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PREFACE

This dissertation consists of two parts:

• Part I We establish a new atomic decomposition of the multi-parameter

Hardy spaces of homogeneous type and obtain the associated Hp − Lp

and Hp −Hp boundedness criterions for singular integral operators. On

the other hand, we compare the Wolff and Riesz potentials on spaces

of homogenous type, followed by a Hardy-Littlewood-Sobolev type in-

equality. Then we drive integrability estimates of positive solutions to

the Lane-Emden type integral systems on spaces of homogeneous type.

• Part II We establish a (p, 2)-atomic decomposition of the Hardy

space associated with different homogeneities for 0 < p ≤ 1. In addition,

We characterize the dual spaces of the weighted multi-parameter Hardy

spaces associated with Zygmund dilations, i. e. (Hp
Z(w))∗ = CMOp

Z(w)

for w ∈ A∞(Z) and 0 < p ≤ 1.
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Part I

1 Introduction

1.1 Background and main questions

For a set X , we say that a function ρ : X ×X → [0,∞) is a quasi-metric on X if it satisfies

that for any x1, x2, x3 ∈ X ,

(i) ρ(x1, x2) = ρ(x2, x1);

(ii) ρ(x1, x2) = 0 if and only if x1 = x2;

(iii) ρ(x1, x2) ≤ C[ρ(x1, x3) + ρ(x2, x3)], where C ∈ [1,∞) is a constant independent of

x1, x2 and x3.

Let B(x, t) denote the ball {y ∈ X : ρ(x, y) < t} for all x ∈ X and t > 0, then such

quasi-metric ρ defines a topology on X , for which the balls B(x, t) form a basis. Let µ be a

nonnegative measure satisfying the doubling property, i.e.,

(iv) for all t > 0, there exists some constant C such that µ(B(x, 2t)) ≤ Cµ(B(x, t));

then the set X together with a quasi-metric ρ and a nonnegative doubling measure µ on X ,

(X , ρ, µ), is called a space of homogeneous type, which was first introduced by R.Coifman

and G.Weiss in [CW1] in order to extend the theory of Calderón-Zygmund singular integrals

on Rn to a more general setting.

The project of developing theory of spaces of homogeneous type has received much at-

tention due to its own difficulty, interest and applications. It has developed in significantly
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in the past four decades, there are many monographs and surveys available in the literature,

among them we mention [ABI],[Cm],[CW2],[DH],[FS],[N].

On the other hand, The Hardy spaces Hp are important objects in classical harmonic

analysis. For p = 1(or p = ∞), the Hardy space H1(or its dual space) appears as a natural

substitute of the classical Lebesgue space L1(or L∞). For 1 < p < ∞, ∥f∥Hp ∼ ∥f∥p is well

known as the Littlewood-Paley-Stein theory which implies that Hp = Lp. For 0 < p < 1,

while Lp have some undesirable properties, the Hp are much better behaved.

One of the principal interests of Hp theory is that it gives a natural extension of the

results for singular integrals (originally developed for Lp, p > 1) to 0 < p ≤ 1. Broadly

speaking, the Lp(1 < p <∞) boundedness theorems for singular integrals may be extended

to Hp for all 0 < p ≤ 1. Therefore, one part of our research focus on using the discrete

Littlewood-Paley theory to study the boundedness of singular integral operators on Hardy

spaces of homogeneous type.

In Chapter 2, we first introduce the multi-parameter Hardy space of homogeneous type

Hp(X1 ×X2). By using Journe’s covering lemma for spaces of homogeneous type, we derive

a new atomic decomposition of Hp(X1 ×X2) which converges in both the classical Lebesgue

spaces Lq (for 1 < q <∞) and Hardy spaces Hp (for 0 < p ≤ 1). As an application, we prove

boundedness criterions of operators from Hp(X1×X2) to Lp(X1×X2) and from Hp(X1×X2)

to iteself for 0 < p ≤ 1.

In Chapter 3, we get a Hardy-Littlewood-Sobolev type inequality on space of homoge-

neous type by comparing the associated Wolff and Riesz potentials. After that, by using the

regularity lifting method, we derive integrablility estimates of positive solutions to Lane-

Emden type integral system on spaces of homogeneous type.
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At last, we would like to point it out that the spaces of homogeneous type include

the classical Euclidean space Rn, compact Lie groups, C∞ manifolds with doubling volume

measures for geodesic balls, Carnot-Caratheodory spaces, nilpotent Lie groups such as the

Heisenberg group, and many other cases, so all the above results can be applied to these

cases.

1.2 Some properties of spaces of homogeneous type

For any space of homogeneous type (X , ρ, µ), R. A. Macias and C. Segovia [MS] have proved

that the quasi-metric ρ can be replaced by another ρ∗ such that ρ∗ ∼ ρ and ρ∗ yields the

same topology on X as ρ. Moreover, let B(x, t) denote the ball defined by ρ∗, {y ∈ X :

ρ∗(x, y) ≤ t}, then for all 0 < t <∞, there exists some d > 0 such that

µ(B(x, t)) ∼ td,

and there exists a constant A > 0 such thatρ∗ has the following regularity property

|ρ∗(x1, x2) − ρ∗(x3, x2)| ≤ Aρ∗(x1, x3)
θ[ρ∗(x1, x2) + ρ∗(x3, x2)]

1−θ

for some regularity exponent θ ∈ (0, 1) and all x1, x2, x3 ∈ X .

Therefore, a formal definition of homogeneous space in the sense of R. Coifman and G.

Wiess can be given as follows.

Definition 1.1. Let d > 0 and θ ∈ (0, 1). A space of homogeneous type (X , ρ, µ)d,θ is a set

X equipped with a quasi-metric ρ and a nonnegative measure µ on X , and there exists a
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constant A > 0 such that for all x1, x2, x3 ∈ X and 0 < t < diamX ,

µ(B(x, t)) ∼ td (1.1)

and

|ρ(x1, x2) − ρ(x3, x2)| ≤ Aρ(x1, x3)
θ[ρ(x1, x2) + ρ(x3, x2)]

1−θ. (1.2)

1.3 Dyadic cubes on spaces of homogeneous type

For spaces of homogeneous type, an analogue of the grid of Euclidean dyadic cubes was given

independently by M. Christ [Cm] and E. Sawyer and R. Wheeden [SW] as follows.

Lemma 1.2 (Dyadic cubes on homogeneous spaces [SW]). Let (X , ρ, µ)d,θ be a space of

homogeneous type. Then for every integer k ∈ Z+, there exists a collection of open subsets

{Qk
τ ⊆ X : τ ∈ Ik}, where Ik denotes some index set depending on k, and positive constants

C1, C2 such that

(i) µ({X \ ∪Qk
τ}) = 0;

(ii) If l ≥ k, then for all τ ′ ∈ Il and τ ∈ Ik either Ql
τ ′ ⊆ Qk

τ or Ql
τ ′ ∩Qk

τ = ∅;

(iii) If l < k, for each τ ∈ Ik, there is a unique τ ′ ∈ Il such that Qk
τ ⊆ Ql

τ ′, diam(Qk
τ ) ≤

C12
−k, and each Qk

τ contains some ball B(zkτ , C22
−k).

With the settings defined above, in the following, we say that a cube Q ⊆ X is a dyadic

cube if Q = Qk
τ for some k ∈ Z+ and τ ∈ Ik, denote it by diam(Q) ∼ 2−k.
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1.4 Notational index

The following notations will be frequently used in the rest of Part I.

• ρ: a quasi-metric.

• µ: a nonnegative doubling measure.

• (X , ρ, µ) or (X , ρ, µ)d,θ: a space of homogeneous type.

• B(x, t): the ball centered at x and of radius t.

• Ω: an open and bounded domain in Rn or in X .

• M(Ω): the set of all maximal dyadic rectangles contained in Ω.

• Mi(Ω): the set of all dyadic rectangles contained in Ω and maximal in the direction of

xi.

• Msf : the strong maximal function of f .

• q′: the conjugate index of the index 1 ≤ q ≤ ∞, that is, 1
q

+ 1
q′

= 1.

• Qk
τ : a dyadic cube with diam(Q) ∼ 2−k (See Lemma 1.2).

• Qk, ν
τ : all dyadic cubes Qk+j

τ ′ ⊆ Qk
τ for a fixed positive integer j, ν = 1, 2, ..., N(k, τ)}.

• yk,ντ : a point in Qk,ν
τ .
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2 Atomic decomposition of Multi-parameter Hardy s-

paces of Homogeneous Type

2.1 Introduction and Statements of Main results

It is well known that the elements in the classical Hardy space Hp(Rn) can be decomposed as

the sum of an appropriate class of simple functions, that is, “atoms ”. The “atoms” play an

important role in proving the boundedness of operators on Hardy spaces by verifying their

actions on such building blocks (see, for example, Coifman [CO] Coifman-Weiss [CW2],

Grafakos [G], Latter [La], Lu [Lu], Meyer [M], Meyer-Coifman [MC], Stein [St], etc.).

In general, if a linear operator is bounded on the space of all atoms which is dense in

Hardy space, it can be extended to a bounded operator on the whole Hardy space. However,

this boundedness principle is not always true. M.Bownik [B] gave an example shows the

boundedness principle is broken when considering (1,∞)-atoms on H1(Rn). Therefore, we

need to proceed with caution when the above principle is used. And it is meaningful to

ask under what circumstances the above fundamental principle can be applied. In [MSV],

S. Meda, P. Sjogren and M. Vallarino have proved that this boundedness criterion holds

on H1(Rn) for (1, q) atoms for 1 < q < ∞ (see also [HZ] and [YZ] for related results).

Furthermore, this criterion also holds on Hp(Rn) for 0 < p < 1 when applying this principle

for (p,∞)-atoms as shown by Ricci and Verdera [RV].

For the multi-parameter Hardy spaces, A. Chang and R. Fefferman ([CF1], [CF2], [CF3])

developed the product Hardy space Hp(Rn×Rm) theory. In [CF2], they proved the following

Theorem. Let 0 < p < ∞. f ∈ Hp(R × R) if and only if f(x, y) =
∑
k

λkak(x, y) where
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∑
k

|λk|p <∞ and each ak(x, y) is a (p, 2)-atom, that is, each ak(x, y) is supported in an open

set Ω with finite measure and satisfies the following properties:

∥ak∥2 ≤ |Ω|1/2−1/p;

each ak(x, y) can be further decomposed by

ak(x, y) =
∑
R∈Ω

aR(x, y)

where R = I × J ⊂ Ω are dyadic rectangles in R2, and each aR(x, y) satisfies

ˆ

I

aR(x, y)xαdx =

ˆ

J

aR(x, y)yβdy = 0

for 0 ≤ |α|, |β| ≤ Np = [2/p− 4/3]. Moreover, aR is a Cη (η ≤ Np + 1) function satisfying

| ∂
η

∂xη
aR(x, y)| ≤ dR|I|−η, | ∂

η

∂yη
aR(x, y)| ≤ dR|J |−η

with ∑
R∈M(Ω)

|R|d2R ≤ |Ω|1−2/p,

where M(Ω) is the set of all rectangles in Ω which are maximal in both directions of x and

y.

The key tool that A. Chang and R. Fefferman used to prove the above (p, 2)-atomic

decomposition is the classical version of continuous Calderón’s identity on the product space.
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However, for 1 < q < ∞, q ̸= 2, the (p, q)-atomic decomposition on product Hardy spaces

Hp(Rn × Rm) cannot be established by using the classical Calderón’s identity. Therefore,

the (p, q) atomic decomposition for the product Hardy spaces becomes interesting for q ̸= 2.

This has been recently carried out by Han, Lu, and Zhao in [HLZk]. They established the

(p, q)-product atoms on the multi-parameter Hardy spaces Hp(Rn × Rm) for 0 < p ≤ 1 and

1 < q <∞ by using discrete Littlewood-Paley analysis and the discrete Calderón’s identity.

Since the spaces of homogeneous type is a generalized extension of the Euclidean spaces, it

is natural to consider the atomic decomposition of Hardy spaces of homogeneous type.

We will derive a new (p, q)-atomic decomposition on the multi-parameter Hardy space

Hp(X1 × X2) for 0 < p ≤ 1 and all 1 < q < ∞, where X1 × X2 is the product of two homo-

geneous type spaces in the sense of Coifman and Weiss ([CW1]). The series in (p, 2)-atomic

decomposition in [CF1] converges only in the sense of distributions. But the decomposition

we get converges in both Lq(X1×X2) (1 < q <∞) and Hp(X1×X2) (0 < p ≤ 1). As an appli-

cation, we prove that an operator T, which is bounded on Lq(X1 ×X2) for some 1 < q <∞,

is bounded from Hp(X1 × X2) to Lp(X1 × X2) if and only if T is bounded uniformly on all

(p, q)-product atoms in Lp(X1 × X2). The similar boundedness criterion from Hp(X1 × X2)

to Hp(X1 ×X2) is also obtained. The main idea is establishing the Journé’s covering lemma

for spaces of homogeneous type, and using the Littlewood-Paley theory and a new discrete

Calderón reproducing formulas on product spaces of homogeneous type (see [HL3]) to derive

a (p,q)-atomic decompositon for Hp(X1×X2). Then by the fact that Lq(X1×X2)∩Hp(X1×X2)

is dense in Hp(X1×X2) for 0 < p ≤ 1 < q <∞ and ∥f∥Lq(X1×X2) ≤ C∥f∥Hp(X1×X2)(see [HLL-

W]), we get the boundedness criterion of operators on Hp(X1 ×X2). We would like to point

out that this method is quite different from the classical product theory in Euclidean spaces
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(see [CF2], [Fr1], and [St]), which is not suitable for the Hardy space Hp (0 < p ≤ 1) on

product spaces of homogeneous type. This method also works for the atomic decomposition

of other Hardy spaces such as Hardy spaces associated with two different homogeneities,

which we show in Chapter 4. For more general applications of the discrete Littlewood-Paley-

Stein theory to the multi-parameter Hardy space theory on Carnot-Caratheodory spaces and

product spaces of homogeneous type, please see [HLL2].

For i = 1, 2, let (Xi, ρi, µi)di, θi be a space of homogeneous type, and ρi satisfies (1.2) with

A replaced by Ai . Then R = Q1 ×Q2 ⊂ X1 ×X2 is said to be a dyadic rectangle in product

spaces of homogeneous type if Q1 and Q2 are dyadic cubes in X1 and X2 respectively, with

diamQ1 ∼ 2−k1 and diamQ2 ∼ 2−k2 for some k1, k2 ∈ Z.

Now we introduce the approximation to identity on the space of homogeneous type.

Definition 2.1 (approximation to the identity [HS]). Let (X , ρ, µ)d, θ be a space of homoge-

neous type. For ϵ ∈ (0, θ], we call a sequence of linear operators {Sk}k∈Z as an approximation

to the identity of order ϵ on X if there exists C3 > 0 such that for all k ∈ Z, the kernel of Sk,

Sk(x1, y1), are functions from X × X into C satisfying that for all x1, x2, y1 and y2 ∈ X ,,

(1) |Sk(x1, y1)| ≤ C3
2−kϵ

(2−k + ρ(x1, y1))d+ϵ
;

(2) |Sk(x1, y1) − Sk(x2, y1)| ≤ C3

(
ρ(x1, x2)

2−k + ρ(x1, y1)

)ϵ
2−kϵ

(2−k + ρ(x1, y1))d+ϵ

for ρ(x1, x2) ≤
1

2A
(2−k + ρ(x1, y1));
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(3) |Sk(x1, y1) − Sk(x1, y2)| ≤ C3

(
ρ(y1, y2)

2−k + ρ(x1, y1)

)ϵ
2−kϵ

(2−k + ρ(x1, y1))d+ϵ

for ρ(y1, y2) ≤
1

2A
(2−k + ρ(x1, y1));

(4) |[Sk(x1, y1) − Sk(x1, y2)] − [Sk(x2, y1) − Sk(x2, y2)]| ≤ C3

(
ρ(x1, x2)

2−k + ρ(x1, y1)

)ϵ

×
(

ρ(y1, y2)

2−k + ρ(x1, y1)

)ϵ
2−kϵ

(2−k + ρ(x1, y1))d+ϵ

for ρ(x1, x2) ≤
1

2A
(2−k + ρ(x1, y1)) and ρ(y1, y2) ≤

1

2A
(2−k + ρ(x1, y1));

(5)
´
X Sk(x1, y1) dµ(y1) = 1;

(6)
´
X Sk(x1, y1) dµ(x1) = 1.

Moreover, we call a sequence of linear operators {Sk}k∈Z as an approximation to the identity

of order ϵ ∈ (0, θ] having compact support if there exist constants C4, C5 > 0 such that for

all k ∈ Z, the kernel of Sk, Sk(x1, y1), are functions from X × X into C satisfying (1)-(6)

and

(7) Sk(x1, y1) = 0 if ρ(x1, y1) ≥ C42
−k and ∥Sk∥L∞(X×X ) ≤ C52

kd;

(8) |Sk(x1, y1) − Sk(x2, y1)| ≤ C52
k(d+ϵ)ρ(x1, x2)

ϵ;

(9) |Sk(x1, y1) − Sk(x1, y2)| ≤ C52
k(d+ϵ)ρ(y1, y2)

ϵ;

(10) |[Sk(x1, y1) − Sk(x1, y2)] − [Sk(x2, y1) − Sk(x2, y2)]| ≤ C52
k(d+2ϵ)ρ(x1, x2)

ϵρ(y, y′)ϵ

for all x1, x2, y1 and y2 ∈ X .
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Remark. By Coifman’s construction in [DJS], one can construct an approximation to the

identity of order θ having compact support satisfying the above Definition 2.1.

To introduce the multi-parameter Hardy space of homogeneous type Hp(X1 × X2), we

first need to introduce the space of test functions on the product space of homogeneous type

X1 ×X2.

Definition 2.2. ([HL3]) For i = 1, 2, fix γi > 0 and βi > 0. A function f defined on X1×X2

is said to be a test function of type (β1, β2, γ1, γ2) centered at (x0, y0) ∈ X1 × X2 with width

r1, r2 > 0 if for all x, x′ ∈ X1, and y, y
′ ∈ X2, f satisfies the following conditions:

(i) |f(x, y)| ≤ C
rγ11

(r1 + ρ1(x, x0))d1+γ1
rγ22

(r2 + ρ2(y, y0))d2+γ2
;

(ii) |f(x, y) − f(x′, y)| ≤ C

(
ρ1(x, x

′)

r1 + ρ1(x, x0)

)β1 rγ11
(r1 + ρ1(x, x0))d1+γ1

rγ22
(r2 + ρ2(y, y0))d2+γ2

for ρ1(x, x
′) ≤ 1

2A1

[r1 + ρ1(x, x0)];

(iii) |f(x, y) − f(x, y′)| ≤ C
rγ11

(r1 + ρ1(x, x0))d1+γ1

(
ρ2(y, y

′)

r2 + ρ2(y, y0)

)β2 rγ22
(r2 + ρ2(y, y0))d2+γ2

for ρ2(y, y
′) ≤ 1

2A2

[r2 + ρ2(y, y0)];

(iv) |[f(x, y) − f(x′, y)] − [f(x, y′) − f(x′, y′)]| ≤ C

(
ρ1(x, x

′)

r1 + ρ1(x, x0)

)β1 rγ11
(r1 + ρ1(x, x0))d1+γ1

×
(

ρ2(y, y
′)

r2 + ρ2(y, y0)

)β2 rγ22
(r2 + ρ2(y, y0))d2+γ2

for ρ1(x, x
′) ≤ 1

2A1

[r1 + ρ1(x, x0)] and ρ2(y, y
′) ≤ 1

2A2

[r2 + ρ2(y, y0)];
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(v)
´
X1
f(x, y) dµ1(x) = 0 for all y ∈ X2;

(vi)
´
X2
f(x, y) dµ2(y) = 0 for all x ∈ X1.

If f is a test function of type (β1, β2, γ1, γ2) centered at (x0, y0) ∈ X1×X2 with width r1, r2 >

0, we write f ∈ G(x0, y0; r1, r2; β1, β2; γ1, γ2) and we define the norm of f by

∥f∥G(x0,y0;r1,r2;β1,β2;γ1,γ2) = inf{C : (i), (ii), (iii) and (iv) hold}.

If β1 = β2 = β and γ1 = γ2 = γ, we will then simply write f ∈ G(x0, y0; r1, r2; β; γ). And we

denote by G(β1, β2; γ1, γ2) the class of G(x0, y0; r1, r2; β1, β2; γ1, γ2) with r1 = r2 = 1 for fixed

(x0, y0) ∈ X1 ×X2. Then if β1 = β2 = β and γ1 = γ2 = γ, we will simply write f ∈ G(β; γ).

Remark. It is easy to see that G(x1, y1; r1, r2; β1, β2; γ1, γ2) = G(β1, β2; γ1, γ2) with an equiv-

alent norm for all (x1, y1) ∈ X1 × X2. We can easily check that the space G(β1, β2; γ1, γ2) is

a Banach space. Also, we denote by (G(β1, β2; γ1, γ2))
′ its dual space which is the set of all

linear functionals L from G(β1, β2; γ1, γ2) to C with the property that there exists C ≥ 0

such that for all f ∈ G(β1, β2; γ1, γ2),

|L(f)| ≤ C∥f∥G(β1,β2;γ1,γ2).

Clearly, for all h ∈ (G(β1, β2; γ1, γ2))
′, ⟨h, f⟩ is well defined for all f ∈ G(x0, y0; r1, r2; β1, β2; γ1, γ2)

with (x0, y0) ∈ X1 ×X2, r1 > 0 and r2 > 0. By the same reason as the case of one-parameter

spaces, we denote by G̊(β1, β2; γ1, γ2) the completion of the space G(ϵ1; ϵ2) in G(β1, β2; γ1, γ2)

when 0 < β1, γ1 < ϵ1 and 0 < β2, γ2 < ϵ2.
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Next we recall Littlewood-Paley theorem on product spaces of homogeneous type, which

can be stated as follows.

Lemma 2.3. ([HL3]) For i = 1, 2, let ϵi ∈ (0, θi], {Ski}ki∈ Z be an approximation to the

identity of order ϵi on Xi, and Dki = Ski − Ski−1 for all ki ∈ Z. If 1 < p < ∞, then there is

a constant Cp > 0 such that for all f ∈ Lp(X1 ×X2),

C−1
p ∥f∥Lp(X1×X2) ≤ ∥g2(f)∥Lp(X1×X2)

≤ Cp∥f∥Lp(X1×X2),

where gq(f) for q ∈ (0,∞) is called the discrete Littlewood-Paley g-function on X1 × X2

defined by

gq(f)(x1, x2) =

{
∞∑

k1=−∞

∞∑
k2=−∞

|Dk1Dk2(f)(x1, x2)|q
}1/q

for all x1 ∈ X1 and x2 ∈ X2.

Now we can introduce the multi-parameter Hardy spaces of homogeneous type Hp(X1 ×

X2) for some p ≤ 1 and establish their (p, q)-atomic decomposition characterization.

Definition 2.4. For i = 1, 2, let ϵi ∈ (0, θi], {Dki}ki∈Z be the same as in Lemma 2.3,

max

{
d1

d1 + ϵ1
,

d2
d2 + ϵ2

}
< p <∞

and

di(1/p− 1)+ < βi, γi < ϵi. (2.1)
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The multi-parameter Hardy spaces of homogeneous type Hp(X1 ×X2) is the set defined by

{
f ∈

(
G̊(θ1, θ2; γ1, γ2)

)′
: ∥g2(f)∥Lp(X1×X2)

<∞
}
,

and we define

∥f∥Hp(X1×X2) = ∥g2(f)∥Lp(X1×X2)
,

where g2(f) is the discrete Littlewood-Paley square function defined as in Lemma 2.3.

Remark. Here the definition of Hp(X1 × X2) is independent of the choice of the approxi-

mation to identity, see [HL3] for the proof.

We now can give the definition of (p, q)-atoms of Hp(X1 × X2) as follows. For the con-

venience, in the following, we use C to denote all constants only dependent on X1 and X2,

which may vary from line to line.

Definition 2.5. For 0 < p ≤ 1 and 0 < q < ∞, a function a(x1, x2) on X1 × X2 is called a

(p, q)-product atom of Hp(X1 ×X2), if it satisfies the following conditions:

(1) supp a ⊂ Ω, where Ω is an open set in X1 ×X2 with finite measure;

(2) ∥a∥Lq(X1×X2) ≤ µ(Ω)1/q−1/p, where µ = µ1 × µ2.

Moreover, a can be decomposed into rectangle (p, q)-atoms aR associated to the dyadic rect-

angle R = Q1 ×Q2 with diamQ1 ∼ 2−k1 and diamQ2 ∼ 2−k2 for some k1, k2 ∈ Z+, which is

supported in B1(z1, C2−k1) × B2(z2, C2−k2), where zi is the center of Qi for i = 1, 2. To be

specify,
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(3a) For 2 ≤ q <∞, a =
∑

R∈M(Ω) aR, and

 ∑
R∈M(Ω)

∥aR∥qLq(X1×X2)


1/q

≤ µ(Ω)1/q−1/p.

Here and in the sequel, M(Ω) is the set of all maximal dyadic rectangles contained in

Ω in both directions of x1 and x2, that is, M(Ω) = {R′ ⊂ Ω : R′ = Q′
1 ×Q′

2, diamQ′
i ∼

2−k′i for some k′i ∈ Z+ and Q′
i is not contained in any other dyadic cube Q ∈ Ω ∩ Xi

for i = 1, 2}. And

Ω̃ = {(x1, x2) ∈ X1 ×X2 : Ms(χΩ)(x1, x2) > C} ,

Where

Msf(x1, x2) = sup
R

1

µ(R))

ˆ
R

|f(x1, x2)|dµ(x1, x2)

is the strong maximal function, µ = µ1 × µ2, and the above supremum is taken among

all dyadic rectangles R in X1 ×X2, C is a small enough positive constant only depend

on X1 and X2.

(3b) For 1 < q < 2, a =
∑

R∈M1(Ω) aR +
∑

R∈M2(Ω) aR, and for any δ > 0, there exists a

constant Cδ, q > 0, where Cδ, q only depends on δ and q, such that

 ∑
R∈M1(Ω)

γ−δ2 ∥aR∥qLq(X1×X2)
+

∑
R∈M2(Ω)

γ−δ1 ∥aR∥qLq(X1×X2)


1/q

≤ Cδ, q µ(Ω)1/q−1/p.

Here and in the sequel, M1(Ω) is the set of all dyadic rectangles contained in Ω and

maximal in the direction of x1 and M2(Ω) is defined similarly. γ1 is defined by γ1(R) =
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µ1(Q̂1)
µ1(Q1)

, where R = Q1 × Q2 ⊂ M2(Ω) and Q̂1 = Q̂1(Q2) be the “longest” dyadic cube

containing Q1 such that µ(Q̂1 ×Q2 ∩ Ω) > 1
2
µ(Q̂1 ×Q2). γ2(R) is similarly defined.

(4 ) For all x1 ∈ X1, ˆ
X2

aR(x1, x2) dµ2(x2) = 0

and for all x2 ∈ X2, ˆ
X1

aR(x1, x2) dµ1(x1) = 0.

Note that for 0 < p ≤ 1 < q < ∞, ∥f∥Lp ≤ C∥f∥Hp for f ∈ Lq ∩Hp and Lq(X1 × X2) ∩

Hp(X1 × X2) is dense in Hp(X1 × X2) (see [HLLW]). Therefore, it is sufficient to consider

the atomic decomposition in the subspace Lq(X1 × X2) ∩ Hp(X1 × X2). Then One of our

main results, atomic decomposition in terms of (p, q)-atoms for the multi-parameter product

Hardy space of homogeneous type is as follows:

Theorem 2.6. For i = 1, 2, let ϵi ∈ (0, θi], f ∈ Hp(X1 ×X2) ∩ Lq(X1 ×X2), and

0 < max

{
d1

d1 + ϵ1
,

d2
d2 + ϵ2

}
< p ≤ 1 < q <∞.

Then f ∈
(
G̊(β1, β2; γ1, γ2)

)′
for some βi, γi satisfying (2.1) for i = 1, 2, and there is a

sequence of numbers, {λk}k∈Z, and a sequence of (p, q)-atoms of Hp(X1×X2), {ak}k∈Z, such

that
∑∞

k=−∞ |λk|p <∞ and

f =
∞∑

k=−∞

λkak,

where the series converges to f in both Hp(X1 × X2) and Lq(X1 × X2) norms. Moreover, in
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this case,

∥f∥Hp(X1×X2) ∼ inf


[

∞∑
k=−∞

|λk|p
]1/p ,

where the infimum is taken over all the decompositions as above.

2.2 Journé’s Covering Lemma for spaces of homogeneous type

To prove Theorem 2.6, we need to establish Journé’s covering lemma in the setting of spaces

of homogeneous type.

For i = 1, 2, let {Qki
τi

⊂ Xi : τi ∈ Iki} be the same as in Lemma 1.2, where ki ∈ Z;

Ω ⊂ X1 × X2 be an open set with the finite measure and Mi(Ω) be the same in Definition

2.5, that is the family of dyadic rectangles R ⊂ Ω which are maximal in the direction of

xi. In what follows, we denote by R = Q1 × Q2 any dyadic rectangle of X1 × X2. Given

R = Q1 × Q2 ∈ M1(Ω), let Q̂2 = Q̂2(Q1) be the “longest” dyadic cube containing Q2 such

that

µ(Q1 × Q̂2 ∩ Ω) >
1

2
µ(Q1 × Q̂2); (2.2)

and given R = Q1 ×Q2 ∈ M2(Ω), let Q̂1 = Q̂1(Q2) be the “longest” dyadic cube containing

Q1 such that

µ(Q̂1 ×Q2 ∩ Ω) >
1

2
µ(Q̂1 ×Q2). (2.3)

If Qi = Qki
τi
⊂ Xi for some ki ∈ Z and some τi ∈ Iki , (Qi)k for k ∈ N is used to denote any

dyadic cube Qki−k
τi

containing Qki
τi

and (Qi)0 = Qi, where i = 1, 2. Also, let w(x) be any

increasing function such that
∑∞

j=0 jw(C62
−j) <∞, where C6 > 0 is any given constant. In

particular, we may take w(x) = xθ for any θ > 0.
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The main idea of the following variant of Journé’s covering lemma in the setting of spaces

of homogeneous type comes from Pipher [P].

Lemma 2.7. Assume that Ω ⊂ X1 × X2 is an open set with finite measure. Let all the

notation be the same as above. Then

∑
R=Q1×Q2∈M1(Ω)

µ(R)w

(
µ2(Q2)

µ2(Q̂2)

)
≤ Cµ(Ω) (2.4)

and ∑
R=Q1×Q2∈M2(Ω)

µ(R)w

(
µ1(Q1)

µ1(Q̂1)

)
≤ Cµ(Ω). (2.5)

Proof. We only verify (2.4) and the proof of (2.5) is similar. Let R = Q1×Q2 ∈ M2(Ω) and

for k ∈ N, let

AQ1,k =
∪{

Q2 : Q1 ×Q2 ∈ M2(Ω) and Q̂1 = (Q1)k−1

}
. (2.6)

Then ∑
R=Q1×Q2∈M2(Ω)

µ(R)w

(
µ1(Q1)

µ1(Q̂1)

)
(2.7)

=
∑

R=Q1×Q2∈M2(Ω)

µ1(Q1)µ2(Q2)w

(
µ1(Q1)

µ1(Q̂1)

)

=
∑

{Q1: Q1×Q2∈M2(Ω)}

µ1(Q1)
∞∑
k=1

∑
{Q2: Q2∈AQ1,k

}

µ2(Q2)w

(
µ1(Q1)

µ1(Q̂1)

)

≤
∑

{Q1: Q1×Q2∈M2(Ω)}

µ1(Q1)
∞∑
k=1

w
(
C62

−k) ∑
{Q2: Q2∈AQ1,k

}

µ2(Q2)

=
∑

{Q1: Q1×Q2∈M2(Ω)}

µ1(Q1)
∞∑
k=1

w
(
C62

−k)µ2 (AQ1,k) ,
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since {Q2 : Q2 ∈ AQ1,k} are disjoint by their “maximality”, where C6 > 0 depends only on

the doubling measure µ1 and the constants C1 and C2 in Lemma 1.2 for X1.

Set

EQ1(Ω) =
∪

{Q2 : Q1 ×Q2 ⊂ Ω} .

If x2 ∈ AQ1,k, then there is some dyadic cube Q1 ×Q2 ∈ M2(Ω) and some k ∈ N such that

x2 ∈ Q2 and Q̂1 = (Q1)k−1 by (2.6). By (2.3) and the maximality of Q̂1, we have

µ ((Q1)k−1 ×Q2 ∩ Ω) >
1

2
µ ((Q1)k−1 ×Q2)

and

µ ((Q1)k ×Q2 ∩ Ω) ≤ 1

2
µ ((Q1)k ×Q2) ,

which implies that

µ
(
(Q1)k ×Q2 ∩

(
(Q1)k × E(Q1)k

))
≤ 1

2
µ ((Q1)k ×Q2)

and further

µ
(
(Q1)k ×

(
Q2 ∩ E(Q1)k

))
≤ 1

2
µ ((Q1)k ×Q2) .

Therefore,

µ2

(
Q2 ∩ E(Q1)k

)
≤ 1

2
µ2(Q2),

which in turn tells us that

µ2

(
Q2 ∩

(
E(Q1)k

)c)
>

1

2
µ2(Q2), (2.8)
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where
(
E(Q1)k

)c
= X2 \ E(Q1)k . From (2.8), it follows that

M2

(
χEQ1

\E(Q1)k

)
(x2) >

1

2

and therefore

AQ1,k ⊂
{
x2 ∈ X2 : M2

(
χEQ1

\E(Q1)k

)
(x2) >

1

2

}
,

which implies that

µ2 (AQ1,k) ≤ µ2

({
x2 ∈ X2 : M2

(
χEQ1

\E(Q1)k

)
(x2) >

1

2

})
(2.9)

≤ Cµ2

(
EQ1 \ E(Q1)k

)
.

Combining (2.7) with (2.9) yields that

∑
R=Q1×Q2∈M2(Ω)

µ(R)w

(
µ1(Q1)

µ1(Q̂1)

)

≤ C
∑

{Q1: Q1×Q2∈M2(Ω)}

µ1(Q1)
∞∑
k=1

w
(
C62

−k)µ2

(
EQ1 \ E(Q1)k

)
≤ C

∑
{Q1: Q1×Q2∈M2(Ω)}

µ1(Q1)
∞∑
k=1

w
(
C62

−k)
×
{
µ2

(
EQ1 \ E(Q1)1

)
+ · · · + µ2

(
E(Q1)k−1

\ E(Q1)k

)}
≤ C

∑
{Q1: Q1×Q2∈M2(Ω)}

µ1(Q1)
∞∑
k=1

w
(
C62

−k)
×

∑
{Q0 dyadic cube: Q1⊆Q0((Q1)k

Q0×(EQ0
\E(Q0)1

)⊂Ω}

µ2

(
EQ0 \ E(Q0)1

)
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≤ C
∞∑
k=1

w
(
C62

−k) ∑
Q0 dyadic cube

Q0×(EQ0
\E(Q0)1

)⊂Ω

µ1(Q0)µ2

(
EQ0 \ E(Q0)1

)
×

∑
{Q1 dyadic cube: Q1⊂Q0⊂(Q1)k}

µ1(Q1)

µ1(Q0)

≤ C
∞∑
k=1

w
(
C62

−k) ∑
Q0 dyadic cube

Q0×(EQ0
\E(Q0)1

)⊂Ω

µ1(Q0)µ2

(
EQ0 \ E(Q0)1

)

×
k∑
j=1

∑
{Q1 dyadic cube: µ1(Q1)∼2−jdµ1(Q0)}

µ1(Q1)

µ1(Q0)

≤ C

∞∑
k=1

kw
(
C62

−k) ∑
Q0 dyadic cube

Q0×(EQ0
\E(Q0)1

)⊂Ω

µ1(Q0)µ2

(
EQ0 \ E(Q0)1

)
≤ C

∞∑
k=1

kw
(
C62

−k)µ(Ω),

since ∑
Q0 dyadic cube

Q0×(EQ0
\E(Q0)1

)⊂Ω

µ1(Q0)µ2

(
EQ0 \ E(Q0)1

)
≤ Cµ(Ω)

by noting that the sets
{
Q0 ×

(
EQ0 \ E(Q0)1

)
⊂ Ω : Q0 is any dyadic cube

}
are disjoint,

which finishes the proof of Lemma 2.7.

2.3 Proof of the atomic decompostion of Hp(X1 ×X2)

We begin with recalling the following discrete Calderón reproducing formula.

Lemma 2.8. (See[HLY, HL3]) For i = 1, 2, let ϵi ∈ (0, θi], {Ski}ki∈Z be an approximation

to the identity of order ϵi, Dki = Ski − Ski−1 for ki ∈ Z, {Qk1, ν1
τ1

: k1 ∈ Z, τ1 ∈ Ik1 , ν1 =

1, · · · , N(k1, τ1)} and {Qk2, ν2
τ2

: k2 ∈ Z, τ2 ∈ Ik2 , ν2 = 1, · · · , N(k2, τ2)} respectively be the

dyadic cubes of X1 and X2 defined in Lemma 1.2 with j1, j2 ∈ N large enough. Then there

are families of linear operators {Dki}ki∈Z on Xi such that for all f ∈ G(β1, β2; γ1, γ2) with

βi, γi ∈ (0, ϵi) for i = 1, 2, and any point yk1, ν1τ1
∈ Qk1, ν1

τ1
and yk2, ν2τ2

∈ Qk2, ν2
τ2

,
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f(x1, x2) =
∞∑

k1=−∞

∑
τ1∈Ik1

N(k1,τ1)∑
ν1=1

∞∑
k2=−∞

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ1(Q
k1, ν1
τ1

)µ2(Q
k2, ν2
τ2

)

×Dk1(x1, y
k1, ν1
τ1

)Dk2(x2, y
k2, ν2
τ2

)Dk1Dk2(f)(yk1, ν1τ1
, yk2, ν2τ2

),

where the series converge in the norm of both the space G(β′
1, β

′
2; γ

′
1, γ

′
2) with β′

i ∈ (0, βi) and

γ′i ∈ (0, γi) for i = 1, 2, and Lp(X1 ×X2) with p ∈ (1,∞).

Now we can first establish the atomic decomposition into (p, q)-atoms for 0 < p ≤ 1 <

q <∞, namely Theorem 2.6.

Let f ∈ Hp(X1 ×X2), then by Definition 2.4, f ∈
(
G̊(β1, β2; γ1, γ2)

)′
for some βi, γi

satisfying (2.1) for i = 1, 2. We will use Lemma 2.8 to get the atomic decomposition of f .

For any k ∈ Z, let

Ωk =
{

(x1, x2) ∈ X1 ×X2 : g2(f)(x1, x2) > 2k
}

and

Ω̃k = {(x1, x2) ∈ X1 ×X2 : Ms(χΩk
)(x1,X2) > C}

with a small enough constant C only depending on Xi, i = 1, 2, here and in the sequel, Ms

is the strong Hardy-Littlewood maximal function on X1 × X2 defined as in Definition 2.5.

Then, the Lq(X1 ×X2)-boundedness of Ms (see [DH]) implies that µ(Ω̃k) ≤ Cµ(Ωk).

Let R be the set of all dyadic rectangles of X1 ×X2, that is

R = {R = Q1 ×Q2 : Q1 and Q2 are dyadic cubes, respectively, of X1 and X2} ,
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and for k ∈ Z,

Rk =

{
R ∈ R : µ(R ∩ Ωk) >

1

2
µ(R) and µ(R ∩ Ωk+1) ≤

1

2
µ(R)

}
.

Obviously, for any R ∈ R, there is a unique k ∈ Z such that R ∈ Rk. Thus, we can reclassify

the set of all dyadic rectangles in X1 ×X2 by

∪
R∈R

R =
∪
k∈Z

∪
R∈Rk

R. (2.10)

In what follows, for i = 1, 2, if Qki is a dyadic cube and diamQki ∼ 2−ki , we rewrite Dki

and Dki , respectively, by DQki
and DQki

. And denote by yki a point in Qki . Then, by lemma

2.8, we have

f(x1, x2) =
∞∑

k1=−∞

∑
τ1∈Ik1

N(k1,τ1)∑
ν1=1

∞∑
k2=−∞

∑
τ2∈Ik2

N(k2,τ2)∑
ν2=1

µ1(Q
ki, νi
τi

)µ2(Q
k2, ν2
τ2

) (2.11)

×Dk1(x1, y
k1, ν1
τ1

)Dk2(x2, y
k2, ν2
τ2

)Dk1Dk2(f)(yk1, ν1τ1
, yk2, ν2τ2

)

=
∞∑

k1=−∞

∑
diamQk1

∼2−k1

∞∑
k2=−∞

∑
diamQk2

∼2−k2

µ1(Qk1)µ2(Qk2)Dk1(x1, yk1)Dk2(x2, yk2)

Dk1Dk2(f)(yk1 , yk2)

=
∞∑

k=−∞

∑
R=Qk1

×Qk2
∈Rk

µ1(Qk1)µ2(Qk2)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

=
∞∑

k=−∞

∑
R=Qk1

×Qk2
∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

=
∞∑

k=−∞

λkak(x1, x2),
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where

ak(x1, x2) =
1

λk

∑
R=Qk1

×Qk2
∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2),

and when 2 ≤ q <∞ we let

λk = C

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
q

µ(Ω̃k)
1
p
− 1

q ,

while 1 < q < 2 we let,

λk = C

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
q

µ(Ω̃k)
1
p
− 1

2 .

We now verify that {λk}k∈Z and {ak}k∈Z satisfy the requirement of the Theorem 2.6. First,

note that in the above expressions we have set

Ω̃k = {(x1, x2) ∈ X1 ×X2 : Ms(χΩk
)(x1, x2) > C} ,

where C is only dependent on X1 and X2 and is chosen to be small enough. It is easy to

check that supp ak ⊂ Ω̃k, since R ∈ Rk implies R ∈ Ω̃. Thus ak is supported in an open set,

and hence satisfies (1) of Definition 2.5.

To see that ak satisfies (2) of Definition 2.5, let h ∈ Lq
′
(X1 × X2) ∩ L2(X1 × X2), where
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1
q

+ 1
q ′ = 1. By Hölder inequality and Lemma 2.7, we have

∥∥∥∥∥∥
∑

R=Qk1
×Qk2

∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

∥∥∥∥∥∥
q

= sup
∥h∥q′≤1

∣∣∣∣∣
⟨ ∑

R=Qk1
×Qk2

∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2), h

⟩∣∣∣∣∣
= sup

∥h∥q′≤1

∣∣∣∣∣∣
∑

R=Qk1
×Qk2

∈Rk

ˆ
X1×X2

ˆ
R

DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

h(x1, x2) dµ1(y1) dµ2(y2)dµ1(x1) dµ2(x2)

∣∣∣∣∣
≤ sup

∥h∥q′≤1

ˆ
X1×X2

∑
R=Qk1

×Qk2
∈Rk

DQk1
DQk2

(h)(yk1 , yk2)DQk1
DQk2

(f)(yk1 , yk2)

χR(y1, y2)dµ1(y1) dµ2(y2)

≤ sup
∥h∥q′ le1

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

∣∣∣∣∣DQk1
DQk2

(f)(yk1 , yk2)

∣∣∣∣∣
2

χR(· , ·)


1
2

∥∥∥∥∥∥∥
q∥∥∥∥∥∥∥

 ∑
R=Qk1

×Qk2
∈Rk

∣∣∣∣∣DQk1
DQk2

(h)(yk1 , yk2)

∣∣∣∣∣
2

χR(· , ·)


1
2

∥∥∥∥∥∥∥
q′

≤ sup
∥h∥q′≤1

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

∣∣∣∣∣DQk1
DQk2

(f)(yk1 , yk2)

∣∣∣∣∣
2

χR(· , ·)


1
2

∥∥∥∥∥∥∥
q∥∥∥∥∥∥∥


∞∑

k1=−∞

∞∑
k2=−∞

∣∣∣∣∣DQk1
DQk2

(h)(yk1 , yk2)

∣∣∣∣∣
2

χR(· , ·)


1
2

∥∥∥∥∥∥∥
q′

≤ sup
∥h∥q′≤1

∥g2(h)∥q′

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

∣∣∣∣∣DQk1
DQk2

(f)(yk1 , yk2)

∣∣∣∣∣
2

χR(· , ·)


1
2

∥∥∥∥∥∥∥
q

≤ C sup
∥h∥q′≤1

∥(h)∥q′

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

∣∣∣∣∣DQk1
DQk2

(f)(yk1 , yk2)

∣∣∣∣∣
2

χR(· , ·)


1
2

∥∥∥∥∥∥∥
q

= C

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

∣∣∣∣∣DQk1
DQk2

(f)(yk1 , yk2)

∣∣∣∣∣
2

χR(· , ·)


1
2

∥∥∥∥∥∥∥
q

.
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Then the above estimate yields that when 2 ≤ q <∞,

∥ak∥q =

(
C

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
q

µ(Ω̃k)
1
p
− 1

q

)−1

×

∥∥∥∥∥∥
∑

R=Qk1
×Qk2

∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

∥∥∥∥∥∥
q

≤ µ(Ω̃k)
1
q
− 1

p

Note that ak is supported in Ω̃k. Thus if 1 < q < 2, the similar estimate and the definition

of λk yield

∥ak∥q =

(
C

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
2

µ(Ω̃k)
1
p
− 1

2

)−1

×

∥∥∥∥∥∥
∑

R=Qk1
×Qk2

∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

∥∥∥∥∥∥
q

≤

(
C

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
2

µ(Ω̃k)
1
p
− 1

2

)−1

×µ(Ω̃k)
1
q
− 1

2

∥∥∥∥∥∥
∑

R=Qk1
×Qk2

∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

∥∥∥∥∥∥
q

≤ µ(Ω̃k)
1
q
− 1

p ,

which implies that ak satisfies the size condition (2) of (p,q)-atoms.

To verify that ak satisfies the condition (3) and (4) of Definition 2.5, note that if R ∈ Rk,
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then R ⊂ Ω̃k. From this, it is easy to see that we can further decompose ak(x1, x2) into

ak(x1, x2) =
1

λk

∑
R=Qk1

×Qk2
∈Rk

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

=
1

λk

∑
R̃∈M(Ω̃k)

∑
R=Qk1

×Qk2
∈Rk

R⊂R̃

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

=
∑

R̃∈M(Ω̃k)

1

λk

∑
R=Qk1

×Qk2
∈Rk

R⊂R̃

µ(R)DQk1
(x1, yk1)DQk2

(x2, yk2)DQk1
DQk2

(f)(yk1 , yk2)

=
∑

R̃∈M(Ω̃k)

αR̃(x1, x2).

Let R̃ = Q1 × Q2 with diamQ1 ∼ 2−k′1 and diamQ2 ∼ 2−k′2 and zi be the center of Qi

with i = 1, 2. Then k′i ≤ ki for i = 1, 2. From this, it is easy to verify that

supp aR̃ ⊂ B1(z1,C2−k′1) × B2(z2,C2−k′2).

Obviously, we have that for all x2 ∈ X2,

ˆ
X1

αR̃(x1, x2) dµ1(x1) = 0,

and for all x1 ∈ X1, ˆ
X2

αR̃(x1, x2) dµ2(x2) = 0.

Then it remains to show (3). To see that when 2 ≤ q < ∞, αR̃ satisfies the estimate of
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(3a), by the same proof for the estimate of ∥ak∥q, we have

∥αR̃∥q ≤
C

λk

∥∥∥∥∥∥∥∥∥


∑
R=Qk1

×Qk2
∈Rk

R⊂R̃

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥∥∥
q

,

hence, the fact that 2 ≤ q <∞ and the definition of λk yield

∑
R̃∈M(Ω̃k)

∥αR̃∥q ≤ ∥ak∥qq,

which, by the estimate (2) for ak, implies that ak satisfies (3a) of Definition 2.5. When

1 < q < 2, we have

∑
R∈M1(Ω̃k)

γ−δ2 ∥aR∥qLq(X1×X2)

≤ C

λqk

∑
R∈M1(Ω̃k)

γ−δ2 (R)

∥∥∥∥∥∥∥∥∥


∑
R=Qk1

×Qk2
∈Rk

R⊂R̃

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥∥∥
q

q

≤ C

λqk

∑
R∈M1(Ω̃k)

γ−δ2 (R)µ(R)1−
2
q


ˆ
X1×X2

∑
R=Qk1

×Qk2
∈Rk

R⊂R̃

|DQk1
DQk2

(f)(yk1 , yk2)|2

×χR(x1, x2) dµ1(x1) dµ2(x2)

}q/2

≤ C

λqk
{
∑

R∈M1(Ω̃k)
γ−δ

′

2 (R)µ(R)}1−
2
q


ˆ
X1×X2

∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2

×χR(x1, x2) dµ1(x1) dµ2(x2)

}q/2

≤ Cq,δ′µ(Ω̃k)
1− 2

qµ(Ω̃k)
q
2
− q

p ≤ Cδ′µ(Ω̃k)
1− q

p .

where the last inequality follows from Lemma 2.7. The other summation in (3b) can be
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proved by the same manner. This shows that ak satisfies (3b) of Definition 2.5.

Note that by the maximal theorem µ(Ω̃k) ≤ Cµ(Ωk). Since if (x1, x2) ∈ R ∈ Rk then

Ms

(
χR∩Ω̃k\Ωk+1

)
(x1, x2) >

1
2
, we have χR(x1, x2) ≤ 2Ms

(
χR∩Ω̃k\Ωk+1

)
(x1, x2). Thus, by the

Fefferman-Stein vector valued inequality , for all 1 < q <∞,

∞∑
k=−∞

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
q

q

=

ˆ
X1×X2

 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(x1, x2)


q/2

dµ1(x1) dµ2(x2)

≤ C

ˆ
X1×X2

 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|Ms

(
χR∩Ω̃k\Ωk+1

)
(x1, x2)|2


q/2

dµ1(x1) dµ2(x2)

≤ C

ˆ
Ω̃k\Ωk+1

 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(x1, x2)


q/2

dµ1(x1) dµ2(x2)

≤ C2kqµ(Ω̃k).

Therefore, when 2 ≤ q <∞, we have

∞∑
k=−∞

|λk|p =
∞∑

k=−∞

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
p

q

∥Ω̃k∥1−
p
q

≤ C
∞∑

k=−∞

2kpµ(Ω̃k)
p
qµ(Ω̃k)

1− p
q = C

∞∑
k=−∞

2kpµ(Ω̃k)

≤ C
∞∑

k=−∞

2kpµ(Ωk) ≤ C
∞∑

k=−∞

2kpµ(Ωk \ Ωk+1)

≤ C ∥g2(f)∥pLp(X1×X2)
,
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and when 1 < q < 2,

∞∑
k=−∞

|λk|p =
∞∑

k=−∞

∥∥∥∥∥∥∥
 ∑
R=Qk1

×Qk2
∈Rk

|DQk1
DQk2

(f)(yk1 , yk2)|2χR(· , ·)


1/2
∥∥∥∥∥∥∥
2

q

∥Ω̃k∥1−
p
2

≤ C

∞∑
k=−∞

2kpµ(Ω̃k)
p
2µ(Ω̃k)

1− p
2 = C

∞∑
k=−∞

2kpµ(Ω̃k)

≤ C ∥g2(f)∥pLp(X1×X2)
,

which is a desired estimate. Finally, note the fact that the atomic decomposition converges

in Lq(X1 ×X2) follows from the same proof of the convergence of Lemma 2.1 in [HL3]. This

ends the proof of Theorem 2.6.

2.4 Boundedness criterions of operators

For an operator on multi-parameter Hardy spaces of homogeneous type, by considering its

action on (p, q)-atoms, we are able to prove a uniform boundedness criterion as follows.

Theorem 2.9. Suppose that T is a bounded linear operator on Lq(X1 × X2) for some 1 <

q <∞. Let ϵi ∈ (0, θi] and

max

{
d1

d1 + ϵ1
,

d2
d2 + ϵ2

}
< p ≤ 1.

Then

(1) T is bounded from Hp(X1×X2) to Lp(X1×X2) if and only if ∥Ta∥Lp(X1,X2) ≤ C for all

(p, q)-atoms of Hp(X1 ×X2);
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(2) T is bounded on Hp(X1 × X2) if and only if ∥Ta∥Hp(X1×X2) ≤ C for all (p, q)-atoms of

Hp(X1 ×X2), where the constant C is independent of a.

To prove Theorem 2.9, we first claim that for any (p, q)-atom (0 < p ≤ 1 < q < ∞) of

Hp(X1 ×X2), a, there is a constant C > 0 such that

∥g2(a)∥Lp(X1×X2) ≤ C,

where g2 is the discrete Littlewood-Paley square function on X1 ×X2 defined in Lemma 2.3.

We give the outline of the proof of the claim that if a is an (p, q)-product atom for

1 < q < 2, then ∥a∥Hp(X1×X2) ≤ C, where C is a constant independent of a. The proof for

this fact when q > 2 is easier and we omit it here.

In fact, to show ∥a∥Hp(X1×X2) ≤ C, it suffices to show ∥g2(a)∥Lp(X1×X2) ≤ C.

Recall that a is an atom supported in Ω satisfying conditions (1), (2) in Definition 2.5

and the following (i.e. (3b) in Definition 2.5):

a =
∑

R∈M1(Ω)

aR +
∑

R∈M2(Ω)

aR,

and for any δ > 0, there exists a constant Cq, δ which only depends on q and δ, and aR

satisfying (4), such that

 ∑
R∈M1(Ω)

γ−δ2 ∥aR∥qLq(X1×X2)
+

∑
R∈M2(Ω)

γ−δ1 ∥aR∥qLq(X1×X2)


1/q

≤ Cq,δµ(Ω)1/q−1/p.



32

We will follow the similar outline as given on page 120 of [Fr1]. Let

Ω̃ = {(x1, x2) ∈ X1 ×X2 : Ms(χΩ)(x1, x2) > C} ,

and
˜̃
Ω = (̃Ω̃). Then by Holder inequality and the boundedness of g2 on Lq(X1×X2) in Lemma

2.3, we have

ˆ
˜̃
Ω

|g2(a)|pdµ1(x1)dµ2(x2) ≤ {
ˆ
˜̃
Ω

∥g2(a)∥qdµ1(x1)µ2(x2)}
p
qµ(
˜̃
Ω)1−

p
q

≤ C∥a∥pqµ(Ω)1−
p
q ≤ C,

.

To estimate

ˆ
˜̃
Ω

c
|g2(a)|pdµ1(x1)dµ2(x2), let R = Q1 × Q2 ⊂ M2(Ω), Q be the “longest”

dyadic cube containing Q1 such that µ(Q × Q2 ∩ Ω) > 1
2
µ(Q × Q2), Q̃ be the double of Q

and (Q̃)c be the complement of Q̃, we have

ˆ
(Q̃)c×X2

|g2(aR)|pdµ1(x1)µ2(x2) ≤ C(γ1(R))−δ∥aR∥pqµ(R)1−
p
q .

Summing over R gives

∑
R∈M2(Ω)

(γ1(R))−δ∥aR∥pqµ(R)1−
p
q

≤ {
∑

R∈M2(Ω)

(γ1(R))−δ∥aR∥qq}
p
q {

∑
R∈M2(Ω)

(γ1(R))−δ
′′
µ(R)}1−

p
q ≤ C,

where δ′, δ′′ are constants only dependent on δ, q, p and X1. Here the last inequality above

from the condition (3b) of (p,q)-atom a in Definition 2.5 and Lemma 2.7.

Hence for any (p, q)-atom a, there exists a constant C, such that ∥a∥Hp(X1×X2) ≤ C. Then
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we only need to prove the ”if” part of Theorem 2.9. If ∥Ta∥Lp(X1×X2) ≤ C uniformly on all

(p, q)-atoms of Hp(X1 × X2) in Lp(X1 × X2), then by Theorem 2.6, for f ∈ Hp(X1 × X2) ∩

Lq(X1,X2),

Tf =
∑
k

λkTak.

Since T is bounded on Lq(X1 ×X2), and f =
∑
k

λkak on Lq(X1 ×X2). Thus

∥Tf∥pp ≤
∑
k

|λk|p∥Tak∥pp ≤ Cp
∑
k

|λk|p ≤ C∥f∥pHp .

(2) If ∥Ta∥Hp(X1×X2) ≤ C uniformly on all (p,q)-atoms of Hp(X1 × X2) in Hp(X1 × X2),

then by Theorem 1.1, for f ∈ Hp(X1 ×X2) ∩ Lq(X1,X2),

∥Tf∥pHp(X1×X2)
≤
∑
k

|λk|p∥Tak∥pHp(X1×X2)
≤ Cp

∑
k

|λk|p ≤ C∥f∥pHp .

Since Hp(X1 × X2) ∩  Lq(X1 × X2) is dense in Hp(X1 × X2), the proof of Theorem 2.9 is

complete.

3 Wolff potentials and regularity of solutions to

integral systems on spaces of homogenous type

3.1 Introduction and statements of main results

Wolff potentials on Rn were originally studied by Hedberg and Wolff [HW]: Given ω ∈

M+(Rn), the class of all positive locally finite Borel measure on Rn, the (continuous) Wolff
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potential Wα,pω(x) for α > 0 and p > 1 is defined as

Wα,pω(x) =

ˆ ∞

0

[
ω(Bt(x))

tn−αp

]p′−1
dt

t

for x ∈ Rn, where ω(Bt(x)) =
´
Bt(x)

dω and p′ is the conjugate index of p. They also

introduced the discrete version of Wolff potentials as

WD
α,pω(x) =

∑
Q∈D

[
ω(Q)

|Q|1−αp
n

] 1
p−1

χQ(x),

where D is the set of all the dyadic cubes Q ⊆ Rn and |Q| denotes its volume. We define the

(continuous) Riesz potential of ω for 0 < λ < n as

Iλω(x) = c

ˆ
Rn

|x− y|λ−ndω =

ˆ ∞

0

ω(Bt(x))

tn−λ
dt

t
.

It is evident that Iλω = Wλ
2
,2ω, and the discrete version of Riesz potentials can be

similarly established. Wolff’s theorem ([HW], see also §4.5 in [AH]) states

Theorem 3.1 (Wolff’s theorem). Let α > 0, 1 < p < ∞, 0 < αp < n and ω ∈ M+(Rn),

then ˆ
Rn

WD
α,pω(x)dω ≃

ˆ
Rn

(Iαω(x))p
′
dx.

The brilliant work [HW] of Hedberg and Wolff was originally carried out to fill the gap

in the study of Sobolev spaces, however it also has important applications in other areas.

Here we mention some interesting examples among them. Note that if u ≥ 0 is measurable

on Rn, then dω = udx ∈ M+(Rn).
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Example 1.

u(x) = Wλ
2
,2(u

n+λ
n−λ )(x) = Iλ(u

n+λ
n−λ )(x),

and its corresponding semilinear partial differential equation

(−∆)λu = u
n+λ
n−λ .

This family of equations are closely related to optimizers of sharp Hardy-Littlewood-

Sobolevi inequality. See [FL, Lu] for the study of this inequality, and [HLZj] provides some

recent results about sharp HLS inequalities on homogeneous spaces of Heisenberg type.

Example 2 (p-Laplacian equations).

u(x) = W1,p(u
q)(x),

and its corresponding p-Laplacian equation

−∆pu = −div(∇u|∇u|p−2) = uq.

Example 3 (Hessian equations).

u(x) = W 2k
k+1

,k+1(u
q)(x).

iWe use HLS to denote Hardy-Littlewood-Sobolev in the following content.
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and its corresponding k-Hessian equation

Fk[−u] = uq.

Phuc and Verbitsky [PV1] studied Examples 2 and 3, based on systematic use of Wolff

potentials. They gave the existence and pointwise estimate of the positive solutions, in terms

of the corresponding Wolff potentials. Recently, Ma, Chen and Li [MCL] proved regularity

for positive solutions of an integral system associated with Wolff potentials. In this chapter,

we shall concentrate on some analogous results on homogeneous spaces, and first record

truncated version of Wolff potentials defined above for 0 < r ≤ ∞ as

W r
α,pω(x) =

ˆ r

0

[
ω(Bt(x))

tn−αp

] 1
p−1 dt

t
,

thus W r
α,pω and Wα,pω coincide when r = ∞.

Proposition 3.2 ([PV1]). Let α > 0, 1 < p < ∞, q > p− 1, ω ∈ M+(Rn) and 0 < r ≤ ∞,

then the following quantities are equivalent.

∥∥∥W r
αp, q

q−p+1
ω
∥∥∥
L1(dω)

=

ˆ
Rn

ˆ r

0

[
ω(Bt(x))

tn−
αpq

q−p+1

] q−p+1
p−1 dt

t
dω, (3.1)

∥∥W r
α,pω

∥∥q
Lq(dx)

=

ˆ
Rn

{ˆ r

0

[
ω(Bt(x))

tn−αp

] 1
p−1 dt

t

}q

dx, (3.2)

∥∥Irαpω∥∥ q
p−1

L
q

p−1 (dx)
=

ˆ
Rn

[ˆ r

0

ω(Bt(x))

tn−αp
dt

t

] q
p−1

dx. (3.3)

Remark. In Proposition 3.2, (3.1) ≃ (3.3) is the truncated version of Wolff’s theorem, while
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we call (3.2) ≃ (3.3) a HLS type inequality.

In the following sections of this chapter, we will switch our attention to spaces of homo-

geneous type. We extend (3.2) ≃ (3.3) in Proposition 3.2 to spaces of homogeneous type,

followed by an associated HLS inequality for Wolff potentials on spaces of homogenous type.

We define the continuous truncated version of Wolff potentials on spaces of homogeneous

type for ω ∈ M+(X ) as

W r
α,pω(x) =

ˆ r

0

[
ω(Bt(x))

µ(Bt(x))1−
αp
N

] 1
p−1 dt

t
.

One can similarly define the continuous version Wα,pω = W∞
α,pω and the discrete version

WD
α,pω, using the dyadic construction on spaces of homogeneous type by Christ [Cm] and

Sawyer and Wheeden [SW] (see in Lemma 1.2 ).

One of our main results about the Wolff potentials on spaces of homogeneous type is

as follows. Similar result on Garnot groups of arbitrary steps has also been independently

obtained by N. Phuc and I. Verbitsky in [PV2].

Theorem 3.3. Let α > 0, 1 < p <∞, q > p− 1, ω ∈ M+(X ) and 0 < r ≤ ∞, then

∥∥W r
α,pω

∥∥q
Lq(dµ)

=

ˆ
X

{ˆ r

0

[
ω(Bt(x))

µ(Bt(x))1−
αp
N

] 1
p−1 dt

t

}q

dµ (3.4)

≃
∥∥Irαpω∥∥ q

p−1

L
q

p−1 (dµ)
=

ˆ
X

[ˆ r

0

ω(Bt(x))

µ(Bt(x))1−
αp
N

dt

t

] q
p−1

dµ. (3.5)

We point out that Wolff’s theorem on spaces of homogeneous type, i.e., the parallel

result of (3.1) ≃ (3.3) in Proposition 3.2 on homogeneous spaces was proved by Cascante

and Ortega (Theorems 2.7 and 3.1 in [CO]). By a HLS inequality proved by Sawyer and
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Wheeden [SW] (see also Sawyer, Wheeden and Zhao [SWZ]) for Riesz potentials on spaces

of homogeneous type(i.e., fractional integrals, and they proved weighted version therein), it

is not difficult (We also provide the proof in the next section.) to derive the following HLS

type inequality for Wolff potentials.

Theorem 3.4 (HLS type inequality for Wolff potentials). Let α > 0, 1 < p <∞, q > p− 1

and αp < N . If f ∈ Ls(dµ) for s > 1, then

∥Wα,p(f)∥Lq(dµ) ≤ C∥f∥
1

p−1

Ls(dµ),

where p−1
q

= 1
s
− αp

N
.

We apply this inequality to study a Lane-Emden type integral system, that is,


u = Wα,p(v

q2),

v = Wα,p(u
q1),

(3.6)

under the (critical) condition

p− 1

q1 + p− 1
+

p− 1

q2 + p− 1
=
N − αp

N
, (3.7)

and when u = v and q1 = q2 = q, (3.6) is reduced to

u = Wα,p(u
q),

which is the Lane-Emden type integral equation, and deduces Examples 1, 2 and 3 above on
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homogeneous spaces, given special pairs of α and p. Our main regularity theorems state

Theorem 3.5 (Integrability estimates). Let α > 0, 1 < p ≤ 2, αp < N and q1, q2 >

1, assume that (u, v) is a pair of positive solutions of (3.6) and (3.7) satisfying (u, v) ∈

Lq1+p−1(dµ) × Lq2+p−1(dµ), then (u, v) ∈ Ls1(dµ) × Ls2(dµ) for all s1 and s2 such that

1

s1
∈
(

0,
p

q1 + p− 1

)
∩
(
− 1

q2 + p− 1
+

1

q1 + p− 1
,

p− 1

q2 + p− 1
+

1

q1 + p− 1

)

and

1

s2
∈
(

0,
p

q2 + p− 1

)
∩
(
− 1

q1 + p− 1
+

1

q2 + p− 1
,

p− 1

q1 + p− 1
+

1

q2 + p− 1

)
.

Theorem 3.6 (L∞ estimates). Under the same conditions in Theorem 3.5, u and v are both

uniformly bounded on X .

3.2 Comparison of Wolff and Reize potentials

For α > 0, 1 < p < ∞ and ω ∈ M+(X ), we define the discrete Wolff potentials on homoge-

neous space X by

WD
α,pω(x) =

∑
k

∑
diam(Q)∼2−k

[
ω(Q)

µ(Q)1−
αp
N

] 1
p−1

χQ(x).

and when α = λ/2 and p = 2, the discrete Riesz follows as

IDλ ω(x) =
∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
λ
N

χQ(x),
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Next we will prove the discrete version of Theorem 3.3, that is

Theorem 3.7 (Discrete version of Theorem 3.3). Let α > 0, 1 < p < ∞, q > p − 1 and

ω ∈ M+(X ), then

∥∥WD
α,pω

∥∥q
Lq(dµ)

=

ˆ
X

∑
k

∑
diam(Q)∼2−k

[
ω(Q)

µ(Q)1−
αp
N

] 1
p−1

χQ(x)


q

dµ (3.8)

≃
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)
=

ˆ
X

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

χQ(x)


q

p−1

dµ. (3.9)

In order to prove Theorem 3.7, discrete version of Theorem 3.3, we need to introduce an

equivalent recording of discrete Riesz potentials.

Lemma 3.8. Assume the same conditions in Theorem 3.7, define

Λ(ω, µ) :=

ˆ
X

[
sup

k∈Z+, diam(Q)∼2−k, x∈Q

1

µ(Q′)1−
αp
N

∑
Q′⊆Q

ω(Q′)

] q
p−1

dµ.

Then we have

Λ(ω, µ) ≃
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)
. (3.10)

Proof of Lemma 3.8.

• Λ(ω, µ) .
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)

We need dyadic Hardy-Littlewood maximal function Md on X , which is defined for all
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ν ∈ M+(X ) by

Md(ν)(x) = sup
x∈Q

ν(Q)

µ(Q)
.

Since for dν = |f |dµ, the operator Md is bounded on L
q

p−1 (µ) for q > p− 1, (See, e.g.

Theorem 3.1(c) in [ABI].) we have

Λ(ω, µ) =

ˆ
X

[
sup

k∈Z+, diam(Q)∼2−k, x∈Q

∑
Q′⊆Q

ω(Q′)

µ(Q)1−
αp
N

] q
p−1

dµ

≤
ˆ
X
Md

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N


q

p−1

dµ

≤ C
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)
,

which finishes the proof Λ(ω, µ) .
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)
.

• Λ(ω, µ) &
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)

First we show that for all x ∈ X ,

∑
k

∑
diam(Q)∼2−k

ω(Q)χQ(x)


q

p−1

(3.11)

≤ q

p− 1

∑
k

∑
diam(Q)∼2−k

ω(Q)χQ(x)

[∑
Q′⊆Q

ω(Q′)χQ′(x)

] q
p−1

−1

.

in three cases.

Case I: If ∑
k

∑
diam(Q)∼2−k

ω(Q)χQ(x) ≤ ∞.

Note that for a fixed x ∈ X , the dyadic cubes containing x form a nested family of



42

cubes. Hence using the elementary bt− at ≤ t(b− a)bt−1 for 0 ≤ a ≤ b and 1 ≤ t <∞,

we have

[∑
Q′⊆Q

ω(Q′)χQ′(x)

] q
p−1

−

[∑
Q′(Q

ω(Q′)χQ′(x)

] q
p−1

≤ q

p− 1

∑
k

∑
diam(Q)∼2−k

ω(Q)χQ(x)

[∑
Q′⊆Q

ω(Q′)χQ′(x)

] q
p−1

−1

.

From this (3.11) follows by a telescoping sum argument, taking the sums of both sides

over all dyadic cubes Q that contain x.

Case II: If ∑
k

∑
diam(Q)∼2−k

ω(Q)χQ(x) = ∞,

but ∑
Q⊆Q0

ω(Q)χQ(x) ≤ ∞

for some (and hence every) dyadic cube Q0 which contains x, then (3.11) follows by

the same argument as in Case I taking the sums over all Q ⊆ Q0 and then letting

µ(Q0) → ∞.

Case III: If ∑
k

∑
diam(Q)∼2−k

ω(Q)χQ(x) = ∞,

but ∑
Q⊆Q0

ω(Q)χQ(x) = ∞

for some Q0, then both side of (3.10) are obviously infinite. This completes the proof
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of (3.11).

Next we use induction on q
p−1

> 1 to prove

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)
(3.12)

≤ C
∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)−
αp
N

[
1

µ(Q)1−
αp
N

∑
Q′⊆Q

ω(Q′)

] q
p−1

−1

,

where C only depends on X , p and q.

Step 1: To verify (3.12) is true if 1 < q
p−1

≤ 2. By (3.11),

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)

=

ˆ
X

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

χQ(x)


q

p−1

dµ

≤ q

p− 1

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

ˆ
Q

[∑
Q′⊆Q

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

] q
p−1

−1

dµ,

then by Hölder’s inequality with exponents p−1
q−p+1

and p−1
2p−2−q , we have

ˆ
Q

[∑
Q′⊆Q

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

] q
p−1

−1

dµ

≤

[ˆ
Q

∑
Q′⊆Q

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)dµ

] q−p+1
p−1

µ(Q)
2p−2−q

p−1

≤

[ˆ
Q

∑
Q′⊆Q

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)dµ

] q
p−1

−1 [
1

µ(Q)

] q
p−1

−1

µ(Q)
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= µ(Q)

[
1

µ(Q)

ˆ
Q

∑
Q′⊆Q

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)dµ

] q
p−1

−1

≤ µ(Q)

[
1

µ(Q)

∑
Q′⊆Q

ω(Q′)

µ(Q′)−
αp
N

] q
p−1

−1

≤ µ(Q)

[
1

µ(Q)1−
αp
N

∑
Q′⊆Q

ω(Q′)

] q
p−1

−1

.

Therefore,

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)

≤ q

p− 1

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

ˆ
Q

[∑
Q′⊆Q

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

] q
p−1

−1

dµ

≤ q

p− 1

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)−
αp
N

[
1

µ(Q)1−
αp
N

∑
Q′⊆Q

ω(Q′)

] q
p−1

−1

,

which means (3.12) holds for 1 < q
p−1

≤ 2.

Step 2: Given an integer m ≥ 2, we assume that (3.12) holds for any q
p−1

≤ m, then and

we show that it also holds for q
p−1

≤ m+ 1.

By (3.11) and the induction hypothesis, we have

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)

≤ q

p− 1

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

ˆ
Q

[∑
Q′⊆Q

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

] q
p−1

−1

dµ

≤ C
q

p− 1
(

q

p− 1
− 1)

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

∑
Q′⊆Q

ω(Q′)

µ(Q′)−
αp
N

 1

µ(Q′)1−
αp
N

∑
Q′′⊆Q′

ω(Q
′′
)


q

p−1
−2
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= C
q(q − p+ 1)

(p− 1)2

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)−
αp
N

 1

µ(Q′)1−
αp
N

∑
Q′′⊆Q′

ω(Q
′′
)


q

p−1
−2 ∑

Q′⊆Q

ω(Q)

µ(Q)1−
αp
N

≤ C
q(q − p+ 1)

(p− 1)2

ˆ
X

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

 1

µ(Q′)1−
αp
N

∑
Q′′⊆Q′

ω(Q
′′
)


q

p−1
−2

×

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

χQ(x)

 dµ.
Note that q

p−1
− 1 > m− 1 ≥ 2, by Hölder’s inequality with exponents q

p−1
− 1 = q−p+1

p−1

and q−p+1
q−2p+2

, we have

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

 1

µ(Q′)1−
αp
N

∑
Q

′′⊆Q′

ω(Q
′′
)


q

p−1
−2

=
∑
k′

∑
diam(Q′)∼2−k′

[
ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

] p−1
q−p+1

[
ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

] q−2p+2
q−p+1

×

 1

µ(Q′)1−
αp
N

∑
Q

′′⊆Q′

ω(Q
′′
)


q

p−1
−2

≤

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

 1

µ(Q′)1−
αp
N

∑
Q

′′⊆Q′

ω(Q
′′
)


q

p−1
−1


q−2p+2
q−p+1

×

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)


p−1

q−p+1

.

Therefore,

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)
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≤ C q(q−p+1)
(p−1)2

´
X

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

χQ(x)

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)


p−1

q−p+1

×

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

 1

µ(Q′)1−
αp
N

∑
Q

′′⊆Q′

ω(Q
′′
)


q

p−1
−1


q−2p+2
q−p+1

dµ

≤ C q(q−p+1)
(p−1)2

´
X

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)


q

q−p+1

×

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

 1

µ(Q′)1−
αp
N

∑
Q

′′⊆Q′

ω(Q
′′
)


q

p−1
−1


q−2p+2
q−p+1

dµ.

By using Hölder’s inequality with exponents q−p+1
p−1

and q−p+1
q−2p+2

again, we have

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)

≤ C
q(q − p+ 1)

(p− 1)2

ˆ
X

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)


q

p−1

dµ


p−1

q−p+1

×

ˆ
X

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

 1

µ(Q′)1−
αp
N

∑
Q′′⊆Q′

ω(Q
′′
)


q

p−1
−1

dµ


q−2p+2
q−p+1

= C
q(q − p+ 1)

(p− 1)2

[∥∥Idαpω∥∥ q
p−1

L
q

p−1 (dµ)

] p−1
q−p+1

×

ˆ
X

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)1−
αp
N

χQ′(x)

 1

µ(Q′)1−
αp
N

∑
Q

′′⊆Q′

ω(Q
′′
)


q

p−1
−1

dµ


q−2p+2
q−p+1

≤ C
q(q − p+ 1)

(p− 1)2

[∥∥Idαpω∥∥ q
p−1

L
q

p−1 (dµ)

] p−1
q−p+1

×

∑
k′

∑
diam(Q′)∼2−k′

ω(Q′)

µ(Q′)−
αp
N

 1

µ(Q′)1−
αp
N

∑
Q′′⊆Q′

ω(Q
′′
)


q

p−1
−1


q−2p+2
q−p+1

.
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From the above inequality it follows that (3.12) holds for m < q
p−1

≤ m + 1, where C

only depends on X , p and q, and then (3.12) is verified for every 1 < q
p−1

<∞.

With the help of (3.12), we compute

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)

≤ C

ˆ
X

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

χQ(x)

[
1

µ(Q)1−
αp
N

∑
Q′⊆Q

ω(Q′)

] q
p−1

−1

dµ

≤ C

ˆ
X

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

χQ(x)

[ sup
k, diam(Q)∼2−k, x∈Q

1

µ(Q)1−
αp
N

∑
Q′⊆Q

ω(Q′)

] q
p−1

−1

dµ

≤ C

(∥∥Idαpω∥∥ q
p−1

L
q

p−1 (dµ)

) p−1
q

[Λ(ω, µ)]1−
p−1
q ,

where the last estimate we have used Hölder’s inequality with exponents q
p−1

and q
q−p+1

.

Thus ∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)
≤ C

q
q−p+1 Λ(ω, µ) . Λ(ω, µ),

and the proof of Lemma 3.8 is completed.

Next we will use Lemma 3.8 to prove Theorem 3.7.

Proof of Theorem 3.7.

•
∥∥WD

α,pω
∥∥q
Lq(dµ)

&
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)
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It becomes obvious once one notices that

∥∥IDαpω∥∥ q
p−1

L
q

p−1 (dµ)
≃ Λ(ω, µ)

=

ˆ
X

[
sup

k∈Z+, diam(Q)∼2−k, x∈Q

1

µ(Q′)1−
αp
N

∑
Q′⊆Q

ω(Q′)

] q
p−1

dµ

≤
ˆ
X

∑
k

∑
diam(Q)∼2−k

[
ω(Q)

µ(Q)1−
αp
N

] 1
p−1

χQ(x)


q

dµ

=
∥∥WD

α,pω
∥∥q
Lq(dµ)

.

•
∥∥WD

α,pω
∥∥q
Lq(dµ)

.
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)

The proof of this direction follows the same line to that given in [PV1]. We only show

p > 2, since
∥∥WD

α,pω
∥∥q
Lq(dµ)

.
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)
is trivial when p ≤ 2 by using Minkowski’s

inequality. Write t = p−1
p−2

and 0 < ε < αp
(p−1)n

, then t′ = p− 1 > 1 and

−t
(

1 − αp

N

) 1

p− 1
+ t− tε > 1.

By Hölder’s inequality, we have

∑
Q′⊆Q

ω(Q′)
1

p−1

µ(Q′)(1−
αp
N

) 1
p−1

−1

=
∑
Q′⊆Q

[
ω(Q′)

1
p−1µ(Q′)ε

]
µ(Q′)−(1−αp

N
) 1
p−1

+1−ε

≤

[∑
Q′⊆Q

ω(Q′)
1

p−1µ(Q′)εt
′

] 1
t′
[∑
Q′⊆Q

µ(Q′)−t(1−
αp
N

) 1
p−1

+t−tε

] 1
t
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≤ Cω(Q)
1

p−1µ(Q)εµ(Q)−(1−αp
n
) 1
p−1

+1−ε

= C
ω(Q)

1
p−1

µ(Q)(1−
αp
N

) 1
p−1

−1
.

Therefore,

∥∥WD
α,pω

∥∥q
Lq(dµ)

≤ C
∑
k

∑
diam(Q)∼2−k

ω(Q)
1

p−1

µ(Q)(1−
αp
N

) 1
p−1

+q−2

[
ω(Q)

1
p−1

µ(Q)(1−
αp
N

) 1
p−1

−1

]q−1

= C
∑
k

∑
diam(Q)∼2−k

ω(Q)
q

p−1

µ(Q)(1−
αp
N

) q
p−1

−1

= C

ˆ
X

∑
k

∑
diam(Q)∼2−k

ω(Q)

µ(Q)1−
αp
N

χQ(x)


q

p−1

dµ

.
∥∥IDαpω∥∥ q

p−1

L
q

p−1 (dµ)
,

which completes the proof of the Theorem 3.4.

3.3 Proof of HLS inequality

Theorem 3.3 follows evidently from its discrete counterpart, and we give a short proof of the

HLS type inequality for Wolff potentials in Theorem 3.4.

Proof of Theorem 3.4. From [SW], one have for Riesz potentials

∥Iλ(f)∥Lq(dµ) ≤ C∥f∥Ls(dµ),
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where 1 < s ≤ q < ∞, 0 < λ < N , 1
q

= 1
s
− λ

N
and f ∈ Ls(dµ). Thus by taking α > 0,

1 < p <∞ and λ = αp, we have

∥Iαp(f)∥
L

q
p−1 (dµ)

≤ C∥f∥Ls(dµ),

where

p− 1

q
=

1

s
− αp

N
.

Then by comparison of Wolff and Riesz potentials in Theorem 3.3, we arrive at

∥Wα,p(f)∥Lq(dµ) ≤ C∥Iαp(f)∥
1

p−1

L
q

p−1 (dµ)
≤ C∥f∥

1
p−1

Ls(dµ),

and Theorem 3.4 is verified.

3.4 Proof of the integrability and L∞ estimates

In this section, we prove regularity estimates in Theorems 3.5 and 3.6. The tool is regularity

lifting, and let us begin with setting the frame, that is, suppose V is a topological vector

space with two extended norms,

∥ · ∥X , ∥ · ∥Y : V → [0,∞],

let X := {v ∈ V : ∥v∥X < ∞} and Y := {v ∈ V : ∥v∥Y < ∞}. The operator T : X → Y is

said to be contracting if

∥Tf − Th∥Y ≤ η∥f − h∥X ,
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∀f, h ∈ X and some 0 < η < 1. And T is said to be shrinking if

∥Tf∥Y ≤ θ∥f∥X ,

∀f ∈ X and some 0 < θ < 1.

Remark. It is obvious that for a linear operator T , these two conditions above are equivalent.

Thus the following theorem is also true for linear shrinking operators.

Theorem 3.9 (Regularity lifting by contracting operators ([HaL, MCL])). Let T be a con-

tracting operator from X to itself and from Y to itself, and assume that X, Y are both

complete. If f ∈ X, and there exists g ∈ Z := X∩Y such that f = Tf+g in X, then f ∈ Z.

Now we can prove Theorem 3.5 by using the above lifting Theorem. Without causing any

confusion, we simply denote ∥ · ∥Lq(dµ) by ∥ · ∥q, and Lq(dµ) by Lq in the following proof.

Proof of Theorem 3.5. For a fixed real number a > 0, define

va(u) =


v(x) if |v(x)| > a, or |x| > a,

0 otherwise.

Let vb(u) = v(u)− va(u), and similarly we define ua and ub, then vb and ub are uniformly

bounded by a in Ba(0) obviously. It is evident that va · vb = 0 and vr = (va + vb)
r = vra + vrb

for all r > 0. Define the linear operator T1,

T1h(x) =

ˆ ∞

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 2−p
p−1
[´

Bt(x)
vq2−1
a hdµ

µ(Bt(x))1−
αp
N

]
dt

t
.
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Since u satisfies (3.6), u = Wα,p(v
q2), we have

u(x) = Wα,p(v
q2)(x)

=

ˆ ∞

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 2−p
p−1
[´

Bt(x)
(vq2a + vq2b )dµ

µ(Bt(x))1−
αp
N

]
dt

t

= T1v(x) +

ˆ ∞

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 2−p
p−1
[ ´

Bt(x)
vq2b dµ

µ(Bt(x))1−
αp
N

]
dt

t

:= T1v(x) + F (x),

and thus u = T1v + F , in which

F (x) =

ˆ ∞

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 2−p
p−1
[ ´

Bt(x)
vq2b dµ

µ(Bt(x))1−
αp
N

]
dt

t
.

Similarly, we define

T2h(x) =

ˆ ∞

0

[ ´
Bt(x)

uq1dµ

µ(Bt(x))1−
αp
N

] 2−p
p−1
[´

Bt(x)
uq1−1
a hdµ

µ(Bt(x))1−
αp
N

]
dt

t

and

G(x) =

ˆ ∞

0

[ ´
Bt(x)

uq1dµ

µ(Bt(x))1−
αp
N

] 2−p
p−1
[ ´

Bt(x)
uq1b dµ

µ(Bt(x))1−
αp
N

]
dt

t
.

Then we have v = T2u+G. Define the operator T (f, g) = (T1g, T2f), equip the product

space Lq1+p−1×Lq2+p−1 with norm ∥(f, g)∥q1+p−1,q2+p−1 = ∥f∥q1+p−1+∥g∥q2+p−1, and Ls1×Ls2

with norm ∥(f, g)∥s1,s2 = ∥f∥s1 + ∥g∥s2 . It is easy to see they are both complete under these

norms respectively.

Thus we immediately observe that (u, v) solves the equation (f, g) = T (f, g) + (F,G). In
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order to apply regularity lifting by contracting operators (Theorem 3.9), we fix the indices

s1 and s2 satisfying

1

s1
− 1

s2
=

1

q1 + p− 1
− 1

q2 + p− 1
. (3.13)

Note that the interval conditions in Theorem 3.5 guarantee the existence of such pairs

(s1, s2). Then to arrive at the conclusion that (f, g) ∈ Ls1 × Ls2 , we need to verify the

following conditions, for sufficiently large a. (Here T is linear, by the remark above we only

need to verify that it is shrinking.)

1. T is shrinking from Lq1+p−1 × Lq2+p−1 to itself.

2. T is shrinking from Ls1 × Ls2 to itself.

3. (F,G) ∈ Lq1+p−1 × Lq2+p−1 ∩ Ls1 × Ls2 , i.e., F ∈ Lq1+p−1 ∩ Ls1 and G ∈ Lq2+p−1 ∩ Ls2 .

(1). T is shrinking from Lq1+p−1 × Lq2+p−1 to itself.

First, we show that ∥T1h∥q1+p−1 ≤ 1
2
∥h∥q2+p−1 for all h ∈ Lq2+p−1. By choosing 1

2−p and

1
p−1

as two conjugate indices in Hölder’s inequality, we have

|T1h(x)| =

∣∣∣∣∣∣
ˆ ∞

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 2−p
p−1
[´

Bt(x)
vq2−1
a hdµ

µ(Bt(x))1−
αp
N

]
dt

t

∣∣∣∣∣∣
≤


ˆ ∞

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 1
p−1

dt

t


2−p

ˆ ∞

0

[´
Bt(x)

vq2−1
a |h|dµ

µ(Bt(x))1−
αp
N

] 1
p−1

dt

t


p−1

=
[
Wα,p(v

q2)(x)
]2−p[

Wα,p(u
q2−1
a |h|)(x)

]p−1

= u2−p(x)
[
Wα,p(v

q2−1
a |h|)(x)

]p−1

.
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Thus, applying Hölder’s inequality again,

∥T1h∥q1+p−1

≤∥u2−p∥ q1+p−1
2−p

∥
[
Wα,p(v

q2−1
a |h|)

]p−1

∥s

=∥u∥2−pq1+p−1∥Wα,p(v
q2−1
a |h|)∥p−1

s(p−1)

≤C∥u∥2−pq1+p−1∥vq2−1
a |h|∥ q2+p−1

q2

≤C∥u∥2−pq1+p−1∥vq2−1
a ∥ q2+p−1

q2−1
∥h∥q2+p−1

=C∥u∥2−pq1+p−1∥va∥
q2−1
q2+p−1∥h∥q2+p−1,

in which we used HLS type inequality for Wolff potentials in Theorem 3.4 and have

1

q1 + p− 1
=

2 − p

q1 + p− 1
+

1

s

and

1

s
=

q2
q2 + p− 1

− αp

N
,

which is ensured by the condition (3.7). Thus we choose a sufficiently large that

C∥u∥2−pq1+p−1∥va∥
q2−1
q2+p−1 ≤

1

2
,

since u ∈ Lq1+p−1 and v ∈ Lq2+p−1. Then ∥T1h∥q1+p−1 ≤ 1
2
∥h∥q2+p−1 is verified. Similarly we

can prove that ∥T2h∥q2+p−1 ≤ 1
2
∥h∥q1+p−1 for all h ∈ Lq1+p−1 by choosing a large enough.
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Combining them together, we have no difficulty to get

∥T (f, g)∥q1+p−1,q2+p−1

= ∥T1g∥q1+p−1 + ∥T2f∥q2+p−1

≤ 1

2
(∥g∥q2+p−1 + ∥f∥q1+p−1)

=
1

2
∥(f, g)∥q1+p−1,q2+p−1,

and this shows that T is shrinking from Lq1+p−1 × Lq2+p−1 to itself.

(2). T is shrinking from Ls1 × Ls2 to itself.

We use the same tool as we did in (1), that is, HLS type inequality for Wolff potentials in

Theorem 3.4 with assistance of Hölder’s inequality, by properly choosing the indices. Here,

we prove that ∥T2h∥s2 ≤ 1
2
∥h∥s1 first,

∥T2h∥s2

≤∥v2−p∥ q2+p−1
2−p

∥
[
Wα,p(u

q1−1
a |h|)

]p−1

∥t1

=∥v∥2−pq2+p−1∥Wα,p(u
q1−1
a |h|)∥p−1

t1(p−1)

≤C∥v∥2−pq2+p−1∥uq1−1
a |h|∥t2

≤C∥v∥2−pq2+p−1∥uq1−1
a ∥ q1+p−1

q1−1
∥h∥s1

=C∥v∥2−pq2+p−1∥ua∥
q1−1
q1+p−1∥h∥s1 ,
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in which we choose a sufficiently large such that

C∥v∥2−pq2+p−1∥ua∥
q1−1
q1+p−1 ≤

1

2
,

since v ∈ Lq2+p−1 and u ∈ Lq1+p−1. Thus, ∥T2h∥s2 ≤ 1
2
∥h∥s1 for all h ∈ Ls1 . The indices s1,

s2, t1 and t2 above satisfy

1

s2
=

2 − p

q2 + p− 1
+

1

t1
,

1

t2
=

q1 − 1

q1 + p− 1
+

1

s1

and by (3.13) and (3.7),

1

t1
=

1

s2
− 2 − p

q2 + p− 1

=
1

s1
− 1

q1 + p− 1
+

1

q2 + p− 1
− 2 − p

q2 + p− 1

=
1

s1
− 1

q1 + p− 1
+

p− 1

q2 + p− 1

=
1

s1
− 1

q1 + p− 1
+
N − αp

N
− p− 1

q1 + p− 1

=
1

s1
+

q1 − 1

q1 + p− 1
− αp

N

=
1

t2
− αp

N
,

which ensures us to use HLS type inequality for Wolff potentials in Theorem 3.4, and we

need

1

t2
=

q1 − 1

q1 + p− 1
+

1

s1
< 1,
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that is

1

s1
<

p

q1 + p− 1
.

Similarly we estimate T1 for h ∈ Ls2 if

1

s2
<

p

q2 + p− 1
,

and easily pass the results to Ls1 × Ls2 , i.e.,

∥T (f, g)∥s1,s2 ≤
1

2
∥(f, g)∥s1,s2 ,

which shows that T is shrinking from Ls1 × Ls2 to itself.

(3). F ∈ Lq1+p−1 ∩ Ls1 and G ∈ Lq2+p−1 ∩ Ls2 .

We only estimate F , one notices that vb is uniformly bounded by a in Ba(0), thus vb ∈

Lq2+p−1∩Ls2 . Because T1 is bounded from Lq2+p−1 to Lq1+p−1 by (1), then F = T1vb ∈ Lq1+p−1.

Because T1 is bounded from Ls2 to Ls1 by (2), then F = T1vb ∈ Ls1 , and we conclude

F ∈ Lq1+p−1 ∩ Ls1 .

Applying regularity lifting we finish the proof of Theorem 3.5.

Now we are able to prove L∞ estimate.

Proof of Theorem 3.6. It is sufficient to show for u, then the estimate of v can be proved
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similarly. For any x ∈ X , we divide

u(x) = Wα,p(v
q2)(x)

=

ˆ 1

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 1
p−1

dt

t
+

ˆ ∞

1

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 1
p−1

dt

t

:= I1(x) + I2(x),

in which the first integral

I1(x) =

ˆ 1

0

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 1
p−1

dt

t

≤
ˆ 1

0


(´

Bt(x)
1s

′
dµ
) 1

s′
(´

Bt(x)
vq2sdµ

) 1
s

µ(Bt(x))1−
αp
N


1

p−1

dt

t

≤ ∥v∥
q2
p−1
q2s

ˆ 1

0

[µ(Bt(x))]
1

p−1
( 1
s′−1+αp

N
) dt

t

. ∥v∥
q2
p−1
q2s

ˆ 1

0

t
N

p−1
( 1
s′−

N−αp
N

)−1dt

≤ C1,

as we choose s such that ∥v∥q2s <∞ and 1
s′
− N−αp

N
> 0, that is, 1

q2s
< αp

q2N
. By integrability

estimate of v in Theorem 3.5, we only need to check

αp

q2N
> − 1

q1 + p− 1
+

1

q2 + p− 1
,

this is plain by a simple computation.

We notice that C1 is independent of x. To estimate the second integral I2, given δ > 0,
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for all y ∈ X such that d(x, y) ≤ δ, thus we have d(z, y) ≤ k1(d(z, x)+d(x, y)) ≤ k1(t+δ) for

all z ∈ Bt(x). (Recall the definition of quasi-metric on homogeneous spaces.) We compute

I2(x) =

ˆ ∞

1

[ ´
Bt(x)

vq2dµ

µ(Bt(x))1−
αp
N

] 1
p−1

dt

t

≤
ˆ ∞

1

[´
Bk1(t+δ)(y)

vq2dµ

µ(Bt(x))1−
αp
N

] 1
p−1

dt

t

≤
ˆ ∞

1

[ ´
Bk1(t+δ)(y)

vq2dµ

µ(Bk1(t+δ)(y))1−
αp
N

] 1
p−1 [

µ(Bk1(t+δ)(y))

µ(Bt(x))

] 1
p−1

(1−αp
N

)
dt

t

≤
ˆ ∞

1

[ ´
Bk1(t+δ)(y)

vq2dµ

µ(Bk1(t+δ)(y))1−
αp
N

] 1
p−1 [

k1(t+ δ)

t

]N−αp
p−1

+1
dt

k1(t+ δ)

≤ k
N−αp
p−1

+1

1 (1 + δ)
N−αp
p−1

+1

ˆ ∞

k1(1+δ)

[ ´
Bk1(t+δ)(y)

vq2dµ

µ(Bk1(t+δ)(y))1−
αp
N

] 1
p−1

dt

k1(t+ δ)

≤ k
N−αp
p−1

1 (1 + δ)
N−αp
p−1

+1

ˆ ∞

k1(1+δ)

[ ´
Bt(y)

vq2dµ

µ(Bt(y))1−
αp
N

] 1
p−1

dt

t

≤ C2Wα,p(v
q2)(y)

= C2u(y),

in which C2 is independent of x and y. Thus, combining I1 and I2, we have

u(x) ≤ C1 + C2u(y),
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for any x and y such that d(x, y) ≤ δ. s-th powering and integrating both sides,

ˆ
Bδ(x)

us(x)dµ ≤
ˆ
Bδ(x)

(C1 + C2u(y))sdµ . C∥u∥ss

by choosing s > 1 in the integrability interval such that ∥u∥s < ∞. Then we finish L∞

estimate by noticing that C is independent of x.
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Part II

4 The atomic decomposition of Hardy spaces

associated with different homogeneities

4.1 Introduction and statements of main results

For all functions and operators defined on Rm = Rm−1×R with x = (x′, xm) where x′ ∈ Rm−1

and xm ∈ R, we denote |x|e = (|x′|2 + |xm|2)
1
2 and |x|h = (|x′|2 + |xm|)

1
2 .

Let K1 ∈ L1
loc(Rm\{0}) and satisfying

| ∂
α

∂xα
K1(x)| ≤ A|x|−m−|α|

e for all |α| ≥ 0

and ˆ
r<|x|e<R

K1(x)dx = 0

for all 0 < r < R <∞. We say that the operator T1 defined by

T1(f)(x) = p.v.(K1 ∗ f)(x)

is a Calderón-Zygmund singular integral operator associated with isotropic homogeneity.

Let K2 ∈ L1
loc(Rm\{0}) and satisfying

| ∂α

∂(x′)α
∂β

∂(xm)β
K2(x)| ≤ B|x|−m−1−|α|−2β

h for all |α| ≥ 0, β ≥ 0
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and ˆ
r<|x|h<R

K2(x)dx = 0

for all 0 < r < R <∞. We say that the operator T2 defined by T2(f)(x) = p.v.(K2 ∗ f)(x) is

a Calderón-Zygmund singular integral operator associated with non-isotropic homogeneity.

It is well known that both T1 and T2 are bounded on Lp(Rm) for 1 < p < ∞ and of

weak type (1, 1). In addition, T1 is bounded on the classical isotropic Hardy space, i.e., the

classical Hardy space Hp(Rm) introduced in [FcS], and T2 is bounded on the non-isotropic

Hardy spaces Hp
non(Rm). Consider the composition of these two Calderón-Zygmund operators

which arise from the ∂̄- Neumann problem, D. H. Phong, E. M. Stein [PS] show that T1◦T2 is

of weak-type (1, 1), which answered the question asked by Rivieré in [WW]. However, T1 ◦T2

is bounded neither on the classical Hardy space Hp(Rm) nor the non-isotropic Hardy space

Hp
non(Rm). Therefore, Y. Han, C. Lin, G. Lu, Z. Ruan and E. Sawyer in [HLLRS] develop

a new Hardy space theory and prove that the composition T1 ◦ T2 is bounded on these new

Hardy spaces. In this chapter we will establish the atomic decomposition of these new Hardy

spaces associated with different homogeneities which are defined as follows.

Let ψ(1) ∈ S(Rm) with supp ψ̂(1) ⊆ {(ξ′, ξm) ∈ Rm−1 × R : 1
2
≤ |ξ|e ≤ 2} and

|
∑
j∈Z

|ψ̂(1)(2−jξ′, 2−jξm)|2 = 1 for all (ξ′, ξm) ∈ Rm−1 × R\{(0, 0)},

ψ(2) ∈ S(Rm) with supp ψ̂(2) ⊆ {(ξ′, ξm) ∈ Rm−1 × R : 1
2
≤ |ξ|h ≤ 2} and

|
∑
k∈Z

|ψ̂(2)(2−kξ′, 2−2kξm)|2 = 1 for all (ξ′, ξm) ∈ Rm−1 × R\{(0, 0)}|.
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For j, k ∈ Z, let ψ
(1)
j (x) = ψ

(1)
j (x′, xm) = 2jmψ(1)(2jx′, 2jxm), ψ

(2)
k (x) = ψ

(2)
k (x′, xm) =

2j(m+1)ψ(2)(2kx′, 22kxm), and ψj,k(x) = ψ
(1)
j ∗ψ(2)

k (x). Then a discrete Littlewood-Paley-Stein

square function gdψ,com is defined by

gdψ, com(f)(x′, xm) = {
∑
j,k∈Z

∑
(l′,lm)∈Zm−1×Z

|(ψj,k ∗ f(2−(j∧k)l′, 2−(j∧2k)lm)|2χI(x′)χJ(xm)}
1
2 ,

where I are dyadic cubes in Rm−1 and J are dyadic intervals in R with the side length

ℓ(I) = 2−(j∧k) and ℓ(J) = 2−(j∧2k), and the left lower corners of I and the left end points of

J are 2−(j∧k)l′ and 2−(j∧2k)lm, respectively.

Let S0(Rm) = {f ∈ S(Rm) :
´
Rm f(x)xαdx = 0 for any |α| ≥ 0}. Now we can define the

Hardy spaces associated with two different homogeneities by the following

Definition 4.1. Let 0 < p ≤ 1. Hp
com(Rm) = {f ∈ S ′

0(Rm) : gdψ, com(f) ∈ Lp(Rm)}. If

f ∈ Hp
com(Rm), the norm of f is defined by ∥f∥Hp

com(Rm) = ∥gdψ, com(f)∥Lp(Rm).

Hp
com(Rm) is independent of the choice of the function ψ(1) and ψ(2) and thus it is well-

defined. Moreover, for all 0 < p <∞, we have ∥gdψ,com(f)∥Lp ∼ ∥f∥Lp . In fact, it can also be

shown that ∥gdψ,com(f)∥Lp ∼ ∥gcom(f)∥Lp holds for all 0 < p < ∞ by a similar argument in

[FJ], where gcom(f)(x) = {
∑
j,k

|ψj,k ∗ f(x)|2}
1
2 .

Now we can introduce the (p, 2)-atom of Hp
com(Rm) for 0 < p ≤ 1.

Definition 4.2. A function a(x′, xm) on Rm−1×R is called a (p, 2)− atom of Hp
com(Rm) for

0 < p ≤ 1, if it satisfies

(1) supp a ⊂ Ω, where Ω is an open set of Rm with finite measure;
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(2) ∥a∥L2(Rm) ≤ |Ω|
1
2
− 1

p . Moreover, a can be further decomposed into rectangle atom aR

associated with the rectangle R = I × J ⊂ Rm−1 × R. To be precise,

(3) a =
∑

R=I×J∈M(Ω) aR and

 ∑
R∈M(Ω)

∥aR∥2L2(Rm)


1
2

≤ |Ω|
1
2
− 1

p .

(4) For all x′ ∈ Rm−1, ˆ
R
aR(x′, xm)dxm = 0

and for all xm ∈ R, ˆ
Rm−1

aR(x′, xm)dx′ = 0.

Theorem 4.3. For 0 < p ≤ 1 and f ∈ L2(Rm)∩Hp
com(Rm), there is a sequence of numbers,

{λk}k∈Z, and a sequence of (p, 2)-atoms of Hp
com(Rm), {ak}k∈Z, such that

(
∞∑

k=−∞

|λk|p)
1
p ≤ C∥f∥Hp

com(Rm)

with the constant C independent of f and

f =
∞∑

k=−∞

λkak,

where the series converges to f in both the L2(Rm) and Hp
com(Rm) norms.
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4.2 Proof of the atomic decomposition of Hp
com(Rm)

For i = 1, 2, let ϕ(i) ∈ S(Rm) with supp ϕ(i) ⊆ B(0, 1),

∑
j∈Z

|ϕ̂(1)(2−jξ)|2 = 1 for all ξ ∈ Rm\{0},

and ∑
k∈Z

|ϕ̂(2)(2−kξ′, 2−2kξm)|2 = 1 for all (ξ′, ξm) ∈ Rm−1 × R\{(0, 0)}.

Moreover, ˆ
Rm

ϕ(1)(x)xαdx = 0 for all |α| ≤ 10M

and ˆ
Rm

ϕ(2)(x)xβdx = 0 for all |β| ≤ 10M,

where M is a fixed large positive integer depending on p. Set ϕj,k = ϕ
(1)
j ∗ ϕ(2)

k , where

ϕ
(1)
j (x) = 2jmϕ(1)(2j, x) and ϕ

(2)
k (x′, xm) = 2k(m+1)ϕ(2)(2kx′, 22kxm). To show Theorem 4.3,

we need the following two lemmas.

Lemma 4.4 ([HLLRS]). For any f ∈ L2(Rm) ∩ Hp
com(Rm), there exists f̃ ∈ L2(Rm) ∩

Hp
com(Rm) such that for a sufficiently large N ∈ N,

f(x′, xm) =
∑
j,k∈Z

∑
l=(l′,lm)∈Zm−1×Z

|I||J |ϕj,k(x′ − 2−j∧k−N l′, xm − 2−j∧2k−N lm)

×(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm),

where the series converges in L2, I are dyadic cubes in Rm−1 and J are dyadic intervals in
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R with the side length ℓ(I) = 2−(j∧k)−N and ℓ(J) = 2−(j∧2k)−N , and the left lower corners of

I and the left end points of J are 2−(j∧k)−N l′ and 2−(j∧2k)−N lm, respectively. Moreover,

∥f∥L2(Rm) ≈ ∥f̃∥L2(Rm),

and

∥f∥Hp
com(Rm) ≈ ∥f̃∥Hp

com(Rm).

Lemma 4.5 ([HLLRS]). Let 0 < p ≤ 1 and all the notation be the same as in Lemma 4.4.

Then for f ∈ L2(Rm) ∩Hp
com(Rm),

∥f∥Hp
com

≈ ∥(
∑
j,k∈Z

∑
(l′,lm)∈Zm−1×Z

|(ϕj,k ∗ f)(2−j∧k−N l′, 2−j∧2k−N lm)|2χIχJ)
1
2∥Lp .

Now we can prove Theorem 4.3.

Proof. For any f ∈ L2(Rm)∩Hp
com(Rm), let ϕj, k, f̃ , I and J are the same as in Lemma 4.4.

For any i ∈ Z, set

Ωi = {(x′, xm) ∈ Rm−1 × R : g̃dϕ(f)(x′, xm) > 2i},

and

Bi = {(j, k, l) : |(I × J) ∩ Ωi| >
1

2
|I||J |, |(I × J) ∩ Ωi+1| ≤

1

2
|I||J |},
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where

g̃dϕ(f)(x′, xm) = {
∑
j,k∈Z

∑
(l′,lm)∈Zm−1×Z

|(ϕj,k ∗ f̃(2−(j∧k)−N l′, 2−(j∧2k)−N lm)|2χI(x′)χJ(xm)}
1
2 ,

and for fixed N > 0, I ⊂ Rm−1, J ⊂ R are dyadic cubes (intervals) determined by j, k ∈ Z

and l = (l′, lm) ∈ Zm−1×Z as in Lemma 4.4, that is, ℓ(I) = 2−(j∧k)−N and ℓ(J) = 2−(j∧2k)−N ,

2−(j∧k)−N l′ and 2−(j∧2k)−N lm are the left lower corners of I and J , respectively.

By Lemma 4.4, we can write

f(x′, xm) =
∑
i

∑
(j,k,l)∈Bi

|I||J |ϕj,k(x′ − 2−j∧k−N l′, xm − 2−j∧2k−N lm)

×(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)

=
∑
i

λiai(x
′, xm),

where

ai(x
′, xm) =

1

λi

∑
(j,k,l)∈Bi

|I||J |ϕj,k(x′ − 2−j∧k−N l′, xm − 2−j∧2k−N lm)

×(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)

and

λi =

∥∥∥∥∥∥∥
 ∑

(j,k,l)∈Bi

|(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J


1/2
∥∥∥∥∥∥∥
2

|Ω̃i|
1
p
− 1

2 ;

where

Ω̃i = {x = (x′, xm) ∈ Rm−1 × R : Ms(χΩi
)(x) >

1

2N+1
}.

Note that supp ϕ(1) ⊆ B(0, 1) and supp ϕ(2) ⊆ B(0, 1), ϕj,k(x) = ϕ
(1)
j ∗ ϕ(2)

k (x), ϕ
(1)
j (x) =

ϕ
(1)
j (x′, xm) = 2jmϕ(1)(2jx′, 2jxm), and ϕ

(2)
k (x) = ϕ

(2)
k (x′, xm) = 2k(m+1)ϕ(2)(2kx′, 22kxm), then
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for any j, k ∈ Z, ϕj,k is supported in B(0, 2−(j∧k)) ×B(0, 2−(j∧2k)) ⊂ Rm−1 × R.

Since for (j, k, l) ∈ Bi, we have |(I × J) ∩ Ωi| > 1
2
|I||J | ⇒ 2N(I × J) ⊂ Ω̃i, this implies

ai is supported in

∪
(j,k,l)∈Bi

(2−(j∧k)−N l′ +B(0, 2−(j∧k)), 2−(j∧2k)−N lm +B(0, 2−(j∧2k))) ⊆
∪

(j,k,l)∈Bi

2N(I × J) ⊆ Ω̃i,

and hence ai satisfies (1) in Definition 4.2.

To see that ai satisfies (2) in Definition 4.2, let h ∈ L2(Rm), by Hölder’s inequality,

Lemma 4.4, and Lemma 4.5, we have

∥∥∥∥∥∥
∑

(j,k,l)∈Bi

|I||J |ϕj,k(x′ − 2−j∧k−N l′, xm − 2−j∧2k−N lm)(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)

∥∥∥∥∥∥
2

= sup
∥h∥2≤1

∣∣∣∣∣∣<
∑

(j,k,l)∈Bi

|I||J |ϕj,k(x′ − 2−j∧k−N l′, xm − 2−j∧2k−N lm)(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm), h >

∣∣∣∣∣∣
= sup

∥h∥2≤1

ˆ
Rm−1×R

ˆ
I×J

∑
(j,k,l)∈Bi

ϕj,k(x
′ − 2−j∧k−N l′, xm − 2−j∧2k−N lm)(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)

h(x′, xm)dy′dymdx
′dxm

= sup
∥h∥2≤1

ˆ
I×J

∑
(j,k,l)∈Bi

ϕj,k ∗ h(2−j∧k−N l′, 2−j∧2k−N lm)(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)dy′dym

≤ sup
∥h∥2≤1

∥{
∑

(j,k,l)∈Bi

|ϕj,k ∗ h(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J}
1
2∥2

×∥{
∑

(j,k,l)∈Bi

|ϕj,k ∗ f̃(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J}
1
2∥2

≤ C sup
∥h∥2≤1

∥g̃dϕ(h)∥2∥{
∑

(j,k,l)∈Bi

|ϕj,k ∗ f̃(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J}
1
2∥2

≤ C∥{
∑

(j,k,l)∈Bi

|ϕj,k ∗ f̃(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J}
1
2∥2.
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The above estimate implies the size condition (2) of ai, since

∥ai∥2 =


∥∥∥∥∥∥∥
 ∑

(j,k,l)∈Bi

|(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J


1/2
∥∥∥∥∥∥∥
2

|Ω̃i|
1
p
− 1

2


−1

×∥{
∑

(j,k,l)∈Bi

|ϕj,k ∗ f̃(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J}
1
2∥2

≤ |Ω̃i|
1
2
− 1

p .

To verify ai satisfies conditions (3) and (4), note that if (j, k, l) ∈ Bi, then R = I×J ∈ Ω̃i

and there exists a R̃ ∈ M(Ω̃i) such that R ⊆ R̃. Therefore, we can further decompose ai

into

ai(x
′, xm) =

∑
R̃∈M(Ω̃i)

aR̃(x′, xm),

where

aR̃(x′, xm) =
1

λi

∑
(j,k,l)∈Bi,

R=I×J⊂R̃∈M(Ω̃i)

|I||J |ϕj,k(x′ − 2−j∧k−N l′, xm − 2−j∧2k−N lm)

×(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm).

We can see that supp aR̃ ⊂
∑

(j,k,l)∈Bi
2N(I × J) ⊂ 2N R̃ and the cancellation conditions

(4) follow directly from the conditions on ϕ(1) and ϕ(2). On the other hand, by the same

proof for the estimate of ∥ai∥2, we have

∥aR̃∥2 ≤
C

λi
∥{

∑
(j,k,l)∈Bi

R=I×J⊂R̃∈M(Ω̃i)

|ϕj,k ∗ f̃(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J}
1
2∥2.
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Therefore, by the definition of λi we have
∑

R̃∈M(Ω̃i)

∥aR̃∥2 ≤ ∥ai∥2 ≤ |Ω̃i|
1
2
− 1

p .

Note that by the maximal theorem |Ω̃i| ≤ C|Ω|. Since if (j, k, l) ∈ Bi and x = (x′, xm) be-

longs to the corresponding R = I×J , then Ms(χR∩Ω̃i\Ωi+1
(x′, xm) > 1

2
, we have χR(x′, xm) ≤

2Ms(χR∩Ω̃i\Ωi+1)
(x′, xm). Thus,

∥∥∥∥∥∥∥
 ∑

(j,k,l)∈Bi

|(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J


1/2
∥∥∥∥∥∥∥
2

2

=

ˆ
Rm−1×R

∑
(j,k,l)∈Bi

|(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)|2χI×J(x′, xm)dx′dxm

≤ C

ˆ
Rm−1×R

∑
(j,k,l)∈Bi

|(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)|2Ms(χR∩Ω̃i\Ωi+1
)(x′, xm)dx′dxm

≤ C

ˆ
Ω̃i\Ωi+1

∑
(j,k,l)∈Bi

|(ϕj,k ∗ f̃)(2−j∧k−N l′, 2−j∧2k−N lm)|2χR(x′, xm)dx′dxm

≤ C2i|Ω̃i|.

Therefore, by the definition of Ωi, we have

∞∑
i=−∞

|λi|p ≤ C
∞∑

i=−∞

2i|Ω̃i|
p
2 |Ω̃i|1−

p
2

= C

∞∑
i=−∞

2i|Ω̃i| ≤ C

∞∑
i=−∞

2i|Ωi|

≤ C
∞∑

i=−∞

2i|Ωi \ Ωi+1|

≤ C∥g̃dϕ(f)∥pp ≤ C∥f∥Hp
com(Rm).

For a L2-bounded linear operator on Hp
com(Rm), consider its action on (p, 2)-atoms, we

have the following boundedness criterion.
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Theorem 4.6. Let T is bounded linear operator on L2(Rm), then T is bounded from Hp
com(Rm)

to Lp(Rm) if and only if ∥Ta∥Lp(Rm) ≤ C for all (p, 2)− atoms of Hp
com(Rm).

Here we omit the proof of Theorem 4.6 because it is same with the proof of Theorem 2.9.

5 The duality theorem of weighted multi-parameter

Hardy spaces associated with Zygmund dilation

5.1 Introduction and statements of main results

The celebrated H1(Rn) – BMO(Rn) duality theorem was proved by C. Fefferman and Stein

[Fc, FcS] in one-parameter case. In multi-parameter setting, S-Y. A. Chang and R. Fefferman

[CF1, CF3] proved that the dual space of the productH1(R2
+×R2

+) is the productBMO(R2
+×

R2
+) using the bi-Hilbert transform.

Among the multi-parameter analysis, the Zygmund dilations are the simplest after pure

product space dilations. (See R. Fefferman’s survey [Fr2].) Recently, Y. Han and G. Lu [HL2,

HL3] developed a unified approach of multi-parameter Hardy space theory using the discrete

multi-parameter Littlewood-Paley-Stein analysis, and the Hp
Z – CMOp

Z duality theorem

(Theorem 1.6 in [HL2]) is one of their subsequent work, where Hp
Z is the multi-parameter

Hardy space associated with Zygmund dilations and CMOp
Z is the Carleson measure spaces

associated with Zygmund dilations.

We will characterize the dual spaces of the weighted multi-parameter Hardy spaces as-

sociated with Zygmund dilations, that is, (Hp
Z(ω))∗ = CMOp

Z(ω) for all 0 < p ≤ 1 and

ω ∈ A∞(Z). Such Carleson measure spaces CMOp
Z(ω) play the same role as the John-
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Nirenberg BMO spaces in the duality H1(Rn) – BMO(Rn) in the one-parameter setting.

Let us first establish the preliminaries for Zygmund dilations and recall the related back-

ground briefly. In R3, the Zygmund dilation is given by ρs,t(x, y, z) = (sx, ty, stz) for s, t > 0,

and the maximal operator associated to Zygmund dilations is defined by

MZf(x, y, z) = sup
(x,y,z)∈Q
Q∈RZ

1

|Q|

ˆ
Q

|f |, (5.1)

where RZ is the class of rectangles whose sides are parallel to the axes and have side lengths

of the form s, t, and st. As a special case of Córdoba’s solution [Ca] of Zygmund’s conjecture,

the operator MZ is bounded from the Orlicz space L log+ L(Q1) to weak L1(Q1). (Q1 is the

unit cube in R3.) The weighted Lp boundedness of MZ for 1 < p < ∞ was proved by R.

Fefferman [Fr1], see also [FP] and various generalizations in [JT].

Write S(Rn) as the space of Schwartz functions in Rn. The test function defined on R3

is given by

ψ(x, y, z) = ψ(1)(x)ψ(2)(y, z),

where ψ(1) ∈ S(R) and ψ(2) ∈ S(R2) satisfy

∑
j∈Z

|ψ̂(1)(2−jξ1)|2 = 1 for all ξ1 ∈ R\{0},

∑
j∈Z

|ψ̂(2)(2−kξ2, 2
−kξ3)|2 = 1 for all (ξ2, ξ3) ∈ R2\{(0, 0)},
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and the moment conditions

ˆ
R
xαψ(1)(x)dx =

ˆ
R2

yβzγψ(2)(y, z)dydz = 0

for all integers α, β, γ ≥ 0. By taking Fourier transform, it is easy to see the continuous

version of Calderón’s identity

f(x, y, z) =
∑
j,k

ψj,k ∗ ψj,k ∗ f(x, y, z), (5.2)

where

ψj,k(x, y, z) = 22(j+k)ψ(1)(2jx)ψ(2)(2ky, 2j+kz), (5.3)

and the series converges in L2. Ricci and Stein [RS] introduced the what is now called

Ricci-Stein singular integral operator TZ as TZ = K ∗ f , and

K(x, y, z) =
∑
j,k

2−2(j+k)ψj,k

( x
2j
,
y

2k
z

2j+k

)
,

where the functions ψj,k are test functions in S(R3). They also gave the Lp (1 < p < ∞)

boundedness of the operator TZ . The weighted Lp boundedness theorem was proved by R.

Fefferman and Pipher (Theorem 2.4 in [FP]) when w ∈ Ap(Z). The authors in [HL2] proved

that both the convolution and non-convolution type Ricci-Stein operators are bounded on Hp
Z

and BMOZ
i. While the other paper [HLX2] will show the boundedness result on weighted

Hp
Z spaces when w ∈ A∞(Z), it is interesting to note that we only require w ∈ A∞(Z) which

iThe multi-parameter Hardy space associated with Zygmund dilations Hp
Z is defined in the following

content, see [HL2] for more information, where one can also find a nice historical note in the introductory
section.
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is much weaker than the usual requirement w ∈ A1 for boundedness of singular integral

operators on weighted Hardy spaces. Using the A∞ weight to consider the boundedness

of singular integrals on weighted multiparameter Hardy spaces seems to be first used in

[DHLW]. (See also [R] for the case of more parameters.)

Now we define the Littlewood-Paley-Stein square function of f associated with the Zyg-

mund dilation,

gZ(f)(x, y, z) =

{∑
j,k

|ψj,k ∗ f(x, y, z)|2
}1/2

. (5.4)

From Ricci and Stein’s Lp boundedness of the operator TZ , together with the L2 conver-

gence of Calderón’s identity, one can obtain the Lp estimate of gZ as ∥gZ(f)∥Lp ≈ ∥f∥Lp for

1 < p <∞. Precisely, there exist two constants C1, C2 > 0 independent of f such that

C1∥f∥Lp ≤ ∥gZ(f)∥Lp ≤ C2∥f∥Lp . (5.5)

To pass these Littlewood-Paley-Stein analysis to Hardy spaces and weighted Hardy s-

paces, we need to introduce a proper distribution space.

Definition 5.1. A Schwartz test function f(x, y, z) defined on R3 is said to be a product

test function on R× R2 if f ∈ S(R3) and

ˆ
R
xαf(x, y, z)dx =

ˆ
R2

yβzγf(x, y, z)dydz = 0

for all indices α, β, and γ of nonnegative integers.

If f is a product test function on R × R2, we denote f ∈ SZ(R3) and the norm of f is

defined by the norm of Schwartz test function. We denote the dual of SZ(R3) by (SZ(R3))′.
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Since the functions ψj,k constructed above belong to SZ(R3), so the Littlewood-Paley-

Stein square function gZ can be defined for all distributions in (SZ(R3))′. Thus for 0 < p <∞,

the multi-parameter Hardy space associated with Zygmund dilations is defined as

Hp
Z(R3) = {f ∈ (SZ(R3))′ : gZ(f) ∈ Lp(R3)},

and Hp
Z(R3) = Lp(R3) for 1 < p < ∞ follows immediately from (1.5) above. See the work

[HL2] for the thorough study of such Hp
Z spaces including the duality theory and boundedness

of convolution and non-convolution operators.

Given 1 < p <∞, a nonnegative function ω on R3 is said to belong to Ap(Z) if

sup
Q∈RZ

(
1

|Q|

ˆ
Q

ω

)(
1

|Q|

ˆ
Q

ω− 1
p−1

)p−1

= ∥ω∥Ap(Z) <∞.

When p = 1, ω ∈ A1(Z) if there exists C > 0 such that MZ(ω)(x) ≤ Cω(x) for almost

every x ∈ R3. Finally, we define

A∞(Z) =
∪

1≤p<∞

Ap(Z).

Notice that if ω ∈ A∞(Z), then ω ∈ Aqω(Z), where qω = inf{q : ω ∈ Aq(Z)}. Now let us

introduce the two spaces that we study.

Definition 5.2 (Hp
Z(ω)). Let 0 < p <∞ and ω ∈ A∞(Z), the multi-parameter Hardy space

associated with the Zygmund dilation is defined as Hp
Z(ω) = {f ∈ (SZ(R3))′ : gZ(f) ∈ Lpω)}.

If f ∈ Hp
Z(ω), the norm of f is defined by ∥f∥Hp

Z(ω) = ∥gZ(f)∥Lp
ω
.
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Definition 5.3 (CMOp
Z(ω)). Let 0 < p ≤ 1, ω ∈ A∞(Z) and ψj,k be the same as in (1.3),

we say that f ∈ CMOp
Z(ω) if f ∈ (SZ(R3))′ with the finite norm ∥f∥CMOp

Z(ω) defined by

sup
Ω

{
1

ω(Ω)
2
p
−1

∑
j,k

∑
I×J×R⊆Ω

|ψj,k ∗ f(xI , yJ , zR)|2 |I × J ×R|2

ω(I × J ×R)

} 1
2

for all open sets Ω in R3 with finite weighted measures and any fixed points xI , yJ , and zR

in I ⊆ R, J ⊆ R, and R ⊆ R, where I, J , and R are dyadic intervals with interval-length

ℓ(I) = 2−j−N , ℓ(J) = 2−k−N , and ℓ(R) = 2−j−k−2N for a fixed large positive integer N .

Remark. In Definitions 5.2 and 5.3 above, the definitions of Hp
Z(ω) and CMOp

Z(ω) involve

ψj,k, to show these definitions are well defined, we need to prove that they are independent

of the choice of functions ψj,k. Precisely, we use sup-inf comparison principle of first kind as

Theorem 5.7 to show that Hp
Z(ω) is well-defined. While we state sup-inf comparison principle

of second kind as one of our major theorems below, to prove that CMOp
Z(ω) is well-defined.

Theorem 5.4 (Sup-inf comparison principle of second kind). Let 0 < p ≤ 1 and ω ∈ A∞(Z),

suppose ψ(1), ϕ(1) ∈ S(R), ψ(2), ϕ(2) ∈ S(R2), and ψj,k, ϕj,k satisfy the condition in (1.3). Then

for f ∈ (SZ(R3))′,

sup
Ω

{
1

ω(Ω)
2
p
−1

∑
j,k

∑
I×J×R⊆Ω

sup
u∈I,v∈J,w∈R

|ψj,k ∗ f(u, v, w)|2 |I × J ×R|2

ω(I × J ×R)

} 1
2

≈ sup
Ω

{
1

ω(Ω)
2
p
−1

∑
j,k

∑
I×J×R⊆Ω

inf
u∈I,v∈J,w∈R

|ϕj,k ∗ f(u, v, w)|2 |I × J ×R|2

ω(I × J ×R)

} 1
2

.

where I ⊆ R, J ⊆ R, and R ⊆ R are dyadic intervals with interval-length ℓ(I) = 2−j−N ,

ℓ(J) = 2−k−N , and ℓ(R) = 2−j−k−2N for a fixed large positive integer N , and Ω are all open
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sets in R3 with finite weighted measures.

Then we state that the space CMOp
Z is exactly the dual space of Hp

Z(ω) for 0 < p ≤ 1.

Theorem 5.5 (Hp
Z(ω) – CMOp

Z(ω)). Let 0 < p ≤ 1 and ω ∈ A∞(Z). Then (Hp
Z(ω))∗ =

CMOp
Z(ω), namely the dual space of Hp

Z(ω) is CMOp
Z(ω). More precisely, if g ∈ CMOp

Z(ω),

the map ℓg given by ℓg(f) =< f, g >, defined initially for f ∈ SZ(R3), extends to a continuous

linear functional on Hp
Z(ω) with ∥ℓg∥ ≈ ∥g∥CMOp

Z(ω). Conversely, for every ℓ ∈ (Hp
Z(ω))∗

there exists some g ∈ CMOp
Z(ω) so that ℓ = ℓg. In particular, (H1

Z(ω))∗ = BMOZ(ω).

In Section 5.2, we collect several known results on the discrete Calderón’s identity and

sup-inf comparison principle of first kind which are used to prove that Hp
Z(ω) is well-defined.

In Chapter 6, we show the well-definition of CMOp
Z(ω) using sup-inf comparison of second

kind and almost orthogonality estimate. While Chapter 7 is devoted to prove the duality

theory Theorem 5.5.

We shall point out in the end of the introduction that the main tool in this part, the

discrete multi-parameter Littlewood-Paley-Stein analysis, is a relatively unified theory with

a whole scheme, some theorems and lemmas we use here originate from the work [HL2].

An interested reader should consult the papers [HL1, HL2, HL3, HLL1] and related works

mentioned therein. (See also [DHLW] and [R] where some nice application of the discrete

Littlewood-Paley-Stein analysis was given in weighted setting.)

5.2 Discrete Calderón identity

To show the definition of Hp
Z(ω) is independent of the choice of functions ψj,k and thus

well defined in Definition 5.2, we need to recall some results associated with the Zygmund
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dilation. First, we require the discrete version of Calderón’s identity.

Theorem 5.6 (Discrete Calderón’s identity). Suppose that ψj,k are the same as in (5.3).

Then

f(x, y, z) =
∑
j,k

∑
I,J,R

|I||J ||R|ψ̃j,k(x, y, z, xI , yJ , zR)(ψj,k ∗ f)(xI , yJ , zR), (5.6)

converges in the norm of SZ(R3) and in the dual space (SZ(R3))′, where ψ̃j,k(x, y, z, xI , yJ , zR) ∈

SZ(R3), I ⊆ R, J ⊆ R, and R ⊆ R are dyadic intervals with interval-length ℓ(I) = 2−j−N ,

ℓ(J) = 2−k−N , and ℓ(R) = 2−j−k−2N for a fixed large integer N , and xI , yJ , zR are any fixed

points in I, J , R, respectively.

The complete proof is contained in §2.2 of [HL2], for the reader’s convenience, we provide

a sketch of the proof here. An observation shows that the continuous version of Calderón’s

identity (5.2) converges in the norm of SZ(R3) and in the dual space (SZ(R3))′. Then it

can be decomposed in dyadic form and we only need to estimate the remainder term as the

difference. The explicit expression of ψ̃j,k(x, y, z, xI , yJ , zR) can also be found in [HL2].

The discrete Calderón’s identity enables us to derive the following weighted version sup-

inf comparison principle of first kind, whose proof is included in [HLX2] (Theorem 1.1). It

is an extension of the non-weighted one first derived in [HL2].

Theorem 5.7 (Sup-inf comparison principle of first kind). Let 0 < p <∞ and ω ∈ A∞(Z),

suppose ψ(1), ϕ(1) ∈ S(R), ψ(2), ϕ(2) ∈ S(R2), and ψj,k, ϕj,k satisfy the condition in (1.3).
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Then for f ∈ (SZ(R3))′,

∥

{∑
j,k

∑
I,J,R

sup
u∈I,v∈J,w∈R

|ψj,k ∗ f(u, v, w)|2χI(·)χJ(·)χR(·)

} 1
2

∥Lp
ω

(5.7)

≈ ∥

{∑
j,k

∑
I,J,R

inf
u∈I,v∈J,w∈R

|ϕj,k ∗ f(u, v, w)|2χI(·)χJ(·)χR(·)

} 1
2

∥Lp
ω
,

where I ⊆ R, J ⊆ R, and R ⊆ R are dyadic intervals with interval-length ℓ(I) = 2−j−N ,

ℓ(J) = 2−k−N , and ℓ(R) = 2−j−k−2N for a fixed large positive integer N , χI , χJ , and χR are

indicator functions of I, J , and R, respectively.

From this sup-inf comparison principle, we introduce the discrete Littlewood-Paley-Stein

square function

gdZ(f)(x, y, z) =

{∑
j,k

∑
I,J,R

|(ψj,k ∗ f)(xI , yJ , zR)|2χI(x)χJ(y)χR(z)

} 1
2

, (5.8)

where we admit all the settings in Theorem 5.7, and theHp
Z(ω) norm of f can be characterized

using a discrete form

∥f∥Hp
Z(ω) ≈ ∥gdZ(f)∥Lp

ω
.

Thus, we conclude that Hp
Z(ω) is well-defined by Theorem 5.7.

5.3 Sup-inf comparison principle of second kind

The purpose of this section is to get the sup-inf comparison principle of second kind, i.e.,

Theorem 5.4, to ensure that the space CMOp
Z(ω) in Definition 5.3 is well-defined. First, we

recall an “almost orthogonality lemma”, and refer the reader to Corollary 2.6 in [HL2] for
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its detailed proof.

Lemma 5.8 (Almost orthogonality estimate). If ψ, ϕ ∈ SZ(R3), define

ψt,s(x, y, z) = t−2s−2ψ(
x

t
,
y

s
,
z

ts
)

and ϕt′,s′ is defined similarly. Then, for any positive integers L andM , there exists a constant

C = C(L,M) > 0 such that

|ψt,s ∗ ϕt′,s′(x, y, z)| (5.9)

≤ C(
t

t′
∧ t′

t
)L(

s

s′
∧ s′

s
)L

(t ∨ t′)M

(t ∨ t′ + |x|)M+1

(s ∨ s′)M

t∗(s ∨ s′ + |y| + |z|
t∗

)M+2
,

where t∗ = t if s > s′, t∗ = t′ if s ≤ s′, t ∧ s = min(t, s), and t ∨ s = max(t, s).

Together with the discrete Calderón identity and some geometric properties of multi-

parameter rectangles, Theorem 5.4 can be proved by a delicate study of the Zygmund rect-

angles.

Proof of Theorem 5.4. For simplicity, we denote fj,k = fQ, where Q = I×J×R ⊆ R3, I ⊆ R,

J ⊆ R, and R ⊆ R are dyadic intervals with interval-length ℓ(I) = 2−j−N , ℓ(J) = 2−k−N ,

and ℓ(R) = 2−j−k−2N for a fixed large positive integer N . While xI , yJ , and zR are any fixed

points in I, J , and R, respectively.

Then, we can rewrite the discrete Calderón identity on (SZ(R3))′ as

f(x, y, z) =
∑
i,j

∑
Q=I′×J ′×R′

|I ′||J ′||R′|ϕ̃Q′(x, y, z, xI′ , yJ ′ , zR′)(ϕQ′ ∗ f)(xI′ , yJ ′ , zR′).
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Thus, for all (x, y, z) ∈ Q,

ψQ ∗ f(x, y, z) =
∑
i,j

∑
Q′=I′×J ′×R′

|Q′|ψQ ∗ ϕ̃Q′(x, y, z, xI′ , yJ ′ , zR′)(ϕQ′ ∗ f)(xI′ , yJ ′ , zR′),

where I ′ ⊆ R, J ′ ⊆ R, and R′ ⊆ R are dyadic intervals with interval-length ℓ(I ′) = 2−j′−N ,

ℓ(J ′) = 2−k′−N , and ℓ(R′) = 2−j′−k′−2N for a fixed large positive integer N . While xI′ , yJ ′ ,

and zR′ are any fixed points in I ′, J ′, and R′, respectively.

From the almost orthogonality estimates (5.9) in Lemma 5.8, by choosing t = 2−j, t′ =

2−j′ , s = 2−k, and s′ = 2−k′ ,

|ψQ ∗ f(x, y, z)|2 (5.10)

≤ C
∑

Q′=I′×J ′×R′

|Q′|
(
|I|
|I ′|

∧ |I ′|
|I|

)L( |J |
|J ′|

∧ |J ′|
|J |

)L
(|I| ∨ |I ′|)M

(|I| ∨ |I ′| + d(I, I ′))M+1

× (|J | ∨ |J ′|)M

t∗(|J | ∨ |J ′| + d(J, J ′) + d(R,R′)
t∗

)M+2
|ϕQ′ ∗ f(xI′ , yJ ′ , zR′)|2,

where |Q′| = |I ′||J ′||R′|, t∗ = |I| when |J | ≥ |J ′|, and t∗ = |I ′| when |J | < |J ′|, the constant

C depends only on M , L, and functions ψ and ϕ. Write

PQ = sup
x∈I,y∈J,z∈R

|ψQ ∗ f(x, y, z)|2,

and

FQ = inf
x∈I,y∈J,z∈R

|ϕQ ∗ f(x, y, z)|2.
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Since xI′ , yJ ′ , and zR′ in (3.2) are arbitrary in I ′, J ′ and R′, we have

∑
Q⊆Ω

|I × J ×R|2

ω(I × J ×R)
PQ ≤ C

∑
Q⊆Q′⊆Ω

r̃(Q,Q′)P (Q,Q′)
|I ′ × J ′ ×R′|2

ω(I ′ × J ′ ×R′)
FQ′ , (5.11)

where

r̃(Q,Q′) =

(
|I|
|I ′|

∧ |I ′|
|I|

)L−2( |J |
|J ′|

∧ |J ′|
|J |

)L−2( |R|
|R′|

∧ |R′|
|R|

)−2
ω(I ′ × J ′ ×R′)

ω(I × J ×R)
,

and

P (Q,Q′) =
(|I| ∨ |I ′|)M+1

(|I| ∨ |I ′| + d(I, I ′))M+1

(|J | ∨ |J ′|)M+1

(|J | ∨ |J ′| + d(J, J ′) + d(R,R′)
t∗

)M+1

× |R| ∨ |R′|
t∗(|J | ∨ |J ′|) + t∗d(J, J ′) + d(R,R′)

.

Since ω ∈ A∞(Z) and Q ⊆ Q′, there exists qω and 1 ≤ qω <∞ such that

ω(I ′ × J ′ ×R′)

ω(I × J ×R)
≤ C

(
|I ′ × J ′ ×R′|
|I × J ×R|

)qω
.

Thus,

r̃(Q,Q′) ≤ r(Q,Q′),

where

r(Q,Q′) =

(
|I|
|I ′|

∧ |I ′|
|I|

)L−qω−2( |J |
|J ′|

∧ |J ′|
|J |

)L−qω−2( |R|
|R′|

∧ |R′|
|R|

)−qω−2

.
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We have

1

ω(Ω)
2
p
−1

∑
Q⊆Ω

PQ
|Q|2

ω(Q)
≤ C

1

ω(Ω)
2
p
−1

∑
Q⊆Q′⊆Ω

r(Q,Q′)P (Q,Q′) · FQ′
|Q′|2

ω(Q′)
. (5.12)

To show Theorem 5.4, we only need to estimate the right hand side of (5.12). That is, to

prove that it can be controlled by

sup
Ω∗

1

ω(Ω∗)
2
p
−1

∑
Q′⊆Ω∗

FQ′
|Q′|2

ω(Q′)
.

For i, l ≥ 0, set

Ωi,l =
∪

Q=I×J×R⊆Ω

3(2iI × 2lJ × 2i+lR).

Then, write

B0,0 = {Q′ = I ′ × J ′ ×R′ : 3Q′ ∩ Ω0,0 ̸= ∅},

and for i, l ≥ 1,

Bi,0 = {Q′ = I ′ × J ′ ×R′ : 3(2iI ′ × J ′ × 2iR′) ∩ Ωi,0 ̸= ∅, 3(2i−1I ′ × J ′ × 2i−1R′) ∩ Ωi,0 = ∅},

B0,l = {Q′ = I ′ × J ′ ×R′ : 3(I ′ × 2lJ ′ × 2lR′) ∩ Ω0,l ̸= ∅, 3(I ′ × 2l−1J ′ × 2l−1R′) ∩ Ω0,l = ∅},

Bi,l = {Q′ = I ′×J ′×R′ : 3(2iI ′×2lJ ′×2i+lR′)∩Ωi,l ̸= ∅, 3(2i−1I ′×2l−1J ′×2i+l−2R′)∩Ωi,l = ∅}.
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Note that since
∪
Q′

=
∪
i,l≥0

∪
Q′∈Bi,l

, the right hand of (5.12) can be bounded by

1

ω(Ω)
2
p
−1

∑
Q⊆Ω

 ∑
Q′∈B0,0

+
∑
i≥1

∑
Q′∈Bi,0

+
∑
l≥1

∑
Q′∈B0,l

+
∑
i,l≥1

∑
Q′∈Bi,l

 (5.13)

×r(Q,Q′)P (Q,Q′) · FQ′
|Q′|2

ω(Q′)

, I + II + III + IV.

Here we only show the estimate of I, then the estimates for the other three can follow

similarly. Notice that if Q′ ∈ B0,0, then 3Q′ ∩ Ω0,0 ̸= ∅. Let

F0,0
h = {Q′ ∈ B0,0 : |3Q′ ∩ Ω0,0| ≥ 1

2h
|3Q′|},

D0,0
h = F0,0

h \F0,0
h−1,

and

Ω0,0
h =

∪
Q′∈D0,0

h

Q′,

where h ≥ 0 and F0,0
−1 = ∅. Without loss of generality we may assume that for any open set

Ω ⊂ R3, ∑
Q=I×J×R⊆Ω

|I × J ×R|2

ω(I × J ×R)
FQ ≤ Cω(Ω)

2
p
−1. (5.14)

Since
∪
h≥0

D0,0
h = B0,0, we have

I ≤ 1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

∑
Q⊂Ω

r(Q,Q′)P (Q,Q′) · FQ′
|Q′|2

ω(Q′)
. (5.15)
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To estimate (5.15), for each Q′ ∈ B0,0 and i′, l′, v′ ≥ 1, we decompose {Q ⊂ Ω} into 8

pieces as follows,

A0,0,0(Q
′) = {Q ⊂ Ω : d(I, I ′) ≤ |I| ∨ |I ′|, d(J, J ′) ≤ |J | ∨ |J ′|, d(R,R′) ≤ |R| ∨ |R′|},

Ai′,0,0(Q
′) = {Q ⊂ Ω : 2i

′−1(|I| ∨ |I ′|) < d(I, I ′) ≤ 2i
′
(|I| ∨ |I ′|), d(J, J ′) ≤ |J | ∨ |J ′|,

d(R,R′) ≤ |R| ∨ |R′|},

A0,l′,0(Q
′) = {Q ⊂ Ω : d(I, I ′) ≤ |I| ∨ |I ′|, 2l

′−1(|J | ∨ |J ′|) < d(J, J ′) ≤ 2l
′
(|J | ∨ |J ′|),

d(R,R′) ≤ |R| ∨ |R′|},

A0,0,v′(Q
′) = {Q ⊂ Ω : d(I, I ′) ≤ |I| ∨ |I ′|, d(J, J ′) ≤ |J | ∨ |J ′|,

2v
′−1(|R| ∨ |R′|) < d(R,R′) ≤ 2v

′
(|R| ∨ |R′|)},

Ai′,l′,0(Q
′) = {Q ⊂ Ω : 2i

′−1(|I| ∨ |I ′|) < d(I, I ′) ≤ 2i
′
(|I| ∨ |I ′|),

2l
′−1(|J | ∨ |J ′|) < d(J, J ′) ≤ 2l

′
(|J | ∨ |J ′|), d(R,R′) ≤ |R| ∨ |R′|},

Ai′,0,v′(Q
′) = {Q ⊂ Ω : 2i

′−1(|I| ∨ |I ′|) < d(I, I ′) ≤ 2i
′
(|I| ∨ |I ′|), d(J, J ′) ≤ |J | ∨ |J ′|,

2v
′−1(|R| ∨ |R′|) < d(R,R′) ≤ 2v

′
(|R| ∨ |R′|)},

A0,l′,v′(Q
′) = {Q ⊂ Ω : d(I, I ′) ≤ |I| ∨ |I ′|, 2l

′−1(|J | ∨ |J ′|) < d(J, J ′) ≤ 2l
′
(|J | ∨ |J ′|),

2v
′−1(|R| ∨ |R′|) < d(R,R′) ≤ 2v

′
(|R| ∨ |R′|)},

Ai′,l′,v′(Q
′) = {Q ⊂ Ω : 2i

′−1(|I| ∨ |I ′|) < d(I, I ′) ≤ 2i
′
(|I| ∨ |I ′|),

2l
′−1(|J | ∨ |J ′|) < d(J, J ′) ≤ 2l

′
(|J | ∨ |J ′|),

2v
′−1(|R| ∨ |R′|) < d(R,R′) ≤ 2v

′
(|R| ∨ |R′|)}.
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Then, (5.15) becomes

I ≤ 1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

∑
Q⊂Ω

r(Q,Q′)P (Q,Q′) ·mQ′
|Q′|2

ω(Q′)

=
1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

( ∑
Q∈A0,0,0(Q′)

+
∑
i′≥1

∑
Q∈Ai′,0,0(Q

′)

+
∑
l′≥1

∑
Q∈A0,l′,0(Q

′)

+
∑
v′≥1

∑
Q∈A0,0,v′ (Q

′)

+
∑
i′,l′≥1

∑
Q∈Ai′,l′,0(Q

′)

+
∑
i′,v′≥1

∑
Q∈Ai′,0,v′ (Q

′)

+
∑
l′,v′≥1

∑
Q∈A0,l′,v′ (Q

′)

+
∑

i′,l′,v′≥1

∑
Q∈Ai′,l′,v′ (Q

′)

)
·r(Q,Q′)P (Q,Q′) · FQ′

|Q′|2

ω(Q′)

, I1 + · · · + I8.

In the following proof, we will give the estimates for I1 and I4 separately and the estimates

for I2, I3, I5, I6, I7, and I8 can be showed similarly. (i). To estimate

I1 =
1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

∑
Q∈A0,0,0(Q′)

r(Q,Q′)P (Q,Q′) · FQ′
|Q′|2

ω(Q′)
, (5.16)

we divide {Q ∈ A0,0,0(Q
′)} into 6 cases, and note that 3Q ∩ 3Q′ ̸= ∅ for Q ∈ A0,0,0(Q

′).

Case 1. |I ′| ≥ |I|, |J ′| ≤ |J |, and |R′| ≤ |R|.

We will use a similar idea of analyzing geometric properties of the intervals (such analysis

is similar to what was used in [CF2] in a less complicated situation). Since

|I|
|3I ′|

|3Q′| = |I| × |3J ′| × |3R′| ≤ 9|3Q ∩ 3Q′| ≤ |3Q′ ∩ Ω0,0| < 9

2h−1
|3Q′|,

then |I| ≤ 2−h+5|I ′| and thus |I ′| ∼ 2h−5+n|I| for some n ≥ 0. Moreover, for each given such
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n, the number of such I’s is no more than 5 · 2h−5+n. As for J , we have |J | ∼ 2m|J ′| for some

m ≥ 0 and for each m, the number of such J ’s is no more than 5. Since |R| = |I| × |J | and

|R′| = |I ′| × |J ′|, we have |R| ∼ 2−(h−5+n)2m|R′|. Note that |R| ≥ |R′|, thus m > h− 5 + n.

Furthermore, for each fixed n and m, the number of such R’s is no more than 5. Thus,

∑
Case 1

r(Q,Q′)P (Q,Q′)

≤ C
∑
Case 1

(
|I|
|I ′|

)L−qω−2( |J ′|
|J |

)L−qω−2( |R′|
|R|

)−qω−2 |R|
|I||J |

≤ C
∑
n≥0

∑
m≥0

2(5−h−n)(L−qω−2) · 2−m(L−qω−2) · 2(h−5+n−m)(−qω−2) · 2n

≤ C
∑
n≥0

∑
m≥0

2−hL · 25L · 2−m(L−2qω−4) · 2−4n

≤ C2−hL.

Case 2: |I ′| ≥ |I|, |J ′| ≤ |J |, and |R′| ≥ |R|.

Since

|I||R|
|3I ′||3R′|

|3Q′| = |I| × |3J ′| × |R| ≤ 3|3Q′ ∩ 3Q| ≤ 3|3Q′ ∩ Ω0,0| < 3

2h−1
|3Q′|,

then |I ′||R′| ∼ 2h−5+n|I||R|. As for J , |J | ∼ 2m|J ′|. So for each m, the number of such J ’s

is no more than 5. Noting that |R| = |I| × |J | and |R′| = |I ′| × |J ′|, we have |I ′||I ′||J ′| ∼

2h−5+n|I||I||J |, which yields that |I ′|2 ∼ 2h−5+n+m|I|2, that is, |I ′| ∼ 2(h−5+n+m)/2|I|. Hence

for each n and m, the number of such I’s is less than 5 · 2(h+m+n)/2. Since we can obtain that

|R′| ∼ 2(h−5+n−m)/2|R|, and |R′| ≥ |R|, we have m ≤ h− 5 + n. For each fixed n and m, the
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number of such R’s is less than 5 · 2(h−5+n−m)/2. Thus,

∑
Case 2

r(Q,Q′)P (Q,Q′)

≤ C
∑
Case 2

(
|I|
|I ′|

)L−qω−2( |J ′|
|J |

)L−qω−2( |R|
|R′|

)−qω−2 |R′|
|I||J |

≤ C
∑
n≥0

∑
m≥0

2
1
2
(5−h−n−m)(L−qω−2) · 2−m(L−qω−2) · 2

1
2
(5−h−n+m)(−qω−2)2h+n

=
∑
n≥0

∑
m≥0

2−h(L
2
−qω−3) · 2

5
2
L−5qω−10 · 2−n(L

2
−qω−3) · 2−m( 3

2
L−2qω−4)

≤ C2−h(L
2
−qω−3).

Case 3: |I ′| ≤ |I|, |J ′| ≥ |J |, and |R′| ≤ |R|.

This can be handled in a way similar to that of Case 1, and we have

∑
Case 3

r(Q,Q′)P (Q,Q′) ≤ C2−hL.

Case 4: |I ′| ≤ |I|, |J ′| ≥ |J |, and |R′| ≥ |R|.

This can be handled in a similar way to that of Case 2, and we have

∑
Case 4

r(Q,Q′)P (Q,Q′) ≤ C2−h(L
2
−qω−2).

Case 5: |I ′| ≥ |I|, |J ′| ≥ |J |, and thus |R′| ≥ |R|.

Since

|I| × |J | × |R| ≤ |3Q′ ∩ 3Q| ≤ |3Q′ ∩ Ω0,0| < 1

2h−1
|3Q′|,

then |Q′| ∼ 2h−1+n|Q| for some n ≥ 0. Note that for each n, the number of such Q’s is less
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than (2n)3 = 23n. More precisely, we have (|I ′||J ′|)2 ∼ 2h−1+n(|I||J |)2. Thus,

∑
Case 5

r(Q,Q′)P (Q,Q′)

≤ C
∑

Case 5

(
|I||J |
|I ′||J ′|

)L−qω−2( |R|
|R′|

)−qω−2 |R′|
|I ′||J ′|

≤ C
∑
n≥0

2−h−1+n
2

(L−qω−2) · 2−h−1+n
2

(−qω−2) · 23n

= C
∑
n≥0

2−h(L
2
−qω−2) · 2

L
2
−qω−2 · 2−n(L

2
−qω−5)

≤ C2−h(L
2
−qω−2).

Case 6: |I ′| ≤ |I|, |J ′| ≤ |J |, and thus |R′| ≤ |R|.

Since

|I ′| × |J ′| × |R′| ≤ |3Q′ ∩ Ω0,0| < 1

2h−1
|3Q′|,

then we can see that in this case, h must be less than 3. From |I ′| ≤ |I|, we have |I| ∼ 2n|I ′|

for some n ≥ 0 and for each given such n, the number of such I’s is less than 5. Similarly,

from |J ′| ≤ |J |, we have |J | ∼ 2m|J ′| and for each m, the number of such J ’s is less than 5.

Hence we have |R| ∼ 2n+m|R′|, and for each n and m, the number of such R’s is less than 5.

Thus,

∑
Case 6

r(Q,Q′)P (Q,Q′)

≤ C
∑

Case 6

(
|I ′||J ′|
|I||J |

)L−qω−2( |R′|
|R|

)−qω−2 |R|
|I||J |

≤ C
∑
n≥0

∑
n≥0

(2−n−m)L−qω−2 · (2−n−m)−qω−2 · 2−mL

= C
∑
n≥0

∑
n≥0

2−n(L−2qω−4) · 2−m(2L−2qω−4) ≤ C.
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Before we combine these 6 cases above, observe that since |Ω0,0
h | ≤ Ch2h|Ω0,0|, |Ω0,0| ≤

C|Ω|, and ω ∈ A∞(Z), which is a doubling measure, together with (3.6), we have

∑
h

2−h(L
2
−qω−3)ω(Ω0,0

h )
2
p
−1

≤
∑
h

2−h(L
2
−qω−3)ω(Ch22hΩ0,0)

2
p
−1

≤ Cω(Ω0,0)
2
p
−1 ≤ Cω(Ω)

2
p
−1.

Thus, combining the above 6 cases, I1 in (5.16) can be estimated as

I1 ≤ 1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

( ∑
Case 1

+ · · · +
∑

Case 5

)
r(Q,Q′)P (Q,Q′) · FQ′

|Q′|2

ω(Q′)

+
1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

∑
Case 6

r(Q,Q′)P (Q,Q′) · FQ′
|Q′|2

ω(Q′)

≤ C
1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

2−h(L
2
−qω−3) · FQ′

|Q′|2

ω(Q′)

+
1

ω(Ω)
2
p
−1

3∑
h=0

∑
Q′∈D0,0

h

FQ′
|Q′|2

ω(Q′)

≤ C
1

ω(Ω)
2
p
−1

∑
h

2−h(L
2
−qω−3)ω(Ω0,0

h )
2
p
−1 1

ω(Ω0,0
h )

2
p
−1

∑
Q′⊆Ω0,0

h

FQ′
|Q′|2

ω(Q′)

+
1

ω(Ω)
2
p
−1

3∑
h=0

ω(Ω0,0
h )

2
p
−1 1

ω(Ω0,0
h )

2
p
−1

∑
Q′⊆Ω0,0

h

FQ′
|Q′|2

ω(Q′)

≤ C
1

ω(Ω)
2
p
−1

∑
h

2−h(L
2
−qω−3)(h22h)

2
p
−1ω(Ω)

2
p
−1 sup

Ω∗

1

ω(Ω∗)
2
p
−1

∑
Q′⊆Ω∗

FQ′
|Q′|2

ω(Q′)

+
1

ω(Ω)
2
p
−1

3∑
h=0

(h22h)
2
p
−1ω(Ω)

2
p
−1 sup

Ω∗

1

ω(Ω∗)
2
p
−1

∑
Q′⊆Ω∗

FQ′
|Q′|2

ω(Q′)

≤ C sup
Ω∗

1

ω(Ω∗)
2
p
−1

∑
Q′⊆Ω∗

FQ′
|Q′|2

ω(Q′)
,
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where we choose L large enough, and the estimate of I1 is finished. Next we move our

attention to the estimate of I4.

(iv) To estimate

I4 =
1

ω(Ω)
2
p
−1

∑
h

∑
Q′∈D0,0

h

∑
v′≥1

∑
Q∈A0,0,v′ (Q

′)

r(Q,Q′)P (Q,Q′) · FQ′
|Q′|2

ω(Q′)
, (5.17)

similar to what we did in (i), we divide {Q ∈ A0,0,v′(Q
′)} into 6 cases for each v′ ≥ 1.

Case 1: |I ′| ≥ |I|, |J ′| ≤ |J |, and |R′| ≤ |R|.

Note that in this case, 3(I ′ × J ′ ×R′) ∩ 3(I × J × 2v
′
R) ̸= ∅. Since

|I|
|3I ′|

|3Q′| = |I| × |3J ′| × |3R′| ≤ |3Q′ ∩ Ω0,0| < 1

2h−1
|3Q′|,

then |I ′| ∼ 2h−1+n|I| for some n ≥ 0, and for each n, the number of such I’s is no more than

5 · 2n. As for J , |J | ∼ 2m|J ′|. And for each m, the number of such J ’s is no more than 5.

Note that 2v
′−1|R| < d(R,R′) ≤ 2v

′|R|, which yields that 3R′ ∩ 3 · 2v
′
R ̸= ∅. Moreover, from

|R| ∼ 2−(h−1+n)2m|R′| and |R| ≥ |R′|, we have m > h − 1 + n and for each fixed v′, n and

m, the number of such R’s is less than 5 · 2v
′
. Thus,

∑
Case 1

r(Q,Q′)P (Q,Q′)

≤ C
∑

Case 1

C
∑
Case 1

(
|I|
|I ′|

)L−qω−2( |J ′|
|J |

)L−qω−2( |R′|
|R|

)−qω−2

(|J |)M+1(
|J | + 2v′−1|R|

|I|

)M+1

|R|
|I||J | + 2v′−1|R|
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≤ C
∑
n≥0

∑
m≥0

2−(h−1+n)(L−qω−2) · 2(h−1+n−m)(−qω−2) · 2−m(L−qω−2) · 2n · 2−v′(M+2)

≤ C
∑
n≥0

∑
m≥0

2−hL · 2−m(L−2qω−4) · 2−n(L−1) · 2L · 2−v′(M+2)

≤ C2−hL2−v′(M+2).

Case 2: |I ′| ≥ |I|, |J ′| ≤ |J |, and |R′| ≥ |R|.

Note that in this case, 3(I ′ × J ′ × 2v
′
R′) ∩ 3(I × J ×R) ̸= ∅. Since

|I||R|
|3I ′||3R′|

|3Q′| = |I| × |3J ′| × |R| ≤ |3Q′ ∩ Ω0,0| < 1

2h−1
|3Q′|,

then |I ′||R′| ∼ 2h−1+n|I||R|. As for J , |J | ∼ 2m|J ′|. So for each m, the number of such J ’s

is no more than 5. Noting that |R| = |I| × |J | and |R′| = |I ′| × |J ′|, we have |I ′||I ′||J ′| ∼

2h−1+n|I||I||J |, which yields that |I ′|2 ∼ 2h−1+n+m|I|2, that is, |I ′| ∼ 2(h−1+n+m)/2|I|. Hence

for each n and m, the number of such I’s is less than 5 · 2(h+m+n)/2. Also we can obtain

that |R′| ∼ 2(h−1+n−m)/2|R|. Since |R′| ≥ |R|, we have m ≤ h − 1 + n. Moreover, note that

2v
′−1|R′| < d(R,R′) ≤ 2v

′|R′|, which yields that 3 · 2v
′
R′ ∩ 3R ̸= ∅. For each fixed v′, n and

m, the number of such R’s is less than 5 · 2(h+n−m)/22v
′
. Thus,

∑
Case 2

r(Q,Q′)P (Q,Q′)

≤ C
∑

Case 1

(
|I|
|I ′|

)L−qω−2( |J ′|
|J |

)L−qω−2( |R′|
|R|

)−qω−2

· (|J |)M+1(
|J | + 2v′−1|R′|

|I|

)M+1

|R′|
|I||J | + 2v′−1|R′|
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≤ C
∑
n≥0

∑
m≥0

2−h−1+n
2

(L−qω−2) · 2−m(L−qω−2) · 2−h−1+n−m
2

(−qω−2)

·2h+n2v
′
2−v′(M+2)

= C
∑
n≥0

∑
m≥0

2−h(L
2
−qω−1) · 2−m( 3L

2
−qω−4) · 2−n(L

2
−qω−1) · 2

L
2
−q

≤ C2−h(L
2
−qω−1)2−v′(M+1).

Case 3: |I ′| ≤ |I|, |J ′| ≥ |J |, and |R′| ≤ |R|.

This can be handled similarly as Case 1, and we have

∑
Case 3

r(Q,Q′)P (Q,Q′) ≤ C2−hL2−v′(M+2).

Case 4: |I ′| ≤ |I|, |J ′| ≥ |J |, and |R′| ≥ |R|.

This can be handled similarly as Case 2, and we have

∑
Case 4

r(Q,Q′)P (Q,Q′) ≤ C2−h(L
2
−qω−1)2−v′(M+1).

Case 5: |I ′| ≥ |I|, |J ′| ≥ |J |, and thus |R′| ≥ |R|.

Since

|I| × |J | × |R| ≤ |3Q′ ∩ Ω0,0| < 1

2h−1
|3Q′|,

then |Q′| ∼ 2h−1+n|Q|. And for each v′ and n, the number of such Q’s is less than 2v
′
(2n)3.
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More precisely, we have (|I ′||J ′|)2 ∼ 2h−1+n(|I||J |)2. Thus,

∑
Case 5

r(Q,Q′)P (Q,Q′)

≤ C
∑

Case 5

(
|I||J |
|I ′||J ′|

)L−qω−2( |R|
|R′|

)−qω−2

· (|J ′|)M+1

(|J ′| + 2v
′−1|R′|
|I′| )M+1

|R′|
|I ′||J ′| + 2v′−1|R′|

≤ C
∑
n≥0

2
−(h−1+n)
2(L−qω−2) · 2

−(h−1+n)
2(−qω−2) · 2v

′
23n2−v′(M+2)

≤ C2−h(L
2
−qω−2) · 2−n(L

2
−qω−5) · 2

L
2
−qω−2 · 2−v′(M+1)

≤ C2−h L
2−qω−2

2−v′(M+1)

.

Case 6: |I ′| ≤ |I|, |J ′| ≤ |J |, and thus |R′| ≤ |R|.

Since

|I ′| × |J ′| × |R′| ≤ |3Q′ ∩ Ω0,0,| < 1

2h−1
|3Q′|,

then we can see that in this case, h must be less than 3. And from |I ′| ≤ |I|, we have

|I| ∼ 2n|I ′| and for each n, the number of such I is less than 5. Similarly, from |J ′| ≤ |J |,

we have |J | ∼ 2m|J ′| and for each m, the number of such J is less than 5. Hence we have
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|R| ∼ 2n+m|R′|, and for each v′, n,m, the number of such R is less than 5 · 2v
′
. Thus,

∑
Case 6

r(Q,Q′)P (Q,Q′)

≤ C
∑

Case 6

(
|I ′||J ′|
|I||J |

)L−qω−2( |R′|
|R|

)−qω−2

· (|J |)M+1

(|J | + 2v
′−1|R|
|I| )M+1

|R|
|I||J | + 2v′−1|R|

≤ C
∑
n≥0

∑
m≥0

2−n(L−qω−2) · 2−m(L−qω−2) · 2(−n−m)(−qω−2) · 2v
′
2−v′(M+2)

≤ C2−v′(M+1).

Thus, combining the above 6 cases, by choosing L and M large enough, I4 in (5.17)

becomes

I4 ≤ C sup
Ω∗

1

ω(Ω∗)
2
p
−1

∑
Q′⊆Ω∗

FQ′
|Q′|2

ω(Q′)
.

Using the same techniques, we are able to control the 8 integrates for I, therefore give

the estimate for I, that is,

I ≤ C sup
Ω∗

1

ω(Ω∗)
2
p
−1

∑
Q′⊆Ω∗

FQ′
|Q′|2

ω(Q′)
.

Without any difficulty, II, III, IV in (5.13) can be calculated similarly and bounded by

the right hand side of the above inequality. Hence the proof of the theorem 5.4 is complete.

Finally we show that CMOp
Z(ω) is well defined as a corollary of sup-inf comparison

principle of second kind.
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Corollary 5.9. The definition of CMOp
Z(ω) in Definition 5.3 is independent of the choice

of ψj,k, therefore it is well-defined.

5.4 Proof of the duality theorem

In this section, we prove the (Hp
Z(ω))∗ – CMOp

Z(ω) duality theorem, i.e., Theorem 5.5, and

we need to introduce two sequence spaces.

Definition 5.10 (spZ(ω) and cpZ(ω)). Let ω ∈ A∞(Z), j, k ∈ Z, and I ⊆ R, J ⊆ R,

and R ⊆ R are dyadic intervals with interval-length ℓ(I) = 2−j−N , ℓ(J) = 2−k−N , and

ℓ(R) = 2−j−k−2N for a fixed large positive integer N . The sequence s = {sI×J×R} is said to

be in the sequence space spZ(ω) if

∥s∥spZ(ω) = ∥

{∑
j,k

∑
I×J×R

|sI×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)

} 1
2

∥Lp
ω
<∞, (5.18)

and the sequence t = {tI×J×R} is said to be in the sequence space cpZ(ω) if

∥t∥cpZ(ω) = sup
Ω

{
1

ω(Ω)
2
p
−1

∑
j,k

∑
I×J×R⊆Ω

|tI×J×R|2
|I × J ×R|
ω(I × J ×R)

} 1
2

<∞, (5.19)

for all open sets Ω in R3 with finite weighted measures, and I × J × R run over all dyadic

cubes with side-lengths defined above.

We now derive the following duality theorem for these sequence spaces.

Theorem 5.11 (spZ(ω) – cpZ(ω)). (spZ(ω))∗ = cpZ(ω), precisely, let ω ∈ A∞(Z) and 0 < p ≤ 1,

the map which maps s = {sI×J×R} to < s, t >=
∑

I×J×R sI×J×Rt̄I×J×R defines a continuous
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linear functional on spZ(ω) with operator norm ∥t∥(spZ(ω))∗ ≈ ∥t∥cpZ(ω), and every ℓ ∈ (spZ(ω))∗

is of this form for some t ∈ cpZ(ω).

Proof of Theorem 5.11. First we show that cpZ(ω) ⊆ (spZ(ω))∗. Suppose t = {tI×J×R} ∈

cpZ(ω) and s = {sI×J×R} ∈ spZ(ω), set

h(x, y, z) =

{∑
j,k

∑
I×J×R

|sI×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)

} 1
2

,

which means ∥s∥spZ(ω) = ∥h∥Lp
ω
. Then we write Ωi = {(x, y, z) : h(x, y, z) > 2i}, and

Bi = {I×J×R : ω(I×J×R∩Ωi) >
1

2
ω(I×J×R), ω(I×J×R∩Ωi+1) ≤

1

2
ω(I×J×R)}.

Thus, ∑
j,k

∑
I×J×R

sI×J×Rt̄I×J×R =
∑
i

∑
I×J×R∈Bi

sI×J×Rt̄I×J×R.

Note that 0 < p ≤ 1, by Cauchy-Schwartz’s inequality,

|
∑
i

∑
I×J×R∈Bi

sI×J×Rt̄I×J×R|

≤
∑
i

( ∑
I×J×R∈Bi

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|

) 1
2
( ∑
I×J×R∈Bi

|t̄I×J×R|2
|I × J ×R|
ω(I × J ×R)

) 1
2
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≤

∑
i

( ∑
I×J×R∈Bi

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|

) p
2
( ∑
I×J×R∈Bi

|tI×J×R|2
|I × J ×R|
ω(I × J ×R)

) p
2


1
p

≤ C∥t∥cpZ(ω)

∑
i

ω(Ωi)
1− p

2

( ∑
I×J×R∈Bi

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|

) p
2


1
p

.

Where the last inequality follows from the fact that if I × J ×R ∈ Bi, then there exists

0 < θ < 1 such that

I × J ×R ⊆ {(x, y, z) : MZ(χΩi
)(x, y, z) > θ} , Ω̃i,

together with ω(Ω̃i) ≤ Cω(Ωi), imply

( ∑
I×J×R∈Bi

|tI×J×R|2
|I × J ×R|
ω(I × J ×R)

) 1
2

≤ C∥t∥cpZ(ω)ω(Ωi)
1
p
− 1

2 .

We claim for now

∑
I×J×R∈Bi

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|
≤ C22iω(Ωi). (5.20)

Assume this claim for the moment, then

|
∑
i

∑
I×J×R∈Bi

sI×J×Rt̄I×J×R|

≤ C∥t∥cpZ(ω)(
∑
i

2ipω(Ωi))
1
p

≤ C∥t∥cpZ(ω)∥h∥Lp
ω

≤ C∥t∥cpZ(ω)∥s∥spZ(ω),
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therefore cpZ(ω) ⊆ (spZ(ω))∗. To show the claim (5.20), it is sufficient to prove

∑
I×J×R∈Bi

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|
≤ C

ˆ
Ω̃i\Ωi+1

h2(x, y, z)ωdxdydz

because ˆ
Ω̃i\Ωi+1

h2(x, y, z)ωdxdydz ≤ 22(i+1)ω(Ω̃i) ≤ C22iω(Ωi).

However,

ˆ
Ω̃i\Ωi+1

h2(x, y, z)ωdxdydz

=

ˆ
Ω̃i\Ωi+1

∑
I×J×R

|sI×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)ωdxdydz

≥
∑

I×J×R∈Bi

|sI×J×R|2
ω((Ω̃i\Ωi+1) ∩ (I × J ×R))

ω(I × J ×R)

ω(I × J ×R)

|I × J ×R|

≥ 1

2

∑
I×J×R∈Bi

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|
,

since for I × J ×R ∈ Bi,

ω((Ω̃i ∩ I × J ×R)) >
1

2
ω(I × J ×R),

and

ω((Ωi+1 ∩ I × J ×R)) ≤ 1

2
ω(I × J ×R).

Then I × J ×R ∈ Ω̃i, hence

ω((Ω̃i\Ωi+1) ∩ (I × J ×R)) >
1

2
ω(I × J ×R).
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The claim is verified.

Next we shall prove that (spZ(ω))∗ ⊆ cpZ(ω). Let ℓ ∈ (spZ(ω))∗, then there exists some

t = {tI×J×R} such that ∀s = {sI×J×R} ∈ spZ(ω),

ℓ(s) =
∑

I×J×R

sI×J×Rt̄I×J×R.

For an open set Ω in R3 with ω(Ω) <∞, define

∥s∥spZ,Ω(ω)
=


ˆ
Ω

( ∑
I×J×R⊆Ω

|sI×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)

) p
2

ωdxdydz


1
p

,

and

∥s∥ℓ2Z,Ω(ω)
=

( ∑
I×J×R⊆Ω

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|

) 1
2

.

Then, by Hölder’s inequality,

∥s∥spZ,Ω(ω)

=


ˆ
Ω

( ∑
I×J×R⊆Ω

|sI×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)

) p
2

ωdxdydz


1
p

≤ ω(Ω)
1
p
− 1

2

{ˆ
Ω

∑
I×J×R⊆Ω

|sI×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)ωdxdydz

} 1
2

= ω(Ω)
1
p
− 1

2

( ∑
I×J×R⊆Ω

|sI×J×R|2
ω(I × J ×R)

|I × J ×R|

) 1
2

= ω(Ω)
1
p
− 1

2∥s∥ℓ2Z,Ω(ω)
.
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Thus, we compute

{
1

ω(Ω)
2
p
−1

∑
j,k

∑
I×J×R⊆Ω

|tI×J×R|2
|I × J ×R|
ω(I × J ×R)

} 1
2

=
1

ω(Ω)
1
p
− 1

2

sup
∥s∥

ℓ2Z,Ω
(ω)

≤1

|
∑

I×J×R⊆Ω

sI×J×Rt̄I×J×R|

≤ 1

ω(Ω)
1
p
− 1

2

sup
∥s∥

ℓ2Z,Ω
(ω)

≤1

∥t∥(spZ(ω))∗∥sI×J×R∥spZ,Ω(ω)

= ∥t∥(spZ(ω))∗ sup
∥s∥

ℓ2Z,Ω
(ω)

≤1

1

ω(Ω)
1
p
− 1

2

∥sI×J×R∥spZ,Ω(ω)

= ∥t∥(spZ(ω))∗ sup
∥s∥

ℓ2Z,Ω
(ω)

≤1

∥sI×J×R∥ℓ2Z,Ω(ω)

≤ ∥t∥(spZ(ω))∗

for all Ω. Therefore, by taking the superium, t ∈ cpZ(ω) and ∥t∥cpZ(ω) ≤ ∥t∥(spZ(ω))∗ , which

implies (spZ(ω))∗ ⊆ cpZ(ω), and thus the proof of Theorem 5.11 is complete.

In order to pass the duality theory from sequence spaces to Hp
Z(ω) and CMOp

Z(ω), we

need the following lemmas.

Lemma 5.12. Given large positive integer N and integers j, k, j′, k′ ∈ Z. Let I, J, R, I ′, J ′, R′ ⊆

R are dyadic intervals with interval-length ℓ(I) = 2−j−N , ℓ(J) = 2−k−N , ℓ(R) = 2−j−k−2N ,

ℓ(I ′) = 2−j′−N , ℓ(J ′) = 2−k′−N , and ℓ(R′) = 2−j′−k′−2N . Let {aI′,J ′,R′} be any given sequence,

xI′ ∈ I ′, yJ ′ ∈ J ′, and zJ ′ ∈ R′ be any points. Then for any u, u∗ ∈ I, v, v∗ ∈ J , w,w∗ ∈ R
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we have

∑
I′,J ′,R′

2−(j∧j′)M12−(k∧k′)M2 |I ′||J ′||R′|
(2−(j∧j′) + |u− xI′|)1+M12−j∗(2−(k∧k′) + |v − yJ ′ | +

|w−zR′ |
2−j∗ )2+M2

|aI′,J ′,R′|

≤ C24N( 1
r
−1)2τ

{
MZ(

∑
I′,J ′,R′

|aI′,J ′,R′ |rχI′χJ ′χR′)(u∗, v∗, w∗)

}1/r

,

where j∗ = j if k < k′, and j∗ = j′ if k ≥ k′. MZ is the maximal operator associated with

Zygmund dilations defined in (5.1), and max{ 2
1+M1

, 2
2+M2

} < r ≤ 1. The summation is taken

for all I ′, J ′, R′ with the fixed side-length. τ is defined as follows,

τ =



(2
r
− 2)(j′ + k′ − j − k) if j < j′ and k < k′,

(2
r
− 1)(j′ − j) if j < j′ and k ≥ k′,

j − j′ + (2
r
− 2)(k′ − k) if j ≥ j′ and k < k′,

0 if j ≥ j′ and k ≥ k′.

The detailed proof of Lemma 5.12 can be found in [HL2].

Lemma 5.13. Let ω ∈ A∞(Z), j, k ∈ Z, ψj,k be same as in (5.3) and I ⊆ R, J ⊆ R,

and R ⊆ R are dyadic intervals with interval-length ℓ(I) = 2−j−N , ℓ(J) = 2−k−N , and

ℓ(R) = 2−j−k−2N for a fixed large positive integer N . Define a map S on (SZ(R3))′ by

h(f) =
{
|I|

1
2 |J |

1
2 |R|

1
2ψj,k ∗ f(xI , yJ , zR)

}
.
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For any sequence s = {sI×J×R}, we define the map T by

T (s) =
∑
j,k

∑
I×J×R

sI×J×R|I|
1
2 |J |

1
2 |R|

1
2 ψ̃j,k(x, y, z, xI , yJ , zR),

where ψ̃j,k are same as in the discrete Calderón’s identity in Theorem 5.6.

Then, S is bounded from Hp
Z(ω) to spZ(ω), and from CMOp

Z(ω) to cpZ(ω). While T is

bounded from spZ(ω) to Hp
Z(ω), and from cpZ(ω) to CMOp

Z(ω). Moreover, T ◦S is the identity

map on both Hp
Z(ω) and CMOp

Z(ω).

Proof of Lemma 5.13. If f ∈ Hp
Z(ω), then by the definition of Hp

Z(ω) in Definition 5.2 to-

gether with discrete Littlewood-Paley-Stein square function (5.8),

∥h(f)∥spZ(ω)

= ∥

{∑
j,k

∑
I×J×R

|h(f)I×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)

} 1
2

∥Lp
ω

= ∥

{∑
j,k

∑
I,J,R

|(ψj,k ∗ f)(xI , yJ , zR)|2χI(x)χJ(y)χR(z)

} 1
2

∥Lp
ω

≤ C∥f∥Hp
Z(ω).

Similarly, by the aid of sup-inf comparison principle of second kind in Theorem 5.4, we

can show S is bounded from CMOp
Z(ω) to cpZ(ω).

To show T is bounded from spZ(ω) to Hp
Z(ω), by using almost orthogonality estimate in
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Lemma 5.8, we get

∑
j′,k′

∑
I′,J ′,R′

|ψj′,k′ ∗ T (s)(xI′ , yJ ′ , zR′)|2χI′(x)χJ ′(y)χR′(z)

=
∑
j′,k′

∑
I′,J ′,R′

|ψj′,k′ ∗ (
∑
j,k

∑
I×J×R

sI×J×R|I|
1
2 |J |

1
2 |R|

1
2 ψ̃j,k(x, y, z, xI , yJ , zR))

(xI′ , yJ ′ , zR′)|2χI′(x)χJ ′(y)χR′(z)

≤
∑
j′,k′

∑
I′,J ′,R′

∑
j,k

∑
I,J,R

2−|j−j′|L2−|k−k′|L|I|−
1
2 |J |−

1
2 |R|−

1
2

2−(j∧j′)M

(2−j∧j′ + |xI′ − xI |)M+1

× 2−(k∧k′)M

2−j∗(2−k∧k′ + |yJ ′ − yJ | + 2j∗ |zR′ − zR|)M+2
|sI×J×R|χI′(x)χJ ′(y)χR′(z)

≤ C
∑
j,k

2−|j−j′|L2−|k−k′|L2τ

{
MZ(

∑
I,J,R

|I|−
1
2 |J |−

1
2 |R|−

1
2 |sI×J×R|χIχJχR)r

} 1
r

,

in which we applied Lemma 5.12 to get the last inequality, and use the weighted inequalities

for vector-valued maximal operator associated with Zygmund dilations, we will be able to

derive that

∥T (s)∥Hp
Z(ω)

= ∥

{∑
j′,k′

∑
I′,J ′,R′

|(ψj′,k′ ∗ T (s))(x′I , y
′
J , z

′
R)|2χ′

I(x)χ′
J(y)χ′

R(z)

} 1
2

∥Lp
ω

≤ C∥
∑
j,k

2−|j−j′|L2−|k−k′|L2τ

{
MZ(

∑
I,J,R

|I|−
1
2 |J |−

1
2 |R|−

1
2 |sI×J×R|χIχJχR)r

} 1
r

∥Lp
ω

≤ C∥

{∑
j,k

∑
I×J×R

|sI×J×R|2|I|−1|J |−1|R|−1χI(x)χJ(y)χR(z)

} 1
2

∥Lp
ω

= C∥s∥spZ(ω).

Similarly, we can prove T is bounded from cpZ(ω) to CMOp
Z(ω), and it is evident that

T ◦ S is the identity map on Hp
Z(ω) and CMOp

Z(ω).
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Combining Theorem 5.11 and Lemma 5.13, we are able to prove Theorem 5.5.

Proof of Theorem 5.5. First, if g ∈ CMOp
Z(ω), the map ℓg is given by ℓg(f) =< f, g > for

f ∈ SZ(R3)

ℓg(f) = | < f, g > |

= | <
∑
j,k

∑
I,J,R

|I||J ||R|ψ̃j,k(x, y, z, xI , yJ , zR)(ψj,k ∗ f)(xI , yJ , zR), g > |

= | < S(f), S(g) > |

≤ ∥S(f)∥spZ(ω)∥S(g)∥cpZ(ω)

≤ C∥f∥Hp
Z(ω)∥g∥CMOp

Z(ω).

Since SZ(R3) is dense in Hp
Z(ω) (see [HLX2]), Hahn-Banach Theorem implies that the

map ℓg =< f, g > can be extended to a continuous linear functional on Hp
Z(ω), and ∥ℓg∥ ≤

C∥g∥CMOp
Z(ω).

Conversely, for every ℓ ∈ (Hp
Z(ω))∗, consider ℓT = ℓ ◦ T defined on spZ(ω), and for every

s ∈ spZ(ω),

|ℓT (s)| = |ℓ(T (s))| ≤ ∥ℓ∥∥T (s)∥Hp
Z(ω) ≤ C∥ℓ∥∥s∥spZ(ω),

which implies ℓT ∈ (spZ(ω))∗, then by Theorem 5.11, there exists t = {tI×J×R} ∈ cpZ(ω) such

that

ℓT (s) =< s, t >=
∑

I×J×R

sI×J×Rt̄I×J×R,

for all s ∈ spZ(ω), and

∥t∥cpZ(ω) ≈ ∥ℓT∥ ≤ C∥ℓ∥.



106

From Lemma 5.13, T ◦ S is the identity map on Hp
Z(ω), thus ℓ = ℓ ◦ T ◦ S = ℓT ◦ S, and

ℓ(f) = ℓT (S(f)) =< S(f), t >=< f, g >,

in which g = T (t). This shows ℓ = ℓg for g ∈ CMOp
Z(ω), and ∥g∥CMOp

Z(ω) ≤ C∥t∥cpZ(ω) ≤

C∥ℓ∥, which completes the proof of Theorem 5.5.
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DISCRETE LITTLEWOOD-PALEY-STEIN THEORY

AND WOLFF POTENTIALS ON HOMOGENEOUS SPACES

AND MULTI-PARAMETER HARDY SPACES

by

YAYUAN XIAO

AUGUST 2013

Advisor: Dr. Guozhen Lu

Major: Mathematics

Degree: Doctor of Philosophy

Part I Let X ,X1 and X2 be the spaces of homogeneous type, by using the discrete

harmonic analysis, we

• derive a new (p, q) - atomic decomposition on the multi-parameter Hardy spaceHp(X1×
X2) for 0 < p ≤ 1 and all 1 < q < ∞, where this decomposition converges in both

Lq(X1 ×X2) (for 1 < q <∞) and Hardy space Hp(X1 ×X2) (for 0 < p ≤ 1).

• prove that an operator T , which is bounded on Lq(X1 × X2) for some 1 < q < ∞,

is bounded from Hp(X1 × X2) to Lp(X1 × X2) if and only if T is bounded uniformly

on all (p, q)-product atoms in Lp(X1 × X2). The similar boundedness criterion from

Hp(X1 ×X2) to Hp(X1 ×X2) is also obtained.

• compare the Wolff and Riesz potentials on X and get an associated Hardy-Littlewood-

Sobolev type inequality. Applying this inequality, we derive integrability estimates of

positive solutions to the Lane-Emden type integral system on X . system,

Part II By applying the discrete Littlewood-Paley-Stein analysis, we establish a (p, 2)-

atomic decomposition of Hardy spaces associated with different homogeneities. In addition,

we prove the duality theorem of weighted multi-parameter Hardy spaces associated with

Zygmund dilations, i.e., (Hp
Z(ω))∗ = CMOp

Z(ω) for 0 < p ≤ 1. Our theorems extend the

weighted Hardy spaces the Hp
Z – CMOp

Z duality established in [HL2] for non-weighted multi-

parameter Hardy spaces associated with the Zygmund dilation.
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