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1. BACKGROUND AND SIGNIFICANCE 
 
1.1 Ovarian Cancer Etiology 

 Ovarian cancer is the most prevalent and deadly gynecologic malignancy in the United 

States, and, as the fifth most common cause of cancer death in women, accounts for 

approximately 16,000 deaths per year [1].  Nearly all ovarian cancers originate from the 

epithelial cells comprising the outermost surface of the ovary.  There are four major subtypes of 

epithelial ovarian cancers (EOC) which are categorized by their histopathologic characteristics 

[2].  EOC variability is present not only in the morphology of histopathologic samples, but also in 

the wide variety of unique karyotypes, and the numerous low frequency genetic abnormalities 

associated with this disease.  Specific genetic alterations tend to be inconsistent between 

studies, but include changes on many levels including DNA sequence, copy number, 

methylation status, and miRNA levels [3-4].  Features on each level have been correlated with 

resistance to chemotherapy and with differing patient survival rates [5].  Despite an increased 

knowledge of the etiology of this disease, improvements in surgical techniques, advancements 

in chemotherapeutic treatments, and the characterization of ovarian cancer genomes at many 

levels [5-6], the morbidity and mortality associated with EOC overall has remained largely 

unchanged (0.39 in 1980–1989 to 0.43 in 1990–1997) [7].  EOC is often asymptomatic in its 

earliest stages and strategies with sufficient sensitivity and specificity to detect early-stage 

disease are currently not available.  As a result, most patients are diagnosed with late-stage 

disseminated EOC which typically becomes resistant to both standard and combination 

chemotherapies [7-9] and carries a prognosis of only 20% survival over five years [7].  

Therefore, the specific challenges presented by the heterogeneous and clinically insidious 

nature of EOC underlie the rationale for continued focus on these areas of research to improve 

upon the high morbidity and mortality currently associated with this disease. 

 Due to the paucity of early-stage clinical samples, the initiating events in ovarian cancer 

transformation are not well understood.  It is widely believed that the vast majority of ovarian 
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cancers originate from the single layer of simple cuboidal to low pseudostratified columnar 

epithelial cells encasing the mammalian ovary [10-11].  The genetic and morphologic 

heterogeneity seen in transformed EOC cells has been postulated as a mechanism by which 

the early homogeneous surface epithelial cells could and differentiate from their common origin 

to form the multiple malignant ovarian cancer subtypes.  The resulting cancers are clinically 

categorized into four distinct histopathologic categories with the following distribution of 

incidence: 1) papillary serous (50-60%), 2) endometrioid (25%), 3) mucinous (4%), 4) and clear 

cell (4%) [12-14].  These subtypes are distinguished by their morphologic features, which 

resemble those of the specialized epithelia of the reproductive tract that derive from the 

Müllerian ducts. Specifically, papillary serous cancers resemble cancers of the fallopian tube, 

endometrioid ovarian cancers are characterized by endometrial-like glands, and mucinous 

ovarian cancer types resemble endocervical and intestinal epithelial cells [15-16].  The ability of 

the ovarian surface epithelium (OSE) to assume these varying Müllerian-like features has 

recently been linked to the inappropriate activation of homeobox (HOX) genes that control 

patterning of the reproductive tract [17-19].  This finding adds yet another regulatory level by 

which ovarian cancer may generate heterogeneity by phenotype.  The dynamic interactions 

between the multiple regulatory systems that govern differentiation and spontaneous neoplastic 

transformation from a normal epithelial cell to one of many tumorigenic ovarian cancer 

phenotypes are beginning to be explored. As improvements in prevention and early detection 

will likely have a significant impact on morbidity and mortality of this disease, emphasis is 

placed on expanding the knowledge bases of the early transformative events. 

The specific mechanisms underlying spontaneous transformation in EOC are not well 

understood.  Epidemiologic data have provided valuable clues as well as data supporting 

several seemingly paradoxical theories that explain precisely how ovarian cancer might form. 

Three major interrelated theories have been proposed to explain the epidemiologic data 

associated with ovarian cancer susceptibility [20-21].  The first of these is based on the link 
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between ovarian cancer risk and the number of ovulatory cycles and is thus termed the 

incessant ovulation hypothesis.  It is based on the concept that repetitive wounding and cell 

proliferation in postovulatory repair of the ovarian surface epithelium results in an accumulation 

of genetic abnormalities that promote cellular transformation [20].  If these damaged epithelial 

cells are invaginated into the tumor-promoting stromal environment, aberrant autocrine and 

paracrine stimulation by trophic hormones, phospholipids, and vascular endothelial growth 

factor are thought to accelerate cellular transformation during post-ovulatory growth and 

epithelial regeneration [15-16].  These putative mechanisms are incongruent in a temporal 

sense with the findings that stoppage of ovulation for a disproportionately short time interval 

significantly reduces the lifetime risk of ovarian cancer.  Short-term stoppges in the ovulatory 

cycle reflect less than 1/40 of a woman's total lifetime ovulations and include the carriage of a 

single full-term pregnancy, less than one year of breast feeding, or as little as 6 months of oral 

contraceptive usage [22].  An alternative transformation mechanism has been hypothesized that 

centers on the reduction in pituitary gonadotropin levels occuring with these same protective 

events.  This theory implicates surges of pituitary gonadotropins occurring at ovulation and 

persistent high gonadotropin levels following menopause in the activation of mitogenic pathways 

and the resulting accumulation of genetic changes leading to carcinogenesis [23-25].  The third 

theory for ovarian cancer causation states that inflammation and changes in redox potential in 

the setting of ovulation and OSE repair account for the increased risk of ovarian cancer 

associated with pro-inflammatory conditions.  These include talc/asbestos exposure, 

endometriosis, pelvic inflammatory disease, and mumps infection [26-27].  Together, these 

theories are largely based on altered incidence rates generated from physiologic and 

epidemiologic data with some molecular and cellular correlates.  Each of these theories explains 

a portion of disease causation in terms of modifiable risk factors, however, optimal minimization 

or elimination of these factors does not prevent EOC completely.  Therefore these variables 

likely serve as cofactors for underlying events resulting in cellular transformation. 
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At the molecular level, studies in cell biology demonstrate that the epithelial cells 

adjacent to the site of follicular rupture sustain sub-lethal oxidative DNA damage and are more 

likely in healing to give rise to cells with genetic alterations and a transformed phenotype [28].  

This is supported by clinical reports that have documented cellular atypia including metaplasia, 

hyperplasia, and ovarian intraepithelial neoplasia of the surface epithelium adjacent to invasive 

carcinoma [29-31].  Despite this knowledge, our current understanding of the mechanisms of 

surface epithelial cell transformation is limited by the paucity of early stage clinical samples [32].  

This is particularly true in the characterization of how early-stage transformative events lead to 

progression and eventually tumorigenesis.  Increased understanding of how the initiating events 

underlying the transformation process and the inherent plasticity of the ovarian surface 

epithelium could link to later transformative stages will likely reduce the morbidity and mortality 

currently associated with ovarian cancer through the identification of new strategies for 

detection, diagnosis, and treatment. 

1.2 Animal Models of Ovarian Cancer 

 A number of in vitro and in vivo murine models have been developed to study the 

characteristics and behavior of EOC, each with its own set of strengths and limitations.  

Chemically induced cellular transformation models mark some of the first successful attempts to 

induce EOC in laboratory mice and rats and, with varying success and timelines, linked DNA 

damage by 1,3-butadiene [33], and dimethlybenz(a)anthracene (DMBA) 20-methylcholanthrene 

[34], to EOC.  The applicability of data from carcinogenic induction models is unclear, as 

evidence supporting the association of chemical carcinogenesis and ovarian cancer etiology in 

humans is largely absent [3]. 

 In addition to chemical models of DNA damage, genetically induced ovarian epithelial tumor 

models have also provided valuable information regarding gene alterations linked to 

tumorigenesis.  One of the first genetically induced models was created through the cross 

breeding of transgenic mice expressing the avian retroviral receptor (TVA) with p53-/- mice.  The 
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induction of transformation by oncogenic alteration of any two of three (c-myc, Kras, and Akt) 

oncogenes on the p53-/- background was sufficient to increase the rate of tumorigenesis [35].  A 

second approach demonstrated that injection of the simian virus 40 T-antigen (SV40 T-Ag) into 

the male pronucleus of half-day old embryos was sufficient to generate ovarian tumors.  

 However, tumor outcomes differed significantly from human EOC because, despite linking of 

the SV40 Tag to the epithelial ovarian surface with the Müllerian Inhibitory Substance Type II 

Receptor (MISIIR) promoter, uterine masses and polycystic kidneys also developed [36].  In a 

third model, the targeted expression of murine PIK3CA under the MISIIR promoter resulted in 

mouse ovarian surface epithelial cell (MOSEC) hyperplasia, but cells were not tumorigenic after 

18 months.  However, both PIK3CA and mutant K-ras were still thought hold promise for 

spontaneous transformation models as they were shown to increase anchorage-independent 

growth of cultured MOSEC [37].  A fourth model used transient (21 day) inactivation of p53 and 

Rb by adenoviral infection within the ovarian bursa.  These experiments demonstrated that early 

causative events in ovarian cancer transformation need not be maintained for tumorigenesis as 

early transient inactivation resulted in ovarian tumors in 33/34 mice at ~225 days [38].  

Adenoviral administration was also utilized for in a fifth genetic model that showed that alteration 

of Pten when paired with K-ras [39] or Apc  [40] generates invasive primary ovarian 

endometrioid adenocarcinomas.  Because of its strong association with inherited risk for ovarian 

cancer [41] the conditional inactivation of Brca1 in the MOSEC was speculated to increase 

ovarian cancer formation.  Additionally, the Brca1 protein is involved in diverse cellular events 

and functions related to genomic instability, including homology-directed DNA repair [42], 

transcriptional regulation [43-44], chromatin remodeling [45] ubiquitin ligation [46], and 

centrosome amplification [47].  However in this seventh genetic model, conditional inactivation 

of Brca1 introns 5-13 (Brca1Δ55-13) using AdCre administration in the ovarian bursa resulted in 

surface epithelium hyperplasia and the formation of inclusion cysts but not in tumor formation 

after 240 days in vivo.  Conditional deletion of Brca1 in vitro resulted in slowed growth that was 
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reversed by p53 deletion, as well as increased sensitivity to the DNA damaging agent cisplatin 

[48].  The last relevant genetic model showed that Brca1 inactivation coupled with either p53 or 

Rb inactivation also failed to yield epithelial tumors.  Unpredictably, leiomyosarcomas formed in 

adjacent cells and showed more rapid progression with concomitant inactivation of Brca1 and 

p53, but not Rb and p53 [38].  Considering the relative successes of these eight MOSEC 

models for genetically induced transformation, the unpredictability of success and the limitations 

of each, coupled with the fact that most human EOCs are not predictably linked to a specific 

genetic alteration, brings into question the utility and significance of genetic models for 

comparison with human EOC. 

 Animal models that most closely mimic the human disease are vital not only in furthering our 

understanding of the biological and genetic factors that influence disease phenotype, but also 

serve as the basis for the development and of detection and treatment strategies.  As early-

stage human ovarian cancer samples are rarely available, and human OSE do not 

spontaneously transform in culture, animal models are heavily relied upon as investigative tools.  

These models afford investigators the opportunity to study the mechanisms underlying cellular 

transformation longitudinally and from its earliest events.  Considering the various chemical and 

genetic animal models currently available for ovarian cancer, very few develop ovarian tumors 

spontaneously. Low tumor prevalence and extended time to first occurrence of tumors also 

renders many of these models impractical for experimental studies [49-51].  Each MOSEC 

model that incorporates genetic alteration in the induction of tumorigenesis has proven 

somewhat paradoxical, as the action of gene alteration using MOSEC in vitro does not equate 

to EOC causation in vivo.  Together, these models suggest that either ex vivo manipulation or 

embryonic transgene expression do not accurately represent human epithelial ovarian cancer 

(EOCs), which arise spontaneously and in a vast majority of cases are linked to age and to the 

total number of ovulatory cycles.  Additionally the significance of data generated from studies 

where transformed human cells are injected into immune-compromised mice is confounded by 
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the absence of immune regulatory mechanisms known to block tumor growth and immune 

mediated tumor-stromal interactions. 

1.3 Utility of MOSEC Model 

 More recently, syngeneic rodent models have been developed where ovarian surface 

epithelial cells were transformed in vitro. Transfused cells were then injected into the peritoneal 

cavity of immune competent animals in vivo to study tumorigenesis.  Initially, spontaneous 

transformation of OSE in vitro was shown to occur in a matter of weeks in rat [52-53], with 

multiple divergent cytogenetic changes in each transformed cell line.  A syngeneic mouse model 

was developed soon after by Roby et al. [54] with significantly slower transformative properties 

that facilitated the characterization of  key transformative stages.  Similar to the rat model, in the 

mouse ovarian surface epithelial cell (MOSEC) transformation occurred spontaneously in vitro 

with repeated passages, and the cells proved tumorigenic in C57BL6 mice.  Variations on this 

model have since been used by numerous investigators to study the transformation process and 

the tumorigenic features of ovarian cancer, including cytoskeletal and adhesion protein 

alterations, tumor stromal interactions, proliferation, differential activation of survival and 

apoptosis pathways, and endothelial growth factor expression [55-59].   

 The similarity of genetic alterations between late stage transformed cells of the MOSEC 

model and genetic alterations previously characterized from human ovarian cancers provides 

further support for the appropriateness of this model.  For example, array comparative genomic 

hybridization (array-CGH) of late-stage transformed MOSEC revealed 80% conservation of 

synteny between the MOSEC and human ovarian malignancies of epithelial origin [57]. Parallel 

pathways of karyotypic change were also reported between species [57].  Additionally, genome-

wide transcriptional profiles of late-stage tumorigenic MOSEC lines revealed a similar gene 

expression pattern to human carcinomas of varying cell morphological, behavioral, and 

prognoses [60].  These include a high percentage of shared, differentially expressed genes, 

similar alterations in major signal transduction pathways, and common alterations in pathways 
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of cellular metabolism [61].  The MOSEC model mimics human ovarian cancer in its abnormal 

distribution of the actin cytoskeleton and of the adhesion proteins necessary for dissemination of 

the primary tumor from the surface of the ovary into the peritoneal cavity [55].  Together, these 

morphologic and genomic analyses provide evidence that the MOSEC disease model as an 

accurate parallel in vitro and in vivo system with which to study of human ovarian cancer 

initiation and progression. 

 The MOSEC timeline also closely mimics human EOC because transformation arises over 

relatively a long period of time and requires repeated long-term growth and passaging.  

Continuous culture of the MOSEC is intended to mimic the repeated growth and repair cycles 

theorized to contribute to ovarian cancer causation in humans [54-55].  This model is similar to 

human EOC because significant variability between and within MOSEC cell lines is well 

established [54-55].  Additionally, histopathologic heterogeneity is also seen in tumors formed 

from late stage injected MOSEC in vivo [54-55].  Until a mechanism for induction of EOC within 

the mouse ovary in vivo is established, the MOSEC model remains a highly relevant syngeneic 

animal model for hypothesis testing in transformation and tumorigenesis of the ovarian surface 

epithelium. 

 Taken together, MOSEC model is particularly well suited for modeling cellular transformation 

in ovarian cancer because it offers the following advantages:  1) A long timeline (12-18 months) 

for the analysis of neoplastic transformation, 2) spontaneous transformation without viral or 

genetic alteration, 3) the generation of late stage cells with transcriptomic and behavioral 

similarity to the human disease, 4) tumor establishment in immune competent syngeneic mice.  

Additionally, the MOSEC model is superior to previously established immortalized human 

ovarian epithelial cell lines as it allows for continuous tracking of the transformation process 

across the gamut of clearly defined stages without viral alteration or carcinogenic induction of 

DNA damage.   Additionally, this model allows for in vivo biomarker detection of tumors 

following transformed MOSEC xenografting and subsequently for efficacy studies of both 
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chemotherapeutic treatment regimens and chemo preventive strategies in syngeneic immune 

competent mice. 

1.4 Genomic Heterogeneity in Ovarian Cancer 

 Like the vast majority of solid tumors, human ovarian carcinomas have near-diploid to highly 

aneuploid karyotypes and many contain complex combinations of structural and numeric 

chromosomal aberrations that parallel tumor grade [62].  Additional cytogenetic analyses of five 

human ovarian surface epithelial cell lines immortalized by HPV16-E6E7 viral oncogenes 

revealed a high number of chromosomal imbalances including +1q, +3q, +8q, and +20q, -4q, -

5q, -8p, -17p, -18q, and -22q, only one of which was universally present among the lines (+19q 

(5/5 lines) [63].  Additional reported non-clonal chromosome imbalances with variable 

prevalence marked heterogeneity among the cell lines and included -13q (4/5 lines), +5q, +20q -

22q (3/5 lines each), +1q +11q, -2p, -4q, -8p, -10p and -11q (2/5 lines each).  This level of 

variability was documented despite the selective omission of chromosomal imbalances present 

in only one line.  Most important is the realization that each transformed cell line was 

characterized by a unique set of imbalances, and that only 1/12 (+19q) of the imbalances was 

universally detected across all transformed lines [64].  A second, independent study found 

different karyotype alterations when forming a second set of transformed ovarian cancer cell 

lines [65].  This result demonstrates diversity in the karyotypic alterations is permissive to the 

tumorigenic phenotype of human OSE, and supports the concept that multiple combinations of 

genomic alterations can result phenotypically similar cellular transformations. 

 Heterogeneity among tumors is commonly reported, and ranges from a high degree of 

structural aberrations to only low frequency of relatively simple rearrangements [66-70].  This is 

significant to cancer transformation as karyotype heterogeneity can have many gene based and 

non-gene causes including dysregulation of cell cycle checkpoints [71-75], the presence of 

structural aberrations caused by errors in homologous and nonhomologous end-joining of 

double-stranded DNA, and telomere shortening [76-78].  Independent of the mechanism, the 
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variability that arises from karyotype level change likely provides the basis for selection and 

evolution of cancer cell populations.  Previously, intra-tumor  "heterogeneity" has been defined 

as metaphase-to-metaphase variations among the 50 quantified for each transitional stage, but 

the complexity of such variations within a single tumor or cell line has eluded quantification [79].  

Recently, a method developed by Castro et. Al. [80] showed how inter-tumor diversity among 

patient samples could be quantified for non-normally distributed data sets by applying the 

Shannon Index to quantify the heterogeneity of chromosome count data for various tumor types 

[80].  As a measure of genomic instability, we have adapted this method and applied the 

Shannon Index to measure the diversity contributed by each whole and aberrant chromosome 

to the cell population.  The indices for each chromosome are summed to generate a summed 

index for the karyotype of a given cell. 

  Chromosome instability and aneuploidy result in large scale DNA copy number variations by 

whole chromosome that can significantly influence the transcription profiles of cancer cells.  

Several investigations into cancer genomes suggest that nearly all cellular genes may be 

expressed in proportion to the dosage of the corresponding chromosomes [81-83].  These 

studies support the notion that cancer karyotypes have significant impact on gene expression 

and therefore for cell phenotype.  Oppositely, in human disease of inherited autosomal 

trisomies, matching of whole chromosome copy number proportional to the cellular 

transcriptome does not usually occur or is cell type specific [84-85].  Understanding how this 

mechanism of gene regulation may function in cancer cell macro evolution and selection by 

genome system would further define the chromosome-transcriptome relationship of the cancer 

cell genome.  The inherent property of spontaneous transformation in the MOSEC model is 

important as it eliminates the artificial induction of immortalization by the use of viral or other 

methods required to transform human cells [63].  Although these methods have become 

commonplace tools for molecular cell biologists, the generation and usage of genetically altered 

clones to study cellular transformation presents several significant challenges that warrant 
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further discussion.  The first challenge lies in the determination of whether the change in cell 

phenotype should be attributed to the intended gene-level alteration in transcription, translation, 

and protein synthesis of the desired gene product, or, alternatively, reflects the inevitable 

disruption of the host genome sequence, structure, and spatial relationship of all other genes on 

that chromosome.  Secondly, the selection pressure needed to isolate stably expressing cells 

creates an “evolutionary bottleneck” in which individual cellular clones are picked and are 

individually subcultured in vitro.  The use of virally transformed cells as a model for this disease 

does not align well with our current understanding of human ovarian cancer formation in situ as 

there is no known viral link to this disease.  Depending on the site of insertion, it is also possible 

that disruption of the host genome may increase genomic instability, subsequently increasing 

the chance for transformation by this mechanism [86]. 

 High-degrees of karyotypic heterogeneity have consistently marked genomic instability in 

OECs and cancer cell lines from both humans and mice [87].  Currently, neither the timing nor 

the extent of this genomic instability has been characterized.  Genetic models for MOSEC tumor 

induction may not mimic spontaneous disease and have limited ability to form epithelial ovarian 

cancer in vivo. Additionally, previous attempts at long-term culture of human ovarian epithelial 

cells have failed to spontaneously generate tumorigenic cells, and tumorigenesis of transformed 

human lines can only be tested in immune compromised mice.   Therefore, the MOSEC model 

is well suited in this regard to investigate several aspects of genomic instability as it relates to 

the key transformative stages of transformation and tumorigenesis. 

 
1.5 Specific Aims 

 Using the MOSEC model of spontaneous transformation and tumorigenesis in syngeneic 

C57BL6 mice together with a longitudinal study design, genome-wide multivariate analysis was 

facilitated at several key transformative stages.  With the understanding that cancer cell 

populations have the properties of a complex adaptive system, our experimental design 
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accounted for the possibility that these cell populations may work as a dynamic network 

comprised of many parallel agents that act in a non-linear fashion.  Therefore, the following 

study emphasizes a holistic approach to experimental design that encompasses the possibility 

of stochastic, non-linear change. To this end, data collection and analysis was performed on cell 

populations such that the degree of karyotypic variability from cell to cell is characterized at 

each transitional stage.  Using these means under the genome centered paradigm, the 

relationships among gene expression profiles, cellular phenotype cellular behavior and 

karyotype heterogeneity can be elucidated.  The current study thereby provides evidence 

supporting an alternate hypothesis of cancer formation that emphasizes genome level variability 

and cellular selection over the current widely held gene-based theory for cancer causation and 

stepwise clonal evolutionary theory of tumorigenesis. 

 These specific aims are designed to provide insight into current major challenges in the 

diagnosis and treatment of epithelial ovarian cancer which stem from the paucity of early stage 

samples, the heterogeneity of the disease, and the ability of OSEC to differentiate to a number 

of heterogeneous subtypes: 1) characterization of genomic instability and the onset of macro-

evolutionary change from the earliest stages of spontaneous transformation from the diploid 

genome 2) definition of the relationship between karyotype heterogeneity and the cell 

phenotype of each key transformative stage  3) comparing phenotypes and karyotype 

heterogeneity between spontaneously transformed cells and genetically induced models of 

cellular transformation 4) quantifying the differences in karyotype profiles between late-stage 

injected cells and the tumors which evolved in vivo  5) identification and profiling of differentially 

expressed genes between stages and between tumorigenic and non-tumorigenic cell lines 6) 

defining the role of whole chromosome copy number change in gene regulation by evaluating 

the genome-transcriptome relationship at each key transformative stage.  
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2. METHODS 

2.1 Experimental Overview 

 To determine the pattern of karyotype variability and its relationship to spontaneous cellular 

transformation over time, mouse ovarian surface epithelial cells (MOSEC) were grown 

continuously in culture from primary cells to their eventual transformation to the malignant 

phenotype. Population karyotype, senescence, and morphologic data were collected at the 

earliest transformative stages.  Subsequent key transformative stages were determined by cell 

phenotype and by repeat testing of the MOSEC in vitro using traditional and organotypic models.  

Genome level change was measured at several levels including spectral karyotype analysis for 

MOSEC populations, array comparative genomic hybridization (aCGH) for DNA copy number, 

and RNA transcript abundance for transcriptional change (Figure 1).  To confirm the 

tumorigenicity of MOSEC, late stage day 528 cells were compared to day 245 cells in vivo by 

allograft followed by histopahologic and karyotype evaluation of harvested tumors  

 All analyses were performed real-time with the exception of the microarray analyses. The 

selection of key transitional stages was based on previously established patterns of in vitro 

phenotype change in this model [54-55].  These included ranges of passage number, size, 

density, growth rate, anchorage-independent growth efficiency in soft agar, invasiveness in 

matrigel culture, and depth of invasion on collagen rafts.  

 

2.2 Cell Culture 

2.2.1 Establishment of Spontaneously Transforming Primary Cells 

 Primary MOSEC were generated from a single ovary from a 6-week-old C57BL6 female 

mouse.  To avoid the possibility that heterogeneity was generated from the establishment of cell 

lines from multiple mice, primary cultures were attempted using cells from the single ovary, but 

viability was low using this method (1:20).  Cultures were discarded if they failed to show viability 

by day 30.    The ovaries were resected, and residual remnants of the oviducts and bursa were 
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removed.  Each ovary was individually incubated for 20 minutes in a 20 mm dish with 50 µl of 

0.25% trypsin and was rolled gently with a toothpick to help dislodge the surface epithelial cells.  

For each ovary, cells were resuspended in MOSEC growth medium (low glucose DMEM with 

4% fetal bovine serum, 100 µg/ml each of penicillin and streptomycin, 5 µg/ml insulin, 5 µg/ml 

transferrin, and 5 ng/ml sodium selenite (Invitrogen, Carlsbad, CA) were plated in one well each 

of standard 6-well tissue culture plates (Becton-Dickinson, Oakville, ON, Canada). 

2.2.2 Conditional Inactivation of Brca1 

  To determine cell phenotype and the extent of karyotype heterogeneity in genetically 

induced versus spontaneously arising transformation models, MOSEC cells from mice bearing 

loxP sites in introns 4 and 13 of the Brca1 gene (Brca1loxP/loxP [FVB;129-Brca1tm2Brn]) were 

provided as a generous gift from investigators Clark-Knowles and Vanderhyden [48].  Following 

the initial establishment of the primary cells MOSEC as above (30 days), targeted inactivation of 

Brca1 was achieved via adenoviral delivery of Cre recombinase to MOSEC using recombinant 

adenoviruses Ad5CMVCre (AdCre), (Vector Development Laboratory, Houston, TX, USA).  

Mitotic cells were passaged only enough times to assure mitotic activity sufficient for SKY 

analysis of metaphase spreads (20 days post AdCre administration). 

2.2.3 Routine Cell Culture Conditions 

 Cells were passaged in MOSEC medium and were split at varying ratios, depending on their 

growth rate (1:2 - 1:12 ratios).  For growth rate analyses, cells were seeded at densities of 1 x 

104 and 5 x 104 cells, and subconfluent cell counts were determined at different times 

postseeding.  Cell doubling times were estimated from the formula: doubling time = 

(T)ln2/ln(Xe/Xb), where Xe is the cell number determined at the endpoint, Xb is the cell number at 

the beginning time point, and T is the total elapsed time (in hours). Transitional states of 

carcinogenesis were captured by preparing frozen cell stocks every three to five passages. 

Stocks were stored in liquid nitrogen and preservation of cell phenotype was verified and 

population karyotype analyses were shown to be >95% similar in re-seeded cells from frozen 
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stocks.  Freezing medium contained 50% fetal bovine serum, 40% low glucose DMEM, and 10% 

DMSO.  All analyses were performed on transitional stages real time using never-frozen cells 

with the exception of the collection of mRNA for analysis of transcript abundance.    

 

2.3 In vitro invasion, proliferation, and migration assays 

2.3.1 Soft Agar Proliferation Assay 

 MOSEC (1.5 x 104) were suspended in 1.0 ml of 0.5% Bactoagar (Difco Laboratories, 

Detroit, MI) in the MOSEC growth medium at 42°C, layered over 1 ml of 0.8% Bactoagar in 

DMEM in 6-well dishes, and cultured in 5% CO2 in a humidified chamber.   After 15 days of 

growth monitoring, colonies were stained with cresyl violet, sized using a 10x calibrated 

eyepiece and were counted if they exceeded >10 µm in diameter. 

2.3.2 Migration Assay 

 MOSEC were trypsinized and resuspended at 105 cells per 0.3 ml serum-free media and 

migratory capacity was tested using 6-well invasion chambers with 8 µl Matrigel coated trans-

well filter inserts (BD Biosciences) and 8 µl uncoated controls.  Cell suspension was added to 

the upper chambers and the lower chamber contained 0.8 ml serum-containing media.  After 4 h 

in a humidified 37°C incubator, the inserts were removed, the upper surface of the filters was 

cleaned thoroughly with cotton swabs, and the lower surface was fixed with 4% 

paraformaldehyde for 10 min and stained with 0.5% crystal violet in 20% methanol for 5 min.  

Membranes were mounted on glass slides and images were captured using a light microscope 

with 20x objective and were counted in a blinded fashion.  Values reported are normalized to 

controls as follows: Migration = migratory cells matrigel/ migratory cells control. 

2.3.3 Three dimensional growth in Matrigel 

 MOSEC (2 x 104 cells/well) were embedded directly in Matrigel (BD Biosciences, Franklin 

Lakes, NJ) diluted 1:1 with the MOSEC growth medium.  Following solidification of the Matrigel, 

cultures were incubated at 37°C and monitored for up to 15 days.  Phase contrast images of 
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colonies grown in Matrigel were captured with a Nikon Coolpix 990 digital camera attached to a 

Nikon Diaphot microscope using 20x objectives.  Invasiveness was scored by branching 

morphology as 1) number of branches/ cell and 2) branching cells/ total cells.  Two hundred cells 

were counted per assay. 

2.3.4 Organotypic Collagen Raft Cultures 

 Organotypic collagen raft cultures were prepared essentially as described by Gregoire et al. 

[63], with minor modifications.  Briefly, collagen plugs (2.5 ml of 1.63 mg/ml rat tail collagen; BD 

Biosciences) were prepared in trans-well filter inserts (BD Biosciences) and were equilibrated 

with the MOSEC growth medium prior to seeding the cells.  Cells (5 x 105) were seeded onto 

collagen plugs and allowed to grow to confluency at 37°C in a humidified incubator with 5% CO2 

for 1-2 days.  After removing the medium from the top chamber, raft cultures were maintained 

with sufficient medium for cells to grow at the air/ liquid interface for 14-21 days. Cell growth was 

monitored and cells were fed by changing the medium every 2 to 3 days from the bottom 

chamber.  Rafts and their associated cultures were carefully transferred into 10% neutral 

buffered zinc formalin (Thermo Fisher Scientific Inc.) for processing by routine histopathologic 

analysis. 

 

2.4 Senescence Associated Beta Galactosidase Activity 

 Senescence Associated Beta Galactosidase Activity (SA-βgal) was measured from MOSEC 

cells grown on glass slides under standard culture conditions.  Slides were removed from culture 

dishes, rinsed twice with phosphate buffered saline (PBS), and were fixed in 2% formaldehyde, 

0.2% glutaraldehyde in PBS at room temperature for 10 minutes.  Cells were rinsed twice again 

with PBS, covered with fresh staining solution (400 nM citric acid, sodium phosphate pH 6.0 1.5 

mM NaCl, 200 mM MgCl2, 50 nM potassium ferrocyanide, 50 nM potassium fericyanide, 20 mg/ 

ml X-gal in DMF), and  incubated without light for 12-24 hours at 37°C.  SA-βgal images were 

captured with an Olympus BX41 microscope at 40x with DP72 camera.  Cells were counted with 
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the investigator was blinded to their identity using NIH Image (U.S. National Institutes of Health 

and available at http://rsb.info.nih.gov/nih-image/). 

 

2.5. Population Karyotype Analysis 

2.5.1 Spectral Karyotype Analysis (SKY) 

Painting and detection of metaphase cells from key transitional stages was performed 

following overnight treatment with colcemid and collection using mitotic shake-off.  

Chromosomes were prepared using standard hypotonic treatment, fixation, and air drying [88].  

After pepsin treatment and fixation with formaldehyde followed by dehydration, the slides were 

denatured in 70% formamide and 2x SSC and hybridized with denatured mouse painting probes 

(Sky Paint, Applied Spectral Imaging, Vista, CA) for over 48 hours at 37°C.  Following two 

additional washes in 2x SSC, the slides were mounted in an anti-fade solution (Vectashield; 

Vector Laboratories, Burlingame, CA) with 4,6-diamidino-2-phenylindole (DAPI).  Image 

acquisition was performed using an SD200 Spectracube (Applied Spectral Imaging, Carlsbad, 

CA) mounted on a Leica DMRXA microscope (Leica, Wetzlar, Germany).  Applied Spectral 

Imaging software (Spectral Imaging and SkyView) was used for image acquisition and analysis 

of cell populations at each key transitional stage.  Typically, multi-color SKY karyotype 

descriptions are based on only five to ten mitotic figures with the emphasis on tracing clonality of 

the cell line [79].  The current data set was generated by capture of 50 mitotic figures with clearly 

defined boundaries and minimal chromosome overlap [89] for each population of interest.  

Chromosomes were organized into a karyotype table according to their color and size using SKY 

viewer software [90].  Results were verified by a second investigator who was blinded to the 

sample identity and concordance was ~97% for whole and aberrant chromosome identification. 

 Results were tabulated for all whole chromosome copy number change and derivative 

chromosomes.  Chromosomal aberrations were considered clonal if present in >20% of the 

metaphases, (> 30% of metaphases for chromosome loss), according to established 
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International System for Chromosome Nomenclature (ISCN) conventions.  Aberrations found in 

<20% of metaphases were termed, “nonclonal.” 

2.5.2 Quantifying karyotype heterogeneity within a key transformative stage 

 To obtain a quantitative measure for karyotypic diversity of cells at each key transitional 

stage, an adaptation of the Shannon Index was calculated using methods of adapted systematic 

cytogenetic analysis adapted from Castro et. al. [80].  This method has been widely used by 

ecologists to calculate population diversity and has been validated for tumor heterogeneity by 

total chromosome count by Castro et. al. [80].  Population diversity at each key transitional stage 

was quantified by summation of Shannon indices (H′) [91] for each whole (1-19) and aberrant 

(der) chromosome according to the following equations: 

 

 

equation 1 

 

 

 

equation 2  

 

equation 3  

 

 Where ni is the number of cells with chromosome count i (the abundance of chromosome 

count i), S the number if unique chromosome counts in the population, pi the relative abundance 

of each chromosome count (calculated as the proportion of cells with that count).  It can be 

shown that for any population, there is a maximum possible H based on the number of different 

chromosome counts, where Hmax = ln S.  This occurs when all counts for a given chromosome 
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are equally distributed within the population.  The X chromosome was omitted from all Shannon 

Index calculations as Barr body inactivation is likely dysregulated and its impact on X 

chromosome variability is an unknown potentially confounding variable for the current data and 

to future comparisons with male genomes. 

  

2.6 Whole Genome Analysis of mRNA Transcript Abundance 

2.6.1 Sample Collection, Labeling, Hybridization, and Scanning 

 Total RNA was isolated from biological triplicates of cells grown to 75% confluency in T-75 

flasks at key transformative stages days 170, 245, 450, and 528.  RNA extraction was performed 

from with Trizol reagent (Invitrogen, Carlsbad, CA) followed by clean-up using an RNeasy mini 

kit (Qiagen, Valencia, CA) in accordance with the manufacturers’ instructions.  First strand cDNA 

synthesis, second strand synthesis, clean-up, and in vitro amplification of biotin-labeled cRNA 

fragments were performed using an original starting amount of 1µg RNA for each biological 

replicate. The hybridization cocktail containing 10μg fragmented RNA and probe array controls 

was bound to Illumina MouseRef-8 v2.0 expression bead chips.  By design, one array on each 

chip served as a technical replicate to account for between-chip variation and was determined to 

have a correlation coefficient of >0.996.  Beadchips were scanned on the Illumina BeadArray 

Reader confocal scanner for 90 min and initial quality assessments were performed according to 

the manufacturer’s instructions.  Procedures were carried out by personnel in the Applied 

Genomics Technology Center (AGTC, Wayne State University). 

 

2.6.2 Preprocessing and Normalization 

 High density microarray image files were interpreted and quality was assessed of both the 

internal controls and the between-chip technical replicate.  Microarray data pre-processing 

including background subtraction, cubic-splines based normalization, and quantification of 

differential expression compared to negative controls were performed using Illumina Genome 
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Studio Software.  Probesets were excluded from the outputs of time course and differential 

expression analyses if they failed to meet the following criteria for at least one of the arrays: 

significant differential expression above background p >0.1, and signal intensity greater than 3x 

background (signal intensity >420). 

 

2.6.3 Time Course Analysis of Differential Gene Expression 

 To identify differentially expressed genes throughout spontaneous transformation, time-

course microarray data analysis was performed using Extraction of Differential Gene Expression 

(EDGE) software [92].  EDGE utilizes a series of cubic splines to model within class temporal 

gene expression.  A statistic is calculated for each gene that quantifies the goodness of fit 

between the null hypothesis (Ho is defined as constant expression over time, where the sum of 

squares is minimized among all possible flat lines) and the alternative hypothesis (a curve that 

minimizes the sum of squares among a general class of cubic-spline curves).  A significance cut-

off was applied to the statistics by using a false discovery rate criterion where the null distribution 

of the statistic is based on genes with no differential expression.   These analyses were 

implemented using the Optimal Discovery Procedure for simultaneous significance testing of 

differential expression [93] using C++ extensions with the open source R version 2.7.1 Statistical 

Environment (www.r-project.org) [94].  Differential gene expression was considered significant 

where q < 0.01. 

 

2.6.4 Profile Fitting for Differentially Expressed Genes 

 Time-course based profile analysis of the differentially expressed genes was performed 

using Short Time Expression Miner (STEM) [95].  Genes were assigned to model temporal 

expression profiles based on maximization of the correlation coefficient between the model 

profile and the actual gene expression.  The number of genes expected to be assigned to a 

profile was estimated by random permutation of the original time point values and assignment of 
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genes most closely matching model profiles.  The process was repeated for a large number of 

permutations.  The statistical significance of the number of assigned versus expected genes for 

each profile was computed, and model profiles were grouped to form clusters of profiles.  

Profiles were assigned based on unfiltered relative expression levels from the previously 

generated list of differentially expressed genes using EDGE.  Settings were kept at the original 

defaults with the exception that maximums were set to 5 unit change between time points, 50 

theoretical profiles, and correlation of 0.9 among profiles and among clusters.  Genes were 

included in a given profile at a significance level of p <0.05. The Benjamini and Hochberg 

method [96] was used for multiple testing correction of the false discovery rate.  The biological, 

molecular, and cellular functions for each cluster of genes were interpreted using Gene 

Ontologies [97] as indicated below.   

 

2.6.5 Biological Significance of Microarray Data 

 The biological significance of sets of genes assigned to lists or expression profiles of interest 

was assessed using Gene Ontologies (GO) enrichment analysis.  Differentially expressed genes 

were classified by their enrichment for corresponding GO categories, and the observed number 

of genes in each of these GO categories was recorded. Genes represented on the Illumina 

MouseRef-8 v2.0 expression bead chip served as the reference gene list. The expected number 

of genes in each GO category corresponds to the number of genes falling into that GO category 

in the reference gene list.  A given GO category was considered enriched when the observed 

number of genes in that category was significantly greater than the expected number.  A 

Bonferroni corrected p-value, p <0.05 was used for lists generated by SAM analyses.  For STEM 

data, annotations for biological processes, molecular function and cellular componentry were 

determined at a depth of three annotation levels for Gene Ontologies, requiring a minimum of 

five genes per annotation and annotation significance was determined where p <0.05 after 

correction for multiple hypothesis testing by randomization. 
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2.7 Validation of Spectral Karyotype Data by Array Comparative Genomic Hybridization (aCGH) 

2.7.1 DNA Isolation, Labeling, and Hybridization 

 DNA copy number analyses for interphase and mitotic-enriched MOSEC at key transitional 

stages (days 245, 450 and 528) were measured on Agilent Mouse 4 x 44K arrays.  Interphase 

cells were cultured using standard MOSEC conditions, mitotic enriched cells were harvested 

after 8 hours treatment with Colcemid and were shaken off.  Genomic DNA (gDNA) was isolated 

using the DNeasy Tissue kit (Qiagen, Inc., Valencia, CA) following the supplier’s protocol. DNA 

quantity and quality were assessed by UV/Vis spectrophotometry using the ND-1000 

Spectrophotometer (NanoDrop Technologies, Rockland, DE).  CGH labeling was performed in 

accordance with the chip manufacturer’s instructions (Protocol v3.1, 2009, Agilent Technologies, 

Santa Clara, CA).  Briefly, gDNA (3 μg/ sample) from the reference (Promega Mouse Genomic 

(XY/XX pooled) DNA, Madison, WI) and from day 245, 450 and 528 cells were heat fragmented 

and denatured at 95° C for 10 minutes.  The DNAs were labeled with ULS- Cy3 (reference) or 

ULS- Cy5 (test) using the Agilent Genomic DNA Labeling Kit Plus (Agilent Technologies).  

Labeled DNA products were purified with Microcon YM-30 filtration devices (Millipore, Inc., 

Bedford, MA).  For hybridization, the appropriate Cy3 and Cy5-labeled DNA sample pairs were 

combined and then mixed with mouse Cot-1 DNA (Invitrogen Carlsbad, CA), Agilent Blocking 

Agent, and Agilent Hybridization Buffer.  Prior to hybridization, the samples were heated at 95°C 

for 3 minutes and then incubated for 30 minutes at 37°C.  The labeled target solution was then 

hybridized to the arrays using Agilent SureHyb chambers.  The hybridization chambers were 

placed in a 65°C rotisserie oven set at 15 rotations per minute for 40 hours.  Post-hybridization, 

the microarrays were washed and dried according to the manufacturer’s protocol and were 

scanned immediately using an Agilent microarray scanner.   

2.7.2 Normalization and Pre-processing 
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 Microarray data for the individual features including log2 ratios and quality metrics (median 

signal intensity, background noise, signal-to-noise ratio, reproducibility of replicate probes, and 

probe-to-probe log ratio noise were extracted from the scan image using Agilent Feature 

Extraction software (v 9.1.3.2). 

 As cancer genomes are universally known for aneuploidy and variable chromosome copy 

number imbalances, the prerequisites for conventional normalization methods (that nearly all of 

the DNA copy numbers are homogeneous and nearly equal to the diploid genome) were not 

met.  As chromosome copy number correlated with intensity, a novel strategy for array-CGH 

data was implemented.  Data normalization using a custom adaptation of PopLowess [98] with 

the open source R Statistical Environment (www.r-project.org) was performed using libraries 

from the Bioconductor Project (www.bioconductor.org).  This normalization method accounts for 

the presence of variable whole chromosome copy number change prior to segmentation and 

calling of small amplified or deleted regions.  A maximum of five subpopulations with a merge 

cluster criteria for the subpopulations of 0.3 was utilized. The k-means clustering algorithm was 

adapted to incorporate the weighted means for each cluster.  Following zero-centering to the 

largest subpopulation, the median value for the cluster with the lowest chromosome copy 

number was added as a constant to the M value for each probe.  With this correction, data were 

centered with the assumption that the cluster with the lowest median M was assumed to have a 

chromosome copy number count of two. 

2.7.3 Analysis of DNA Copy Number Change 

 Whole chromosome copy number change for validation of SKY analyses and detection of 

genomic gains and losses was determined using PopLowess to rank chromosomes by cluster 

median for comparison with median chromosome counts from SKY analyses.  Copy number for 

sub-chromosomal regions was assessed after normalization using PopLowess and was 

determined using Agilent’s CGH Analytics v3.5 software with statistical algorithm ADM-1, 

sensitivity threshold 6.0, and a moving average window of 1 Mb.  Copy number change for 
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chromosomal sub-regions was called by locus if a positive call was made by ADM-1 testing and 

≥10 consecutive probes were seen with ≥1.5-fold change. 

 

2.8 In vivo Tumorigenesis 

2.8.1 Determination of Tumorigenicity in vivo 

 To determine the relative tumorigenicity of day 245 versus day 528 cells in vivo, six-week-

old female C57BL6 mice were purchased from syngeneic immune competent C57BL6 mice and 

in nod-SCID-gamma (NSG) immune-compromised mice (Charles River Laboratories, 

Wilmington, MA) and  from JAX® Mice strain NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (Jackson 

Laboratories Bar Harbor, ME). 

 Following five days of acclimatization, each mouse received a total of three injections.  

Intraperitoneal injections consisted of 5x106 MOSEC in 0.2 ml DMEM with 0.25% Matrigel, and 

bilateral subcutaneous injections of 1x105 in 0.1 ml DMEM with 25% matrigel were administered 

bilaterally on the back.  Cell types were divided as follows so that each mouse received only one 

cell type (n=7 day 245, n=7 day 528, n=2 positive control (ID8) cells from one of 10 previously 

established tumorigenic MOSEC late stage clones from the discoverer of this model system [54], 

n=2 negative control acellular Matrigel mixed 1:1 with DMEM).  Mice were weighed and tumor 

size was approximated by diameter using calipers once per week.  Mice were sacrificed at day 

70 when tumor locations, weights, and sizes were documented.  All animal investigations were 

conducted in accordance within the guidelines and with approval from the Wayne State 

University Institutional Animal Care and Use Committee. 

2.8.2 Tumor Histopathology 

 The location and amount of intraperitoneal tumor formation was scored where 1 point 

was given for positivity in each of the following:  pancreas, liver, peritoneal fat, reproductive 

organs, lymph node, spleen, small intestine, large intestine, diaphragm, hemorrhagic ascites 

(max=10).  Subcutaneous findings were scored based on invasiveness and severity where 1 
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point was given for positivity: dermis, subcutaneous fat, muscle, diffuse, necrotic (max= 5 each 

side, 10 total).  Tumor implants and the surrounding tissues were collected from multiple sites, 

fixed overnight in 4% paraformaldehyde and embedded in paraffin for routine hematoxylin and 

eosin staining (Beaumont Hospital Tissue Biobank, Royal Oak, MI).  After de-identifying the 

tumor and tissue specimens, each was evaluated by a clinical pathologist (RR). 

 

2.9 Statistical Analyses  

 Counts of morphological features in the ovarian surface epithelial are expressed as the 

mean ± SEM (standard error of the mean) of the number of morphological features per section in 

five non-consecutive ovarian sections for n ovaries, where n is the number of ovaries examined. 

In vitro cell counts are expressed as the mean ± SEM of three independent experiments 

performed in triplicate. The predictive value of chromosome ID, time and Shannon Index was 

determined using general linear mixed model.  For each sub-population, chromosome count was 

compared using a paired t-test.  The probability of significant differences upon comparison of 

only two groups was determined by Student's t test. When multiple groups were analyzed, 

statistical comparisons were made by analysis of variance (ANOVA). Bonferroni's post hoc 

correction for multiple comparisons was applied in the determination of significant differences 

between specific groups when whole group differences were detected by ANOVA.  Alpha was 

set at a value of 0.05 and all p-values are two-sided. The proportion of variance in SA-βgal 

accounted for by time was estimated by calculation of R-squared.  The link between senescence 

by SA-βgal and nuclear abnormality was tested using the chi-squared statistic.  Statistical 

analyses were performed using NCSS (Kaysville, Utah).
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3. RESULTS 

3.1 Timeline and Experimental Overview 

3.1.1 Whole Genome Analysis of Key Stages of Transformation and Tumorigenesis 

 Mouse ovarian surface epithelial cells (MOSEC) were seeded from a single ovary from a 

healthy 6-week old C57BL6 mouse and were repeatedly passaged until reaching a tumorigenic 

phenotype similar to positive control cells (ID8) in vitro.  Tumorigenicity testing of day 245 versus 

day 528 MOSEC in vivo was performed by allograft injection of select transformative stages and 

tracking of tumor formation for 70 days in vivo.  Tumorigenicity in vivo correlated well with 

phenotype analyses in vitro and confirmed the ability for this cell type to transform 

spontaneously and without out viral transfection or carcinogenic insult [54-55].  Using this model, 

data was acquired longitudinally from five key transformative stages, beginning with primary 

cells in culture until malignant characteristics were eventually acquired at day 528.  Cell culture 

was continued until the characteristics of the malignant phenotype were acquired and the 

MOSEC performed similarly to positive control ID8 MOSEC in several types of in vitro and in 

vivo measures of proliferation, invasion, migration, and tumorigenicity (Figure1, Table1).  Real-

time analyses of MOSEC were performed for all assays except for measuring tumorigenesis in 

vivo in which cells were retrieved from prepared frozen stocks.  This experimental design is 

unique as it successfully facilitated the longitudinal study of ovarian cancer transformation real-

time and allowed for the comparison of cellular phenotype with global genomic profiles at 

multiple levels including cytogenetic abnormalities, population karyotype analysis, mRNA 

transcript abundance, and array comparative genomic hybridization (Figure 1).   
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3.1.2 Establishment and Selection of Primary Ovarian Surface Epithelial Cells 

 Primary cells were difficult to establish in culture and the survival rate was approximately 

5%.  The high prevalence of cellular senescence and the low frequency of mitotic events in 

these cells likely accounts for their low viability and the difficulty incurred in establishing these 

lines in culture from small numbers of seeded cells.  Five lines were established past day 30, 

two of these lost viability before day 100 (“non-viable A”, “non-viable B”) and three of these 

progressed to transformation (“Longitudinal”, “Replicate 1”, “Replicate 2”).  Whole-genome data 

was acquired from the “Longitudinal” line including repeated measures of spectral karyotype 

data, microarray analyses, and tumorigenicity testing and is presented from here forward as 

MOSEC. Importantly, “Replicate” lines displayed similarly elevated chromosome counts, cellular 

variability and altered 

cellular morphology 

throughout transformation.  

The frequency of 

aneuploid cells was not 

different among lines from 

the viable and non-viable 

groups, but each was 

different from a the normal 

diploid karyotype at first 

measure (day 76,82, and 

170) where chi-squared 

<0.01 for each of three 

lines sampled before day 

200, (Figure 2). 
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3.2 Senescence and Nuclear Abnormalities of Early Stage Interphase Cells 

 The earliest observations of the MOSEC in vitro revealed a heterogeneous pattern of 

cellular morphologies.  At day 40, large, ballooned cells with diverse morphotypes and low cell 

densities typical of senescent cell populations occupied the majority of the surface of the culture 

dish.  Within this population lay pockets of mixed cuboidal and refractile cells.  These pockets 

are more typical of the phenotype of MOSEC at later transformative stages (Figure 3A).  Further 

evidence for the senescence phenotype of these large ballooned cells was generated by the bi-

weekly assaying for senescence-associated β-galactosidase (SA β-gal) activity from day 28 to 

day 170.  The percentage of SA β-gal positive cells averaged 94 ± 3%) at day 28 and fell 

logarithmically with routine passaging over time to reach <5% from day 100 onwards, R2 = 0.83 

(Figure 3B, C).  Nuclear abnormalities including blebs, micronuclei, and lagging chromosomes 

were noted with increased frequency at day 28, 40, and 70 in SA β-gal positive versus negative 

cells (chi-square analysis: p=0.04, 0.02, and 0.02 respectively, Figure 3D, 3E).  From day 28-

70, the frequency of abnormal nuclear morphology was unchanged in normal and SA β-gal 

positive cell populations, despite the largest decline in the prevalence of SA β-gal positive cells. 
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3.3 Early Stage Abnormalities of Cell Division 

 The early stage (day<40) MOSEC were slow-growing and cytogenetic preparation for 

spectral karyotype analysis revealed the presence of several types of nuclear and cytogenetic 

abnormalities.  Typical examples from classes of nuclear and cytogenetic abnormality are 

depicted from colcemid treated SKY painted cells that provide evidence for early genomic 

instability and cell cycle checkpoint insufficiency (Figure 4).  When late-stage metaphase cells 

enter mitosis in the presence of colcemid, unpairing of centromeres can occur without spindle 

formation and is termed late c-metaphase [99].  During cellular division when the centromeres 

are visible, discondensed chromosomes are seen that comprise individual circular blebs with 

the aforementioned split centromere morphology (Figure 4A, B).  SKY analyses of these cells 

clearly shows that many of the individual blebs contain DNA from a single chromosome with 

separated centromeres, whereas other images show coalescence of further discondensed 

chromosomes with unclear centromere morphology (Figure 4C).  Images of nuclear 

outpouchings and macro-nuclear formations were additionally captured where DNA from at 

least three different chromosomes is seen to be contained within the rounded outpouchings 

protruding from the normal nuclear domain (~4% of interphase cells, Figure 4C).  Metaphase 

cells with well condensed chromosomes and clearly defined single centromeres also show 

chromosomal abnormalities including multiple breaks, fusions, and other structural 

abnormalities (Figure 4D-F).  In total, early signs of genomic instability and cell cycle checkpoint 

insufficiency including defects in chromosome condensation, segregation, and nuclear 

morphologic abnormalities such as those depicted occurred in day <40 cells at a frequency of 

19 ± 6%. 
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3.4 Morphologic and Phenotypic Features Defining the Key Transformative Stages in vitro 

 Several distinct phenotypic changes characterizing the MOSEC key transformative stages 

were captured in two-dimensional, three-dimensional, and organotypic culture scenarios (Table 

1, Figure 5).  Day 170 MOSEC divide more slowly than all subsequent stages, maintain a large 

surface area, low cell density, and slightly elongated morphology compared to day 245 cells.  

The day 245 cells are characterized by increased cell density compared to day 170 and have 

acquired the typical cobble-stone appearance of epithelial cells grown in vitro.  Day 450 and day 

528 MOSEC continue to increase cell density until transitioning to a phenotype of tightly packed 

cells with regions of overlap (Figure 5A).  Three-dimensional cell growth in matrigel shows 

parallel morphologic changes and a phenotype of increasing branching that was significantly 

greater at each transformative stage (170;2%-528;96%, p=0.01).  Day 170 cells have limited 

branching and invasion capabilities as seen by their growth limitation to one plane on the 

substrate surface.  In comparison, the day 245 and later stage cells show a progressive 

increase in proliferation, branching, and invasion into the deeper layers of the three-dimensional 

substrate.  Day 528 cells show increased frequency of branching and superior ability to grow 

within the three-dimensional medium (93 ± 6% branching cells, Figure 5B, Table 1).  

Organotypic collagen raft assays demonstrate the contact inhibited monolayer growth on the raft 

surface without invasion at day 170.  The acquisition of invasive capabilities began with day 245 

cells, which demonstrated focal invasion of cells viable cells with atypical and heterogeneous 

nuclei (height 1, depth 1, pattern focal).  Day 450 cells showed a diffuse pattern invasion to a 

depth of ~6 cells in most areas and increased cell density at the raft surface (Figure 5C).  Day 

528 cells additionally acquired the capacity for multilayered upward growth and stratification of 

cell layers, typically resulting in a cell height of ~6 cells or more above the raft surface.  Invasion 

morphology was changed in the day 450 cells to now include both focal and diffuse patterns 

with atypical nuclear morphologies (Figure 5C).  Cell phenotype alterations were compared with 

previous reports and, based on the total information gleaned from the in vitro studies, were 
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considered weakly positive for the transformed phenotype at day 245.  MOSEC were 

considered certainly positive for the transformed phenotype at day 528, having acquired all 

characteristics previously linked to strong tumorigenicity in vivo. 

Table 1. Characteristics of mouse ovarian surface epithelial cell key transformative stages 

170 245 450 528 ID8 

PROLIFERATION 

doubling time 1 (hours)  36 ± 6 24 ± 4* 17 ± 2* 11 ± 1* 13 ± 2 

colony forming units in agar 2 (%)  0.44 ± 0.21 2.6 ± 1.1* 8.5 ± 1.7* 16.8 ± 2.9* 14 ±3.5 

INVASION  

‡ raft culture 3 (height/ depth/ 
pattern)  

1/ 0/ 0 1/4 /  F 1/ 6/ D 6/ 6/ FD 6/ 6.5/ D 

branching cells 4 (%)  2 ± 1 43 ± 4* 63 ± 7* 93 ±  6* 96 ± 8 

MIGRATION  

trans-well filter inserts 5  2.1 ± 1.2 6.6 ± 2.8* 42 ± 17* 54 ± 9* 89 ± 16* 

TUMORIGENICITY  
subcutaneous tumors 6 (% positive)  N 25% N 50% 100% 

subcutaneous tumors (mm)  N 1 N 10 10 

subcutaneous tumors 7 (score/10)  N 1/10 N 6/10 7/10 

intraperitoneal tumors (% positive)  N - N 50% 100% 

intraperitoneal tumor 8 (score/10)  N - N 4/10 2/10 

1) Doubling time =(T)ln2/ln(Xe/Xb), where Xn is the cell number determined at the beginning (Xb) and 

end (Xe) time poinst, and T is the total elapsed time (hours), seeding of 1 x104 and 5 x104 cells were 

harvested at 70% confluency.  2) Colony forming units in soft agar = mean colony count / number of 

cells seeded x 100%.  3) Organotypic collagen raft culture: height= number of cells above, depth= 

number of cells below the collagen. Pattern: D=diffuse, F=focal, 0=none.  4) Three-dimensional 

Matrigel branching = branched cells/ total cells.  5) Tran swell filter insert migration =(cells crossing 

matrigel / total cells) / (cells crossing open pores / total cells)  6) Tumor positive/ injected sites in 

eighteen syngeneic C57BL6 mice (245:n=7, 528:n=7, ID8: n=2, vehicle:  n=2).  Each mouse at each of 

3 sites (left and right subcutaneous flank (1E5) and intraperitoneal 1E6) at day 70.  7) Average bilateral 

subcutaneous tumor invasion (dermis, muscle, subcutaneous fat, diffuse: 1point each/ 10 total).  8) 

Intraperitoneal tumorigenicity organ involvement and pattern (pancreas, liver, peritoneum, reproductive 

organs, lymph node, spleen, intestine, lung, heart, infiltrative, 1 point each/ 10 total).  
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3.5 Population Based Karyotype Analysis of Key Transformative Stages 

3.5.1 Summary Characteristics of Cell Populations by Transformative Stage  

 Spectral karyotype analysis of MOSEC key transformative stages was meticulously 

performed on 30-50 metaphase cells, resulting in ~1000 data points per transformative stage.  

These raw karyotype data are presented for comparative evaluation among MOSEC key 

transformative stages, tumor cells, and Brca1Δ5–13 MOSEC to characterize the variability, as well 

as more standard cytogenetic reports including cell ploidy and the incidence of clonal and non-

clonal chromosome aberrations (Table 2).  Histogram reporting of raw data shows the 

expansion of variability acquired by the MOSEC from day 170-528 (Table 2).  The first clonal 

chromosome aberration (CCA, ≥20% of cells) was seen at day 245 and these small pieces of 

chromosome 11 were without centromere (min 11) and persisted until day 528.  Additional 

clonal chromosome aberrations arose at day 450 t4;3 and t6;15 (~30% of cells) and several 

(t4;3 t4;5 t5;4, min19) that were common to tumor 1 and 2.  Interestingly neither t4;3 nor t5;16 

were present at day 528.  Non-clonal chromosome aberrations (<20% of cells) were present at 

each transformative stage and consisted predominantly of chromosomes linked by centromere 

at day 170, but expanded to include all types of aberrations from day 245 onwards.   

 

3.5.2 Spectral Karyotype Analysis for Population Based Karyotype Heterogeneity 

Karyotype heterogeneity at each transformative stage was measured using an 

adaptation of concepts published by Castro et. al. [80] for measuring tumor diversity among 

patient samples and applies the Shannon Index to chromosome count data.  The method allows 

diversity to be quantified for normal or abnormally distributed data at each whole or aberrant 

chromosome and can be summed to generate an index for the entire karyotype (methods).  This 

measure was applied to karyotypes of varying heterogeneity and served as a surrogate 

measure of genomic instability for each MOSEC transitional stage.  The Shannon Index of 

diversity was calculated for each chromosome and is reported as the sum for whole  
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Table 2. Karyotype and variability of key transformative stages, Brca1 ∆5-13, and for harvested tumors 

CHROM 
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X CCA NCCA 

DAY 
170 

1(1) 
2(27) 
4(3) 

2(28) 
3(2) 
4(1) 

2(29) 
3(1) 
4(1) 

1(2) 
2(27) 
4(2) 

2(29) 
3(1) 
4(1) 

2(28) 
4(3) 

1(1) 
2(28) 
4(2) 

0(1) 
2(27) 
3(1) 
4(2) 

1(1) 
2(29) 
4(1) 

1(2) 
2(26) 
3(1) 
4(2) 

0(1) 
2(27) 
3(1) 
4(2) 

2(28) 
4(3) 

1(1) 
2(26) 
3(2) 
4(2) 

2(27) 
3(2) 
4(2) 

1(1) 
2(26) 
3(2) 
4(2) 

1(2) 
2(26) 
3(1) 
4(2) 

1(3) 
2(25) 
4(3) 

1(1) 
2(27) 
4(3) 

1(2) 
2(25) 
3(2) 
4(2) 

2(28) 
3(2) 
4(1) 

- 
t2, t13, t19, t7, t12;16, t12;19, t10;14, t10, 
t3=3, t5=5, t8=8, t9=9, t11=11, t13=13, , 

t14=14, tX=X, t1=1, t2=2, 
min(4, 8, 10, 15, 17, 19) 

∑H’= 12= 0.5 0.4 0.3 0.5 0.4 0.6 0.5 0.6 0.4 0.7 0.5 0.5 0.6 0.4 0.5 0.5 0.5 0.5 0.7 0.5 + 4 H’der 

DAY 
245 

0(1) 
1(3) 

2(11) 
3(22) 
4(3) 
6(1) 

1(1) 
2(8) 

3(12) 
4(13) 
5(3) 
6(2) 
7(1) 
8(1) 

1(3) 
2(7) 
3(9) 

4(18) 
5(2) 
6(2) 

1(1) 
2(9) 

3(20) 
4(5) 
5(3) 
6(3) 

2(8) 
3(10) 
4(12) 
5(6) 
6(5) 

1(2) 
2(9) 

3(15) 
4(9) 
5(3) 
6(2) 
7(1) 

1(1) 
2(10) 
3(18) 
4(7) 
5(4) 
7(1) 

3(7) 
4(20) 
5(10) 
6(1) 
7(1) 

11(1) 
16(1) 

1(2) 
2(6) 

3(19) 
4(10) 
5(3) 
6(1) 

1(1) 
2(12) 
3(11) 
4(10) 
5(6) 
6(1) 

1(2) 
2(3) 

3(15) 
4(10) 
5(9) 
6(2) 

1(5) 
2(27) 
3(4) 
4(4) 
6(1) 

1(3) 
2(7) 

3(21) 
4(8) 
5(1) 
6(1) 

0(1) 
1(2) 

2(11) 
3(13) 
4(9) 
5(1) 
6(3) 
7(1) 

1(1) 
2(7) 

3(11) 
4(9) 

5(12) 
6(1) 

1(1) 
2(7) 

3(17) 
4(8) 
5(6) 
6(1) 
7(1) 

1(1) 
2(3) 
3(4) 

4(20) 
5(10) 
6(1) 
7(1) 
9(1) 

1(2) 
2(11) 
3(20) 
4(7) 
6(1) 

1(2) 
2(10) 
3(18) 
4(8) 
5(2) 
6(1) 

0(2) 
2(3) 
3(8) 

4(11) 
5(10) 
6(4) 
7(3) 

min 11 

der10*, der11*, der16*, der5*, der10*, 
der12*, der5*, t12;19, t13;19, t14;17, 

t16;3, t17;15, 
t19;18, t7;14, t8;20, t9;12, t9;15, t3=3, 

t4=16, 4, 4*, 
min(5, 7, 10, 12, 15, 16, 18, 19) 

∑H’= 23= 1.3 1.7 1.5 1.4 1.6 1.6 1.4 1.4 1.4 1.5 1.5 1.1 1.3 1.7 1.5 1.5 1.5 1.2 1.4 1.8 + 7 H’der 

DAY 
450 

1(1) 
2(7) 

3(38) 
4(3) 
5(1) 

1(1) 
2(9) 

3(13) 
4(18) 
5(9) 

1(2) 
2(2) 

3(13) 
4(27) 
5(6) 

2(12) 
3(22) 
4(15) 
7(1) 

2(3) 
3(9) 

4(22) 
5(16) 

2(3) 
3(10) 
4(25) 
5(9) 
6(3) 

1(2) 
2(9) 

3(23) 
4(13) 
5(3) 

2(1) 
3(8) 

4(30) 
5(9) 
6(2) 

2(13) 
3(19) 
4(13) 
5(5) 

2(10) 
3(21) 
4(15) 
5(4) 

1(1) 
2(3) 

3(17) 
4(17) 
5(11) 
6(1) 

0(2) 
1(3) 
2(39) 
3(6) 

1(2) 
2(15) 
3(30) 
4(2) 
7(1) 

1(1) 
2(17) 
3(21) 
4(9) 
5(1) 
6(1) 

1(1) 
2(2) 
3(8) 

4(27) 
5(10) 
6(2) 

2(12) 
3(24) 
4(11) 
5(3) 

2(3) 
3(20) 
4(20) 
5(6) 
6(1) 

1(4) 
2(12) 
3(30) 
4(4) 

1(1) 
2(5) 

3(16) 
4(26) 
5(2) 

1(1) 
2(1) 
3(4) 

4(11) 
5(12) 
6(15) 
7(3) 
8(3) 

der4;3, 
der6;15, 
min11 

t12, t12;17, t13=13, t16;10, t17;19, 
t17=17, t7=12, t8;11, t8;14, t8;19, t9, 

t7=12, 
min(2, 1, 7, 10, 12, 13, 14, 15, 16, 17, 19, 

X) 

∑H’= 22= 0.8 1.4 1.2 1.2 1.2 1.3 1.3 1.1 1.3 1.2 1.4 0.7 1.0 1.3 1.3 1.2 1.2 1.1 1.1 1.7 + 6 H’der 

DAY 
528 

1(2) 
2(28) 
3(18) 
4(1) 
6(1) 

0(1) 
2(9) 

3(13) 
4(17) 
5(8) 
7(1) 
8(1) 

1(2) 
2(5) 

3(16) 
4(12) 
5(12) 
6(2) 

10(1) 

1(3) 
2(16) 
3(18) 
4(10) 
5(2) 
6(1) 

1(1) 
2(7) 

3(10) 
4(26) 
5(3) 
6(2) 
7(1) 

1(1) 
2(8) 

3(17) 
4(20) 
5(3) 
7(1) 

1(4) 
2(17) 
3(13) 
4(15) 
9(1) 

2(6) 
3(2) 

4(20) 
5(14) 
6(5) 
7(1) 
8(1) 

14(1) 

1(1) 
2(15) 
3(17) 
4(14) 
5(2) 
7(1) 

0(1) 
1(1) 

2(12) 
3(14) 
4(10) 
5(9) 
6(2) 
8(1) 

0(1) 
1(3) 
2(8) 

3(11) 
4(19) 
5(6) 
6(1) 

11(1) 

0(1) 
1(8) 
2(31) 
3(7) 
4(2) 
5(1) 

1(4) 
2(17) 
3(23) 
4(3) 
5(2) 
6(1) 

1(3) 
2(15) 
3(23) 
4(8) 
8(1) 

1(1) 
2(10) 
3(10) 
4(20) 
5(7) 
6(1) 
8(1) 

0(1) 
1(1) 

2(16) 
3(22) 
4(6) 
5(3) 
6(1) 

1(3) 
2(5) 

3(13) 
4(24) 
5(4) 
8(1) 

1(5) 
2(18) 
3(18) 
4(7) 
5(1) 
6(1) 

1(3) 
2(5) 

3(18) 
4(13) 
5(8) 
6(3) 

1(1) 
2(5) 
3(7) 

4(13) 
5(11) 
6(10) 
7(2) 
8(1) 

min11 

t14;8, der15, t4;3, t7;15, derX, t15, der5, 
t15;14, t18*, t18^, t2;1, t2;14, t2;19, t2;5, 

der4, 
t4=12, 

min( 3, 4, 12, 17, 18) 

∑H’= 19= 1.0 1.6 1.6 1.4 1.4 1.4 1.4 1.6 1.4 1.7 1.7 1.2 1.3 1.3 1.5 1.4 1.4 1.4 1.6 1.8 + 5 H’der 

Brca1 
Δ4-13 

1(3) 
2(4) 

3(37) 
4(1) 
6(3) 

2(2) 
3(3) 

4(16) 
5(18) 
6(5) 
7(2) 

10(1) 
12(1) 

2(4) 
3(5) 

4(17) 
5(12) 
6(5) 
7(2) 
9(2) 

13(1) 

1(1) 
2(5) 

3(34) 
4(5) 
6(2) 
7(1) 

2(1) 
3(8) 

4(19) 
5(14) 
6(2) 
7(3) 

14(1) 

2(1) 
3(7) 

4(17) 
5(15) 
6(3) 
7(2) 
8(1) 
9(1) 

11(1) 

1(3) 
2(7) 

3(32) 
4(4) 
6(1) 
7(1) 

2(2) 
3(3) 

4(33) 
5(5) 
6(2) 
7(2) 
9(1) 

2(5) 
3(21) 
4(17) 
5(2) 
7(2) 

10(1) 

3(2) 
4(19) 
5(17) 
6(5) 
7(4) 
8(1) 

3(1) 
4(5) 

5(16) 
6(15) 
7(5) 
8(4) 

10(1) 
13(1) 

1(1) 
2(4) 
3(23) 
4(15) 
5(2) 
6(2) 
8(1) 

2(1) 
3(7) 
4(9) 

5(21) 
6(6) 
7(1) 

10(2) 
11(1) 

2(6) 
3(14) 
4(19) 
5(5) 
6(1) 
7(1) 
8(2) 

0(1) 
2(1) 
3(2) 
4(7) 

5(17) 
6(11) 
7(6) 
9(1) 

12(1) 
14(1) 

3(8) 
4(26) 
5(6) 
6(3) 
7(1) 
8(1) 

10(2) 
12(1) 

2(1) 
3(6) 

4(21) 
5(15) 
6(2) 
8(2) 
9(1) 

2(3) 
3(13) 
4(21) 
5(8) 
7(2) 

11(1) 

1(1) 
2(1) 
3(1) 
4(4) 

5(22) 
6(13) 
7(2) 
8(2) 

11(1) 
12(1) 

1(1) 
2(12) 
3(12) 
4(12) 
5(5) 
6(4) 
9(1) 

10(1) 

- 

der10, der11, der14, der16, der1, der5, 
der7, der4*, derX*, der12*,der13, der^7, 
t7;10, t4=4, t19=19t12;9, t13;15, t15;10, 

t18;8, t3;4, t3;4, t4=4;X, 
min(4, 7, 10) 

∑H’= 15= 0.8 1.2 1.4 0.4 1.2 1.3 0.9 1.3 1.1 1.4 1.4 1.0 1.1 1.5 1.3 1.6 0.9 1.6 1.2 1.5 + 3 H’der 

TUMOR 
1 

0(1) 
1(1) 

2(28) 
3(15) 
4(2) 
5(3) 

2(6) 
3(16) 
4(16) 
5(1) 
6(7) 
8(3) 

10(1) 

0(1) 
1(1) 

2(14) 
3(18) 
4(7) 
5(4) 
6(2) 
7(2) 
8(1) 

2(18) 
3(21) 
4(6) 
5(3) 
6(2) 

1(3) 
2(8) 

3(17) 
4(15) 
5(4) 
6(1) 
7(2) 

2(7) 
3(17) 
4(18) 
5(6) 
7(1) 
8(1) 

2(14) 
3(20) 
4(8) 
5(4) 
6(3) 
7(1) 

2(1) 
3(2) 

4(22) 
5(11) 
6(3) 
7(1) 
8(5) 
9(2) 

10(1) 
11(1) 
13(1) 

1(4) 
2(20) 
3(18) 
4(3) 
5(2) 
6(3) 

0(1) 
1(1) 
2(7) 

3(18) 
4(12) 
5(5) 
6(3) 
7(1) 

10(1) 
14(1) 

1(1) 
2(9) 

3(15) 
4(10) 
5(7) 
6(2) 
7(4) 
8(2) 

1(4) 
2(25) 
3(7) 
4(9) 
5(2) 
6(1) 
8(2) 

2(23) 
3(11) 
4(9) 
5(1) 
6(3) 
8(1) 

10(1) 
14(1) 

1(6) 
2(18) 
3(11) 
4(13) 
5(1) 
6(1) 

1(2) 
2(4) 

3(18) 
4(18) 
5(3) 
6(2) 
7(2) 

10(1) 

2(3) 
3(19) 
4(16) 
5(5) 
6(3) 
7(2) 
8(1) 
9(1) 

3(12) 
4(25) 
5(3) 
6(1) 
7(6) 
8(2) 
9(1) 

1(1) 
2(9) 

3(19) 
4(10) 
5(4) 
6(2) 
7(4) 

11(1) 

1(5) 
2(7) 
3(7) 

4(20) 
5(4) 
6(2) 
7(5) 

2(4) 
3(6) 

4(18) 
5(8) 
6(5) 
7(2) 
8(4) 
9(2) 

10(1) 

t4;5 
t5;4 
t4;3* 

t11;13 
min 19 

t14;8, der15, t7;15, derX, der5, t15;14, 
t18*, t18^, t2;1, t2;14, t2;19, t2;5, der4, 

t4=12, 
min( 3, 4, 12, 17, 18) 

∑H’= 23= 1.1 1.6 1.7 1.3 1.6 1.4 1.5 1.7 1.4 1.8 1.8 1.5 1.5 1.5 1.6 1.6 1.4 1.7 1.7 1.9 + 7 H’der 

TUMOR 
2 

1(1) 
2(6) 

3(30) 
4(8) 
5(3) 
6(1) 

10(1) 

2(7) 
3(11) 
4(14) 
5(10) 
6(3) 
7(2) 
8(1) 

10(2) 

1(1) 
2(3) 

3(21) 
4(14) 
5(6) 
6(1) 
7(1) 
8(2) 

10(1) 

0(1) 
1(3) 

2(14) 
3(13) 
4(13) 
5(3) 
6(1) 
7(1) 
8(1) 

2(12) 
3(20) 
4(13) 
5(2) 
6(2) 
7(1) 

2(8) 
3(22) 
4(9) 
5(6) 
7(3) 
8(1) 
9(1) 

0(1) 
1(1) 
2(8) 

3(23) 
4(9) 
5(3) 
6(1) 
7(2) 
8(2) 

1(1) 
2(6) 
3(8) 

4(17) 
5(9) 
6(5) 
8(3) 
9(1) 

0(1) 
1(4) 

2(15) 
3(11) 
4(11) 
5(4) 
6(3) 
7(1) 

1(2) 
2(12) 
3(12) 
4(13) 
5(3) 
6(3) 
7(3) 
9(1) 

12(1) 

0(1) 
1(1) 
2(5) 

3(15) 
4(12) 
5(7) 
6(1) 
7(6) 
9(1) 

10(1) 

0(1) 
1(5) 
2(25) 
3(8) 
4(5) 
5(2) 
6(3) 
8(1) 

0(1) 
1(3) 

2(24) 
3(13) 
4(6) 
5(1) 
6(1) 
8(1) 

1(2) 
2(23) 
3(12) 
4(7) 
5(1) 
6(3) 
7(1) 
8(1) 

2(4) 
3(10) 
4(26) 
5(6) 
8(3) 

11(1) 

1(2) 
2(2) 

3(24) 
4(9) 
5(7) 
6(3) 
8(2) 
9(1) 

0(1) 
1(1) 
2(5) 

3(12) 
4(19) 
5(5) 
6(1) 
7(5) 

10(1) 

1(2) 
2(12) 
3(23) 
4(8) 
5(3) 
8(1) 

12(1) 

0(1) 
1(2) 

2(13) 
3(16) 
4(8) 
5(4) 
6(4) 
8(1) 

12(1) 

1(1) 
2(8) 
3(8) 

4(11) 
5(9) 
6(3) 
7(5) 
8(3) 

10(1) 
12(1) 

t4;3, t5;4, 
t4;5, 

min(10, 
11, 13, 
19, X) 

der10, der11, der14, der16, der1, der5, 
der7, der4*, derX*, der12*,der13, der^7, 

t7;10, 
t4=4, t19=19t12;9, t13;15, t15;10, t18;8, 

t3;4, t4=4;X, min(4, 7) 

∑H’= 29= 1.3 1.8 1.6 1.7 1.4 1.5 1.6 1.8 1.8 1.8 1.9 1.6 1.4 1.5 1.4 1.6 1.7 1.4 1.8 2.0 + 13 H’der 

Chromosome ID by column header, key transformative stage or cell type  by row end (left).  Chromosome count data 

for:  count (frequency), derivative chromosomes: * telomeric aberration, ^ centromeric aberration; translocations (t, 

where “;” for chromosome arm, “=“ centromeric linkage), double minute (min), clonal chromosome aberration 

(CCA≥20% of cells), non-clonal chromosome aberration (NCCA<20% of cells, Normalized Shannon Index of 

Variability (H').  
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chromosomes, sum for aberrant chromosomes, and the total of both indices.  Population 

karyotype characteristics are summarized for chromosome counts, ploidy distribution Shannon 

indices of variability, CCAs and NCCAs in Table 3.  Day 170 cells were the only stage 

characterized by 2n ploidy status.  Ploidy increased to double this (4n) in day 245, 450, and was 

3n in day 528 cells and tumor derived MOSEC.  Brca1Δ5–13 also displayed high ploidy level (4n) 

despite their short time in culture (50 days).  Karyotype abnormalities were detected in early 

stage day 170 cells at a frequency of 48% abnormal karyotypes (Table 3).  The median count 

for each chromosome at day 170 was 1.9 (x̄  = 2.1; range = 2.1-2.2), with 32% of the cells 

containing at least one whole chromosome imbalance. This increased to day 450, and 

decreased slightly at day 528.  In contrast to the early passage MOSEC, whole chromosome 

analyses at subsequent time points revealed aneuploidy in 98-100% of cells.  The Shannon 

index values (H' whole chromosome, ∑H') were elevated in day 245, 450, and 528 cells 

compared to day 170 cells, and followed a similar pattern of elevation until day 450, with a small 

but significant reduction in day 528 cells. 

The Shannon Index for whole chromosome diversity ranged from 10 to 29, climbing to 

reach a maximum of H=29 at day 245 and 528, falling slightly at day 450.  The total Shannon 

Index (H) follows a similar trend, as it is largely driven by whole chromosome heterogeneity.  

The Shannon Index for derivative chromosomes begins at 2 at day 170, rises to 4 at day 450, 

and falls again to 2 at day 528 with a similar pattern to ∑H' values.  The Shannon Index value 

(H') is corrected for maximum variability (H'=H/ lnS).  In descriptive terms, H' is a measure 

randomness within the constraints of the variability inherent in the population at that time with a 

limited range (0 ≤ H' ≤ 1 for each whole and derivative chromosome).  At day 170, ∑H' was at a 

minimum (∑H'=13), and showed significant increase over day170 values at each subsequent 

stage (245, ∑H'=35; 450, ∑H'= 31, 528, ∑H'=29, Table 2 and Figure 6). 
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3.5.3 Characterizing the extent of cell-to-cell heterogeneity by karyotype 

A visual impression of the relationship between cellular heterogeneity and key 

transformative stage during spontaneous MOSEC transformation is seen in the karyograph 

plots (Figure 6).  By using three-dimensional plots of complete karyotype data for each 

transitional stage, the dynamic changes in the karyotype profiles and the extent of the 

karyotypic heterogeneity at each stage are readily apparent.  Each line on the karyograph 

shows chromosome count data for normal and derivative chromosomes, thus presenting data in 

a format that preserves its relationship to the individual cell.  Normal and abarrent chromosomes 

are identified along the x-axis, corresponding counts for each chromosome are plotted on the y-

axis, and metaphase number (M1,M50) on the z-axis.  The predominant karyotype at day 170 is 

diploid (2n) and, with the exception of some rare peaks and infrequent tetraploid cells, is 

remarkably similar to the normal mouse genome.  Rare changes in whole chromosome copy 

number and in occasional derivative chromosomes are seen in several cells (Figure 6A).  There 

is little to no inherent noise in the SKY data at this stage.  Metaphase spreads from day 245 

cells showed an increased median chromosome number and a significant increase in variability 

of chromosome count at each position (Figure 6B).  Total un-normalized karyotype 

heterogeneity fell slightly in day 450 cells (∑H=35, Figure 6C), when the occurrence of clonal 

4;3 and 6;15 translocations appeared in addition to the clonal min11 double minute noted in the 

previous stage.  These translocations were found at a frequency of ~30% (Figure 6C).  Neither 

clonal chromosome aberration was seen in the late stage day 450 MOSEC (∑H=32, Figure 6D). 
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3.5.4  Comparing the distribution of count data by chromosome across the key transformative 

stages 

 To demonstrate the variability contributed by varying distributions of each chromosome 

measured in the population karyotype data, violin plots of chromosome counts and the 

distribution for each are presented across the transitional stages (Figure 7A-D).  The median 

chromosome count (y-axis, right) for each whole chromosome and the sum of all derivative 

chromosomes is shown (gray circles x-axis), with 95% confidence intervals for each (black lines 

within curve), maxima and minima by the thin lines projecting from each curve, and distribution 

of each chromosome count by the width of the curve at that count.  From these analyses, 

certain patterns can be recognized over time that are not clear from the karyograph plots.  For 

example, the uniformity of chromosome count distribution is better seen in this plot.  

Additionally, the findings that certain chromosomes (chromosome 12) and chromosome 1 

approached significance as chromosomes that did not undergo significant change in count over 

time can also be seen (Figure 7, B-D).  Chromosomes 1 and 12, showing little change over time 

additionally have the lowest Shannon Index at each key transitional stage, indicating stability of 

that chromosome over time is related to the diversity of chromosome count measured at each 

transitional stage.  Oppositely the X chromosome has the largest and most persistent increase 

in chromosome counts and a high Shannon Index (Figure 7A-D, Table 2). The difference in 

distribution profiles between the Brca1 and the spontaneously derived line can also be seen.  

Finally, the increase in the maximum chromosome count for day 528, Brca1, Tumor 1 and 

Tumor 2 is seen by the height of these upward going lines from the body of the violin plot as 

compared to the earlier stage (day 170, 245, 450) spontaneously transforming lines. 
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Table 3. Population karyotype characteristics for mouse ovarian surface epithelial cell stages and lines. 

170 245 450 528 Brca1Δ5–13 TUMOR 1 TUMOR 2 

chromosome count          mode 40 75† 71 67  82‡ 62 61 
min-max 36 - 77 26 - 120† 45 - 84† 31 - 148† 43 - 165 42 - 129 37 - 159 
median  1.9 3.2 3.6 3.4 4.2 3.2 3.3 

ploidy range 2.1 - 2.2 3.3 - 3.4 3.4 - 3.4 3.2 - 3.3 4.3 - 4.4 3.6 - 3.7 3.6 - 3.6 
ploidy best fit 2n 4n 4n 3n 4n 3n 3n 

whole chromosome            loss 0 1 13 9 5 6 4 
gain 0 12 4 14 10 13 11 
change 0 13 16 20 15 18 14 

2n (%) 90 7 2 14 4 2 4 
3n (%) 3 49 36 42 4 74 66 
4n (%) 6 37 62 42 81 4 18 
5n (%) 0 5 0 0 2 6 4 
>5n (%) 0 2 0 2 8 14 8 
aneuploid cells (%) 48 100 100 98 100 100 100 

H                                     (1-19) 10 29† 24† 29 29 31 33 
(der) 2 3 4 2 3 3 6 
 (min) 1 3 3 2 0 4 6 
∑ H  13 35 31 32 32 38 44 

H'                                    (1-19) 8 16† 15† 15† 14 16 14 
(der) 3 4 3 3 4 7‡ 1‡ 
(min) 1 3 3 2 1 6 3 
∑ H'  12 23† 22† 19† 19 29‡ 18‡ 

CCA               translocation (%) 0 0 30 0 0 96 98 
 linked (%) 0 0 0 0 0 0 0 
minute (%) 0 44 30 34 0 90 0 
∑CCA (%) 0 44 54 34 0 98 98 

NCCA            translocation (%) 19 41 20 24 19 6 58 
 linked (%) 19 5 2 2 2 22 0 
minute (%) 0 29 32 16 3 22 0 
∑NCCA (%) 32 59 46 40 20 42 58 
 

Percentages indicate the percentage of metaphase cells belonging to that category. 
Ploidy best fit defined by modal chromosome number (m), "n" is defined such that "m" falls within 20n ±10. 
Whole chromosome loss and gain defined as the difference between the predicted (best fit ploidy) count and the 
actual chromosome count.  CCA, clonal chromosome aberration present in ≥20% of metaphase cells; NCCA, 
non-clonal chromosome aberration present in <20% of metaphase cells.  H, Shannon Index of karyotypic 
heterogeneity; H' Shannon index of karyotypic heterogeneity normalized for maximum population variability. 
† transformative stage significantly different from adjacent time point, ‡ different from day 528. 
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3.6  Variability within sub-populations identified by clonal chromosome aberrations 

To determine if the presence or absence of a marker clonal chromosome translocation 

was linked to variability of whole chromosome counts, data from day 450 cells were divided into 

subpopulations based on the presence or absence of the clonal 4;3 translocation (34% of day 

450 cells, Figure 8A).  Variability of whole chromosome copy number is shown to exist in 

karyotype tables showing the genomes of four CCA t4;3 cells (Figure 8A).  Among these four 

karyotypes, 18/20 possible chromosome positions demonstrate variability of whole chromosome 

copy number.  Additionally, an example of a non-clonal chromosome translocation is provided 

which additionally contributes to the genomic heterogeneity of the CCA t 4;3 line (Figure 8A). 

Presence of the clonal chromosome marker t 4;3 was not linked to variability of chromosome 

count as measured by standard deviation of the mean for each chromosome ID. Additionally, H' 

value for each group by total chromosome count approached the theoretical maximum (1 for 

each chromosome) and indicated slightly higher variability in the subpopulation carrying the 

clonal marker compared to the remaining day 450 cells (H' CCA t4;3 = 0.96 versus H' CCA none 

= 0.91, Figure 8B).   

 

3.7   Analyses of differential mRNA transcript abundance from key transformative stages 

3.7.1   Time course analysis and biological significance for mRNA temporal expression profiles 

of key transformative stages 

To determine the gene expression corresponding to each key transformative stage and 

its karyotype profile, genome wide analysis of mRNA transcript abundance was performed.  

Time course analysis was implemented with EDGE software as a robust method for determining 

differential gene expression over time and discovered 599 of the 18,000 candidates genes 

represented on the Illumina MouseRef-8 v2.0 chip.  The following exclusionary criteria were 

used: maximum signal >3x background, >2.5 fold change during the time course, and statistical 

significance q <0.01 to reject the null hypothesis of constant gene expression over time.  Rather 
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than arbitrarily grouping the 599 significant genes based  increase versus decrease between 

consecutive time points, the gene list and corresponding expression values were input into 

short-time course-expression-miner (STEM) software which tests gene expression profile for 

each gene to determine the relative goodness of fit to a randomly generated profiles of fold 

change over time versus constant expression.  STEM software matched 530/599 differentially 

expressed genes to 8 unique profiles, where the maximum allowable correlation coefficient 

between profiles was <0.9.  Unmatched gene sets comprise the remaining 69 genes at the 

bottom of the heat map (white block, Figure 9A).  Fold change and enrichment for cluster 

membership and the defining characteristics of each color-coded cluster and its corresponding 

heat-map intensity plot are summarized (Figure 9B).  Figure 9C shows plots (y-axis-fold change, 

x-axis=days) for the genes matched to each profile (red lines), which ranged in number from 

(12-181) and are plotted as red lines against the normalized median profile (black line) as a 

function of days in culture (Figure 9C).  The biological significance of enriched genes from each 

profile was determined using GO enrichment analysis for biological process, molecular function, 

and cellular component.  These were significant for functional gene enrichment in profile 2 and 

profile 5 where corrected p <0.05 (Figure 9D).  Profile 2 enrichment lists categories relating to 

chromatin, chromosome, protein-DNA complex assembly, nucleosome organization and 

assembly, cellular macromolecular complex assembly and subunit organization, RNA 

processing and others.  Profile 5 is enriched for cholesterol biosynthetic processes, metabolic 

processes, microsome and vesicular formation.  Both profiles with functional gene enrichment 

show a net increase in gene expression during transformation, but differ in the magnitude of 

their slopes (450-528).  Additionally, profile 2 genes slightly decrease expression between days 

450 and 528, whereas profile 5 genes continue to increase, (Figure 9C, D).  A compliation of 

matched and unmatched genes lists genes by membership in each fold change by profile (Table 

4). 



47 

 

 



48 

 

Table  4.  Differentially expressed genes during tumorigenesis       
(1) genes=181 (2e-129)  170  245  450  528  (2) genes=78(5e-39)  170  245  450  528   
1110033j19RIK  0  -1.9  -4.0  -3.8  1110067d22RIK  0  0.8  1.4  1.3   
1200013b22RIK  0  -0.6  -2.2  -1.9  2410008j05RIK  0  1.9  2.2  2.0   
1700011h14RIK  0  -0.9  -2.9  -2.3  2610318c08RIK  0  1.5  1.8  1.4   
1700019e19RIK  0  -1.1  -1.6  -1.3  2610510j17RIK  0  1.4  1.7  1.5   
1700088e04RIK  0  -1.2  -2.2  -1.6  2610524h06RIK  0  1.2  1.5  1.1   
1810015a11RIK  0  -2.5  -3.6  -3.3  4832406c22  0  2.0  2.2  1.4   
2300002d11RIK  0  -2.0  -2.6  -2.3  Asf1b  0  1.3  1.8  1.3   
2310044g17RIK  0  -0.5  -1.4  -1.2  Birc5  0  2.1  2.2  1.6   
2700055k07RIK  0  -1.1  -3.7  -3.6  Bub1b  0  1.5  1.8  1.7   
2810003c17RIK  0  -1.6  -3.2  -2.4  Ccl7  0  2.8  4.4  4.0   
2810417j12RIK  0  -2.1  -3.2  -3.2  Cdc42ep2  0  1.7  2.3  2.3   
3110004l20RIK  0  -0.8  -1.7  -1.6  Cdkn2a  0  1.3  2.2  2.0   
4732481h14RIK  0  -1.0  -1.7  -1.8  Cldn1  0  2.0  2.5  2.4   
4930402h24RIK  0  -1.4  -2.2  -1.8  Col5a1  0  1.0  1.9  1.5   
4933405a16RIK  0  -1.5  -2.5  -1.8  Copg  0  1.1  1.4  1.3   
5133400g04RIK  0  -0.8  -1.8  -1.4  Cyp7b1  0  3.2  4.6  4.0   
5730469m10RIK  0  -0.8  -1.3  -1.1  Drctnnb1a  0  1.0  1.8  1.6   
5830467p10RIK  0  -2.6  -4.2  -4.0  Eg433923  0  0.7  1.4  1.0   
6330580j24RIK  0  -1.5  -2.0  -2.0  Emp3  0  1.4  2.0  1.8   
9130213b05RIK  0  -0.6  -3.1  -2.6  Espl1  0  1.5  2.2  1.8   
9830002i17RIK  0  -1.4  -3.1  -2.9  Exosc8  0  1.1  1.6  1.4   
Acvr2b  0  -0.2  -1.5  -1.1  Fkbp2  0  1.7  2.0  1.9   
Agtrap  0  -0.9  -1.5  -1.6  Gap43  0  3.7  5.3  2.8   
Akap12  0  -0.9  -2.2  -1.7  Gnb4  0  1.2  1.4  1.0   
Aldh1a1  0  -2.1  -6.0  -4.5  H2afz  0  1.4  2.0  1.8   
Ankrd1  0  -1.9  -2.8  -3.1  Hey1  0  1.2  2.3  1.8   
Anxa11  0  -0.6  -1.5  -1.0  Hist1h2ad  0  1.8  2.6  2.3   
Anxa6  0  -0.7  -1.5  -1.5  Hist1h2af  0  1.5  2.2  2.0   
Apg10l  0  -0.7  -1.5  -1.3  Hist1h2ag  0  2.0  2.7  2.6   
Aplp1  0  -1.9  -3.5  -3.6  Hist1h2ah  0  1.7  2.5  2.3   
Atp6v0e2  0  -0.8  -3.1  -2.2  Hist1h2ak  0  1.8  2.6  2.3   
Aw146242  0  -0.9  -1.6  -1.6  Hist1h2an  0  1.5  2.2  2.1   
Aw555464  0  -0.8  -2.0  -1.6  Hist1h2ao  0  1.2  1.5  1.5   
Axin2  0  -1.4  -2.8  -2.5  Hist1h4f  0  1.5  2.0  1.3   
B430104h02RIK  0  -1.1  -2.7  -2.7  Hist2h2ab  0  1.9  2.7  2.7   
B930041f14RIK  0  -2.7  -3.7  -3.7  Hist2h2ac  0  1.3  1.6  1.5   
Bc024814  0  -1.2  -1.9  -1.5  Hmgb2  0  2.2  3.1  2.4   
Bc031181  0  -0.8  -1.6  -1.3  Hnrpa1  0  1.1  1.6  0.9   
Bc036718  0  -1.7  -2.4  -2.2  Hnrpa2b1  0  1.3  1.6  1.2   
Bc056929  0  -1.2  -5.3  -3.9  Irf1  0  1.3  1.8  1.7   
Bicc1  0  -0.8  -1.7  -1.4  Irs2  0  2.6  3.5  3.5   
Bicd2  0  -0.3  -1.4  -1.3  Kdelr2  0  1.5  2.1  1.6   
Blcap  0  -1.0  -1.6  -1.5  Klra18  0  2.2  3.5  3.3   
Bok  0  -1.0  -3.1  -2.8  Klra33  0  1.7  3.3  2.8   
Btbd6  0  -1.2  -2.1  -1.6  Klra4  0  2.3  3.6  3.4   
Bzrap1  0  -2.5  -3.8  -4.3  Kpna2  0  1.6  1.9  1.3   
Camk2n1  0  -1.5  -2.9  -2.8  Loc381795  0  3.0  3.5  3.2   
Carhsp1  0  -0.3  -1.7  -1.5  Lsm2  0  1.3  1.5  1.2   
Ccbl1  0  -1.9  -2.4  -2.1  Ly6a  0  2.3  4.1  3.9   
Cd59a  0  -1.2  -3.6  -3.3  Ly6e  0  1.1  1.8  1.6   
Cd97  0  -2.0  -3.2  -3.5  Mcm5  0  1.1  1.4  1.2   
Cdc23  0  -1.1  -1.8  -1.7  Mettl9  0  1.1  1.4  1.3   
Cdc42bpb  0  -1.2  -1.9  -1.5  Ncapd2  0  1.5  1.8  1.6   
Ceecam1  0  -1.8  -2.6  -2.5  Nsbp1  0  1.1  1.5  1.3   
Cib2  0  -0.8  -2.3  -1.9  Odz3  0  2.0  3.0  3.0   
Ckb  0  -5.5  -8.5  -8.4  Otx1  0  2.3  2.8  2.5   
Cln2  0  -1.3  -2.1  -1.7  Pak3  0  1.2  1.4  1.1   
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Table  4.  Differentially expressed genes during tumorigenesis (continued)       
(1) genes=181 (2e-129)  170  245  450  528  (2) genes=78(5e-39)  170  245  450  528   
Col4a1  0  -1.7  -6.7  -5.1  Pfn2  0  1.1  1.5  1.4   
Col4a2  0  -1.4  -5.5  -4.1  Prdx4  0  1.7  1.9  1.9   
Col4a5  0  -1.0  -1.6  -1.2  Rab32  0  1.0  1.4  1.4   
Creb3  0  -0.7  -1.4  -1.3  Rbm3  0  0.9  1.5  0.8   
Creld1  0  -0.8  -1.8  -1.6  Rfc3  0  0.9  1.5  0.9   
Crim1  0  -0.6  -1.3  -1.4  Rfc5  0  0.8  1.4  1.1   
Crip2  0  -2.0  -4.8  -4.3  Ris2  0  0.9  1.6  1.3   
Csrp1  0  -1.5  -2.2  -2.3  Skp2  0  0.8  1.4  1.0   
D14ertd449e  0  -1.3  -2.4  -2.6  Slc29a1  0  1.3  1.5  1.5   
D430039n05RIK  0  -0.7  -2.1  -1.9  Smoc1  0  3.6  4.9  4.1   
D4bwg0951e  0  -0.8  -1.3  -1.4  Snx8  0  1.0  1.5  1.5   
D630003m21RIK  0  -1.0  -3.0  -2.4  Spc25  0  1.4  1.5  1.2   
D930001i22RIK  0  -0.9  -1.7  -1.5  Sprr2g  0  2.2  4.2  3.6   
Dcp1b  0  -1.0  -2.1  -1.9  Ssbp2  0  0.9  1.7  1.5   
Ddah1  0  -0.9  -1.9  -2.0  Thoc4  0  1.3  1.6  1.4   
Dnaja4  0  -1.1  -1.6  -1.7  Tk1  0  1.4  1.6  1.2   
Dos  0  -2.0  -2.9  -2.7  Twist1  0  1.2  1.8  1.7   
Dtnb  0  -1.0  -2.0  -1.5  Tyms  0  1.7  2.1  1.5   
Dusp2  0  -1.1  -2.5  -2.6  Tyms-ps  0  1.4  1.7  1.4   
Dyrk3  0  -1.4  -2.2  -2.4  Uaca  0  0.7  1.4  1.0   
Edn1  0  -0.5  -1.7  -1.5  Zfp326  0  1.2  1.6  1.3   
Efna5  0  -0.6  -1.7  -1.6   
Eno3  0  -1.4  -2.8  -2.5  (3) genes=65 (5e-17)  170  245  450  528   
Enpp5  0  -0.8  -2.4  -1.6  1190002h23RIK  0  0.4  1.4  1.0   
Entpd4  0  -0.7  -1.4  -1.3  1810014l12RIK  0  0.6  1.5  1.1   
Eppk1  0  -0.9  -2.2  -2.3  2610019i03RIK  0  1.0  2.2  2.2   
Etfb  0  -1.1  -1.5  -1.4  5430420c16RIK  0  1.0  2.3  2.1   
Fblim1  0  -1.1  -2.4  -1.9  Aa467197  0  0.1  4.3  4.0   
Fos  0  -0.4  -1.5  -1.5  Acsl3  0  0.9  2.1  2.1   
Fst  0  -3.1  -6.1  -6.0  Adh7  0  2.7  7.8  8.0   
Fxyd5  0  -1.3  -2.8  -2.3  Ank  0  0.1  1.3  1.4   
Galntl4  0  -2.7  -4.2  -3.6  Aqp5  0  1.3  4.1  4.3   
Garnl4  0  -0.8  -2.0  -2.1  Arhgdib  0  1.0  5.9  5.3   
Gdf15  0  -3.0  -6.1  -4.6  Avpi1  0  -0.3  1.4  1.5   
Ghr  0  -0.5  -1.4  -1.4  Bc029169  0  1.2  4.1  4.0   
Gnaz  0  -1.2  -2.2  -1.8  Bgn  0  0.4  4.2  4.3   
Golph2  0  -0.6  -1.7  -1.7  Ccl25  0  0.7  1.4  1.3   
Gstk1  0  -2.1  -4.8  -4.1  Col1a1  0  1.1  7.6  7.4   
H13  0  -0.9  -1.4  -1.2  Col3a1  0  0.3  4.9  4.4   
Havcr1  0  -1.2  -3.4  -3.2  Col6a1  0  0.7  2.3  2.3   
Hemk1  0  -1.6  -2.2  -1.8  Col6a2  0  0.3  2.9  2.8   
Hint2  0  -1.2  -2.2  -1.6  Cxcl12  0  2.1  5.0  4.7   
Hist1h1c  0  -1.9  -3.5  -3.4  Cyp51  0  1.0  2.6  2.5   
Hist1h2bc  0  -1.5  -3.3  -3.4  Dap  0  0.3  1.8  2.0   
Hist1h2bj  0  -1.1  -1.8  -2.0  E030003n15RIK  0  0.2  1.5  1.7   
Hist2h2aa1  0  -2.1  -3.3  -2.8  Elovl6  0  0.6  1.5  1.5   
Hk2  0  -0.5  -1.7  -1.5  Emilin1  0  0.9  3.4  3.3   
Hr  0  -1.0  -3.3  -3.0  Esm1  0  1.4  3.9  4.0   
Hyal1  0  -2.0  -3.1  -2.5  Fdps  0  0.0  1.5  1.8   
Igfbp2  0  -1.3  -3.5  -3.0  Fgf7  0  -0.2  3.7  3.2   
Igsf4a  0  -1.1  -2.9  -2.7  Fmnl3  0  0.6  1.8  1.7   
Il11  0  -3.1  -4.1  -3.7  Foxq1  0  0.2  4.3  3.9   
Impact  0  -1.1  -2.4  -1.8  G431001e03RIK  0  0.8  1.9  2.0   
Krt1-18  0  -1.5  -2.8  -1.6  Hmgcs1  0  0.3  1.4  1.3   
Lims2  0  -2.6  -4.5  -4.2  Igf2bp3  0  1.6  4.7  4.4   
Llglh2  0  -2.0  -4.1  -3.7  Lsp1  0  1.1  2.9  2.7   
Loc239102  0  -1.1  -1.9  -1.7  Ly6c  0  0.9  3.8  3.4   
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Table  4.  Differentially expressed genes during tumorigenesis (continued)       
(1) genes=181 (2e-129)  170  245  450  528  (3) genes=65 (5e-17)  170  245  450  528   
Loc381297  0  -0.8  -2.0  -2.1  Tinagl  0  -1.2  -3.8  -3.4   
Loc386486  0  -0.8  -1.4  -1.5  Tnc  0  -0.7  -1.6  -1.6   
Lrrc28  0  -0.9  -1.5  -1.4  Mglap  0  1.2  9.3  9.6   
Lzf  0  -1.0  -1.6  -1.5  Mgst1  0  0.7  2.1  2.0   
Man2b2  0  -1.2  -1.8  -1.4  Mgst2  0  -0.4  4.0  4.3   
Mocos  0  -1.4  -2.4  -1.8  Mnd1  0  0.7  1.5  1.4   
Mscp  0  -1.1  -1.4  -1.3  Mvd  0  0.1  2.0  2.0   
Mt1  0  -1.3  -3.6  -2.6  Mxra8  0  -0.3  3.0  3.4   
Mvp  0  -0.9  -1.7  -1.3  Nr2f1  0  0.2  5.5  5.9   
Ndfip2  0  -0.9  -1.5  -1.4  Nrn1  0  1.7  4.0  3.9   
Nek9  0  -0.7  -1.5  -1.1  Nupr1  0  0.4  1.6  1.3   
Nipsnap1  0  -0.6  -1.7  -1.6  Ottmusg00000010673  0  1.4  5.0  5.0   
Nme4  0  -1.1  -2.5  -2.5  Padi1  0  0.2  4.7  4.9   
Nme5  0  -0.8  -4.0  -3.7  Pcolce  0  1.1  4.2  4.1   
Nppa  0  -2.1  -3.6  -3.9  Pdgfra  0  0.4  5.4  6.2   
Nppb  0  -3.1  -5.8  -6.0  Pem  0  0.2  3.3  2.8   
Nt5e  0  -0.5  -1.6  -1.1  Pmvk  0  0.7  1.9  2.0   
Nudt7  0  -0.9  -2.2  -1.9  Ppbp  0  1.4  4.6  4.3   
Ostm1  0  -0.9  -1.6  -1.4  Ptn  0  1.2  3.6  2.5   
Oxr1  0  -0.6  -1.5  -1.0  Rcn3  0  1.1  2.4  2.2   
Pde4dip  0  -2.1  -3.3  -3.6  S100a4  0  0.6  3.1  3.7   
Pea15  0  -0.5  -1.5  -1.4  Scd2  0  1.0  2.7  2.6   
Peg3  0  -1.5  -4.1  -3.8  Sec24d  0  0.7  1.6  1.6   
Picalm  0  -0.7  -1.7  -1.3  Sfrp1  0  0.4  2.9  3.0   
Pld3  0  -1.3  -1.8  -1.4  Siat4a  0  0.3  1.2  1.3   
Plekhb2  0  -1.0  -1.7  -1.7  Slc1a3  0  1.6  4.1  4.0   
Plekhc1  0  -0.9  -2.0  -1.6  Sqle  0  0.7  2.5  2.4   
Plekhg3  0  -1.1  -1.7  -1.9  Stard4  0  0.6  1.5  1.4   
Ppp1r9a  0  -0.8  -2.1  -1.6  Tnfrsf11b  0  1.2  3.0  2.1   
Ppt1  0  -1.0  -1.5  -1.4  Twist2  0  2.0  5.0  4.8   
Prnp  0  -0.8  -1.6  -1.3  Ugt1a10  0  0.3  2.3  2.8   
Ptpn21  0  -0.7  -1.4  -1.1  Vamp5  0  0.6  1.5  1.1   
Ptprk  0  -0.6  -1.5  -1.3  Zfp537  0  0.8  2.3  2.3   
Pwwp2  0  -0.5  -1.5  -1.3   
Rab3d  0  -1.0  -2.1  -1.9   
Rab3ip  0  -1.0  -1.7  -1.6   
Rab7l1  0  -0.5  -1.6  -1.5   
Rbpms  0  -0.6  -1.7  -1.2   
Rhob  0  -0.9  -2.2  -2.0   
Rin3  0  -0.4  -1.5  -1.3   
Rras  0  -0.6  -1.5  -1.4   
Rras2  0  -1.1  -2.0  -1.9   
Rusc2  0  -1.0  -1.7  -1.5   
S100a1  0  -1.2  -2.3  -1.4   
Scin  0  -3.3  -5.9  -6.3   
Slc7a4  0  -2.1  -3.4  -3.3   
Slc7a7  0  -1.6  -2.5  -2.5  (1) continued…   
Slco2a1  0  -1.7  -3.6  -2.8   
Sptlc1  0  -0.9  -1.4  -1.4  (1) genes=181 (2e-129)  170  245  450  528   
Srd5a1  0  -1.3  -2.5  -2.6  Tnfaip3  0  -0.6  -2.3  -2.1   
Tagln  0  -2.3  -5.6  -5.8  Tspyl3  0  -2.2  -3.2  -3.4   
Taldo1  0  -1.1  -1.5  -1.2  Ttc5  0  -0.9  -1.5  -1.2   
Tcf2  0  -0.5  -1.4  -1.3  Unc13b  0  -2.5  -4.6  -3.5   
Tgfb1i1  0  -1.4  -4.1  -4.2  Zdhhc14  0  -1.3  -3.2  -3.2   
Tgfb1i4  0  -1.2  -2.4  -2.6  Zfhx2  0  -1.1  -2.0  -1.7   
Tgfb3  0  -0.7  -2.0  -1.6  Zfp219  0  -0.7  -1.8  -1.4   
Timp3  0  -1.5  -2.8  -2.2  Zfp354a  0  -0.8  -2.1  -1.8   
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Table  4.  Differentially Expressed Genes During Tumorigenesis (continued)       
(4) Genes=58(1E-25)  170  245  450  528  (5) Genes=53(9E-22)  170  245  450  528   
0610041g09RIK  0  -0.4  -1.0  -1.3  1190005i06RIK  0  0.9  2.0  2.2   
1300014i06RIK  0  -0.4  -1.4  -1.5  2310022b05RIK  0  1.0  1.9  1.9   
1500031h04RIK  0  -0.7  -2.4  -3.5  2610027c15RIK  0  0.5  1.0  1.3   
2010004a03RIK  0  -1.0  -1.7  -2.2  2810428i15RIK  0  0.9  1.6  1.7   
2310067e08RIK  0  -0.6  -1.9  -2.2  2810471m23RIK  0  1.3  2.0  3.1   
Acta2  0  -1.3  -2.6  -3.2  4930504e06RIK  0  0.1  1.0  1.4   
Actn1  0  -0.8  -1.6  -2.1  9230117n10RIK  0  0.5  1.4  2.4   
Agrn  0  -0.7  -2.3  -2.6  Acat2  0  0.2  1.3  1.6   
Akr1c19  0  -1.5  -3.2  -4.5  Adamts2  0  0.3  3.1  4.1   
Arhgdig  0  -0.9  -3.0  -3.5  Ai467484  0  0.9  1.5  2.2   
Bc003236  0  -0.3  -1.2  -1.4  Aldh3a1  0  0.4  3.8  5.0   
Bc011487  0  -0.7  -3.5  -4.5  Antxr1  0  0.9  2.3  3.1   
Bc058638  0  -1.2  -3.5  -4.0  Apbb2  0  0.8  1.5  1.5   
Bin1  0  -0.8  -1.3  -1.5  Arfgap3  0  0.4  1.0  1.4   
Cd44  0  -0.9  -1.5  -1.8  Bteb1  0  0.5  1.1  1.6   
Clcf1  0  -0.9  -1.7  -1.9  C3  0  0.6  2.2  4.8   
Cltb  0  -0.6  -1.1  -1.6  Cacna2d1  0  0.3  1.1  1.5   
Col4a3  0  -1.0  -2.8  -3.9  Card4  0  0.4  1.4  1.7   
Col4a4  0  -1.2  -2.3  -3.0  Casp4  0  1.3  2.6  3.0   
D330037a14RIK  0  -0.5  -1.1  -1.4  Cd14  0  0.5  0.9  1.6   
Dbn1  0  -0.7  -1.2  -1.6  Chst2  0  0.9  1.7  1.7   
Dtr  0  -0.7  -1.8  -2.6  Efna1  0  0.5  1.5  1.9   
Dusp1  0  -0.5  -1.5  -1.7  Eif4b  0  0.5  1.2  1.4   
Fbln2  0  -0.6  -1.8  -2.7  Emb  0  0.7  1.3  1.9   
Fhl1  0  -0.6  -1.4  -2.1  Fbxo31  0  0.6  1.4  1.6   
Flrt3  0  -0.9  -2.7  -3.2  Figf  0  2.0  4.8  5.3   
Gjb4  0  -0.3  -1.5  -2.0  Gypc  0  0.7  1.4  1.5   
Hes1  0  -0.1  -1.0  -1.7  Il13ra1  0  0.6  1.5  1.9   
Hist1h2bf  0  -1.0  -1.7  -2.1  Lss  0  0.6  1.7  2.0   
Hist1h2bh  0  -1.1  -1.7  -2.0  Man2a1  0  1.1  1.7  1.9   
Hist1h2bk  0  -0.4  -0.8  -1.3  Mknk2  0  0.8  0.9  1.5   
Hist1h2bm  0  -1.1  -1.8  -2.1  Msln  0  0.4  1.5  2.3   
Hist1h2bn  0  -0.7  -1.2  -1.5  Ntrk3  0  1.6  2.1  3.2   
Igsf9  0  -0.6  -1.7  -2.3  Olfml2b  0  1.2  2.2  2.2   
Inhba  0  -1.2  -1.8  -3.0  Olfml3  0  0.4  2.8  4.0   
Klf5  0  -0.8  -1.4  -1.8  Pde1a  0  0.3  3.1  4.2   
Lad1  0  -0.7  -2.5  -2.6  Pdk1  0  0.3  0.8  1.7   
Lamb3  0  -1.5  -3.0  -4.1  Phka2  0  0.7  1.1  1.4   
Mcam  0  -0.7  -2.6  -3.3  Prrx1  0  1.4  2.5  3.2   
Mett11d1  0  -0.6  -1.3  -1.4  Rev3l  0  0.4  0.8  1.4   
Nes  0  -0.9  -1.3  -1.9  Rgl1  0  0.3  1.3  1.9   
Ngfb  0  -0.8  -2.7  -2.9  Sc4mol  0  0.1  1.2  1.5   
Panx1  0  -0.3  -0.9  -2.0  Scara3  0  1.8  3.3  3.5   
Pbp2  0  -0.3  -1.0  -1.7  Scara5  0  0.7  2.9  4.6   
Pdlim7  0  -0.7  -1.1  -1.8  Sdh1  0  0.4  0.9  1.7   
Ptprb  0  -1.5  -2.7  -3.8  Sesn1  0  0.3  1.0  1.9   
Raet1b  0  -0.9  -1.7  -1.9  Socs3  0  0.7  1.7  2.3   
Reprimo  0  -1.7  -4.1  -4.7  Spp1  0  0.6  1.4  1.7   
S100a15  0  -1.1  -2.2  -2.7  Stard5  0  0.6  0.8  1.6   
Scamp5  0  -0.9  -1.3  -2.1  Tgfbi  0  1.9  3.7  4.6   
Sdc3  0  -0.2  -1.5  -3.0  Tgfbr3  0  0.7  1.5  2.2   
Slc7a3  0  -1.7  -2.5  -3.2  Tnfaip8  0  0.8  1.4  1.6   
Snrpn  0  -1.3  -3.0  -4.1  Vdr  0  0.4  1.3  2.1   
Taf9b  0  -0.6  -2.3  -3.1   
Ugcg  0  -0.5  -1.9  -2.3   
Wnt7a  0  -2.3  -5.4  -6.2   
Wnt7b  0  -1.3  -5.7  -6.1   
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Table  4.  Differentially Expressed Genes During Tumorigenesis (continued)       
(6) genes=36(9e-4)  170  245.0  450.0  528.0  (7) genes=34(6e-4)  170  245  450  528   
0610006i08RIK  0  -0.4  -2.2  -2.4  1110012d08RIK  0  -1.2  -1.4  -0.8   
1110032e23RIK  0  0.4  -0.8  -1.0  1500005a01RIK  0  -1.6  -2.0  -1.6   
2610001e17RIK  0  0.1  -1.5  -1.2  2210008i11RIK  0  -1.1  -1.4  -1.0   
4930422j18RIK  0  0.0  -1.5  -1.7  2310005e10RIK  0  -1.1  -1.5  -1.0   
A230050p20RIK  0  0.8  -1.4  -2.0  2610020h15RIK  0  -1.1  -1.5  -1.2   
Al024069  0  -0.6  -3.8  -3.5  Abhd4  0  -1.6  -2.4  -1.7   
Axud1  0  0.4  -0.5  -0.9  Aldh4a1  0  -1.6  -2.2  -1.4   
Bdnf  0  -0.1  -1.8  -1.5  Aldh6a1  0  -1.8  -2.3  -0.9   
Card10  0  -0.3  -1.4  -1.4  Atp6v1d  0  -1.1  -1.6  -1.0   
Cav1  0  0.2  -0.9  -1.4  Bc031853  0  -1.2  -1.8  -1.2   
Chrnb1  0  0.0  -0.9  -1.4  Ccnd2  0  -1.0  -1.8  -1.0   
Clca4  0  0.0  -2.6  -3.5  Ccng1  0  -2.3  -2.7  -2.4   
Ctsw  0  -0.1  -2.0  -3.2  Clu  0  -2.3  -3.3  -2.1   
F2rl1  0  -0.5  -2.3  -2.6  Cox6a2  0  -1.7  -2.2  -1.6   
Gadd45g  0  -0.2  -1.9  -2.5  Cyp2d22  0  -1.8  -2.9  -1.3   
Greb1  0  -0.2  -1.5  -1.3  Cyp4f13  0  -1.7  -2.2  -1.9   
Hspb1  0  -0.4  -1.8  -1.8  Dgka  0  -2.3  -2.6  -2.3   
Nbl1  0  1.0  -1.2  -1.5  Ganc  0  -1.4  -2.0  -1.5   
Ndn  0  -1.9  -3.6  -6.3  Ghitm  0  -1.3  -1.8  -1.2   
Nox4  0  0.3  -1.0  -1.4  Gm2a  0  -1.2  -2.0  -1.3   
Pdgfb  0  0.3  -2.3  -2.3  Gns  0  -1.0  -1.5  -0.9   
Pdlim4  0  -0.2  -1.4  -1.6  Grcc10  0  -0.9  -1.5  -0.8   
Plk2  0  -0.3  -1.5  -1.5  H2-dmb1  0  -0.8  -1.4  -0.7   
Pvr  0  0.1  -1.3  -1.0  Itm2b  0  -1.2  -1.7  -1.2   
Pvrl2  0  0.2  -2.0  -1.7  Lbh  0  -1.4  -2.4  -1.4   
Rasgrp3  0  -0.6  -2.6  -2.7  Mgc18837  0  -1.9  -2.3  -1.7   
Rasl12  0  -0.5  -3.4  -3.4  Rpl22  0  -1.4  -1.6  -1.1   
Rassf1  0  0.5  -0.8  -1.1  Sdsl  0  -2.9  -3.5  -3.1   
Rtn1  0  0.1  -3.2  -3.1  Slc9a3r2  0  -1.2  -1.6  -1.0   
S100a3  0  -0.1  -1.2  -1.4  Tgm2  0  -1.0  -1.7  -0.8   
Samd10  0  0.0  -1.8  -1.6  Tmem141  0  -1.6  -2.0  -1.5   
Sema4f  0  -0.6  -4.9  -5.8  Trp53inp1  0  -3.3  -3.7  -3.1   
Slc39a6  0  0.0  -1.3  -1.4  Trp53inp2  0  -1.1  -1.4  -0.7   
Smtn  0  0.2  -1.4  -1.5  Wars  0  -1.3  -1.7  -1.4   
Sox8  0  0.3  -1.4  -1.3   
Tuft1  0  0.1  -1.7  -2.0   
Wfs1  0  -0.1  -1.9  -1.5   

(8) continued…   
(8) genes =25 (9e-4)  170  245  450  528  (8) genes =25 (9e-4)  170  245  450  528   
1810009n02RIK  0  1.9  2.6  2.7  Rfxap  0  1.1  1.4  1.4   
2610002m06RIK  0  1.0  1.6  1.6  Rgs10  0  1.8  2.2  2.7   
Abcb1b  0  1.5  1.8  2.0  Slco1a5  0  2.0  2.6  3.3   
Car13  0  1.0  1.3  1.6  Slit2  0  1.3  1.8  2.2   
Ccl9  0  2.8  3.7  4.3  Smpdl3b  0  1.6  2.2  2.6   
Cdca3  0  1.7  2.0  2.1  Snx25  0  1.1  1.4  1.6   
Cdkn2c  0  1.4  1.9  2.0  Vcam1  0  0.8  1.0  1.3   
Cox7b  0  1.0  1.2  1.4   
Cxcl1  0  2.4  3.8  3.9   
Ednra  0  3.3  4.7  5.2   
Frda  0  1.2  1.5  1.7   
Ifitm3  0  1.1  1.6  1.7   
Lsm6  0  1.0  1.5  1.5   
Mad2l1  0  1.3  1.4  1.5   
Mcrs1  0  0.8  1.1  1.4   
Ogn  0  3.0  4.3  5.2   
Pdk3  0  1.4  1.8  1.8   
Pold2  0  1.3  1.6  1.6   
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Table  4.  Differentially Expressed Genes During Tumorigenesis (continued)       
(Ns) genes=68  170  245  450  528  (ns) genes=68 (ns)  170  245  450  528   
1110058a15RIK  0  -4.8  -5.6  -5.8  Gstm2  0  -0.3  2.0  3.0   
1700024k14RIK  0  -0.7  0.9  2.9  Igfbp4  0  -0.6  2.3  3.4   
2010323f13RIK  0  -1.0  1.1  2.0  Inmt  0  1.2  1.7  5.1   
4432405b04RIK  0  -0.6  -1.3  -0.8  Jam4  0  -1.3  -1.7  -2.2   
5430435g22RIK  0  -0.7  1.5  1.6  Khdrbs3  0  0.5  1.5  0.7   
Ai429612  0  -0.7  -1.6  -0.9  Kif3c  0  -1.0  -1.4  -1.4   
Aqp1  0  0.9  1.5  3.2  Lrrfip1  0  -1.7  -2.2  -2.5   
Arl4c  0  0.9  0.7  -0.5  Man2c1  0  -1.2  -1.7  -2.0   
Arrdc3  0  -0.8  0.1  0.9  Manea  0  0.0  -1.3  -0.8   
Bc013481  0  -0.4  1.3  1.7  Mgat3  0  0.1  1.0  1.9   
Cd248  0  -0.8  1.3  1.5  Mmp2  0  -0.7  2.3  3.0   
Cdkn1a  0  -5.1  -6.0  -5.5  Msc  0  2.6  -0.6  -2.4   
Cds1  0  0.6  -1.9  -1.5  Mybl2  0  1.4  1.3  0.7   
Cebpb  0  0.0  0.7  1.9  Myd116  0  -0.4  -1.9  -1.3   
Cmtm8  0  -0.5  -3.1  -2.0  Nnmt  0  -0.1  -1.9  -1.0   
Cnnm2  0  -0.5  0.4  1.5  Palmd  0  3.0  2.4  1.1   
Cobl  0  -0.3  -1.7  -0.7  Prelp  0  -0.5  0.8  3.2   
Cp  0  0.9  1.1  2.3  Prickle1  0  0.4  -0.4  -1.1   
Csrp2  0  0.8  1.9  1.2  Rad52b  0  -0.6  -1.4  -0.3   
Ctgf  0  -0.4  -0.5  -1.5  Rasl11b  0  0.5  -3.3  -2.5   
Ctsh  0  -0.2  -3.4  -1.0  Rem2  0  -3.5  -4.3  -4.3   
Cx3cl1  0  -0.5  1.3  1.4  Rgs17  0  -1.2  0.6  1.4   
Cxadr  0  0.0  -1.6  -1.0  Sars1  0  0.0  -1.5  -1.1   
D19wsu12e  0  0.0  0.9  1.5  Serpinf1  0  -0.6  1.6  2.9   
D330024h06RIK  0  -0.6  0.1  1.0  Stxbp2  0  -1.3  -1.9  -2.1   
D430044g18RIK  0  -0.6  -2.1  -1.3  Sytl2  0  -0.5  -1.9  -1.3   
Enpp2  0  0.8  4.7  2.6  Tacstd2  0  0.6  -2.3  -1.7   
Epb4.1l3  0  0.6  -0.4  -0.8  Tcn2  0  -2.2  -2.8  -2.8   
Fbxo2  0  -0.8  0.1  1.0  Tm4sf3  0  0.4  2.4  5.2   
Gjb3  0  1.1  -0.4  -1.9  Tm4sf6  0  0.8  -0.1  -0.8   
Gnb5  0  -1.1  -1.4  -1.4  Trib3  0  -1.1  -1.7  0.2   
Gpx3  0  -1.5  -3.7  -2.1  Tspan7  0  1.2  1.6  0.7   
Gstm1  0  -1.1  -0.5  0.6  Uchl1  0  1.1  -0.1  -1.0   

       
Whrn  0  0.0  -1.6  -1.0   

 
Table 4. Gene symbols, fold change, and profile assignment for each of four key transformative stages during 

tumorigenesis.  Differentially expressed genes over time were assigned to each profile by maximization of the 

correlation coefficient between the actual and randomly generated model profiles.  Fifty theoretical profiles were 

tested with a maximum correlation of 0.9 among profiles and a maximum allowable change of 5 units. The statistical 

significance of the number of assigned versus expected genes for each profile is shown and profiles were assigned 

by relative expression for the list of differentially expressed genes from time course gene discovery analysis.  Genes 

were included in a given profile where p <0.05. 
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3.7.2   Traditional gene analysis by paired comparisons of consecutive transformative stages 

In addition to the time course analysis for microarray data, pair wise analyses using 

Significance Analysis of Microarrays (SAM) on consecutive samples were performed in 

biological triplicate (Figure 10).  Gene lists, definition, location, and fold change are provided for 

each paired analysis (Table 5).  The largest list of differentially expressed genes was generated 

between Early=170:245= 319 genes.  Despite using the same statistical cut-points and fold 

change of 2.5 for all pair wise analysis, the lists of differentially expressed genes became 

progressively shorter as transformation progressed, with Mid=245:450=102 genes and 

Late=450:528= 30 genes.  Gene lists between consecutive transformative stages were similarly 

subjected to GO enrichment analysis to determine the functional significance of the differentially 

expressed genes (Table 6).  Several significant categories were returned for functional 

enrichment at between each pair of stages.  Of note are several categories relating to 

extracellular matrix and collagen components, as well as several relating to cell cycle, mitosis, 

and development were enriched for altered gene expression (Table 6). 
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Table 5.  Differentially expressed genes between consecutive transformative stages  
170:245 gene definition cytoband fold change 
1110031b06RIK synaptosomal-associated protein, 47 11qB5 -2.9 
1110033j19RIK ribosomal protein S4, Y-linked 2 10qC1 -4.3 
1110036o03RIK RIKEN cDNA 1110036O03 gene 11qB5 -3.5 
1110058a15RIK late cornified envelope 1G 11qC -109.3 
1700088e04RIK RIKEN cDNA 1700088E04 gene 15qE3 -2.5 
1810009n02RIK RIKEN cDNA 1810009N02 gene 1qC3 4.2 
1810015a11RIK YdjC homolog  5qF -6.8 
1810054o13RIK transmembrane protein 86A 2qE3 12.8 
1810073e21RIK trafficking protein particle complex 6A 3qE3 -5.0 
2300002d11RIK TMF1-regulated nuclear protein 1 10qD3 -5.4 
2310061n23RIK interferon, alpha-inducible protein 27 like 2A 10qA4 36.2 
2410008j05RIK transmembrane protein 121 1qD 4.2 
2810003c17RIK allograft inflammatory factor 1-like 8qB3.3 -3.0 
2810004a10RIK interleukin 17 receptor D 12qA1.1 -3.1 
4833421e05RIK isoamyl acetate-hydrolyzing esterase 1 homolog  12 -3.3 
4930418p06RIK rhomboid domain containing 1 13qA3.3 -3.3 
4933405a16RIK sphingomyelin synthase 2 3 -2.9 
5830467p10RIK fermitin family homolog 1  16qC4 -10.2 
6330406i15RIK RIKEN cDNA 6330406I15 gene 18qB3 7.8 
9830002i17RIK spinster homolog 3  12qC3 -3.0 
Abhd4 abhydrolase domain containing 4 14 -3.2 
Ai427138 frizzled homolog 5  4qD3 -3.9 
Ai449441 PIF1 5'-to-3' DNA helicase homolog  8qA2 3.9 
Ai450948 AHNAK nucleoprotein 2 11qB5 -5.0 
Ak1 adenylate kinase 1 4qC7 -19.1 
Aldh1a1 aldehyde dehydrogenase family 1, subfamily A1 11qD -5.3 
Amid apoptosis-inducing factor, mitochondrion-associated 2 7qA3 -2.6 
Ankrd1 ankyrin repeat domain 1  1qC1.3 -3.3 
Aplp1 amyloid beta  precursor-like protein 1 11qB2 -4.7 
Arhgap24 Rho GTPase activating protein 24 5qE5 4.4 
Ass1 argininosuccinate synthetase 1 1qA5 -47.0 
Atp6v0a1 ATPase, H+ transporting, lysosomal V0 subunit A1 5qG2 -3.9 
B930041f14RIK RIKEN cDNA B930041F14 gene 6qB1 -7.1 
Bc022687 cDNA sequence BC022687 9qF1 -2.9 
Bc024814 cDNA sequence BC024814 7qB2 -2.6 
Bc036718 nudix -type motif 18 13qB3 -3.4 
Bc046331 cDNA sequence BC046331 4qE2 3.0 
Bc049806 family with sequence similarity 126, m B 7qF5 -3.0 
Birc5 baculoviral IAP repeat-containing 5 11 4.1 
Bmp3 bone morphogenetic protein 3 XqC3 17.9 
Bscl2 Bernardinelli-Seip congenital lipodystrophy 2 homolog  9qA5.2 -3.3 
Btbd3 BTB  domain containing 3 XqA3.3 5.0 
Bub1b budding uninhibited by benzimidazoles 1 homolog, beta  8qB3.1 3.1 
Bzrap1 benzodiazapine receptor associated protein 1 17qA3.3 -9.1 
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Table 5.  Differentially expressed genes between consecutive transformative stages 
170:245 gene definition cytoband fold change 
C630013n10RIK kelch-like 26  10qC2 -2.6 
Cask calcium/calmodulin-dependent serine protein kinase XqA1.1 3.1 
Ccbl1 cysteine conjugate-beta lyase 1 8qE1 -4.3 
Ccnb1 cyclin B1 13qD1 2.9 
Ccnd1 cyclin D1 5qF -3.7 
Ccng1 cyclin G1 XqA5 -5.2 
Cd97 CD97 antigen 4qA5 -4.5 
Cdc20 cell division cycle 20 homolog  8qC5 3.8 
Cdca3 cell division cycle associated 3 6qF2 3.2 
Cdca8 cell division cycle associated 8 4qD2.2 4.6 
Cdkn1a cyclin-dependent kinase inhibitor 1A  11qB3 -41.7 
Cdsn corneodesmosin 14qC3 -4.2 
Ceecam1 cerebral endothelial cell adhesion molecule 9qF4 -3.9 
Cenpa centromere protein A 5 7.2 
Cenpi centromere protein I 13qB3 4.2 
Ckb creatine kinase, brain 19qA -49.3 
Cldn4 claudin 4 5 -75.3 
Cln2 tripeptidyl peptidase I 7 -2.7 
Clu clusterin 8qD3 -5.3 
Col18a1 collagen, type XVIII, alpha 1 11qB3 -3.0 
Col4a1 collagen, type IV, alpha 1 2qE5 -3.3 
Crip2 cysteine rich protein 2 15qA1 -4.1 
Csrp1 cysteine and glycine-rich protein 1 1 -2.9 
Cxcl1 chemokine  ligand 1 5qE1 5.6 
Cyp2d22 cytochrome P450, family 2, subfamily d, polypeptide 22 15 -4.3 
Cyp4a12 cytochrome P450, family 4, subfamily a, polypeptide 12a 6qE3 -71.4 
Cyp4f13 cytochrome P450, family 4, subfamily f, polypeptide 13 2qE1 -3.7 
Cyp7b1 cytochrome P450, family 7, subfamily b, polypeptide 1 19qC3 10.5 
D11ertd18e solute carrier family 46, m 1 2qB -7.3 
Dab2 disabled homolog 2  12qD2 4.8 
Dbf4 DBF4 homolog  11qC 4.1 
Dcn decorin 10qC3 13.2 
Dcxr dicarbonyl L-xylulose reductase 13qA5 -14.1 
Ddit4 DNA-damage-inducible transcript 4 1qC1.1 -3.6 
Dgka diacylglycerol kinase, alpha 2qE3 -6.7 
Dos downstream of Stk11 10qD3 -4.6 
Dusp6 dual specificity phosphatase 6 14qD3 -3.9 
Dyrk3 dual-specificity tyrosine--phosphorylation regulated kinase 3 4qB3 -2.7 
E130306d19RIK RIKEN cDNA E130306D19 gene 4 3.6 
Ednra endothelin receptor type B 7qB1 24.0 
Eno3 enolase 3, beta muscle 5qF -3.0 
Ephx1 epoxide hydrolase 1, microsomal 4qA3 -4.4 
Ercc5 excision repair cross-complementing rodent repair deficiency,  10qC1 -3.2 
Etv4 ets variant gene 4  11qB4 -3.4 
Fez1 fasciculation and elongation protein zeta 1  2qA1 -4.6 
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 Table 5.  Differentially expressed genes between consecutive transformative stages  
170:245 gene definition cytoband fold change 
Fibp fibroblast growth factor  intracellular binding protein 2qH1 -5.5 
Fignl1 fidgetin-like 1 11qA1 2.8 
Foxd1 forkhead box D1 13 6.9 
Foxm1 forkhead box M1 6qF3 3.5 
Fst follistatin 13 -8.8 
Galntl4 polypeptide N-acetylgalactosaminyltransferase-like 4 10qC1 -8.1 
Ganc glucosidase, alpha; neutral C 2qH3 -3.1 
Gcnt2 glucosaminyl  transferase 2, I-branching enzyme 17qA3.3 -2.8 
Gdf15 growth differentiation factor 15 15qD1 -8.2 
Grem1 gremlin 1 7qB1 -18.5 
Gspt2 G1 to S phase transition 2 12qC1 -32.9 
Gsta4 glutathione S-transferase, mu 2 18qE3 -6.6 
H2afz H2A histone family, m Z 3qG3 2.6 
Hes6 hairy and enhancer of split 6  1 -3.3 
Hist1h1c histone cluster 1, H1d 13 -3.6 
Hist1h2ad histone cluster 1, H2ad 13qA3.1 3.5 
Hist1h2ag histone cluster 1, H2ag 13 4.2 
Hist1h2bc histone cluster 1, H2bc 11qB3 -3.1 
Hist1h3a histone cluster 1, H3a 5qB1 6.0 
Hist1h3d histone cluster 1, H2ad 11qB1.3 3.9 
Hist1h3e histone cluster 1, H3e 13qA3.1 4.6 
Hist1h4f histone cluster 1, H4d 13qA3.1 3.3 
Hist2h2aa1 histone cluster 2, H2aa1 17qA3.3 -6.1 
Hist2h2ab histone cluster 2, H2ab 11qE2 3.9 
Hmgb2 high mobility group box 2 7qF3 4.6 
Hmgn2 high mobility group nucleosomal binding domain 2 4qD3 3.0 
Hmox1 heme oxygenase  1 7qA3 -3.7 
Hoxb7 homeobox B7 5qG2 -2.9 
Hs3st3a1 heparan sulfate  3-O-sulfotransferase 3A1 5qB1 -3.2 
Hsd3b7 hydroxy-delta-5-steroid dehydrogenase 11qD -4.0 
Htatip2 HIV-1 tat interactive protein 2, homolog  6qG1 -5.8 
Idb1 inhibitor of DNA binding 1 17qB1 -2.6 
Igf1 insulin-like growth factor 1 2qC1.1 9.4 
Igf2bp2 insulin-like growth factor 2 mRNA binding protein 2 5qC3.1 -14.8 
Igfbp2 insulin-like growth factor binding protein 2 1qG2 -2.6 
Il11 interleukin 11 11qC -14.3 
Ilvbl ilvB -like 12qA3 -3.1 
Immp2l IMP2 inner mitochondrial membrane peptidase-like  9qE3.3 -3.6 
Ing1l inhibitor of growth family, m 2 8B2 2.6 
Iqgap3 IQ motif containing GTPase activating protein 3 19qA 4.6 
Irs2 insulin receptor substrate 2 11qB3 12.5 
Itga3 integrin alpha 3 4qE2 -3.4 
Jam4 immunoglobulin superfamily, m 5 6qD1 -2.7 
Kif2c kinesin family m 2C 4qD1 3.1 
Kif4 kinesin family m 4 6qE3 3.9 
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 Table 5.  Differentially expressed genes between consecutive transformative stages  
170:245 gene definition cytoband fold change 
Klra18 killer cell lectin-like receptor, subfamily A, m 18 11qE1 4.5 
Klra4 killer cell lectin-like receptor, subfamily A, m 4 6qF3 5.3 
Kntc1 kinetochore associated 1 5qF 3.2 
Krt1-18 keratin 18 15qE1 -3.0 
Lbh limb-bud and heart 13qD1 -2.8 
Lims2 LIM and senescent cell antigen like domains 2 16qC3.3 -8.0 
Lin54 lin-54 homolog  5qE4 3.1 
Llglh2 Mus musculus lethal giant larvae homolog 2  11E2 -4.3 
Loc381795 11qC 9.6 
Lrrfip1 leucine rich repeat  interacting protein 1 1 -3.5 
Ly6a lymphocyte antigen 6 complex, locus A 10qB4 4.6 
Mapkapk3 mitogen-activated protein kinase-activated protein kinase 3 17qA2 -4.0 
Mdm2 transformed mouse 3T3 cell double minute 2 2qA3 -7.1 
Mgc25972 4qD1 -53.5 
Mgmt O-6-methylguanine-DNA methyltransferase 11qB1.3 -7.0 
Mocos molybdenum cofactor sulfurase 18 -3.1 
Msc musculin 1qA3 6.6 
Myo7a myosin VIIA 16qA1 3.2 
Ncapd2 non-SMC condensin I complex, subunit D2 6qF3 2.8 
Ndc80 NDC80 homolog, kinetochore complex component  18qD3 3.4 
Ndg2 coiled-coil-helix-coiled-coil-helix domain containing 10 3qF1 -27.4 
Ndn necdin 15qD3 -3.9 
Nid1 nidogen 1 13 -22.8 
Nppa natriuretic peptide precursor type A 4 -5.1 
Nppb natriuretic peptide precursor type B 11qC -9.5 
Oact1 membrane bound O-acyltransferase domain containing 1 13 3.3 
Oasl2 2'-5' oligoadenylate synthetase-like 2 17qA3.3 17.7 
Ogn osteoglycin 15qB2 13.1 
Otx1 orthodenticle homolog 1  9qA4 5.8 
Palmd palmdelphin 12qA1.1 18.1 
Pbxip1 pre-B-cell leukemia transcription factor interacting protein 1 3qF1 -4.2 
Pde4dip phosphodiesterase 4D interacting protein  2qA3 -5.3 
Phf17 PHD finger protein 17 11qB1.3 3.7 
Phlda3 pleckstrin homology-like domain, family A, m 3 17qE1.1 -4.8 
Pi4k2b phosphatidylinositol 4-kinase type 2 beta 17qB1 3.2 
Pkn2 protein kinase N2 3qH1 2.8 
Plk1 polo-like kinase 1  3qH2 4.3 
Plk4 polo-like kinase 4  3 3.5 
Pole polymerase , epsilon 5qF 3.4 
Prc1 protein regulator of cytokinesis 1 7qD3 2.8 
Prdx4 peroxiredoxin 4 XqF3 3.2 
Prss19 kallikrein related-peptidase 8 16qB2 -37.5 
Psen2 presenilin 2 6qB3 -3.7 
Rab27a RAB27A, m RAS oncogene family 14qD3 -8.7 
Rab6b RAB6B, m RAS oncogene family XqA4 -4.5 
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Table 5.  Differentially expressed genes between consecutive transformative stages 
170:245 gene definition cytoband fold change 
Rasl11a RAS-like, family 11, m A 5qG3 7.1 
Rbmx RNA binding motif protein, X chromosome 16qA3 3.4 
Reprimo reprimo, TP53 dependent G2 arrest mediator candidate 7qA1 -3.6 
Rgs10 regulator of G-protein signalling 10 9qB 3.5 
Rutbc1 small G protein signaling modulator 2 11 -6.0 
Scin scinderin 16qA1 -10.8 
Sdsl serine dehydratase-like 5qC3.1 -15.2 
Serpinb6b serine  peptidase inhibitor, clade B, m 6b 4qB3 10.8 
Slc19a2 solute carrier family 19 , m 2 1 -5.6 
Slc24a3 solute carrier family 24 , m 3 2qG1 3.3 
Slc25a1 solute carrier family 25 , m 1 11qA3.1 -2.5 
Slc7a3 solute carrier family 7 , m 3 12qC2 -3.6 
Slc7a4 solute carrier family 7 , m 4 19qB -5.2 
Slco1a5 solute carrier organic anion transporter family, m 1a5 6qG2 5.4 
Slco2a1 solute carrier organic anion transporter family, m 2a1 7qF3 -3.5 
Sprr2g small proline-rich protein 2K 2qH1 5.1 
Srpx2 sushi-repeat-containing protein, X-linked 2 7qB4 11.3 
Ssx2ip synovial sarcoma, X breakpoint 2 interacting protein 3qH2 2.7 
Stk6 aurora kinase A 2 3.4 
Stmn1 stathmin 1 4 3.4 
Tagln transgelin 9 -5.2 
Timp3 tissue inhibitor of metalloproteinase 3 10 -3.0 
Tle6 transducin-like enhancer of split 6, homolog of Drosophila E 11qA1 -4.6 
Tmem141 transmembrane protein 141 1qG2 -3.3 
Tmem150 transmembrane protein 150A 7qE3 -3.3 
Tmem205 transmembrane protein 205 9A3 -3.8 
Tmem53 transmembrane protein 53 11qD -3.6 
Tob1 transducer of ErbB-21 12qD2 -5.0 
Trp53inp1 transformation related protein 53 inducible nuclear protein 1 5qG2 -20.1 
Tspyl3 TSPY-like 3 XqA7.1 -6.0 
Tyms thymidylate synthase 5qB1 3.4 
Tyms-ps thymidylate synthase, pseudogene 10qC1 2.6 
Unc13b unc-13 homolog B 7qF1 -7.3 
Vgf VGF nerve growth factor inducible 6qE3 -87.4 
Vkorc1l1 vitamin K epoxide reductase complex, subunit 1-like 1 5qG1.3 3.2 
Vps25 vacuolar protein sorting 25 11qE2 -3.4 
Wig1 zinc finger matrin type 3 3 -4.0 
Wisp2 WNT1 inducible signaling pathway protein 2 15qE1 22.2 
Wnt7a wingless-related MMTV integration site 7A 6 -5.5 
Zfp365 zinc finger protein 365 17qB1 -6.2 
 
 

Table 5.  Differentially expressed genes between consecutive transformative stages 

245:450 gene definition location change 
0610006i08RIK transmembrane protein 223 19qA 3.2 
1200013b22RIK NUAK family, SNF1-like kinase, 2 1qE4 2.9 
2310047c17RIK AHNAK nucleoprotein  19 2.8 
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Table 5.  Differentially expressed genes between consecutive transformative stages 

245:450 gene definition location change 
2310067e08RIK endonuclease domain containing 1 9qA1 2.7 
2610001e17RIK coiled-coil domain containing 80 16 2.8 
2810003c17RIK allograft inflammatory factor 1-like 2qB 2.9 
4930422j18RIK splA/ryanodine receptor domain and SOCS box containing 1 4qE2 3.3 
9130213b05RIK prostate androgen-regulated mucin-like protein 1 5 6.1 
A230050p20RIK RIKEN cDNA A230050P20 gene 9qA3 5.8 
Aa467197 expressed sequence AA467197 2qE5 -26.4 
Adh7 alcohol dehydrogenase 7 , mu or sigma polypeptide 3qG3 -43.7 
Agrn agrin 4 3.4 
Aqp5 aquaporin 5 15qF1 -8.7 
Avpi1 arginine vasopressin-induced 1 19qC3 -4.0 
Bc056929 doublecortin-like kinase 3 9qF3 18.9 
Bok BCL2-related ovarian killer protein 1 5.4 
Bst2 bone marrow stromal cell antigen 2 8qB3.3 3.0 
Btbd3 BTB  domain containing 3 2 3.1 
Calr calreticulin 8qC3 -3.0 
Camk2n1 calcium/calmodulin-dependent protein kinase II inhibitor 1 4qD3 2.7 
Cd59a CD59a antigen 2qE2 6.4 
Cdh16 cadherin 16 8 5.9 
Cds1 CHK2 checkpoint homolog  5qE4 5.5 
Cish cytokine inducible SH2-containing protein 9 3.3 
Clca4 chloride channel calcium activated 1 3qH2 6.8 
Col1a1 collagen, type I, alpha 1 11 -162.6 
Col4a1 collagen, type IV, alpha 1 8qA1.1 31.2 
Col4a2 collagen, type IV, alpha 2 8qA1.1 16.3 
Col6a1 collagen, type VI, alpha 1 10 -3.2 
Col6a2 collagen, type VI, alpha 2 10qC1 -8.7 
Crip2 cysteine rich protein 2 12qF1 7.8 
Ctsh cathepsin H 9qE3.1 9.7 
Cxadr coxsackie virus and adenovirus receptor 16qC3.1 3.1 
Cxcl1 chemokine  ligand 1 5qE1 -2.6 
Cyp51 cytochrome P450, family 51 5 -3.5 
Cyp7b1 cytochrome P450, family 7, subfamily b, polypeptide 1 3 -2.7 
D430044g18RIK SH3 domain and tetratricopeptide repeats 2 18 3.0 
Dap islet amyloid polypeptide 15qB2 -3.2 
Dcn decorin 10 2.5 
Ddit4 DNA-damage-inducible transcript 4 10qB4 -3.9 
Dhrs6 3-hydroxybutyrate dehydrogenase, type 2 3qG3 -4.4 
Ednra endothelin receptor type B 14 -2.5 
Enpp5 ectonucleotide pyrophosphatase/phosphodiesterase 5 17qB3 2.8 
Etv4 ets variant gene 4  11 -4.2 
F2rl1 coagulation factor II  receptor-like 1 13qD1 2.9 
Fdps farnesyl diphosphate synthetase 3 -3.0 
Figf c-fos induced growth factor XqF5 -10.4 
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 Table 5.  Differentially expressed genes between consecutive transformative stages  

245:450 gene definition location change 
Fkbp11 FK506 binding protein 11 15 -4.3 
Flrt3 fibronectin leucine rich transmembrane protein 3 2qF3 3.2 
Gadd45g growth arrest and DNA-damage-inducible 45 gamma 13qA5 3.6 
Gdf15 growth differentiation factor 15 8qB3.3 7.7 
Gp38 podoplanin 4 2.8 
Gpx3 glutathione peroxidase 3 11qB1.3 4.0 
Hist1h1c histone cluster 1, H1d 13qA3.1 2.9 
Hspb1 heat shock protein 1 5 2.6 
Igf2bp2 insulin-like growth factor 2 mRNA binding protein 2 16qB1 -9.1 
Igf2bp3 insulin-like growth factor 2 mRNA binding protein 3 6qB2.3 -11.1 
Igfbp2 insulin-like growth factor binding protein 2 1qC3 3.9 
Impact imprinted and ancient 18 2.5 
Kcnk1 potassium channel, subfamily K, member 1 8qE2 22.2 
Klra4 killer cell lectin-like receptor, subfamily A, member 4 6qF3 -2.6 
Lsp1 lymphocyte specific 1 7qF5 -4.0 
Lss lanosterol synthase 10 -2.6 
Ly6a lymphocyte antigen 6 complex, locus A 15qD3 -3.7 
Manea mannosidase, endo-alpha 4qA3 2.7 
Mcc mutated in colorectal cancers 18qB3 3.0 
Mglap matrix Gla protein 6 -379.7 
Mgst2 microsomal glutathione S-transferase 2 3 -23.5 
Mmp2 matrix metallopeptidase 2 8 -9.6 
Mt1 metallothionein 1 8qC5 4.7 
Mvd mevalonate  decarboxylase 8qE1 -4.7 
Nbl1 neuroblastoma, suppression of tumorigenicity 1 4qD3 4.6 
Ndn necdin 7 3.6 
Neu1 neuraminidase 1 17 3.6 
Nipsnap1 4-NPP domain and non-neuronal SNAP25-like protein homolog 1  11 2.6 
Nnmt nicotinamide N-methyltransferase 9qA5.3 3.5 
Npr2 natriuretic peptide receptor 2 4 5.5 
Npr3 natriuretic peptide receptor 3 15qA1 3.9 
Nrn1 neuritin 1 13qA3.3 -5.3 
Nup210 IQ motif and Sec7 domain 1 6qD1 5.0 
Orf63 open reading frame 63 16qC3.3 7.1 
Pcolce procollagen C-endopeptidase enhancer protein 5 -10.0 
Pdgfb platelet derived growth factor, B polypeptide 15 5.4 
Plekhf2 pleckstrin homology domain containing, family F  member 2 4qA1 3.0 
Plk2 polo-like kinase 2  13qD2.2 2.6 
Ppbp pro-platelet basic protein 5qE1 -11.6 
Prkcdbp protein kinase C, delta binding protein 7qE3 -2.7 
Pvrl2 poliovirus receptor-related 2 7qA3 4.5 
Rasl11b RAS-like, family 11, member B 5 17.1 
Rasl12 RAS-like, family 12 9qC 8.7 
Slpi secretory leukocyte peptidase inhibitor 2qH3 -33.1 
Sprr2g small proline-rich protein 2K 3qF1 -4.2 
Sqle squalene epoxidase 15 -4.0 
Stc2 stanniocalcin 2 11 3.0 
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 Table 5.  Differentially expressed genes between consecutive transformative stages  

245:450 gene definition location change 
Tacstd2 tumor-associated calcium signal transducer 2 6 8.0 
Tagln transgelin 9 11.2 
Tgfbi transforming growth factor, beta induced 13qB1 -3.7 
Tinagl 4qD2.2 4.5 
Tnfaip3 tumor necrosis factor, alpha-induced protein 3 10qA3 3.3 
Twist2 twist homolog 2  1 -8.8 
Ugcg UDP-glucose ceramide glucosyltransferase 4qB3 2.6 
Wfs1 Wolfram syndrome 1 homolog  5 3.3 

 
 
450:528 definition location change 
Aqp1  aquaporin 1  6qB3 3.3 
Arc  activity regulated cytoskeletal-associated protein  15qD3 -3.0 
Bc056929  doublecortin-like kinase 3  9qF3 2.9 
C3  complement component 3 17E1.3 7.1 
Cdh16  cadherin 16  8qD3 3.5 
Cdo1  cysteine dioxygenase 1, cytosolic  18qC 12.3 
Clip4 CAP-GLY domain containing linker protein family, m 4 17qE2 4.7 
Col4a1  procollagen, type IV, alpha 1  8qA1.1 3.4 
Col4a2  collagen, type IV, alpha 2  8qA1.1 2.7 
Ctsh  cathepsin H  9qE3.1 5.5 
Dcn  decorin  10qC3 3.0 
Enpp2  ectonucleotide pyrophosphatase/phosphodiesterase 2  15qD1 -5.4 
Fmo1  flavin containing monooxygenase 1  1qH2.1 3.4 
Gap43  growth associated protein 43  16qB4 -7.8 
Gdf15  growth differentiation factor 15  8qB3.3 2.9 
Gpx3  glutathione peroxidase 3 , transcript variant 2 11qB1.3 2.8 
Gsta4  glutathione S-transferase, alpha 4  9qE1 3.6 
Inmt  indolethylamine N-methyltransferase  6qB3 9.9 
Kcnk1  potassium channel, subfamily K, m 1  8qE2 9.6 
Ndn  necdin  7qC -20.2 
Nid2  nidogen 2  14qA3 2.8 
Osmr  oncostatin M receptor  15qA1 2.8 
Prelp  proline arginine-rich end leucine-rich repeat  1qE4 6.1 
Rasl11a  RAS-like, family 11, m A  5qG3 3.4 
Scara5  scavenger receptor class A, m 5   14qD1 3.6 
Sdc3  syndecan 3  4qD2.3 -3.3 
Slc7a11  solute carrier family 7, m 11  3qC 2.7 
Trib3  tribbles homolog 3   2qG3 3.9 
Tspan8  tetraspanin 8 10D2 8.2 
Wisp2  WNT1 inducible signaling pathway protein 2  2qH3 3.8 

 
Table 5.  Gene description, location, and fold change for genes with differential expression of mRNA transcript abundance by pair 

wise SAM analysis Total RNA was extracted from biological triplicates of each stage and analyzed on Illumina MouseRef-8 v2.0 

expression bead chips.  Gene analysis by paired comparisons of consecutive time points was performed on genes with significant 

signal elevation over background p >0.1, exceeding 3x background ( >420, 11,817 genes), and yielded 317 genes with differential 

expression where p<0.05 and fold change >2.5.  Cytoband information and gene name obtained from Illumina Mouse Ref-8 v2.0 

annotation file or secondarily from Mouse Genome Informatics (MGI, http://www.informatics.jax.org/).  
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Table 6.  Functional enrichment analysis for genes discovered by paired comparisons 
 

170:245  A  B  C  D  E  F 
Category  BP_ALL  SPPIR  SPPIR  BP_ALL  SPPIR  BP_ALL 
GO:Number  278.000  22402  22403 

Term  mitotic cell cycle  cytoplasm  mitosis 
cell cycle 
process  cell division  cell cycle phase 

Count  16  43  10  21  12  15 
%  0.09  0.25  0.06  0.12  0.07  0.09 
PValue  5.40E‐09  3.10E‐07  1.14E‐06  1.36E‐07  9.82E‐07  3.20E‐07 
List Total  128  143  143  128  143  128 
Pop Hits  260  2169  121  596  192  306 
Pop Total  14977  16241  16241  14977  16241  14977 
Fold Enrichment  7.2  2.3  9.4  4.1  7.1  5.7 
Benjamini  2.80E‐05  2.69E‐04  3.30E‐04  3.53E‐04  4.25E‐04  5.54E‐04 
FDR  1.03E‐05  4.82E‐04  1.77E‐03  2.59E‐04  1.52E‐03  6.11E‐04 
Genes  Ndc80  Dusp6  Kntc1  Ak1  Kntc1  Ndc80 

 Ccng1   Sprr2g   Birc5   Ndc80   Birc5   Bub1b 
 Bub1b   Pkn2   Ccnb1   Ccng1   Prc1   Ccng1 
 Cdca8   Kif2c   Ndc80   Bub1b   Ccnb1   Cdca8 
 Ncapd2   Ak1   Ccng1   Trp53inp1   Ndc80   Ncapd2 
 Cdca3   Prc1   Bub1b   Cdca8   Ccng1   Cdca3 
 Stmn1   Myo7a   Cdca8   Ncapd2   Bub1b   Kntc1 
 Kntc1   Bub1b   Ncapd2   Cdca3   Cdca8   Gspt2 
 Gspt2   Trp53inp1   Cdca3   Stmn1   Ncapd2   Birc5 
 Birc5   Ndn   Cdc20   Cxcl1   Ccnd1   Plk1 
 Plk1   Cdca8      Kntc1   Cdca3   Ccnb1 
 Ccnb1   Ncapd2   Gspt2   Cdc20   Htatip2 
 Htatip2   Tagln   Birc5      Dbf4 
 Dbf4   Cdca3   Plk1   Mdm2 
 Mdm2   Kntc1   Ccnb1   Cdc20 
 Cdc20   Birc5   Dbf4    

    Gsta4   Htatip2 
 Ckb   Cdkn1a 
 Cask   Ccnd1 

 Htatip2   Mdm2 
 Pbxip1   Cdc20 
 Fez1    

1810009n02RIK 
 5830467p10RIK 

 Aldh1a1 
 Pde4dip 
 Lrrfip1 
 Stmn1 
 Prdx4 
 Ddit4 
 Vps25 
 Igf2bp2 
 Ccnb1 
 Ccbl1 

 Mapkapk3 
 Aplp1 
 Cdkn1a 
 Unc13b 
 Scin 

 Mdm2 
 Eno3 
 Bzrap1 
 Pi4k2b 
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Table 6.  Functional enrichment analysis for genes discovered by paired comparisons 
170:245  G  H  I  J  K  L  M  N 
Category  BP_ALL  BP_ALL  BP_ALL  BP_ALL  BP_ALL  BP_ALL  BP_ALL  BP_ALL 

GO:Number  87  32502  7067  7049  48856  74  51726  30154 

Term 
M phase of mitotic 

cell cycle 

develop‐
mental 
process 

mitosis  cell cycle 
anatomical 
structure 

development 

regulation of 
progression 
cell cycle 

regulation of 
cell cycle 

cell differen‐
tiation 

Count  12  51  12  22  39  15  15  36 
%  0.07  0.29  0.07  0.13  0.22  0.09  0.09  0.21 

PValue  7.42E‐07  5.23E‐07  7.04E‐07  1.02E‐06  1.64E‐06  3.15E‐06  3.46E‐06  2.73E‐06 
List Total  128  128  128  128  128  128  128  128 
Pop Hits  193  3028  192  740  2058  371  374  1847 
Pop Total  14977  14977  14977  14977  14977  14977  14977  14977 

Fold Enrichment  7.3  2.0  7.3  3.5  2.2  4.7  4.7  2.3 
Benjamini  6.42E‐04  6.79E‐04  7.31E‐04  7.53E‐04  1.06E‐03  1.48E‐03  1.49E‐03  1.58E‐03 

FDR  1.42E‐03  1.00E‐03  1.35E‐03  1.94E‐03  3.13E‐03  6.02E‐03  6.60E‐03  5.22E‐03 
Genes  KNTC1  HOXB7  KNTC1  AK1  HOXB7  AK1  AK1  SPRR2G 

Birc5  Ndn  Birc5  Prc1  Sprr2g  Bub1b  Bub1b  Fst 
Plk1  Nppb  Plk1  Ndc80  Fst  Ccng1  Ccng1  Myo7a 
Ccnb1  Foxm1  Ccnb1  Ccng1  Myo7a  Trp53inp1  Trp53inp1  Bub1b 
Ndc80  Tagln  Ndc80  Bub1b  Foxd1  Cxcl1  Cxcl1  Trp53inp1 
Ccng1  Hes6  Ccng1  Trp53inp1  Nppb  Kntc1  Kntc1  Foxd1 
Bub1b  Dab2  Bub1b  Cdca8  Ndn  Gspt2  Gspt2  Ndn 
Htatip2  Dyrk3  Htatip2  Ncapd2  Tagln  Birc5  Birc5  Foxm1 
Cdca8  Birc5  Cdca8  Cdca3  Foxm1  Plk1  Plk1  Dab2 
Ncapd2  H2afz  Ncapd2  Stmn1  Igfbp2  Ccnb1  Ccnb1  Hes6 
Cdca3  Crip2  Cdca3  Cxcl1  Otx1  Htatip2  Htatip2  Birc5 
Cdc20  Htatip2  Cdc20  Kntc1  Dab2  Dbf4  Dbf4  Dyrk3 

Grem1  Gspt2  Hes6  Cdkn1a  Cdkn1a  Phf17 
Nid1  Birc5  Dyrk3  Ccnd1  Ccnd1  Etv4 
Irs2  Plk1  Crip2  Mdm2  Mdm2  Htatip2 

Stmn1  Ccnb1  Etv4  Itga3 
Psen2  Dbf4  Htatip2  Ccnd1 
Aplp1  Htatip2  Itga3  Il11 
Scin  Cdkn1a  Grem1  Wnt7a 
Tob1  Ccnd1  Il11  Igf1 
Clu  Mdm2  Wnt7a  Col18a1 

Sprr2g  Cdc20  Wisp2  Aldh1a1 
Fst  Igf1  Rab27a 

Bub1b  Col18a1  Stmn1 
Myo7a  Aldh1a1  Bmp3 

Trp53inp1  Nid1  Psen2 
Foxd1  Irs2  Ednra 
Igfbp2  Stmn1  Ddit4 
Otx1  Bmp3  Mgmt 
Phf17  Psen2  Atp6v0a1 
Etv4  Ednra  Arhgap24 
Itga3  Atp6v0a1  Cdkn1a 
Ccnd1  Arhgap24  Aplp1 
Il11  Aplp1  Scin 

Wnt7a  Scin  Tob1 

Wisp2  Palmd  Clu 

Igf1  Tob1  Scin 
Col18a1  Vgf  Tob1 
Aldh1a1  Nppa  Vgf 
Rab27a  Nppa 
Bmp3 
Ednra 
Ddit4 
Mgmt 

Atp6v0a1 
Cdkn1a 
Arhgap24 
Ercc5 
Palmd 
Vgf 
Nppa 
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Table 6.  Functional Annotation for Significant Pairwise Gene Analysis 
170:245  O  P  Q  R  S  T  U 
Category  BP_ALL  BP_ALL  BP_ALL  SPPIR  BP_ALL  BP_ALL  BP_ALL 
GO:Number  48869  51301  279  48731  7275  48513 

Term 

cellular 
developmental 

process  cell division  M phase  cell cycle 
system 

development 

multicellular 
organismal 
development 

organ 
development 

Count  36  12  12  14  33  39  29 
%  0.21  0.07  0.07  0.08  0.19  0.22  0.17 
PValue  2.73E‐06  7.81E‐06  1.14E‐05  1.98E‐05  1.73E‐05  1.71E‐05  1.64E‐05 
List Total  128  128  128  143  128  128  128 
Pop Hits  1847  246  256  366  1749  2270  1416 
Pop Total  14977  14977  14977  16241  14977  14977  14977 
Fold Enrichment  2.3  5.7  5.5  4.3  2.2  2.0  2.4 
Benjamini  1.58E‐03  3.11E‐03  4.21E‐03  4.28E‐03  5.27E‐03  5.54E‐03  5.68E‐03 
FDR  5.22E‐03  1.49E‐02  2.17E‐02  3.07E‐02  3.31E‐02  3.27E‐02  3.14E‐02 
Genes  Sprr2g  Kntc1  Kntc1  Prc1  Hoxb7  Hoxb7  Hoxb7 

 Fst   Birc5   Birc5   Ndc80   Sprr2g   Sprr2g   Sprr2g 
 Myo7a   Prc1   Plk1   Bub1b   Fst   Fst   Fst 
 Bub1b   Ccnb1   Ccnb1   Ccng1   Myo7a   Myo7a   Myo7a 

 Trp53inp1   Ndc80   Ndc80   Cdca8   Ndn   Foxd1   Foxd1 
 Foxd1   Ccng1   Ccng1   Ncapd2   Foxd1   Nppb   Foxm1 
 Ndn   Bub1b   Bub1b   Cdca3   Foxm1   Ndn   Tagln 

 Foxm1   Cdca8   Htatip2   Kntc1   Tagln   Tagln   Otx1 
 Dab2   Ncapd2   Cdca8   Birc5   Hes6   Foxm1   Dyrk3 
 Hes6   Ccnd1   Ncapd2   Ccnb1   Otx1   Otx1   Crip2 
 Birc5   Cdca3   Cdca3   Htatip2   Dyrk3   Dab2   Htatip2 
 Dyrk3   Cdc20   Cdc20   Cdkn1a   Crip2   Hes6   Etv4 
 Phf17         Ccnd1   Etv4   Birc5   Grem1 
 Etv4   Cdc20   Htatip2   Dyrk3   Il11 

 Htatip2      Itga3   H2afz   Wnt7a 
 Itga3   Grem1   Crip2   Igf1 
 Ccnd1   Il11   Etv4   Col18a1 
 Il11   Wnt7a   Htatip2   Aldh1a1 

 Wnt7a   Igf1   Itga3   Nid1 
 Igf1   Col18a1   Grem1   Irs2 

 Col18a1   Aldh1a1   Il11   Bmp3 
 Aldh1a1   Nid1   Wnt7a   Psen2 
 Rab27a   Irs2   Igf1   Ednra 
 Stmn1   Stmn1   Col18a1   Atp6v0a1 
 Bmp3   Bmp3   Aldh1a1   Arhgap24 
 Psen2   Psen2   Nid1   Aplp1 
 Ednra   Ednra   Irs2   Scin 
 Ddit4   Atp6v0a1   Stmn1   Tob1 
 Mgmt   Arhgap24   Bmp3   Vgf 

 Atp6v0a1   Aplp1   Psen2    
 Arhgap24   Scin   Ednra 
 Cdkn1a   Tob1   Atp6v0a1 
 Aplp1   Vgf   Arhgap24 
 Scin      Aplp1 
 Tob1   Ercc5 
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Table 6.  Functional Annotation for Significant Pairwise Gene Analysis 
245:450 A B C D E F 

Category CC_ALL CC_ALL CC_ALL SPPIR SPPIR SPPIR 
Number 5615 44421 5576 - - - 

Term extracellular space 
extracellular region 

part extracellular region signal Secreted triple helix 
Count 35 35 36 36 21 4 
PValue 6.79E-12 3.84E-11 6.82E-11 2.24E-09 9.83E-07 9.46E-06 

List Total 76 76 76 81 81 81 
Pop Hits 2064 2195 2375 2551 1200 9 
Pop Total 15845 15845 15845 16241 16241 16241 

Fold Enrichment 3.5 3.3 3.2 2.8 3.5 89.1 
Benjamini 5.32E-09 1.50E-08 1.78E-08 1.94E-06 4.26E-04 1.64E-03 

FDR 1.04E-08 5.88E-08 1.04E-07 3.47E-06 1.52E-03 1.47E-02 

Genes Cd59a Cd59a Cd59a Cd59a Enpp5 Col4a1 
 Tacstd2  Tacstd2  Tacstd2  Tinagl  Tinagl  Col1a1 

 Nbl1  Nbl1  Nbl1  Nbl1  Nbl1  Col6a1 
 Col4a2  Col4a2  Col4a2  Col4a2  Col6a1  Col4a2 

 Figf  Figf  Figf  F2rl1  Col4a2 
 Col6a2  Col6a2  Col6a2  Figf  Figf 
 Igfbp2  Igfbp2  Igfbp2  Col6a2  Col6a2 
 Npr3  Npr3  Npr3  Nup210  Cxadr 
 Cxcl1  Cxcl1  Cxcl1  Cxadr  Igfbp2 
 Gdf15  Gdf15  Gdf15  Igfbp2  Cxcl1 
 Pcolce  Pcolce  Pcolce  Npr3  Slpi 

 Dcn  Dcn  Dcn  Cxcl1  Stc2 
 Cyp7b1  Cyp7b1  Cyp7b1  Gdf15  Gdf15 
 Aqp5  Aqp5  Aqp5  Pcolce  Dcn 

 Col1a1  Col1a1  Col1a1  Dcn  Pcolce 
 Calr  Calr  Calr  Col1a1  Gpx3 
 Tgfbi  Tgfbi  Ppbp  Calr  Col4a1 
 Pdgfb  Pdgfb  Tgfbi  Tgfbi  Col1a1 
 Enpp5  Enpp5  Pdgfb  Npr2  Tgfbi 
 Pvrl2  Pvrl2  Enpp5  Pdgfb  Pdgfb 

 Manea  Manea  Pvrl2  Enpp5  Mmp2 
 Col6a1  Col6a1  Manea  Pvrl2   
 Fkbp11  Fkbp11  Col6a1  Col6a1 
 Clca4  Clca4  Fkbp11  Fkbp11 
 Slpi  Slpi  Clca4  Slpi 
 Stc2  Stc2  Slpi  Stc2 
 Ugcg  Ugcg  Stc2  Ednra 
 Sqle  Sqle  Ugcg  Nrn1 
 Gpx3  Gpx3  Sqle  Cdh16 

 Col4a1  Col4a1  Gpx3  Gpx3 
 Agrn  Agrn  Col4a1  Col4a1 

 Cyp51  Cyp51  Agrn  Ly6a 
 Ctsh  Ctsh  Cyp51  Ctsh 

 Mmp2  Mmp2  Ctsh  Mmp2 
 9130213b05RIK  9130213b05RIK  Mmp2  Neu1 

     9130213b05RIK  9130213b05RIK 
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Table 6.  Functional Annotation for Significant Pairwise Gene Analysis 
245:450 G H I J K L M N 

SPPIR SPPIR SPPIR SPPIR CC_ALL SPPIR CC_ALL CC_ALL CC_ALL 
- - - - 5581 - 5578 31012 44420 

cell 
binding hydroxyproline glycoprotein 

extracellular 
matrix collagen collagen 

proteinaceous 
extracellular 

matrix 
extracellular 

matrix 
extracellular 
matrix part 

4 4 32 8 5 6 9 9 6 
9.46E-06 6.33E-06 1.84E-05 4.15E-05 3.03E-05 6.51E-05 7.51E-05 9.05E-05 1.21E-04 

81 81 81 81 76 81 76 76 76 
9 8 3012 190 38 86 295 303 102 

16241 16241 16241 16241 15845 16241 15845 15845 15845 
89.1 100.3 2.1 8.4 27.4 14.0 6.4 6.2 12.3 

1.64E-03 1.83E-03 2.65E-03 5.13E-03 5.91E-03 7.04E-03 1.17E-02 1.18E-02 1.35E-02 
1.47E-02 9.82E-03 2.85E-02 6.43E-02 4.63E-02 1.01E-01 1.15E-01 1.38E-01 1.85E-01 

Col4a1 Col4a1 Cd59a Dcn Col4a1 Pcolce Dcn Dcn Col4a1 
 Col6a1  col6a1  tinagl  col4a1  col1a1  col4a1  col4a1  col4a1  col1a1 
 Col4a2  col4a2  col4a2  col1a1  col6a1  col1a1  col1a1  col1a1  col6a1 
 Col6a2  col6a2  f2rl1  col6a1  col4a2  col6a1  col6a1  col6a1  agrn 

   Figf  Col4a2  Col6a2  Col4a2  Agrn  Agrn  Col4a2 
 Col6a2  Col6a2  Col6a2  Col4a2  Col4a2  Col6a2 
 Nup210  Tgfbi  Col6a2  Col6a2   
 Cxadr  Mmp2  Tgfbi  Tgfbi 
 Npr3  Mmp2  Mmp2 

 Gdf15 
 Pcolce 

 Dcn 
 Aqp5 

 Col1a1 
 Bst2 
 Npr2 
 Pdgfb 
 Enpp5 
 Pvrl2 

 Col6a1 
 Stc2 

 Kcnk1 
 Ednra 
 Nrn1 

 Cdh16 
 Col4a1 
 Ly6a 
 Ctsh 

 Mmp2 
 Neu1 
 Klra4 

 9130213b05RIK 
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Table 6.  Functional Annotation for Significant Pairwise Gene Analysis 
245:450 O P Q R S T U 

SPPIR SPPIR SPPIR MF_ALL SPPIR BP_ALL BP_ALL BP_ALL 
- - - 5201 - 6694 7275 48513 

heterotrim
er 

structural 
protein 

hydroxylation 
extracellular 

matrix structural 
constituent 

cell adhesion 
steroid 

biosynthetic 
process 

multicellular 
organismal 

development 

organ 
development 

4 6 5 5 7 71 39 29 
1.66E-04 1.92E-04 1.65E-04 2.29E-04 7.08E-03 7.30E+01 1.71E-05 1.64E-05 

81 81 81 79 81 14977 128 128 
22 108 56 63 345 14.44819603 2270 1416 

16241 16241 16241 16377 16241 1 14977 14977 
36.5 11.1 17.9 16.5 4.1 0.5 2.0 2.4 

1.43E-02 1.50E-02 1.58E-02 2.67E-01 4.01E-01 CYP7B1 5.54E-03 5.68E-03 
2.57E-01 2.97E-01 2.56E-01 4.07E-01 1.04E+01  CYP51 3.27E-02 3.14E-02 

Col1a1 Sprr2g Col4a1 Col4a1 Cdh16  mvd Hoxb7 Hoxb7 
 Col6a1  col4a1  col1a1  col1a1  pvrl2  fdps  sprr2g  sprr2g 
 Col4a2  col1a1  col6a1  col6a1  col6a1  lss  fst  fst 
 Col6a2  col6a1  col4a2  col4a2  col6a2  ndn  myo7a  myo7a 

   Col4a2  Col6a2  Col6a2  Tgfbi  Foxd1  Foxd1  Foxd1 
 Col6a2  Cxadr  Foxm1  Nppb  Foxm1 

 Klra4  Tagln  Ndn  Tagln 
 Hes6  Tagln  Otx1 
 Otx1  Foxm1  Dyrk3 
 Dyrk3  Otx1  Crip2 
 Crip2  Dab2  Htatip2 
 Etv4  Hes6  Etv4 

 Htatip2  Birc5  Grem1 
 Itga3  Dyrk3  Il11 

 Grem1  H2afz  Wnt7a 
 Il11  Crip2  Igf1 

 Wnt7a  Etv4  Col18a1 
 Igf1  Htatip2  Aldh1a1 

 Col18a1  Itga3  Nid1 
 Aldh1a1  Grem1  Irs2 

 Nid1  Il11  Bmp3 
 Irs2  Wnt7a  Psen2 

 Stmn1  Igf1  Ednra 
 Bmp3  Col18a1  Atp6v0a1 
 Psen2  Aldh1a1  Arhgap24 
 Ednra  Nid1  Aplp1 

 Atp6v0a1  Irs2  Scin 
 Arhgap24  Stmn1  Tob1 

 Aplp1  Bmp3  Vgf 
 Scin  Psen2   
 Tob1  Ednra 
 Vgf  Atp6v0a1 

 Arhgap24 
   Aplp1 

 Ercc5 
 Scin 
 Vgf 

 Nppa 
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Table 6.  Functional annotation for significant pair-wise gene analysis 
450:528 A B C D E F G 

Category SPPIR SPPIR SPPIR CC_ALL CC_ALL CC_ALL SPPIR 

GO:Number - - - 44421 5615 5576 - 

Term glycoprotein Secreted signal 
extracellular 
region part 

extracellular 
space 

extracellular 
region 

extracellul
ar matrix 

Count 16 10 14 13 13 13 5 

% 0.59 0.37 0.52 0.48 0.48 0.48 0.19 

p-value 9.89E-06 6.29E-05 4.72E-05 7.07E-05 3.80E-05 1.54E-04 2.22E-04 

List Total 27 27 27 27 27 27 27 

Pop Hits 3012 1200 2551 2195 2064 2375 190 

Pop Total 16241 16241 16241 15845 15845 15845 16241 

Fold Enrichment 3.2 5.0 3.3 3.5 3.7 3.2 15.8 

Benjamini 8.53E-03 1.80E-02 2.03E-02 2.73E-02 2.94E-02 3.96E-02 4.69E-02 

FDR 1.53E-02 9.75E-02 7.32E-02 1.08E-01 5.82E-02 2.36E-01 3.43E-01 

Genes Wisp2 Wisp2 Wisp2 Wisp2 Wisp2 Wisp2 Dcn 
 Sdc3  Gdf15  Sdc3  Enpp2  Enpp2  Enpp2  Col4a1 

 Enpp2  Dcn  Enpp2  Col4a2  Col4a2  Col4a2  Prelp 
 Col4a2  Gpx3  Col4a2  C3  C3  C3  Col4a2 

 C3  Col4a1  C3  Osmr  Osmr  Osmr  Nid2 
 Osmr  Prelp  Osmr  Gdf15  Gdf15  Gdf15   
 Kcnk1  Enpp2  Gdf15  Dcn  Dcn  Dcn 
 Scara5  Col4a2  Dcn  Gpx3  Gpx3  Gpx3 
 Gdf15  C3  Cdh16  Col4a1  Col4a1  Col4a1 
 Dcn  Nid2  Gpx3  Prelp  Prelp  Prelp 

 Cdh16    Col4a1  Nid2  Nid2  Nid2 
 Col4a1  Prelp  Ctsh  Ctsh  Ctsh 
 Prelp  Nid2  Aqp1  Aqp1  Aqp1 
 Nid2  Ctsh       
 Ctsh   
 Aqp1 

 

 

Table 6.  Functional enrichment analyses and biological significance of differentially expressed genes 

from paired comparisons of consecutive time points in spontaneous transformation.  Differentially 

expressed genes were determined using paired comparisons analysis at a significance level p <0.05.  All 

available categories offered through NIH DAVID were tested for significance based on the observed 

versus expected number of genes in each category.  Uniprot keywords (SP_PIR), Kyoto Encyclopedia of 

Genes and Genomes pathways (KEGG), Gene Ontologies biological processes (BP), molecular function 

(MF) and cellular componentry (CC) were determined at a depth of three annotation levels and requiring 

a minimum of five genes per annotation where p <0.05 after correction for multiple hypothesis testing by 

randomization. 
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3.7.2   Identifying putative oncogenes or tumor suppressor genes 

 As oncogene up regulation or tumor suppressor down regulation has been suggested as 

drivers for tumorigenesis, we cross referenced the early, mid, and late lists of genes to 

determine which are differentially expressed across at least three of the four key transformative 

stages.  Area proportional Venn diagrams show the intersection of these gene lists, and their 

relation to the findings from the longitudinal time course analysis (Figure 10A).  Considering the 

possible 18,000 genes referenced on the array, relatively few genes belonged to each category.  

Sixteen genes were found in the intersection of early: middle (170:245:450=16), and two were 

found in the intersection of intermediate: late (245:450:528=2).  A single gene, Necdin (NDN), 

was the only gene shared in the intersection of all three sets (170:245:450:528=1).  STEM 

analysis places NDN, a gene expressed in terminally differentiated neurons in cluster 6.  NDN 

fits a profile of continuous down regulation (1, -1.92, -3.56, -6.32).  Together, the intersection of 

the combined significant gene lists from the SAM pair wise analysis included 135 SAM genes U 

599 STEM genes (Figure 10A).  The first in the series of numbers reflects the fold change from 

the upper term in the column header, the second number for the lower term (Figure 10).  
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3.8  Whole chromosome copy number change versus total mRNA transcript abundance by 

chromosome.    

By design, this study afforded the unique opportunity to compare the relationship 

between changes in chromosome copy number, and changed gene expression level for that 

chromosome.  Additionally, we evaluated if this relationship was different in early transformation 

compared to late stages.  Some chromosomes underwent large changes in copy number while 

others remained relatively static (chromosomes 12, 1), we sought to define the relationship (if 

any) between chromosome copy numbers and average mRNA transcript from that 

chromosome.  The relationship between chromosome gains and transcriptome gains and how 

these values change from one stage to the next (Figure 11 A-D).  When expressed as fold 

change from one transitional stage to the next, correlation and significance decreased with time 

across key transformative stages.  The correlation from day 170 cells to day 245 cells was the 

highest, but still only accounted for one-third of the variability between whole chromosome and 

transcriptome (170:245 R2=0.12, correlation=0.35, b=0.27).  Comparing fold change for days 

245:450 and 450:529, the correlation became progressively lower (day 245:450, R2=0.06, 

correlation=0.24, slope=0.23; day 450:528 R2=0.02, correlation=0.14, and slope=0.08).  These 

findings suggest that the shift away from high-fidelity genome transfer and system homogeneity 

is related to the reduced correlation between chromosome: transcriptome. 
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3.9 Tumorigenicity of select key transformative stages in vivo 

  Cells from two key transitional stages (day 245 versus 450) were selected based on 

karyotype and in vitro phenotypic differences for in vivo tumorigenicity evaluation in both 

syngeneic C57BL6 and nod-SCID-gamma immune compromised mice (Table 1, 7).  Data for 

the 16 syngeneic mice and 4 nod-SCID-gamma mice are found in Table 7.  Each C57BL6 

mouse was injected in 3 sites.  As intraperitoneal tumor formation was usually apparent only at 

the latest stages, injections on the left and right back served as sentinel markers to detect tumor 

progression.   Day 245 cells were very weakly tumorigenic, resulting in a single 1.5 mm  low 

grade subcutaneous nodule at day 70 in 1/7 C57BL6 mice (Table 7, Figure 12A).  Day 528 cells 

were significantly more efficient at tumor formation and formed subcutaneous tumors in all (7/7) 

C57BL6 mice, totaling 10/14 positive subcutaneous sites.  These tumors were of higher grade, 

larger size, and were more invasive than the single tumor found to arise from day 245 cells 

(Table 7, Figure 12B).  Day 528 cells in syngeneic BL6 mice resulted in one of two phenotypes.  

Either multiple diffusively invasive sites were established on the peritoneal fat with atypical 

nuclei (arrows, C), or immunoreactive B-cell clusters were found approximating the 

intraperitoneal fat (not shown).  Isolated intraperitoneal injections in nod-SCID-gamma mice 

gave rise to diffuse nodular intraperitoneal tumors in 2/2 mice.  ID8 cells served as positive 

controls in both types of mice and revealed a similar phenotype to day 528 cells in nearly all 

measures, with exception of slightly increased subcutaneous tumor size in ID8 cells (Table 7, 

image not shown).  Negative control mice injected with matrigel vehicle occasionally showed a 

~1mm acellular collagen deposit at the site of the subcutaneous injection resembling scar tissue 

(image not shown).  
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3.10 Characterizing the extent of karyotype heterogeneity in late stage, Brca1Δ5–13 and 

harvested tumor cells. 

MOSEC with Brca1Δ5–13 had very high H' and H values despite only 50 days in primary 

culture and 25 days in culture post AdCre recombination.  When comparing the karyotype 

profile of the injected day 528 cells to each of the harvested tumors, many features of the 

karyotype were altered between the in vitro and in vivo karyotype profiles (Figure 13).  The 

Shannon index increases significantly in both Tumor 1 and Tumor 2 over the level of the 

injected cells.  The 4;3 clonal translocation seen in the day 528 cells is present in both tumors at 

approximately the same frequency (day 528: 32%, Tumor 1: 32%, Tumor 2: 42%).  Tumors 1 

and 2 additionally had a very high frequency of translocations that were not seen previously in 

this cell line at 4;5 ~95% of tumor cells, and 5;4 in ~90% of tumor cells.  Additionally, several 

shared minute chromosomes were seen in these tumor cell lines that contributed to their 

increased variability.  NCCA frequency was much greater (essentially 100% of cells contained 

more than one non-clonal aberration).  Chromosome rearrangements were significantly more 

complex in tumor 2, involving several chromosomes in most single aberrations.  Tumor 2 had an 

increased whole chromosome karyotype heterogeneity by Shannon Index H' compared to tumor 

1, (Figure 13, Table 2). 
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3.11 DNA copy number analyses for variability, large aberrations, and whole chromosome 

counts using array competitive genomic hybridization.   

  To determine the reliability of SKY karyotype analyses, whole genome DNA was 

extracted from frozen cell stocks grown for 48-72 hours in culture.  Cells at transformative 

stages 245, 450, 528 were harvested as entire cell populations (control, left (Figure 14 A-C)), or 

mitotic enriched following 12 hour colcemid treatment  0.1 μg/ μl and mitotic shake off (mitotic, 

Figure 14, right (A-C)).  Using PopLowess normalization procedures, data were clustered by k-

means and normalized based on the largest single copy number population that could be 

tracked.  This is more appropriate for cancer genomes where chromosome copy number is 

known to vary from one chromosome to the next.  Data were centered by the median of the 

largest cluster to account for count variability among chromosomes and to allow for universal 

zeroing.  These regions were checked against SKY data for chromosome aberrations and 

values within one standard deviation of the median for each cluster (colored points) and those 

that were outside one standard deviation (black points).  Colored plots were used to compare 

counts between control and mitotic enriched fractions (>0.9).  The number of probes on each 

chromosome with copy number >1 SD ouside the cluster median increased with days in culture 

for both control and mitotic fractions p=0.032 as was less in mitotic fractions compared to 

controls. This is thought to relate to synchronization of ploidy of these cells as colcemid has 

been shown to induce DNA synthesis as well as metaphase arrest.  As the SKY data was 

gathered using the same colcemid treatment, comparisons were made between the cytogenetic 

data and the mitotic aCGH populations.  Derivative features that were clonal in spectral 

karyotype data (CCAs) and also found in the colcemid treated mitotic fraction where a second 

cluster spans more than 20% of a single chromosome (aCGH (CCA)).  The aCGH plots 

normalized by PopLowess show copy number expansion on within a chromosome where more 

than one color is assigned within a single chromosome.  Overlap between Poplowess and SKY 

data show agreement in copy number change for t 4;3 and for 11min (Figure 14D). f 
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Table 7.  In vivo tumorigenicity analyses of mouse ovarian surface epithelial cells  

Cell Type (days) 245 528 ID8 

Subcutaneous Tumors

C57BL6 Positive Mice * 1/ 7 7/ 7 2/ 2 

C57BL6 Positive Sites 1/ 14 10/ 14 2/ 4 

Tumor Size (mm) 1.5 11.1 (10.2-11.9) 9.7 (7, 13) 

Invasiveness 2/ 5 4.3 (3.7-4.9)/ 5 4.0 (3, 5)/ 5 

  

IP Tumors

C57BL6 Positive Mice 0/ 7  2/ 7  1/2  

Organ involvement - 3.5 2 

nod-SCID-gamma  IP Tumors 0/ 2 2/ 2 1/ 1 

Organ involvement - 4/ 10 4/ 10 

  

Total IP Positive Mice 0/9 4/9 * 2/ 3 

Average organ Involvement - 3.8 (3.3 - 4.3)/ 10 3/ 10 

Day 245 vs. day 528 vs. ID8 cells (100,000/ site) were injected into sixteen syngeneic C57BL6 mice and 
five nod-SCID-gamma mice at three sites (left and right subcutaneous flank and intraperitoneal).   

Summary data for are presented from gross and microscopic histopthology  analyses of tumors 
harvested 70 days post allograft injection of day 245, day 528, ID8, or vehicle alone. 

Invasiveness was scored by assigning 1 point for each of the following reported as mean (range):  

Subcutaneous scoring: dermis, subcutaneous fat, muscle, diffuse, necrotic (max= 5 each side).   

Intraperitoneal scoring: pancreas, liver, peritoneal fat, reproductive organs, lymph node, spleen, small 
intestine, large intestine, diaphragm, hemorrhagic ascites (max=10). 

*Significant between day 245 and day 528 cells by two-tailed Fisher’s exact test p <0.05 
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4. DISCUSSION 

4.1. Overview  

 The results of the current study emphasize the significance of karyotype heterogeneity in 

transformation and tumorigenesis.  Specifically, the influence of karyotype heterogeneity on 

generating genomic diversity that facilitates selection of cancer phenotypes and the differential 

effects of whole chromosome copy number change on gene expression during the key 

transformative stages of spontaneous tumorigenesis. Considering cancer cell populations to be 

complex-adaptive systems that are characterized integrative regulatory systems and by linear 

and non-linear genotype-phenotype relationships.  Therefore, multi-level analyses were 

performed longitudinally on data from whole genome microarrays, population karyotype profiles, 

and cell phenotype.  Variability of a sufficient magnitude to shift cell populations from 

homogeneous diploid cells to a mosaic of structural and numerical chromosome alterations 

reflects low-fidelity genome transfer that began well before the morphologic and behavioral 

change to the transformed phenotype.  Karyotype heterogeneity was quantified by an 

adaptation of the Shannon Index, and reached a maximum at day 528.  After only 50 days in 

culture, the parallel MOSEC line with conditional Brca1 inactivation had significantly greater 

population diversity than the spontaneously transforming MOSEC at day 528.  This 

demonstrates how cancer-associated genes can link micro-evolutionary gene-level change to 

macro-evolutionary change in karyotype that rapidly facilitates the generation of unique 

genomes within a cell population.  Day 528 cells with heterogeneous karyotypes were 

tumorigenic and rapidly shifted from the karyotype of the injected line to population karyotypes 

of increased variability in response to the shift from in vitro to in vivo environments.  Multiple 

unique fold change profiles characterized the differential expression of ~600 differentially 

expressed genes throughout spontaneous transformation.  Functional enrichment for these 

genes was significant for DNA/ nucleosome / chromosome related, and cholesterol synthesis/ 

microsome related categories.  The multi-level longitudinal data presented support genomic 
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instability as a means for increasing population diversity by increasing  cell-to-cell variations in 

karyotype.  Thus, genomic instability would also be permissive for rapid adaptation of 

populaitons of late stage transformed cells.  Together, these findings support a genome-

centered evolutionary framework for cancer progression that emphasizes cell-to-cell genomic 

variability as the basis for macro-evolutionary selection and rapid phenotypic switching by whole 

chromosome copy number change.  These data demonstrate the significance, methodologies 

and rationale for quantifying karyotype heterogeneity in transformation and tumorigenesis. A 

foundation is provided for incorporating these concepts and techniques into clinical and 

research based applications for improved cancer detection and treatment strategies. 

4.2. Adapting the Mouse ovarian surface epithelial cell model 

 Similar to previous studies using the mouse ovarian surface epithelial cell (MOSEC) model, 

we have identified four key transformative stages based on the appearance and disappearance 

of key phenotypic and behavioral characteristics during spontaneous transformation [54-55, 63].  

Several groups have utilized the MOSEC model with attention to a specific hypothesis or with 

emphasis on a certain feature of the transformation process.  These include but are not limited 

to studies of specific processes (cytoskeletal remodeling [55]), selected gene modifiers of 

transformation and tumorigenicity (Brca1, p53, and Rb [48]), and pathway modification by 

specific compounds (alpha-lipoic acid and NF-KB pathway) [100].  Others have taken a 

genome-wide approach including array based studies that compare genome-wide aCGH 

analysis of DNA copy number with microarray data for gene expression to compare an early 

stage MOSEC line and with harvested MOSEC tumor lines [57, 61].  Rather than focus on a 

specific pathway or stage, the current study provides a global assessment of genome content 

and gene regulation in relation to cell phenotype throughout the transformation process.  The 

levels studied range from cell behavior to measurements of karyotype heterogeneity for cell 

populations at key transformative stages and include cell phenotype assays, mRNA transcript 

abundance, DNA copy number change, the characterization of structural and numerical 
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chromosome change, and the in assessment of tumorigenic capabilities and tumor 

histopathology.  The design allows for the comparison of a single variable over time as well as 

an integrative analysis of the interactions between variables.  The current study design is unique 

in this regard and additionally in its characterization of cell populations while preserving 

resolution at the level of the individual cell. 

Several specific changes to the experimental design and methodologies were made to 

previous publications using the MOSEC model with the following rationale:  previous studies 

using  batched surface epithelial cells from more than ten mice to initiate the primary culture 

demonstrated significant karyotype heterogeneity ranging from 2n – 6n at the earliest time point 

in this study [55].  The culture was initiated only with cells from a single mouse ovary to 

minimize the possibility that early stage heterogeneity could be attributed to the batching of cells 

from many different mice.  The key transitional stages of MOSEC transformation have been well 

defined in previous studies [55] and emerged with predictable sequence in the current study, 

albeit with a longer timeline.  MOSEC displayed slow contact-inhibited growth with low invasion 

and proliferation capabilities until day 170 and gradually progressed to acquire the capacity for 

rapid growth, increased migration, invasion with upward stratification, and three- dimensional 

branching from day 245 onwards.  These acquired traits are well established hallmarks of the 

malignant phenotype and, as previously reported, the current MOSEC transformation shows 

that a strong correlation exists between these behaviors in vitro and tumorigenic potential in 

vivo.  Therefore, the genome-wide multi-variate assessment performed is useful not only for 

time course analysis, but also to evaluate changes in a pair-wise fashion associated with the 

acquisition of key characteristics leading to the tumorigenic phenotype.   

 Additional noteworthy differences should additionally be highlighted between our SKY data 

collection and reporting that extend beyond current standards for cancer cytogenetics.  These 

differences are important because, in addition to reporting the aneusomies found in high 

frequency in a cell population, this study emphasizes the quantification of low frequency events 
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and variability from cell to cell.  Therefore, high quality metaphases for SKY analysis were 

selected with minimal overlap and clearly defined borders for each metaphase.  This minimizes 

the possibility that artifactual numerical change or improper chromosome assignment would 

occur.  Additionally, to thoroughly quantify karyotypic variability of cell populations for 

comparison across different ploidy levels, a high number of complete metaphases (n=50) are 

counted and reported. 

 

4.3. Stress Induced Senescence as an Incomplete Mechanism of Tumor Suppression 

Even when the primary culture was initiated from a single mouse ovary, day <40 cells 

displayed chromosome copy number change as well as nuclear and cytogenetic morphological 

abnormalities. These were visualized in images of DAPI stained and SKY painted interphase 

nuclei and in metaphase spreads.  In this earliest evaluation of karyotype change, aneuploidy 

ranged from loss of a single chromosome, doubling of the entire genome with multiple 

chromosome fragments and functional defects in extreme cases.  Based on the senescence 

and karyotype data, we can speculate as to possible causes of this early aneuploidy as it relates 

to ovarian cancer in humans.  The incessant ovulation hypothesis is the dominant theory for 

ovarian cancer causation in humans and suggests that repeated rupture-repair cycles 

eventually lead to transformation and increased ovarian cancer incidence.  According to this 

hypothesis, successive bouts of apoptosis and regenerative repair of OSE cells at the ovulation 

site induces genetic instability via oxidative DNA damage, over expression of p53 at the rupture 

site and anti-apoptotic Bcl-2 at the rupture margin, and replication of cells at the margin and 

their migration to the wound [101].  Survival and subsequent expansion of OSE cells with 

unrepaired genomic damage and heightened survival potential is theorized to predispose the 

epithelial cell layer to tumorigenesis [28].  The early genomic instability seen in the current study 

cannot be due to the inherent MOSEC instability caused by repeated rupture-repair cycles.  This 

is because the first estrus cycle of the mouse occurs at 4-6 weeks of age [102], so harvested 
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cells from six-week-old mice possibly could have been exposed only to a single cycle of follicle 

rupture and repair.  Therefore, the genomic instability seen in the MOSEC model reflects growth 

and regeneration occurring as a function of days in culture.  As the cells are passaged before 

reaching confluency and therefore continually divide. 

4.2  Cell Senescence 

Cellular stress likely accounts for early aneuploidy and is evidenced by the majority of 

the cell population (>95%) undergoing senescence at day <40.  Cellular senescence has been 

correlated with aneuploidy [103], and is thought to function as a tumor suppressive mechanism 

in genomically unstable cells [104-106].  The findings that the small minority of dividing cells 

display aneuploidy with nuclear and cytogenetic abnormalities suggests that, as a potential 

tumor suppressive mechanism, the halting of genomically unstable cells through cellular 

senescence is an incomplete mechanism of tumor suppression.  Another possibility recently 

described is the escape of senescence by neosis.  Briefly, this process involves the formation of 

several daughter cells with viable genomes from giant polyploid cells via nuclear budding and 

asymmetric cytokenesis [107].   The finding that the day 170 culture contained almost no 

senescent cells suggests incompatibility of the senescent cell phenotype with MOSEC 

tumorigenesis.  Possible mechanisms for this shift include senescence escape mechanisms 

such as neosis, or progressive replacement due to differential attachment, replication, or death 

of the senescent versus mitotic cell fractions.  Aneuploidy was present in ~32% of cells by small 

alterations in whole chromosome copy number change and by the prevalence of linked 

chromosomes.  Interestingly, among 50 metaphases, tetra-ploid genomes such as that detected 

in the day <40 cells were not seen.  This suggests that doubling of the genome in the early 

stages of transformation is linked to reduced viability of cells with 4n genomes. 

The increased frequency of murine cell immortalization is attributed to the substantial 

increase in telomere length in the mouse compared to the human (40-60 Kb, 10 Kb 

respectively).  Additionally, mice have constitutively active telomerase activity in contrast with 
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the re-activated telomerase activity responsible for transformation of human cells [108-109].  

The short time in culture before the majority of MOSEC became senescent combined with the 

properties of constitutively active telomerase and longer primary telomeres reduces significantly 

the possibility of telomere associated senescence.  The increased stability and maintenance of 

rodent telomeres could account for spontaneous transformation and tumorigenesis in these 

lines.  However, the ability of the MOSEC to overcome high frequency senescence based arrest 

suggests that differential entry of human versus mouse cells into senescence is not responsible 

for their contrasting abilities to immortalize.  By comparison, this suggests that telomere induced 

senescence may be sufficient to prevent tumorigenesis; whereas stress induced senescence 

may be a less tightly controlled process.  Some evidence suggests that different patterns of 

telomerase activity may be linked to the differing cytogenetic profiles of mouse versus human 

epithelial tumor cells.  For example, the frequency of clonal non-reciprocal translocations is 

greatly increased in telomerase deficient compared to control Trp53 mutant mice, reaching at 

least one translocation in each chromosome after only a short time in culture [110].  The 

acrocentric mouse chromosome morphology may therefore be differentially subject to specific 

aberration patterns compared to human chromosomes.  The mouse chromosome centromere is 

almost directly adjacent to one telomere reducing the physical space in which translocation 

events might occur by one half [111].  Despite these differences in telomere structure and 

function, the fact that high-degrees of genomic instability are reported in ovarian cancer cell 

lines and tumors from both species [87] supports the validity of this model. 

 

4.3 Quantifying Genomic Instability in Cellular Transformation 

 The application of SKY analysis to early stage cells provides insight into a number of 

questions regarding early transformative events.  Several types of nuclear and cytogenetic 

abnormalities were detected in both interphase and mitotic cells, which implicates structural and 

functional pathologies as early contributors to the transformation process.  Evidence for both 
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gene and chromosome based causes of cellular transformation has been provided by 

experiments in which genes or chromosomes and the rate and frequency of cellular 

transformation that follows are tracked [112-115].  Unlike other published data, the current 

methodologies did not alter the cellular chromosomal content or any specific gene(s).  Rather, to 

more closely mimic the majority of human cancers, we observed the process of spontaneous 

transformation from the normal diploid phenotype over time.  Due to the large body of evidence  

associating multiple checkpoint  [116-118] and mitotic associated proteins [119] with 

chromosomal instability and aneuploidy, all of which may contribute to chromosomal instability 

in various systems, we sought to determine the effect and extent of early instability rather than 

determine its specific cause.  Evidence for mitotic instability are provided by the images of 

abnormal nuclear morphologies [120] such as the blebs and nuclear bridges seen in day <40 

cells.  Cells with the ability to pass through the colcemid induced pro-metaphase block and 

proceed through mitosis in the presence of colcemid without spindle fibers [99] are identified by 

two separated centromeres per chromosome. The chromosomes then decondense coalesce 

and form micronucleated restitution nucleus. Cells in colcemid-telophase or forming a restitution 

nucleus have been described as those shown here with two separated centromeres per 

chromosome.  This suggests that even in this early stage, the cells have lost the ability to 

maintain arrest at the spindle checkpoint.  Other abnormalities include rare cells with highly 

aneuploid karyotypes, multiple breaks and structural abnormalities.  The fate of these cells is 

not known, but it has been suggested that for the most part, their viability is reduced compared 

to diploid cells [121].  This could possibly account for the reduced frequency of day 170 

polyploid cells. 

 Early in the study of cancer, the visualization and experimental manipulation of 

chromosomes led scientists to postulate that misdistribution of chromosomes might cause tumor 

development [112].  Since this time, it has become clear that many tumors are not only 

aneuploid, but also have acquired mutations in oncogenes and tumor suppressor genes, fuelling 
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the debate over whether genomic instability is the cause or consequence of cellular 

transformation [122-125].  Independent of the cause for cellular transformation, the implications 

of genetic heterogeneity as the basis for increased variability, selection, and genetic adaptation 

are generally underestimated by most in the field [126].  Therefore, to track the effects of early 

genomic instability during spontaneous transformation of near-normal diploid cells, population 

based karyotype analysis was performed at each key transformative stage.  The level of cell-to-

cell genomic heterogeneity is believed to provide a snapshot of chromosomal instability and 

allows the assessment of cancer progression from an evolutionary perspective by tracking 

patterns of change at the level of the entire karyotype [127-130].  These data are the first to 

evaluate karyotype heterogeneity in a longitudinal model that begins from a near-normal 

relatively homogeneous karyotype where chromosomal instability has not been specifically 

induced by gene or chromosome manipulation.   

The mosaic of cellular karyotypes common to solid tumors and blast-phase hematologic 

neoplasms are often ignored or filtered to emphasize clonality within a population of cells.  

Despite the emphasis on pattern detection inherent in most data collection and interpretation, 

the true biological variability resulting from low-fidelity genome transfer remains apparent in 

many data sets [131].  As high-throughput molecular technologies allow us to explore the 

genome at finer molecular resolution, emphasis is placed on filtering and normalizing data so 

that signal detection is maximized at the expense of variability.  In this way, most investigators 

hope to find common, clinically-relevant mutations in cancer causing genes, over the variable 

background of intra-tumor genomic noise.  Rather than filter or minimize the effect of such 

genomic variability, our approach for collecting and reporting genomic data adopts concepts 

from information theory and calculates variability on the basis of whole chromosome copy 

number data, translocations, minute chromosomes, deletions and structural defects.  Using 

these inclusive criteria, a striking difference is seen in the karyotype variability between day 170 

cells and later stage cells, between allografted cell lines and harvested tumors, and between 
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spontaneously transformed versus Brca1 conditional knockout MOSEC.  The karyograph format 

provides a clear picture of cell-to-cell variability for comparison with the variability induced by the 

conditional inactivation of Brca1 in this model. 

Quantification of genomic heterogeneity over time provides significant challenges.  

Nevertheless, we sought to characterize and quantify genomic heterogeneity throughout 

spontaneous transformation, with the concept that heritable variability at the level of the entire 

genome system is the basis for evolutionary selection.  Though not intuitive in the context of 

linear outcome prediction, we have chosen to incorporate the reporting of cell-to-cell genomic 

variation at multiple levels into our experimental design, as we believe it to be inextricably linked 

to the emergent properties of cancer cell populations.  We encourage the development of high 

throughput technologies that comparatively will provide cellular resolution rather than molecular 

resolution.  Population profiling of transformation, tumorigenesis, drug resistance, and variable 

responses to therapy will be more easily employed.  We have provided a basis for quantifying 

karyotypic heterogeneity in cancer cell populations which is intuitive and describes the extent of 

genomic variability by whole chromosome, derivative chromosome, and as a total population 

index.  Taken together, these data demonstrate the significance, methodologies and rationale 

for quantifying karyotype heterogeneity in transformation, tumorigenesis, and clinical cancers, 

with hope towards incorporation of these features into prognostic and therapeutic applications. 

 The mechanism leading to such genomic mosaicism is, for most clinical cancers, not as 

significant as the magnitude and extent of this phenomenon.  Cell-to-cell variability within a 

population of cells in culture, or from clinical tumors has been estimated in a number of ways by 

different groups [72].  Some algorithms for quantifying chromosomal or karyotype instability are 

based on the mechanisms by which they are thought to arise.  Most support two sets of 

calculations for the contributions of whole versus translocations or marker chromosomes.  

Recently, in an set of papers by Castro et. al., the concept for quantifying inter-tumor karyotype 

heterogeneity among data from the Mittleman database was put forth using concepts based on 
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Shannon Entropy [80].  By this measure, tumor heterogeneity among samples was paired with 

data from SEER and showed that lower diversity of total chromosome number across samples 

correlated with better survival statistics.  Additionally, the stochastic nature of chromosome 

change was shown by the relationship between global spread of numerical and structural 

chromosome abnormalities with sample number.  If chromosomal instability is a necessary and 

ongoing characteristic of solid tumors, continuing to increase sample size in search of recurrent 

patterns of derivative chromosomes linked with cancer phenotype tumors [132-138] seems 

illogical.  Independent of the mechanism, if random aberrations are produced at an increased 

rate and population size increases, some aberrations may appear more frequently if they confer 

a relative increase in fitness in that environment [125, 139]. 

 The clonal selection theory describes the dynamics of a population of cells that, after 

undergoing random mutations, environmental pressures eliminate the least viable genotypes. If 

we assume that viable mutant phenotypes are rare, the degree of karyotype heterogeneity 

would be expected to decrease over time [140].  Our data, most clearly shown by the 50-cell 

karyographs characterizing each transformative stage or condition, suggest that unique and 

viable mutant genotypes are much larger in number than previously expected.  By our measure, 

each of the fifty cells is unique by SKY analysis once it has diverged from the diploid genome, 

providing evidence for at least 50 different viable phenotypes per flask.  As the literature 

suggests, a significant amount of additional variability likely exists in each cell that is too small to 

be detected with SKY analysis [141].  Our SKY data show that more than half (25/50) of the 

karyotypes are unique even in the earliest stages of transformation.  When combining this 

finding with the concept that clinical tumors are detected when comprised of approximately 12 

billion cells, we suggest that change at many levels including the whole chromosome, derivative 

chromosome, indels, loss of heterozygosity, and base mutation contribute to clinical tumors in 

which each cell, by its genome, is most likely unique.  Although some may consider the 

measurement of genomic heterogeneity to be without clinical significance, we suggest that the 
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opposite may be true.  This is because the resulting mosaic of cellular genomes provides the 

large-scale variability by which different phenotypes can be selected by drug treatment, or can 

adapt to a new environment during metastasis.  By acknowledging the rate and magnitude of 

the heterogeneity formed in spontaneous versus gene-based transformation models (such as 

the conditional Brca1 conditional inactivation model), we demonstrate the necessity for 

measuring karyotype heterogeneity and stability of cancer cell lines as outcomes variables in a 

wide variety of cancer research projects.   These data suggest at least in the case of Brca1 

inactivation, this genetically induced model of cellular transformation is significantly different in 

terms of its ability to generate heterogeneity.  As the variability seen in our allografted cell line 

and in the work of others [142] affords cell populations the ability to readily undergo rapid 

phenotypic shift, it seems that karyotype data should be included in experimental design and 

data interpretation using unstable cell lines. 

The findings of a small Shannon Index value for chromosomes within the day 170 cells 

was not surprising considering  the small variation in count for each chromosome.  From day 

245 onwards, the increased cell-to cell variability as indicated by the rise in the Shannon Index 

for each chromosome and for summed whole and aberrant chromosomes within that transitional 

stage, suggests an extremely low fidelity process for genome transfer.  The small but significant 

reduction in Shannon Index values with the onset of several clonal chromosome translocations 

suggests decreased variability from the previous passages.  As a unique event occurring in the 

late stage cells, we conclude that cells with this t4;3 translocation most likely have descended 

from a common cell, and now account for ~30% of the cell population.  Interestingly, when these 

cells were isolated into subpopulations the variability of the remaining chromosomes was 

greater in cells with the 4;3 translocation than in those without, implying that selection may have 

occurred for this translocation, but low fidelity transfer of the remainder of the genome persisted. 

Clonal and sub-clonal evolutionary processes have been previously described in 

induced cellular transformation [143-145].  In the current model, karyotype change is tracked 
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beginning from a normal diploid cell as might occur in a typical cancer patient without an 

inherited aneusomy or known heritable gene linked to increased cancer risk.  In our 

spontaneous transformation model, cells demonstrated a weakly positive tumor phenotype after 

245 days, and displayed high-grade tumorigenesis in 100% of injected animals at day 528.  Our 

data support that by whole-genome analysis, clonal and sub-clonal evolutionary processes as 

described in the literature do not occur.  When chromosome copy number changes, data for 

derivative chromosomes, and phenotypic data are taken into account, the evidence for clonal 

and/or sub-clonal populations of cells is largely nonexistent.  However, when measuring 

clonality by emphasis on a single translocation and ignoring other variability, it appears ~30% of 

the day 450 cells may have originated from a common predecessor cell as marked by the 4;3 

translocation. Background heterogeneity of the cells with the 4;3 translocation was the same as 

those cells without the translocation, suggesting that this marker of clonality may be fairly 

insignificant on the background of genomic variability. 

 The reason why clonal expansion is more clearly defined in other models probably extends 

beyond simple differences in reporting methodologies.  Typically, induced transformation 

requires colonies to be picked that are all directly descended from a single cell.  The fastest 

growing are the most likely to be picked and, as the cells in that colony recently descended from 

one cell with the same genomic disruption leading to its increase growth rate is more likely to be 

clonal.  Other studies measure lower numbers of cells, typically only ~10 metaphase cells which 

are then subjected to pre-analysis filters to remove events with frequencies less than 20%.  The 

concept that heterogeneity in the current study is created by artifact is unlikely based on the 

uniformity of the day 170 cells and the consistency in median gains, losses, and distributions of 

specific chromosomes over time.  Few have studied karyotype change over time, but it has 

been suggested that following induced transformation and over 60 passages in culture, newly 

derived clones with “quazi-stable” karyotypes could be maintained in culture for 10 subsequent 

generations [146]. 
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4.5 Genomic variability in spontaneous versus genetically induced models for transformation 

By comparing the genomic mosaicism of MOSEC with conditional inactivation of Brca1 

(Brca1Δ5–13) at day 79 with spontaneously transformed MOSEC, we provide insight into some of 

the unexplained features of clinical and laboratory findings relating to ovarian cancers in 

patients with inherited BRCA1 mutations.  Previous attempts to transform human ovarian 

epithelial cells by similar means have failed to spontaneously generate tumorigenic cells.  

Therefore, we find the MOSEC model well suited to investigate the role of genomic instability in 

spontaneous transformation and tumorigenesis. 

Additionally we can shed some light on the confusion between genes as causative agents for 

cancer, and the difference between micro and karyotypic macro-scale evolutionary change.  

Among carriers of the BRCA1 mutation with family histories of breast and or ovarian cancer, the 

lifetime risk of developing ovarian cancer has been estimated to range from 11-66% [147-148].  

This six-fold spread in the range of ovarian cancer risk has been attributed to a number of 

environmental factors and detail regarding specific gene mutation.  The current findings of rapid 

and widespread genomic mosaicism shown by the Brca1Δ5–13 MOSEC suggest that 

environmental and other factors likely all contribute to promotion of the malignant phenotype by 

selection from a genomically heterogeneous cell population.  The data also may explain why, in 

contrast to sporadic disease, BRCA1-related familial ovarian cancers are more frequently 

multifocal, with genetically distinct clones involving multiple sites [149].  The inherent 

heterogeneity of these Brca1Δ5–13 cells gives rise to the possibility that certain karyotypes may 

be well matched for specific microenvironments or niches within the peritoneum in which the 

local environment would provide the basis for selection.  The findings that the Shannon Index 

for each chromosome in the Brca1Δ5–13 MOSEC was significantly elevated over the most 

variable of the MOSEC stages suggests that genetically distinct subtypes may arise more 

frequently and to more rapidly adapt to new environments (multifocal nature, drug resistance, 
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progression).  As a functional Brca1 protein is required for reliable DNA double strand break 

repair by homologous recombination, we expected increased non-homologous end joining 

events [150-151] to be marked by increased translocation frequencies.  Increased translocation 

frequencies were seen to some extent, but low numbers of translocations prevented thorough 

analysis.  This phenomenon may become more prominent with increased time in culture 

following conditional Brca1 inactivation.  The data suggest that a large increase in whole 

chromosome counts due to improper segregation events precedes the emergence of instability 

caused by translocation events.  It has been suggested that the gene expression profiles in 

sporadic ovarian cancers have been reported to fall into two categories that resemble the 

ovarian cancer gene expression from patients carrying either BRCA1 or BRCA2 mutations 

[152].  This seems to conflict with the early widespread heterogeneity documented in the 

Brca1Δ5–13 line, but may be resolved by the different selective pressures created by differing 

environments and clinical phenotypes of BRCA1 versus BRCA2 tumors compared to early 

stage cells in vitro that have a relatively homogeneous and constant cell culture environment.  

These data can be used as an example of how microevolution can facilitate and predict of the 

onset of macroevolution in certain types of cancer.  BRCA1 and likely other widely accepted 

oncogenes or tumor suppressor genes have profound and swift impact on genomic instability 

compared to spontaneously occurring transformation.  This demonstrates a link between micro-

evolutionary alteration in a single gene and the jump to macro-evolutionary large scale 

rearrangement of the entire cellular genome.  The current data support a theory for cancer 

causation by genetic alteration that occurs through widespread genomic instability.  This 

instability begins as early as day 40, far ahead of the emergence of specific traits of the cancer 

phenotype supposedly linked to growth or invasiveness.  Conditional inactivation of Brca1 in 

MOSEC in situ by AdCre recombination within the bursa results in the development of 

preneoplastic changes, such as hyperplasia, epithelial invaginations, and inclusion cysts but 

failed to yield epithelial ovarian cancer even after a one year follow up.  The lack of expression 
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of known human ovarian cancer genes suggests that BRCA1 mediated transformation may 

occur differently in mouse versus man.  Additionally, it is possible that the time was not sufficient 

for the pre-neoplastic changes to develop into tumors [48]. 

The findings that certain chromosome counts remained relatively stable (e.g. 

chromosome 1, 12), while others were highly unstable (e.g. chromosome 2, X) is noteworthy, 

but the mechanisms and significance of these findings is not well understood.  The differential 

variability of certain chromosomes could be related to an inherent stability of each chromosome 

in the segregation or selection process.  In this case, if the experiment were repeated, as in the 

Brca1 conditional knockout model, these may again emerge as most and least stable.  The 

second and more likely possibility is that an early random expansion or imbalance in copy 

number increases the likelihood of persistent or worsening change.  It is possible that the 

variability seen in chromosome count reflects the ability to regulate gene expression from genes 

on that chromosome.  This is supported by data from the X chromosome, which consistently 

displayed the greatest amount variability in whole chromosome copy number.  This hyper-

variability may relate to its ability to its ability to repress transcription from the entire 

chromosome as a Barr body, a phenomenon that is not appreciated when chromosomes are 

condensed at metaphase.  However, several studies have found that ovarian cancer cells lack a 

normal inactivated X chromosome (Xi) and manifest at least two active X chromosomes (Xa), 

suggesting a selection for multiple Xas that may be linked to over expression of X-linked genes 

[153-155].  These findings regarding dysregulation of heterochromatin at the X chromosome 

may mark a broad dysregulation of the nuclear hetero-chromatic compartment responsible for 

global perturbations of gene-expression promoting tumorigenesis. 

4.5  Array analyses for gene expression  

The majority of short time series expression data analyses do not utilize the scale and 

sequence information inherent in time-series data sets.  Some of the typically used methods for 

analysis are hierarchical clustering [156], k-means clustering [157], self-organizing maps [158], 
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and sets of paired comparisons [159].  It is important to understand that these commonly used 

methods do not test for differential expression based on event sequence, and so random 

permutation of the order of time points would not change the results of these analyses.  As 

phenotype data from the current study clearly suggest a progressive transformation over time, a 

more appropriate and robust method for time course data analysis was performed using 

extraction and analysis of differential gene expression (EDGE)  [92] coupled with time-course 

based cluster analysis with gene Ontologies using the short time series expression miner 

(STEM) [95] software.  Nearly 600 genes were identified and clustered by profile according to 

each gene’s fold-change pattern of significant differential expression over time.  This analysis 

was ideally suited for the sequential analysis of key transitional stages, as the time between key 

transitional stages was relevant to the accumulation of changes in cell phenotype, but time 

points were not equally spaced. 

4.5.1 Longitudinal Gene Expression Analysis Suggests that Six Hundred Genes and a Variety of 

Fold Change Profiles  Play a Role in Tumorigenesis 

 Tests for functional enrichment of the genes linked to each profile were significant for Gene 

Ontologies annotation categories in two of the eight profiles.  Differential expression in profile 2 

was characterized by increasing transcript abundance of ~3-4 fold (170:0; 245:3; 450:4; 528:3) 

and this profile was enriched in functional categories concerning chromatin, DNA packaging, 

conformational change, chromosome and nucleosome organization, RNA processing, 

macromolecular complex assembly and subunit and spliceosomal complexes.  This profile 

summary fits directly with the dramatic changes seen in chromosome copy number and 

transcription profiles throughout transformation and may be particularly relevant to trends in 

chromosome number and distribution as well as in karyotype heterogeneity and altered 

differential gene expression patterns over time.  The second significant profile (5) shows a trend 

of increasing transcript abundance across all transformative stages (fold change: 170:0; 245:1; 

450:2; 528:3).  This profile was significantly enriched for cholesterol biosynthetic and metabolic 
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processes and genes associated with microsomal and vesicular fractions.  A wide range of 

integral and lipid membrane associated protein types are contained within the microsomal and 

vesicular fractions including pores, channels, pumps, transporters, trans membrane receptors, 

and cell-adhesion proteins.  The functional enrichment of genes linked to cholesterol 

biosynthesis and metabolism support emerging evidence of off-target anticancer effects of 

commonly prescribed Statin drugs (HMG-CoA reductase inhibitors) [160].  By reducing available 

mevalonic acid, this class of drugs exerts pleiotropic effects including blockade of the G1-S 

transition effecting cell proliferation and on many essential cellular functions including 

differentiation, survival, and the regulation of cell shape and motility [161-162]. 

 Pair wise analysis using significance analysis of microarray (SAM) identified specific lists of 

differentially expressed genes for comparison with morphological and behavioral change.  The 

largest changes in mRNA transcript abundance occurred in the early transition (170:245), which 

parallels the largest shift in karyotype diversity and chromosome count.  The day 245:450 mid 

transition had relatively small changes in expression despite over 200 days of continuous 

culture.  Phenotypic change included the acquisition of a diffusively invasive phenotype and a 

large increase in cell  branching morphology in 3 dimensional culture.  Day 245 cells produced 

low-grade locally confined tumors at low frequency (1/14 sites).  Significant functional 

enrichment for GO categories, included categories relating to the extracellular space/ matrix, 

glycoprotein related cell signaling, and changes in cell binding and adhesion.  These gene 

expression array results are concordant with previous work by Roberts et. al. [55], who used 

immunohistochemistry on various MOSEC transformative stages and demonstrated alterations 

in focal adhesion complexes and cytoskeletal elements.  These categories for functional 

enrichment generally are well matched with changing MOSEC phenotype including increased 

growth capabilities, acquired focal invasiveness, and the loss of contact inhibited growth.  

Approximately half of the differentially expressed genes determined in each SAM pair wise 

analysis overlapped with genes detected using STEM time series analysis.  Genes in the null 
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set (Ф) are significant for that specific transitional stage, but are outside the time course 

analysis. As fold change cut offs were the same across both types of expression, Ф genes likely 

reflect the increased power to detect change following normalization only for that specific pair 

wise analysis. 

4.5.2 Driving genes in transformation as anti-cancer targets 

Due to the large numbers of studies attempting to find cancer causing genes through the 

high-throughput screening of large numbers of patient samples, we sought to determine the rate 

at which early up-regulated genes were detectable in the transformed late stage cells.  To 

identify these putative “driving genes” in transformation, the intersection of gene lists generated 

from SAM pair wise analyses were evaluated.  Three lists were generated that consisted of 

genes from the intersection of each paired comparison (170:245, 245:450, 450:528).  The 

number of differentially expressed genes on each pair-wise analysis list became smaller as 

transformation progressed.  This suggests that later stage samples are more closely related to 

each other than earlier stage samples.  Accordingly, genes found in the intersections of these 

were few in number (170:245=16; 245:4501=6; 450:528=2).  In fact, only a single gene, Necdin 

(NDN), met criteria for significant differential expression across the three paired comparisons.  

NDN shows current major associations with neuronal migration and the human disease Prader-

Wili Syndrome.  A lone entity among 600 genes, the role of Necdin in cellular transformation is 

developing and others report NDN as a target of P53 with a role in hematopoetic stem cell 

senescence.  Combined with evidence for NDN-mediated down regulation of p53 and other 

diverse roles for NDN in tumorigenesis, data from the current study provide further rationalle for 

continued investigation of NDN as a potential tumor suppressor gene [163]. 

 

4.6 Chromosome Copy Number Change Influences Gene Expression in Late Stage 

Tumorigenic Cells 
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 Karyograph and Shannon Index data provide qualitative and quantitative evidence for 

differential chromosome instability and karyotype heterogeneity across the key transitional 

stages.  The concept of, “gene-dosage effect” is familiar to most geneticists, as is the notion in 

cancer genomics that that gene-dosage might contribute to the malignant phenotype.  As of yet, 

gene regulation by this mechanism has not been evaluated across various transformative 

stages.  In the early transformative stages (170:245) chromosome count (5% per chromosome) 

is not related to mRNA transcript abundance (range: 3-8% per chromosome).  However, when 

this phenomenon is tracked over time, the strength of this relationship becomes less and less 

clear.  Fold change in chromosome copy number and mRNA transcript abundance are largely 

unrelated, reaching a minimum between 450:528.  Unlike our late transition findings between 

day 450:528, a close relationship between chromosome copy number and transcriptome has 

been reported in sub-clone derivatives of previously established cancer cell lines in culture 

[164].  Oppositely, in the case of chromosome gains on the background of a normal diploid 

karyotypes, such as human autosomal trisomies, dosage compensation for individual genes can 

be stage- and tissue-specific [84, 165-166].  The susceptibility of cells to gene dosage effect or 

their ability to compensate for altered gene dosage is mediated presumably by feedback at the 

level of transcription or mRNA stability; however, similar translational and post-translational 

effects might exist that would not be detected.  Gene dosage effect by whole chromosome 

count is not a feature of the late transitional stages of spontaneously transforming MOSEC 

(245:450:528), as chromosome copy number and gene expression are unrelated.  Subcloned 

MOSEC lines recently derived from a single transformed progenitor may exhibit such features, 

however this did not occur under the spontaneous transformation model used in the current 

study.  The current data are unique in that they resolve the discrepancy between gene-dosage 

effects in normal diploid versus transformed cells by taking a whole genome multi-level 

approach to understanding cancer genomics.  The data suggest that gene-dosage effect may 

be a characteristic of early stage cancer cells and that the relationship may exist when 
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chromosome copy first depart from diploid status and vary over a large range from one 

transformative stage to the next.  This provides further support for the theory that karyotype 

based evolution is significant to cancer cell populations in that low fidelity genome transfer and 

high variability from cell to cell is linked to dysregulation of mRNA transcript abundance and 

uncoupling of the gene-doseage effect [164].  Karytype evolutionary patterns that have 

previously been linked to a tight genome: transcriptome relationship have significantly less 

variability from cell to cell and less change in chromosome copy numbers over all.   

 

4.7  Linking Changes in Tumor Karyotype Profiles to Environmental Shift 

 By continuing to evaluate the key transformative stages during in vivo tumorigenicity assays, 

several interesting findings emerged.  The weak tumorigenicity of the day 245 cells that were 

allografted into C57BL6 mice was expected based on in vitro data and link relatively low 

Shannon indices to low tumorigenicity.  The findings that day 528 cells formed subcutaneous 

and intraperitoneal tumors of larger, and higher grade than day 245 cells concur with previously 

published characteristics of allografted cells using this model system [54].  These tumorigenicity 

rates for late stage MOSEC are somewhat lower than previously reported rates [55], but match 

the tumorigenic potential of these cells as assessed in vivo.  The invasion and proliferation 

assays from the current study are slightly less aggressive at all transformative stages despite 

longer transformation times [55], which could be attributed to the small number of seeded and 

early stage mitotic cells.  Considering the genomic instability and karyotype variation in this 

longitudinal transformation model, previous “runs” beginning from primary cells could likely have 

different end phenotypes.  The variable karyotypes of the late stage injected MOSEC and the 

significant phenotypic shift that occurred between cell injection and harvest, could account for 

the variable tumor formation.  Based on the findings that both tumors contain the same four to 

five high-frequency translocations these cells have likely descended from a common 

predecessor.  It is unlikely that this translocation itself increases tumorigenicity as in the 
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BCR:ABL fusion protein of CML, but rather marks a recognizable feature of a genome that at 

one point had a selective advantage over the other cells.  The significance of these markers 

may be interpreted in several ways.  Perhaps this set of markers represent a genome that 

facilitated survival in the initial transition from in vitro to in vivo environments, or if these markers 

were accumulated in a stepwise fashion and reflect cellular adaptations required to survive as a 

larger and progressively more invasive tumor.  Additionally, the contributions of gene alterations 

associated with these visible markers versus gene alterations invisible to SKY analysis is 

beyond the scope of the current studies.  This could be interpreted to mean that this clonal set 

of markers are part of a very large set of genomic, epigenetic, environmental, and population 

based variables that facilitate positive selection for the tumorigenic phenotype.  Alternatively, it 

is possible that this set of karyotype markers are unlinked to phenotype and that they 

independently arose in both tumors, and as multiple independent events in the day 450 cells.  If 

this were true, we suspect that fragile sites or other inherent features of the genome could 

account for the increased frequency and repeated appearance of this set of markers. 

 A role for the immune system in suppressing, selecting for, or eliminating injected tumor 

cells from the peritoneal cavity is of particular interest as ovarian cancer cells evade the immune 

system by creating a highly suppressive environment in the peritoneal cavity.  A recent clinical 

cohort study in of 500 ovarian cancer patients correlated intraepithelial CD8+ T-cells with 

improved clinical outcomes for all stages of ovarian cancer [167] brought importance to the 

study of immune system based therapies for ovarian cancer. The immune function of the 

C57BL6 mice was evidenced by the active aggregates of mesothelial cells with inflammatory 

cells seen in association with peritoneal fat.  Although subject numbers in the current study are 

small, the larger tumor burden in the nod-SCID-gamma mice and the occurrence of invasive 

tumors in 2/2 animals supports our current knowledge of immune regulation in tumor 

establishment and progression.  Importantly, these data suggest that the MOSEC model is well 

suited for ovarian cancer studies focused on the dynamics between the immune cells, 
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cytokines, and other regulatory molecules in cancer progression in the context of vaccine or 

other immunologic therapies. 

The population karyotype data from injected late-stage versus harvested tumor cells 

provides valuable insight into the possibility of cell selection and the significance of variability 

and low fidelity genome transfer in tumorigenesis.  The two tumors evaluated are from different 

mice injected with the same late-stage cells.  However, both share the 4;5 translocation at the 

same frequency as the day 450 cells, but both display two additional translocations at 

frequencies greater than 90%.  Based on the rates and patterns of these aberrations, it seems 

more likely that the environmental shift selected for a cell subtype that was present at low levels, 

rather than the set of translocations arising independently in both mice.   The former theory 

seems more likely, although the latter cannot be completely ruled out.  Finally, the high degree 

of complex non-clonal translocations in tumor two (T2) compared to tumor one (T1) may be 

linked to tumor histopathology.  The size and growth rate of T2 was significantly elevated over 

T1, is likely responsible for the large necrotic zone seen on histopathologic analysis.  Necrosis 

is a well known response to oxygen debt and is related to tumor size and perfusion, with cells 

adjacent to the necrotic zone subjected to low oxygen tensions [168-169].  Hypoxic cells 

continue to divide and, as they slowly proceed through the cell cycle, increase genomic 

instability and promote tumorigenesis [170].  These data warrant further investigation as they 

link genomic instability with hypoxia, a phenomenon involved in radio-resistant tumors.  The 

concept that random chromosomal change in response to hypoxia could increase variability and 

provide the basis for rapid evolution and phenotypic shift suggests a low fidelity of genome 

transfer in the larger, hypoxic tumor, suggestive of a genome based, rather than gene based 

mechanism for hypoxia in resistance to chemotherapy and radiation treatments. 

 

4.8 Future Directions and Clinical Considerations 
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 The findings of the current study raise several basic and clinical scientific questions 

regarding karyotype heterogeneity and many complications known to clinical oncology including 

metastasis, drug resistance, and immune system evasion.  Both the prognostic significance of 

chromosomal instability and its facilitative role in drug resistance and metastasis suggest that 

genomic instability may likely be a modifiable factor in clinical cancer outcomes.  We anticipate 

the key future challenges will lie in the determination of how genomic instability based therapies 

can be incorporated into the current clinical standards for cancer treatment.  The elucidation of 

the mechanisms underlying aneuploidy and genomic instability is only one piece of this puzzle.  

More important is to determine how our interventions on genomic instability change cancer cell 

evolution and clinical outcomes.  Our analyses suggest that the observed karyotype 

heterogeneity differs with key transitional stages of transformation, but leaves several 

unanswered questions.  These include our ability to alter genomic instability of cancer cells in 

vitro and in vivo with pharmacologic intervention and the outcomes of these alterations on cell 

phenotype and clinical outcome.  One mechanism by which genomic instability could be 

exploited for treatment would be by inhibiting mitotic-checkpoint signaling.  This has been 

shown to be lethal in unstable cells as the consequence of massive chromosome loss [171].  

Genomic instability additionally holds promise in the design of adjuvant chemotherapies that 

minimize new mutations that allow them to develop resistance to other cyto-toxic agents.  The 

ability to identify and interpret information contained in measurements of cellular heterogeneity 

will, within an evolutionary framework for cancer progression, provide insight that is not 

attainable by traditional analyses of genomic material.  This is because traditional analyses are 

performed on averaged over a heterogeneous population. 

 In conclusion, early genomic instability generates variation in tumor cell populations well 

before the onset of the transformed phenotype.  By reporting complete karyotype data for a 

large number of metaphase cells at key transformative stages, the contributions of population 

karyotype dynamics in tumorigenesis can be evaluated.  The fact that gene-dosage effect by 
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changes in whole chromosome copy number are most significant in tumorigenic late-stage cells 

suggests a mechanism by which genotype is differentially linked to global gene expression 

profiles between normal and cancer cells.  The magnitude and early onset of genomic 

heterogeneity in the conditionally inactivated Brca1 MOSEC demonstrate how a gene linked to 

increased cancer incidence can predictably induce rapid and widespread genomic instability at 

a much faster rate than the spontaneously transformed line.  The widespread instability of this 

population suggests that targeted therapy will likely result in selection, then expansion and 

progressive increase in the heterogeneity of resistant cells.  Finally, the late stage cells with 

heterogeneous karyotypes are shown to undergo rapid karyotypic shift from the profile of the 

injected line to a profile of increased variability following environmental shift.  Together these 

multi-level longitudinal data support genomic instability and increasing cell-to-cell variations in 

karyotype as a means to increase population diversity and permissive for rapid adaptation by 

gene-dosage effect in late stage transformed cells.  By understanding how cancer cells continue 

to generate heterogeneous karyotypes versus commit to senescence or cell death pathways 

support will be provided for the treatment designs affecting this common feature of all clinical 

cancers.  In the science of cancer complexity, a shift away from observational techniques to the 

application of quantitative measures for genomic heterogeneity is established.  Like other 

genome-wide techniques in molecular biology, the continued development of high throughput 

machinery will benefit clinicians and investigators in the field by permit the quantification of 

genomic heterogeneity by streamlining the data acquisition process while maintaining cellular 

resolution.    The universal features of within tumor genomic variation and cancer cell evolution 

can be evaluated in a wide variety of clinical and research settings and the outcomes applied to 

improve cancer detection and treatment strategies. 

  



105 

 

5. THEORETICAL CONSIDERATIONS 

Since the War on Cancer was officially declared nearly four decades ago, the United 

States has spent over $1.5 trillion dollars on cancer research and treatment.  A large amount of 

data has been generated through the development of high throughput genomic strategies, multi-

center collaborative efforts, and the exploration of new therapies including immunologic [172] 

and gene based  [173] therapies.  Despite these advancements, overall cancer mortality rates 

have only fallen by approximately 1% since 1975 [174].  With some rare successes in 

hematological cancers [175] and in cancers where inheritance or environmental exposure 

increases surveillance and early prophylactic removal of at-risk tissues [47, 176-177], the 

outlook for most people diagnosed with cancer today is not much different than it was a 

generation ago.  Therefore, a critical review of the assumptions inherent in the established 

paradigm currently dominant in cancer research is provided.  

Understanding the evidence for the current paradigm and the accumulation of anomalies 

against it is of utmost importance, as scientific paradigms imbue the minds of researchers in the 

field and influence numerous aspects of how science is conducted, how experiments are 

designed, and how data are interpreted.  The established paradigm defines genes as primary 

agents in cancer causation and describes a stepwise clonal evolutionary process where gene 

mutations account for the progressive acquisition of the hallmarks of the clinical cancer 

phenotype.  Oppositely, the proposed paradigm emphasizes wide-spread heterogeneity of 

cancer cell genomes within a given population.  Rather than focus on individual genes and their 

direct linkage to specific acquired characteristics of the cancer phenotype, the new paradigm 

considers genomically unstable cancer cell populations as complex-adaptive systems that are 

not governed by linear genotype-phenotype relationships.  The proposed paradigm places 

greater significance on the clinical utility and predictive power of gene-level change on a normal 

diploid genomic background, and acknowledges it as “micro-evolution.”   Cancer cell 

populations evolve by a novel mechanism that is central to the proposed paradigm.  This  rapid 



106 

 

and widespread  genomic reorganization can be monitored within a cell population and is 

termed “cellular macro-evolution.”  Central to this paradigm shift are several pertinent 

conceptualizations surrounding the magnitude and extent of the karyotype heterogeneity 

discovered within random samplings of cell populations at key stages of cellular transformation 

and tumorigenesis.  These include current working definitions of clonality in cancer, cancer cell 

populations as complex-adaptive and non-linear systems, microevolution versus 

macroevolution, cellular versus molecular resolution, genotype-phenotype linearity in stable 

versus macro-evolutionary environments. 

  

Paradigm Shifts in Cancer Research 

 Over one hundred years ago, chromosomal aberrations were linked to cancer.  At first this 

link was based on observational data by Von Hanssemann [126].  Soon after, Boveri reported 

the growth of tumor like structures in sea urchins after manipulating their chromosome numbers 

and inducing multipolar mitotic events.  This work resulted in the formulation of a theory that 

implicated unequal mitotic events and the resulting chromosome aberrations that ensued in the 

formation of cancers [178].  The significance placed on gene-level change by the established 

gene-centered paradigm is rooted in a series of exemplar experiments and has maintained 

momentum through in vitro experiments and a handful of clinical successes. Each of these 

experiments involves gene alteration of an otherwise normal genome followed by selection for 

the transfected cells with strong growth phenotype.  Each exemplar experiment which initially 

implicated a specific gene or genes in cancer causation has subsequently been tied to genomic 

instability and karyotype abnormalities [179][180]. For example, the discovery of the first gene 

(Src) that could cause cancer in normal animals [181], was soon followed by publications 

demonstrating a clear role for Src in genomic instability [179].  Similarly, in Knudson’s 2-hit 

hypothesis for inherited versus sporadic cases of retinoblastoma (Rb) [182], Rb was reported to 

cause mitotic recombination errors that lead to homozygosity of the inherited mutation [180], 
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and disruption of the Rb pathway was linked to mitotic spindle checkpoint disruption and 

aneuploidy [115].  “The clonal evolution of tumor cell populations” describes an evolutionary 

view of cancer as being caused by gene mutation mediated increases in variability that are 

subsequently followed by selection or clonal evolution of tumor cell populations tracked by 

signature karyotypic features [143].  Nowell had recognized the potential for inter-tumor 

variability by studying karyotypes cell-by-cell with relatively simple techniques.  According to the 

current data, which demonstrates unique karyotypes for each cell in a randomly selected 

population of 50 metaphases, the magnitude and extent karyotype heterogeneity has been 

grossly underestimated, as evidenced by the co-existence of numerous highly variable 

karyotypes from actively dividing cells [143].  Banding techniques for karyotyping developed in 

the 1970s led to discovery that specific chromosome aberrations could be linked to gene-based 

causes for cancer.  This shift from the microscope to the molecule marked the beginnings of the 

established gene-centered paradigm that currently dominates the field of cancer research. 

 The gene-centered paradigm for cancer research regards cancer as a disease that is 

caused by the stepwise accumulation of gene mutations and of clonal expansion from a single 

cell.  This paradigm focuses on the one-to-one relationship between alterations in cancer 

causing genes, and the acquisition of key characteristics of the cancer cell phenotype as the 

mechanism for cancer progression.  The predictability of phenotypic change resulting from 

alterations in cancer causing genes and the linear progression to reach the transformed 

phenotype highlight a major set of assumptions contributing to the gene-centered nature of the 

established paradigm.  Two theories have provided the foundation for the current paradigm that 

are not mutually exclusive: the theory of gene-mutation and the theory of somatic evolution for 

clonal cellular transformation.  Gene-mutation theory states that cancer progression is driven by 

sequential somatic mutations in five to ten specific genes, each of these accounting for a 

specific facet of the cancer cell phenotype [183-184].  This theory is also gene-centered, in that 

change at the level of entire chromosomes or karyotypes is considered epiphenomena of the 
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altered growth and metabolism.  The second theory underlying the established gene-centered 

paradigm is the theory of somatic evolution for clonal cellular transformation, which explains 

tumor progression as the result of acquired genetic instability and the sequential selection of 

variant subpopulations, the most advantageous of these leading to clonal expansion and 

transformation.  These theories are synergistic, and when integrated support the gene-centered 

paradigm by describing cancer progression according to a linear path of Darwinian 

microevolution, where clonal selection due to specific gene mutations is responsible for the 

conversion from the normal somatic cell phenotype to the eventual death of the host organism.   

 Dissidents of the current paradigm suggest that careful examination of the existing data 

regarding genetically linked oncogenic transformation contains a significant number of 

anomalies.  The first is that transfection with sets of oncogenes results in transformation in vitro 

in a very small minority of cells (1:100,000), [3, 185].  The second anomaly is that early transient 

gene alteration is sufficient to increase the rate of transformation, but is not required in later 

stages of progression where genotype-phenotype alterations are purported to continue to 

contribute to progression towards the malignant phenotype.  Following these early transient 

gene alterations, genomic instability emerges and persists into late stages despite a loss of the 

corresponding gene products [114, 186-189].  The third anomaly pertains to inherited cancers 

and transgenic animal models of cancer causation.  When cancer arises by these means, the 

gene mutation supposedly causative for oncogenesis imbues the entire organism.  However, 

such inherited mutations result in cell-type specific cancers in a small number of cells and 

frequently arise after a long time period despite the equal presence of cancer gene alterations in 

all cells [186-188, 190].  An example of this is in human cancers is in cases of inherited BRCA1 

mutation.  Ovarian cancers arise only in some women carrying the mutation, is epithelial cell 

type specific, and typically arises at approximately 50-60 years of age [191].  For reasons 

beyond our current understanding, BRCA1 mutations additionally increase the risk for breast, 
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fallopian tube, prostate, and a subset of hematologic cancers, but do not similarly effect other 

organs [192]. 

 In response to the above questions of the gene-centered approach, the proposed paradigm 

is centered on genomic heterogeneity of cancer cell populations and places gene-level 

alterations in a diminutive role and is therefore termed, “genome-centered”.  Despite a large 

body of evidence that supports the genomic instability in cancer causation, the popularity of this 

theory has been surpassed by gene-centered viewpoints in the last 25 years [83, 122-124, 128-

129, 139, 145, 193-202].  Numerous classes of non-genic causes of cancer have been reported 

and include environmental insult by non-genotoxic environmental carcinogens [193, 203], and 

failures of replication timing [204], condensation, cytokenesis, kinetechore migration, centriole 

duplication, and spindle formation [205].  These mechanisms all destabilize the genome and 

result in a massive increase in genomic variability through the unequal distribution of 

chromosomes among each generation of daughter cells.  The new “genome-centered” 

paradigm differentially defines the role of gene level changes before and after the major rise in 

population diversity by the generation of new and variable genomes.  The paradigm defines 

gene-level alterations as micro-evolutionary change which can predictably contribute to cancer 

causation through increasing the likelihood of genomic instability in stable, near-normal cells.  

Under the genome-centered paradigm, gene level alterations are much less predictably related 

to cell phenotypic change once population diversity has risen, but may be linked to phenotype 

change through karyotypic shift.   

 The genome-centered paradigm defines the genome context as follows: The entire genome 

in its orientation including all heritable modifiers of that genome.  This is significant as the 

proposed paradigm  places theoretical and functional emphasis on the genome context (rather 

than any of its individual constituents) as the main platform for evolutionary selection [86, 206].  

The conditions required for natural selection are well known to evolutionary biologists and are 

entirely dependent upon genetic variability within the population of cells.  These conditions 
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include 1) the existence of variation in the population, 2) that variation must be heritable, and 3) 

that variation must affect survival or cell fitness.  Based on these tenets, the proposed novel 

theories for cancer biology similarly regard variability as the universal feature of success for 

cancer cell populations as such variation facilitates rapid phenotypic shift of cell populations and 

rapid adaptability to new environments such as those encountered by metastatic or drug-treated 

cells.  Spontaneous and inherited clinical cancers, cancer cell lines, and tumors arising by 

oncogene transformation universally display aneuploid karyotypes and genomic instability [146, 

186, 207-211].  The association of increased population fitness with increased genetic diversity 

has been described in cancer cell drug resistance [87, 142, 212], and is linked to decreased 

patient survival times in clinical cancers [213].  On the basis of these findings and the results of 

the current data set, it seems the gene-centered paradigm and the step-wise clonal expansion 

theory for cancer causation place the investigator on a certain observational plane.  From this 

viewpoint, the extent and significance of high-level genomic variability as facilitators of rapid 

genomic and phenotypic switching are greatly underestimated.  The genome-centered paradigm 

for cancer research places emphasis on the differential predictability of genetic cause and effect 

relationships.  These are dependent on the genomic composition of the cell population.  

Specifically, the proposed paradigm calls for two sets of rationale, one of which can be applied 

to genomically stable cell populations that are homogeneous by karyotype and constrained by 

normal organismal function.  The second set of guidelines is to be applied to genomically 

unstable cells comprising the majority of clinical cancers that display high levels of genomic 

variability facilitatory for large-scale macro-evolutionary change. 

 

Clonal Misconceptions of the Gene-Centered Paradigm 

 Under the established gene-centered paradigm, a generation of cancer researchers has 

been indoctrinated with the belief that clonality is central to cancer formation.  A systematic and 

self-renewing bias favoring "clonality" is propagated by the continued use of tools and 
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techniques that systematically reduce the measurement and reporting of intra-tumor genomic 

variability.  The ramifications of introducing such a bias are reflected in our current working 

definitions of the clonality of cell populations in cancer research.  For example, clonality among 

cancer cell populations is frequently concluded on the basis of a single point mutation shared 

among populations of cells.  This working definition of clonality is readily accepted under the 

current paradigm, despite the unexplored sequence diversity and context of the other 5 billion 

bases comprising the genome [214-218].  The acceptance of cancer cell “clonality” on the basis 

of a single genetic marker is inextricably tied to concepts of classic Mendelian genetics, where 

the genotype: phenotype relationship was taught using a single locus and the resulting 

characteristic phenotype.  Thus, our fundamental understanding and working definitions of the 

genome are rooted in linear single-gene “genotype: phenotype” relationships.  The proposed 

paradigm shift dispels the belief that cancer cell populations are characterized by clonality and 

particularly emphasizes the inappropriateness of considering them as such in scientific and 

clinical settings. 

 The incorporation of, “clonal” into the vernacular of cancer cell researchers has not occurred 

by misunderstanding of meaning or definition of the term, but by the inappropriate frame of 

reference from which clonality is measured.  By their strictest definition, clones are sets of 

genetically identical organisms.  More commonly, clones are defined as a set of cells that share 

a common genotype owing to descent from a common ancestor, and genotype is defined as an 

organism's full hereditary information or genetic constitution including expressed and non-

expressed DNA.  However, high rates of genomic alteration across many levels of the genome 

have been reported and this property of cancer cells renders them incapable of high-fidelity 

genome transfer [141, 219-220].  Therefore, the term “clone” by this definition is not applicable 

to cancer cell populations as they are neither genetically identical to each other nor do they 

share the same full hereditary information.  By the alternate definition of “clonal,” meaning that a 

cell population has descended from a common ancestor, all cells comprising all normal diploid 
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and cancer cells within the same organism would be “clones” of one original zygote.  It is 

important to recognize that the misconception of clonality in cancer biology is propagated by the 

very system used to describe cancer cells.  Similar to gene-centered studies, the identification 

of recurrent or clonal chromosome aberrations in cancer cytogenetics is also systematically 

prioritized over random change.  Specifically, the International System for Human Cytogenetic 

Nomenclature (ISCN) states that a clone may be marked by a single aberration occurring at a 

frequency of only 20-30% [221], “A clone may not be completely homogenous… It will always 

mean at least two cells (out of ten) with the same aberration.”  The guidelines recommend non-

reporting of this detail, allowing the author to provide his or her own operational definition of 

“clonal”, by which all other features of the population are described.  Rather than acknowledge 

or quantify the fact that these cell lines are in a state of extreme genomic instability, the 

guidelines recommend, “Effort then should focus on describing the sub-clones so that clonal 

evolution is made evident… the composite karyotype can be created with all clonally occurring 

abnormalities combined into one karyotype” [221].   

 The ramifications of the continued search for clonality are significant to the field for several 

reasons.  Unable to define a recurrent pattern in this multi-tiered unstable system of hyper-

variable cancer genomes, many investigators have come to regard random karyotype change 

as insignificant and with limited diagnostic and prognostic value [222-224].  However, 

quantification of this universal feature of cancer phenotypes is of the utmost importance as 

genomic instability itself is known to characterize tumor development [86, 128, 206], 

immortalization, metastasis, and drug resistance [87, 142, 212].  In line with these concepts, the 

data presented in this work documents a high-degree of genomic variability by karyotype 

heterogeneity which occurs far before the acquisition of the tumorigenic phenotype.  This 

variability supports a pattern of stochastic rather than stepwise progressive evolution.  The 

dynamics of whole genome mediated macro-evolution by karyotypic heterogeneity (rather than 

micro-evolutionary change) is shown by population karyotype reports that trace micro-
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evolutionary change in spontaneous transformation by measuring the patterns of karyotypic 

heterogeneity over time.  The new, genome-centered model provides the opportunity to re-write 

the concept of clonal cellular evolution by documenting the timing and characteristics of macro-

evolutionary karyotypic change in relation to the transformation process. 

 As the implications of clonality captured at a single locus or level are assumed to have 

strong biological and clinical relevance, the term “clonal” to describe cancer cells is not simply a 

matter of parlance, but a key term with wide-spread influence on experimental design and data 

interpretation [183, 225-226].  The rationale for this supposition is that the clonality determined 

by measurement at a specific marker is conceptually extended to encompass the remainder of 

the genome.  Therefore clonal changes should be linearly predictive of phenotype.  The 

accompanying data set demonstrates by quantification of complete karyotype data that 

subpopulations of cells with a specific translocation are no more homogeneous than the 

remainder of the cells comprising that population.  Thus, the stochasticity of low fidelity genome 

transfer invalidates the assumption that any given genomic marker denotes relative genomic 

homogeneity within the marked sub-population.  With this understanding, the significance of 

these markers is greatly reduced in the acute setting, and particularly when gene products of 

these markers are challenged with targeted therapies. 

 

Reductionism and Holism in Cancer Genomics 

 The established gene-centered paradigm has been supported by data generated within the 

framework of a molecular reductionist approach to cellular biology.  Specifically, methodological 

reductionism is the position that the best strategic approach to problem solving in science 

centers on reducing explanations to the smallest possible entities.  This deductive strategy is 

inextricably tied to the gene-centered viewpoint in that the linearity of hierarchical genomic 

organization is assumed to transcend multiple hierarchical levels (phenotype, protein function, 

protein structure, amino acid residue, RNA transcript, DNA sequence).  Multiple exceptions to 
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the rule of linear, one-to-one relationships assumed by the gene-centered paradigm exist.  If 

cancer cell evolution proceeded by the stepwise acquisition of several gene-level alterations, 

then correction of a single imbalance should have only a modest inhibitory effect.  However, the 

re-introduction of a wild-type tumor suppressor gene (for example, Tp53, Rb, or APC) into 

human cancer cells where the respective endogenous gene is inactive usually promotes severe 

growth inhibition, apoptosis, or near total inhibition of tumorigenesis [227], rather than the 

predicted equal and opposite modest inhibitory effect.  A second example is that the continued 

over-expression of some genes (e.g. CCND1) seems critical for maintaining the cancer 

phenotype in several human cancer cell lines, as antisense CCND1 reversed the cancer 

phenotype towards normal.  Unpredictable and non-linear changes were demonstrated in both 

the pancreatic and esophageal cell line, which additionally developed hypersensitivity to 

chemotherapeutic agents, and phenotype reversion with persistence of elevated CCND1 levels 

[228].  The misapplication of reductionist logic becomes increasingly evident when considering 

that genotype-phenotype relationship also assumes the intermediary cellular network of actively 

transcribed genes, their regulatory elements, and the function of their gene products to be 

normally regulated, predetermined, and therefore predictable.  Considering that gene-level 

changes frequently result in variable and unpredictable phenotypes arising from complex 

combinations of genes and gene regulatory events, the assumption that predictability even of 

similar magnitude might persist is likely incorrect.  Thus, the reductionist approach is more 

reasonably applied to predict interactions between components in small groups with clear 

margins, and it offers no mechanism for the determination of how the emergent and adaptive 

properties of these cancer cell populations come to be.  From the genome-centered 

perspective, reductionist logic is misapplied because it underestimates the complex adaptive 

nature of cancer cell populations.   

 The underlying theme of complexity theory is that local interactions between parts of a 

system can lead to global properties that are neither linear nor proportional to the sum of its 
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parts.  In assuming cancer cells to be complex-adaptive systems, a genome-centered holistic 

approach is favored over reductionist logic.  Linearity and predictability assumed by the 

established paradigm underestimates the complexity of cancer cell systems because whole 

dimensions of interaction, regulation, and adaptability are overlooked.  As complex-adaptive 

systems, cancer cell populations are characterized by innumerable multi-faceted and dynamic 

interactions at the level of molecules, genomes, cells, and microenvironments, each of these 

having characteristics of a non-linear system.  Cancer cell populations also meet the criteria for 

complex-adaptive systems because of their ability to alter the strength of interactions within the 

network in a way that maximizes the average fitness of the cell population.  Examples of 

emergent properties of cancer cell systems arising from complex local interactions include:  the 

ability to organize spontaneously into different morphological patterns, the acquisition of drug 

resistance, and the rapid development phenotype alteration by karyotype shift [164, 229].  The 

significance of intra-tumor genomic heterogeneity relative to the individual cancer gene in 

facilitating these emergent properties has been demonstrated by data from our group and 

others [83, 86, 124, 128-130, 212].  The holistic approach taken by the genome-centered 

paradigm incorporates the concepts of natural and generalized Darwinian evolution with the 

regulation that cancer cell populations be considered complex-adaptive rather than linear and 

constrained by karyotype.  The appropriateness of assumed linearity between genotype and 

phenotype can be assessed by monitoring the genomic variability and stability of the cell 

population.  The complexity of many cancer cell populations allows for similar phenotypes to be 

associated with a number of alternative genome-systems or sequences of cellular events.  This 

aspect of complexity dictates that the causative events in phenotypic cellular evolution can be 

probabilistically speculated upon, but not unequivocally determined.  Within this framework, the 

proposed paradigm implicates the interplay between deterministic chaos, complexity, self-

organization, and natural selection as driving forces for conversion to the malignant phenotype.   
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 The rationale for shifting from a holistic viewpoint rather than a reductionist approach is 

largely provided by the unique features of cancer cell populations that cannot be explained by 

our current understanding of the governance of eukaryotic cells with normal genomes [230].  

Widely held viewpoints based in Darwinian evolutionary theory have established a teleological 

dogma of cause-based-on-function and emphasized a role of natural selection for the fittest 

individuals during a continuous evolutionary process.  Within the framework of Darwinian 

microevolution, the concepts of descent with modification, and the advantages provided by 

slight and successive variations, it is not possible to understand the rapidity of genotypic or 

phenotypic adaptability of cancer cell populations.  The holistic viewpoint proposes that cancer 

cell populations characterized by widespread genomic instability are precisely the irreducibly 

complex system that Darwin himself determined exceptions to his theory [231].  The widespread 

genomic heterogeneity demonstrated in the current data set also suggests a great deal or 

redundancy within the genomes of cancer cells as numerous viable karyotypes are seen.  This 

finding supports an alternative under the proposed paradigm shift and de-emphasizes any 

specific micro-evolutionary change in the determination of causality and its linkage to specific 

features of genes or genomes.  This traditional objective of Mendelian genetics, to relate cause 

and effect in a predictable manner, cannot be achieved in the case of a complex-system 

because the defining features of complex-systems are those of chaos and complexity [232-233], 

rather than constancy and linearity.  The interconnectedness (i.e., existence of multiple links 

between elements) of the system, dictates that neither the cause nor the driving force for 

evolution of the entire hierarchical system can be identified unequivocally.  The holistic 

viewpoint proposed by the genome-centered paradigm places cancer causation and 

progression at the intersection of chaos, complexity, self-organization, and selection by 

genome-system.   In understanding that entirely different conceptual frameworks pertain to 

normal versus hyper-variable genome systems, the rationale for measuring the genomic 
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variability and stability of cell populations becomes clear, is as it provides an index for weighting 

the significance of gene-level change.   

  

Macroevolution versus Microevolution 

 The genome centric paradigm clearly delineates normal micro-evolutionary change of 

normal cells from macro-evolutionary mechanisms of cancer cells on the basis of their 

respective evolutionary genomic constraints.  That is, normal diploid cells evolve by micro-

evolutionary change and transformed cells are capable of macro-evolutionary change by 

altering their entire karyotype in a single cell division.  By incorporating these differential 

mechanisms of evolutionary change under the genome-centered paradigm, it becomes clear 

how the predictability with which specific genes increase the transformation rate of diploid cells 

in culture could be far different from the predictability of such gene alterations in solid tumors.  

Even if the oncogenes purported to be the root cause of cellular transformation are discovered 

by large-scale tumor sample analyses, they will have limited potential as therapeutic targets.  

This strategy involves specific targeting of a gene or pathway in a complex-adaptive system, 

which is problematic because cancer cells are not constrained by usual growth and division 

checkpoints or by the functional roles they once held in their tissue or organ of origin [164].  In 

this setting, targeted therapy will likely selectively kill only a fraction of the cells.  It has been 

shown by karyotypic and phenotypic change that cancer cells are capable of undergoing rapid 

macro-evolutionary phenotypic shifts [164] and that the potential for drug resistance by genome 

level cell-evolutionary mechanisms is large [234].  

 Thus, gene and genome centric paradigms can be reconciled by understanding that genetic 

cancer causation can be described as micro-evolutionary to macro-evolutionary transition in 

cellular transformation and tumorigenesis.  The genes that cancer researchers believe are 

important for cancer treatment are those that function in cancer causation to bridge the gap 

between micro-evolutionary change and Macro-evolutionary change.  Whether by non-heritable 
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transient changes in protein abundance or activity, heritable gene-level molecular change such 

as sequence mutation or heritable epigenetic alteration, or large scale physical rearrangement 

of the chromosome complement by rearrangement of whole or partial chromosomes, the 

specific initiating events by which cells transform to become tumorigenic are not as significant 

as the consequence of instability  itself.  Under the genome-centered paradigm, this shift in 

focus is particularly important, as genome level change is thought to account for macro-

evolutionary adaptation of cancer cell populations.  The genome-centered paradigm considers 

cancer as a disease of odds with an almost infinite number of possible combinations of 

causative factors, whose behavior is best predicted by the acquisition of macro-evolutionary 

change and subsequently by environmental selection.  Emphasis is placed on the presence of 

macro-evolutionary genomic change, rather than on the initial destabilizing events, because the 

switch to macro-evolutionary change makes the gene alteration unpredictable, and more 

importantly, provides the variability on which selection may occur.   

 Once widespread genomic variability is evident, genome-centered logic leads to 

consideration of cancer cell populations as complex-adaptive systems with focus on intra-tumor 

rather than inter-tumor variability.  Intra-tumor variability or cell-to-cell variability within the same 

tumor exists at multiple levels.  These levels include cell phenotype and ploidy level [235], 

chromosomal aberration [136-137, 236-244], DNA copy number [245], single nucleotide 

polymorphisms [246], microsatellite shifts [247-248], base mutations [219-220], and loss of 

heterozygosity [249].  The current data demonstrate how the largest changes in gene 

expression coincide with the largest shift in karyotype. In transformed late-stage cells, change in 

whole chromosome copy numbers appears to regulate gene expression. This signifies a major 

shift in the regulatory capacity of cells to govern their genome and is marked by altered and 

heterogeneous karyotypes among cell populations which generate large-scale variability.  

Change by macro-evolution redefines the complex-adaptive system of the cancer cell 
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population by changing chromosome copy numbers and the relative orientation of genes on 

each chromosome.   

 

Measuring Signal versus Noise in Cancer Cells 

 Despite the variability known to exist in cancer cell populations, the relative importance of 

pattern identification over characterization of the true biological variability of cancer cell 

populations should be given careful consideration.  This preference is made clear by the 

majority of investigative techniques commonly utilized to test hypotheses under the gene-

centered paradigm.  For example, the widespread acceptance of techniques that average and 

batch genetic material from cell populations with high levels of genomic heterogeneity [250-251] 

is one way that the average genomic signal from a mixed population of cells is emphasized over 

the quantification of genetic diversity.  These techniques include a wide variety of extremely 

common techniques such as harvesting of extracted nucleic acids, proteins, and other cellular 

components from lysed populations of genomically heterogeneous cells.  Secondly, the 

manifestation of gene-centered logic in experimental methodologies is the significance placed 

on increasing the resolution of molecular techniques while failing to maintain resolution at the 

level of the individual cell.  Population averaged data that are reported without measure of the 

deviation from cell-to-cell certainly has earned its rightful place in molecular problem solving, but 

only when taken in the context of the present cell diversity for that population and the stability of 

the population in its environment.  For understanding the inter and intra-tumor genomic 

heterogeneity of cancer, it becomes clear that the pattern of increasing molecular resolution and 

increased scope and size of project are likely due to the difficulty in generating signal over the 

background noise of true biologic variability.  Background biological variability particularly 

presents a formidable challenge for noise reduction in epithelial cancers. For example, in the 

case of epithelial ovarian cancer heterogeneity has been reported from the level of histological 

subtype to DNA sequence [32]. Rather than focus on analytical techniques that emphasize 



120 

 

genomic signal over the true “noise” of cancer cell systems, the current data set and work by 

our group [128-130, 193] and others [115, 252-254]  have focused the experimental design and 

techniques to quantify genomic heterogeneity as it relates to macroevolution and cell 

phenotype. 

 Several large-scale projects such as The Cancer Genome Atlas (TCGA) and the Cancer 

Biomedical Informatics Grid (CABIG) are underway in cataloging the sequences of hundreds of 

patient tumor samples.  The rationale for funding such large-scale projects is that the 

identification of gene mutations common among clinical tumor specimens will yield biologically-

relevant therapeutic targets for clinical cancer treatment [255-257].  In such studies, a wide 

variety of low frequency genetic alterations have been discovered.  For example, a team of 

forty-two scientists searched for common mutations among 18,000 genes and 11 tumor 

samples.  Most of these genes were found to be mutated in less than 10% of samples.  Of the 

cancer genes selected for the validation set, 15/40 were not found to be mutated in any of the 

96 patient cancers.  In a similar vein, gene-centered rationale has also provided the impetus for 

recent sequencing of entire cancer genomes from batched extracted DNA.  This and other 

similar studies have proven to be extremely complicated.  In sequencing the melanoma 

genome, the authors describe the difficulty in mapping the genetic components correctly onto 

each chromosome [256-257].  Additionally, repeated tweaking of the bioinformatics algorithms 

and the analysis of 200 billion data points was required to determine the 33,000 mutations 

characterizing the melanoma cell line [256-257].  Genome-centered logic suggests that the 

intra-tumor (cell-to-cell) heterogeneity of this line has greater significance than the mutations 

with significant commonality among cells to generate signal above the biological noise.  

Heterogeneity of the cell population at this level was readily apparent among 10 metaphase 

cells: 6/10 metaphases have 3 Chr. 11, four of these with an additional unbalanced 

der(?)t(1p?;18q?), while 4 other metaphases have 2 Chr. 11, and one der(?)t(11;18).  Based on 

this karyotype data, it is clear that several different versions of the melanoma genome system 
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co-exist within one cell line.  This variability brings into question how the results of such 

sequencing experiments should be interpreted and the composition possibly of sequence of the 

dominant signal over the noise of the mixed genome system that was analyzed.  The proposed 

paradigm shift additionally questions the significance of these data based on the transient 

nature of any cancer genome sequence given the rate of mutation (33,000/ division) at the level 

of the DNA base.  Finally, the likelihood that targeted therapies for clinical cancers aimed at 

gene products of mutated sequence from this melanoma line will result in cancer cure is 

extremely small considering the combined heterogeneity and adaptability of the genome 

system. 

Basic scientists are beginning to measure behavior of cell populations in lower 

organisms on a global scale and on multiple levels (genome, transcriptome, metabolome) at the 

same time.  These strategies are advantageous because they provide information as to the 

regulatory control among multiple levels of cellular dynamics.  Using these techniques, a 

complex-systems based approach to data interpretation can be employed in the evaluation of 

cancer cell populations.  However, results generated from such studies must be considered in 

light of data that shows extreme cellular variability additionally occurs at the level of transcription 

and translation when such outcomes are measured at the level of the individual cell [258-259].  

For example, when comparing metaphase-CGH to SNP-CGH to array-CGH, molecular 

resolution is clearly increasing while information quantifying cellular variability is lost.  The 

strength of data recorded on the content or behavior of individual cells within a population such 

as SKY karyotype analysis, in situ hybridization, metaphase-CGH, flow cytometry, 

immunohistochemistry and others is their ability to measure outcome variable(s) while 

maintaining cellular resolution, thereby allowing for quantification of variability about signal 

strength, and position relative to other structures.  One such technology with the capacity to 

characterize heterogeneous cellular responses is histomics.  This technique involves the 

collection of proteins from a population of cells, the generation of monoclonal antibodies from 
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the batched cellular responses, and the application of these antibodies to the cell 

population/tissue from which they were collected to determine the origin, sub-cellular location, 

and cellular variability of the response in situ.  When considering the effort required to explore 

the cancer genome that involves gene-seeking or sequencing of heterogeneous populations, 

these high-throughput technologies with high molecular resolution seem less attractive.   

As high-throughput techniques continue to be developed to support cell-by-cell 

experimental methods, data from batched cellular material can be interpreted within the 

proposed genome-centered paradigm.  These data will provide information as to the variability 

of the cellular response and the predictability and permanence of the response in different 

environments.  This is particularly important in cancer research, aging, or in fields where internal 

or external exposure to genotoxic agents jeopardizes the integrity of the genome-system.  In 

these cases, the fidelity of genome transfer is likely low, and the system can transition to macro-

evolutionary genomic shift, rather than micro-evolutionary Darwinian evolution.  For example, 

the current data set displays tumors with a set of similar marker chromosomes and two different 

patterns of cytogenetic diversity.  The widespread genomic instability of the injected cell line 

suggests that this experiment, if repeated, would likely emerge to showcase a different pattern 

of high-frequency clonal translocations.  If cell survival is challenged, low-fidelity genome 

transfer suggests that the genome context under which that data set was collected is transient 

because variability and macroevolution can occur within that population of cells.  Particularly in 

the case of unstable genomes, averaged data without the reporting of intra-population variability 

provides no insight into the long term impact of the discovery. 

 

Clinical Considerations under the Genome-centered Paradigm 

 Although concepts such as paradigmatic shifts and altererd conceptualizaiton of gneomic 

variability in cancer cell biology may seem of little clinical value compared to the promise of 

successful trageter therapies, these theoretical shifts have real and practical clinical impact in a 
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number of areas.  While acknowledging the complexity of cancer cell populations and their 

propensity for differential gene regulation and signal transduction, the majority of investigators 

utilize laboratory cancer models and data interpretation within the framework of the gene-

centered paradigm.  The focus on pattern matching and noise reduction continues to generate 

short and fluid lists of targets for anti-cancer therapies and are considered suffieicnt rationale for 

the continued search for the genetic “Achilles heel” of cancer cells {Weinstein, 2006 #5446}.  

However, the empirical data generated from clinical trials of targeted therapies supports their 

use in combination with at lest one or two other chemotherapeutic agents [260].  Even when 

multiple targeted therapies are used in combination, these do not provide a cure.  From a 

clinical standpoint, the diminutive role placed on cancer cell heterogeneity by the gene-centered 

paradigm seems somewhat unique to therapeutic design for solid tumors.  Cancer cells have a 

200 fold increase in mutation rate compared to normal cells {Bielas, 2006 #2050;Bielas, 2005 

#2051;Loeb, 2008 #2049}.  Additionally, the rate of chromosome mis-segregation events (one 

out of five divisions [121]).  Each of these missegregation events offsets the DNA doseage by 

61-197 mega-base pairs, therefore further contributing to the variability of the genome within a 

single population.  Considering that clinically detectable cancers have already reached 10 x 109 

cells, a modest 10% increase yields  6.3 x 1012 new DNA base mutations coupled with 7 x 107 

abnormal chromosome segregation events.  By these measures, the genome centric viewpoint 

reasons that low-fidelity genome transfer and the ensuing multi-level genomic heterogeneity 

should be recognized as the major mechanism of drug resistance in solid tumors.  Disease with 

high-level variability should then beaddressed with first-line therapy as in the approach for 

treating many genomically heterogeneous and rapidly mutating diseases caused by prokaryotes 

and viri.  The search for targeted therapy in the face of such genomic diversity hinges upon the 

rare success of certain targeted therapeutics in clinical cancer treatment.  However, 

reconsideration of genome dynamics linked to responsive versus resistant cases actually 

highlights the importance of genomic variability over specific genes.  For example, the high 
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remission rates and low toxicity of the targeted BCR-ABL tyrosine kinase inhibitor has extended 

5-year survival rates to ~90% in chronic myelogenous leukemia (CML) patients and has 

ushered in an era of targeted therapy.  CML however is unlike most cancers in that its cause is 

believed to be a single genetic event that is visible by a high frequency 9;22 chromosomal 

translocation.  This translocation creates a fusion protein with abnormally high tyrosine kinase 

activity [132] and, like other members of the hematologic malignancies, the frequency of random 

aberrations and the karyotypic variability of CML cells is relatively low when compared to solid 

tumors [79].  Like other cancer genes, BCR-ABL has been linked to genomic instability, mitotic 

errors, and unfaithful DNA repair, perhaps aiding in the transition from chronic to blast-crisis 

phase [261-263].  These changes have been noted at diagnosis.  Therefore, it is not surprising 

that progression for patients on chronic Imatinib therapy occurs at a rate of ~15% over 54 

months.  Leukemic blasts from resistant individuals were first shown by sequence exploration to 

harbor disabling ligand association mutations [175, 264].  Subsequently, resistance 

mechanisms by chromosomal aberrations and copy number alterations of BCR-ABL tyrosine 

kinase [175, 265-267] were also revealed.  But in patients with blast-crisis, where genomic 

instability is significantly elevated, remission was unpredictable and short lived.  Patients 

typically underwent dramatic relapse just weeks after a complete cytogenetic response [268-

273].   The relative success of targeted therapy in chronic versus blast phase CML demonstrate 

that gene-centered approaches have much greater utility in the context of low genomic 

instability.  Specifically, targeted therapy was successful when the phenotype was 

homogeneous, the karyotype relatively stable, and the gene target most clearly mapped.  In 

epithelial tumors, the complexities of the predominant karyotype and high degree of clonal 

heterogeneity in the form of cytogenetically unrelated clones makes characterization by 

established means virtually impossible.  Under the gene-centered paradigm, genomic 

heterogeneity of solid tumors represents a further dimension of complexity in analytical problem 
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solving that is greatly attenuated in clinical cancer conditions still evolvolving by micro-

evolutionary change. 

 The environment of homogeneity and relative genomic stability seen in successful targeted 

therapeutic intervention is not characteristic of most clinically relevant cancers [80, 213].  

Therefore, continued application of gene-centered approaches to problem solving within a 

complex adaptive system reflects an over-extension of traditional genetics to a hyper-variable 

and rapidly evolving non-linear system.  Genome-centered reasoning suggests that continued 

investment in strategies which discount the existence of cell-to-cell variability and rapid 

phenotypic shift will likely not yield results leading to clinically successful treatment.  The 

distinction between micro versus macro-evolutionary mechanisms in normal versus cancer cells 

provides rationale for the relative predictability of the genotype: phenotype relationship in each 

type of evolutionary mechanism.  For example, in heritable gene mutations in the context of a 

normal diploid background there is a fair amount of predictive power between gene alteration 

and increased cancer risk.  Similarly, the altered BCR-ABL gene has greater predictive power in 

chronic phase CML.  This greater predictive power occurs when genomic instability is relatively 

low, and the target is clear and frequent among the cell population [79-80].  The differences 

between micro and macro-evolutionary mechanisms additionally provide contextual insight into 

why multiple studies have failed to determine significant lists of validated genes from 

heterogeneous clinical tumor samples [250, 274]. 

 Clinically, the challenges posed by the application of targeted gene-therapies to a complex 

system with multi-level heritable and non-heritable variability have been evidenced by the multi-

modal acquisition of Imatinib resistance in blast phase cells.  The variability of resistance 

mechanisms and mutability of blast-phase cells are similar to the varibility and drug resistance 

mechanisms previously documented for solid tumors.  These mechanisms include gene 

amplification of associtated proteins or pathways, such as the dihydrofolate reductactase and 

androgen receptors [275-277], the acquisition of entire chromosomes [278-280] and the shifting 
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of entire karyotypes [229].  An example of multi-modal resistance in a single cancer type is that 

of estrogen-receptor positive (ERα+) breast cancers.  In this subtype of breast cancer alone, 

known resistance mechanisms include, deletions involving estrogen receptor-α [281-282],  

altered gene expression [283],  interference or cross-talk between growth factor signaling 

pathways EGFR/HER2 [284-285], protein-protein interactions among SERM, ER, and co-

regulatory proteins [286], and the background genomic profile of the cancer patient such as 

metabiolic polymorphisms including CYP2D6.  Considering the multi-modal mechanisms of 

genomic diversity documented in solid tumors and late stage hematologic disease, the gene-

centered approach to gene-discovery for targeted therapy by analysis of late stage solid tumor 

samples seems less likely to yield long-term remission or cure.  Variability within a single tumor 

hinders targeted therapeutic approaches in two ways: 1) the biological noise truly existent in the 

sample makes pattern finding difficult, even gene alteration existing in the majority of cells can 

be difficult to find,  2) if these signals are detectable, the targeted therapeutic approach will 

select for cells able to survive, appearing as a drug resistant population that has the capacity for 

high mutation rates. 

 Under the guise of that clonal tumor populations dominate most cancers, investigators look 

toward oncogenes and tumor suppressor genes identified from solid tumor patient samples to 

provide the basis for designing targeted anti-cancer therapies.  However, within the framework 

provided by the genome-centered paradigm, the significance of measuring, controlling for, or 

reducing genomic instability must be incorporated in the development first line or adjuvant 

therapy of a logical approach to prevent further diversification of cancer cell populations is to be 

implemented.  Not surprisingly, heterogeneity exists even in the response of cancer cells to 

genome-stabilizing treatments [287].  Therefore, multi-pathway or multi-level approaches may 

be required in conjunction with genome stabilizing therapy, perhaps also reducing drug dosages 

to a safer therapeutic window [288].   
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 Several molecular approaches thus far have been proposed and are in various stages of in 

vivo and in vitro testing. An example of therapy that targets genomically unstable cells is the 

inhibition of centrosome clustering required for multipolar mitosis [289].  Additionally, the use of 

therapies such as 1,25(OH)2D3 that work at multiple regulatory levels [290-293] and potentiate 

the effects of many cytotoxic and antiproliferative therapies [290, 294] are promising therapeutic 

strategies according to the genome-centered paradigm.  In a similar vein, randomized aptamer 

libraries have been suggested to reduce tumor cell heterogeneity by allowing cancer cells select 

for RNA sequences that are then conjugated to radionuclide and cytotoxic drugs and targeted to 

many tumor cells [295].  Therapies such as these are a particularly good match for the complex-

systems adaptive view of cancer biology because they impact multiple regulatory levels and are 

therefore more likely to impact heterogeneous cell populations. 

 

Implications of Incorporating the Genome-Centered Paradigm 

 In conclusion, the tremendous research efforts put forth in the past decades have 

demonstrated cancer to be extremely complicated.  Cancer cell populations universally 

demonstrate karyotype alterations and genomic instability, signifying their ability to adapt by 

macroevolution.  The implications of the  paradigm shift to genome-centered thinking  on cancer 

research and treatment are many as they alter the significance of a large amount of past and 

present clinical and basic research.    Based on our data and the work of others demonstrating 

the extent and significance of cell-to-cell variability in cancer biology, it is anticipated that the 

measurement of outcome variables including intra-population variation will provide the context 

for data interpretation and inferences as to the repeatability of the experiments.  Investigators 

are encouraged to consider the possibility of rapid macro-evolutionary change in cancer cell 

lines and tumors, particularly when the cell population incurs cell death, selection, or 

environmental stress.  On beginning to explore how genomically unstable cell populations 

develop the emergent properties of complex systems, we are optimistic that investigators will 
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increase their utilization of genome-wide measurements of variables at multiple levels ranging 

from the gene sequence upwards to the cellular or tumor phenotype.   

 As technological advances permit the comparison of genomes, and interactome maps 

encompassing many pathways, high-throughput techniques may contribute to the systematic 

discounting of true biological noise.  Particularly in genomically unstable systems, the possibility 

of rapid macro-evolutionary phenotypic shifts should be accounted for and evaluated by 

measuring the karyotypic make-up of the cell population in each condition.  By explaining the 

complexity of cancer genomics and highlighting intra-tumor variability over inter-tumor 

variability, evidence is provided that supports a paradigm shift away from the current linear 

gene-centered approach.  The genome-centered paradigm does not dispel the significance of 

gene-level change, but considers the genomic context and relative predictability of such 

changes.  The genome-centered paradigm additionally allows for non-linearity and 

measurement of change considering cancer cell populations to be complex-adaptive systems.  

In this way the proposed paradigm incorporates the possibility of multi-level regulation and 

macro-evolutionary change.  The genome-centered paradigm shift and the supporting data 

supply an improved conceptual framework for a field currently filled with exceptions and 

paradoxes.  Moreover, the paradigm shift will alter experimental design and interpretations to 

support the advancement of cancer therapies and diagnostics, thereby improving future 

outcomes for cancer patients.  
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 The dominant paradigm for cancer research focuses on the identification of specific genes 

for cancer causation and for the discovery of therapeutic targets.  Alternatively, the current data 

emphasize the significance of karyotype heterogeneity in cancer progression over specific 

gene-based causes of cancer.  Variability of a magnitude significant to shift cell populations 

from homogeneous diploid cells to a mosaic of structural and numerical chromosome alterations 

reflects the characteristic low-fidelity genome transfer of cancer cell populations.  This transition 

marks the departure from micro-evolutionary gene-level change to macro-evolutionary change 

that facilitates the generation of many unique karyotypes within a cell population. Considering 

cancer cell populations to be complex-adaptive systems, multi-level analyses were performed 

longitudinally including whole genome microarray, population karyotype analysis, and 

determination of cell phenotype.  As heterogeneity in ovarian cancer at each of these levels is 

linked to low survival, metastasis, and resistance to chemotherapy, a syngeneic model of 

spontaneous ovarian cancer development was employed.  The significant findings of the current 

study are, 1) Genomic instability was apparent from the earliest stages of study, 2) Karyotypic 

heterogeneity was widespread, showed a pattern of expansion over time and preceded the 

acquisition of the transformed phenotype 3) a major karyotypic shift occurred between 
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transformed cells in vivo and tumors formed in vitro, documenting the formation of a new system 

induced by environmental change 4) Chromosome copy number has greater impact on gene 

expression in early-stage cell populations, where karyotypes are beginning to depart from the 

diploid genome. A genome-centered paradigm for transformation is emphasized through the 

discovery of early large-scale increases in karyotype heterogeneity.  This occurred well before 

the appearance of the transformed phenotype, arose much faster in Brca1 conditionally 

inactivated cells, was linked to the largest shift in gene expression, and was linked to the 

transition from in vitro to in vivo survival facilitating tumorigenesis.  These data demonstrate the 

significance, methodologies and rationale for quantifying karyotype heterogeneity in 

transformation, tumorigenesis, and clinical cancers.  Together, these findings support of a 

genome-centered evolutionary framework for cancer progression that emphasizes cell-to-cell 

genomic variability as the basis for macro-evolutionary selection and rapid phenotypic switching 

in response to new environments.  
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