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Chapter 1 : INTRODUCTION 

 

In today‟s global economy, firms are seeking any and every possible opportunity to 

differentiate themselves from competitors, to reduce their costs, and to add value to their 

supply chains and end customers. One increasingly popular option, under growing 

consumer awareness and increasing legislation, is to reintegrate used or returned product 

into the supply chain to regain the materials for economic and sustainability purposes 

(Schultmann et al., 2006). An important class of such “reverse” goods flows has to do 

with remanufacturing, which refers to activities that restore used products or their major 

modules to operational condition for use in place of new product or for other channels 

(e.g., spare parts). U.S. Environmental Protection Agency (EPA) advocates the practice 

of remanufacturing as economical, energy-efficient and environmentally friendly 

approach to reduce industrial waste (US EPA, 1997). Another important reason for 

improving reverse logistics is to cope with returns that have become endemic in many 

industries. For example, according to a recent Consumer Electronics Industry survey by 

the Reverse Logistics Executive Council, the average return rate is 8.46% in the high-

tech industry (Thrikutam and Kumar - infosys.com 2004), with return rates as high as 

20% for certain product segments. The value of these returned consumer electronic goods 

in the U.S. is estimated at $104B for 2004 with the cost of managing the returns running 

around $8B. While there are several types of returns (commercial returns, repairable 

returns, end-of-use returns, end-of-life returns, recalls, and others …), the 8.46% return 

rate mostly covers commercial returns (that occur in the sales phase or shortly after) with 

immediate demand at another market location or segment. While efficient management of 
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commercial returns is challenging and necessary, particularly given the growth in return 

rates, remanufacturing is often far more complex. It not only deals with other types of 

returns that bring about lot more uncertainties (e.g., timing/location of return, return 

volume, quality), but also have to address complexities associated with reman production 

planning and control. Remanufacturing has traditionally been prevalent in such industries 

as automotive, electrical equipment, furniture, machinery, tires, and toner cartridges.  

 In the automotive industry, production parts can be roughly divided into Original 

Equipment (OE) parts and Aftermarket parts. OE parts refer to parts used in producing 

new vehicles, whereas, aftermarket parts refers to parts traded after original equipment 

sale, which includes both OE service (for parts under OEM warranty) and independent 

aftermarket (IAM) services. The automotive aftermarket industry is estimated at $198B 

annually in the US, with IAM sales estimated at $142B, mostly from collision centers and 

independent mechanics
1
. While the remanufacturing business was traditionally 

dominated by IAM companies, hefty profit margins and growing pressures to improve 

corporate citizenship, are encouraging more and more OEM and tier-1 suppliers to pursue 

remanufacturing. According to a recent survey by Inmar (Inmar, Special Report 2009), in 

the automotive industry, return rates are known to vary between 5%-25%.  Survey also 

identifies various factors leading to poor returns: 1) Poor information flow, 2) Multiple 

networks that poorly interface with one another, 3) Different part numbering schemes for 

the same replacement parts, 4) Data entry order errors, 5) Incorrect shipments, 6) Mis-

diagnosis, 7) Over ordering , and 8) Defective parts. Given returns and the size of the 

                                                           
1
 http://www.oealliance.com/industry.htm 
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aftermarket business, there are tremendous opportunities for OEMs and suppliers to 

engage in remanufacturing business to improve profitability and sustainability.  

 While all these opportunities abound, key complications for OEMs and suppliers 

is the difficulty in making decisions related to launch of remanufacturing program and 

efficient management of remanufacturing operations and logistics. There is lack of a 

structured and holistic decision support framework, which can guide firms in decision 

making related to timing the launch of the remanufacturing program, capacity 

installation/management etc. Further, efficient production and inventory management of 

remanufacturing parts for the supplier heavily impinges on the ability to accurately 

forecast these core returns from customers (besides forecasting demand for 

remanufacturing parts and securing cores from the open market, as necessary). All these 

factors are motivation for the proposed research. 

 

1.1 Research Setting 

For a typical automotive product targeted for reman, production during its life-cycle can 

be roughly divided into three phases. Phase I more or less deals with the production of 

OE parts to support demand for new OEM product and tends to be relatively high volume 

production. Phase II covers the period of transition from production of just OE parts to 

both OE and OE service (OES) parts production and eventually just OE service and the 

independent after-market (IAM). Phase III covers the production of parts for just the 

IAM. Phase 0, preceding all the production phases, encompasses the various phases of 

product development with considerations for remanufacturing.  
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Figure 1.1 Typical production pattern of an automotive product considered for reman 

over its life-cycle 

 

Figure 1.1 illustrates these phases along with representative production levels. For firms 

that do not engage in IAM or reman, in the automotive industry, the product from the end 

of the OE production cycle is often stocked to meet the 15 years spare-parts availability 

requirement.   

For firms that engage in OE production as well as remanufacturing, the second and third 

phases impose new challenges apart from traditional forward supply chain management. 

In other words, presence of reverse logistic flows in a supply chain magnifies the 

variability and its effects. Following are the remanufacturing decision making needs 

during these different phases.  

Phase 0: At this phase firms need to establish the business case for remanufacturing 

depending on the product attributes. This will trigger product development for 

remanufacturing. 

 Phase I  Phase II 

 
 Phase 0 

 

            Phase III 
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Phase I: During OE production, firms need to establish contracts with dealers and third 

party collectors of “cores” or used product to establish return flow channels.  

Phase II: At this stage, firms need to evaluate various decisions. Whether to launch 

remanufacturing program or keep producing only OE parts to meet new all demand? 

Decision to launch remanufacturing program depends among other things (e.g., potential 

margins) the product life cycle, demand pattern for new product, demand pattern for 

reman product, and availability/reliability of core returns. If firm decides to launch a 

reman program for the product under consideration, then decisions need to be taken on 

the timing of the program launch and reman capacity installation and management. In 

addition, since firm is in a hybrid production state (involving both manufacturing and 

remanufacturing), production planning and control becomes crucial because material 

flows from both the channels are dependent on each other. It should be noted here that 

core returns for OE service parts are often very reliable for they involve a fast trading 

cycle. The cycle is initiated with the receipt of a core or defective unit by the supplier 

from the dealer followed by an often overnight or same day delivery of a reman unit to 

the dealer from very limited finished goods inventory (FGI). The supplier then remans 

the core (often the same day) and stocks the unit for the next cycle. Given the cycle 

speed, the OE remanufacturing activity can be relatively efficient, at least from the 

perspective of core inventory and reman FGI. 

Phase III: Decisions at this phase are similar to Phase II decisions. Here, high volume OE 

production is over. Firms need to make decision over launching remanufacturing program 

for IAM, if not done during Phase II. Depending on the returns from warranty claims, 



6 
 

 
 

firms either can launch the remanufacturing for IAM along with reman parts for OE 

service or wait for more core returns and establishment of core supply contracts with 

independent collectors. The major difference from Phase II is the significant uncertainty 

in core returns. Unlike the OE service setting, the trade in process is often not initiated 

with the receipt of a core but with an order. The reman product is shipped to the customer 

along with an RMA for the cores and a core charge (customer will not be reimbursed for 

the core charge until the cores are returned). However, our experience with a major Tier-

1 supplier shows that customers can take months and even years to return cores. Hence, 

inventory management (of cores as well as FGI) becomes more critical as well as overall 

production planning and control.  

 

1.2 Research Objectives 

The objective of this thesis is to develop an integrated framework, for industries 

supporting OE, OES and IAM business, to guide transition from OE production to hybrid 

settings. The specific objectives are as follows: 

1. To develop models that can facilitate better timing of the launch of remanufacturing 

program for OE service and IAM and reman capacity planning. This is of particular 

concern to our collaborator Delphi Automotive LLP. While the literature offers no 

guidance/models, there are risks associated with both premature launch (reman OES parts 

are priced differently and the absence of reliable core supply due to premature launch can 

force the supplier to provide virgin parts in place of reman parts and poor utilization of 

reman capacity) or delayed launch (lost opportunity of provide reman product).  
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2. To develop a modelling framework for core-return forecasting to facilitate decision-

making at different phases. The prerequisites for this objective are: 

 Ability to forecast core returns for product as well as product families; A key 

requirement here is the ability of the modelling framework to support data 

sparsity (a lesson learnt from our work with Delphi Automotive LLP) 

 Ability to forecast  when there is long lag between product shipment/sale and core 

return 

 Ability to support/exploit different levels/sets of information regarding historical 

sales, return rates, market inventory etc.  

 Ability to provide feedback to timing the launch of a new product 

remanufacturing program and reman capacity planning 

 

1.3 Research Scope 

In this dissertation, we assume that the business case for remanufacturing has already 

been established by the firm. Thus, our study will focus on developing an integrated 

framework for decision support during phases II of the production life-cycle (see Figure 

1.1). In this dissertation, we have considered phase II and III jointly. 

Scope of this work includes new models for core return, timing the launch of a 

remanufacturing program, and capacity planning. We have validated the overall 

framework and the associate models and methods through case studies with Delphi.  
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The rest of the dissertation is organized as follows. Chapter 2 presents strategic capacity 

management of remanufacturing. Chapter 3 offers models for core-returns forecasting. 

Finally, Section 4 presents conclusion and future research directions.  

 

REFERENCES 
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Chapter 2 : STRATEGIC CAPACITY PLANNING AND MANAGEMENT  

OF REMANUFACTURED PRODUCTS 

 

Strategic capacity planning plays an important role in the effective management of 

product life-cycles and improving their profitability. In particular, decisions related to 

determining the sizes and timing of capacity investments. To effectively decide on 

„timing the launch’, a firm must tradeoff the cost of capacity, supply, and inventories, 

with the revenues from the product demand over its life cycle. In addition, firm needs to 

make an important decision at the operations level on „how much capacity to install’. 

These decisions impose more challenges for firms that engage in original equipment (OE) 

production as well as remanufacturing. The presence of reverse logistic flows magnifies 

the variability in a supply chain due to uncertainty in timing/location of returns, return 

volume, quality etc. In other words, the timing and volume of used product returns are 

binding supply constraints for remanufacturing. Capacity management is, thus, even 

more complex and critical for supply chains that involve reverse logistics and 

remanufacturing.  

 The original motivation for our research came from the request of a leading global 

tier-1 automotive supplier, Delphi Automotive LLP, engaged in OE production as well as 

providing products to the aftermarket (both for OE service and the independent 

aftermarket). Key complications faced by the company were the difficulties in making 

decisions relating to proper timing of the launch of the reman product program, capacity 

installation, and efficient management of remanufacturing operations and logistics. 

Overall, there is recognition for the lack of a structured and holistic decision support 
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framework that can guide firms in decision making related to both, timing the launch of 

the remanufacturing program and capacity installation/management.  

 For a typical automotive product, production during its life cycle can be roughly 

divided into two phases. Phase I deals with the production of OE parts to support demand 

for new OEM product and tends to be relatively high volume production. Phase II covers 

the period of transition from OE parts to both OE parts and service parts including both 

OE service parts (OES) and eventually independent aftermarket (IAM) demand too. At 

the end of the regular production cycle, firms usually make a last run production to stock 

parts to meet the spare-parts availability requirement (in the US, the legal requirement is 

15 years from the end of production  

 One increasingly popular option to support aftermarket demand (partially or fully) 

has to do with remanufacturing. For firms that engage in OE parts production as well as 

remanufacturing to support aftermarket services (as is the case with our collaborator, 

Delphi), it is seldom optimal to start the reman product program with the start of the 

earliest core returns. The reason being, in the absence of a reliable core supply for 

remanufacturing due to a premature reman product launch, the supplier is forced to 

provide new or virgin parts in place of reman parts to cover demand for reman product 

that exceeds reman production and inventory, a costly affair and in addition results in 

poor utilization of remanufacturing capacity. Therefore, it is more common for firms to 

delay the start of the reman program to the end of the OE production cycle. By delaying 

the launch to the end of the OE production cycle, firm can accumulate enough core 

returns to build up a large strategic recoverable inventory. This helps in better utilization 
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of remanufacturing capacity, avoids backorders, and also reduces the need for serviceable 

inventory of virgin parts. On the contrary, the delayed reman product launch may result 

in a lost opportunity to provide reman parts for OE service and there is also the 

possibility of not being able to take advantage of recoverable inventory due to 

insufficient orders for reman product post OE production. Our collaborator was already 

implementing the latter option to support demand for independent aftermarket services. 

Management was interested in knowing whether it is cost-effective to launch the 

remanufacturing program before the end of the OE production cycle and still be able to 

effectively utilize the remanufacturing capacity. Our research aims to build models that 

can effectively answer these types of questions. 

 Automotive products usually fall under the category of durable products, which 

means they remain with the customers for a considerable amount of time compared to the 

time horizon in which they were sold. For such products, demand may be subjected to a 

dynamic process due to product life cycle effects and models that treat demand to be 

stationary and address average cost/profit are often inappropriate; a dynamic discounted 

cash flow framework is more suitable. Further, in the presence of supply constraints, both 

in terms of availability and yield of returns, it becomes imperative to obtain dynamic 

optimal policies regarding production and remanufacturing decisions.  

 In light of the preceding discussion, this research proposes an approach to derive 

optimal remanufacturing policy and then simultaneously decide on the best time to 

launch a remanufacturing program and the overall capacity requirement. To the best of 

our knowledge, this research is a first attempt of its kind in the remanufacturing literature, 
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as prior research treated these interrelated decisions separately. The primary focus of this 

study is to develop intuition for drivers of cost-efficient remanufacturing program for 

aftermarket services while taking life-cycle dynamics into account. The insights are 

obtained by minimizing the discounted cash outflows caused by appropriate investment 

and return inventory building decisions. Though a simplistic deterministic sales and 

return dynamics are analyzed, our analysis of stochastic returns scenario revealed that 

proposed deterministic approach is sufficient enough to capture the important dynamics 

of cost-effective remanufacturing programs.  

 Remainder of this chapter is organized as follows: Section 2.1 outlines related 

literature. Proposed model is discussed in section 2.2. Numerical investigation is 

presented in Section 2.3. Finally, conclusion and future research in section 2.4. 

 

2.1 Related Literature  

There is a vast body of literature dealing with operational issues of decision making in 

reverse logistics e.g. material resource planning (Ferrer and Whybark (2001), scheduling 

and shop floor management (Guide et al. 1997, 1998), inventory control (Van der Laan et 

al. 1999, Toktay et al. 2000), logistic network design (Fleischmann 2001), and routing 

(Beullens 2001). We encourage readers to refer a recent survey by Ilgin and Gupta (2010) 

for detailed overview of this literature. In contrast, today, the important problems of 

business are not tactical or operational but tend to be strategic and mostly unstructured 

(Guide, 2006). According to Valchos (2007), despite considerable emphasis over the last 

decade on long-term strategic management problems in reverse logistics, there are almost 
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no studies in the literature thus far. Further, one of the most influential aspects of 

investment decision, financial justification has widely been neglected in most of the 

studies (Kleber 2006).   

 Most of the research considering strategic issues in reveres logistics have been 

confined to network design in a single-period (see, e.g. Barros et al. 1998; Louwers et al. 

1999) and less commonly a multi-period (Realff et al. 2004) setting with given product 

characteristics. Shih (2001) studied reverse logistics planning for electronic products in 

Taiwan. Using historical data, the author presented a model to determine the optimal 

capacity expansion plans of storage and disassembly facilities for different product take-

back rates. Franke et al. (2005) developed a model for mobile phone remanufacturing to 

determine the required capacities for remanufacturing operations. They used information 

about uncertainties in the amount and conditions of returns as well as combinatorial 

optimization to determine the capacities of work stations. Francas (2009) developed a 

network configuration model for a multi-product supply chain in which a firm 

manufactures new products and remanufactures used products. Built on a stochastic 

programming approach that accounts for uncertainty in demand and returns, they studied 

capacity investment from a newsvendor network perspective and compare the 

performance of simultaneous and sequential design. Ryan (2010) developed a single-

period model for capacity planning that determines the optimal amount of expansion for 

different lead times to obtain remanufacturing capacity. They stated that the difference 

between their research and past work is that they focus jointly on the forecasting and 

capacity management of returned products. Mutha (2010) presented a mathematical 
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model for handling product returns. The focus is on deciding the number of facilities, 

their locations and allocation of corresponding flow of used products and modules at an 

optimal cost for a given market demand and used product returned quantities. In all these 

approaches, the decision at which time to set up the respective facilities has already been 

made or facilities were already in place. 

 One major stream of capacity planning research in the reverse logistics domain is 

based on System Dynamics (SD) modeling. Georgiadis et al. (2003) introduce 

systematically the use of SD methodology in the analysis of closed-loop supply chains 

(CLSCs). They use a set of level of remanufacturing and collection capacities to study the 

effect of environmental issues on reverse channel‟s activities. Georgiadis and Vlachos 

(2004) further extend that SD model to account for environmental issues such as „„green 

image” and effect of „„take-back obligation” on product flows in the reverse channel, 

while considering the capacity levels exogenously. Vlachos et al. (2007) study capacity 

expansion policies in the reverse channel of a CLSC with remanufacturing activities 

assuming stationary demand, hence ignoring the concept of a limited product lifecycle 

and issues related to capacity contraction. Georgiadis et al. (2006) make a first attempt 

towards a more holistic approach, developing an SD model for a single product CLSC 

with remanufacturing activities in the reverse channel. They analyze the capacity 

planning policies both for collection and remanufacturing activities in the reverse 

channel, assuming that demand may follow different but standard lifecycle patterns 

consisting of the introduction, growth, maturity and decline stages. Specifically, they 

investigate how the lifecycle and return patterns of a product affect the near-optimal 
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capacity planning policies regarding expansion and contraction of collection and 

remanufacturing capacities. Georgiadis et al. (2010) further the earlier models by 

studying the capacity planning policies in the reverse channel for a portfolio of new and 

remanufactured versions of two sequential product-types (types 1 and 2). They 

investigated how different product lifecycles and different patterns of product returns 

affect the near-optimal expansion and contraction capacity planning policies for the 

collection and remanufacturing activities of two sequential product-types, under two 

alternative scenarios regarding the market preferences over them.  

 Debo et al. (2006) also captured life-cycle dynamics in the introduction and 

management of remanufactured products. They extended the Bass diffusion model in a 

way that maintains the two essential features of remanufacturing settings: (a) substitution 

between new and remanufactured products, and (b) a constraint on the diffusion of 

remanufactured products due to the limited supply of used products that can be 

remanufactured. They identified characteristics of the diffusion paths of new and 

remanufactured products and analyzed the impact of levers such as remanufacturability 

level, capacity profile and reverse channel speed on profitability.  

 To the best of our knowledge, the only research that has explicitly modeled reman 

product launch timing in reverse logistics is Kleber (2006). They focused on the timing of 

investment decisions, and concluded that by neglecting facility location and detailed 

capacity acquisition, for instance expenses for setting up facilities are set in such a way 

that a sufficient capacity is available, general insights can be obtained using an analytical 

approach.  
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 To summarize this chapter makes several contributions to the literature. In this 

research we have focused on explicitly modeling both capacities as well timing of the 

launch of a remanufacturing program for a new product. Further, we also present the 

optimal remanufacturing policy and drivers of cost-effective remanufacturing program.  

 

2.2 Capacity Planning Model  

The OEM‟s objective in reman capacity planning is to minimize the life-cycle cost of the 

reman program in supporting demand for service parts (both OE service for products 

under warranty and independent aftermarket demand for product out of warranty). To 

pursue this, we present a continuous time, finite-horizon, discounted cash outflow 

problem that attempts to satisfy all demand for service parts during the planning horizon 

at the lowest cost. This section first presents the necessary assumptions regarding product 

life-cycle and reverse channel flows and demands. We then provide a formulation for the 

OEM‟s aftermarket services optimization problem and characterize the optimal reman 

operations policy. 

  First, we will introduce the base case model with no remanufacturing option and 

then model the case with remanufacturing. 

 

2.2.1 Base Case without Remanufacturing 

Consider firm introduces the product to the primary OE market at time     and that OE 

sales evolve over the duration of the product life-cycle with rate     . Our analysis 

assumes that      is unimodal, deterministic, non-negative, and known. Given the 
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strategic nature of the capacity planning process, the assumption of deterministic sales 

rate is reasonable. The product resides for a finite period of time with the customer and 

can be referred to as residence time. We assume that residence time is a function of 

product durability characteristics and is randomly distributed with density function 

     . Failure of the unit at the end of its residence time leads to service that triggers 

order for a replenishment service part. The demand for service parts      can be 

described as a convolution of       and       (Geyer et al. 2007): 

                    
 

 
  (1) 

Initially, demand for service parts can be fulfilled by acquiring a “virgin” part from the 

OE production line. At the end of the OE production run,   , OEM makes a “last run” to 

support future demand for service parts and holds this inventory of virgin serviceable 

parts       at a cost of    per unit per unit time. Thus, the net present value of the total 

discounted cash outflows to cover aftermarket services can be calculated as:  

                                       
 

  
   

 

  
           

  

  
  (2) 

where,   is a discounting factor and   denotes the planning horizon.  

 

2.2.2 Remanufacturing Case  

Here firm tries to rely on remanufacturing to support demand for service parts. To pursue 

this, firm relies on dealers and repair shops (through contractual or other means) for used 

product or “core” returns to establish the remanufacturing program. This is essentially a 

trade-in process where the supplier provides a service part for a core return. We assume 
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here that the trade-in cycle is instantaneous or negligible as compared to product 

residence time or the life-cycle. This is a reasonable assumption for OE service parts 

under warranty, where dealers often return the cores to the OEM within days. There can 

however be significant delays in receiving cores from the independent aftermarket with 

even the possibility of permanent core loss to independent aftermarket companies. Future 

work will account for these losses and delays. Hence, we assume that a core is available 

to the firm for reman exactly at the end of its residence time. We also assume that all OE 

product generates demand for service parts at the end of their residence time. Thus, we 

can conclude that return rate       is equal to demand for service parts     . Henceforth, 

return rate      will also be used to denote demand for service parts     .  

 Firm, given the business case for aftermarket service remanufacturing, initiates 

core collection at time    to launch reman for services at time         with 

remanufacturing capacity level  . Let    be the variable cost of acquiring and 

maintaining one unit of capacity per unit time and    denotes the cost of core acquisition 

per unit including inspection and disassembly. Upon receipt of a core, and depending on 

whether remanufacturing program is already launched, the firm either processes the core 

to build up recoverable inventory       of components/modules to be remanufactured at a 

future time or instantaneously remanufactures it with rate       to fulfill immediate 

demand. Cost of holding one unit of recoverable inventory for unit of time is    and cost 

of remanufacturing per unit is   . By instantaneously, we mean here that there is no delay 

between pre-processing, order release and materials availability. Given that the firm 
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cannot remanufacture at a rate that exceeds the installed capacity level, constraint (3) 

limits the remanufacturing rate.  

           (3) 

To keep our analysis simpler, we assume that the firm never carries any remanned 

finished goods inventory (FGI), leading to constraint (4). This assumption is partially 

reasonable due to the fact that holding cost for serviceable inventory always exceeds the 

cost of holding recoverable inventory. In the presence of significant remanufacturing 

process lead times might warrant some FGI. Future work will address this case. 

                  (4) 

 Yield issues are typical in most remanufacturing industries given that not all cores 

are viable candidates for remanufacturing (attributable to such factors as use or abuse of 

the product by the original customer and nature of the product). Let   denote the 

remanufacturing yield percentage. Firm can to some extent control   based on product 

design, materials/processes employed and so on. We assume here that   is a product 

characteristic, deterministic, and known. Furthermore, we also assume here that a part 

can be remanufactured at most once during its life-cycle. Since,     

   remanufactured product from core returns in any period cannot exceed demand for 

service parts within that period. This combined with constrains (3) and (4), lead to the 

following upper and lower bounds on       : 

                                    (5) 

 Now, we can add another constraint relating to rate of change of recoverable 

inventory: 
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                      (6)  

 Constraint (6) implies that during pre-launch (before launch of the 

remanufacturing program), rate of change of recoverable inventory equals recovered 

inventory          . Whereas, post launch, it is the difference between rate of 

recoverable inventory and rate of remanufacturing.  

 Similar to the base case, during the phase of regular OE production, any excess 

demand for service parts beyond the rate of remanufacturing is met by acquiring virgin 

parts from manufacturing at a rate      , at the cost of    per unit.  

                            (7) 

After the end of OE production cycle, any shortage is met by depleting inventory of 

virgin serviceable parts       . We can then write an expression for the total service 

operations cost as: 

                  
                      

                    
   

 

  
  (8) 

It should be noted here that for the remanufacturing case, we are not calculating the NPV, 

but the total cost of remanufacturing. This enables easier computation of the optimal 

remanufacturing policy. Once the optimal remanufacturing policy is obtained (i.e., 

  
    ), determination of the optimal capacity and launch timing parameters are deduced 

from minimizing the NPV of the total discounted cash flows within the planning horizon. 

Table 2.1 summarizes our key notations and figure 2.1 presents an illustrative example of 

the dynamics of sales, returns and yield during a typical product‟s life-cycle.   
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Table 2.1: Summary of Key Notations 

    Time to launch of reman program 

   Remanufacturing capacity level  

    Cost of manufacturing one unit of virgin parts 

     Cost of remanufacturing one unit of reman parts 

    Variable cost acquiring and maintaining one unit of capacity per 

unit of time 

    Cost of acquisition of unit core 

    Cost of holding one unit recoverable inventory for per unit of time 

    Cost of holding one unit serviceable inventory for per unit of time 

   Yield percentage 

   Discount factor 

        Mean of residence time distribution 

        Standard deviation of residence time distribution 

    Time at end of production  

   Time horizon  

      Sales rate 

       Residence time distribution  

      Demand for service parts 

      Return rate 

       Remanufacturing rate 
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       Recoverable inventory rate 

       Serviceable inventory rate 

 

 

Figure 2.1: Illustrative example showing sales, returns and yield during a product‟s life-

cycle 

 

2.2.3 Optimization Problem  

Even for the deterministic case, finding the optimal reman rate trajectory (i.e.,     ) 

becomes intractable since many interacting effects determine the optimal path. We thus 

propose a simplification to the problem setting. We will assume that there is possibility of 

procuring virgin parts even after the end of the OE production run. This might be justified 

for two reasons. First, an external party might be willing to produce the parts (using 

maybe OE tooling). Secondly, if the OE facility has moved on to the next generation of 
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the product, it might still be able to support intermittent runs to build OE service parts on 

the same line. This is a common practice in many companies, such as Dana Holding 

Corporation (a leading global supplier of axles, drive-shafts among other systems to 

many automotive OEMs) and Continental AG (a supplier of chassis, safety, powertrain 

and interior systems among other things to automotive OEMs and other industries). In 

light of this assumption, we can rewrite the cost model equations to eliminate the 

serviceable inventory terms. Later in section 2.3, we discuss a solution algorithm to 

optimize the policy parameters, including estimation of serviceable inventory. Under the 

stated assumption, (8) can be re-written as: 

            
               

                   
   

 

  
  (9) 

For a given    and   , we can choose       to minimize the total cost: 

        
                    

              

                          
   

 

  
  (10) 

Once the optimal reman rate trajectory is derived (i.e.,   
    ), we can derive the optimal 

policy parameters    and   by minimizing the total program cost as: 

          
               

                      

                           
   

 

  
 (11) 

 

2.3. Optimal Policy 

This section first presents the derivation of the optimal remanufacturing policy followed 

by optimization of launch timing and capacity parameters. We then discuss the structural 

properties of the optimal policy. 
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 To obtain the optimal trajectory for      , we partition the planning horizon into 

two regions based on the reman production launch timing: pre-launch and post-launch as 

illustrated in Figure 2.2. During the pre-launch phase, the optimal policy is obviously to 

meet all the demand for service parts using virgin parts. Thus, optimal remanufacturing 

is   
       and recovered cores will be stored into recoverable reman inventory and can 

be expressed as            .  

 Post-launch dynamics are far more involved. The decision is to choose optimal 

remanufacturing quantity        that minimizes the         given fixed   and   . In the 

optimal control framework, this problem can be presented as minimization of the cost 

functional with state variable       and can be solved using Pontryagin‟s minimum 

principle
2
.  

                                 (12) 

subject to control variable      : 

                       (12.1) 

              (12.2) 

                (12.3) 

                                          (12.4) 

 Equation (12.1) accounts for marginal increase/decrease in cumulative inventory 

at time   as the difference of recovered core rate and remanufacturing rate. Equation 

                                                           
2
 Pontryagin's minimum principle is used in optimal control theory to find the best possible control for 

taking a dynamical system from one state to another, especially in the presence of constraints for state or 
input controls. 
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(12.2) is time derivative of return rate. Equations (12.3) and (12.4) form boundary 

conditions on control and state variables.  

Proposition 1. For any given    and   , the optimal remanufacturing rate is given by: 

     
      

                              

                                 
  (13) 

Proof: See Appendix  

Proposition 1 suggests that when there is no recoverable inventory, the only choice a firm 

has is to remanufacture returning cores, limited of course by reman capacity   (any 

excess in recovered enter recoverable inventory). However, when there is positive 

recoverable inventory, there are three possible scenarios: 1) if returns are less than 

capacity level, then remanufacture recovered cores and any surplus demand can be 

fulfilled by acquiring virgin units from manufacturing; 2) if capacity level is less than 

returns but more than recovered cores, remanufacture up to capacity level using 

recovered cores and recoverable remanufacturing inventory; 3) if capacity level is less 

than returns as well as recovered cores, remanufacture up to capacity level using 

recovered cores and any extra units enter recoverable reman inventory.  

 Figure 2.2 presents an illustrative example of these dynamics. We can see from 

Figure 2.2 that during pre-launch all the demand is fulfilled using virgin parts        

    . Pre-launch, all recovered cores enter recoverable reman inventory,            . 

Once remanufacturing is launched at time   , stored recoverable reman inventory is 

depleted to meet all the demand until recoverable inventory becomes zero at some 

time    .  During time period [            both             , firm remans available 

recovered cores to meet the partial demand and any excess demand is fulfilled with virgin 
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parts.        and         in time period [   ,    ), so firm continues to reman 

available recovered cores while fulfilling surplus demand by acquiring virgin parts. Firm 

runs at full capacity when both             , in time period [        ) by just 

remanufacturing recovered cores. Here, recoverable inventory again starts building up 

with              .  The recoverable inventory build up during this period is 

depleted until it becomes zero at some time    .  Remanufacturing during period [   , ] 

follows the same pattern as in time period [   ,   ]. In this particular case, it is optimal to 

reman all recovered cores. This example clearly shows that optimal remanufacturing rate 

profile depends on vector                          . 

 

2.3.1 Optimization of Policy Parameters 

In general, without imposing strict assumptions, it is not possible to estimate 

                          as a closed-form solution. Hence, we rely on numerical analysis 

to derive to derive some additional structural properties. In this section, we present a 

solution algorithm in Table 2.2, incorporating serviceable inventory, to compute    and 

  
 .  



27 
 

 
 

 

Figure 2.2: Illustrative example showing returns, yield, optimal remanufacturing, and 

recoverable service inventory profiles at different stages of the product life-cycle 

 

Table 2.2: Heuristic algorithm to compute optimal policy parameters    and   
  

Step 1. For a given   and   , compute optimal reman trajectory   
      and the 

 corresponding   
     by solving equation (12) 

Step 2. Compute              
 
    

  

Step 3. Replace                 

Step 4: Construct a new variable vector        
       

                  
    (14) 

Step 5. Solve equation (10) to compute      ,   ) 

Step 6. Repeat steps 1-5 for different   ,   ) 

Step 7. Compute                    to obtain    and   
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2.3.2 Structural Properties of the Optimal Policy  

We analytically derive structural properties of the optimal policy under few special cases 

of                          . Then, based on these results, we characterize the optimal 

policy for general settings.  

Proposition 2.   is a solution candidate to (12) if the following conditions are satisfied: 

         (15) 

        (16) 

Proof:  

Given that         the recoverable inventory built up before pre-launch is completely 

exhausted before        . Thus, the following equation holds:  

           
  
  

                 
  

  
              

   
  

 (17) 

Whereas, the condition       states that the entire recoverable inventory built up, when  

  
        and        , is used up to satisfy the surplus demand over instantaneous 

reman rate until the end of the planning horizon. Then,  

             
  

   
              

  

  
                

   
  

 (18) 

Equation (18) discloses that the area formed by [       ] is equals to the area formed by 

[            ]. Henceforth, this will be referred to as equilibrium of          and 

             . In conclusion, maximum possible remanufacturing is possible in this 

scenario. Mathematically,  

           (19) 

Hence the proof. 
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By solving equation (18), a threshold value for   can be obtained. Once we have 

          , then       can be computed by solving the following two equations, 

respectively: 

                    (20) 

                     (21) 

Inserting values of       and            into equation (17), results in threshold value for 

  : 

             
     

               

         
  (22) 

Based on            and            
, we can now characterize the optimal policy for 

generic settings, which is a “threshold policy” in    and    .  

Proposition 3. For               and                
,           

Proof:                
          and                     . Thus,         .  

Proposition 4. For               and                
, or for               and 

               
;           

Proof:                
          and                     . Thus,         . 

               
          and                     . Thus,         .  

Proposition 5. For               and                
,          

Proof:                 
          and                     . Thus,         . 

               
          and                     . Thus,         .  
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2.4. Numerical Investigation  

In this section, first we numerically examine the structural properties of the optimal 

reman policy given a fixed   and   . We then investigate the effect of cost and life-cycle 

parameters on   ,   
 , and the expected savings from launching the reman program for 

aftermarket services. It should be noted here that the primary focus in doing this is to 

develop a good intuition for drivers of cost-efficient remanufacturing program for 

aftermarket services. Since this study entertains the possibility of a reman program 

launch before the end-of the OE production run, the analysis is particularly relevant to 

parts for which aftermarket services start well before the last run or end-of the production 

of virgin parts. 

 For all our experiments, we employ a trapezoidal sales rate function with total 

sales of 30M units and a product life-cycle of 8 years. To better represent real-life 

operations, we allow for a faster growth phase, a long maturity phase, and a slow decline 

phase. A gamma distribution is used to represent the residence time distribution for its 

flexibility. The parameter settings and their ranges (partly including extreme values) are 

reported in Table 2.3. In selecting the parameter settings, it should be noted that we tried 

our best to capture some real-life scenarios from the automotive industry (e.g.,    and    

are in the range of 12% of    and   , respectively). Since the effects of changes in the 

interacting parameters are manyfold, we decided to perform the study based on a large 

number of randomly generated examples.  
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Table 2.3: Parameter settings employed for numerical experiments 

Parameter Ranges/Settings 

    [1]    [0.2 0.8] 

     [0.6]     [0.01] 

    [0.01 0.3]         [24, 48, 60] 

    [0.05]          [24] 

    [0.01 0.11]     [96] 

    [0.05 0.15]    [272]  

 

We caution here that while care has been exercised in conducting these numerical 

experiments to best extract and illustrate the dynamics at play, all the while coping with a 

large number of parameters, the patterns/effects reported can change somewhat as a 

function of the parameter levels. However, the essential dynamics/insights from these 

results are expected to hold strongly in most settings.  

 The section is organized as follows: section 2.4.1 illustrates the characterization 

of optimal decision surfaces and optimal costs; section 2.4.2 outlines the effect of 

different costs and life cycle parameters on   
  for a given  . 

 

2.4.1 Structural Properties of the Optimal Solution and Optimal Cost 

We numerically investigate the structure of the optimal decision surface as presented in 

the propositions 3-5. Following parameter set is used to generate the plots:   
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 Figure 2.3 presents the structure of optimal decision for combination of 

parameters listed above. Figure clearly shows that the optimal policy is a threshold policy 

in   and   . As we see from the figure for  =15,200 and   =58 are the respective values 

of            and            
. To facilitate better understanding of the associated dynamics, 

we will now investigate the optimal decision at           =15,200 and            
=58. 

Figure 2.4 shows the trajectory of remanufacturing      , along with demand     , and 

recoverable inventory       at the              and               
. The recoverable 

inventory built up during pre-launch is consumed well before time   . Conversely, a 

careful assessment of the figure also discloses that equilibrium of areas          and 

              is achieved. This means, recoverable inventory built up during time period  

[     ] is depleted to support surplus demand over recovered cores in the time period 

[    ]. In conclusion, it is optimal to remanufacture all returns after yield, which is in 

accordance with structural property proposition 3. 
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Figure 2.3: Optimal total reman volume as a function of   and    

We can see from the plot that any deviation from the thresholds                
 and 

            , may either result in          , or lead to an imbalance of areas          

and               .  The result being the total volume of remanufactured parts comes down, 

leaving recoverable inventory at time  . To fix that, we present three scenarios discussed 

in propositions 4 and 5; i)                 
 and              , ii)                

 and 

             and iii)                
 and             .  
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Figure 2.4: Trajectory of optimal states and control variables at            and             
 

 

As can be seen from Figure 2.5, the serviceable inventory built up during the pre-launch 

phase is completely depleted well before   . Now,              means            

              , resulting in collection of more recoverable cores during the time period 

[      ] than required during the time period [      ]. Thus, it is not optimal to 

remanufacture all the recoverable service inventory, all in accordance with proposition 4.  

 Figure 2.6 shows that when                
, due to delay in the reman program 

launch, a bigger recoverable inventory is built up and before it could be exhausted 

completely, firm starts to operate at full capacity level,   
       . This imbalances the 
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desired equilibrium,                                   and thus resulting in         . 

Therefore, again it is not optimal to remanufacture all recoverable cores and is in 

accordance with proposition 4 of the structural properties. 

 

Figure 2.5: Trajectory of optimal states and control variables at              and 

                
 

 

But, if both   and    is increased simultaneously, as in proposition 5 of the structural 

property, from the threshold value, it is still optimal to remanufacture all recoverable 

cores. In this case, recoverable inventory built up during pre-launch would be non-zero at 

  . However, this inventory is used to compensate for the difference in the area  
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          and                in such a way that                                  . Figure 2.7 

shows this underlying scenario.   

 

Figure 2.6: Trajectory of optimal states and control variables at              and 

                
 

 

Next, we present the corresponding NPV associated with the optimal decision. Figure 2.8 

shows the optimal NPV surface. The optimal total cost is 2.17 x 10
7
 for  = 15,200 and 

  = 44. Please note here that this solution was found at a higher resolution in step of 10 in 

the interval   (14000, 16000). As expected, the optimal minimum is found in the region 

satisfying proposition 3 of the structural property. The optimal minimum suggests that it 
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is judicious decision is to delay the launch of remanufactured parts while satisfying 

               
. By delaying the launch, a strategic level of recoverable core inventory is 

built and thus needs of virgin parts are reduced after launch of remanufacturing program. 

Whereas, installing corresponding capacity level at            reduces otherwise high 

virgin serviceable parts inventory level needed after end-of the production cycle.  

 

Figure 2.7: Trajectory of optimal states and control variables at              and 

                
 

 

 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5

Time

Q
u

a
n

tit
y

 

 

v(t)

gam*v(t)

C

f
r
(t)

i
r
(t)

t
l

     

      

  

      

      

 



38 
 

 
 

 

Figure 2.8: The structure of the optimal NPV 

 

According to proposition 4, when                
, since capacity is less than the 

           that means manufacturing of more virgin parts, non-zero recoverable core 

inventory at  , and also virgin parts inventory will be held for longer period because    is 

shifted to the right. From cost perspective, although cost is saved by installing less 

capacity, but it doesn‟t compensate for increase in cost due to total manufacturing cost, 

total recoverable inventory holding cost and total serviceable inventory holding cost as 

compared to case in proposition 3. For case, when                
, all  costs is increased 

as in case                
, including more recoverable inventory at   because         .  
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For proposition 5, we have two options, one suggests remanufacturing all recoverable 

cores and other advocates it is optimal to produce less. In the first sub-case, in 

comparison to proposition 3, cost is incurred due to increase in total capacity cost and 

also pre-launch recoverable inventory holding cost. For second sub-case, cost is incurred 

as described for proposition 4.  Arguably cost incurred due to surplus recoverable 

inventory could have been reduced if we had considered disposal activity in our model. 

On the contrary, costs still have increased for all the cases as compared to proposition 3 

due to inclusion of disposal cost of surplus cores. It should be noted here that in the 

preceding analysis we kept all the parameters at nominal level otherwise it is trade-off 

between core holding cost vs. virgin part inventory cost vs. capacity installation cost. We 

will investigate this in next sub-section. 

 

2.4.2 Effect of Parameters on Optimal Time to Launch and Optimal Capacity 

In this section we will present the effect of each parameter-                   on  ,     

and %Rel.Savings. %Rel.Savings is calculated as follows:  

                
                    

       
       (23) 

Figure 2.9 presents the effect of    on optimal capacity, optimal time to launch and 

%Rel.Savings. We observe that for lower values of   , firm tends to install more capacity 

and time to launch is also delayed. We believe this is because of two reasons. First, at 

lower values of   , it is cheaper to hold larger recoverable inventory for longer period 

and then to capitalize on the high level of held inventory a larger capacity is installed. 

Secondly, after the end of the production, recoverable inventory substitutes for 
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serviceable inventory. Therefore, at lower values firm tries to minimize the needs for 

serviceable inventory after end of the production. Whereas, in case of higher values of 

  , as expected, time to launch shortens but surprisingly capacity increases. This can be 

attributed to fact that at higher values firm doesn‟t differentiate much between 

recoverable and serviceable inventory because cost associated is almost similar. Thus, it 

tries to reduce cost that might be incurred due to holding large recoverable inventory 

which can be done by launching earlier and installing more capacity so as to increase 

differences in equilibrium of areas. Figures also reveal an interesting qualitative result. 

The %Rel.Savings, first increases and reaches a peak and then decreases. For a small 

value of   , when it is optimal to carry a large recoverable inventory and capacity is less  

likely to be constrained, the %Rel.Savings is low due to high capacity cost. Whereas, for 

higher values, when there is not much of difference between recoverable and serviceable 

inventory, still due to increase in capacity cost %Rel.Savings decrease. It is also 

important to note here that when       , it is not optimal to remanufacture as 

%Rel.Savings becomes non-positive. This certifies our initial assumption regarding 

remanufacturing that for remanufacturing to be profitable     should be less than   .  

 Effect of    on optimal capacity, optimal time to launch and %Rel.Savings is 

presented in Figure 2.10.  It can seen from the figure that    doesn‟t much affect the 

decision related to time to launch and capacity except at very high value as compared to 

  . We believe for lower values, firm tries to maintain the equilibrium of areas. By doing 

so, it reduces two important costs which are incurred due to manufacturing and carrying 

serviceable inventory for longer duration. Whereas, for higher values, it picks maximum 
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possible capacity, so that there is no need of virgin parts at all after reman is launched. As 

mentioned earlier, to maximize the utilization at this capacity level, time to launch is 

increased so that a large recoverable inventory could be built. Figure 2.10 also presents 

the corresponding effect of    on %Rel.Savings.  

 

 

Figure 2.9: Effect of     on  ,    and %Rel. Savings (                      
                                                    

 

 

Results obtained are very intuitive in the sense that as    increases there is more and 

more value in doing the reman to reduce the costs that might incur due to carrying more 
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serviceable inventory. But, interesting dynamics for higher values of   , we can see from 

figure %Rel.Savings starts decreasing. In this case, firm tends to completely substitute 

serviceable inventory with recoverable inventory. However in doing so, capacity cost has 

increased resulting in less %Rel,Savings. 

 

 

Figure 2.10: Effect of     on  ,    and %Rel. Savings (                      
                                                     

 

 

Figure 2.11 presents the effect of    on optimal capacity, optimal time to launch and 

%Rel.Savings.  It is interesting to realize that    also doesn‟t affect the capacity decision 
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as long as remanufacturing is a viable option. On the other hand time to launch increases 

non linearly with increase in   . This can be understood in following manner. The cost 

associated with capacity is             and the objective is minimization. Thus, in 

order to offset the increase in   , length of interval        should be reduce and that can 

be only done by increasing   . In other words, firm tries to delay the launch as late as 

capacity cost increases. Though, we are not sure at this point of time that why capacity 

didn‟t decrease with increase in capacity cost. We are assuming that staying at 

equilibrium is more beneficial in terms of reducing the costs otherwise incurred due to 

recoverable and serviceable inventory holding cost. Given this argument, effect of    on 

%Rel.Savings is quiet straightforward as shown figure.  

 Figure 2.12 presents the effect yield percentage,   on optimal capacity, optimal 

time to launch and %Rel.Savings. With increase in     it is obvious that            will 

increase and    will decrease accordingly. We also found out that for yield percentage less 

than a value of 0.4, remanufacturing is not a viable option since the combined effect of all 

the costs surpasses the benefits of reman. Though, an interesting observation is that even 

if yield percentage as high as 80%, it is not judicious to start reman earlier. This suggests 

that firm is better of carrying more than required recoverable inventory than installing 

capacity any earlier. 
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Figure 2.11: Effect of    on  ,    and %Rel. Savings (                     

                                                     

 

Finally, we discuss the effect of durability, in terms of mean of residence time 

distribution,       . Change in durability affects in terms of the position of the mean, e.g 

if durability increases, most of the demand falls near or after end-of-production, thus 

judicious decision is to delay the launch of remanufactured parts. By delaying the launch, 

high level of core inventory is built. To take advantage of high level of core inventory, 

firm installs a high remanufacturing capacity level. As mentioned earlier, high level of 

capacity is advantageous from the perspectives that it helps in reducing the needs of 

virgin products after the end-of-production. On the contrary, relative cost increases 
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because total core inventory holding cost as well as capacity installation cost has 

increased. Thus, %Rel.Savings decreases.  

 

 
Figure 2.12: Effect of   on  ,    and %Rel. Savings (                       

                                                   

 

One important aspect of this study is what happens when the demand of services parts are 

stochastic instead of deterministic as considered so far. To investigate this, we introduced 

randomness in        and computed cumulative demand in each scenario. Figure 2.12 

shows the cumulative demand profile obtained for 100 runs for randomness value 0.6. 

Figure clearly reveals the tightness of demand profiles. Given this behavior, despite 
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randomness, we suggest that deterministic study is very much valid and sufficient enough 

to understand the underlying dynamics of capacity management.   

 

 
Figure 2.13: Cumulative stochastic returns with randomness in mean of 0.6 

 

2.5 Conclusion and Future Research 

In this chapter, we presented the drivers of optimal strategic capacity management for 

remanufactured products targeting aftermarket services. First, we analyzed properties of 

dynamic situation with regard to product life cycle and returns to establish optimal reman 

policy for aftermarket services. Then we presented an algorithm to compute optimal time 

to launch and overall capacity requirement given various costs and life cycle parameters. 
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We also presented the structural properties of the optimal reman policy and demonstrate 

how the optimal policy is a threshold policy in capacity and time to launch. Furthermore, 

we compared our solution with no remanufacturing scenario and established when it is 

optimal to reman.  

 Our analysis asserts that it is always optimal to delay the launch of 

remanufacturing program in order to build a strategic recoverable inventory. This helps in 

making the dynamics less supply constrained. But care should be taken in making such 

decision since it is a trade-off between recoverable inventory holding cost and potential 

relative savings. A high inventory holding cost decreases the profitability of 

remanufacturing, especially if it is stocked for future remanufacturing. We also found out 

that low cost of serviceable inventory of virgin parts doesn‟t affect decision regarding 

time to launch. This is because, at low cost, when there is smaller deviation from 

recoverable inventory holding cost, remanufactured units can imperfectly substitute the 

virgin parts. Thus, decision largely depends on the cost of holding recoverable inventory. 

But, at high cost of serviceable inventory, remanufactured units perfectly substitute virgin 

parts and remanufacturing becomes attractable. Though, firm also needs to take into 

account cost of capacity at high cost of serviceable inventory. For remanufacturing 

capacity level, it is not optimal to install maximum possible capacity. A capacity level 

should be selected such that it reduces the needs of serviceable inventory of virgin parts 

after end of the OE production run. In this study, we couldn‟t figure out why cost of 

capacity doesn‟t influence time to launch decision. Though, we presented a reasonable 

argument, but a better study needs to be carried out and thus subject of future research.
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 A number of possibilities exist for further research in this area. Though, we have 

shown that deterministic analysis is very powerful in realizing the important insights 

regarding effective reman program, yet a complete stochastic analysis could be very 

interesting and valuable. Further, we considered a single product environment; an 

extension of this work focusing in multi-product environment by analyzing joint 

distributions of the product returns are very much possible.  
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APPENDIX 

Proof of proposition 1 

The problem can be modeled as fixed-time problem with free right hand conditions. 

Introducing a new variable Z(t) 

                
 

  

                                         

Shifting    to origin, for simplicity, new limits are        

We obtain a new differential equation: 

                                                       

Rearranging terms, 

                                               

Let,                             

Now, model can be re written as  

         
      

Subject to  
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The auxiliary systems is given by  
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Let,              , where     is a fundamental matrix and    is a constant vector.  

           
 =  

       

                          
   

      

 

From the boundary conditions    can be determined as 

  =  
     

           

  

    
              

Therefore, the solution of the auxiliary system is 

     

          

                
                       

   

        
       

  

      

       

And the Hamiltonian may then be written as:  

             

  

  

 

  

 

After inserting    in   and after rearranging the term we find that 

   
                          )   maximum possible at time   

 maximizes the Hamiltonian  .  

At            , thus any surplus demand over instantaneous returns after yield       

can be fulfilled from recoverable core inventory      . Thus,    
                 . 
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Once all the recoverable inventory is depleted then at some time               only 

option is to process instantaneous returns      . But as we know maximum can be 

produce is   so    
                  . In case if              recoverable 

inventory again start building up when    
        and then depleted once demand falls 

below C. So summarizing results:   
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Chapter 3 : HAZARD RATE MODELS FOR CORE RETURNS FORECASTING IN 

REMANUFACTURING 

 

 

Efficient production planning is a very important lever of a profitable remanufacturing 

program at operational level. A production planning system for remanufacturing assists 

managers making decisions regarding disassembly, remanufacturing, manufacturing, and 

coordinating between disassembly and reassembly. Among various factors which affect 

the production planning, accurate estimation of core returns is an important input for an 

efficient planning. Nevertheless, the uncertainty in the timing and quantity of returns 

makes core returns forecasting a very challenging task in remanufacturing milieu.  

 As aforementioned in chapter 2, this research was also pursued on a request from 

a tier-1 automotive supplier engaged in OE production and also providing aftermarket 

services. Management was interested in improving the accuracy of their core forecasting 

method because the existing forecast method was too simplistic to capture the dynamics 

of core returns in the face of uncertainty in timing/location of return, return volume, 

quality etc. The particular interest was in understanding the dynamics of independent 

aftermarket (IAM) returns. IAM core returns is more challenging than original equipment 

services or warranty claims because of increased uncertainty in the returns. Unlike the 

OE service setting, the trade in process is often not initiated with the receipt of a core but 

with an order. The setting is as follows. Supplier receives orders for reman parts from a 

number of automotive aftermarket parts retailers/distributors (e.g., NAPA), OE service 

and parts operations organizations (e.g., GM SPO), and large dealers, referred to here 

upon as the “customer”. In shipping the order, the supplier imposes a “core charge” on 
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the customer, a debit that will be credited to the customer upon receiving the defective 

part or the “core”. The supplier issues a return material authorization (RMA) in shipping 

the order, to facilitate return shipment of cores. Efficient production and inventory 

management of reman parts for the supplier heavily impinges on the ability to accurately 

forecast these core returns from customers (besides forecasting demand for reman parts 

and securing cores from the open market, as necessary). There are several challenges to 

this, including, the volume and diversity of customers, differences among individual 

customer warehouses in returning cores, large reman product catalog, changing customer 

behaviors (often improving core return delays), and data sparsity.  

 In this chapter, we have reported the evidence for the effectiveness of hazard rate 

regression models to calculate return delay distribution in the context of remanufacturing. 

We extensively studied various types of hazard rate modelling technique (e.g., 

parametric, semi-parametric etc.) and its appropriateness. Further, we described various 

approaches when underlying proportionality assumptions is violated or when there is 

time-varying effect of covariates or there is randomness in one of the covariates. To the 

best of our knowledge, no existing literature has explored all these issues in context of 

returns modelling for remanufacturing. 

Rest of the chapter is organized as follows: Related literature is presented in section 3.2. 

Proposed framework is discussed in section 3.3. A real world case study is presented in 

Section 3.4. Results and discussion have been presented in section 3.5. Finally, 

conclusion and future research in section 3.6. 
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3.2 Literature Review  

Over the last two decades, there has been significant research in the area of 

remanufacturing and reverse logistics. Guide (2000) carried out an extensive survey of 

reman literature and identified future research needs. Based on existing literature, he 

divided reman research into five broad categories: forecasting, reverse logistics, 

production planning and control, inventory control and management, and general. 

Further, he identified seven complicating characteristics that complicate the production 

planning and control activities of reman industry: 1) the uncertain timing and quantity of 

returns, 2) the need to balance returns with demands, 3) the disassembly of returned 

products, 4) the uncertainty in materials recovered from returned items, 5) the 

requirement for a reverse logistics network, 6) the complication of material matching 

restrictions, and 7) the problems of stochastic routings for materials for remanufacturing 

operations and highly variable processing times. In recent years, the last four 

complication categories have been addressed extensively ( Aras (2008), Barba-Gutierrez 

(2008), Inderfurth (2004), Krikke (2008), Li (2009), Takahashi (2007), Tang (2005), 

Wang (2007)). Since, our research focus here will be on the first complicating 

characteristic; forecasting, we encourage readers to refer a recent survey by Ilgin and 

Gupta (2010) for research in the other categories.  

 Toktay et al. (2000) presented the role of forecasting in managing product returns 

and argued how predicting returns influences decision at strategic, tactical, and 

operational levels. They also quoted that there are only few documented business 

examples dealing with forecasting in reverse logistics. Ilgin and Gupta (2010), reiterate 
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this statement by citing only eight notable publications. However, most of these 

publications assume that the core return probability is known in advance (e.g., Goh & 

Varaprasad (1986), Kelle and Silver (1989))  

 Most of the extant literature exploited the fact that future returns are a function of 

past sales. Goh & Varaprasad (1986) are credited for being the first to develop such a 

model. They propose a transfer function model to estimate return quantities of Coca-Cola 

bottles in Malaysia and Singapore markets using Box-Jenkin‟s time-series techniques to 

compute life-cycle parameters. Kelle and Silver (1989) proposed four forecasting 

techniques based on available information sets to estimate the “net demand” during lead 

time of reusable containers.  As noted earlier these models assumed that returns are 

Poisson with known rate. To overcome this limitation, Toktay et al. (2000) considered a 

queuing network based approach to achieve an optimal ordering policy for Kodak‟s 

single use-camera. The model utilized a Bayesian estimation and expectation 

optimization approach to forecast returns in a trackable as well as untrackable case. 

Although, their method doesn‟t require known return rate but makes assumption 

regarding the shape of lag distribution.  

 Aforementioned methods used past sales and return data to forecast returns. Hess 

and Mayhew (1997) employed split adjusted hazard model and time regression to model 

merchandise return in direct marketing. They incorporated explanatory variables in their 

regression. Marx-G´omez et al. (2002) develop a fuzzy inference system for the 

forecasting of returns. Their model included demand, life cycle parameters, and return 

incentives with the fuzzy rule-base developed from prior expert knowledge. 
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 The extant literature offers a few returns forecasting models but these models are 

simply not practical for many suppliers, such as our collaborator Delphi Product & 

Service Solutions, a sub-division of Delphi Corporation that provides replacement parts 

and services to the automotive aftermarket, because: 

1. Virtually all these models are applicable for forecasting returns of 

individual products/SKUs 

2. The historical data is simply too sparse to facilitate modelling and 

calibration of models for individual SKUs.  

3. Makes one or other assumption based on expert/prior knowledge (e.g., 

return rate is known or shape of lag model is known). 

Thus, it becomes imperative to build effective and efficient models for forecasting core 

returns in the automotive IAM, from the perspective of a Tier-1 automotive parts 

supplier.  

 One of the most interesting characteristics of returns data is right-censoring, 

which means at any given time only a fraction of returns is observed whereas rest of them 

are outstanding, and thus requires analysis of duration time. Typically, an analyst tends to 

achieve three modeling objectives while investigating duration time data (Helsen and 

Schmittlen 1993): effects of covariate, dynamics of duration, and duration time 

forecasting. They also listed short-comings in conventional modeling approaches 

(duration time regression, logit, probit etc.) as follows: 

1. Use of duration time regression in the face of censoring may lead to biased 

estimates of the covariate effects; 



60 
 

 
 

2. Time regression and logit/probit models are inappropriate when there are time 

varying covariates; and 

3. In case of probit/logit models, for predictions, time intervals should be integer 

multiples of censoring times. 

Literature suggests (Gupta 1991, Jain and Vilcassim 1991, Helsen and Schmittlen 1993) 

that hazard rate regression models can overcome the above listed shortcomings while 

achieving all three objectives within a single tractable class of duration time models. 

Further, Helsen and Schmittlen (1993) established that hazard rate regression models 

outperform conventional procedures (e.g. duration time regression, logit, probit etc.) in 

terms of stability of the estimates, face validity of parameter estimates, and predictive 

accuracy.  

 

3.3 The Modelling Framework  

As stated earlier, core returns can be modeled using duration time modeling within a 

single tractable class of hazard rate models. This section provides a brief overview of 

hazard rate models. 

 Let         denote the hazard rate at time t for an individual having covariate 

values                 at time t.  Thus, the covariate values may vary over time for 

any individual. This hazard rate is assumed to take the form  

                       (1) 

Where    indicates the effect of covariate     on the hazard rate, and       is the baseline 

hazard function. Thus the model has two multiplicative components. The first,      , 
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captures the longitudinal regularities in duration time dynamics. The second,        , 

adjusts       up or down proportionately to reflect the effect of the measured covariates. 

In light of this proportional adjustment of the baseline hazard rate, estimation of the   -

vector in (1) is termed proportional hazards regression (PHR).  

 In most applications   is formulated as an exponential function:  

                                                         
      (2) 

Which renders the estimation of   easier, given that no constraints need to be imposed to 

ensure non-negativity of  .  

 

3.3.1 Semi Parametric Modelling (Cox-proportional Hazard rate model) 

 Cox proportional hazard model is one of the most widely used tools in survival analysis. 

It gained a lot attention of researches since its development in 1972 due to its efficiency 

and flexibility. This could be attributed to semi-parametric nature of the model which 

doesn‟t make any special assumption regarding the distribution of failure occurrence also 

know as baseline hazard function. Cox‟s major contribution was to suggest an estimation 

technique- partial likelihood to purely estimate regression coefficients  , allowing for a 

general hazard function as nuisance parameter. He also suggested that this can result in 

slight loss of information about . Efron (1977) and Oakes (1977) provide evidence 

indicating that maximizing the partial likelihood results in very efficient estimates of  . 

Tsiatis (1981) shows that under general conditions the partial MLE is consistent and 

asymptotically normal. 
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 For duration time processes, the usual ("total") likelihood has as the event of 

interest the fact that individuals   s duration time (i.e., the random variable    took on the 

observed value         for individuals              The partial likelihood also focuses 

on the observed durations         , but considers them in a different way. Imagine that 

individual i has an uncensored duration       . At this duration time  , a number of 

other individuals were "at risk," i.e., had not yet experienced the duration event (the "risk 

set"). Of all those at risk, individual   , is the one who actually experienced the duration at 

 , and it is this selection event that the partial likelihood considers. Thus, the partial 

likelihood is the likelihood that individual   is the one, of those at risk, who has the 

duration of  , given that someone is known to have a duration of  .  

 Since the hazard rate      measures the likelihood of the duration event 

happening at   for those who have made it up to time   without experiencing an event, 

this rate deter-mines the odds of selection in the partial likelihood for each individual at 

risk. Thus, for an observed time   at which individual   experiences a duration (     ), 

the partial likelihood that this duration indeed happened to individual   (and not to one of 

the other individuals at risk) is 

                                                           
     

       
    
   

   (3) 

Where      is the number of individuals at risk at  , and these individuals are denoted 

        . Substituting the proportional hazards model (2) in (3) yields  

                
      

    

       
         

   

  (4) 

for which the longitudinal effect       cancels, leaving  
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  (5) 

 The partial likelihood estimate of is obtained by maximizing the product of 

expression (4) over all observed duration times. Note that, unlike the usual duration time 

regression models, the right-censored observations do enter the partial likelihood (5), i.e., 

these individuals, each having some covariate vector     were at risk at   but did not 

experience the duration. The information in this event relevant for the response 

coefficient is appropriately taken into account in (4). To summarize, the only thing 

"partial" about the partial likelihood is in the event it chooses to model. The total 

likelihood is concerned with the total duration event, i.e., "When will the duration occur 

for each individual?" The partial likelihood considers only part of the total duration 

event, namely, "Given that a duration occurred to someone at a specific time, which 

individual, of those still at risk, experienced it?" Since the answer to this latter question 

hinges on the relative riskiness of various individuals all measured at the same duration 

time, it comes as no surprise that the longitudinal effects       drop out in (3), leaving 

(4) dependent only on the desired response coefficients 1. 

 Cox-model has gained popularity because it works well in practice. Practitioner 

believes that in process of considering possible models, Cox model should always 

considered as an option. This is attributable to the flexibility of the model which only 

requires proportional hazard assumption. It has also been established that Cox model is 

reasonably robust to modest departure from proportional hazard. Further, in many cases 

variables can be transformed to show approximate proportional hazard (discusses in 

section 5.3).  
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3.3.2 Parametric Modeling 

Parametric models assume that base-line hazard function;       follows known 

functional form, e.g.: Exponential, exponential, logistics etc. Computationally, biggest 

advantage of parametric model is, one can use full maximum likelihood to estimate the 

parameters. This in turn provides meaningful estimate of effects. Parametric models are 

better choice if modeller has better knowledge of the aging process. In literature, 

researchers always caution the use of parametric model since most of the time prior 

knowledge is not always available. But, this does not rule out the option of comparing 

parametric models against semi-parametric models.  

 

3.4 Case Study 

To establish the empirical performance of the proposed framework, we tested it on IAM 

return data of an engine control module (ECM).  Electronic Control Modules are 

subsystems consisting of CPUs and assorted signal inputs and outputs dedicated to 

controlling a component within the vehicle. They range in complexity from an Engine 

Control Unit which handles the logic for managing the power-train system efficiency, to 

an Anti-lock Braking (ABS) Control unit that monitors vehicle speed and brake fluid, to a 

simple body module that controls the automatic door locks or power windows (National 

Instruments).  
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3.4.1 Data   

Data was collected over span of few years for 100‟s of parts and some 30 customers. 

Dataset consisted of customers, parts, shipping dates and return dates. Preliminary data 

cleaning reveals that there were many customers who never returned any parts back. 

Also, in some of the cases customers only did business for very small time period. Thus, 

for further analysis we only considered customers who returned at least 10 products.  

Figure 3.1 shows history of core return delays for a Delphi Product Family. The time-

axes have been modified throughout this document for reasons of confidentiality
3
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 History of Core Return Delays for a Delphi Product Family (Source: Delphi).  
Note: Red line at -45

0
 slope denotes censoring time (i.e., date for termination of data collection). 

 

 

                                                           
3
 http://www.ni.com/ 

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200
Date of Product Shipment, Ds

C
o

re
R

e
tu

rn
 D

e
la

y
, 
D

R



66 
 

 
 

3.4.2 Nomenclature  

This section provides necessary nomenclature to facilitate duration modelling in an IAM 

setting. In this case, we have used right censoring for truncation.   

DA: Census Date 

DS: Shipment Date 

DR: Day product was returned (if it is returned) 

R: If product is returned it is 1 else 0 

T: It is defined as time since DS until DR or DA, depending on returned or not 

Pi: Products, i=1, 2, 3 … 

Ci: Customers, i=1, 2, 3 … 

Now, we can construct a hazard rate model with set of covariates X = [P, C], and 

dependent variable T with censoring R. Mathematically,  

                
            (6) 

 

3. 5. Results and Discussion
4
 

In this section we present results of the numerical case study. First we discuss the 

estimates of the covariates for parametric and semi-parametric hazard rate models. Then, 

we show the validity of the underlying models in the face of stability, efficiency and 

                                                           
4
 All these experimentation were done using Survival package in Software R (http://cran.r-project.org/). For 

time-by-covariate interactions, we used COXPHF package  

(http://www.meduniwien.ac.at/msi/biometrie/programme/fc/) 



67 
 

 
 

predictive performance. Finally, we discuss how to pursue modelling using extended Cox 

ph models when proportionality assumption is violated.  

 

3.5.1 Parameter Estimates  

To assess the suitability of parametric modelling, we chose widely known parametric 

proportional hazard model-Weibull; whereas, Cox proportional hazard rate model for 

semi-parametric modelling. First requirement was to ensure the effect of covariates.  

Our initial analysis revealed that none of the products were statistically significant from 

each other. Thus, we assumed that all products are identical and chose customers as only 

covariate for the modelling.  Table 3.1 summarizes the results obtained. Results indicated 

that both model have monotonically increasing hazard rate. Monotonically increasing 

hazard rates seems highly intuitive since we are modelling return- likelihood of return of 

a product increases with elapsed time. Statistically, both models are very significant with 

p-values at 0. Also, individual estimates for each customers obtained are highly 

significant. Further, the sign of coefficients explains the returning behaviour of a 

customer- positive value depicts that customer makes faster returns and vice-versa. 

Expected return behaviour of customers is shown in figure 3.2. It was surprising to 

realize, in case of most of the customer, that instead of returning core back after receiving 

a shipment from supplier immediately; customer tends to delay it infinitely. A possible 

reason seems to be that rather than trade-in, customer wants to stock the parts to handle 

stock-out situation. Other reasons could be a core-collector is buying it at high price than 
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supplier. Owing to such explanations monotonically increasing hazard rates seems highly 

plausible.   

Table 3.1 Covariate Estimates 

 

 Weibull Cox 

 Coef se p Coef se p 

Intercept -6.121 0.0492 0.0000 NA NA NA 

Customer 2 -0.497 0.2245 0.0270 -0.73717 0.29604 0.0128 

Customer 3 -0.401 0.1514 0.0082 -0.53514 0.20002 0.0075 

Customer 4 -0.1 0.0671 0.1340 -0.17991 0.08874 0.0426 

Customer 5 -0.537 0.1349 0.0001 -0.72724 0.17633 0.0000 

Customer 6 0.228 0.0709 0.0013 0.29824 0.0936 0.0014 

Customer 7 0.309 0.1036 0.0029 -0.31279 0.13717 0.0226 

Log(Scale) -0.278 0.0277 0.0000 NA NA NA 

 Loglik      -6298.9 R
2
      0.049 

 

 

3.5.2 Validation  

In this section, we present various performance measures to establish validity of these 

models. Readers should note here that our intention is to present validity of these models 

within single tractable class of duration time models in modelling returns -proportional 

hazard rate models. We are not promoting the use of one model over other. This is 

because direct comparisons of these models are not fair, since: 1) parametric model is 
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based on event times whereas Cox‟s model is based on rank of event times; 2) scales of 

the parameters may differ. Thus, all the comparative study presented in this section is to 

show suitability and relative performance of the models. We divided our validation 

process in two parts- 1) Stability of the estimates, and 2) Predictive performance of the 

models.  

 
Figure 3.2 Expected return behavior of customers using Cox‟ model 
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3.5.2.1 Stability and Efficiency of the Estimates 

To check the stability of the estimates, we referred to methods proposed by Krsitiaan and 

Helsen (1993). In their work, they considered two samples from different market as 

calibration and validation dataset. Since, in our case we do not have two different dataset 

thus, we considered these samples: 1) Complete-dataset (I), 2) 50% of complete dataset 

as Calibration-dataset (II), and 3) rest of the 50% as Validation-dataset (III). One should 

note here that taking a totally random sample may compromise uniformity, since we have 

returns as well as non-returns. So, in order to retain uniformity across samples, we 

considered 50% of returns and 50% of non-returns for each calibration and validation 

samples. We re-estimated all the models for calibration and validation dataset. To 

evaluate the relative efficiency of the estimates, we evaluated standardized measures of 

variability, SV (= σβ/|β|), for all the models on all the samples. SV is analogous to the 

coefficient of variations, where cases with parameter estimates close to zero are 

emphasized (Nardi and Schemper, 2003).  

 Table 3.2 presents the estimated coefficients and SV’s (in parentheses) for each 

sample for both models. Table 3.2 shows incredible performance of the models in term of 

stability of the parameter estimates. There is remarkable consistency (ignoring minor 

discrepancies) between calibration and validation dataset (Only notable discrepancy in 

case of customer 2 where departure is as high as 10% for both the models). More 

interestingly, there is very small departure from estimates obtained from complete dataset 

versus calibration and validation dataset (mostly less that 5%). Also, there is no change in 

the sign of coefficients. This dictates the suitability of proportional hazard rate models for 



71 
 

 
 

modelling returns from the standpoint of stability of the parameter estimate, even when 

sample size was reduced to 50% of original sample.  

Table 3.2 Estimated Coefficients and standardized measures of variability (I: Complete 

dataset, II: Calibration-dataset, III: Validation-dataset) 

 

 Weibull Cox 

 I II III I II III 

Customer 2 -0.497 -0.5199 0.471 -0.73717 -0.7735 -0.7115 

 (0.45) (0.62) (0.67) (0.40) (0.54) (0.59) 

Customer 3 -0.401 -0.3448 0.455 -0.53514 -0.49 -0.6129 

 (0.38) (0.63) (0.47) (0.37) (0.58) (0.46) 

Customer 4 -0.1 -0.0619 0.136 -0.17991 -0.1363 -0.2281 

 (0.67) (1.55) (0.69) (0.49) (0.92) (0.55) 

Customer 5 -0.537 -0.5286 0.545 -0.72724 -0.6815 -0.7807 

 (0.25) (0.36) (0.35) (0.24) (0.37) (0.32) 

Customer 6 0.228 0.2262 -0.231 0.29824 0.3171 0.2813 

 (0.31) (0.45) (0.43) (0.31) (0.42) (0.47) 

Customer 7 -0.309 -0.2946 0.323 -0.31279 -0.2914 -0.3487 

 (0.34) (0.50) (0.45) (0.44) (0.67) (0.55) 

 

 

To compare relative efficiency of the models, we compared SV’s of parameter estimates. 

One can easily see in most of the cases (4 out of 6 for every sample) Cox‟s model SV‟s 
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were closer to zero as contrast to Weibull model. Thus, in relative sense we can conclude 

that Cox‟s model performed better than Weibull based on standard measures of 

variability.   

 

3.5.2.2 Predictive Performance of the Models 

We compared different model‟s prediction with observed returns. In order to facilitate 

these comparisons we considered two performance measures: hit rates (Krsitiaan and 

Helsen, 1993) and mean square errors (MSE) in forecast.  

 Hit rates can be defined as percentage of returns correctly classified. To calculate 

hit rates, we require hazard rate model forecasts for median duration and observed return 

for median duration. Hazard rate model forecasts for median duration implies, 

computation of time point at which the survival function drops below 0.5 and then 

interpolating linearly to produce forecast for median duration.  Table 3.3 presents hit 

rates for both models for all the samples. For Cox‟s model hit rates are as high as 90%. 

Cox‟s model performed remarkably well as compared to Weibull model. This difference 

can be better understood by analyzing survival plot for base-line for both the models 

(Figure 3.3). One can easily see that Cox‟s model tries to fit to the data better due its 

flexibility as compared to Weibull with rigid structure.  

Next, we considered mean square error in forecast. To achieve this objective, Data set is 

divided into 5 time period. The same procedure, as used to predict forecast for mean 

duration, can be used to generate forecasts for each time-periods. In this scenario, we will 
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compare number of estimated returns with observed returns for each time periods. Table 

3.4 presents the overall MSE of forecast for each model for each customer. Overall, 

Cox‟s model performed better than Weibull.  

 In conclusion, for this particular case study, we can conclude that Cox model 

performed better than Weibull.  

Table 3.3 Hit Rates 

 

 Hit Rate 

 Weibull Cox 

I: Complete dataset  67.63  91.29 

II: Calibration-dataset 66.28 91.09 

III: Validation-dataset 68.31 91.46 

 

Table 3.4 Mean Square Error (MSE) in Forecast 

 

 Weibull Cox 

Customer 2 2.52 2.48 

Customer 3 7.10 3.35 

Customer 4 10.21 9.41 

Customer 5 12.57 13.40 

Customer 6 6.22 4.51 

Customer 7 1.44 2.24 
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Figure 3.3 Baseline Survival Plot 

 

3.5.3 An Important Note 

One valid question arises, why for some of the customers Cox‟ model is better and for 

some Weibull? According to Cox and Oakes (1984), if there is strong time trend in 

covariates, a parametric model yields more efficient parameter estimates than Cox‟ 

model. To check time trend in the covariates, we performed Schonfeld residual test. Test 

revealed that there is evidence against proportional hazard for some of the customers, 

though there was modest departure from proportionality. Since, proportional hazard 

assumption is unclear; we performed Cox‟s model with time-by-covariate interaction fit 

for the data. Time-by-covariate interactions can be captured by simple monotonic 

function of time (Lehr and Schemper 2007). Mathematically,  
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Where,     : t, log(t) 

 Table 3.5 presents the estimate obtained by time-by-covariate interactions. 

Although all the statistical tests are significant but parameter estimates are not easily 

interpretable. To better understand the dynamics let‟s consider customer 5 and different 

time-periods described earlier. Figure 3.4 presents effective β(= -49.80+7.36*log(Ds)) 

for each time-period. One can easily see for the first three time periods likelihood of 

return is almost zero but in last time period it became almost comparable to customer 6 

estimates from regular Cox‟s model. This is because customer 5 started business with 

supplier in 5
th

 time period. Regular Cox or Weibull model can only estimate average 

effect of baseline when there is no other information available. While, time-by-covariate 

interaction can capture the time dependent effects of covariate along with average effect 

of baseline.  

Table 3.5 Estimates- Cox with Time-by-Covariate Interaction 

 

 Coef se p 

Customer 2 10.29 4.9628 0.0000 

Customer 3 1.44 1.0278 0.0023 

Customer 4 0.96 0.9792 0.00 

Customer 5 -49.80 9.3076 0.0000 

Customer 6 -0.26 0.6486 0.0000 

Customer 7 -0.20 0.5363 0.6890 

log(Ds) -0.10 0.0885 0.2802 
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Customer 2:log(Ds) -1.86 0.8484 0.0000 

Customer 3:log(Ds) -0.36 0.2016 0.0290 

Customer 4:log(Ds) -0.186 0.1643 0.0000 

Customer 5:log(Ds) 7.36 1.3952 0.0000 

Customer 6:log(Ds) 0.10 0.1090 0.0000 

Customer 7:log(Ds) -0.07 0.0976 0.4974 

 

 

 
 

Figure 3.4 Effective β for different time periods 

 

 Other possible explanation, for deviation from proportional hazard, could be some 
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0.198. Although our initial experiments suggested that products (by itself) were 

statistically insignificant, but its random effect is highly significant. Further, R
2
 value 

increases from 0.049 to 0.151. Given the significant random effect attributable to 

products and the insignificance of products as fixed covariates within the hazard rate 

model, we should investigate the possibility to incorporate product attributes, such as 

product size, weight, core deposit, and demand etc., to improve model fidelity and 

explanation power. Table 2.6 presents the estimates obtained using frailty models. 

 

Table 3.6 Cox with Random Effect (Frailty Model) Estimates 

 

 Coef se p 

Customer 2 -0.832 0.3012 0.01 

Customer 3 -0.676 0.2049 0.00 

Customer 4 -0.152 0.0936 0.10 

Customer 5 -0.523 0.1829 0.00 

Customer 6 0.275 0.1018 0.01 

Customer 7 -0.213 0.1489 0.15 

Frailty(Product)   0.00 

Variance of random effect  0.198   

R
2
  0.151  

 

 Indeed, time-by-covariate interaction model was able to explain the dynamics 

better than other models (considering customer as only covariates) but, from 
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computational complexity point of view other models were far more superior. This is 

because, with time-by-covariate interactions, there will be a baseline hazard rate for every 

time stamp. Thus, choosing one of these models is trade-off between computational 

complexity and degree of accuracy one is intend to achieve. In our case, Cox‟s model 

performed satisfactory (ignoring modest departure from proportionality) to meet the 

requirements.  

 

3.6. Conclusions and Future Work 

This research presents a unified approach for modeling returns in an automotive 

independent aftermarket setting. It helped in understanding the customer behaviour, 

which tends to be attracted by the open-market deals or try to stock the products instead 

of trading. Results are also beneficial when suppliers are planning to kick-off new reman 

product in the market. Further, based on our insights, products attribute can bring more 

robust and promising results than just considering products by itself.   

 A range of hazard rate models has been presented to facilitate returns modelling. 

This research does not try to advocate one type of models over other since it depends on 

experts/analysts discretion what he is trying to achieve. For our analysis, we found Cox‟s 

model sufficient enough to meet our requirements. We reiterate the flexibility and ease of 

use of Cox‟ model were outstanding. Although, we modeled a particular setting but 

presented model is capable of achieving higher level of scalability and can easily be 

replicated in any industry.  
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Chapter 4 : CONCLUSION AND FUTURE RESEARCH 

 

Over the last few decades, OEMs and suppliers have realized that there are tremendous 

opportunities to engage in remanufacturing business to improve profitability and 

sustainability. However, efficient management of remanufacturing program is known for 

its complexity. This is mostly attributed to limited visibility in reverse logistics systems. 

Our collaboration with one of the tier 1 supplier indicated that there is lack of a structured 

and holistic decision support framework, which can guide firms in decision making 

related to timing the launch of the remanufacturing program, capacity 

installation/management etc. Further, efficient production and inventory management of 

remanufacturing parts for the supplier heavily impinges on the ability to accurately 

forecast these core returns from customers (besides forecasting demand for 

remanufacturing parts and securing cores from the open market, as necessary). Based on 

request from our collaborator and existing gaps in related literature survey, this research 

has proposed an integrated decision support framework for remanufacturing in 

aftermarket services. Though, focus of this thesis is mainly on automotive aftermarket 

services but models introduced are robust enough to fit in most of the remanufacturing 

environment.  

 In this research, we have tackled two interrelated problems of reman program at 

strategic and operational level. At strategic level, we have studied the capacity 

management in launch of reman program for aftermarket services. This objective requires 

making decision on optimal time to launch of the reman program and overall capacity 
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requirement. The pre-requisite of this objective is to first compute an optimal reman 

policy given a time to launch and capacity level. To pursue this, we have analytically 

derived optimal reman policy by minimizing total cost associated with reman. Our 

analysis revealed that in the presence of supply and capacity constraint, the optimal 

reman policy is a threshold policy in time to launch and capacity. This suggests that if 

time to launch and capacity is not in the range of their respective threshold values, it is 

not possible to reman all returns. Thus, total cost associated with reman program will be 

higher since firm couldn‟t exploit the option of remanufacturing all collected returns. 

Given optimal policy, it becomes evident that there exist an optimal time to launch and 

optimal capacity level for a reman program. To compute optimal time to launch and 

capacity level, we proposed a heuristics solution method to minimize the discounted cash 

outflow given an optimal reman policy. We found out that it is always in the best interest 

of the firm to delay the launch of a reman program to build a strategic recoverable 

inventory. Regarding capacity, most of the existing literature assumes that there is 

enough capacity level available for remanufacturing. On the contrary, our analysis 

suggests that it is not always optimal to install maximum capacity level. Working at 

maximum capacity level is only beneficial if reman program commences after end of the 

regular production. In that case, a high level of strategic inventory is built thus reman is 

not supply constrained. Further, we extensively studied the drivers of cost-effective 

remanufacturing in terms of various cost, product and life cycle parameters. Following 

are the specific contributions of our study at strategic level: 
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(i) This is the first study that systematically accounted and explicitly modeled reman 

policy, time to launch and capacity level within a single modeling framework. 

Most of the prior research focused on evaluating these decisions disjointedly.  

(ii) We exploited the fact that each return generates demand for an aftermarket 

service parts due to trade-in process. Thus, demand for aftermarket service parts 

is same as core returns.  

(iii) An optimal reman policy is obtained analytically using pontygrain maximum 

principle.  

(iv) A heuristics solution algorithm is formulated to obtain the time to launch and 

capacity. Previous study in computation of time to launch did not account for 

optimal capacity level (Kleber, 2006). They assumed that there is sufficient 

capacity to reman most of the returns.   

(v) We have analytically derived the structural properties of optimal reman policy in 

presence of both supply and capacity constraints.  

(vi) A closed-form expression for threshold value of time to launch and capacity is 

accomplished in this study.  

(vii) Sensitivity analysis revealed many managerial insights important in achieving 

cost-effective reman program.  

(viii) Finally, our analysis of stochastic returns revealed that underlying deterministic 

analysis is very robust and efficient in capturing most important drivers of 

remanufacturing for aftermarket services.  
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At operational level, we studied the core-returns forecasting in remanufacturing. Most of 

the extant literature dealing with returns forecasting typically assumed that probability 

distribution of returns is already known. Furthermore, models were simply not practical 

for many suppliers, such as our collaborator, because the historical return data was 

simply too sparse to facilitate modelling and calibration of models for individual SKUs. 

Additionally, there were several challenges to this, including, the volume and diversity of 

customers, differences among individual customer warehouses, large remanufacturing 

product catalogue, and changing customer behaviours (often improving core return 

delays with time). To overcome these complications, we proposed an integrated 

modelling framework that relies on products and customers among others as covariates 

for forecasting returns among product families within a single tractable class of duration 

modelling.  

In this thesis, we have reported the evidence for the effectiveness of hazard rate 

regression models to calculate return delay distribution in the context of remanufacturing. 

We extensively studied various types of hazard rate modelling technique (e.g., 

parametric, semi-parametric etc.) and its appropriateness. Further, we described various 

approaches when underlying proportionality assumptions is violated or when there is 

time-varying effect of covariates or there is randomness in one of the covariates. To the 

best of our knowledge, no existing literature has explored all these issues in context of 

returns modelling for remanufacturing. Furthermore, we also provided valuable insights 

based on our analysis regarding customer behaviour and made necessary 
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recommendation for firms in aftermarket remanufacturing business. Following are the 

specific contributions of our study at operational level: 

(i) We studied the effectiveness of hazard rate models in context of automotive 

remanufacturing targeted for independent aftermarket. 

(ii) Parametric, semi-parametric and extended Cox proportional models have been 

exploited in modeling core returns within a single tractable class of duration time 

modeling.  

(iii) For our analysis, we realized semi-parametric, Cox proportional hazard rate 

model, is powerful enough to understand the dynamics of IAM.  

(iv) Results obtained from extended Cox proportional hazard rate model revealed two 

important characteristics:  

a. There is a time-varying effect of covariate and thus a time-by-covariate 

interaction is more appropriate approach to model IAM data. However, 

we showed that time-by-covariate interaction is very complicated 

modeling technique, thus selection models should be based on the trade-

off between accuracy vs. complexity. 

b. There is randomness due to covariate which is captured by 

implementation of covariates model.  

(v) Based on our analysis, we made following recommendations: 
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a. Instead of trading in core, customer tends to stock the product to handle 

any stock-out situation.  

b. Customer is attracted the open-market deals on cores. Thus, firm needs to 

build a better incentive mechanism which can encourage customer to 

return the cores. 

c. Frailty model suggested that there is randomness in the process because 

of the product. Thus, there is opportunity of incorporating product 

attributes, such as product size, weight, core deposit, and demand etc., to 

improve model fidelity and explanation power. 

4.1 Future Research 

The undertaken research is a very first step in building integrated decision support 

framework for remanufacturing while catering needs to real world problem. Here, we 

briefly discuss a few potential areas that are worth exploring: 

(i)  Our research study was focus on development of new facilities for a single 

remanufactured product. Since, product development and production and 

introduction are continuous process, it is important to incorporate the product 

portfolio instead of a single product analysis. Our research can be used as a 

starting point for such studies.  

(ii) We focused on making one time decision regarding capacity and assumed with 

time elapsed the investment can be considered as a sunk cost. But, typically, 

capacity management considers capacity expansion and contraction based on 
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market response. Thus, it is worth exploring dynamic capacity management in 

context of remanufacturing program.  

(iii) We considered the OES and IAM jointly with 100% service level. Generally, 

100% service level constraint is not very valid assumption. Thus, explicit 

modeling of IAM could be more insightful in considering remanufacturing 

program for IAM. More explicit model should be able to answer questions such 

as; should firm launch remanufacturing program for independent aftermarket, 

should firm operate at full capacity or capacity contraction is more attractive etc.  

(iv) One important cost which undertaken research completely ignored is the cost of 

disposal. We believe that there is some value in incorporating disposal cost in the 

model. However, to account disposal, more sophisticated modeling is required.  

(v) In order to increase the explaining power and fidelity of the models for core-

forecasting, product attributes can play a significant role.  

(vi) A new avenue for research in aftermarket services can be development of better 

incentive mechanism to encourage customer for quick returns.  
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In today‟s global economy, firms are seeking any and every opportunity to differentiate 

from competitors by reducing supply chain costs and adding value to end customers. One 

increasingly popular option, under growing consumer awareness and increasing 

legislation, is to reintegrate returned products into the supply chain to achieve economic 

benefits as well as improve sustainability. An important class of such “reverse” goods 

flows has to do with remanufacturing (reman), which refers to activities that restore 

returned products (“cores”) or their major modules to operational condition for using in 

place of new product or distributing through other channels (e.g., spare parts). While 

opportunities abound, some key complications reported in the literature include: 1) 

difficulty in timing the launch of reman product (while accounting for uncertainties 

associated with product life-cycle demand and core supply), 2) difficulty with capacity 

planning for remanufacturing (while accounting for the fact that volumes can be low and 

that facilities/lines should target multiple product families for economies of scale), and 3) 
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operational difficulties in maintaining efficiencies in production planning and control of 

remanufacturing activities. These difficulties are mostly attributable to limited visibility 

and higher levels of uncertainty in reverse logistics (in comparison with forward 

logistics). Despite advances in the remanufacturing literature in the last two decades 

(both in the academic literature and practitioner community), there is no integrated 

decision support framework that can guide companies to successful launch and execution 

of remanufacturing operations. This is particularly true for companies that engage in both 

original equipment (OE) service as well as the independent after-market (IAM) in the 

automotive industry. This research aims to address these limitations by developing a 

decision support framework and necessary models for effective remanufacturing in the 

automotive industry.  

 At the strategic level, we propose a unified approach to explicitly model and 

address issues of capacities as well timing the launch of remanufacturing programs for 

new product. We derive the optimal remanufacturing policy and extensively studied the 

drivers of cost-effective remanufacturing program for aftermarket services. Our policies 

exploit the ability to leverage OE production to support both the OE service operations as 

well as demand from the IAM. To the best of our knowledge, this research is the first 

attempt of its kind in the remanufacturing literature, as prior research treated these 

interrelated decisions separately. Valuable managerial insights are obtained by 

minimizing the discounted cash outflows caused by appropriate investment and core 

return inventory building decisions. We show that, under certain conditions, it may be 

optimal to delay the launch of the remanufacturing program to build up an adequate 
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initial core return inventory. This may help in perfectly substituting virgin parts with 

remanufactured parts after end of the OE production run. 

 At operational level, efficient production planning and control of reman parts for 

the supplier heavily impinges on the ability to accurately forecast core returns from 

customers (e.g., dealers, distributors). There are several challenges to this, including, the 

volume and diversity of customers served by the supplier, differences among individual 

customer warehouses in returning cores, large reman product catalogs, changing 

customer behaviors (often improving core return delays), and data sparsity. In this 

research we report the evidence for the effectiveness of hazard rate regression models to 

estimate core return delays in the context of remanufacturing. We investigate a number of 

hazard rate modelling techniques (e.g., parametric, semi-parametric etc.) using real-world 

datasets from a leading Tier-1 automotive supplier. Results indicate the effectiveness of 

the proposed framework in terms of stability and face validity of the estimates and in 

predictive accuracy.  
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