
nuclear layer; PHR = photoreceptor layer; RPE = retinal pigment epithelium; ChC = choriocapillaris. IGFBP-3 
and –6 mRNA in-situ hybridization was not performed. 
 

 
IGFBP-3 

mRNA for IGFBP-3 was not determined because of technical problems with the 

probe. Negative controls for IGFBP-3 immunohistochemistry showed no staining. In 

the normal retina (Table 7.2, Figure 7.1F), we found IGFBP-3 protein in the ganglion 

cell layer, the plexiform layers, the photoreceptor inner segments and in the RPE. In 

the RPE, staining was localized to the basal side. Retinal and choroidal vessels were 

positive, while the choriocapillaris stained incidentally. Often intravascular fluid 

stained positive. Lens epithelium was negative, and the cornea and non-pigmented 

epithelium of the ciliary body showed only slight staining. 

In CNV (Table 7.3, Figure 7.2F), variable protein staining was found in newly formed 

vessels and in fibroblasts. RPE cells stained positive in all CNV.  

 

IGFBP-4 

The sense probe for IGFBP-4 mRNA, as well as negative controls for IGFBP-1 

immunohistochemistry, showed no staining. In the normal retina (Table 7.2, Figure 

7.1C,G), we found IGFBP-4 mRNA in the neuroretina, the RPE and in the corneal 

layers. IGFBP-4 protein was detected in the nerve fiber layer, ganglion cell layer, inner 

nucelar layer, the photoreceptor inner segments and in the RPE. In the RPE, staining 

was localized to the basal side. Positive staining was also found in large choroidal 

vessels and retinal vessels. Lens epithelium was positive, as was corneal endothelium 

and non-pigmented epithelium of the ciliary body. Stroma of the choroid, iris and 

sclera stained intensely positive.  

In CNV (Table 7.3, Figure 7.2C,G), IGFBP-4 mRNA was detected in endothelial 

cells, RPE, fibroblasts and other cells. IGFBP-4 protein staining was found mostly in 

RPE and fibroblasts, and to a lesser extend in vascular endothelial cells. The stroma of 

most CNV stained intensely.  
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Figure 7.1  Localization of IGFBPs in the posterior pole of the human eye. Expression of IGFBP mRNA 
was detected in paraffin-embedded tissue by in-situ hybridization with digoxigenin-labeled probes, colored with 
(blue) NBT/BCIP, and counterstained with nuclear red. Expression of IGFBP proteins was detected in paraffin-
embedded tissue with polyclonal antibodies, and visualized with an alkaline phosphatase detection system using a 
red chromogen and counterstained with hematoxylin. (A) IGFBP-1 mRNA; (B) IGFBP-2 mRNA; (C) IGFBP-4 
mRNA. (D) IGFBP-1 protein; (E) IGFBP-2 protein; (F) IGFBP-3 protein; (G) IGFBP-4 protein; (H) IGFBP-6 
protein. mRNA for IGFBP-3, -5 and -6 were not determined because of technical problems; neither was IGFBP-5 
protein. Original magnification X400. 
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Figure 7.2.  Localization of IGFBPs in CNV secondary to AMD. Expression of IGFBP mRNA was 
detected in paraffin-embedded tissue by in-situ hybridization with digoxigenin-labeled probes, colored with (blue) 
NBT/BCIP, and counterstained with nuclear red. Expression of IGFBP proteins was detected in paraffin-embedded 
tissue with polyclonal antibodies, and visualized with an alkaline phosphatase detection system using a red 
chromogen and counterstained with hematoxylin. (A) IGFBP-1 mRNA in CNV11; (B) IGFBP-2 mRNA in CNV 
11; (C) IGFBP-4 mRNA in CNV12; (D) IGFBP-1 protein in CNV11; (E) IGFBP-2 protein in CNV11; (F) 
IGFBP-3 protein in CNV1; (G) IGFBP-4 protein in CNV9; (H) IGFBP-6 protein in CNV2. mRNA for IGFBP-3, 
-5 and -6 were not determined because of technical problems; neither was IGFBP-5 protein. Original magnification 
X400. 
 

 

IGFBP-5 

mRNA and protein for IGFBP-5 were not determined because of technical problems 

with the probe and the antibodies. 

 
IGFBP-6 

mRNA for IGFBP-6 was not determined because of technical problems with the 

probe. Negative controls for IGFBP-6 immunohistochemistry showed no staining. In 

the normal retina (Table 7.2, Figure 7.1H), we found little IGFBP-6 protein in the 

ganglion cell layer and the photoreceptor inner segments, and some staining in the 

RPE. Non-pigmented epithelium of the ciliary body showed slight staining.  

In CNV (Table 7.3, Figure 7.2H) only some RPE and fibroblasts showed positive 

staining for IGFBP-6 protein.  
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DISCUSSION 

 

In the normal retina, including RPE, we localized mRNA expression of IGFBP-2 and 

4. The localization is consistent with earlier findings of in-situ studies.278,279 In contrast, 

in adult rat retina, mRNA was not detected for IGFBP-2 and IGFBP-4.261 This 

difference can be explained by difference in species, or in different sensitivity of used 

techniques. 

We did not detect IGFBP-1 mRNA in the normal eye, consistent with earlier 

findings.261,280 However, the presence of IGFBP-1 mRNA can not be excluded in the 

eye, since in general only a part of total mRNA is detected with digoxigenin-labeled 

mRNA in-situ hybridization in paraffin-embedded material.281 

IGFBP proteins were found in a spatially differentiated pattern in the normal human 

eye. IGFBP-2 was detected in a more extensive pattern than described by Miyamura 

and coworkers.279 This can partly be explained by the shorter intervals between 

enucleation and fixation of our material, because most specimens we studied were 

surgically enucleated eyes or excised CNV, while Miyamura used donor eyes with 

postmortem times ranging from 4 to 21 hours. Furthermore different techniques and 

different antibodies used could account for the difference in expression. IGFBP-3 was 

also found in intravascular fluid, consistent with the fact that IGFBP-3 is the most 

abundant IGFBP in serum, and binds more than 95% of the IGF.282 The circulating 

IGF-I/IGF-BP complexes limit access of IGF-I to specific tissues and to the IGF 

receptor and also function as a reservoir for IGF-I. Intravascularly, the IGF-I/IGFBP3 

dimer forms a complex with the acid-labile subunit, resulting in a prolonged half-life of 

several hours. When released from this complex, IGF-I can enter target tissues with 

help of other binding proteins.168  

Little IGFBP-6 was detected in the normal eye. This could be explained by the higher 

affinity of IGFBP-6 to IGF-II than to IGF-I.283 IGF-II expression in the eye is low,278 

and IGF-II is important in fetal growth but has no effect on postnatal somatic 

growth.284 

The function of IGFBPs in the normal eye is still unclear. The presence in the outer 

retina suggests a role in the maintenance of normal physiology of the retina.266 

In CNV secondary to ARM we found mRNA of IGFBP-2 and IGFBP-4, and IGFBP-

1, -2, -3, -4 proteins, and rarely IGFBP-6 protein localized in endothelial cells, RPE 

cells and fibroblasts. Earlier we detected IGF-I and IGF-IR in neovascular AMD. 

Since IGF-I has the capability of stimulating angiogenesis in the eye,170 its presence 

could indicate a function in the pathogenesis of neovascular AMD. The presence of 

IGFBPs strengthen this conclusion, since IGFBPs are major modulators of IGF-I 

function. The interaction of IGF-I with one of the six major IGFBPs generally blocks 

receptor activation.167 Besides inhibition of IGF-I action, some of the IGFBPs 



IGFBPS IN NEOVASCULAR AMD 

83 

(IGFBP-1, IGFBP-5 and mostly IGFBP-3) have paradoxical stimulatory effect on IGF 

activity.167 Furthermore, some IGFBPs have actions that are independent of IGF-RI 

binding. IGFBP-1 stimulates cell migration through interaction with the α5β1-integrin 

(fibronectin receptor).285 IGFBP-3 can inhibit the growth of cells independent of IGF-

IR,286 and induces apoptosis.287 IGFBP-3 has a number of ligands in addition to IGF-I, 

such as plasminogen and certain cell-surface and matrix components.167 Finally, at 

least some IGF-R1 independent actions of IGFBP-3 and IGFBP-5 are assumed to be 

mediated through signaling receptors located on the plasma membrane of target cells, 

of which the type V TGF-β receptor may be one.288 

 

The influence of the various members of the IGF-I family on CNV needs to be 

established. Several authors suggest hypoxia or relative hypoxia as a stimulus in the 

pathogenesis of neovascular AMD.74,144 Averbukh and coworkers showed that both 

hypoxia and relative hypoxia may cause IGF system stimulation in the retina of a 

neonatal rat model, through upregulation of IGF-IR and IGFBPs.289 This stimulation 

may result in neovascularization, suggesting that the IGF system may play an 

important role in angiogenesis induced by relative tissue hypoxia.289  
 

In conclusion, we localized mRNA of IGFBP-2 and -4 in CNV resulting from AMD, 

as well as most IGFBP proteins. The mRNA and proteins were detected in newly 

formed vessels, in RPE and in fibroblasts. Together with the finding of IGF-I and its 

receptor in CNV membranes, the presence of these members of the IGF family may 

indicate a role of the IGF family in the pathogenesis of neovascular AMD. The 

functional role of the various IGF family members in the pathogenesis of AMD needs 

to be established.  
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CHAPTER 8 

 

SOMATOSTATIN RECEPTOR 2A EXPRESSION 

IN CHOROIDAL NEOVASCULARIZATION SECONDARY TO AMD 

 

 

 

 

ABSTRACT 

 

Purpose: The growth of ocular neovascularization is regulated by a balance between 

stimulating and inhibiting growth factors. Somatostatin effects angiogenesis by 

inhibiting the growth hormone/insulin-like growth factor axis and also has a direct 

anti-proliferative effect on human retinal endothelial cells. The purpose of our study is 

to investigate the expression of somatostatin receptor (sst) subtypes and particularly sst 

subtype 2A (sst2A) in normal human macula, and to study sst2A in different stages of 

age-related maculopathy (ARM), because of the potential anti-angiogenic effect of 

somatostatin analogues. 

Methods: Sixteen eyes (10 enucleated eyes, 4 donor eyes and 2 surgically removed 

choroidal neovascular (CNV) membranes) of 15 patients with eyes at different stages 

of ARM were used for immunohistochemistry. Formaldehyde-fixed paraffin-

embedded slides were incubated with a polyclonal anti-human sst2A antibody. mRNA 

expression of five sst subtypes and somatostatin was determined in the posterior pole 

of 3 normal human eyes by reverse transcriptase-polymerase chain reaction.  

Results: The immunohistochemical expression of sst2A in newly formed endothelial 

cells and fibroblasts-like cells was strong in fibrovascular CNV membranes. mRNA of 

sst subtypes 1, 2A and 3, as well as somatostatin, was present in the normal posterior 

pole; sst subtypes 4 and 5 were not detectable.  

Conclusions: Most early-formed CNV in ARM express sst2A. We confirmed the 

presence of mRNA of sst subtype 2A in normal human macula, and demonstrated 

that also subtype 1 and 3, as well as somatostatin, are present. Sst2A receptors bind 

potential anti-angiogenic somatostatin analogues such as octreotide. Therefore, 

somatostatin analogues may be an effective therapy in early stages of neovascular 

AMD. 
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INTRODUCTION 

 

Age-related maculopathy (ARM) is the major cause of blindness in people over 65 

years of age in the Western world. The prevalence of ARM is up to 14% in people 

more than 85 years.3 Late stages of ARM, also called age-related macular 

degeneration (AMD), include geographic atrophy and neovascular macular 

degeneration. The neovascular form is characterized by choroidal neovascularization 

(CNV) and is responsible for 80% of cases of severe vision loss.3 These numbers will 

increase because of the increasing age of the population. In CNV, newly formed 

vessels from the underlying choroid grow beneath the retinal pigment epithelium 

(RPE) and the retina.251 Although the morphology of angiogenesis in CNV secondary 

to AMD has been described in detail, the pathogenesis is still poorly understood. A 

balance between a number of stimulating and inhibiting growth factors regulates the 

growth of neovascularization.251 Vascular endothelial growth factor (VEGF), an 

endothelial specific mitogen, is regarded as one of the most important ocular 

angiogenic factors, especially in ischemic disease.144,145,148,159,251,290,291 Other regulating 

growth factors include fibroblast growth factors (FGFs), transforming growth factor-β 

(TGF-β) and insulin-like growth factor-I (IGF-I). Most of these growth factors are 

shown to be upregulated in a diversity of cells (RPE, fibroblasts, capillary endothelial 

cells) involved in CNV.145,159,160,189,190,246,247 

Recently, it has been shown in a transgenic mouse model that inhibition of growth 

hormone (GH), mediated by IGF-I, can inhibit ischemia-induced retinal 

neovascularization in vivo.14 GH secretion is inhibited by somatostatin and 

somatostatin analogues. Systemic treatment with a somatostatin analogue diminished 

the level of ocular neovascularization in mice.177 

Somatostatin binds with high affinity to 5 subtype receptors (sst1 to sst5). These 

receptors were identified in various animal retinas.292-294 The exact role of a direct 

receptor-mediated effect by somatostatin analogues is still unknown. To date, 

information about sst2 receptor expression in CNV is not available, and until now sst 

subtype expression has not been described in normal human retina. 

The purpose of our study was to investigate the expression of somatostatin receptor 

2A (sst2A) in different stages of ARM, and the expression of sst subtypes and 

somatostatin in normal human macula. 
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MATERIALS AND METHODS 

 

The study was performed according to the tenets of the Declaration of Helsinki. 

Enucleation or surgical excision of subfoveal CNVs was performed after obtaining 

informed consent of the patient.   

 
Patients 

All eyes were retrieved from the files from the Ophthalmic Pathology Department of 

the University Hospital of Rotterdam. Sixteen eyes (10 enucleated eyes, 4 donor eyes 

and 2 surgically removed subretinal neovascular membranes) of 15 patients with eyes 

at different stages of ARM were used for immunohistochemistry. The description of 

each eye is given in Table 8.1. Eight eyes (of 7 patients) had clinical diagnoses of 

AMD. In 8 other eyes, ARM was diagnosed histopathologically according to the 

following criteria: Early stages of ARM (n=3) were characterized by the presence of 

basal laminar deposits, basal linear deposits (BLD), soft drusen, and thickening of 

Bruch’s membrane.112 Neovascular AMD (n=12) was classified as sub-RPE CNV, 

subretinal CNV (between neuroretina and RPE) or mixed sub-RPE and subretinal 

CNV.120,295 Photoreceptors, Bruch’s membrane and BLD were helpful in the 

orientation of the specimens.120 Sub-RPE CNV and mixed CNV, or subretinal CNV in 

elderly patients in the presence of BLD or soft drusen were classified as CNV 

secondary to AMD.120 In CNV, we recorded the presence of fibrovascular or 

fibrocellular tissue, hemorrhage, vascular endothelium, BLD and RPE.120 One eye was 

classified as non-neovascular (geographic) AMD. Eight enucleated eyes without ARM 

(donor eyes or enucleated for other reasons) were used as controls (Table 8.2). The 

eyes were processed for routine diagnostic procedures by fixation in formaldehyde and 

were embedded in paraffin.  

 
Immunohistochemistry 

Rabbit anti-human sst2A polyclonal antibody (R2-88) was kindly provided by Dr. A. 

Schonbrunn (Department of Integrative Biology and Pharmacology, University of 

Texas Houston Medical School, USA). The antibody was raised against a 22-amino 

acid peptide located at the C-terminal region of the sst2 receptor. The sst2A antibody 

had been characterized and tested before by Western blot analysis and peptide 

binding.296,297 Mouse monoclonal antibody against smooth muscle actin (SMA) was 

obtained from Biogenex (San Ramon, CA, USA) and mouse monoclonal antibody 

against macrophages (CD68) from Dako (Glastrup, Denmark). Five µm sections were 

prepared. The sections were deparaffinated, rehydrated and (for sst2A and CD68) 
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microwave heated for 10 minutes. After the slides were blocked with normal goat 

serum (Dako, 1:10) for 15 minutes, they were incubated with the sst2A antibody 

(1:1000) or CD68 antibody (1:2000) overnight at 4°C, or with anti-SMA (1:150) for 1 

hour at room temperature. The sections were further incubated with biotinylated 

multilink antibodies for 30 minutes, followed by alkaline phosphatase-labeled 

antibiotin (both from Biogenex) for 30 minutes. The bound antibodies were visualized 

by incubating the sections with new fuchsin for 30 minutes in the dark. The slides 

were counterstained with Mayer’s hematoxylin, mounted and examined by light 

microscopy. We determined the sst2A expression quantitatively in endothelial cells of 

CNV by counting the proportion of positive vessels in randomly selected sections. The 

total number of counted vessels was pooled, and the proportions of positive cells in 

fibrovascular and fibrocellular CNV were compared with χ2 analysis. For other tissue 

components, we semi-quantitatively graded sst2A expression in 3 categories: 0 (0 – 10% 

positive cells), 1 (11 – 50% positive cells) and 2 (51 – 100% positive cells). Negative 

controls for immunohistochemistry included 1) omission of the primary antibody, 2) 

use of an irrelevant antibody of the same isotype, and 3) preabsorbtion of the sst2A 

antibodies with the immunizing receptor peptide for 4 hours at a concentration of 3 

µg/ml. 

 
RT-PCR 

In order to study the mRNA expression of sst subtypes in normal human eyes, 

posterior poles from three eyes (Table 8.2) were dissected directly after enucleation. A 

sample of about 0.2 mm2 located in the macula, including RPE, choroid and sclera, 

was snap frozen in liquid nitrogen. RT-PCR was performed as described before298 but 

with different primers (Table 8.3). 

Several controls were included in the RT-PCR experiments. To ascertain that no 

detectable genomic DNA was present in the polyA+ mRNA preparation (because the 

sst genes are intronless), the cDNA reactions were also performed without reverse 

transcriptase and amplified with each primer pair. Amplification of the cDNA samples 

with the hypoxanthine-guanine phosphoribosyl transferase (HPRT) specific primers 

served as positive control for the quality of the cDNA. To exclude contamination of 

the PCR reaction mixtures, the reactions were also performed in the absence of DNA 

template in parallel with cDNA samples. As a positive control for the PCR reactions 

of the sst receptor subtypes, 0.1 to 0.001 µg of human genomic DNA, representing 

approximately 30.000 to 300 copies of sst-template, was amplified in parallel with the 

cDNA samples. As a positive control for the PCR of HPRT and somatostatin cDNA, 

aliquots of a cDNA sample known to contain somatostatin and HPRT mRNA were 

amplified, because these primer pairs did enclose introns in the genomic DNA. 
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TABLE 8.3   PRIMERS USED FOR RT-PCR ANALYSIS 

receptor primer sequence (5’ –3’)* product size (base pair) 

sst1 forward ATGGTGGCCCTCAAGGCCGG 318 

 reverse CGCGGTGGCGTAATAGTCAA  

sst2A forward GCCAAGATGAAGACCATCAC 414 

 reverse GATGAACCCTGTGTACCAAGC  

sst3 forward CCAACGTCTACATCCTCAACC 314 

 reverse TCCCGAGAAGACCACCAC  

sst4 forward ATCTTCGCAGACACCAGACC 321 

 reverse ATCAAGGCTGGTCACGACGA  

sst5 forward CGTCTTCATCATCTACACGG 226 

 reverse CCGTCTTCATCATCTACACGG  

SS14 forward GATGCTGTCCTGCCGCCTCCAG 349 

 reverse ACAGGATGTGAAAGTCTTCCA  

HPRT forward CAGGACTGAACGTCTTGCTC 413 

 reverse CAAATCCAACAAAGTCTGGC  

The sequences of the primers for sst1 were derived and adapted from Wulfsen et al.,41 for sst5 from Kubota et al.,42 and 
all others were designed by use of the Primer3! software (http://www.genome.wi.mit.edu/ 
genome_software/other/primer3.html) and the appropriate GenBank entries. (SS14 = somatostatin; HPRT = 
hypoxanthine-guanine phosphoribosyl transferase) 
 

 

RESULTS 

 

Immunohistochemistry 

In normal retina (n=8) we found strong sst2A expression in the inner plexiform layer 

(IPL) and moderate expression in the outer plexiform layer (OPL), the cellular 

membrane of the inner nuclear layer (INL) (Figure 8.1A), and the RPE. RPE stained 

most frequently at the apical side in a membranous pattern (Figure 8.1B), which was 

also noted in tangentially cut sections. Thick-walled choroidal vessels stained mostly 

positive, whereas chorio-capillaris only sporadically (Table 8.1). In negative controls, 

no staining was detected. 

 

In the eyes with early ARM (n=3), sst2A expression of the neuroretina, choroidal 

vessels and choriocapillaris was similar to normal controls (Table 8.1). The RPE 

stained positive in all cases. BLD were negative (Figure 8.1C).  

In eyes with neovascular AMD (n=12), Bruch’s membrane and BLD did not show 

sst2A expression (Table 8.1). The choriocapillaris showed focal expression in only two 

eyes. Approximately 50 to 75% of thick-walled choroidal vessels stained positive, 

which was similar to normal controls. The CNV, both surgically excised and in 

enucleated eyes, could be subdivided in three groups, according to the activity of 

neovascularization. 120 The first group consisted of fibrovascular tissue with 

inflammatory cells, fibroblast-like cells and sparse fibrosis (n=2). The second group 
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consisted of fibrocellular scar tissue (n=2), and the third group consisted of a mixture 

of both fibrovascular and fibrocellular tissue (n=8). In the CNV, monolayers of 

pigmented cells adjacent to BLD were scored as RPE cells. Approximately half of 

these morphologically RPE cells showed sst2A expression. The expression of sst2A in 

newly formed endothelial cells was strong in fibrovascular membranes. Similarly, sst2A 

was strongly expressed in endothelial cells of mixed fibrovascular and fibrocellular 

membranes (Figure 8.1D,E,F). Fibroblast-like cells and macrophages stained strongly 

positive in young membranes and less strongly in older scars (Figure 8.1D,E,F,G). 

Little or negative staining was observed in old hypocellular scars (Figure 8.1G). 

Expression of endothelial cells in fibrovascular membranes (61.5%) was found 

statistically significant more often than in fibrocellular membranes (29.5%; χ2 analysis, 

p<0.001). Staining in CNV was considered specific, because peptide blocking 

significantly decreased staining of all structures mentioned. 

In one eye with a mixed fibrovascular and fibrocellular membrane (eye number 

CNV10), we found positive staining of myofibroblasts in a hypercellular area of the 

underlying choroid in the posterior pole. This area also stained positive with 

antibodies directed against SMA and CD68, confirming the presence of 

myofibroblasts and macrophages. 

In the eye with nonneovascular AMD, the staining pattern was similar to control 

tissue. The RPE stained positive. No staining was seen in the choriocapillaris, and 

vessels in the choroid were mostly positive. 

 

RT-PCR 

RT-PCR analysis of 3 posterior poles, including retina, RPE, choroid and sclera, 

revealed that mRNA encoding for sst1, sst2A, sst3 and somatostatin is expressed in the 

posterior pole of normal human eyes. No mRNA encoding for sst4 or sst5 was detected 

(Figure 8.2, Table 8.2). 
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Figure 8.1 Immunolocalization of sst2A in posterior pole of normal eyes and eyes with different stages of 
ARM. Immunohistochemistry was performed on paraffin-embedded tissue, and visualized with an alkaline 
phosphatase detection system using a red chromogen. (A) Positive staining in normal neuroretina, with strong sst2A 
expression in the inner plexiform layer (IPL) and moderate expression in the outer plexiform layer and the cellular 
membrane of the inner nuclear layer (INL). (B) sst2A staining of normal RPE, showing the membranous staining 
pattern on the apical side. (C) sst2A staining of an eye with early ARM, showing negative staining BLD and soft 
drusen (#). (D through G) sst2A staining of CNV in eyes with ARM. (D) Surgically excised fibrovascular CNV 
(eye CNV1), with many positive fibroblast-like cells. (E) Fibrovascular CNV (eye CNV12). (F) Mixed fibrovascular 
and fibrocellular CNV (eye CNV11). Long arrows: positive endothelium of newly formed vessels; short arrows: 
positive fibroblast-like cells. (G) Staining of a fibrocellular CNV (eye CNV 13) with negative endothelial cells (white 
arrow) and fibroblast-like cells. ONL, outer nuclear layer; PR, photoreceptor layer; RPE, retinal pigment 
epithelium; CH, choroids; BM, Bruch’s membrane; NR, overlying neuroretina. Original magnification (A) ×200; 
(B through G) ×400. 
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Figure 8.2 Expression of sst receptor subtype mRNA in the 
posterior pole of a normal human eye, detected by RT-PCR. sst1, sst2A, and 
sst3 were detected. Signals for sst4 and sst5 were too low to detect or absent. 
mRNA for somatostatin (SS14) was also detected. HPRT was used as 
internal control. Marker, 100 bp. 

 

 

DISCUSSION 

 

In the present study normal human eyes and eyes with early and late stages of ARM 

express sst2A. The localization of sst2A expression in the neuroretina is consistent with 

findings in rabbit292 and rat293 retina and reflects the assumed physiological 

neuromodulator function of somatostatin.299,300 In early stages of ARM, the choroidal 

vasculature and neuroretinal tissue stained identically with control tissue. We found 

no expression of sst2A in BLD or drusen, which is in contrast with findings for other 

angiogenic growth factors such as VEGF.144 

In eyes with neovascular AMD, we found strong expression of sst2A in endothelial 

cells and fibroblast-like cells in early CNV. The expression of sst2A in newly formed 

capillaries was abundant in fibrovascular CNV membranes. Similarly, in the active 

component of mixed fibrovascular/fibrocellular CNV, sst2A was strongly expressed in 

endothelial cells. Grant and co-workers demonstrated the presence of somatostatin 

receptors on cultured human retinal endothelial cells.173 They showed a direct 

inhibitory action of a somatostatin analogue on proliferation of these endothelial cells. 

Therefore, the angiogenic cells of CNV membranes may be capable of receiving 

angiogenic inhibition, directly receptor mediated or indirectly via inhibition of GH 

and IGF-I by somatostatin. In mice retina, somatostatin analogues have an inhibitory 

effect on neovascularisation.177 Somatostatin analogues, such as the long-acting 

octreotide, which binds to somatostatin receptor subtypes 2 and 5, are used as 

experimental treatment in neovascular eye diseases such as diabetic retinopathy.301-303 

We found strong sst2A expression in fibroblast-like cells and macrophages in 

fibrovascular CNV and in intrachoroidal myofibroblasts. Sst2A staining in 
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myofibroblasts may be due to cross-reactivity to myosin,304 but macrophages have 

been shown to express sst2A.305 Macrophages and choroidal fibroblasts are thought to 

be one of the main sources of VEGF in the early stage of the disease.155,247,290 Both 

macrophages and choroidal fibroblasts are also capable of releasing other angiogenic 

factors such as tumor necrosis factor-α (TNF-α) and IGF-I.306 Somatostatin analogues 

have been shown to inhibit the release of macrophage and monocyte products such as 

TNF-α, interleukin (IL)-1β, IL-6 and IL-8 in vitro,307,308 although there are also 

conflicting data.309 The functional role of somatostatin with regard to the angiogenic 

factor synthesis and release has to be established. 

In the overlying neuroretina of eyes with CNV, we found no obvious change of sst2A 

expression and localization in comparison to normal eyes. This is in contrast to VEGF 

expression in neuronal tissue, which is upregulated under hypoxic circumstances.144,148 

This may indicate that the function of somatostatin on neuronal tissue is not 

influenced by hypoxic retinal disease. However, some care should be taken when 

interpreting these results, because they are semi quantitatively determined. It has 

recently been shown in a transgenic mice model that inhibition of GH, mediated by 

IGF-I, can inhibit ischemia-induced retinal neovascularization in vivo, but it does not 

reduce hypoxia-induced VEGF mRNA or protein levels. It was postulated that GH / 

IGF-I and VEGF may have distinct functions in the control of angiogenesis: VEGF 

may control acute oxygen regulation, whereas IGF-I may control neovascularization 

on the basis of availability of nutrients for cell division.177 Our findings support the 

hypothesis that somatostatin and VEGF have distinct functions in the control of 

angiogenesis. 

We confirmed local synthesis of sst2A in the macula of normal human eyes with RT-

PCR. We also demonstrated the expression of mRNA encoding for sst subtypes 1 and 

3. In rats, sst2 appeared to be the major subtype in the retina, but all other subtypes 

were expressed  in retina and posterior pole as well.294 Differential expression of sst has 

also been described previously in the immune system.310 We also found mRNA 

expression of the neuropeptide somatostatin in the human macula. Production of 

somatostatin in the retina has been shown in rats with Northern blot hybridization and 

mRNA in-situ hybridization.311-313 The production of both somatostatin and its 

receptors simultaneously suggests an autocrine action of somatostatin in the human 

retina. 

 

From our findings we conclude that the sst2A receptor in choroid and retina of early 

ARM and nonneovascular AMD is localized similar to normal controls. In eyes with 

CNV, the sst2A receptor is strongly expressed in the fibrovascular phase of CNV, as 

well as in intrachoroidal myofibroblasts. mRNA of sst subtypes 1, 2A and 3, as well as 

mRNA of somatostatin are expressed in the macula of the normal human eye. The 

functional role of somatostatin with regard to the synthesis and release of angiogenic 
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factors has to be established. Because of the sst expression in CNV, somatostatin 

analogues may be an effective therapy in early stages of neovascular AMD.  
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CHAPTER 9 

 

RADIOTHERAPY OF  

NEOVASCULAR AGE-RELATED MACULAR DEGENERATION; 

A CLINICAL AND PATHOLOGICAL STUDY 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Purpose: Radiotherapy has recently been employed to treat patients with neovascular 

macular degeneration in order to prevent severe visual loss. Radiotherapy affects the 

evolution of neovascular macular degeneration directly by endothelial toxicity, leading 

to capillary closure, and/or indirectly through its attenuating effects on the 

inflammatory response, mediated by macrophages and other inflammatory cells. 

Methods: In this study we describe the histopathologic findings in a patient with 

neovascular age-related macular degeneration (AMD) in both eyes whose right eye 

was treated with radiotherapy (5 times 2 Gy) 3 years before he died. The eyes were 

enucleated and investigated by light microscopy. Additionally, immunohistochemical 

investigation with antibodies against CD34 and CD68 was performed to identify 

patent endothelial cells and macrophages. 

Results: Both eyes showed neovascular AMD consisting of mixed fibrocellular and 

fibrovascular membranes. Capillaries in both the choriocapillaris and the neovascular 

membrane were patent in both eyes. Macrophages were present in the choroidal 

neovascularizations of both eyes. Neither preexistent choroidal, intraretinal, nor 

neovascular vessels showed increased wall thickness as sign of radiation damage.  

Conclusion: No radiation-related histopathologic effect could be demonstrated 3 years 

after radiation therapy in this patient with AMD. 
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INTRODUCTION 

 

Neovascular age-related macular degeneration (AMD) typically causes a decreased 

central vision over a short period of time when located subfoveally. This disease is a 

major cause for visual loss in the elderly population.3,129 To date the only treatments 

proven to be successful are subfoveal laser photocoagulation212 and photodynamic 

therapy,213 although both therapies are less effective in patients with occult subfoveal 

choroidal neovascularization (CNV). Radiotherapy is one of many experimental 

treatments. Varying results have been published,314-324 but a recently performed pooled 

analysis of different studies indicated that radiotherapy may only act to slow or delay 

the progress of the disease.216 The mechanism of the effect of ionizing radiation on 

CNV is not known in detail. Radiotherapy affects the evolution of neovascular 

macular degeneration directly by endothelial toxicity, leading to capillary closure,325 

and/or indirectly through its attenuating effects on the inflammatory response, 

mediated by macrophages and other inflammatory cells.325-327 

Complications of radiotherapy for AMD include radiation retinopathy,321,328 optic 

neuropathy,321,328 cataract317,318,323 and, recently described, radiation-associated 

choroidal neovasculopathy after low-dose radiotherapy.329,330 

 

This is the first report on histopathological findings after radiotherapy for macular 

degeneration so far. These findings may help to understand the effect of radiotherapy. 

 

 

MATERIALS AND METHODS 

 

Case Report 

A 67-year-old man was examined in 1990 because of vision loss. Fluorescein 

angiography showed neovascular AMD in both eyes. Photocoagulation treatment was 

applied to both eyes, temporally of the fovea. Afterwards, his visual acuity (VA) was 

20/40 in his right eye (OD) and 20/20 in his left eye (OS) (Snellen vision), with a low 

hypermetropic correction. Ophthalmoscopically, the lesions had dried. In May 1991, 

VA was 20/24 OD and had dropped to 20/240 OS because of a large choroidal 

neovascular membrane. No additional treatment was instituted. In 1993, patient was 

referred to our hospital because of a decreased vision in his right eye. His VA was 

20/80 OD and 20/200 OS. Fluorescein angiography showed recurrent lesions with 

early hyperfluorescence at the margins of the old scars. The right eye showed a 

classical CNV (Figure 9.1A,C), the left eye a classical CNV with occult components 

(Figure 9.1B,D). Because the patient fixated just at the point of leakage no laser 
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treatment was given. Instead, he was treated with radiotherapy to his right eye, with a 

dose of 10 Gy delivered in 5 fractions (Figure 9.2). By 1 month after the treatment 

patient’s VA had dropped further to 20/160 OD. The last clinical examination took 

place in September 1996; his VA was 20/240 ODS with grade 3 nuclear cataract. On 

ophthalmoscopy, flat fibrovascular lesions were seen without exudation. In March 

1997, the patient died of coronary heart disease at the age of 73 years. Autopsy was 

permitted and performed within 6 hours. The eyes were removed for histological 

examination. 

 

 
Figure 9.1 Fluorescein angiography 8 months before radiotherapy 
(A,C) Fluorescein angiography of the macular region of the right eye. (A) 
Red free picture showing areas of atrophy, laser scarring and 
neovascularization. (C) Early fluorescein angiography of the right eye, 
showing early hyperfluorescent lesions at the margins of the old scar. (B,D) 
Fluorescein angiography of the macular region of the left eye. (B) Red free 
picture showing areas of laser scarring and neovascularization. (D) Early 
fluorescein angiography, showing a mixed classical and occult lesion with 
early hyperfluorescence at the margins of the old scar. 

 
 
Dosimetry 

The patient was treated with radiotherapy to his right eye with a dose of 10 Gy with 

16 MeV electrons, in 5 fractions applied with sparing of the lens. The field size was 4 x 

4 cm2 at 100 cm SSD (source skin distance) using a Houston collimating system on a 

Siemens Mevatron KD-2 linear accelerator. The dose to the macula was calculated 

using an electron pencil beam model implemented in the Cadplan planning system. 

The contours are obtained from a CT image. Figure 9.2 shows the calculated isodose 

pattern. The macula is enclosed by the 100% isodose (2 Gy per fraction). 
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Figure 9.2. The dose distribution of the 16 MeV electron beam of 4 x 4 
cm2. The macula (x) is enclosed by the 100% isodose (2 Gy per fraction).  

 

 

Material preparation and immunohistochemistry 

From each enucleated eye, a horizontal tissue block including the macula was excised 

and horizontally divided in 2 parts. One part was fixed by immersion in formalin for 

24 hours and embedded in paraffin. The other part was frozen for other purposes. 

Five-µm thick paraffin sections were cut and stained for light microscopy with PAS, 

hematoxylin and eosin, and Mallory. A two-dimensional map was constructed from 

study of serial sections of both eyes (Figures 9.3A and 9.4A). For 

immunohistochemistry, monoclonal mouse antibodies against CD34 were obtained 

from Biogenex (San Ramon, CA, USA) and monoclonal mouse antibodies against 

CD68 from Dako (Glastrup, Denmark). Immunohistochemical staining was 

performed as described before.248 In short, the sections were deparaffinated and 

rehydrated, and (for CD68) microwave-heated for 10 minutes. After the slides had 

been blocked with normal goat serum (Dako, 1:10) for 15 minutes, they were 

incubated with the CD68 antibodies (1:2000) overnight at 4°C, or with CD34 

antibodies (1:20) for 1 hour at room temperature. The sections were further incubated 

with biotinylated multilink antibodies for 30 minutes, followed by alkaline 

phosphatase-labeled antibiotin (both Biogenex) for 30 minutes. The complex was then 

visualized by incubating the sections with new fuchsin (as a red chromogen) for 30 

minutes in the dark. The slides were counterstained with Mayer’s hematoxylin, 

mounted and examined by light microscopy.  
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RESULTS 

 
Histopathologic examination 

The irradiated right eye (Figure 9.3B to F) showed a subretinal mixed fibrocellular and 

fibrovascular membrane (Figure 9.3B). The CNV comprised still identifiable RPE and 

subretinal basal laminar deposits (grade 3112). There was extensive loss of 

photoreceptors at the macular region. Vessels from the choriocapillaris could be 

demonstrated traversing Bruch's membrane (Figure 9.3D). Immunohistochemistry 

with CD34, a monoclonal antibody against endothelial cells, showed patent vessels in 

the choriocapillaris and in the neovascular membrane (Figure 9.3E). Staining with 

antibodies against macrophages (CD68) showed many macrophages in the CNV and 

in the underlying choroid (Figure 9.3F). Neither preexistent choroidal, retinal or 

neovascular vessels showed increased wall thickness as sign of radiation damage. Next 

to the CNV, a region of laser scarring was seen, with loss of neuroretina, 

choriocapillaris and choroidal structures (Figure 9.3B). 

 

The left eye (Figure 9.4B to E) showed a large dome-shaped mixed fibrocellular and 

fibrovascular membrane, with mixed sub-RPE and subretinal areas (Figure 9.4B). 

Immunohistochemistry with CD34 demonstrated patent vessels in the choriocapillaris 

and in the neovascular membrane (Figure 9.4E). Staining with antibodies against 

CD68 showed many macrophages in the CNV and in the underlying choroid (not 

shown). The overlying neuroretinal layers were disorganized and atrophic. The CNV 

was partly overlying a region of laser scarring, with loss of choriocapillaris and 

choroidal structures (not shown). 

 

 

DISCUSSION 

 

In this patient with bilateral neovascular AMD we showed that, 3 years after 10 Gy 

radiotherapy to the posterior pole of his right eye, choriocapillaries and neovascular 

capillaries were still patent and macrophages were present. The dose given is at the 

low end of the range of presently applied protocols.216 There were no histologic signs 

of radiation effect on the preexistent vascular walls. This may be due to the relatively 

low dose of radiation or to the reversibility of minor damage. 

Radiotherapy affects the evolution of neovascular macular degeneration by endothelial 

toxicity, resulting in narrowing or occlusion of blood vessels.325-327 Endothelial cells are 

moderately sensitive to radiation and vessels may reveal manifestations of radiation 

injury months to years later.325,331-333 In CNV, microvessel and endothelial cell loss 
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Figure 9.3 Irradiated right eye. (A) Two-dimensional reconstruction map showing size, shape and 
location of selected histopathologic features of the examined part of the macular region. (B) Histologic 
composition of macular region, showing a CNV membrane (*). A region of laser scarring is seen (arrow), 
with total atrophy of neuroretina, choriocapillaris and disturbance of choroidal structures (Mallory, 
original magnification x100). (C) Detail of CNV showing subretinal, fibrovascular region with intact 
choriocapillaris. (Mallory, original magnification x400). (D) At the margin of the CNV a vessel from the 
choriocapillaris traverses Bruch's membrane (arrow) (PAS, original magnification x400). (E) 
Immunohistochemical staining with antibodies against CD34, a marker for endothelial cells, with a red 
chromogen. Patent choriocapillaries (short arrow), as well as patent neovascular capillaries (long arrow) 
in the CNV are seen (original magnification x400). (F) Immunohistochemical staining with antibodies 
against CD68, a marker for macrophages, with a red chromogen shows many macrophages in the CNV 
as well as in the choroid (original magnification x400). * = choroidal neovascularization; NR = 
neuroretina; CH = choroid. 
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Figure 9.4 Fellow left eye. (A) Two-dimensional reconstruction map showing size, shape and location 
of selected histopathologic features of the examined part of the macular region. (B) Histologic overview of 
a dome-shaped CNV membrane with a large sub-RPE region. The overlying retina is disorganized. 
(Mallory, original magnification x200). (C) Detail of CNV showing intact choriocapillaris and vessels 
traversing Bruch’s membrane (Mallory, original magnification x400). (D) At the margin of the CNV a 
vessel from the choriocapillaris traverses Bruch's membrane (PAS, original magnification x400). (E) 
Immunohistochemical staining with antibodies against CD34. Patent choriocapillaries (short arrow), as 
well as patent neovascular capillaries (long arrow) in the CNV are seen (original magnification x400). * 
= choroidal neovascularization; NR = neuroretina; CH = choroid. 

 

 

occurs about a year after irradiation.325 Moreover, CNV membrane regression is not 

found until 6 months or more after radiotherapy, independent of the dose 

administered.315 Since radiotherapy in our patient was performed three years before 
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histologic examination, it appears valuable to assess possible vascular damage as 

morphologic parameter for radiation damage.  

A more rapid effect of ionizing radiation on neovascular macular degeneration is to be 

expected through its attenuating effects on the inflammatory response, mediated by 

macrophages and other inflammatory cells.326,327 In our patient macrophages were 

similarly present in both eyes in the CNV as well as in the underlying choroid, three 

years after irradiation of the right eye. Therefore, it appears unlikely that the presence 

of these macrophages can be attributed to an immediate effect of the irradiation.  

The histopathologic effect of radiotherapy has not been documented in cases of 

human macular degeneration so far. Miyamoto et al.334 studied the histologic 

appearance of rabbit eyes with experimental CNV 4 weeks after a single fraction of 20 

Gy of focal X-irradiation. The degree of vascular formation and the number of 

vascular endothelial cells in the subretinal membrane of the irradiated eyes were less 

than in those of control eyes. However, the pathogenesis of experimental CNV in 

rabbit eyes may not be identical to that of CNV in AMD. Furthermore, a single 

fraction of 20 Gy has different effects on choroidal endothelial cells than a fractionated 

dose.335 

Clinical trials on radiotherapy show a probable benefit with higher doses.314,317,318 Other 

clinical studies demonstrate similar results between treated and controls after lower-

dose radiotherapy and longer follow-up.319,322,324 In a pooled analysis of data from 

independent centers, fraction size was not found responsible for variation in visual 

outcome.216 Our results are in concordance with the findings of little effect of low dose 

radiotherapy on CNV at longer follow-up. 

With low-dose radiotherapy, few side effects are to be expected. However, recently a 

vasculopathy has been described, developing within months after low-dose 

radiotherapy (10 to 20 Gy),329,330 called radiation-associated choroidal 

neovasculopathy.330 The affected patients appeared to have a particularly poor visual 

prognosis. Our patient does not appear to belong to the (still poorly described) subset 

of patients who develop the vasculopathy. 

The histologic significance of the findings on fluorescein angiography must be 

interpreted with care, because fluorescein angiography was not performed after 

radiotherapy. However, the clinical findings were well documented at regular intervals 

between fluorescein angiography and the last ophthalmoscopy and no obvious 

changes were recorded. At the last ophthalmoscopy, a flat fibrovascular lesion was 

seen without exudation, which is in accordance with the histologic findings.  

In conclusion, no radiation-related histopathologic effect could be demonstrated 3 

years after radiotherapy (10 Gy) in this patient with neovascular AMD. 
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CHAPTER 10 

 

GENERAL CONSIDERATIONS AND FUTURE PROSPECTS 

 

 

 

It is still not clear whether ARM is an exaggeration of the normal aging process, or a 

fundamentally different disease entity. Photoreceptor cell loss appears to occur in both 

instances.26,90 Our finding of apoptosis in the aging retina can be explained by 

Wallace’s theory of aging and disease, in which cells die at reaching a threshold by 

both genetic and environmental damages.24 The time of onset could be influenced by 

genetic factors, or by environmental factors. Apoptosis can be initiated by multiple 

stimuli. In ARM, apoptosis is most likely the common pathway of cell death, resulting 

for instance from cellular damage, growth factor withdrawal or other stimuli. If one 

cell is damaged beyond repair, the apoptotic program is activated in order to prevent 

damage to the surrounding tissue. In this view, the finding of apoptotic cell death in 

specimens with ARM may state more about the quality and quantity of damage than 

about the general way of cell death in ARM. In my opinion, without restoring RPE 

function, the effect of anti-apoptotic modalities in the treatment of ARM will be 

limited. Anti-apoptotic interventions could leave severely damaged, probably non-

functional retinal cells.336 

The RPE seems to play a central role in the pathogenesis of ARM. Protective and 

shielding qualities are allocated to the RPE.64,133 With aging, the RPE may lose some 

of these qualities, allowing neovascularization. Fas-ligand, expressed on the RPE, is 

proposed to be one of those protective factors, inducing apoptosis of proliferating 

vascular endothelial cells.64 We showed in the study on Fas-ligand that the RPE does 

not have a decreased Fas-ligand expression with age. Furthermore, we demonstrated 

that Fas-ligand expression on RPE cells in sub-RPE CNV is similar to the expression 

in subretinal CNV, in which the vessels grow through the RPE into the subretinal 

space . These results make Fas-ligand less likely to be a major suppressive factor of the 

RPE, in case a CNV already has developed. 

 

Malfunctioning RPE, age-related thickening of Bruch’s membrane, BLD and other 

factors may eventually lead to neovascular AMD, possibly by relative hypoxia of the 

retina. In 1948, Michaelson proposed the presence of a diffusible biochemical “factor 

X” in the eye that was capable of inducing angiogenesis in diabetic retinopathy. The 

last two decades, numerous growth factors have been acknowledged in the
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pathogenesis of neovascular retinal disease. VEGF has appeared to play a central role 

in the process of ocular angiogenesis. However, the precise mechanism of VEGF in 

the complex interaction of the different angiogenic growth factors in AMD has not 

been elucidated so far. Other angiogenic growth factors seem to play additional roles. 

In this thesis, we detected the presence of the Insulin-like Growth Factor (IGF) family 

in neovascular AMD. It is established that IGF-I has angiogenic properties in ocular 

vascular endothelial cells.173 Therefore it is possible that IGF plays a role in the 

pathogenesis of neovascular AMD. While VEGF may control angiogenesis by acute 

oxygen regulation, IGF-I might do so on the basis of availability of nutrients.177 IGF-I 

is recruited in normal wound repair,276,337 that may partly explain the presence of IGF-I 

in CNV, because formation of the disciform lesion is regarded as normal wound 

repair.1,74,119,120,275,276 On the other hand, IGF-I may function as a trophic factor for the 

normal vascular system.338 With increasing age and consequently decreasing IGF-I 

levels,339 the vascular endothelial cells may experience a decreased protective effect of 

IGF-I,338 resulting in vascular insufficiency and thus further hypoxia in the outer 

retina, increasing the chance of angiogenesis. 

For AMD the exact role of the IGF family and its possible therapeutic properties are 

still unclear. In order to study the role of IGF-I the individual IGF family members 

should be quantified in CNV and surrounding retinal tissue and related to values in 

normal tissue. Focusing on the dynamic role of the IGF family in CNV formation, it is 

mandatory to develop CNV in models of transgenic mice over- and underexpressing 

IGF-I, IGF receptor type 1 and the various IGFBPs.  

Somatostatin and analogues such as octreotide seem to be candidates for inhibition of 

ocular angiogenesis.177 They inhibit the secretion of growth hormone in the 

hypopituitary. Somatostatin seems to have further repressing effects on angiogenesis 

such as downregulation of VEGF in RPE cells274 and anti-proliferating effects on 

vascular endothelial cells,173,174,181 possibly mediated by somatostatin receptors.173 

These effects can be used as a tool to treat neovascular AMD. We demonstrated 

somatostatin receptor subtype 2A, which has high affinity for octreotide, in 

neovascular AMD. Therefore, local treatment could also be an option. Two further 

effects attributed to somatostatin can be of help in order to improve visual acuity in 

patients with neovascular AMD. Firstly, the drainage effect on macular edema of 

somatostatin,340 and secondly the excitation of neuronal cells,300 which could be 

directly associated with an increase of visual acuity. A randomized controlled phase II 

trial using octreotide in patients  with neovascular AMD is currently under study.183 

In view of the current assumption that angiogenic growth factors act in concert, anti-

angiogenic treatment of patients with neovascular AMD addressing only one growth 

factor may be overruled by other growth factors. Therefore, it is likely that in the 

future a combination of pharmaceuticals mediating different growth factors will be 

applied as a therapy. 
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The view of the author on the pathogenesis of ARM is reflected in a schematic 

illustration in Figure 10.  

 

 
Figure 10.  Simplified schematic illustration of pathogenesis of 
ARM, leading to choroidal neovasculari-zation. 

 

 

A major drawback of the research on neovascular AMD on paraffin-embedded human 

eyes is the scarcity of material. Patients with ARM rarely donate their eyes at autopsy 

for further research. Furthermore, eyes donated for corneal transplantation purposes 

rarely have signs of advanced ARM in the posterior segment. Most studies on human 

material are therefore performed on surgically removed (small) subretinal membranes. 
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In addition, a study performed on paraffin embedded material of neovascular AMD is 

static research. However, the CNVs we studied reflect different stages of the 

development of the disease, with the assumption that a mixed or subretinal membrane 

(which in AMD often is a part of a mixed membrane) is a progression of a sub-RPE 

membrane into the subretinal space.120 

Because of the scarcity of human material, in vitro models like co-cultures341 and 

collagen gels192,341 can be used. However, in order to test the hypothetical models of the 

pathogenesis of ARM, a dynamic approach with animal models is mandatory. 

Currently there is no efficient suitable animal model of ARM available. Only some 

animals have the macular anatomy that is comparable to the human macula, such as 

the non-human primates, as we described in Chapter 4. Rhesus monkeys (or Macaca 

mulatta) show changes similar to early ARM such as drusen, but end stage AMD 

rarely occurs in these animals.231 It may be hypothesized that the RPE characteristics 

are different in monkeys, or that the richly pigmented choroid contains more 

antioxidants than human choroid. In black people, having a more pigmented choroid, 

features of early ARM are common, but advanced AMD is infrequent, compared to 

Caucasians.342 

Mice have the advantage of fast aging, but the drawback of mouse models of CNV is 

the absence of a macula. In order to produce CNV in animals, retinal damage is 

induced by for instance laser treatment. However, this may not represent ‘normal’ 

conditions in which ARM develops in humans. In another animal model of CNV, 

VEGF expression in the RPE is upregulated.161-164 Still in these models RPE probably 

functions normally, thus not all aspects of ARM are addressed. Additionally, in 

experimental CNV, budding capillaries are rapidly enveloped by proliferating RPE, 

followed by an involution of new vessels.133 This could explain the self-limiting disease 

that often occurs in animal experiments of CNV. The ideal animal model for 

neovascular AMD should be a fast aging animal with a macula, and a dysfunctional 

RPE, since this seems to be critical in the pathogenesis of AMD.  
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SUMMARY 

 

 

Age-related maculopathy (ARM) is a severe threat to the visual ability of people over 

65 years of age. ARM involves the central part of the retina where visual acuity is 

highest. In the late stages of ARM, called age-related macular degeneration (AMD), 

photoreceptor cells gradually disappear. The disease may be complicated by new 

vessels growing beneath the retina, called ‘wet’ or neovascular AMD. The causes and 

pathogenesis of this eye disease are not clear yet and unraveling slowly, thanks to 

many studies on this subject. Knowledge about these issues could eventually lead to 

therapies, and probably even more important, to strategies that prevent the disease 

from occurring. The purpose of this thesis was to study several of many molecular 

changes that occur during the development of ARM.  

In the first part (Chapters 1 - 3) the clinical, microscopical and molecular 

characteristics of ARM are described and theories of possible mechanisms responsible 

for the development of ARM are discussed. Questions about the role of cell death 

during the aging process of the retina are outlined. The major part includes the role of 

angiogenic factors in the development of neovascular, or ‘wet’, AMD, in which 

abnormal vessels grow through the barriers of normal anatomy, towards the retina to 

form a choroidal neovascularization (CNV). Many so-called growth factors that play a 

role in CNV are identified up to now, but others need to be investigated. 

With advancing age, the thickness of the retina decreases. Little is known about the 

way cells disappear during this process. In the second part of this thesis (Chapter 4) 

one way of cell death is studied, that is apoptosis, which can be viewed as a cell 

suicide program, present in all cells of the body. In this study, apoptosis was studied in 

the macula of rhesus monkeys of different ages. It was found that apoptotic cells were 

present at all ages, with an increase in the oldest monkey eyes, while the thickness of 

the retinal outer nuclear layer decreased with increasing age. The apoptosis-

modulating proteins Bcl-x, Fas and Fas-ligand were expressed equally at all ages. 

These findings indicate that apoptosis in the primate macula occurs at all ages at 

similar rate, possibly increasing in the oldest age group, and may account for the 

decreasing thickness of the primate macula with age. 

Dysfunctional retinal pigment epithelium (RPE) appears to play a central role in 

ARM, in combination with other factors eventually leading to neovascular AMD. The 

role of Fas and its natural ligand Fas-ligand (FasL) has been acknowledged in the 

process of angiogenesis. Fas and FasL induce apoptosis in T-lymphocytes but are also 

expressed on non-lymphoidal tissue. In the eye Fas-FasL interactions appear to be an 

important mechanism for the maintenance of immune privilege by inducing apoptosis 
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of invading lymphocytes. Recently, FasL expressed on RPE cells has been suggested 

to inhibit the growth and development of subretinal neovascularization. In Chapter 5 

a study is described in which FasL expression was investigated in the aging RPE and 

in early and late stages of ARM. FasL expression in RPE was not related to age or to 

the presence of early ARM. Furthermore, FasL expression in RPE was similar in 

subretinal and sub-RPE CNV. Thus, it appears to be unlikely that FasL expressed on 

RPE controls the extension of CNV from sub-RPE to subretinal. 

 

In the third part of this thesis, several growth factors are studied that could be 

involved in the pathogenesis of neovascular AMD. In Chapters 6 and 7 the Insulin-

like Growth Factor family is investigated. IGF-I is a peptide that stimulates growth 

and differentiation of almost all cell types. The effects of IGF-I are regulated by the 

binding to six IGF-binding proteins (IGFBPs). Most of these IGFBPs have additional 

actions that are independent of IGF-I binding, including stimulation of cell growth 

and induction of apoptotic cell death. IGF-I is known to participate in each step of 

neovascularization. Therefore, the presence of IGF-I, its receptor (IGF-IR), and 

IGFBP-1 to -6 was examined in eyes with neovascular AMD at protein level and at 

mRNA level, which is an indication of the protein production in a cell. IGF-IR, little 

IGF-I, and most of the IGFBPs were shown in various cell types of CNV, both at 

protein and mRNA level. These results may point towards a role of this growth factor 

family in the pathogenesis of neovascular AMD. The functional role of the various 

IGF family members in AMD needs to be established. 

It is becoming clear that a balance between stimulating and inhibiting growth factors 

regulates the growth of ocular neovascularization. Somatostatin reduces newly formed 

vessels by inhibiting the growth hormone/insulin-like growth factor axis and also has 

a direct anti-proliferative effect on various cell types involved in angiogenesis. In 

Chapter 8 is demonstrated that most early-formed CNV in eyes of patients with AMD 

express sst2A, which is a receptor for somatostatin. The sst2A receptor binds potential 

anti-angiogenic somatostatin-analogues like octreotide. Therefore, somatostatin 

analogues may be an effective therapy in early stages of neovascular AMD. 

In Chapter 9 an experimental treatment for neovascular AMD is discussed. 

Radiotherapy has recently been employed to treat patients with neovascular macular 

degeneration in order to prevent severe visual loss. In this study the histopathological 

findings are described of a patient with neovascular AMD in both eyes, who was 

treated with low-dose radiotherapy 3 years before he died. No radiation-related histo-

pathologic effect could be demonstrated following radiation therapy in this patient. 

In Chapter 10 the findings of the studies described are considered in view of the 

current knowledge. Problems encountered are discussed and a theoretical model on 

the pathogenesis of ARM is outlined. Suggestions for future research are made and the 

characteristics for the ideal animal model for research on ARM are discussed. 
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SAMENVATTING VOOR NIET-DESKUNDIGEN 

 

 

 

Ouderdoms-gerelateerde macula degeneratie (OMD) is de 

belangrijkste oorzaak van blindheid bij mensen ouder dan 65 jaar. In 

OMD is het centrale deel van het netvlies, genaamd macula of gele 

vlek, aangetast. In de macula is juist de gezichtsscherpte het hoogst. 

In de late stadia van de ziekte verdwijnen de lichtgevoelige cellen van 

het netvlies langzamerhand. Een veelvoorkomende complicatie van 

OMD is de groei van vaatjes onder het netvlies, wat ‘natte’ of 

‘neovasculaire’ OMD heet. De oorzaken en het ontstaan van OMD 

zijn nog niet duidelijk en worden langzaam ontrafeld, dankzij vele 

studies die naar dit onderwerp worden verricht. Kennis omtrent de 

oorzaken en ontstaan van deze oogziekte kunnen leiden tot nieuwe 

behandelingen en, mogelijk nog belangrijker, tot vormen van 

preventie. Het doel van dit proefschrift was het onderzoeken van 

enkele van de vele moleculaire veranderingen die zich voordoen 

tijdens de ontwikkeling van OMD. 

 

In het eerste deel (Hoofdstuk 1, 2 en 3) worden de klinische, 

microscopische en moleculaire kenmerken van OMD beschreven. 

Theorieën over mogelijke mechanismen die tot OMD leiden worden 

besproken. De rol van celdood tijdens het verouderingsproces van 

het netvlies wordt besproken. Het grootste deel gaat over de rol van 

groeifactoren in het ontstaan van neovasculaire OMD. Deze 

groeifactoren stimuleren vaatjes om dwars door de grenzen van de 

normale anatomie heen te groeien tot onder het netvlies. Daarbij 

wordt een litteken gevormd, dat choroidale neovascularizatie (CNV) 

wordt genoemd. Er zijn al veel groeifactoren geïdentificeerd, die een 
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rol spelen in het ontstaan van CNV, maar andere moeten nog 

onderzocht worden. 

Met toenemende leeftijd vermindert de dikte van het netvlies. Er is 

nog niet veel bekend over de manier waarop cellen verdwijnen bij dit 

proces. In het tweede deel van dit proefschrift (Hoofdstuk 4) wordt 

een manier van celdood bestudeerd, te weten apoptose. Apoptose 

kan gezien worden als een soort zelfmoordprogramma, aanwezig in 

alle lichaamscellen. Door apoptotische celdood kunnen cellen 

verdwijnen zonder dat het omliggende weefsel hier nadeel van 

ondervindt. In dit onderzoek bestudeerden wij de aanwezigheid van 

apoptose in de macula van rhesus aapjes van verschillende leeftijd. 

We vonden een zeer gering aantal apoptotische cellen in het netvlies 

van aapjes van alle leeftijden, met een toename ervan in de oudere 

aapjes. De dikte van het netvlies nam af met toenemende leeftijd. De 

aanwezigheid van enkele eiwitten die invloed hebben op apoptose, 

namelijk Bcl-x, Fas en Fas-ligand, bleven gelijk bij alle leeftijden. 

Deze bevindingen kunnen er op wijzen dat apoptose in het netvlies 

van apen van alle leeftijden voorkomt, met mogelijk een toename in 

de oudste leeftijdsgroep. Tevens tonen wij aan dat apoptose het 

proces kan zijn waardoor het netvlies dunner wordt gedurende het 

verouderingsproces. 

Onder het netvlies ligt een gepigmenteerde cellaag, het retinale 

pigment epitheel (RPE). Het niet goed functioneren van het RPE lijkt 

een centrale rol te spelen in het ontstaan van OMD. In combinatie 

met andere factoren kan dit slecht functioneren uiteindelijk leiden tot 

neovasculaire OMD. De apoptose-regulerende eiwitten Fas en Fas-

ligand spelen een rol in het proces van vaatnieuwvorming. Recent is 

voorgesteld, dat de aanwezigheid van Fas-ligand op RPE cellen 

vaatnieuwgroei onder het netvlies tegenhoudt door de groeiende 

vaatjes aan te zetten tot apoptotische celdood. Het zou mogelijk 

kunnen zijn dat Fas-ligand verminderd aanwezig is op RPE cellen 

van oudere personen en daardoor de vaatnieuwvorming niet meer 
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tegen kan gaan. In Hoofdstuk 5 onderzochten wij dit door het 

vóórkomen van Fas-ligand op het RPE in het verouderende netvlies 

te bepalen. Wij vonden dat de aanwezigheid van Fas-ligand hetzelfde 

was in alle leeftijdsgroepen, evenals in groepen met en zonder OMD. 

Verder was de aanwezigheid in het RPE hetzelfde in CNV die onder 

het RPE groeiden als in CNV die door het RPE heen onder het 

netvlies groeiden. Daarom lijkt het niet waarschijnlijk dat Fas-ligand 

op het RPE een belangrijke onderdrukker is van de doorgroei van het 

CNV tot onder het netvlies.  

 

In het derde deel van dit proefschrift bestudeerden wij enkele 

groeifactoren die mogelijk een rol spelen in het ontstaan van 

neovasculaire OMD. In Hoofdstuk 6 en 7 wordt de Insulin-like 

Growth Factor-familie onderzocht. Insulin-like Growth Factor-I 

(IGF-I) is een eiwit dat lijkt op insuline en dat vrijwel alle 

lichaamscellen kan aanzetten tot groei. Als IGF-I gebonden is aan 

een van zes IGF-bindende eiwitten (IGFBPs), functioneert deze niet. 

Deze IGFBPs vormen een soort reservoir voor IGF-I dat niet direct 

nodig is. Ook hebben de meeste IGFBPs een aanvullende rol waar 

IGF-I binding niet voor nodig is, waaronder het stimuleren van 

celgroei en aanzetten tot apoptose. IGF-I beïnvloedt alle stappen van 

het proces van vaatnieuwvorming. Daarom bestudeerden wij de 

aanwezigheid van IGF-I, zijn receptor IGF-IR en IGFBP-1 t/m –6 in 

ogen met neovasculaire OMD. We vonden IGF-IR, weinig IGF-I en 

vrijwel alle IGFBPs in diverse celtypen van CNVs. Deze resultaten 

kunnen wijzen op een rol van deze familie van groeifactoren in het 

ontstaan van neovasculaire OMD. De functie die de diverse IGF 

familieleden hierin hebben moet nog worden vastgesteld. 

Niet alleen vaatstimulerende groeifactoren hebben invloed op het 

ontstaan van vaatnieuwvorming in het oog. Het lijkt eerder een (on-

)balans te betreffen tussen groeistimulerende en groeiremmende 

factoren. Somatostatine is een groeifactor die vaatnieuwvorming 
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indirect remt door de afgifte van groeihormoon uit de hersenen te 

verminderen. Hierdoor komt weer minder IGF-I in het bloed vrij. 

Somatostatine heeft ook directe groeiremmende effecten op diverse 

cellen die bij vaatnieuwvorming een rol spelen. In Hoofdstuk 8 

toonden wij aan dat de meeste vaatjes in pasgevormde CNV in ogen 

van patiënten met OMD een receptor voor somatostatine bevatten. 

Deze receptor bindt tevens medicamenten die sterk op somatostatine 

lijken, zoals octreotide. Daarom zouden deze somatostatine-achtige 

medicamenten een interessante behandeling kunnen blijken voor pas 

gevormde neovasculaire OMD.  

In Hoofdstuk 9 bespreken we een experimentele behandeling van 

neovasculaire OMD. Bestraling kan vaatnieuwvormingen remmen 

en is de laatste jaren gebruikt met het doel verder gezichtsverlies bij 

sommige patiënten met neovasculaire OMD te voorkómen. In dit 

onderzoek bestudeerden wij onder de microscoop de ogen van een 

patiënt met neovasculaire OMD in beide ogen, die met een lage dosis 

was bestraald op een oog, drie jaar voor zijn overlijden. We konden 

geen effecten van de bestraling aantonen bij deze patiënt. 

In Hoofdstuk 10 worden de bevindingen van deze onderzoeken 

besproken in het licht van de huidige kennis van zaken. Problemen 

die we tegenkwamen worden aangestipt en een theoretisch model 

van het ontstaan van OMD wordt in een figuur geschetst. Suggesties 

voor verder onderzoek worden naar voren gebracht, waaronder de 

eigenschappen van het ideale diermodel voor onderzoek naar OMD.
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CURRICULUM VITAE 

 

 

De schrijfster van dit proefschrift werd geboren op 14 januari 1968 in Wassenaar. 

Daar volgde ze het lager onderwijs en haalde ze in 1986 haar VWO/gymnasium beta 

diploma aan het Rijnlands Lyceum Wassenaar.  

 

De studie geneeskunde volgde zij aan de Rijksuniversiteit Leiden. In 1993 werd het 

arts-examen behaald. Naast haar studie werkte ze onder andere als student-assistent 

op snijzaal. Ook verrichtte ze enkele jaren wetenschappelijk onderzoek aan de afdeling 

genetica van de Erasmus Universiteit Rotterdam. Verder deed ze onderzoek bij de 

afdeling anesthesie van de University of Utah Medical Centre in Salt Lake City, en 

bezocht ze ziekenhuizen in Gambia en Turkije in het kader van uitwisselings-

programma’s. 

 

Eenmaal arts, werkte zij twee jaar als arts-assistent heelkunde in het Leyenburg 

Ziekenhuis te Den Haag, en vervolgens een jaar als arts-assistent radiotherapie in de 

Dr. Daniel den Hoed Kliniek in Rotterdam.  

 

Van 1997 tot 2002 verrichtte ze promotie onderzoek aan de afdelingen oogheelkunde 

en pathologie van de Erasmus Universiteit Rotterdam (promotor Prof.dr. G. van Rij). 

 

Vanaf april 2002 is zij in opleiding tot oogarts in het Erasmus MC (opleider Prof.dr. 

G. van Rij) 

 

Antoinette is getrouwd en heeft drie kinderen. 
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tijden beschikbaar voor overleg, hetzij telefonisch, dan wel per e-mail of toch in het 
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voor gezorgd dat dit boekje er nu echt ligt. Voor mij ben je een echte prof! 

 

Robert Kuijpers, het was plezierig samenwerken met je. Tijdens onze brainstorm 
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midden opgenomen. Het is een goed gevoel de ups en downs die met patiëntenzorg 

gepaard gaan met jullie te kunnen delen. 

 

Stella, paranimf, vriendin, lotgenoot, nu sta ik even voor, straks haal jij mij weer in 

wanneer je gynaecoloog bent. En natuurlijk nog één erbij.  

 

Nanno en Hiske, ik dank jullie voor je onvoorwaardelijke steun en vertrouwen. Niet 

alleen moreel maar ook op praktisch niveau als er weer eens een spoed-oppas nodig 

was. Hiske hoop ik nog vaak op achterste rij bij mijn NOG praatjes te zien.  

 

Erik, dank je voor je onuitputtelijke vertrouwen in de goede afloop. Je relativisme 

heeft mij er meer dan eens doorheen gesleept.  

 

Anne, Ties en Max, mijn lieverdjes, jullie zijn het allermooiste. 


