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CHAPTER 1

Introduction

1.1 Problem Description

Flash memory is a low cost, solid state, non-volatile memory that can be electrically

programmed and erased [15, p. 1-33]. Flash memory is widely used in electronic devices

like cell phones, flash drives, embedded systems and increasingly in personal computers,

laptops, servers and data centers where it is complementing [83], enhancing [46, 109] or

displacing [98, 77] magnetic hard disks. Since flash memory doesn’t have any mechanical

components and only electronic components, it has the inherent advantages over electro-

mechanical magnetic hard disks of shock resistance, low heat, power and noise levels, and

low read latency. Flash memory thus provides rugged and reliable storage for mobile

and embedded devices. For servers and data centers, it enables massive IO performance

improvements, alleviating the CPU-storage bottleneck that severely hampers most system

performance [7].

One of the important pillars of modern computing revolution has been the mass storage

system. Revolutionary technologies like web search, massive databases and data centers

would not be possible without storage technologies like Google File System[45], Hadoop

etc that have been build upon the basic storage technology of inexpensive magnetic hard

disks. Magnetic hard disk technology has enabled storage of massive amounts of data

that can be quickly retrieved, processed and stored which has enabled revolutionary tech-

nologies to be built upon them.

The great benefits of the modern storage systems have only been possible because of

the engineering around the limitations of the magnetic hard disk, and minimizing the
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effects of its limitations and negative aspects while maximizing the utility of its posi-

tive aspects. Magnetic hard disks have always been thousands of times slower than the

computer processing systems and a computer system can spend the majority of its time

waiting for the IO system to respond. Magnetic hard disks are fragile and spin at high

speeds; mechanical shocks can easily destroy them and are prone to sudden complete

random failures. Storage systems based on them have to be built with high redundancy

to insure against data loss. Nonetheless, despite its numerous limitations, we have been

able to build impressive technologies based on this fundamental technology by engineering

around its limitations.

NAND flash-memory SSDs [88, 57] have multiple orders of magnitude faster access

times than magnetic hard disks because they are an all-electronic storage medium with no

mechanical moving parts. This property gives flash memory the advantage of no delays

from mechanical latency and thus, data requests can be satisfied in microseconds compared

to milliseconds that it takes for magnetic hard disks. Additionally, flash memory is also

available in capacities of hundreds of gigabytes at relatively low cost; a price point that

no other types of all-electronic solid-state storage mediums are available in. Because of

these desirable characteristics of flash memory, it promises to be the technology for the

next generation of storage devices providing orders of magnitude superior performance.

Flash memory has already revolutionized storage in mobile devices like cell phones and

rugged devices like factory equipment. The small size factor, the ruggedness and the high

capacity for a low price has enabled flash memory to be the primary storage technology of

the mobile revolution. For computer storage systems, the main advantage of flash memory

is its very low access time which is multiple orders of magnitude faster than mechanical

hard disks. Therefore, flash memory based storage systems could potentially be orders

of magnitude faster, much more rugged against failures and data loss and only take up a

fraction of the space and energy to operate than current magnetic hard disk based storage

systems. Thus, it has the potential to fundamentally change and revolutionize modern
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computer storage systems and such new storage systems could be the bedrock of many

future revolutionary computer applications.

However, even with its many desirable properties, flash memory has not been able

to be utilized to its full potential in storage systems because it possesses fundamentally

different characteristics than magnetic hard disks [106]. Foremost, flash memory has

not been a direct replacement for magnetic spindles in disks because using it efficiently

requires considerable engineering around its unique characteristics. For example, data

management methods are completely different in flash memory. Simple operations like

updating data in flash memory needs a multitude of IO operations and supporting soft-

ware architecture to perform the operations efficiently. So, flash memory’s usage requires

considerable architectural analysis, engineering and design before it can be used efficiently

enough to provide the improved performance it promises.

The first fundamental difference between flash memory technology and magnetic disks

is the lack of in-place updates in flash memory. This comes about because of the physics

of how flash memory stores data. It uses a program operation to store data and when

the data needs to be updated, it must first be erased before the new data can be repro-

grammed in that spot. This is in contrast to magnetic hard disks where data can be

simply overwritten at the same location. Additionally, to make a large number of storage

cells in the chip, the sizes of the program and erase operations are different. Data is

programmed in chunks called pages whereas data is erased in blocks comprising of 16-128

pages. This asymmetry in the size of programs and erases leads to the phenomenon called

write amplification.

When an erase is performed on a block, it is likely that the block contains some valid

data that cannot be discarded. To ensure that this valid data is not lost, it has to be read

into memory before erasure and then after erasure written back. This step is called block

cleaning or block reclamation. This internal copying back of data leads to a much larger

number of IO operations than those issued by the user. The measure of the amount of
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data copied back internally through this mechanism is called write amplification [53].

Another basic characteristic of flash memory is the limited programming cycles of

flash memory cells wherein a flash memory cell can only be erased 10,000 - 1,000,000

times before it wears out and cannot reliably hold data [29]. Since some areas of the disks

are written to more often than others, it could result in uneven wear and worn out areas,

leading to a reduced functional lifespan of an SSD.

These are the fundamental properties of flash memory and any system using flash

memory must deal with block cleaning, write amplification and uneven wear. In storage

systems, the view of flash memory to the user is a linear array of updateable sectors.

In order to provide this view of flash memory to the user, there is a layer of software

that is used called the flash translation layer (FTL). It translates user requests to flash

memory commands and manages the data stored. A common design for the FTL is to

have data is written out of place, i.e. when data is rewritten, it is not written to the

location where the data was previously stored but is written in a new location determined

by some strategy. This design eliminates the need to erase blocks before every update

but necessitates a background garbage collector erasing blocks to free up space. Thus, in

addition to providing a disk interface to flash memory, the FTL also manages wear leveling

and write amplification. It attempts to keep the wear of the blocks as even as possible

and to minimize the number of extra system operations because of internal copybacks.

This raises the questions of how data can be stored and managed to reduce system

usage. To do this, we need practical algorithms and strategies to manage wear leveling and

write amplification. Theoretical bounds to what is actually possible for an FTL to achieve

in terms of write amplification reduction also has to be investigated so we can understand

the effectiveness of our practical algorithms. Though capacity and performance is often

the primary attributes of flash memory systems, every flash memory system must manage

wear leveling and write amplification. These are fundamental attributes of flash memory

and will always need to be understood and efficiently performed to produce an efficient
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and high performance storage system.

One useful property of flash memory is that any piece of stored data can be accessed

with the same constant access time. Thus, we can store data at any location in the flash

memory without it affecting the performance. Hence, we can utilize the placement of

the data to reduce write amplification by grouping similar data together. We call the

management of data locations in flash memory layout management and the algorithms

that calculate the best location for each data sector layout management algorithms. We

explore both the theoretical and practical sides of this. On the theoretical side, we explore

the limits of reduction in write amplification and the absolute minimum write amplifi-

cation possible using layout management. On the practical side, we present simple yet

effective algorithms that reduce write amplification. We have implemented and tested

these algorithms in our own event-based SSD simulator.

While the layout management is used to decide where to write data, the garbage

collector decides which block to erase to reclaim data with the aim for both low write

amplification and for wear leveling. We model and create mathematical equations that

give the wear distributions for different configuration of the SSD, the wear leveling strategy

and the workload distribution. This serves as a useful tool to study the properties of wear

leveling against the different factors that affect it. We also give interesting practical

algorithms that are very effective in performing wear leveling even when the garbage

collector is tuned to reduce write amplification.

Multi-level flash memory cells are capable of storing data in more levels than zeros

and ones. In such cells, electrons can be added to the cell to increase the value stored but

cannot be removed to decrement the stored value. For such cells, we can use a coding

scheme where data is encoded as flash cell increments. This coding scheme was introduced

in [70] as floating codes. We give a new algorithm to construct floating codes that are

optimal and show that these constructed codes form a sub-class of floating codes called

update codes that have additional properties.
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In this dissertation, we investigate algorithms in flash memory, both theoretically

and practically, of the fundamental aspects of efficiently storing data in flash memory to

enhance endurance through wear leveling and reducing write amplification. Using coding

and layout management we attempt to minimize the amount of internal operations. Using

mathematical models and practical algorithms, we study how to arrange data over time

so that the wear is as even as possible. These form the foundation of every flash memory

based storage system and every system design must tackle these aspects of flash memory.

Our goal is that these investigations into the fundamentals can serve as a solid building

block for future systems.

1.2 Contributions and Significance

The contributions of this dissertation can be roughly categorized as in the following four

areas.

• We look at update codes that provide a method of constructing optimal floating

codes. Floating codes encode data in multi-level flash memory so that data updates

can be encoded as flash memory cell increments.

• We look at a theoretical view of write amplification in relation to layout management

and its possible limits to its minimization through the analysis of offline workloads.

• Next, we present and analyze practical algorithms that can reduce write amplifica-

tion and provide wear leveling that are simple and efficient yet effective.

• Finally, we provide a quantitative model of flash memory wear so that we can analyze

the wear patterns of flash memory cells mathematically.
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1.2.1 Update Codes: A New Class of Floating Codes

When flash memory cells are erased, there is a large negative impact on the longevity and

performance of the device. To defer and minimize these erasures, coding can be used to

encode data updates as cell increments.

Our work provides a new algorithm for constructing optimal floating codes. Addition-

ally, these constructed optimal floating codes form a new class of floating codes we call

update codes. They are useful class because they can be thought of as a coding scheme to

emulate a small group of cells with a high number of possible updates from a large number

of flash cells that have a small number of updates. Additionally, the floating codes from

update codes are isomorphic to their non-binary floating codes. Thus, finding optimal

binary variable update codes gives us optimal floating codes in any l-ary variables and

not just binary variables.

Specifically, we present update codes where an (n, q, k) update code uses an array of

n cells with q levels to simulate k flash memory cells while maximizing the number of

possible updates before erasure. Update codes are a subset of floating codes and have

more structure and so, are easier to construct and additionally, the binary floating codes

from update codes are isomorphic to non-binary floating codes.

We also investigate the poset (partially ordered sets) structure of the code and from

this, we construct update codes for arbitrary q, k and n ∈ {k, k + 1}, or arbitrary n, q

and k = 2 that is optimal for single cell increments. We present an algorithm for con-

structing the update code and prove that the algorithm does produces a valid code. The

corresponding floating code can be derived from the update code and is also optimal for

single cell increments and has a deficiency of O(qk), the best possible deficiency.
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1.2.2 Minimization of Write Amplification

The excess internal copybacks from write amplification causes degradation in performance

and longevity of the flash memory device. Here we explore the fundamental limits of

write amplification reduction using data placement techniques called layout management

algorithms to find the minimum value of write amplification possible.

A question regarding flash memory systems is that if we removed the abstracting layer

of the FTL between the user and the flash memory, would it be possible to eliminate

problems of SSDs like write amplification? The FTL is very restrictive in the informa-

tion about the workload it can utilize and if the FTL is removed then all the workload

information could be used to maximum efficiency. We use offline workloads simulating

perfect knowledge and information about the workload, and explore the limits of write

amplification reduction and minimization. This effectively looks to answer the question:

is write amplification is an inherent property of flash memory, or an artifact of the flash

translation abstraction, or an effect of inefficient implementation of the FTL?

First, we prove that zero write amplification for any workload and flash memory con-

figuration is not possible and the worst case over-provisioning for zero write amplification

is the trivial over-provisioning where we have as many blocks as sectors.

Next, we explore the question of finding the minimum write amplification when we

have an offline workload and flash memory configuration. We present an algorithm for the

estimation of the minimum write amplification based on our technique of decomposition

of workloads. The estimation algorithm is useful because it provides a way to explore the

inherent characteristics of flash memory and write amplification.

From our experimental results, we find that write amplification can be reduced to zero

for moderate over-provisioning ratios of around 0.3-0.5. This hints at the notion that

for high over-provisioning, write amplification is a property of flash memory but for lower

over-provisioning, it is an artifact of the FTL abstraction. However, our work raises many
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open questions and unsolved problems and so the answer is not fully solved but we do

provide numerous algorithms and techniques for layout management which gives some

idea on the minimization of write amplification.

1.2.3 Practical Designs and Algorithms for Reducing Write Am-

plification and Wear Leveling

Write amplification is a parasitic drain on flash memory performance and endurance.

Reducing write amplification has positive effects on most aspects of flash memory like

improving IO performance, wear and longevity.

Here we explore a method of reducing write amplification from data of varying volatil-

ity, for example cold and static data with low volatility, that create write amplification by

being copied back multiple times over many garbage collection cycles. We use the tech-

nique of copying back different parts of the valid data in the block selected for erasing, to

different copyback blocks depending on the number of times it has been previously copied

back.

When data is being copied back blindly, a phenomenon called sedimentation occurs.

Low volatility data settle at the low pages of a block evenly throughout the SSD and every

copyback operation ends up copying back the low volatility data repeatedly. Our technique

of separate and multiple copyback blocks eliminates sedimentation and decreases write

amplification.

Our low overhead algorithm is very efficient and effective at moving data of different

volatility to different blocks without requiring a-priori knowledge of the data or requiring

predictive algorithms. No workload models or statistics have to be collected and calculated

making this a very efficient and simple algorithm but it is effective as well. Though

write amplification reduction and wear leveling can be conflicting goals, we provide a

simple garbage collection algorithm such that we can achieve both wear leveling and

write amplification reduction using copyback blocks.
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Through simulation, we show that we can significantly reduce write amplification and

improve wear leveling, and that these significantly improve SSD performance.

1.2.4 Quantitative Framework for Modeling Wear Leveling

To increase endurance and reliability, flash memory based devices employ certain wear

leveling algorithms. But so far there hasn’t been a rigorous mathematical tool to analyze

and evaluate the effectiveness of various wear leveling algorithms.

We present a mathematical framework to model whole block wear leveling based on

probabilistic models of workloads, wear leveling strategies and wear level states. From this

framework, we derive equations for the distribution of wear levels and the effectiveness of

wear leveling algorithms for various SSD configurations. Using these equations, we give

a quantitative analysis and evaluation of baseline wear leveling algorithms for flash based

devices.

Since the SSD abstracts the flash memory into an array of sectors and the user has

no direct control on choosing specific blocks or pages to write data on, all blocks in the

flash memory have an identical probabilistic wear distribution. Thus, by modeling a

single block in the flash memory, we can effectively model the entire flash memory’s wear

patterns. This solves the problem of other models having to calculate probabilities for

each block and the interaction probabilities among every other block. Thus, we can create

a wear model that is easily applicable to any size of flash memory and that the size of the

flash memory does not make the problem grow exponentially.

The quantitative framework gives an SSD designer a method to investigate wear lev-

eling under various configurations and derive optimal design, and also serves as a starting

point for modeling complex SSD systems.

We calculate the wear distributions as difference equations with workload, configura-

tions and strategy as parameters in the equations. We numerically calculate a few wear

distribution curves from our difference equations and investigate how the wear varies with
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the various parameters.

1.3 Organization

In Chapter 2 we give the background on flash memory and SSDs and the related work

and research on the topic. In Chapter 3 we present update codes and discuss the its

constructions and its properties like optimality and relation to floating codes. In Chapter

4 we present the techniques we have developed to find the theoretical minimum possible

of write amplification by using offline workloads. In Chapter 5 we present practical online

algorithms that reduce write amplification and perform wear leveling. In Chapter 6 we

provide the details of the design and implementation of the SSD simulator that we wrote

to test and refine our practical algorithms and which was also used to produce the exper-

imental results. In Chapter 7 we discuss modeling of wear and wear leveling strategies for

flash memory and present our quantitative and mathematical model of wear leveling. In

Chapter 8 we provide our conclusions and an overview of our visions and future work in

this field.
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CHAPTER 2

Background and Related Work

2.1 Flash Memory

Unlike hard disks which uses magnetic properties to store data, flash memory uses electron

trapping in floating gate transistors. The key technology in flash memory is the floating

gate transistor which is used to store the data bits in flash memory cells. The floating

gate is a conductive island surrounded by an insulation layer and storing data bits into a

cell amounts to trapping electrons inside the floating gate, which is called programming.

To read the data in the cell, the electric field of the trapped electrons in the floating

gate is detected which is called sensing. To reuse the cell, the electrons must be first

discharged from the floating gate which is called erasing. To provide gigabytes of storage,

flash memory contains billions of memory cells printed in chips along with the related

circuit to sense, program and erase the electrons inside the floating gates. In this way,

floating gates building blocks are used to construct the multi-gigabyte flash chips.

Even though the data storage on hard disks and flash disks are transparent to users,

the characteristics of these two storage mediums are markedly different [6]. The main

differences [43] are

1. Read Latency, Throughput, Power Usage, Heat, Noise Levels and so on

This is the main advantage that flash memory has over magnetic hard disks. Flash

memory does not have any mechanical parts and only circuits. Thus, read latency

is lower. Power consumptions, heat and noise levels are also lower. Using efficient

error correction, throughput of the disk drive can be high.

2. Read/Write Asymmetry
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Magnetic Hard Disk Flash Memory SSDs

Consists of sectors that are of size 512
to 1024 bytes

Consists of blocks that are of size 32
KB to 128 KB

Has two operations Read Sector and
Write Sector

Has 3 operations read block, write
block and Erase block. Some NAND
allows writing to pages inside a block

Read and write cost is symmetrical Read is fast, write is slower and erase
is slowest.

Sectors or blocks do not wear out After 105 − 106 erase cycles, the blocks
become unusable.

Table 2.1: Difference between Magnetic Hard Disks and Flash Memory SSDs

In flash memory, byte-level writes or programming can only occur in erased cells or

pages. However, erasing must be in done at the block level. Blocks can be as large

as 256 KB. It is a type of write once and bulk erase medium. It is also referred to

as not being able to write in place.

As given in [19], the measured asymmetry is given below.

Read Write Erase

Performance (µs) 348 919 1881

3. Limited Programming Cycles

A flash cell can only be erased about 10,000 - 1,000,000 times before it wears out

and cannot reliably hold charge anymore.

The differences between hard disk and flash memory is summarized in Table 2.1.

2.1.1 Variants of Flash Memory

NOR flash is an extension of EEPROM (electrically erasable and programmable ROM). It

was initially designed as execute in place memory: meaning that code could be executed

directly from NOR flash without having to have it copied to RAM. NOR flash is byte

addressable and programmable but erasing and writing is very slow [91].
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NAND flash is designed specifically for data storage. It has a higher erase cycle range

and faster erase and write times. However, it is not byte addressable and is sequential

access up to the given block size (512 bytes and over). This is in contrast to NOR flash

which can be used in the same manner as SRAM. However, it should be noted that

even magnetic hard disks have similar amount of sequential access. NAND flash is also

manufactured with the knowledge that a certain portion of the blocks are bad and it

is left to the software to manage the bad blocks and not use them. This makes the

manufacturing simpler and more cost effective than having to make sure that each block

is operational.

To lower the cost per bit of NAND flash memory, more chip area is allocated for

memory cells and the amount of overhead circuitry reduced by organizing the memory

cells into pages and blocks. A page is the smallest read and write unit comprised of 215

to 216 adjacent cells connected to the same word line. A block is the smallest erase unit

comprised of 32 to 128 pages sharing a common source line connection. The cell, page

and block structures in flash memory are illustrated in Figure 2.1 where a row represents

a page and a collection of pages between source lines represent a block. Thus, pages and

blocks are the fundamental structure of flash memory where read and programs operations

occur in pages while erase operations occur in blocks.

2.1.1.1 Multilevel flash memory

Multi-level flash memory can store more values than 0 and 1 in each cell e.g. [100], [99].

Since it is not possible to remove charge from flash cells, the programming of flash cells is

only in 1 direction (i.e. the cell values can only be increased). Since this involves careful

electron placement into cells, the reliability of programming can be low. In this case,

error correcting needs to be employed to reliably use multilevel flash memory. One of

the drawbacks of multilevel flash memory is that is has erase cycle limits of only 10,000

compared to 100,000 - 1,000,000 for single level flash memory since the window has to be
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Page

Block
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Bit Line

Memory Cell

Figure 2.1: Cell, Page and Block in Flash Memory

expanded for the additional bit values.

This type of memory is called write asymmetric memory (WAM). If the cell is a q level

cell, it takes values of 0, 1, . . . , q − 1 and programming can only change the value from a

lower to a higher state.

MLC flash cells have their own hardware characteristics [33] and is an active research

field for better designs and materials. However, the following observations have been

made about MLC flash

1. Reduced reliability because of higher electric fields required for read, write and erase.

2. Reduced read speed

3. Longer programming cycles and increased disturbs during programming.
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2.1.1.2 Flash Packages

Flash packages are commercial products that contain flash memory and a micro-controller

for operating and communicating with flash memory inside it. It consists of one or more

flash dies stacked together for data storage and numerous pins to transmit and receive

commands and data. Flash packages can fully perform read, program and erase operations

without external control and are designed to be easily integrated into boards to add storage

functionality. Thus, products using flash memory for data storage build on commercial

flash packages, one such being SSDs.

2.2 Solid State Disks (SSDs)

A solid state disk (SSD) is usually NAND flash memory combined with a DRAM buffer

and a controller. The controller manages the flash and the buffer, and provides a com-

munication interface to be used with an existing interface standard.

To be used as a disk drive in systems, the IO interfaces require the disk to operate

as a linear array of addressable sectors and assume an in-place update capability where

old data is overwritten by newer data at the same location. However, in-place updates

are extremely inefficient for flash memory and thus, for efficiency it is emulated in the

software layer running on the SSD controller CPU known as the flash translation layer

(FTL). To emulate in-place updates, an out-of-place mapping system is used where each

sector is mapped to a physical page via a mapping table. When sector updates occur,

they are written to a brand new page and the mapping tables updated so that the sector

address now points to the newly written page. In this way, the software FTL and hardware

components of SSD together make it possible to use flash memory in computer storage

systems.

The FTL also serves many other functions besides emulating in-place updates. The

FTL also translates IO requests to flash memory commands, performs garbage collection
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of invalid data known as block cleaning, and wear leveling to maximize the life of the

drive. FTL is thus, a complex layer between the computer system and flash memory

chips simplifying its usage.

2.2.1 Wear Leveling and Efficient Reclamation

Though flash memory can be used as a ROM device where the operating system and

other read only files are stored, we will look at flash memory as a general purpose main

memory storage. The direct method of storing data (i.e. data for block 1 is stored in flash

block 1) is not efficient and presents the problem of wear-out of cells as certain blocks are

written to more often than others in a typical computer use [42].

Furthermore, if we are to use flash memory as we use magnetic hard disks by mapping

the virtual blocks to flash blocks, we would have the following problems:

1. Once a block has been written then any update to the block would require reading

the block, erasing the block and then writing back to the block. This would result

in a very slow performance and high energy usage.

2. Since some files are updated more often than others, for example log files and tables

for directory structures, this would lead to wearing out of certain parts of flash

memory. This would then lead to a low lifetime of the memory.

The counter the above two problems, we will need to adopt the following two tech-

niques:

2.2.1.1 Efficient Reclamation

As flash memory is used over time, some data gets obsolete or the user requests that it

be deleted from the flash memory. Thus with time, the available memory is now used up

as obsolete or invalid data is still stored in the flash memory and thus, some blocks in the

flash memory need to be erased to obtain clean pages for new data. For most flash file
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systems, this is done by a garbage collector. Since erases are time and power consuming,

and reduces the lifetime of the cell and techniques must be used to minimize the number

of erasures.

On top of erasing, reclamation also involves the following:

• Valid pages of the block must be copied somewhere else before the block is erased.

Thus, the garbage collector must choose the reclamation victim properly so that

data isn’t just being copied around needlessly.

• The data structures for the file system that point to the block must be updated and

the block identified as an erased block for reuse as free space.

2.2.1.2 Wear Leveling

Wear leveling [49] refers to prolonging the life of flash memory by avoiding erasing one

block of flash much more than other blocks. Thus, all blocks in the flash memory will

have been erased an equal number of times and the wear of the flash memory is equal

over the entire flash disk.

The count for the number of times a cell has been erased can be written onto the

header of the block. However, most garbage collection methods do not use erase counts

and rely on random or sequential placement of data that algorithmically promotes wear

leveling.

2.2.2 Block Mapping

Instead of directly using flash memory blocks as is, to address wear leveling and inefficient

erasing, a block mapping technique [43] can be used. The host sees a virtual sector number

which are mapped to flash blocks and pages. When new data is written, it does not

overwrite the old block but writes to some other flash block and page and updates the

virtual sector number to reflect the new physical block and page location. We will call
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the virtual sector number to flash block and page map the direct map and the physical

page to virtual block as the inverse map.

Sooner of later, we will run out of empty blocks and have to start garbage collecting.

Note that block mapping also helps in wear leveling since multiple writes to the same

virtual block is written to a different flash block.

As sizes of flash memory grows, it has become inefficient to store large direct and

inverse maps in RAM. One technique is to do block level mapping. However note that

this is also inefficient if only a few bytes are updated in each block. Then, a lot of bytes

have to be read and written to a new block. To alleviate this problem, we use caching and

another solution is to use log-structured based file system. Another issue is that the size

of the block in NAND memory is increasing to make it more cost effective to use large

values. Thus, as technology of flash changes what was once the optimal method may no

longer be optimal and a new optimal solution may have to be proposed.

2.3 Related Work

A mathematical model for wear leveling problem [44] was presented in [5]. The limitation

of their approach is the lack of the ability to mark blocks as invalid and to do garbage

collection. Research in wear leveling algorithms have explored reverse engineering algo-

rithms in commercial SSDs [8], reducing wear leveling operational cost by summarizing

block information [72] and designs for moving rarely updated static data proactively [21],

through dual [18] or multiple [62] queues. Studies on flash endurance have put forward the

notion that current estimates of cell endurance are inaccurate [29] and that current mod-

els of endurance are too simplistic [123] where recovery periods could increase endurance

[96]. Thus, there is a need for an analytical wear leveling model that incorporates modern

SSD characteristics that can be used to assess proposed wear leveling algorithms and also

address the newer models of endurance.
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Analytical models for estimating and calculating write amplification under simple

assumptions are given in [53, 12] and its limits [52] and the impact of garbage collection

on it [58]. Current models suffer from state explosion where calculating write amplification

for practical sized SSDs take impossibly long. There is a need for a simple model of write

amplification that can be calculated for large SSDs which can also be easily manipulated

to test new designs and workloads.

Performance modeling for flash memory has been done by restricting the workloads.

Poisson based workloads on a single chip SSD analysis has been done in [13]. Other

performance modeling research has been on real time flash systems, and workload exper-

iments and metrics. Real time garbage collection analysis for flash memory was given in

[20] but it assumes that the CPU polls and waits for flash operations to complete. This

is especially restrictive for multi-die SSDs which can have concurrent SSD operations.

Models that are aware of the CPU execution and device IO operation was proposed in

[76] but does not consider the characteristics of flash memory like block erase and read-

/write asymmetry. Real time file system design has been proposed in [61] where the

uncertainty of garage collection delays is prevented by replication. Workloads and how it

affects the SSD system including metrics [9], experimental results on real life workloads

[103] and performance [23] have also been explored. Thus, firstly there is a need for real

time flash memory model with modern SSDs assumptions and an extension to deal with

parallel flash operations. Secondly, the work then has to be extended for QoS assumptions

since the worst case delays by garbage collection operations severely under-estimate the

performance capabilities of flash memory SSDs.

Simulation of SSDs have been primarily focused on augmenting DiskSim [10], the

disk system simulator. By adding an SSD model to Disksim, simulations can now be

performed for the storage system where a magnetic hard disk is replaced by an SSD. An

object oriented framework for modeling the internal structures of a flash memory is given

in [82]. Beyond just modeling the SSD, the various tradeoffs of flash design elements
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including data placement and parallelism, wear leveling and workloads is given in [1].

Another simulation study was done exploring the bottlenecks, organizations and facets

of SSD architecture in [32, 31]. All the simulators created for flash memory suffer a

design deficiency that is carried over from the design of hard disk system simulators like

DiskSim in that the simulator cannot reorganize, reorder and parallelize executions of the

IO operations. Disksim sends an event to the disk model and waits for the completion of

the event before proceeding to the next event. However, due to the highly parallel nature

of SSDs, events are started and completed out of order and executed in parallel to each

other. The internal garbage collection and wear leveling mechanisms further send their

own IO requests which run alongside the user driven IO operations. Thus, there is a need

for a simulator that is able to capture the parallelism of the SSDs and the independent

nature of the controller in the SSD for accurate and insightful simulation.

2.3.1 Practical Designs and Approaches

While our approach is to use mathematical models and simulation to validate new algo-

rithms and designs, there is a lot of research that simply make use of commercial SSDs to

build storage systems like data center based applications of SSDs [17], low power clusters

[2], hybrid methods with magnetic hard disks [115, 24, 83]. Custom made SSDs have

been created to test flash properties and algorithms like endurance [8]. For specific ap-

plications like databases [86] there has been research into new designs for page logging

[85] and transactional flash [105], for file systems new designs like DFS [71] or existing

Linux file systems [118, 94]. Flash memory can substantially improve performance in all

computing applications and specialized designs and algorithms for various applications

are limitless. As capacities of SSDs have become large there has been a need for efficient

new data structures and algorithms to manage data and several versions of B-trees have

been proposed [89, 75].
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2.3.2 Coding Techniques

Floating codes were first introduced in [70] as a generalization of the WOM model [108],

and an optimality bound and constructions of optimal codes for arbitrary n, q, k = 2 and

l = 2 were given. These floating codes were generalized for arbitrary k in [113] with a

deficiency of O(k2q) and later improved upon in [122, 92] to a deficiency of O(qk log k).

Floating codes for n, q, k and l = 2 called indexed codes were given in [65] which are

asymptotically optimal but imposes some restrictions on n, q, k. Further bounds and

more example codes for some values of n, q, k were given in [64]. Floating codes called

covering codes for l > 2 were given in [65]. Less restrictive forms of floating codes were

studied in [34, 26, 35].

A more general problem of coding for flash memory has been studied in [67, 63, 66, 68]

and have led to related codes like rank modulation [69], buffer codes [122, 64] and WOM

codes [120, 121, 16].

2.3.3 FTL Designs

Commercial SSDs have their own FTL designs to interface between the flash memory

and the storage system, and thus, is a heavily patented area. Patents have been filed for

refinements to the block reclamation methods [37], data organization [51], garbage col-

lector [101], configurability of the controller [22] and many others. Other patents include

new methods for caching data and managing the cache [36, 4], using flash memory as a

cache[93], power failure behaviors and techniques [39], dealing with issues of concurrency

in data operations [41], design techniques for managing operations like a data pipeline

[38], error correcting for failing regions of flash memory [40], using reference cells for

monitoring errors from charge leakage [97], managing errors in multi-level flash memories

[116], using LDPC codes for error detection and correction [125] and many others.
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CHAPTER 3

Update Codes

3.1 Introduction

Flash memory is a widely used non-volatile storage technology that operates by trapping

charges inside a floating gate. An array of millions to billions of flash memory cells can

be put on a chip to enable storage of large amounts of data. Additionally, the cells can

be used in a variety of different ways so that data storage can be optimized with different

applications in mind.

Charge can be added incrementally to a cell but to release the stored charge, an erase

operation has to be performed. Repeated erasures break down the cell insulation and

thus, after erasing a cell certain number of times, it is no longer able to hold charge and

store data. Additionally, erasing can only happen simultaneously on a large group of cells

called a block and any valid data in the block needs to be copied somewhere else. On top

of that, compared to other flash memory operations, the erase operation is a few orders

of magnitude slower. Thus, erasing has to be avoided as much as possible in order to

increase the longevity and performance of flash memory devices.

To reduce and defer block erasures, a coding scheme called floating codes have been

proposed [70]. In this coding scheme, an array of variables and its updates is stored as

various states of flash memory cells and variable updates are encoded as cell increments.

Thus, each time data is updated it does not require erasing the flash memory cells but

only requires cells to be incremented.

Here, we present update codes which are closely related to the floating codes. The

general idea of update codes is that we want to encode a block of flash cells so that it can
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emulate a smaller number of cells but with higher update levels and with a set number of

total updates possible across all the update cells. In other words, suppose we use a block

of n flash memory cells with q levels, we use update codes to represent these cells as k

update cells on which we can perform a total of t updates where k ≤ n and t ≥ q.

The main practical importance of updates codes is that they are equivalent to a subset

of floating codes. Thus, if we find an update code, we also have an equivalent floating

code. The benefit of going through update codes is that it allows for more structure and

thus a more convenient way of finding codes. Additionally, non-binary floating codes for

l > 2 can be easily constructed from binary floating codes derived from update codes

giving a large number of optimal codes by solving the binary floating code problem.

We first explore floating and update codes in terms of posets (partially ordered sets)

where each update of a cell or variable provides a natural ordering for a poset. The cell

increments produce a cell poset, the cell updates an update poset and the variable updates

produce a variable poset, which have different poset structures. In Section 3.3, we describe

properties of the posets and the fundamental structural differences between the posets.

Mainly, we show that two cell state vectors can only have one cover while variable state

vectors have no such restriction. This property underlines the fundamental challenge to

constructing floating codes because each variable state vector has to be represented by

multiple cell state vectors. However, update state vectors also have at most a single cover

and are very close in structure to cell state vectors and thus, update codes are simpler to

construct.

In Section 3.4, we give a construction for a t1-optimal update code. We call a code

t1-optimal if it can do (n− k+ 1)(q− 1) variable updates each with single cell increments

(the fundamental limit of floating codes). We first give an algorithm for the floating cell

construction and then prove that the algorithm produces a valid floating code. In Section

3.5, we prove that non-binary floating code (l > 2) can be constructed from binary floating

codes and provide an algorithm for it. Thus, the problem of finding floating codes reduces
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to just finding binary floating codes that are derived from update codes.

This construction is a novel way of creating update and floating codes and achieves

the optimal bound for single updates for arbitrary q, k and n ∈ {k, k+1}, or arbitrary n, q

and k = 2 . The deficiency of the code, which is a measure of closeness to optimality, is

O(kq), the best possible deficiency achievable. The best known floating code for arbitrary

n, k, q has deficiency O(qk log k) [122, 92] but note that our code covers a smaller set of

parameters while having optimal deficiency.

3.2 Floating and Update Codes

3.2.1 Flash Memory Architecture

Data is stored in flash memory cells where each cell can be at q different levels {0, 1, . . . , q−

1}. Each cell can be incremented up to level q− 1 but then cannot be decremented. The

only possible way to reuse these cells, once the data stored in them are no longer needed, is

to erase a block comprising of hundreds of thousands of these cells. After a block erasure,

all the cells in the block have level 0.

3.2.2 Flash Memory Representation

Given n cells which have q levels, we call the vector

[c0, c1, . . . , cn−1]

the cell state vector and Cn,q the space of all state space vectors of length n and q levels.

Given c = [c0, c1, . . . cn−1], ĉ = [ĉ0, ĉ1, . . . , ĉn−1] ∈ Cn,q we say that c ≤ ĉ if ∀i ∈

{0, 1, . . . , n− 1},

ci ≤ ĉi
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[0,0,0]

[1,0,0] [0,1,0] [0,0,1]

[2,0,0] [1,1,0] [1,0,1][0,2,0] [0,1,1] [0,0,2]

[2,1,0] [2,0,1][1,2,0] [1,1,1] [1,0,2][0,2,1] [0,1,2]

[2,2,0] [2,1,1] [2,0,2][1,2,1] [1,1,2] [0,2,2]

[2,2,1] [2,1,2] [1,2,2]

[2,2,2]

Figure 3.1: Cell Poset n = 3, q = 3

i.e. at each co-ordinate of c, the value at that co-ordinate is less than that of the value

at the co-ordinate at ĉ. With the above relation, the set of cell-state vectors forms a

partially ordered set (poset) (the partially ordered set is of the product topology of n

products of the ordered space {0, 1, . . . , q − 1}).

By our assumption, the smallest change that can be made to a cell state vector is by

incrementing the value of a single cell. The states that are possible after γ increments

will be called the γth generation. The cell poset and its generations are shown in Figure

3.1 for n = 3 and q = 3.

Let G be the function that gives the generation of the cell state vector G : Cn,q → Z+

which is the weight of the cell state vector

w(c) = G(c) =
n−1∑
i=0

ci

From the above poset, we have that
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[0,0,0]

[1,0,0] [0,1,0][0,0,1]

[1,0,1] [0,0,0] [1,1,0] [0,1,1]

[1,0,0] [0,0,1] [1,1,1] [0,1,0]

[1,0,1] [0,0,0] [1,1,0] [0,1,1]

[1,0,0] [0,0,1] [1,1,1] [0,1,0]

Figure 3.2: Zero Start Variable Poset k = 3, l = 2

[0,0,0]

[1,0,0] [0,1,0] [0,0,1]

[0,0,0] [1,1,0] [1,0,1] [0,1,1]

[1,0,0]

[0,0,0] [1,1,0] [1,0,1]

[1,0,0] [0,1,0] [0,0,1] [1,1,1]

[0,1,0]

[0,1,1]

[1,1,0]

[1,1,1]

[0,0,1][1,0,1] [0,1,1] [1,1,1]

[0,0,0] [1,1,0] [1,0,1] [0,1,1][1,0,0] [0,1,0] [0,0,1] [1,1,1]

[0,0,0] [1,1,0] [1,0,1] [0,1,1] [1,0,0] [0,1,0] [0,0,1] [1,1,1]

[0,0,0] [1,1,0] [1,0,1] [0,1,1][1,0,0] [0,1,0] [0,0,1] [1,1,1]

Figure 3.3: Full Start Variable Poset k = 3, l = 2
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1. the number of vertices of the poset is qn

2. given n cells with the maximum value of q− 1, a cell can be updated n(q− 1) times

from the all zero cell state vector to the all (q − 1) cell state vector.

3.2.2.1 Edge Characteristics

Given a cell state vector c, let φi(c) denote the number of cells in c whose value is i. For

any cell state vector, the maximum number of incoming and outgoing edges are n. When

a cell in a vector is q − 1, it cannot be further incremented and thus results in one less

outgoing edge. When a cell is 0, it could not have been incremented from -1 and thus has

one less incoming edge. Thus,, for each cell state vector c,

1. the number of outgoing edges is n− φq−1(c)

2. the number of incoming edges is n− φ0(c)

3.2.3 Data Variable Representation

Given k variables which can store l values (i.e. any value from the set {0, 1, . . . , l − 1})

and we call the vector

[v0, v1, . . . , vk−1]

the variable vector and V k,l the space of all variable vectors of length k each containing l

values.

We assume that at each update step just one variable gets updated. Thus, if v =

[v0, v1, . . . , vk−1] was updated to the variable vector v̂ = [v̂0, v̂1, . . . , v̂k−1] and the updated

variable was for variable i, then ∀j ∈ {0, 1, . . . , k}\{i},

vj = v̂j

As with the notions of generations with cell state vectors, we can impose a natural



29

poset on the variable state vectors as well. We call the set of variable state vectors

available after γ updates to be the γth generation. However, several generations will

share the same variable state vectors and so we distinguish between them by indexing to

the number of variable updates.

However, there are two possible interpretations to the variable vector depending on

the starting conditions, do we start with the all-zero variable vector in 0th generation or

do we start with the full set of possible values for k variables taking any of the l variable

values in the 0th generation? For the first, we call it the full start poset and the latter

the zero start poset. Here, we focus on the zero start poset.

3.2.3.1 Full Start Poset

If the 0th generation has all the possible variable state vectors, then the variable poset

forms a hypercube of k dimensions of alphabet l. For this poset, we have

1. number of vertices vd is kl

2. number of edges is vdk(l− 1); one data can change to any of the l values except the

old value, each vertex having exactly k(l − 1) edges.

3.2.3.2 Zero Start Poset

We assume that we start with the all zero vector in the 0th generation and each subsequent

generation updates only one variable. The 1st generation has variable state vectors that

are non-zero in one location.

3.2.3.2.1 Binary Variables Suppose that l = 2 (the variables are binary) and at

generation i, we have a variable vector [v0, v1, . . . , vk−1], then the i+ 1st generation does

not have that variable vector. This is illustrated in Figure 3.2 and the above fact can

be restated as that any two variable vectors in the same generation differ in at least two

positions.
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3.2.4 Update Cells Representation

Since update cells are emulated flash memory cells, the update cell representation is

similar to that of the flash memory cells. Given k update cells, we denote the update

state vector as

[u1, u2, . . . , uk−1]

and since they allow for t updates, which have a t+ 1 levels of {0, 1, . . . , t}.

The first difference from flash memory cells is that at most only one ui can have value

maximum value t. If an update cell reaches its maximum value, then we cannot update

it further. This is in contrast to flash memory cells where after some of the flash memory

cells reach the maximum value of q − 1, we can still increment other flash memory cells.

The second difference is that the height of the poset is t + 1 since we limit the to-

tal number of updates to t. Thus, after t updates, the update cells cannot be further

incremented.

3.2.4.1 Conversion to Variable Poset

To convert an update poset to a zero start variable poset, all we need to do is take the

modulo of the update cells. Suppose we have a update poset with k update cells and to

transform it to a variable poset of k variables with l levels, we set the new variables as

[u1 mod l, u2 mod l, . . . , uk−1 mod l]

The update poset for k = 3 and t = 3 is shown in Figure 3.4. If we took modulo 2

of the update state vectors in the poset, we would get the first four generations of the

variable poset in Figure 3.2.
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3.2.5 Floating Codes Mappings

A floating code is essentially a mapping between a given variable state poset and a given

cell state poset. In this mapping, a cell state vector represents some variable state vector.

Since the same variable state vectors are repeated in many generations, the new variable

state vector is indexed to the generation in the variable poset. When a variable is updated,

to reflect the new variable vector, a new cell state vector higher than the current one is

used to represent the new updated variable state variable.

Thus, a sequence of updates happens on a chain in the partially ordered set. As a

consequence, we can state that for a floating code, every chain in the variable poset must

be mapped to some chain in the cell poset.

Next, we look at the two mapping, the decode and update mappings that are used to

describe a floating code.

3.2.5.1 Decode and Encode Mapping

The decode mapping D maps cell state vectors to variable state vectors, i.e.

D : Cn,q → V k,l

The mapping need not be injective but must be surjective. It needs to be surjective as

every possible variable state vector must be represented by a cell state vector. It may

not injective because multiple cell state vectors might be decoded as the same variable

vector. The decode mapping function D might also not be a function because variable

state vectors of different generations might be mapped to the same cell state vector.

We call the inverse of this mapping the encode mapping

E : V k,l → Cn,q
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which gives us the cell state vectors that store a particular variable state vector. Note

that this mapping need not be surjective since there could be cell state vectors that are

unused.

3.2.5.2 Update Function

Given the current cell state vector c and desired variable state vector v, the update

function

U : Cn,q × V k,l → Cn,q

gives the cell state vector ĉ that reflects the desired variable state vector. However,

the cell state vectors can be updated such that the new cell state vector is greater, i.e,

[ĉ0, ĉ1, . . . ĉn−1] > [c0, c1, . . . , cn−1]. If the above is not possible, then the cell is unusable

until it has been erased.

In the poset form, the update function is canonical from the decode and encode map-

ping. Given the current cell state vector c, the update function finds the cell state ĉ

vector that contains the variable state vector and that c < ĉ, and that can be reached

by the least number of updates. In other words, given the current generation γ of c, we

would like to find ĉ in generation γ̂ that decodes to the desired variable state vector v

and c < ĉ with the constraint that it minimizes the difference in the generations γ̂ − γ.

In notation, the canonical update function can be defined as

U(c,v) = arg min c<ĉ
D(ĉ)=v

G(ĉ)

3.2.6 Update Code Mappings

Similar to the floating codes, an update code is a mapping between an update poset and

a cell state poset. Each update state vector must be mapped to one or more cell state

vectors with a decode mapping and cell state vectors to none or one update state vector
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by the encode mapping. Similarly, the update function can be inferred from the encode

and decode mappings.

In Section 3.2.4.1, we described how an update poset can be converted to a variable

poset. Similarly, we can also convert an update code to a floating code by replacing the

update state vectors by the corresponding variable state vectors.

3.2.7 Floating Codes Optimality

Since the cell poset allows for n(q − 1) updates, the largest possible number of variable

updates is n(q − 1) and serves as a loose upper bound.

However, the last generation in the cell poset has only one element whereas the variable

poset usually has more than that (when k > 1) and so n(q− 1) updates are only possible

when k = 1.

Let t be the greatest number of updates possible before a cell becomes unusable and

requires erasure. From above,

t ≤ n(q − 1)

We can further tighten the bound observing that each cell state vector must allow for

k(l− 1) variable updates. To do the update in one cell increment, we must have k(l− 1)

outgoing edges in the cell state vector. All the updates might be possible when a cell

state vector has n cells and when n ≥ k(l − 1). However, if any of the cells reach state

q − 1, further updating of the cell is not possible and we lose an outgoing edge. Thus,

from here, we can see that only (n − k(l − 1) + 1)(q − 1) variable updates are actually

possible with a single cell increment because after (n− k(l − 1) + 1)(q − 1) updates, the

number of cells that can be updatable is less than k(l−1). Then, we then have to update

using more than one increment and if we use two increments for each update, we can do

further
⌊
[k(l−1)−1](q−1)

2

⌋
increments.

If n < k(l−1)−1, we have to start off doing each variable update with more than one
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cell state increment. There are n(q − 1) cell state increments possible and each variable

increment using two cell state updates, we have
⌊
n(q−1)

2

⌋
updates possible.

This above is the upper bound as given in [70]

t ≤


[n− k(l − 1) + 1](q − 1)

+
⌊
[k(l−1)−1](q−1)

2

⌋
n > k(l − 1)− 1⌊

n(q−1)
2

⌋
n < k(l − 1)− 1

(3.1)

As defined in [113], the deficiency δ is

δ = n(q − 1)− t

and from the definition of the deficiency we have that δ > 0. Thus, finding the least upper

bound on t is finding the greatest lower bound on δ. For binary variables (l = 2), the

best known bound on deficiency is O(k(q − 1)) [92], derived from the upper bound for t

given in Equation 3.1. For l > 2, the lower bound for the deficiency is O(k(q − 1)(l− 1))

(assuming n > k(l − 1)− 1).

3.2.7.1 t1 Optimality

As given in Equation 3.1, the number of variable updates possible is determined first

by unit increments and then, by multiple increments. Let t1 be the number of possible

variable updates with a unit increment. We here assume n > k(l−1)+1 otherwise t1 = 0.

We call a floating code t1-optimal if

t = [n− k(l − 1) + 1](q − 1)

and when k = 2, t = (n−k+1)(q−1). Basically, a floating code is a t1-optimal code when

it is possible to update variables using single cell increments until we reach the generation
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which has cell state vectors which doesn’t have enough updateable cells. A t1-optimal

code also has deficiency

O(k(q − 1)(l − 1))

as

δ = n(q − 1)− t = k(l − 1)(q − 1)

For a t1-optimal code to be a fully optimal code, we also have to be able to update

variables in the last [k(l−1)−1](q−1) generations using two generations in the cell state

poset for one variable update.

3.2.8 Update Codes Optimality

For update codes, we want to maximize t, the total number of possible updates on k

update cells. The bound given in Equation 3.1 for floating codes also applies to update

codes because each update state vector has to have k outgoing edges for the k possible

updates.

An obvious solution for update codes is to divide the n blocks into k groups equally

so that
⌊
n
k

⌋
flash cells are used for one variable giving us

t =
⌊n
k

⌋
(q − 1) (3.2)

However, since all update codes are floating codes, the bound on t from the theory of

floating codes is

t ≤ [n− k + 1](q − 1) +

⌊
[k − 1](q − 1)

2

⌋
(3.3)

As an example, taking n = 12 and k = 4, the bound in Equation 3.2 gives us t =

3(q − 1) while Equation 3.3 gives us t ≤ 10(q − 1), more than three times the number of

updates possible by using update codes.

Here, we are interested in constructing t1-optimal floating codes for optimal deficiency
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so we will look at the equivalent definition for update codes. We call an update code

t1-optimal if it can encode the first

(n− k + 1)(q − 1)

update cell increments each with one single flash memory cell increment. Then, if we

find a t1-optimal update code, we have a t1-optimal binary floating code with optimal

deficiency.

We do not have to worry about optimality for floating codes for l > 2 because the

binary t1-optimal floating codes we create from update codes are isomorphic to t1-optimal

l > 2 floating codes which we show in Section 3.5. Thus, if we find an update code, we

can derive a binary floating code which can then be used for l > 2 floating codes.

3.3 Properties of the Posets

3.3.1 Cell Poset

Let γ denote the generation, i.e. γ updates or increments have so far been made. Let Sγ

denote the set of cell state vectors that are of the γth generation or the set of all cell state

vectors possible after γ increments.

The all zero cell state vector is the only vector in generation 0. The last generation

has all the all-(q− 1) vector and that can be reached after n(q− 1) updates. Thus, there

are n(q − 1) + 1 possible generations.

Let (c0, c1, . . . , cn−1) be a cell state vector in Sγ. We have the following properties:

1. The sum of the increments is γ
n−1∑
i=0

ci = γ
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2. All the values in the cells are less than q, i.e., ∀i ∈ {0, 1, . . . , n− 1}

ci < q

3.3.1.1 Counts of States Per Generation

Let Ns(n, q, γ) denote the number of states in the cell state poset at generation γ where

cells state vectors are n cells wide and each cell can take a maximum value of q−1. Since

the total must sum up to all the states of the poset, we have

nq−1∑
γ=0

Ns(n, q, γ) = qn

We would like to know the number of states in each generation. We look at an recursive

definition. For the base case we have that

Ns(1, q, γ) =


1 0 ≤ γ < q

0 otherwise

since if n = 1, each generation can only have 1 state and the recursive equation we have

Ns(k, q, γ) =

q−1∑
i=0

Ns(k − 1, q, γ − i)

where we look at cell state vectors of length k− 1 and count all the possible vectors that

sum to γ is if we added all cells from values of 0 to q − 1.

This distribution follows the distributions of “s” [48] and for large values of n, it can

be approximated by a normal distribution [48].

3.3.1.2 Properties of the Cell State Vectors

We first define the notion of a vertex cover.
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Definition 3.3.1. Let c1 be a vertex in a poset P . We say the vertex c2 ∈ P covers c1

(c1 @ c2 ) if

1. c1 < c2

2. ∀c3 such that c1 < c3, we have c2 < c3 or that c2||c3, i.e., they are incomparable.

In our case, the cover of a cell state vector is the set of vectors that are in immediate

next generation that can be reached after a single update.

Theorem 3.3.2. Let c1 and c2 be two cell state vectors in the same generation, i.e.,

w(c1) = w(c2). Then, at most one cell state vector covers both c1 and c2.

Proof. Suppose c3 = [c0, c1, . . . , cn−1] covers both c1 and c2 and that c1 and c2 were

incremented at i and j to reach c3 respectively. Then,

c1 = [c0, c1, . . . , ci−1, ci − 1, ci+1, . . . , cn−1]

and

c2 = [c0, cj, . . . , cj−1, cj − 1, cj+1, . . . , cn−1]

Let c4 be the cell state vector obtained by incrementing c1 at location k where k 6= i.

Then, c4 covers c1 but can never cover c2 because c4,i = ci−1 and c2,i = ci and c2,i > c4,i.

Thus, any other cell state vector that covers c1 cannot cover c2 and thus, c1 and c2 have

just one cover.

Lemma 3.3.3. Let c1 and c2 be two cell state vectors in the same generation. Then, they

must vary at more than one location.

Proof. If they are in the same generation, then G(c1) = G(c2), and thus,

n−1∑
i=0

c1,i =
n−1∑
i=0

c2,i

but this is not possible if they vary in only one location.
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Lemma 3.3.4. Let c1 and c2 be two cell state vectors in the same generation. Then, c1

and c2 have a common cover c3 if and only if they must vary by 1 at two locations.

Proof. Suppose that c3 is a common cover of c1 and c2, then c3 varies with c1 at only

one location by 1 and similarly, c3 varies with c2 at only one location by 1. c3 cannot

vary with c1 and c2 at the same location and thus, c1 and c2 vary at two locations by 1.

Suppose that c1 and c2 vary by 1 at two locations, say locations i and j. Then,

c1,i = c2,i+1 and c1,j +1 = c2,j, or c1,i+1 = c2,i and c1,j = c2,j +1. Either way, let c3,i =

max(c1,i, c2,i) and c3,j = max(c1,j, c2,j) and c3,k = c1,k = c2,k for k = {1, . . . , n}\{i, j}

and thus, c3 covers both c1 and c2.

We next define the root which is simply the opposite of a cover. If c1 covers c2, then

c2 is a root of c1. We use this to show that if two vertices share a cover, then they must

also share a root.

Definition 3.3.5. Let c1 and c2 be vertices in the poset P . We say that c1 is a root of

c2 if

1. c1 < c2

2. ∀c3 ∈ P such that c3 < c2, we either have c3 < c1 or that c3||c1 (c3 or c1 are

incomparable).

Theorem 3.3.6. Let c1 and c2 be cell state vectors in the same generation. Suppose that

c1 and c2 share a common cover ĉ (c1 @ ĉ and c2 @ ĉ). Then, there must be a common

root r between c1 and c2. (r @ c1 and r @ c2). Furthermore, there can only be at most

one such root.

Proof. By Lemma 3.3.4, since c1 and c2 have a common cover, we have that c1 and c2

vary at two locations. Let these two locations be i and j and assuming ith location is

larger in c1, we have the following

c1,i = c2,i + 1 c1,j = c2,j − 1
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Let r be the cell state vector identical to c1 and c2 in all locations except i and j. Let

ri = c2,i and rj = c1,j. Then, r is one generation below c1 and c2 (i.e., G(r) = G(c1)−1).

Also, r is a root of both c1 and c2 because incrementing by 1 at the ith location leads to

c1 and incrementing by 1 at the jth location leads to c2. Thus, c1 and c2 have a common

root.

Now, let us assume that we have two common roots r1 and r2. But, this would make

r1 and r2 have two common covers c1 and c2. By Theorem 3.3.2, this is not possible and

hence, we have a contradiction. Thus, there can only be one common root.

Theorem 3.3.7. Let c1 and c2 be cell state vectors in the same generation. Then, c1

and c2 have a common cover if and only if they have a common root.

Proof. We showed that they have a common root if they have a common cover in Theorem

3.3.6.

We need to show that if c1 and c2 have a common root, then they have a common

cover. Let r be the common root and suppose that c1 is the result of incrementing r at

the ith location and c2 is the result of incrementing r at the jth location. Then,

c1,i = ri + 1 c2,j = rj + 1

Let ĉ be the vector which is exactly the same as r except at positions i and j. We let

ĉi = ri + 1 ĉj = rj + 1

Now, ĉ is two generations higher than r and one generation higher than c1 and c2. Note

that ĉ covers c1 because it is c1 incremented at jth location by 1 and it also covers c2

because it is c2 incremented at ith location by 1. Thus, c1 and c2 have a common cover

if they have a common root.
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3.3.2 Update Poset

The properties of update posets are almost identical to that of cell posets. An update

code of parameters k update cells and t updates will be the first t+ 1 generations of the

cell poset where n = k and q = t + 1. Thus, all the properties regarding vertex counts,

covers and roots carry over from cell posets to update posets.

3.3.3 Variable Poset

The variable state poset is assumed to have t generations, the maximum number of up-

dates afforded by the cell state poset using a given floating code. As with the upper bound

on the number of updates, the number of generations cannot be more than n(q − 1) + 1.

3.3.3.1 Counts of States Per Generation

We have to examine the full-start and zero-start variable state poset differently. We use

the notation Nv(k, l, γ) to denote the number of states in the γth generation with the

variable state poset with k variables whose value is at most l − 1.

3.3.3.1.1 Full-Start Variable State Poset Each generation has all the possible

variables states. Since we have k variables with l levels, each generation has lk states.

3.3.3.1.2 Zero-Start Variable State Poset For γ ≥ k and l > 2, the zero-start

variable state poset the counts of generations are identical to full-start variable state

vectors, i.e. lk states. For γ ≥ k and l = 2, the counts of generations are half, i.e. 2k−1.

Now, for γ < k and l > 2, the first generation has the all-zero variable state vector only.

The next generation has all the vectors that are non-zero in one location and excludes

the all-zero vector, i.e. k(l − 1) variables state vectors. The generation after includes all

the variables that can be non-zero in at least 2 locations and includes the all zero vector.
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Thus, we have

Nv(k, l, γ) =


1 γ = 0

k(l − 1) γ = 1∑min(γ,k)
i=0

(
k
i

)
(l − 1)i γ > 1

Now, for the case of γ < k and l = 2 binary variables, the variable state vectors in the

current generation is not present in the previous or next generation, and thus we have to

classify by even or odd generation. Thus, we have

Nv(k, l, γ) =


∑min(γ,k)

i=0,i even

(
k
i

)
(l − 1)i γ is even∑min(γ,k)

i=1,i odd

(
k
i

)
(l − 1)i γ is odd

3.3.3.2 Properties of the Variable State Vectors

Unlike the cell state vectors, a variable state vector is covered by all the variable state

vectors that denotes a change in a variable.

Theorem 3.3.8. Let v1 and v2 be two variable state vectors in the same generation.

Then, there are at most max(l − 2, 2) variable state vectors that cover both of them. If

l = 2 (the variables are binary), they are either none or two variable state vectors that

cover both of them.

Proof. If v1 and v2 differ in more than 2 variables, they cannot be covered by the same

variable state vector since we can only update one variable at a time. Now, suppose v1

and v2 differ in exactly two variables at positions i and j, i.e., v1,i 6= v2,i, v1,j 6= v2,j and

v1,s = v2,s for s = {0, 1, . . . , k − 1}\{i, j}.

Let v3 be the vector such that v3,i = v2,i and v3,j = v1,j and equal to v1 and v2 at all

other locations. Here, v3 covers both v1 and v2, setting v1,i = v3,i gives us v3 and setting

v2,j = v3,j gives us v3.Similarly, v4 which has v4,i = v1,i and v4,j = v2,j and equal to v1

and v2 everywhere else also covers both v1 and v2. Thus, when v1 and v2 differ in exactly
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two locations, they are covered by two variable state vectors.

Now, suppose v1 and v2 vary in one location i only. We have to consider two cases,

one when the variables are binary (l = 2) and one when l > 2.

First assume that l = 2 and that the variables are binary. If this is a zero start variable

poset, two such variable state vectors cannot be in the same generation since they have

to differ in at least two positions. If not a zero-start poset and the variables binary with

v1 and v2 differing at location i only, v1,i is either 0 or 1 and v2,i is the other. Since

updating ith variable changes v1 to v2 and vice verse, their next generation versions cover

each other but the next generation of v1 does not cover itself. Thus, there are no covers

for binary variables when they differ at one location only.

When l > 2, both v1 and v2 can be updated to a value that is not equal to either v1,i

and v2,i to form variable state vectors that covers both v1 and v2 and there are l− 2 such

covers.

Lemma 3.3.9. Let v1 and v2 be two variable state vectors in the same generation. Then,

v1 and v2 have a common cover v3 if and only if v1 and v2 differ in at most two locations.

Proof. Suppose v1 and v2 differ in only one location. Then, in the next generation, both

the location can be set to the same value to cover both v1 and v2. Now, if they differ in

two locations, they can be set to each other’s value at the differing locations in the next

generation to get a vector that covers both v1 and v2. Now, if v3 covers both v1 and v2,

then they can differ at at most locations because each generation only allows an update

of one variable.

3.4 Constructing Update Codes

Given a cell state poset P and a variable state poset V , an update code F can be con-

structed by finding a decode mapping D. After the update code is constructed, the cor-

responding binary floating code can be derived from the update code by taking modulo
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two of all the update state vector entries.

When constructing floating codes, we have the following problems and challenging

aspects:

1. the cell poset and variable poset have different shapes; the cell state poset is “round”

in shape and the variable state poset “rectangular with a triangular bottom”

2. as from lemma 3.3.2 and 3.3.8, the structure of the covers are different; two cell

state vectors can only have at most one cover whereas two variable state vectors

can have more than one cover. For l = 2, it can have two covers from Theorem

3.3.8.

When we create update codes, the challenges become slightly different into the following:

1. though update and cell posets are similar, the n, q cell poset and k, t update poset

parameters are different. Additionally, as update codes are only have t+ 1 genera-

tions, the update posets are “triangular” in shape.

2. the cover structures are similar and two update state vectors can also only have a

single shared cover.

In this section, we present a method of constructing update codes which is equivalent

to constructing floating codes.

3.4.1 t1-Optimal Update Code

We next present the construction of t1 optimal update code class which has the following

parameters for n, q and k:

1. arbitrary q and k and n = k + 1 or n = k

2. arbitrary n, q and k = 2.
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By the definition of t1 optimality for update codes, we should be able to do (n−k+1)(q−1)

update cell increments using unit cell increments. When n = k, we should be able to do

(q− 1) update cell increments using single increments and when n = k + 1, we should be

able to do 2(q − 1) update cell increments using single cell increments.

The construction is done using a recursive method where we build a (n, q, k) update

code using (n− 1, q, k− 1) update code. Thus, we only need to define the (n, q, 1) update

code and then rest of the floating codes can be derived from there.

To illustrate the construction of the code, we start with two examples, (3, 3, 2) and

(4, 3, 3) update codes. We then present the recursive algorithm and then discuss the

proof that the construction algorithm creates a valid update code. Since we are only

investigating the t1 optimality, we are only interested in the first (n − k + 1)(q − 1) + 1

generations. We will only look that portion of the poset and ignore for now the remaining

(k − 1)(q − 1) generations which would require multiple cell increments.

3.4.2 Example Constructions

3.4.2.0.1 (3, 3, 2) Code Figure 3.5 shows the (3,2,2) update code construction where

Figure 3.5a shows the update code poset only (without the cell state vectors that are not

used). Figure 3.5b shows the update code in the full cell poset. The different colored

vertices in the code represent sub-posets that are made from (2, 3, 1) update code.

The red-colored sub-poset P1 in Figure 3.5 is the (2, 3, 1) update code but with a

co-ordinate added to the end of both the cell and variable state vectors and set to 0. The

blue sub-poset P2 is P1 but with (0, 0, 1) added to the all the cell state vectors in P1,

(0, 1) added to all the variable state vectors in P1 and the top generation taken out. All

the other sub-posets P3, P4, P5 illustrated by the different colors are derived from P1 by

adding different roots to P1.
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(a) Update Code
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[2,2,1] [2,1,2] [1,2,2]

[2,2,2]

(b) Code Embedded in Cell State Poset

Figure 3.5: Constructing update code for k = 2 from update codes for k = 1. (n = 3, q =
3)
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3.4.2.0.2 (4, 3, 3) Code We construct the (4, 3, 3) update code using the (3, 3, 2) up-

date code F1 we constructed above. The red sub-poset P1 in Figure 3.7 is F1 with a

co-ordinate added to the end of the cell state vectors and variable state vectors of F1 and

set to 0. The blue sub-poset P2 is P1 with the root vector (0, 0, 0, 1) added to the cell

state vectors and (0, 0, 1) added to the variable state vectors in P1.

The interesting thing to observe is how P1 and P2 are connected together. Since P2

starts one generation above P1, we draw the edge from the vertices in the ith generation

in P1 to the i+1st generation of P2. The number of vertices are equal since they are both

from the ith generation of P1 and we draw the vertices in the same order as they appear

so there is no ambiguity. We will prove why this is always possible in Section 3.4.4.

The other thing to look at is the generation of the posets P2, P3, . . . , P5. They are all

constructed from P1 by adding a root cr to all the cell state vertices and cu to all the

vector state vertices. The cu is the vector (0, 0, i) where i is the generation number. The

method to choose the sequence of cr is described in 3.4.3.

3.4.3 Construction Algorithm

Next we describe the construction algorithm for generating update code for arbitrary q,

k and n ∈ {k, k + 1}, or arbitrary n, q and k = 2. Here, the input is n, q, k and the

output is an update code. The update code is represented as an array of arrays where

each generation is an array of vector vertices.

The outline of the algorithm is given in Algorithm 1. The update code is generated

recursively and to create a update code of (n, q, k) we use a update code for (n−1, q, k−1).

Eventually, when we reach k = 1 in the recursive algorithm, which means that there

is only one variable, we can easily generate the update code for (n̂, q, 1) for n̂ = n −

k + 1. We describe the procedure for generating (n̂, q, 1) update codes in the function

Create 1 Update Code in Section 3.4.3.1.

After creating the (n−1, q, k−1) update code, we create the sub-poset P1 by adding a
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new co-ordinate at the end of the cell state vector and variable state vector and marking

them all as zeros. After that, we generate the sequence of cell state vector roots that we

are going to use to generate the sub-posets. We are going to generate (n− k + 1)(q − 1)

sub-posets and need as many roots. Note, the update state vector root sequence are zeros

everywhere except the last co-ordinate which is the generation number.

Algorithm 1 Create (n, q, k) t1-optimal update code

1: function F = CreateUpdateCode(n, q, k)
2: if k = 1 then
3: F = Create 1 Update Code(n, q)
4: else
5: F1 = CreateUpdateCode (n− 1, q, k − 1)
6: P1 = Add Zero Coordinates(F1)
7: F = P1

8: R = Generate Roots (P1)
9: for i = 1 to (n− k + 1)(q − 1) do

10: Pi+1 = Create Subposet (R[i], i)
11: F = Join Vertices (F, Pi+1)

We build the rest of the update code F by iteratively generating the sub-posets Pi

from the roots generated above and then and join the vertices of Pi to the update code.

Once we have created (n− k+ 1)(q− 1) sub-posets and joined them all together, we have

the complete update code.

Next, let’s look at the functions in Algorithm 1 closely. In the entire update code

construction algorithm, the only variable is how we construct the (n̂, q, k = 1) update

code. This determines the roots and hence P1, P2, . . . and so, the final update code.

Given (n, q) there are many ways to create a (n, q, k = 1) update code but we will create

the update code in the method given below. This allows the update code to be valid

which we prove in Section 3.4.4.

3.4.3.1 Create 1 Update Code

We describe the algorithm for creating an (n, q, 1) update code. We only have to store

one update cell so the vector state variable just the generation number. The total number
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of generations is n(q− 1) + 1 and each generation has just one cell state vector. We start

by letting all the cell state vectors be zero in the first generation and then continue by

adding a single value to the left-most co-ordinate until it reaches q − 1. Then, we move

to the next left-most co-ordinate. So, the sequence of cell state vectors will be

(0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), . . . , (q − 1, 0, 0, . . . , 0),

(q − 1, 1, 0, . . . , 0), . . . , (q − 1, q − 1, 0, . . . , 0),

...

(q − 1, q − 1, . . . , 1) . . . , (q − 1, q − 1, . . . , q − 1)

The vector state variable is just the generation number.

3.4.3.2 Add Zero Coordinates

After we have generated a (n − 1, q, k − 1) update code, we need to add one more co-

ordinates to the end of the cell state and update state variables to make it into a (n, q, k)

code. The value for the added co-ordinate is 0 and this gives us P1, the first sub-poset of

the update code. We will generate the rest of the sub-posets from P1. We also generate

the update code by attaching the sub-posets to P1 and make a copy of P1 to F for it.

3.4.3.3 Generate Roots

For (n, q, k) update code, we have to generate (n − k + 1)(q − 1) sub-posets and join

them together. So, we have to generate (n − k + 1)(q − 1) roots to generate each of the

sub-posets. The roots should have weight from 1, 2, . . . , (n−k+1)(q−1) and each should

be a cell increment of the previous one.

The root chosen to generate a sub-poset must be chosen so that the vertices in the

generated sub-poset do not occur in any previous sub-posets. In other words, sub-posets

do not share vertices. We will prove that the algorithm to generate the roots enforces this
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property in Section 3.4.4.2. For example, in P1 we have chosen the last co-ordinate of the

cell state variables to be 0. If our root was 1 in the last co-ordinate, i.e., (0, 0, . . . , 0, 1),

then the vertices generated from this root would not have occurred in the previous sub-

posets. Similarly, (0, 0, . . . , 0, 2) is another root and we can go on to (0, 0, . . . , 0, q − 1).

However, we need (n− k + 1)(q − 1) roots and the above is just (q − 1) roots. Thus, we

need to find (n− k + 1) such co-ordinates.

The algorithm to generate the roots relies on the algorithm to find (n − k + 1) co-

ordinates called root locations which we discuss below. For each of the co-ordinates, we

generate q − 1 roots giving the total of the required (n − k − 1)(q − 1) roots. For each

root location, we start with 1 and then generate successive roots until we reach q − 1

at that location. The root locations used are largest co-ordinate first and then to lower

co-ordinates.

Let z1, z2, . . . , zn−k+1 be the root locations in order of co-ordinate. By our construction,

zn−k+1 = n because we added a co-ordinate at the nth location and set it to 0. Thus, the

sequence of generated roots will be

(0, . . . , 0, 1), . . ., (0, . . . , 0, q − 1),

(. . . , 1zn−k−2
, . . . , q − 1), . . .(. . . , q − 1zn−k−2

, . . . , q − 1),

...

(. . . , 1z1 , . . . , q − 1z2 . . . , q − 1), . . .

(. . . , q − 1zn−k−2
, . . . , q − 1)



54

In other words, let i = α(q − 1) + j for 0 ≤ α < n− k − 1 and 0 < j < q. Then,

ri,β =



0 β < zn−k−α

j β = zn−k−α

q − 1 β > zn−k−α

0 β 6= zη for η = 1, . . . , n− k + 1

Algorithm 2 Find n− k + 1 root locations from P1

1: function L = Find Root Locations(P1)
2: S = 0
3: for i = 1 to q do
4: for each cell state vector v in generation i do
5: S = S + v

6: L = find(S == 0)

To find the root locations, we take the sum of all the cell state vectors in the first

q generations and the locations that are zero serve as the root locations as given in

Algorithm 2. We give the details of why the algorithm works in the section 3.4.4.1

3.4.3.4 Create Subposet

We take the poset P1 and add the given root to each cell state variable in the sub-poset.

With i = 1, . . . , (n− k − 1)(q − 1), we set the last co-ordinate of the update state vector

to the generation number. Lastly, we take out the top i generations after the addition to

get the sub-poset Pi+1.

3.4.3.5 Join Vertices

Finally we join the vertices of the newly created poset Pi to the update code. The root of

the vertex Pi is joined to the root of the vertex Pi−1 by creating an edge between the root

of Pi−1 and Pi. Thus, all the vertices of Pi are one generation higher than the vertices of

Pi−1.
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We call two vertices ci−1 ∈ Pi−1 and ci ∈ Pi corresponding vertices if they are from

the same vertex in P1. In other words, ci−1 = v + ri−1 and ci = v + ri for some v ∈ P1.

Thus, ci−1 and ci have the same positions within the sub-posets Pi−1 and Pi.

For connecting the rest of the vertices, just like the root, we join the corresponding

vertices of Pi−1 to Pi for each generation. This is best illustrated in the example con-

structions by black edges between different sub-posets and also Figure 3.8 which shows

joining of the roots and corresponding vertices. The edges are connected in the order they

appear in each generation from one sub-poset to the other. Each vertex in the sub-poset

now connects to one other corresponding vertex and thus, the number of outgoing edges

of the vertices have increased from k−1 to k for all the vertices. Note that each sub-poset

Pi has i generations from P0 + ri removed from the top and so, the top generation of Pi

does not have any outgoing edges.

The final sub-poset only has the root and thus no outgoing edges. After the final

sub-poset is joined, we have the full update code with each vertex has k outgoing edges.

3.4.4 Proofs for the Algorithm

The algorithm given above assumes a certain structure in the poset exists but we have to

prove that they do for arbitrary values of n, q, k. We also have to prove that after all the

structures are constructed, we have a valid floating code by showing that each update cell

increment can be satisfied with a single cell increment.

The structures that we have to verify are:

1. In the algorithm for finding the root locations, we need to prove that we will always

find (n − k + 1) zero locations if we sum up all the cell state vectors in the first q

generations of P1.

2. When we generate the sub-posets from the root vectors, we have to guarantee that

each cell state vector in the sub-poset does not exist in any other sub-poset.
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3. When joining the sub-posets, the edges exists between the two corresponding vertices

in the cell poset.

When the above have been proved, we can verify that the sub-posets

P1, P2, . . . , P(n−k+1)(q−1)+1

are disjoint (in terms of cell state vectors). Each vertex has k outgoing edges that are in

the cell poset. After that, we have to prove that the above poset (a sub-poset of the (n, q)

cell poset) is an update code by satisfying the property that for each cell state vector

that represents a variable state vector, its outgoing edges lead to other cell state vectors

that represent all the possible updates state vectors. When the above is proved, we can

guarantee a valid update code.

The reason that n ∈ {k, k + 1} when k > 2 is because it would otherwise violate

condition 2 from above regarding the structure of the constructed update code. Some

of the subposets generated would have vertices that have already been used before in a

previous sub-poset.

3.4.4.1 Root Locations

The lemma below says that there are n− k+ 1 zeros when we sum the first q generations

of the sub-poset P1.

Lemma 3.4.1. Let F be a (n− 1, q, k − 1) update code as in the above algorithm and let

P1 be the poset created by adding one co-ordinate at the end of the cell state vector and

assigning that co-ordinate 0 throughout the poset. The sum of all the cell state posets in

the first q generations of P1 has zeros at n− k + 1 co-ordinates.

Proof. We will prove this by induction on k, the number of variables. For the base case,

let k = 2 and that P 2
1 be the sub-poset made from a (n − 1, q, k = 1) update code F

by adding a co-ordinate to the end and assigning it 0. Then, P 2
1 has n co-ordinates and



57

is a sub-poset of the update code (n, q, 2). For the first q generations, we only update

the first location and thus, the sum of the first q generations would have zeros in all the

co-ordinates except the first. For F , that is n − 2 and for P1 that is n − 1 = n − 2 + 1

which satisfies the case for k = 2.

Now, let us assume that P k
1 , a sub-poset of (n, q, k) update code, generated by adding

a co-ordinate to a (n − 1, q, k − 1) update code has the property that summing the first

q generations of P k
1 has zeros in n− k + 1 locations.

Consider P k+1
1 generated from the (n, q, k) update code Fk which is a sub-poset of

(n+ 1, q, k+ 1) update code. The first q generations of the (n, q, k) code is made from P k
1

and q − 1 other posets derived from by adding a root. We used the last co-ordinate for

the first q− 1 root values. Thus, if we added all the vertices in the first q generations, we

would have one less zero location because we have added root vectors that are non-zero

in the last co-ordinate. Thus, the number of zeros of the first q generations of Fk is n−k.

When we create P k+1
1 , we add a new zero to co-ordinate and increase the number of zeros.

Thus, we have n− k+ 1 zeros in P k
1 . Since, n− k+ 1 = (n+ 1)− (k+ 1) + 1, this is also

true for k + 1. Thus, by induction, it is true for all values of (n, q, k).

This gives a simple corollary linking the weight of the vector and zero co-ordinates.

Corollary 3.4.2. Let v ∈ P1. If w(v) ≤ q, then v is zero in n− k + 1 co-ordinates.

Proof. From 3.4.1, the sum of all the vectors in the first q generations has zeros in n−k+1

co-ordinates. Since v is in the first q generation, it must have zero in n − k + 1 co-

ordinates.

We can generalize the above lemma to the following to extend to any number of

generations:

Lemma 3.4.3. Let P1 be the poset as constructed above. The sum of all the cell state

posets in the first d(q − 1) + 1 generations of P1 has zeros at n− k + 2− d co-ordinates.
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Note that when d = n− k + 1 the total number of zero co-ordinates is 1 and the zero

co-ordinate is at the last co-ordinate. When d = 1, we get Lemma 3.4.1.

Lemma 3.4.4. Let Z be the zero co-ordinates of the sum of the first q generations of P1.

If v ∈ P1 and is non-zero in h of these zero locations, then

w(v) ≥ h(q − 1) + 1

Note that when h = 0 and there are no non-zero locations from z, then w(v) ≥ 1 and

when h = n− k + 1, then w(v) ≥ (n− k + 1)(q − 1) + 1.

As a consequence, we have the following lemma:

Lemma 3.4.5. Let c ∈ Pi. Then, c = v+ri for some v ∈ Pi and ri the root that generates

Pi. Additionally, v and ri cannot have two common co-ordinates that are non-zero.

3.4.4.2 Disjoint Sub-Posets

We next prove that the sub-posets generated do not have a vertex in common. This comes

from the way we constructed the sub-posets. From Lemma 3.4.1, we have that there are

n− k + 1 zero co-ordinates.

For k = 2, the roots are constructed so that these zeros are filled from right to left

while these co-ordinates are filled up left to right in the update code as we go higher up

in the generations. From the construction, there never is a case when these two meet and

so, two sub-posets cannot have the same cell state vector.

For k > 2 and n ∈ {k, k+ 1}, it has two zero co-ordinates from Lemma 3.4.1. For the

first q− 1 updates, the nth co-ordinate is used as the root location and q− 1 root vectors

created. For the second set of q − 1 updates, the height of the generated sub-posets will

be of height at most q and thus, the second zero co-ordinate can be used for generating

q − 1 more roots. The nth location will have been used by the first q − 1 updates and so

then the second set of updates can use the second root location.
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The reason we restrict n ∈ {k, k+ 1} when k > 2 is that while there are n−k+ 1 zero

co-ordinates in the first q generations, the number of zeros in the next q − 1 generations

reduces by k−1, each variable taking up one more cell. When k = 2, this is not a problem

because the zero co-ordinates reduces by 1 and we can build t1 optimal update codes. For

k > 2, the zero locations are used up at k− 1 > 1 locations on each q− 1 updates but we

run out of root locations before we can get n− k + 1 generations.

Lemma 3.4.6. Let P1, P2, . . . , P(n−k+1)(q−1)+1 be the sub-posets as generated above. They

do not have a cell state vector (vertex) in common.

Proof. Assume to the contrary that there are two cell state vectors ci ∈ Pi and cj ∈ Pj
such that ci = cj with i < j. Then, there must be two cell state vectors v1,v2 ∈ P1 and

taking ri and rj are the roots of Pi and Pj that

v1 + ri = v2 + rj

and equivalently,

v1 − v2 = rj − ri (3.4)

We look at two cases.

Suppose ri and rj vary at one co-ordinate α only. Since v1 and v2 are zero in that

co-ordinate, the left hand side of Equation 3.4 would be zero on the α co-ordinate and

non-zero on the right. This is a contradiction and ri and rj cannot vary in just one

location.

Suppose that ri and rj vary at more than one location. From Equation 3.4, we have

that v1 < v2 and the increments that take ri to rj also takes v2 to v1.

Let us first consider the case of k = 2. Let z1, z2, . . . , zn−k+1 be the zero locations

used to construct the roots. From the construction, we increment by 1 for each zero co-

ordinate until it reaches q − 1. We start from the rightmost zn−k+1 and then choose the

next left co-ordinate when it is q − 1. Then, rj − ri will be non-zero in the co-ordinates
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zs−λ, zs−λ+1, . . . , zs for some s < n− k + 1 and λ > 1.

Now, let us consider the sequence of updates from v2 to v1. The increments can

happen in co-ordinates not in z1, z2, . . . , zn−k+1. But also, after each q − 1 updates,

updates can happen for each additional z co-ordinate going from the left to the right.

For example, when we at the zero generation, updates only occur in co-ordinates not in

z1, z2, . . . , zn−k+1. After the first q updates, updates can also happen in the z1 co-ordinate.

And, then from there, to z2, z3 and so on. From Equation 3.4 and that rj−ri are non-zero

in the co-ordinates zs−l, zs−l+1, . . . , zs, we have that v1− v2 are also non-zero in the same

co-ordinates.

From above, we have that

w(v1) > s(q − 1) + 1

and since ri is non-zero also at the s co-ordinate,

w(ri) > (n− k + 1− s)(q − 1)

Now, looking at the weight of ci,

w(ci) = w(v1 + ri) = w(v1) + w(ri)

> (n− k + 1)(q − 1) + 1

which is not possible because the update codes are only up to (n − k + 1)(q − 1) + 1

generations. Thus, we have a contradiction.

Thus, i = j and two sub-posets cannot have a cell state vector in common.

Next, when k > 2 and n ∈ {k, k + 1}, there are two root locations and one of them

is the nth co-ordinate and let the other one be the sth co-ordinate. For the first q − 1

updates, we use the nth co-ordinate. For the next q − 1 locations, note that all the sub-
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Figure 3.8: Connecting Two Sub-Posets

posets are of height less than or equal to q. Thus, all the sub-posets for the second q − 1

update are zero in the sth co-ordinate. Thus, we can create q−1 roots at the sth location

and none of the vectors are are repeated because the sub-posets are non-zero in the root

locations.

3.4.4.3 Existence of the Edges for Joining Posets

We have said in the construction algorithm that we can draw edges between the poset

Pi and Pi+1 but haven’t proven that such edges exist the way we have described it. The

next lemma states that these edges must exist.

Lemma 3.4.7. Let ri be a root and ri+1 be the next root by doing a cell increment. Let

Pi be the sub-poset generated by ri and Pi+1 be the sub-poset generated by ri+1, done by

adding the root to the sub-poset P1. We connect an edge between ri and ri+1. Then, there

must be an edge between a vertex in Pi to a vertex at Pi+1. Furthermore, let v ∈ P1 and

if v + ri+1 ∈ Pi+1, then there is an edge between v + ri ∈ Pi and v + ri+1 ∈ Pi+1 (i.e.

there is an edge between two corresponding vertices in the sub-posets Pi and Pi+1 ).

Proof. We connect the root of Pi to the root of Pi+1 as shown in Figure 3.8 by connecting

ri and ri+1. Note that ri+1 = ri + δ1 where δ1 is some unit increment.



62

By connecting the roots of Pi and Pi+1, ri is now the common root of a1 and ri+1 and

they must now have a cover in common from Theorem 3.3.7. Now, b1 covers ri+1 and

also covers a1 since b1 = a1 + δ1, there is an edge between a1 and b2.

Suppose we have v ∈ P1. Let ci = v + ri ∈ Pi and ci+1 = v + ri+1 ∈ Pi+1. Note that

ci+1 = ci + δ1 and thus, ci+1 covers ci since δ1 is a unit increment. Then, we draw an

edge between them to denote the update of the kth variable.

3.4.4.4 Validity of the Update Code

Having established the structural properties of the update code, we have to verify the

final step that this is indeed a valid update code. For each cell state vector, we have to be

able to increment each of the k update cells by going up one generation in the cell state

poset.

Theorem 3.4.8. The poset and the update map generated as above is a valid update code.

Proof. We have shown that the update code generated when k = 1 is valid. Now, let us

assume that the update code for (n, q, k) is valid. We will show that the update code for

(n+ 1, q, k + 1) is also valid and prove by induction.

Since the (n+ 1, q, k + 1) update code is made up sub-posets made from the (n, q, k)

code, and by assumption the (n, q, k) code is valid, the first k update cells can be incre-

mented on the (n + 1, q, k + 1) code. We just have to prove that the k + 1st update cell

increment is possible.

For each cell state vector we construct, we join it to the next sub-poset where the

update state vector is exactly the same except the last update cell, as described above.

This allows for the increment of the k + 1st update cell as we go up one generation and

thus, we are able to increment all k + 1 update cell at each cell state poset. Therefore,

the poset generated by the above algorithm is a valid update code.
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3.4.5 Mappings without Constructing the Poset

The algorithm we have presented above creates an update code as a poset. For large

values of (n, q, k), constructing and using an entire poset will not be practical. We want

encode, decode and update mappings that can work with cell state vectors and update

state vectors only without having to construct the entire poset first.

3.4.5.1 Notes on the Code Construction

The update code we have constructed has a stricter structure than that is required for

update codes. Each update state vector is mapped to a single cell state vector. The

general update code can have an update state vector mapped to multiple cell state vectors

depending on the path it took to get to there. Consequently, our construction algorithm

simply boils down to finding a subposet of the cell poset that is isomorphic to the update

poset where the all zero update state vector is mapped to the all zero cell state vector.

3.4.5.2 Decode Mapping

We want a decode function that takes a cell state vector and outputs an update state

variable or that tells us that the given cell state vector is not assigned to any update state

variable. We will first look at k = 1 and then give a recursive function for k > 1.

Suppose we have the parameters (n, q, k) for the update code and a cell state vector

(c1, c2, . . . , cn) and we want to find the update state vector (u1, v2, . . . , uk) that corresponds

to this cell state vector for the given code parameters.

3.4.5.2.1 k = 1 When k = 1, the value is simply the number of the generation which

can be obtained by the sum of the cell state vector. Thus,

v1 =
n∑
i=1

ci
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Note this is only valid when the cell state vector is being used by the code. We can check

if the cell state vector is being used or not by making sure it confirms to how the k = 1

cell state vectors are assigned. The first co-ordinate is incremented up to q − 1 and then

the next until q − 1. So, we can just check that the following conditions hold

ci > 0 =⇒ ci−1 = q − 1

for i = 2 . . . n. If the above condition is violated, then the cell state vector is not assigned

to an update state vector.

3.4.5.2.2 k > 1 When we have more than one variable, we decode the kth variable

and then create another cell state vector for code parameters (n − 1, q, k − 1). We can

then recursively decode.

There are (n − (k − 1) + 1)(q − 1) copies of the poset P1 and as many roots. There

are (n − (k − 1) + 1) root locations. We have calculated the roots by summing up the

first q levels of the poset but since we don’t want to construct a poset, we use a different

algorithm to find the root locations.

The root locations are given by the following where we denote the root locations by

z1, z2, . . . , zn−k,

z1 = n

z2 = n− (k − 1)

z3 = n− (k − 2)

...

zn−k = 2

We then take the vector at the root locations and that will be our root. The sum of
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the root will tell us how many times the root has been updated.

vk =
n−k∑
i=1

czi

To check if the cell state vector is being used for an update state vector, we recursively

go down to the cell state vector for k = 1 and if that cell state vector is valid, then the

original cell state vector is also valid.

3.4.5.3 Encode Mapping

Given an update state vector, we want to find the cell state vector that encodes the update

state vector. From our discussion above, each update state vector in our construction

decodes to only one cell state vector.

3.4.5.3.1 k = 1 This is the case when we just have one update cell and the update

state vector is (u1). We start from the leftmost cell, increment it until it reaches q − 1

and then move to the next cell. Let

η =

⌊
u1
q − 1

⌋

Then, we have for the cell state vector (c1, c2, . . . , cn)

c1 = q − 1

...

cη = q − 1

cη+1 = u1 mod q − 1

cη+2 = 0

...
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3.4.5.3.2 k > 1 We have the update state vector (u1, u2, . . . , uk). Each increment of

the update cell is encoded by an increment in the flash cells. For the first update cell,

the pattern is increments is the same as for k = 1. For the rest of the update cells ui for

i = 2, . . . , k, we increment similarly but from right to left and in the root locations for

(n− i, q, k− i) update code. The root locations can be directly calculated as we described

in Section 3.4.5.2.2. Thus, we calculate ηi =
⌊
ui
q−1

⌋
and set the last ηi root locations to

q − 1. Then, the next root location cell is incremented by ui mod q − 1.

3.4.5.4 Update Mapping

Since each update state vector is mapped to a single cell state vector, the update mapping

can be inferred from the encode and decode mappings. To update a cell state vector, we

decode it to the update state vector and then increment the desired update cell to get

the new update state vector. After that, we decode it to a cell state vector. Since each

update state vector only maps to a single cell state vector in our construction, there is no

ambiguity here. Thus, the update mapping to the new cell state vector can be inferred

from just the encode and decode mappings.

3.5 Generalization for l > 2 Floating Codes

The construction of the floating code from update codes we have given above is only

for binary variables (l = 2). To generalize the construction for arbitrary l, we will use

the property we prove in Theorem 3.5.1 that a non-binary variable floating code is iso-

morphic to a binary-variable floating code generated from an update code with adjusted

parameters. Then, all we need for constructing floating codes for l > 2 is to construct

the isomorphic binary l = 2 floating code from update codes and then re-label the vector

state variables. They then go from an array of binary variables to a different array of

l-ary variables.
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3.5.1 Isomorphism Between Codes

The following theorem is the basis for constructing floating codes for l > 2. It turns out

that an t1-optimal floating code for arbitrary parameters can be made from a t1-optimal

floating code for binary-variable parameters by simply relabeling its vertices for l-ary

variables.

Theorem 3.5.1. Let n, q, k, l ∈ N with n ≥ k(l − 1). Then, there exists a floating code

F(n, q, k, l) with parameters n, q, k, l such that

F(n, q, k, l) ∼= F(n, q, k(l − 1), 2)

where ∼= denotes an isomorphism and F(n, q, k(l− 1), 2) is a binary variable floating code

with parameters (n, q, k(l − 1), 2) generated from an update code that we can construct

using the above algorithm.

Proof. We will show that an isomorphic floating code with parameters n, q, k and l exists

by taking the binary-variable floating code F(n, q, k(l − 1), 2) generated from an update

code, relabeling the variable state vectors to l-ary k variables and then, showing that the

end-result is a floating code.

Given the parameters n, q, k, l, let ν be a vertex in the floating code and let V2(ν)

denote the binary variable vector for the vertex ν = (u1, u2, . . . , uk(l−1)). Each vertex in

the floating code has k(l − 1) covers and let the covers be ν1,ν2, . . . ,νk(l−1).

By our construction, ν1 represents the update to the first variable u1, ν2 update to

the second variable u2 and so on. Thus, the order of the covers denotes which variable is

updated and that νi is an update to the ith variable ui. In notation,

[V2(νi)]i = ui + 1 mod 2

Now we relabel each binary variable vector in ν to l-ary k-variable vectors and denote



68

the vector by Vk(ν) = (v1, v2, . . . , vk). The first l − 1 covers

ν1,ν2, . . . ,νl−1

will represent updates to the variable v1, the next l − 1 covers

ν(l−1)+1,ν(l−1)+2, . . . ,ν2(l−1)

updates to v2 and so on until the last l − 1 covers

ν(k−1)(l−1)+1,ν(k−1)(l−1)+2, . . . ,νk(l−1)

updates to vk.

For variable vi, let ν(i−1)(l−1)+j be the jth cover. The jth cover for variable vi will

represent the update to vi + j mod l. In notation,

[
Vk(ν(i−1)(l−1)+j)

]
i

= vi + j mod l

We now need to show that the relabeled code is a valid floating code for parameters

n, q, k and l.

The (n, q, k, l) floating code should provide for k(l − 1) updates, i.e., (l − 1) updates

for each of the k variables. Since we used a binary-variable (n, q, k(l− 1), 2) floating code

for the relabeling, there are enough covers to provide k(l − 1) variable updates.

To prove that it is a valid floating code, we have to show that when a vertex is a

cover of multiple vertices, all the updates should result in the same variable state vector.

In other words, if ψ is a cover of vertices ν and ω, and ψ is the ith variable update of

size δi of the variable state vector ν and jth variable update of value δj of the variable

state vector ω, the result of both of these updates should result in the same variable state
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vector.

For the first generation g = 1, there is only the all zero variable state vector which we

map to the k-variable zero vector. For g = 2, all the vertices cover the zero vector and

thus is vacuously true.

Let ψ be a vertex in the h + 1 generation of the floating code and covers vertices ν

and ω in generation h. By Theorem 3.3.7, the vertices ν and ω also have a common root

σ that lies in generation h−1. The relationship between the vertices are shown in Figure

3.10.

Let the binary variable state vector stored in σ be (u1, u2, . . . , uk(l−1)). Let ν and ω

be the update to the ith and jth binary variable of σ and that i < j. Then,

V2(ν) = (u1, u2, . . . , ui, . . . , uj, . . . , uk(l−1))

V2(ω) = (u1, u2, . . . , ui, . . . , uj, . . . , uk(l−1))

where ui = ui + 1 mod 2. Now, ψ is a cover of both ν and ω and since we constructed a

valid binary-variable floating code, we know that updates to both ν and ω result in the

same variable state vector in ψ.

This leaves two choices possible on how the variable vectors of ν and ω are updated.

Either the ith variable of ν and jth variable of ω is updated to result in

V2(ψ) = (u1, u2, . . . , ui, . . . , uj, . . . , uk(l−1))

or, the jth variable of ν and ith variable of ω is updated to result in

V2(ψ) = (u1, u2, . . . , ui, . . . , uj, . . . , uk(l−1))

We will next show that by our construction, only the second type of update is possible.

By our construction, since the update from σ to ν is in the ith variable, the update
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from ω to ψ must also be in the ith variable. The portion of the sub-poset from σ to ν

and ω to ψ are copies of each other by our construction. This is shown in Figure 3.10

as shaded boxes which are built from the same portion of a sub-poset. Thus, it must be

that

ψ = (u1, u2, . . . , ui, . . . , uj, . . . , uk(l−1))

Thus, updates from σ to ν to ψ is updates to the ith variable then the jth variable. And,

the update from σ to ω to ψ is updates to the jth variable then ith variable.

Now, for our k-ary variables, let

i = (l − 1)α + δα

j = (l − 1)β + δβ

Let σ be the l-ary variable vector (v1, v2, . . . , vk). Then, by our update pattern we

have when α 6= β

Vk(ν) = (v1, v2, . . . , vα + δα, . . . , vβ, . . . , vk)

Vk(ω) = (v1, v2, . . . , vα, . . . , vβ + δβ, . . . , vk)

where vα + δα = vα + δα mod l. When α = β, we have

Vk(ν) = (v1, v2, . . . , vα + δα, . . . , vk)

Vk(ω) = (v1, v2, . . . , vα + δβ, . . . , vk)

Next, updating ν in the jth location and σ in the ith location, we have

Vk(νj) = (v1, v2, . . . , vα + δα, . . . , vβ + δβ, . . . , vk)

Vk(ωi) = (v1, v2, . . . , vα + δα, . . . , vβ + δβ, . . . , vk)
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when α 6= β and when α = β, we have

Vk(νj) = (v1, v2, . . . , vα + δα + δβ, . . . , vk)

Vk(ωi) = (v1, v2, . . . , vα + δβ + δα, . . . , vk)

Thus, in both cases, Vk(νj) = Vk(ωi) and thus, Vk(ψ) represents the same vector state

variable. Thus, the relabeled floating code is a valid (n, q, k, l) floating code. Because we

constructed our (n, q, k, l) code by simply relabeling the binary-variable floating code, it

is isomorphic to the binary-variable floating code.

Note that while the floating codes are isomorphic, the variable posets are not iso-

morphic. For example, when k = 1, l = 3, after the second generation, each generation

has 3 variable state vectors (see Figure 3.9a) whereas when k = 2, l = 2 has only has 2

variable state vectors (see Figure 3.9b). From above, F(n, q, 1, 3) ∼= F(n, q, 2, 2) and so,

the floating codes are isomorphic. This is illustrated in Figure 3.9 which shows the two

different variable posets which has the same isomorphic floating codes in Figure 3.9c and

from our previous example Figure 3.5a.

3.5.1.1 t1-Optimality

Note that the floating code for l > 2 from Theorem 3.5.1 is also t1-optimal and has

deficiency of O(qkl). To see this, note that by the t1-optimality definition from Section

3.2.7.1, the floating code needs to provide [n − k(l − 1) + 1](q − 1) updates via single

cell increments. The floating code F(n, q, k(l − 1), 2) provides [n − k(l − 1) + 1](q − 1)

updates via single cell increments which is exactly the number of single cell increment

updates that is required for optimality for the general l > 2 case. Thus, all the codes

from Theorem 3.5.1 for l > 2 are also t1-optimal.
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[0]

[1] [2]

[0][2] [1]
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(a) Vector Poset For k = 1, l = 3

[0,0]

[1,0] [0,1]

[1,1] [0,0]

[1,0] [0,1]

[1,1] [0,0]

(b) Vector Poset For
k = 2, l = 2

[0,0,0]
[0]

[1,0,0]
[1]

[0,0,1]
[2]

[2,0,0]
[2]

[1,0,1]
[0]

[0,0,2]
[1]

[2,1,0]
[0]
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[1]

[1,0,2]
[2]

[0,1,2]
[0]

[2,2,0]
[1]

[2,1,1]
[2]

[2,0,2]
[0]

[1,1,2]
[1]

[0,2,2]
[2]

(c) Floating Code For k = 1, l = 3

Figure 3.9: The vector posets for k = 1, l = 3 and k = 2, l = 2 are not isomorphic but
their floating codes are isomorphic
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i

i

j

j

Figure 3.10: Relationship of vertices used in proof of Theorem 3.5.1

3.5.1.2 Floating Codes from Update Codes

For the relabeling algorithm to work, the floating code must be constructed from an

update code. The reason is that, in floating codes using an example, the update state

vectors (1, 3) and (3, 1) would represent the same variable state vector (1, 1). Then, we

could have an edge to both (1, 3) and (3, 1) from (1, 2) in floating codes which is (1, 0) in

the floating code. However, such an edge would not be permissible in an update code.

3.5.2 Relabeling Algorithm

The relabeling algorithm works by utilizing the structure of the isomorphic binary-variable

floating codes generated from update codes. In the first step, for the first generation which

only has a single vertex, this is set to the zero variable state vector with k variables.

Next, the algorithm labels each generation after the first from the generation below it.

The floating code F(n, q, k(l− 1), 2) has vertices with k(l− 1) outgoing edges and hence,

k(l−1) covers. The order in which the covers are connected to the vertices will determine

the labeling.

Suppose we have a l-ary variable state vector with k variables (v1, v2, . . . , vl). For

each covering vertex, we will label them in the following way in the order they are in the
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floating code :

(v1 + 1, v2, . . . , vk)

(v1 + 2, v2, . . . , vk)

...

(v1 + (l − 1), v2, . . . , vk)

...

(v1,v2 + 1, . . . , vk)

...

(v1,v2, . . . , vk + (l − 1))

where vi + j = vi + j mod l.

The relabeling algorithm is given in Algorithm 3. The floating code is given by F whose

first index indicates the generation and the second index the vertex in the generation. The

function Get Covers gets the covers of a vertex which are used in the floating code and

vertex indices. The variable λ decides which cover to update and i2 and i3 determine

which variable to update and by how much.

Algorithm 3 Relabel a (n, q, k(l − 1), 2) to (n, q, k, l) code

1: function Relabel Code(F )
2: for i = 1 to t do (each generation in F )
3: for each vertex ν in generation i do
4: c = Get Covers(ν)
5: for i2 = 1 to k do (each variable)
6: for i3 = 1 to l − 1 do
7: λ = c[i2(l − 1) + i3]
8: F (i+ 1, λ) = ν
9: F (i+ 1, λ)i2+ = i3 mod l
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3.5.3 Examples

The (3, 3, 1, 3) floating code for single variable with l = 3 is given in Figure 3.9c. The

floating code for two variables with l = 3 ternary-variables is given in Figure 3.11 with

parameters (4, 3, 2, 3). This floating code is a relabeling of the binary-variable floating

code with 4 variables that has parameters (3, 3, 4, 2).

While it is possible to create the l > 2 floating code by generalizing the construc-

tion algorithm for l = 2 and constructing the floating code for (n, q, k, l) by using the

(n− (l − 1), q, k − 1, l) floating code, it becomes much more complicated. On each gen-

eration, we would have to add multiple copies of the sub-posets and the added sub-posets

would have to be joined to previous sub-posets in differing ways. Figure 3.9c shows the

(4, 3, 2, 3) code constructed from (2, 3, 1, 3) code with different colors denoting the differ-

ent sub-posets. We add two copies of sub-posets in the second generation and three copies

in the third. Note in the third generation, the new sub-posets are joined twice in some

cases and only once in others.

Here, we have presented update codes, a class of floating codes. We gave an algorithm

for the construction of t1-optimal update codes for certain parameters which we derived

from the poset structure of the code. We then examined the isomorphism properties of

update codes to show that binary floating codes from update codes are isomorphic to

l-ary floating code.
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CHAPTER 4

Minimizing Write Amplification on Of-

fline Workloads

4.1 Introduction

Using the disk interface for flash memory produces write amplification [53], an undesirable

by-product of translating write, update and delete operations to native flash memory

operations. Write amplification occurs due to the block erase before program architecture

and asymmetry of flash memory’s program and erase operation sizes. Data is programmed

in chunks called pages but this is only possible after it has been erased as a block of 16-128

pages. Most blocks contain a mix of valid and obsolete pages. When a block is going to

be erased, it must have its valid pages copied somewhere. If this internal copying is not

done before the erase, the valid data is lost after the erase. The result is that the total

number of system writes is now greater than the number of user writes because of the

internal copying. Therefore, the number of user writes has now been amplified and this

amplification factor is termed write amplification.

Write amplification is a parasitic drain on SSD resources and the extraneous writes

waste precious time and cuts down the lifetime of the SSD. Thus, reducing write am-

plification will increase system endurance and performance. The performance increase

comes from not having to spend the extra time programming the extra writes as well as

saving the time from not having to do the extra block erases caused by the extra writes.

Endurance would also increase by not having to perform extra block erases. Each erase

operation causes stress to the flash memory storage structure which then wears out after
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about 10,000-100,000 erases. When it is worn out, it cannot reliably hold data and so, re-

ducing the extra erases from write amplification increases the lifetime and the endurance

of the SSD. As such, reducing write amplification is a major SSD design goal.

4.1.1 Data Placement and Layout Management

One technique to reduce write amplification is to manage flash memory data placement.

On first impression however, data placement should not matter in flash memory. Data

can be placed anywhere on the device and later retrieved at a fixed constant response

time, i.e., no location based latency. However, the technique to reduce write amplification

through placement is to group data by when it is expected become invalid. If the data

pages in a block are invalidated as close in time as possible, minimal internal copying

would be required before the block is erased. Minimal internal copying translates to

minimal write amplification.

All the data placement decisions are made by the SSD and to see this, we have to look

at the architecture of the SSD. To provide the update operation, SSDs must use an out-

of-place update system. In this system, all data addresses are logical and the connection

to the real physical location of the data is through an internal map in the SSD. Hence, a

data update is translated to a clean page write and then an update of the internal map.

Thus, it is up to the SSD to choose the physical location of the clean page to write to and

therefore, all data placement decisions are fully determined by the SSD.

Here, we study minimization write amplification through data placement. We define

layout management as a logical division of the functions of the SSD that deals with data

placement, i.e., it makes the decisions on where to place a particular piece of data in the

vast gigabytes of storage that is available. We investigate the theoretical limits of write

amplification minimization by using offline workloads and algorithms. The purpose of

the study is to find out how much write amplification reduction can be done using layout

management.
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Before designing an algorithm or implementing a method to reduce write amplifica-

tion, it would be ideal to know how much reduction is actually possible by knowing the

limits of write amplification minimizaton. Write amplification is inherently caused by two

interacting factors, first flash memory’s block erase before program architecture and sec-

ond, the lack of information regarding the nature of the data that is stored together in a

block. By using offline workload data, we can remove the second factor as we have perfect

information and can calculate the write amplification caused only by the inherent flash

memory architecture. We do this by using layout management algorithms that decide

which blocks to store which data.

Ideally, we would like to get zero write amplification for any workload given particular

flash memory parameters (size, over-provisioning) using some layout management algo-

rithm but we prove in Section 4.3 that this is not possible. Furthermore, we show that

the minimum over-provisioning amount that guarantees zero write amplification for any

workload is the trivial over-provisioning amount, i.e., the number of blocks equaling the

number of sectors to be stored. Finally, we give an estimation algorithm using decom-

position of workloads into sub-workloads that gives an estimate of the minimum write

amplification for an offline workload and flash memory.

In Section 4.4, we discuss the general layout management problem: given a flash mem-

ory configuration and a workload, what is the least write amplification possible using

some layout management algorithm? The question of if the general layout management

problem is NP-hard is an open problem but regardless if it is NP-hard or not, we still

efficient algorithms to estimate the minimum write amplification because workloads that

we are interested are hundreds of millions of operations in length and even polynomial

time algorithms would be too slow. In Section 4.6, we describe a technique for work-

load decomposition that we use to give an algorithm for estimating the general layout

management and write amplification minimization problem. In Section 4.7, we describe

the estimation algorithm and in Section 4.8 give the results from experiments on the



80

estimation algorithm using synthetic and trace workloads.

This estimate of the limits of write amplification minimization would give an algorithm

developer looking to reduce write amplification a general idea of what is inherently possible

using data placement algorithms. This also gives an idea of the effectiveness of the

developer’s algorithm since just looking at the percentage decrease in write amplification

or a similar metric does not really give a good idea of it because it can vary a lot between

workloads and flash memory configurations. While the algorithm that we present here is

just an estimate and only gives a rough idea of the absolute minimum write amplification

that is possible, we show that large reduction in copybacks is possible especially for higher

over-provisioning systems and write amplification can be pushed down to zero well below

the trivial over-provisioning amount.

4.1.2 Related Work

Write amplification was introduced and its system properties explored in [53] and the au-

thors have followed it up with data placement algorithm (conceptually similar to layout

management that we describe here) called container marking that reduces write amplifi-

cation as well as performs wear leveling [54]. The fundamental write performance have

also been studied in [119].

The idea of reducing copybacks have been studied much earlier and were called by

various names like cleaning efficiency [1] and cleaning costs [50, 43].

Mathematical models of write amplification have been developed in [107] from ex-

perimental outcomes and [14, 90, 30] from basic principles. However, the model from

basic principles suffer from state explosion which is not computationally feasible to be

calculated for large number of blocks.

Managing data of different invalidation times have been explored as static and dynamic

data in [1] but not as offline data that we view here. Using data characteristics to perform

wear leveling in flash memory have been studied in [1, 43, 21]. Other methods of reducing
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write amplification like using coding schemes has been given in [60]. Workload analysis

have been done to find patterns [104] and good IO parameters [81].

The general flash memory and SSD architecture has been analyzed in [78], the multi-

level parallelism of SSDs analyzed in [55, 102, 88] and other issues in flash memory SSDs

like reliability [59], scheduling [11] and object based file systems [124].

4.2 Write Amplification (WA)

Storage systems and magnetic hard disks provide an interface where it is presented as a

very large, linear array of sectors. When performance is required, an unwritten handshake

between the storage system and operating system is followed where it is assumed that the

sequential sectors are also physically sequential and that there is no mechanical latency

when accessing sequential sectors. Disk interfaces like SATA are been built around this

linear array assumption. File system and database system IO routines written with the

hidden handshake in mind for high performance by sequentializing data accesses and

writes. Since flash memory does not have location-based latency, this unwritten handshake

does not play a part. However, in order to support the layers of existing software and

hardware above it, it must support the linear array interface.

When SSDs present flash memory as a linear array of updateable sectors, the un-

derlying architecture results in creating write amplification in the system. Here, flash

memory’s characteristics of erasing before writes and the asymmetry of erases and writes

are completely hidden from the user. The user sees flash memory as a linear array of up-

dateable sectors and gets no knowledge of the underlying structure of flash memory. Write

amplification, in some ways, is the cost of maintaining the illusion that flash memory is a

linear array of updatable sectors.

Rewriting every piece of higher level IO routines such that it reflects flash memory

architecture would in effect minimize write amplification because the user is aware of



82

their activities that cause copybacks, which leads to write amplification, and would design

to reduce it. However the current view of storage as an array of updateable sectors is

ingrained and is also a very simple and convenient abstraction, and so, a complete redesign

of IO routines would be too difficult to achieve in reasonable time. Additionally, before

even contemplating rewriting all the IO routines to use flash memory conventions, we

have to investigate the limits of the current array interface design. Without knowing its

limits, we cannot conclusively say whether there is a better design or algorithm that could

possibly achieve as low a write amplification as flash memory exporting the linear array

of updatable sectors interface.

The unwritten handshake for magnetic hard disks is not a performance trick that

applies to flash memory and no similar rules specifically designed for flash memory exists

that we know of. Sequential sectors do not necessarily correspond to sequential pages in

the block and there is no mechanism in the interface to enforce this. Additionally, the

unwritten handshake is not emulated in SSDs because it does not affect read speeds or

throughput because there is no mechanical latency delay in flash memory. In this regard,

flash memory SSDs are even more opaque about the internal structure than magnetic

hard disks. All that the user sees is a sector array without any inter-sector structure

while all the SSDs sees is a stream of operations from the user.

Put in another way, the information that the file system or other higher level IO

application has on the data is not sent through the SSD interface. The requests are

broken down into a sequence of sector operations and no information regarding the sectors

is available for use by the SSD. For example, the information regarding which sectors

belong together into a single file would be useful because these sectors are likely to be

deleted or updated together. If the SSD has this information, it can group these sectors

into pages of the same block. This would end up reducing write amplification because

different kinds of data will not be mixed up in the same block. By using methods like

these, the linear array interface can be made more efficient without requiring the user to
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know flash memory architecture and IO conventions.

Here we use offline workloads where we know the entire workload beforehand and this

is to emulate sending all the information of the workload through the interface. Then, if

perfect information were available to the SSD, then by using optimal algorithms for layout

management, we can estimate the limit of how much we can reduce write amplification.

For offline optimal algorithms, the SSD knows when the next write to update a sector is

going to invalidate a page. With this knowledge, the SSD can put sectors that will be

invalidated around the same time into pages of the same block and when the block is to

be erased, there will be minimal need for copybacks as all the pages in the block would

be have been invalidated together. With this perfect information, we can estimate the

lower bound of write amplification for the given workload and SSD settings. Thus, offline

workloads will give us an estimate of the increase in write amplification from the loss of

information in the user-SSD interface and hence, the limits of reducing write amplification

through layout management.

Finding the theoretical limits of layout management has a multitude of practical uses.

It gives us a clear idea of the cost of the linear updateable array architecture for SSDs

without the cost from the inefficiencies of the current designs and algorithms. In other

words, it gives us by how much we can improve current algorithms for reducing write

amplification by possibly finding smarter designs. Since SSDs are equipped with a pow-

erful controller, it can infer information from the sequence of operations by analyzing the

workload. Alternatively, SSD designers can also implement methods of transferring the

information through some sort of API on top of the array interface. If the limits of layout

management are not good enough, then we can propose a different interface for SSDs.

Thus, by finding the limits of reduction of write amplification by layout management, we

have a method to analyze the effectiveness of new designs or algorithms aiming to reduce

write amplification.
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4.2.1 System Write Amplification

For magnetic hard disk based storage systems, the total number of system writes is less

or equal to the number of user issued writes (the less than part owing to caching). As

we have discussed, copybacks increase the number of system writes and so, the number

of system writes becomes greater than the number of user issued writes. Hu et al. [53]

defined this factor of amplification in user writes by write amplification.

Putting it in an equation, let u be the total number of user issued writes, s be the

total number of system writes and b the total number of internal copybacks. The write

amplification a can then be expressed as

a =
s+ b

u

For simplification, let us assume that u = s, i.e., each user issued write turns into a

system write. Then,

a =
u+ b

u
= 1 +

b

u
(4.1)

Thus, write amplification is directly related to the number of internal copybacks.

The average number of internal copybacks per block is given by the measure VPE

(valid pages on erase).

v =
b

b+ u

4.2.2 Over-provisioning

An important factor that determines the number copybacks is over-provisioning. Over-

provisioning is a technique where the capacity of the SSD is displayed as being much lower

than the actual capacity. The reasoning is that as more space is left on the flash memory,

the blocks get more time between block erasures, and so, get more time for pages in the

block to become invalid and so have less valid pages to be copied back when the block is
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garbage collected.

There was two ways to denote the over-provisioning of an SSD, the over-provisioning

proportion and over-provisioning factor. Over-provisioning proportion p is defined as the

proportion of the flash memory that is occupied. For example, when p = 0.95, 5% of the

flash memory is unused or has invalid data on it and when p = 0.5, half the flash memory

is either unused or has invalid data. Over-provisioning factor o is the ratio of the actual

capacity and the advertised capacity. For example, when o = 2, the actual capacity is

twice that of the advertised capacity.

4.2.3 Garbage Collection

Garbage collection involves finding a block based on some criteria, copying the valid

pages in the block elsewhere and then erasing the block. One such criterion that works to

minimize write amplification is to choose the block with the lowest number of valid pages.

In this way, we minimize the number of copybacks for that garbage collection step.

However, for practical implementations, garbage collection can also factor in wear

leveling by considering the number of erases of the block or the time since last erasure on

the block. For our purposes, we only consider the garbage collection method of choosing

the block with the lowest number of valid pages.

4.2.4 Worst Case Scenario

The worst case for write amplification is when the valid pages are distributed evenly across

all the blocks for each garbage collection step. Let c be the number of pages per block.

So, if flash memory has p proportion of flash memory occupied, then the worst case is if

each block has at least bpcc pages occupied. The garbage collector then has to choose a

block with bpcc valid pages and create a copyback of bpcc pages.

Figure 4.1a shows the worst case graphically as a valid pages distribution. Each block

has exactly pc valid pages for each garbage collection cycle.
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Figure 4.1: Valid Page Distributions and Write Amplification



87

To use it in equation 4.1, for every c writes, we have pc copybacks and so only c− pc

user writes. Then, the write amplification is given by

a = 1 +
pc

c− pc =
1

1− p (4.2)

and

v =
cp

c
= p

From equation 4.2, we see that for flash memory half full, the worst case is copybacks

being as much as writes. For p = 0.9, the copybacks are about 10 times the number of

user writes and for p = 0.95, write amplification is a massive 20.

4.2.5 Best Case Scenario

The best-case scenario is when during every garbage collection step there is a block with

no valid pages in it and all the pages contained in the block are invalid. This can be

illustrated by figure 4.1b. To have such blocks with no valid pages, some blocks have to

have all valid pages. In such a situation, there is no write amplification and a = 0.

Note that in both graphs in figure 4.1a and 4.1b, the area under the curve (denoted

by the grey region), which gives the number of valid pages, is the same in both graphs.

Additionally, only a single block has to have zero valid pages on each and every garbage

collection cycle for write amplification to be zero and so the valid page distribution graph

can look different and still be optimal as in Figure 4.1c.

4.2.6 Flash Memory Terminology and Notation

Flash memory is made up of n blocks and each block has c pages. The page is the smallest

read and program unit while the block is the smallest erase unit. The SSD interface shows

the storage memory as a linear array of m sectors. The size of a sector is the same as

the size of a page. However, the capacity of flash memory is under-advertised to provide
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over-provisioning and m < nc.

4.3 Offline Workloads

In flash memory SSDs, all that the user sees is a sector array without any inter-sector

structure. At the same time, all the SSDs sees is a stream of operations from the user.

Thus, the information that the file system or other higher level IO application has on the

data is not sent through the SSD interface. The requests are broken down into a sequence

of sector operations and no information regarding the sectors is available for use by the

SSD. For example, the information regarding which sectors belong together into a single

file would be useful because these sectors are likely to be deleted or updated together. If

the SSD has this information, it can group these sectors into pages of the same block.

This would end up reducing write amplification because different kinds of data will not

get mixed up in the same block.

We use offline workloads where we know the entire workload beforehand and this is

to emulate sending all the information of the workload through the interface. If perfect

information on the workload were available to the SSD, it can put sectors that will be

invalidated around the same time into pages of the same block. When the block is to be

erased, there will be minimal need for copybacks as all the pages in the block would be

have been invalidated close together. With this perfect information, we can estimate the

minimum amplification for the given workload and SSD settings.

When the workload is offline, the layout management algorithm will be able to look at

any operation in the future while processing the current operation. If an algorithm is able

to achieve zero write amplification for a given workload and flash memory configuration,

it will be an offline optimal algorithm as zero write amplification is the best we can get.

If not, it will at least give an upper bound on the least possible write amplification for

the workload.
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For simplification, we assume that for each time index t, there is only one write op-

eration. We can make this simplification because we are only concerned about write

amplification and so, can ignore the time between the operations. We ignore read op-

erations as well because they do not play any part in write amplification. We ignore

delete operations because they change the amount of free space in the flash memory by

invalidating pages which we model by over-provisioning (though delete operations will be

used later in the estimation algorithm).

4.3.1 A Zero Write Amplification Layout Management Algo-

rithm Does Not Exist for Any Offline Workload

The first question to examine is whether given any offline workload, if there exists a

layout management algorithm that will give us zero write amplification. We will give a

counter-example to show that this is not the case.

Theorem 4.3.1. Given an offline workload and a flash memory configuration, a layout

management algorithm that gives zero write amplification cannot be guaranteed.

Proof. Let us consider a flash memory with n blocks with c pages per block that stores

(n − 1)c sectors. Next, consider the workload where one of the sectors, say sector s, is

static and is never updated after it is written. Next, we have to show that for any layout

management algorithm, the write amplification cannot be zero.

Let us assume that there is a layout management algorithm that gives zero write

amplification. When sector s is written, it must be written to a page in some block, say

block b. Now, from our assumption, that there is zero write amplification and that sector

s is static, block b cannot be erased after sector s is written to it. Otherwise, it would

force the copyback of sector s and create a positive write amplification.

If block b is never erased, then this leads to a contradiction. When block b is never

erased, it cannot be used. This leaves us effectively n− 1 blocks to store (n− 1)c sectors.
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However, this is not possible because each write would require erasing a block and copying

back all the sectors in the block except the one being updated. The sector copyback would

result in positive write amplification and thus, a contradiction.

Thus, even if we have an offline workload and we can choose any layout management

algorithm we want, achieving zero write amplification is not possible.

In broader terms, write amplification is an inherent property of flash memory and not

of any architectural designs for the disk system.

4.3.2 The Minimal Over-Provisioning for a Zero Write Ampli-

fication Layout Management Algorithm to Exist is the

Trivial Over-Provisioning

While the example above showed that there exists an offline workload that can have non-

zero write amplification for any layout management algorithm, we can turn it into a zero

write amplification workload by simply adding a block to the flash memory. Therefore,

the next question is, is there a minimum over-provisioning amount that will give us zero

write amplification for any offline workload for some layout management algorithm? In

other words, is there a minimum over-provisioning that if provided can we guarantee zero

write amplification using an any offline workload?

4.3.2.1 Trivial Over-Provisioning

Given m sectors, if we have m blocks to store the sectors, we can zero write amplification.

We would do this by using each block to store one sector only.

This is clearly not a practical method since we have an over-provisioning factor of c.

A flash memory with 128 pages per block would only advertise 1
128

th of the flash memory

as its capacity which is less than 1% of the available memory.

We want to find the smallest over-provisioning amount such that there exists a layout



91

management algorithm that will give us zero write amplification for any offline workload.

However, we will show that we cannot improve upon the trivial over-provisioning factor

of c, i.e., using m blocks to store m sectors. We will do so by constructing a workload

that requires m blocks for m sectors.

Theorem 4.3.2. Given an offline workload, the minimal over-provisioning that guar-

antees the existence of a layout management algorithm that produces zero write amplifi-

cation is the trivial over-provisioning amount, i.e. m blocks for m sectors for an over-

provisioning factor of c.

Proof. We prove by constructing a workload with m sectors that requires m blocks in the

flash memory to achieve zero write amplification. We will define the workload recursively

and prove that it requires the m blocks by induction. First, we give the notation, then

the recursive definition of the workload and then the proof.

4.3.2.1.1 Notation Let wi denote a write operation to sector i. Then, w1 would

denote a write to sector 1. Let wji denote j wi operations in a row.

We denote a workload W as a sequence of write operations. Though for each workload,

we give a sequence of writes, we will assume that the sequence is repeated a few number

of times.

We assume a flash memory with blocks B1, B2, . . . with c pages per block. The sectors

are denoted as s1, s2, . . . , sm where m is the number of sectors we want to store in the

flash memory.

4.3.2.1.2 Workload Definition Each workload Wi involves writes to the first i sec-

tors, s1, . . . , si. Let the workload W1 be the workload w1 where writes are only to one

sector s1. Let the workload W2 be the workload w2W
c
1 or w2w

c
1 and in W2, the writes are

for s1 and s2. Similarly, we can define W3 which is a workload consisting of 3 sectors. We

take W3 = w3W
c
2 which when expanded comes to w3(w2w

c
1)
c.
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Thus, we can recursively define out workload as follows

Wi =


wiW

c
i−1 i > 1

w1 i = 1

4.3.2.1.3 Induction Proof: We need to show that for any workload Wn, we need n

blocks to achieve zero write amplification (regardless of the layout management algorithm

used).

We have zero write amplification if during at any time we run out pages to write to,

there is a block that has no valid pages on it.

We present the proof as induction with first the base case and then the inductive step.

4.3.2.1.4 Base Case We require at least 2 blocks for W2 because when we have two

sectors s1 and s2, it is impossible for them to be both invalid at the same time. So, from

the above condition, we must have two blocks to achieve zero write amplification.

Next, let us consider the workload W3. Suppose we just use 2 blocks for W3. To have

zero write amplification, whenever a new block is required, both the valid sectors must

reside on the same block.

First, we put sector s3 in block B1 (without loss of generality - s3 can be put in B2

and the same arguments hold). For us to have zero write amplification, this block cannot

be erased until w3 is encountered again because B1 has the valid sector s3 during all that

time. But, during that time we must be able to write (w2w
c
1)
c.

During that time, we have to make c writes of sector s2 and c2 writes of sector s1

totalling c(c+ 1) writes. The number of writes between the first w3 and the second w3 is

c(c + 1) + 1. Assuming that the blocks are clean when we start, we need to perform at

least c block erasures to make the c(c + 1) + 1 writes. When we erase a block, both the

valid sectors must be on the same block to give zero write amplification. However, this

is not possible because block B1 only has c − 1 slots left while we need to store a valid
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sector in block B1 c times for the c block erasures.

Thus, we have a contradiction and so we cannot have zero write amplification using

only two blocks. Thus, three blocks are required for W3.

4.3.2.1.5 Inductive Step Let the workload Wk be a sequence of write operations

for k sectors (s1, s2, . . . , sk) that requires k blocks (B1, . . . , Bk) to achieve zero write

amplification and is constructed recursively

Wk = wkW
c
k−1

So, let Wk+1 = wk+1W
c
k . We need to show that k + 1 blocks are required for Wk+1.

Let us assume that zero write amplification can be achieved for Wk+1 using k blocks.

Suppose without loss of generality, we put sector sk+1 in block B1. Then, the block cannot

be erased until the next wk+1 operation without resulting in a positive write amplification.

However, before the next wk+1, we must process the workload W c
k . Now, if Wk+1 can also

be processed using only k blocks, this means that W c
k is being processed with k−1 blocks

that can be erased and an additional c− 1 writes to the kth block.

We next examine what this implies for Wk. By our assumption, Wk can be processed

by k blocks with zero write amplification. From above, we see that Wk can be processed

using k− 1 blocks and some writes to the kth block. However, for processing Wk c-times,

we only wrote to the kth block c− 1 times. This means that when we processed Wk one

of the times, it only required k − 1 blocks. This then implies that we can process Wk

using k − 1 blocks contradicting out previous assumption.

Thus, we have a contradiction and our assumption that we can process Wk+1 using k

blocks is false and we need k + 1 blocks for Wk+1. Thus, Wn requires n blocks to store

with zero write amplification and the trivial bound of using m blocks for m sectors cannot

be improved upon.
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4.3.3 Time to Invalidation (TI)

Another way to view offline workloads is not as the full sequence of writes but each write

operation coming in with the exact time in the future it will be invalidated. Thus, when

a write comes in, we are also given a TI (time to invalidation) that tells us when the

sector for the write will be invalidated in the future. The sequence of operations can be

calculated from the TIs and vice versa. We denote each write operation as (st, it) where

st gives the sector and it gives the TI.

When the sector data is written to disk, we calculate the invalidation time (IT) which

is the exact time the sector will be updated. The units of both IT and TI are the number

of operations into the future.

4.4 The General Offline Layout Management Prob-

lem

We have shown that there is no layout management algorithm that can achieve zero write

amplification for any workload and any over-provisioning in Theorem 4.3.1, and that

the smallest over-provisioning that guarantees no write amplification is the trivial over-

provisioning in Theorem 4.3.2. The above problems tried to find a layout management

algorithm that works for all possible workloads and perhaps that was the reason for the

negative results. Thus, the next step is to look at the problems that relax this and study

the problems with fixed workloads. Hence, we will have a fixed workload and some flash

memory configuration (number of blocks, pages per block and sectors to be stored with

over-provisioning coming from the number of blocks) and we will look for zero or minimal

write amplification therein.

This leads us to the general layout management problems where we fix the workload

to a specific workload W . We present two variations, the first looking for the minimal
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over-provisioning that gives zero write amplification and the second looking for minimal

write amplification when we are given the over-provisioning amount.

1. Given a workload W and flash memory configuration of c pages per block and m

number of sectors, what is the least number of blocks needed so that there is a

layout management algorithm that gives us zero write amplification? Note that,

the number of blocks gives the over-provisioning amount as the number of sectors

m is fixed.

2. Given a workload W and flash memory configuration (including fixed c, n and m

or a fixed over-provisioning), what is the layout management that will give us the

minimal possible write amplification?

The next question is if the above problems are NP-complete problems or are solvable

by a polynomial algorithm. This is an open problem but it simple to see that they are NP.

If we define layout management as a sequence of program/erase/copyback operations, we

can see that it is polynomial time verifiable. We can run the sequence of programs, erases

and copybacks operations in a simulator and verify that a given number of copybacks

occurred, and hence, know that certain minimal write amplification is possible.

At each write operation, the layout manager has to make a decision on which block to

store the sector to be written. The decision on which block to erase is left to the garbage

collector and if there are multiple blocks with the same number of valid pages, the layout

manager will have to help the garbage collector choose. If the write amplification is zero,

there will always be a block where all the pages are invalid pages and can be erased

without any copybacks. The ”hard” decisions for the layout manager are when a sector

is going to be updated far into the future. Due to the limited number of blocks available,

these far-future sectors have to be put together even though there will be many writes

between them, it has to be managed so that there is minimal write amplification.
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4.4.0.1 Estimation Algorithm

Next, we present an estimation algorithm. The algorithm is based on decomposing work-

ing into sub-workloads where all the copybacks occur only from one sub-workload and

hence, an estimate of the write amplification can be achieved from the number of copy-

backs in the one sub-workload. The general idea of the estimation algorithm is that most

copybacks are caused by data that remain valid for a long period. Hence, we can use

the technique of decomposing the workload into short-lived and long-lived data to find an

estimate of the minimal write amplification.

4.5 Workloads With Zero Write Amplification

Since layout management algorithm and over-provisioning itself cannot itself guarantee

zero write amplification, we next look at classes of workloads that can have zero write

amplification through some layout management algorithm for some over provisioning. Our

estimation algorithm will be based on decomposing general workloads into sub-workloads

belong to a class that produces zero write amplification.

4.5.1 Invalidation Sequence

If we know the sequence in which sectors are going to be invalidated, then we can write

to a block in flash memory such that the sequence of sectors that will be invalidated all

lie on the same block. In other words, a block contains sectors that are a part of the

invalidation sequence. In this way, all the pages in the block become invalid one after the

other. For example if we know the sequence {st, st+1, . . . , st+c−1} of sectors that will be

erased from time t onwards, if we place the above sectors in a single block, they will all

become invalid one after the other.

To find the invalidation sequence of a workload, we note that the invalidation sequence

is essentially the workload with a few adjustments. When a sector is written, it must be
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invalidated first if the sector exists in the flash memory and thus, the sequence of writes

is the sequence of invalidations. Therefore, we can easily derive the invalidation sequence

from the workload.

To create the invalidation sequence, we note that each write operation creates a page

invalidation unless the sector is not stored in flash memory and is being written to for the

first time. We take the sequence of sectors for the workload, remove all the writes that

are written to sectors for the first time that do not result in a page invalidation and the

remaining sequence of sectors is the invalidation sequence.

Since the workload is offline, we know the entire workload and invalidation sequence

beforehand. Therefore, when the layout manager has to decide on where to place a sector

in flash memory, it can look ahead in the invalidation sequence and place it accordingly.

Thus, at the end of every c write operations, we would need to have a block with no valid

pages for zero write amplification.

4.5.2 Invalidation Range Restricted (IRR) Workloads

We next describe a class of workloads called invalidation range restricted (IRR) workloads

that gives zero write amplification. Let the flash memory have n blocks and so, it has

nc pages. For the workload to be an IRR workload, when a sector is written it must be

updated in less than (n− 1)c time units in the future.

Formally, let r ∈ N be a non-zero number and a workload is an IRR workload with

range r if for each sector s, when there is a write to sector s, it must be updated within r

future writes. If the IRR workload is to be stored in a flash memory with at least r pages

plus an additional block, there is an optimal layout management for the algorithm that

produces zero write amplification.
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4.5.3 Optimal LM algorithms for IRR workloads

To find the right place to store a sector for an IRR workload, we first take the (n − 1)c

sectors in the invalidation sequence and divide into groups of c. The flash memory has n

blocks and so each group in the invalidation sequence can be mapped to a block. For each

write, we find which group in the invalidation sequence the write belongs to and perform

the write to that block. Because the workload is IRR, we know that the sector will be

invalidated within (n − 1)c future invalidations and thus, we will be able to perform a

block erase for garbage collection without incurring any copybacks.

4.5.3.1 Example

We illustrate the above offline optimal algorithm using a small illustrative example. Con-

sider the following workload with n = 4, m = 8 and c = 4 (we have a flash memory with

4 blocks each with 4 pages where we look to store 8 sectors):

1 2 3 4 5 1 6 2 7 8 4 3 6 1 3 7

2 5 8 7 1 4 8 7 3 5 6 4 1 5 2 6

This produces the following invalidation sequence:

1 2 4 3 6 1 3 7 2 5 8 7 1 4 8 7

3 5 6 4 1 5 2 6

Note that this is an IRR workload. Note that each sector is updated within (n−1)c =

12 writes in the future and we should get zero write amplification.

The first step is assigning the first 12 sectors of the invalidation sequence into blocks.

Thus, block 1 should contain sectors 1,2,3,4, block 2 sectors 6,1,3,7 and block 3 sectors

2,5,8,7. When the first 8 sectors are written we have the following state of flash memory,
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1 1 5

2 6 2

3

4

We next add a block assignment from the invalidation sequence. Block 4 will have

sectors 1,4,8,7. Now, processing the workload of sequence 7,8,4,3 (9th-12th operations in

the workload), we have the following state of flash memory,

1 1 5 4

2 6 2

3 7 8

4 3

Note that block 1 has all invalid pages and thus can be garbage collected. At the

same time, note that block 2 contains the sectors 1,6,7,3 which are permutation of the

invalidation sequence 6,1,3,7. Thus, the next 4 operations will invalidate all the pages in

block 2.

To deal with the next sequence of writes, block 1 is erased and now clean. Since

all the pages in the block were invalid, no copybacks were needed and thus, no write

amplification occurred. After erasing block 1, we assign the sectors 3,5,6,4 from the

invalidation sequence. We get the following state of flash memory after writing the next

sequence of writes 6,1,3,7

6 1 5 4

3 6 2 1

7 8

3 7

6 2 5 4

3 2 1

5 8 8

7 7

and the state of flash memory after processing the sequence of writes 2,5,8,7.

In this simple example, we can show an optimal layout management algorithm for

offline workloads that have IRR property.
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4.5.3.2 Online Optimal LM Algorithm

While the above layout management algorithm does give zero write amplification, we

don’t need an offline algorithm to produce zero write amplification when the workload

is IRR. Let us consider the simple LM algorithm where a single writeblock is used and

garbage collection is done by finding the block with the least number of valid pages. After

a block is written, after a certain time range, all the pages in the block become invalid.

Thus, after n writes, all the pages in the first block is invalid and garbage collection can

take place without any copybacks. So, this simple online layout management algorithm

also is optimal for IRR workloads.

We can illustrate the above algorithm after nc writes. We have the following state of

flash memory

1 5 7 6

2 1 8 1

3 6 4 3

4 2 3 7

and block 1 can be erased without any copybacks. After another block write, we have the

following state

2 5 7 6

5 1 8 1

8 6 4 3

7 2 3 7

and so, block 2 can be erased without any copybacks.

4.5.3.3 Limitations of IRR Workloads

While IRR workload have a very nice property of no write amplification, it does not have

sectors that are static or near static, i.e., sectors that will be invalidated very far in the
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future. Suppose we have n blocks in the flash memory, then it can hold nc pages. Thus,

we can only keep the space for nc future invalidation sequences. When a sector comes in

that will be invalidated really far into the future beyond nc time units in the future, we

have to find an alternate strategy for placing the sector in the flash memory.

4.5.3.4 Effect of Caches

Note that when we have a cache between the actual workload and the flash memory and

assuming the flash memory uses a LRU eviction algorithm, we will see that the workload

will not update the same sector in the size of the window of the cache. In the example

above, no sector is updated with less than 4 writes of the previous update.

The effect is that a block is filled before it comes up in the invalidation sequence.

For example, before writing the 2nd group of invalidation sequence 6,1,3,7, the 2nd block

already has the permutation of the sectors in the block. If the cache were larger, the

number of blocks similarly filled up would match up the size of the cache. However, they

cannot be erased prematurely because we are ignoring all the read operations and so, have

to keep the sector data in the flash memory until the sector is invalidated.

4.5.4 Time to Invalidation (TI)

Another way to view offline workloads is not as the full sequence of writes but each write

operation coming in with the exact time in the future it will be invalidated. Thus, when

a write comes in, we are also given a TI (time to invalidation) that tells us when the

sector for the write will be invalidated in the future. The sequence of operations can be

calculated from the TIs and vice versa. We denote each write operation as (st, it) where

st gives the sector and it gives the TI.

When the sector data is written to disk, we calculate the invalidation time (IT) which

is the exact time the sector will be updated. The units of both IT and TI are the number

of operations into the future.



102

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  20000  40000  60000  80000  100000

F
re

qu
en

cy

TI

TI distribution

(a) TI frequency distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  1e+006  2e+006  3e+006  4e+006  5e+006  6e+006

P
ro

ba
bi

lit
y

TI

TI cdf

(b) TI cumulative distribution

Figure 4.2: TI frequency and cumulative distributions for Zipf workload with m =
3, 774, 873

4.5.5 General Workloads

The general problem we are attempting to solve is that given a workload and flash memory

parameters, we want to find the lowest write amplification possible. While we have

shown an optimal algorithm that gives zero write amplification for an IRR workload,

most workloads do not have this property.

While general workloads are not IRR workloads, most workloads do have a significant

portion of the workload that are invalidated within a limited window of time. In essence,

general workloads can be thought of as having an IRR workload inside them and we

explore the process of decomposing a workload into IRR sub-workloads in Section 4.6.

However, workloads differ and we first look at TI distributions of the workloads to get an

idea of the properties of TIs.

4.5.5.1 Analyzing Workloads for IRR property

We next analyze some synthetic and trace workloads regarding the IRR property and find

what portion of the write operations have TIs less than the size of the flash memory. To

do this, we look at the TI distributions.

Figure 4.2a shows the TI distribution of the Zipf workload and figure 4.2b the corre-
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Figure 4.3: TI frequency and cumulative distributions for uniformly random workload
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sponding cdf for 3, 774, 873 sectors (using a cache that is 1% of the size required to store

all the sectors). From the cdf, we can see that 83.6% of the writes in the workload have

TI less than 3,774,873 and 88.3% less than 5,662,311 (corresponding to factors of 1 and

0.5 of the number of sectors). In essence, if we take the range to be the number of sectors

m, over 83% of the workload is IRR. In fact, as we can see from the TI cdf, a large portion

of the writes have short TIs as the cdf curve is very steep at first. This property of course

comes from the very nature of the way Zipf workload is generated.

Now, figure 4.3 shows the distribution curves for uniformly random synthetic workload.

Note that the graph of the frequency distribution is 10 times wider than that of the Zipf

graph. On the same scale, the uniformly random workload TI distribution would look

like a straight line as sectors have equal probability to be updated and so, TI frequency

would look uniform. However, on the larger scale, the smaller TIs occur more frequently

than the larger TIs. For the cdf of the uniformly random workload, the distribution is

almost linear with a slightly steeper graph at lower TIs than at higher TIs.

Figure 4.4 shows the distribution curves for the trace workload and unlike the synthetic

workloads, it is messy with large spikes in the distribution and bumps in the cdf. It has a

very steep low TI cdf but then flattens out and increases linearly afterwards. Therefore,

it is Zipf like first and then uniformly random later and so, a mix of both of the synthetic

workloads.

In all of the workloads, we can see that a large portion of the workload has a small TI

and in a sense, we can say that the large portion of the workload has the IRR property.

In section 4.6, we explore decomposing the workload into sub-workloads where all the

sub-workloads are IRR workloads except for one sub-workload. We can separate out the

portion of the workload that has the IRR property and decompose the whole workload

into separate sub-workloads. In this way, we can filter out the writes that causes the

copybacks from the IRR workloads. The IRR workloads do not cause copybacks and

hence, we can use this to make an estimate of the minimal number of copybacks that is
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possible with a layout management algorithm.

4.6 Decomposition of Workloads

Since layout management algorithm or over-provisioning cannot guarantee zero write am-

plification, we next look at classes of workloads that can have zero write amplification

through some layout management algorithm for some over provisioning. Our estimation

algorithm will be based on decomposing general workloads into sub-workloads that belong

to a class that produces zero write amplification.

4.6.1 Invalidation Range Restricted (IRR) Workloads

We next describe a class of workloads called invalidation range restricted (IRR) workloads

that gives zero write amplification.

Definition 4.6.1. Let r > 0 ∈ Z. A workload is IRR with range r if for each write

operation, the sector s that is written in the operation is updated within r future writes.

If the IRR workload is to be stored in a flash memory with at least r pages plus

an additional block, there is a layout management algorithm that produces zero write

amplification.

For the workload to be IRR, when a sector is written it must be updated in less than

(n − 1)c time units in the future. For example, if a flash memory has 10,000 pages in

n − 1 blocks, the workload must update each sector it writes in less than 10,000 writes

from the current time. In other words, IRR workloads must have the sector written to

them updated within a designated range.

Next, we give the layout management algorithm that gives zero write amplification for

IRR workloads. Let us consider the simple layout management algorithm where a single

writeblock is used and we do the garbage collection by finding the block with the least

number of valid pages. After a block is filled and r additional writes performed, all the
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pages in the block become invalid as each page must be updated in less than r time units.

Thus, all the pages in the block are now invalid and garbage collection can reclaim the

block without any copybacks. Hence, this layout management algorithm produces zero

write amplification for IRR workloads.

4.6.2 Workload Decomposition

Since IRR workloads do not cause write amplification as we discussed in Section 4.6.1,

we would like to decompose a workload into sub-workloads where all but one of the sub-

workloads are IRR workloads. Suppose our workload is W and so, in notation, we would

like to decompose W into sub-workloads W1, . . . ,Wk written as

W = W1 ⊕W2 ⊕ . . .⊕Wk (4.3)

where W1 to Wk−1 are IRR workloads.

Then, if γ denotes the estimate for the minimal write amplification caused by a work-

load, γ(Wk) can be used as an estimation for the minimal write amplification for the

workload W as γ(Wi) = 0 for i = 1, . . . , k − 1 since they are IRR workloads. In essence,

λ(Wk) = λ(W )

Instead of looking at write amplification, we will look at the number of copybacks which

is equivalent. Then, the minimal number of copybacks caused by the workload W can be

estimated by the number of copybacks in the non-IRR workload Wk.

For us to even attempt to perform a decomposition, we must first have a well-defined

meaning of decomposition and the symbol ⊕.

First, we define workload decomposition and show that workload decompositions make

sense. Suppose we want to decompose the workload as in equation 4.3 into k sub-

workloads. We divide the flash memory into k separate regions F1, . . . , Fk such that



107

the sub-workload Wi is written only to the region Fi in flash memory.

Since we want the sub-workload W1, . . . ,Wk−1 to be IRR workloads, the range of these

IRR workloads must be less than the size of the corresponding region F1, . . . , Fk−1.

The workload and the decomposition to its sub-workloads are consistent since the

valid data stored as the entire workload on the flash memory as a single region or as

sub-workloads in its own regions are the same. Thus, looking at the entire workload or its

decomposition as sub-workloads always gives us the same set of valid data stored on disk

at any point in time. What we are essentially doing by performing a decomposition is to

mark where or which region in the flash memory the data will be written to as determined

by which sub-workload it belongs to.

The main goal for the decomposition is that the all except one sub-workload are IRR

workloads and thus, do not produce any copybacks in the IRR sub-workloads regions. We

can just focus on one region Fk that produces copybacks for workload Wk to use as an

estimate for the minimal number of copybacks W can produce.

4.6.2.1 Trivial Decompositions

There are trivial decompositions possible. If there are m sectors in the workload W , then

it can be trivially decomposed into m sub-workloads where each sub-workload only has

writes to a single sector. In addition, we can decompose W into an IRR workload by

making the range of the workload the length of the workload. Finally, we can make Wk

to be the entire workload with no IRR sub-workload and this would still technically be a

decomposition.

However, the trivial decompositions are not very useful and we want to create a useful

decomposition that we define next.
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4.6.3 Useful Decompositions

A useful decomposition would be when the sum of the ranges of the IRR sub-workloads

of the decomposed workload is less the size of the flash memory available and the left-over

blocks is enough to store Wk.

Let ι(W ) denote the range of an IRR workload (defined only if the workload is an IRR

workload). Suppose we decompose W as above into k sub-workloads. Assume we have n

blocks of flash memory available to us with c pages per block.

Suppose all k sub-workloads are IRR workloads after the decomposition, then

k∑
i=1

ι(Wi) ≤ cn− k

and so, this workload results in zero write amplification. As a side note, this leads to

an open problem of whether the converse of the above statement is true? If zero write

amplification is possible for some workload, does it have to have a decomposition as above?

Otherwise, we would want all but the last sub-workload to be an IRR workload and

k−1∑
i=1

ι(Wi) < cn− k

and the last region Rk to have the remaining blocks (cn−k−∑k−1
i=1 ι(Wi) blocks). In this

way, write amplification for W can now be estimated by looking at only Wk.

4.6.4 Existence of Decompositions

The first question is why should such a decomposition even exist? While it would be

convenient for such a decomposition to exist, we have not explored the fact that such

a decomposition might not be possible or might only be possible under very limited

circumstances.

To explore this, let us first consider a much simpler decomposition problem of decom-
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posing W into just two sub-workloads, W1 and W2, where W1 is an IRR workload. We

take all the operations whose TI is less than some range r and put it in W1 and the rest

of the operations in W2. After the decomposition, we should have an IRR workload W1

with range r.

The main problem is that dividing the flash memory space might not make all the

sub-workloads fit. We start with nc pages of flash memory with nc > m so that all the

sectors can be stored in the flash memory. If we divide it into regions R1 and R2, with

the first of size r + c pages and the second nc− r − c pages, then the maximum number

of sectors that region R2 can hold at a time is nc− r− c. It might well be that W2 stores

more sectors at some point in time than the available pages in R2 and so, W2 would not

fit in R2 and a decomposition is not possible in this case. While all the sectors would fit

in the entire flash memory, the decomposition divides up the flash memory into regions

such that each region must have enough space to store the maximum number of sectors

stored at one time by the sub-workload. The region sizes do not change during runtime

and thus, the maximum sector stored at one given time of the sub-workload can occur

in different times in the workload and their sum exceed the number of pages in the flash

memory.

For the above problem to occur, sector writes must move from one workload to another.

This is quite feasible because a sector can be updated regularly for a short while and then

becomes static as it’s not updated after that. In this case, the sector would first appear

in W1 and then move to W2 afterwards.

Thus, decompositions do not always have to exist. One criteria we can use for the

decomposition to exist is that the maximum number of sectors required by the non-IRR

workload must be less than the size of the region Rk. However, this still leaves the question

if there is another set of sizes of R1, . . . , Rk−1 such that the decomposition does exist. In

our decompositions of workloads discussed in Section 4.8, we try different combinations

of parameters and then see if the above condition is met to check if the decomposition
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exists for that set of parameters.

This leads us to another open problem regarding the existence criteria for decompo-

sition. Here, we first do a decomposition and see if there are enough blocks to hold the

sectors for Wk to check if the decomposition is valid. The open problem is if there are

other conditions or criterion for the workload and flash memory configurations that will

tell us if a decomposition is possible or not.

4.6.4.1 Nature of Sub-Workloads

The TIs of the sub-workloads are different than they were in W because the TIs now

correspond to the times of invalidation corresponding to the sub-workload rather than

the entire workload. When operations are separated into sub-workloads, the TIs become

smaller as operations are removed from the workload sequence and we do not leave gaps

in the workload and count each write as one time step.

In our example of decomposing W into W1 and W2 where W1 is an IRR workload,

the operations in W1 will have smaller TIs because operations between them have been

removed. The operations in W2 have a completely different TI distribution and we can

think of W2 as W1 removed from W . Now, W2 can be further decomposed into sub-

workloads if desired based on the TI distribution of W2.

4.6.4.2 Delete Operations In Sub-Workloads

Suppose a sector is written with a TI greater than the IRR range r and then later written

again with TI less than r. Then, the sector will appear in both the W1 and W2 workloads

and will shift between the workloads. Since we want W1 and W2 to be self-contained

workloads and to not have multiple copies of the sector in the flash memory, we have

to insert a delete operation whenever a sector switches between workloads. So, in our

example, when the sector first appears in W2 and then appears in W1, at the time it

moves to W1, we insert a delete operation for the sector in W2. In this way, the sector is
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no longer stored in W2 when it moves to W1. Note that delete operations do not count

as a time step and thus, inserting a delete operation does not affect the TI values in the

workload. Thus, as a rule, whenever a sector moves from a one workload to the next, it

must be accompanied by a delete operation for the sector in the previous workload.

So, even if the original workload did not have any delete operations, the sub-workloads

can have delete operations if sectors move from one sub-workload to the other. This is

needed to make the sub-workloads consistent with W .

4.6.5 Decomposition Algorithm

We next present the algorithm to perform the decomposition. The general idea is to

mark operations as belonging to W2 if their TIs are greater than r and update the TIs of

operations remaining in W not marked for W2. We are done when all the operations not

marked for W2 have TIs less than r. The basic algorithm is outlined in Algorithm 4.

We want to divide our flash memory F into k different regions such that each sub-

workload Wi is written to one region. Except for the last region, none of the other regions

should produce write amplification as they all have IRR workloads written on them.

The first step is to determine how to divide the n blocks into k regions. We need the

lengths of the regions R1, . . . , Rk of the flash memory so that we can start decomposing

the workloads with IRRs such that the range of the IRR workload Wi is the size of the

regions Ri. We decompose workloads by iteratively dividing it into two workloads at a

time. We start with workload W which we then decompose it to sub-workloads W1 and

Ŵ2, W1 being an IRR workload. Next, we decompose Ŵ2 into sub-workloads W2 and Ŵ3

where W2 is an IRR workload and, after k − 1 decompositions, we have k sub-workloads

where all but one of the workload are IRR workloads.

To define the entire decomposition algorithm, we just have to define decomposing a

workload W into two sub-workloads W1 and W2 where W1 is an IRR workload with range

r. The algorithm finds the operation with the largest TI and removes it from W and
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marks it as belonging to W2. If the operation with largest TI is less than r, then we are

done decomposing the workload. What is left after removing operations from W will be

W1, an IRR workload with range r. When we move operations to W2, we have to adjust

all the TIs in the operations remaining in W and insert delete operations if sectors switch

between workloads as discussed in Section 4.6.4.2.

So, the algorithm can be defined as three sub-routines. The first algorithm is the

DecomposeWorkload algorithm given in Algorithm 4 which is a while loop that removes

operations from W to W2. Here, find op with largest TI function iterates over the

entire workload to find the write operation with the largest TI. The function TI of op

returns the TI of the operation passed to it.

Algorithm 4 Decompose Workload W = W1 ⊕W2

1: procedure DecomposeWorkoad(W )
2: o← find op with largest TI

3: m← TI of op(o)
4: while (m > r) do
5: RemoveOp(o)
6: o← find op with largest TI

7: m← TI of op(o)

8: InsertDels

Next is the removeOp function used in Algorithm 4 as shown in Algorithm 5. In

removeOp, we mark an operation as belonging to W2 but in addition, we also update

all the TIs and indices of the operations left in W . We mark the operation as removed

using the function mark as W2 and update the TIs and indexes of the operations in W

afterwards. The index of an operation in W is the order of the write operation which

is needed for calculating TIs. The function get it returns the invalidation time of an

operation which is the exact time in the workload the operation is going to be invalidated

and is calculated as the operation index added to its TI. Array I holds the index of an

operation and dec decrements a value. We assume the TIs of the sectors are stored in

the array ti and l is the length of the workload W .

Updating the TI values is necessary because as operations are removed, the index of
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Algorithm 5 Remove an operation from W

1: procedure RemoveOp(o)
2: mark as W2 (o)
3: for i = 1 to o do
4: it← get it (o)
5: if it > I[o] then dec(ti[i])

6: for i = o+ 1 to l do
7: dec(I[i])

the next sector update might decrease and TIs of all such operations must be decremented

by 1. Some operations with TIs greater than r could now have their TIs go below r after

the decrements and thus, remain in W1.

The final step is to add the delete operations when sector writes move from W1 to W2

as discussed in Section 4.6.4.2. We execute this after the while loop in Algorithm 4 has

finished and all the operations are marked either belonging to W1 or W2.

The final step insertDels is shown in Algorithm 6. The function is WL1 returns

if the operation is marked to be in W1. The functions prev sector write W1 and

prev sector write W2 return if the previous sector write of the current operation was

in W1 or W2. The simplest way to implement these functions is to create an array of m

queues where each queue holds the sequence of times of sector updates for each of the m

sectors. The function add del(i,Wi) adds a delete operation to workload Wi of the sector

in the ith operation.

Algorithm 6 Insert delete operations in W1 and W2

1: procedure InsertDels
2: for i = 1 to l do
3: if is WL1(i) then
4: if prev sector write W2(i) then
5: add del (i,W2)

6: else
7: if prev sector write W1(i) then
8: add del (i,W1)

Using the above algorithms, we can generate a workload decomposition W = W1⊕W2,
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where W1 is an IRR workload with range r. Both W1 and W2 are sub-workloads that is

consistent with W . If we want to decompose into more sub-workloads, we decompose W2

into another two workloads, one IRR workload and another non-IRR workload.

4.6.5.1 Complexity of Decomposition

The complexity of the above decomposition algorithm is O(l2) where l is the length of

the workload. For each operation whose TI value is greater than r, we traverse the entire

workload of length l. We expect the number of operations whose TI is greater than r to be

proportional of the length of the workload and thus, the complexity of the decomposition

is O(l2). We also have to find the operation with the maximum TI by traversing the entire

workload but that can be achieved during the traversal for removing an operation.

4.6.6 Fast Decomposition Algorithm

The complexity of the algorithm can be reduced by removing all the operations at one loop

instead of multiple loops through the workload. We next present an O(l log l) algorithm

and utilizes the fact that the TI of an operation is only affected by the operations that

are between the times it is valid and the time it becomes invalidated. The output of this

algorithm is the same as our algorithm given in Algorithm 4.

Instead of finding the operation with the largest TI, removing it and repeating until

there are no more operations with TI above the desired range, in the faster algorithm we

update the TIs of all the operations in one loop and remove if above the range. The trick

to making this possible is to iterate the workload in reverse. The TI of an operation can

only be affected by the removal of operations that come after it and not before it and

thus, if we iterate the workload in reverse, we can calculate the TI in a single loop. In

algorithm 5, we updated the index I of all the operations after the deleted operation but

since we are only performing a single loop, we do not need to use the index to keep track.

Figure 4.5 illustrates the operations of the algorithm. To calculate the TI of operation
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Algorithm 7 O(l log l) Algorithm to Decompose Workload W = W1 ⊕W2

1: procedure FastDecomposeWorkoad(W )
2: for i = l − 1 to 0 do
3: it = i+ ti[i]
4: ti[i]− = get Nremoved ops(i, it)
5: if ti[i] > range then
6: Mark as W2 (i)

i

i + ti
i

TI decremented

by the number of

removed operations

0

l-1

It
e
ra

ti
o
n
 D

ir
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Figure 4.5: TI updates on the fast decomposition algorithm

i, we count the number of operations that have been removed to workload W2 in the

interval between i and tii and then, subtract it from the original tii for operation i in

workload W . Since we are iterating from l − 1 to 0, we already have processed the

operations that come after i and know which operations have been removed to W2. After

calculating the new tii, we check if this is above the range. If so, then we mark it for W2.

The function get Nremoved ops gets the number of operations that have been removed

between i and it. As per our assumption, all the operations greater than i must have

already have been processed by the algorithm. We keep a list of all the operations that

have been removed to W2 and this function simply searches through the list to find the

number of removed operations.

The function get Nremoved ops takes O(log l) time since it searches through the list

of removed operations to find the number between i and it using binary search. This

function is performed l times as we iterate through the workload. Thus, the complexity
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of this algorithm is O(l log l).

Note that, after performing Algorithm 7, we still need to perform Algorithm 6 to insert

the deletes in W1 and W2.

4.7 Estimation Algorithm

Another main goal of our work is to estimate the minimal write amplification possible on a

given workload on a particular flash memory using any layout management algorithm. Our

estimation algorithm is based on the above workload decomposition. As we noted earlier,

IRR workloads do not produce copybacks and thus, we can decompose our workload and

use the number of copybacks generated by the non-IRR workload to estimate for the

minimal write amplification. The layout management algorithm we will use will be the

simple layout management algorithm where all writes are written to a single writeblock

and the garbage collector erases the block with the least number of valid pages.

4.7.1 Optimal Decomposition

Given a workload W , there are many possible decompositions. The flash memory of n

blocks can be divided into k regions in many different ways (with k also being variable).

While not all the divisions would produce a valid decomposition, this is still a large

number of possible decompositions. Since Wk varies for each decomposition, the number

of copybacks it generates and hence the estimate for the minimal write amplification can

vary between different decompositions.

Our solution to estimate the minimal write amplification is to find the decomposition

that gives the lowest copybacks for Wk and use that as an estimate for the minimal

write amplification for the entire workload. We call this the optimal decomposition. This

optimal decomposition depends on the workload and is not fixed for all workloads.
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4.7.2 Two-Way Optimal Decomposition

Finding the optimal decomposition for any k region decomposition is again a very compu-

tationally cost prohibitive operation. We consider a much simpler subset of the optimal

decomposition problem where we divide W into two sub-workloads W1 and W2 only and

estimate the minimal write amplification from W2.

Here we take some proportion p ∈ [0, 1] and divide the flash memory as bnpc and

n − bnpc. The value of p that gives the lowest number of copybacks for W2 will be the

two-way optimal decomposition.

4.8 Estimation Methods and Results

4.8.1 Workloads

We use three workloads; two synthetically generated traces (one uniformly random work-

load and the other a Zipf workload) and one real trace workload.

The synthetic workloads follow a uniformly random or Zipf distributiom. Given m

sectors, the probability that an operation on sector i occurs is given by pui for uniformly

random and pzi for Zipf distribution where

pui =
1

m
pzi =

1
iα∑m

k=1
1
kα

and for our simulation, we take α = 1 for pzi . Uniformly random workloads have been

used in many studies of flash memory and write amplification [14, 53]. A large number of

real life workload distributions are Zipfian [25] or follow the power-law rule where some

data are updated a lot more frequently than others and the frequency of updates follows

the power law as given above.

We use the financial OLTP trace from Storage Performance Council [117]. The work-
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load has a large percentage of writes suitable for our write amplification simulation and

also have been previously used in flash memory studies [53, 98]. We limited the workload

to at most 222 sectors since we are simulating on a 128GB die. The synthetic workloads

has sectors m = 3, 774, 873 and workload length l = 41, 943, 040. The trace workload has

m = 4, 194, 304 and l = 30, 517, 401.

4.8.1.1 Cache

We assume that the cache is 0.1% of the size of the number of sectors in flash memory.

While cache size is probably dependent on the size of the flash memory, for clarity during

analysis, we kept the size of the cache constant across different over-provisioning amounts.

Increasing cache sizes while increasing the number of blocks would make the analysis of

the effects of increasing the number of blocks unclear.

Cache essentially removes all the operations whose TIs are less than the size of the

flash memory. For all the workloads, we first pass it through a cache filter that simulates

the operation of a LRU cache and outputs the resulting after-cache workload. We then

generate the decomposition on this filtered workload.

4.8.2 Estimation Method

We compare the number of copybacks using a simulator from W against Wk, the non-IRR

portion of the decomposed workload. The workload W gets m blocks whereas Wk gets

m−bmpc blocks. In both the simulations, we use a blind layout manager and the greedy

garbage collector. The blind layout manager uses a single writeblock and writes all data

to the single writeblock. The simple garbage collection algorithm chooses the block with

the least number of valid pages.
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4.8.2.1 Static Sectors

Static sectors are sectors that are written to once and then never updated again. Static

sectors tend to get copied back multiple time in the blind layout management algorithm

and thus, we separate out the static sectors. We pass the output of the after-cache filter

through another filter that removes the static sectors. We then create a segment in the

flash memory for static sectors, the size of the segment depending on the number of static

sectors.

We can think of the separation of static sectors as a part of the decomposition where

W = Ws⊕W1⊕W2 and Ws is the workload of sequence of writes to static sectors. If the

length of Ws is ls (which is also the number of static sectors) and the size of the region

dedicated to Ws is greater than or equal to ls, then Ws is an IRR workload (since the

range is longer than the length of the workload).

Thus, the algorithm we follow is that we decompose W = Ws⊕ Ŵ by filtering out the

static sectors and then use the fast decomposition algorithm for Ŵ = W1⊕W2 to get the

IRR-workload W1 and non-IRR workload W2.

After passing through the cache filter and the static sectors filter, the length of the

workload for Zipf was 21, 932, 714, uniformly random was 41, 883, 529 and trace was

18, 762, 727. As we would expect, the uniformly random workload had very little filtered

by the cache.

4.8.2.2 Over-Provisioning

We denote the over-provisioning by an over-provisioning factor o. If o = 0.5, then 0.5

proportion of the total flash memory blocks makes up the number of sectors (i.e. onc = m).

In other words, over-provisioning ratio of 2 would be represented by o = 0.5 and in general,

the over-provisioning ratio related to the over-provisioning factor by 1
o
.

For each over-provisioning factor, we have to find an optimal decomposition. We find

the two-way optimal decomposition by taking a set of values for p between 0 and 1 and
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do two-way decompositions as in 4.7.2 for each point. We will use the values of p that

produces the least number of copyback as an estimate of the optimal decomposition. Thus,

we do decompositions for different values of o and p and find the best decomposition for

each o from the different values of p for optimal two-way decompositions.

4.8.3 Results

In this section, we present and explore the results of our workload decomposition and

simulation. The major results are that non-trivial workload decompositions do exist and

these decompositions do result in effective reduction in copybacks. Additionally, there is a

value of p that gives the optimal workload decomposition. For low values of p (indicating

W2 gets most of the flash memory), the number of copybacks reduced were low and

for high values of p (indicating the IRR workload W1 gets most of the flash memory),

either the decomposition did not exist or the number of copybacks reduced were low.

Optimal decompositions existed somewhere in the middle. A surprising result was that

zero write amplification could be achieved for as little as over-provisioning ratio of 0.3-

0.5 for the workloads we examined, a vast improvement over the worst case where the

over-provisioning ratio is 1
c
≈ 0.008.

We look at the following:

1. Copybacks from W (m blocks using an SSD simulator).

2. Copybacks from Wk (after decomposition using simulator).

3. The ratio of copyback reduction
(
W
Wk

)
when Wk > 0 which gives the rate/factor of

copyback reduction. This is useful in comparing different over-provisioning amounts

that yield different copybacks.

4. The value of p that gives the lowest number of copybacks as an estimate of the

optimal two-way decomposition.



121

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 1.4e+007

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

C
op

yb
ac

ks

Decomposition Split Proportion (p)

0.95
0.9
0.8

0.75
0.7
0.6

(a) Copybacks for various p (Zipf)

 0

 10

 20

 30

 40

 50

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

C
op

yb
ac

k 
R

ed
uc

tio
n 

F
ac

to
r

Decomposition Split Proportion (p)

0.95
0.9
0.8

0.75
0.7
0.6

(b) Copyback Reduction Factors (Zipf)

Figure 4.6: Copyback Reduction Using Two-Way Workload Decomposition Estimation
for Zipf, Uniformly Random and OLTP Trace Workloads

4.8.3.1 Zipf Workload

We expect Zipf workloads to have the most gains from using offline information. For the

workload, m = 3, 774, 873 and thus, the cache was of size 3, 775 pages. Passing through

the static filter as described in Section 4.8.2.1, we had 984,849 sectors which were static

and thus, ls = 984, 849 and hence, 7, 695 blocks were allocated to the static region Rs.

For o = 0.95, the number of copybacks in W was 11, 530, 237 while for o = 0.5,

the number of copybacks was 2, 570, 203 as we can see in Figure 4.7a. The number of

copybacks from Wk for the optimal decompositions for o = 0.95 was 3,344,856 and for

o = 0.5 was 0.

As expected, when decreasing o (i.e., providing higher over-provisioning), the number

of copybacks dropped for both W and Wk, as we see in Figure 4.6a. However, the ratio

at which they start to drop is higher for lower o as we can see in Figure 4.6b. Each curve

in the figures represents one value of o. Figure 4.6a gives the number of copybacks for Wk

with varying p. Figure 4.6b shows the ratio of the copybacks from Figure 4.6a with the

copybacks from W .

In the figures, the x-axis represents the portion of the flash memory given to W1 and

W2. The missing data points indicate that the decompositions were not valid for those
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values as the number of sectors required for W2 were greater than the capacity of R2. The

curves in Figure 4.6b go from o = 0.95 to o = 0.6 only because for o ≤ 0.5, zero copybacks

was achieved for Wk and the copyback reduction factor would be infinite.

From Figure 4.6a, we see that there is a unique optimal decomposition for each over-

provisioning ratio o. The optimal copyback values are plotted in Figure 4.7a against the

copybacks from W . These optimal decompositions were reached for different values of p

for different o, and the optimal being reached with lower ps for lower os.

Overall, from Figure 4.7a we can see that large numbers of copybacks are reduced

by using the workload decomposition algorithm. For o ≤ 0.5, an over-provisioning ratio

where up to half the flash memory is filled with valid data, the number of copybacks were

zero and so, write amplification could be completely avoided in these cases. Note that

this is far from the trivial over-provisioning value of o = 1
c
≈ 0.008.

4.8.3.2 Uniformly Random Workload

For uniformly random workload, the number of sectors were the same as the Zipf workload

(m = 3, 774, 873) and thus, the same cache size. The number of static sectors were only

9 sectors and so only a single block needed to be allocated to Rs.

As expected, the uniformly random workload produced more copybacks as the cache

filter took less of the workload out. For o = 0.95, there were 32, 448, 759 copybacks for

W and for o = 0.4, there were 1, 194, 298 which we can see in Figure 4.8b.

Figure 4.8a shows the reduction factors in copybacks for the uniformly random work-

load. For high values of o (low over-provisioning), the copyback reduction is less than that

of Zipf workloads. However, for o < 0.5, we can completely eliminate copybacks. Since

all the sectors in the uniformly random workload have an average TI of m and very few

static sectors, the number of copybacks fell faster than Zipf with more over-provisioning,

for both W and optimal Wks. This can be seen by the steepness of the plotted curves.
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4.8.3.3 OLTP Trace Workload

The trace workload had m = 1, 144, 230 which is smaller than the one for m used for the

synthetic workloads. The number of static sectors were ls = 99, 183 and thus, Rs = 775.

Figure 4.9b shows the reduction factors in copybacks for the trace workload. Here,

small reductions of factor of 1.2-1.5 are possible for low over-provisioned systems and

these optimal decompositions are achieved for low values of p. For o > 0.5, copybacks can

be pushed down to zero.

The actual number of copybacks reduced in Figure 4.10a is much smaller than the

synthetic workloads and the curves for W and Wk are much closer together. This is

because, in the trace workload, writes to a large file creates a long string of sequential

writes to sectors that are infrequently updated.

4.8.4 Analysis

The number of copybacks in the decompositions is affected by a multitude of factors:

1. the non-updateable erase block before page write architecture of flash memory,

2. the perfect knowledge of the write sequence and TIs from the offline workload,

3. errors because our algorithm is an estimation of the actual number of copybacks

that can be reduced.

For low over-provisioning, the architecture of the flash memory is the major source of

copybacks. As the over-provisioning is larger, our knowledge of the TIs of the workload

becomes more effective in reducing copybacks. All copybacks are completely eliminated

for higher over-provisioning of around o = 0.3 to o = 0.4. It is similar to keeping only half

to one third of the flash memory occupied by valid data to get zero write amplification.

This is much lower than the worst-case scenario of trivial over-provisioning where we had
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o = 1
128
≈ 0.008 to get zero write amplification, i.e., only using 0.8% of the flash memory

for valid data.

4.8.4.1 Limitations of the Estimation

While this decomposition method does give an idea of how much copybacks can be re-

duced, it is equal to or higher than the optimal minimal number. We currently do not

have a method to estimate how far from the actual absolute minimal write amplification

our algorithm estimate generates. Thus, if the number of copybacks is only reduced by a

small amount, it could be very well due to the ineffectiveness of the algorithm rather than

the real actual value of the minimal number of copybacks that is possible. The problem

of finding a way to calculate how far from the optimal value our estimation algorithm

generates is an open problem.
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CHAPTER 5

Online Algorithms for Reducing Write

Amplification and Wear Leveling

We examine the problem of repeated copybacks through multiple garbage collection cycles

that creates additional write amplification. Here, we explore a method of combating this

problem using multiple copyback blocks.

Data that is not updated for a long time remains valid through multiple garbage

collection cycles and could be copied back hundreds or even thousands of times depending

on the lifetime of the data. This is exactly the same data being read from flash memory and

then being copied back somewhere else only to be read again and copied back somewhere

else again. The cause of this type of wasteful increase in write amplification is when data

of differing volatility, or data that has been valid for different times and is expected to

be updated at different times in the future, are mixed in together in a block. When the

garbage collection algorithm selects a block for erasing, all the valid data from the block

is copied back to another block without looking at the characteristics of the valid data

that is being copied back.

Our method assigns each data element in a page a copyback count, a simple count of

the number of times a page has been copied back, and estimates data of differing volatility

by its copyback count. Thus, each data can now be categorized by its copyback count,

a simple measure that is an estimate of a more complex characteristic of the data like

how long it has been valid for or how many write operations have occurred in the flash

memory since the data was written.

We present an algorithm where we use the copyback count of the data to send valid
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data of different copyback counts to different copyback blocks during the copyback phase of

the garbage collection process. Thus, using these multiple copyback blocks, we are able to

separate data of differing volatility into different blocks. This reduces write amplification

as highly volatile data are grouped together and blocks containing more volatile data

results in more invalid data together and consequently, less copyback required during

garbage collection thereby reducing write amplificaton.

The main benefit of our algorithm is that it is low-overhead, simple and effective and

does not require learning algorithms, complex book-keeping or a-priori knowledge about

the workload. We show that our algorithm significantly decreases write amplification and

improves SSD performance through simulation.

While the goals of decreasing write amplification and even wear is seen as conflicting

goals, we present a simple addition to the garbage collector algorithm that solves the

problem. The blocks in the garbage collector are sorted by their erase counts and the

high erase count blocks are used for copyback blocks while the low erase count blocks are

used for write blocks. The idea here is that data that is copied back are more static that

data that has just been written.

5.1 Write Amplification

The cause of write amplification in SSDs is that in-place updates are not possible in

flash memory and that the read/write granularity is different than the erase granularity

in flash memory. Once flash memory pages are programmed, they cannot be updated

unless they are erased, but an erase operation can only happen on a block that consists

of many pages. In magnetic hard disks in place updates are possible because new data

can simply be overwritten over the old data. The operating system or the storage system

is completely oblivious to these flash memory characteristics and issues IO requests to

update sectors and the FTL has to work in the background to transparently emulate
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updates. Thus, write amplification in SSDs arises from basic flash memory characteristics

and therefore an unavoidable side-effect, but with good designs and algorithms it can be

minimized.

Write amplification is especially severe in devices that erase a block for every update

request. For devices like USB drives that use a very simple FTL, each update to a sector

is translated as follows: a read of the entire block that the data for the sector resides

in minus the old sector data, an erase for the block and then a write back of the all

data previously read from the block plus the updated data in the sector. This is done

for simplicity as the FTL can directly translate IO requests to flash operations without

maintaining any data structures. However, on top of being severely inefficient and slow,

it also creates a tremendous amount of extra writes. A block consists of 32-128 pages and

thus, every issued write creates 32-128 extra writes which is a massive amount of write

amplification. Obviously, this is a very inefficient method and for more efficient flash

memory usage, SSDs employ mapping tables.

To reduce write amplification and inefficiencies of the previous method, SSDs employ

mapping tables such that sector updates are handled out of place [43]. So, instead of

mapping each sector to a specific physical page in the flash memory, sectors are mapped

through lookup tables in the FTL. Thus, the data in a sector could be stored in any

page in the flash memory and the FTL keeps track of where the data for each sector is

stored through the lookup tables. Additionally, when a sector is updated, the new data

is written to a free page and the lookup tables updated so that the sector location now

points to the new page. This is called out of place update and most updates just translate

to a page write. Thus, using mapping tables and out of place updates improve efficiency

but at the same time create further challenges and complexities like garbage collection.

Write amplification in these block-mapped FTLs arises during garbage collection.

When sectors are deleted or updated, the old page that used to store the data for the

sector now has out-of-date data and is marked invalid by the FTL. The idea of an invalid
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page is that the contents of the page can be discarded without causing any data loss.

With successive sector writes, the number of free pages in the SSD diminishes and at

some point it reaches a low enough point that blocks have to be erased to free up some

pages for future writes. This is done by a background garbage collection process which

finds the best block to erase. However, blocks can contain pages that are valid and if we

want to erase the block to free up the invalid pages in it, the valid pages must be copied

somewhere else before erasing the block. These extra writes caused by copying back valid

pages from blocks chosen to be erased by the garbage collection algorithm is the source

of write amplification for FTLs equipped out-of-place updates.

5.1.1 Quantifying Write Amplification

To quantify and measure write amplification as described above, we can use the math-

ematical formulation given in [53]. Write amplification is defined as the multiplicative

factor by which the user-issued writes increases to the actual system writes. Let A denote

the write amplification and we have

A =
V + I

I
(5.1)

where V is the number of valid pages copied back to the flash memory during garbage

collection and I is the number of writes issued by the user. The total number of system

writes is V + I and we can rewrite the above equation as

V + I = AI

which shows that A is the multiplicative factor that gives the increase in system writes.

Minimizing write amplification A entails minimizing V , the number of valid pages copied

back. Thus, the above formulation is an easy way of quantifying write amplification

especially for systems and simulations.
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The probabilistic definition of write amplification A is a richer and analytically more

useful formulation. It is also given in [53] as

A =
c

c− E[X]
(5.2)

where c is the number of pages per block and X is a random variable that denotes the

number of valid pages in a block prior to erasing. The above definition is similar to

Equation 5.1 if we note that c is the total number of page writes per block, E[X] =∑c
k=0 kP (X = k) is the expected number of pages copied back and thus, (c− E[X]) is

the expected number of user page writes. The usefulness of this definition is that we can

look at the number of pages copied back in more detail.

For detailed analysis of write amplification, it is useful look at the distribution of the

random variable X from Equation 5.2, which we call the copyback distribution. As we

can see from Equation 5.2, write amplification is fully characterized by X as it is the only

variable in Equation 5.2. The copyback distribution gives the probabilities or ratios of

the number of pages copied back per block. Write amplification is just a single number

while the copyback distribution gives a more detailed view of the write amplification by

the shape of the copyback distribution. For our techniques we describe later, copyback

distribution is an important tool for analysis of how write amplification varies.

5.1.2 Other Factors in Write Amplification

To aid garbage collection, flash chips provide a copyback operation. The requested valid

pages are read to the internal buffer in the flash die and then programmed to a different

requested block in the same die. The benefit of having a copyback operation is that once

a page is read, the page is not transferred out of the die only to be immediately sent back

in to be written. This frees us the channel between the controller and the flash package.

Thus, copybacks provide an efficient way of performing garbage collection by internally
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moving the valid pages around before erasing a block.

One of the factors of SSDs that heavily influences write amplification is the amount of

over-provisioning. Over-provisioning is a technique where the SSD capacity is advertised

to be only a fraction of the actual raw flash memory capacity. Simulation [53] and analysis

[14, 119] have shown that higher over-provisioning results in lower write amplification.

The reason is that over-provisioning allows for a longer time between when a block is

fully written to the time it is erased during garbage collection. This longer time allows for

more pages to become invalid and consequently, less valid pages being copied back thus

reducing write amplification. For our designs and algorithms to reduce write amplification,

we measure write amplification while varying over-provisioning to study its effects on our

methods.

5.1.3 Reducing Write Amplification

Write amplification as we described above is caused by valid data being copied from one

location in the flash memory to another. This happens when a block is marked to be

erased and the valid pages in the block need to be copied back.

To reduce write amplification, we note that when copying back valid pages from a

block that is about to be erased, the valid pages do not all have to be copied to one single

block but can be copied to multiple different blocks.

In order to copy the pages of a block to different copyback blocks, we must have some

criteria for differentiating between the pages. Our criterion is copyback count, the number

of times the page has been copied back previously. Copyback count gives a rough estimate

of how long the page has been valid for.

From the above observations, we apply them to reduce write amplification by separat-

ing out data of different volatility to different blocks by using multiple copyback blocks.

Data of low volatility go to one block where they will remain untouched for a large length

of time whereas data of high volatility will go to another block where they will be up-
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dated and become invalid in the near future so that block can be selected for reuse by the

garbage collection algorithm.

5.2 Related Techniques

A part of the reason for repeated page copybacks that causes write amplification is data

that does not change for a length of time and these kind of data have been studied in flash

memory previously as static data and cold data. Static data is the data in the storage

system that does not change and cold data is the data that hasn’t been modified for a

length of time [1]. This is in contrast to dynamic data which is constantly being updated

and hot data which has been recently written or updated. Static data is usually assumed

to be known in advance while cold data is detected by keeping track of the time it was

last updated. In our context, a block with cold and static data pages mixed with hot and

dynamic data pages causes repeated page copybacks which we discuss in detail in Section

5.3.

An analysis of write amplification caused by static and dynamic data was done in [53]

and an algorithm was given to reduce write amplification. In the analysis, an assumption

was made that static and dynamic data is known a-priori or could be learnt before it is

written to flash memory. This differs to our algorithm where we make no such assumption.

Both algorithms attempt to separate the cold and static data from the hot and dynamic

data to reduce write amplification but we do it in a different stages of the flash memory

operation in a different way so that it is efficient while not requiring prediction or a-

priori knowledge. We give more details on the difference between the algorithms after we

describe our algorithm in Section 5.4.

The management of static or cold data has also been studied previously for the purpose

of wear leveling. The need for wear leveling arises due to the fact that flash memory cells

can only be erased a limited number of times before they are unable to reliably hold
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data due to the breakdown of the insulation around the floating gate. Wear leveling is

thus the process by which the FTL attempts to evenly wear the flash memory. In other

words, the FTL attempts to keep the variance (or some other measure of dispersion) of

the number of erases of each block as low as possible. The consequence of uneven wear

is that parts of the flash memory get worn out more quickly than other parts which can

lead to a reduced functional lifespan of the SSD. Cold and static data are important in

wear leveling because blocks containing cold and static data are not selected for erasing

during garbage collection as they contain a large number of valid pages. The end result

is that all the wear occurs on the other blocks containing hot and dynamic data which

leads to uneven wear. Thus, one of the goals of wear leveling algorithms is to manage the

cold and static data so that the flash memory wears evenly throughout.

The method used by wear leveling algorithms to manage cold and static data is to

periodically move such data in a block with low erase count to a block with a high erase

count. One technique to achieve that is to periodically scan and find such blocks (cold

and static data on a block with below average erase count) and move the data to a block

with well above average erase count [1]. Efficient data structures and algorithms for this

technique have been given in [21]. Another technique is to alter the garbage collection

algorithm so that it chooses the block to erase not just by the number of valid pages in

it but also by how cold or hot the data in the block is [43]. In either technique, data

is only allowed to stay in a block for only so long before it gets moved to a different

block and thus, these wear leveling algorithms actually increase write amplification and

have to be managed such that the benefits of wear leveling outweigh the ill-effects of

write amplification. Thus, even though wear leveling algorithms deal with cold and static

data and affect write amplification, our methods of reducing write amplification is a

completely different process that occurs in the copyback phase of the garbage collection

with completely different goals.

The method we describe below for reducing write amplification is actually orthogonal



135

Erase 1 Erase 2 Erase 3 Erase 4

Figure 5.1: The same data in a page being copied back multiple garbage collection cycles

to wear leveling process. While wear leveling algorithms move static blocks from less worn

blocks to more worn blocks, our algorithm for reducing write amplification moves pages

with like data together. For better performance, both wear leveling and our algorithm

can be used together which we describe in Section 5.5.3.

5.3 Repeated Page Copybacks on Multiple Garbage

Collection Cycles

If the data in a page remains valid for a long time, it could be copied back a number of

times during the time it stays valid. This is illustrated by Figure 5.1 where the same data

in a page is copied back through four garbage collection cycles. This creates unnecessary

write amplification as the same data is being copied around over and over again.

A garbage collection cycle is the process by which a block is erased and its invalid

pages turned to free pages for rewrite. Garbage collection is triggered when the amount

of free pages available in the flash memory goes below a certain pre-determined threshold.

During garbage collection, the first step is selecting a block for erasure depends on multiple

criteria but the most important one being the number of valid pages in the block. After

the block is selected by the garbage collection algorithm to be erased, the valid pages

in the block are copied to a clean block and then the block erased. The newly erased
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block is then written with pages copied back from other blocks and new pages from the

user until it is full. It then waits for the garbage collection process to select it again for

erasing. During this passage of time, valid pages in the block become invalid when the

user updates or deletes the data in those pages and when the number of remaining valid

pages becomes low enough it is selected again by the garbage collection algorithm for

erasing. Thus, the garbage collection cycle repeats over and over to provide free pages to

the user as the user consumes the free pages by issuing write requests.

The main reason why pages are copied back repeatedly is because the garbage col-

lection process is completely oblivious to the nature of the data in the page. When the

valid pages in the block are copied back before erasing, they are all copied back to the

same clean block. If a page is valid during these two garbage collection cycles, then it will

be copied back two times and if valid longer, copied multiple times. Thus, the garbage

collection algorithm in the way it operates creates the repeated page copybacks.

This phenomenon is clearly illustrated in Figure 5.2. Figure 5.2a and 5.2b shows the

number of copybacks grouped by the copyback counts (number of times the data in the

sector is copied back). In Figure 5.2a, we compare uniformly random and Zipf workloads

(we describe workloads in more detail in Section 5.5.1) for a flash memory of 32768

blocks and 128 pages per block with 10% of the space used as over-provisioning, with a

workload of length 4.2×108. As Zipf distributed workloads have sectors that are updated

infrequently, some of these sectors are copied back hundreds of times while on the other

hand, uniformly random workloads where all sectors are updated with equal frequency,

most sectors are copied back fewer number of times, as shown by the narrower uniformly

random curve versus the Zipf curve which has a long tail of hundreds of copybacks. Real

trace workloads feature static data along with data that is updated infrequently and thus,

also results in a long tail in the copybacks as shown in Figure 5.2b. In either case, we see

that workloads with data of varying rates of being updated (which we define and quantize

as data volatility in Section 5.4.3) can result in the static or rarely updated sectors being
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copied back a large number of times which increases in write amplification.

5.3.1 Heap Maps

An alternate way of looking at the problem of multiple copybacks is through the flash

memory heat maps as in Figure 5.2c. In heat maps, the pages whose data that haven’t

been updated for some time is denoted by a square colored bluish hue while pages that

have been recently updated are denoted by a reddish square. Thus, each page is given

a color in the color continuum from blue to red depending on how long the data in the

page has been valid for; for example, yellow/orange being more recently updated than

bluish/green pages. Additionally, pages that contain invalid data are colored black. Figure

5.2c shows the heat map for the financial OLTP trace workload on the left and the heat

map for a uniformly random workload on the right. Each row represents a block with each

column representing a page from page 0 to the left to page 127 on the right. Additionally,

the blocks are sorted such that the blocks with the oldest pages are at the top and only

a random sample of blocks are shown in Figure 5.2c for size consideration. The goal of

this heat map form of visualization is to observe the layout of the hot and cold data in

the flash memory.

5.3.2 Sedimentation

The heat map in Figure 5.2c shows that static sectors tend to pool to the low numbered

pages of the block and dynamic data to the high numbered page of the block. When

writing to a block, pages must be written from page 0 onwards incrementally. During a

copyback, each valid page in the block is copied to a lower or equal numbered page in

the new copyback block and so static or cold pages who get copied back multiple times

ends up occupying the low numbered pages. For the trace workload, the heat map shows

blue on the left and for higher page numbers, a more reddish hue to the right with more

black dots. The blue pages are the static pages and the greenish ones are cold pages that
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haven’t been updated for a while and the red/black on the right are frequently updated

pages. In contrast, the heat map for the uniformly random are mostly reddish and the

invalid black sectors are uniformly distributed over the map. Thus, for workloads with

static or cold data, it tends to clog up in the low pages of the blocks and essentially

reduce our block of capacity 128 pages to only a fraction of the pages being available to

use after each copyback. This is because during garbage collection, the top part of the

block where the static and cold data resides, is copied back and over again to multiple

blocks on different garbage collection cycles even though the contents of those pages never

changes. This is not a problem where the data is uniformly random since any page could

be updated at any time but with workloads with static and cold data, it creates a large

amount of write amplification. Thus, with workloads that have static and cold pages,

the layout of the data in the flash memory using a single copyback block creates multiple

copybacks and high write amplification. We call this phenomenon sedimentation and our

algorithm breaks up the sedimentation.

To quantify the repeated copybacks, we express it through V , the number of pages

copied back, from Equation 5.1. Let s be an index of the sector from the possible cu

sectors in the SSD (i.e., s ∈ {1, . . . , cu}), and u is the number of blocks available to the

user. Let si be the different versions of the sector s that have been written to the flash

memory over time and let nsi be the number of times the data in sector si has been copied

back during the garbage collection process. Then,

V =
cu∑
s=1

∞∑
i=1

nsi (5.3)

Thus, the above equation gives that the number of copybacks as the total number of times

each version of each sector has been copied back.

Although the above equation is useful for calculating V during simulation, we will

use a slightly different formulation based on copyback counts for analysis. Let rj be
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the copyback counts or the number of times a page is copied back j times. Thus, in

mathematical notation,

rj =
cu∑
s=1

∞∑
i=1

Ij(si) (5.4)

where

Ij(si) =


1 nsi = j

0 otherwise

(5.5)

from which we can write V as

V =
∞∑
j=1

jrj

Using this formulation we can evaluate the copyback counts rj for different j and analyze

how many times blocks are being copied back.

5.4 Using Multiple Copyback Blocks

The main goal of our algorithm is to separate the data based on when we expect them to

be updated, for example separate cold and static data from the hot and dynamic data.

Blocks with hot and dynamic data are updated frequently and thus, these blocks tend to

have a large number of invalid pages. Blocks with cold and static data will rarely updated

and have a large number of valid pages. Thus, separating the data will result in lower

write amplification as a block with hot and dynamic data will have less valid pages to

copyback than a block with mixed static and dynamic pages. Thus, in this way we lower

overall system write amplification.

We need to perform the separation of dynamic and static data as efficiently as possible

and with as little overhead as possible. Because of that, we do not use learning or

prediction algorithms or maintain large in-memory data structures. The only data we

maintain on the page is nsi , the number of times it has been copied back, but this is

stored in the page itself and not in memory, as we describe in Section 5.4.1. This makes
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the algorithm very efficient for use in the FTL while providing good results for practical

use which we show in Section 5.5.

In order to separate out the data, we propose the following:

1. Each page is stored with its copyback count; this is the number of times it has been

copied back as a result of a block erasure (nsi from the above definition that is used

in Equation 5.3 and Equation 5.5),

2. We maintain multiple copyback blocks, i.e. the valid pages of the block that is

marked for erasing could be copied back to different blocks depending on the page’s

copyback count.

We illustrate how the algorithm works with two examples, the first using two copyback

blocks and the second using a copyback block for each copyback count. These represent

the ends of the spectrum of algorithm parameters.

Our first example is using two copyback blocks, block α for pages with low copyback

counts and block β for storing pages with high copyback counts. After a block is selected
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for erasing by the garbage collection algorithm but before a block is erased, its valid

pages are copied to the buffers in the flash die and written to some other block in the

same die. By our assumption above, each page maintains a copyback count and pages

with copyback count below some specified threshold Ncb are copied to block α and those

above the threshold Ncb are be copied to block β. This is illustrated in Figure 5.3 where

Ncb = 6, the copyback counts given in the left of the rectangle representing the page and

pages with copyback count 6 or higher is copied to a different block than the the pages

with the copyback counts less than 6. In this way, dynamic data is moved to block α and

static data to block β, separating the dynamic and static data.

The number of copyback blocks is not limited to 2 and can be as many as required

to handle different workloads. Then, each copyback block will have its own threshold

parameter to determine which pages are copied to which block. The parameters of the

number of copyback blocks and their impacts will be analyzed in Section 5.5.

In our second example, we use a copyback block for each copyback count i.e., during

copyback the page’s copyback count is checked and sent to a different block for each

possible copyback count. Let us assume we have the copyback blocks β1, β2, . . . , βk, β∞

where k is some large number of copybacks possible. We copy a page of copyback count

i to block βi for 1 ≤ i ≤ k and if i > k then we copyback to block β∞. Though not a

copyback block, we denote block β0 as the current writing block where new page writes

and page updates are written to. This example is illustrated in Figure 5.4. Thus, each of

the copyback block stores pages of equal copyback counts.

The result of the above setup for the algorithm is that during copyback pages migrate

from a block that used to be βi to βi+1. New writes go to block β0 and then a copyback

from those block will go to β1, and when the pages of the block that was β1 is copied

back, it goes to β2 and so on.

From the above two examples of our algorithm with different parameters, we illustrate

how we can separate data depending on its copyback counts. This separation of data



143

User Writes
0

1

2

k

Erase

Copyback

Figure 5.4: Copyback block for each Copyback Count

leads to reduction in write amplification which we will show in Section 5.5.

5.4.1 Utilizing Existing Flash Memory Hardware Features

To be able to maintain copyback counts and copyback to multiple blocks, we need hard-

ware support from the flash memory die. The hardware features that we utilize are the

spare area of a page and the copyback operations in flash dies, which are supported by

most flash dies [110, 95].

Each page of flash memory contains 128-256 bytes of additional area called the spare

area which is used to store parity data for error correcting and other information used

by the FTL. To keep track of the copyback counts, we can allocate 4-8 bits in the spare

area. Whenever the page is copied back, the count in the spare area is read from the flash

memory and incremented in the buffer and then the incremented value written back.

Thus, we can keep track of the copyback counts of a page by using the spare area in the

page.

The copyback operation in a flash die is a two step process, a copyback read command

first and then a copyback program command [95]. The copyback read command is func-
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tionally identical to the read operation where the requested data in the given address is

copied to the flash die cache registers. The copyback program is also functionally identical

to the program operation where data in the flash memory cache registers is moved to a

given address in the flash address. The difference between the set of copyback commands

and the read/program command set is that data is not expected to be moved in or out of

the flash die for copyback commands. Since each copyback command is given its own ad-

dresses, moving pages in a block to multiple different blocks is possible by giving different

block addresses to the copyback program command. Thus, supporting multiple copyback

blocks for different copyback counts is possible using the primitive copyback commands

available in flash memory dies.

5.4.2 Data Models for Selecting Parameters

To reduce write amplification, our algorithm takes advantage of the nature of the workload

and we would like to quantify this property of the workload that our algorithm utilizes.

The primary assumption we make about the data is that the probability that it will be

updated in the very near future is determined by how recently the data was updated.

For example with static and dynamic data, if the data hasn’t been updated for a while,

the probability that it will be updated in the very near future is smaller than if it was

recently updated. Thus, when we move the pages with higher copyback counts or lower

write-stamps to a different block than the ones with lower copyback counts or higher

write-stamps, we expect the pages with higher copyback counts to be updated less often

than the other blocks. Then, we expect write amplification to go down since the block

with low copyback count pages end up with more invalid pages. Thus, copyback counts

or timestamps act as a predictor for if in the near future the page will be updated and

deleted which is the basis from which our algorithm reduces write amplification.

In order to select the right parameters, we need to quality the above property of the

workload data. We use data volatility which we define in Section 5.4.3. In order to make
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our calculations and simulation easier, we utilize the reductions possible in the workload

which we discuss in Section 5.4.2.1.

5.4.2.1 Workload Structural Reductions

When analyzing write amplification, there are two workload reductions possible that

simplify the workload for our simulation but do not take anything away from our analysis

of write amplification. In essence, we are able to remove some structure from the workloads

that are orthogonal to the write amplification process.

Firstly a very useful assumption that can be made is regarding the timings of the

workload. Write amplification is only influenced by the sequence of write and delete

operations and not by the times that these operations were issued by the user. Thus, the

write amplification is the same if a sequence of operations occurred in a burst of operations

or if the operations were issued over a long period of time. Using this fact, we can simplify

the workload such that at each interval of time there is exactly one operation issued by

the user or that the arrival time of the operations in the flash memory is constant. In

real workloads, the distribution of the arrival time of operations varies but the write

amplification is independent of the arrival times and thus when analyzing the workloads

for our algorithm, we simply take the simplest arrival time, the constant arrival time. By

making this assumption about workloads, we can simplify a large part of our analysis.

Additionally, we can remove all read operations from the workload since only write

and delete operations affect write amplification.

While we simplify arrival times in the workload for our write amplification analysis, the

arrival times of workloads are very important in modeling and simulation of performance

of flash memory, performance of the garbage collection mechanism and the latency and

throughput of the system. For such analysis, arrival times need to be considered.
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5.4.3 Data Volatility

We next give a quantitative formulation of the property of the workload that is utilized

by our algorithm called data volatility. We define data volatility as the probability that

given a page has been valid for some given time period, it will become invalid in the next

time period. For example, static data has low volatility since there is low probability it

will be invalid in the next time period and dynamic data has high volatility since it is

quite likely that it will be updated quickly. Thus, data volatility is the measure of the

tendency of a page to become invalid in the near future.

However, when data first comes in, we don’t know if the data is static or dynamic and

we have to estimate the volatility. In our case, our estimate of volatility is based on how

long the data has been valid for. We get this estimate of how long a page has been valid

for coarsely from its copyback count or more fine grained using its writestamp, a form of

a timestamp which we describe below.

Using write-stamps and copyback counts are indirect ways of measuring how long the

page has been valid for. The timestamp of the page would be a more accurate method of

determining how long the data in a page has been valid for but we use copyback counts

because it is simple and efficient to work with while also being effective. One of the

major problems of using timestamps is that it has to be normalized against the number of

operations that has occurred in the time frame as operations can come in bursts. Thus,

the normalization would be different for each page and would require a lot of overhead

to keep track of. The write-stamp is the count of the number of write operations that

have occurred. Using write-stamps is another estimate for the length of time a page has

been valid for and is a more fine grained method than copyback counts. The drawbacks

with using write-stamps is that selecting a copyback block based on this measure requires

a more complex copyback rules and the write-stamp itself requires a larger number of

bits to store in the spare area than the copyback count. Thus, the algorithm uses the
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write-stamps and copyback counts as quick and efficient ways to get a rough estimate of

how long the page has been valid for and we use data volatility to create the rules to

select the copyback blocks.

We discuss the usage of copyback counts and write-stamps in more detail in Section

5.4.4.

We next give the equations for calculating data volatility. As defined before in Section

5.3, let si be the ith version of sector s. Let Zsi
γ the random variable that gives if the sector

si is valid(v) or invalid(i) after time γ in the flash memory. Then, the data volatility υsiγ

is the probability that a block that has been valid for γ steps will be invalid at γ+ 1 time

step and is given by

υsiγ = P (Zsi
γ+1 = i | Zsi

γ = v)

and we can write the above as

υsiγ =
P (Zsi

γ+1 = i ∩ Zsi
γ = v)

P (Zsi
γ = v)

A convenient method to calculate data volatility for generated or trace workloads is using

the following formulation. Let V be the random variable for the length of time a page is

valid for. Then, P (V = γ) gives the probability that a page will be valid for exactly time

γ or equivalently, the probability that if a page has been valid for time γ, it will become

invalid in the next time interval. Thus, we can write data volatility as

υsiγ =
P (V = γ)

P (V ≥ γ)

In this form, just keeping track of how long sectors are valid for in the workload is sufficient

to calculate the data volatility and thus, is a convenient formulation.

The data volatility of various workloads is given in Figure 5.5 (we give the definitions

of the workloads in Section 5.5.1) where the x-axis gives how long the sector has been
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Figure 5.5: Data Volatility of Various Workloads
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valid for (in time units of intervals based on the total number of operations) and the y-axis

gives the data volatility. Figure 5.5a gives the volatility for uniformly random and Zipf

workloads. Note that the data volatility of the uniformly random workload is constant

throughout while the Zipf distribution has high volatility for the sectors that are just

written which goes down dramatically the longer the sector stays valid. The volatility of

the uniform curve is very low and close to zero because it is constant throughout time

and thus, evenly distributed over the duration of the simulation. Figure 5.5b gives the

data volatility of real system traces and we can see that they are close to that of the Zipf

distribution.

Volatility depends on the size of the cache used in the system. From simulations results

in Figure 5.6a and 5.6b, the volatility decreases with larger cache size but with diminishing

decreases in volatility with increasing cache size. The simulations in Figure 5.6a were done

with workloads of 9932 blocks with 128 blocks per page and cache size of 0, 128, 256, . . .

pages. Figure 5.6b uses the Financial OLTP trace to generate the volatilities with varying

cache size and a small cache size irons out the high volatility during initial times after

writes. Thus, as larger cache sizes provide diminishing volatility decreases, we run our

simulations with cache size of 256 pages (2 blocks) without cache size being a major

variable.

Volatility can also be calculated for intervals of time rather than fixed point in time

and we see the volatility of the synthetic and trace workloads in Figure 5.7a and 5.7b

calculated with intervals of 100 time units.

5.4.4 Parameter Selection

Workloads are different depending on the usage patterns of the SSD and we can adjust

the parameters of our algorithm to adapt under the varying conditions to keep reducing

write amplification. If the workload is uniformly random, then the probability that a

page is updated in the near future is the same at any time for any page and in such a
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case, write amplification cannot be reduced and we would only use one copyback block.

On the other hand, workloads with static data that is never updated or is Zipfian where

some pages are rarely updated while others are updated more frequently have a variety

of properties that interact with our algorithm in different ways and we should be able to

adjust the parameters to adapt to these workloads.

During a copyback operation, when we have to choose the location to place a page that

has been copied-back, we have its copyback count or its write-stamp to determine the best

location. However, we can only use a write-stamp after a copyback has occurred and so

thus the write-stamp that we encounter after a copyback is closely related to the copyback

count. Figure 5.7a and 5.7b shows the relationship between copyback counts and write-

stamps. Each rectangular block shows the write-stamps when the page is copied-back

with the left edge the 5th percentile and the right edge the 95th percentile. The total

rectangular area shows the write-stamps for the copyback-count in 90% of the time. As

we can see from the figures, the range of write-stamps for each copyback count increases

and there is certain overlap between the write-stamps of the different copyback counts.

Thus, we can use write-stamps for a finer grain of control and we describe the methods

to select the parameters for the copyback blocks next.

First, let us consider the parameter selection when using copyback counts for selecting

where to copyback pages. If there was a copyback block for each copyback count then

the algorithm would perform the best in write amplification reduction (assuming that the

number of blocks in the flash memory is large). The reason for this is because the goal

of the algorithm is to group data of similar volatility together and the smallest grouping

we can do is through a single copyback count (when using copyback counts). On the

other hand, the cost of using a large number of multiple copyback blocks is that as more

blocks are used for copybacks, the over-provisioning slightly goes down as fewer blocks are

used to store data which can increase write amplification. Thus, having a block for each

copyback count gives the most reduction in write amplification if we have a large number
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of blocks available for copyback blocks but a large number of copyback blocks can result

in lower over-provisioning which leads to higher write-amplification.

The method to do parameter selection is through the data volatility distributions

we discussed in Section 5.4.3. When the volatility distribution is flat we can group the

copyback counts together, the extreme being uniformly random where we can group all

the copyback counts together to one. This is because when the volatility curve is flat for

a time interval, there is no difference in volatility of the pages that have valid until that

time region and thus, have about equal probability of getting updated in the near future.

However, the correspondence between the copyback counts and the different regions of the

data volatility curve depend on the parameters of the SSD like the over-provisioning and

the garbage collection algorithm. Thus, the easiest way to do parameter selection is to use

first copyback block for each copyback count and merge copyback blocks if the volatility

of the data in them are the same. For example, in the volatility curve overlaid with where

the copyback counts in Figure 5.7a, the curve is flat after the first two copyback counts

and thus, all the remaining copyback counts can be grouped into one to use only a single

copyback block in the region where the volatility curve is flat. Thus, the method for

parameter selection for copyback counts is to group the copyback counts together where

the data volatility curve is flat.

5.5 Simulation and Results

We use our simulator to evaluate our layout management methods for decreasing write

amplification. The simulator is an event driven simulator that emulates the various mod-

ules of the FTL. For instance, the IO controller translates IO requests to flash memory

operations, the mapping table module handles the logical to physical maps, the layout

manager determines where to place each new block and invokes the garbage collector

module when the free pages are needed and the state manager keeps track of the state
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of the data in the flash memory. Workloads are either simulated or from a trace but we

do apply the workload structural reductions as described in Section 5.4.2.1. Thus, using

these emulated modules that make up the simulated FTL, we perform an analysis of the

effectiveness of our analysis and algorithm for reducing write amplification.

The simulator works in the following chain of events. At each time interval, a workload

event is processed. If the operation is delete, the sector is marked invalid in the mapping

table. If the operation is write, then the old version of the sector is marked invalid if it

resides on the flash memory and the layout manager is asked for the location to write the

new page. Here, the layout manager uses one of our algorithms to determine where to

write the page. When the free pages in the flash memory runs out, the layout manager

request the garbage collector to erase blocks to acquire free pages to write to. When the

garbage collector is copying back pages, it also requests the layout manager where to locate

the valid pages in the block to be copied-back. Here, our copyback layout management

algorithms are used. The modules and its relationships in the simulator are illustrated in

Figure 5.8. In this way, the layout manager plays a central role in our simulator and we

can effectively test our algorithms against write amplification from the simulation results.

Since copyback operations are restricted to copying back data inside a flash die, we
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performed our simulation assuming a single flash die. A 128Gb die [95] has 32,768 blocks

and each block has 128 pages and serves as our primary model. When comparing the

results of synthetic workloads to trace workloads, we use smaller number of blocks for

the synthetic workloads so that the number of blocks used in the synthetic workload

simulation matches the ones that are present in the trace workload.

5.5.1 Workloads

For our simulation, we use both synthetically generated workloads and real world system

traces.

For synthetic workloads, we use workloads as described in [112] which has a write as

well as a delete (TRIM) operation where the workloads follow either a uniformly random

or Zipf distribution. In other words, given n sectors, the probability that an operation on

sector i occurs is given by pui for uniformly random and pzi for Zipf distribution where

pui =
1

n
pzi =

1
iα∑m

k=1
1
kα

and for our simulation, we take α = 1 for pzi . Uniformly random workloads have been

used in many studies of flash memory and write amplification [14, 53]. A large number of

real life workload distributions are Zipfian [25] or follow the power-law rule where some

data are updated a lot more frequently than others and the frequency of updates follows

the power law as given above. Real system traces have similar volatility curves to Zipf

distributions, which we discussed in Section 5.4.3, and thus synthetic Zipf workloads are

an important predictor for real system performance.

For workload traces from real systems, we use the financial OLTP traces from Storage

Performance Council [117] and the MSN Storage metadata server [114]. These workloads

have a large percentage of writes suitable for our write amplification simulation and also

have been previously used in flash memory studies [53, 98]. We limited the workload to
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Figure 5.9: No. of Operations and Copybacks after Cache

at most 222 sectors since we are simulating on a 128Gb die.

5.5.1.1 Cache Size

Before we can get relevant and meaningful results about write amplification, we must first

determine the cache size we are going to use.

We use a simple LRU cache where each cache entry is a page. The cache can be

thought of as a filter on the workload where updates of sectors that occur in a short time

are removed. Updates that occur in less than the size of the cache is removed but some

updates that are slightly larger can also be removed. To first look at the effect of cache,

we look at how many operations are removed from the workload for various cache sizes.

As we discussed in Section 5.4.3, as we increase the cache size, the volatility decreases

and consequently the write amplification also decreases but does so at diminishing levels.

Therefore, we must choose a cache size large enough that increasing the cache size will

have very little effect on the write amplification but small enough so that the cache size

is only a tiny fraction of the flash memory.

Figures 5.9a and 5.9b shows the number of operations that are not removed by the

cache for different cache sizes (the cache size zero representing the original number of

operations). For uniformly random workload, there is hardly any operations removed
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by the cache. This is expected because each sector is updated randomly with equal

probability and there are a few cases when the same sector is updated in a short while.

For Zipf workload, some sectors are updated more frequently than others and the trace

workload has locality as well. In these workloads, we get large decreases for small cache

sizes. When we increase the cache size, the operations allowed through are still decreasing

but at a lower rate.

Figures 5.10a and 5.10b show the number of copybacks in the simulation from the cache

filtered workloads. The Zipf and trace workloads show a similar trend to the number of

operations. For uniformly random workload, we can see the number of copybacks linearly

decreasing with cache size even though the number of operations did not show that trend.

We can infer that removing short updates has some effect on the number of copybacks it

results in the system.

Figure 5.11a shows the system write amplification (the amount of write amplification

compared to the number of operations before the cache). As with the number of copy-

backs, it decreases linearly with the size of the cache for uniform workloads. For Zipf and

trace workload, it decreases rapidly at first and then decreases slower with larger cache

sizes. Another interesting view of write amplification is to view it after the cache as in

Figure 5.11b where we measure the write amplification from the operations that have

reached the SSD after the cache. By removing the short updates, the cache changes the

nature of the workload that reaches the SSD. The write amplification increases initially

for small cache sizes for Zipf and trace workloads showing that very small updates actually

increase write amplification for the layout management strategy we are using. For larger

cache sizes, write amplification decreases.

To determine the appropriate cache size to use, we have to balance the cost and benefit

of larger cache sizes. Larger cache sizes offer lower write amplification but at falling rates.

A general rule of thumb is to use 0.1% size of the flash memory as the cache size that

comes out to around 1280 pages for our simulation setup. At this size, the decreases in
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write amplification aren’t as steep for larger sizes and so, we use this as our cache size.

Another interesting view is how the copyback distribution changes with cache sizes.

Figure 5.12 shows the different copyback distributions of Zipf, uniformly random and trace

workloads for different cache sizes. With larger cache sizes and lower write amplification,

the curve moves to the left.

5.5.1.2 Convergence of Write Amplification and Copyback Distribution

While we will use write amplification values and copyback distributions as the founda-

tions of our analysis of the characteristics of the SSD system, we must be careful to use

meaningful values for them from the simulation since these numbers can vary with time

with the course of the simulation. If possible, we must use their values when they con-

verge after a length of time running the simulation. If the values converge, the rates of

convergence vary depending on the nature of the workload, the size of the SSD and other

system parameters. Thus, before using these values for analysis, we must first analyze

the convergence properties of the simulation so that we can precisely define the values

obtained from simulation of write amplification and copyback distributions even though

they vary with time.

When we perform the simulation, we have various options about calculating the write

amplification. The first option is that we can calculate the write amplification from every

copyback event that has occurred during the entire simulation, i.e., the entire history of

copybacks. Alternately, we can calculate it only from the latest set of copyback events

from some specified time window, i.e., only a brief preceding history. The drawback

of using the entire history is that values are always influenced by prior events in the

simulation while the drawback of using recent history is that events in the small time

window might influence the write amplification calculated too much. We will analyze the

two different write amplification calculation methods as it relates to convergence and the

speed of convergence.
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A significant part of the simulation history is the start of the simulation and we can

start the simulation with all the sectors already on disk (we call this starting full) or we

start the simulation assuming that the blocks are empty and clean (we call this starting

empty). When we start full, we start the simulation with all the sectors occupied and

placed randomly in the flash memory. When we start empty, all the sectors are written

as they come in. Starting empty leads to an initial period where the write amplification

is low as sectors with low probability of being written are not on disk and this creates

an effect like over-provisioning where the number of sectors stored on disk is significantly

lower than the number of possible sectors. Staring full or empty has more effects to

consider for trace workloads on static sectors and convergence. Trace workloads may

omit writing to certain sectors during the course of the recorded trace as for example

the OLTP trace does. If those sectors are assumed to be empty, then this lowers write

amplification as those free pages act as over-provisioning. If we start full, we assume that

those sectors that are never written to during the course of the trace are static sectors

and which results in increased write amplification. Starting full or empty affects write

amplification calculations and convergence and we must select the appropriate start for

accurate values.

The convergence of write amplification is illustrated in Figure 5.13 where we plot write

amplification against the time the simulation has been running. Each figure has four

curves for starting full or empty, or using a windowed or complete history of copyback

history to calculate the write amplification.

The first question is if convergence of write amplification values does occur. For

synthetic workloads, the workload distribution stays the same and we expect the write

amplification to converge eventually. For trace workloads, the workload distribution might

change over time and we might not get convergence.

The second question is if it does converge, how fast does it converge and hence, how

long should our simulations last. Synthetic workloads lengths can be increased arbitrarily
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until we reach convergence but if the convergence is very slow then might take billions of

operations before it reaches convergence and might not be practical to run the simulations

for that length of time. Rare events in the workload that affect copybacks will take longer

to convergence, for example in Zipf workloads sectors that are rarely updated. Workloads

without any rare events converge fast, for example uniformly random workloads where

each update of the sector is equal. As we can see in Figure 5.13a, the convergence of

the Zipf workload is slower than uniform workloads than that in Figure 5.13b. However,

factors like starting full or empty and using or not using windowed write amplification

as our write amplification values affects the rate of convergence and we will use the ones

that give us the fastest convergence. For trace workloads, the issue of convergence is

trickier and more complicated as mentioned before. As we can see from Figure 5.13c,

the windowed write amplification values do not converge and it reflects that the changing

nature of the trace workload. However, the full cumulative write amplification values are

smoother that average out the temporal fluctuations.

Next we want to look at which is the best method of looking at write amplification

values from the various choices we have. For synthetic workloads starting full or empty

should lead to the same write amplification value as there are no hidden static sectors.

However, starting full, simulations for synthetic workloads converges much faster than

starting empty and using the write amplification from a window of recent history converges

even faster and thus, for the fastest convergence we use window history with full start

to calculate the write amplification. In Figure 5.13b, we see that the uniform workloads

starting full, empty, full or window history converge to the same value but starting empty

converges much slower but is faster by using a window history. For Zipf workloads as show

in Figure 5.13a, starting empty converges to the same value as starting full but doing so

very slowly that by the end of the simulation period, it hasn’t converged even though we

have processed 18 operations. Though using the windowed history does converge after

around 0.758 operations. In starting empty, each step increasing the write amplification
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by a tiny amount but this adds a significant amount to the total write amplification over

millions of operations. The rate of convergence is dependent on the number of sectors as

higher number of sectors leads to more and more rarer events and the simulation in Figure

5.13a and 5.13b was done with 32, 768 sectors. Thus, for synthetic workloads, we start

the simulation with all the sectors on disk and look at the recent history of copybacks for

quicker convergence.

For trace workloads, as illustrated in Figure 5.13c, the write amplification on starting

full is much higher than starting empty owing to the effect of sectors that are never

written to during the course of the trace. The windowed values of write amplification

varies because the trace workload varies with time which we can see as the non-converging

curves which indicates that it does not make sense to talk about convergence with trace

workloads. However, using the full history of the trace workload creates a smoother write

amplification curve as it averages all the events that have occurred during the course of

the trace. Thus, for trace workloads as well, we start the simulation with all the sectors

on the disk but use the full history of write amplification at the end of the simulation.

In the case we do not achieve convergence in write amplification and copyback distri-

bution, we use the values at the end of the simulation. This is not a problem since we are

comparing algorithms and its effectiveness but these values are not valid for comparing

across workloads. Thus, our analysis will deal with convergent values of write amplifica-

tion when possible that elucidates the structure of the algorithms in the system, or the

values at the end of the trace workloads when convergence is not reached.

Another interesting relationship is the number of copyback against time. In Figure

5.17b, we see that for most curves that the relationship is linear with around 1 copyback

in 100 time units except for the Zipf empty start. This is because for the starting empty

curve, the sectors haven’t been written to the disk and thus, the copyback per time unit

time or the slope of the curve is lower first which increases to match the rest of the curves.

Similarly, for the OLTP trace in 5.17c, the slopes of starting full and empty are different
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since some of the sectors are not written to.

Next, we look at the convergence and properties of copyback distribution in the dif-

ferent simulation settings. This is shown in Figures 5.14, 5.15, 5.16 and 5.17, with each

curve showing the copyback distribution curve after a certain number of copybacks have

taken place. The conversion between the number of copyback and time is given in Figure

5.17. In Figure 5.14a, we look at the copyback distribution of the Zipf distribution with

full start and it very quickly converges to its copyback distribution. With the empty start,

the copyback distribution using the complete history slowly moves towards convergence

in Figure 5.14b with the history of the empty start leaving a long left tail. Without the

history moves to the convergence quicker in Figure 5.14c which ignores the history of

the empty start. Similarly for the uniform workload with full start, the copyback con-

verges quickly but faster than the Zipf workloads as in Figure 5.15a. Figure 5.15b shows

the copyback distributions for an empty start and Figure 5.15c for an empty start but

distributions calculated on a recent history window which follows a similar pattern to

Zipf workloads. However, owing to the different distributions in the workloads, we have

different shapes in the copyback distribution graphs.

For trace workloads, we see in Figures 5.16 and 5.17 that the copyback distributions

for the OLTP trace workload is far more spread over the number of valid pages copied

back. In terms of convergence, we see that with the full start and complete history, the

convergence is the best. With the empty start and windowed, the distribution is moving

to the right increasing write amplification and hasn’t converged by the end of the trace.

Since the trace is limited to what was recorded, we cannot expend the experiment further

and thus, using the full start with complete history presents the best results for trace

workloads.

In this way, we can use a single write amplification number and a copyback distribution

curve to analyze the operation of flash memory through a workload with millions of

operations.
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Figure 5.15: Convergence of Copyback Distributions of Uniformly Random Workloads
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5.5.1.3 Over-Provisioning

The factor that most influences write amplification in SSDs is over-provisioning and we will

investigate our layout management algorithms across various degrees of over-provisioning.

Figure 5.18a shows the write amplification versus the degree of over-provisioning for syn-

thetic (uniformly random and Zipf) and trace workloads. We control the degree of over-

provisioning by the percentage of the SSD size available. For synthetic workloads, we

assume a flash die size and that only a certain fraction of the actual capacity is adver-

tised as available which thus leads to lower number of sectors that can be stored in the

disk. For trace workloads, the number of sectors remain the same and we change the size

of the SSD so that the number of sectors represents the given percentage of the SSD.

Though we have included the synthetic and trace workloads in the in the same graph,

they write amplification values are not comparable because the number of sectors vary

and the definition of how we measure over-provisioning varies.

From the simulation of write amplification and degree of over-provisioning, we see that

the write amplification increases with less over-provisioning and the increase is very high

for very low over-provisioning. For 0.95% useable level, write amplification is almost 10

while for 0.8%, it is ten times less at around 3 (for the synthetic workloads). In all levels

of over-provisioning, the write amplification for uniformly random is slightly lower than

for the Zipf workload.

Figures 5.18b, 5.18c and 5.19a shows the copyback distributions for Zipf, uniformly

random and OLTP trace workloads for various over-provisioning amounts. With less

over-provisioning, the curves shift to the right and result in higher write amplification.

The copyback distributions for the Zipf and uniformly random workloads are narrow and

non-overlapping whereas the OLTP trace workload has wider over-lapping distributions

which slightly change shape with higher over-provisioning.
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5.5.2 Using Copyback Counts

We compare the write amplifications

1. No copyback blocks and the writeblock used for copyback (None)

2. single copyback block and copyback blocks are different to writeblocks (2B)

3. multiple copyback blocks using our copyback algorithm (n copyback blocks).

We denote the rule of the multiple copyback blocks as

x1, x2, . . . , xN

where xi is the copyback counts that make up the boundary of the copyback blocks. From

the rule, we have N + 1 copyback blocks b1, b2, . . . , bN+1: all pages with less than or equal

to x1 copyback count is copied back to block b1, more than xN is copied back to bN+1

and if between xi and xi+1 copied back to block bi. For example, a rule like 1, 2, 4 would

mean 4 copyback blocks b1, b2, b3, b4 where pages with 1 copyback count is copied to b1, 2

copyback count to b2, 3 and 4 copyback count to b3 and more than 4 to b4.
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In our experiments, we start with a single copyback block and then add additional

copyback blocks with rules as the following: none; 1; 1,2; 1,2,3; 1,2,3,4; and so on. The

smallest granularity we can have between copyback counts is 1 and since we have a large

number of blocks in the flash memory in the simulation, we give each copyback count its

own block. This will give us the highest reduction in write amplification as each copyback

count is copied back differently.

5.5.2.1 Simulation Results

Figure 5.20 show the write amplification for various levels of over-provisioning and for

using different copyback rules for Zipf, uniformly random workload and the OLTP trace

workload. The standout characteristic is that for the Zipf and trace workloads switching

from no copyback blocks to one or more copyback blocks give a significant decrease in

write amplification but additional copyback blocks produce only very small decreases in

write amplification. For uniformly random workloads, the write amplification is almost

identical for all the different copyback blocks.

The same information is shown in a different format in Figure 5.21 where we plot with

the number of copyback blocks in the x-axis. We see that when we go from no copyback

block to one copyback block, i.e., switch from using the simple copyback algorithm to the

multiple copyback block algorithm starting with a copyback block, the write amplification

noticeably decreases. However, after that increasing the number of copyback blocks from

2 to higher values, the write amplification decreases only slightly.

Tables 5.1, 5.2 and 5.3 shows the percentage decrease in write amplifications as we

increase the number of copyback blocks. Going from top to bottom, we have various

over-provisioning values of the flash memory in terms of the percentage of flash memory

advertised as the capacity. Going from left to right, we have the percentage decrease in

the write amplification by going from n copyback blocks to n + 1, starting with going

from no copyback blocks (using writeblocks) to a single copyback block.
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(b) Zipf Workload, 0.75 Size Usable

Figure 5.22: Copyback Impacts Graphs for different number of Copyback Blocks for Zipf
Workload

As we saw from the graphs for Zipf and trace workload, adding the first copyback

block created a large decrease in write amplification. The further addition of copyback

blocks created a small decrease in write amplification with each additional copyback block

being less effective. For uniformly random workloads, there was an increase in write

amplification (as shown by a negative decrease). As we used a block for copybacks, it

minutely decreased over-provisioning and thus, resulted in higher write amplification.

5.5.2.2 Analysis of Copyback Impacts

Next we look at how our copyback count algorithms affect the functioning of the SSD

to explain the reduction in the write amplification. The main tool that we will use is

copyback impacts.

In the simulation, every time a page is copied, we keep track of the copyback count of

the page. This tells us how many times previously the data in the page has been copied

back. Next, we take the histogram of the recorded copyback counts during the copyback

of a page and this graphed histogram is the copyback impact. In this way, we have a

quantitative measure of the repeated copyback of data and the graph a visualization of

that.
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Figure 5.23: Copyback Impacts Graphs for different number of Copyback Blocks for Unif
Random Workload
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Figure 5.24: Copyback Impacts Graphs for different number of Copyback Blocks for OLTP
Trace
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First, we look at how the copyback impacts differ between the algorithms and the

rules of the copyback counts algorithm. In Figures 5.22a and 5.22b, we have the copyback

impact graphs for the Zipf workload with 90% and 75% of the space advertised for storage

and 10% and 25% used for over-provisioning.

When not using copyback blocks, the copyback impact distribution is flatter meaning

that copybacks of pages with high copyback counts are occurring. When we add copy-

back blocks, the copyback impact distribution develops a much larger peak in the lower

copyback counts. This means that there are more copybacks with low copyback counts

and less with high copyback counts. This is the intended result of our design where we

wanted to decrease the repeated copybacks of static pages.

With multiple copyback blocks, the pages are copied back slightly less and the entire

copyback impact graph moves to the left resulting in lesser copybacks and hence, lower

write amplification. As we increase the number of copyback blocks, the copyback impact

graphs do move to the left a bit more but a very small amount and thus, only a small

change in the write amplification.

For uniformly random workloads, the copyback impact distributions is show in Figure

5.23a and 5.23b which shows only minute changes in the distributions when we change

copyback blocks. For the OLTP trace workload, we see a similar trend as for Zipf work-

loads where the multiple copyback blocks reduce the impact from high copyback counts

as given in Figures 5.24a and 5.24b.

Thus, from the copyback impact distributions, we can see that the algorithm achieves

what we intended with our algorithm. By using copyback blocks separate from write-

blocks, we have essentially removed the sedimentation problem. After removing the sed-

imentation problem, the increased copyback blocks however yield only a smaller change

in the copyback impacts.
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Figure 5.25: Copyback Distributions for different number of Copyback Blocks
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Figure 5.26: Copyback and Wear Distributions for different number of Copyback Blocks
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5.5.2.3 Copyback Distributions and Heatmap Analysis

Another view of the effects of the copyback blocks algorithm is the changes in the copyback

distribution. In Figures 5.25a and 5.25b, we have the changes for the Zipf distribution

with the over-provisioning set for 0.9 and 0.75 usable and in Figures 5.25c and 5.26a

for the OLTP trace workload with over-provisioning set for 0.9 and 0.75 usable. From

previous data, we know that the write amplification is decreased by using the copyback

blocks algorithm. For the Zipf workload, the copyback distribution moves to the left with

the introduction of the copyback blocks. For the trace workload, instead of a move of

the distribution, we see a change in the shape of the distribution. With copyback blocks,

there are more blocks that are copied back with lower number of valid pages and thus, the

left tail of the copyback distributions are bigger for copyback blocks based algorithms.

The most striking illustration of using multiple copyback blocks over a single copyback

block comes from heat maps. We have introduced heat maps in Section 5.3 and we analyze

the heat maps in more detail here. In Figure 5.28a, we see the typical heat map of a

no copyback block where the cold and static sectors sediment to the low pages of the

block while the hot pages are written to the higher pages of the block. With the use

of separate copyback blocks, this process is disrupted as seen in Figures 5.28b to 5.28g

where some blocks contain cold data and some blocks hot data. Thus, instead of forming

sediments to the bottom of each block and being copied over and over again, static data

goes into a static block which can stay untouched and not result in multiple copybacks.

The blue/green colored static or cold data is seen across blocks horizontally rather than

as sediments vertically. As the number of copyback blocks increases, there is a slight

improvement in the number of blocks with hot pages as seen with more reddish hue at

the bottom of the figures. This results in the slight decrease in write amplification.

The heat maps for the trace OLTP workload is similar to the synthetic Zipf workload

as in Figure 5.30. Since the trace workload has static data, there is more blue or cold data

in the heat map for the workload. The multiple copyback algorithm again shifts static
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(a) None (b) 2B (c) 1 (d) 1,2

(e) 1,2,3 (f) 1,2,3,4 (g) 1,2,3,4,5

Figure 5.28: Heat-Maps: Zipf Workload and 0.9 Size Usable
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(a) None (b) 2B (c) 1 (d) 1,2

(e) 1,2,3 (f) 1,2,3,4 (g) 1,2,3,4,5

Figure 5.29: Heat-Maps: OLTP Trace Workload and 0.9 Size Usable
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(a) None (b) 2B (c) 1 (d) 1,2

(e) 1,2,3 (f) 1,2,3,4 (g) 1,2,3,4,5

Figure 5.30: Heat-Maps: Unif Random Workload and 0.9 Size Usable
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and dynamic data to different blocks instead of allowing the static blocks to sediment to

lower pages in the blocks.

The heat maps for the uniformly random workload is given in Figure 5.30. There is

very slight sedimentation in Figure 5.30a which is disrupted with the copyback blocks

based algorithms. However, since there is no real static data, this does not translate to

any write amplification reduction as each page has equal chance of being updated at every

step.

5.5.2.4 No Cache

When using a cache, operations that update a sector in less than the size of the cache are

removed. By looking at the results from removing the cache altogether, we can observe

the effects of operations that update the sectors quickly and also understand the role of

caches within the context of copyback blocks.

Figures 5.31 and 5.32 shows the write amplification against over-provisioning for the

different copyback blocks algorithm parameters (the equivalent of Figures 5.20 and 5.21

when we used the cache size of 1280 sectors. The percentage changes in write amplification

is given in Tables 5.4, 5.5 and 5.6. We see that the write amplification is higher without

the cache and the percentage decreases in write amplification are also higher.

When sectors that are very quickly updated are added to the workload from the

removal of the cache, static sectors end up getting copied back more often. By using

copyback blocks and separating out static or cold data, we are more effective at reducing

write amplification. The highly volatile sectors are invalidated before they are copied

back and thus never make it to the copyback blocks. This gives more separation to the

static and dynamic data and thus more effective write amplification decrease.

The increased copybacks of static or cold sectors is shown in copyback impact graphs

in Figures 5.33a and 5.33c for the Zipf and trace workloads. The copyback impacts

graphs without the cache are flatter and this is because of the larger number of repeated
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Figure 5.33: Copyback Impacts at 0.9 Usable (No Cache)



195

(a) None (b) 2B (c) 1 (d) 1,2

(e) 1,2,3 (f) 1,2,3,4 (g) 1,2,3,4,5

Figure 5.34: Heat-Maps: Zipf Workload and 0.9 Size Usable (No Cache)

copybacks of data. As we can see in the figure, there are pages that are being copied back

hundreds of times over. By using copyback blocks, we push a large number of pages to

be copied back a few times only to predict how non-volatile the data is.

For the case of uniformly random workloads, there are no static sectors and each page

or sector is as volatile as the other. Thus, the copyback blocks algorithm has no effect

here as well.

Figures 5.34, 5.35 and 5.36 show the heat-maps at the end of the simulation. We see

that without using separate copyback blocks, there is sedimentation and using separate

copyback blocks removes it. The difference we can see between using a cache and not

using a cache is that the dark pages are more concentrated to the right when there is no

cache. This means that volatile pages are being updated more quickly and hence more
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(a) None (b) 2B (c) 1 (d) 1,2

(e) 1,2,3 (f) 1,2,3,4 (g) 1,2,3,4,5

Figure 5.35: Heat-Maps: OLTP Trace Workload and 0.9 Size Usable (No Cache)
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(a) None (b) 2B (c) 1 (d) 1,2

(e) 1,2,3 (f) 1,2,3,4 (g) 1,2,3,4,5

Figure 5.36: Heat-Maps: Unif Random Workload and 0.9 Size Usable (No Cache)
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invalid pages at the high pages of the blocks.

For the uniformly random workload, there is some sedimentation and our algorithm

does break up the sedimentation. However, the black dots are uniformly distributed over

the heat map as any page can become invalid with equal probability. Thus, there is no

effect on write amplification even though our algorithm does show a small de-sedimenting

of the data. The loss of a block to copybacking and thus the small reduction in over-

provisioning has more an effect than what is gained by de-sedimenting the data.

Thus, while cache does remove highly volatile sectors from the workload, it does not

remove the problem of sedimentation and should be used for all cache sizes. However the

smaller the cache, our separate copyback blocks algorithm is slightly more effective.

5.5.3 Performance Improvements and Wear Leveling

We are interested in the improvement in two aspects of flash memory: longevity and

performance. By reducing write amplification, we reduce the total number of block era-

sures for the workload. This results in a longer lifetime of the flash memory due to lower

average block erasures and a higher performance since less time is spent performing the

slow block erasures.

5.5.3.1 Performance

When we reduce the number of copybacks, we reduce the number of system writes and this

saves on the extra time required to do extra block erases to accommodate the extra writes

caused by the excess write amplification. This savings in time is directly proportional to

the reduction in write amplification because reduction in write amplification is just less

writes in the system.

Taking the example of Zipf workloads and write amplifications of 7.2 for no copyback

blocks and 5.5 for multiple copyback blocks, there is a savings of 2.2 extra writes per user

write and an extra block erase at the end of 64 user writes.
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5.5.3.2 Wear Distributions

The wear distribution, or the distribution of the number of times a block has been erased,

is given in Figures 5.26 and 5.27 for the various workloads and over-provisioning factors.

The mean wear of the block decreases proportionally to the decrease in write amplification

as mean wear is simply total system writes divided by c (the number of pages per block).

In the case of the Zipf workload, as shown in Figure 5.26b for over-provisioning of 0.9

and Figure 5.26c for over-provisioning of 0.75, the wear distribution of the no copyback

blocks is to the right of the multiple copyback blocks indicating a greater wear on the flash

memory because of higher number of block erases. This follows directly from the differ-

ence in write amplification where using copyback blocks lowered the write amplification

implying less copybacks and then less writes and thus, less block erases. For example, for

over-provisioning factor of 0.9 usable, the write amplification decreases from 6.6 to 5.4

that results in an increased lifespan of the flash memory by a factor of around 22%.

In the case of the OLTP trace, for the over-provisioning of 0.9 as shown in Figure 5.27b,

the wear curve for no copyback blocks is to the left of the copyback block algorithms.

When the over-provisioning is 0.75m there is about 6% decrease in write amplification

but the wear distribution curves are on top of each other. The wear distribution graph

of the no copyback blocks is much narrower and taller than the wear distribution of the

copyback blocks. We will look at the consequence of this in terms of wear leveling next.

5.5.3.3 Wear Leveling

Reducing write amplification reduces the mean wear on the blocks. However, using copy-

back blocks leads to a different problem. In all the wear distribution graphs for using

copyback blocks, the graphs become wider and thus points to wear that is more uneven.

Some blocks are heavily erased while some other blocks are only lightly erased leading to

uneven wear.

The reason for uneven wear is that by separating out the static and dynamic data



200

into separate blocks, we end up with some blocks naturally updated less frequently than

other blocks. When there are no copyback blocks and there is data sedimentation in the

flash memory, all blocks have roughly equal amounts of static and dynamic data and each

block is erased roughly the same amount. This leads to a very even wear in the flash

memory. Now, when we separate out the data and put the static data on some blocks,

what ends up happening is that the other blocks have more dynamic or hot data and are

updated and erased more frequently. This leads to the situation of some blocks having

low erase counts and some blocks having high erase counts, which is uneven wear.

This phenomenon is perfectly illustrated in Figure 5.27c. When we are not using

copyback blocks, the wear distribution is narrow and tall. When using copyback blocks,

the wear distribution becomes wide and spread out which indicates uneven wear. We will

discuss a simple technique using a modified garbage collector to counter this in Section

5.5.3.4.

A common metric to measure the wear leveling is the wear variance, which is simply

the variance of the wear distribution. It can be calculated as follows

Var(W ) =
1

n

∞∑
i=0

i2 η(Wi)−W

where W is the random variable that gives the erase count of a block and η(Wi) is the

number of blocks with erase count i. W is the average erase count or mean wear in the

flash memory, n is the number of blocks and we iterate i from 0 (meaning no wear) to the

maximum erase count in a block. The other way of denoting the range of i can be

i = 0 . . . [max η(Wi) > 0]

From the histogram and the above equation, we can easily calculate the wear variance.

Figures 5.37a and 5.37b shows the wear variances across different over-provisioning

factors and with different copyback blocks algorithm. The apparent trend in the graph
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is that using copyback blocks increases the wear variance and thus, creates wear that is

more uneven. In many cases, the wear variance increased multiple folds of the original

number and oven tenfold its original number in over-provisioning factor of 0.7− 0.8. We

will next look at a modified garbage collector called sorted pool garbage collector that

not only solves the problem but actually reduces the wear variance to below the original

values.

5.5.3.4 Sorted Pool Garbage Collector

A simple method to counter uneven wear due to copyback blocks is to slightly modify

the garbage collector. The garbage collector maintains a pool of erased blocks to use

as future write or copyback blocks. We do this because erasing blocks is very slow and

garbage-collecting blocks as they are needed would not be very efficient. The pool of

erased blocks is usually kept as a queue with the first erased being used the first. We can

modify the free blocks pool so that it is now stored as a sorted queue by its erase count.

Then, copyback blocks will get erased and free blocks from the head of the sorted queue

which has the smallest erase count and the writeblocks will get free blocks from the end

of the queue which has the highest erase count. The idea is that when we keep static

data in the block with low erase count and keep dynamic data in a block with high erase

count, it will somewhat average out the erase counts and lead to more even wear. When

we are using multiple copyback blocks, they will all get the new block from the beginning

of the queue and we do not differentiate between the different copyback blocks here.

Note that we have not modified the garbage collector selection criteria. Therefore,

all write amplification decreases will remain the same even with the sorted pool garbage

collector. It is possible to modify the actual garbage collection criteria by making a more

complicated method than just looking for the block with the least number of valid pages

to make the wear more level but it will be a much more complicated algorithm. This

method just requires the change in the free pool from a queue to a sorted queue. The
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garbage collector’s free block queue is 10 blocks in size in the simulation and so inserting

into a sorted queue is very fast if implemented in a real system.

Figures 5.37c, 5.38a, 5.38b and 5.38a shows the wear distributions using the sorted

pool garbage collector algorithm. They are the matching wear distribution curves from

Figures 5.26b, 5.26c, 5.27b and 5.27c. Compared to the previous wear distribution curves,

the sorted queue garbage collector has a taller and thinner wear distribution and hence,

a more even wear. The average wear remains the same when we use the sorted queue

garbage collector but the shape of the wear distribution considerably changes.

For the Zipf workloads, we see that the wear distribution curves are now very thin

and tall and even make the non copyback-block wear distribution curve look short and

wide. When not using the sorted pool garbage collector, the opposite was happening -

the non copyback-block wear distribution curves looked thin and tall and the copyback

blocks wear distribution short and wide. This highlights how much of an improvement

in wear leveling is achieved by the sorted pool garbage collector. For the trace workload,

similarly but to a lesser degree, the copyback blocks curves are now taller and thinner

than the non-copyback block curves. This is the opposite of what we saw when not using

a sorted pool garbage collector.

Figures 5.39a and 5.39b gives the wear variance using the sorted pool garbage collector

for various over-provisioning amounts. We see that the wear variance values for the new

copyback block algorithms are much lower than the non-copyback block algorithm. For

the Zipf workload, it is well below and up to over-provisioning factor of 0.8, it very close

to zero. For the OLTP trace workload, the wear variance curves are all closer together.

Regardless of the workload, as we increased the number of copyback blocks, the wear

variance became larger. Thus, just using a single copyback block gave us the lowest wear

variances.

We omitted putting the wear variance curves from Figure 5.37 to Figure 5.39 because

the differences are so vast that the difference between using the sorted pool garbage
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collector would be obscured.

5.5.3.5 Size of the Garbage Collector Pool

In the above experiments, we have set the size of the garbage collector to 10. The next

natural question is if the size of the garbage collector pool affects the wear leveling.

When the pool is smaller, there is slightly more over-provisioning and thus less wear on

the blocks. When the pool is larger, there are more blocks to choose from to use as the

next write or copyback block. We next test with different sizes of pool sizes to see how

this affects the wear leveling.

There is a minimal size of the garbage collector pool that is required that depends on

the number of writeblocks and copyback blocks that we are using. The size of the pool

of the garbage collector must be at least the total number of write and copyback blocks

combined together. For example, if there were using a single writeblock and 4 copyback

blocks for the 1,2,3 algorithm, we would need the size of the garbage collector pool to be

at least 4. This is due the chance at some point during the simulation there is a chance

that all the write and copyback blocks need clean blocks. For example, a write can fill up

the writeblock and trigger a need for a new write block. This then triggers a need for a

new block to be reclaimed for the pool. During copyback of the contents of the reclaimed

block, all the copyback blocks could be filled up. In such a case, there needs to be at

least as many blocks in the garbage collection free blocks pool as there are writeblocks

and copyback blocks so that we don’t run out of clean blocks.

Figures 5.39 and 5.40 shows the wear variance for the Zipf and OLTP trace workloads

for various pool sizes. Note that the smaller pool sizes limit the number of copyback blocks

we can use. For example, when the pool size is 2, we can only use a single copyback block

and when the pool size is 5, we can only use 4 copyback blocks and thus, only limited to

the 1,2,3 algorithm.

Next, we want to analyze the wear variance across pool sizes. This will give us an
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idea of how the wear variance is affected by the size of the sorted pool in the garbage

collector. When the pool is larger, there is less over-provisioning and thus, higher write

amplification and wear. When the pool is smaller, there is less choice in the free blocks

pool for the writeblocks and copyback blocks to choose the next block from.

Figues 5.41 and 5.42 shows how the wear variances changes as we increase the number

of blocks in the garbage collector pool. Note that the data point is not in the figure when

the size of the pool is smaller than the total number of writeblocks and copyback blocks.

In general, for the algorithms using copyback blocks, as the size of the pool increases

from 2, the wear variance falls until it doesn’t change very much with pool size. For

trace workloads and for lower over-provisioning factors, the pool size at which it stop

decreasing is larger than for Zipf workloads and higher over-provisioning factors. Also

interesting to note is that as pool size increases, the lower over-provisioning does increase

write amplification but it does not affect the wear varaince significantly.

Thus, our pool size of 10 is adequate for most applications since most do not seem

to decrease wear varaince for pool sizes greater than 10. For the trace workload in low

over-provisiniong factor as 0.5 in Figure 5.42c, we would want to use a larger pool size

since the wear variance is still decreasing with pool size.

Also, note that the algorithms using larger number of copyback blocks have worse

wear variances than the algorithm using just one writeblock and one copyback block.
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CHAPTER 6

SSD Simulator

For our experimental analysis, we developed a simplified event-based simulator called

SSDSim. This is a heavily simplified simulator and is designed so that we can focus on

the endurance and write amplification aspects of flash memory. The major simplification

that we have used is that each event in the simulator is an arrival of an IO operation

and there is no inherent sense of timings of the operations other than its order in the

simulator. We can make this simplification because block wear and write amplification

only depends on the order of the operations and not their timings.

A clock-accurate, IO timing based simulator would be more complete and accurate

representation of a real SSD, but would be greatly more complicated. The analysis,

insights and algorithms for block wear and write amplification that we develop for this

simplified simulator can be easily modified to the IO timing based simulator or an actual

SSD product and so in our study, the extra complexity is not needed. Thus, this model of

the SSD that we use in our simulator serves our purposes very well for studying endurance

and write amplification, and the ease of use from the model simplifications helps us focus

in the properties that we are interested in.

6.1 Other Flash Memory and SSD Simulators

There have been SSD simulators written for flash memory and SSDs, some of them ex-

tensions to storage system simulators using magnetic hard disks and some written solely

for flash memory. We chose not to extend a current publicly available and open source

SSD simulator for our work because we are interested in a simplified simulator for looking

at endurance and write amplification and extra complexity of the full featured simulator
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would not give clearer results.

A flash memory SSD simulator as an extension to DiskSim [10] was developed to test

different flash memory storage architectures. The simulator focused on the storage inter-

face concurrency and the internal architecture and algorithms related to bus and interface

operations among multiple flash dies. The variables in the simulator included number of

flash storage dies, independent buses with different widths and speeds and different strate-

gies for parallel data storage. All these variables were studied across different IO policies

for scheduling, bus access and data bursts.

In [1], a simulator was developed for exploring data placement and workload manage-

ment as well as parallelism and write ordering. Different flash memory die data organi-

zations like ganging and interleaving were studied. The data placement was studied for

wear leveling and an algorithm was given. The workload involved full workloads with

timings and compared against popular benchmarking tools.

Another simulator [56] was developed with added parallelism capabilities and validated

against actual SSD systems for accuracy. An object oriented open source SSD simulator

is available in [82]. In [73, 74], a simulator called NANDFlashSim is presented that is a

highly detailed simulator focusing on the timing models of NAND memory and NAND

flash command architecture.

We wrote our own simulator because our goal was not to study parallelism and we

wanted to employ our assumptions to simplify the architecture and simulation. While

parallelism is a very important aspect of flash memory, it is in large regards orthogonal

to our goal of studying endurance and write amplification. While a real SSD would deal

with parallelism and endurance at the same time, we want to study a simplified model

first that can then be adapted to a more complicated system rather than studying them

together when they are independent in many aspects.

In the future, we want would like to incorporate our results to a simulator with par-

allelism capabilities and study how it affects designs and strategies for parallelism. Since
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SSD systems must deal with issues of endurance, wear leveling and write amplification,

higher up algorithms are affected by design choices below. Layout management and

garbage collection will need to be redesigned with multiple dies present but the basic

characteristics still stay the same and our results can be extended upwards easier than

designing parallelism algorithms and then considering endurance and write amplification

properties later on.

6.2 Components of the SSD Simulator

The simulator is an event driven simulator that is composed of various modules of the

FTL to work together to emulate an SSD. The various modules of the simulator are

1. IO controller : translates IO requests to flash memory operations

2. mapping table module: handles the logical to physical maps

3. layout manager : determines where to place each new piece of data during write or

copyback and invokes the garbage collector module when the free pages are needed

4. state manager : keeps track of the state of the data in the flash memory

5. garbage collector : determines which block to erase to reclaim free pages and performs

copyback of valid data

Workloads are either simulated or from a trace but we do apply the workload structural

reductions as described in Section 6.3. Thus, using these emulated modules that make up

the simulated FTL, we perform an analysis by switching to different modules to see their

effectiveness.

The simulator works via the following chain of events. At each time interval, a work-

load event is processed and it follows the following chain.

1. If the operation is delete, the sector is marked invalid in the mapping table.
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2. If the operation is write, then the old version of the sector is marked invalid if it

resides on the flash memory.

3. The layout manager is asked for the page location to write the new data. Here,

the layout manager uses one of our layout management algorithms to determine on

which page to write the data.

4. When the flash memory runs out of clean pages, the layout manager request the

garbage collector to erase blocks to acquire clean pages to write to.

5. When the garbage collector is copying back pages, it also requests the layout man-

ager where to locate the valid pages in the block to be copied-back. Here, our

copyback layout management algorithms are used.

The modules and its relationships in the simulator are illustrated in Figure 6.1. In this

way, the layout manager plays a central role in our simulator and we can effectively test

our algorithms against write amplification from the simulation results by plugging in

different layout manager algorithms.

We will look at the details of the various modules of the simulator next.
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6.2.1 Layout Manager

The goal of the layout manager is decide where to place each piece of data. When new

data comes in, the write layout manager decides where to place the new data. When the

garbage collector is copying back old data, the copyback layout manager decides where

to place the copied back data. In this way, the layout manager has full control of where

every piece of data resides on flash memory and every data program to flash memory is

preceded by a request to the layout manager to determine the location. We call each of

the algorithm that decides the location for the data a layout management algorithm.

There is no location-based latency on flash memory and thus data can be stored

anywhere without suffering any performance loss. What we gain from managing where

data is stored is wear leveling and write amplification reduction. By putting data that is

likely to be invalidated together, we can reduce write amplification and by matching the

wear on the block to the type of data to be stored on it, we can perform wear leveling.

In our layout management algorithms, the way we determine the location to write

or copyback is by maintaining a small array of write and copyback blocks. Thus, when

a new write or copyback request comes in, it is written or copied back to one of the

write and copyback blocks. By determining the type of data we are writing, it is sent to

the appropriate writeblock among the array of writeblocks. The variations in our layout

management algorithms are the number of write and copyback blocks and the algorithm

we use to determine to which block the particular data goes.

6.2.2 State Manager

The state manager keeps track of metadata of the state of the flash memory. It keeps

track of the following primary data:

• The mapping tables between the sectors and pages

• The number of valid pages in each block
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• The erase count of each block

Since our simulator and algorithms are based on statistical properties, the state manager

also keeps tracks of many other internal data. For example, it maintains the time since the

block was erased or written to (rest time) for aiding the garbage collector or has internal

data structures and functions for efficiency like quickly finding the block with the lowest

number of valid pages or a block with the smallest score in some other metric.

6.2.3 Garbage Collector

The garbage collectors primary function is to find block to erase so that invalid pages can

be reclaimed. The garbage collector maintains a pool of clean blocks where all the pages

of the block are empty and is triggered when the blocks are used up from the pool. The

size and ordering of the pool is configurable by the user.

The garbage collector finds the block to erase and maintains other parameters like the

free pool size by various swappable garbage collector algorithms in the simulator. When

it has determined which block to erase, it needs to copyback each valid page in the block

and these data are written to other blocks determined by the layout manager.

6.3 Workloads

The workload is an integral part of the SSD simulator. There is a large variability in

system endurance and performance depending on different workloads. The system will

give behave drastically different between a random workload and a sequential one. Thus,

in the simulator, we have a synthetic workload generator and a trace workload processor

built in.

However, the workload used for our simulator is vastly different from a standard work-

load. First, there is no timings and the SSDSim workload is just a sequence of operations

assuming that each operation occurs in one time unit. Second, there is no read operations
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because read operations do not affect system endurance and write amplification.

There are only two types of operations, write and delete on a sector. The write

operation is to write a sector data to a block page and the delete operation is to mark

the sector as invalid. In trace data acquired from magnetic hard disk system, there is no

delete operations because it unneeded for magnetic hard disk systems since old data is

overwritten and there is no need to tell the disk when a data has been invalidated. Thus,

in the simplest form, the workload can just be a sequence of sectors where we assume

that each operation is a write operation.

Since flash memory can have gigabytes of storage, the workload can be millions of op-

erations long and the trace files can be multi-gigabytes in size. Thus, synthetic workloads

are generated and processed online so that there is no need to generate large synthetic

workload trace files and the simulation runs faster.

6.3.1 Synthetic Workloads

A synthetic workload has an operation and a sector number following the operation. The

operation can be either write or delete on the sector number following it. Thus, to create

a synthetic workload we use the following parameters:

1. l, length of the workload

2. n, number of sectors

3. r, ratio of writes and deletes

4. distribution of the workload

The length of the workload is how many operations are in the workload. Since the

length of the workload can be billions of operations long, a convenient way to denoting

the length of the workload is the average number of times a sector is updated. Therefore,
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the length of the workload is then just the number of sectors multiplied by the average

update. This gives a institutive view of the length of the workload.

However, the length of the workload should be such that the property that we are

interested converges to a stable value at the end of the workload. When we use our

simulator in Chapter 5 for write amplification, we find the length of the workload where

the write amplification reaches a stable value.

The number of sectors determines how many updateable sectors are present for that

the workload to issues operations. This is usually different from the number of pages

present in the flash memory to provide over-provisioning. If the workload is for a smaller

number of sectors than the number of available pages in the flash memory, then the extra

pages can be used for improve the flash memory performance.

The factor r is the ratio of writes and deletes in the workload, e.g., for r = 0.7, 70% of

the operations are writes and 30% deletes. For each write and delete operation, a sector

is chosen from n possible sectors and the selection is done following one of the pre-defined

distribution called the workload distribution which we describe below. This leads to the

workload being a Markov chain and r behaving as another form of over-provisioning. If

simulations where we have over-provisioning by making the number of workload sectors

smaller than the number of available pages, r can be set to 1 meaning no delete operations.

If we want to also model delete operations, we can set the number of sectors to the number

of available pages.

6.3.1.1 Workload as a Markov Process

We allow the delete operation to be performed for a sector that is not present in the

disk or is invalid, in which case, the operation is ignored. The purpose of this addition

is for modeling simplification; if the delete were forced occur only on valid blocks, each

delete operation would be dependent on the series of previous write and delete operations.

However, this model of the workload is still a valid representation of the workload as this
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workload is equivalent to a workload with all the deletes to invalid sectors removed.

From our definition, r is the fraction of operations that are writes and thus, 1 − r

fraction are delete operations. Let us consider a two state Markov process where a block

is either valid or invalid. After an erase operation to the block, it is invalid and after a

write operation, the block is valid, regardless of whether it was valid or invalid before.

This gives us the following transition probability matrix P for our Markov chain

P =

r 1− r

r 1− r


whose steady state probability is [

r 1− r
]

Thus, after the flash memory has been in operation for some time and reaches a steady

state, we can expect r fraction of the blocks to be valid and 1 − r fraction of the blocks

to be invalid. In other words, after reaching the steady state, the number of writes equals

the number of actual deletes.

Here, r can be interpreted as the fraction of the disk capacity that is advertised as

being available for writing while 1 − r is the fraction serving as the over-provisioning of

the disk.

6.3.1.2 Workload Distributions

We assume that each operation is independent and identically distributed and hence, when

an operation is generated it does not look at or is affected by any of the previous generated

operations in the workload. This obviously means no spatial or temporal locality as well

as no sequentiality.

We also assume that the distribution is a decreasing distribution where the first the

sector has the highest probability and each higher sector afterwards has equal or less
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probability. This is a fair assumption because the sector numbers can be sorted and

rearranged to have the above property since all the sectors are mapped internally and the

sector numbers can be reassigned to any label.

We use the following random variables to model the workload

1. Ot: the operation at time t which is either a write or delete.

2. Ct: the sector which the operation Ot will be performed on.

Here, by our assumption, denoting the probability of writes and deletes, for 1 ≤ t ≤ l,

P (Ot = write) = r

and

P (Ot = delete) = 1− r

Also, to illustrate that there are n sectors, all the operations must be in one of the n

sectors and so,

P (1 ≤ Ct ≤ n) = 1

Figure 6.2 shows the workloads that we describe below. Note, that for drawing the

figure we use n = 1000 though we use much larger values of n for simulations. We use this

value for n in the figure to show the rough shape of the distributions. Additionally, we

have removed the first few highest probability sectors from the graph so that the curves

can be seen clearly as the low sectors have magnitudes higher probability than the ones

following it.

We choose workload from the following three distributions:

1. Uniformly Random: The probability that a sector is chosen is identical for all

sectors. We define uniformly random workload as ∀i, j ∈ {1, 2, . . . , n}

P (Ct = i) = P (Ct = j) =
1

n
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2. Zipf: Zipf distribution is a power law probability distribution where some sectors

are likely to be accessed very frequently while others are almost static. This gives

us a good model of workloads that produce dynamic and static data. Thus, the Zipf

workload distribution is defined as follows with α = 1:

P (Ct = i) =
1
iα∑m
k=1

1
kα

The larger the value of α, the more concentrated to a fewer sectors the probabilities

are.

3. Linear: The linear workload distribution serves as an intermediate distribution

from the heavy tailed Zipf workload distribution and the constant uniform workload

distribution and is defined as

P (Ct = i) =
i∑m
k=1 k

The Zipf workload distribution has a large tail that is uniform-like, i.e., the tail

probabilities are all very close to 0 that has a similar behavior to the uniform

workload distribution. The linear workload distribution has no uniform-like regions

and thus also serves to highlight characteristics that the uniform and Zipf workload

distribution do not exhibit.

4. Other: We can take any probability distribution and sort it by probability to turn

it into a workload distribution. For example, the normal probability distribution can

be sorted from the highest to lowest probability (or just right descending half of the

probability used) as in Figure 6.2. In most cases, we are interested in the disparity

of probabilities between highly updated hot sectors and infrequently updated cold

sectors and thus, the uniformly random and the Zipf workload distributions provide

for that.
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6.3.1.3 Limitations of the Synthetic Workload Models

The first limitation of our synthetic workload is that it does not model spatial or temporal

locality. When a sector is updated, there is a higher probability that another sector close

by will be updated (spatial locality) and also a higher probability that the updated sector

will be updated again in the near future (temporal locality). The reason we have not

modeled synthetic workloads with locality properties in our simulator is that there are no

current models of quantification of locality in workloads and a useful synthetic workload

model would require an in-depth survey of workloads and the locality they present and

an acceptable model of it.

The second limitation is the lack of sequentiality modeling. In many cases, flash mem-

ory is used to store large files and when the file is deleted, data is inserted or file is changed,

it triggers a large chain of updates that occur in a sequence. This can dramatically change

the behavior of layout management and garbage collection algorithms and there are many

designs and algorithms for sequentiality detection in workloads.

The trace workload serves the purpose of filling the gap in the synthetic workloads

that we have mentioned. It does have spatial and temporal locality as well as sequential

updates. Thus, we can use synthetic workloads for analysis of distribution-based variations

and the trace workloads for the variations based on locality and sequentiality properties.

6.3.2 Trace Workload

The traces that have been recorded and made available from workloads recorded in storage

systems have been all from systems using magnetic hard disks. As such, all writes are

sector sized, there are no delete operations notifying the disk that data has been made

invalid and that the disk sector size is much smaller than the flash memory page size.

To make the available trace workload suitable for use with our simulator, we remove all

the read operations, remove the timing information and end up with essentially a long list
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of sector updates. The number of sectors was assumed to be the largest sector accessed

in the workload.

Of the many candidate trace workloads we looked at, most of the workloads were read

heavy and after removing all the reads and extra information from the multi-gigabyte trace

workloads, the number of remaining writes were too few to be useful for our simulation.

The trace workload we use for our simulation is an OLTP trace workload that has a large

number of write operations. The OLTP trace workload still uses a fraction of sectors and

the average number of times each sector is written is still a fraction of what we use for

synthetic workloads.

For workload traces from real systems, we use the financial OLTP traces from Storage

Performance Council [117]. For the OLTP trace, l = 30, 517, 401.

6.3.3 Workload Visualization

Another way to visualize the workload distribution is to look at the sectors accessed

against time as in Figures 6.3, 6.4 and 6.5 for the Zipf, uniformly random and trace

workloads. Since the workloads are tens of millions operations long, we can only look at

a small segment of the workload.

For the Zipf workload, we can see that the low sectors are heavily accessed and the

higher sectors are accessed infrequently. For the random workloads, all sectors are possible

to be updated with equal frequency and thus, the access patterns are random in the graph.

The trace workload shows spatial and temporal locality as well sequentiality that is not

present in the other workloads. While the synthetic workloads stay relatively the same

throughout the length of the workload, the trace workload writes change slightly over

time as the writes focus on different sectors over time. Another snapshot of the trace

workload is given in Figure 6.6 starting at a different time and looks similar to Figure 6.5

but the locality is in different place and the sequences start at different points.
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CHAPTER 7

Wear Level Modeling

A unique characteristic of flash memory is that it is only possible to program a flash

memory cell a limited number of times before it cannot hold data reliably and because of

that, wear leveling has to be performed by the SSD. A flash memory cell can be erased

only 10,000 - 1,000,000 times before it wears out [29]. Since some areas of the disks are

written to more often than others, it could result in uneven wear or worn out areas thus,

leading to a reduced functional lifespan. This is combated with wear leveling where data

is written out of place, i.e. when data is rewritten, it is not written to the location where

the data was previously stored but is written in a new location determined by a wear

leveling strategy. In this way, SSDs make the limited write endurance deficiency of flash

memory invisible to the storage system and manage it internally through wear leveling

algorithms.

This limited write endurance of flash memory is a major concern for system integrators

and considerable resources are used by the SSD to perform wear leveling. Without wear

leveling, an application repeatedly updating data on a sector can easily wear out a block

that would require replacement of the SSD in a short span of time. To perform wear

leveling, most SSDs are engineered around the design of maintaining logical to physical

sector maps to provide out of place updates such that each update to the sector is written

to a different location in the flash memory. Each IO operation has to be translated through

an in-memory map and each update requires an algorithm to select where the update will

be placed. Thus, wear leveling plays a central role in SSDs and finding methods to improve

wear leveling and make it more efficient is an important topic.

Wear leveling algorithms are decades old [43] but as modern SSDs are designed with
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higher capacities, larger buffers and with it more controller overhead, there are numerous

design decisions that need to be made for the SSD’s wear leveling algorithms. The need

for theoretical models have been highlighted in [44] as open problems and the authors

have presented their models in [5]. But so far the effectiveness of wear leveling algorithms

is simply evaluated through simulations or very rough empirical measurements and there

is a lack of systemic and quantitative mathematical analysis. Furthermore, simulation

has shown that the effectiveness of wear leveling is determined by multiple factors, such

as the configuration of the SSD, the wear leveling strategy and the workload distribution

[1]. Thus, when designing an optimal wear leveling system for an SSD, there is a need to

model, characterize and quantify the wear leveling process for various workloads and how

they affect wear leveling algorithms and SSD configurations.

In this chapter, we present a rigorous mathematical model for wear leveling for whole

flash blocks (i.e., a block has only one write unit). We limit our model to whole blocks

because it enables the analysis of wear leveling and how it is influenced by simple workload

distributions and elementary wear leveling strategies without the analysis being affected

by partial block flash memory characteristics like write amplification [53] and cleaning

efficiency [79, 1]. Our model can easily be extended to partial block wear leveling using

modeling techniques we briefly outline in this chapter but leave the details for future

work. On the other hand, it is also of immediate practical importance for large SSDs

which use whole blocks as a write unit for parts of the flash memory to keep controller

overhead down and improve performance [8], a technique which is especially useful for

sequential portions of the workload [84]. Thus, even though we limit our model here to

whole block wear leveling while flash memory is capable of partial block write units, it

still has significant theoretical and practical importance and serves as a precursor to the

more complicated partial block wear leveling.

As far as we know this is the first work at constructing a general mathematical frame-

work for quantitatively studying wear leveling. Defining erase count as the number of
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times a block has been erased and the wear distribution as the probability density func-

tion of erase counts for a block at a given time, our approach to build a framework for

studying how the wear distribution varies with changes in SSD, flash memory and work-

load parameters (Figure 7.1). In our model, we take the erase count of a block as a

random variable and study the wear distribution in a probabilistic framework and how

it is influenced by other random variables like the workload, the SSD framework and the

wear leveling algorithms. This gives us equations relating wear leveling effectiveness (the

variance of the wear distribution) to the various elements and architecture of the SSD

system. We use variance of the wear distribution as the measure to quantify the effective-

ness of the wear leveling system for the given parameters. Thus, the framework provides

a powerful tool to study wear leveling algorithms numerically and to calculate optimal

SSD designs, and is also useful to explain flash memory observations and characteristics

that have been reported, like the effects of over-provisioning [5] and the effects of number

of blocks in the flash memory [107].

In section 7.1, we give a brief overview of the related work on SSD modeling, theoretical

issues and studies on practical algorithms of wear leveling. In section 7.2, we describe

the components of our model: the flash memory, workloads and wear leveling strategies.

In section 7.3, we present a modeling framework and from it derive recursive equations
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to generate the wear distributions. In section 7.4, we analyze wear distribution and

the effectiveness of wear leveling under various SSD configurations and parameters, and

remark on interesting implications and observations of our analysis that are especially

useful for SSD system designers.

7.1 Related Work

An approach to solving the whole block wear leveling problem [44] was presented in [5],

where it was found that using a randomized algorithm to select the next block to erase

was optimal, but was based on an overly simplified model of flash memory. Given n blocks

with a wear limit of H (i.e., a block can be erased H times before becoming unusable), the

authors presented an optimal but offline algorithm that allows for greater or equal than

n(H − 1) writes before a block in the flash memory reaches its wear limit. Furthermore,

an online randomized algorithm, where given a write to sector s which is stored in block

i, either with probability p randomly selects another block j to write s onto and writes

the contents of j to i, or with probability 1− p writes sector s back to block i, was shown

to get close to optimal for certain large H and small p. The limitation of this approach

is the lack of the ability to mark blocks as invalid and do garbage collection since writing

a sector to the block it was stored in is slow, requiring an erase and write to the block

to complete a write request. Here, we use a more detailed model of flash memory SSDs

with over-provisioning, block mapping and more complex workloads.

Orthogonal to wear leveling, there have been many works on the nature of flash cell

wear, practical wear leveling algorithms proposed (mostly for partial block wear leveling)

and analytical models of flash memory for exploring flash memory based SSD phenomenon

like write amplification. Models of flash memory have been proposed for performance eval-

uation through estimating and calculating write amplification [53, 12] and its limits [52]

and the impact of garbage collection on it [58]. Research in practical wear leveling al-
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gorithms include reverse engineering algorithms in commercial SSDs [8], reducing wear

leveling operational cost by summarizing block information [72] and designs for moving

rarely updated static data proactively [21], through dual [18] or multiple [62] queues.

Studies on flash endurance have put forward the notion that current estimates are inaccu-

rate [29] and that current models of wear endurance are too simplistic [123] where recovery

periods could increase endurance [96]. Additionally, there have been studies on the nature

of endurance failure through bit error rates, program latency and program/read disturbs

for patterns of block writes [47]. Studies on workloads and how it affects the SSD system

include metrics [9], experimental results on real life workloads [103], real time garbage col-

lection [19] and performance [23]. Thus, our work on wear leveling covers an important

segment in the vibrant and rich field of flash memory modeling and algorithms.

7.2 Wear Leveling Model Components

7.2.1 Flash Memory and SSDs

Flash memory bits are stored in memory cells which are then organized into pages and

blocks. Flash cells store bits by trapping electrons in a floating gate transistor called

programming which can then be read by sensing the miniscule electric field that the

trapped electrons generate. To rewrite data, the trapped electrons must be freed and

is called erasing but erasing is done in a large area of flash memory called a block. To

allow for as many memory cells as possible in the flash memory die while minimizing

the other supporting circuitry, 30-60 thousand memory cells are organized as pages such

that reads and writes occur at the granularity of a page. Furthermore, 32-64 pages are

organized as a block, the smallest erase unit. In this way, cells, pages and block make up

the fundamental building blocks of flash memory storage technology.

We model flash memory to reflect the fact that the SSD interface exports a linear array

of sectors while internally, flash memory is an array of memory cells grouped together by
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erase units. In our model, flash memory is an array of blocks where a block is the smallest

erase unit and the SSD interface is an array of sectors where a sector the smallest read

and write unit used by the file system. A block hold one or more sectors, with each sector

stored in a page in a block. Here, we assume that the size of the sector equals the size of

the block; i.e., whole block wear leveling where the write and erase units are the same size.

This is a simpler modeling problem than partial block wear leveling problem where when

a block can hold several sectors [44]. Let m be the number of blocks in the flash memory

and n be the number of sectors that the SSD advertises as its capacity. Here n ≤ m. For

our purposes, the size of the block or sector does not play a part in our results and thus,

we do not define it.

We assume that the SSD supports the following three sector operations: read, write

and delete (TRIM [111]) which is then translated to the following four block operations

in the flash memory: read, program, erase and delete. Although the delete or TRIM

operation is not needed for the correct functioning of a storage system, it has been shown

to greatly improve SSD performance [27] and is supported by most modern operating

systems. An SSD read operation is translated to a read in the flash memory, an SSD

write operation is translated to an erase and then program in the flash memory, and a

delete or TRIM operation is used by the controller to mark the relevant block as invalid

so it can be erased later. As the erase operation is an order of magnitude slower than

the program operation, translating each write operation to the erase and program would

take a large performance hit. Most SSDs implement a garbage collector that maintains a

pool of erased blocks such that writes can be translated to programs and erases are done

in the background. However, translating write to erase and program does not affect wear

leveling and is simpler to model and thus, we choose this approach.

Blocks can be in one of the three states: valid, invalid or clean. After a block is erased

and before it is programmed, it is in the clean state. When data is first programmed into

a block, it is valid and after the programming but before the block is erased, it can either
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be valid or invalid depending on if the programmed data is current or not. When a delete

or write operation for the sector that the block stores the data of is performed, the data

then becomes invalid. An invalid block can be safely erased without the fear of losing

data. For each block, if an accurate count of the number of times it has been erased is

maintained, it is called the erase count of the block.

7.2.2 Workload

A workload is a sequence of read, write and delete operations to the disk. While modeling

workloads, we make the following simplifying assumptions as they do not affect whole

block wear leveling:

1. As read operations have no effect on wear, we simplify workload as a sequence of

writes and deletes.

2. We do not model spatial locality or sequentiality.

3. We do not model the effect of the buffer and assume that every write and delete is

directly translated to the corresponding flash memory operations.

Let l be the length of the workload that is composed of write and delete operations,

each operation specifying a target sector. Let r be the ratio of writes to the sum of writes

and deletes., e.g., for r = 0.7, 70% of the operations are writes and 30% deletes. For each

write and delete, a sector is chosen from 1 to n, following one of the pre-defined distribution

called the workload distribution which we describe below. For a workload distribution, we

assume that an operation for a sector is independent from previous operations and follows

a discrete probability distribution and thus, if some sectors are written to more often

than others then they will be represented as having higher probability in the workload

distribution.
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7.2.2.1 Workload Distributions

Suppose we have n sectors and a workload of length l. The following random variables

model the workload:

1. Ot: the operation at time t, which is either a write or delete.

2. Ct: the sector which the operation Ot will be performed on.

Here, by our assumption P (Ot = write) = r and P (Ot = delete) = 1− r

We choose workload from the following three distributions (see Figure 7.2):

1. Uniformly Random: The probability that a sector is chosen is identical for all

sectors. We define uniformly random workload as ∀i, j ∈ {1, 2, . . . , n}

P (Ct = i) = P (Ct = j) =
1

n
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The uniform distribution is the simplest workload and has been used in various flash

memory studies [80] and serves as a reference to compare to with other distributions.

2. Zipf: Workloads in numerous applications follow the Zipf distribution, e.g. enter-

prise media server workloads [25], ethernet traffic [87], internet server workloads

[3] and so on. Zipf distribution is a power law probability distribution where some

sectors are likely to be accessed very frequently while others are almost static. This

gives us a good model of workloads that produce dynamic and static data. Thus,

the Zipf workload distribution is defined as follows with α = 1:

P (Ct = i) =
1
iα∑m
k=1

1
kα

3. Linear: The linear workload distribution serves as an intermediate distribution

from the heavy tailed Zipf workload distribution and the constant uniform workload

distribution and is defined as

P (Ct = i) =
i∑m
k=1 k

The Zipf workload distribution has a large tail that is uniform-like, i.e., the tail

probabilities are all very close to 0 that has a similar behavior to the uniform

workload distribution. The linear workload distribution has no uniform-like regions

and thus also serves to highlight characteristics that the uniform and Zipf workload

distribution do not exhibit.

7.2.3 Wear Leveling Strategies

When a write operation for a sector s arrives, an invalid block is chosen and erased, the

clean block is then programmed with the data for sector s. A wear leveling strategy is

defined as a function that chooses an invalid block to be erased and written to, deciding
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from the current state of the flash memory. We make the following simplifying assumption

about our wear leveling strategies: for each user write, there is only one corresponding

write to flash memory. The strategies do not move data around internally. Thus, at time

t, the mean erase count is rt
m

where again r is the ratio of writes and deletes, m is the

number of sectors and t is the length of the workload.

We consider the following wear leveling strategies:

7.2.3.1 Null Strategy

In the Null strategy, sector i is mapped to block i, i.e., each write to a sector goes to the

block with the same number. In effect, there is no wear leveling occurring in this strategy.

Null strategy is our baseline strategy, i.e., a strategy where no wear leveling is employed

and that the statistics from this strategy will serve as a reference measure to which more

sophisticated strategies can be compared against. The Null strategy thus enables us to

measure how much is gained by wear leveling.

The Null strategy can also be a viable strategy in instances when very low overhead

is required, requiring no data structures to hold information about the blocks.

7.2.3.2 Strategy for Mapped Blocks

Flash transition layer (FTL), a PCMCIA standard [28], was designed to provide a sector

interface array while also performing wear leveling. Using the SSD’s powerful micro-

controller and RAM, an out-of-place write algorithm is used to schedule the operations

for the flash memory using a technique called block mapping [44]. Using maps or lookup

tables, a sector can be mapped to any physical block in the flash memory. These maps

can be updated and a sector can use a different block at each update. This enables wear

leveling as writes to a sector can be spread out over a number of blocks.

The following strategies Random Erase Count Invalid First (RECIF) and Lowest Erase

Count Invalid First (LECIF) assume a block-mapping in the SSD.
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1. RECIF: This serves as a baseline strategy for a block-mapped SSD. When a block

has to be chosen to be erased, it is chosen at random from the set of blocks that are

currently invalid.

2. LECIF: As an enhancement to block mapping, accurately keeping or estimating

the erase count of each of the blocks allows for more sophisticated block mapping

techniques. To facilitate this, the erase count can be stored in the block headers

and the incremented count is written back to the header after each write, or that

the erase count can be estimated by the erase latencies [49].

Thus, provided some mechanism to get an erase count for a block, the LECIF

strategy chooses the invalid block with the lowest erase count as the next block to

be erased and written to. LECIF provides a baseline measure for SSDs with erase

counts.

7.3 Quantitative Analysis of Wear Leveling Strate-

gies

Let Xt denote the random variable for the erase count of a block at time t. Our goal is

to calculate P (Xt = k) for k = 0, . . .M (M is an upper bound for the erase count) for

various strategies, workloads and configurations. This gives us the probability distribution

of the erase counts at time t, the wear distribution, which we use to analyze the wear

pattern characteristics and measure the effectiveness of wear leveling for the given SSD

configuration. This section details the mathematical machinery to accomplish this.

We use the following random variables:

1. Xt: erase count of a block at time t

2. Rt: state of the block at time t; either valid or invalid
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3. St: sector currently stored in the block

We use the following short-hand notation for clarity

1. P (Xit = k) = P (Xt = k,Rt = invalid)

2. P (Xv
(s)
t = k) = P (Xt = k,Rt = valid, St = s)

Since we use block mapping the block can have any sector stored in it, but for a valid

block at time t, we only keep track of the current sector that is stored in the block.

The variables have the following properties:

• Sum to 1: The following holds true for each t,

∞∑
i=0

[
P (Xit = i) +

m∑
s=1

P
(
Xv

(s)
t = i

)]
= 1

as a block can either be invalid or valid with one of the m sectors.

• Initial Values: Initially all the blocks are invalid with erase count 0. Thus, we

have the following initial conditions:

P (Xi0 = 0) = 1

while all the other probabilities are 0.

• Independence: The jointly distributed random variables Xt, Rt and St are inde-

pendent with each other at time t for non-Null strategies.

7.3.1 Wear Model

For each erase count k, we have m + 1 states; one state for an invalid block of erase

count k and m states for a valid block of erase count k with sector s stored in the block

for s = 1, . . . ,m. We have states for erase counts 0, 1, . . . ,M where M is such that
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P (Xl = i) = 0 for ∀i > M , i.e., at the end of processing the workload, the probability

that a block has erase count greater than M is 0. Since l is the length of the workload, it

serves as an upper bound for M , i.e., M ≤ l, but we expect M to be significantly lower

since we are using wear leveling.

A block can move from a valid state to an invalid state of the same erase count, and

from an invalid state to a valid states with one higher erase count. For each time t, each

state has a probability that a block is in that state: P (Xit = k) gives the probability that

the block is invalid and has erase count k and P (Xv
(s)
t = k) gives the probability that it

is valid with sector s stored in it and has erase count k. We then calculate

P (Xt = k) = P (Xit = k) +
m∑
s=1

P (Xv
(s)
t = k)

for k = 0, 1, . . . ,M which gives the probability that a block has erase count k. Thus, from

this we get a probability distribution function of the erase counts, the wear distribution.

Since we are interested in wear leveling, we need a quantification of the effectiveness

of wear leveling for which we use a measure of dispersion of the wear levels among the

blocks. We use the variance as the dispersion measure where a lower variance indicates a

more effective wear leveling; variance zero indicating all blocks have the same erase count

and thus the best possible wear leveling.

7.3.2 Null Strategy Recursive Equations

For the Null strategy, the erase count of a block k only increases when there is a write

to block k and delete operations can be ignored. Thus, we do not have to keep track of

invalid blocks and we only need to keep track of the variable Xt, the erase count of a

block. Since the wear distribution of each block could be different, we use Xs
t to denote

the erase count of block s.
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Let q
(s)
t denote the probability that block s will be written to next. Then,

q
(s)
t = P (Ot = w)P (Ct = s) = rP (Ct = s)

The probability that a block has erase count k at time t is that it has erase count k at

time t− 1 and the block wasn’t chosen to be written to at time t. The other case is that

block s had erase count k − 1 and a write to block s incremented the erase count to k.

Thus, the probability that block s has erase count k at time t is

P (Xs
t = k) = P (Xs

t−1 = k)
(

1− q(s)t
)

+ P (Xs
t−1 = k − 1) q

(s)
t

Example Let the workload distribution be uniformly random. Then, we have

q
(s)
t =

r

m

Thus, our recursive formula for calculating the distribution at time t becomes

P (Xs
t = k) = P (Xs

t−1 = k)
(

1− r

m

)
+ P (Xs

t−1 = k − 1)
r

m

Solving for Xs
t , we see that it is the binomially distributed as proved in B.0.1. As r and

m are fixed and as t varies, Xs
t depends only on Xs

t−1. We have the initial values Xs
0 and

using the above recursive equations, we calculate Xs
t .

7.3.3 Block Mapped Strategies

Modeling of block mapped strategies follows from the following observations:

1. Same wear distribution for all blocks: With block mapping, every block in the

flash memory has the same wear distribution. The next block to be written to is
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chosen independent of the block number since the strategies only have information

about the erase count and the valid/invalid state of the blocks. The physical block

number and the mapping tables are never available to the strategy. In other words,

Xs
t = Xr

t for all r, s ∈ {1, . . . ,m} and we only use Xt as the variable.

2. q
(s)
t (k) defines the strategy: Let q

(s)
t (k) be the probability that at time t, a block

with erase count k will be chosen by the strategy for writing and will contain sector

s after writing. Note that after writing the block will have erase count k + 1.

For each wear leveling strategy, we will use a particular q
(s)
t (k) for it which we give

below and q
(s)
t (k) wholly determines the strategy in our model. We call q

(s)
t (k) for

a strategy the block selection probability.

We next define a set of recursive equations that defines block mapping.

7.3.3.1 Valid Blocks of Erase Count k

For valid blocks of erase count k at time t which contains sector s,

• it can gain a block when the strategy chooses a block of erase count k − 1 to write

to, making it a valid block of erase count k with sector s on it with probability (see

Figure 7.3)

r q
(s)
t (k − 1)

• it can lose a block to the set of invalid blocks of erase count k by a delete or a write

on a block of erase count k with sector s with probability (see Figure 7.4)

P (Xv
(s)
t−1 = k) P (Ct = s)
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Figure 7.5: Delete or write increasing invalid blocks

Thus, we have

P (Xv
(s)
t = k) = P (Xv

(s)
t = k)− P (Xv

(s)
t−1 = k) P (Ct = s) + r q

(s)
t (k − 1)

= P (Xv
(s)
t = k) [1− P (Ct = s)] + r q

(s)
t (k − 1)

7.3.3.2 Invalid Blocks of erase count k

For the set of invalid blocks of erase count k at time t,

• it gains a block when a valid block becomes invalid by a delete or write to the sector

on the block with probability (see Figure 7.5)

m∑
s=1

P (Xv
(s)
t−1 = k)P (Ct = s)

• it loses a block when the strategy chooses a block of erase count k to write to with

probability (see Figure 7.6)

r
m∑
s=1

q
(s)
t (k)
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Thus, we have

P (Xit = k) = P (Xit−1 = k) +
m∑
s=1

[
P (Xv

(s)
t−1 = k)P (Ct = s)− r q(s)t (k)

]

7.3.3.3 Using the recursive equations

We thus have the following recursive equations for modeling block mapped wear leveling

P (Xit = k) = P (Xit−1 = k) +
m∑
s=1

[
P (Xv

(s)
t−1 = k)P (Ct = s)− r q(s)t (k)

]
P (Xv

(s)
t = k) = P (Xv

(s)
t−1 = k) [1− P (Ct = s)] + r q

(s)
t (k − 1)

Here, r is fixed and P (Ct = s), the workload distribution, is also fixed. Thus, at

each step we need to calculate q
(s)
t (k), P (Xit = k) and P (Xv

(s)
t = k) for s ∈ {1, . . . ,m},

which are only dependent on P (Xit−1 = k) and P (Xv
(s)
t−1 = k) for s ∈ {1, . . . ,m}, the

probabilities in the previous step. Thus, we can recursively calculate the above values,
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and then calculate P (Xt = k) from P (Xit = k) and P (Xv
(s)
t = k).

7.3.3.4 Properties of q
(s)
t (k)

q
(s)
t (k) has the following properties:

1. Suppose we have a strategy that chooses the next block to be written independently

of the sector that will be written to the block. Then, we can define

qt(k)

as the probability that a block with erase count k will be chosen by the strategy at

time t independent of the sector stored in the block. We can simplify as

q
(s)
t (k) = qt(k) P (Ct = s) and qt(k) =

m∑
s=1

q
(s)
t (k)

which we call sector independent.

2. Given n blocks, we have
∞∑
k=0

m∑
s=1

q
(s)
t (k) =

1

n
(7.1)

and this gives us the following for sector independent qt(k)

∞∑
k=0

qt(k) =
1

n

The above serves as a necessary condition to check that the formulation of a strat-

egy’s q
(s)
t (k) values is correct. For all the strategies that we define in the following

section, we verify that the above necessary condition holds. We prove the above

property in B.0.3 and B.0.4.

3. We have the following equations which can be derived from the assumption that the
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mean is rt
m

P (Xt = k)− P (Xt−1 = k) = r

m∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]

which simplifies to the following when qt(k) is sector independent.

P (Xt = k)− P (Xt−1 = k) = r [qt(k − 1)− qt(k)]

Thus, the change in the erase count at each time t can be expressed in terms of

q
(s)
t (k) and is proved in B.0.2.

4. The variance of the wear distribution can be calculated directly from qt(k) and is

given by

Var(Xt) = Var(Xt−1) + r
∞∑
k=0

k2Qt(k)− (2t− 1)
r2

m2

where

Qt(k) =
k∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]
Telescoping the above and using the fact that Var(X0) = 0, we have the following:

Var(Xt) = r
t∑

τ=1

∞∑
k=0

k2Qτ (k)−
[

(rt)

m

]2
(7.2)

Here, r, t and m are determined beforehand and rt
m

= E[X]. The above equation is

proved in B.0.6.

7.3.4 q
(s)
t (k) for strategies

The next step is to define q
(s)
t (k) for the various strategies which will complete all the

parts required to compute the wear distributions. We assume that the block to erase and

write is chosen before the block containing sector s is marked invalid and in this case q
(s)
t
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is independent of s and we only need to define qt(k) for the following strategies.

7.3.4.1 RECIF

An invalid block is chosen at random to fulfill the next write. Let

pt−1 =
∞∑
i=0

P (Xit−1 = i)

or the probability that a block is invalid at time t− 1. Let It be the random variable that

gives us the number of invalid blocks in F at time t. Then,

E[It−1] = npt−1

We have,

qt(k) =
P (Xit−1 = k)

E[It−1]

Note that for large t, pt = pt−1 and the following holds

∞∑
k=0

qt(k) =

∑∞
k=0 P (Xit−1 = k)

npt−1
=

pt
npt−1

→ 1

n

which is the probability of choosing an invalid block of erase count k choosing from all

the invalid blocks.

7.3.4.2 LECIF

In this strategy, we choose from the set of blocks that were invalid at time t− 1 and have

the lowest erase count to write to.
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7.3.4.2.1 Defining αt(k), βt(k) and Ω(k) To define qt(k), we first define αt(k) and

βt(k) as follows:

αt(k) = P (Xit−1 = k)

βt(k) = P (Xvt−1) + P (Xit−1 > k)

Here, P (Xvt−1) is the probability that a block is valid regardless of the erase count and

the sector stored on it. Thus,

P (Xvt−1) =
∞∑
k=1

m∑
s=1

P (Xv
(s)
t−1 = k)

Here, we have

• αt(k) gives the probability that an invalid block is of erase count k

• βt(k) gives the probability that a block is either valid or invalid with erase count

greater than k

We define

Ωt(k) =
n−1∑
i=0

1

i+ 1

(
n− 1

i

)
[αt(k)]i [βt(k)]n−1−i

=
[αt(k) + βt(k)]n − βt(k)n

αt(k) n

The above quantifies how LECIF chooses a block; the unique lowest erase count invalid

block is the next block to write to or if there are more than one invalid block with the

lowest erase count, then one of the blocks with the lowest erase count is chosen at random.

7.3.4.2.2 Defining qt(k) For LECIF, we use

qt(k) = P (Xit−1 = k) Ωt(k)
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This gives the probability that an invalid block with erase count k was chosen: either

the block was invalid and had the unique lowest erase count k at time t or among all

the invalid blocks that had the lowest erase count k, the block was chosen at random.

Property 2 given by equation (7.1) is shown in B.0.5.

7.3.4.3 Round-Off Errors in Numerical Recursion

One of the dangers in calculating q
(s)
t (k) is the division by a small number that can

magnify errors. This can be seen in

Ωt(k) =
[αt(k) + βt(k)]m − βt(k)m

αt(k) m

However, this can be easily avoided by setting

Ωt(k) =
m−1∑
i=0

1

i+ 1

(
m− 1

i

)
[αt(k)]i [βt(k)]m−1−i

which avoids division by small floating point numbers.

Thus, the only division needed is for r and n which are large numbers that will

not result in large errors. The rest of the calculations are done via multiplications and

additions of double precision floating point numbers. Though floating point errors still

accumulate over time from addition and multiplication, it is not catastrophic as division

by a small number. Thus, we would expect our errors to be small and our results accurate.

7.4 Analysis

In the previous section, we presented recursive equations to compute wear distributions.

In this section, we use the equations to generate wear distributions for analysis of wear

leveling while varying wear leveling strategies, workload characteristics, amount of over-

provisioning through r, size of the flash memory through m and the length of the workload
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through l. In other words, for each strategy, we generate wear level distributions for

uniform, Zipf and linear workload distributions while varying r, m and l.

Increasing amount of information of the state of the SSD is used by the strategies going

from Null to RECIF, and then to LECIF. For the Null strategy, there is no information

maintained about the blocks. For RECIF, we keep track of which blocks are valid and

which blocks are invalid, and for LECIF, we additionally keep track of the erase count of

each block. We expect strategies that utilize more information on the state of the SSD

to give us better wear leveling which is reflected through a lower variance of the wear

distribution. However, the tradeoff for better wear leveling is the complexity imposed

by the wear leveling strategy itself. Our goal in this section is to understand how wear

leveling is affected by the wear leveling algorithm, workload, r, m and l. This will aid SSD

designs which has to optimize between SSD system complexity and the disk endurance

parameters.

7.4.1 Null Strategy

Analysis of the Null strategy is greatly simplified because P (Xt = k) can be explicitly

stated as a binomial distribution B(n̂, p̂) where n̂ is the number of writes and p̂ = 1
m

(input uniformly distributed). Then, by the property of the binomial distribution, the

mean is n̂p̂ and the variance is n̂p̂(1 − p̂). For large n, the binomial distribution can be

approximated closely by a normal distribution N (n̂p̂, n̂p̂(1− p̂)).

For the Null strategy, varying r does not influence the wear distribution (provided

that the number of writes is constant). If we vary the number of writes, then the mean

and variance change linearly (as can be seen from the equations for the mean and the

variance)

n̂p̂ =
l

m
n̂p̂(1− p̂) = l(m−1)

m2
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As we vary the number of writes n̂, the mean and variance vary linearly with it.

For the Zipf and linear workload distributions, the wear distribution varies by each

block. Each block has its own normally distributed wear distribution N (n̂, p̂ P (Ct = s)).

The final distribution of the entire flash memory is the sum of the individual distributions∑n
s=1N (n̂, p̂ P (Ct = s)). Figure 7.12c shows the output distribution of the Null strategy

with the the various workload distribution for r = 0.9, m = 50 and l = 1, 000.

7.4.2 Block Mapped Strategies

As shown in Section 7.3.3, each block in the flash memory using a block mapped wear

leveling strategy has the same wear level distribution and has mean rt
m

after t operations.

Using the variance of the wear distribution as the measure of the effectiveness of wear

leveling, we make the following observations:

7.4.2.1 Shape of the Wear Distribution

Given P (Xt = i) for i = 0, 1, . . . ,M (the probability that at index t the block has erase

count k), we calculate the mean X̄t as

X̄t =
M∑
i=1

iP (Xt = i)

and variance σ2
t as follows

σ2
t =

M∑
i=1

[
i2P (Xt = i)

]
− X̄2

t =
M∑
i=1

[
(i− X̄t)

2P (Xt = i)
]

7.4.2.1.1 RECIF For small values of r, as shown in Figure 7.7a, (r < 0.1), the wear

distribution is close to normal for all workload distributions. For larger r (or for lower

over-provisioning), as seen in Figure 7.7b and 7.7c, the variance of the wear distribution

generated by the Zipf or linear workloads is higher than for the uniform workloads. For
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Figure 7.7: The shape of the wear distribution for various r using the RECIF strategy for
m = 250 and 5, 000 write operations.

the linear workload, for high r, there is a negative skew which results in a longer tail to the

left of the peak of the distribution. The skew is present because non-uniform workloadsa

have static blocks which stay valid for a long time whereas invalid blocks all have equal

probability of being selected for erasing by the RECIF strategy.

7.4.2.1.2 LECIF For small values of r, e.g. r = 0.1 as shown in Figure 7.8a, the

probability is almost one at the mean. In this case, most erase counts of the blocks in

the flash memory would be one or two erase counts away from the mean, thus giving a

very low wear variance. For slightly larger values of r, e.g. r = 0.6 as in Figure 7.8b,

there is a presence of a long tail on the left side while the right side of the distribution

is steep. However, the majority of the distribution is still concentrated at the mean. For

r = 0.95 as in Figure 7.8c, we see a smooth left distribution which ends on the right at a

spike. The right side of the distribution is steep because as LECIF selects a block with

the lowest erase count, a block with a high erase count has very low probability of being

selected. A block with the highest erase count can only be selected if every other block

also has the same erase count.
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Figure 7.8: The shape of the wear distribution for various r using the LECIF strategy for
m = 250 and 10, 000 write operations.

7.4.2.2 Varying l, m and r

We analyze the behavior of the variance as we vary l, m and r for the various workloads

and wear leveling strategies. Unlike the Null strategy, we have not found closed form

expressions for the variance in terms of m, l and r and our analysis will be based on the

analysis of the numerically generated wear distributions and its graphs.

7.4.2.2.1 Data Normalization The wear distribution is influenced by the number

of writes per block; as we vary m and r, the number of writes per block also changes. For

each of these cases, we normalize the number of writes so that the mean write per block

remains the same.

When we increase m and keep l constant, the number of writes per block decreases,

and thus the mean and the variance change along with it. While varying m, we keep

the mean writes per block constant by increasing l, i.e., let C be a constant and we set

l = mC and mean writes per block is rmC
m

= rC which is independent of m.

When varying r, we also keep the mean writes per block constant by varying l, i.e.,

let w be a constant and let l = w
r
, then the mean writes per block is

rw
r

m
=
w

m
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m = 250

Figure 7.9: RECIF: variances as l m and r vary

independent of r.

7.4.2.2.2 RECIF When l is increased while r and m are kept constant, the mean

increases linearly with l and is identical for all the three workload distributions. The

variance also increases linearly with l; however the rate of increase varies by the workload

distribution. Figure 7.9a shows how the variance varies with l while keeping m and r

constant.

Varying m, as can be seen from Figure 7.9b, when the mean write per block is constant,

the variance quickly reaches a constant asymptote. However, for the Zipf distribution, it

takes longer to get to the asymptote. Thus, for large enough m and for all workloads we

can assume that the variance does not depend on m.

Figure 7.9c shows how the variance changes with r for fixed m and w. The variance

curve is quadratic and surprisingly the minimum variance is not for the smallest value

of r; for uniform workload it is around 0.5; for Zipf workload around 0.2 and for linear

workload around 0.25.

7.4.2.2.3 LECIF Varying l, for r = 0.49, the variance for the wear distribution for

the uniform workload is almost 0 as shown in Figure 7.10a. The Zipf workload also

produces a constant variance for r = 0.49 but the variance is not a constant for the
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Figure 7.10: LECIF: variance as l increases with r and m constant.
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Figure 7.11: LECIF: variance as m increases with r and mean wear is constant.

linear workload and increases towards an asymptote. For r = 0.89, the variance for Zipf

workload increases to an asymptote (Figure 7.10b) and for r = 0.99, all three workloads

produce almost linear variance. Note that the linear workloads have a higher variance for

the lower r while for r = 0.99, Zipf has a higher variance.

While varying m, for r = 0.5, all three workloads exhibit an increase towards a limit

in Figure 7.11. However, it is the slowest for the Zipf workload whereas the uniform and

linear workloads reach a limit quite quickly.

Varying r, for small r as can be seen in Figure 7.12a, the variance is close to 0 as

almost all the blocks have erase counts very close to the mean. As Figure 7.12a shows,

the variance increases exponentially as r increases. Fig 7.12b shows the log of the graph.

For r > 0.2, the logarithm of the variance is very close to linear and so we can estimate
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Figure 7.12: LECIF: Variance and Log Variance as r varies with w = 5, 000 and m = 250
and Wear Distribution for Null Strategy

that variance as exponentially related to r.

7.4.3 Comparing the Strategies : RECIF vs LECIF

For small values of r, the variance of wear distribution is close to 0 and hence, the LECIF

strategy performs very well for small r. However, as r approaches 1, the variance for the

RECIF and LECIF get much closer as seen in Figure 7.13a. This indicates that for SSDs

with low over-provisioning (high r), the added complexity of maintaining erase counts

only yields a small improvement in the wear leveling.

Varying m while keeping the mean wear per block constant, the variance is constant

over the different values of m or moving towards an asymptote (Figure 7.13b), suggesting

that the total number of blocks does not play a part in wear leveling.

For increasing l and for large r, the variances for both strategies increase linearly with

increasing l. However, the slopes for the RECIF curves are higher than the LECIF curves,

suggesting that for large values of l, RECIF’s variance goes further away from LECIF’s

variance. For small r, variances for LECIF reach an asymptote while the variances for

RECIF increase linearly as seen in Figure 7.13c. Most SSDs perform a maintenance cycle

where static data in blocks with low erase count is copied to blocks with high erase count
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Figure 7.13: Comparing the RECIF and LECIF strategies

so that blocks that previously stored static data can be used. The maintenance cycle is

triggered when the variance becomes higher than a given threshold. This suggests that

for small r (high over-provisioning), LECIF does not require the maintenance cycles as

its variance reaches an asymptote and does not increase with l. However, for large r (low

over-provisioning) and for RECIF, maintenance is required since the variance will keep

on growing as l increases.

Since the variance for both the RECIF and LECIF strategies get very close together

when r is large, LECIF based methods may not be the best strategy to use for systems

with low over-provisioning. For high performance systems with high over-provisioning,

LECIF based strategy would be the strategy of choice as it can get close to zero variance

of the wear distribution. The number of blocks available in the flash memory would not

play a part in the deciding the strategy as the variance remains constant. The other

advantage of high over-provisioned LECIF system is that the variance over l reaches an

asymptote and thus, maintenance cycles of moving static data is not required whereas

RECIF systems would require it.

7.4.4 Optimal Strategy

One of the methods to define the optimal strategy is to let M be some value where if

any block reaches M erase count, the entire flash memory has to be replaced. Then, the



260

optimal strategy can be described as the maximizing the total number of writes before a

block reaches M erase count. However, this definition of optimality is not suitable where

the flash memory is over-provisioned. Let N be the number of block over-provisioned and

we can extend optimality to maximize the number of writes before N+1 blocks have erase

count M . However, the flash memory could still operate under reduced storage capacity.

Furthermore, the erase count dispersion is ignored and focused on a fraction of the blocks’

erase counts. The endurance of a flash block and its usability at the advertised endurance

level have also been investigated [29] and often exceeded with the blocks still being useful

and thus, setting an upper limit on the flash block erase count might not make sense.

In our model, the optimal strategy for a given r, t and m is the strategy where the

variance is minimized and from the variance equation (7.2), the expression

(
r

t∑
τ=1

∞∑
k=0

k2Qτ (k)− (rt)2

m2

)

shows that it depends on Qτ (k) for τ = 1 . . . t. If all the blocks have the same erase count

at time t, then variance is 0.

7.4.5 Observations from Analysis

The following observations are interesting results from the analysis that are not obvious

and a bit surprising.

1. When r is very high (there is very little over-provisioning), all the wear leveling

strategies (Null, RECIF and LECIF) have very similar variances. Thus, for SSDs

that are always almost full, there isn’t any need for block mapped wear leveling

algorithms, and wear leveling can be ignored.

2. For low over-provisioning, the extra complexity of LECIF might not pay off over

RECIF in terms of wear leveling.
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3. The number of blocks m, does not seem to influence wear leveling in our case and

what holds for small systems would hold for larger systems. This can be used to

obtain significant savings in the complexity of the mapping tables because a large

flash memory can be mapped as a series of smaller flash memory without affecting

wear leveling.

4. The best wear leveling system is high over-provisioned LECIF systems since it has

very low variance of the wear distributions and does not require or requires very

few static wear leveling cycles. However, to achieve the high quality wear leveling,

it requires the most flash memory and the most complex block management system

but the wear leveling performance can get close to optimal.

5. The RECIF strategy is less effective when r is very small than when r is between

0.3 and 0.5. The wear variance follows a quadratic shape with the minimum not

close to 0.

Here we have presented a mathematical framework for analyzing whole block flash

memory wear leveling where using components like P (Ct = i) that models the workload

and q
(s)
t that models the strategy are used to calculate the wear distribution. This gives

an SSD designer a method to investigate wear leveling under various configurations for

analysis and optimal design, and also serves as a starting point for a larger model of flash

memory which in the future we plan to add more flash memory features such as partial

block wear leveling, complex garbage collection policies and advanced garbage collection

policies for specialized workloads.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

Flash memory promises massive performance gains, immense decrease in power usage and

physical space requirements. Hence, it promises to be the storage technology of the future

and provide new possibilities in IO and storage systems. However, every flash memory

system must deal with its fundamental characteristics and limitations like that of wear

leveling, write amplification and block cleaning before all of its positive aspects can be

fully utilized.

Here, we have presented many techniques, algorithms, and models to attack the prob-

lem of endurance in flash memory by managing wear leveling, write amplification and

block cleaning by using data placement, layout management and coding. From our algo-

rithms, there are parameters where floating codes are optimal, write amplification is zero

and wear variance is almost zero. Thus from this, designing and engineering around the

limitations of flash memory to fully utilize the power of flash memory does seem wholly

possible but possibly requires a careful management of parameters and many good algo-

rithms to do so.

First, we presented update codes, a subset of floating codes, and gave a poset view of

floating and update codes. We explored the properties of the cell, update and variable set

posets in terms of their covers and roots. Next, we gave an algorithm for constructing an

update code that is t1-optimal (optimal for single cell increments) for l = 2 and arbitrary

q, k, n ∈ {k, k + 1} or arbitrary n, q and k = 2. We proved that the algorithm indeed

produces a update code that maps (n − k + 1)(q − 1) update cell increments to a single
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cell increment. An update code is equivalent to a floating code and thus, the above t1-

optimal update code also generates a t1-optimal floating code. Next, we showed that the

binary floating codes from update codes are isomorphic to l-ary floating codes. Thus, if

we only need to find isomorphic binary floating codes because any higher l-ary codes are

isomorphic to the binary floating codes.

Next, we explored the limits of reduction of write amplification. We did this by

looking at the offline workloads and layout management. First, we showed that zero write

amplification for any workload and flash memory configuration is not possible and even

the worst case over-provisioning for zero write amplification is the trivial one. We can

now pose the problem of finding the limits of write amplification reduction as finding

the minimum write amplification given a workload and an over-provisioning amount. We

estimate this minimum by using an algorithm based on the method of decomposition of

the workloads. From decomposing workloads and using a simulator, we see that write

amplification can be pushed to zero for moderate amounts of over-provisioning. Thus,

there is a possibility that with enough information and moderate over-provisioning, write

amplification can be pushed close to zero in flash memory systems.

Next, we have given simple and efficient algorithms that are effective at reducing write

amplification and performing wear leveling. When data is being copied back blindly, a

phenomenon called sedimentation occurs. Low volatility data settle at the low pages of

a block evenly throughout the SSD and every copyback operation ends up copying back

the low volatility data repeatedly. We have presented our technique of using separate and

multiple copyback blocks that eliminates sedimentation and decreases write amplification.

By sorting the garbage collection queue and using blocks of differing erase counts for write

blocks and copyback blocks, we are also able to provide wear leveling in addition to write

amplification reduction.

Finally. we have presented a mathematical framework for analyzing whole block flash

memory wear leveling where using components like P (Ct = i) that models the work-
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load and q
(s)
t that models the strategy are used to calculate the wear distribution. The

components form a difference equation which we can use to model wear distributions.

8.2 Future Work

8.2.1 Update Codes

In the future, we want to extend it to arbitrary n and k, and also extend the t1-optimal

construction to a fully optimal construction by exploring multiple cell increments for

variable updates in floating codes.

It is not known if t1-optimal floating codes even exists for arbitrary k and n. It could

also be the case that t1-optimal update codes might not exist while t1-optimal floating

codes might. Due to the underlying structure of the codewords in floating codes where

each cell is dependent to the other cells, many of the techniques of coding theory do not

apply. Thus, new techniques may have to be developed to analyze floating codes.

The biggest unsolved problem in floating codes and update codes is if optimal codes can

be found for all parameters, or a method can be found to show that optimal codes cannot

exist for certain parameters. If it turns out that the currents bounds on optimality cannot

be reached, then a new tight optimality criteria has to be found and codes constructed to

reach it.

While floating codes provide encoding data as increments, it does not provide error-

correcting capabilities. The basic poset structure of floating codes would possibly have to

be revamped if we were to introduce error correcting and codeword distances.

8.2.2 Minimizing Write Amplification

While our method of estimating the minimum write amplification is practical, feasible and

easy to implement, there are many theoretical questions unanswered. The very nature
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of the decomposition and its properties needs to be explored. Techniques to find ways

around the limitations discussed in Section 4.8.4.1 also have to be found.

On practical matters, while we have given algorithms to find the limits of write ampli-

fication reduction, we have not suggested any online algorithms based on our estimation

methods. It would be of great practical value to have algorithms for online workloads.

While our analysis suggests that number of copybacks can be pushed to zero, it is still

unknown if we can we design a flash memory system that can actually achieve that for the

workloads it receives using an online layout management algorithm. We would also like

to expand our analysis to more workloads, both traces and synthetic. Especially useful

would be real traces geared towards flash memory rather than magnetic hard disks. For

synthetic workloads, we would also like to model other properties like sequentiality and

different forms of locality.

While reducing write amplification is a major issue in flash memory, it has to be done

with various complementary considerations like performance, wear leveling and limited

resources for the flash memory controller. A method to analyze these different facets of

flash memory alongside write amplification reduction is also needed.

8.2.3 Practical Algorithms

While we have presented a effective algorithms to reduce write amplification and perform

wear leveling, this is still quite far from the maximum reduction that is possible that we

calculated in Chapter 4. Our goal is to develop a practical algorithm that is able to achieve

close to the theoretical limits. In order to do so, we have to explore many aspects like

volatility prediction, effects of the errors in prediction, the relationship between workload

predictability and write amplification, and to find practical algorithms that are simple

yet effective under these considerations.

Our offline analysis had full information about the workload and thus to emulate

that in practical algorithms, we would need to use a combination of application workload
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knowledge and workload prediction. Even partial accuracy can be used to reduce write

amplification but we still have to investigate the properties under errors in prediction or

incorrect workload knowledge. After characterizing these error properties, then we can

begin to understand how we can utilize partial or probabilistic workload knowledge for

practical algorithms from our analysis of offline workloads.

8.2.4 Wear Level Modeling

We would like to extend the model to partial block wear leveling by finding the equivalent

components for the strategy and block wear in blocks with multiple pages. The main

challenge is that we have to deal with partial block data validity as a block can be in

many different states of valid, invalid and clean page combinations. Additionally, there

will be many different and new strategies that have to be analyzed for partial blocks as

well as deal with write amplification.

After we have developed the model, it will enable us to examine mathematically write

amplification and its relation to wear leveling and ways to see how we can minimize both

write amplification and maintain wear leveling. Additionally, we want to examine other

theoretical questions regarding strategies, workloads and their relation to wear leveling

and write amplification and also use these quantitative models to create practical algo-

rithms or fine tune existing algorithms by analyzing their mathematical characteristics.
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APPENDIX A: ADDITIONAL

UPDATE CODE POSETS

We present here additional poset diagrams that further illustrate the posets used in the

construction of update and floating codes.

Figures A.1 and A.2 show cell posets. Figure A.1 shows a cell poset with two cells

that has four levels. Figure A.2 shows cell state vectors with four cells that have three

levels. This cell poset is the basis for the update code in Figure 3.7. Figures A.3 and A.4

shows variable posets for two variables with ternary variables with the empty start and

the full start.

Figures A.5 and A.6 shows an update code for n = 3, q = 3 (3 cells of 3 levels) and

k = 3, l = 2 (3 binary variables). This is a t-1 optimal floating code because it can do

(n− k + 1)(q − 1) = (q − 1) = 2

updates. Figures A.7 and A.8 shows an update codes for n = 4, q = 3 (4 cells with 3

levels) and k = 4, l = 2 (4 binary variables). Similarly, this is also a t1-optimal code as

it allows q − 1 = 2 updates. After these two updates, it will require more than a single

increment to represent all variable updates and hence, we have left it grey. Note that the

cell poset n = 4, q = 3 is the same used for the update code example in Figure 3.7.

Figure A.9 shows the update code in figure 3.11 in a cell poset. This is the same cell

poset n = 4, q = 3 used in our previous example. As per our assertion, the (n = 4, q =

3, k = 2, l = 3) is isomorphic to (n = 4, q = 3, k = 4, l = 2) from Theorem 3.5.1 and

Figures A.9 and A.8 look identical in structure.

The figures also illustrate that a large portions of the generations are not used (shown

as light gray). We have only given t-1 optimal constructions when n = k or n = k − 1.

When n is large, we want k to be small so that a large array of cell with a few levels can
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[0,0]

[1,0] [0,1]

[2,0] [1,1] [0,2]

[3,0] [2,1] [1,2] [0,3]

[3,1] [2,2] [1,3]

[3,2] [2,3]

[3,3]

Figure A.1: Cell Poset for n = 2 and q = 4

simulate a small number of update cells with a large number of levels for useful update

codes. Thus, finding optimal or near-optimal good update codes for large n and small k

is important.
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[0,0]

[1,0] [2,0][0,1] [0,2]

[1,1] [0,0][1,2][2,0] [2,1] [2,2] [1,0][0,2] [0,1]

[1,0] [0,1] [2,1] [1,2] [2,0][1,1][2,2] [0,2][0,0]
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[2,0] [1,1] [0,0][1,2] [1,0][2,1] [2,2][0,2] [0,1]
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Figure A.3: Zero Start Variable Poset for k = 2 and l = 3
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Figure A.4: Full Start Variable Poset for k = 2 and l = 3
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Figure A.5: t1-optimal update code for n = 3, q = 3, k = 3, l = 2
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Figure A.6: t1-optimal update code for n = 3, q = 3, k = 3, l = 2 in cell poset
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APPENDIX B: PROOFS FOR

WEAR LEVEL MODELING

Lemma B.0.1. The wear distribution for the Null strategy for the uniform workload is

binomial.

Proof. For the uniform workload, we have the following recursive equation for the Null

strategy

P (Xt = i) = P (Xt−1 = i)
(

1− r

m

)
+ P (Xt−1 = i− 1)

r

m

Now, the above equation has the terms P (Xt−1 = i) and P (Xt−1 = i− 1), which we can

determine from the above as

P (Xt−1 = i) = P (Xt−2 = i)
(

1− r

m

)
+ P (Xt−2 = i− 1)

r

m

P (Xt−1 = i− 1) = P (Xt−2 = i− 1)
(

1− r

m

)
+ P (Xt−2 = i− 2)

r

m

Combining the above together, we have

P (Xt = i) = P (Xt−2 = i)
(

1− r

m

)2
+ 2P (Xt−2 = i− 1)

(
1− r

m

) r

m
P (Xt−2 = i− 2)

( r
m

)2
P (Xt = i) = P (Xt−3 = i)

(
1− r

m

)3
+ 3P (Xt−3 = i− 1)

(
1− r

m

)2 r
m

+ 3P (Xt−3 = i− 2)
(

1− r

m

)1 ( r
m

)2
+ P (Xt−3 = i− 3)

( r
m

)3
Proceeding further, we can generalize the above,

P (Xt = i) =
k∑
j=0

(
k

j

)
P (Xt−k = i− j)

(
1− r

m

)k−j ( r
m

)j

Set k = t so we have the equation from time 0. P (X0 = 0) = 1 and P (X0 = i) = 0
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for all i 6= 0, we have

P (Xt = i) =

(
t

i

)
P (X0 = 0)

(
1− r

m

)t−i ( r
m

)i
=

(
t

i

)(
1− r

m

)t−i ( r
m

)i
The above statement says this is the binomial distribution B(t, r

m
) where in t tries we

have i successes with t tries with probability r
m

.

Lemma B.0.2. For a block mapped wear leveling strategy

P (Xt = k)− P (Xt−1 = k) = r
m∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]

Proof. For the block mapped strategies, we have the following set of equations:

P (Xit = k) = P (Xit−1 = k) +
m∑
s=1

[
P (Xv

(s)
t−1 = k)P (Ct = s)− r q(s)t (k)

]
P (Xv

(s)
t = k) = P (Xv

(s)
t−1 = k) [1− P (Ct = s)] + r q

(s)
t (k − 1)

We can combine the two equations together to form the following equation:

P (Xit = k) +
m∑
s=1

P (Xv
(s)
t = k) =

P (Xit−1 = k) +
m∑
s=1

P (Xv
(s)
t−1 = k) + r

m∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]

which can be rewritten as

P (Xt = k) = P (Xt−1 = k) + r
m∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]
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Lemma B.0.3. For a block mapped strategy

∞∑
k=0

m∑
s=1

q
(s)
t (k) =

1

n

Proof. We have from lemma B.0.2

P (Xt = k) = P (Xt−1 = k) + r
m∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]

and since the expected value at time t is always rt
n

, we have that

∞∑
k=0

kP (Xt = k) =
rt

n

and from the above, we have that

m∑
k=0

kP (Xt−1 = k) + r
∞∑
k=0

k

[
m∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]]
=
rt

n

Since
∞∑
k=0

kP (Xt−1 = k) =
r(t− 1)

n

we have that
∞∑
k=0

k

[
m∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]]
=

1

n

or
∞∑
k=0

k

m∑
s=1

q
(s)
t (k − 1)−

∞∑
k=0

k
m∑
s=1

q
(s)
t (k) =

1

n

which we can rewrite as

∞∑
k=1

(k − 1)
m∑
s=1

q
(s)
t (k − 1) +

∞∑
k=1

m∑
s=1

q
(s)
t (k − 1)−

∞∑
k=0

k

m∑
s=1

q
(s)
t (k) =

1

n
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which can be simplified to

∞∑
k=0

k
m∑
s=1

q
(s)
t (k) +

∞∑
k=0

m∑
s=1

q
(s)
t (k)−

∞∑
k=0

k
m∑
s=1

q
(s)
t (k) =

1

n

which gives us
∞∑
k=0

m∑
s=1

q
(s)
t (k) =

1

n

Lemma B.0.4. For a block mapped strategy with sector independent block selection strat-

egy
∞∑
k=0

qt(k) =
1

n

Proof. We have q
(s)
t (k) = qt(k) P (Ct = s). In the property, we can simplify as

∞∑
k=0

m∑
s=1

q
(s)
t (k) =

∞∑
k=1

m∑
s=1

qt(k)P (Ct = s)

=
∞∑
k=0

qt(k)
m∑
s=1

P (Ct = s)

=
∞∑
k=0

qt(k) =
1

n

Lemma B.0.5. For qt(k) defined for the LECIF strategy

∞∑
k=0

qt(k) =

∑∞
k=1 [(αt(k) + βt(k))n − βt(k)n]

n
=

1

n

Proof. Note that,

∞∑
k=0

qt(k) =

∑∞
k=1 [(αt(k) + βt(k))n − βt(k)n]

n
=

1

n
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when
∞∑
k=0

[(αt(k) + βt(k))n − βt(k)n] = 1

To see that the above is true, note that

αt(k) + βt(k) = P (Xit−1 = k) + P (Xvt−1) + P (Xit−1 > k)

= P (Xvt−1) + P (Xit−1 ≥ k)

= P (Xvt−1) + P (Xit−1 > k − 1)

= βt(k − 1)

Thus, from above we have that

∞∑
k=0

[(αt(k) + βt(k))n − βt(k)n] =
∞∑
k=0

[βt(k − 1)n − βt(k)n]

= βt(−1)n

= [P (Xvt−1) + P (Xit−1 ≥ 0)]n

= 1n = 1

For each k, (αt(k) + βt(k))n − βt(k)n represents all the blocks whose lowest invalid

erase count is k. Thus, each invalid block is either k or higher. Thus, when we sum over

all the values of k, we sum all the possible patterns of wear and thus, the total probability

is 1.

Lemma B.0.6. Given that

Qt(k) =
k∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]

for some wear leveling strategy, we have

Var(Xt) = r

t∑
τ=1

∞∑
k=0

k2Qt(k)− (rt)2

m2
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Proof. We have

Var(Xt) = E[X2]− (E[X])2 =
∞∑
k=0

k2P (Xt = k)−
(
rt

m

)2

Also, note that

(
(t− 1)r

m

)2

= (t2 − 2t+ 1)
r2

m2
=

(
tr

m

)2

− r2

m2
(2t− 1)

Let

Qt(k) =
k∑
s=1

[
q
(s)
t (k − 1)− q(s)t (k)

]
then, we can write

P (Xt = k) = P (Xt−1 = k) + rQt(k)

and, so we can write

Var(Xt) =
∞∑
k=0

k2P (Xt−1 = k) + r
∞∑
k=0

k2Qt(k) +

(
rt

m

)2

= Var(Xt−1)− (2t− 1)
r2

m2
+ r

∞∑
k=0

k2Qt(k)

Telescoping and with the fact that Var(X0) = 0, we have the following

Var(Xt) = r

t∑
τ=1

∞∑
k=0

k2Qτ (k)− r2

m2

t∑
τ=1

(2τ − 1)

= r

t∑
τ=1

∞∑
k=0

k2Qτ (k)− (rt)2

m2
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Flash memory promises to revolutionize storage systems because of its massive perfor-

mance gains, ruggedness, large decrease in power usage and physical space requirements,

but it is not a direct replacement for magnetic hard disks. Flash memory possesses funda-

mentally different characteristics and in order to fully utilize the positive aspects of flash

memory, we must engineer around its unique limitations. The primary limitations are

lack of in-place updates, the asymmetry between the sizes of the write and erase opera-

tions, and the limited endurance of flash memory cells. This leads to the need for efficient

methods for block cleaning, combating write amplification and performing wear leveling.

These are fundamental attributes of flash memory and will always need to be understood

and efficiently managed to produce an efficient and high performance storage system.

Our goal in this work is to provide analysis and algorithms for efficiently managing

data storage for endurance in flash memory. We present update codes, a class of float-

ing codes, which encodes data updates as flash memory cell increments that results in

reduced block erases and longer lifespan of flash memory, and provides a new algorithm

for constructing optimal floating codes. We also analyze the theoretically possible limits
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of write amplification reduction and minimization by using offline workloads. We give an

estimation of the minimal write amplification by a workload decomposition algorithm and

find that write amplification can be pushed to zero with relatively low over-provisioning.

Additionally, we give simple, efficient and practical algorithms that are effective in reduc-

ing write amplification and performing wear leveling. Finally, we present a quantitative

model of wear levels in flash memory by constructing a difference equation that gives

erase counts of a block with workload, wear leveling strategy and SSD configuration as

parameters.
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