
Wayne State University

Wayne State University Dissertations

1-2-2013

Advanced Optimization Techniques For Monte
Carlo Simulation On Graphics Processing Units
Eyad Hailat
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Chemical Engineering Commons, and the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Hailat, Eyad, "Advanced Optimization Techniques For Monte Carlo Simulation On Graphics Processing Units" (2013). Wayne State
University Dissertations. Paper 766.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/766?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F766&utm_medium=PDF&utm_campaign=PDFCoverPages

ADVANCED OPTIMIZATION TECHNIQUES FOR MONTE
CARLO SIMULATION ON GRAPHICS PROCESSING

UNITS

by

EYAD HAILAT

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2013

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

© COPYRIGHT BY

Eyad Hailat

2013

All Rights Reserved

1

DEDICATION

Dedicated to my parents, Majed Hailat and Amal Alshouha. To my wife, Maram,

and to my little angel, Lilian. Also, I dedicate this work to my brothers and sisters

and their families. Special thanks to all my friends.

ii

ACKNOWLEDGMENTS

First, I would like to thank God almighty for giving me the chance to start and finish my Ph.D. and for all

other good things happened to me in my life. Also, I am deeply grateful to my advisor, Dr. Loren Schwiebert

for all the help and guidance during my Ph.D. study from day one. It is with his guidance, mentoring, and

help the journey through graduate school was possible.

In addition, I would like to thank Dr. Jeffery Potoff, Dr. Hongwei Zhang and Dr. Weisong Shi for serving

on my dissertation defense committee.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 GPU Architecture . 2

1.3 Structure of Fermi cards . 3

1.4 CUDA Review . 6

1.4.1 Synchronization and Concurrency . 7

1.4.2 Kernel Launch Specifications . 8

1.4.3 CUDA Memory . 9

1.4.4 CPU-GPU Communication . 9

1.4.5 Atomic Instructions on Global Memory . 10

1.4.6 Memory Coalescing . 10

1.5 CUDA Streams . 10

1.6 Monte Carlo Simulations . 12

1.7 Random Number Generator . 14

1.8 Other Applications of this Work . 15

Chapter 2: Related Work . 16

2.1 General Purpose GPU Programming . 16

2.2 Monte Carlo Simulations . 16

iv

2.3 Domain Decomposition Techniques . 21

Chapter 3: Porting Canonical Ensemble to the GPU . 23

3.1 Markov Chain Monte Carlo Simulations . 23

3.1.1 Metropolis Method and Thermodynamic Ensembles 23

3.1.2 Lennard-Jones Potential . 25

3.2 Structure of the Code . 25

3.3 Optimizing the canonical ensemble method for the GPU 29

3.3.1 The block size effect . 29

3.3.2 The use of pinned memory . 30

3.3.3 The use of different GPU memory types . 30

3.3.4 Memory coalescing for fetching particle positions 31

3.3.5 Loop unrolling technique in finding total energy 31

3.3.6 Load balancing among threads and contributing particles 34

3.3.7 Atomic operations on global memory transactions 35

3.3.8 Block synchronization through global memory and atomic operations 35

3.3.9 Numerical optimizations: tricks and tweaks . 35

3.4 Using cell list structure . 37

3.5 Results and Discussion . 39

Chapter 4: Grand Canonical Ensemble: One Simulation Box and a Reservoir 50

4.1 MC Simulation for the Grand Canonical . 51

4.2 Parallel Algorithm and Implementation Details . 52

4.2.1 Implementation without Cell List . 53

4.2.2 Cell List Implementation . 55

4.2.3 Assigning Cells to Blocks . 60

4.2.4 Assigning Threads to Particles . 62

4.2.5 Adding Cell List Implementation to the Parallel Grand Canonical Algorithm 62

4.3 Performance Results . 62

v

Chapter 5: Gibbs Ensemble: Two Simulation Boxes . 69

5.1 MC Simulation of the Gibbs Ensemble . 69

5.2 Method . 71

5.3 Results and Discussion . 76

Chapter 6: Configurational Bias Gibbs Ensemble . 82

6.1 Introduction . 82

6.2 CBGEMC Method and Implementation . 83

6.3 Results and Discussion . 87

Chapter 7: Conclusion and Future work . 100

References . 103

Abstract . 115

Autobiographical Statement . 117

vi

LIST OF TABLES

Table 3.1: Thread hierarchy and properties. 30
Table 3.2: Average program execution times (in seconds) and speedup over Towhee. 40
Table 3.3: Specifications for the three graphic cards used to run reported experiments. 41
Table 3.4: Desktop computers used for the experiments. 42
Table 3.5: Large vs. small block size and system performance. Numbers shown are speedup. . 44
Table 3.6: CUDA vs Serial results on GTX 480 . 47
Table 3.7: Results of different cell list models . 48
Table 3.8: Speedup of cell list for a million steps . 48
Table 4.1: Execution times in seconds for different algorithm implementations. 64
Table 4.2: Legend of blocks, cells, and threads per kernel call. 64
Table 4.3: Different block sizes have different effect on resource utilization. 66
Table 4.4: Speedup of different cell list implementations over no cell list CUDA code. 67
Table 5.1: A comparison of a high and a low end GPU . 76
Table 5.2: A comparison of a high and a low end CPU . 77
Table 5.3: Execution times in seconds and speedup using the icc compiler. 78
Table 5.4: Execution times in seconds and speedup using the gcc compiler. 78
Table 6.1: Execution times in seconds for CB for different number of CB trials (K). 90
Table 6.2: Execution times in seconds for CB for different number of CB trials (K). 91
Table 6.3: Execution time in seconds of running simulations with 131072 particles in parallel. 92
Table 6.4: Speedup of running simulations with 131072 particles. 93
Table 6.5: Results for CB for different number of CB trials (K) in parallel. 96

vii

LIST OF FIGURES

Figure 1.1: Fermi Memory Structure . 4

Figure 1.2: A grid structure . 5

Figure 3.1: A particle displacement attempt in Metropolis Monte Carlo method. 24

Figure 3.2: MC Simulation for the canonical method flowchart. 28

Figure 3.3: Calculating the partial sum in shared memory that use adjacent memory locations. . 32

Figure 3.4: Mapping algorithm for work load balancing across threads. 34

Figure 3.5: The volume is decomposed into cells. 38

Figure 3.6: Cell with all 26 adjacent cells. 39

Figure 3.7: Plots of speedup for different block sizes on different platforms. 45

Figure 3.8: Developed serial code vs. Towhee elapsed times (logarithmic normalization). . . . 46

Figure 3.9: Serial vs. CUDA execution times for MC simulation on i5 and GeForce 480. 46

Figure 3.10: Execution times on two different platforms with GTX 480. 47

Figure 3.11: Different cell list implementations speedup . 49

Figure 4.1: Different methods in assigning cells to thread blocks 59

Figure 4.2: Speedup of different algorithms . 65

Figure 4.3: Speedup of CUDA code with different cell list codes over CUDA with no cell list. . 66

Figure 4.4: Execution times for different algorithms with CUDA cell list. 67

Figure 4.5: Cell size and speedup. of particles per cell per thread for N = 262144. 68

Figure 5.1: An illustration of the three move types for the Gibbs ensemble method. 70

Figure 5.2: Execution time for the serial and the CUDA code 79

Figure 5.3: The actual speedup and theoretical speedup of the CUDA code 80

Figure 6.1: Particle transfer move with CB and K equals five. 85

Figure 6.2: Timeline of particle transfer in CB execution using K-1 independent streams. . . . 85

Figure 6.3: Vapor-liquid coexistence curves for Lennard-Jones fluid. 88

Figure 6.4: Histogram sampling the distribution of the gas and liquid phases 89

viii

Figure 6.5: Execution times for K equals 3 and 20 with different algorithms 94

Figure 6.6: Execution times of CUDA code on GTX 480 and K20c for large systems 95

Figure 6.7: Execution time for parallel code with only particle transfer move 97

Figure 6.8: Speedup for parallel code with streams. 98

ix

1

CHAPTER 1 Introduction

1.1 Motivation

Graphics devices were introduced originally for entertainment. The first graphics processing unit was

invented by NVIDIA in 1999 for creating game objects in real-time [106]. Since then, graphics units kept

evolving to provide a huge amount of processing power that later was extended to do non-graphics applica-

tions such as floating point operations and developed a high level set of shading languages such as DirectX,

OpenGL, and Cg.

When GPUs first started using APIs for non-graphics purposes, they were called General Purpose Graph-

ics Processing Units (GPGPU), showing good speedups over other methods. In that era, efforts were spent

on utilizing vertex coordinates, texture, and shader programs, which was one drawback of using GPUs for

general purpose computing. Another drawback to using the early GPUs for scientific applications is the need

for an extensive knowledge of graphics APIs and the GPU architecture itself. Moreover, the lack for even

the most basic programming features and operations such as random access to memory for reads and writes,

double precision floating point operations, and operations on integer numbers were major reasons for not us-

ing GPUs in many applications and considered limiting factors. Later, programming with graphics APIs was

replaced with parallel programming languages. Examples of high level parallel programming languages are

BrookGPU [15] used for AMD GPUs, Open Computing Language (OpenCL) [120, 82], which is portable

between GPU architectures, CUDA [55, 87], which is limited to be used on NVIDIA cards, and BSGP [52].

In addition, Chapel, developed by Cray Inc. [21] is an open source, portable parallel programming language

that can be used on commodity clusters or desktop multicore systems.

Although OpenCL and CUDA provide different programming interfaces, they offer similar features.

However, OpenCL is designed for a very general architecture; it can be used to program CPUs, GPUs, Digital

Signal Processors (DSPs) and other devices from other vendors. This portability came with a price that

affects the performance of OpenCL codes. In a performance comparison conducted in [59] between CUDA

and NVIDIA’s OpenCL implementation, the study shows that CUDA performs better in terms of kernel

2

execution and memory transfer from and to the GPU running almost the same code. In addition, several

differences in using both architectures are reported. One main difference between these two languages is

that OpenCL can be compiled at runtime, which would slow down the overall execution time of the code.

This technique allows the compiler to generate code on the fly targeting a specific GPU architecture. CUDA,

on the other hand, does not have this concern since it is designed specifically for a single architecture. Other

differences in the two APIs include context creation, mapping kernels to the GPU, and memory copying.

See [82] for a complete API reference for programming with OpenCL.

1.2 GPU Architecture

Here we will discuss Graphics Processing Units in terms of the architecture and its relationship with

the rest of the computer system. Also, we will mention the difficulties that may confront anyone who is

interested in utilizing these devices [44, 72, 83, 50, 51].

Even if we can add more transistors to a chip, we cannot scale their voltage like we used to, and we

cannot clock these transistors as fast. One solution is to run in parallel. With current GPU technology we

can easily get a device loaded with hundreds of processors, and the future trend is even more. So, one should

start thinking in parallel and start developing applications without thinking of the serial algorithm first.

There are some weak points for GPUs compared to CPUs in terms of architecture. Examples include that

GPUs devote more transistors to arithmetic logic units and less to caches and control prediction in compari-

son to CPUs. On the other hand, threads in GPUs are considered fine-grained and without expensive context

switching like CPU threads. Individual GPU threads are considered to have poor performance compared to

CPU threads, but thousands can run simultaneously. Moreover, GPUs have higher memory bandwidth.

Lately, tools have been developed to make the programmer’s parallel experience easier. IDEs such

as Eclipse, NetBeans, and MS Visual Studio started to allow for integrating parallel programming lan-

guages. Also, debugging tools for GPU code started to appear after developing the latest architecture, such

as CUDA-GDB and Parallel Nsight for different Linux operating systems, and MS Visual Studio integration

for Windows operating systems. In addition, other tools appeared such as Glift, a data structure framework

that implements a set of structures that aims to simplify algorithmic development using GPUs. Structures

implemented in Glift include a stack, quadtree, and octree [68]; more tools can be found in [53, 115, 116].

3

In addition, GPU computing became mainstream with the launches of MS Windows 7 and Apple Snow

Leopard, so that the GPU will be accessible to any application as a parallel processor, not only as a graphics

processor.

The host program performs all memory management,thread synchronization, and other setup tasks and

then calls GPU kernels to perform the simulation. Examples of CUDA enabled devices are the GeForce 6

series GPU, their architecture description can be found here [60], and Tesla graphic cards [69].

1.3 Structure of Fermi cards

In June 2008, NVIDIA released a major revision to their architecture. Graphics cards like GeForce GTX

280, Quadro FX 5800, and Tesla T10, were the first cards to have the new unified hardware generation of

GT200. This major revision has many updates over the previous one, such as increasing the number of

streaming processor cores to almost double. Each register file was also doubled in size. In addition, there is

better memory access coalescing that improves memory access efficiency for huge amounts of data. More-

over, double precision floating point support was enhanced to support high performance scientific computing.

This NVIDIA generation of CUDA Compute and Graphics architecture is called Fermi.

The structure of a graphic card’s memory is different from any other device, as seen in figure 1.1. Fermi

structure is different from serial processor’s memory and older graphic cards. There are two lines of eight

Streaming multiprocessors (SMs) around one L2 cache. A host interface connects the GPU to the CPU

via a PCI-Express interface. Each SM, see figure 1.2, has 32 cores. Each has a fully pipelined integer

arithmetic logic unit (ALU) and floating point unit (FPU). One CUDA core executes a floating point or

integer instruction per clock for a thread.

This memory model was adopted to take the advantage of different threads running the same code. A

thread is identified by a threadIdx that consists of three coordinates inside the block: threadIdx.x,

threadIdx.y, and threadIdx.z that define the x, y, and z coordinates, respectively. On current

GPUs, a block can contain up to 1024 threads for x- or y-dimension in compute capability 2.0 and 512 for

earlier compute capabilities, and 64 threads for the z-dimension for any compute capability. On the grid level,

a three-dimensional grid of blocks is defined referencing the block by blockIdx.x, blockIdx.y, and

blockIdx.z variables that are assigned for the block by the CUDA run time system, cannot be changed

4

Figure 1.1: Fermi Memory Structure

afterward, shared by all threads in that block, and are accessed only inside kernels. The number of blocks in a

grid on one of the two dimensions can vary between one and 65,536, and are saved in variables gridDim.x

and gridDim.y for the x- and y-coordinate, respectively.

The Fermi memory hierarchy, shown in figure 1.1, illustrates that a thread can use both shared memory

and cache. This depends on the nature of the problem. The advantage of this memory model is scalability

of blocks. A programmer may have a limit on the number of threads in different GPUs but the number of

blocks makes it more scalable.

For example, in the code portion below

Listing 1.1: Legal code portion of CUDA kernel launch

dim3 B l o c k S i z e (3 , 3 , 2) ;

dim3 G r i d S i z e (6 , 4 , 1) ;

LaunchKernel<<<Gr idS ize , BlockSize>>>(p a r a m e t e r s) ;

the first two statements are declaration statements for a two-dimensional grid with 6× 4 = 24 blocks, each

5

Figure 1.2: A grid structure

6

block is three dimensional block with a total of 3 × 3 × 2 = 18 threads per block, this makes it a total of

24× 18 = 432 threads that launch this kernel. On the other hand, a code portion like the listing below (1.2)

cannot be executed since the number of threads exceeds the allowed number of threads.

Listing 1.2: Illegal code portion of CUDA kernel launch

dim3 B l o c k S i z e (3 2 , 3 2 , 2) ;

dim3 G r i d S i z e (6 , 4 , 1) ;

LaunchKernel<<<Gr idS ize , BlockSize>>>(p a r a m e t e r s) ;

It is a design decision on how to choose block size. To illustrate, if the number of threads is divided

among more blocks, the total number of threads would be the same, but may have a disadvantage of extra

overhead when trying to synchronize between blocks through global memory instead on synchronizing in

shared memory in the case of working with threads in one block. In addition, there is a limit on the number

of blocks that can run concurrently on any SM. In our study we have examined this factor on the system

behavior. We study the performance when changing block size for the Canonical Ensemble method.

1.4 CUDA Review

Invented by NVIDIA, the Compute Unified Device Architecture (CUDA) parallel computing architecture

is now shipped in most NVIDIA graphic cards. This architecture is a hardware and software platform that

defines the programming model, memory model, and execution model for issuing and managing computa-

tions on GPUs, where the programmer does not need to directly map computations to the graphics pipeline.

Compared to previously used graphics languages such as OpenGL and Cg, this architecture is implemented

over the C language, which makes the process of developing GPU-based software for scientific computing

a much easier job. Basically, CUDA facilitates heterogeneous computing on both the CPU and the GPU by

following a general approach:

1. Copy input data from CPU memory to GPU memory.

2. Load the GPU program, called a kernel, and execute. This step may include caching data on chip for

enhancing the performance of the GPU.

3. Copy results back from GPU memory to CPU memory.

7

CUDA has been widely used in many applications around the world, in scientific research, financial mar-

ket, medical, and many more fields. There are more than 700 GPU clusters installed around the world [55].

In this work we are using the latest CUDA release 5.0. It has support for CUDA-GDB, Visual profiler,

unified virtual addressing, N-copy pinning of system memory, etc.

CUDA can be used in two different ways, one way is using the driver API, which provides the program-

mer with language tools close to the hardware. This method needs more coding and programming effort.

Second, the runtime API, an extension to the C programming language, provides the programmer with an

easy-to-use set of C functions and extensions, making writing parallel programs relatively easy to learn and

apply without the hassle of learning a new language or the underlying pipeline design. However, a program-

mer needs to be knowledgable of the programming, memory, and thread models of the architecture to best

utilize them for the problem of study.

Another issue a programmer must pay attention to is that in the CUDA architecture there is no ded-

icated initialization function in the runtime API. The device will be initialized, however, the first time a

runtime function is called. If timing is being recorded, this property should be taken into consideration

and especially when interpreting the error code from the first call into the runtime. So, a statement like

cudaDeviceReset() can be used at the beginning of the code to initialize the device and record any

initialization problems before starting the timer.

1.4.1 Synchronization and Concurrency

Due to the hierarchal thread model of the GPU, threads need to be synchronize on all levels. For example,

synchronizing threads in a block is done using instructions such as synchthreads(), threadfence(),

threadfence block(), and others that can be found in the “NVIDIA CUDA C Programming Guide” [87].

One drawback to the CUDA architecture is that it has no efficient global synchronization. Mainly for two

reasons: it is expensive to build this support into hardware for GPUs with this huge number of processing

units, and due to the potential deadlock that may occur if we use more blocks. The solution to this problem

is to use atomic operations on global memory that is being accessed from all blocks in a grid.

With the CUDA compute capability 2.x devices, concurrent operations can be done through streams.

In other words, the GPU can start doing a memory transfer while the CPU is doing other operations. To

illustrate, the listing below (1.3) shows a GPU memory copy operation that transfers an array from the

8

device to the host while the CPU is generating random numbers. In this case both the GPU and the CPU are

doing different work.

Listing 1.3: Asynchronous memory call leads to overlapping of data transfer and CPU computation

c u d a S t r e a m C r e a t e (& Stream1) ;

cudaMemcpyAsync (P a r t i c l e X C o o r d , d e v P a r t i c l e X C o o r d , N P a r t i c l e s *

s i z e o f (d ou b l e) , cudaMemcpyDeviceToHost , S t ream1) ;

/ / F i l l a r r a y w i t h random numbers

f o r (i n t i = 0 ; i < S i z e ; i ++)

RandomNumbers [i] = RandomNumberGenerator−>r and () ;

The programmer should be careful in doing such operations, especially when attempting to execute

a piece of code that needs the final output from the GPU. In such a case, a barrier statement, such as

cudaDeviceSynchronize(), is needed on the host side to make sure that all device operations are

done. In addition, this statement is needed when it is necessary to synchronize the CPU thread with the GPU

to accurately measure the elapsed time for a particular call or sequence of CUDA calls.

1.4.2 Kernel Launch Specifications

CUDA allows the programmer to launch a function that will be executed in parallel on the device by

several threads; this special function is called a kernel. To create a kernel, one must use the global

qualifier before the function declaration, and specify the execution configuration for the call, which means

how many threads, blocks, dynamic shared memory, and the stream number to execute the kernel in the

form of Kernel<<<GridSize, BlockSize, NSize, StreamP>>>(args), where grid size and

block size are of type dim3, which is a structure that has three variables x, y, and z, which all define di-

mensions of a grid in the first case and the block size in the second case. The third argument in the list

is optional and indicates the number of bytes in shared memory that is dynamically allocated for each

block for this kernel call. The last argument in the execution configuration of a kernel is the stream han-

dle. The stream handle is of type cudaStream t and refers to the stream that is associated with this

kernel call. It is an optional argument and the default stream is 0. An example kernel function declaration

is global void Myfunc(dataType *variable1,...). In this case, the statement to call this

9

kernel may look like Myfunc<<<GridSize,BlockSize,NSize,StreamP>>>(arguments). Keep

in mind that the only way for the GPU and CPU to communicate is through memory calls, so a kernel always

returns nothing.

1.4.3 CUDA Memory

Memory usage has been a factor of success in the invention of GPUs. There are several levels of memory

access on the GPU. Figure 1.1 shows that there is:

Per-Thread local memory The access to this memory is local to a specific thread in the kernel only. And it

is used for local variables.

Per-Block shared memory This memory can be accessed by any thread in a block; other blocks cannot

access this memory. Shared memory is allocated using the qualifier shared . This is an on-chip

memory that is much faster than local and global memory. In terms of performance, the latency for

uncached shared memory is about 100× faster than global memory in the best case when there are no

memory access conflicts.

Shared memory is partitioned into 16 banks that are organized such that successive 32-bit words are

assigned to successive banks, i.e. interleaved. Each bank has a bandwidth of 32 bits per two clock cy-

cles. If threads in the same warp are trying to access different memory locations in the same bank, then

there is a conflict. In this case the accesses are serialized. This will decrease the effective bandwidth

by a factor equal to the number of distinct memory requests to the same bank.

Global device memory This includes global, constant, local, and texture memory space that are persistent

across kernel launches in the same file scope. Constant memory is a cached read-only memory. Reads

from this memory cache could be as fast as reading from registers if all threads in a warp read from

the same address; otherwise, the latency increases linearly with the number of read requests.

1.4.4 CPU-GPU Communication

GPU and controlling CPU code communicate through memory copies. This mechanism can really affect

performance if it is misused due to memory latency. Actually, this can be a limited factor for the perfor-

mance that parallel processing can provide. So, it is very important to keep CPU-GPU communication to a

10

minimum. However, this communication between CPU and GPU is most efficient if pinned memory is used

on the CPU. This is because pinned memory enables asynchronous memory copies (allowing for overlap

with both CPU and GPU execution), as well as improves PCIe throughput on FSB systems.

1.4.5 Atomic Instructions on Global Memory

An atomic instruction is an instruction that is guaranteed to be executed in full without interruption from

other threads. Atomic instructions are specific device functions that execute read-modify-write atomic oper-

ations on a global or shared memory location on mapped page-locked memory. There are many atomic in-

structions and functions. For example, atomicAdd(), atomicSub(), atomicInc(), atomicDec(),

atomicExch(), atomicCAS() (Compare And Swap), atomicAnd(), etc. Atomic instructions on

global memory are supported only on devices of compute capability 1.1 and above.

Note that atomic functions operating on mapped page-locked memory are not atomic from the point of

view of the host or other devices. So, if another non-atomic instruction executed by a warp reads, modifies,

and writes to the same memory location, then the read, modify, and write to that memory location occurs in

a random order. This depends on the compute capability of the device, and which thread performs the final

write operation is undefined.

1.4.6 Memory Coalescing

When a warp executes an instruction that accesses global memory, it coalesces the memory accesses of

the threads within the warp into one or more memory transactions depending on the size of the data accessed

by each thread and the distribution of the memory addresses across the threads. Throughput can be really

affected by this. When we have more transactions with unused words being transferred, we have wasted

bandwidth. On the other hand, if we have fewer transactions with fewer wasted words, this is going to

increase the overall performance of the system.

1.5 CUDA Streams

A CUDA stream represents a queue of operations that are executed in order. Examples of such operations

are kernel launches, memory copies, and event starts and stops. Operations in a stream are executed in the

11

same order that they have been called and multiple streams can be run in parallel on the device. Running

multiple streams at the same time on the device adds an extra level of parallelism to the GPU. However,

operations must be independent to run in parallel. Keep in mind that different streams may execute their

operations out of order with respect to one another or concurrently. For instance, a kernel call and memcpy

from different streams can be overlapped. This behavior is possible because the inter-kernel communication

is undefined.

Not all CUDA devices allow concurrent stream execution. For example, not all devices of compute

capability 1.1 and higher can perform copies between page-locked host memory and device memory con-

currently with kernel execution, and only devices of compute capability 2.x and later support the execution

of concurrent kernels [87]. This property is device dependent and can be determined by querying the device

at run time. Even if a device does support concurrent kernel execution, that doesn’t guarantee the device

will execute kernels concurrently with other kernels. There must be sufficient resources to run concurrent

kernels, which may not be possible if, for example, that kernel is using many textures or a large amount of

local memory. When no stream number is explicitly specified, or set the stream parameter to zero, the default

stream is used. This will guarantee that all operations executed and in the serial order they appear in.

CUDA streams can be created using simple statements and then be used to run kernels. For example,

Listing 1.4 shows the required steps to run multi-stream kernel calls along with memory copy and other

host functions. An array of stream handlers is created, three in this example, and used with each kernel, as

in lines 2-3. Then streams can be used to run multiple concurrent operations. For example, lines 4-5 will

launch three kernel calls on the three streams created before. In line 6, a host function call is executed after

the for loop is done. This function will be called before any of the kernel calls return, with no guarantee that

this function will be executed before any of the kernel calls. Following that, the statement in line 7 places

a request to perform a memory copy into the stream specified by the argument stream, which means that

the execution of the memory transfer will start only when stream one returns from executing all proceeding

operations on that stream.

To guarantee that the GPU is done with its computations and memory copies, the stream should be

synchronized with the host. This can be done for each individual stream using the statement in line 9, or

using cudaDeviceSynchronize() to synchronize all device operations. Finally, to release the stream handlers,

a statement such as the one used in line 12 should be used. In general, as we can see from this example, a

12

stream acts as an ordered queue of operations for the GPU to perform. Other examples on using streams for

different execution patterns can be found in [87].

Listing 1.4: An example of using streams to run concurrent operations.

1 c u d a S t r e a m t S t reamArr [3] ;

2 f o r (i n t S t r e a m I d = 0 ; S t r e a m I d < 3 ; S t r e a m I d ++)

3 c u d a S t r e a m C r e a t e (& St reamArr [S t r e a m I d]) ;

4 f o r (i n t S t r e a m I d = 0 ; S t r e a m I d < 3 ; S t r e a m I d ++)

5 ConcKernel<<<GSize , B , ShMem , St reamArr [S t r e a m I d]>>>(S t reamId , . . .) ;

6 C a l l H o s t f u n c () ;

7 cudaMemcpyAsync (. . . , S t r eamArr [1]) ;

8 f o r (i n t S t r e a m I d = 0 ; S t r e a m I d < 3 ; S t r e a m I d ++)

9 c u d a S t r e a m S y n c h r o n i z e (S t reamArr [S t r e a m I d])

10 f o r (i n t S t r e a m I d = 0 ; S t r e a m I d < 3 ; S t r e a m I d ++)

11 c u d a S t r e a m D e s t r o y (S t reamArr [S t r e a m I d]) ;

Although the Fermi architecture supports 16-way concurrent kernel launches, there is only one connec-

tion from the host to the GPU. So even if we have sixteen CUDA streams, they’ll be scheduled through one

hardware queue. This can create false data dependencies and limit the amount of expected concurrency.

1.6 Monte Carlo Simulations

The affordability of Graphics Processing Units (GPUs) has made high-performance computing more

accessible and financially practical. Furthermore, the growth rate of the computing power in the GPU is

more than that for the CPU, so, the GPU offers significant speedup in execution for certain applications. Al-

though both software and hardware developments for GPUs have enabled more high performance computing

applications than ever before, writing optimized algorithms and code to utilize these devices remains time

consuming and intensive. In this chapter, we describe the development of an efficient GPU implementation

for the Monte Carlo simulation of molecular systems in the canonical ensemble method.

Potential functions have long been used in physical simulations to describe the collective or local behav-

13

ior of molecules in condensed systems. The chief limitation to simulation of physical systems using potential

functions is computational cost, a limitation that can be overcome with high performance parallel computing.

To study atomistic systems, computer simulations are considered valuable substitutes to lab experiments to

get information on the liquid or gas states of chemical compounds and mixtures [23]. Two approaches have

been of particular interest to a number of researchers, Monte Carlo (MC) and Molecular Dynamics (MD)

simulations [9, 39]. Markov chain MC simulations allow the study of open systems, which are infeasible for

a traditional MD code.

An example of a system well suited for MC simulation is the adsorption of gases in porous materials,

such as activated carbons. MC simulations can accomplish the simulation of the open porous system via

trial moves that allow the number of particles to fluctuate. Additional examples of Monte Carlo simulation

include:

1. Prediction of physical properties and phase behavior. This application is primarily of interest

to chemical process industries. For example, given a mixture of compounds, the goal is to predict

accurately the coexistence properties of the gas and liquid phases.

2. Prediction of adsorption isotherms for gases in porous materials. Typical applications for this are

CO2 sequestration from flue gas, and hydrogen or methane storage. With a fast enough code, one

could potentially carry out high throughput screening of candidate materials [30].

3. Simulation of biological systems at constant chemical potential. Simulations of the fundamental

biomechanical process of membrane fusion have shown divalent cations and water molecules to play

a critical thermodynamic role [56]. In order to use simulations to understand this fundamental process

that occurs in all living organisms, it is critical to maintain constant ion and water molecule chemical

potential to achieve realistic local densities.

4. The use of nanoparticles to stabilize drug dispersions. Simulations of nanoparticle dispersions also

typically require a constant chemical potential, so that as the microparticles approach each other, the

number of nanoparticles varies to maintain chemical equilibria with the bulk. This is a very important

application for this work because large system sizes are required to simulate interacting microparticles.

On the other hand, calculations of the Lennard-Jones potential are significantly more complex than the

Ising or hard sphere model, since you have to calculate the interactions between all particles within a certain

14

cutoff radius and it requires more work to optimize the calculation on the GPU. One have to account for

atoms being in a molecule (and not calculating those interactions); this will also require the calculation of

bending and stretching potentials, the generation of multiple trial locations.

Monte Carlo simulations are driven by statistical physics based on energetics, thus it is necessary to

pick a potential model to accurately model the studied compound. Perhaps the most common potential

model used to describe interactions between particles is the Lennard-Jones potentials. While this model is

mathematically straightforward, simulating even relatively modest systems requires a substantial amount of

computing power. This is due to the tens of millions of iterations required for the Monte Carlo simulation to

converge to a solution. With the advent of CUDA enabled GPUs, this previously held shortcoming is now

being exploited to more scientists and researchers with smaller monetary and computational resources.

MC implementation could use the grand canonical ensemble method that can be useful in adsorption

studies where the amount of material adsorbed is given as a function of the pressure and temperature of the

reservoir with which the material is in contact. Moreover, in an interfacial region, gas and adsorbent for

instance, the properties of the system are different from the bulk properties, which is a problem if simulating

a relatively small system. Hence, we have to simulate a very large system to minimize the influence of this

interfacial region [103, 39].

Due to the limited number of parallel operations in a multicore implementation of this algorithm, it is

not expected to produce more speedup than a manycore system would produce. Hence, the effort is directed

toward manycore technology that provides more parallelism for this algorithm.

1.7 Random Number Generator

Monte Carlo simulation relies on random numbers to compute their results and find probability statistics

to investigate problems. We have used the Mersenne Twister (MT) random number generator algorithm [77]

for generating uniform pseudorandom numbers, which provides a period of 219937−1 and a 623-dimensional

equidistribution property. Uniform random numbers is a very important part of the correctness of Monte

Carlo simulation. If, for example, the sampling is not performed well, then it may result in execution in a

limited region of the conformational space. This will result in a small statistical error, but a large systematic

error.

15

The same random seed is used each time to verify the algorithm behavior. However, the user can change

a flag that is responsible for a different seed. For now, we have been using the serial version of Mersenne

Twister which has the same speed as rand() in C [77].

1.8 Other Applications of this Work

This thesis reports the algorithmic changes, optimization techniques, and tricks and tweaks one can use

to implement thermodynamic Monte Carlo simulation on GPUs. These optimization techniques can be used

for other Monte Carlo simulations such as the problem of Bias Monte Carlo Methods in Environmental

Engineering [81], where a number of factors need to be studied at each simulation step. The use of the GPU

may reduce the amount of computation time that this algorithm requires since an intensive calculation for

different factors is being computed each simulation step. Environmental factors can be mapped to blocks and

then results can be aggregated from all blocks in a similar way to the technique we describe in Figure 3.3.

Another example is when running multiple environmental setups simultaneously on the GPU. See lessons

learned for high level parallelism in § 6.2.

A second application that can benefit from this work is when a Monte Carlo procedure is applied to

emulate a biochemical experimental measurement setting along with given enzyme kinetic reactions [81].

Such a system can simulate continuous enzyme assay, which is used for adjustment of the ”experimental”

conditions, and end-point enzyme assay ”measurements”. This last case is suitable for parameter identifica-

tion. While trying to enhance performance of this simulation and to better manage the GPU resources for

this domain, a technique such as the one explained in Figure 3.4 to calculate the interaction in enzymes, and

the results of the size of thread block can be used with this application. Moreover, memory management and

the techniques used to use more shared memory over global memory could be applied here.

CHAPTER 2 Related Work

GPUs have been an affordable alternative to supercomputers and expensive clusters of networked com-

puters. These devices can be installed in commodity computer desktops to run computationally intensive

applications with minimal installation effort. This attracted the attention of researchers as well as average

users with computationally intensive applications such as movie rendering and image processing. This chap-

ter presents an overview of the most recent work using GPUs, focusing on the work that uses GPUs for

implementing Monte Carlo simulations.

2.1 General Purpose GPU Programming

Many algorithms of a parallel nature or needing a great deal of mathematical computation have been

ported to the GPU. Algorithms for applications in almost all fields of real life have started thinking of har-

nessing the power of this cheap technology. For example, protein folding [122, 95], stock pricing [62, 98],

sorting and searching [6], SQL queries [7, 22, 54], MRI reconstruction [114, 113], image processing [13]

and real-time image processing [29, 123], game physics [119, 20, 45, 64], video processing [46, 124], ray

tracing [26], sequence matching (Hidden Markov Models) [123], system-level design tasks (high-level tim-

ing analysis) for embedded systems [12], Monte Carlo simulation for different applications [34, 35, 49,

3, 4, 5, 11, 58, 74], Molecular Dynamics simulations [111, 118, 43, 14, 41], mathematical and biological

simulations [65, 66, 117, 16, 25, 27, 29], graphs [42, 17], MATLAB [63], and many more.

2.2 Monte Carlo Simulations

The literature illustrates numerous uses of MC methods for a very broad area of applications. For ex-

ample, applications of MC in Science and Engineering, Quantum Physics, Statistical Physics, Reliability,

Medical Physics, Polycrystalline Materials, Ising Model, Chemistry, Agriculture, Food Processing, X-ray

Imaging, Electron Dynamics in Doped Semiconductors, Metallurgy, Remote Sensing and many more [81].

In chemistry, computer simulations are considered a valuable substitute to lab experiments to get infor-

16

17

mation on the liquid state of material [23]. Two approaches have been of interest for researchers all around

the globe: Monte Carlo (MC) and Molecular Dynamics (MD) simulations [9]. The computational cost of

such simulations limits the complexity of potential functions to describe the collective or local behavior of

molecules in the condensed systems. However, this limitation has been reduced lately by an impressive

increase in computer performance.

Molecular dynamics codes exist, some of which have been modified to utilize the GPU, including

LAMMPS [14], NAMD [97], AMBER [107], and HOOMD-blue [5], which was developed from scratch to

support the GPU. However, existing GPU-enabled MD codes are inadequate for many biomolecular systems

of interest, which require the simulation of an open system. The Monte Carlo method is the ideal technique

for this class of biomolecular systems. While systems containing more than 100,000 atoms are routinely

simulated with molecular dynamics, Monte Carlo simulations are typically limited to systems containing

less than 2,000 atoms.

GPU-driven Monte Carlo simulations of chemical systems have been performed, using lattice gauge

theory [19], Ising models [102], and simulations of hard spheres [40]. An Ising model is essentially a spin-

flip model. Spins are arranged on a cubic lattice and can have the value +1 or -1. The total energy of

the system is the sum of nearest neighbor interactions. In two dimensions, each spin has four interactions,

in three dimensions it’s eight interactions. All of the possible interactions can be precalculated, so this

problem is essentially reduced to running a fast lookup table, although it might actually be faster to do the

calculations [102].

Hard spheres is a very simple model where one simply tests for overlap. If the particles overlap, the

move is rejected, otherwise, the move is accepted. Hard sphere simulations are typically used to understand

colloidal phenomena [31].

The Lennard-Jones system is the most basic model of a “real” fluid [94]. In fact, CH4 (methane),

Xenon, Neon, Argon, and Krypton can be modeled to high accuracy using a single Lennard-Jones bead.

The Lennard-Jones model is used as the basis for models of realistic fluids, such as alkanes, alcohols, sugars,

proteins, etc. In these cases, multiple beads are combined to form molecules, where each bead represents a

single atom. The various Lennard-Jones parameters (epsilon and sigma) are optimized to reproduce experi-

mental data. Examples of the fitting process can be found in [101].

Calculations of the Lennard-Jones potential are significantly more computationally expensive than the

18

Ising or hard sphere models, since the interactions between all pairs of particles within a certain cutoff radius,

rcut, must be calculated. Most recently, a work was published using lookup tables for the canonical ensem-

ble simulation, which focuses on a small size system (N = 128) [61] using the embarrassingly/pleasingly

parallel algorithm [2] of multiple identical lightweight single thread simulations. A mapping of one thread

per methane-MFI in used. Moreover, in the Lennard-Jones algorithm, a block per each of the methane-MFI,

waste recycling with multiple uniform proposals, and waste recycling with multiple displacement propos-

als is being chosen. However, the authors suggest this approach may be limited for larger atomistic sys-

tems. In this work, we present an alternative off-lattice GPU-enabled algorithm for the chemical simulation

of Lennard-Jones particles, based on the heavily multithreaded principle of energetic decomposition, also

known as the “farm algorithm” which early CPU-based parallel computing studies [125] suggested, but

produced insufficient performance. Note that the GPU architecture requires a reexamination of the older

algorithms that have been deemed inefficient on CPUs.

Although MD simulations have been studied by more researchers [1, 57], other systems are impossible to

simulate using these MD codes, such as the simulation of multi-component adsorption in porous solids [78],

which will open the door for applications such as the development of novel porous materials for the seques-

tration of CO2 and the filtration of toxic industrial chemicals. In particular, molecular dynamics (MD) codes

cannot be used to simulate an open system without using a hybrid MC-MD approach [18, 96] because of the

fluctuation property of MC that MD does not utilize.

A recent work on MC simulation on the GPU for systems of hard disks can be found in [31]. In this

method a spatial decomposition technique is used, where multiple particles of short range interaction are

moved at the same time in a “sweep” with the space divided so that detailed balance is not violated. To reduce

the overhead of unnecessary calculations, a cell list implementation is used where the problem domain has

been divided into nine cells. Maintaining a detailed balance in this algorithm adds extra overhead to the

original algorithm and to the process of verifying results. For example, shuffling the checkboard set at

each sweep step and another shuffling at the particle level in each cell are required to maintain the detailed

balance. Another restriction of this method is that the center of a particle shouldn’t leave the original cell.

In the first example, if the particle shuffling is not being executed, a temporal memory of previous states

accumulates through different sweeps, which will result in a violation to the aforementioned properties.

While this algorithm has been conducted only for 2D systems, scaling from 2D checkerboarding to 3D

19

checkerboarding is a very difficult task. Moreover, it is not clear if this method can implement other MC

methods where the system size changes.

A similar effort of a large scale system is the Highly Optimized Object-Oriented Many Particle Dynam-

ics (HOOMD) engine. A MD simulator was created by Ames Lab [5] in collaboration with Iowa State

University, and later adopted by the University of Michigan (HOOMD-blue) to perform molecular dynamics

simulations utilizing GPUs. HOOMD-blue utilizes CUDA at its core, and additionally showcases many of

the innovations expected of a modern reworking for a simulation engine. Simpatico [1, 91] is an extension to

HOOMD-blue that has been added with limited support to MC simulations. An implementation for MC and

MD simulations on single processors has been developed, and only the MD simulation code runs in parallel.

Later, a hybrid MC-MD method has been used to implement the MC simulation, where an outer wrapper

has been added to the MD simulation to simulate MC on the GPU. However, Simpatico requires installation

and configuration of several modules to integrate the MC simulation with the MD, and even more modules

and configurations are required for the GPU implementation [91]. Moreover, HOOMD-blue integration is

limited to bond and non-bonded pair potentials, and doesn’t work with angle, dihedral link potentials [91],

and only works for short range interactions.

LAMMPS, which stands for Large-scale Atomic/Molecular Massively Parallel Simulator [14, 67], has

been developed at Sandia National Labs since 1995. Although its goal is to develop a classical molecular

dynamics simulation code to run on parallel computers, a limited MC implementation has been added to

support a hybrid MD-MC method to enable canonical and grand canonical MC simulations. In addition

to the problem of hybrid MD-MC methods that they may fall in a local minimum, this implementation of

LAMMPS uses neighbor lists that are re-built every time step, which adds significant execution time to the

simulation. A time step executes N move attempts and N should not be set to a small value by the user.

This has a tradeoff if not set properly. If the neighbor rebuild is not done often enough, this will invalidate

the results, since atoms can move beyond the neighbor list skin distance. In fact, this may affect the overall

precision of the system and end in incorrect results.

A parallel implementation of a hybrid MC simulation has been conducted in [71] to parallelize the

configurational bias in MC Gibbs ensemble simulations. In their work, a simple way of parallelizing the

simulation has been used by distributing the Q simulations over the Q processors along with a sequence

of random numbers for each simulation. For each particle transfer move in their algorithm, each processor

20

calculates a total of Q × Ntrials
1 random trials in the new box, and a total of Q×(Ntrials − 1) in the old

one. Then the probability of acceptance is calculated globally for all values from all processors in a serial

step. The trial with the lowest energy is chosen. This method assumes that the simulation starts with an

equilibrated state, which usually requires less computation. However, such an algorithm maximizes the

inter-process communication and doesn’t take into account all systems states. Moreover, the total number of

trials is dominated by the number of processors Q and there is no fault tolerance if one of the Q processors

fails.

To parallelize the displacement move, the work in [71] executes multiple displacement attempts (similar

to the ones in an MD simulation) and the use of a technique to maintain a constant temperature is required

for this technique. In this hybrid method, the MD technique is used to obtain trial configurations after initial

momenta are drawn from a Gaussian distribution. The main drawback for such a hybrid implementation is

when there is a local potential minimum due to high energy barriers. In this case, a global minimum may

not be realized, since the simulation may get stuck in a local minimum. Only ten processors are used and a

factor of four times speedup has been achieved.

The grand canonical method is being widely used to observe the amount of material adsorbed as a func-

tion of the pressure and temperature of the reservoir with which the material is in contact. Other simulation

techniques such as MD simulations typically have an order of magnitude increase in computation time com-

pared to MC simulations and are possible for only very simple systems. This is due to the fact that MD

simulations requires a reevaluation of all pair forces at each time step, and for a large system this requires

significant computing resources.

One technique for parallelizing the grand canonical ensemble is to run numerous small independent

simulations at the same time. This has been referred to as an embarrassingly parallel algorithm since it

is inherently parallel because a set of independent simulation instances can be carried out simultaneously

without affecting each other. This algorithm works better for short range particles and becomes problematic

for long equilibrated systems. In [61], two algorithms have been implemented to carry out MC simulations

on GPUs using the embarrassingly parallel algorithm. First, a method originally used in [38] to enhance the

MC simulation by sampling configurations that are normally rejected. To parallelize this method, multiple

possible MC steps are done by threads and waste recycling is then used to collect history information from
1Ntrials is the number of CBMC trials referred to as K in Chapter 6.

21

both the chosen state and the rejected states. With MC simulations, a waste recycling implementation is more

straightforward than the MD implementation, where multiple time slice estimators are used to implement this

technique. Such techniques focus on the energy and the force evaluations of the proposals that are generated

successively by the molecular dynamics. Moreover, another method used is trial states based on displacement

random-walk steps. For each step, a set of position proposals from an old to a new location are randomly

picked with the same probability of any two sets being selected. This is a requirement to obey the detailed

balance. Then the same algorithm used above is used to accept particle moves.

A drawback for this class of algorithms is when sampling configurations that are normally rejected

in the case of a dense systems. In this case, the extracted information from nonlocal moves is very low.

Moreover, while their implementation depends on the embarrassingly parallel algorithm, our work uses

the energy decomposition method (farm algorithm). Although the former method uses several simulations

independently with small systems of 128 particles, our code runs for systems of up to 262144 particles.

To the best of our knowledge, there is only one open-source Monte Carlo code (Towhee) [76], and there

are no open-source Monte Carlo codes that utilize GPUs to this scale. As a result, only small problem sizes

can be run in a reasonable amount of time and this constrains the size of Monte Carlo simulations. It should

be noted that attempting to modify code bases such as Towhee to include GPU-enhanced functionality would

require a large dedicated effort with significant time investment. In addition, rewriting the algorithm usually

requires substantial modifications to the core design of the serial algorithm.

2.3 Domain Decomposition Techniques

Domain decomposition algorithms, such as cell lists, neighbor lists and simply dividing regions into

subdomains, are used to minimize the amount of unnecessary calculations with particles outside the particle’s

cutoff. Neighbor lists are used to hold information about each particle’s neighboring particles. Only recently,

an efficient implementation of neighbor list on the GPU was viable to implement mainly because of the lack

of atomic operations implemented for the GPU in [61]. Implementations such as the work in [5, 112, 121]

use the CPU to implement the neighbor list and move it to the GPU. This implementation requires an update

for almost each simulation step with the new particle position, cell information, and neighboring particles.

One such implementation can be found in [1]. The main drawback that prevented this approach from being

22

used with MC simulation in the past has been the small size of the systems being simulated, which adds

more computing overhead more than the clock cycles that neighbor lists could save.

In [5], a MD implementation has been developed to use massive parallel devices and a neighbor list

algorithm has been used to reduce the overhead of beyond the cutoff interactions. In their implementation of

neighbor list, the domain is divided into cells with each dimension equal to the cutoff value. Then, binning

the cells which is placing each particle in it’s corresponding cell. After that, using a recursive algorithm,

all particles in all cells are examined and placed in a list of visited list of particles. A list containing those

particles separated by a minimum image distance less than the cutoff for all particles in the system has to

be built from that data structure. However, to minimize the overhead of maintaining this list, the list is not

updated until a particle is displaced outside of a skin that is given by 1
2(rmax − rcut), where rmax is a value

chosen to be more than rcut.

In [92], a parallelization method for canonical MC simulations via the domain decomposition technique

has been presented where each domain is further divided into three subdomains. The size of the middle

subdomain is chosen as large as possible to minimize interprocess communications due to frequent crossings

of particles between adjacent domains, or when updating the two outer subdomains. However, such large

domains are not suitable for the GPU because for short range cut off systems, the larger the domain is, the

more wasted calculations and the more wasted reserved space.

A cell list implementation for the MD simulations has been implemented in [121, 112, 24]. In such

simulations, all particles in the simulation are randomly displaced at the same time, which makes the cell

list implementation more beneficial and shows more speedup due to the intensive computation overhead of

simulation and the reuse of the cell structure.

With the neighbor list structure, each particle stores IDs of that particle’s neighbor particles. An update

to the neighbor list should follow a change in a particle’s location since particle positions have been changed

and are no longer accurate. A work around the complexity of generating a neighbor list is accomplished by

instead storing particle positions in a cell data structure and using that directly in the pair force computation.

Until now, no available GPU-based Monte Carlo engine has been developed for standard thermodynamic en-

semble simulations of Lennard-Jones particles to this scale or uses the cell list to accomplish the simulation.

CHAPTER 3 Porting Canonical Ensemble to the GPU

We present a novel optimized GPU-based Monte Carlo simulation for the canonical ensemble using

the CUDA framework. Our system opens the door for simulations of systems with hundreds of thousands

of particles and hundreds of millions of simulation steps on a commodity desktop computer loaded with a

commodity GPU. In addition, each thread in our model is mapped to one or more unique particle pairs for

calculating virial (used to calculate pressure) and energy. Finally, our study shows that a faster CPU does not

have a significant impact on the performance of the parallel algorithm while a faster GPU makes a noticeable

performance difference for the same platform. To illustrate, running the simulation on a relatively slow CPU

gave a speedup of 20.3 times on a Core 2 Duo CPU, compared to 12.33 times speedup on an average Core

i5 CPU using the same GeForce GTX 480 card. The parallel execution time was almost the same on both

platforms; the difference in speedup is due almost entirely to the relative running time of the sequential

algorithm on each platform. Moreover, we research the use of cell list structures for a very large systems.

3.1 Markov Chain Monte Carlo Simulations

A Markov chain method has the property that step N + 1 depends on the results collected in step N .

Monte Carlo simulations use random sampling to solve computational problems. We are interested in the

Monte Carlo simulation of chemical systems that use the Monte Carlo method to evolve system configura-

tions via probabilistic acceptance rules derived from statistical mechanics. The methods that allow Monte

Carlo simulation for atomistic systems are described as follows.

3.1.1 Metropolis Method and Thermodynamic Ensembles

While there are many approaches to applying Monte Carlo methods to molecular systems, the most

popular one is called the Metropolis method [79].

In general, the Metropolis Monte Carlo method [105] is a computational approach to generate a set of C

configurations of the system. The iterations are independent of each other, so the probability that the system

23

24

Figure 3.1: A particle displacement attempt in Metropolis Monte Carlo method.

reverts to its previous state is as likely as selecting any other state.

An ensemble (also statistical ensemble or thermodynamic ensemble) is an idealization consisting of a

large number of mental copies of a system, considered all at once, each of which represents a possible state

that the real system might be in [39]. One of the most common ensembles used in the literature is the

canonical ensemble where the number of particles (N), volume (V), and temperature (T) are fixed. However,

the system energy (E) and pressure (P) are variables. This ensemble is also referred to as the NVT ensemble.

Using Monte Carlo trials of different configurations, as per the Boltzmann’s Ergodic Hypothesis [10], this

method can give accurate physical information for many systems over a sufficient number of trials.

The acceptance criteria in this case is typically given by first calculating the Boltzmann factor:

e(−β∆E), (3.1)

where ∆E is the change in energy from the previous state to the tested state, β is given by (1/kBT), kB

is the Boltzmann constant, and T is the temperature of the system. The result of this equation is typically

compared to a random number in the range [0, 1). If the random number is higher than the Boltzmann factor,

the move is accepted. This approach is known as the Boltzmann probability distribution [39].

25

3.1.2 Lennard-Jones Potential

The Lennard-Jones potential is a frequently used short-range interaction model to simulate interactions

between a pair of particles [28]. The potential is given by:

ULJ = 4ε

[(σ
r

)12
−
(σ
r

)6
]
, (3.2)

where ε is the depth of the potential well, σ is the collision diameter for interacting particles, and r is the

distance between interacting particles. As can be observed, the mathematical succinctness of this formula en-

courages its predominant use in the literature. From an implementation perspective, however, the simulation

tends to be computationally intensive even for small systems. Specifically, the computation of interaction

forces among molecules in a Lennard-Jones simulation which is given by the equation:

FLJ = 24ε

[
2

(
σ12

r13

)
−
(
σ6

r7

)]
. (3.3)

This portion of the simulation is responsible for nearly all of the execution time [70]. The complexity of

computing particle interactions is typically reduced by maintaining the total system energy and computing

only the change in energy of the system when a particle is displaced. Therefore, each displacement attempt

takes O(N) time, where N is the number of particles in the system.

The reader is referred to [39] for the proof of the validity of this method and further chemical details.

3.2 Structure of the Code

In order to gain a better understanding of my implementation, a high-level view of the serial algorithm is

presented, see Algorithm 1. In this algorithm, an initial system energy is calculated, then a randomly chosen

particle is moved to a random location. Finally, the acceptance rule is calculated as a function of the change

in energy for that specific particle.

The CUDA architecture has some limitations that affect the system performance. For example, as the

kernel cannot write directly to an output device, all system status and move results have to be copied back

to the CPU for further processing and for output to files. Since the GPU and CPU do not share a common

memory space, memory transfers are required to update the system status on the GPU if the CPU has changed

26

some shared variables and vice versa.

Developing a parallel GPU algorithm is largely domain driven. Our parallel algorithm has the same

structure as the serial one due to the serial nature of the Monte Carlo algorithm. However, specific functions

have been ported to the GPU. The flowchart in Figure 3.2 illustrates the main operations of the parallel

implementation:

1. Generate a sequence of random numbers and move them asynchronously to the GPU along with system

configuration parameters such as particle positions, current energy, current virial, number of particles

in the system, etc.

2. Repeatedly perform trial move attempts within the main loop. For each trial pick a random particle

to move a random distance in a random direction and calculate the difference in energy (∆E) for the

selected particle in the old and new locations. This includes:

(a) Assign threads to particles

(b) Calculate partial energy sums from all threads

(c) Calculate partial energy sums from all blocks

(d) Assign the result to ∆E

(e) Calculate the Boltzmann factor

3. Compare a random number to the resulting probability of acceptance calculated from the previous step

4. If the move is accepted, apply the changes to the system and adjust status

5. Periodically, output system status and particle positions to a data file

6. If there are more steps to execute, go to step 2

Figure 3.2 shows the hybrid CPU-GPU system, and illustrates data movement between the host and the

device using double line arrows. Moreover, the data flow has been labeled to illustrate the specific data being

transferred for that particular step. Eventually, the host has the main loop that the simulation executes, in

27

Algorithm 1 Serial Canonical Ensemble Monte Carlo Algorithm

1: input: Number of particles and Volume
2: input: Temperature
3: input: ε, σ, rcut
4:

5: // Calculate initial energy of the system
6: for i = 1 to N-2 do
7: for j = i+1 to N do
8: total energy += calculate pairwise energy(i, j)
9: end for

10: end for
11: // Main Loop
12: for i = 1 to step number do
13: // Randomly select a particle to move
14: s = selected particle← rand()
15: Old particle loc← particle location(s)
16: // Randomly move to a new location
17: New particle loc← rand()
18: // Calculate the selected particle’s energy for the old and new locations
19: for k = 1 to particles, k ! = s do
20: old energy contrib += calculate pairwise energy(Old particle loc, k)
21: new energy contrib += calculate pairwise energy(New particle loc, k)
22: end for
23: deltaE = new energy contrib - old energy contrib
24: calculate acceptance rule()
25: if accepted then
26: total energy += deltaE
27: current config← new config
28: update system status()
29: else
30: //Leave current system state
31: end if
32: //Update the rate of accepted moves
33: // Solve if the system in equilibrium
34: // Periodically write system status to disk
35: end for

28

Move
Accepted

?

Attempt Displacement
(TryMove)

Calculate Particle Contribution
for Old Position (OCPC)

Start Main
Function

Terminate Program

Calculate Particle Contribution
for New Position (NCPC)

Initialize System atoms,
place them on lattice (Init)

Calculate the Initial Total
System Energy (CTE)

Calculate the Final Total
System Energy (CTE)

Update System
with new atom
position/Energy

Run more
Steps?

Yes

Yes

No

No

Host
Memory

Device
Memory

New Coordinates Async

Virial and Energy

-System Configs
-Random Numbers

Generate Random
Numbers

Output status to
disk

-Coordinates

-System Status

Each 10k steps

-System Status

Figure 3.2: Monte Carlo Simulation for the canonical Ensemble method flowchart. Kernel functions are in
filled shapes.

29

addition to the I/O necessary to output system status to disk. The kernel function TryMove() is responsible

for handling the particle displacement attempt. The system energy and pressure are stored from the previous

state and will be used to calculate the acceptance criteria for each displacement attempt. Moving this function

to the device led to significantly better overall system performance, because the pairwise interactions can be

calculated in parallel.

The Calculate Total Energy() function is another important function in this simulation. This function

calculates the current system energy resulting from each interacting pair of particles, which requires O(N2)

computations. Many optimizations have been applied to this function. The main focus was to balance the

workload across the threads and hide the global memory latency. This function is executed only twice, at

the beginning of the simulation to find the initial system energy and at the end of simulation for verification

purposes.

3.3 Optimizing the canonical ensemble method for the GPU

In this section, we shall consider specific strategies implemented to optimize the canonical ensemble

code. This list mentions a number of significant optimizations that have boosted the performance of this MC

simulation. Since a parallel algorithm cannot be generalized to all problem domains, we have focused on the

optimizations that enhanced the overall performance of this particular class of problems.

3.3.1 The block size effect

The number of threads per block is limited by resources that the device can allocate to each block. For

devices of compute capability 1.x the maximum number of threads per block is 512 threads, and 1024 threads

per block for devices of compute capability 2.x. One may think to load the GPU with the minimum number

of threads per block so that less threads share resources per block to increase the performance. However,

this is not the case. The main drawbacks to using smaller block sizes are the reduced sharing of data among

threads and the limit on the maximum number of blocks that can run on an SM.

Threads in one block can share data through fast shared memory, blocks on the other hand can share data

only through device global memory, which is much slower than shared memory. Another drawback for small

block sizes is the need for synchronization mechanisms. While threads in the same block can synchronize

30

Table 3.1: Thread hierarchy and properties.

Coarse Size
Associated Resources

Memory Scope Processing

Thread –
registers,

1 core
local memory

Warp 32 threads
registers,

1 SM
local memory

Block

512/1024 shared memory,

1 SMthreads for 1.x & L1, L2 cache

2.x compute cap.

Grid
65,536 per dim global, constant,

device scope
64 on z-dim texture

execution through lightweight CUDA statements such as syncthreads(), threads in different blocks

need other techniques to accomplish synchronization such as the technique mentioned in section 3.3.7. In

this study, several block sizes are examined and we have reported the performance measurements for each.

3.3.2 The use of pinned memory

Pinned memory enables asynchronous memory copies (allowing for overlap with both CPU and GPU

execution) as well as improving PCIe throughput. An example of using pinned memory in the NVT Monte

Carlo simulation is the storage of pre-generated random numbers. Random numbers are needed for each

step of the algorithm; we used the Mersenne Twister [77] random number generator on the CPU to produce

a sequence of random numbers that are copied periodically and asynchronously from the CPU to the GPU.

In addition, the system takes advantage of high throughput pinned memory when periodically transferring

particle coordinates modified by the GPU to the CPU for checkpointing.

3.3.3 The use of different GPU memory types

Shared memory can be accessed by any thread in that particular block. Other blocks, on the other hand,

have no access to this memory. Table 3.1 shows the GPU structures that can access shared memory. One of

31

the strengths of the GPU is the existence of shared memory and cache. However, the amount of this high

throughput memory is limited to a maximum of 48K per Streaming Multiprocessor (SM). Table 3.3 lists the

different memory specifications for the cards used in this study.

Allocating shared memory in CUDA can be performed by using the shared qualifier. Access to

this on-chip memory is more than an order of magnitude faster than local or global memory. The size of the

block is a key factor for the allocated shared memory and global memory. If a block has many threads using

shared memory, better performance can be expected if there is enough shared memory. On the other hand,

if a block has fewer threads, there will be more blocks in the grid that need to be synchronized using global

memory transactions. This last scenario will add extra memory latency overhead to the simulation.

Our implementation uses shared memory to aggregate partial sums among blocks and keeps track of

common variables that will be used by all threads in a block. However, §3.3.8 shows an unavoidable use of

global memory to synchronize blocks in a grid. Another type of memory that can enhance the overall system

performance is constant memory. Our application uses constant memory to store fixed system parameters

that are used throughout the simulation to avoid expensive global memory CPU-GPU communication.

3.3.4 Memory coalescing for fetching particle positions

Combined memory accesses can have a dramatic effect on the throughput of the program. For instance,

if the threads are not accessing adjacent memory locations within a transaction, bandwidth is needlessly

wasted. On the other hand, fewer memory transactions are required when accessing contiguous memory

locations, which increases the overall performance of the system. Whenever possible, our implementation

uses a sequence of threads to access neighboring locations in global memory in order to achieve memory

coalescing. Moreover, when calculating the total energy and the total virial contribution to the pressure of

the system, each block of threads will typically be responsible for finding more than one pairwise particle

sum, where particles are stored in global memory. The access pattern to global memory in this case maps

consecutive thread IDs to consecutive global memory locations.

3.3.5 Loop unrolling technique in finding total energy

Loop unrolling is a potential optimization technique where the modified loop performs more than a

single iteration in each pass of the loop. This process is typically performed automatically by an optimizing

32

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

+ + + + + + + +

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

+ + + +

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

+ +

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

+

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

Figure 3.3: Calculating the partial sum for values in shared memory that use adjacent memory locations.
Each circle represents work done by a thread.

compiler, but in certain circumstances can be undertaken by the programmer. These specific circumstances

arise if the opportunity to break a dependency chain in the loop presents itself.

In the context of our program, loop unrolling has been applied to perform all of the summation steps

within a single warp in parallel1. This technique is similar to, but more general than, the one mentioned

in [48], where slightly more optimizations have been made. For example, our implementation handles cases

where there is not an exact multiple of two elements to calculate, there are more threads than particles

in the system, or there are more blocks than threads. Even so, we use fewer global memory transactions

than [48], and rely more on caching, which was not available for their implementation. Algorithm 2 shows

the summation process for one block. Each thread is responsible for finding a partial sum. To accomplish

this, only (N/2) threads are needed. The constant tid represents the thread ID in the block on the x-axis that

is assigned at execution time.

Note that in the switch-case statements, all subsequent cases are executed until a break statement is

encountered. For example, when the offset value is eight, then the case for eight, four, and two will be
1Threads in the same warp do not need to be synchronized.

33

Algorithm 2 Partial sum showing loop unrolling
1: // offset equals largest power of two less than the block size
2: // Check if we have more blocks than threads
3: // Start summing the values in cache memory
4: i← offset
5: while i > 32 do
6: if tid < i then
7: cachedEnergy[tid]← cachedEnergy[tid + i] + cachedEnergy[tid]
8: end if
9: syncthreads()

10: i← i / 2
11: end while
12: // Find the sum of the first 64 values
13: if tid < 32 then
14: offset← min(offset, 64)
15: switch (offset) do
16: case 64: cachedEnergy[tid]← cachedEnergy[tid + 32] +cachedEnergy[tid]
17: case 32: cachedEnergy[tid]← cachedEnergy[tid + 16] +cachedEnergy[tid]
18: case 16: cachedEnergy[tid]← cachedEnergy[tid + 8] +cachedEnergy[tid]
19: case 8: cachedEnergy[tid]← cachedEnergy[tid + 4] +cachedEnergy[tid]
20: case 4: cachedEnergy[tid]← cachedEnergy[tid + 2] +cachedEnergy[tid]
21: case 2: cachedEnergy[tid]← cachedEnergy[tid + 1] +cachedEnergy[tid]
22: end switch
23: end if

34

Figure 3.4: Mapping algorithm for work load balancing across threads.

executed. This technique is illustrated in Figure 3.3. For blocks with enough threads, applying this method

to the kernel code enhances performance significantly.

3.3.6 Load balancing among threads and contributing particles

Only unique particle pairs should be considered in the total energy calculation, which means that for N

particles N(N −1)/2 unique pairs must be evaluated for potential interaction. An N ×N square matrix can

be used to illustrate the pair interactions as seen in Figure 3.4. The unique pair interactions are in the upper

triangular or lower triangular matrix; here the upper triangular matrix is chosen. To create a contiguous

block of unique interactions, the lower right unique interactions of the square can be mapped into the upper

left quadrant so that the unique interactions will be contiguous rows. This mapping produces N/2 rows of

contiguous unique pair interactions. At this point it is easy to balance the load among threads. For instance,

one thread could be assigned to only one row, or one row could be divided among more than one thread.

As N grows, one row could be divided among multiple threads. Finer grained threads can access lo-

cations in one row using a block cyclic distribution to take advantage of contiguous data locations. For

35

example, if four threads are assigned to each row, each thread will process locations using an offset of four.

With this technique, threads will access adjacent locations on each pass, which reduces the memory latency.

Figure 3.4 provides further illustration of the mapping algorithm.

3.3.7 Atomic operations on global memory transactions

This operation is useful to avoid a race condition for cases where multiple threads are competing to

modify a particular memory location. For instance, atomic operations make it possible to synchronize blocks

in a grid, since blocks can share only global memory. This is discussed further in §3.3.8. On the other

hand, atomic operations can lower performance since they serialize accesses to global memory, add extra

instruction processing, and require busy waiting. However, Fermi cards offer a more efficient implementation

of atomic operations than older GPUs do.

3.3.8 Block synchronization through global memory and atomic operations

The current structure of the CUDA architecture does not support explicit synchronization between blocks

of a grid. So, we adopted a technique that uses atomic operations on global memory to achieve this goal,

which is presented in [87]. This method defines a boolean variable that is set to true when the last block

finishes. After this, the threads in this last block will handle the last piece of work to be performed in the

kernel call. Specifically, the threads of the last block finish the work by collecting partial sums found in

thread zero of each block. These steps are illustrated in Algorithm 3. This tree-based method is the most

efficient parallel technique for finding the sum of a large array and uses many features that are inherent to

the GPU.

3.3.9 Numerical optimizations: tricks and tweaks

Several mathematical operations have been optimized to improve the overall performance of the program

execution. For example, mathematical functions such as fdvidef, log2f, and expf are natively

supported by the GPU hardware and execute in fewer clock cycles. This offers a significant performance

advantage for a system with extensive mathematical operations. Other examples include the use of shift

left and shift right for multiplying or dividing by two, respectively. Since Monte Carlo simulation does a

significant number of repetitive mathematical operations, these optimizations gave the most performance

36

Algorithm 3 Block synchronization technique
1: // Thread 0 of each block has the sum of all values for that block
2: if tid = 0 then
3: GlobalEnergy[blockId]← cachedEnergy[0]
4: LastBlock← atomicInc (&BlocksDone, gridDim.x) = gridDim.x - 1
5: end if
6: syncthreads()
7:

8: // The last block sums the results of all blocks via global memory.
9: if LastBlock then

10: // Move all block values from global memory to shared memory.
11: if tid < BlocksPerGrid then
12: cacheEnergy[tid]← GlobalEnergy[tid]
13: end if
14: // If you have more blocks than threads, reduce the extra values.
15: i← ThreadsPerBlock
16: while i < gridDim do
17: if tid + i < BlocksPerGrid then
18: cachedEnergy[tid] ← GlobalEnergy[tid + i] + cachedEnergy[tid]
19: end if
20: i← i + ThreadsPerBlock
21: end while
22: syncthreads()
23: // The threads in the last block have gathered the results of all the blocks.
24: // Use Algorithm 2 to combine the values from all threads to get the total.
25: end if

37

improvement among all the optimizations tested.

Another optimization technique is to use more efficient mathematical operations. For example, a double-

precision division operation such as [A < (B/2.0)] is replaced with an addition operation such as [(A+A) <

B], substituting the cost of a division operation with an addition. A second example of mathematical opti-

mization is when calculating the Boltzmann factor in Equation 3.1. Since the denominator is a constant, we

instead compute the reciprocal once at the start of the simulation and replace a division with a multiplication.

3.4 Using cell list structure

The energetic decomposition algorithm used here does suffer from conducting extra calculations in find-

ing the Boltzmann Factor at each move attempt. This problem has been solved for MD simulations using

Verlet lists [5]. In the Verlet list algorithm, a neighboring list for each particle in the system is maintained.

The cost of maintaining this structure is easily hidden in MD algorithm since all particle neighbors move at

once in all steps. Moreover, the original algorithm has been modified to delay the update of the neighbor list

creation a certain number of steps. However, such an algorithm has not been explored with MC simulations

due to the fact that only small systems have been simulated with MC, so the cost of maintaining the neighbor

list is higher than the performance gain.

Another structure that has been used with MD simulations to speed up the performance of calculating

the pairwise system energy is called the Cell List structure [112, 121, 5]. In this structure, the simulation box

is divided into cells of equal size and each cell contains the indexes of the particles inside the borders of that

cell, as in Figure 3.5. The process of assigning particles to cells is called binning. Since all particles in MD

simulation are displaced at the same time, the cell list has to be regenerated correspondingly. To enhance the

performance of MD simulations, the cell list structure is used to bin particles in cells, then the Verlet list is

generated. In [5], the performance of the MD code using the Verlet list outperforms the performance of that

using just the cell list structure.

Although the cell structure eliminates the need for executing extra pairwise energy calculations for those

particles outside the cutoff, maintaining the structure is not free of charge. Moreover, due to the lack of

atomic operations support in the older versions of GPUs, the use of this structure was not efficient enough.

However, the overhead of maintaining the cell list is minimized for the NVT method, since the size of the

38

Figure 3.5: The volume V = L3 is decomposed into T ≥ 3 cells per dimension, with cell dimension of size
S ≥ rrcut.

box is fixed and there is only one particle moving at a time.

In the NVT method, the use of cell list could be summarize in the following operations:

1. Generate the cell list. The cell list is generated at the beginning of the simulation and all particles are

binned in their corresponding cells. This operation is done on the device side and not needed on the

host side.

2. Generate adjacency list. A list of all adjacent cells on all axes is generated. Each cell calculates its 26

adjacent cell IDs, shown in Figure 3.6. This is also created once at the beginning of the simulation.

3. Parse the cell list. This is done through assigning one thread per particle in a cell. For this purpose,

several algorithms have been developed to investigate the optimal number of cells per thread block.

The most straightforward algorithm is when assigning one cell per thread block. A total of 27 blocks

is created, of size 32 threads each to calculate a particle’s contributing energy in the old and the new

locations. Moreover, one, three, and nine cells per block have been tested.

4. Maintaining the cell list. There are two operations executed on the cell list to maintain the updated

list. First, deleting from a list. If one particle moved far enough to enter another cell, then the particle

39

Figure 3.6: Cell with all 26 adjacent cells.

should be removed from its old list. Second, a particle has moved to a new location and should be

inserted into a new cell.

To maintain the flow of the text, a more detailed description of cell list structures can be found in § 4.2.2.

3.5 Results and Discussion

While we are using the CUDA architecture as an extension to the C language to implement the par-

allel algorithm, other Monte Carlo simulation codes are written in Fortran. Therefore, we started by re-

implementing the serial algorithm in C/C++. The serial code is statistically equivalent and in close agree-

ment with publicly available canonical ensemble simulation results from the National Institute of Standards

and Technology (NIST) [90]. A parallel algorithm was then developed starting from our serial code. Results

from the CUDA and single-core CPU implementations match exactly when the same random seed is used.

The comparison between the serial code presented in this work and the Towhee serial code using the same

configurations, shown in Table 3.2, depicts a huge performance improvement of up to 438.3 times faster than

the Towhee implementation for a relatively small system size. Note that Towhee’s slower runtime prevented

running experiments for larger system sizes. However, since the serial and parallel codes developed for this

study ran in a reasonable amount of time, results for system sizes larger than the ones found in Table 3.2 are

40

Table 3.2: Average program execution times (in seconds) and speedup over Towhee.

N Serial Towhee Speedup

256 6.31 270.2 42.8

461 10.1 908.0 89.9

512 11.58 1118.2 96.56

1024 21.07 2897.2 137.5

2048 40.29 9642.8 239.3

4096 73.34 32150.3 438.3

reported.

The proposed parallel algorithm would not make a fair comparison against Towhee for two reasons. First,

Towhee has additional functionality, which includes electrostatic interactions via Ewald summation, config-

urational bias methods, and multiple ensembles (isobaric-isothermal, grand canonical and Gibbs ensemble).

These are features that are not yet supported by our code, and require additional computational overhead.

Second, there is no easy way to ensure that Towhee and our parallel code contain the same set of program

optimizations. So, it would be difficult to distinguish the speedup due to parallelism from the speedup due

to the use of more efficient algorithms.

The recorded elapsed time includes the time to read from the input file, allocate memory, transfer data to

the device, and run the massively threaded algorithm for each particle displacement attempt, but not the time

to calculate the final system state, which is a validation step and not part of the simulation. Most test runs

are for 2n particles, and corresponding volumes of 2n+1 where 8 ≤ n ≤ 18. The average speedup is for the

CPU and GPU running a million simulation steps2, where each step is a move attempt. For all runs, we used

(-O3) and (-m64) flags passed to the gcc compiler. Furthermore, performance is measured in terms of the

speedup, which is the ratio between the serial and parallel end-to-end application execution times. However,

for statistical validation all experiments have been run five times and the average of these runs is used. All

of the five tests run times show very close agreement. Precisely, the difference between this average of five

runs and any single run was always less than 3%. In fact, out of sixteen hundred runs, only nine deviated
2Although hundreds of millions of simulation steps are required to obtain scientifically accurate simulation results, one million

steps is sufficient to show the relative speedup of the GPU code.

41

Table 3.3: Specifications for the three graphic cards used to run reported experiments.

GeForce GeForce GeForce
GTX 460 GTX 560 GTX 480

Number of cores 336 336 480

Streaming Multiprocessors 7 7 15

Max Shared Mem.
48 KB 48 KB 48 KB

per SM

Global Mem.
1 GB 1 GB 1536 MB

(GDDR 5)

Processor clock
1300 1700 1401

(MHz)

Max block size 1024 1024 1024

Mem. Bandwidth
108.8 128 177.4

(GB/sec)

Compute Capability 2.1 2.1 2.0

from the average for that configuration by more than 1%.

Three different graphics cards have been used to run the experiments. The specifications of all three

cards can be found in Table 3.3. Although the GeForce GTX 480 is an older model than the GeForce GTX

560, the former has more global memory and higher memory bandwidth, which enhances the performance

of this application domain. Moreover, there are twice as many multiprocessors in the GeForce GTX 480,

which allows for scheduling double the number of blocks at the same time compared to the other two cards.

While we have access to a high end NVIDIA® Tesla® card, we could not report results obtained with this

card due to the lack of a high end CPU such as the Intel® Xeon® processor. The results achieved in this work

were obtained with the commodity desktop processors described in Table 3.4.

Table 3.5 shows different block sizes and their effect on the overall simulation speedup compared to the

single-core serial code. Performance-wise it can be noted that:

1. When the number of threads per block is small, the need for more global memory accesses for syn-

chronization rises. This is most pronounced when there are only 32 threads per block. The worst

performance for this case was when the system size is 131,072 particles, and has 4,096 blocks.

42

Table 3.4: Desktop computers used for the experiments.

GPU CPU RAM OS

GTX 480 Intel Core i5-2500K 8 GB CentOS 6.2

GTX 560 Intel Core i5-2500K 8 GB CentOS 6.2

GTX 460 AMD Phenom II 6 GB Ubuntu 11.04

GTX 480 Intel Core 2 Duo 2 GB CentOS 6.2

2. 64 threads per block offers the best performance when there are less than 8,192 particles in the system.

With this block size, load balancing of shared and global memory usage is achieved for the reduction

operation. In addition, exactly two warps are scheduled for each block. This is consistent with prior

research on optimal block size given in [84]. However, end-to-end execution time is the worst when

the system size is larger than 8,192 particles as seen in Table 3.5. This is evidence that the GPU’s

performance depends on the problem size and specifications, and not on a general rule.

3. Systems consisting of at least 8,192 particles, but less than 32,768 particles achieve the best perfor-

mance with 128 or 192 threads per block. Resource sharing is critical for large systems, and less

resources are allocated when larger blocks are used.

4. A further performance improvement is observed in systems larger than 65,536 particles when assigning

128 threads per block. The performance improvement is nearly the same as with 192 threads running

in a block, which is a multiple of 64, too. This is due to the fair share of resources and the balance in

using shared versus global memory.

These results show that selecting the optimal block size is not trivial. For example, in our case 128

particles per block is the recommended block size for very large systems, but does not perform best for

smaller systems.

Looking at Table 3.5, also plotted in Figure 3.7, a detailed comparison between different GPUs running

on different platforms is observed. We obtain significant performance improvement for some GPUs over

others running the same code on the same platform. For instance, the GeForce GTX 480 obtains up to

12.33 times speedup compared with a maximum of 7.35 times speedup for the GTX 560 running on the

same desktop. This is because of the extra core count and memory capacity of the GTX 480 over the GTX

43

560. Also, from Figure 3.7 we notice the same pattern of speedup for all runs on all systems. Speedup is

increasing gradually with the system size and shows the best performance for the largest systems.

Figure 3.8 plots the execution times in seconds for the serial code against Towhee [76] on an Intel® Core™

i5 and Figure 3.9 compares the execution time of the serial algorithm with the parallel algorithm running on

the GeForce® GTX 480 GPU. As the system size increases, the execution time for both algorithms increases.

However, the execution time of the serial algorithm grows much faster than the parallel version. Note that the

break even point where the GPU code starts to overcome the added overhead and shows better performance

than the serial code is when the system has more than 512 particles, as shown in Table 3.6. Memory transfers

and parallel function invocation are the main causes of this overhead. The speedup ratio seen in Figure 3.6

shows rapid improvement as the system size grows and we expect more speedup for larger systems.

The parallel algorithm has been tested with the same GPU on different machines. Figure 3.10 shows that

the speed of the CPU (host) has a negligible impact on the execution time of the parallel algorithm. It is clear

that fast CPUs do not provide significant speedup for the parallel code presented here. This was true for all

problem sizes we tested. From this, we can conclude that parallel algorithm is executing almost entirely on

the GPU and keeping the overhead of executing on the CPU to a minimum.

It is often more efficient to perform a small amount of calculations on the CPU while using the GPU

to perform the inherently parallel parts of the computation, particularly since these computations can then

be overlapped. The reason behind getting worse performance with the CUDA code on small problem sizes

is that the overhead of the kernel calls and the memory transfers exceeds the amount of parallelism we can

extract from a small problem size. For instance, in small systems with less than 256 particles, the overhead

of parallel execution is more than the gain of running the code on the GPU, and for systems of size 512

particles and more, the problem becomes large enough to leverage the GPU parallelism and overcome the

overhead of CPU-GPU coordination and data movement and hide memory latency.

Domain decomposition techniques for molecular systems are candidates to enhance the performance

by eliminating extra out of range calculations. However, the overhead of maintaining a data structure of

neighboring particles for such low computation intensive applications wasn’t promising before. Now, with

the possibility of simulating very large systems, a neighbor list algorithm [39] could show decent speedup

for systems with ten thousand particles or more.

In Table 3.7, the execution time of the CUDA implementation with different variations of cell lists are

44

Table 3.5: Large vs. small block size and system performance. Numbers shown are speedup.

Number of Particles

256 512 1024 2048 4096 8192 16384 32768 65536 131072

G
T

X
56

0
+

i5

B
lo

ck
Si

ze

32 0.65 1.16 2.09 2.79 3.60 4.05 4.24 4.12 3.97 3.98

64 0.59 1.07 1.99 3.20 4.01 4.94 5.71 6.01 6.14 6.34

128 0.65 1.17 2.07 3.50 4.86 5.64 6.59 7.02 7.12 7.35

192 0.64 1.16 2.13 3.47 4.24 5.23 6.25 6.68 6.79 6.95

256 0.59 1.07 1.99 3.20 4.01 4.94 5.71 6.01 6.14 6.34

320 0.58 1.03 1.88 3.59 4.91 5.39 6.11 6.63 6.80 7.12

448 0.58 0.88 1.68 3.19 3.43 4.30 4.66 4.96 5.04 5.14

512 0.58 0.82 1.57 2.99 3.38 4.19 5.00 4.96 5.03 5.22

G
T

X
48

0
+

i5

B
lo

ck
Si

ze

32 0.60 1.08 1.98 3.58 4.34 5.40 6.44 6.90 6.46 6.64

64 0.61 1.09 2.02 3.64 5.52 6.29 8.30 9.78 10.24 10.93

128 0.59 1.07 2.00 3.47 5.34 7.48 8.94 10.07 11.40 12.33

192 0.73 1.25 1.96 3.54 4.58 5.53 7.45 8.74 9.47 10.00

256 0.68 1.16 2.07 3.21 4.67 5.64 7.21 8.26 8.89 9.31

320 0.68 1.12 1.98 3.26 5.03 5.38 6.73 7.87 8.56 9.16

448 0.68 0.98 1.79 3.27 3.47 4.29 5.13 5.86 6.30 6.58

512 0.68 0.92 1.67 3.06 3.40 4.16 5.55 5.86 6.29 6.70

G
T

X
48

0+
C

2D

B
lo

ck
Si

ze

32 1.21 2.02 3.55 6.12 7.10 8.62 10.02 10.72 10.21 10.95

64 1.23 2.05 3.64 6.23 9.25 10.13 13.12 15.23 16.24 18.00

128 1.22 2.02 3.59 5.93 8.95 12.21 14.22 15.91 18.09 20.30

192 1.15 1.95 3.49 6.18 8.93 12.72 14.73 16.21 17.29 19.35

256 1.07 1.80 3.22 5.73 8.29 9.63 12.49 14.31 15.69 17.29

320 1.06 1.69 3.03 5.53 9.17 12.27 13.78 15.07 17.03 18.83

448 1.06 1.46 2.69 4.88 8.18 8.76 11.81 14.25 14.57 15.75

512 1.06 1.37 2.49 4.52 7.71 8.39 11.16 13.33 14.53 15.64

G
T

X
46

0
+

Ph
II

B
lo

ck
Si

ze

32 0.74 1.26 2.17 2.79 3.56 3.94 4.50 4.75 4.91 5.06

64 0.75 1.26 2.17 3.70 4.37 5.28 6.75 7.46 7.91 8.29

128 0.59 1.07 2.00 3.47 5.34 7.48 8.94 10.07 11.40 12.33

192 0.56 1.04 1.95 3.62 5.34 7.77 9.25 10.39 10.93 11.79

256 0.53 0.96 1.79 3.37 4.99 6.00 7.89 9.10 9.87 10.50

320 0.52 0.90 1.69 3.25 5.49 7.55 8.72 9.56 10.72 11.36

448 0.52 0.77 1.50 2.86 4.88 5.46 7.46 9.09 9.21 9.63

512 0.52 0.73 1.40 2.67 4.61 5.22 7.06 8.46 9.19 9.56

45

10
2

10
3

10
4

10
5

Number of Particles (Normalized)

0

2

4

6

8

Sp
ee

d
up

32
64
128
192
256
320
384
448
512

(a) Speedup on i5 CPU and GF 560

10
2

10
3

10
4

10
5

Number of Particles (Normalized)

0

5

10

15

20

Sp
ee

d
up

32
64
128
192
256
320
384
448
512

(b) Speedup on Core 2 Duo CPU and GF 480

10
2

10
3

10
4

10
5

Number of Particles (Normalized)

0

4

8

12

Sp
ee

d
up

32
64
128
192
256
320
384
448
512

(c) Speedup on i5 CPU and GF 480

10
2

10
3

10
4

10
5

Number of Particles (Normalized)

0

2

4

6

8

10

Sp
ee

d
up

32
64
128
192
256
320
384
448
512

(d) Speedup on Phenom II CPU and GF 460

Figure 3.7: Plots of speedup for different block sizes on different platforms.

46

0 1 k 2 k 3 k 4 k
Number of Particles

10
0

10
1

10
2

10
3

10
4

10
5

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds
 (

L
og

ar
ith

m
ic

)
Serial
Towhee

Figure 3.8: Developed serial code vs. Towhee elapsed times (logarithmic normalization).

0 30 k 60 k 90 k 120 k
Number of Particles

10
0

10
1

10
2

10
3

10
4

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (
L

og
ar

ith
m

ic
)

CUDA
Serial

Figure 3.9: Serial vs. CUDA execution times for MC simulation on i5 and GeForce 480.

47

0 30 k 60 k 90 k 120 k 150 k
Number of Particles

0

30

60

90

120

150

E
xe

cu
tio

n
tim

e
in

 S
ec

on
ds

i5 CUDA
C2D CUDA

Figure 3.10: Execution times on two different platforms with GTX 480.

Table 3.6: Average program execution times (in seconds) and speedup of CUDA over serial code for a
million steps on i5 and GTX 480.

N Serial CUDA(128) Speedup

256 6.5 11.0 0.6

512 12.1 11.3 1.1

1024 23.0 11.5 2.0

2048 43.0 12.5 3.5

4096 74.5 14.0 5.2

8192 128.2 17.1 7.5

16384 238.8 26.7 9.0

32768 450.6 44.7 10.1

65536 847.0 74.3 11.4

131072 1681.9 136.4 12.3

262144 3659.8 243.7 15.0

48

Table 3.7: Average program execution times (in seconds) for a million steps with different cell list models.

N CUDA (27x1) (9x3) (3x9) (1x27)

4096 14.0 17.1 17.6 18.8 23.6

8192 17.1 17.6 17.1 18.8 23.4

16384 26.7 17.1 17.1 18.6 23.4

32768 44.7 17.7 17.2 18.6 23.2

65536 74.3 17.4 17.6 19.2 23.5

131072 136.4 19.0 19.0 20.4 25.3

262144 243.7 24.4 22.4 23.6 31.0

Table 3.8: Speedup for a million steps with different cell list models over the code without cell list.

N (27x1) (9x3) (3x9) (1x27)

4096 0.8 0.8 0.7 0.6

8192 1.0 1.0 0.9 0.7

16384 1.6 1.6 1.4 1.1

32768 2.5 2.6 2.4 1.9

65536 4.3 4.2 3.9 3.2

131072 7.2 7.2 6.7 5.4

262144 10.0 10.9 10.3 7.9

49

0 5 10 15 20 25 30
N/10000

0

3

6

9

12

S
p
ee

d
u
p 27x1

9x3
3x9
1x27

Figure 3.11: The effect of different cell list implementations on speedup against the CUDA implementation
without cell list.

compared against that of the CUDA implementation without cell list. In the cell list implementation, the

simulation is divided into equal size cells, which means the amount of work executed within the cell is the

same for any system size. However, the execution time shows a relatively slight increase in execution time

for systems larger than 131,072 particles because of the extra time taken by memory transfers.

Different cell list algorithms manage GPU resources in a slightly different way. Four such algorithm’s

performance results can be seen in Table 3.8 and Figure 3.11. We note that the best results are achieve when

one thread is assigned to three particles in three cells3 referred to by (9x3) where 9 is the number of blocks

needed to process the 27 cells.

3Figure 4.1 depicts the cell list algorithms mentioned here.

CHAPTER 4 Grand Canonical Ensemble: One Simu-

lation Box and a Reservoir

The main goal of Monte Carlo and Molecular Dynamics simulations is to compute equilibrium properties

of classical many-body systems or to estimate the average properties of systems with a very large number

of accessible states. However, MC methods make it more feasible to simulate open systems that MD cannot

simulate, because the latter algorithm doesn’t support open systems, systems with an addition or deletion of

particles [39].

We present a high optimized GPU algorithm for MC simulation using the grand canonical method. For

verifying accuracy and as a comparison base, the study started by implementing an optimized serial code that

runs on a single CPU core. This code is being used to verify the accuracy of the CUDA code thermodynamic

results, for performance measurement, and as a second option for running the code on machines without

a GPU. One may argue that developing a code that runs on multicore processors may be an alternative to

the code running on manycore devices. Although this claim may be true, investing the time in developing

a multicore code that runs on up to four or more cores will not outperform a code that is development on

a GPU with tens or hundreds of cores. It is wise to invest the development time in writing code that will

definitely run faster and scales for very large problems.

Based on the statistical accuracy of our serial implementation, the serial algorithm has been rewritten to

utilize the GPU. The main contribution of this work is a performance enhancement of the CUDA code that

makes it possible to run more than quarter of a million particles for tens of millions of simulation steps in the

Monte Carlo algorithm in a reasonable amount of time. Instead of waiting days to generate simulation results

from huge systems, the user will get her simulation results before finishing lunch. Furthermore, according

to feedback from the community, people are interested in conducting more simulations with a relatively

small systems, as small as ten thousand particles. This is another strength point to this work, even for small

systems, the CUDA code with cell list shows good speedup.

50

51

4.1 MC Simulation for the Grand Canonical

The Grand Canonical method (or µ, V , T) is one of the statistical ensembles that are used to represent a

possible distribution state in which a simulated thermodynamic system can be in real experiments. The grand

canonical ensemble extends the canonical ensemble by defining the values of the temperature (T), volume

(V), and the chemical potential (µ) as constants [39]. Particles can interact with each other only when they

exist inside the simulated system and when they are within a cutoff radius, rcut, of each other. A reservoir

is connected to the simulated box, allowing the particles and energy to be exchanged freely between them.

Through this exchange of particles, the system and the reservoir will reach an equilibrium state, which can

be determined by using the fixed values of the temperature and the chemical potential.

This method can be applied to problems such as:

1. Simulate adsorption isotherms. While it is essential to have a detailed knowledge of the behavior of

the adsorbed molecules, this type of information is very difficult to obtain experimentally; simulation

is the alternative.

2. Could be used in numerical simulations to accurately predict properties of materials and their guest-

adsorption characteristics.

3. To determine the equation of state of the Lennard-Jones fluid. One could impose temperature and

chemical potential and calculate the density and pressure.

We study systems of particles interacting via the Lennard-Jones potential by calculating the configura-

tional energy of pair interaction, given by:

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(4.1)

where r is the distance between two interacting particles, ε indicates the depth of the potential well, and

σ is the collision diameter for the two interacting particles. Note that calculations of the Lennard-Jones

potential are significantly more complex than the Ising or hard sphere models, since you have to calculate

the interactions between all particles within a certain cutoff radius.

Particles in this ensemble are moving inside the simulation box or between the box and the resevoir.

52

The criterion for accepting the move is based on the weighting of the Boltzmann factor, Equation 3.1. The

acceptance or rejection for the types of particle moves are given by the Metropolis acceptance criterion [80,

8]:

Particle Displacement A random particle is attempting to move randomly within the simulation box. The

move is accepted with a probability:

acc(s→ s′) = min [1, BF] (4.2)

Insertion A random particle from the reservoir is inserted in a random position in the box. The acceptance

probability of this move is given by:

acc(C → C + 1) = min

[
1,

V

Λ3(N + 1)
BF

]
(4.3)

where ∆E here equals to [µ− U(N + 1) + U(N)], and Λ is the thermal de Broglie wavelength.

Deletion The transfer of a random particle from the box to the reservoir is accepted with a probability:

acc(C ← C − 1) = min

[
1,

Λ3N

V
BF

]
(4.4)

where ∆E in this case equals to [µ+ U(N − 1)− U(N)]

Algorithm 4 shows how the serial code works. In general, this algorithm executes DisplacePercent of the

simulation steps as particle displacement moves, and the rest are divided equally between the insertion and

deletion of particles. After each interval of steps, the algorithm ensures that a detailed balance is obeyed.

In each of the three moves, the bottleneck is to calculate the pairwise system’s energy from all interacting

particles. Since this is a Markov chain algorithm, each step should use the current system status to calculate

the probability of acceptance for the next one.

4.2 Parallel Algorithm and Implementation Details

Due to the extremely multithreaded nature of the graphics devices, fine-grained parallelism is needed to

keep the processors in the device active. For example, on the device, the smallest unit of execution is the

53

Algorithm 4 Serial Grand Canonical Ensemble Monte Carlo Algorithm
1: Input: One box of size (N) and volume (V)
2: Input: non-empty reservoir
3: //Initialize N particles positions inside the box
4: //Calculate total system energy
5: //Main simulation loop
6: for i= 1 to Nsteps, step=1 do
7: //Randomly select a move type
8: R← rand()
9: if (R < DisplacePercent) then

10: //Attempt particle displacement
11: else
12: //Attempt particle transfer
13: //Insertion/Deletion
14: //Chose a random source of particle
15: Source← rand()
16: if (Source < 0.5) then
17: //Source box is the box (Del)
18: else
19: //Source box is the reservoir (Insertion)
20: end if
21: end if
22: //Solve if the system in equilibrium (Balance)
23: //Periodically update system status to disk
24: end for

warp. All 32 threads in a warp must execute the same instruction and avoid branches in the code that lead

to warp divergence. Another requirement to achieve good performance is to hide the memory latency. Even

though the device has very high memory bandwidth, the relatively high latency of global memory accesses

has to be addressed to get an efficient implementation.

4.2.1 Implementation without Cell List

For this applications, there are mainly two parallel restrictions. First, although the simulation steps have

been implemented on the GPU, the CPU should decide which move to execute next and call the correspond-

ing kernel. Moreover, the simulation should periodically be writing system status to disk, an operation not

fully supported by current GPUs.

In this section, we describe in detail the simulation moves implemented on the GPU through kernel calls,

without the use of cell lists. The implementation of cell lists is then discussed in § 4.2.2.

54

Calculating Total System Energy

Although this is the most time consuming kernel call for this application domain since all particle pair

interactions are being calculated, this functions is being called only once to calculate the initial system

energy. The total number of unique pairwise energy calculations is N(N − 1)/2. If each thread is assigned

to find the energy with one particle and all other particles, then the first thread is going to do N − 1 (one

row) calculations and the last thread is going to calculate the energy for only one pair of particles. To solve

this thread imbalance issue, the work done by each thread has been mapped so that one thread is calculating

pairwise energy for two particles. This cuts the number of required threads per kernel in half and allows for

more threads to be scheduled at the same time per SM. Figure 3.4 illustrates this load balancing technique.

Particle Displacement within the Box

In this move, a randomly selected particle attempts to move in a random direction within the simulation

box. The amount of energy that this particle is contributing to the system in the new location should be

calculated, by first deducting the particle’s contribution from its original location, then calculating the new

system’s energy for the new location. The difference in energy, ∆E, is used for calculating the Boltzmann

factor in equation 4.2 to decide whether or not to accept the new location. Upon the acceptance of this

particle’s move, the system status should be updated, which includes the new energy, new virial pressure,

particle’s new position, and other configuration variables.

Initially, the TryMove() call wasn’t on the GPU. In Algorithm 5, the kernel function TryMove<<<>>>()

calls another function, CalculateParticlesContributionTM(), that returns ∆E; this last function was the ker-

nel call. The decision of whether to accept the move or not uses this returned value from the device, and

compares it to a randomly generated number. If the move is accepted the new particle position, current en-

ergy, etc. should be copied to the host. However, moving the function TryMove() to the GPU avoided these

memory copies. Now, only thread zero in the last block makes the final calculations and applies changes to

the system if the move is accepted, which eliminates the copying of all the parameters to the host. Algo-

rithm 6 shows the parallel algorithm for the function CalculateParticlesContributionTM().

55

Algorithm 5 Parallel particle displacement
1: Input: One box of size (N) particles, (V) volume
2: //Randomly select a particle to displace
3: P← rand()
4: ∆E ← CalculateParticlesContributionTM()
5: if thread 0 in last block then
6: Use ∆E to calculate the acceptance rule
7: //Select a random number A in [0,1)
8: A← rand()
9: if A < ProbOfAcceptance then

10: //Move accepted, apply changes
11: //Update cell contents
12: else
13: //Move rejected
14: end if
15: end if

Insertion and Deletion of Particles

To insert a particle from a non-empty reservoir, a random location should be generated. The device

function CalculateParticlesContributionTPT() calculates the energy contribution for the new particle in the

new location. The difference in system energy from this insertion is calculated by assigning one thread for

each particle. The result of each pairwise energy interaction is stored in shared memory. The reduction

process described in § 3.3.5 is then executed as shown in Algorithm 7. Algorithm 8 shows the next steps

of calculating the probability of acceptance, generating a random number, and comparing the results. If the

move is accepted, the current system parameters will be updated to reflect the new particle; otherwise, the

system configuration remains unchanged.

The deletion move is similar to the insertion move except that the system is losing a particle and has to

change the probability of acceptance as in equation 4.4. When the deletion step is accepted, the reservoir

holds that particle, and the system configuration is updated accordingly.

4.2.2 Cell List Implementation

As we have seen in Figure 3.5, if the pair interaction is short-range, such as here, the simulation box

can be decomposed into smaller domains, called cells, with the cell length S equal to or greater than the

maximum interaction range rcut. For a given particle, all interacting particles are located in the same or

56

Algorithm 6 CalculateParticlesContributionTM
(no cell list)

1: Input: One thread Per Particle
2: //Initialize shared memory
3: //Assign a particle for the current thread
4: for each ParticleID in the system do
5: // For the particle in the old location
6: //Determine the true distance between particles
7: //applying periodic boundary conditions.
8: //Calculate RadialDistance between particles.
9: if RadialDistance within cutoff then

10: //store interaction results in shared memory
11: end if
12: // For the particle in the New location
13: //Determine the true distance between particles
14: //applying periodic boundary conditions.
15: //Calculate RadialDistance between particles.
16: if RadialDistance within cutoff then
17: //store interaction results in shared memory
18: end if
19: end for
20: syncthreads()
21: //Apply reduction in shared memory
22: //Move results from each block to global memory
23: //Last block moves data from global to shared memory
24: //Apply reduction in shared memory
25: //final result is ∆E
26: //return ∆E to caller via global memory

Algorithm 7 Calculate Particles Contribution (no cell list)
1: Input: One thread Per Particle
2: //Initialize shared memory
3: //Assign a particle for the current thread
4: //For all other particles in the box
5: //Determine the true distance with ParticleID
6: //Applying periodic boundary conditions
7: //Calculate RadialDistance between particles
8: if RadialDistance within cutoff then
9: //Store interaction results in shared memory

10: end if
11: syncthreads()
12: //Apply reduction algorithm
13: //return ∆E to caller via global memory

57

Algorithm 8 Parallel Insertion/Deletion
1: Input: One box of size (N) particles, (V) volume
2: Input: A reservoir of non-zero size
3: //Randomly select a position to insert into in the box
4: //Find designated cell
5: //Calculate the new particle’s energy contribution
6: ∆E ← CalculateParticlesContributionTPT()
7: if thread 0 in last block then
8: //Use ∆E to calculate the acceptance rule
9: //Select a random number A in [0,1)

10: A← rand()
11: if A < ProbOfAcceptance then
12: //Move accepted, apply changes
13: else
14: //Move rejected
15: end if
16: end if

directly adjacent neighboring cells on all axes. Figure 3.6 shows a 3D model of a simulation box where

the dotted cells are the neighboring cells to the cell with crossing lines. Therefore, the cell list algorithm

scales sublinearly as most of the operations have a fixed number of particles that need to be considered

and this is independent of the size of the system. On the other hand, the cell list algorithm suffers from

associated overheads of constructing and maintaining the cell structure. Next, we discuss the algorithm for

implementing the cell list and factors of the design.

Building the Cell List and Binning the Particles

There are many techniques proposed [39] for implementing the cell list. We are implementing a tech-

nique that maintains a balance of the number of global memory accesses and the minimum number of wasted

calculations. While some approaches use a linked list to store the indexes of the particle in each cell, others

assign a fixed sized array of placeholders to every cell. The disadvantage with the first scheme is with the

random memory accesses to pointers, which prevents threads from memory coalescing and prevents parallel

access to particles. The disadvantage of the latter scheme is the extra memory that may be wasted. Although

our implementation uses the latter scheme, experiments show that even for large systems, the maximum

number of particles in a cell can be relatively small when a suitable cell size is chosen. This is discussed in

more detail when we describe the cell size below.

58

In this implementation, we applied cell lists to run entirely on the GPU, constructed once at the beginning

of the simulation and requiring minimum maintenance. First, a data structure (ParticlesInCells) to hold the

26 adjacent cells for each cell is constructed, of size 27× T , where T is the maximum number of particles a

cell may have. Then, ParticlesInCells is bound to texture memory to take the advantage of caching. For the

entire simulation run, values will be read through texture fetches. Using texture memory is important for such

domain applications especially since one thread block will be reading the same cell indexes for the entire

kernel call, allowing for a high rate of cache hits. Algorithms 9 and 10 show how the cell list implementation

is used for finding ∆E for both the Particle Move and Particle Insertion/Deletion, respectively.

The process of placing particles in cells is called binning the particles. This process involves looping

through the N particles and placing them into T cells. This process has been optimized so that when we first

construct the simulation box and generate the random locations of all particles, we also execute the binning

algorithm. This means we skip the overhead of a kernel call, and the need for extra global memory reads

for the particle coordinates. The only performance disadvantage is the need to perform a read-modify-write

operation to bin the particle to its location in the cell. However, with the Fermi architecture, these atomic

operations are efficiently implemented and do not have significant effect on performance.

Cell Size

As mentioned before, a fixed size array of placeholders to every cell has been used to implement the cell

scheme for our code. This parameter depends highly on the density of the simulation box and how close

particles could be to each other. A larger cell size means extra wasted memory locations. On the other

hand, a small cell size would affect the true number of particles in range, and a margin of error should be

considered. Our implementation considers a cell size large enough to encompass all particles within range.

The number of particles in a cell for a simulation with less than 8000 particles does not exceed 16 particles

per cell. An upper limit of 32 particles per cell is chosen for larger problem sizes.

Another advantage of the close-to-optimal cell size is to eliminate moving a particle from one cell to

another. For example, in the TryMove() kernel, if the particle is moving within the same cell, calculating

the pairwise energy for the old and the new location will reuse the same particles, allowing for caching the

coordinates of these particles.

59

(a) One block per cell

(b) Nine cells per block

(c) Three cells per block

(d) Twenty seven cells per block

Figure 4.1: Different methods in assigning cells to thread blocks

60

Algorithm 9 CalculateParticlesContributionTPT function (cell list 9x3)
1: Input: three cells per block
2: //Initialize shared memory (x3)
3: /For the particle in the old location
4: //Find SourceCurrentCell
5: //Fetch three Neighboring cells From texture
6: if Non-empty cell then
7: //For each ParticleID in SourceCurrentCell or neighboring cells
8: //Assign one thread per particle
9: //Determine the true distance between particles

10: //applying periodic boundary conditions.
11: //Calculate RadialDistance between particles.
12: if RadialDistance within cutoff then
13: //store interaction results in shared memory
14: end if
15: end if
16: //For the particle in the new location
17: //Find DestCurrentCell
18: //Fetch three Neighboring cells From texture
19: if Non-empty cell then
20: //For each ParticleID in DestCurrentCell or neighboring cells
21: //Determine the true distance between particles
22: //Applying periodic boundary conditions.
23: //Calculate RadialDistance between particles.
24: if RadialDistance within cutoff then
25: //Store interaction results in shared memory
26: end if
27: end if
28: syncthreads()
29: //Apply reduction algorithm
30: //return ∆E to caller via global memory

4.2.3 Assigning Cells to Blocks

In MD simulations, all particles move in the same randomly chosen direction at once. It is more efficient

to assign one thread per particle, and one block per cell to take the advantage of caching all 26 neighboring

cells. However, this is not necessarily true for MC simulations where only one particle is to be moved in each

simulation step, and more blocks need more synchronization through atomic operations on global memory.

Our implementation considers multiple options, with different numbers of cells per block and reports the

difference in performance. This is depicted in Figure 4.1 where each thread block may compute 1, 3, 9 or 27

cells. This shows more ways to manage GPU resources according to the domain under study.

61

Algorithm 10 CalculateParticlesContributionTM function (cell list 9x3)
1: Input: three cells per block
2: //Initialize shared memory (x3)
3: //For the selected particle
4: //Find CurrentCell
5: //Fetch three Neighboring cells From texture
6: if Non-empty cell then
7: //For each ParticleID in CurrentCell or neighboring cells
8: //Assign one thread per particle
9: //Determine the true distance between particles

10: //Applying periodic boundary conditions.
11: //Calculate RadialDistance between particles.
12: if RadialDistance within cutoff then
13: //Store interaction results in shared memory
14: end if
15: end if
16: syncthreads()
17: //Apply reduction algorithm
18: //return ∆E to caller via global memory

One cell per block This is the most straight forward implementation expressed in Figure 4.1(a). In this

scheme a kernel launches with 27 blocks, and the block size is set as the number of particles per cell.

However, more synchronization between blocks and more total shared memory is needed. Yet, for

systems with a uniform distribution of particles per cell, this works the best.

Three and nine cells per block In Figures 4.1(b) and 4.1(c), two different ways for resource management

of the device are considered, one with nine blocks per cell, and the other with three cells per block,

respectively. In both cases, one thread is assigned to one particle. These two mechanisms use more

total local memory per kernel call, with less need for block synchronization.

Twenty-seven cells in one block Figure 4.1(d) shows that assigning all 27 cells to one block is a possible

option too in this code. However, due to the huge number of threads per block for this implementation,

more shared memory and other GPU resources are required, see Table 4.3. This means that only one

SM is used to compute the entire simulation and the other SMs are idle. Although this is slower for

one simulation, it would support the option to run multiple simulations simultaneously.

62

4.2.4 Assigning Threads to Particles

Previous work did study the performance of one cell per block and one thread per particle [121, 112].

However, for very large systems that were too large to be simulated prior to this work, it is worthwhile to

study the performance of more than one particle per thread. An algorithm has been developed to assign

multiple particles in more than one cell to a thread. For example, for a kernel of nine blocks, each block

has been called with the size of one thread per particle in a cell, then each thread will calculate the pairwise

energy for three particles from three cells (9x1x3). Another example is when only three blocks are called

and each thread is calculating one particle from nine different cells (3x1x9). The reason for using more than

one thread is to allow larger system sizes to fit to one SM. In addition, eliminating block synchronization are

the reasons for using more than one particle per thread.

4.2.5 Adding Cell List Implementation to the Parallel Grand Canonical Algorithm

Adding the cell list implementation to the above CUDA implementation described in § 4.2 requires

modifications in two steps. First, in calculating the pairwise energy of the system; for each type of move,

only the current cell that a particle belongs to and the 26 neighboring cells’ particles are considered. Second,

for each type of move, slightly different steps are required as follows: Extra steps are required to update

the cell list if a particle displacement move is accepted. The list of particles for both the source and the

destination cells should be updated. To remove a particle from the cell list, an exhaustive search for the

selected particle index in the source cell is executed. Then the last particle’s index in that cell replaces the

memory location in which the particle was stored, unless the particle of interest is the last particle in the list.

In both cases, the counter of particles for that cell is decremented.

The destination cell update requires fewer operations. The particle is appended to list of particles in the

destination cell, and the counter for that cell is incremented. If the particle is moving within the same cell,

no action is required to the cell contents other than updating the coordinates of that particle.

4.3 Performance Results

In this work, we implement a fast parallel Monte Carlo simulation for the grand canonical ensemble

using CUDA toolkit 5.0 [87] and evaluate the end-to-end application wall clock time against a single core

63

CPU implementation. The serial and CUDA implementations have been executed on a PC with an Intel

Core i5-2500k CPU that has 8 GB of RAM running Linux kernel build 2.6.32 and compiled with the Intel

13.0.0 compiler. Parallel results are collected from running the code on the same machine using an NVIDIA

GeForce GTX 480 graphics card. Relevant specs for this card can be found in Table 3.3. All code has been

run with the full optimization flag passed to the compiler (-O3). All measurements have used one million

simulation steps (attempts) and particle radius cut (rcut) of 2.5. Furthermore, the statistical accuracy for

both the serial and the CUDA code have been compared to those in [100] and show very close agreement.

The Mersenne twister algorithm [77] has been used to generate the pseudo-random numbers used in our

simulations.

Table 4.1 reports the performance of the sequential grand canonical code and the CUDA code for a

number of particles ranging from 29 to 218 with a corresponding volume of the simulation box ranging

from 853.3 to 436905.6, doubling as the number of particles doubles. For small problem sizes of less than

4096 particles, no speedup has been achieved due to the low utilization of the device. However, when the

simulation box has 4096 particles, the CUDA code started to outperform the serial code and about 2 times

of speedup is shown. As the system size increases, more intensive mathematical operations are executed and

the GPU code continues to show more speedup. For the largest problem size, we see a 15.8 fold speedup.

From Figure 4.2 we observe that the break-even point (dotted line) for the CUDA code to show any

speedup over the serial code (black circles) is when the simulation box contains 4096 particles, which meets

our expectation for this kind of problems. The main reason for this is because the kernel call overhead for

smaller systems exceeds the gain of parallelism. Moreover, there is not enough arithmetic intensity for small

systems. But, as the system size grows, the CUDA code shows more speedup, up to around 16 times for the

largest problem size. The large number of particles and the associated arithmetic operations are enough to

hide the cost of kernel calls for such large systems.

Since many variations of the parallel cell list algorithm have been evaluated, Table 4.2 explains the

meaning of different notations. For a minimum cell size of rcut = 2.5 and a density of ρ = 1.0, on average

there are 10 particles per cell for systems of size 4096, 27 locations per cell are occupied for medium system

sizes and 64 for large systems of more than 131072 particles. However, since the smallest execution unit on

the device is the warp of 32, we chose as an upper limit the nearest multiple of 32. Also, the system size

lower limit is given by the requirement to have at least three cells per dimension.

64

Table 4.1: Execution times in seconds for different algorithm implementations.

N Serial code CUDA Speedup

512 2.8 22.3 0.13

1024 7.9 22.5 0.35

2048 14.2 22.8 0.62

4096 52.8 23.4 2.25

8192 116.3 26.7 4.36

16384 237.7 36.7 6.48

32768 502.2 56 8.96

65536 991.8 91.6 10.83

131072 2061 154.6 13.33

262144 4534.8 287 15.8

Table 4.2: Legend of blocks, cells, and threads per kernel call.

Notation Block/Kernel Cell/Block Thread/Particle

27x1 27 1 1

9x3 9 3 1

3x9 3 9 1

1x27 1 27 1

9x1x3 9 1 3

3x1x9 3 1 9

1x1x27 1 1 27

As shown in Figure 4.3, different performance results for the cell list code over the original code have

been shown for cells of size 2.75. It is clear that the best performance gain of the cell list is achieved when

there are 262144 particles in the system. Moreover, a very important observation of these results is that the

total amount of work per kernel is not increasing rapidly with the size of the system. In fact, what we are

seeing here is the increased time in memory transfers between the host and the device, as we can also see

from the end-to-end application execution time as shown Figure 4.4.

From the results in Table 4.4, we can see that when a kernel calls with 27 or 9 blocks, the performance

is the highest with speedup of 8.31 and 8.32, respectively. In the case of 27 blocks only one cell is handled

by each block. However, the extra overhead of synchronization and reduction among blocks is what makes

9x3 beats 27x1 execution time, even if the difference is negligible. Although the implementation of 9x3, in

65

0 5 10 15 20 25 30
N/10000

0

3

6

9

12

15

18
S

p
ee

d
u
p

Serial vs CUDA
CUDA cell vs CUDA

Figure 4.2: Speedup of 3 algorithms: Serial vs original CUDA and original CUDA vs CUDA with cell list.

Table 4.3, is using about three times the total shared memory of 27x1, the execution time doesn’t exceed

4% difference. Moreover, from the same table we can see that managing GPU resources affect the overall

performance of the CUDA code.

In Table 4.3, a comparison between different uses of GPU resources shows that efficient resource man-

agement can affect the performance advantageously. Although the average total amount of shared memory

for the kernel call without cell list is almost the same as 27x1, a speedup of about one and a half times can

be observed. As a result, we would recommend the use of 9x3 algorithm with a cell of size 2.75 for this

problem under study.

A set of performance evaluation tests have been conducted using different cell sizes with a large number

of particles in the box to evaluate the execution time of the CUDA implementation with cell lists against that

of the CUDA implementation without cell list. From Figure 4.5 we note that the best results are achieved

when the cell size was the minimum. Also, we observe that even with a different cell size, the algorithms of

27x1 and 9x3 both did the best.

66

0 3 6 9 12 15 18 21 24 27 30
N/10000

0

2

4

6

8

S
p

ee
d

u
p

27x1

9x3

3x9

1x27x1

9x1x3

3x1x9

Figure 4.3: Speedup of CUDA code with different cell list codes over CUDA with no cell list.

Table 4.3: Different block sizes have different effect on resource utilization. For these experiments N is
equal to 65536.

Cells per block

27x1 9x3 3x9 1x27 No cell list

Total Shared Memory 524 1548 4620 11676 518

Occupancy(%) 16.7 50.0 37.5 47.9 16.7

Average exec time 25.7 26.5 27.2 32.40 36.7

67

0.125 0.25 0.5 1 2 4 8 16 32
Log(N/10000)

20

30

40

50

60
E

x
ec

 t
im

e
(s

ec
)

3x1x9
9x1x3
1x27x1
3x9x1
9x3x1
27x1

Figure 4.4: Execution times for different algorithms with CUDA cell list.

Table 4.4: Speedup of different cell list implementations over no cell list CUDA code.

N 27x1 9x3 3x9 1x27 9x1x3 3x1x9

1024 0.77 0.78 0.78 0.67 0.65 0.46

2048 0.78 0.79 0.78 0.69 0.65 0.47

4096 0.87 0.88 0.85 0.72 0.68 0.49

8192 1.00 1.00 0.98 0.82 0.78 0.50

16384 1.43 1.39 1.35 1.13 1.09 0.68

32768 2.10 2.10 2.06 1.75 1.66 1.04

65536 3.36 3.36 3.31 2.83 2.65 1.69

131072 5.42 5.39 5.31 4.61 4.29 2.78

262144 8.31 8.32 8.20 7.28 6.88 4.99

68

Figure 4.5: Cell size and speedup. of particles per cell per thread for N = 262144.

CHAPTER 5 Gibbs Ensemble: Two Simulation Boxes

In this chapter, we consider the Gibbs ensemble simulation in vapor-liquid phase coexistence, which can

be determined from running a single simulation with two boxes [93, 39]. The MC method has been crucial

in studying such systems and is necessary in order to allow for the number of atoms to vary with applied

chemical potential via the Gibbs ensemble simulations. In high density systems, calculations may require a

significant amount of computation power, with weeks to months of running time. For these systems to run

in a reasonable amount of time, one should consider the use of massively parallel devices such as GPUs.

We first developed an efficient CPU code for MC simulation of the Gibbs ensemble. Then, we trans-

formed the algorithm to run on the GPU and applied many tuning and optimization techniques specific to

the GPU. Any general coding improvements that were made to the GPU code were back-ported to the CPU

code, so both codes are highly optimized for their respective platform. In addition, both implementations

produce identical results when choosing the same random seed, and are in close statistical agreement with

the literature. Although the parallel version of the code shows speedup for small system sizes, larger systems

show higher speedup, because larger systems have larger computation volume and the benefits of parallelism

are greater.

5.1 MC Simulation of the Gibbs Ensemble

In a molecular system, there are several important correlated variables: volume, temperature, number

of atoms, system energy, and pressure. For each ensemble, specific variables are fixed, and others remain

independent. For instance, when the number of atoms, the volume, and the temperature are fixed through

out the entire simulation, this is the Canonical ensemble or NVT. Another widely used ensemble is the

Gibbs ensemble [93]. The Gibbs ensemble method directly simulates the average densities of coexisting

fluid phases for bulk systems and confined fluids in equilibrium with a bulk region, and avoids the time

consuming calculation of the chemical potentials. This method allows simulating phase equilibria under

conditions where the pressure, temperature, and chemical potential(s) of the coexisting phases are fixed [39].

69

70

Figure 5.1: An illustration of the three move types for the Gibbs ensemble method. A represents atom
displacement, B represents atom transfer between boxes, and C represents volume swap.

The Gibbs ensemble simulation model consists of two three-dimensional simulation boxes, with the

atoms placed in them. Moreover, three trial moves are considered [93, 39], each of which has an acceptance

rule. The criterion of acceptance is based on the weighting of the Boltzmann factor. where N is the total

number of atoms in both boxes, s is the position of the atom, and U is the potential. Figure 5.1 illustrates the

three types of moves conducted by an atom. The types of moves are:

A. Atom Displacement: A randomly selected atom attempts displacement within the same box. The ac-

ceptance rule for this move is given by:

acc(o→ n) = min (1, BF) (5.1)

where acc(o → n) is the change in the configuration from o (the previous configurations) to n (the

configuration after this displacement).

B. Atom Transfer: Figure 5.1 shows an attempt to transfer a randomly selected atom from one of the two

boxes to the other box. Without lose of generality, assume that we generate configuration n from

configuration o by removing one atom from box 1 and inserting this atom into box 2. This move is

accepted according to the following rule:

acc(o→ n) = min

(
1,

n1(V − V1)

(N − n1 + 1)− V1
×BF

)
(5.2)

where V1 is the volume for box 1 and n1 is the number of atoms for the same box.

71

C. Volume Swap: An equal and opposite random change in the volume of the two boxes, such that the total

volume remains constant. This move uses the acceptance rule:

acc(o→ n) = min

(
1,

(
V n

1

V o
1

)n1+1(V − V n
1

V − V o
1

)N−n1+1

×BF

)
(5.3)

where V o
1 is the volume in the original state, V n

1 is the volume in the new state, andN is the total number

of atoms in the system. For the new trial system, the scaled coordinates are defined as

sNn = rN ×
(

1 +
3
√
Vn − Vo
Vo

)
(5.4)

As the simulation approaches the equilibrium state, the distance that we displace an atom is updated

periodically so that an acceptance rate close to 50% is achieved for the displace and volume swap moves.

Based on the value of the acceptance rule, a random exponential function is used to determine whether

or not the move is accepted. If the move is accepted, the new system configuration replaces the old one,

otherwise, the old system configuration is retained.

The pseudocode in Algorithm 11 shows how the selection of the move is performed. Although all simu-

lation moves are kernel calls, the main loop is executed on the host side, which involves many configuration

updates. Moreover, a periodic flush of the data to the disk is required to write system status permanently.

Hence, the simulation data should be transferred to the CPU to be written to the disk. These are limiting

factors and overhead to the GPU use.

5.2 Method

Different MC simulations have different implementations due to the nature of the application being

simulated. Applications such as the one implemented in this work have proprieties that make the process of

creating an efficient parallel algorithm challenging. One of these properties is that this is a Markov Chain

application where one simulation step depends on the results of previous steps. This prevents the execution

of multiple steps in parallel.1 So, the alternative is to create methods and techniques to solve these and other
1It might be possible to run multiple steps simultaneously if they are not interacting, such as two displacement moves, one in each

box. However, the fraction of such non-overlapping moves is relatively low and would introduce significant overhead to determine
whether or not moves are overlapping.

72

Algorithm 11 Gibbs Ensemble MC Algorithm
1: Input: Two boxes of equal size (N) and volume (V)
2: //Main simulation loop
3: for i= 1 to Nsteps, step=1 do
4: //Randomly select a move type
5: R← rand()
6: if (R ≤ Ndisp) then
7: //Attempt atom displacement
8: //Randomly select a box
9: Source← rand()

10: //Pick a box
11: if (Source < 0.5) then
12: //(K) Attempt to displace an atom in box 1
13: else
14: //(K) Attempt to displace an atom in box 2
15: end if
16: else if (R ≤ (Ndisp +Nvol)) then
17: //(K) Volume Transfer
18: else
19: //Attempt atom transfer
20: //Randomly select a box
21: Source← rand()
22: //Pick a box
23: if (Source < 0.5) then
24: //(K) Source box is box 1
25: else
26: //(K) Source box is box 2
27: end if
28: end if
29: //Solve if the system is in equilibrium
30: //Periodically write system status to disk
31: end for

encountered parallel cases. Some tricks and optimization techniques used to get the results in § 5.3 include:

1. Mapping from serial operations to equivalent parallel operations with one order of magnitude reduc-

tion, assuming the GPU has enough resources to run N threads concurrently. For example, operations

on all atoms such as the initialization of atom positions is reduced from O(N) to O(logN). Another

example, when scaling atoms in a volume swap move, the complexity can be reduced from O(N2) to

O(N); such operations are easily parallelized.

2. Block size has been chosen very carefully. The number of atoms in a thread block plays a crucial

role for this application. In general, the massively threaded hierarchy has been supported by the

73

thread block structure that CUDA devices provide. However, thread blocks add more overhead to

the kernel launch in two ways. First, thread blocks communicate through global memory that has

very high latency compared to other memory types; Second, synchronizing thread block execution is

not as straightforward as synchronizing threads using synchthreads() nor synchronizing grids using

cudaDeviceSynchronize(). However, block synchronization is not hard to implement using atomic

operations, which have efficient performance in the Fermi architecture.

3. The use of loop unrolling and instruction-level parallelism are two common optimization techniques

for such platforms. The CUDA compiler (nvcc) by default will try to unroll any loop for potential

speedup. However, this is not fully optimized in the current nvcc compiler [85]. Moreover, the degree

of unrolling should be examined by the developer for best performance. This technique may also

eliminate the need for loop overhead when calculating the index and a dependent array index or offset.

4. The use of an efficient reduction technique. This particular application domain is dealing with hun-

dreds of thousands of atoms that need to calculate the pairwise energy interaction for atoms. This

is a very long and costly process with thread dependency and many synchronization barriers. Algo-

rithm 12 shows our method of solving this problem and how it is implemented. First, the irregular

problem size, when we don’t have an exact power of two number of atoms, is addressed. Line 4 shows

the operation that is executed to find the closest power of two that is less than the block size.

For example, if the number of atoms to be processed equals to 117 atoms in a box, the equation in

Line 4 will evaluate to 2blog2(117)c = 26 = 64 which is the number of atoms that need to be resolved

first. While the fragment of code between lines 6 and 11 will solve up to 117 atoms in this example, the

inner if statement in line 7 is to make sure that we don’t try to add thread 63 with thread 127 or thread

55 with thread 119. Afterward, the process of reducing to 64 atoms is executed in lines 13 to 18. Then,

loop unrolling is implemented for the first 64 atoms. We replace many nested if-elseif-else structures

with a single switch statement, as seen in lines follow Line 22. This is a very efficient technique for

removing any conditional thread divergence that if statements usually cause. Note that this method of

reduction reduces the need for synchronization barriers after the switch statement as well.

This algorithm is a generalization of the algorithm presented in [108] which is restricted to problem

sizes that are a power of two. Algorithm 12 provides significant performance enhancement because it is

74

Algorithm 12 Calculating Total Energy in one box
1: syncthreads()
2: // Allocate Energy[] in shared memory
3: // lpt stores the largest power of 2 that is less than the block size
4: lpt← 2log2(BlockSize)

5: // Reduce to the largest power of two atoms
6: if BlockSize < MaxThPerBlock then
7: if tid + lpt < NumOfAtoms then
8: Energy[tid]← Energy[tid+ lpt] + Energy[tid]
9: end if

10: syncthreads()
11: end if
12: // Sum in shared memory all locations larger than 32
13: for i= lpt to 32, step=i / 2 do
14: if tid < i then
15: Energy[tid]← Energy[tid + i] + Energy[tid]
16: end if
17: syncthreads()
18: end for
19: // Reduction for the first 64 locations
20: if tid < 32 then
21: est← min(lpt, 64)
22: switch (est) do
23: case 64: Energy[tid]← Energy[tid + 32] + Energy[tid]
24: case 32: Energy[tid]← Energy[tid + 16] + Energy[tid]
25: case 16: Energy[tid]← Energy[tid + 8] + Energy[tid]
26: case 8: Energy[tid]← Energy[tid + 4] + Energy[tid]
27: case 4: Energy[tid]← Energy[tid + 2] + Energy[tid]
28: case 2: Energy[tid]← Energy[tid + 1] + Energy[tid]
29: end switch
30: end if

being used twice for each volume swap move and atom transfer move, and once when the displacement

move is executed.

5. Balancing the load across threads. In a naı̈ve implementation, when calculating the interacting energy

between atoms, each thread calculates the total interacting energy for one atom with all other atoms

(one row), non-repetitive. To illustrate, thread zero is assigned to calculate the energy for atom zero

with all other N − 1 atoms. Thread one is assigned to calculate the energy for atom one and all other

N − 2 atoms, etc. The last thread will only calculate the interaction between two atoms. This means,

to aggregate the sum of partial energies from all blocks, all threads in a block will wait for the first

75

thread to finish. Instead, this method has been optimized by assigning four threads per row to allow

memory coalescing and leverage resource utilization. A transposing/remapping technique has been

developed where each thread will do an equal amount of computation of (N − 1)/4 interactions. That

significantly improves the speedup of this process and balances the load among threads.

Another example of balancing the load on threads can be noticed in the displacement move. As most

of the move attempts are displacement moves, the randomly selected atom energy contribution should

be calculated for the old and the new locations. The algorithm has been modified to do both steps

at the same time, using the same global memory reads and same shared memory for reduction, the

difference in the old and the new energies are calculated by deducting the partial energy as soon as

it is calculated from the current interaction by the same thread. The result is the difference in energy

for this selected atom. On the other hand, the serial algorithm executes in two steps, calculate the old

system energy, then the new system energy, to deduct the former and add the latter one.

6. The reuse of mathematical results. Studying the problem in hand and potential mathematical optimiza-

tions resulted in significant execution time reduction. Many mathematical results have been saved in

registers and reused for the entire thread lifetime. Also, equation simplification and the removal of

redundant operations. Moreover, the use of CUDA hardware implementations of functions improves

performance. These types of optimizations are domain dependent and may enhance the overall run

time if applied.

7. The use of asynchronous kernel calls and memory transfers, and the use of streams. Streams are non-

blocking kernel launches where two or more predefined streams can execute two or more different

kernels at the same time if they are dependency free. This is also called concurrent copy and execute.

For instance, in a volume move, while atoms in one box are being scaled according to the new volume,

another kernel call would be calculating the new energy of the other box.

8. Other optimizations include the recalculation of some values instead of executing memory transfers

when it is cost effective. For example, scaling atoms in a box on the fly instead of maintaining a

scaled copy of all the atoms and the overhead of transferring them in a volume move. Furthermore,

other optimizations such as the use of device-to-device data transfer instead of using the host for

intermediate memory transfer and caching frequently used memory locations.

76

Table 5.1: A comparison of a high and a low end GPU

GTX 480 Tesla M2090

Processor clock 1401 MHz 1150 MHz

Memory clock 1848 MHz 1566 MHz

Memory size 1536 MB 6 GB

Memory Bandwidth 177.4 GB/sec 177 GB/sec

CUDA cores per SM 32 32

CUDA cores 480 512

Release date April 2010 March 2011

5.3 Results and Discussion

In this work we implement a parallel MC simulation for the Gibbs ensemble using CUDA toolkit 4.2 [85]

and evaluate the end-to-end application run time against a single core CPU implementation. Parallel results

are collected from running the code on an NVIDIA GeForce GTX 480 graphics card. In addition to the

specifications in Table 5.1, this card has 15 streaming multiprocessors, and compute capability 2.0. The

serial and CUDA implementations have been executed on a PC with an Intel® Core™ i5-2500k CPU that

has 8 GB of RAM running Linux kernel build 2.6.32 and compiled with the gcc 4.4.6 compiler and a different

run with the Intel 13.0.0 compiler.

To avoid the bias of using a high end GPU we compare the performance of a commodity GPU to a

commodity CPU. To illustrate, experiments has been conducted with a GeForce GTX 480 card which has an

average price of $400 at the current market price and an Intel® Core™ i5-2500k which has an average price

of $220. However, a top of the line GPU such as a Tesla card can produce even better performance than what

we are reporting here. But, due to the lack of access to a high end CPU on that machine, the results with the

Tesla M2090 are not reported here. While Table 5.1 shows a comparison of a high end GPU to an average

one, Table 5.2 shows the different specifications between a high end CPU Intel® Xeon® Processor E5-2690

to an average one that could be found in regular user desktops.

All codes have been compiled with compiler optimization (-O2) and 64-bit environment flags turned on

for the first case of using gcc compiler, and (-xAVX) and (-O2) flags passed to the Intel compiler. The latter

77

Table 5.2: A comparison of a high and a low end CPU

Intel® i5 Intel® Xeon

No. of cores 4 8

No. of threads 4 16

Clock speed 3.4 GHz 2.9 GHz

Cache 6 MB 20MB

Max Memory Bandwidth 21 GB/s 51.2 GB/s

Release date Q1 2011 Q1 2012

compiler achieved slightly faster execution time for both the serial and the parallel implementations, as can

be seen in Tables 5.3 and 5.4. Other parameters and configurations used for collecting these results are the

cutoff distance, rcut, is set to 3.0, initial system density is kept consistent by adjusting the volume based on

the number of atoms, and temperature is set to 1.0 in agreement with [100]. Also, output energies have been

verified against the results in [90] and show close agreement. Moreover, we are running a million simulation

steps2 (move attempts) where 89% of the simulation steps attempt to execute atom displacement, 1% of the

steps attempt to execute volume swap, and 10% attempt atoms transfer between boxes. However, due to the

long running time of the serial version of the code, we are unable to report results for more than 131072

atoms in the system, which is not the case for the parallel version of the code which can scale up to the

memory limit of the GPU and still executes in a reasonable time.

The use of a pseudo-random number generator is necessary on both the CPU, to decide on the move type,

and on the GPU, to operate on each individual move. Because of the long periodicity and the widespread

use in the application field, the Mersenne Twister (MT) algorithm [77] was chosen. It is used on the host

side to generate a queue of random numbers concurrently with kernel calls, then this queue is transferred to

the device in the same way. Moreover, a pointer to the front of the queue is maintained and passed to the

device to be used by all threads. Since this process is being executed asynchronously with kernel calls and

done infrequently, no noticeable performance effect on the end-to-end application execution time has been

observed.
2Although hundreds of millions of simulation steps are required to obtain scientifically accurate simulation results, one million

steps is sufficient to show the relative speedup of the GPU code.

78

Table 5.3: Execution times in seconds and speedup using the icc compiler.

N Serial code Parallel code Speedup

1024 56.8 28.6 2.0

2048 157.3 32.2 4.9

4096 559.3 44.9 12.5

8192 2100.7 83.8 25.1

16384 8172.7 235.7 34.7

32768 32168.4 734.0 43.8

65536 114872.2 2722.1 42.2

131072 505546.0 10749.0 47.0

Table 5.4: Execution times in seconds and speedup using the gcc compiler.

N Serial code Parallel code Speedup

1024 54.5 28.5 2.0

2048 159.4 32.3 4.9

4096 560.7 45.1 12.4

8192 2114.3 83.9 25.2

16384 8417.4 234.1 35.9

32768 32228.3 738.6 43.6

65536 121750.4 2728.3 44.6

131072 540139.6 10873.0 49.6

79

0 5 10 15 20 25 30
N/10000

64

512

4 k

33 k

E
xe

c
T

im
e

in
 s

ec
 (

L
og

)

Serial
CUDA

2 k 4 k 6 k 8 k
N

16

64

256

1 k

Figure 5.2: Execution time for the serial and the CUDA code

Table 5.3 presents the experimental results of the end-to-end application execution times for the CUDA

and the serial code for different problem sizes, where N is the total number of atoms in the two boxes. Each

data point is an average of five runs (except the last data point in the serial code), with a difference between

this average and any single run always less than 3%. The minimum speedup achieved, 2x, occurs when there

are not many atoms in the system; a total of less than 1024 atoms in both boxes does not provide speedup over

the serial version due to the memory latency, block synchronization, and kernel launch overhead. However,

more speedup is achieved rapidly when there is a chance to do more work and the amount of computation

exceeds the parallel overhead. The highest recorded speedup is a factor of 47x when we have 131072 atoms

in the system. In terms of optimizations, the best results were obtained by using 4 times loop unrolling and

tuning the thread block size to 128 threads.

Figure 5.2 shows that as the system size grows, the execution time increases for both the serial and CUDA

codes. However, the CUDA code execution time grows more slowly than the serial one. This relatively slow

80

0 6 k 13 k 20 k 26 k 32 k
N

0

50

100

150

200

250

Sp
ee

du
p

Theoretical Speedup
Actual Speedup

2 k 4 k 6 k 8 k
0

20

40

60

Figure 5.3: The actual speedup and theoretical speedup of the CUDA code

growth is a result of the higher utilization of the GPU. Moreover, Figure 5.2 shows the actual speedup of

the CUDA code over the serial code with the speedup trajectory expected to keep rising as the problem size

increases until the GPU resources reaches a saturation state. Note that compiling with the Intel compiler

follow the same trajectory of execution times.

In addition, Figure 5.2 shows larger system sizes that the serial code can’t scale to and supports this

assumption. Also, for problems of size between 2K and 16K, the utilization of the GPU is relatively low for

a single thread block, so we can use more of the GPU for a larger problem size (more blocks) without much

overhead. Hence, the execution time increases very little between 2K and 16K. However, the speedup rate is

expected to be slower than the region when we have 2K to 16K atoms since the overhead on memory transfer

and block synchronization is increasing as well. Moreover, we notice that the speedup is not significant for

small systems with less than 4K atoms, because we have low hardware utilization and high memory latency

versus low parallel computation time.

81

Figure 5.3 shows the inherent parallelism of our code. The theoretical speedup was measured by re-

placing each kernel call with a simple kernel call having just one thread that did no work. This models an

infinitely fast GPU with unbounded resources. Although this is an unrealistic measure of peak performance,

it does allow us to estimate the inherent sequential percentage of the code. As Figure 5.3 shows, there is a

great deal of parallelism in the code, which explains why we are able to obtain these speedups.

CHAPTER 6 Configurational Bias Gibbs Ensemble

6.1 Introduction

In the simulation of chain molecules, where there is an insertion of a particle into the simulation box

such as the grand canonical and the Gibbs ensemble simulations, the probability of accepting the random

trial is extremely low. Hence, the traditional MC techniques will fail to converge in a reasonable number of

steps especially for complex fluids of dense chain systems and monolayers. However, an extension of the

standard MC algorithm that allows us to overcome such limitations of MC methods is the configurational

biased technique [104, 110, 37, 32]. This method biases the simulation moves so that they have an enhanced

probability to fit into the existing configurations.

The original Gibbs ensemble method, discussed in § 5, executes three moves. Particle transfer between

the simulation boxes is one of these moves. In the particle transfer move, a randomly selected particle is

transferred from one box to an arbitrary location in the other box. For configurational bias, an extension

is added to this type of move so the probability of this move is not entirely random, rather it has an en-

hanced probability suitable to the existing configuration. One advantage of using such techniques is that

they help enhance the efficiency of the simulation. However, to satisfy detailed balance1, we should update

the acceptance rule in such a way that the bias is removed from the sampling scheme.

The Rosenbluth approach implements a self-avoiding random walk [104] that has been used later in

many algorithms such as [47, 109, 36, 75] and others, to implement MC techniques to conduct large scale

conformational changes of the chain molecule in a single trial move. The original and updated algorithms

consist mainly of a generation of a chain conformation with a bias that ensures that these conformations

have high probability of acceptance. Then the Rosenbluth weight is used to bias the acceptance of these trial

conformations. This is the same technique that we use to implement the CB algorithm in this chapter.
1To satisfy detailed balance, the limiting distribution of the Markov chain should exist, is unique, and is the Boltzmann distribu-

tion [73].

82

83

6.2 CBGEMC Method and Implementation

The advantage of MC simulation over MD techniques is that MC techniques can be used for systems

where it is not possible to change the conformation of macromolecules by successive small steps. Initially,

the Gibbs ensemble MC technique used to be limited to systems containing atoms or small molecules. Yet,

by combining the Gibbs ensemble method with configurational bias MC, acronym CBGEMC or for short

CB, the Gibbs ensemble method can be made to work for much longer chain molecules. Combining these

two methods allowed researchers to compute some of the first vapor-liquid coexistence curves for chain

molecules, such as united-atom n-alkanes. The result is a large increase in the acceptance rate for insertions

of polyatomic molecules into liquids.

To implement this method, we use the ratio of the ‘Rosenbluth’ weight factors of the new and old config-

urations to decide if a trial move should be accepted or not. Algorithm 13 shows the serial steps to execute

a particle transfer from one box to the other in CB. Also, this can be seen in Figure 6.1 where the number

of CB trials is five. In this figure, four attempts for four possible positions of the true particle in the source

box are considered and the energy for each one is calculated, corresponding to Lines 4-14 in Algorithm 13.

In the destination box, five locations are drawn randomly, and the associated energy is calculated, which

maps to Lines 14-22 in Algorithm 13. Then, one of these locations is selected to be used in calculating the

acceptance rate. Upon move acceptance, the system status will be updated and the new configurations take

place.

This extension adds an extra overhead to the original algorithm by performing extra computations espe-

cially for higher K. On the other hand, the trials are independent and have the potential to run in parallel,

such as the operations executed in Lines 4-22. The only serial step is when the results of all trials are needed

to pick one random location and calculates the acceptance rate for it. That being said, this problem can map

to the GPU exploiting two different levels of parallelism:

• Low level parallelism

The lower level parallelism that has been explored here is similar to the one we applied before when

we were running CalculateParticlesContribution(). In this case, multiple thread blocks calculate the

energy of one particle with all other particles in the old and new locations asynchronously, see § 3.4

and the related text. In this model, thread zero of each block collects the block summary before the

84

last thread of the last block to finish finds the sum of all block results. This operation requires GPU

atomic operations to synchronize blocks since there is no way to predict which block will finish last.

On the other hand, an advantage to this mechanism is that all threads in a thread block can share

information and be synchronized easily. The limitations on parallelism are device specifications on

how many blocks could be scheduled and run simultaneously.

• High level parallelism

On the GPU, this is kernel level parallelism. When multiple independent operations are required, such

as multiple CB trials here, a higher level of parallelism can be implemented for running multiple trials

in parallel by calling different kernel functions to be carried out on different streams. To achieve this

higher level of parallelism, multiple simultaneous kernel calls must be executed, mapping streams to

trials, as illustrated in Figure 6.2. This allows the device driver to schedule multiple streams to run

concurrently on the device.

Although in this level of parallelism kernel calls are independent to some extent, the need for a syn-

chronization mechanism at the end to calculate final results is required, referred to as synchronization

barrier in Figure 6.2. The final collected result from all streams is used to make the decision of whether

or not to accept the move. This could be executed on the host side, and hence all device variables

should be transferred to the host, which is undesirable due to the high memory latency associated. Or,

we can design the synchronization barrier using atomic operation on the device and execute the last

step of the algorithm on the device. However, when implementing this technique, we were unable to

synchronize the output of the streams using atomic operations. Instead, we used the synchronization

barrier on the host side followed by another kernel call to make the final decision based on the required

output calculations from the previous step.

Listing 6.1 shows the two kernel calls used for the particle transfer move with multiple streams using

CUDA. The first kernel will be called once for each of the CB trials where the current stream ID is

used to bind the kernel call to a specific stream. Using the function to synchronize kernel calls, line 5

of Listing 6.1, the execution will not proceed to the next kernel call until all results from all CB trials

finish. Only then the second kernel will be called and data stored in global memory from previous

kernel calls will be used.

85

Figure 6.1: Particle transfer move with CB and K equals five.

Generate A Random
Location in Box 1

Aggregate Results and
Calculate Acceptance

Rule

Ti
m
e

Stream 0

Select A Random
Particle from Box 1

Stream 1

…

…

Generate A Random
Location in Box 1

Stream k‐1

Synchronization barrier

Calculate WeightOld

Generate A Random
Location in Box 2

Calculate WeightNew

Calculate Energy
Contrib

Calculate WeightOld

Generate A Random
Location in Box 2

Calculate WeightNew

Calculate Energy
Contrib

Calculate WeightOld

Generate A Random
Location in Box 2

Calculate WeightNew

Calculate Energy
Contrib

Figure 6.2: Timeline of particle transfer in CB execution using K-1 independent streams.

Listing 6.1: Code for running multiple stream kernels.

1 f o r (i n t S t r e a m I d = 0 ; St reamId< K; S t r e a m I d ++){

2 T r y P a r t i c l e T r a n s f e r <<<Gr idS ize , BlockSize ,

3 SharedMem , S t reamArr [s t r e a m I d]>>> (. . .) ;

4 }

5 c u d a D e v i c e S y n c h r o n i z e () ;

6 AcceptTPTMove<<<1,1>>>() ;

86

Algorithm 13 Serial Particle Transfer Move in the CBGEMC Algorithm
1: Input: Two boxes of equal size (N) and volume (V)
2: Input: The number of CB trials K
3: // Assume source box is box 1
4: // Randomly select a particle from box 1
5: call CalculateParticlesContribution() for the selected particle
6: Wold0 ← exp(−β[U1

0])
7: TotalWold ←Wold0

8: // Assign new positions, calculate energies, and weights in box 1 for K-1 trials
9: for o = 1 to K-1 do

10: SelectedInsertionPositiono1← randCoordinates()
11: call CalculateParticlesContribution() for SelectedInsertionPositiono1
12: Woldo ← exp(−β[U1

o])
13: TotalWold + = Woldo

14: end for
15: // Assign new positions, calculate energies, and weights in box 2 for K trials
16: TotalWnew ← 0.0
17: for n = 0 to K-1 do
18: SelectedInsertionPositionn2← randCoordinates()
19: call CalculateParticlesContribution() for SelectedInsertionPositionn2

20: Wnewn ← exp(−β[U2
n])

21: TotalWnew + = Wnewn

22: end for
23: // Determine probability of trial selection
24: for i = 0 to K-1 do
25: ProbSelectTriali ←Wnewi/TotalWnew

26: end for
27: // Pick the best trial
28: SelectedTrial← 0
29: WeightDraw ← rand()
30: repeat
31: CumulativeWeight + = ProbSelectTrialSelectedTrial
32: SelectedTrial++
33: until WeightDraw > CumulativeWeight
34: Coefficient← βN/V
35: // Remove sampling bias using Rosenbluth weight
36: ProbOfAcceptance← Coefficient ∗ TotaolWnew/TotalWold

37: if (ProbOfAcceptance < rand()) then
38: // Accept the transfer of the particle
39: // Apply new system configurations
40: end if

87

6.3 Results and Discussion

In this chapter we present an implementation of a parallel MC simulation for the Configurational Bias

Gibbs ensemble using CUDA toolkit 5.0 [87] and evaluate the end-to-end application run time against a

single core CPU implementation. Then we implement multi-stream kernel calls to carry out the multiple

CB trials in parallel. Parallel results are collected from running the code on an NVIDIA GeForce GTX 480

graphics card and Tesla K20c. The Tesla K20c is the first GK110 card. It has the following specs [89]:

• 1 Kepler GK110 chip

• 5 GB of memory size (GDDR5)

• 2496 CUDA cores

• Processor core clock of 706 MHz

• 1.17 Tflops peak double precision floating point performance

• 2.6 GHz memory clock

• 208 GB/sec memory bandwidth

• 32 streaming multiprocessors

• Compute capability 3.5

The most important new features in the Kepler GK110 GPU architecture are the SMX, Dynamic Paral-

lelism, and Hyper-Q. Further details can be found in the Kepler GK110 whitepaper[86]. However, specially

tuned algorithms to utilize the new Kepler features are required to get peak performance.

Performance numbers presented here have been conducted with two desktop PCs setup. The first run has

been executed on a PC with an Intel® Core™ i5-2500k CPU that has 8 GB of RAM running Linux kernel

build 2.6.32 and compiled with the gcc 4.4.6 compiler and loaded with GTX 480 card. The second PC, with

the Kepler card, has a Core 2 Duo™ with 2 GB of RAM and running Windows 7. The code in the latter

desktop computer was compiled with Microsoft Visual Studio 2010 C++ compiler.

All codes have been compiled with full optimization flags and 64-bit environment flags turned on. Other

parameters and configurations used for collecting these results are the cutoff distance, rcut, is set to 2.5, initial

88

Figure 6.3: Vapor-liquid coexistence curves for Lennard-Jones fluid. Simulation runs are done by Jason
Mick.

system density is kept consistent by adjusting the volume based on the number of atoms, and temperature is

set to 1.0, in agreement with [100]. Moreover, we are running a million simulation steps2 (move attempts)

where 89% of the simulation steps attempt to execute atom displacement, 1% of the steps attempt to execute

volume swap, and 10% attempt atoms transfer between boxes. However, due to the long running time of the

serial version of the code, we are unable to report results more than 131072 atoms in the system, which is

not the case for the parallel version of the code which can scale up to the memory limit of the GPU and still

executes in a reasonable time.

To validate the correctness of the serial and parallel code, we compare our serial code results to those

obtained from [99] and the transferable potentials for phase equlibria (TraPPE) force field in Gibbs ensemble,

as can be seen in the Vapor-Liquid coexistence curve in Figure 6.3. All curves are in close agreement to

each other in both the vapor and liquid states. Then, we compare the sample of particle distribution across

the simulation runs. In Figure 6.4, the frequency with which the system is at a specific density is shown. The

serial and CUDA results are in close agreement in sampling particle histogram for different values of K for
2Although hundreds of millions of simulation steps are required to obtain scientifically accurate simulation results, one million

steps is sufficient to show the relative speedup of the GPU code.

89

(a) Histogram of gas phase (b) Histogram of liquid phase

Figure 6.4: Histogram sampling the distribution of the gas and liquid phases resulted from our code
(GOMC).The serial and CUDA code are in a close agreement. Simulation runs and the figure are done
by Jason Mick.

both the gas and liquid phases. From this figure, we can see that the two states (gas and liquid) in the two

simulation boxes reached a state of separation.

We implement a serial code and two algorithms suitable for the GPU. The serial algorithm is the basis for

the other two implementations. It is used to validate the correctness of the algorithm under development and

for performance comparisons. All these pieces of code are part of the GPU optimized Monte Carlo (GOMC)

project [33]. Our focus here is on the system behavior with different numbers of CB trials, referred to by K,

with and without streams for launching multiple kernels asynchronously. The higher the K, the sooner the

system reaches an equilibrium state. However, researchers are interested in different values of K for different

system configurations, so we study possible values of K, and the effect on the system performance.

Tables 6.1 and 6.2 show the end-to-end application execution times for the CB code for different con-

figurations. We note that as N increases, the execution time increases rapidly for all cases. This is because

with large systems, more operations are required, such as the time to calculate the total energy for the entire

system for a volume swap, or a particle’s energy contribution with all other particles in a box, and larger

memory transfers are executed on the data.

It is clear from Tables 6.1 and 6.2, also, that as K increases the execution time of the serial algorithm

increases. However, a lower rate of execution time increase can be seen in the parallel code execution times.

90

Table 6.1: Execution times in seconds for CB for different number of CB trials (K). The last two columns
are runs on a different PC than the other three.

N Serial GTX 480 480/Streams Tesla K20c K20c/Streams
K

=
1

1024 46.1 31.6 32.0 64.9 72.9

2048 148.7 35.3 35.0 69.5 75.2

4096 487.8 47.2 47.0 79.5 85.9

8192 1788.3 86.4 86.1 100.8 109.6

16384 6913.2 233.0 233.6 183.2 197.6

32768 27284.8 704.7 709.7 456.2 478.3

65536 110941.0 2622.9 2649.4 1558.9 1656.0

131072 526759.5 10694.2 9589.0 5858.0 6129.0

K
=

3

1024 52.7 35.6 33.1 75.3 73.0

2048 171.6 39.8 37.1 81.8 78.9

4096 576.6 52.3 51.4 93.0 90.2

8192 1851.5 93.7 90.9 116.0 114.2

16384 7032.3 244.4 243.4 200.8 201.9

32768 28363.6 713.0 728.2 480.8 493.9

65536 108549.0 2619.7 2708.6 1568.0 1686.0

131072 464814.0 9720.0 9589.0 6047.0 6162.0

K
=

5

1024 62.5 39.0 33.9 82.3 77.7

2048 200.4 43.8 38.7 88.4 83.7

4096 577.3 57.6 52.7 99.4 94.6

8192 2048.3 98.9 95.3 124.2 120.4

16384 7072.0 254.7 247.7 210.4 208.3

32768 28994.9 733.4 746.0 497.2 505.9

65536 109060.0 2686.5 2705.0 1583.0 1684.0

131072 453653.5 10359.4 10177.1 5856.6 6290.0

K
=

7

1024 64.1 42.8 34.6 85.3 81.1

2048 197.6 47.9 38.4 90.7 87.5

4096 672.4 61.5 55.1 102.3 99.3

8192 2178.9 104.6 96.7 128.9 125.1

16384 6927.9 261.5 247.9 214.5 211.3

32768 29477.2 747.7 778.3 508.1 505.9

65536 117195.0 2698.0 2761.2 1616 1725.8

131072 497626.5 10455.6 10645.5 5882.0 6404.0

91

Table 6.2: Execution times in seconds for CB for different number of CB trials (K). The last two columns
are runs on a different PC than the other three.

N Serial GTX 480 480/Streams Tesla K20c K20c/Streams

K
=

10

1024 68.1 48.3 36.1 94.5 84.9

2048 215.7 53.9 41.4 101.2 90.9

4096 759.7 68.6 56.3 114.0 102.6

8192 2151.6 113.6 102.8 141.2 130.8

16384 7119.9 271.9 251.1 231.8 217.2

32768 29320.5 769.4 794.0 531.8 521.2

65536 117257.0 2782.8 2817.0 1624.0 1722.0

131072 495616.0 11045.6 10874.9 5868.0 6218.0

K
=

15

1024 74.2 57.6 38.5 111.3 91.9

2048 229.6 63.8 43.9 118.2 98.4

4096 728.6 79.3 61.5 132.2 110.8

8192 2465.5 126.3 108.1 165.7 141.5

16384 7489.2 291.5 262.2 256.2 229.5

32768 31376.9 794.2 818.2 577.2 537.0

65536 111810.0 2783.3 2713.9 1743.0 1786.0

131072 449458.0 10711.8 11198.2 6248.0 6517.0

K
=

20

1024 81.6 67.1 40.4 128.3 100.1

2048 246.2 73.1 46.3 135.9 107.6

4096 786.1 90.8 64.1 151.6 121.2

8192 2737.8 138.1 113.5 188.3 162.2

16384 8350.7 311.1 264.3 282.7 250.0

32768 27847.4 815.5 823.4 610.1 563.4

65536 112685.0 2782.6 2880.5 1819.0 1792.0

131072 512504.0 10263.8 10613.5 6341.0 6335.0

92

Table 6.3: Execution time in seconds of running simulations with 131072 particles in parallel.

K NoS 480 Streams 480 NoS K20c Streams K20c

1 10694.2 9589.0 5858.0 6129.0

3 9720.0 9589.0 6047.0 6162.0

5 10359.4 10177.1 5856.6 6290.0

7 10455.6 10645.5 5882.0 6404.0

10 11045.6 10874.9 5868.0 6218.0

15 10711.8 11198.2 6248.0 6517.0

20 10263.8 10613.5 6341.0 6335.0

More precisely, the execution time of the parallel code is only doubling from when K is as small as one and

as large as twenty for N equals 1024 for the Fermi card. Furthermore, Table 6.3 summarizes the execution

times of the parallel code for a very large N of 131072, where columns represent CUDA code without

streams (NoS) on the GTX 480 card and the Tesla K20c and code with streams on the GTX 480 and the

Tesla K20c, respectively. From this table, we can see that the value of K doesn’t have a large effect on the

overall execution time for different values of K for the parallel algorithm. For example, it is always within a

10% range of difference between K=1 and K=20.

Running the parallel Nsight profiler [88], the average execution time of the TryParticleTransferCB()

kernel call without using streams is 328µs. On the other hand, for the steams code, the first function that

calculates Rosenbluth’s weights is taking only 251µs on average. In addition to that, 125µs is the elapsed

time for the kernel call that calculates the acceptance rate of the particle transfer. On average, the total

elapsed time for a particle transfer move when using streams and a second kernel call to aggregate the results

of all previous kernels is slightly smaller than that with no streams.

Table 6.4 shows the speedup of different code implementations for a large problem of 131072 particles.

Columns represent speedup of the CUDA code with streams on the GTX 480 over the serial code, CUDA

code with streams over without streams on the GTX 480 card, and the speedup of the stream code over

without streams on Tesla K20c, respectively. The last two columns are the speedup of K20c over GTX 480.

As expected, the Kepler card provides better performance. Profiling the parallel code, we found that on

average there are 11 and 16 active warps for the code with and without streams, respectively. Moreover, 480

93

Table 6.4: Speedup of running simulations with 131072 particles.

K Serial/S NoS/S 480 NoS/S K20c 480/k20c NoS 480/k20c S

1 54.9 1.1 0.96 1.8 1.6

3 48.5 1.0 0.98 1.6 1.6

5 44.6 1.0 0.93 1.8 1.6

7 46.7 1.0 0.92 1.8 1.7

10 45.6 1.0 0.94 1.9 1.7

15 40.1 1.0 0.96 1.7 1.7

20 48.3 1.0 1.00 1.6 1.7

cores are organized in 15 SMs of 32 cores each in the Fermi architecture. That is, half the number of SMs

for the Kepler card, which in turn shows the two times speedup in Table 6.4 and is also plotted in Figure 6.6.

In addition, the Kepler’s Hyper-Q feature eliminates false data dependencies that could occur due to Fermi’s

single queue architecture.

Plotting the execution times for all algorithms and from Figure 6.5, we can see that:

• Despite the value of K, the execution time for the code with streams is the same for very large N.

• For small K less than 7, the Tesla K20c code shows no speedup for the streams code against the code

without streams on the same card.

• For K larger than 5 and with between 16384 and 32768 particles in the system, the Tesla K20c code

with streams is faster.

• Although we achieved two times speedup for executing the same parallel algorithm on the Tesla K20c,

for both code with and without streams, these results came from running the code with no optimization

techniques or customized tweaks done for the Kepler architecture. The reason for this performance

improvement is because there are more resources available on the Kepler card. However, the number

of streams in this case didn’t affect the execution time of the code with streams significantly compared

to that without streams. This is because in most cases the number of trials, denoted K, was less than

the number of available streams, which is 16.

94

1024 2048 4096 8192 16384 32768 65536 131072

Ex
ec

ut
io

n
Ti

m
e

(L
og

)

System Size (N)

K=3, serial

K=20, serial

K=3, no stream

K=20, no stream

K=3, stream

K=20, stream

Figure 6.5: Execution times (Log Normalized) for K equals 3 and 20 with different algorithms executed on
GeForece GTX 480.

• For K greater than 10 and N larger than 16384, the GTX 480 with no streams did better compared to

the stream code.

• Code with streams is doing better for the GTX 480 for a relatively smaller size N.

The statistics in Table 6.5 are only for systems with 100% particle transfer move. For K = 1, the run

time of the streams code exceeds the run time without streams, mainly because the code with streams has

two kernel calls and uses more global memory than the other parallel code. On the other hand, for all values

of K larger than one, the execution time for the stream code is larger than that for the code without streams.

Although Figure 6.7 shows that as the system size increases, the execution time of all pieces of the code also

increase, but the elapsed time of the code without streams is the highest.

Speedup results in Figure 6.8 shows different values of K for the stream code over the code without

streams shows that a maximum speedup of about three times is observed when using the streams code and K

95

1 3 5 7 10 15 20

Ex
ec

. T
im

e
in

 se
co

nd
s

K

480 no streams

480 streams

K20c no streams

K20c stream

Figure 6.6: Execution times of CUDA code on GTX 480 and K20c for a system with 131072 particles.

96

Table 6.5: Execution times in seconds and speedup for CB for different number of CB trials (K) in parallel.

N No Streams Streams Speedup

K
=

1

1024 49.8 47.8 0.96

2048 51.0 48.7 0.97

4096 52.6 51.4 0.96

8192 54.7 53.77 0.94

16384 68.8 64.4 1.02

32768 91.6 92.3 0.93

65536 128.6 138.6 0.88

131072 204.4 244.1 0.82

K
=

3

1024 92 61.7 1.49

2048 93 63.3 1.47

4096 101.3 66.6 1.52

8192 103.4 80.5 1.28

16384 150.2 107.3 1.40

32768 212.5 169.6 1.25

65536 318.5 278 1.15

131072 531.3 508.3 1.05

K
=

15

1024 320.8 118.4 2.71

2048 331.9 126.1 2.63

4096 356.7 143.5 2.49

8192 388.8 190.2 2.04

16384 614.9 285.3 2.16

32768 916.7 515 1.78

65536 1439.6 943 1.53

131072 2454.7 1830.2 1.34

K
=

20

1024 417.7 141 2.96

2048 436.9 148.6 2.94

4096 461 177.6 2.6

8192 505.8 218.8 2.31

16384 808.2 343.4 2.35

32768 1208.1 619.7 1.95

65536 1899.2 1159.5 1.64

131072 3252.4 2214.8 1.47

97

0

500

1000

1500

2000

2500

3000

3500

1024 2048 4096 8192 16384 32768 65536 131072

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

N

NoS, K=1

S, K=1

NoS, K=3

S, K=3

NoS, K=15

S, K=15

NoS, K=20

S, K=20

Figure 6.7: Execution time in seconds for parallel code with only particle transfer move for different values
of K and N.

98

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1024 2048 4096 8192 16384 32768 65536 131072

Sp
ee

du
p

N

K=1

K=3

K=15

K=20

Figure 6.8: Speedup for parallel code with streams and no streams with only particle transfer move for
different values of K and N.

99

= 20. But. the speedup is lower than that when K is smaller. Also, the highest speedup of the streams code is

when K is the largest and the system size is relatively small. As we explained before, when the system size is

relatively small, more streams can be scheduled to run concurrently. However, as the system size increases,

there are more resources required to run a stream, so and not all streams can be scheduled to run in parallel.

CHAPTER 7 Conclusion and Future work

Given the serial nature of the Markov Chain Monte Carlo simulations, we present a very large scale par-

allel implementation fully ported the GPU for the canonical, Gibbs, and grand canonical ensemble methods

with and without the configurational bias extension. We present a highly optimized serial code that runs on

a single core CPU as a comparison base, a fast parallel implementation using CUDA, and a third parallel

implementation using cell lists for the former two ensembles.

Research has been conducted to map the problem under study, and similar ones, to better harness the

massively parallel nature of the GPU. The techniques that have been used throughout this dissertation can be

used in developing code that enhance the overall GPU coding experience and show best performance prac-

tice. Other MC applications can benefit from the optimization techniques reported here, such as the problems

of Bias Monte Carlo Methods in Environmental Engineering and Modeling of Biochemical Processes, as we

have seen in § 1.8.

Optimization techniques have been applied to the original serial algorithm, such as the use of shared

memory and load balancing among threads. In addition, synchronization techniques have been tested and

several cases have been considered. All key components of the parallel algorithm have been tailored to the

GPU for execution in a single kernel, which reduces overhead significantly. Moreover, high and low levels

of parallelism are considered to adjust the serial algorithm to use new available features of the GPU. With

the used parallel optimization techniques, doors are open to apply more algorithms and reduce the execution

time per simulation step. For example, running more than one simulation at the same time is now possible

after applying domain decomposition technique.

Different MC methods have different characteristics and simulation models. Each of which requires

different optimization techniques and careful GPU resource management. Those methods have been moved

to run on the GPU to reduce the execution time of the simulation. The evaluation of the parallel canonical

algorithm on an affordable graphics processing unit shows a speedup of up to 15 times compared to the

optimized serial implementation, and 2303 times speedup compared to Towhee for a small problem of size

4,096. Through the process of developing the parallel algorithm, an empirical optimization approach has

100

101

been applied. This approach centers on selecting optimal block sizes for kernel invocation, which was

128 threads per block for large problem sizes. An implementation of cell list for this algorithm shows an

additional factor of 11 times of speedup over the parallel implementation of the same algorithm. The reason

for this decrease in execution time when using cell lists is due to the avoided calculations for particles that

are out of cutoff range.

The cell list implementation does not offer any performance benefits until we have more than 4,096

particles. Traditionally, simulations using serial codes have not used more than about 2000 particles because

of the long running time, so a cell list implementation has not been considered efficient.

Due to the lack of current serial cell list implementation in our code, and for a performance comparison,

we report speedup results of our GPU algorithm compared to a single core CPU code as evidence of per-

formance benefits of the CUDA code with no cell list implementation. Also, we compare the CUDA code

with an efficient cell list implementation. Different cell sizes have been studied and performance results has

been explained. Moreover, different algorithms have been developed for implementing the cell list and the

performance results have been discussed.

In this work, we developed a MC code for the Gibbs ensemble simulation of Lennard-Jones atoms that

utilizes graphics processors (GPUs) achieving a factor of over 45 times speedup in comparison to a single

core serial code. This will open the door for new research since the Gibbs ensemble is the best method for

determining the phase diagram of fluid mixture.

An extension to the Gibbs ensemble method has been implemented, configurational bias. In this exten-

sion, the acceptance rate of moving particles from one box to the other is enhanced allowing the simulation

to reach equilibrium faster by attempting multiple similar moves at the same time. However, this creates a

sampling bias that needs to be removed by applying extra calculations. Multiple attempts can be conducted

in parallel, which minimizes the execution time significantly. The speedup gain of using the GPU to execute

this algorithm shows a factor of up to 50 times speedup over the efficient single core implementation and a

slightly better execution time over that when using GPU streams.

The grand canonical algorithm has been implemented and optimized to run on the GPU as well. However,

the speedup achieved with this implementation was less than the Gibbs algorithms and more than that for the

canonical one. This is mainly because most moves in the grand canonical algorithm are displacement moves,

which is less computation intensive than the Gibbs ensemble method. On the other hand, the overhead of

102

maintaining a dynamic box is more than that for the canonical ensemble. That being said, the parallel grand

canonical algorithm shows about 16 times speedup over the single core implementation and an additional

factor of 8 times speedup when using the cell list implementation, adding up to 128 times speedup over the

single core code.

While our implementation features only the simple Lennard-Jones potential, it is trivial to replace this

potential by other pair-potentials such as the coulombic interactions. Moreover, it is possible to implement

many other techniques, such as Ewald sum methods and chain molecules.

REFERENCES

[1] Hoomd-blue web page. http://codeblue.umich.edu/hoomd-blue, Nov 2012.

[2] D.J Adams. The implementation of fluid phase monte carlo on the dap. Journal of Computational

Physics, 75(1):138 – 150, 1988.

[3] E. Alerstam, T. Svensson, and S. Andersson-Engels. Parallel computing with graphics processing

units for high-speed Monte Carlo simulation of photon migration. J Biomed Opt, 13(6):060504,

2008.

[4] Amos G. Anderson, William A. Goddard III, and Peter Schröder. Quantum Monte Carlo on graphical

processing units. Computer Physics Communications, 177(3):298–306, 2007.

[5] J. Anderson, C. Lorenz, and A. Travesset. General purpose molecular dynamics simulations fully

implemented on graphics processing units. Journal of Computational Physics, 227(10):5342–5359,

2008.

[6] U. Assarsson and E. Sintorn. Fast parallel gpu-sorting using a hybrid algorithm. Journal of Parallel

and Distributed Computing, 68(10):1381–1388, 2008.

[7] Peter Bakkum and Kevin Skadron. Accelerating SQL database operations on a GPU with CUDA. In

Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units,

GPGPU ’10, pages 94–103, New York, NY, USA, 2010. ACM.

[8] I. Beichl and F. Sullivan. The metropolis algorithm. Computing in Science Engineering, 2(1):65 –69,

jan.-feb. 2000.

[9] Kurt Binder. Monte Carlo and molecular dynamics simulations in polymer science. Oxford University

Press, USA, 1995.

[10] G.D. Birkhoff. Proof of the ergodic theorem. Proceedings of the National Academy of Sciences of the

United States of America, 17(12):656, 1931.

103

http://codeblue.umich.edu/hoomd-blue

104

[11] B. Block, P. Virnau, and T. Preis. Multi-GPU accelerated multi-spin Monte Carlo simulations of the

2D Ising model. Computer Physics Communications, 181(9):1549–1556, 2010.

[12] U. D. Bordoloi and S. Chakraborty. GPU-based Acceleration of System-level Design Tasks. Interna-

tional Journal of Parallel Programming, 38(3-4):225–253, 2010.

[13] Randy P. Broussard and Robert W. Ives. Using a commercial graphical processing unit and the cuda

programming language to accelerate scientific image processing applications. volume 7872, page

787202. SPIE, 2011.

[14] W.M. Brown, S. Hampton, P. Agarwal, P. Wang, P. Crozier, and S. Plimpton. Porting lammps to gpus.

Technical report, Sandia National Laboratories, 2010.

[15] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook for

GPUs: Stream computing on graphics hardware. Acm Transactions on Graphics, 23(3):777–786,

2004.

[16] J. Buckner, J. Wilson, M. Seligman, B. Athey, S. Watson, and F. Meng. The gputools package enables

GPU computing in R. Bioinformatics, 26(1):134–5, 2010.

[17] A. Buluc, J. R. Gilbert, and C. Budak. Solving path problems on the GPU. Parallel Computing,

36(5-6):241–253, 2010.

[18] Tahir Cagin and B. Montgomery Pettitt. Grand molecular dynamics: A method for open systems.

Molecular Simulation, 6(1-3):5–26, 1991.

[19] Nuno Cardoso and Pedro Bicudo. Su (2) lattice gauge theory simulations on fermi gpus. Journal of

Computational Physics, 230(10):3998 – 4010, 2011.

[20] D. Cha, S. Son, and I. Ihm. GPU-Assisted High Quality Particle Rendering. Computer Graphics

Forum, 28(4):1247–1255, 2009.

[21] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the chapel language.

International Journal of High Performance Computing Applications, 21(3):291–312, 2007.

105

[22] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, and Kevin Skadron. A

performance study of general-purpose applications on graphics processors using CUDA. J. Parallel

Distrib. Comput., 68:1370–1380, October 2008.

[23] P.G. Ciarlet, C. Le Bris, and J.L. Lions. Handbook of Numerical Analysis: Special volume: Compu-

tational chemistry, volume 10. North Holland, 2003.

[24] Kevin B. Daly, Jay B. Benziger, Pablo G. Debenedetti, and Athanassios Z. Panagiotopoulos. Mas-

sively parallel chemical potential calculation on graphics processing units. Computer Physics Com-

munications, 183(10):2054 – 2062, 2012.

[25] D. De Donno, A. Esposito, L. Tarricone, and L. Catarinucci. Introduction to GPU Computing and

CUDA Programming: A Case Study on FDTD. Ieee Antennas and Propagation Magazine, 52(3):116–

122, 2010.

[26] M. de Greef, J. Crezee, J. C. van Eijk, R. Pool, and A. Bel. Accelerated ray tracing for radiotherapy

dose calculations on a gpu. Medical Physics, 36(9):4095–4102, 2009.

[27] Lorenzo Dematta and Davide Prandi. GPU computing for systems biology. Briefings in Bioinformat-

ics, 11(3):323–333, 2010.

[28] Peter Deuflhard. Computational Molecular Dynamics: Challenges, Methods, Ideas: Proceedings of

the 2nd International Symposium on Algorithms for Macromolecular Modellin. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 4th edition, 1999.

[29] F. Devillard, S. Gobron, and B. Heit. Retina simulation using cellular automata and GPU program-

ming. Machine Vision and Applications, 18(6):331–342, 2007.

[30] Tina Duren, Youn-Sang Bae, and Randall Q. Snurr. Using molecular simulation to characterise metal-

organic frameworks for adsorption applications. Chem. Soc. Rev., 38:1237–1247, 2009.

[31] Michael Engel, Joshua A. Anderson, Sharon C. Glotzer, Masaharu Isobe, Etienne P. Bernard, and

Werner Krauth. Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions

with three simulation methods. Phys. Rev. E, 87:042134, Apr 2013.

106

[32] K. Esselink, L. D. J. C. Loyens, and B. Smit. Parallel monte carlo simulations. Phys. Rev. E, 51:1560–

1568, Feb 1995.

[33] Kamel Rushaidat Yunazhi Li Loren Schwiebert Jeffery Potoff Eyad Hailat, Jason Mick. GPU opti-

mized Monte Carlo. http://site:gomc-website, 2013.

[34] Q. Fang and D. A. Boas. Monte Carlo simulation of photon migration in 3D turbid media accelerated

by graphics processing units. Opt Express, 17(22):20178–90, 2009.

[35] Qianqian Fang and David A. Boas. GPU Accelerated Monte Carlo Simulation for 3-D Photon Migra-

tion. In Biomedical Optics, page BME5. Optical Society of America, 2010.

[36] D. Frenkel and B. Smit. Unexpected length dependence of the solubility of chain molecules. Molec-

ular Physics, 75:983–988, 1992.

[37] D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms to applications, vol-

ume 1. Academic Pr, 2002.

[38] Daan Frenkel. Speed-up of monte carlo simulations by sampling of rejected states. Proceedings of

the National Academy of Sciences of the United States of America, 101(51):17571–17575, 2004.

[39] Daan Frenkel and Berend Smit. Understanding Molecular Simulation (Second Edition). Academic

Press, San Diego, second edition edition, 2002.

[40] A. Frezzotti, G.P. Ghiroldi, and L. Gibelli. Direct solution of the boltzmann equation for a binary

mixture on gpus. In American Institute of Physics Conference Series, volume 1333, pages 884–889,

2011.

[41] Mark S. Friedrichs, Peter Eastman, Vishal Vaidyanathan, Mike Houston, Scott Legrand, Adam L.

Beberg, Daniel L. Ensign, Christopher M. Bruns, and Vijay S. Pande. Accelerating molecular dynamic

simulation on graphics processing units. Journal of Computational Chemistry, 30(6):864–872, 2009.

[42] Y. Frishman and A. Tal. Multi-level graph layout on the GPU. Ieee Transactions on Visualization and

Computer Graphics, 13(6):1310–1317, 2007.

http://site:gomc-website

107

[43] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang, and

V. Volkov. Parallel computing experiences with CUDA. Ieee Micro, 28(4):13–27, 2008.

[44] David Geer. Taking the Graphics Processor beyond Graphics. Computer, 38:14–16, September 2005.

[45] S. Gorbunov, D. Rohr, K. Aamodt, T. Alt, H. Appelshauser, A. Arend, M. Bach, B. Becker, S. Bottger,

T. Breitner, H. Busching, S. Chattopadhyay, J. Cleymans, C. Cicalo, I. Das, O. Djuvsland, H. Engel,

H. A. Erdal, R. Fearick, O. S. Haaland, P. T. Hille, S. Kalcher, K. Kanaki, U. W. Kebschull, I. Kisel,

M. Kretz, C. Lara, S. Lindal, V. Lindenstruth, A. A. Masoodi, G. Ovrebekk, R. Panse, J. Peschek,

M. Ploskon, T. Pocheptsov, D. Ram, T. Rascanu, M. Richter, D. Rohrich, F. Ronchetti, B. Skaali,

O. Smorholm, C. Stokkevag, T. M. Steinbeck, A. Szostak, J. Thader, T. Tveter, K. Ullaland, Z. Vi-

lakazi, R. Weis, Z. B. Yin, P. Zelnicek, and Alice Collaboration. ALICE HLT High Speed Tracking

on GPU. Ieee Transactions on Nuclear Science, 58(4):1845–1851, 2011.

[46] Shen Guobin, Gao Guang-Ping, Li Shipeng, Shum Heung-Yeung, and Zhang Ya-Qin. Accelerate

video decoding with generic GPU. Ieee Transactions on Circuits and Systems for Video Technology,

15(5):685–693, 2005.

[47] Jonathan Harris and Stuart A. Rice. A lattice model of a supported monolayer of amphiphile

molecules: Monte carlo simulations. The Journal of Chemical Physics, 88(2):1298–1306, 1988.

[48] Mark Harris. Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology, 2.3 edition,

2008.

[49] A. Heimlich, A. C. A. Mol, and C. M. N. A. Pereira. GPU-based Monte Carlo simulation in neutron

transport and finite differences heat equation evaluation. Progress in Nuclear Energy, 53(2):229–239,

2011.

[50] A. Herrera. GPU computing uncovered. Computer Graphics World, 30(6):34–, 2007. 183DE Times

Cited:0 Cited References Count:0.

[51] José R. Herrero, Enrique S. Quintana-ortı́, and Robert Strzodka. Special Issue: GPU computing.

Concurrency and Computation: Practice and Experience, 23(7):667–668, 2011.

108

[52] Q. M. Hou, K. Zhou, and B. N. Guo. BSGP: Bulk-synchronous GPU programming. Acm Transactions

on Graphics, 27(3), 2008.

[53] Q. M. Hou, K. Zhou, and B. N. Guo. Debugging GPU Stream Programs Through Automatic Dataflow

Recording and Visualization. Acm Transactions on Graphics, 28(5), 2009.

[54] Vassil Hristov. Performance Evaluation of Query Pro cessing Algorithms on GP GPUs. Master of

science, University of Edinburgh, 2010.

[55] NVIDIA Inc. NVIDIA Developer Zone. http://developer.nvidia.com, Jan 2013.

[56] Zeena K. Issa, Charles W. Manke, Bhanu P. Jena, and Jeffrey J. Potoff. Ca2+ bridging of apposed

phospholipid bilayers. The Journal of Physical Chemistry B, 114(41):13249–13254, 2010.

[57] Prateek K. Jha, Rastko Sknepnek, Guillermo Iva’n Guerrero-Garci’a, and Monica Olvera de la Cruz.

A graphics processing unit implementation of coulomb interaction in molecular dynamics. Journal of

Chemical Theory and Computation, 6(10):3058–3065, 2010.

[58] X. Jia, X. Gu, J. Sempau, D. Choi, A. Majumdar, and S. B. Jiang. Development of a GPU-based Monte

Carlo dose calculation code for coupled electron-photon transport. Phys Med Biol, 55(11):3077–86,

2010.

[59] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A performance comparison of cuda and opencl.

CoRR, abs/1005.2581, 2010.

[60] Emmett Kilgariff and Randima Fernando. The GeForce 6 series GPU architecture. In ACM SIG-

GRAPH 2005 Courses, page 29. ACM, 2005.

[61] Jihan Kim, Jocelyn M. Rodgers, Manuel Athnes, and Berend Smit. Molecular monte carlo simula-

tions using graphics processing units: To waste recycle or not? Journal of Chemical Theory and

Computation, 7(10):3208–3222, 2011.

[62] C. Kolb and M. Pharr. Options Pricing on the GPU. GPU Gems, 2:719–731, 2005.

[63] Jingfei Kong, Martin Dimitrov, Yi Yang, Janaka Liyanage, Lin Cao, Jacob Staples, Mike Mantor, and

Huiyang Zhou. Accelerating matlab image processing toolbox functions on gpus. In Proceedings

http://developer.nvidia.com

109

of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, GPGPU ’10,

pages 75–85, New York, NY, USA, 2010. ACM.

[64] J. Kruger and R. Westermann. GPU simulation and rendering of volumetric effects for computer

games and virtual environments. Computer Graphics Forum, 24(3):685–693, 2005.

[65] Fang-An Kuo, Matthew R. Smith, Chih-Wei Hsieh, Chau-Yi Chou, and Jong-Shinn Wu. GPU ac-

celeration for general conservation equations and its application to several engineering problems.

Computers & Fluids, 45(1):147–154, 2011.

[66] Frédéric Kuznik, Christian Obrecht, Gilles Rusaouen, and Jean-Jacques Roux. LBM based flow sim-

ulation using GPU computing processor. Computers & Mathematics with Applications, 59(7):2380–

2392, 2010.

[67] Sandia National Labs. Lammps: A fix to perform grand canonical monte carlo. http://lammps.

sandia.gov/doc/fix_gcmc.html, July 2013.

[68] Aaron E Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka, and John D Owens. Glift:

Generic, efficient, random-access gpu data structures. Acm Transactions on Graphics, 25(1):60–99,

2006.

[69] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified graphics and

computing architecture. Ieee Micro, 28(2):39–55, 2008.

[70] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig. Accelerating molecular dynamics simulations

using Graphics Processing Units with CUDA. Computer physics communications, 179(9):634–641,

2008.

[71] L.D.J.C. Loyens, B. Smit, and K. Esselink. Parallel gibbs-ensemble simulations. Molecular Physics,

86(2):171–183, 1995.

[72] David Luebke and Greg Humphreys. How GPUs Work. Computer, 40(2):96–100, feb. 2007.

[73] V. I. Manousiouthakis and M. W. Deem. Strict detailed balance is unnecessary in Monte Carlo simu-

lation. jcp, 110:2753–2756, February 1999.

http://lammps.sandia.gov/doc/fix_gcmc.html
http://lammps.sandia.gov/doc/fix_gcmc.html

110

[74] Marcus G. Martin and Mary J. Biddy. Monte Carlo molecular simulation predictions for the heat of

vaporization of acetone and butyramide. Fluid Phase Equilibria, 236(1-2):53–57, 2005.

[75] Marcus G. Martin and J. Ilja Siepmann. Novel configurational-bias monte carlo method for branched

molecules. transferable potentials for phase equilibria. 2. united-atom description of branched alkanes.

The Journal of Physical Chemistry B, 103(21):4508–4517, 1999.

[76] MG Martin, B. Chen, CD Wick, JJ Potoff, J.M. Stubbs, and JI Siepmann. Mcccs towhee. http:

//towhee.sourceforge.net/, Nov 2012.

[77] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8:3–30, January

1998.

[78] Simon C. Mcgrother and Keith E. Gubbins. Constant pressure gibbs ensemble monte carlo simulations

of adsorption into narrow pores. Molecular Physics, 97(8):955–965, 1999.

[79] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equation of state

calculations by fast computing machines. The journal of chemical physics, 21:1087, 1953.

[80] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward

Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,

21(6):1087–1092, 1953.

[81] Charles J. Mode. Applications of Monte Carlo Method on Science and Engineering, volume 1. InTech,

2011.

[82] A. Munshi et al. The opencl specification. Khronos OpenCL Working Group, 2011.

[83] J. Nickolls and W. J. Dally. The Gpu Computing Era. Ieee Micro, 30(2):56–69, 2010.

[84] NVIDIA. CUDA C Programmin Guide 4.0, 4.0 edition, Sep 2011.

[85] NVIDIA. CUDA C Programming Guide 4.2, 4.2 edition, Feb 2012.

[86] NVIDIA. NVIDIA Next Generation CUDA Compute Architecture: Kepler GK110, 2012.

http://towhee.sourceforge.net/
http://towhee.sourceforge.net/

111

[87] NVIDIA. CUDA C Programming Guide 5.0, 5.0 edition, Feb 2013.

[88] NVIDIA. NVIDIA Nsight Visual Studio Edition. https://developer.nvidia.com/

nvidia-nsight-visual-studio-edition, 2013.

[89] NVIDIA. TESLA GPU ACCELERATORS FOR SERVERS, 5.0 edition, May 2013.

[90] The National Institute of Standards and Technology (NIST). Benchmark results for lennard-jones

fluid-nvt monte carlo results at both liquid- and vapor-like densities. http://cstl.nist.gov/

srs/LJ_PURE/mc.htm, 2012.

[91] The National Institute of Standards and Technology (NIST). Simpatico - simulation package

for polymer and molecular liquids. http://research.cems.umn.edu/morse/code/

simpatico/old/index.html, July 2013.

[92] C. J. O’Keeffe and G. Orkoulas. Parallel canonical monte carlo simulations through sequential updat-

ing of particles. The Journal of Chemical Physics, 130(13):134109, 2009.

[93] A. Z. Panagiotopoulos. Direct determination of phase coexistence properties of fluids by monte carlo

simulation in a new ensemble. Molecular Physics, 61:813–826, 1987.

[94] A. Z. Panagiotopoulos and J. J. Potoff. Critical point and phase behavior of the pure fluid and a

Lennard-Jones mixture. Journal of Chemical Physics, 109(24):10914–10920, 1998.

[95] Vijay S. Pande, Ian Baker, Jarrod Chapman, Sidney P. Elmer, Siraj Khaliq, Stefan M. Larson,

Young Min Rhee, Michael R. Shirts, Christopher D. Snow, Eric J. Sorin, and Bojan Zagrovic. Atom-

istic protein folding simulations on the submillisecond time scale using worldwide distributed com-

puting. Biopolymers, 68(1):91–109, 2003.

[96] Aphrodite Papadopoulou, Ezra D. Becker, Mark Lupkowski, and Frank van Swol. Molecular dynam-

ics and monte carlo simulations in the grand canonical ensemble: Local versus global control. The

Journal of Chemical Physics, 98(6):4897–4908, 1993.

[97] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Elizabeth Villa,

Christophe Chipot, Robert D. Skeel, Laxmikant Kal, and Klaus Schulten. Scalable molecular dynam-

ics with namd. Journal of Computational Chemistry, 26(16):1781–1802, 2005.

https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
http://cstl.nist.gov/srs/LJ_PURE/mc.htm
http://cstl.nist.gov/srs/LJ_PURE/mc.htm
http://research.cems.umn.edu/morse/code/simpatico/old/index.html
http://research.cems.umn.edu/morse/code/simpatico/old/index.html

112

[98] V. Podlozhnyuk and M. Harris. Monte carlo option pricing. nVidia Corporation Tutorial, 2008.

[99] Jeffrey J. Potoff and Damien A. Bernard-Brunel. Mie potentials for phase equilibria calculations:

Application to alkanes and perfluoroalkanes. The Journal of Physical Chemistry B, 113(44):14725–

14731, 2009.

[100] Jeffrey J. Potoff and Athanassios Z. Panagiotopoulos. Critical point and phase behavior of the pure

fluid and a lennard-jones mixture. The Journal of Chemical Physics, 109(24):10914–10920, 1998.

[101] Department of Chemical Engineering Potoff Research Group and Wayne State University Materi-

als Science. Trappe-related models and applications. http://potoff1.eng.wayne.edu/trappe-force-field-

publications.

[102] T. Preis, P. Virnau, W. Paul, and J.J. Schneider. Gpu accelerated monte carlo simulation of the 2d and

3d ising model. Journal of Computational Physics, 228(12):4468–4477, 2009.

[103] O. K. Rice. On the statistical mechanics of liquids, and the gas of hard elastic spheres. The Journal

of Chemical Physics, 12(1):1–18, 1944.

[104] Marshall N. Rosenbluth and Arianna W. Rosenbluth. Monte carlo calculation of the average extension

of molecular chains. The Journal of Chemical Physics, 23(2):356–359, 1955.

[105] M.N. Rosenbluth and A.W. Rosenbluth. Further results on monte carlo equations of state. The Journal

of Chemical Physics, 22:881, 1954.

[106] D. Salomon. Graphics Devices. The Computer Graphics Manual, pages 1203–1285, 2011.

[107] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. An overview of the amber biomolecular

simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, pages n/a–

n/a, 2012.

[108] Shubhabrata Sengupta, Mark Harris, Michael Garland, and John D Owens. Efficient parallel scan

algorithms for many-core gpus. Scientific Computing with Multicore and Accelerators, 2011.

[109] J. I. Siepmann. A method for the direct calculation of chemical potentials for dense chain systems.

Molecular Physics, 70:1145–1158, August 1990.

113

[110] Jrn Ilja Siepmann and Daan Frenkel. Configurational bias monte carlo: a new sampling scheme for

flexible chains. Molecular Physics, 75(1):59–70, 1992.

[111] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and K. Schulten. Accelerating

molecular modeling applications with graphics processors. J Comput Chem, 28(16):2618–40, 2007.

[112] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, and K. Schulten. Accelerat-

ing molecular modeling applications with graphics processors. Journal of computational chemistry,

28(16):2618–2640, 2007.

[113] S.S. Stone, J.P. Haldar, S.C. Tsao, W.-m.W. Hwu, B.P. Sutton, and Z.-P. Liang. Accelerating advanced

MRI reconstructions on GPUs. Journal of Parallel and Distributed Computing, 68(10):1307–1318,

2008.

[114] S.S. Stone, H. Yi, J. Haldar, W. Hwu, B. Sutton, and Z.P. Liang. How GPUs can improve the quality

of magnetic resonance imaging. In The First Workshop on General Purpose Processing on Graphics

Processing Units. Citeseer, 2007.

[115] Magnus Strengert, Thomas Klein, and Thomas Ertl. A hardware-aware debugger for the opengl

shading language. In Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pages 81–88, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Asso-

ciation.

[116] Jeff Stuart, Michael Cox, and John Owens. Gpu-to-cpu callbacks. In Mario Guarracino, Fredric

Vivien, Jesper Traff, Mario Cannatoro, Marco Danelutto, Anders Hast, Francesca Perla, Andreas

Knapfer, Beniamino Di Martino, and Michael Alexander, editors, Euro-Par 2010 Parallel Processing

Workshops, volume 6586 of Lecture Notes in Computer Science, pages 365–372. Springer Berlin /

Heidelberg, 2011.

[117] M. P. H. Stumpf, Y. X. Zhou, J. L. Liepe, X. Sheng, and C. Barnes. GPU accelerated biochemical

network simulation. Bioinformatics, 27(6):874–876, 2011.

[118] A. Sunarso, T. Tsuji, and S. Chono. GPU-accelerated molecular dynamics simulation for study of

liquid crystalline flows. Journal of Computational Physics, 229(15):5486–5497, 2010.

114

[119] L. Szirmay-Kalos, T. Umenhoffer, G. Patow, L. Szecsi, and M. Sbert. Specular Effects on the GPU:

State of the Art. Computer Graphics Forum, 28(6):1586–1617, 2009.

[120] R. Tsuchiyama, T. Nakamura, T. Iizuka, A. Asahara, and S. Miki. The OpenCL Programming Book.

Fixstars Corporation, 2009.

[121] J.A. van Meel, A. Arnold, D. Frenkel, S.F.P. Zwart, and R.G. Belleman. Harvesting graphics power

for md simulations. Molecular Simulation, 34(3):259–266, 2008.

[122] Vincent A. Voelz, Gregory R. Bowman, Kyle Beauchamp, and Vijay S. Pande. Molecular Simulation

of ab Initio Protein Folding for a Millisecond Folder NTL9(1-39). Journal of the American Chemical

Society, 132(5):1526–1528, 2010. PMID: 20070076.

[123] W.H. Wen-mei. GPU Computing Gems Emerald Edition. Morgan Kaufmann, 2011.

[124] Shengqi Yang, Ronghui Cheng, and Li Zou. Case study of programmable video post processing:

Cuda-based novel edge directed video scaling. In Multimedia and Expo (ICME), 2010 IEEE Interna-

tional Conference on, pages 884 –889, july 2010.

[125] Stephen J. Zara and David Nicholson. Grand canonical ensemble monte carlo simulation on a trans-

puter array. Molecular Simulation, 5(3-4):245–261, 1990.

ABSTRACT

ADVANCED OPTIMIZATION TECHNIQUES FOR MONTE
CARLO SIMULATION ON GRAPHICS PROCESSING

UNITS

by

EYAD HAILAT

August 2013

Advisor: Dr. Loren Schwiebert

Major: Computer Science

Degree: Doctor of Philosophy

The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte

Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia’s GPUs and

CUDA’s Fermi architecture specifically. The resulting package supports the different ensemble methods for

the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous

solids. Such an algorithm will have broad applications to the development of novel porous materials for the

sequestration of CO2 and the filtration of toxic industrial chemicals.

The primary objective of this work is the release of a massively parallel open source Monte Carlo sim-

ulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and

the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-

vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the

grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric

materials and small proteins may be simulated.

This simulation engine is the only open source GPU optimized Monte Carlo code available for the

generalized simulation of adsorption and phase equilibria on a very large scale. As a result of conducting

many optimization techniques and allowing the system to adjust for the change of simulation state, the

115

116

original MC algorithm has been rewritten based on an existing serial algorithm to suit the massive parallel

devices resulting in reductions in computational time. This large time reduction allow for the simulation of

significantly larger systems for longer timescales than is currently possible with existing implementations.

Results of the extensive research and applying device specific optimizations resulted in significant speedup.

First, for the NVT method, a fully optimized serial algorithm has been implemented and the performance

results has been compared to Towhee. A speedup of about 438 times has been achieved for a relatively small

size problem of 4096 particles. In addition, two algorithms to run on the GPU with and without cell list

structure have been implemented. The total speedup of the parallel code with cell list over the serial code

was more than 160× faster. Moreover, for the grand canonical ensemble, a serial and two parallel algorithms

have been developed. The simulation box in this method can be resized, which added a change to the algo-

rithm that needed to adapt with the box size and adjust itself. The performance of running the CUDA code

with cell list versus the serial code that doesn’t have a cell list structure is a factor of 130 times faster.

More MC ensembles have been transferred to the GPU. The Gibbs ensemble method has two simulation

boxes and three types of moves. This method has been studied carefully and the GPU algorithm has been

implemented to port the computation intensive functions to the GPU. The performance of the GPU code was

about 50× faster than the serial code. Finally, an extension of the Gibbs method has been implemented on

the GPU. The particle transfer from one box to the other is the affected move type by this extension. CUDA

streams are used to parallelize K trials for this method. A factor of three times speedup for the particle

transfer move has been achieved for the best case. However, due to the low execution rate of the particle

transfer move, just 10% of the total moves, the speedup has minimal effect on overall execution time of the

simulation. Furthermore, a different run with all move types on Kepler K20c card has been executed, and a

factor of 2 times speedup has been reported over the CUDA code on the GeForce GTX 480 card.

The main contribution of this work to society is when the above implementations become open source

to the public through http://gomc.eng.wayne.edu. Also, other researchers can take advantage of the lessons

learned with advanced optimizations and self-adapting mechanisms specific to the GPU. On the application

level, the current code can be used by the chemical engineering community to explore accurate and affordable

simulations that were not possible before.

117

AUTOBIOGRAPHICAL STATEMENT

Eyad Hailat earned a Master’s and a Bachelor’s degrees in Computer Science and Information Technol-

ogy from Yarmouk University, in Jordan in 2002 and 2004, respectively. He is a graduate student member of

the IEEE Communications, and Association for Computing Machinery chapter at Wayne State University.

From 2006 to 2012, Mr. Hailat worked as a Teaching Assistant in the department of Computer Science at

Wayne State University as well as instructor for a variety of undergraduate level classes. After that, and

until he joined Effyis, Inc. as a data scientist in May 2013, he was a research assistant at the department of

Computer Science at Wayne State University..

During the journey to earn his Ph.D., Mr. Hailat served as a reviewer for several peer-reviewed journals

and conferences. Moreover, he was honored to accept the following awards:

• First place award. The 4th annual graduate exhibition, Wayne State University, presented March 19,

2013. A hundred participants from all majors in school.

• Graduate Research Award (NSF), 2012/2013.

• Graduate Research Award (REP - Wayne State University), 2011/2012.

• Outstanding Teaching of the year Award, Wayne State University, 2009.

• Graduate Professional Scholarship, Wayne State University, 2007. The highest prestigious graduate

scholarship at Wayne State University.

• Graduate Teaching Award, Wayne State University, 2006-2010.

• Graduate Teaching Award, Yarmouk University, 2001.

	Wayne State University
	1-2-2013
	Advanced Optimization Techniques For Monte Carlo Simulation On Graphics Processing Units
	Eyad Hailat
	Recommended Citation

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	GPU Architecture
	Structure of Fermi cards
	CUDA Review
	Synchronization and Concurrency
	Kernel Launch Specifications
	CUDA Memory
	CPU-GPU Communication
	Atomic Instructions on Global Memory
	Memory Coalescing

	CUDA Streams
	Monte Carlo Simulations
	Random Number Generator
	Other Applications of this Work

	Related Work
	General Purpose GPU Programming
	Monte Carlo Simulations
	Domain Decomposition Techniques

	Porting Canonical Ensemble to the GPU
	Markov Chain Monte Carlo Simulations
	Metropolis Method and Thermodynamic Ensembles
	Lennard-Jones Potential

	Structure of the Code
	Optimizing the canonical ensemble method for the GPU
	The block size effect
	The use of pinned memory
	The use of different GPU memory types
	Memory coalescing for fetching particle positions
	Loop unrolling technique in finding total energy
	Load balancing among threads and contributing particles
	Atomic operations on global memory transactions
	Block synchronization through global memory and atomic operations
	Numerical optimizations: tricks and tweaks

	Using cell list structure
	Results and Discussion

	Grand Canonical Ensemble: One Simulation Box and a Reservoir
	MC Simulation for the Grand Canonical
	Parallel Algorithm and Implementation Details
	Implementation without Cell List
	Cell List Implementation
	Assigning Cells to Blocks
	Assigning Threads to Particles
	Adding Cell List Implementation to the Parallel Grand Canonical Algorithm

	Performance Results

	Gibbs Ensemble: Two Simulation Boxes
	MC Simulation of the Gibbs Ensemble
	Method
	Results and Discussion

	Configurational Bias Gibbs Ensemble
	Introduction
	CBGEMC Method and Implementation
	Results and Discussion

	Conclusion and Future work
	References
	Abstract
	Autobiographical Statement

