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CHAPTER 1 

SCOPE OF THE WORK 

1.1 Introduction 

Diesel engines form a bulk of the heavy duty engines used in the field of power 

generation, transportation, construction, marine and agricultural applications owing to its 

high thermal and combustion efficiency. The high compression ratio, reduced pumping 

losses and overall lean burn mixture due to heterogeneous combustion improves it 

efficiency compared to spark ignited (SI) engines. However, the rising problem of global 

warming and climate change is forcing the government to bring in first-ever efficiency 

standards for trucks [1] to reduce CO2 emissions, the need of the hour is to make diesel 

engines more efficient. Also, to reduce American dependency on foreign crude imports 

and strengthen energy security there is a need to make the engines flexible to run on 

alternate fuels.  

The fundamental concept on which compression ignition (CI) engines work is to 

form an air-fuel mixture at high temperatures and pressures so that it auto-ignites [2]. 

This phenomenon of auto-ignition is one of the basic distinctions between diesel 

engines and gasoline (SI) engines. In SI engines due to its detrimental effects it is 

essential to avoid auto-ignition as much as possible; on the other hand, in CI engines it 

plays a major role in the combustion, performance, fuel economy and emissions. 
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Therefore, it is highly desirable to have a better understanding of the auto-ignition 

processes in order to have better control of the engine.  

This dissertation covers the effect of ignition delay definitions, effective 

temperatures and engine conditions on global activation energy, essentially a measure 

of auto-ignition characteristics of fuels. Furthermore, based on these findings a 

correlation between the Derived Cetane Number (DCN) and the apparent activation 

energy of the fuels has been developed.  

1.2 Dissertation Framework 

The dissertation starts with a review of previous investigations on auto-ignition 

and combustion behavior of fuels in engines, in chapter 2. This review would also 

include the various ignition delay correlations previously developed. In addition, each 

chapter will have its own literature review, specific to its requirements. Chapter 3 has a 

detailed description of the test cell which includes the engine, accessory systems and 

instrumentation. In chapter 4, we will discuss about the preliminary results and their 

comparison to results obtained in previous work [3, 4]. This will be the foundation work 

for this research and will provide the objective for further investigations.  

The major part of this research work is covered in chapters 5-7. In chapter 5, an 

effort has been made to find out the most suitable ignition delay definition for auto-

ignition studies. Since, ID is the time period between SOI and SOC any change in the 

definition of those two would result in change in ID definition. Furthermore, ID values 

are used in Arrhenius plots based on which global activation energy of combustion 
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would be calculated, variations in ID value would result in variation in global activation 

energy value of a fuel as well. Thus, changes in SOI and SOC would indirectly result in 

changes in global activation energy values of fuel. The chapter focuses on how much 

would be the effect of different SOI and SOC definitions on global activation energy. 

 Chapter 6 concentrates on the other important parameter that affects calculation 

of global activation energy value i.e. temperature. In homogeneous charge and gas 

phase reactors it is convenient to use initial temperature in ignition delay correlations for 

calculating global activation energy, since the change in temperature would be due to 

chemical reactions only. However in heterogeneous combustion, physical delay also 

plays an important part in auto-ignition and is included in ID period, as a result it 

becomes important to have an effective temperature which would be a good 

representation of the physical and chemical processes taking place during ID period. 

Researchers have remained divided in defining the effective temperature for 

heterogeneous combustion during ID period [4-8]. The effect of different effective 

temperatures on global activation calculations has been discussed in this chapter. 

In engines the temperature during auto-ignition can be changed either by varying 

the intake air temperature or by changing the SOI. Besides changing temperature, each 

method also affects cylinder pressure, wall impingement, swirl pattern and air fuel 

mixing. However, global activation energy is most sensitive to temperature and it is 

interesting to see the results of these two totally different approaches of temperature 

control on it. In chapter 7, the effect of these two methods on global activation energy 

has been studied for different fuels. It also includes CFD and 0-dimensional simulation 



4 
 

 

results which helps us in a deeper understanding of the factors affecting the processes 

during ID period and leading to auto-ignition.  

The final chapter – chapter 8, gives the conclusions for the thesis and some 

recommendations for the future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

From being stationary power source to driving heavy duty trucks and tractors, 

ships and submarines, cranes, locomotives, and electric generators the diesel engine 

has changed a lot since it was invented by Rudolf Diesel in 1893. Although, we have 

been able to achieve 55% efficiency [2, 9, 10] in the low speed marine and electric 

power generation engines, we still lag in increasing the efficiency beyond 45% for the 

medium and high speed engines used in trucks and locomotives. In addition, the 

stringent standards set by government to reduce carbon emissions would further 

compel the industry to better the efficiency of diesel engines. 

Besides the need to improve fuel economy, the reducing global oil reserves also 

poses risk to the energy independence and security of the country. This has led to 

widespread research into use of alternative fuels for diesel engine applications. 

Alternative fuels range from renewable fuels like bio-diesel [11-14] and ethanol [15-19] 

to non-renewable synthetically manufactured fuels like S-8 [20, 21] and Sasol IPK [22-

24]. The synthetic fuels are manufactured by the Fischer-Tropsch (F-T) process from 

natural gas or coal: hence called Gas-to-Liquid (GTL) [25-28] and Coal-to-Liquid (CTL) 

[29, 30] fuels respectively. Owing to such a vast difference in sources from which the 

fuels are derived, they show a large variation in the physical and chemical properties. In 
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order to design future CI engines and modify existing engines there is a need for 

computer simulations of the diesel cycle using different fuels. This requires the 

quantification of the auto-ignition process in terms of correlations for the ignition delay 

period which is known to affect all aspects of diesel engine operation. Several 

correlations have been developed for the ignition delay period using different equipment 

and definitions. Almost all of these correlations include the activation energy which 

quantifies the sensitivity of the auto-ignition process to variations in the charge 

temperature. While different values for the activation energy have been reported in the 

literature, all previous researchers considered the activation energy to be independent 

of the charge pressure and density.  

This investigation reviews different definitions used to specify the end for the 

ignition delay period, the instrumentation used for its measurement and the values of 

the activation energy reported in the literature. In addition, the dependence of the 

activation energy on the temperature in the different combustion regimes will be 

examined. 

2. Literature Review 

2.1 Ignition Delay Period 

In 1914, Dixon et al [31] discovered for the first time that when a combustible 

fuel-air mixture is compressed in a glass cylinder it starts burning after some initial 

delay. This time delay for the start of combustion is now popularly referred to as ignition 

delay. The ignition delay time in diesel engines was not measured until 1920 by Hawk 



7 
 

 

[32]. The difference between these two measurements, done by Dixon and Hawk, would 

be the presence of a noticeable physical delay time in diesel engines. Although initially 

researchers [33-35] denied the presence of physical delay in diesel engine 

combustions, but later its presence was recognized by the works of Tausz and Schulte 

[36-38] and further confirmed by Rothrock and Waldron [39, 40] and Miller [41]. 

The initial stages in the ignition delay period, is predominantly dominated by 

physical processes like spray breakup, air entrainment, droplet formation and 

evaporation, and air-fuel mixing. Therefore, it is referred to as physical ignition delay 

period. In the latter half, the chemical reactions takeover the physical processes and 

become more dominant, and this stage is referred to as chemical ignition delay period. 

Although there are chemical reactions taking place during the physical delay period as 

well, their heat release rate is negligible compared to the scale and effect of physical 

processes. Thus, the ignition delay period in diesel engines consists of two stages and 

the total ignition delay is a sum of the physical and chemical ignition delay period. 

2.1.1 Physical Ignition Delay 

In 1936, Wenzel [42] made a theoretical analysis to calculate physical delay 

based on heating and vaporization of droplets in diesel engines. The comparisons of his 

results to experimental ignition delay values showed great variations which he attributed 

to wrong assumptions or to the presence of chemical delay period.  

Yu, et al [43] in 1956 studied physical delay period by injecting fuel in a single 

cylinder GM-71 engine with nitrogen instead of air. The changes in pressure were 

measured by the hot motored technique in alternate fired and misfired cycles. The 



8 
 

 

maximum drop in cylinder pressure was observed to be dependent on cetane number of 

a fuel rather than volatility. 

Hurn, et al [44] in 1956 conducted tests in a constant volume bomb on fuels with 

different volatilities. Different charge gases were also tried to see their influence on 

vaporization and fuel droplet heating. They observed that there was a presence of long 

delay period before the start of chemical heat release, which they attributed to the time 

required to heat and evaporate the fuel droplets. He concluded that the surrounding air 

properties had more effect than the fuel volatility and structure on the physical delay 

period.  

In the same year, El-Wakil et al [45] analyzed the processes of jet break up and 

droplet evaporation. They observed that a condition of adiabatic saturation is developed 

around the spray core irrespective of the fuel properties although fuel/air ratio varied 

depending on the fuel used. Under adiabatic saturation condition all fuels have almost 

equal opportunity to reach a temperature and fuel/air ratio suitable for auto-ignition and 

combustion.  

Sitkei [46] in 1963 found the value of physical delay in his tests, as a constant 

value of 0.5 msec at a an injection pressure of 125 atm. Lyn and Valdmanis [47] in 1966 

conducted tests in a pre-chamber engine to study the effect of injection pressure, nozzle 

size and injection rate on physical delay period. They observed that increase in injection 

pressure from 200 to 350 atm and increase in nozzle size from 0.3 to 0.6 mm resulted in 

negligible change in ignition delay period. In 1971, Henein [48] defined the end of 

physical delay as the time when stoichiometric mixture is formed at the surface of a 
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stagnant droplet. Based on this assumption the physical delay for a 4 µm cetane droplet 

was calculated to be 0.02 msec. 

Pederson [49] in 1974 studied the effect of injection pressure and nozzle hole 

diameter in an open chamber engine. He too observed similar results as Lyn and 

Vladmanis. He further analyzed the evaporation behavior in a moving droplet, and 

unlike Henein he defined end of physical delay as the time when stoichiometric mixture 

is formed in the wake of the moving droplet. Based on the calculation he arrived at a 

value of 0.04 msec for the physical delay period at 1530 °R gas temperature. 

 

Figure 2.1: Pressure trace for a blend of hexadecane and HMN in both air and 

nitrogen [50] 
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In 1985, Ryan [50] separated physical and chemical delay periods in a constant 

volume vessel by injecting fuels separately in air and nitrogen. The lack of exothermic 

reactions in the inert atmosphere of nitrogen would show the presence of just the 

physical processes whereas when fuel is injected in air it will show both physical and 

chemical processes. When pressure traces from both these tests are superimposed, the 

point at which they detach from each other would mark the end of physical delay period 

and start of chemical delay period (Fig. 2.1). His test results showed that a major part of 

the total ignition delay period is physical delay period and a small portion of it is 

chemical delay. 

From the review of physical delays it is evident in engines the physical delay is 

very small compared to the total ignition delay period. On the other hand, in constant 

volume chambers like the IQT physical delay has a significant presence and cannot be 

neglected. 

2.1.2 Chemical Ignition Delay 

The chemical ignition delay has been studied extensively with advent of modern 

computation and simulations. Flynn et al [51] modeled iso-octane and n-heptane at 

conditions based on tests done by Dec [52] for laser diagnostics. They observed that 

the steps in the auto-ignition process and the intermediate species formed for both the 

fuels were same. The only difference being the rate of the reactions, which is affected 

by the low temperature heat release of the fuel. In addition to the low temperature heat 

release the intermediate temperature heat release also affects the ignition quality of the 

fuels [53].  
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Chen et al [54] and Westbrook [55] classified the oxidation processes of 

hydrocarbons into three important regimes: low temperature, intermediate temperature 

and high temperature regimes.  

2.1.2.1 Low temperature regime 

According to Westbrook [55], at low temperatures, a hydrogen atom is removed 

from a hydrocarbon molecule to form an alkyl radical (R). This alkyl radical gets 

attached to an oxygen molecule to form a RO2 molecule which further isomerizes to 

form QOOH (Q = CnH2n) radical.  

R + O2 + M = RO2 + M    (1) 

RO2 = QOOH    (2) 

QOOH can decompose to form an olefin and HO2 molecule, or a cyclic ether and OH 

molecule. 

QOOH = QO + OH    (3) 

QOOH = Q + HO2    (4) 

QOOH also has a chance to attach with another O2 molecule and form O2QOOH. 

This molecule breaks down into a ketohydroperoxide and OH molecule. 

QOOH + O2 = O2QOOH    (5) 
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Figure 2.2: Schematic of hydrocarbon oxidation [56] 

 

Ketohydroperoxide decomposes at around 800 K which is lower than the H2O2 

decomposition temperature range; hence it marks the end of the low temperature 

combustion regime. Fig. 2.2 shows a schematic of hydrocarbon oxidation similar to the 

one explained by Westbrook [55].  

2.1.2.2 Intermediate temperature regime 

In the temperature range of 850 to 1200 K, OH formation to sustain chain 

branching is dependent on the following reactions: 

H + O2 + M = HO2 + M    (5) 
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RH + HO2 = R + H2O2    (6) 

H2O2 + M = OH + OH + M     (7) 

2.1.2.3 High temperature regime 

At temperatures higher than 1200 reaction (8) takes over reaction (5) and 

becomes the most important reaction controlling combustion rate. 

H + O2 = O + OH    (8) 

The final stage in the high temperature regime is the oxidation of CO by OH 

radical with release of CO2 and H2O.  

CO + OH = CO2 + H2O   (9) 

The H atom required to start this reaction is released from thermal decomposition 

of alkyl radicals, which is possible at only higher temperatures.  

2.1.2.4 Negative Temperature Coefficient (NTC) and Thermal-Ignition Preparation 

regime 

Kuwahara et al [57] based on 0-D simulations of n-heptane and di-methyl ether 

proposed a four stage oxidation process for fuels which show cool flame (Fig. 2.3). At 

higher initial temperatures the secondary oxygen addition competes with the branching 

of QOOH, and causing reduction in reaction rates leading to NTC regime. The NTC 

regime is followed by the thermal ignition preparation stage, in which the branching 

chain reactions are overtaken by the HO2 formation reactions. This stage starts at 

around 950 K and continues until the temperature rises till 1500 K leading to high 

temperature combustion.  
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Figure 2.3: Different stages of auto-ignition using Heat Release Rate trace [57] 

The reactions involved in the thermal ignition preparation regime form a reaction 

loop involving H2O2, termed as “H2O2 loop reactions”. 

H2O2 + M = OH + OH + M     (7) 

OH + HCHO = HCO + H2O   (10) 

HCO + O2 = HO2 + CO   (11) 

2 HO2 = H2O2 + O2   (12) 

The loop reactions release around 473 kJ of energy which aids in the rise of 

temperature leading to high temperature combustion. The overall reaction for the loop is 

given as: 

2 HCHO + O2 = 2 H2O + 2 CO + 473 kJ   (13) 
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Yao et al [58] developed a reduced mechanism for n-heptane (35 species and 41 

reactions) based on the original mechanism developed by Lawrence Livermore National 

Lab (LLNL) under HCCI conditions. The 0-D modeling results showed n-heptane has a 

two stage auto-ignition behavior. Stein et al [59] developed and studied oxidation of 

surrogates for jet fuels and arrived at similar conclusions. 

2.2 Ignition Delay Correlations 

One of the earliest ignition delay correlations was developed by Boerlage and 

Broeze [60] in 1931, based on tests conducted on a slow speed, direct injection, four 

stroke, single cylinder diesel engine for pressure range of 375-600 psi (25-42 bar). Their 

simple correlation suggested pressure rise delay was a hyperbolic function of 

compression pressure.  
 ��� = �

� (2.1) 

In their following work [61] in which they compared combustion of cetene (C16H32) 

and tetra-isobutylene (C16H32), two compounds with similar chemical formula but 

different structure of molecules, they observed tetra-isobutylene has poor ignition quality 

than cetene. This led them to conclude that besides compression pressure, thermal 

stability and molecular structure also affects the pressure rise delay.  

The most widely used form of correlation for ignition delay is the one developed 

by Wolfer in 1938 [62], based on data from constant volume bombs of two different 

shapes, cylindrical and spherical. The tests were performed at a pressure of 118-389 

psi (8-27 bar) in the cylindrical bomb and 172-705 psi (11-49 bar) in the spherical bomb, 
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and an overall temperature range of 600-947 °F (333-526 K). The equation is applicable 

to fuels with CN ≥ 50. 

 

��� = 0.44�����
��.��  (2.2) 

where, Ρ is in atmospheres and Τ in degrees Kelvin. 

He further stated that fuel injection pressure, nozzle diameter, turbulence, 

combustion chamber design, fuel/air ratio and fuel temperatures above 100 °C have a 

minimum effect on ignition delay value. In fact, the effect of air turbulence on ignition 

delay was investigated by Small [63] in a similar spherical bomb. He also concluded that 

static and turbulent air produced comparable pressure rise delay.  

In 1939, Schmidt [64] provided a formula for the initial lag period for a simple 

reaction between molecules of two gases without involving intermediate reactions.  

 

���� = �� ���√�
� ��� (2.3) 

where, 

P and T = initial pressure and temperature, respectively. 

a’ = factor dependent on air-fuel ratio 

B = factor that allows for the reduction in ignition delay from the increased rate of 

burning during the delay period, which is due to the temperature rise during 

the interval 
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In order for this equation to represent the chemical ignition delay in engine 

combustion, he added an exponential power to pressure to accommodate for the chain 

reactions happening due to intermediate species. The equation was further reduced to a 

form (Eq. 2.4) of Wolfer equation, as it was observed that exponential factor was more 

dominant than T, a’ and B. 

 

�� = ����
��  (2.4) 

In the same year, Bauer [65] introduced an equation in which the ignition delay is 

a function of Τ log Ρ. 

 �� =  �!(�#$%�) (2.5 a) 

OR 
 �� =  �(���) (2.5 b) 

where, 

P = pressure in atmospheres 

T = temperature in Kelvin 

The formula was found by trial and error, and was believed to be reasonably 

accurate in predicting illumination delay for an optical engine of 3.375 in bore and 5 in 

stroke. It is interesting to note that contrary to the correlations developed by Wolfer and 

Schmidt, ignition delay is a function of eT rather than e1/T. Their work found support in 

the 1941 research of West and Taylor [66] done on a single cylinder open chamber 

diesel engine. They showed there existed a relationship between ignition delay and T 

log P, similar to shown in Fig. 2.4. 
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Figure 2.4: Relation between IDP and T log P, by West et al. [66] 

Tests were conducted by Starkman [67] in 1946, on a CFR diesel engine and a 

bomb of volume equal to the clearance volume of the engine. He found that with the 

increase in pressure, temperature and fuel/air ratio pressure rise delay is reduced, and 

that the engine has shorter delay than the constant volume bomb. In 1949 Elliott [68], 

made a detailed analysis of the results of Mueller [69] and Wolfer which were 

reproduced by Jost [70], to find the effect of temperature on the pressure rise delay. His 

formulae for ignition delay of methylnaphthalene and cetane were in the form of sum of 

physical and chemical delays, and which agreed well with the results of Starkman. 

For methylnaphthalene the formula is: 

 �� = 0.977���+�� + 2.18 × 101���������  (2.6) 

For cetane the formula is: 
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 �� = 0.710���+�� + 3.47 × 101����+3��  (2.7) 

Hurn and Hughes [71] in 1952 conducted tests on a constant volume bomb of 

size 2.5 in diameter and 3.5 in length, by varying the temperature 850-1050 F (472–583 

K), pressure 275-675 psi (18-46 bar), oxygen concentration 15-40% and CN of fuels 

37.2-53.7. They found that there exists an optimum oxygen concentration at which the 

pressure rise delay is minimum, and that the delay difference between different fuels 

decreases at high temperatures and pressures. 

Garner, et al [72] in 1957 measured the effect of compression ratio on 

illumination delay in a CFR diesel engine. They observed that there existed an ideal 

compression ratio at which the lowest illumination delay was reached at all fuel-air 

ratios, which was 23:1 for low CN napthenic gas oil and 25:1 for high CN paraffinic 

secondary reference fuel. In their continuing work [73] of 1961 they found that a 

constant preflame energy is released by a given fuel, which is directly proportional to 

the ignition delay time. 

In the following year Tsao, et al [74] investigated effect of engine speed, fuel 

injection per cycle, fuel CN, intake air temperature and pressure on the temperature rise 

delay in a modified CFR engine. The in cylinder gas temperature was measured using 

an infrared technique called “Null Method”. Based on their results they developed the 

first empirical relationship to have besides temperature and pressure, engine speed as 

a factor affecting ignition delay. 
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 �� = 4123
� + 0.4156 74−36.3

� + 0.02226 :

+ ;<47.45 × 10=
� − 26.66> + 4 �

1000 − 1.456 41000 − :
60 6?@ 

(2.8) 

where, 

IDT = ignition delay time, msec 

P = gas pressure at point of injection, psi 

T = gas temperature at point of injection, °R 

N = engine speed, rpm 

In 1963, Sitkei [46] performed tests on an air cell engine and on a pre-

combustion chamber engine, and measured the illumination delay as a sum of physical 

delay and three part chemical delay: 

 �� = ���� + ���A + ��BA + ���A (2.9) 

where, 

IDCF = Ignition delay of the cold flame 

IDBF = Ignition delay of the blue flame 

IDEF = Ignition delay of the explosion flame 

He found that IDBF and IDEF are inseparable and can be put together as ID(B+E)F, 

whereas IDPh was estimated to be 0.5 msec. The final formula after evaluation was: 

 

�� = 0.5 + 0.135�+C����
��.+ + 4.8�+C����

��.C  
(2.10) 
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where, Ρ is in atmospheres and Τ in degree Kelvin. 

Starting from 1962 to 1966, Lyn and Valdmanis [47, 75] conducted tests on two 

engines and studied Schlieren photographs of combustion behavior. Based on data 

obtained using motored engine technique coupled with single shot injection; they 

concluded that injection timing, in-cylinder pressure and temperature are the most 

important factors affecting ignition delay period. These are followed by injection 

pressure, nozzle specifications and swirl ratio which have secondary effects, and the 

least affecting parameter is fuel quantity which is a measure of overall fuel/air ratio. 

In 1967, Henein and Bolt [76] studied the effect of fuel/air ratio, injection 

pressure, cooling water temperature, cylinder pressure and turbulence on illumination 

delay and pressure rise delay in a modified single cylinder diesel engine. The test 

results showed that pressure rise delay is smaller than illumination delay and is more 

reproducible as well. The factors affecting both the delays most are air pressure, fuel/air 

ratio and cooling water temperature. On the other hand, illumination delay is affected a 

lot by injection pressure whereas pressure delay showed negligible effect. They gave an 

ignition delay correlation similar to the one given by Wolfer and Schmidt.  

 ��� = D
�� (2.11) 

Under the test conditions C and n were found to be 64740 and 1.774, respectively. 

In their continuing work, Henein and Bolt [77] in 1969 investigated the effect of 

engine speed on ignition delay. They found that initially ignition delay seems to 

decrease with increase in speed; however, after the correction for the increase in-

cylinder temperature, the trend was found to be opposite. In another study [78], they 
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performed tests on the effect of air charge temperature on pressure rise delay of 

different fuels like gasoline, CITE, and diesel. It was observed that with increase in 

intake temperature, low CN fuel showed a large reduction in ignition delay than a high 

CN fuel, as shown in Fig. 2.5. However, at extremely high temperatures the ignition 

delay values for all the fuels were found to be close, similar to the results previously 

obtained by Hurns and Hughes [71].  

 

Figure 2.5: Effect of gas temperature on ignition delay of different fuels [78] 

Based on the experimental data for three fuels with different CN they developed 

a correlation between the ignition delay and apparent activation energy, Ea.  
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 ��� = D� �E��F (2.12) 

It was observed that fuels with longer ignition delay (lower CN) have higher 

activation energy, and the ones with shorter ignition delay (high CN) have lower 

activation energy. Thus, they were able to come up with a straight line relationship 

between CN and apparent activation energy. 

 GH = 15500 − 230(DG� − 15) (2.13) 

Stringer [79] in 1970 conducted tests on a constant pressure flow rig using 21 

primary reference fuels with a CN range 0-100. The tests were performed at a pressure 

of 40 atm and temperatures of 790-922 °K. He arrived at a correlation similar to the 

Wolfer’s equation and calculated values of apparent activation energy (Ea), pre-

exponential factor (C) and pressure exponential factor (n) for all the fuels tested. 

 

��� = D� �E��
��  (2.14) 

In 1974, Pederson [49] measured ignition delay for hexadecane (CN=100) in an 

open chamber engine. The tests were conducted at wide range of mean gas 

temperature (590–755 °K), pressure (20-31 atm) and fuel temperature (300-450 °K). He 

formulated ignition delay time as a sum of physical and chemical delay periods (Eq. 

2.15). The physical delay period is said to be affected by mean gas temperature and 

pressure, droplet diameter and velocity, and fuel temperature. 

 ��� = 0.00642�I + 53.34��3=��F  (2.15) 

 J = K3.53 4 �L8236M K0.22 4 �
346 + 0.78M 4 N

256�.++
 (2.16) 
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K1.74 − 40.74�O293 6M P Q
20R1�.�+

 

where, 

P (atm) = Mean gas pressure during ignition delay period 

Tm (K) = Mean gas temperature during ignition delay period  

v (m/sec) = Droplet velocity 

d (µm) = Droplet diameter 

Tf (°K) = Fuel temperature 

Hiroyasu [80] in 1977 measured illumination delay in a constant volume bomb 

and gave an ignition delay formula which included ambient oxygen concentration as a 

factor. The investigations were done using primary reference fuels with 0-100 CN at 

temperatures 300-450 °K and pressure 1-40 atm.  

 ��SS = TUV
�� �W�  (2.17) 

In 1987, Ryan and Stapper [81] investigated effect of temperature and CN on 

physical and chemical delay period in a constant volume vessel. The results showed 

that the chemical delay period was found to be sensitive to temperature whereas 

physical delay is not affected much by temperature and CN. They too proposed a 

correlation for the total ignition delay similar to one used by previous researchers. 

 XW = T�B�  (2.18) 

Ryan and Callahan [82] further modified their equation by studying the effect of 

other parameters on ignition delay period in a bomb.  
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 XW = Y�(Z3)�[( \�#)�]^�_���̀  (2.19) 

where, 

XW = ID in msec 

O2, F = Oxygen and fuel concentration respectively in moles/m3 

^ = Gas density in kg/m3 

T = Gas temperature in K 

bi = regression coefficients 

Henein and Akasaka [83] in 1987 measured ignition delay for different fuels in a 

CFR engine and studied the effect of fuel properties and engine conditions on the delay 

time. It was observed that CN is a good measure for combustion behavior for fuels with 

higher CN, but for low CN fuels physical properties and chemical composition also need 

to be taken into consideration. Also, it was observed that all fuels are capable of 

producing two-stage combustion depending on the compression ratio (C.R.) they are 

tested at. Even high cetane fuels can exhibit two-stage combustion at very low C.R.’s, 

as shown in Figure 2.6.  
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Figure 2.6: Effect of mean gas temperature and pressure on two-stage ignition [83]  

Therefore, they proposed ignition delay as a function of engine parameters and 

fuel properties.  

 �� =  a(�L, �L, D:, c) (2.20) 

where, 

Tm, Pm = Mean temperature and pressure during ignition delay period 

CN = Fuel cetane number 

S = Fuel specific property affecting spray formation, evaporation and mixing. 

In 1990, Kwon et al [84] conducted a series of tests to study the effect of mean 

cylinder temperature and pressure on ignition delay period in a diesel engine. The tests 
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were performed at varying start of injection, nozzle hole diameter, swirl ratio, injection 

pressure, combustion chamber shape and engine speed. Unlike Henein and Bolt [76], 

they observed that illumination delay is always shorter than pressure rise delay. 

However, they agreed with Wolfer [62] on the negligible effect of swirl ratio, engine 

speed, injection pressure, and nozzle hole diameter on ID.  

 

Figure 2.7: Comparison of Ignition Delays obtained from the Engine and the Bomb 

[84] 

They also studied the effect of wall impingement on ignition delay by inserting a 

combustion chamber to a constant volume bomb, referred to as cavity wall. It was 

observed that wall impingement reduces ignition delay time which was attributed to 

better mixture formation. Furthermore, a plot of ignition delay and mean temperature 



28 
 

 

during delay period shows that at about 715 K there is sharp change in slopes of line, 

representing a change in apparent activation energy (Fig. 2.7). Based on these results 

they developed separate correlations for ignition delay for the two temperature regimes, 

in the pressure range of 2.5-3 MPa. 

 X = 5.23 × 1013�3+C��  � ≥ 715 � (2.21) 

 X = 2.16 × 101��+���  � < 715 � (2.22) 

Taylor et al [85] in 2004 performed tests determining ignition delay time in the 

IQT (Ignition Quality tester) using different fuels and pure hydrocarbons. The Arrhenius 

plot showing log of ignition delay and inverse of temperature was plotted, and it gave a 

non-linear relationship between ID and temperature. This was attributed to the 

combined presence of physical and chemical processes during the ignition delay period 

in heterogeneous combustion.  

In his continuing work, Taylor [86] in 2006 investigated the effect of temperature, 

pressure and oxygen concentration on ID in IQT. He observed that with an increase in 

ambient temperature, pressure and oxygen concentration the ID value decreased, 

based on which he developed a global rate model.  

 f�g� = 1
�� = T ∙ exp KGHf�M ∙ lZ3m� (2.23) 

where, 

Z3 =  �
�� ∙ no] = molar concentration of O2 

b = reaction order for oxygen concentration 
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The effect of charge dilution and injection timing on ID time in an optical engine 

was studied by Kook et al [8] in 2005. Similar to Taylor they observed that besides 

temperature; pressure and oxygen concentration also has a considerable affect on ID. 

Therefore, they used an ID expression which included a factor for pressure and oxygen 

concentration.  

 Xpq = T ∙ r1�[no]
1�]� �E�� (2.24) 

For the tested diesel fuel the values for A, n1, n2 and Ea/R obtained were 12.254, 

1, 1.2 and 3242.4 K, respectively.  

In 2010, Bogin et al [87] conducted tests in the IQT using Fuels for Advanced 

Combustion Engine (FACE) fuels which have a wide range of physical and chemical 

properties. They also arrived on an ID correlation similar to the one obtained by Taylor 

et al [85, 86] and regression analysis was used to determine the values for the four 

parameters A, b, c and Ea for all the nine fuels. 

 �� = T ∙ �� ∙ no]
V ∙ � �E�� (2.25) 

Rothamer and Murphy [88] in 2013 performed tests on a 2.44 L heavy-duty 

single-cylinder diesel engine using five fuels. They provided an ID correlation which 

included the effect of density along with temperature.  

 Xpq = T^�[��E�� (2.26) 

In the same year, Jayakumar [4] conducted tests on a single cylinder diesel 

engine at variable intake temperature conditions for ULSD, JP-8 (HCN), JP-8 (LCN) and 

S-8. The intake temperatures were increased with an increment of 10 °C in the range 
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30-110 °C. The log ignition delay value calculated at each test point was plotted against 

the inverse of the mean temperature during ignition delay period. The ignition delay 

correlation was of the form used by Henein and Bolt [78]. 

 Xpq = T� �E�� (2.27) 

The global activation energy values for all the tested fuels are listed in Table 2.1. 

It should be noted that the apparent activation energy for ULSD is much lower than the 

values reported for diesel fuels in previous investigations. 

Table 5.2: Global activation energy values for different fuels [4] 

Definition Ea (KJ/mole) 

ULSD 1.975 

JP-8 (HCN) 5.305 

S-8 2.034 

JP-8 (LCN) 2.106 

 

In 2014, Zheng [3] measured ignition delay for 6 fuels in IQT, and separated 

chemical and physical ignition delay using the method previously used by Ryan [50]. He 

plotted Arrhenius plots using total ignition delay, physical delay and chemical delay. The 

global activation energy was calculated as slope of the lines from these plots. He 

proposed total ignition delay time as a sum of physical delay and chemical delay. 

 ��stsHu = Tv�w ∙ �
�xyz�{�F|E} xyz + TV�~L� ��y|F�{�F|E} �y|F  (2.28) 

He observed that apparent activation energy calculated using chemical delay 

(Echem) has an inverse relationship to DCN, whereas the other two delays do not show a 
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specific trend. Based on this observation he proposed a correlation between apparent 

activation and DCN. 

 GH = 1860
�D: + 30 (2.29) 

From the literature review it is evident that several definitions for the delay period 

were used and the measurements were made in a variety of test equipment and 

environments. These ignition delays were correlated to the compressed air properties, 

engine operating conditions and fuel properties. In constant volume vessels the 

compressed air pressure and temperatures are constant before the start of combustion, 

and exhibit small variations during the ignition delay period. Arrhenius plots were 

developed from which activation energy values for fuels were calculated. Because of 

these differences, different values for the activation energy for the same fuel appear in 

the literature. 

The goal of this investigation is to examine the conditions in the different 

equipment used to measure the ignition delay period and its definitions. The focus will 

be on the quantification of auto-ignition characteristics of fuels in the heterogeneous 

environment. Therefore, from engineering point of view it is necessary to understand 

how different ID definitions and engine conditions affects the calculation of the activation 

energy for a fuel. This is in the scope of this dissertation. 
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CHAPTER 3 

EXPERIMENTAL SETUP 

3.1 Introduction 

The test cell (Fig. 3.1) comprises of a single cylinder engine coupled to a DC 

dynamometer, which controls the load and speed of the engine. The engine is fuelled 

from an independent common rail fuel injection system, capable of split injections, 

controlled by an open ECU. A separate cooling system comprising of cooling tower and 

radiator is used to deliver water to the cooling jacket surrounding the engine, to maintain 

constant engine wall and head temperatures. Engine oil is circulated to the engine, cam 

carrier and crank case using an isolated oil system. The engine is supplied with air from 

an independent compressed air system, thus controlling the intake air pressure. An air 

heater situated before the intake plenums helps control the intake air temperature. The 

entire intake and exhaust line is covered with insulation to reduce heat losses affecting 

engine performance and exhaust emission calculations respectively. A detailed 

description for the test cell is given in previous work [89, 90]. 
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Figure 3.1: HSDI engine test cell 
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3.2 Test Cell Details 

3.2.1 Engine Specifications 

The test engine is a four stroke, four valve, small bore, single cylinder, high 

speed direct injection (HSDI) engine equipped with an intake swirl port, double 

overhead camshaft and a common rail injection system. It has a Mexican hat type 

combustion bowl chamber (Fig. 3.2) and is mounted with a centrally located 6 hole, 

mini-sac type nozzle. The engine specifications are listed in the Table 3.1. 

Table 3.1 HSDI Engine Specifications 

Displaced Volume 421.932 cc 

Stroke 85 mm 

Bore 79.5 mm 

Connecting Rod 179 mm 

Bowl Diameter 36.25 mm 

Geometric Compression ratio 20:1 

Number of Valves 4 

Inlet Valve Open 353° 

Intake valve Close -140° 

Exhaust Valve Open 155° 

Exhaust Valve Close -352° 

Nozzle flow number 320 

Nozzle hole diameter 0.131 mm 

Nozzle hole length 0.6 mm 

Nozzle Included Angle 145° 
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Figure 3.2: Combustion bowl and piston design [89] 

3.2.2 Fuel Injection System 

The common rail injection system used in the current test cell (Fig. 3.2) is 

capable of max injection pressure of 1350 bar. The fuel is stored in a tank under 

compressed nitrogen at 20 psi. The main purpose of using compressed nitrogen is to 

prevent fuel evaporation; however, it also improves the effectiveness of the low 

pressure pump. The fuel passes through a filter, vapor eliminator, flow meter and level 

controller before it enters the low pressure pump. The low pressure pump feeds into the 

first generation, high pressure, Bosch CP1 pump via a 3-way valve; which in case of 

any extra fuel flow, diverts it back. The high pressure pump maintains the necessary 



36 
 

 

pressure in the common rail, required for injection. The open ECU (not shown in Fig. 

3.2) manufactured by Electro-Mechanical Associates, Inc. controls the pressure 

generated by the pump. The open ECU gives us the flexibility to change the injection 

timing and duration irrespective of the engine load. The current setting also allows us to 

split the injection into two separate injection events, if required. A fuel pressure sensor 

is placed upstream on the injector line to measure pressure drop during injection, 

applied as feedback control for the ECU to control the pump. The return line from 

injector and flow diversion from the 3-way valve passes through a heat exchanger, 

cooled by city water, to maintain the fuel temperature at ambient conditions. The level 

controller, into which the heat exchanger returns fuel, maintains the flow between 

returning fuel and new fuel coming from the fuel tank.  

 

 

 

 

 

 

Figure 3.3: Line diagram of fuel injection system 

3.2.3 Engine Cooling System 

The engine cooling system consists of a distilled water system running through a 

jacket surrounding the engine walls and the cylinder head block (Fig. 3.3). Thus water 
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going into the engine is split into two branches: one going to the engine head jacket and 

other going to the wall jacket. The main goal for this system is to maintain the engine 

wall and head temperatures at a constant value, which is achieved by maintaining the 

water coming out at 180 °F always. A pair of heat exchangers is used in achieving the 

target temperature. A cooling heat exchanger cools the water coming out of the engine; 

however, the difference in the water temperature going in and coming out of the engine 

is just around 10 °F. The cooled water needs to be reheated by steam to around 170 °F. 

This also helps in eliminating fluctuations due to seasonal variation in temperature of 

city water. A centrifugal pump is at the centre of this system circulating the distilled 

water. K-type thermocouples are used at the engine inlets and outlet to measure water 

temperatures. 

 

 

 

 

 

Figure 3.4: Line diagram for engine cooling system 

3.2.4 Air Supply System 

The engine is supplied with compressed air by a two stage air compressor 

capable of max pressure of 200 psi. The compressed air is stored in a high pressure 

tank situated in the basement. The air from the storage tank passes through a liquid 
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separator and air filter to eliminate any water and dust particles from it. The engine 

supply line consists of a secondary storage tank and air heater. The secondary storage 

tank helps in eliminating any fluctuations present in the system by acting as a buffer. 

The air heater helps in changing intake air temperature and provides flexibility with 

performing tests at different conditions.  

 

 

 

 

 

Figure 3.5: Line diagram of the air supply system 

3.2.5 Oil System 

The engine has a separate oil system which runs independent of it. It comprises 

of a oil pump, heat exchanger and a filter. The heat exchanger makes sure the engine 

oil is always at a fixed temperature of 120 °F, so that it does not lose its properties. The 

inlet going to the engine is split into two channels: (1) to the engine head lubricating the 

cams and accessories (2) to a piston jet lubricating the cylinder walls and piston. The 

extra oil is collected in the oil sump at the base of the engine block and re-circulated via 

the pump. 
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Figure 3.6: Line diagram for the oil system 
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CHAPTER 4 

PRELIMINARY RESULTS 

4.1 Introduction 

Previously, researchers have calculated apparent activation energy values with 

large variations due to use of different equipments such as constant volume bombs, 

engines etc. More recently, work published for activation energy based on experiments 

on two same engines under the project Partnership for a New Generation of Vehicles 

(PNGV), one with optical access and the other metallic, have shown large variation. The 

differences in the two investigations include the definition of ID, effective temperature 

used for the ID period, and difference in the charge conditions at SOI and during ID 

period. 
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Figure 4.1: Correlation of ignition delay with average ambient pressure, temperature 

and O2 concentration [8] 

Kook et al [8] conducted tests on a single cylinder optical engine using emission 

certification Diesel fuel (CN 47.1) at variable SOI conditions, keeping intake pressure 

and temperature constant. The tests were repeated at different oxygen concentrations 

by changing the EGR percentage. The Ea/R value for all the tests points combined 

together was found to be 3242 K (Fig. 4.1) which gives an activation energy value of 

26957 J/mol. 
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Figure 4.2: Arrhenius plot for chemical ignition delay measured in IQT versus the 

charge temperature before SOI for different fuels [3] 

The activation energy values obtained by Kook et al are closer to the ones 

obtained by Zheng et al [3] for ULSD (Fig. 4.2). The values obtained by Zheng et al are 

based on data obtained from the constant volume IQT. However, the ID value used in 

calculating activation energy is the chemical delay time obtained by separating physical 

and chemical processes. Compared to engines, the constant volume chambers have 

longer physical delay time which affects the activation energy values a lot, hence it 

needs to be separated from chemical delay. 
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The tests on the metallic engine were done by Jayakumar et al [91], at a constant 

SOI and intake pressure while increasing the intake temperature. The tests were 

conducted at two load settings of 3 bar and 5 bar IMEP. The Ea/R value obtained for 

ULSD was very small compared to the above two investigations, about 237.6 K i.e. 

1975.40 J/mol. In fact the activation energy values for all the fuels tested are very small 

and around 1/10th of the values obtained by Kook and Zheng (Fig. 4.3).  

 

Figure 4.3: Arrhenius plot for different fuels [91] 

Although Jayakumar et al covered a larger temperature range and their test 

points were at lower temperatures, it is interesting to observe they got apparent 

activation energy lower than Kook et al. It has been observed by researchers that 

global/apparent activation energy for fuels and pure hydrocarbons in heterogeneous 
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combustion shows a non-linear trend [85], in which global activation energy decreases 

with increase in temperature (Fig. 4.4). Based on this finding, the values obtained by 

Kook et al are expected to be lower than those reported by Jayakumar et al; however, 

this is not the case.  

 

Figure 4.5: Ignition delay data versus the inverse of temperature for different fuels 

[85]  

One of the objectives of this investigation is to find out the cause(s) of the lack of 

agreement in the activation energy values reported by Kook et al [8] and Jayakumer 

[91], while both were obtained in tests conducted on similar single-cylinder engines.  
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4.1 Preliminary Investigations 

4.1.1 Tests on the metallic engine under the conditions of the optical engine 

In order to compare between the results obtained on the two engines, tests were 

conducted on the metallic engine, under the same conditions of the optical engine. The 

test points chosen were the ones performed at 0% EGR i.e. 21% O2 concentration. All 

the other parameters like intake temperature, intake pressure, injection pressure, swirl 

ratio, coolant temperature and load were kept the same. The SOI was varied from -7.6 

to 3.3 CAD. The fuel used in the optical engine is ULSD with CN = 47.1. Then the fuel 

used in the metallic engine is JP8 of CN = 49. In addition, the same ID definition was 

used as the time period between SOI and the 10% of the mass burn fraction. Also, the 

effective temperature during ID period was considered to be the average of the 

temperatures at the SOI and SOC points. Furthermore, the y-axis of the Arrhenius plot 

was kept as the natural log of the multiple of ID value, average pressure and oxygen 

concentration. The results are plotted in Fig. 4.6.  
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Figure 4.6: Arrhenius plot based on the approach of Kook et al 

The Ea/R calculated from (Fig. 4.6), is 2842 K and the activation energy is 23630 

J/mol. By repeating the test strategy and data analysis technique of Kook et al, the 

apparent activation energy value for JP8 is now higher than Jayakumar and is 

comparable to the values obtained by Zheng [92] in the IQT. Thus we can say that an 

activation energy value close to those obtained by Kook et al can be obtained from tests 

on other engines and with other fuels of close cetane numbers.  

4.1.2 Tests on the metallic engine at variable intake temperatures and constant 

SOI  

The data reported by Jayakumar et al were for tests conducted at variable intake 

temperature at constant SOI and intake pressure. However, the increase in temperature 
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at a fixed pressure reduces the density of air and the total mass of the air in the 

cylinder. If we assume that the same amount of fuel is needed to keep IMEP constant, 

the charge would have an overall higher equivalence ratio. Previous investigations 

showed the dependence of the ID on both the temperature and equivalence ratio [79, 

80 and 82]. In the current investigation tests were conducted at different intake 

temperatures, while keeping a constant air-fuel ratio.  

 

Figure 4.7: Arrhenius plot for ULSD and Sasol IPK based on tests done at constant 

SOI 

Tests were done using ULSD and Sasol IPK in the metallic PNGV engine at fixed 

SOI of -3 CAD. The intake temperature and pressure was increased keeping the same 
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charge density at the given SOI. All the other parameters like injection pressure, swirl 

ratio, load and coolant temperature was kept same as previous tests. 

In data analysis IDCA5 was used as the definition for ID and integrated mean of 

temperature during ID was used as the effective temperature. The Arrhenius plot using 

natural log of ID value vs. 1000/Tm was plotted and apparent activation energy was 

calculated. The Ea/R value for ULSD and Sasol IPK were 1095 K and 1503 K, which are 

higher than those previously reported by Jayakumar but still lower compared to Kook 

and Zheng.  

So, it is evident that the activation energy values obtained by Kook and 

Jayakumar are affected by the test conditions. Also, there have been differences in 

ignition delay definitions, which show there is a need to study the sensitivity of global 

activation energy values to ID definitions. In engines, the temperature during the ignition 

delay period fluctuates a lot due to physical and chemical processes, and different 

methods are used to represent an effective temperature for the ID period. No previous 

record has been found of a research showing the sensitivity of activation energy to 

effective temperature method. 
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CHAPTER 5 

IGNITION DELAY DEFINITIONS 

5.1 Introduction 

 The events that occur immediately after injection and lead to auto-ignition 

include: spray breakup, droplet formation, fuel evaporation, air-fuel mixing, and 

endothermic and exothermic reactions. However, it is quite difficult to separate these 

events from each other as they always occur simultaneously in an engine. Therefore, 

ignition delay is used to collectively represent all these events and their effect on the 

start of combustion. The auto-ignition quality of different fuels has been rated by its 

cetane number (CN) determined in the CFR engine, according to ASTM D613 [93]. 

More recently, the Ignition Quality Tester (IQT), a constant volume vessel, has been 

used to determine the derived cetane number (DCN) to avoid the elaborate, time 

consuming and costly engine tests, according to ASTM D6890 [94]. The ignition delay 

period in these two standard tests and many investigations is considered as the time 

period between start of injection (SOI) and start of combustion (SOC). However, the 

ignition delay (ID) values determined from the SOI and SOC can be varied due to 

different instrumentation and definitions.  

Ignition delay values are used in calculating apparent activation energies of 

different fuels in various test environments using the Arrhenius equation, Eq. (5.1).  
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 �� = T� �E��F (5.1) 

where, 

ID = ignition delay time 

A = constant which depends on the fuel and combustion system characteristics 

Ru = universal gas constant 

Ea = apparent activation energy 

Tm = mean temperature  

Any change in the ignition delay value would affect the calculated apparent 

activation energy of the fuel. Hence an effort is made to study the effect of different ID 

definitions on the calculated global activation energy. 

5.2 Literature Review 

Most previous investigators agree that the ignition delay begins at the start of 

injection (SOI), and is usually measured by the needle lift (NL) of the injector [2]. Apart 

from needle lift, some researchers considered ID to start at the energizing of the injector 

[19], while others considered the drop in fuel pressure upstream the injector [95] as the 

SOI. So depending on the type of instrumentation the SOI definition will change but this 

would be a technical difference rather than conceptual. The major differences among 

researchers have been in the definition of the end of ignition delay, in other words the 

start of combustion (SOC).  
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In optical engines and other optically accessible combustion equipment, the 

ignition delay is termed as illumination delay. In such cases the start of combustion is 

determined by directly capturing the first visible radiation using photo sensors. In metal 

engines, on the other hand, it is difficult to determine the start of auto-ignition directly 

and a change in the slope of the pressure trace due to combustion has been considered 

to be the end of ignition delay [2]. Some investigations determine the end of ignition 

delay at certain points on the heat release rate trace. 

As discussed above the basic phenomenon that signifies the start of combustion 

in metallic engines is a sudden rise in pressure trace, this simple event has been used 

to define the end of the ignition delay period. With the advent of computers and rapid 

computing speed it becomes convenient to use a formula to define and locate such a 

point, especially when there is a large amount of data to be processed. However, 

researchers have been unable to formulate the pressure rise delay as there is no 

standard method that defines the point in pressure trace that defines the sudden rise in 

pressure; hence, there are different approaches to locate the start of combustion. 

Zaidi et al [96] defined SOC as the point where the pressure rate curve reaches 

its minimum value after SOI, whereas Assanis et al [97] stated that SOC is at a point 

where the second derivative of pressure curve reaches its first maximum after SOI. 

They chose these points as they coincided with the start of sudden pressure rise. 

However, these points coincide only in those cases where the fuel injection happens 

quite early in the compression stroke, but in cases where the fuel injection is close to 

TDC and combustion happens near TDC or late in the expansion stroke there is an 

offset between the two points. As shown in Fig. 5.1, the start of pressure rise is at 



52 
 

 

around 3.3 CAD while the minimum of pressure rate curve and first maximum of second 

derivative of pressure trace is at around 1.4 CAD and 4.3 CAD respectively. If the 

current definitions of SOC are used, the error in the ID value would be 1.9 CAD and 1 

CAD respectively. 

 

Figure 5.1: SOC location defined as the trough of first derivative of pressure trace 

In another definition, Jayakumar et al [20] defined SOC as the lowest point on the 

pressure trace before it reaches peak combustion pressure (Fig. 5.2). However, this 

definition can only be applied in those cases where the pressure trace shows a 

considerable dip after injection, which happens mostly in such instances where the 

combustion takes place in the expansion stroke. As a result, this method cannot be 

applied to cases where the combustion takes place before top dead centre (TDC). 
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Figure 5.2: SOC location defined as the lowest point on pressure trace before 

pressure rise [20] 

The problem to locate the start of pressure rise using a formula, applicable at all 

conditions, lead researchers to use other phenomenon to define SOC. Many 

researchers defined ignition delay using the rate of heat release (RHR) curve. The most 

common definition being used nowadays is the duration between the SOI and the point 

where the RHR curve crosses zero, and changes from negative to positive [12, 30, 98-

101]. Although this definition is applicable at all SOI conditions, it still has a drawback. 

This method fails to include the two stage combustion shown by fuels with low CN, like 

Sasol IPK, and by regular fuels in advanced combustion modes like HCCI, PCCI, and 

LTC etc. The location of the cool flame and negative temperature coefficient 
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temperature (NTC) regimes, seen in two stage combustion, on the RHR curve is always 

after it has crossed zero; as a result, the ignition delay value in such cases is reduced 

considerably. 

More recently, researchers have come up with new ignition delay definitions to 

include NTC and cool flame regimes. In one such approach, SOC is determined as the 

point where 10% mass burn fraction occurs that lies at 10% (CA10) of the cumulative 

RHR (CuRHR) curve [8, 102-104]. Similarly, in another approach, SOC is located at the 

5% (CA5) of the CuRHR curve [105]. These methods have a wide applicability, and can 

be used to define ignition delay for HCCI, PCCI and LTC combustion modes as well.  

In addition to the ignition delay definitions discussed above we have compared 

another definition in this study. As defined in the ASTM D6890 standard, the ignition 

delay for the IQT is the time delay between the SOI and the pressure recovery point 

[94]. In addition, when the CuRHR curve and the pressure curve are compared they 

show identical resemblance, and the pressure recovery point overlaps with CuRHR 

recovery point (Fig. 5.3). Thus, it can be said that the ignition delay for the IQT is the 

time delay between the SOI and the CuRHR recovery point. While it is hard to always 

get a pressure recovery point in engines, a CuRHR recovery point will be more realistic 

to detect in engines. The main purpose behind using this definition would be that it gives 

a common yardstick to compare data trends in two different environments: constant 

volume chamber and engines. 
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Figure 5.3: ID method used for IQT based on recovery point 

5.3 Comparison between Ignition Delay Definitions 

A comparison between different ignition delay definitions has been made to see 

the closeness of each definition to an approximate pressure rise delay. The ID 

definitions used for comparison are the most widely used definitions and the new 

definition based on recovery point for CuRHR curve. They are as follows: 

1. IDP = delay between SOI and a detectable start of pressure rise. 

2. IDR = delay between SOI and RHR curve crossing zero. 

3. IDCA5 = delay between SOI and 5% of CuRHR curve. 
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4. IDCA10 = delay between SOI and 10% of CuRHR curve. 

5. IDRP = delay between SOI and CuRHR curve crossing zero. 

 

Figure 5.4: A comparison of different ID definitions for a conventional CI case 

In the first case, ULSD, a high CN fuel is injected early in the compression stroke 

so that the pressure rise takes place before TDC (Fig. 5). As a result, ignition delay is 

very short and there is absence of observable pressure dip before the peak of pressure. 

A comparison between the various ignition delay definitions reveals IDR gives the 

smallest value of the ignition delay period, and has the biggest offset to the start of 

pressure rise. On the other hand, IDCA10 has the longest delay period compared to other 

definitions; also, it ends very close to the peak of RHR curve which signifies combustion 
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has already started and is reaching its highest rate. IDCA5 and IDRP gives ignition delay 

value close to the IDP. 

In the next case, Sasol IPK, a high volatility, low ignition quality fuel of 25 CN; 

which exhibits two-stage combustion, is injected at the same SOI as the previous case. 

In this instance, except for IDR, rest of the definitions includes the cool flame in the 

ignition delay period. Again we see that the SOC for IDCA10 occurs closer to the peak of 

RHR curve, compared to the other definitions. Even in this case, IDCA5 and IDRP give 

ignition delay values closer to the IDP. 

 

Figure 5.5: A comparison of ID definitions for Sasol IPK which shows two-stage 

combustion 
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5.3.1 Dependence of Activation Energy on the definition of the end of 

ID period (SOC) 

There is a need to study and compare between the different ignition delay 

definitions, because ID values are used in Arrhenius plots to calculate the global 

activation energy of the auto-ignition reactions of the fuel based on Eq. (5.1). Any 

change in ignition delay value would cause variation in the global activation energy 

value. Therefore, a detailed comparison of Arrhenius plots is done, in which natural 

logarithm of ignition delay values are plotted against the reciprocal of the mean absolute 

temperature during the ignition delay period. In these data sets, the engine intake air 

temperature was varied while the air mass (density) and SOI timing were kept as 

constant.  

The SOI definition is based on the needle lift signal and comparison would be 

done between the SOC definitions discussed in the previous section i.e. IDRP, IDR, IDCA5 

and IDCA10. 

Table 5.1: Activation energy values for ULSD 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

IDCA10 1069 8888 0 

IDCA5 1095 9104 2.43 

IDR 1167 9702 9.17 

IDRP 1247 10368 16.65 

 



59 
 

 

 

Figure 5.6: A comparison of activation energy using different ID definition for ULSD 

fuel 

For ULSD, the Ea/Ru value represented by the slope of the lines, are very close 

for all ignition delay definitions showing a variation of 16.65 % between the highest and 

lowest values, as shown in (Table 5.1). The ignition delay values obtained using IDR as 

SOC definition is smaller compared to values obtained using the other three definitions. 

However, the data does not show any specific trend for the global activation energy 

values.  

On the other hand, for Sasol IPK, the Ea/Ru values are close for three ID 

definitions while quite different for IDR (Table 5.2). In this case the difference between 

the maximum and minimum Ea/Ru value is 144 %. This large difference in the activation 
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energy using IDR definition is due to its lack of including the cool flame. Thus, it is clear 

that IDR is not a suitable definition of ignition delay for fuels that exhibit two-stage 

combustion.  

 

Figure 5.7: A comparison of Arrhenius plots using different ID definitions for Sasol 

IPK 

Table 5.2: Activation energy values for Sasol IPK 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

IDR 616 5121 0 

IDRP 1423 11831 131 

IDCA10 1499 12463 143.34 

IDCA5 1503 12496 144 
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5.3.2 Dependence of Activation Energy on the definition of the start of 

ID period (SOI) 

As stated earlier, the ID value can also change depending on the definition of its 

starting point, usually considered to be the SOI. In order to study this dependence, two 

definitions of SOI were used: first determined from the needle lift (NL) signal and 

second from the fuel pressure (FP) signal. The SOC definition was kept same as 5% of 

CuRHR trace in this analysis.  

The SOI from the fuel pressure trace is taken as the point after injection where it 

shows a considerable drop in the pressure trace, which is around -0.8 CAD, as shown 

in Fig 5.8. However, the fuel pressure transducer is upstream of the injector and there is 

a small delay in the pressure wave reaching the transducer. This delay has been 

measured during instrumentation and calibration, which was found to be 1.7 CAD, thus 

shifting the actual SOI to -2.5 CAD. The needle lift sensor doesn’t have a lag and gives 

instantaneous values. The SOI is determined as the point where the needle lift signal 

crosses value 2. This value is determined by the bounce back obtained during the 

downward movement of the needle signifying the needle has reached its seat. Thus the 

needle’s minimum lift is 2, the lower values being noise in the signal, based on this fact 

the SOI value using needle lift signal is at -3 CAD. Thus the difference between the two 

SOI definitions is a constant value of 0.5 CAD. 
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Figure 5.8: Start of ignition defined by needle lift and fuel pressure drop 

Figure 5.9 shows Arrhenius plots based on the ID values obtained using the 

above mentioned SOI definitions, for both ULSD and Sasol IPK. The results show that 

Ea/Ru values are fairly close with a variation of 7.54 % and 4.89 % for ULSD and Sasol 

IPK, respectively. Since the two SOI definitions have a constant difference of 0.5 CAD 

between them, it would result in a constant deviation of 0.5 CAD in the ID values. 

However, the lines in Arrhenius plot are not parallel as the y-axis is based on 

logarithmic values. It is interesting to note that the variation is smaller for Sasol IPK than 

ULSD. A change of 0.5 CAD will reflect as a bigger percentage for a smaller value than 

a larger value, therefore ULSD will show a bigger change (8.12 %) than Sasol IPK 

which shows much lower (5.18 %). Thus the effect of SOI on global activation energy is 

very less, but it can be significant for those fuels which have small ID periods.  
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Table 5.2: Activation energy values for ULSD and Sasol IPK 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

ULSD NL 1095 9104 0 

ULSD FP 1184 9844 8.12 

Sasol NL 1506 12521 0 

Sasol IPK 1584 13169 5.18 

 

 

Figure 5.9: A comparison of Arrhenius plots for ULSD and Sasol IPK using two 

different SOI definitions 
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5.4 Conclusions 

• IDR is not a suitable ignition delay definition for the cases where the fuel shows 

two-stage combustion. It does not include cool flame and NTC; thus, leads to 

smaller value for global activation energy. 

• IDCA10 does include cool flame and NTC regime in the ignition delay time; 

however, its proximity to peak of ARHR is debatable. 

• IDRP and IDCA5 have given values closest to the IDP definition; and therefore, are 

suitable for activation energy calculations. 

• IDRP can be used as a common yardstick between constant volume instruments 

and diesel engines to study auto-ignition characteristics of fuels. 

• A change in SOI definition brings about smaller change in ID time compared to 

SOC definition. Also, its effect on activation energy is less than SOC definition, 

but for fuels which have shorter ID time the effect of SOI can be more significant. 

• Since, SOI definition does not affects global activation energy significantly, 

needle lift signal is used to define SOI and location of 5% of CuRHR being the 

closest to the pressure rise delay point, IDCA5 is used as the ID definition for the 

rest of the dissertation.  
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CHAPTER 6 

EFFECT OF CYLINDER GAS TEMPERATURE DEFINITIONS 

6.1 Introduction 

The global activation energy of combustion is calculated from the Arrhenius plot 

that has ID on the Y-axis and inverse of temperature on the X-axis; therefore its value is 

directly affected by ID and temperature values used. In shock tubes, rapid compression 

machines, homogeneously charged constant volume reactors and engines there is no 

physical delay part; and if there is any, it’s not as dominant compared to heterogeneous 

combustion. As a result there is no drop in temperature due to evaporation and the 

temperature variation in the chamber is very less. In such cases it is feasible to use 

initial temperature in ID correlations and in turn to calculate global activation energy. 

However, for heterogeneous combustion an effective temperature is used, which would 

provide as the best representation for the data. The effect of different ID definitions on 

global activation energy was discussed in the previous chapter, and in this chapter we 

will discuss effect of different effective temperature methods on it. 

6.2 Literature Review 

Previously researchers have used temperature at start of injection [5], start of 

pressure rise delay [6], peak of compression [7], mean temperature during ignition delay 
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period [20, 106], and average of SOI and SOC temperature [8] in the correlation for 

ignition delay data. 

The most popular methods have been temperature at SOI, mean temperature 

during ignition delay period and temperature average for SOI and SOC. In this chapter 

the main focus has been to do comparison between these three methods and study 

their effect on global activation energy calculations. The ID definitions used for these 

calculations are the two most popular methods used by researchers nowadays, IDCA5 

and IDCA10.  

6.3 Effective Temperature for a High CN fuel (ULSD) 

6.3.1 Early Injection 

A high CN fuel shows a typical combustion behavior of short ID time and single 

stage combustion. In conventional diesel engine combustion, injection takes place early 

in the compression stroke that leads to auto-ignition before or around TDC (Fig. 6.1). In 

such cases, after injection the temperature initially keeps rising due to compression. But 

soon the evaporation and endothermic reactions catch up and the temperature starts 

falling until the exothermic reactions take over finally, leading to combustion. When we 

compare the temperatures at SOI and the SOC points, defined by CA5 and CA10, they 

are very close with a difference of 3 K and 4 K respectively. In this case the TSOI, TAVE 

and TM will be very close with a difference of ≤ 7 K. It is likely that an Arrhenius plot 

using any of them would show almost similar representation. The data set was limited to 

just one point at this setting due to high rates of pressure rise with further increase in 
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intake temperature and pressure, leading to concern for engine safety. As a result, the 

data was not sufficient to develop Arrhenius plots.  

 

Figure 6.1: Temperature and cumulative heat release for an early injection diesel 

combustion 

6.3.2 Near TDC Injection 

The location of peak compression temperature is always a few CAD before the 

TDC, and it starts to fall as the piston advances to TDC due to heat losses. An injection 

event near TDC would lead to further fall in temperatures with onset of evaporation and 

endothermic reactions (Fig. 6.2). Finally, when the exothermic reactions overtake the 

collective effort of the cooling phenomenon the temperature starts rising again, leading 

to combustion. A comparison between temperatures at SOI and the SOC points, CA5 
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and CA10, show that the difference has increased to 20 K and 9 K respectively. This 

would result in values for TSOI, TAVE and TM with a difference of ≤ 16 K, which is still 

small but noticeable on the Arrhenius plot. A detailed discussion on the effect of 

different effective temperature methods on apparent activation energy is discussed in 

next section. 

 

Figure 6.2: Temperature and cumulative heat release for near TDC diesel injection 

6.3.2.1 Effect on Global Activation Energy 

Figures 6.3 (a) and (b) shows Arrhenius plots for the same data set with two 

different ID definitions, IDCA5 and IDCA10 respectively. The test points have the same 

SOI, swirl ratio and injection pressure, but incremental intake temperature (30-110°C) at 

same charge density, speed and load of 3 bar IMEP.   



69 
 

 

 

Figure 6.3: Arrhenius plots using (a-top) IDCA5 definition (b-lower) IDCA10 definition  
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In Fig. 6.3(a) the global activation energy values obtained using the three 

different temperature measurement methods are pretty close (Table 6.1) with a max 

variation of 5.29 % between the highest and lowest value. The temperature values 

obtained for TAVE lie in between those of TM and TSOI, with TM being the lower boundary 

and TSOI being the upper boundary. As TM is the mean of all temperatures after injection 

it will always be lower than the other two temperatures. TAVE values are close to the TM 

values and with the increase in intake temperature are getting closer. In fact, the 

difference between all of them tends to be decreasing with the increase in intake 

temperature. It can be attributed to the reduction in ID time with rising intake 

temperatures which would result in combustion happening closer to TDC. We have 

observed in early injection case that when combustion happens near TDC the 

difference between TSOI, TAVE and TM is less. Also, it is interesting to note that the R2 

value is maximum using TM and least using TAVE as effective temperature, which means 

TM provides the best fit for the data points statistically. 

 Table 6.1: Activation energy values for ULSD at SOI -3 using IDCA5 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1095 9104 0 

TAVE 1115 9270 1.82 

TSOI 1153 9586 5.29 

 

Again in Fig. 6.3(b) the apparent activation energy values obtained are very close 

with a variation of 5.33 % between the maximum and minimum value (Table 6.2). It 

should be noted that TSOI values don’t change with ID definition, and even in this case 
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TM is the lower boundary and TSOI the upper boundary, while TAVE lies in between them. 

However, TAVE values are closer to TSOI in here and at higher intake temperatures they 

completely overlap each other. Considering 5% more mass of fuel is burnt at the 

location of CA10 than CA5 the temperature achieved will be higher as well; hence, 

resulting in higher TAVE values which are more close to TSOI than observed in Fig. 6.3(a). 

Nonetheless, the overall trend is they all are getting closer with further increase in intake 

temperature. Even in this case using TM shows highest R2 value and TAVE the least, 

indicating TAVE doesn’t provide statistical best fit to the data. 

Table 6.2: Activation energy values for ULSD at SOI -3 using IDCA10 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1069 8888 0 

TAVE 1092 9079 2.15 

TSOI 1126 9362 5.33 

6.3.3 Late Injection 

In the expansion stroke the mass average temperatures are already falling due to 

expansion. In fact, for the low intake temperatures the engine combustion was unstable 

with peak combustion pressures lower than the motoring pressure. As a result, the 

intake temperatures had to be ≥ 70°C to sustain a load of 3 bar IMEP. An injection 

event in such a situation would further add to the reduction in temperature. This trend 

will continue until the exothermic reactions arrest the fall in temperature and starts 

producing heat leading to combustion. In this case the difference in temperature 

between SOI and SOC points is huge. The temperatures at CA5 point is 38 K lower and 

at CA10 point is 19 K lower (Fig. 6.4). This would result in values for TSOI, TAVE and TM 
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with a difference of ≤ 33 K which would reflect as a substantial difference in the 

Arrhenius plots. These effects will be discussed in detail in the next section. 

 

Figure 6.4: Temperature and cumulative heat release for a late injection diesel case 

6.3.3.1 Effect on Global Activation Energy 

These tests were also done using the same strategy of fixed SOI, swirl ratio and 

injection pressure with an incremental intake temperature and pressure. This data set 

includes five test points only, in the temperature range 70-110°C, as the combustion 

was unstable for temperatures lower than these. Fig 6.5 (a) and (b) shows Arrhenius 

plot using the definitions of IDCA5 and IDCA10 respectively. It was interesting to observe 

that the apparent activation energy value for these late injection test points is higher 

than near TDC injection cases and will be discussed in detail in the following chapter.  
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Figure 6.5: Arrhenius plots using (a-top) IDCA5 definition (b-lower) IDCA10 definition 
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The apparent activation energy values obtained using IDCA5 definition (Table 6.3) 

show an increased difference of 9.5 % between the highest and lowest values. The TAVE 

values show similar closeness to TM values, and are in between TSOI and TM, as shown 

in Fig. 6.5(a). Also, at higher intake temperatures the three effective temperatures are 

converging however the effect is less considering combustion is still taking place far 

from the TDC. The R2 value, which is indicator of best fit in the data, has decreased in 

comparison to near TDC injection case; but the trend remains unaltered with lower 

value for TAVE and higher for TM method of effective temperature. 

Table 6.3: Activation energy values for ULSD at SOI 3 using IDCA5 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1637 13610 0 

TAVE 1780 14799 8.73 

TSOI 1809 15040 9.5 

 

Table 6.4: Activation energy values for ULSD at SOI 3 using IDCA10 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1611 13394 0 

TAVE 1801 14974 11.79 

TSOI 1771 14724 9.93 

 

Similar, to IDCA5 the difference between highest and lowest global activation 

energy values has increased to 10.79 % with IDCA10 definition (Table 6.6), in the late 
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injection case. The increase in variation is larger for IDCA10 than it was for IDCA5 method. 

The closeness of TAVE values to TSOI is also evident here, shown in Fig. 6.5(b), with TM 

being the lower boundary. Again the three effective temperatures do seem to be 

converging; however, the effect is minimized due to combustion happening far away 

from the TDC. Even with different ID definition the trend for R2 remains same and TAVE 

remains as the least fit method for determining effective temperature for ULSD. 

6.4 Effective Temperature for a Low CN fuel (Sasol IPK) 

6.4.1 Early Injection 

Sasol IPK, a low CN fuel, shows a typical combustion behavior of long ID time 

and two stage combustion. Although injection takes place at same SOI (-7 CAD) in the 

compression stroke for this fuel, but unlike conventional diesel engine combustion the 

auto-ignition happens after TDC (Fig. 6.6). In this case, after injection the temperature 

initially keeps rising due to compression. But soon the evaporation and endothermic 

reactions catch up and the temperature starts falling until the exothermic reactions take 

over, leading to a cool flame. However, the temperature falls once more resulting in a 

negative temperature coefficient (NTC) regime, before finally rising to high temperature 

combustion. When we compare the temperatures at SOI and the SOC points, defined 

by CA5 and CA10, they have a big difference of 13 K and 29 K respectively. The 

interesting thing to note is that the temperatures at SOC point are higher compared to 

SOI. Despite the big difference in temperature between SOI and SOC points, the TSOI, 

TAVE and TM values are close with a difference of ≤ 12 K. However, it would still have 

some effect on apparent activation energy values. 
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Figure 6.6: Temperature and cumulative heat release for an early injection case of 

Sasol IPK 

6.4.1.1 Effect on Global Activation Energy 

Figures 6.7 (a) and (b) shows Arrhenius plots for the same data set with the two 

ID definitions, IDCA5 and IDCA10 respectively. The test conditions are similar to the ones 

used for ULSD; however, due to the high peak pressures and pressure rise rates 

attained at higher intake temperatures the tests were not conducted beyond 70°C intake 

temperature. The tests were performed at a constant speed and a light load of 3 bar 

IMEP. 
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Figure 6.7: Arrhenius plots using (a-top) IDCA5 definition (b-lower) IDCA10 definition  
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In Fig. 6.7(a) the global activation energy values obtained using the three 

different temperature measurement methods are pretty close (Table 6.5) with a max 

variation of 7.39 % between the highest and lowest value. In this case, the temperature 

values obtained for TAVE don’t lie in between those of TM and TSOI. Although TM still 

remains the lower boundary, TAVE is the new upper boundary. As the SOC points, CA5 

and CA10, had temperatures higher than the SOI temperature TAVE would be higher 

than TSOI. Also, TSOI and TM values are almost parallel. The difference between all of 

them tends to be decreasing with the increase in intake temperature as before. It can be 

again attributed to the reduction in ID time resulting in combustion happening closer to 

TDC and when combustion happens near TDC the difference between TSOI, TAVE and 

TM is less. The R2 value is still maximum using TM and least using TAVE as effective 

temperature, which means TM provides the best fit for the data points statistically. 

Table 6.5: Activation energy values for Sasol IPK at SOI -7 using IDCA5 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1271 10567 0 

TAVE 1365 11349 7.39 

TSOI 1302 10825 2.43 

 

In Fig. 6.7(b) the apparent activation energy values obtained are not that close 

with a variation of 10.81 % between the maximum and minimum value (Table 6.6), and 

it is also higher than observed when using IDCA5 definition. Even in this case TM is the 

lower boundary and TAVE the upper boundary, while TSOI lies in between them. 

Although, TAVE values are moving away from TSOI it is in consistence with ULSD trends, 
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when for IDCA10 the TAVE would move closer towards TSOI i.e. shifting towards higher 

temperatures. The 5% more mass of fuel burnt at the location of CA10 results in higher 

temperature at CA10 than CA5, shifting the TAVE values to the left. Nonetheless, the 

overall trend is they all are getting closer with further increase in intake temperature. 

Even in this case using TM shows highest R2 value and TAVE the least, indicating TAVE 

doesn’t provide statistical best fit to the data. 

Table 6.6: Activation energy values for Sasol IPK at SOI -7 using IDCA10 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1248 10376 0 

TAVE 1383 11498 10.81 

TSOI 1275 10600 2.16 

 

6.4.2 Near TDC Injection 

The lower CN for Sasol IPK results in longer ID time; as a result, the near TDC 

injection for Sasol IPK produces results similar to diesel late injection case. Similar to 

ULSD, for the low intake temperatures the engine combustion was unstable with peak 

combustion pressures lower than the motoring pressure. In order to fix this, the intake 

temperatures had to be ≥ 80°C to sustain a load of 3 bar IMEP. The mass average 

temperatures are already falling due to expansion, an injection event in such a situation 

would further add to the reduction in temperature. The exothermic reactions would 

arrest the fall in temperature until it leads to cool flame and NTC regime, after which 

once more exothermic reactions pick up to lead to combustion. In this case the 

temperature at SOI is 28 K higher than CA5 point and only 3 K higher than CA10 point 
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(Fig. 6.4). This would result in values for TSOI, TAVE and TM with a difference of ≤ 33 K 

which would have some effect on the Arrhenius plots. These effects will be discussed in 

detail in the next section. 

 

Figure 6.8: Temperature and cumulative heat release for near TDC injection case of 

Sasol IPK 

6.4.2.1 Effect on Global Activation Energy 

The test strategy remains same: fixed SOI, swirl ratio and injection pressure with 

an incremental intake temperature and pressure. This data set includes four test points 

only, in the temperature range 80-110°C, as combustion was unstable for the range 30-

70°C. Fig 6.9 (a) and (b) shows Arrhenius plot using the definitions of IDCA5 and IDCA10, 

respectively. Again it was observed that the apparent activation energy value for these 
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late injection test points is higher than near TDC injection cases, which will be 

discussed in detail in following chapters. 

The apparent activation energy values obtained using IDCA5 definition (Table 6.7) 

show an increased difference of 8.97 % between the highest and lowest values. In this 

case the TAVE values are neither close to TSOI nor to TM and are equidistant from both, 

as shown in Fig. 6.9(a). Also, at higher intake temperatures the three effective 

temperatures are converging however the effect is unnoticeable considering combustion 

is still taking place far from the TDC. The R2 value, which is indicator of best fit in the 

data, has decreased in comparison to near TDC injection case; but the trend remains 

unaltered with lower value for TAVE and higher for TM method of effective temperature. 

Table 6.7: Activation energy values for Sasol IPK at SOI -1 using IDCA5 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1918 15946 0 

TAVE 2066 17177 7.71 

TSOI 2090 17376 8.97 
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Figure 6.9: Arrhenius plots using (a-top) IDCA5 definition (b-lower) IDCA10 definition  
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Table 6.8: Activation energy values for Sasol IPK at SOI -1 using IDCA10 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

TM 1998 16611 0 

TAVE 2321 19297 16.17 

TSOI 2165 18000 8.36 

 

Similar, to IDCA5 the difference between highest and lowest global activation 

energy values has increased to 16.17 % with IDCA10 definition (Table 6.8), in the late 

injection case. The increase in variation is larger for IDCA10 than it was for IDCA5 method. 

Since, TSOI does not change with ID definition it is evident that TAVE has shifted towards 

TSOI, shown in Fig. 6.9(b), with TM values still maintaining a fair distance. Again the three 

effective temperatures do seem to be converging; however, the effect is minimized due 

to combustion happening far away from the TDC. The overall trend has been that R2 

values reduce for combustion happening late in the expansion stroke, which is the case 

here also. Also we observe TAVE remains as the least fit method for determining 

effective temperature for Sasol IPK as well. 

6.5 Conclusions 

ULSD a high CN, petroleum based fuel and Sasol IPK a low CN, coal to liquid 

(CTL), high volatility, jet fuel are tested in a single cylinder engine. A variable intake 

temperature test was conducted for the fuels at two combustion phasing: (1) near TDC 

and (2) late in expansion stroke. Two popular ID definitions were used in this analysis, 

IDCA5 and IDCA10. The effective temperature methods discussed are TSOI – temperature 
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at SOI, TAVE – average of temperature at SOI and SOC, and TM – integrated mean of all 

temperatures between SOI and SOC. The data was analyzed for apparent activation 

energy trends and the effective temperature during ID time. 

• In conventional diesel combustion i.e. combustion phasing before TDC, there 

is not much difference between TSOI, TAVE and TM.  

• As the combustion shifts into the expansion stroke the difference between the 

three effective temperatures increases for both ULSD and Sasol IPK. 

• The variation in apparent activation energy calculated based on different 

effective temperatures, for both the fuels, is less near TDC and increases as 

combustion goes into expansion stroke. Also, it is less while using IDCA5 than 

IDCA10 as ID definition. 

• The TAVE values are affected a lot by ID definition and shows huge shift. On 

the other hand, TM values show miniscule changes with ID definition.  

• TSOI values don’t change with ID definition, until and unless if the SOI definition 

is changed. 

• The R2 value, an indicator of best fit data points, is max for data sets using TM 

as effective temperature and least for TAVE, thus suggesting TM is the best 

approach for effective temperature. 
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CHAPTER 7 

EFFECT OF SOI AND INTAKE TEMPERATURE 

7.1 Introduction 

In a constant volume chamber the charge temperature can be changed only by 

varying the intake air temperature. On the other hand, in an engine besides the intake 

air temperature, piston movement can also affect the in-cylinder charge temperature. In 

order to study the sensitivity of ID to temperature in engines, researchers have the 

option either to keep the SOI constant and change the intake air temperature [91],or 

keep the intake temperature constant and change the fuel injection timing [8],. As a 

result, the mean temperature during the ignition delay period changes with variations in 

SOI and/or the engine intake air temperature. Therefore, a series of experiments were 

conducted to determine the sensitivity of activation energy to these changes. In 

addition, 3-D CFD simulation and 0-D simulation has also been performed to provide 

better understanding of the processes taking place during auto-ignition period. 

7.2 Simulation Models 

7.2.1 Converge 3D-CFD Simulation 

CONVERGE package consisting of a 3D CFD code coupled with SAGE, a 

chemical kinetic solver, is used to simulate the behavior of spray injection and auto-

ignition in the engine. The model parameters of fuel injection, droplet formation, 
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atomization, combustion model etc. are defined using the CONVERGE Studio. The 

mechanism used by SAGE to perform calculations is the reduced n-heptane 

mechanism developed by Chalmers, which consists of 42 species and 168 reactions.  

Unlike other CFD software which rely on the user to create mesh or grid, 

CONVERGE generates a real time grid while running the CFD simulation. This 

innovative method recreates the mesh at each step for simulations with moving 

boundaries or changing embedding according to base cell sizes defined in the 

CONVERGE Studio. The adjustments taking place in the grid is a combination of the 

following grid refinement methods.  

• Fixed Embedding: This feature of the code allows user to specify where and 

when refinement needs to be done using fixed embedding. The regions where 

refinement needs to be done can exist at certain specified locations in the grid, or 

along specified boundaries. This helps in providing special emphasis to areas 

which require additional resolution, such as injection event.  

• Adaptive Mesh Refinement (AMR): This feature allows adjustment in the mesh 

size while the simulation is running to better accommodate for flow variables of 

interest, as specified by the user. CONVERGE has the ability to automatically 

modify the grid based on user choices to improve the accuracy.  

• Grid Scaling: The software also gives the user flexibility to change the base grid 

size during simulation. This feature is helpful specially in reducing run-times of 

non-critical simulation by increasing the mesh size.  
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The base grid size for the simulation is 2 mm with further mesh refinements at critical 

areas using fixed embedding and AMR. For example, fixed embedding keeps the mesh 

size to 0.5 mm at the injector tip area; and AMR reduces the mesh size to 0.5 mm at 

places where reactions occur, and 1 mm at the boundary.  

The software also takes into consideration droplet trajectories, break-up, collision and 

coalescence, evaporation, and turbulent dispersion; and wall interaction and heat 

transfer. The Converge code uses the following models for simulating the above droplet 

and spray behaviors.  

1. Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) [107] breakup model to predict spray 

behavior. The KH model simulates the primary aerodynamic instabilities breakup 

and the RT model calculates the secondary breakup due to deceleration 

instabilities.  

2. Chiang [107] model to simulate droplet evaporation.  

3. No Time Counter (NTC) collision model along with the wall film [107] model are 

used for droplet-wall interaction, including droplets adhesion, spread, rebound, 

and splash.  

4. O’Rourke & Amsden [107] model to simulate wall heat transfer.  

5. RNG k-ε [107] model, a kind of Reynolds Averaged Navier-Storkes (RANS) 

model, is used for turbulence calculations.  

7.2.2 DARS-Basic 0-D Simulation 

In diesel engines it is difficult to separate the effects of equivalence ratio, 

temperature and pressure on ignition delay. A 0-D constant volume model was used to 
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simulate homogeneous charge conditions in order to understand the effect of 

temperature, pressure and equivalence ratio on ignition delay time, separately. The 0-D 

analysis was done with DARS-basic using the detailed PRF (Primary Reference Fuel) 

mechanism from Lawrence Livermore National Lab (LLNL). This mechanism consists of 

545 number of species and 2635 reactions, and is based on previous mechanism 

developed by Curran et al [108]. This mechanism has been validated numerically and 

experimentally in the initial pressure range of 3 to 50 atm, the temperature range of 650 

to 1200 K, and equivalence ratios from 0.3 to 1.0.  

7.3 Results 

The experiments were conducted on ULSD, Sasol IPK, JP-8 and a Surrogate 

(S2) for JP8. Surrogate S2 was developed at Center for Automotive Research at Wayne 

State University to emulate the physical and chemical properties of JP8 fuel [92, 109].  It 

consists of the following two type of molecular class components: n-alkanes (60 % 

dodecane) and aromatics (40% 1,2,4-trimethyl benzene). All of these fuels have 

different physical and chemical properties and are listed in Appendix 1.  

The mean temperature during the ignition delay period changes with variations in 

SOI and/or the engine intake air temperature. Therefore, a series of experiments were 

conducted to determine the sensitivity of activation energy to these changes. In these 

experiments, the engine intake temperature was varied from 30˚C to 110˚C in steps of 

10˚C at a given SOI, while maintaining the same charge density. This is achieved by 

increasing the intake air pressure at the higher intake temperatures. This whole process 
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is then repeated at different SOI timings. It should be noted that air density, pressure 

and temperature are different at different injection timings (Fig. 7.1). The change in 

density due to piston movement is symmetrical around the TDC; however, pressure and 

temperature reach their maximum a few degrees before the TDC.  

 

Figure 7.1: Temperature, pressure and density changes in an engine during motoring 

Figure 7.2 and 7.3 shows the Arrhenius plots for all the tested fuels in such a way 

that each color represents a fixed SOI case. At each SOI the intake temperature was 

increased from 30˚C to 110˚C in steps of 10˚C keeping constant density. For Sasol IPK 

at SOI -1 CAD and ULSD at SOI 3 CAD the intake temperature range was from 80˚C to 

110˚C and 70˚C to 110˚C respectively, as the engine misfired at the lower intake 

temperatures. It can be observed for all fuels the data points lie in the same 

temperature range of 750-1000 K. Also, as the SOI retards and combustion shifts more 
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into the expansion stroke the slopes of the Arrhenius plots are increasing. The global 

activation energy values derived in Fig. 7.2 show very small change at SOI's before the 

TDC, especially before -1 CAD. During the testing for JP8 and Surrogate S2 due to an 

error in the needle lift sensor the SOI was retarded by 0.7 CAD. As a result, the real SOI 

during testing were -2.3, -0.3 and 1.7 instead of the target -3, -1 and 1 respectively. This 

small shift however resulted in a large change in the apparent activation energy for JP8 

and Surrogate S2 in comparison to the values obtained for ULSD. For ULSD, the global 

activation energy values obtained at SOI -3 and -1 are very close. However, for JP8 and 

Surrogate S2 the global activation values at SOI -2.3 and -0.3 have large gap (Fig. 7.3). 

The activation energy increased more by changing SOI from -2.3 to -0.3 CAD in 

comparison to changing SOI from -3 to -1 CAD. So, a small shift in SOI from -1 to -0.3 

CAD resulted in a huge change in apparent activation energy value. 

It can be noted from Fig. 7.1 that the in-cylinder charge temperature peaks at 

around -5.7 CAD and starts dropping as the piston approaches TDC. As activation 

energy is sensitive to changes in temperature, it will fluctuate more with changes in 

temperature. When the temperature starts dropping in an engine the global activation 

energy value starts increasing and this effect might become more substantial after -1 

CAD. It is not possible to eliminate the temperature variations in an engine, but if they 

can be limited to minimum it will be beneficial for global activation energy calculation in 

engines. For activation energy calculations we can therefore set -1 CAD as the limit to 

which SOI can be retarded before drastically affecting global activation energy 

calculations. 
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Figure 7.2: Arrhenius plot at fixed SOI using IDCA5 for a) ULSD b) Sasol IPK 
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Figure 7.3: Arrhenius plot at fixed SOI using IDCA5 for a) JP8 b) Surrogate S2 
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In Fig. 7.4 and 7.5 each color represents a fixed intake temperature and pressure 

condition at different SOIs. Therefore, we will see the effect of SOI on global activation 

at fixed intake conditions. In these graphs (Fig. 7.4 and 7.5) the slopes are higher than 

those in Fig. 7.2 and 7.3, signifying a small change in temperature resulting in a large 

change in ignition delay. In fact the slopes are higher compared to variable intake 

temperature case at all intake conditions and for all fuels. The values obtained are 

almost three times higher than the ones obtained in the previous method. Thus it can be 

said that the global activation energy is more sensitive to the change in SOI.  

This huge disparity in the two methods used to quantify the auto-ignition behavior 

of fuels in engine can be explained by studying the effect of parameters like equivalence 

ratio, pressure and density on auto-ignition, especially in the intermediate temperature 

regime (850-1000 K). The following section will give a detailed explanation of these 

behaviors. 
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Figure 7.4: Arrhenius plot at fixed intake conditions using IDCA5 for a) ULSD b) Sasol 

IPK 
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Figure 7.5: Arrhenius plot at fixed intake conditions using IDCA5 for a) JP8 b) 

Surrogate S2 
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7.4 Discussions 

In an internal combustion engine due to the piston movement the volume of the 

chamber is always changing. As a result the charge temperature and pressure, 

effectively the charge density, can continuously vary during the ignition delay period.  

Such changes become more severe if auto-ignition occurs far from TDC where the 

auto-ignition process is affected by the change in density, in addition to the change in 

temperature.  This is the reason behind the higher slopes obtained in Fig. 7.4 and 7.5, 

where changes in SOI caused changes in temperature and density.  

The mean pressure (Pmean) and the mean temperature (Tmean) during the ID 

period for ULSD, are shown in Fig. 7.6. Both variable intake temperature and variable 

SOI data was used in these plots. Figure 7.6a indicates that as combustion shifts into 

the expansion stroke the Pmean increases faster with increasing Tmean compared to early 

SOI timings. The slopes of these lines would represent changes in the mean density of 

the charge in the combustion chamber during the ID period. So it would indicate the 

change in mean charge density is higher in the expansion stroke.  
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Figure 7.6: Pmean vs Tmean during ID period a) variable intake temperature test b) 

variable SOI test 
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Variable intake temperature as a control parameter compared to variable SOI 

has smaller changes in Pmean with respect to Tmean (Fig 7.6b). Therefore, the variable 

intake temperature test results in smaller changes in the mean charge density during ID 

period compared to the variable SOI test. Based on these comparisons the mean 

charge density will have a higher impact on the slopes of the Arrhenius plots in the 

expansion stroke and variable SOI tests. Therefore we recommend the variable intake 

temperature test instead of the variable SOI test. Also, it would be beneficial to obtain ID 

values near TDC where the variation in temperature and density is minimum. 

In order to further understand the combustion behavior of fuels in the engine, the 

effect of various combustion parameters on ignition delay of a homogenous mixture 

needs to be understood. Minagawa et al [110] suggested that the ID of fuels in the NTC 

regime i.e. 850-1000 K is greatly affected by equivalence ratio and pressure. In this 

range any increase in temperature would result in an increase in ID, unlike the trends in 

the low and high temperature regimes. However, an increase in equivalence ratio can 

negate this effect of temperature and result in reduction of ID. Thus equivalence ratio 

becomes the dominant factor for ignition in the intermediate temperature range.  

Results for 0-D simulation for n-heptane using DARS-basic are shown in Fig. 7.7 

to elaborate the above point. In the temperature range 850-1000 K (1-1.2 on the x-axis) 

the ID value increase with increase in temperature, thus showing a NTC behavior. In 

Fig. 7.7a the charge pressure is kept constant at 50 bar and the equivalence ratio is 

varied. With increase in equivalence ratio the ID value decreases even in the NTC 

regime. In addition, further reduction in ID is possible by increasing the pressure at a 

given equivalence ratio, as shown in Fig. 7.7b. In heterogeneous combustion 
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environments there are zones of different equivalence ratio, and in the intermediate 

temperature (850-1000 K) range each zone will have an effect on auto-ignition. In 

addition, in engines due to the motion of the piston there are changes in the cylinder 

pressure resulting in changes in density, which can again have significant effect on 

ignition delay in the intermediate temperature range. Therefore, in this temperature 

range the global activation energy in engines will be sensitive to combined changes in 

equivalence ratio and density. 
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Figure 7.7: Arrhenius plots for n-heptane for a homogeneous constant volume 

chamber at a) fixed pressure of 50 bar b) fixed equivalence ratio of 1.5 

Effect of temperature in 
a heterogeneous charge 

Effect of temperature in 
a homogeneous charge 
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In heterogeneous flames, in order to compensate for the lower sensitivity of 

ignition to temperature in NTC regime, ignition shifts towards zones of higher 

equivalence ratio [110]. The findings from this study are based on simulation of transient 

free fuel sprays. It needs to be confirmed whether the combustion behavior of fuel jets 

in an engine follows a similar trend or not. CFD simulation of the spray behavior inside 

the PNGV engine was used to corroborate this finding at two injection pressures of 800 

bar and 400 bar, and is discussed in the next sections. 

7.4.1 CFD Simulation for 800 bar injection pressure 

In CFD simulation instead of simulating the entire combustion bowl, it is divided 

into equal sectors based on the number of nozzle holes (in this case 6) to reduce 

simulation time. There was an anti-clockwise swirl motion in the combustion chamber 

when observed from the top view. The simulation was done using n-heptane fuel and 

was based on intake parameters from the experimental data set for ULSD. The test 

points under consideration are at intake temperatures of 30 °C, 70 °C and 110 °C. An 

additional data point was added by extrapolation at an intake temperature of 10 °C to 

widen the temperature range. The results are shown in Fig. 7.8 - Fig. 7.13.  

Figure 7.8 - 7.9 shows the isometric view of a sector of the combustion bowl with 

two planes passing through the first site of auto-ignition. One plane is vertical and is 

parallel to the z-axis and the other plane is an arbitrary plane chosen to cut through the 

spray (not shown in the diagram) axis along with the first site of auto-ignition. It is to be 

noted that the vertical plane does not pass through the center of the spray axis and is 

located to the left or right of it depending on where the first site of auto-ignition is 

located. Also the temperature distribution on the two planes is similar, but due to a 
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difference in the viewing angle they have different shades of the same color. The white 

dot represents the first site of auto-ignition through which the two planes pass. The 

temperature and equivalence ratio at this location at both SOI and SOC are also given. 

The temperature at SOI is indicative of the entire combustion bowl chamber 

temperature, with a ±20 K variation in the extremities. With the increase in intake 

temperature, the temperature of the first site of combustion increases, but the 

equivalence ratio remains zero as the fuel spray hasn’t arrived at this location yet. As 

the spray progresses downstream of the nozzle, chemical reactions start raising its 

temperature; and by the time the fuel spray arrives at this location the temperatures are 

high enough to start combustion.   

The SOC location also coincides with the sudden rise in pressure in the 

combustion chamber. A temperature of 1500 K was chosen as an indicator of start of 

auto-ignition. However, at SOC the rate of change of temperature was so high that 

sometimes with a small change in time step the temperature would increase by 400-600 

K, especially at higher intake temperatures. As a result a temperature window of ±200 K 

around 1500 K was used as an indicator of SOC.   
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Figure 7.9: Temperature distribution in the combustion chamber at two different inlet air temperatures and at two 

planes : top row for 10 °C and bottom row for 30 °C. The left column is at SOI and right column at SOC. 

At start of injection 

In
ta

k
e
 t
e
m

p
 =

 1
0

 °
C

 

At start of combustion 

In
ta

k
e
 t
e
m

p
 =

 3
0

 °
C

 



 
 

 

1
0

4
 

 

  

Figure 7.10: Temperature distribution in the combustion chamber at two different inlet air temperatures and at two 

planes: top row for 70 °C and bottom row for 110 °C. The left column is at SOI and right column at SOC. 
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Figures 7.10 - 7.11 shows the detailed temperature distribution at SOC in the two 

planes discussed above. For 10 °C intake temperature it can be observed that the auto-

ignition site is at the bottom of the combustion bowl, and from the top view it is evident it 

is located towards the left of center. The swirl motion is in the anti-clockwise direction, 

and therefore the fuel spray would move towards the right side. The location of the auto-

ignition site at the left of center would mean that combustion is happening in the fuel 

spray coming from the adjacent sector in left. In other words, the spray from this sector 

would ignite in the adjacent sector towards right. The low intake temperature results in a 

longer ignition delay time and hence by the time auto-ignition starts the spray has 

moved to the bottom of the combustion bowl in the next sector. As a result we see the 

first site of auto-ignition at the bottom of the combustion bowl. 

With the increase in intake temperatures to 30 °C, 70 °C and 110 °C the ignition 

delay decreases progressively. As a result at SOC, due to the shorter time available the 

fuel spray advancement in the combustion chamber reduces. This can be confirmed by 

comparing the top and side views of the combustion chamber temperature and 

equivalence ratio distributions (Fig. 7.10 - 7.13). There is a visible clockwise shift in 

combustion sites in the top view with the increase in intake temperatures. Also the side 

view shows the upward movement of the combustion sites as well. This shift is more 

prominent at the lower intake temperatures compared to higher intake temperatures. 
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 Figure 7.10: Temperature distribution in the combustion chamber at two different inlet air temperatures: top row for 

10 °C and bottom row for 30 °C. The left column shows the side view and right column shows the top view. 
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Figure 7.11: Temperature distribution in the combustion chamber at two different inlet air temperatures: top row for 70 

°C and bottom row for 110 °C. The left column shows the side view and right column shows the top view.
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Figure 7.12 - 7.13 shows the side and top view of the equivalence ratio 

distribution in the combustion bowl chamber at SOC. As the intake temperature 

increases and the ID decreases, combustion shifts to zones of higher equivalence ratio. 

As shown in increase from 1.8 at 10 °C to 2.5 at 70 °C (Fig. 7.12 - 7.13). This results in 

the first site of auto-ignition site moving closer to the inner core of the spray where the 

high equivalence ratio zones exist. However, there is not much change in equivalence 

ratio between 70 °C and 110 °C intake temperature. It is to be noted that the 

temperature at SOI for 70 °C intake air is 959 K and for 110 °C intake air is 1003 K, 

which is at the upper boundary of the intermediate temperature range (850-1000 K). 

Looks like as the temperatures approaches the upper boundary of the intermediate 

temperature range the equivalence ratio at the first site of auto-ignition attains its 

maximum value and remains constant. The increase in equivalence ratio leads to 

smaller ID period in the intermediate temperature range; as a result, the NTC behavior 

observed in homogeneous mixtures is not seen. Around 1000 K an increase in gas 

temperature results in a decrease in ID value; therefore, temperature becomes the 

dominant parameter which affects auto-ignition and as a result no further change in 

equivalence ratio is observed. 
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 Figure 7.12: Equivalence ratio distribution in the combustion chamber at two different inlet air temperatures: top row 

for 10 °C and bottom row for 30 °C. The left column shows the side view and right column shows the top view. 
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Figure 7.13: Equivalence ratio distribution in the combustion chamber at two different inlet air temperatures: top row 

for 70 °C and bottom row for 110 °C. The left column shows the side view and right column shows the top view.
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7.4.2 CFD Simulation for 400 bar injection pressure 

The same test conditions were simulated at a lower injection pressure of 400 bar, 

and the temperature and equivalence ratio distributions were observed. The idea was to 

see how injection behavior affects the equivalence ratio at the first site of combustion. 

Figure 7.14 - 7.15 shows the isometric views of the sector of the combustion bowl with 

two planes passing through the first site of auto-ignition marked by the white dot. One of 

the planes is parallel to the z-axis, and the second plane is arbitrary chosen to pass 

through SOC point and closer to the axis of the spray (not shown in the figure). The 

temperature and equivalence ratio values at both SOI and SOC are also given. The SOI 

temperature is indicative of the combustion bowl chamber with a ±20 K variation at 

places closer to the wall and in the squish zone. 

In comparison to the 800 bar cases, the ID time for the 400 bar cases are longer 

(Fig. 7.14 - 7.19). As a result, the first site of auto-ignition is further downstream in the 

fuel spray in comparison to that at similar intake temperature at 800 bar injection 

pressure. A decrease in injection pressure will result in less atomization of the fuel spray 

thus affecting evaporation and increasing physical delay time. However, the 

equivalence ratio values obtained at the first site of auto-ignition are very close to the 

values obtained at 800 bar. The longer ignition delay time does not have an effect on 

the equivalence ratio at which combustion will start. Also, with increase in intake 

temperature, auto-ignition starts at higher equivalence ratio, which agrees with the 

findings reported by Minagawa et al [110]. 
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 Figure 7.14: Temperature distribution in the combustion chamber at two different inlet air temperatures and at two 

planes : top row for 10 °C and bottom row for 30 °C. The left column is at SOI and right column at SOC. 
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Figure 7.15: Temperature distribution in the combustion chamber at two different inlet air temperatures and at two 

planes : top row for 70 °C and bottom row for 110 °C. The left column is at SOI and right column at SOC.
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The detailed temperature distribution at SOC with the side and top view of the 

combustion chamber is shown in Figure 7.16 - 7.17.  Similar to 10 °C intake 

temperature case for 800 bar injection pressure, it can be observed that the auto-

ignition site at 400 bar injection pressure is at the bottom of the combustion bowl. 

However, in the top view its location is almost at the center of the combustion chamber. 

This collaborates with the longer ID time observed in this case, which will result in the 

fuel spray moving further downstream in the combustion chamber. As discussed before 

longer ID time gives ample time for the fuel sprays to move to the adjacent sectors 

rightwards. With the anti-clockwise swirl motion the fuel spray would further move 

towards the right side and ignite at the center of the combustion chamber.  

With the increase in intake temperatures to 30 °C, 70 °C and 110 °C the ignition 

delay reduces progressively. As a result at SOC, due to the shorter time available the 

fuel spray advancement in the combustion chamber reduces. This can be confirmed by 

comparing the top and side views of the combustion chamber temperature and 

equivalence ratio distributions (Fig. 7.16 - 7.19). There is a visible clockwise shift in 

combustion sites in the top view with the increase in intake temperatures. Also the side 

view shows the upward movement of the combustion sites as well. This shift is more 

prominent at the lower intake temperatures compared to higher intake temperatures. 
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 Figure 7.16: Temperature distribution in the combustion chamber at two different inlet air temperatures: top row for 

10 °C and bottom row for 30 °C. The left column shows the side view and right column shows the top view. 
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Figure 7.17: Temperature distribution in the combustion chamber at two different inlet air temperatures: top row for 70 

°C and bottom row for 110 °C. The left column shows the side view and right column shows the top view. 
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Figure 7.18 - 7.19 shows the side and top views of the equivalence ratio 

distribution in the combustion bowl chamber at SOC. The lower injection pressure does 

affect the spray pattern and the wall impingement behavior, which in turn affects the 

equivalence ratio distribution. Compared to the 800 bar injection case at 110 °C intake 

temperature, we observe that the air-fuel distribution along the wall has less spread at 

400 bar injection pressure. Although, the ID time is longer at 400 bar still there is higher 

concentration of air-fuel at SOC than the 800 bar injection pressure. This is due to the 

lesser entrainment of air at lower injection pressures which results in a less dispersed 

spray. Also lower injection pressure results in bigger SMD (Sauter Mean Diameter) of 

fuel droplet, which take longer time to evaporate. A combined effect of these two 

phenomena will result in highly concentrated zones of air-fuel which take longer time to 

disperse. 

Even at lower injection pressure of 400 bar, with an increase in the intake 

temperature, the ID time decreases and auto-ignition happens at higher equivalence 

ratio, which shows an increase from 1.79 at 10 °C to 2.5 at 70 °C (Fig. 7.18 - 7.19). This 

shifts the first site of auto-ignition closer to the inner core of the spray. Again not much 

change in equivalence ratio is observed by increasing the intake temperature from 70 

°C to 110 °C. The temperatures observed at the first site of auto-ignition at SOI for 70 

°C intake air is 965 K and for 110 °C intake air is 1005 K. Since these values are for the 

gas temperature at the start of injection the temperatures should not change much 

between the 800 bar and 400 bar injection cases. There will be some variation due to 

the shift in location of first site of auto-ignition. In this case as well the equivalence ratio 

becomes consistent at the upper end of the intermediate temperature (850-1000 K) 
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boundary. The shift in equivalence ratio results in the absence of the NTC behavior 

observed in homogeneous mixtures. Approaching 1000 K, an increase in temperature 

reduces the ID period and becomes the dominant parameter which affects auto-ignition. 

As a result, negligible change in equivalence ratio is observed. 
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Figure 7.18: Equivalence ratio distribution in the combustion chamber at two different inlet air temperatures: top row 

for 10 °C and bottom row for 30 °C. The left column shows the side view and right column shows the top view. 
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Figure 7.19: Equivalence ratio distribution in the combustion chamber at two different inlet air temperatures: top row 

for 70 °C and bottom row for 110 °C. The left column shows the side view and right column shows the top view.
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The simulation results confirm the observations made by Minagawa et al [110] 

that in the intermediate temperature range (850-1000 K) with the increase in the gas 

temperature at SOI the combustion in heterogeneous flames shifts towards zones of 

higher equivalence ratio. Furthermore, under the given test conditions this finding is 

applicable at different injection pressures as well (Fig. 7.19).  

 

Figure 7.19: Equivalence ratio at the auto-ignition site vs inverse of temperature in 

intermediate temperature range 

The given experimental data lies in the intermediate temperature range, and the 

large disparity in global activation energy can be fairly attributed to changes in density 

and equivalence ratio. At a fixed SOI, when the intake air temperature is increased, 

auto-ignition occurs in the intermediate temperature range, and combustion in the flame 
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shifts towards higher equivalence ratio. [110]. The rise in charge pressure to maintain 

same density will further add to this effect. Similar effect will be seen in late injection 

cases; however, the fall in temperature is aggravated in the expansion stroke leading to 

sharper changes in ID values. This combined effect of density, temperature and 

equivalence ratio will become more significant if the data is represented as a variable 

SOI test.  

Changing SOI not only affects the temperature during ID period but also the 

pressure and density. Hence, there will be three parameters changing at the same time 

and thus resulting in significant reduction in ID values leading to higher global activation 

values. On the other hand, an incremental temperature change, while maintaining 

constant charge density, will only result in change in temperature and pressure. As a 

result, there will be only two parameters changing at the same time. In engines it is 

difficult to maintain a constant temperature, pressure and density at the same time. 

Also, in the late injection cases the drop in temperature is drastic compared to the early 

injection cases near the location of peak compression temperature. Thus, the large 

deviation in activation energy in the given data set is due to combined effect of changes 

in pressure and equivalence ratio dominant in the intermediate temperature range. 

7.4.3 Correlation between the Apparent Activation Energy and DCN 

for Different Fuels 

It is important to choose the experimental conditions that would produce a more 

accurate representation of global activation energy for the different fuels – keeping 

constant SOI and varying intake air temperature or doing vice versa. In order to get a 



123 
 

 

more accurate value of global activation energy, it would be better to reduce as many 

control variables as possible. In diesel combustion the effect of equivalence ratio cannot 

be avoided, and therefore the density changes should be avoided as much as possible. 

A comparison between the SOI -3 and SOI -1 cases for ULSD shows that the 

activation energy values obtained are close with a deviation of 8.7 % which increases to 

39.45 % and 49.49 %, at SOI 1 and 3 aTDC, respectively. With Sasol IPK, due to its 

longer ignition delay this reliability shifts to early injection case of SOI of -7 and -5 

aTDC, in which case the deviation is 5 %. At SOI of -3 and -1 aTDC this variability 

increases to 18.25 % and 50.90 %, respectively.  

Table 7.1 Apparent Activation Energy Values for ULSD 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

SOI -3 1095 9104 0 

SOI -1 1190 9894 8.67 

SOI 1 1527 12695 39.45 

SOI 3 1637 13610 49.49 

 

Table 7.2 Apparent Activation Energy Values for Sasol IPK 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

SOI -7 1271 10567 0 

SOI -5 1335 11099 5.04 

SOI -3 1503 12496 18.25 

SOI -1 1918 15946 50.90 
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The apparent activation energy values for JP8 and Surrogate S2 along with the 

variations obtained at different SOI are listed in Table 7.3 and 7.4 respectively.  

Table 7.3 Apparent Activation Energy Values for JP8 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

SOI -2.3 936 7782 0 

SOI -0.3 1160 9644 23.93 

SOI 1.7 1351 11232 44.34 

 

Table 7.3 Apparent Activation Energy Values for Surrogate S2 

Definition Ea/Ru (K) Ea (KJ/kg mole) Variation (%) 

SOI -2.3 954 7932 0 

SOI -0.3 1126 9362 18.06 

SOI 1.7 1396 11606 46.33 

 

During the testing for JP8 and Surrogate S2 due to an error in the needle lift 

sensor the SOI was retarded by 0.7 CAD. As a result, the real SOI during testing were -

2.3, -0.3 and 1.7 instead of the target -3, -1 and 1 respectively. The variation in apparent 

activation energy between -2.3 and -0.3 for JP8 is higher (23.93 %) compared to 

between -3 and -1 (8.67 %) observed with ULSD. A small shift of 0.7 CAD into the 

expansion stroke can thus have a noticeable effect on apparent activation energy for 

SOI later than -1 CAD.  
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The data above reveals that global activation energy values are more reliable in 

the cases in which auto-ignition occurs near TDC. Since the global activation energy 

values between -3 and -1 CAD were very close for ULSD, we can assume the values at 

-2.3 CAD for JP8 and surrogate S2 would be comparable to the one at -3 CAD for 

ULSD. Also, for Sasol IPK the global activation energy value at -5 CAD will be 

comparable to ULSD at -3 CAD due to the longer ignition delay for Sasol.  

Table 7.5 Comparable Apparent Activation Energy Values 

Fuel A Ea/Ru (K) Ea (KJ/kg mole) DCN 

Sasol IPK 0.2213 1335 11099 31.1 

ULSD 0.1876 1095 9104 42.1 

S2 0.2060 954 7932 49.1 

JP8 0.2166 936 7782 50.1 

 

In Figure 7.15, the apparent activation energy values are plotted against the 

DCNs of the fuels tested. The figure shows that there exists a linear relationship 

between the apparent activation energy and DCN of the fuel. The DCN is a measure of 

the ignition quality of a fuel obtained from experimental tests done at standardized 

conditions in a constant volume chamber. On the other hand, apparent activation 

energy is a simplified, one-step, kinetic reaction model over an extended range of 

temperature. Both these parameters are a measure of the ignition quality of a fuel, 

therefore a correlation between the two can be formulated to understand these 

parameters better. The equation is: 
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GH(��/�$#) = 500
(�D: + 13.3) 

 

Figure 7.15: Correlation between apparent activation energy and derived cetane 

number 

It is to be noted that these values are much smaller than the ones obtained by 

previous researchers [3, 8]. As these tests were performed in the intermediate 

temperature range, effect of the NTC regime produces a slowdown in temperature 

sensitivity of ID values, as seen in the results of Minagawa et al [110]. As a result, in this 

temperature range any further increase in temperature will result in a smaller decrease 

in ID which will be reflected in reduced global activation energy values. However, Sasol 

IPK has higher activation energy than ULSD, JP8 and Surrogate S2 as it has a low 

DCN and provides more resistance to auto-ignition. 
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7.5 Conclusions 

1. Quantification of activation energy in engines is based on changes in ID at 

different charge temperatures, which can be done by controlling the intake air 

temperature while keeping constant injection timing or by changing the injection 

timing while keeping the intake temperature constant. The former approach can 

be achieved while keeping the charge density constant by increasing the charge 

pressure at the higher intake temperatures. On the other hand, the latter 

approach results in considerable variations in charge density due to the piston 

motion. Accordingly, to avoid errors because of changes in the charge density at 

different injection timings, tests should be conducted using the variable intake 

temperatures approach. 

2. For the variable intake temperature approach, the injection timing should be 

adjusted to have the ID period around TDC to avoid the effect of rapid change in 

density during the ID period, associated with the piston motion.  

3. The change in the activation energy measured by the slope in the Arrhenius plot 

can have a positive, zero or a negative value in the intermediate combustion 

temperature regime (850-1000 K) in auto-ignition of many hydrocarbons in 

homogeneous environments. This is not the case in the auto-ignition of diesel 

fuels in heterogeneous combustion mode. The simulation conducted in this 

investigation indicated that this trend is caused by variations in the equivalence 

ratio in the auto-ignition of liquid fuel sprays.  
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4. Cycle simulation showed that under the given test conditions in the intermediate 

temperature regime, the equivalence ratio at the auto-ignition site in the spray is 

insensitive to changes in fuel injection pressure.  

5. Under the conditions of this investigation, the apparent activation energy is 

related to the DCN of the fuel according to the following, 

GH(��/�$#) = 500
(�D: + 13.3) 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

1. Large variations in the activation energy of fuels with close CN values have been 

observed in recent research works. These differences can be attributed to 

variations in: 

• ID Definitions 

• Effective Temperature Definitions 

• Charge Density 

• Temperature Regime 

2. In the auto-ignition of homogeneous hydrocarbon fuel-air mixtures, ID decreases 

with the increase in charge temperature in the low-temperature and high 

temperature regimes. This is not the case in the intermediate temperature regime 

(850K-1000K) where ID increases at higher charge temperatures. Accordingly, 

the activation energy measured by the slope in the Arrhenius plot can have a 

positive, zero or a negative value. However, in the combustion of diesel fuel 

sprays, all published data for the activation energy are positive in spite of the fact 

that the charge temperature lies in the intermediate temperature regime.  The 

simulation conducted in this investigation indicated that this is caused by the 
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wide variations in the charge pressure and equivalence ratio in the auto-ignition 

of liquid fuel sprays.  

3. The ID values obtained under the conditions of this investigation can be 

correlated to the apparent activation energy of the fuels in the general form: 

�� = T ∙ � �E�{� 

where, the values for A and Ea/Ru for each fuel is listed in the table below. 

Fuel A Ea/Ru (K) DCN 

Sasol IPK 0.2213 1335 31.1 

ULSD 0.1876 1095 42.1 

S2 0.2060 954 49.1 

JP8 0.2166 936 50.1 

 

4. In addition, under the given test conditions, the apparent activation energy is 

related to the DCN of the fuel according to the following, 

GH(��/�$#) = 500
(�D: + 13.3) 

8.2 Recommendations for Future Work 

• Engine experimental investigation of fuels of different molecular structures in the 

intermediate temperature regime to get a better understanding of their behavior in 

actual diesel engines. 

• Computer modeling and simulation of the physical and chemical processes in the 

auto-ignition and combustion of fuels in the intermediate temperature regime. 
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• Development of a general correlation for the ignition delay in engines in terms of the 

DCN and the other properties of the fuel. 
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APPENDIX A 

Table A1: Properties for Different Fuels 

Fuel ULSD Sasol IPK JP-8 Surrogate S2 

D613 CN 42.3 25.4 49 - 

D6890 DCN 42.1 31.1 50.1 49.28 

Flash point (°C) min 69 42 49.5 - 

Density (@15°C) kg/m3 842 755 802 802 

Viscosity (cSt @ 40°C ) 2.438 1.125 1.367 - 

Heating Value (MJ/kg) 41.2 44 43.2 43.2 

Aromatic Content (%Mass) 27.8 0.2 16.3 40 

 

 

Figure A1: Distillation curves for different fuels 
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APPENDIX B 

Physical Delay in IQT vs Engine 

Zheng [3] separated the physical and chemical delay time in Ignition Quality 

Tester by superimposing the data obtained by injecting fuel in air and later into nitrogen. 

The point where the two data curves separate marks the end of physical delay time and 

start of chemical reactions which would lead to auto-ignition and combustion (Fig. B1).  

 

Figure B1: Traces for N.L., pressure, RHR, and temperature for injection of n-heptane 

in air and in nitrogen environment [3] 

A ratio of physical delay time to the total ignition delay time will give us a 

measure to compare it with data obtained in engines. For ULSD the physical delay time 

at an intake temperature of 828 K was 3.34 ms out of the total ID time of 4.9 ms [3]. 
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�������# ��#�� �$g�# �%a�g�$a ��#��⁄ = 3.34 4.9⁄ = 0.6816 $� 68.16 % 

In engines the physical delay has been calculated as the time between SOI and 

Point of Inflection (POI), identified as the point where the second derivative of RHR 

curve crosses zero and becomes positive [4].  

 

Figure B2: Calculation of Point of Inflection from RHR trace [4] 

Applying this definition on our data for ULSD at SOI temperature of 828 K the 

physical delay time obtained is 2.1 CAD out of the total ID time of 6.5 CAD.  

�������# ��#�� �$g�# �%a�g�$a ��#��⁄ = 2.1 6.5⁄ = 0.3213 $� 32.13 % 

Comparing the ratios of the physical delay time to the total ID time in engines and 

IQT it can be inferred that the physical delay in engines is smaller compared to IQT. As 

a result, the effect of physical delay on the calculation of activation energy value would 

also be smaller in engines.  
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APPENDIX C 

 

Figure C1: n-heptane simulation model calibration points 
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Efforts have been made previously by researchers to quantify the auto-ignition 

quality of fuels by calculating global activation energy using Arrhenius plots with data 

measured for the ignition delay period (ID). Large variation in the activation energy of 

fuels has been observed even for fuels with closer CN values. More recently, the 

activation energy values obtained by Kook et al in (2005) on an optical engine do not 

agree with data obtained in an identical metallic engine by Jayakumar using fuels of 

same CN.  

The disparity in their results can be attributed to the differences in ignition delay 

(ID) and effective temperature definitions used. Most researchers agree upon the start 

of ID time as the start of injection (SOI). The main point of disagreement has been in 

defining the end of ID period which is considered to be the start of combustion (SOC). 
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As a result, numerous definitions for the ID period have been used by researchers 

which lead to variation in calculation of activation energy value. In addition, in 

heterogeneous combustion equipment to account for changes in charge temperature 

due to fuel evaporation and piston movement (in engines) an effective temperature 

value is used. Different definitions for the effective temperature have been reported in 

the literature. This leads to more variations in the activation energy value calculation. 

Furthermore, it was observed that engine test conditions and the temperature regime in 

which the tests are done would also affect the calculation of activation energy value.  

This dissertation examines the effects of ignition delay definitions, effective 

temperatures, engine conditions and temperature regimes on the global activation 

energy. Moreover, homogeneous charge test data has shown presence of a NTC 

regime in which the activation energy value can be either positive, negative or zero. 

However, heterogeneous test data from literature has always shown positive values for 

activation energy. This dissertation has also explained the reasons behind such a 

behavior. 
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